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PREFACE

This text is a second generation descendent of our text, Digital Signal Processing, which

was published in 1975. At that time, the technical field of digital signal processing was

in its infancy, but certain basic principles had emerged and could be organized into

a coherent presentation. Although courses existed at a few schools, they were almost

exclusively at the graduate level. The original text was designed for such courses.

By 1985, the pace of research and integrated circuit technology made it clear

that digital signal processing would realize the potential that had been evident in the

19703. The burgeoning importance of DSP clearly justified a revision and updating of the

original text. However, in organizing that revision, it was clear that so many changes had

occurred that it was most appropriate to develop a new textbook, strongly based on our

original text, while keeping the original text in print. We titled the new book Discrete-

Time Signal Processing to emphasize that most of the theory and design techniques

discussed in the text apply to discrete-time systems in general.

By the time Discrete-Time Signal Processing was published in 1989, the basic

principles of DSP were commonly taught at the undergraduate level, sometimes even

as part of a first course on linear systems, or at a somewhat more advanced level in

third—year, fourth-year, or beginning graduate subjects. Therefore, it was appropriate to

expand considerably the treatment of such topics as linear systems, sampling, multirate

signal processing, applications, and spectral analysis. In addition, more examples were

included to emphasize and illustrate important concepts. We also removed and con-

densed some topics that time had shown were not fundamental to the understanding of

discrete-time signal processing. Consistent with the importance that we placed on well

constructed examples and homework problems, the new text contained more than 400

problems.

In the decade or so since Discrete-Time Signal Processing was published, some

important new concepts have been developed, the capability of digital integrated cir-

cuits has grown exponentially, and an increasing number of applications have emerged.

However, the underlying basics and fundamentals remain largely the same albeit with

a refinement of emphasis, understanding and pedagogy. Consequently when we looked

at what was needed to keep Discrete- Time Signal Processing up-to-date as a textbook

emphasizing the fundamentals of DSP, we found that the changes needed were far less

drastic than before. In planning this current revision we were guided by the princi-

ple that the main objective of a fundamental textbook is to uncover a subject rather

than to cover it. Consequently, our goal in this current revision is to make the sub-

ject of discrete-time signal processing even more accessible to students and practicing

engineers, without compromising on coverage of what we consider to be the essential

concepts that define the field. Toward this end we have considerably expanded our cov-

erage of multi-rate signal processing due to its importance in oversampled A-to-D and

D-to-A conversion and digital filter implementation. We have added a discussion of the

cosine transform, which plays a central role in data compression standards. We have

also removed some material that we judged to be of lesser importance in the present

xix
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context, or more appropriate for advanced textbooks and upper level graduate courses.

Many of the concepts that were removed from the text (such as basic results on the

cepstrum) have reappeared in some of the new homework problems.

A major part of our emphasis in this revision has been directed toward the home—

work problems and examples. We have significantly increased the number of examples

which are important in illustrating and understanding the basic concepts, and we have

increased the number of homework problems. Furthermore, the homework problems

have been reorganized according to their level of difficulty and sophistication, and an—

swers are provided to a selected set of problems. The instructor’s manual available from

the publisher contains updated solutions for all of the problems in the book. These so-

lutions were prepared by Li Lee and Maya Said of MIT and Jordan Rosenthal and

Greg Slabaugh of Georgia Tech. This manual also contains some suggested exam prob-

lems based on our courses at MIT, Georgia Tech and the University of Massachusetts
Dartmouth.

As in the earlier texts, it is assumed that the reader has a background of advanced

calculus, along with a good understanding of the elements of complex numbers and vari-

ables. In this edition, we have refrained from the use of complex contour integration

in order to make the discussion accessible to a wider audience. An exposure to linear

system theory for continuous-time signals, including Laplace and Fourier transforms,

as taught in most undergraduate electrical and mechanical engineering curricula is still

a basic prerequisite. With this background, the book is self—contained. In particular, no

prior experience with discrete-time signals, z—transforms, discrete Fourier transforms,

and the like is assumed. In later sections of some chapters, some topics such as quanti-

zation noise are included that assume a basic background in stochastic signals. A brief

review of the background for these sections is included in Chapter 2 and in Appendix A.

It has become common in many signal processing courses to include exercises to be

done on a computer, and many of the homework problems in this book are easily turned

into problems to be solved with the aid of a computer. As in the first edition, we have

purposely avoided providing special software to implement algorithms described in this

book, for a variety of reasons. Foremost among them is that there are a variety of in-

expensive signal processing software packages readily available for demonstrating and

implementing signal processing on any of the popular personal computers and work-

stations. These packages are well documented and have excellent technical support,

and many of them have excellent user interfaces that make them easily accessible to

students. Furthermore, they are in a constant state of evolution, which strongly suggests

that available software for classroom use should be constantly reviewed and updated.

We share the enthusiasm of many for MATLAB, which an increasing number of stu-

dents are learning at early stages of their education. However, we continue to prefer a

presentation that utilizes the power of computational tools such as MATLAB to create

examples and illustrations of the theory and fundamentals for use in the text, but does

not let issues of programming syntax and functionality of the software environment

detract from the emphasis on the concepts and the way that they are used. We firmly

believe that there is enormous value in hands-on experience. Indeed, software tools

such as MATLAB allow students to implement sophisticated signal processing systems

on their own personal computers, and we feel that there is great benefit to this once

the student is confident of the fundamentals and is capable of sorting out programming

mistakes from conceptual errors. For this reason, the instructor’s manual contains a sec—
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tion of suggestions for assignments in the inexpensive texts Computer-Based Exercises

for Signal Processing Using Matlab 5 by McClellan, et al., and Computer Explorations

in Signals and Systems Using Marlab by Buck, Daniel and Singer, both of which are

also available from Prentice-Hall, Inc. These suggestions link projects in these com-

puter exercise books to specific sections, examples and problems in this textbook. This

will allow instructors to design computer assignments which are related to the material

and examples they have covered in class, and to link these computer assignments to

traditional analytic homework problems to reinforce the concepts demonstrated there.

The material in this book is organized in a way that provides considerable flexi-

bility in its use at both the undergraduate and graduate level. A typical one-semester

undergraduate elective might cover in depth Chapter 2, Sections 2.0—2.9; Chapter 3;

Chapter 4, Sections 4.0—4.6; Chapter 5, Sections 5.0—5.3; Chapter 6, Sections 6.0—6.5;

Chapter 7, Sections 7.0—7.3 and a brief overview of Sections 7.4—7.5. If students have

studied discrete-time signals and systems in a general signals and systems course, it

would be possible to move more quickly through the material of Chapters 2, 3, and 4,

thus freeing time for covering Chapter 8. A first-year graduate course could augment

the above topics with the remaining topics in Chapter 5, a discussion of multirate signal

processing (Section 4.7) an exposure to some of the quantization issues introduced in

Section 4.8 and perhaps an introduction to noise shaping in A/D and D/A converters as

discussed in Section 4.9. A first-year graduate course should also include exposure to

some of the quantization issues addressed in Sections 6.6—6.9, to a discussion of optimal

FIR filters as incorporated in Sections 7.4 and 7.5, and a thorough treatment of the

discrete Fourier transform (Chapter 8) and its computation using the FFT‘ (Chapter 9).

The discussion of the DFT can be effectively augmented with many of the examples in

Chapter 10. In a two-semester graduate course, the entire text together with a number

of additional advanced topics can be covered.

In Chapter 2, we introduce the basic class of discrete-time signals and systems and

define basic system properties such as linearity, time invariance, stability, and causality.

The primary focus of the book is on linear time-invariant systems because of the rich

set of tools available for designing and analyzing this class of systems. In particular, in

Chapter 2 we develop the time-domain representation of linear time-invariant systems

through the convolution sum and introduce the class of linear time-invariant systems

represented by linear constant-coefficient difference equations. In Chapter 6, we de—

velop this class of systems in considerably more detail. Also in Chapter 2 we introduce

the frequency—domain representation of signals and systems through the Fourier trans-

form. The primary focus in Chapter 2 is on the representation of sequences in terms

of the Fourier transform, i.e., as a linear combination of complex exponentials, and the

development of the basic properties of the Fourier transform.

In Chapter 3, we develop the z—transform as a generalization of the Fourier trans—

form. This chapter focuses on developing the basic theorems and properties of the

z-transform and the development of the partial fraction expansion method for the in-

verse transform operation. In Chapter 5, the results developed in Chapters 3 and 4 are

used extensively in a detailed discussion of the representation and analysis of linear

time-invariant systems.

In Chapter 4, we carry out a detailed discussion of the relationship between

continuous-time and discrete-time signals when the discrete-time signals are obtained

through periodic sampling of continuous-time signals. This includes a development of
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the Nyquist sampling theorem. In addition, we discuss upsampling and downsampling

of discrete-time signals, as used, for example, in multirate signal processing systems

and for sampling rate conversion. The chapter concludes with a discussion of some of

the practical issues encountered in conversion from continuous time to discrete time

including prefiltering to avoid aliasing, modeling the effects of amplitude quantization

when the discrete-time signals are represented digitally, and the use of oversampling in

simplifying the A-to-D and D-to-A conversion processes.

In Chapter 5 we apply the concepts developed in the previous chapters to a de-

tailed study of the properties of linear time—invariant systems. We define the class of

ideal, frequency-selective filters and develop the system function and pole-zero rep-

resentation for systems described by linear constant-coefficient difference equations,

a class of systems whose implementation is considered in detail in Chapter 6. Also in

Chapter 5, we define and discuss group delay, phase response and phase distortion,

and the relationships between the magnitude response and the phase response of sys-

tems, including a discussion of minimum-phase, allpass, and generalized linear phase

systems.

In Chapter 6, we focus specifically on systems described by linear constant-

coefficient difference equations and develop their representation in terms of block

diagrams and linear signal flow graphs. Much of this chapter is concerned with develop-

ing a variety of the important system structures and comparing some of their properties.

The importance of this discussion and the variety of filter structures relate to the fact

that in a practical implementation of a discrete-time system, the effects of coefficient

inaccuracies and arithmetic error can be very dependent on the specific structure used.

While these basic issues are similar whether the technology used for implementation

is digital or discrete-time analog, we illustrate them in this chapter in the context of a

digital implementation through a discussion of the effects of coefficient quantization

and arithmetic roundoff noise for digital filters.

While Chapter 6 is concerned with the representation and implementation of

linear constant-coefficient difference equations, Chapter 7 is a discussion of the proce-

dures for obtaining the coefficients of this class of difference equations to approximate

a desired system response. The design techniques separate into those used for infinite

impulse response (IIR) filters and those used for finite impulse response (FIR) filters.

In continuous-time linear system theory, the Fourier transform is primarily an an-

alytical tool for representing signals and systems. In contrast, in the discrete-time case,

many signal processing systems and algorithms involve the explicit computation of the

Fourier transform. While the Fourier transform itself cannot be computed, a sampled

version of it, the discrete Fourier transform (DPT), can be computed, and for finite-

length signals the DFT is a complete Fourier representation of the signal. In Chapter 8,

the discrete Fourier transform is introduced and its properties and relationship to the

discrete—time Fourier transform are developed in detail. In this chapter we also provide

an introduction to the discrete cosine transform which is playing an increasingly impor-

tant role in many applications including audio and video compression. In Chapter 9,

the rich and important variety of algorithms for computing or generating the discrete

Fourier transform is introduced and discussed, including the Goertzel algorithm, the

fast Fourier transform (FFI‘) algorithms, and the chirp transform.

With the background developed in the earlier chapters and particularly Chapters 2,

3, 5, and 8, we focus in Chapter 10 on Fourier analysis of signals using the discrete Fourier
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transform. Without a careful understanding of the issues involved and the relationship

between the DFT and the Fourier transform, using the DFT for practical signal analysis

can often lead to confusions and misinterpretations. We address a number of these

issues in Chapter 10. We also consider in some detail the Fourier analysis of signals with

time-varying characteristics by means of the time-dependent Fourier transform.

In Chapter 11, we introduce the discrete Hilbert transform. This transform arises

in a variety of practical applications, including inverse filtering, complex representations

for real bandpass signals, single-sideband modulation techniques, and many others.
With this edition we thank and welcome Professor John Buck. John has been a

long time contributor to this book through his teaching of the subject while a student at

MIT and more recently as a member of the faculty at the University of Massachusetts

Dartmouth. In this edition he has taken the major responsibility for a total reworking

and reorganization of the homework problems and many of the examples in the book.

His insight and dedication to the task are obvious in the final result.

Alan V. Oppenheim

Ronald W. Schafer
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INTRODUCTION

Signal processing has a long and rich history. It is a technology that spans an immense set

of disciplines including entertainment, communications, space exploration, medicine,

and archaeology, just to name a few. Sophisticated signal processing algorithms and

hardware are prevalent in a wide range of systems, from highly specialized military

systems through industrial applications to low-cost, high-volume consumer electron—

ics. Although we routinely take for granted the performance of home entertainment

systems such as television and high-fidelity audio, these systems have always relied

heavily on state-of-the-art signal processing. This is even more true today with the

emergence of advanced television and multimedia entertainment and information sys—

tems. Furthermore, as communication systems become increasingly wireless, mobile,

and multifunctional, the importance of sophisticated signal processing in these systems

continues to grow. Overall, as we look to the future, it is clear that the role of signal

processing in our society is accelerating, driven in part by the convergence of communi—

cations, computers and signal processing in both the consumer arena and in advanced

industrial and government applications.

The field of signal processing has always benefited from a close coupling between

theory, applications, and technologies for implementing signal processing systems. The

growing number of applications and demand for increasingly sophisticated algorithms

goes hand-in-hand with the rapid pace of device technology for implementing signal

processing systems. By some estimates the processing capability of signal processing

microprocessors is likely to increase by a factor of 200 or more over the next ten years.

It seems clear that in many ways the importance and role of signal processing is accel—

erating and expanding.

Signal processing is concerned with the representation, transformation, and ma-

nipulation of signals and the information they contain. For example, we may wish to
1
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separate two or more signals that have somehow been combined, or we may want to en-

hance some signal component or some parameter of a signal model. In communications

systems, it is generally necessary to do pre-processing such as modulation, signal condi-

tioning, and compression prior to transmission over a channel and then to post process

at the receiver. Prior to the 1960s, the technology for signal processing was almost ex-

clusively continuous-time analog technology._l The rapid evolution of digital computers

and microprocessors together with some important theoretical developments such as

the fast Fourier transform algorithm (FFT) caused a major shift to digital technolo-

gies, giving rise to the field of digital signal processing. A fundamental aspect of digital

signal processing is that it is based on processing sequences of samples. This discrete—

time nature of digital signal processing technology is also characteristic of other signal

processing technologies such as surface acoustic wave (SAW) devices, charge—coupled

devices (CCDs), charge transport devices (CTDs), and switched—capacitor technologies.

In digital signal processing, signals are represented by sequences of finite-precision num-

bers, and processing is implemented using digital computation. The more general term

discrete-time signalprocessing includes digital signal processing as a special case, but also

includes the possibility that sequences of samples (sampled data) are processed with

other discrete-time technologies. Often the distinction between the terms discrete-time

signal processing and digital signal processing is of minor importance, since both are

concerned with discrete-time signals. While there are many examples in which signals

to be processed are inherently sequences, most applications involve the use of discrete-

time technology for processing continuous-time signals. In this case, a continuous-time

signal is converted into a sequence of samples, Le, a discrete-time signal. After discrete-

time processing, the output sequence is converted back to a continuous—time signal.

Real-time operation is often desirable for such systems, meaning that the discrete-time

system is implemented so that samples of the output are computed at the same rate at

which the continuous-time signal is sampled. Discrete-time processing of continuous-

time signals in real time is commonplace in communication systems, radar and sonar,

speech and video coding and enhancement, and biomedical engineering to name just

a few. The compact disc player is a somewhat different example in which a processed

form of the input is stored (on the compact disc) and final processing is carried out in

real time when the output is desired. The compact disc recording and playback system

relies on many of the signal processing concepts which we discuss in this book.

Much of traditional signal processing involves processing one signal to obtain

another signal. Another important class of signal processing problems is signal interpre-

tation. In such problems the objective of the processing is not to obtain an output signal

but to obtain a characterization of the input signal. For example, in a speech recognition

or understanding system, the objective is to interpret the input signal or extract informa-

tion from it. Typically, such a system will apply digital preprocessing (filtering, parameter

estimation, etc.) followed by a pattern recognition system to produce a symbolic repre-

sentation such as a phonemic transcription of the speech. This symbolic output can in

turn be the input to a symbolic processing system, such as a rule-based expert system, to

1In a general context, we typically refer to the independent variable as “time” even though in specific
contexts the independent variable may take on any of a broad range of possible dimensions. Consequently.

continuous time and discrete time should be thought of as generic terms referring to a continuous independent

variable and a discrete independent variable, respectively.
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provide the final signal interpretation. Still another and relatively new category of signal

processing involves the symbolic manipulation of signal processing expressions. This

type of processing is particularly useful in signal processing workstations and for the

computer-aided design of signal processing systems. In this class of processing, signals

and systems are represented and manipulated as abstract data objects. Object-oriented

programming languages provide a convenient environment for manipulating signals,

systems, and signal processing expressions without explicitly evaluating the data se-

quences and provide the basis for this class of processing. The sophistication of systems

designed to do signal expression processing is directly influenced by the incorporation

of fundamental signal processing concepts, theorems, and properties such as those that

form the basis for this book. For example, a signal processing environment that incor-

porates the property that convolution in the time domain corresponds to multiplication

in the frequency domain can explore a variety of rearrangements of filtering structures,

including those involving the direct use of the discrete Fourier transform and the fast

Fourier transform algorithm. Similarly, environments that incorporate the relationship

between sampling rate and aliasing can make effective use of decimation and interpola-

tion strategies for filter implementation. Similar ideas are currently being explored for

implementing signal processing in network environments. In this type of environment,

data can potentially be tagged with a high-level description of the processing to be

done and the details of the implementation can be based dynamically on the resources
available on the network.

The development of object-oriented environments for computer-aided system

design and for signal processing on dynamically changing networks is still in its very

early stages and any detailed discussion of it is beyond the scope of this text. However, it

is important to recognize that the basic concepts that are the subject of this book should

not be viewed as just theoretical in nature; they are likely to become an explicit integral

part of computer-aided signal processing environments, workstations, and networks.

Many of the concepts and design techniques discussed in this text are now incorpo-

rated into the structure of sophisticated software systems such as Matlab. In many cases

where discrete-time signals are acquired and stored in computers, these tools allow ex-

tremely sophisticated signal processing operations to be formed from basic functions. In

such cases, it is not generally necessary to know the details of the underlying algorithm

that implements the computation of an operation like the FFT, but it is essential to

understand what is computed and how it should be interpreted. In other words, a good

understanding of the concepts considered in this text is essential for intelligent use of

the signal processing software tools that are now widely available.

Signal processing problems are not confined, of course, to one-dimensional signals. v

Although there are some fundamental differences in the theories for one-dimensional

and multidimensional signal processing, much of the material that we discuss in this text

has a direct counterpart in multidimensional systems. The theory of multidimensional

digital signal processing is presented in detail in Dudgeon and Mersereau (1984), Lim

(1989), and Bracewell (1986).2 Many image processing applications require the use of

two-dimensional signal processing techniques. This is the case in such areas as video

coding, medical imaging, enhancement and analysis of aerial photographs, analysis

2Authors names and dates are used throughout the text to refer to books and papers listed in the
Bibliography at the end of the book.
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of satellite weather photos, and enhancement of video transmissions from lunar and

deep-space probes. Applications of multidimensional digital signal processing to image

processing are discussed in Andrews and Hunt (1977), Macovski (1983), Pratt (1991),

Castleman (1996), Jain (1989), and Chellappa et a1. (1998). Seismic data analysis as

required in oil exploration, earthquake measurement, and nuclear test monitoring also

utilizes multidimensional signal processing techniques. Seismic applications are dis-

cussed in Robinson and Treitel (1980) and Robinson and Durrani (1985).

Multidimensional signal processing is only one of many advanced and specialized

topics that build on the fundamentals covered in this text. Spectral analysis based on

the use of the discrete Fourier transform and the use of signal modeling is another

particularly rich and important aspect of signal processing. We introduce many facets

of this topic, focusing on the basic concepts and techniques relating to the use of the

discrete Fourier transform. In addition to these techniques, a variety of spectral analysis

methods rely in one way or another on specific signal models. For example, a class of

high-resolution spectral analysis methods referred to as maximum entropy methods

(MEM spectral analysis) is based on representing the signal to be analyzed as the

response of a discrete-time linear time-invariant filter to either an impulse or to white

noise. Spectral analysis is achieved by estimating the parameters (e.g., the difference

equation coefficients) of the system and then evaluating the magnitude squared of the

frequency response of the model filter. A thorough and detailed treatment of the issues

and techniques of this approach to signal modeling and spectral analysis builds directly

from the fundamentals in this text. Detailed discussions can be found in the texts by Kay

(1988), Marple (1987), and Hayes (1996). Signal modeling also plays an important role

in data compression and coding, and again the fundamentals of difference equations

provide the basis for understanding many of these techniques. For example, one class

of signal coding techniques, referred to as linear predictive coding (LPC), exploits the

notion that if a signal is the response of a certain class of discrete-time filters, the

signal value at any time index is a linear function of (and thus linearly predictable

from) previous values. Consequently, efficient signal representations can be obtained

by estimating these prediction parameters and using them along with the prediction

error to represent the signal. The signal can then be regenerated when needed from the

model parameters. This class of signal coding techniques has been particularly effective

in speech coding and is described in considerable detail in Jayant and N011 (1984),

Markel and Gray (1976), Rabiner and Schafer (1978), and Deller et al. (1993).

Another advanced topic of considerable importance is adaptive signal processing.

Adaptive systems represent a particular class of time-varying and, in some sense, non-

linear systems with broad application and with established and effective techniques for

their design and analysis. Again, many of these techniques build from the fundamen—

tals of discrete—time signal processing covered in this text. Details of adaptive signal

processing are given by Haykin (1996), and Widrow and Stearns (1985).

These represent only a few of the many advanced topics that extend from the topics

covered in this text. Others include advanced and specialized filter design procedures,

a variety of specialized algorithms for evaluation of the Fourier transform, specialized

filter structures, and various advanced multirate signal processing techniques including
filter banks and wavelet transforms.

It is often said that the purpose of a fundamental textbook should be to uncover

rather than cover a subject, and in choosing the topics and depth of coverage in this book
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we have been guided by this philosophy. The preceding brief discussion of advanced

topics and the Bibliography at the end of the book should be strongly suggestive of the

rich variety of directions that these fundamentals begin to uncover.

HISTORICAL PERSPECTIVE

Discrete-time signal processing has advanced in uneven steps over a long period of

time. Looking back at the development of the field provides a valuable perspective on

fundamentals that will remain central to the field long into the future. Since the inven-

tion of calculus in the 17th century, scientists and engineers have developed models to

represent physical phenomena in terms of functions of continuous variables and differ—

ential equations. Numerical techniques have been used to solve these equations when

analytical solutions are not possible. Indeed, Newton used finite-difference methods

that are special cases of some of the discrete-time systems that we present in this text.

Mathematicians of the 18th century, such as Euler, Bernoulli, and Lagrange, developed

methods for numerical integration and interpolation of functions of a continuous vari—

able. Interesting historical research by Heideman, Johnson, and Burrus (1984) showed

that Gauss discovered the fundamental principle of the fast Fourier transform (dis-

cussed in Chapter 9) as early as 1805—even before the publication of Fourier’s treatise

on harmonic series representation of functions.

Until the early 1950s, signal processing as we have defined it was typically done

with analog systems that were implemented with electronic circuits or even with me-

chanical devices. Even though digital computers were becoming available in business

environments and in scientific laboratories, they were expensive and had relatively lim-

ited capabilities. About that time, the need for more sophisticated signal processing in

some application areas created considerable interest in discrete-time signal processing.

One of the first uses of digital computers in digital signal processing was in oil prospect—

ing, where seismic data could be recorded on magnetic tape for later processing. This

type of signal processing could not generally be done in real time; minutes or even

hours of computer time were often required to process only seconds of data. Even so,

the flexibility of the digital computer and the potential payoffs made this alternative

extremely inviting.

Also in the 19503, the use of digital computers in signal processing arose in a

different way. Because of the flexibility of digital computers, it was often useful to sim-

ulate a signal processing system on a digital computer before implementing it in analog

hardware. In this way, a new signal processing algorithm or system could be studied

in a flexible experimental environment before committing economic and engineering

resources to constructing it. Typical examples of such simulations were the vocoder

simulations carried out at Lincoln Laboratory and Bell Laboratories. In the implemen-

tation of an analog channel vocoder, for example, the filter characteristics affected the

perceived quality of the coded speech signal in ways that were difficult to quantify ob—

jectively. Through computer simulations, these filter characteristics could be adjusted

and the perceived quality of a speech coding system evaluated prior to construction of

the analog equipment.

In all of these examples of signal processing using digital computers, the computer

offered tremendous advantages in flexibility. However, the processing could not be done
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in real time. Consequently, a prevalent attitude was that the digital computer was being

used to approximate, 0r simulate, an analog signal processing system. In keeping with

that style, early work on digital filtering was very much concerned with ways in which a

filter could be programmed on a digital computer so that with analog-to—digital conver—

sion of the signal, followed by digital filtering, followed by digital-to-analog conversion,

the overall system approximated a good analog filter. The notion that digital systems

might, in fact, be practical for the actual real-time implementation of signal processing

in speech communication, radar processing, or any of a variety of other applications

seemed at the most optimistic times to be highly speculative. Speed, cost, and size were,

of course, three of the important factors in favor of the use of analog components.

As signals were being processed on digital computers, researchers had a natural

tendency to experiment with increasingly sophisticated signal processing algorithms.

Some of these algorithms grew out of the flexibility of the digital computer and had no

apparent practical implementation in analog equipment. Thus, many of these algorithms

were treated as interesting, but somewhat impractical, ideas. The development of such

signal processing algorithms made the notion of all-digital implementation of signal

processing systems even more tempting. Active work began on the investigation of

digital vocoders, digital spectrum analyzers, and other all—digital systems, with the hope

that eventually such systems would become practical.

The evolution of a new point of view toward discrete-time signal processing was

further accelerated by the disclosure by Cooley and Tukey (1965) of an efficient al-

gorithm for computation of Fourier transforms. This class of algorithms has come to

be known as the fast Fourier transform, or FFT. The FFT was significant for several

reasons. Many signal processing algorithms that had been developed on digital com-

puters required processing times several orders of magnitude greater than real time.

Often this was because spectrum analysis was an important component of the signal

processing and no efficient means were available for implementing it. The fast Fourier

transform algorithm reduced the computation time of the Fourier transform by orders

of magnitude, permitting the implementation of increasingly sophisticated signal pro-

cessing algorithms with processing times that allowed interactive experimentation with

the system. Furthermore, with the realization that the fast Fourier transform algorithms

might, in fact, be implementable in special-purpose digital hardware, many signal pro-

cessing algorithms that previously had appeared to be impractical began to appear to

have practical implementations.

Another important implication of the fast Fourier transform algorithm was that

it was an inherently discrete-time concept. It was directed toward the computation of

the Fourier transform of a discrete—time signal or sequence and involved a set of prop-

erties and mathematics that was exact in the discrete-time domain—it was not simply

an approximation to a continuous-time Fourier transform. This had the effect of stim-

ulating a reformulation of many signal processing concepts and algorithms in terms of

discrete-time mathematics, and these techniques then formed an exact set of relation-

ships in the discrete-time domain. Following this shift away from the notion that signal

processing on a digital computer was merely an approximation to analog signal pro-

cessing techniques, there emerged a strong interest in discrete-time signal processing

as an important field of investigation in its own right.

Another major development in the history of discrete-time signal processing

occurred in the field of microelectronics. The invention and subsequent proliferation of
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the microprocessor paved the way for low—cost implementations of discrete-time signal

processing systems. Although the first microprocessors were too slow to implement

most discrete—time systems in real time, by the mid—19805 integrated circuit technology

had advanced to a level that permitted the implementation of very fast fixed-point and

floating-point microcomputers with architectures specially designed for implementing

discrete-time signal processing algorithms. With this technology came, for the first time,

the possibility of widespread application of discrete-time signal processing techniques.

FUTURE PROMISE

Microelectronics engineers continue to strive for increased circuit densities and pro—

duction yields, and as a result, the complexity and sophistication of microelectronic

systems are continually increasing. Indeed, complexity and capability of DSP chips

have grown exponentially since the early 19808 and show no sign of slowing down. As

wafer-scale integration techniques become highly developed, very complex discrete-

time signal processing systems will be implemented with low cost, miniature size, and

low power consumption. Consequently, the importance of discrete-time signal pro-

cessing will almost certainly continue to increase and the future development of the

field is likely to be even more dramatic than the course of development that we have

just described. Discrete—time signal processing techniques are already promoting rev-

olutionary advances in some fields of application. A notable example is in the area of

telecommunications, where discrete-time signal processing techniques, microelectronic

technology, and fiber optic transmission combine to change the nature of communica-

tion systems in truly revolutionary ways. A similar impact can be expected in many

other areas of technology.

While discrete-time signal processing is a dynamic, rapidly growing field, its funda-

mentals are well formulated. Our goal in this book is to provide a coherent treatment of

the theory of discrete-time linear systems, filtering, sampling, and discrete-time Fourier

analysis. The topics presented should provide the reader with the knowledge necessary

for an appreciation of the wide scope of applications for discrete-time signal process-

ing and a foundation for contributing to future developments in this exciting field of

technology.
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DISCRETE—TIME SIGNALS
AND SYSTEMS

2.0 INTRODUCTION

The term signal is generally applied to something that conveys information. Signals

generally convey information about the state or behavior of a physical system, and

often, signals are synthesized for the purpose of communicating information between

humans or between humans and machines. Although signals can be represented in many

ways, in all cases the information is contained in some pattern of variations. Signals are

represented mathematically as functions of one or more independent variables. For

example, a speech signal is represented mathematically as a function of time, and a

photographic image is represented'as a brightness function of two spatial variables. A

common convention—wand one that usually will be followed in this book—is to refer
to the independent variable of the mathematical representation of a signal as time,

although in specific examples the independent variable may in fact not represent time.

The independent variable in the mathematical representation of a signal may be

either continuous or discrete. Continuous-time signals are defined along a continuum

of times and thus are represented by a continuous independent variable. Continuous-

time signals are often referred to as analog signals. Discrete—time signals are defined at

discrete times, and thus, the independent variable has discrete values; i.e., discrete-time

signals are represented as sequences of numbers. Signals such as speech or images may

have either a continuous- or a discrete-variable representation, and if certain conditions

hold, these representations are entirely equivalent. Besides the independent variables

being either continuous or discrete, the signal amplitude may be either continuous or

discrete. Digital signals are those for which both time and amplitude are discrete.

Signal-processing systems may be classified along the same lines as signals. That

is, continuous-time systems are systems for which both the input and the output are
8
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continuous—time signals, and discrete-time systems are those for which both the input

and the output are discrete-time signals. Similarly, a digital system is a system for which

both the input and the output are digital signals. Digital signal processing, then, deals

with the transformation of signals that are discrete in both amplitude and time. The

principal focus in this book is on discrete-time (rather than digital) signals and systems.

However, the theory of discrete-time signals and systems is also exceedingly useful for

digital signals and systems, particularly if the signal amplitudes are finely quantized. The

effects of signal amplitude quantization are considered in Sections 4.8, 6.7—6.9, and 9.7.

Discrete—time signals may arise by sampling a continuous-time signal, or they may

be generated directly by some discrete—time process. Whatever the origin of the discrete-

time signals, discrete-time signal-processing systems have many attractive features. They

can be realized with great flexibility with a variety of technologies, such as charge

transport devices, surface acoustic wave devices, general-purpose digital computers, or

high-speed microprocessors. Complete signal-processing systems can be implemented

using VLSI techniques. Discrete—time systems can be used to simulate analog systems

or, more importantly, to realize signal transformations that cannot be implemented

with continuous-time hardware. Thus, discrete-time representations of signals are often

desirable when sophisticated and flexible signal processing is required.

In this chapter, we consider the fundamental concepts of discrete-time signals and

signal-processing systems for one-dimensional signals. We emphasize the class of linear

time-invariant discrete-time systems. Many of the properties and results that we derive

in this and subsequent chapters will be similar to properties and results for linear time—

invariant continuous-time systems, as presented in a variety of texts. (See, for example,

Oppenheim and Willsky, 1997.) In fact, it is possible to approach the discussion of

discrete-time systems by treating sequences as analog signals that are impulse trains. This

approach, if implemented carefully, can lead to correct results and has formed the basis

for much of the classical discussion of sampled data systems. (See, for example, Phillips

and Nagle, 1995.) However, not all sequences arise from sampling a continuous-time

signal, and many discrete-time systems are not simply approximations to corresponding

analog systems. Furthermore, there are important and fundamental differences between

discrete- and continuous-time systems. Therefore, rather than attempt to force results

from continuous-time system theory into a discrete-time framework, we will derive

parallel results starting within a framework and with notation that is suitable to discrete.-

time systems. Discrete-time signals will be related to continuous-time signals only when

it is necessary and useful to do so.

2.! DISCRETE-TIME SIGNALS: SEOUENCES

Discrete-time signals are represented mathematically as sequences of numbers. A se-

quence of numbers x, in which the nth number in the sequence is denoted x[n],1 is

formally written as

x = {x[n]}, —00 < n < 00, (2.1)

where n is an integer. In a practical setting, such sequences can often arise from periodic

1A sequence is simply a function whose domain is the set of integers. Note that we use [ ] to enclose
the independent variable of such functions, and we use ( ) to enclose the independent variable of continuous-
variable functions.
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sampling of an analog signal. In this case, the numeric value of the nth number in the

sequence is equal to the value of the analog signal, xa (t), at time nT; i.e.,

x[n] = xa(nT), —oo < n < 00. (2.2)

The quantity T is called the sampling period, and its reciprocal is the sampling fre-

quency. Although sequences do not always arise from sampling analog waveforms, it is

convenient to refer to x[n] as the “nth sample” of the sequence. Also, although, strictly

speaking, x[n] denotes the nth number in the sequence, the notation of Eq. (2.1) is often

unnecessarily cumbersome, and it is convenient and unambiguous to refer to “the se—

quence x[n]” when we mean the entire sequence, just as we referred to the “analog signal

xa (t).” Discrete-time signals (i.e., sequences) are often depicted graphically as shown in

Figure 2.1. Although the abscissa is drawn as a continuous line, it is important to recog-

nize that x[n] is defined only for integer values of n. It is not correct to think of x[n] as

being zero for n is not an integer; x[n] is simply undefined for noninteger values of n.

_1 x[O]
x[ ] x[l] x[n]

x[Z]

 

  

 
 
 

7 8 91011  

 
Figure 2.1 Graphical representation of$$44444440123456 , .,
a discrete-time Signal.

n

As an example, Figure 2.2(a) shows a segment of a speech signal corresponding to

acoustic pressure variation as a function of time, and Figure 2.2(b) presents a sequence

e_—fl_32m.—_—_a|
(a)

’<—-———— 256 samples ———————’{
(b)

Figure 2.2 (a) Sement of a continuous-time speech signal. (b) Sequence of samples
obtained from part (a) with T = 125 as.
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of samples of the speech signal. Although the original speech signal is defined at all

values of time t, the sequence contains information about the signal only at discrete

instants. From the sampling theorem, discussed in Chapter 4, the original signal can be

reconstructed as accurately as desired from a corresponding sequence of samples if the

samples are taken frequently enough.

2.1 .I Basic Sequences and Sequence Operations

In the analysis of discrete—time signal-processing systems, sequences are manipulated

in several basic ways. The product and sum of two sequences x[n] and y[n] are defined

as the sample-by-sample product and sum, respectively. Multiplication of a sequence

x[n] by a number or is defined as multiplication of each sample value by or. A sequence

y[n] is said to be a delayed or shifted version of a sequence x[n] if

y[n] = x[n - no], (23)

where no is an integer.

In discussing the theory of discrete-time signals and systems, several basic se-

quences are of particular importance. These sequences are shown in Figure 2.3 and are
discussed next.

The unit sample sequence (Figure 2.3a) is defined as the sequence

8[n] = Z i 8: p (2.4)
As we will see, the unit sample sequence plays the same role for discrete-time signals and

systems that the unit impulse function (Dirac delta function) does for continuous-time

signals and systems. For convenience, the unit sample sequence is often referred to as a

discrete-time impulse or simply as an impulse. It is important to note that a discrete-time

impulse does not suffer from the mathematical complications of the continuous-time

impulse; its definition is simple and precise.

As we will see in the discussion of linear systems, one of the important aspects

of the impulse sequence is that an arbitrary sequence can be represented as a sum of

scaled, delayed impulses. For example, the sequence p[n] in Figure 2.4 can be expressed
as

p[n] = a_36[n + 3] + a18[n — 1] + a25[n - 2] + a76[n — 7]. (2.5)

More generally, any sequence can be expressed as

00

x[n] = Z x[k]6[n — k]. (2.6)
k=—OO

We will make specific use of Eq. (2.6) in discussing the representation of discrete—time

linear systems.

The unit step sequence (Figure 2.3b) is given by

1, n 2 0,

u[n] = {0, n < 0‘ (2.7)



12

Unit sample

 
Unit step

 

  
Real exponential

(c)

Sinusoidal

 

 

Discrete-Time Signals and Systems Chap.2

Figure 2.3 Some basic sequences.

The sequences shown play important

roles in the analysis and representation

of discrete-time signals and systems.

Figure 2.4 Example of a sequence to

be represented as a sum of scaled,

delayed impulses.

(2.8)

that is, the value of the unit step sequence at (time) index n is equal to the accumulated

sum of the value at index n and all previous values of the impulse sequence. An alterna-

tive representation of the unit step in terms of the impulse is obtained by interpreting



Sec. 2.1 Discrete-Time Signals: Sequences 13

the unit step in Figure 2.3(b) in terms of a sum of delayed impulses as in Eq. (2.6). In

this case, the nonzero values are all unity, so

u[n]=6[n]+6[n—1]+6[n—2]+~. (2.9a)

or

u[n] = i 6[n — k]. (2.9b)
k=0

Conversely, the impulse sequence can be expressed as the first backward difference of

the unit step sequence, i.e.,

6[n] = u[n] — u[n — 1]. (2.10)

Exponential sequences are extremely important in representing and analyzing lin-

ear time-invariant discrete-time systems. The general form of an exponential sequence
is

x[n] = Aa". ‘ (2.11)

If A and a are real numbers, then the sequence is real. If 0 < a < 1 and A is positive,

then the sequence values are positive and decrease with increasing n, as in Figure 2.3(c).
For —1 < a < 0, the sequence values alternate in sign, but again decrease in magnitude

with increasing n. If |a| > 1, then the sequence grows in magnitude as n increases.

Example 2.1 Combining Basic Sequences

We often combine basic sequences to form simple representations of other sequences

If we want an exponential sequence that is zero for n < 0, we can write this as the

somewhat cumbersome expression

Act”, n z 0,

x[n] = {0 n < 0- (2.12)
A much simpler expression is x[n] = Aa”u[n].

Sinusoidal sequences are also very important. A sinusoidal sequence has the gen-
eral form

x[n] = A cos(a)0n + 4)), for all n, (2.13)

with A and gb real constants, and is illustrated in Figure 2.3(d).

The exponential sequence Aa" with complex a has real and imaginary parts that

are exponentially weighted sinusoids. Specifically, if a = |a|ei“’° and A = |A|ej¢, the

sequence Au” can be expressed in any of the following ways:

x[n] = Aa” = |A|ef¢|a|"efw°"

= IAI lalneflwonfifl (2.14)

= |A| lal” cos(a)0n + (15) + lel lal" sin(a)0n + 4)).



14 Discrete-Time Signals and Systems Chap. 2

The sequence oscillates with an exponentially growing envelope if lal > 1 or with an

exponentially decaying envelope if lal < 1. (As a simple example, consider the case

600 = 71'

When la] = 1, the sequence is referred to as a complex exponential sequence and
has the form

x[n] = IA lef(w0"+¢> = |A| cos(co0n + 45) + lel sin(co0n + 4:); (2.15)

that is, the real and imaginary parts of em" vary sinusoidally with n. By analogy with the

continuous-time case, the quantity can is called the frequency of the complex sinusoid or

complex exponential, and ¢ is called the phase. However, note that n is a dimensionless

integer. Thus, the dimension of am must be radians. If we wish to maintain a closer

analogy with the continuous-time case, we can specify the units of mg to be radians per

sample and the units of n to be samples.

The fact that n is always an integer in Eq. (2.15) leads to some important differences

between the properties of discrete-time and continuous-time complex exponential se-

quences and sinusoidal sequences. An important difference between continuous-time

and discrete-time complex sinusoids is seen when we consider a frequency (mg + 211').
In this case,

x[n] = Aej("’°+2")"

= AefwoneJ-Znn = Aejwon-

More generally, we can easily see that complex exponential sequences with frequencies

(coo + 27rr), where r is an integer, are indistinguishable from one another. An identical

statement holds for sinusoidal sequences. Specifically, it is easily verified that

x[n] = A cos[(a)0 + 27rr)n + 45]
(2.17)

= A cos(a)0n + ()5).

The implications of this property for sequences obtained by sampling sinusoids and

other signals will be discussed in Chapter 4. For now, we simply conclude that, when

discussing complex exponential signals of the form x[n] = Aejwfl" or real sinusoidal

signals of the form x[n] = A cos(coon + qb), we need only consider frequencies in an

interval of length 271', such as —11 < £00 5 It or 0 _<_ coo < 221'.

Another important difference between continuous-time and discrete-time com-

plex exponentials and sinusoids concerns their periodicity. In the continuous-time case,

a sinusoidal signal and a complex exponential signal are both periodic, with the period

equal to 271' divided by the frequency. In the discrete-time case, a periodic sequence is

a sequence for which

x[n] = x[n + N], for all n, (2.18)

where the period N is necessarily an integer. If this condition for periodicity is tested

for the discrete-time sinusoid, then

A cos(a)0n + ab) = A cos(a)0n + wON + 4)), (2.19)

which requires that

wON = 277k, (2.20)

where k is an integer. A similar statement holds for the complex exponential sequence
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Ceja’o"; that is, periodicity with period N requires that

ejw°("+N) = €ij", (2.21)

which is true only for woN = 2n k, as in Eq. (2.20). Consequently, complex exponential

and sinusoidal sequences are not necessarily periodic in n with period (Zn/coo) and,

depending on the value of (00, may not be periodic at all.

Example 2.2 Periodic and Aperiodic Discrete-Time
Sinusoids

Consider the signal x1 [n] = cos(Jrn/4). This signal has a period of N = 8. To show

this, note that x[n + 8] = cos(n(n + 8)/4) = cos(:m/4 + 2n) = cos(Jm/4) = x[n],

satisfying the definition of a discrete—time periodic signal. Contrary to our intuition

from continuous-time sinusoids, increasing the frequency of a discrete-time sinusoid

does not necessarily decrease the period of the signal. Consider the discrete-time

sinusoid x2 [n] = cos(3:rn/8), which has a higher frequency than x1 [n]. However, x2 [n]

is not periodic with period 8, since x; [n + 8] = cos(3n (n + 8)/8) = cos(31m/8 + 3n) =

—x2[n]. Using an argument analogous to the one for x1[n], we can show that x; [n] has

a period of N = 16. Thus, increasing the frequency from too = 211/8 to too = 321/8

also increases the period of the signal. This occurs because discrete-time signals are

defined only for integer indices n.

7 The integer restriction on n causes some sinusoidal signals not to be periodic

at all. For example, there is no integer N such that the signal x3 [n] = cos(n) satisfies

the condition x3 [n + N] = x3 [n] for all n. These and other properties of discrete-time

sinusoids that run counter to their continuous-time counterparts are caused by the

limitation of the time index n to integers for discrete-time signals and systems.

When we combine the condition of Eq. (2.20) with our previous observation that

we and (coo + 27rr) are indistinguishable frequencies, it becomes clear that there are

N distinguishable frequencies for which the corresponding sequences are periodic with

period N. One set of frequencies is wk = 27rk/ N, k = 0, 1, . . . , N — 1. These properties

of complex exponential and sinusoidal sequences are basic to both the theory and the

design of computational algorithms for discrete-time Fourier analysis, and they will be

discussed in more detail in Chapters 8 and 9.

Related to the preceding discussion is the fact that the interpretation of high

and low frequencies is somewhat different for continuous-time and discrete—time sinu-

soidal and complex exponential signals. For a continuous-time sinusoidal signal x(t) =

A cos(520t + ab), as S2 0 increases, x(t) oscillates more and more rapidly. For the discrete-

time sinusoidal signal x[n] = A cos(w0n + 45), as can increases from coo = 0 toward
coo = 71, x[n] oscillates more and more rapidly. However, as we increases from coo = 7:
to too = 27:, the osdllations become slower. This is illustrated in Figure 2.5. In fact, be-

cause of the periodicity in we of sinusoidal and complex exponential sequences, a) 0 = 27:

is indistinguishable from we = 0, and, more generally, frequencies around coo = 2a are

indistinguishable from frequencies around coo = 0. As a consequence, for sinusoidal

and complex exponential signals, values of we in the vicinity of we = 271k for any integer

value of k are typically referred to as low frequencies (relatively slow oscillations), while

values of mg in‘the vicinity of mo = (:r + 2n k) for any integer value of k are typically

referred to as high frequencies (relatively rapid oscillations).
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w0=00rw0=21r

(a)

too = 7r/8 or can = 1517/8

 
 

(b)

(1)0 = 01' (Do 2

(C)

0 " Figure 2.5 cos won for several
different values of 0);). As we increases

from zero toward 7r (parts a—d), the
sequence oscillates more rapidly. As can

increases from It to 231' (parts d—a), the
(d) oscillations become slower.

2.2 DISCRETE-TIME SYSTEMS

A discrete-time system is defined mathematically as a transformation or operator that

maps an input sequence with values x[n] into an output sequence with values y[n]. This
can be denoted as

yln] = Tl'xlnll (2.22)
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Figure 2.6 Representation of a

discrete-time system, Le, a

transformation that maps an input

T[-] sequence x[n] into a unique output
xlnl yin] sequence y[n].

and is indicated pictorially in Figure 2.6. Equation (2.22) represents a rule or formula

for computing the output sequence values from the input sequence values. It should

be emphasized that the value of the output sequence at each value of the index It may

depend on x[n] for all values of n. The following examples illustrate some simple and

useful systems.

Example 2.3 The Ideal Delay System

The ideal delay system is defined by the equation

y[n] = x n — n4], —00 < n < oo, (2.23)

where 11,; is a fixed positive integer called the delay of the system. In words, the ideal

delay system simply shifts the input sequence to the right by nd samples to form the

output. If, in Eq. (2.23), 71.1 is a fixed negative integer, then the system would shift the

input to the left by indl samples, corresponding to a time advance.

In Example 2.3, only one sample of the input sequence is involved in determining
a certain output sample. In the following example, this is not the case.

Example 2.4 Moving Average

The general moving—average system is defined by the equation

1 M2

y["l=m E “’1‘”
k=—M1

1

= mu“+ M11+x["+ M1 - 1] +---+x[n] (2.24)

+x[n—1]+~-+x[n—M2]}.

x [k]

 
Figure 2.7 Sequence values involved in computing a causal moving average.

This system computes the nth sample of the output sequence as the average of (M1 +

M2 + 1) samples of the input sequence around the nth sample. Figure 2.7 shows an
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input Sequence plotted as a function of a dummy index k and the samples involved in

the computation of the output sample y[n] for n = 7, M1 = 0, and M2 = 5. The output

sample y[7] is equal to one-sixth of the sum of all the samples between the vertical

dotted lines. To compute y[8], both dotted lines would move one sample to the right.

Classes of systems are defined by placing constraints on the properties of the

transformation T H. Doing so often leads to very general mathematical representations,

as we will see. Of particular importance are the system constraints and properties,
discussed in Sections 22.1—22.5.

2.2.1 Memoryless Systems

A system is referred to as memoryless if the output y[n] at every value of n depends

only on the input x[n] at the same value of n.

Example 2.5 A Memoryless System

An example of a memoryless system is a system for which x[n] and y[n] are related by

y[n] = (x[n])2, for each value of n. (2.25)

The system in Example 2.3 is not memoryless unless nd = 0; in particular, this system

is referred to as having “memory” whether nut is positive (a time delay) or negative

(a time advance). The system in Example 2.4 is not memoryless unless M1 = M2 = 0.

2.2.2 Linear Systems

The class of linear systems is defined by the principle of superposition. If y1[n] and y2[n]

are the responses of a system when x1 [n] and x2[n] are the respective inputs, then the

system is linear if and only if

T{X1[n]+ len]} = T{lenll + T{lenll = ytln] + Min] (2263)

d

an T{ax[n]} = a T{x[n]} = ay[n], (2.26b)
where a is an arbitrary constant. The first property is called the additivity property, and

the second is called the homogeneity or scaling property. These two properties can be

combined into the principle of superposition, stated as

T{ax1[n] + bx2[n]} = aT{x1[n]} + bT{x2[n]} (2.27)

for arbitrary constants a and b. This equation can be generalized to the superposition

of many inputs. Specifically, if

x[n] = Z akxkpt], (2.283)
k

then the output of a linear system will be

y[n] = Zakydn], (2.28b)
k

where yk[n] is the system response to the input xk[n].

By using the definition of the principle of superposition, we can easily show that
the systems of Examples 2.3 and 2.4 are linear systems. (See Problem 2.23.) An example

of a nonlinear system is the system in Example 2.5.
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Example 2.6 The Accumulator System

The system defined by the input—output equation

y[n] = Z xlk] (2.29)

is called the accumulator system, since the output at time n is just the sum of the present

and all previous input samples. The accumulator system is a linear system. In order to

prove this, we must show that it satisfies the superposition principle for all inputs, not

just any specific set of inputs. We begin by defining two arbitrary inputs x1[n] and x2[n]

and their corresponding outputs n

y1[n] = Z x1[k]. (2.30)
k=——oo

y2[n] = Z x2[k]. (2.31)
k=—oo

When the input is x3[n] = ax1[n] + bx2[n], the superposition principle requires the

output y3[n] = ay1 [n] + by2[n] for all possible choices of a and b. We can show this by

starting from Eq. (2.29): 'n

y3[n] = k: x3[k], , (2.32)

= k: (axl [k] + bx2[k]), (2.33)
= a i x1[k]+b i x2[k], (2.34)

=_m k=—oo

.—_ ay1[n] + by2[n]. (2.35)

Thus, the accumulator system of Eq. (2.29) satisfies the superposition principle for all

inputs and is therefore linear.

In general, it may be simpler to prove that a system is not linear (if it is not) than

to prove that it is linear (if it is). We simply must find an input or set of inputs for which

the system does not satisfy the conditions of linearity.

Example 2.1 A Nonlinear System

Consider the system defined by

w[n] = loglo (|x[n]|). (2.36)

This system is not linear. In order to prove this, we only need to find one

counterexample—that is, one set of inputs and outputs which demonstrates that the sys-

tem violates the superposition principle, Eq. (2.27). The inputs x1[n] = 1 and x2[n] = 10

are a counterexample. The output for the first signal is w [n] = 0, while for the second,

wz[n] = 1. The scaling property of linear systems requires that, since x2[n] = 10x1[n],

if the system is linear, it must be true that wz[n] = 10w1[n]. Since this is not so for

Eq. (2.36) for this set of inputs and outputs, the system is not linear.
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2.2.3 Time-Invariant Systems

A time-invariant system (often referred to equivalently as a shift-invariant system) is

a system for which a time shift or delay of the input sequence causes a corresponding

shift in the output sequence. Specifically, suppose that a system transforms the input

sequence with values x[n] into the output sequence with values y[n]. Then the system is

said to be time invariant if, for all no, the input sequence with values x1[n] = x[n — n0]

produces the output sequence with values y1[n] = y[n — no].

As in the case of linearity, proving that a system is time invariant requires a general

proof making no specific assumptions about the input signals. All of the systems in

Examples 2.3—2.7 are time invariant. The style of proof for time invariance is illustrated

in Examples 2.8 and 2.9.

Example 2.8 The Accumulator as a Time-Invariant System

Consider the accumulator from Example 2.6. We define x1[n] = x[n — no]. To show

time invariance, we solve for both y[n—n0] and y 1 [n] and compare them to see whether

they are equal. First, '

y[n — no] = Z x[k]. (2.37)
k=—c:o

Next, we find

y1[n] = 2 x1 [k] (2.38)
k=—oo

= Z x[k — n0].
k=—oo

Substituting the change of variables k1 = k - no into the summation gives
n—no

y1[n] = Z x[kl] = y[n — no]. (2.40)
k1=—m

Thus, the accumulator is a timednvariant system.

The following example illustrates a system that is not time invariant.

Example 2.9 The Compressor System

The system defined by the relation

y[n] = x[Mn], —oo < n < oo, (2.41)

with M a positive integer, is called a compressor. Specifically, it discards (M — 1)

samples out of M; Le, it creates the output sequence by selecting every Mth sample.

This system is not time invariant. We can show that it is not by considering the response

y1 [n] to the input x1[n] = x[n — no]. In order for the system to be time invariant, the

output of the system when the input is x1 [n] must be equal to y[n — no]. The output

y1 [n] that results from the input x1[n] can be directly computed from Eq. (2.41) to be

y1[n] = x1[Mn] = x[Mn — no]. (2.42)
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Delaying the output y[n] by no samples yields

y[n H no] 2 x[M(n — n0)].

Comparing these two outputs, we see that y[n — no] is not equal to y1 [n] for all M and

no, and therefore, the system is not time invariant.

It is also possible to prove that a system is not time invariant by finding a single

counterexample that violates the time-invariance property. For instance, a counterex-

ample for the compressor is the case when M = 2, x[n] = 6[n], and x1 [n] = 6[n — 1].

For this choice of inputs and M, y[n] = 6[n], but y1[n] = 0; thus, it is clear that

y1[n] yé y[n — 1] for this system. ‘

(2.43)

2.2.4 Causality

A system is causal if, for every choice ofno, the output sequence value at the index n = no

depends only on the input sequence values for n 5 no. This implies that if x1 [n] = x2[n]

for n 5 no, then y1[n] = y2[n] for n 5 n0. That is, the system is nonanticipative. The

system of“ Example 2.3 is causal for nd 2 0 and is noncausal for nd < 0. The system of

Example 2.4 is causal if —M1 2 0 and M2 3 0; otherwise it is noncausal. The system of

Example 2.5 is causal, as is the accumulator of Example 2.6 and the nonlinear system

in Example 2.7. However, the system of Example 2.9 is noncausal if M > 1, since

y[l] = x[M ]. Another noncausal system is given in the following example.

Example 2.10 The Forward and Backward Difference
Systems

Consider the forward difference system defined by the relationship

y[n] = x[n + 1] — x[n]. (2.44)

This system is not causal, since the current value of the output depends on a future

value of the input. The violation of causality can be demonstrated by considering the

two inputs x1 [n] = 5[n — 1] and x2[n] = 0 and their corresponding outputs y1 [n] =

5[n] — 6[n — 1] and y2[n] = 0. Note that x1 [n] = x2 [n] for n 5 0, so the definition of

causality requires that y1 [n] = y2[n] for n 5 0, which is clearly not the case for n = 0.

Thus, by this counterexample, we have shown that the system is not causal.

The backward difference system, defined as

y[n] = x[n] — x[n — 1], (2.45)

has an output that depends only on the present and past values of the input. Because

there is no way for the output at a specific time y[no] to incorporate values of the input

for n > no, the system is causal.

2.2.5 Stability

A system is stable in the bounded-input, bounded-output (BIBO) sense if and only if

every bounded input sequence produces a bounded output sequence. The input x[n] is

bounded if there exists a fixed positive finite value 3,; such that

|x[n]| 5 Bx < 00, for all n. (2.46)
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Stability requires that, for every bounded input, there exist a fixed positive finite value

By such that

lylnll 5 By < oo, for all n. (2.47)

It is important to emphasize that the properties we have defined in this section are

properties of systems, not of the inputs to a system. That is, we may be able to find

inputs for which the properties hold, but the existence of the property for some inputs

does not mean that the system has the property. For the system to have the property, it

must hold for all inputs. For example, an unstable system may have some bounded inputs

for which the output is bounded, but for the system to have the property of stability, it

must be true that for all bounded inputs, the output is bounded. If we can find just one

input for which the system property does not hold, then we have shown that the system

does not have that property. The following example illustrates the testing of stability

for several of the systems that we have defined.

Example 2.1 1 Testing for Stability or Instability

The system of Example 2.5 is stable. To see this, assume that the input x[n] is bounded

such that |x[n]| 5 Bx for all n. Then |y[n]| = |x[.‘ri]|2 5 BE. Thus, we can choose
By = B} and prove that y[n] is bounded.

Likewisc, we can see that the system defined in Example 2.7 is unstable, since

y[n] = log10(|x[n]|) = —00 for any values of the time index n at which x[n] = 0, even

though the output will be bounded for any input samples that are not equal to zero.

The accumulator, as defined in Example 2.6 by Eq. (2.29), is also not stable. For

example, consider the case when x[n] = u[n], which is clearly bounded by BJr = 1. For

this input, the output of the accumulator is
n

y[n] = Z u[k] (2.48)
k=—oo

={&+n,2:3 me)
There is no finite choice for By such that (n + 1) 5 By < 00 for all 11; thus, the system
is unstable.

Using similar arguments, it can be shown that the systems in Examples 2.3, 2.4,
2.9 and 2.10 are all stable.

2.3 LINEAR TIME-INVARIANT SYSTEMS

A particularly important class of systems consists of those that are linear and time invari-

ant. These two properties in combination lead to especially convenient representations

for such systems. Most important, this class of systems has significant signal-processing

applications. The class of linear systems is defined by the principle of superposition in

Eq. (2.27). If the linearity property is combined with the representation of a general

sequence as a linear combination of delayed impulses as in Eq. (2.6), it follows that a

linear system can be completely characterized by its impulse response. Specifically, let

hk[n] be the response of the system to 6 [n — k], an impulse occurring at n I: k. Then,
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from Eq. (2.6),

y[n] = T{ Z x[k]8[n — k]} . (2.50)k=-OO

From the principle of superposition in Eq. (2.27), we can write

y[n] = Z x[k]T{6[n — k]} = Z x[k]hk[n]. (2.51)
k=—oo k=—oo

According to Eq. (2.51), the system response to any input can be expressed in terms of

the responses of the system to the sequences 8[n — k]. If only linearity is imposed, hk[n]

will depend on both n and k, in which case the computational usefulness of Eq. (2.51)

is limited. We obtain a more useful result if we impose the additional constraint of time
invariance.

The property of time invariance implies that if h[n] is the response to 6 [n], then

the response to 5[n — k] is h[n — k]. With this additional constraint, Eq. (2.51) becomes
00

y[n] = Z x[k]h[n — k]. (2.52)
k=—oo

As a consequence of Eq. (2.52), a linear time-invariant system (whiCh we will sometimes

abbreviate as LTI) is completely characterized by its impulse response h[n] in the sense

that, given h[n], it is possible to use Eq. (2.52) to compute the output y[n] due to any

input x[n].

Equation (2.52) is commonly called the convolution sum. If y[n] is a sequence

whose values are related to the values of two sequences h[n] and x[n] as in Eq. (2.52),

we say that y[n] is the convolution of x[n] with h[n] and represent this by the notation

y[n] = x[n] * h[n]. (2.53)

The operation of discrete-time convolution takes two sequences x[n] and h[n] and

produces a third sequence y[n]. Equation (2.52) expresses each sample of the output

sequence in terms all of the samples of the input and impulse response sequences.

The derivation of Eq. (2.52) suggests the interpretation that the input sample

at n = k, represented as x[k]5[n — k], is transformed by the system into an output

sequence x[k]h[n — k], for —00 < n < 00, and that, for each k, these sequences are

superimposed to form the overall output sequence. This interpretation is illustrated

in Figure 2.8, which shows an impulse response, a simple input sequence having three

nonzero samples, the individual outputs due to each sample, and the composite output
due to all the samples in the input sequence. Specifically, x[n] can be decomposed as

the sum of the three sequences x[—2]8[n + 2], x[0]6[n], and x[3]6[n — 3] representing

the three nonzero values in the sequence x[n]. The sequences x[—2]h[n + 2], x[0]h[n],

and x[3]h[n - 3] are the system responses to x[——2]8[n + 2], x[0]6[n], and x[3]8[n — 3],

respectively. The response to x[n] is then the sum of these three individual responses.

Although the convolution-sum expression is analogous to the convolution integral

of continuous-time linear system theory, the convolution sum should not be thought of

as an approximation to the convolution integral. The convolution integral plays mainly a

theoretical role in continuous—time linear system theory; we will see that the convolution

sum, in addition to its theoretical importance, often serves as an explicit realization of a

discrete-time linear system. Thus, it is important to gain some insight into the properties
of the convolution sum in actual calculations.
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x_2[n] = x[——2]5[n + 2] y_2[n] = x[—2]h[n + 2]

 
x3 [’1] = x[3]5[n - 3] ysln] = x[3]h[" - 3]

3 3

x[n] = 16—2 [n] + xo[n] + xsln] y[n] = y.2[n] + yo ['1] + ysln]

 
Figure 2.8 Representation of the output of a linear time-invariant system as the

superposition of responses to individual samples of the input.
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The preceding interpretation of Eq. (2.52) emphasizes that the convolution sum

is a direct result of linearity and time invariance. However, a slightly different way of

looking at Eq. (2.52) leads to a particularly useful computational interpretation. When

viewed as a formula for computing a single value of the output sequence, Eq. (2.52)

dictates that y[n] (i.e., the nth value of the output) is obtained by multiplying the input

sequence (expressed as a function of k) by the sequence whose values are h[n — k],

—00 < k < 00, and then, for any fixed value of n, summing all the values of the products

x[k]h[n — k], with k a counting index in the summation process. Therefore, the operation

of convolving two sequences involves doing the computation for all values of n, thus

generating the complete output sequence y[n], —oo < n < 00. The key to carrying out

the computations of Eq. (2.52) to obtain y[n] is understanding how to form the sequence

h[n — k], —00 < k < 00, for all values of n that are of interest. To this end, it is useful to
note that

' h[n — k] = h[—(k — n)]. (2.54)

The interpretation of Eq. (2.54) is best done with an example.

Example 2.1 2 Computation of the Convolution Sum

Suppose h[k] is the sequence shown in Figure 2.9(a) and we wish to find h[n — k] =
h[—(k — n)]. Define h1[k] to be h[—k], which is shown in Figure 2.9(b). Next, define

h[k] 1

  

 

h[—k]=h[0—k]

(b)

h[n—k] =h[—(k—n)]

n—6 0 n n+3 k

(c)

Figure 2.9 Forming the sequence h[n — k]. (a) The sequence h[k] as a function

of k. (b) The sequence h[—k] as a function of k. (c) The sequence h[n — k] =
h[—(k — n)] as a function of kfor n = 4.
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kg [k] to beh [k], delayed, by n samples on the k axis, i.e., hz [k] = h1[k—n]. Figure 2.9(c)

shows the sequence that results from delaying the sequence in Figure 2.9(b) by n

samples. Using the relationship between h1[k] and h[k], we can show that h2[k] =

hl [k — n] = h[—(k — 11)] = h[n — k], and thus, the bottom figure is the desired signal.

To summarize, to compute h[n — k] from h[k], we first reverse h[k] in time about k = 0

and then delay the time—reversed signal by n samples.

From Example 2.3, it should be clear that, in general, the sequence h[n — k],

—00 < k < 00, is obtained by

1. reflecting h[k] about the origin to obtain h[—k];

2. shifting the origin of the reflected sequence to k = 11.

To implement discrete-time convolution, the two sequences x[k] and h[n — k] are mul-

tiplied together for —oo < k < co, and the products are summed to compute the

output sample y[n]. To obtain another output sample, the origin of the sequence h[—k]

is shifted to the new sample position, and the process is repeated. This computational

procedure applies whether the computations are carried out numerically on sampled

data or analytically with sequences for which the sample values have simple formulas.

The following example illustrates discrete—time convolution for the latter case.

Example 2.1 3 Analytical Evaluation of the Convolution Sum

Consider a system with impulse response

h[n] = u[n] — u[n —— N]

_ 1, 0 _<_ n 5 N — 1,
_ 0, otherwise.

The input is

x[n] = a"u[n].

To find the output at a particular index n, we must form the sums over all k of the

product x[k]h[n — k]. In this case, we can find formulas for y[n] for different sets of

values of n. For example, Figure 2.10(a) shows the sequences x[k] and h[n — k], plotted

for n a negative integer. Clearly, all negative values of n give a similar picture; i.e., the

nonzero portions of the sequences x[k] and h[n — k] do not overlap, so

y[n] = 0, n < 0.

Figure 2.10(b) illustrates the two sequences when 0 5 n and n — N + 1 5 0. These two

conditions can be combined into the single condition 0 5 n 5 N — 1. By considering

Figure 2.10(b), we see that, since

x[k]h[n — k] = (1",

it follows that

y[n] = Zak, for 0 s n s N— 1. (2.55)
k=0
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n—(N—l) (a)

 
y [n]

N— 1

(d)

Figure 2.10 Sequence involved in computing a discrete convolution. (a)—(c) The

sequences x[k] and h[n — k] as a function of k for different values of n. (Only

nonzero samples are shown.) (d) Corresponding output sequence as a function
' of n.

The limits on the sum are determined directly from Figure 2.10(b). Equation (2.55)

shows that y[n] is the sum of n + 1 terms of a geometric series in which the ratio of

terms is a. This sum can be expressed in closed form using the general formula

N2 “N1 _ aNz+1
E or": —, szNl.1 — a

k=N1
(2.56)
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Applying this formula to Eq. (2.55), we obtain

1 _ an+1

y[n] = —w~—1 , 0 s n s N— 1. (2.57)— a

Finally, Figure 2.10(c) shows the two sequences when 0 < n — N + 1 or N — 1 < n. As
before,

x[k]h[n—k]=ak, n—N+1 <k5n,

but now the lower limit on the sum is n — N + 1, as seen in Figure 2.10(c). Thus,
n

y[n]= Z ak, for N—1<n. (2.58)
k=n—N+1

Using Eq. (2.56), we obtain

n—N+1 _ an+1

1—a '

y[n] = a"‘N+1 . (2.59)

y[n] = a
01'

1—a

Thus, because of the piecewise-exponential nature of both the input and the unit

sample response, we have been able to obtain the following closed-form expression

for y[n] as a function of the index n:

 

0, n<0,

1_an+1

y[n]= 1_a * OWEN—1’ (2.60)
_ N

a"_N+1(11—a), N—1<n.—a

This sequence is shown in Figure 2.10(d).

Example 2.13 illustrates how the convolution sum can be computed analytically

when the input and the impulse response are given by simple formulas. In such cases,

the sums may have a compact form that may be derived using the formula for the sum of

a geometric series or other “closed-form” formulas.2 When no simple form is available,
the convolution sum can still be evaluated numerically using the technique illustrated

in Example 2.13 whenever the sums are finite, which will be the case if either the input

sequence or the impulse response is of finite length, i.e., has a finite number of nonzero

samples.

2.4 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

Since all linear time-invariant systems are described by the convolution sum of

Eq. (2.52), the properties of this class of systems are defined by the properties of discrete-

time convolution. Therefore, the impulse response is a complete characterization of the

properties of a specific linear time-invariant system.

2Such results are discussed, for example, in Grossman (1992).
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Some general properties of the class of linear time-invariant systems can be found

by considering properties of the convolution operation. For example, the convolution

operation is commutative:

x[n] * h[n] = h[n] * x[n]. (2.61)

This can be shown by applying a substitution of variables to Eq. (2.52). Specifically, with

m=n—h

y[n] = i: x[n — m]h[m] = Z h[m]x[n — m] = h[n] * x[n], (2.62)

so the roles of x[n] and h[n] in the summation are interchanged. That is, the order of

the sequences in a convolution is unimportant, and hence, the system output is the

same if the roles of the input and impulse response are reversed. Accordingly, a linear

time-invariant system with input x[n] and impulse response h[n] will have the same

output as a linear time-invariant system with input h[n] and impulse response x[n]. The

convolution operation also distributes over addition; i.e.,

' x[n] * (h1[n] + h2[n]) = x[n] =l< h1 [n] + x[n] * h2[n].

This follows in a straightforward way from Eq. (2.52) and is a direct result of the linearity

and commutativity of convOlution. '

In a cascade connection of systems, the output of the first system is the input to

the second, the output of the second is the input to the third, etc. The output of the last

system is the overall output. Two linear time-invariant systems in cascade correspond

to a linear time-invariant system with an impulse response that is the convolution of
the impulse responses of the two systems. This is illustrated in Figure 2.11. In the upper

block diagram, the output of the first system will be 111 [n] if x[n] = 6 [n]. Thus, the output

of the second system (and, by definition, the impulse response of the overall system)
will be

h[n] = h1[n] * h2[n]. (2.63)

As a consequence of the commutative property of convolution, the impulse response

of a cascade combination of linear time-invariant systems is independent of the order

in which they are cascaded. This result is summarized in Figure 2.11, where the three

systems all have the same impulse response.

Figure 2.11 Three linear time-invariant

h1[n] *h2[n] systems with identical impulse
I ["1 Yin] responses.
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fin] h1["]+h2["17 yln] Figure 2.12 (a) Parallel combination

of linear time-invariant systems. (b) An
(b) equivalent system.

In a parallel connection, the systems have the same input, and their outputs are

summed to produce an overall output. It folloWs from the distributive property of convo—

lution that the connection of two linear time-invariant systems in parallel is equivalent to

a single system whose impulse response is the sum of the individual impulse responses;
1.e.,

h[n] = h1[n] + hzlnl- (2-64)

This is depicted in Figure 2.12. r
The constraints of linearity and time invariance define a class of systems with

very special properties. Stability and causality represent additional properties, and it is

often important to know whether a linear time-invariant system is stable and whether

it is causal. Recall from Section 2.2.5 that a stable system is a system for which every
bounded input produces a bounded output. Linear time-invariant systems are stable if

and only if the impulse response is absolutely summable, i.e., if

S: E |h[k]| < oo. (2.65)

This can be shown as follows. From Eq. (2.62),

  
00 00

lylnll = Z hlklxln ‘— k] s 2 lhlkll lxln — kn. (2.66)
k=—oo k=—oo

If x[n] is bounded, so that

len] I s Bx.

then substituting BJr for |x[n — k]| can only strengthen the inequality. Hence,
00

ly[n]| s B. Z Ihlkll- (2.67)
k=—oo

Thus, y[n] is bounded if Eq. (2.65) holds; in other words, Eq. (2.65) is a sufficient

condition for stability. To show that it is also a necessary condition, we must show that if

S = 00, then a bounded input can be found that will cause an unbounded output. Such

an input is the sequence with values

h‘l—n]

x[n]= Ih[—n]|’ WHO’ (2.68)
O, h[n] = 0,
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where h* [n] is the complex conjugate of h[n]. The sequence x[n] is clearly bounded by

unity. However, the value of the output at n = 0 is

oo oo . 2

y[0]= z x[—k]h[k]= 2 "MI :5. (2.69)
k=—oo =-oo

 

Therefore, if S = 00, it is possible for a bounded input sequence to produce an un—

bounded output sequence.
The class of causal systems was defined in Section 2.2.4 as those systems for which

the output y[n0] depends only on the input samples x[n], for n 5 no. It follows from
Eq. (2.52) or Eq. (2.62) that this definition implies the condition

h[n] = 0, n < 0, (2.70)

for causality of linear time-invariant systems. (See Problem 2.62.) For this reason, it is

sometimes convenient to refer to a sequence that-is zero for n < 0 as a causal sequence,
meaning that it could be the impulse response of a causal system.

To illustrate how the properties of linear time—invariant systems are reflected in
the impulse response, let us consider again some of the systems defined in Examples 2.3—
2.10. First note that only the Systems of Examples 2.3, 2.4, 2.6, and 2.10 are linear and

time'invariant. Although the impulse response of nonlinear or time—varying systems

can be found, it is generally of limited interest, since the convolution-sum formula and

Eqs. (2.65) and (2.70), expressing stability and causality, do not apply to such systems.
First, let us find the impulse responses of the systems in Examples 2.3, 2.4, 2.6, and

2.10. We can do this. by simply computing the response of each system to 6[n], using the

defining relationship for the system. The resulting impulse responses are as follows:

Ideal. Delay (Example 2.3)

h[n] = 6 [n — nd], nd a positive fixed integer. (2.71)

Moving Average (Example 2.4)

1 M
h n = ————-—— 6 n — k

[ ] M1 + M2 + 1 kgl [ ]
1 (2.72)

. ———-——, —M < < M ,
= M1+M2+1 l—n— 2

0, otherwise.

Accumulator (Example 2.6)
T]

Z 6[k]
k=—OO

= {1’ n 3 0’ (2.73)

h[n]

0, n < 0,

= u[n].

' Forward Difierence (Example 210) _

" ‘ h[n] = 6[n + 1] — 6[n]. ' (2.74)
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Backward Difference (Example 2.10)

h[n] = 8[n] — 8[n -— 1]. (2.75)

Given the impulse responses of these basic systems [Eqs (2.71)—(2.75)], we can
test the stability of each one by computing the sum

5 = Z [h[n]|.
n=—oo

For the ideal delay, moving-average, forward difference, and backward difference ex-

amples, it is clear that S < 00, since the impulse response has only a finite number of

nonzero samples. Such systems are called finite-duration impulse response (FIR) sys—

tems. Clearly, FIR systems will always be stable, as long as each of the impulse response

values is finite in magnitude. The accumulator, however, is unstable because

S: ink] :00.
n=0

In Section 2.2.5, we also demonstrated the instability of the accumulator by giving an

example of a bounded input (the unit step) for which the output is unbounded.

The impulse response of the accumulator is infinite in duration. This is an example

of the class of systems referred to as infinite-duration impulse response (IIR) systems.

An example of an HR system that is stable is a system whose impulse response is

h[n] = a“u[n] with lal < 1. In this case,

s = f: M". (2.76)
ln=0

If |a| < 1, the formula for the sum of the terms of an infinite geometric series gives

1

1—Ial

If, on the other hand, |a| z 1, the sum is infinite and the system is unstable.

To test causality of the linear time-invariant systems in Examples 2.3, 2.4, 2.6, and

2.10, we can check to see whether h[n] = 0 for n < 0. As discussed in Section 2.2.4, the

ideal delay [rm 2 0 in Eq. (2.23)] is causal. If nd < 0, the system is noncausal. For the

moving average, causality requires that —M1 2 0 and M2 2 0. The accumulator and

backward difference systems are causal, and the forward difference system is noncausal.

The concept of convolution as an operation between two sequences leads to the

simplification of many problems involving systems. A particularly useful result can be

stated for the ideal delay system. Since the output of the delay system is y[n] = x[n —nd],

and since the delay system has impulse response h[n] = 5[n — n4], it follows that

S:
 

< oo. (2.77)

x[n] * 8[n — nd] = 8[n — n4] * x[n] = x[n -— n4]. (2.78)

That is, the convolution of a shifted impulse sequence with any signal x[n] is easily

evaluated by simply shifting x[n] by the displacement of the impulse.

Since delay is a fundamental operation in the implementation of linear systems,

the preceding result is often useful in the analysis and simplification of interconnections

of linear time-invariant systems. As an example, consider the system of Figure 2.13(a),
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x [,1] difference delay y [n]

(a)

x [n] delay difference y [n]

(b)

x[n] d'fference W1] Figure 2.13 Equivalent systemsfound
by using the commutative propelty of

(C) convolution.

which consists of a forward difference system cascaded with an ideal delay of one sample.

According to the commutative property of convolution, the order in which systems are

cascaded does not matter, as long as they are linear and time invariant. Therefore, we

obtain the same result when we compute the forward difference of a sequence and

delay the result (Figure 2.13a) as when we delay the sequence first and then compute

the forward difference (Figure 2.13b). Also, it follows from Eq. (2.63) that the overall

impulse response of each cascade system is the convolution of the individual impulse

responses. Consequently,

h[n] = (8[n + 1] — 8[n]) =1: 8[n — 1]

= 8[n — 1] * (8[n + 1] — 6[n]) (2.79)

= 6[n] — 8[n — 1].

Thus, h[n] is identical to the impulse response of the backward difference system; that

is, the cascaded systems of Figures 2.13(a) and 2.13(b) can be replaced by a backward

difference system, as shown in Figure 2.13(c).

Note that the noncausal forward difference systems in Figures 2.13(a) and (b)

have been converted to causal systems by cascading them with a delay. In general, any

noncausal FIR system can be made causal by cascading it with a sufficiently long delay.

Another example of cascaded systems introduces the concept of an inverse system.

Consider the cascade of systems in Figure 2.14. The impulse response of the cascade

system is

h[n] = u[n] * (5[n] - 8[n - 1])

= u[n] — u[n — 1] (2.80)

= 6[n]. I

That is, the cascade combination of an accumulator followed by a backward difference

(or vice versa) yields a system whose overall impulse response is the impulse. Thus, the

output of the cascade combination will always be equal to the input, since x[n] * 6 [n] =

x[n]. In this case, the backward difference system compensates exactly for (or inverts)

the effect of the accumulator; that is, the backward difference system is the inverse
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Figure 2.14 An accumulator in
cascade with a backward difference.

Since the backward difference is the

inverse system for the accumulator, the

cascade combination is equivalent to

the identity system.

 

 
 

Backward-
difference

system

  

 

Accumulator

x ["1 system   
 

system for the accumulator. From the commutative property of convolution, the accu-

mulator is likewise the inverse system for the backward difference system. Note that

this example provides a system interpretation of Eqs. (2.8) and (2.10). In general, if

a linear time-invariant system has impulse response h[n], then its inverse system, if it

exists, has impulse response 11,- [n] defined by the relation

h[n] * hI-[n] = h;[n] * h[n] = 8[n]. (2.81)

Inverse systems are useful in many situations in which it is necessary to compensate

for the effects of a linear system. In general, it is difficult to solve Eq. (2.81) directly

for h;- [n], given h[n]. However, in Chapter 3 we will see that the z—transform provides a

straightforward method of finding an inverse system.

2.5 LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS

An important subclass of linear time—invariant systems consists of those systems for

which the input x[n] and the output y[n] satisfy an Nth-order linear constant-coefficient

difference equation of the form
N M

Z aky[n — k] = Z bmx[n — m]. (2.82)
k=0 m=0

The properties discussed in Section 2.4 and some of the analysis techniques introduced

there can be used to find difference equation representations for some of the linear

time-invariant systems that we have defined.

Example 2.1 4 Difference Equation Representation of
the Accumulator

An example of the class of linear constant-coefficient difference equations is the ac-

cumulator system defined by 71

y[n] = Z x[k]. (2.83)
k=—oo

To show that the input and output satisfy a difference equation of the form of Eq. (2.82),

note that we can write the output for n — 1 as

y[n— 1] = Z x[k]. (2.84)

By separating the term x[n] from the sum, we can rewrite Eq. (2.83) as

n—l

y[n] =x[n]+ Z x[k]. (2.85)
k=—oo
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Substituting Eq. (2.84) into Eq. (2.85) yields

y[nl = x[n] + yln - 1],

from which the desired form of the difference equation can be obtained by grouping

all the input and output terms on separate sides of the equation:

are,

(2.86)

YInl — y[n - 1] = x[n]- (2-37)

Thus, we have shown that, in addition to satisfying the defining relationship of

Eq. (2.83), the input and output satisfy a linear constant—coefficient difference equation

of the form Eq. (2.82), with N = 1, a0 = 1, a1 = —1, M = 0, and b0 = 1.

The difference equation in the form of Eq. (2.86) gives us a better understanding

of how we could implement the accumulator system. According to Eq. (2.86), for each

value of n, we add the current input value x[n] to the previously accumulated sum

y[n — 1]. This interpretation of the accumulator is represented in block diagram form

in Figure 2.15.

  
x [n]

One-sample
delay

yh—H

Figure 2.15 Block diagram of a recursive difference equation representing an
accumulator.

Equation (2.86) and the block diagram in Figure 2.15 are referred to as a recursive

representation of the system, since each value is computed using previously computed

values. This general notion will be explored in more detail later in the section.

Example 2.1 5 Difference Equation Representation of
the Moving-Average System

Consider the moving-average system of Example 2.4, with M1 = 0 so that the system

is causal. In this case, from Eq. (2.72), the impulse response is

1

h[n] = mfilpl] — “[71 — M2 —
from which it follows that

1 M2

y[n] = mgnu — k], r. (2.89)
which is a special case of Eq. (2.82), with N = 0, a0 = 1, M = M2, and bk = 1/(M2+ 1)

for 0 5 k _<_ M2.

Also, the impulse response can be expressed as

1

m

which suggests that the causal moving-average system can be represented as the cas-

cade system of Figure 2.16. We can obtain a difference equation for this block diagram

h[n] = (6[n] — 8[n — M2 — 1]) * u[n], (2.90)
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t m
sys e fin]

 
  

   
Attenuator

1

x[n] (M2 + 1)

 

Figure 2.16 Block diagram of the recursive form of a moving—average system.

by noting first that

1
= —— ~— — M —— 1 . . 1

X1 [n] (M + 1) (x[n] x[n 2 ]) (2 9 )

From Eq. (2.87) of Example 2.14, the output of the accumulator satisfies the difference

equation

y[n] — yln — 1] = x1[n].

so that

1
— — 1 = —— — — M — 1 . .

yin] yin ] (M + 1) (xini xrn 2 1) (2 92)

Again, we have a difference equation in the form of Eq. (2.82), but this time N = 1,

a0 = 1, a1 = —1, M = M2 and b0 = —bM2+1 = 1/(M2 + 1), and bk 2 0 otherwise.

In Example 2.15, we showed two different difference equation representations

of the moving-average system. In Chapter 6 we will see that an unlimited number of

distinct difference equations can be used to represent a given linear time—invariant

input—output relation.

Just as in the case of linear constant-coefficient differential equations for contin-

uous-time systems, without additional constraints or information a linear constant-

coefficient difference equation for discrete-time systems does not provide a unique

specification of the output for a given input. Specifically, suppose that, for a given input

xp[n], we have determined by some means one output sequence yp [n], so that an equa-
tion of the form of Eq. (2.82) is satisfied. Then the same equation with the same input

is satisfied by any output of the form

yln] = ypln] + yhin], (293)

where yh [n] is any solution to Eq. (2.82) with x[n] 0, i.e., to the equation
N

Z akyh[n — k] = O. (2.94)
k=0

Equation (2.94) is referred to as the homogeneous equation and yh [n] the homogeneous

solution. The sequence yh [n] is in fact a member of a family of solutions of the form

N

yhin] = Z Amzz. (2.95)
m=1
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Substituting Eq. (2.95) into Eq. (2.94) shows that the complex numbers zm must be roots

of the polynomial
N

Zakfk = 0. (2.96)
k=0

Equation (2.95) assumes that all Nroots of the polynomial in Eq. (2.96) are distinct. The

form of terms associated with multiple roots is slightly different, but there are always

N undetermined coefficients. An example of the homogeneous solution with mu1tiple
roots is considered in Problem 2.38. ,

Since yh[n] has N undetermined coefficients, a set of N auxiliary conditionsiis

required for the unique specification of y[n] for a given x[n]. These auxiliary conditions

might consist of specifying fixed values of y[n] at specific values of n, such as y[—1],

y[—2], . . . , y[—N ], and then solving a set of N linear equations for the N undetermined
coefficients.

Alternatively, if the auxiliary conditions are a set of auxiliary values of y[n], the

other values of y[n] can be generated by rewriting Eq. (2.82) as a recurrence formula,

i.e., in the form

y[n] = — 2N: fly[n — k] + EM: Elfxfiz — k]. I (2.97)
k:] “0 k=0 “0 ,

If the input x[n], together with a set of auxiliary values, say, y[—1], y[—2], . . . , y[—N], is

specified, then y[O] can be determined from Eq. (2.97). With y[O], y[—1], . . . , y[—N+ 1]

available, y[1] can then be calculated, and so on. When this procedure is used, y[n] is

said to be computed recursively; i.e., the output computation involves not only the input

sequence, but also previous values of the output sequence.

To generate values of y[n] for n < —N (again assuming that the values y[—1],

y[—2], . . . , y[—N ] are given as auxiliary conditions), we can rearrange Eq. (2.82) in the
form

I N—1 ak M bk

y[n—N] = —kz:ay[n—k]+kzgfix[n—k], (2.98)
from which y[—N — 1], y[—N —— 2], can be computed recursively. The following

example illustrates this recursive procedure.

Example 2.1 6 Recursive Computation of Difference
Equations

The difference equation satisfied by the input and output of a system is

y[n] = ay[n — 1] + x[n]. (2.99)

Consider the input x[n] = K6 [n], where K is an arbitrary number, and the auxiliary

condition y[—1] = c. Beginning with this value, the output for n > —1 can be computed

recursively as follows:

Yioi = “C + K:

y[1] = ay[0] +0 = a(ac + K): azc +aK,
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Viz] = ay[1] + 0 = a(a2c +aK) = a3c +a2K,

Y[3] = aylll + 0 = a(a3c +a2K) = a4c + a3K,

For this simple case, we can see that for n z 0,

y[n] = a’H'lc + a"K, for n z 0. (2.100)

To determine the output for n < 0, we express the difference equation in the form

yln — 11 = a‘1(y[nl — x[n]). (2.10m)
or

y[n] = a_](y[n +1] — x[n + (2.101b)

Using the auxiliary condition y[—1] = c, we can compute y[n] for n < —1 as follows:

yl-Zl = 0—1014] F x[-1])= [1—16,

y[—3] = a-1(y[—2] — x[—2]) = a-la-lc = a-Zc,

y[—4] = a_1(y[——3] — x[—3]) : (1—1a—2C = (2'36,

It then follows that

y[n] = an+1c for n 5 —1. (2.102)

In sum, combining Eqs. (2.100) and (2.102), we obtain, as the result of the recursive

computation,

y[n] = a"+1c + Ka"u[n], for all n. (2.103)

Several important points are illustrated by the solution of Example 2.16. First,

note that we implemented the system by recursively computing the output in both the

positive and the negative direction, beginning with n = —1. Clearly, this procedure is

noncausal. Also, note that when K = 0, the input is zero, but y[n] = a”+1c. A linear

system requires that the output be zero for all time when the input is zero for all time.

(See Problem 2.21.) Consequently, this system is not linear. Furthermore, if the input

were shifted by no samples, i.e., x1 [n] = K6 [n — no], the output would be

y1[n] = a"+1c + Ka"‘"°u[n — no], (2.104)

and the system is therefore not time invariant.

Our principal interest in this text is in systems that are linear and time invariant,

in which case the auxiliary conditions must be consistent with these additional require—

ments. In Chapter 3, when we discuss the solution of difference equations using the

z-transform, we implicitly incorporate conditions of linearity and time invariance. As

we will see in that discussion, even with the additional constraints of linearity and time

invariance, the solution to the difference equation, and therefore the system, is not

uniquely specified. In particular, there are, in general, both causal and noncausal linear

time-invariant systems consistent with a given difference equation.

If a system is characterized by a linear constant-coefficient difference equation

and is further specified to be linear, time invariant, and causal, the solution is unique.

In this case, the auxiliary conditions are often stated as initial-rest conditions. In other

words, the auxiliary information is that if the input x[n] is zero for n less than some time
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no, then the output y[n] is constrained to be zero for n less than no. This then provides

sufficient initial conditions to obtain y[n] for n 2 no recursively using Eq. (2.97).

To summarize, for a system for which the input and output satisfy a linear constant-

coefficient difference equation:

0 The output for a given input is not uniquely specified. Auxiliary information or

conditions are required.

0 If the auxiliary information is in the form of N sequential values of the output,

later values can be obtained by rearranging the difference equation as a recursive

relation running forward in n, and prior values can be obtained by rearranging

the difference equation as a recursive relation running backward in n.

o Linearity, time invariance, and causality of the system will depend on the auxiliary

conditions. If an additional condition is that the system is initially at rest, then the

system will be linear, time invariant, and causal. '

With the preceding discussion in mind, let us now consider again Example 2.16,

but with initial-rest conditions. With x[n] = K8[n], y[—1] = 0, since x[n] = 0, n < 0.

Consequently, from Eq. (2.103),

y[n] = Ka”u[n]. (2.105)

If the input is instead K8 [n — no], again with initial-rest conditions, then the recursive

solution is carried out using the initial condition y[n] = 0, n < n0. Note that for no < 0,

initial rest implies that y[—1] .76 0. That is, initial rest does not always mean y[—1] =

= y[—N] = 0. It does mean that y[no — 1] = = y[no — N]: 0ifx[n] = Ofor

n < no. Note also that the impulse response for the example is h[n] = a"u[n]; i.e., h[n]

is zero for n < 0, consistent with the causality imposed by the assumption of initial rest.

The preceding discussion assumed that N 2 1 in Eq. (2.82). If, instead, N = 0,

no recursion is required to use the difference equation to compute the output, and

therefore, no auxiliary conditions are required. That is,
M

y[n] = 21cm — k]. (2.106)
k=0 “0

Equation (2.106) is in the form of a convolution, and by setting x[n] = 6[n], we see that

the impulse response is

h[n] = f: (ti—g) 3[n — k],k:

01'

(a). 0 5 n 5 M.h[n] = 00 (2.107)

0, otherwise.

The impulse response is obviously finite in duration. Indeed, the output of any FIR sys-

tem can be computed nonrecursively using the difference equation of Eq. (2.106), where

the coefficients are the values of the impulse response sequence. The moving-average

system of Example 2.15 with M1 = 0 is an example of a causal FIR system. An interest-
ing feature of that system was that we also founda recursive equation for the output. In
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Chapter 6 we will show that there are many possible ways of implementing a desired sig-

nal transformation using difference equations. Advantages of one method over another

depend on practical considerations such as numerical accuracy, data storage, and the

number of multiplications and additions required to compute each sample of the output.

2.6 FREQUENCY-DOMAIN REPRESENTATION OF

DISCRETE-TIME SIGNALS AND SYSTEMS

In the previous sections, we have introduced some of the fundamental concepts of the

theory of discrete-time signals and systems. For linear time-invariant systems, we saw

that a representation of the input sequence as a weighted sum of delayed impulses

leads to a representation of the output as a weighted sum of delayed impulse responses.

As with continuous-time signals, discrete-time signals may be represented in a number

of different ways. For example, sinusoidal and complex exponential sequences play a

particularly important role in representing discrete-time signals. This is because com-

plex exponential sequences are eigenfunctions of linear time-invariant systems and the

response to a sinusoidal input is sinusoidal with the same frequency as the input and

with amplitude and phase determined by the system. This fundamental property of

linear time-invariant systems makes representations of signals in terms of sinusoids or
complex exponentials (i.e., Fourier representations) very useful in linear system theory.

2.6.1 Eigenfunctions for Linear Time-Invariant Systems

To demonstrate the eigenfunction property of complex exponentials for discrete-time

systems, consider an input sequence x[n] = em" for -00 < n < oo, i.e., a complex
exponential of radian frequency an. From Eq. (2.62), the corresponding output of a

linear time-invariant system with impulse response h[n] is

yln] = Z h[k]e""‘”"‘)
kz—oo

(2.108)

= ef‘v" ( Z h[k]e"“’k)k=—oo

If we define

H(efw) = Z h[k]e*j“’k, (2.109)
k=—oo

Eq. (2.108) becomes

y[n] = H(e"‘”)e"“’”. (2.110)

Consequently, elm" is an eigenfunction of the system, and the associated eigenvalue is

H(ejw). From Eq. (2.110), we see that H(ejw) describes the change in complex amplitude

of a complex exponential input signal as a function of the frequency a). The eigenvalue

H(e:"“’) is called the frequency response of the system. In general, H(ej“’) is complex

and can be expressed in terms of its real and imaginary parts as

H(e1'w) = HR(ef‘“) + jH1(ej“’) (2.111)
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or in terms of magnitude and phase as

H(ejw) = |H(ejw)|e.i<1 IKE”). (2.112)

Example 2.1 7 Frequency Response of the Ideal Delay
System '

As a simple example of how we can find the frequency response of a linear time-

invariant system, consider the ideal delay system defined by

y[n] = x[n — nd], (2.113)

where nd is a fixed integer. If we consider x[n] = eja’” as input to this system, then,

from Eq. (2.113), we have

y[n] = ej’m(n—nd) : e—jwndejam.

Thus, for any given value of a), we obtain an output that is the input multiplied by a

complex constant, the value of which depends on the frequency a) and the delay nd.

The frequency response of the ideal delay is therefore

H(efw) = e-fW. , (2.114)

As an alternative method of obtaining the frequency response, recall that h[n] =

5[n — nd] for the ideal delay system. Using Eq. (2.109), we obtain
00

H(ej"’) = Z 5[n — nd]e‘j‘”" = e‘jw’”.
n=—oo

From the Euler relation, the real and imaginary parts of the frequency response are

HR(ej“’) = cos(amd), (2.115a)

H1(ef°’) = — sin(amd). (2.115b)

The magnitude and phase are

IH(e’"”)I = 1. (2.116a)

<iH(ej“’) = «and. (2.116b)

In Section 2.7 we will show that a broad class of signals can be represented as a

linear combination of complex exponentials in the form

x[n] = Z akeffl’t”. (2.117)
k

From the principle of superposition, the corresponding output of a linear time-invariant

system is

y[n] = Z akH(ejw")ej“”‘". (2.118)
k

Thus, if we can find a representation of x[n] as a superposition of complex exponential

sequences, as in Eq. (2.117), then we can find the output using Eq. (2.118) if we know

the frequency response of the system. The following simple example illustrates this
fundamental Dronertv of linear time-invariant svstems.
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Example 2.18 Sinusoidal Response of LTI Systems

Since it is simple to express a sinusoid as a linear combination of complex exponentials,

let us consider a sinusoidal input

x[n] = Acos(won + (b) = gej‘peja’o" + gfwe—jwo". (2.119)
From Eq. (2.110), the response to x1 [n] = (A/2)ef¢ef‘”0" is

y1[n] = H(ej“’°)§ej¢ej“’°”. (2.120a)
The response to x2[n] = (A/2)e‘j¢e‘f“’°" is

y2[n] = H(e'j“’°)§e_j¢e_j“’°". (2.120b)
Thus, the total response is

y[n] = 1§€1[lr~1(ej“’°)ejd’ej‘w" + H(e"j“’°)e‘j¢e‘j“’°“]. (2.121)
If h[n] is real, it can be shown (see Problem 2.71) that H(e‘f"’°) = H*(ej“’°). Conse-

quently,

y[n] = A|H(ej“’°)| cos(w0n + as + 9), (2.122)

where 6 = <IH(ej“’°) is the phase of the system function at frequency wo.
For the simple example of the ideal delay, |H(e1“’°)| = 1 and 9 = —wond, as we

determined in Example 2.17. Therefore,

y[n] = A cos(won + (l) — wand)

= A cos[wo(n — nd) + ¢v],

which is consistent with what we would obtain directly using the definition of the ideal

delay system.

(2.123)

The concept of the frequency response of linear time-invariant systems is essen-

tially the same for continuous-time and discrete-time systems. However, an important

distinction arises because the frequency response of discrete-time linear time-invariant

systems is always a periodic function of the frequency variable 0) with period 211. To

show this, we substitute w + 27: into Eq. (2.109) to obtain

H (ei(w+2n)) = Z h[n]e-i(w+2w)", (2.124)
n=—oo

Using the fact that eijz’m = 1 for n an integer, we have

e—j(a:+2:r)n = e—jwne—jZJrn = e—jwn'

Therefore,

H(ej(“’+2")) = H(ej“’), (2.125)
and, more generally,

H(ej(“’+2”’)) = H(ej“’), for r an integer. (2.126)

That is, H(e1"”) is periodic with period 271. Note that this is obviously true for the ideal
delay system, since e‘1(“""2")”d = 9‘1“d when nd is an integer.
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The reason for this periodicity is related directly to our earlier observation that

the sequence

{e"""}, —00 < n < 00,

is indistinguishable from the sequence

{ej(“’+2”)"}, —00 < n < 00.

Because these two sequences have identical values for all n, the system must respond

identically to both input sequences. This condition requires that Eq.’ (2.125) hold.

Since H(eiw) is periodic with period 27:, and since the frequencies a) and

a) + 211 are indistinguishable, it follows that we need only specify H(ef“’) over an inter-

val of length 221, e.g., 0 5 a) 5 2:1 or —7r < a) 5 IT. The inherent periodicity defines

the frequency response everywhere outside the chosen interval. For simplicity and for

consistency with the continuous-time case, it is generally convenient to specify H(ej“’)

over the interval —:r < a) 5 It. With respect to this interval, the “low frequencies” are

frequencies close to zero, while the “high frequencies” are frequencies close to in. Re-

calling that frequencies differing by an integer multiple of 271 are indistinguishable, we

might generalize the preceding statement as follows: The “low frequencies” are those

that are close to an even multiple of it, while the “high frequencies” are those that are

close to an odd multiple of It, consistent with our earlier discussion in Section 2.1.

Example 2.1 9 Ideal Frequency-Selective Filters

An important class of linear time-invariant systems includes those systems for which

the frequency response is unity over a certain range of frequencies and is zero at

the remaining frequencies. These correspond to ideal frequency-selective filters. The

frequency response of an ideal lowpass filter is shown in Figure 2.17(a). Because of the

inherent periodicity of the discrete-time frequency response, it has the appearance of

Hlp(e jw)

-21T -27T+aJC —17 —tu we 71' ZW—wc 217 w

 
(b)

Figure 2.17 Ideal lowpassfiltershowing (a) periodicity ofthe frequency response
and (b) one period of the periodic frequency response.
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th(ejw)

 
Hbs(ejw)

1

—1r -wb ~wa 0 (pa wb 17 w

(b)

pr(ejw)

1

—7r —wb -wa 0 ma cub 1r (0

(C)

Figure 2.18 Ideal frequency-selective filters. (a) Highpass filter. (b) Bandstop
filter. (0) Bandpass filter. In each case, the frequency response is periodic with
period 271'. Only one period is shown.

a multiband filter, since frequencies around (0 = 221 are indistinguishable from fre-

quencies around a) = 0. In effect, however, the frequency response passes only low

frequencies and rejects high frequencies. Since the frequency response is completely

specified by its behavior over the interval err < a) 5 n, the ideal lowpass filter fre-

quency response is more typically shown only in the interval —71' < a) 5 71', as in

Figure 2.17(b). It is understood that the frequency response repeats periodically with

period 27: outside the plotted interval. The frequency responses for ideal highpass,

bandstop, and bandpass filters are shown in Figures 2.18(a), (b), and (c), respectively.

Example 2.20 Frequency Response of the
Movlng—Average System

The impulse response of the moving-average system of Example 2.4 is

1
————_9 _M
M1+M2+1 1 2

h[n] =

0, otherwise.



Sec. 2.6 Frequency-Domain Representation of Discrete-Time Signals and Systems 45

Therefore, the frequency response is
M2

H 1‘” = — _}"’", 2.12

(e) M1+M2+1 2M3 ( 7)n=— 1

Equation (2.127) can be expressed in closed form by using Eq. (2.56), so that

1 ejwMI _ e—jw(M2+1)

M1+M2+1 l—e‘j‘”
H(e/"")

1 ejw(M1+M2+1)/2 _ e—jm(M1+M2+1)/2

M1+M2+1 l—e‘j‘”

(2.128)

1 eiw(M1+M2+1)/2 _ e-fm(M1+M2+1)/2
— _ _ —iw(M2—M1)/2
M1 +M2+1 elm/2 —e"1‘”/2

e

1 We-fw(Mz-M1)IZ
M1 + M; + 1 sin(w/2) '

lH(ef"’)l

 
Figure 2.19 (a) Magnitude and (b) phase of the frequency response of the
moving-average system for the case M1 = O and M2 = 4.

The magnitude and phase of H(ej‘”) are plotted in Figure 2.19 for M1 = 0 and M2 = 4.

Note that H(ef"’) is periodic, as is required of the frequency response of a discrete-
time system. Note also that |H(ej‘")| falls off at “high frequencies” and <1H(ej“’), i.e.,
the phase of H(ej‘”), varies linearly with w. This attenuation of the high frequencies

suggests that the system will smooth out rapid variations in the input sequence; in other

words, the system is a rough approximation to a lowpass filter. This is consistent with

what we would intuitively expect about the behavior of the moving-average system.
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2.6.2 Suddenly Applied Complex Exponential Inputs

We have seen that complex exponential inputs of the form eja’" for —00 < n < oo
produce outputs of the form H(ej"’)ej“’” for linear time-invariant systems. Such inputs,
nonzero over a doubly infinite domain, may seem to be impractical models of signals;

however, as we will see in the next section, models of this kind are crucial to the mathe-

matical representation of a wide range of signals, even those that exist only over a finite

domain. Even so, we can gain additional insight into linear time—invariant systems by

considering more practical-appearing inputs of the form

x[n] = ejw"u[n],

i.e., complex exponentials that are suddenly applied at an arbitrary time, which for

convenience here we choose as n = 0. Using the convolution sum in Eq. (2.62), the

corresponding output of a causal linear time-invariant system with impulse response

h[n] is

0, n < 0,

y[n] = h[k]e—jmk) ejwny n 2k=0

If we consider the output for n 3 0, we can write

y[n] = h[k]e’j“’k) ejw” — ( i h[k]e_j‘”k) ejw" (2.129)k=0 k=n+1

= H(ej“’)ej"’" — ( i h[k]e‘j"’k) eiw". (2.130)k=n+1

From Eq. (2.130), we see that the output consists of the sum of two terms, i.e., y[n] =

yss[n] + y, [n]. The first term,

ySsinl = H(ejw)€jam,

is called the steady-state response. It is identical to the response of the system when the

input is e1 "m for all n. In a sense, the secOnd term,
1X)

y,[n] = _ Z h[k]e'j‘”kej“’",
k=n+1

is the amount by which the output differs from the eigenfunction result. This part is

called the transient response, because it is clear that in some cases it may approach zero.

To see the conditions for which this is true, let us consider the size of the second term.

Its magnitude is bounded as follows:

m I I

Z h[k]e"“’ke"""
k=n+1

5 Z |h[k]|. (2.131)
=n+ 1

IYtinll =   
From Eq. (2.131), it should be clear that if the impulse response has finite length, so that

h[n] = 0except forO 5 n 5 M, then the term y,[n] = Oforn+ 1 > M, orn > M— 1.

In this case,

y[n] = yss[n] = H(ej“’)ej‘”", forn > M— 1.
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When the impulse response has infinite duration, the transient response does not disap-

pear abruptly, but if the samples of the impulse response approach zero with increasing

n, then y, [n] will approach zero. Note that Eq. (2.131) can be written

|y,[n]|= fume-few“ 5 Z |h[k]| SEW/(1|. (2.132)
k=n+1 k=n+1 k=0  

That is, the transient response is bounded by the sum of the absolute values of all of the

impulse response samples. If the right-hand side of Eq. (2.132) is bounded, so that
00

Z Ihtkll < oo,
k=0

then the syStem is stable. From Eq. (2.132), it follows that, for stable systems, the tran—

sient response must become increasingly smaller as n —> 00. Thus, a sufficient condition

for the transient response to die out is that the system be stable.

Figure 2.20 shows the real part of a complex exponential signal with frequency

a) = 2r/10. The solid dots indicate the samples x[k] of the suddenly applied complex

exponential, while the open circles indicate the samples of the complex exponential that

are “missing.” The shaded dots indicate the samples of the impulse response h[n — k]

as a funCtion of k for n = 8. In the finite-length case shown in Figure 2.20(a), it is clear

that the output would consist only of the steady-state component for n 2 8,1 while in

the infinite-length case, it is clear that the missing samples have less and less effect as It

increases, due to the decaying nature of the impulse response.

. hh—fi

O .. .. '. .. n k

' c (a)

. hM-H

0 I. .o -. . 0‘ n k

. . (b)
Figure 2.20 Illustration of real part of suddenly applied complex exponential input

with (a) finite-Ienth impulse response and (b) infinite-length impulse response.
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The condition for stability is also a sufficient'condition for the existence of the

frequency response function. To see this, note that, in general,

2 h[k]e‘j“”‘ 5 Z |h[k]e""""l : Z: Ih[k]I,
k=—ook=—CXD =—m

IH(e"‘“>I =   
so the general condition

2 Ihlkll < oo
k=—oo

ensures that H(ej"’) exists. It is no surprise that the condition for existence of the

frequency response is the same as the condition for dominance of the steady—state

solution. Indeed, a complex exponential that exists for all n can be thought of as one

that is applied at n = —oo. The eigenfunction property of complex exponentials depends

on stability of the system, since at finite n, the transient response must have become

zero, so that we only see the steady-state response H(ej“’)ej"’" for all finite n.

2.7 REPRESENTATION OF SEOUENCES BY FOURIER TRANSFORMS

One of the advantages of the frequency-response representation of a linear time-

invariant system is that interpretations of system behavior such as the one we made

in Example 2.20 often follow easily. We will elaborate on this point in considerably

more detail in Chapter 5. At this point, however, let us return to the question of how

we may find representations of the form of Eq. (2.117) for an arbitrary input sequence.

Many sequences can be represented by a Fourier integral of the form

1 7’ . .
= ]w 1(4)”

x[n] —2” 4 X(e )e dw, (2.133)
where

X(ei‘") = E x[n]e_j“’". (2.134)

Equations (2.133) and (2.134) together form a Fourier representation for the sequence.
Equation (2.133), the inverse Fourier transform, is a synthesis formula. That is, it repre—

sents x[n] as a superposition of infinitesimally small complex sinusoids of the form

1 . .1w Jam

2—” X(e )e do),

with a) ranging over an interval of length 2:: and with X(eja’) determining the relative

amount of each complex sinusoidal component. Although, in writing Eq. (2.133), we

have chosen the range of values for a) between —7r and +71, any interval of length 27:

can be used. Equation (2.134), the Fourier transform,3 is an expression for computing
X(e1"“) from the sequence x[n], i.e., for analyzing the sequence x[n] to determine how
much of each frequency component is required to synthesize x[n] using Eq. (2.133).

3Sometimes we will refer to Eq. (2.134) more explicitly as the discrete-time Fourier transform, or
DTFI‘, particularly when it is important to distinguish it from the continuous-time Fourier transform.
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In general, the Fourier transform is a complex-valued function of a). As with the

frequency response, we may either express X(e1‘“) in rectangular form as

X(ejw) = XR(eia>) + jXI(eIw) (2.1353)

or in polar form as

X(ei‘”) = IX(ej“’)|ej<X(ejm). (2-135b)

The quantities |X(ei“’)| and <tX(ei“’) are the magnitude and phase, respectively, of the

Fourier transform. The Fourier transform is sometimes referred to as the Fourier spec-

trum or, simply, the spectrum. Also, the terminology magnitude spectrum or amplitude

spectrum is sometimes used to refer to |X(ej“’)|, and the angle or phase <tX(ej‘”) is

sometimes called the phase spectrum.

The phase <tX(ej“’) is not uniquely specified by Eq. (2.135b), since any integer
multiple of 2:1 may be added to <tX(e im) at any value of a) without affecting the result of
the complex exponentiation. When we specifically want to refer to the principal value,
i.e., <1X(ej“’) restricted to the range of values between —7r and +7r, we will denote this
as ARG[X(e"‘")]. If we want to refer to a phase function that is a continuous» function
of a) for 0 < w < JT, we will use the notation arg[X(e1"”)].

By comparing Eqs. (2.109) and (2.134), we can see that the frequency response of

a linear time-invariant system is simply the Fourier transform of the impulse response

and that, therefore, the impulse response can be obtained from the frequency response

by applying the inverse Fourier transform integral; i.e.,

h[n]= % / H(eiw)eiw"dw. (2.136)

As discussed previously, the frequency response is a periodic function. Likewise,

the Fourier transform is periodic with period 2:1. Indeed, Eq. (2.134) is of the form of

a Fourier series for the continuous-variable periodic function X(ei“’), and Eq. (2.133),

which expresses the sequence values x[n] in terms of the periodic function X(6”), is
of the form of the integral that would be used to obtain the coefficients in the Fourier

series. Our use of Eqs. (2.133) and (2.134) focuses on the representation of the sequence

x[n]. Nevertheless, it is useful to be aware of the equivalence between the Fourier series

representation of continuous—variable periodic functions and the Fourier transform

representation of discrete-time signals, since all the familiar properties of Fourier series

can be applied, with appropriate interpretation of variables, to the Fourier transform

representation of a sequence.

We have not yet shown explicitly that Eqs. (2.133) and (2.134) are inverses of

each other, nor have we considered the question of how broad a class of signals can be

represented in the form of Eq. (2.133). To demonstrate that Eq. (2.133) is the inverse

of Eq. (2.134), we can find X(ef“) using Eq. (2.134) and then substitute the result into
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Eq. (2.133). Specifically, consider

5 n l i xlml‘3—jwm) awhile, (2.137)m=—oo

where we have tentatively used fin] to denote the result of the Fourier synthesis. We

wish to show that 3c[n] = x[n] if X(eia’) can be found using Eq. (2.134). Note that

the “dummy index” of summation has been changed to m to distinguish it from n, the

variable index in Eq. (2.133). If the infinite sum converges uniformly for all a}, then we

can interchange the order of integration and summation to obtain

J‘c[n] = f: x[m] [’1 ej‘”("_m)da)) . (2.138)
m=—oo _7r

Evaluating the integral within the parentheses gives

1 7' ejm(n_m)dw = sin 7r(n — m)
E _,, 7r(n-m)

__ 1, m=n,
— 0, m¢n,

=8[n—m].

Thus,
00

Z x[m]6[n — m] = x[n],
m=—oo

J‘rlnl

which is what we set out to show.

Determining the class of signals that can be represented by Eq. (2.133) is equiv-

alent to considering the convergence of the infinite sum in Eq. (2.134). That is, we

are concerned with the conditions that must be satisfied by the terms in the sum in

Eq. (2.134) such that

|X(ej“’)| < 00 for all a),

where X(eia’) is the limit as M —> 00 of the finite sum
M

XM(eiw) = Z x[n]e'j“’". (2.139)
n=—M

A sufficient condition for convergence can be found as follows:
00

Z x[n]e‘j‘”"
n=—oo

IX(e"‘”)I =   

5 Z |x[n]| le‘j””|
n=—oo

: 2 WM <oo.
n=—oo
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Thus, if x[n] is absolutely summable, then X(e1‘9) exists. Furthermore, in this case, the

series can be shown to converge uniformly to a continuous function of (0.

Since a stable sequence is, by definition, absolutely summable, all stable sequences

have Fourier transforms. It also follows, then, that any stable system will have a finite

and continuous frequency response.

Absolute summability is a sufficient condition for the existence of a Fourier trans-

form representation. In Examples 2.17 and 2.20, we computed the Fourier transforms

of the sequences 8[n — nd] and [1/(M1 + M2 + 1)](u[n + M1] — u[n — M2 — 1]). These

sequences are absolutely summable, since they are finite in length. Clearly, any finite-

length sequence is absolutely summable and thUS will have a Fourier transform repre-

sentation. In the context of linear time-invariant systems, any FIR system will be stable

and therefore will have a finite, continuous frequency response. When a sequence has

infinite length, we must be concerned about convergence of the infinite sum. The fol-

lowing example illustrates this case.

Example 2.21 Absolute Summability for a
Suddenly-Applied Exponential

Let x[n] = a"u[n]. The Fourier transform of this sequence is
Ex) 00

X(ejru) = Zane—jam = 2(ae—jw)n
n=0 n=0

1 . _-
=—.— 1f|ae""|<1 or |a|<1.

1 — ae‘l‘”

Clearly, the condition |al < 1 is the condition for the absolute summability of x[n]; i.e.,

 °° 1
Z lal" = < 00 if |a| < 1. (2.140)

1 - lal11:0

Absolute summability is a sufiicient condition for the existence of a Fourier trans—
form representation, and it also guarantees uniform convergence. Some sequences are

not absolutely summable, but are square summable, i.e.,
00

Z |x[n]12 < 00. (2.141)
n=—00

Such sequences can be represented by a Fourier transform if we are willing to relax the

condition of uniform convergence of the infinite sum defining X(eja’). Specifically, in

this case we have mean-square convergence; that is, with
00

X(ej“’) = Z x[n]e'j“’” (2.142a)
n=—00

and
M

X54021“) = Z x[n]e-fw", (2.142b)
n=—M

it follows that

lim / |X(efw) — XM(ej‘”)|2da) = o. (2.143)M~>oo _fl
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In other words, the error | X(ei“’) — XM(e jw) | may not approach zero at each value of

a) as M —> 00, but the total “energy” in the error does. Example 2.22 illustrates this case.

Example 2.22 Square-Summability for the Ideal
Lowpass Filter

Let us determine the impulse response of the ideal lowpass filter discussed in Example

2.19. The frequency response is

0’ wC < E n"!H1p(e’°’) = {1’ 'w' < ‘0“ (2.144)
with periodicity 221' also understood. The impulse response hlp [n] can be found using
the Fourier transform synthesis equation (2.133):

  

 

1 w" .

h]p[n] = 2—/ e’mdw
7T _wn

1 jam “’1: 1 jwcn —jw n 2 145
= 21rjn [e l-wc _ 21rjn(e _e E) (. )

sinwcn
= , —oo < n < oo.

1m

We note that, since h1p[n] is nonzero for n < 0, the ideal lowpass filter is noncausal.

Also, h1p[n] is not absolutely summable. The sequence values approach zero as n —> 00,
but only as 1/ n. This is because H1p(el“’) is discontinuous at w = we. Since h1p[n] is not
absolutely summable, the infinite sum

00

Z wcne__jwn71'"
n=—oo

 

HM(ej“’), M = 1 HM(efw), M = 3

  
 

 
(b)

HM(e1"*’), M = 7 HM(eIw), M = 19

 
Figure 2.21 Convergence of the Fourier transform. The oscillatory behavior at

a) = 0).; is often called the Gibbs phenomenon.
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does not converge uniformly for all values of a). To obtain an intuitive feeling for this,

let us consider HM(e1“’) as the sum of a finite number of terms:
M

HM(ejw) = Z Slime-W. (2.146)
n=—M

 

We can show that HM(ej“’) can be expressed as

1 ft sin[(2M+ 1)(w — am]HM(e"“’) = — sin[(w — 6)]/2
d6.

2n _w‘:

The function HM(ej‘”) is evaluated in Figure 2.21 for several values of M. Note that

as M increases, the oscillatory behavior at a) = we (often referred to as the Gibbs

phenomenon) is more rapid, but the size of the ripples docs not decrease. In fact, it

can be shown that as M —> 00, the maximum amplitude of the oscillations does not

approach zero, but the oscillations converge in location toward the point to = we. Thus,

the infinite sum does not converge uniformly to the discontinuous function Hlp(ej‘”)
of Eq. (2.144). However, h1p[n], as given in Eq. (2.145), is square summable, and

correspondingly, HM(eJ“’) converges in the mean-square sense to Hlp (6”); Le,
71'

lim 1H1p(ef‘°) — HM(eIw)|2dw = 0. IM—mo

Although the error between limM_mo HM(ef‘”) and H1p(ej‘“) might seem unimportant
because the two functions differ only at a) = wc, we will see in Chapter 7 that the be-

havior of finite sums has important implications in the design of discrete-time systems

for filtering.

It is sometimes useful to have a Fourier transform representation for certain se-

quences that are neither absolutely summable nor square summable. We illustrate sev-

eral of these in the following examples.

Example 2.23 Fourier Transform of a Constant

Consider the sequence x[n] = 1 for all n. This sequence is neither absolutely summable

nor square summable, and Eq. (2.134) does not converge in either the uniform or mean-

square sense for this case. However, it is possible and useful to define the Fourier

transform of the sequence x[n] to be the periodic impulse train4

X(efw) ; Z 27:3(a) + 2m). (2.147)
r=—oo

The impulses in this case are functions of a continuous variable and therefore are of

“infinite height, zero width, and unit area,” consistent with the fact that Eq. (2.134)

does not converge. The use of Eq. (2.147) as a Fourier representation of the se-

quence 'x[n] = 1 is justified principally because formal substitution of Eq. (2.147)

into Eq. (2.133) leads to the correct result. Example 2.24 represents a generalization

of this example.

4The impulse function is defined as that “function” that has the following properties: 6 (w) = O for w 79 0;
X(e1"")5(w) = X(ei°)5(m); 6(w)dw = 1; and 6(w) an: X(e1"’) = X(ef"’), where * denotes continuous-
variable convolution. See Oppenheim and Willsky (1997) for a discussion of the impulse function.
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Example 2.24 Fourier Transform of Complex
Exponential Sequences

Consider a sequence x[n] whose Fourier transform is the periodic impulse train

X(eiw) = 2 2mm.) — (00 + 2m). (2.148)
r=—oo

We show in this example that x[n] is the complex exponential sequence elm".

We can safely assume that —rr < (90 5 Jr in this problem. If the chosen value

of we does not satisfy this requirement, there is a choice of (no in the interval which

produces the same X(cf‘0), since the impulses repeat periodically every 2n. Thus, we

can redefine (00 to be the frequency of the impulse in the summation of Eq. (2.148),

which falls in the interval between —Jr and Tr without any change in the spectrum

X(ej‘”). .

We can determine x[n] by substituting X(ej“) into the inverse Fourier trans-
form integral of Eq. (2.133). Because the integration of X(ejw) extends only over one

period, from —7r < w < 7r, we need include only the r = 0 term from Eq. (2.148).

Consequently, we can write
Jr

x[n] = if? 1 2mm.) — w0)efw"dw. (2.149)—Jl'

From the definition of the impulse function, it follows that

x[n] = em” for any n.

For wo = 0, this reduces to the sequence considered in Example 2.23.

Clearly, x[n] in Example 2.24 is not absolutely summable, nor is it square summable,
and |X(e1“’)| is not finite for all to. Thus, the mathematical statement

00 00

2 WWW = 2 2mm» — coo +2m) (2.150)
n=—oo r=—oo

must be interpreted in a special way. Such an interpretation is provided by the theory

of generalized functions (Lighthill, 1958). Using that theory, we can rigorously extend

the concept of a Fourier transform representation to the class of sequences that can be

expressed as a sum of discrete frequency components, such as

x[n] = Zakejwk", —00 < n < 00. (2.151)
k

From the result of Example 2.24, it follows that
00

X(ej“’) = Z 227wka — wk + 27”) (2.152)
r=—~oo k . -

is a consistent Fourier transform representation of x[n] in Eq. (2.151).

Another sequence that is neither absolutely summable nor square summable is

the unit step sequence u[n]. Although it is not completely straightforward to show, this

sequence can be represented by the following Fourier transform: '

U(ej“’) =$+ Z 7:8(co + 27rr). (2.153)f=--m
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2.8 SYMMETRY PROPERTIES OF THE FOURIER

TRANSFORM '

In using Fourier transforms, it is useful to have a detailed knowledge of the way that

properties of the sequence manifest themselves in the Fourier transform and vice versa.

In this section and Section 1.9, we discuss and summarize a number of such properties.

Symmetry properties of the Fourier transform are often very useful for simplifying

the solution of problems. The following discussion presents these properties, and the

proofs are considered in Problems 1.72 and 1.73. Before presenting the properties,

however, we begin with some definitions. .

A conjugate-symmetric sequence xe [n] is defined as a sequence for which xe [n] =

x:[—n], and a conjugate-antisymmetric sequence x0[n] is defined as a sequence for which

x0[n] = —x;[—n], where * denotes complex conjugation. Any sequence x[n] can be

expressed as a sum of a conjugate-symmetric and conjugate-antisymmetric sequence.

Specifically,

x[n] = xe[n] + xo[n], 1 (2.1543)

where

xe[n] = %(x[n] + x*[——n]) : x:[—n] ‘ (2.154b)
and

xo[n] = %(x[n] — x*[—n]) = —x;[—n]. J(2.154c)

A real sequence that is conjugate symmetric such that xe [n] = xe[—n] is called an even

sequence, and a real sequence that is conjugate antisymmetric such that x0 [n] = —x0[—n]

is called an odd sequence.

AFourier transform X(e1‘”) can be decomposed into a sum of conjugate-symmetric

and conjugate-antisymmetric functions as

X(ej“’) = Xe(ej‘") + X0(ej‘"), (2.155a)
where '

Xe(ej“’) = %[X(ej‘”) + X*(e—J’w)] (2.155b)
and

’ X0(ej“’) = %[X(ej“’) — X*(e_j“’)]. (2.155c)

By substituting —w for a) in Eqs. (2.155b) and (2.1550), it follows that Xe(efc") is conjugate
symmetric and X0(ejw) is conjugate antisymmetric; i.e.,

Xe(ej“’) = X;(e_j“’) ‘ (2.1565)
and

X0(ej“’) = —X;(e—fw). (2.156b)

If a real function of a continuous variable is conjugate symmetric, it is referred to as an

even function, and a real conjugate-antisymmetric function of a continuous variable is

referred to as an odd function.

The symmetry properties of the Fourier transform are summarized in Table 1.1.

The first six properties apply for a general complex sequence x[n] with Fourier trans-

form X(ejw). Properties 1 and 2 are considered in Problem 1.72. Property 3 follows from
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TABLE 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence Fourier Transform
x[n] X(e1 w)

1. x*[n] X*(e'f“’)

2. x*[—n] X“ (el“’)

3. Re{x[n]} X9021”) (conjugate-symmetric part of X(ef“))

4. jJm{x[n]} X0(el“’) (conjugaterantisymmetric part
of X(e1“))

5. xe[n] (conjugate-symmetric part XR(el"’) = Re{X(el‘")}
of x[n])

6. x0[n] (conjugate-antisymmetric jX1(el‘”) = ij{X(ej"’)}

part of x[n])

The following properties apply only when x[n] is real:

7. Any real x[n] X(elm) = X*(e‘iu’) (Fourier transform is
conjugate symmetric)

8. Any real x[n] XR(el‘”) = XR(e‘j“’) (real part is even)

9. Any real x[n] X1(el“’) = —X1(e'l“’) (imaginary part is odd)

10. Any real x[n] IX(el“)| = IX(e‘l“)| (magnitude is even)

11. Any real x[n] <X(efw) = —<tX(e-J‘w) (phase is odd)

12. xe[n] (even part of x[n]) XR(el‘°)

13. x0[n] (odd part of x[n]) jX1(ej“)

properties 1 and 2, together with the fact that the Fourier transform of the sum of two

sequences is the sum of their Fourier transforms. Specifically, the Fourier transform of

Re{x[n]} = %(x[n] + x*[n]) is the conjugate-symmetric part of X(el0), or Xe(ej“’). Sim;
ilarly, j Jm{x[n]} = %(x [n] — x*[n]), or equivalently, jJm{x[n]} has a Fourier transform
that is the conjugate-antisymmetric component Xa(el“’) corresponding to property 4.

By considering the Fourier transform of xe[n] and xo[n], the conjugate-symmetric and

conjugate-antisymmetric components, respectively, of x[n], it can be shown that prop-
erties 5 and 6 follow.

If x[n] is a real sequence, these symmetry properties become particularly straight-

forward and useful. Specifically, for a real sequence, the Fourier transform is conjugate

symmetric; i.e., X(elw) = X*(e"j“’) (property 7). Expressing X(elm) in terms of its real
and imaginary parts as

X(el‘”) = XR(el“’) + jX,(efw), (2.157)

we can derive properties 8 and 9—specifically,

XR(ej“’) = XR(e""") (2.158a)
and _ .

X1(el‘”) = —X1(e"“’). (2.158b)

In other words, the real part of the Fourier transform is an even function, and the

imaginary part is an odd function, if the sequence is real. In a similar manner, by

expressing X(e1"’) in polar form as

X(ejw) = |X(eiw)|ei<X(ef'”)’ (2.159)
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we can show that, for a real sequence x[n], the magnitude of the Fourier transform,

|X(ef‘°)|, is an even function of a) and the phase, <1X(ei“’), can be chosen to be an odd

function of (1) (properties 10 and 11). Also, for a real sequence, the even part of x[n]

transforms to XR(ej“’), and the odd part of x[n] transforms to jX1(ej“’) (properties 12

and 13).

Example 2.25 Illustration of Symmetry Properties ~

Let us return to the sequence of Example 2.21, where we showed that the Fourier

transform of the real sequence x[n] = a"u[n] is

.w 1 _
X(e] )= 1f |a| <

Then, from the properties of complex numbers, it follows that

. 1 .1w _ __ _ -Jw

X(e ) _ 1 _ aria, — X*(e ) (property 7),

. 1 — a cosa) -
10 = ___ = -Jw

XR(e ) 1 + a2 _ 2a cos“) XR(e ) (preperty 8),
a —a sin a) . t
M = __—_w_ = _ ~10

Xne ) 1 + 02 _ 20 cm Xtre ) (property 9),
. 1 .

IX(e"")l = = |X(e"“’)l (property 10),'
(1+ a2 — 2a cos w)1/2

<IX(ej‘") = tan—1L (fig-1%) = —<IX(€_jw) (Property 11).

 
Radian frequency (w)

(b)

Figure 2.22 Frequency response for a system with impulse response h[n] =
a”u[n]. (a) Real part. a > 0; a = 0.9 (solid curve) and a = 0.5 (dashed curve).
(b) Imaginary part.



58 Discrete-Time Signals and Systems Chap. 2

5

F8 4
a 3:1

g" 2
1

0
—1r 7_T 11' 11'

—2 O 2
Radian frequency (w)

(6)

Phase(radians) .'H.5.oH oLII0Lil
—7r _1T 0 11' 7r

2 2

Radian frequency (w)

(d)

Figure 2.22 (Continued) (c) Magnitude. a > 0; a = 0.9 (solid curve) and

a = 0.5 (dashed curve). (d) Phase.

These functions are plotted in Figure 2.22 for a > 0, specifically, a = 0.9 (solid curve)

and a = 0.5 (dashed curve). In Problem 2.43, we consider the corresponding plots for
a < 0.

2.9 FOURIER TRANSFORM THEOREMS

In addition to the symmetry properties, a variety of theorems (presented in Sections

29.1-29.7) relate operations on the sequence to operations on the Fourier transform.

We will see that these theorems are quite similar in most cases to corresponding theo-

rems for continuous-time signals and their Fourier transforms. To facilitate the statement

of the theorems, we introduce the following operator notation:

X(ej°’) = F{x["]},

xlnl = F'1{X(ej“’)}.

x[n] .1» X(ej"’).

That is, .77 denotes the operation of “taking the Fourier transform of x[n],” and .7-"‘1 is the
inverse of that operation. Most of the theorems will be stated without proof. The proofs,

which are left as exercises (Problem 2.74), generally involve only simple manipulations

of variables of summation or integration. The theorems in this sectionare summarized
in Table 2.2.
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TABLE 2.2 FOURIER TRANSFORM THEOREMS

 

Sequence Fourier Transform

x[n] X(efw)
YDI] We”)

1. ax[n] + by[n] aX(ej‘") + bY(ei"’)

2. x[n — nd] (nd an integer) e‘jmd X(em)

3. ejw0”x[n] X(el'(w-wo))

4. x[—n] X(e"'“’)
X*(ei"’) if x[n] real.

.dX(eIw)
5. nx[n] ] do)

6. x[n] =0: y[n] X(ei‘“)Y(ei‘”)IT

7. x[n]y[n] % X(ej9)Y(ej(“Panda7r

Parseval’s theorem:
rr

8. Z |x[n]|2= % / |X(eiw)|2dw
n=—oo ‘7'

7:

9. Z x[n]y*[n] = X(ej“’)Y*(ej‘“)dwn=—oo 7'

2.9.1 Linearity of the Fourier 1'i-ansform

If

and

then it follows by substitution into the definition of the discrete-time Fourier transform
that

ax1[n] + bx2[n] 4i) aX1(efw) + bX2(e1""). (2.161)

2.9.2 Time Shifting and Frequency Shifting

If
f

x[n] 4—) X(ej‘”),

then, for the time-shifted sequence, a simple transformation of the index of summation

in the discrete-time Fourier transform yields

x[n — nd] «i» e‘jw”4X(ej“’). (2.162)

Direct substitution proves the following result for the frequency-shifted Fourier trans-
form:

ejw°"x[n] «i» X(ei(w-w°)). (2.163)
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2.9.3 Time Reversal

If

x[n] <—f—> X(ej“’),

then if the sequence is time reversed,
.F

x[—n] <-—> X(e—j“’). (2.164)

If x[n] is real, this theorem becomes

x[—n] +1. X*(ej“’). (2.165)

2.9.4 Differentiation in Frequency

If

x[n] +i> X(ej“’),

then, by differentiating the discrete-time Fourier transform, it is seen that

jaJ

nx[n] «it Wig; ). (2.166)
 

2.9.5 Parsevalk Theorem

If

x[n] <—f—> X(ej‘"),
then

00 1 Jr ‘

E: 2=—/ X fwzd. 2.167"gmlxlrfll 2” _”I (e )I w ( )
The function |X(e’"") |2 is called the energy density spectrum, since it determines how the
energy is distributed in the frequency domain. Necessarily, the energy density spectrum

is defined only for finite-energy signals. A more general form of Parseval’s theorem is
shown in Problem 2.77.

2.9.6 The Convolution Theorem

If

x[n] +1)» X(eia’)
and

h[n] +1» H(efw),
and if

y[n] = Z x[k]h[n — k] = x[n] =1: h[n], (2.168,)
k=—00

then '

Y(ej“’) = X(eiw)H(eIw). (2.169)
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Thus, convolution of sequences implies multiplication of the corresponding Fourier

transforms. Note that the time-shifting property is a special case of the convolution

property, since

8[n — nd] «i» e-J'wnd (2.170)

and if h[n] = 6[n — nd], then y[n] = x[n] * 8[n — nd] = x[n — nd]. Therefore,

H(eia’) = e_j“""ti and Y(ej“’) = e‘ja’"dX(ej“’).

A formal derivation of the convolution theorem is easily achieved by applying the

definition of the Fourier transform to y[n] as expressed in Eq. (2.168). This theorem can

also be interpreted as a direct consequence of the eigenfunction property of complex

exponentials for linear time-invariant systems. Recall that H(ef‘9) is the frequency re-
sponse of the linear time-invariant system whose impulse response is h[n]. Recall also
that if

x[n] = eja’",

then

y[n] = H(eja’)ej‘"".

That is, complex exponentials are eigenfunctions of linear time-invariant systems, where

H(ejw), the Fourier transform of h[n], is the eigenvalue. From the definition of integra-

tion, the Fourier transform synthesis equation corresponds to the representation of a

sequence x[n] as a superposition of complex exponentials of infinitesimal size; that is,

1 " - . - . 1 . ,

x[”] = 2—” X(ej‘”)e’“’”da) = A1330 E Z X(eJkAw)e]kAamAw.
_,, k

By the eigenfunction property of linear systems and by the principle of superposition,

the corresponding output will be

1 . . . 1 7' , . .
_ - jkAa) JkAw jkAam = 1a) fa) jamy[n] _ A1330 2—” Ek H(e )X(e )e Aw —2n In H(e )X(e )e dc).

Thus, we conclude that

Y(ef“’) = H(eja’)X(ef“’),

as in Eq. (2.169).

2.9.7 The Modulatidn or Windowing Theorem

If

f -w
x[n] <—+ X(e’ )

and

_ w[n] L W(ej“’),
and if

y[n] = x[n]w[n], _ (2.171)
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then
31'

Y(e1'w) = i X(ef9)w(e1<w-'9>)de.
271' _,,

Equation (2.172) is a periodic convolution, i.e., a convolution of two periodic functions

with the limits of integration extending over only one period. The duality inherent in

most Fourier transform theorems is evident when we compare the convolution and
modulation theorems. However, in contrast to the continuous-time case, where this du-

ality is complete, in the discrete-time case fundamental differences arise because the

Fourier transform is a sum while the inverse transform is an integral with a periodic
integrand. Although for continuous time we can state that convolution in the time do-

main is represented by multiplication in the frequency domain and vice versa, in discrete
time this statement must be modified somewhat. Specifically, discrete-time convolution

of sequences (the convolution sum) is equivalent to multiplication of corresponding

periodic Fourier transforms, and multiplication of sequences is equivalent to periodic

convolution of corresponding Fourier transforms.

The theorems of this section and a number of fundamental Fourier transform pairs

are summarized in Tables 2.2 and 2.3, respectively. One of the ways that knowledge of

(2.172)

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence Fourier Transform

1. 6[n] 1

2. 6[n — no] e‘J-“m0

3. 1 (—00 < n < oo) 2 2jr6(w+ zinc)
k=—OO

1

4. a“u[n] (Ial < 1) 1 _ae-iw

 

 

DC

1

5. u[n] 1 _ rm + Z 118(w + 221k)=-oo

1fl _..._—

6- (n+1)a “W (W < 1) (1 _ae_jw)2

r" sinwp(n + 1) 1

7' sinwp “[n] (M < 1) 1 — 2r cos cope—1"” + rze‘iz‘”

sinwcn in, _ 1. |w| < (00,8‘ n'n X“ )_{0. wc<|wlsrr
_ 1. 0 5 n 5 M Sin[w(M+ 1)/2] 4an9' “"1 “ {0, otherwise sin(w/2) e

w

10. em" 2 2mm» — (00 + zzk)
k=—OO

w

11. cos(won + db) 2 [nej‘l’fiw — coo + 211k)+ ne‘j¢8(w + we + 2nk)]‘
k=—OO
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Fourier transform theorems and properties is useful is in determining Fourier transforms

or inverse transforms. Often, by using the theorems and known transform pairs, it is

possible to represent a sequence in terms of operations on other sequences for which

the transform is known, thereby simplifying an otherwise difficult or tedious problem.

Examples 2.26—2.30 illustrate this approach.

Example 2.26 "Determining a Fourier Transform
using Tables 2.2 and 2.3

Suppose we wish to find the Fourier transform of the sequence x[n] = a"u[n — 5]. This

transform can be computed by exploiting Theorems 1 and 2 of Table 2.2 and transform

pair 4 of Table 2.3. Let xi [n] = a”u[n]. We start with this signal because it is the most
similar signal to x[n] in Table 2.3. The table states that

1

1 — are—1"”.
X1(eiw) = (2.173)

‘To obtain x[n] from x1 [n], we first delay x1 [n] by 5 samples, i. e., x2[n] = x1 [n — 5]. Theo—

rem 2 of Table 2.2 gives the correspOnding frequency-domain relationship, X2(e}"") =
e‘iSwX1(ej“’), so A

e— 1'50)
X2(efw) = , (2.174)

1 — ae—jw'

In order to get from x2[n] to the desired x[n], We need only multiply by the constant

(15, Le, x[n] = an'2[n]. The linearity property of the Fourier transform, Theorem 1 of
Table 2.2, then yields the desired Fourier transform, ' '

‘w (156—ij
X(e} )2 m.

Example 2.27 Determining an Inverse Fourier
Transform Using Tables 2.2 and 2.3

Suppose that

X(efw) = ' 1 (2.176)
(1 — ae—f‘”)(1 — be—f'w)'

Direct substitution of X(eja’) into Eq. (2.133) leads to an integral that is difficult to

evaluate by ordinary real integration techniques. However, using the technique of

partial fraction expansion, which-we discuss in detail in Chapter 3, we can expand

X(317”) into the form 7

a/(a —b) b/(a —b)

1— arm — 1 — be—l'w'

From Theorem 1 of Table 2.2 and transform pair 4 of Table 2.3, it follows that ‘

'y X(ej‘") = (2.177)

  

x[n] = (a ib) a"u[n] — (a i b) b"u[n]. (2.178)
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Example 2.28 Determining the Impulse Response
from the Frequency Response

The frequency response of a highpass filter with delay is

. -J'wnd
[a1 _ e a we < la" < 77,H(e ) _ {0’ M < (06, (2.179)

where a period of 2:1 is understood. This frequency response can be expressed as

H(ej“’) = e'ja’"d(1 — H1p(ej‘”)) = e‘j‘m"d — e‘j‘md H1p(ej“’),

where Hip(ej‘”) is periodic with period 2n and

- 1 lcul < a)H ejw = i (:1
1p( ) 0, we < |w| < it.

Using the result of Example 2.22 to obtain the inverse transform of H1p(ej“’), together
with properties 1 and 2 of Table 2.2, we have

h[n] = 6[n — nd] — r[n — nd]

sin wc(n —— nd)

= M" _ "d1 _ z(n — nd')

Example 2.29 Determining the Impulse Response
for a Difference Equation

In this example we determine the impulse response for a stable linear time-invariant

system for which the input x[n] and output y[n] satisfy the linear constant-coefficient

difference equation

y[n] — %y[n — 1] = x[n] — %x[n — 1]. (2.180)

In Chapter 3 we will see that the z-transform is more useful than the Fourier transform

for dealing with difference equations. However, this example offers a hint of the utility

of transform methods in the analysis of linear systems. To find the impulse response,

we set x[n] = 6[n]; with h[n] denoting the impulse response, Eq. (2.180) becomes

h[n] — %h[n — 1] = ¢s[n] — %6[n — 1]. (2181)

Applying the Fourier transform to both sides of Eq. (2.181) and using properties 1 and

2 of Table 2.2, we obtain

H(ejw) — trimmer) = 1 — te‘jw» 0-182)

or 1 .. 1 — -e"""

H(elw) = (2.183)' 2

To obtain h[n], we want to determine the inverse Fourier transform of H(ef“’). Toward
this end, we rewrite Eq. (2.183) as

. 1 %e‘“’
H(e"“) = ————-—_— — ——_. (2.184)

1 — %e—1w 1 — %e—J“’
From transform 4 of Table 2.3,

Jr 1

(%)n “[n] H
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Combining this transform with property 3 of Table 2.2, we obtain

1 —fa)_1 j: —e

— (3(1)” u[n — 1] (—> 1:?5. (2.185)
Based on property 1 of Table 2.2, then,

h[n] = G)" u[n] — (§)(%)"‘1 u[n — 1]. (2.186)

2.10 DISCRETE-TIME RANDOM SIGNALS

The preceding sections have focused on mathematical representations of discrete-time

signals and systems and the insights that derive from such mathematical representations.

We have seen that discrete-time signals and systems have both a time—domain and

a frequency-domain representation, each with an important place in the theory and

design of discrete-time signal-processing systems. Until now, we have assumed that the

signals are deterministic, i.e., that each value of a sequence is uniquely determined by

a mathematical expression, a table of data, or a rule of some type.

In many situations, the processes that generate signals are so complex as ’to make

precise description of a signal extremely difficult or undesirable, if not impossible. In

such cases, modeling the signal as a stochastic process is analytically useful. As an

example, we will see in Chapter 6 that many of the effects encountered in implementing

digital signal-processing algorithms with finite register length can be represented by

additive noise, Le, a stochastic sequence. Many mechanical systems generate acoustic

or vibratory signals that can be processed to diagnose potential failure; again, signals

of this type are often best modeled in terms of stochastic signals. Speech signals to

be processed for automatic recognition or bandwidth compression and music to be

processed for quality enhancement are two more of many examples.

A stochastic signal is considered to be a member of an ensemble of discrete-time

signals that is characterized by a set of probability density functions. More specifically,

for a particular signal at a particular time, the amplitude of the signal sample at that

time is assumed to have been determined by an underlying scheme of probabilities.

That is, each individual sample x[n] of a particular signal is assumed to be an outcome

of some underlying random variable X”. The entire signal is represented by a collection

of such random variables, one for each sample time, —oo < n < 0:5. This collection of

random variables is called a random process, and we assume that a particular sequence

of samples x[n] for —-oo < n < 00 has been generated by the random process that

underlies the signal. To completely describe the random process, we need to specify the
individual and joint probability distributions of all the random variables.

The key to obtaining useful results from such models of signals lies in their de-

scription in terms of averages that can be computed from assumed probability laws or

estimated from specific signals. While stochastic signals are not absolutely summable or

square summable and, consequently, do not directly have Fourier transforms, many (but

not all) of the properties of such signals can be summarized in terms of averages such as

the autocorrelation or autocovariance sequence, for which the Fourier transform often
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exists. As we will discuss in this section, the Fourier transform of the autocovariance

sequence has a useful interpretation in terms of the frequency distribution of the power

in the signal. The use of the autocovariance sequence and its transform has another

important advantage: The effect of processing stochastic signals with a discrete-time

linear system can be conveniently described in terms of the effect of the system on the

autocovariance sequence.

In the following discussion, we assume that the reader is familiar with the basic

concepts of stochastic processes, such as averages, correlation and covariance functions,

and the power spectrum. A brief review and summary of notation and concepts is

provided in Appendix A. A more detailed presentation of the theory of random signals

can be found in a variety of excellent texts, such as Davenport (1970) and Papoulis

(1984).

Our primary objective in this section is to present a specific set of results that will

be useful in subsequent chapters. Therefore, we focus on wide-sense stationary random

signals and their representation in the context of processing with linear time-invariant

systems. Although, for simplicity, we assume that x[n] and h[n] are real valued, the

results can be generalized to the complex case.

Consider a stable linear time-invariant system with real impulse response h[n].

Let x[n] be a real-valued sequence that is a sample sequence of a wide-sense stationary

discrete-time random process. Then the output of the linear system is also a sample

function of a random process related to the input process by the linear transformation

y[n] = Z h[n — k]x[k] = Z h[k]x[n — k].
k=—oo k=—oo

As we have shown, since the system is stable, y[n] will be bounded if x[n] is bounded. We

will see shortly that if the input is stationary? then so is the output. The input signal may

be characterized by its mean mx and its autocorrelation function ¢xx[m], or we may also

have additional information about first- or even second-order probability distributions.

In characterizing the output random process y[n] we desire similar information. For

many applications, it is sufficient to characterize both the input and output in terms of

simple averages, such as the mean, variance, and autocorrelation. Therefore, we will

derive input—output relationships for these quantities.

The means of the input and output processes are, respectively,

mxn = £{xn}, my” = 8{y,,}, (2.187)

where E { -} denotes the expected value. In most of our discussion, it will not be necessary

to carefully distinguish between the random variables x,, and y" and their specific values

x[n] and y[n]. This will simplify the mathematical notation significantly. For example,

Eqs. (2.187) will alternatively be written

mxln] = Etxlnll. min] = Elylnll- (2.188)

If x[n] is stationary, then mx [n] is independent of n and will be written as mx, with similar

notation for my[n] if y[n] is stationary.

5In the remainder of the text, we will use the term stationary to mean “wide-sense stationary.”
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The mean of the output process is

myln] = 8{y[n]} = Z h[k]8{x[n — k1}.
k=—oo

where we have used the fact that the expected value of a sum is the sum of the expected

values. Since the input is stationary, mJr [n — k] = m1, and consequently,

my[n] =m.r Z h[k]. (2.189)

From Eq. (2.189), we see that the mean of the output is also constant. An equivalent

expression to Eq. (2.189) in terms of the frequency response is

my = H(ej0)mx. (2.190)

Assuming temporarily that the output is nonstationary, the autocorrelation func-

tion of the output process for a real input is

¢yy[n, n + m] = 8{y[n]y[n + ml}

= 8{ i f: h[k]h[r]x[n — k]x[n + m — r]}k=—oo r=-—oo

= 2 km 2 hlr]8{x[n — mm + m — r]}.
k=—oo r-.=—oo

Since x[n] is assumed to be stationary, 8{x[n — k]x[n + m — r]} depends only on the time

difference m + k — r. Therefore,

(Mn, n + m] = Z h[r] Z h[r]¢xx[m + k — r] = ¢yy[m]. (2.191)
=—oo f==—OO

That is, the output autocorrelation sequence also depends onlyon the time difference

m. Thus, for a linear time-invariant system having a wide-sense stationary input, the

output is also wide-sense stationary.

By making the substitution 2 = r — k, we can express Eq. (2.191) as

lbw/[m] = Z: ¢xxlm — E] Z h[k]h[€ + k]

‘11:,” "=‘°° (2.192)

= Z ¢xxlm _ €]Chh
£=—OO

where we have defined ‘

mm] = Z h[k]h[€ + k]. (2.193)
k=—OO

A sequence of the form of Cth] is called a deterministic autocorrelation sequence

or, simply, the autocorrelation sequence ofh[n]. It should be emphasized that chh[£] is

the autocorrelation of an aperiodic—1e, finite-energy—sequence and should not be

confused with the autocorrelation of an infinite-energy random sequence. Indeed, it
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can be seen that chhm is simply the discrete convolution of h[n] with h[—n]. Equa-

tion (2.192), then, can be interpreted to mean that the autocorrelation of the output of

a linear system is the convolution of the autocorrelation of the input with the aperiodic

autocorrelation of the system impulse response.

Equation (2.192) suggests that Fourier transforms may be useful in characteriz-

ing the response of a linear time-invariant system to a stochastic input. Assume, for

convenience, that mI = 0; _i.e., the autocorrelationand autocovariance sequences are
identical. Then, with <Dn(e1“’), ¢yy(e1‘”), and Chh(e1“’) denoting the Fourier transforms

of d>xx[m], ¢yy[m], and chhfl], respectively, from Eq. (2.192),

¢,,(eiw) = Chh(efw)q>,,(efw). (2.194)

Also, from Eq. (2.193),

one”) = Heisman

= IH(e""’)|2.
so

we”) = |H(ej‘”)|2¢xx(ei”’)- (2.195)

Equation (2.195) provides the motivation for the term power density spectrum. Specifi-

cally,

1 T' -

5{y2["]} = ¢yy[0] = 5; [I (“Key”) dw (2.196)
= total average power in output.

Substituting Eq. (2.195) into Eq. (2.196), we have

8{y2[n]} = m0] = 2% [Hewwcbxaefodm (2.197)
Suppose that H(ej“’) is an ideal bandpass filter, as shown in Figure 2.18(c). We recall

that (an [m] is an even sequence, so

d>n(ej‘”) = (bn(e_j‘”).

Likewise, |H(ej‘")|2 is an even function of a). Therefore, we can write

¢yy[0] = average power in output

(Us , —aJa I (2.198)

1 / ¢xx(ej‘”) (160 + ¢xx(e}w) do).21: a,” 271' (Db

Thus, the area under <Dxx(ej‘”) for a)“ 5 [col 5 0);, can be taken to represent the mean-
square value of the input in that frequency band. We observe that the output power

must remain nonnegative, so

lim ¢yy[0] Z 0.
((1);, —wa )—->0

This result, together with Eq. (2.198) and the fact that the band (0,, 5 a) 5 0):, can be

arbitrarily small, implies that ‘

¢xx(ej“) 3 0 for all a). (2.199)

Hence, we note that the power density function of a real signal is real, even, and non-

negative.
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Example 2.30 White Noise

The concept of white noiSe is exceedingly useful in quantization error analysis. A

white-noise signal is a signal for which ¢xx[m] = 036 [m]. We assume in this example
that the signal has zero mean. The power spectrum of a white noise signal is a constant,
i.e.,

<1>xx(ej“’) = a; for all to.

The average power of a white-noise signal is therefore

1 n ' 1 n 2 2
¢xx[0] = —— (bxx(e}“’)dw = — ax do) = ax.

271; _n 271’ _n

The concept of white noise is also useful in the representation of random signals

whose power spectra are not constant with frequency. For example, a random signal

y[n] with pOWer spectrum ¢yy(ef“’) can be assumed to be the output of a linear time-
invariant system with a white-noise input. That is, we use Eq. (2.195) to define a system

with frequency response H(ef“’) to satisfy the equation

days”) = IH(e1'"’)I203,

where 03 is the average power of the assumed white-noise input signal. We adjust
the average power of this input signal to give the correct average power for y[n]. For

example, suppose that h[n] = a"u[n]. Then

and we can represent all random signals whose power spectra are of the form

2 2
2 0xU =—*—“““'—"'—'—'—.

x 1+a2—2acosw

. 1

¢yy(e1w) = I—l- atria)  

Another important result concerns the cross-correlation between the input and

output of a linear time-invariant system:

¢xy[m] = £{x["]}’[" + ml}

8 {x[n] h[k]x[n + m — k]} (2.200)k=—oo

Z h[k]¢xx [m — k].
k=—oo

In this case, we note that the cross-correlation between input and output is the convo—

lution of the impulse response with the input autocorrelation sequence.

The Fourier transform of Eq. (2.200) is

one”) = H(ej“’)¢xx(ej“’). (2.201)

This result has a useful application when the input is white noise, i.e., when <15” [m] =

a}8[m]. Substituting into Eq. (2.198), we note that

¢xy[m] = 03h[ml- (2.202)
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That is, for a zero-mean white-noise input, the cross—correlation between input and

output of a linear system is proportional to the impulse response of the system. Similarly,

the power spectrum of a white—noise input is

CIJxx(ej“’) = of, —J'[ < a) 5 Jr. (2.203)

Thus, from Eq. (2.201),

qnxy(eiw) = a3 H(ef‘°). (2.204)

In other words, the cross power spectrum is in this case proportional to the frequency

response of the system. Equations (2.202) and (2.204) may serve as the basis for esti-

mating the impulse response or frequency response of a linear time-invariant system if

it is possible to observe the output of the system in response to a white—noise input.

2. I ‘I SUMMARY

In this chapter, we have considered a number of basic definitions relating to discrete-

time signals and systems. We considered the definition of a set of basic sequences, the

definition and representation of linear time-invariant systems in terms of the convolu-

tion sum, and some implications of stability and causality. The class of systems for which

the input and output satisfy a linear constant—coefficient difference equation with initial

rest conditions was shown to be an important subclass of linear time-invariant systems.

The recursive solution of such difference equations was discussed and the classes of FIR

and HR systems defined.

An important means for the analysis and representation of linear time-invariant

systems lies in their frequency-domain representation. The response of a system to a

complex exponential input was considered, leading to the definition of the frequency

response. The relation between impulse response and frequency response was then

interpreted as a Fourier transform pair.

We called attention to many properties of Fourier transform representations and

discussed a variety of useful Fourier transform pairs. Tables 2.1 and 2.2 summarize the

properties and theorems, and Table 2.3 contains some useful Fourier transform pairs.

The chapter concludes with an introduction to discrete-time random signals. These

basic ideas and results will be deveIOped further and used in later chapters.

Although the material in this chapter was presented without direct reference to

continuous-time signals, an important class of discrete-time signal-processing problems
arises from sampling such signals. In Chapter 4 we consider the relationship between

continuous-time signals and sequences obtained by periodic sampling.

PROBLEMS ‘

Basic Problems with Answers

2.L For each of the following systems, determine whether the system is (1) stable, (2) causal,

(3) linear, (4) time invariant, and (5) memoryless:
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(m

(b)

(fl

(d)

(a

(0

(9

(h)

2.2. (a)

(b)

2.3I

Problems 71

T(x[n]) = g[n]x[n] with g[n] given

Hflfl)=2flqmflfi

Hfiflh= immuu
T(x[n]) = xln — no]

T(x[n]) = 3'4"]

T(x[n]) = ax[n] + b
TUMD=XFM

T(x[n]) = x[n] + 3u[n + 1]

The impulse response h[n] of a linear time-invariant system is known to be zero, except

in the interval N0 5 n 5 N1. The input x[n] is known to be zero, except in the interval

N2 5 n g N3. As a result, the output is constrained to be zero, except in some interval

N4 5 n 5 N5. Determine N4 and N5 in terms of N0, N1, N2, and N3.

If x[n] is zero, except for Nconsecutive points, and h[n] is zero, except for M consecutive

points, what is the maximum number of consecutive points for which y[n] can be
nonzero?

By direct evaluation of the convolution sum, determine the step reSponse of a linear time-

invariant system whose impulse response is

2.4.

h[n] = a_"u[—n], 0 < a < 1.

Consider the linear constant-coefficient difference equation

y[n] —— %y[n — 1] + %y[n —2] = 2x[n — 1].

Determine y[n] for n a 0 when x[n] = 6[n] and y[n] = 0, n < 0.

2.5.

(a)

(b)

(c)

2.6. (a)

(b)

2.7.

A causal linear time-invariant system is described by the difference equation

y[n] — 5y[n — 1] + 6y[n — 2] = 2x[n — 1].

Determine the homogeneous response of the system, i.e., the possible outputs if x[n] =
0 for all n.

Determine the impulse response of the system.

Determine the step response of the system.

Find the frequency response H(ej“’) of the linear time—invariant system whose input
and output satisfy the difference equation

y[n] — %y[n — 1]: x[n] + 2x[n — 1] + x[n — 2].

Write a difference equation that characterizes a system whose frequency response is

1 __ le‘iw- +e‘j3‘”
me”) =

1 + ie‘f‘” + 36—1210

Determine whether each of the following signals is periodic. If the signal is periodic, state

its period.

(a)

(b)

(c)

(d)

2.8.

x[n] = ej(77n/6)
x[n] = ej(3’rn/4)
x[n] = [sin(rm/5)]/(Jrn)

x[n] = ej’mNi

An LTI system has impulse response h[n] = 5(—1/2)"u[n]. Use the Fourier transform to

find the output of this system when the input is x[n] = (1/3)"u[n].

2.9. Consider the difference equation

nn—gnn—u+§fln—a=§dn—u
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2-10.

2.11.

2.12.

2.13.

2.14.
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(a) What are the impulse response, frequency response, and step response for the causal

LTI system satisfying this difference equation.

(b) What is the general form of the homogeneous solution of the difference equation?

(c) Consider a different system satisfying the difference equation that is neither causal nor

LTI, but that has y[0] = y[l] = 1. Find the response of this system to x[n] = 8[n].

Determine the output of a linear time-invariant system if the impulse response h[n] and

the input x[n] are as follows:

(a) x[n] = u[n] and h[n] = a”u[—n — 1], with a > 1.

(b) x[n] = u[n — 4] and h[n] = 2"u[—n — 1].

(c) x[n] = u[n] and h[n] = (0.5)2”u[—n].

(d) h[n] = 2"u[—n — 1] and x[n] = u[n] — u[n - 10]

Use your knowledge of linearity and time invariance to minimize‘the work in Parts (b)-(d).

Consider an LTI system with frequency response

1 _ e—jlw
1'01 =_

H(e ) 1+%e—j4‘”’
—Jr<w_<_7r.

Determine the output y[n] for all n if the input x[n] for all n is
7m

x[n] = sin(«Z-).
Consider a system with input x[n] and output y[n] that satisfy the difference equation

WH=WM~H+flfl

The system is causal and satisfies initial-rest conditions; i.e., if x[n] = 0 for n < no, then

y[n] = 0 for n < no.

(a) If x[n] = 6[n], determine y[n] for all n.

(b) Is the system linear? Justify your answer.

(c) Is the system time invariant? Justify your answer.

Indicate which of the following diSCrete-time signals are eigenfunctions of stable, linear

time-invariant discrete-time systems:

(a) eJ'ZJm/S

(b) 3"

(c) 2"u[—n — 1]

(d) COS(won)

(6) (1/4)"

(1’) (1/4)”u[n] + 4"u[—n — 1]

A single input—output relationship is given for each of the following three systems:

(a) System A: x[n] = (1/3)", y[n] = 2(1/3)”. '

(b) System B: x[n] = (1/2)", y[n] = (1/4)".

(c) System C: x[n] = (2/3)"u[n], y[n] = 4(2/3)"u[n] — 3(1/2)”u[n].

Based on this information, pick the strongest possible conclusion that you can make about

each system from the following list of statements:

(i) The system cannot possibly be LTI.

(ii) The system must be LTI.

(iii) The system can be LTI, and there is only one LTI system that satisfies this input—output
constraint.

(iv) The system can be LTI, but cannot be uniquely determined from the information in

this input—output constraint.

If you chose option (iii) from this list, specify either the impulse response h[n] or the

frequency response H(ej“’) for the LTI system.
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2.15.

2.16.

2.17.

2.18.

2.19.

2 Problems 73

Consider the system illustrated in Figure P2.15-1. The ouput of an LTI system with an

impulse response h[n] = G)" u[n + 10] is multiplied by a unit step function w[n] to yield
the output of the overall system. Answer each of the following questions, and briefly justify

your answers:

  I yln]
L ___________________ __J Figure P2.15-1

x [n]

(a) Is the overall system LTI?

(b) Is the overall system causal?

(c) Is the overall system stable in the BIBO sense?

Consider the following difference equation:

yrnl — iyrn — 1]- éyln — 2]: Mn]-
(:1) Determine the general form of the homogeneous solution to this difference equation.

(b) Both a causal and an anticausal LTI system are characterized by this difference equa-

tion. Find the impulse responses of the two systems. ,

(c) Show that the causal LTI system is stable and the anticausal LTI system is unstable.

(d) Find a particular solution to the difference equation when x[n] = (1 /2)”u[n].

(a) Determine the Fourier transform of the sequence

r [n] = {(1):
(b) Consider the sequence

1 27m

w[n]: §]1—cos(—AT)], OsngM,
0, otherwise

0 5 n 5 M,
otherwise.

Sketch w[n] and express W(e1'“’), the Fourier transform of w[n], in terms of R (elm), the

Fourier transform of r[n]. (Hint: First express w[n] in terms of r[n] and the complex

exponentials elem/M) and (mm/m.)
(0) Sketch the magnitude of R(e}"") and W033”) for the case when M = 4.

For each of the following impulse responses of LTI systems, indicate whether or not the

system is causal:

(a) hln] = (1/2)"u[n]

(b) h[n] = (1/2)"u[n — 1]

(C) hln] = (1/2)'"'

(d) h[n] = u[n + 2] — u[n — 2]

(e) h[n] = (1/3)”u[n] + 3"u[-n —— 1]

For each of the following impulse responses of LTI systems, indicate whether or not the

system is stable:

(a) h[n] = 4”u[n]

(b) h[n] = w[n] — u[n — 10]

(c) h[n] = 3"u[—n — 1]
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(d) h[n] = sin(:m/3)u[n]

(e) h[n] = (3/4)“l cos(:m/4 + 21/4)
(0 Mn] = 2u[n + 5]- u[n] — u[n — 51

2.20. Consider the difference equation representing a causal LTI system

ylnl + (1/a)y[n — 1] = x[n — 1].

(a) Find the impulse response of the system, h[n], as a function of the constant a.

(b) For what range of values of a will the system be stable?

Basic Problems

2.21. Consider an arbitrary linear system with input x[n] and output y[n]. Show that if x[n] = 0

for all n, then y[n] must also be zero for all n.

2.22. For each of the pairs of sequences in Figure P2.22-1, use discrete convolution to find the

response to the input x[n] of the linear time-invariant system with impulse response h[n].

x [n] 2 h [n]

—o—o—Il—o—«~ —v—-I——'1—«—

 
4012345 in 012345678910121416 n

(c)

 
(d)

Figure P2.22-1

2.23. Using the definition of linearity (Eqs. (2.26a)—(2.26b)), show that the ideal delay system

(Example 2.3) and the moving-average system (Example 2.4) are both linear systems.
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2.24. The impulse response of a linear time—invariant system is shown in Figure P2.24-1. Deter-

mine and carefully sketch the response of this system to the input x[n] = u[n — 4].

h [n]

 
Figure P2.24—1

2.25. A linear time-invariant system has impulse responSe h[n] = u[n]. Determine the response

of this system to the input x[n] shown in Figure P2.25-1 and described as

0, n < 0,

a". 0 5 n 5 N1,

x[n] = 0, N1 < n <7N2,
a"'N2. N2 5 n SKN2 + N1.

0, N2 + N1 < n,

whereO < a < 1.

 
0 N1 N2 N2+N1 " Figure P2.25-1

2.26. Which of the following discrete-time signals could be eigenfunctions of any stable LTI

system?

0:) mm

an eijn

«9 ejwn + eijn

(d) 5"

(e) 5" -ei2w"

2.27. Three systems A, B, and C have the inputs and outputs indicated in Figure P2.27-1. Deter-

mine whether each system could be LTI. If your answer is yes, specify whether there could

be more than one LTI system with the given input—output pair. Explain your answer.

1 " 1 "

(2) (4)

ej"’3u[n] System B 2e1“’3u[n]

gin/3 System C zef'i/S

Ht
Figure P2.27—1
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2.28. Determine which of the following signals is periodic. If a signal is periodic, determine its

period.

(a) x[n] = ef(2nn/5)

(b) x[n] = sin(:rn/19)

(c) x[n] = mi“

((1) x[n] = ej"

2.29. A discrete-time signal x[n] is shown in Figure P2.29-1.

l . x[n]
2

-2-1 0 1 2 3 4 Figure P2.29-1

Sketch and label carefully each of the following signals:

(a) xln - 2l

(b) x[4 -— n]

(c) x[2n]

(d) x[n]u[2 — n]

(e) x[n — 1]¢5‘[n -- 3]

2.30. For each of the following systems, determine whether the system is (1) stable, (2) causal,

(3) linear, and (4) time invariant.

(a) T(x[n]) = (cos :rn)x[n]

(b) T(x[n]) = xlnzl
(c) T(x[n1) = xlnl 232:. an — k]
(a) T(x[n]) = 22:..-1xtk]

2.31. Consider the difference equation

y[n]+T15-y[n —11—§y[n — 21= x[n]-

(:1) Determine the general form of the homogeneous solution to this equation.

(b) Both a causal and an anticausal LTI system are characterized by the given difference

equation. Find the impulse reSponses of the two systems.

(c) Show that the causal LTI system is stable and the anticausal LTI system is unstable.

((1) Find a particular solution to the difference equation when x[n] = (3/5)” u[n].

2.32. Consider an LTI system with frequency response

1+ e—fl‘" + 4e'1'4‘”
H ef‘” = (Kw—71') . ), —Jr<a)s:r.

Determine the output y[n] for all n if the input for all n is

x[n] = cos.
2.33. Consider an LTI system with |H(ej“’)| = 1, and let arg[H(ej“’)] be as shown in Fig-

ure P2.33-1. If the input is

x[n] — cos 3—”n + E
‘ 2 4 ’

determine the output y[n].
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arg[1L1(€j“’)]

—————— — — 57/6 
 

  

  
Slope = — 1/3

Slope = — 1/3

‘577/6 ———— — ‘ Figure P2.33-1

2.34. The input—output pair shown in Figure P2.34-1 is given for a stable LTI system.

2 xolnl 2 Yo[”]

I I l I 1 2: i
—101 n  

Figure P2.34—1

(:1) Determine the response to the input x1 [n] in Figure P2.34-2.

 
Figure P2.34-2

(b) Determine the impulse response of the system.

Advanced Problem:

2.35. The system Tin Figure P2.35-1 is known to be time invariant. When the inputs to the system

are x1[n], x; [n], and x3[n], the responses of the system are y1 [n], y2[n], and y3[n], as shown.
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‘ If2 T 2

+._Ii.+
0 1 n 0 1 2 n

 
4

x2["] y'zln] '

12 " -
0 1 n 0 1 2 3 n

i [31 I2
1

0 1 2 3 4 n —2 —1 0 n

Figure P2.35-1

(2) Determine whether the system T could be linear.

(b) If the input x[n] to the system T is 8[n], what is the system response y[n]?

(c) What are all possible inputs x[n] for which the response of the system T can be deter-

mined from the given information alone? '

2.36. The system L in Figure P2.36-1 is known to be linear. Shown are three output signals y1 [n],

y2[n], and y3[n] in response to the input signals x1 [n], x2[n], and x3 [n], respectively.

 
 

Figure P2.36-1



Chap.

2.37.

2.38.

2.39.

2 Problems 79

(a) Determine whether the system L could be time invariant.

(b) If the input x[n] to the system L is 6[n], what is the system response y[n]?

Consider a discrete-time linear time-invariant system with impulse response h[n]. If the
input x[n] is a periodic sequence with period N (i.e., if x[n] = x[n + ND, show that the

output y[n] is also a periodic sequence with period N.

In Section 2.5, we stated that the solution to the homogeneous difference equation

N

Zakynn — k] = 0 (P2.38-1)
k=0

is of the form

N

yhln] = Z Amz; (P2.38—2)
m: 1

with the Am’s arbitrary and the zm’s the N roots of the polynomial

N

2am" = 0; (P2.38—3)
k=0

i.e.,

N N I

Z aszk = H(1 —— zmz_1). (P2.38-4)
k=O m=1

(a) Determine the general form of the homogeneous solution to the difference equation

y[n] — %y[n — 1] + §y[n — 2] = 2x[n — 1]. (P2.38—5)

(b) Determine the‘coefficients Am in the homogeneous solution if y[—~1] = 1 and y[O] = 0.

l (c) Now consider the difference equation

yln] - y[n — 1] + iyln - 2] = 2yln - 1]-

If the homogeneous solution contains only terms of the form of Eq. (P2.38-2), show

that the initial conditions y[—1] = 1 and y[O] = 0 cannot be satisfied.

If Eq. (P2.38—3) has two roots that are identical, then, in place of Eq. (P2.38—2), yh [n]
will take the form

(P2.38—6)

(d)

N—l

yh[n] = Z Amzi; + nBlz’l',
m=1

(P2.38-7)

where we have assumed that the double root is z1. Using Eq. (P2.38-7), determine

the general fOrm of yh [n] for Eq. (P2.38-6). Verify explicitly that your answer satisfies

Eq. (P2.38-6) with x[n] = 0.

Determine the coefficients A1 and 31 in the homogeneous solution obtained in Part (d)

ify[—1] = 1 and y[O] = 0.

Consider a system with input x[n] and output y[n]. The input—output relation for the system

is defined by the following two properties:

1- yln] — ayln — 1] = x[n],

2. y[O] = 1.

(a) Determine whether the system is time invariant.

(b) Determine whether the system is linear.

(e)
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(c) Assume that the difference equation (property 1) remains the same, but the value y[0]

is specified to be zero. Does this change your answer to either Part (a) or Part (b)?

2.40. Consider the linear time-invariant system with impulse response

h[n] = (%)nu[n], wherej =
Determine the steady-state response, i.e., the response for large n, to the excitation

x[n] = cos(7m)u[n].

2.41. A linear time-invariant system has frequency response

. 2:1 3—1w3 __ _e , le < 16 (2) ,
2:: 3

0, E 5 Mi SIT-
The input to the system is a periodic unit-impulse train with period N = 16; Le,

H(ef‘”) =

Find the output of the system.

2.42. Consider the system in Figure P2.42-1.

 
Figure P2.42-1

(a) Find the impulse response h[n] of the overall system.

(b) Find the frequency response of the overall system.

(c) Specify a difference equation that relates the output y[n] to the input x[n].

(d) Is this system causal? Under what condition would the system be stable?

2.43. For X(em) = 1/(1 — ae‘j‘”), with —1 < a < 0, determine and sketch the following as a
function of w:

(a) Re{X(ej“’)}

(b) Jmmeiw»
(c) !X(e"‘f)|
(d) <IX(eJ“’)

2.44. Let X(cf0’) denote the Fourier transform of the signal x[n] shown in Figure P2.44—1. Perform
the following calculations without explicitly evaluating X(e1"’):
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23456

Figure P2.44-1

(a) Evaluate X(ej“’)|a,=0.
(b) Evaluate X(ejw)|w=,,.
(c) Find <1X(ej“’).

(d) Evaluate ff,r X(efw)dw.
(e) Determine and sketch the signal whose Fourier transform is X(e‘j0).
(1') Determine and sketch the signal whose Fourier transform is Re{X(ej"’)}.

2.45. For the system in Figure P2.45-1, determine the output y[n] when the input x[n] is 5[n] and
H(e"") is an ideal lowpass filter as indicated, i.e.,

- 1, le < 7r/2,1w _

H(e )_ {0, 7r/2 <|w15 7t.

(-1)"W[n]

  y [n]

 
Figure P2.45-1

2.46. A sequence has the discrete-time Fourier transform

1 — a2

X(ejw) = (1 — ae'j‘”)(1 — aeiw)’ |a| < 1.

(a) Find the sequence x[n].

(b) Calculate f; X(eja’) cos(w)dw/27r.

2.47. A linear time-invariant system is described by the input—output relation

y[n] = x[n] + 2x[n — 1] + x[n — 2].

(a) Determine h[n], the impulse response of the system.

(b) Is this a stable system?

(c) Determine H(ej”’), the frequency response of the system. Use trigonometric identities
to obtain a simple expression for H(ej‘9).
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(d) Plot the magnitude and phase of the frequency response. .
(e) Now consider a new system whose frequency response is H1(ej“’) = H(e1(“’+”)). De-

termine I11 [n], the impulse response of the new system.

Let the real discrete-time signal x[n] with Fourier transform X(ejm) be the input to a system
with the output defined by

y[n] = {

(a) Sketch the discrete—time signal s[n] = 1 + cos(:m) and its (generalized) Fourier trans-

form S(ej“’).

(b) Express Y(ej‘”), the Fourier transform of the output, as a function of X(ei“’) and S(ej‘”).

(c) You would like to approximate x[n] by the interpolated signal w[n] = y[n] +

(1 /2)(y[n + 1] + y[n — 1]). Determine the Fourier transform W(ej“’) as a function
of Y(ej‘”).

(d) Sketch X(ei“’), Y(ei“’), and W(ej‘”) for the case when x[n] = sin(rm/a)/(Jrn/a) anda >

1. Under what conditions is the proposed interpolated signal w [n] a good approximation

for the original x[n].

if n is even,

otherwise.
x[n],

0.

Consider a discrete-time LTI system with frequency response H(ei“’) and corresponding

impulse response h[n].

(a) We are first given the following three clues about the system:

(i) The system is causal. '

(ii) H(ei‘”) = H*(e‘j‘“).
(iii) The DTFT of the sequence h[n + 1] is real.

Using these three clues, show that the system has an impulse response of finite duration.

(b) In addition to the preceding three clues, we are now given two more clues:

(iv) % f, H(ej“’)dw = 2.
(v) H(ei”) = 0.

Is there enough information to identify the system uniquely? If so, determine the

impulse response h[n]. If not, specify as much as you can about the sequence h[n].

Consider the three sequences

v[n] = u[n] — u[n — 6],

w[n] = 8[n] + 28[n — 2] + 8[n — 4],

GM] = vln] * WM]-

(9) Find and sketch the sequence q[n].

(b) Find and sketch the sequence r[n] such that r[n] * v[n] =

(c) Is q[—n] = v[—n] * w[—n]? Justify your answer.

A linear time-invariant system has impulse response h[n] = a"u[n].

(:1) Determine y1[n], the response of the system to the input x] [n] = ein)".
(b) Use the result of Part (a) to help to determine y2[n], the response of the system to the

input x2[n] = cos(7rn/2).

(c) Determine y;; [n], the response of the system to the input x3[n] = ei(”/2)”u[n].

((1) Compare y3[n] with y1[n] for large n.
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The frequency response of an VLTI system is

H(ej“’) = e‘jw/4,

Determine the output of the system, y[n], when the input .is x[n] = cos(57m/2). Express

your answer in as simple a form as you can.

—7r<w5:rr.

Consider the cascade of LTI discrete-time systems shown in Figure-P2534.

xlnl #1 WW #2 y[n] Figure P2.53-1

The first system is described by the equation

H1(ejw)= { 1, lwl < 0.511,0, 0.57: 5 [ml < :1,

and the second system is described by the equation

y[n] = W[n] — w[n — 1].

The input to this system is

x[n] = cos(0.6:rm) + 36[n — 5] —+— 2.

Determine the output y[n]. With careful thought, you will be able to use the properties of

LTI systems to write down the answer by inspection.

Consider an LTI system with frequency response

H(ejw) = e—i[(w/2)+(1r/4)l, ——n < a) E 71'.

Determine y[n], the output of this system, if the input is

x[n] _ COS 151m 7:
— 4 3

For the system shown in Figure P2.55-1, System 1 is a memoryless nonlinear system. System

2 determines the value of A according to the relation
100

A = Z y[n].
"=0

LTI
S t 1 S t 2x[n] w[n] Stable y[n] A Figure P2.55-1

]Specifically, consider the class of inputs of the form x[n = cos(wn), with a) a real finite

number. Varying the value of a) at the input will change A; Le, A will be a function of a). In

general, will A be periodic in a)? Justify your answer.

 

for all n.

Consider a system S with input x[n] and output y[n] related according to the block diagram

LTI system

’1 [n]

in Figure P2.56-1.

x [n] 
e—jwon

Figure P2.56-1
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The input x[n] is multiplied by e—jfl’o", and the product is passed through a stable LTI system

with impulse response h[n].

(a) Is the system S linear? Justify your answer.

(b) Is the system S time invariant? Justify your answer.

(c) Is the system S stable? Justify your answer.

(d) Specify a system C such that the block diagram in Figure P2.56-2 represents an alterna—

tive way of expressing the input—output relationship of the system S. (Note: The system

C does not have to be an LTI system.)

Figure P2.56-2

2.57. An ideal lowpass filter with zero delay has impulse response hlp [n] and frequency response

(a) A new filter is defined by the equation h1[n] =I (—1)"h1p[n] =‘ef'”"h]p[n]. Determine
an equation for the frequency response of H1(eJ“’), and plot the equation for lwl < 71'.
What kind of filter is this?

(b) A second filter is defined by the equation h2[n] = 2h1p[n]cos(0.5nn). Determine the
equation for the frequency response H2(ej“’), and plot the equation for |w| < 11'. What
kind of filter is this?

(c) A third filter is defined by the equation

sin(0.1:rn)
halnl = M hip

Determine the equation for the frequency response H3(ef""), and plot the equation for
le < 31'. What kind of filter is this?

2.58. The LTI system

fw_ —j, O<w<rt,H“ )_{j, —7r<w<0,
is referred to as a 90° phase shifter and is used to generate what is referred to as an analytic

signal w[n] as shown in Figure P2.58-1. Specifically, the-analytic signal w[n] is a complex-
valued signal for which

Re{w[n]} = x[n],

Im{w[n]} = y[n]-

gitelwlnll

gmlwlnll 
Flgure P2.58-1

If X0217") is as shown in Figure P2.58-2, determine and sketch W(ei‘"), the Fourier transform

of the analytic signal w[n] = x[n] + jy[n].
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916 {X(ef“’) I 1 9m [X(ej"’) ] = 0

11' a) —1T 7T (0

Figure P2.58-2

2.59. The autocorrelation sequence of a signal x[n] is defined as
00

RM: 2 x*[k]x[n+k].
k=-OO

(a) Show that for an appropriate choice of the signal g[n], R, [n] = x[n] * g[n], and identify

the proper choice for g[n].

(b) Show that the Fourier transform of Rx[n] is equal to |X(ej“’)|2.

2.60. The signals x[n] and y[n] shown in Figure P2.60-l are the input and corresponding output
for an LTI system.

yln]1 x[n]

   
‘1 —1 Figure P2.60-1

(3) Find the response of the system to the sequence x2[n] in Figure P2.60-2.

1 lenl

 
‘1 Figure P2.60-2

(b) Find the impulse response h[n] for this LTI system.

2.61. Consider a system for which the input x[n] and output y[n] satisfy the difference equation

yln] - %y[n - 1] = xln]

and for which y[—1] is constrained to be zero for every input. Determine whether or not

the system is stable. If you conclude that the system is stable, show your reasoning. If you

conclude that the system is not stable, give an example of a bounded input that results in

an unbounded output.

EXtension Problems

2.62. The causality of a system was defined in Section 2.2.4. From this definition, show that, for

a linear time-invariant system, causality implies that the impulse response h[n] is zero for

n < 0. One approach is to show that if h[n] is not zero for n < 0, then the system cannot
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be causal. Show also that if the impulse response is zero for n < 0, then the system will

necessarily be causal.

Consider a discrete-time system with input x[n] and output y[n]. When the input is

xln] = uln],

y[n] = for all n.
Determine which of the following statements is correct:

0 The system must be LTI.

o The system could be LTI.

o The system cannot be LTI.

If your answer is that the system must or could beiLTI, give a possible impulse response. If

your answer is that the system could not be LTI, explain clearly why not.

the output is

Consider an LTI system whose frequency response is

H(ejw) = e—jw/Z’

Determine whether or not the system is causal. Show your reasoning.

le < n’.

In Figure P2.65-i, two sequences x1 [n] and x2 [n] are shown. Both sequences are zero for all

n outside the regions shown. The Fourier transforms of these sequences are X1(e1“’) and

X2(e1“’), which, in general, can be expected to be complex and can be written in the form

X10311») = A1(w)ei01(w),

X2(e""") = A2(w)ej92(w),

where A1(w), 91(w), A2 (0)), and 92(w) are all real functions chosen so that both A1(a)) and

A2(a;) are nonnegative at a) = 0, but otherwise can take on both positive and negative

values. Determine appropriate choices for 91(0)) and 02((0), and sketch these two phase

functions in the range 0 < a) < 27:. '

xlini

  

 
Flgure P2.65-1
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2.66. Consider the cascade of discrete-time systems in Figure P1.66-1. The time-reversal systems

are defined by the equations f[n] = e[—n] and y[n] = g[-—n]. Assume throughout the

problem that x[n] and In [n] are real sequences.

 
 

 
 

 
 

  
 

 
 

 

Time-
reversal

system

Time-
reversal

system y in]

Figure P2.66-1

(a) Express E(ej‘°), F(ej‘”), G(ei‘”), and Y(ef"") in terms of X(ef“’) and H1(ej“’).
(b) The result from Part (a) should convince you that the overall system is LTI. Find the

frequency response H(ej“’) of the overall system.
(c) Determine an expression for the impulse resPonse h[n] of the overall system in terms

Of ’11

2.67. The overall system in the dotted box in Figure P1.67-1 can be shown to be linear and time
invariant.

(3) Determine an expression for H(el0), the frequency response of the overall system from

the input x[n] to the output y[n], in terms of H1(ejw), the frequency response of the
internal LTI system. Remember that (—1)" = cal-7’".

(b) Plot H(ei“’) for the case when the frequency response of the internal LTI system is

1, lwl < wc,

0, we < Icol 5 IT.H1(ej‘”) = {

 

  
 

Causal LTI

system 

 
y [n]

_______________________ __4 Figure P2.67-1

2.68. Figure P1.68—1 shows the input—output relationships of Systems A and B, while Fig-

ure P1.68-2 contains two possible cascade combinations of these systems

xAl" YAlnl :xA[_n]l

x3 [n] System B yBln] = xB[n + 2]- Figure P2.68-1

Figure P2.68-2
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If x1 [n] = x2[n], will M [n] and wz[n] necessarily be equal? If your answer is yes, clearly and

concisely explain why and demonstrate with an example. If your answer is not necessarily,

demonstrate with a counterexample.

2.69. Consider the system in Figure P2.69-1, where the subsystems 5'1 and S2 are LTI.

  x[n] : Y["]

i
L _____________ a -J Figure P2.69-1

(a) Is the overall system enclosed by the dashed box, with input x[n] and output y[n] equal

to the product of y1[n] and y2[n], guaranteed to be an LTI system? If so, explain your

reasoning. If not, provide a counterexample.

(b) Suppose 51 and 52 have frequency responses H1(ej‘”) and H2(ej‘”) that are known to

be zero over certain regions. Let

H103”) = {0, lwl 5 0.2.11,unspecified, 0.27: < Ice! 5 rr,

Ia, _ unspecified. le 5 0.4.17,H2(e ) _ {0, 0.4:: < lwl 5 JT.
Suppose also that the input x[n] is known to be bandlimited to 0.311, i.e.,

fa, _ unspecified, lwl < 0.37:,X(e )_ {0, 0.3.17 5 Icul 5 It.
Over what region of —:r 5 a) < If is Y(ej“’), the DTFT of y[n], guaranteed to be zero?

2.70. A commonly used numerical Operation called the first backward difference is defined as

y[n] = V(Ilnl) = J|Clnl — xln - 1].

where x[n] is the input and y[n] is the output of the first-backward—difference system.

(a) Show that this system is linear and time invariant.

(b) Find the impulse response of the system.

(c) Find and sketch the frequency response (magnitude and phase).

(d) Show that if

xin] = f[nl * sin]. a

then

V(I["]) = V(f["]) * SIN] = fin] * V(g[n]),

where :1: denotes discrete convolution.

(e) Find the impulse response of a system that could be cascaded with the first-difference

system to recover the input; i.e., find 12,-[n], where

h,-[n] * V(x[n]) = x[n].

2.71. Let H(ej“’) denote the frequency response of an LTI system with impulse response h[n],
where h[n] is, in general, complex.
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(a) Using Eq. (2.109), show that H*(e‘jw) is the frequency response of a system with
impulse response h*[n], where * denotes complex conjugation.

(b) Show that if h[n] is real, the frequency response is conjugate symmetric, i.e., H(e‘j"’) =

H*(efa’).

2.72. Let X(ej0) denote the Fourier transform of x[n]. Using the Fourier transform synthesis or

analysis equations (Eqs. (2.133) and (2.134)), show that

(a) the Fourier transform of x* [n] is X*(e‘j‘0),

(b) the Fourier transform of x*[—n] is X*(eim).

2.73. Show that for x[n] real, property 7 in Table 2.1 follows from property 1 and that properties

8-11 follow from property 7.

2.74. In Section 2.9, we stated a number of Fourier transform theorems without proof. Using the

Fourier synthesis or analysis equations (Eqs. (2.133) and (2.134)), demonstrate the validity
of Theorems 1—5 in Table 2.2.

2.75. In Section 2.9.6, it was argued intuitively that

Y(ej"’) = H(ej‘")X(ej“’), (P2.75-1)

when Y(ei“’), H(ej"’), and X(e1"") are, respectively, the Fourier transforms of the output
y[n], impulse response h[n], and input x[n] of a linear time-invariant system; i.e.,

00

y[n] = Z x[k]h[n — k]. ,(P2.75-2)
k=—oo

Verify Eq. (P2.75-1) by applying the Fourier transform to the convolution sum given in

Eq. (P2.75-2).

2.76. By applying the Fourier synthesis equation (Eq. (2.133)) to Eq. (2.172) and using Theorem 3

in Table 2.2, demonstrate the validity of the modulation theorem (Theorem 7, Table 2.2).

2.77. Let x[n] and y[n] denote complex sequences and X(31'0’) and Y(ej“’) their respective Fourier
transforms.

(a) By using the convolution theorem (Theorem 6 in Table 2.2) and appropriate properties

from Table 2.2, determine, in terms of x[n] and y[n], the sequence whose Fourier

transform is X(eja’)Y*(ej"’).

(b) Using the result in Part (a), show that

00

Z x[n]y*[n] = i [11 X(ej"’)Y*(ej"’)dw. (P2.77-1)n=-OO

Equation (P2.77-1) is a more general form of Parseval’s theorem, as given in Sec-
tion 2.9.5.

(c) Using Eq. (P2.77—1), determine the numerical value of the sum

00

Z sin(7rn/4) sin(Jrn/6)2fln Snnn=—oo

2.78. Let x[n] and X(ejw) represent a sequence and its Fourier transform, respectively. Deter-

mine, in terms of X(e1"“’), the transforms of y, [n], yd[n], and ye[n]. In each case, sketch
Y(ei‘") for X(91”) as shown in Figure P2.78-1.
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Figure P2.18-1

(a) Sampler:

x n . n even,

y‘["] = {0} 1 n odd.
Note that ys[n] = %{x[n] + (—1)"x[n]} and —1 = e”.

(b) Compressor:

.len] = xlznl-

(c) Expander:

_ x[n/2], n even,yew _ {0, n odd.
2.79. The two-frequency correlation function <l>x(N, w) is often used in radar and sonar to evalu-

ate the frequency and travel-time resolution of a signal. For discrete-time signals, we define

¢,(N. w) = Z x[n + N]x*[n — N]e‘j“’".

(a) Show that

<Dx(-N, —w) = <D;(N, w).

(b) If

x[n] = Aa"u[n], 0 < a < 1,

find ¢x(N, w). (Assume that N 2 0.)

(c) The function <D,,(N, w) has a frequency domain dual. Show that
IT

¢x(N.w)= 21; / X(ei[”+(°’/2)])X*(ei[”‘(“’/2)])ej2”Ndv.—11

2.80. Let x[n] and y[n] be stationary, uncorrelated random signals. Show that if

Wlnl = xlnl + Yin].

then

_ - 2_ 2 2
mw—mx+my and aw—orx+ay.

2.81. Let e[n] denote a white-noise sequence, and let s[n] denote a sequence that is uncorrelated
with e[n]. Show that the sequence

y[nl = S[nle[nl

is white, i.e., that

E{y[nly[n + ml} = Aalm].

where A is a constant.
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2.83.

2.84.

2.85.

2-86.

2.87.

2 Problems 7 91

Consider a random signal x[n] s[n] + e[n], where both s[n] and e[n] are indepen-

dent zero-mean stationary random signals with autocorrelation functions qbss [m] and (bee [m]

respectively.

(a) Determine expressions for qux [m] and d>n(ef“’).

(b) Determine expressions for ¢xe[m] and <I>xe(ej‘”).

(c) Determine expressions for d)” [m] and <st (elm).

Consider an LTI system with impulse response h[n] = a"u[n] with |a| < 1.

(a) Compute the deterministic autocorrelation function 4)”, [m] for this impulse response.

(b) Determine the energy density function |H(ej‘")|2 for the system.
(c) Use Parseval’s theorem to evaluate the integral

1 ” .

-- / |H(ef‘")|2da)27: _n

The input to the first-backward-difference system (Example 2.10) is a zero-mean white-

noise signal whose autocorrelation function is 45” [m] = 036%].
(a) Determine and plot the autocorrelation function and the power spectrum of the cor—

responding output of the system.

(b) What is the average power of the output of the system?

(c) What does this problem tell you about the first backward difference of a noisy signal?

for the system.

Let x[n] be a real, stationary, white-noise process, with zero mean and variance 0,3. Let y[n]
be the corresponding output when x[n] is the' input to a linear time-invariant system with

impulse response h[n]. Show that

(a) E{x[n]y[n]1 = hlolaf,

(b) a; = of Zfiwo h2[n].

Let x[n] be a real stationary white—noise sequence, with zero mean and variance of. Let
x[n] be the input to the cascade of two causal linear time-invariant discrete-time systems,

as shown in Figure P1.86-1.

x[n] y[nl 2 Win] Figure P2.86-1
(a) Is ory2 = 032,210 h? [k]?

(b) Is 0,3 = 032,310 11% [k]?
(e) Let h1[n] = a”u[n] and h2[n] = b”u[n]. Determine the impulse response of the overall

system in Figure P1.86-1, and, from this, determine 0,3. Are your answers to parts (b)
and (c) consistent?

Sometimes we are interested in the statistical behavior of a linear time-invariant system

when the input is a suddenly applied random signal. Such a situation is depicted in Fig-
ure P1.87-1.

Jx [n] w[n] y ['1]

(switch closed at n = 0) Figure P2.87—1

Let x[n] be a stationary white-noise process. The input to the system, w[n], given by

w[n] = {gin}! 2:3:
is a nonstationary process, as is the output y[n].
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(a) Derive an expression for the mean of the output in terms of the mean of the input.

(b) Derive an expression for the autocorrelation sequence (by), [n1, 112] of the output.
(c) Show that, for large n, the formulas derived in parts (a) and (b) approach the results

for stationary inputs.

(d) Assume that h[n] = a"u[n]. Find the mean and mean-square values of the output in

terms of the mean and mean-square values of the input. Sketch these parameters as a
function of n.

Let x[n] and y[n] respectively denote the input and output of a system. The input—output

relation of a system sometimes used for the purpose of noise reduction in images is given

by
 2

y[n] = 32% (x[n] — mxlnl) + man].
where x

1 n+1
can] = 5 2 we] —Mx[n])2.

k=n—l

1 n+1

mx[n] = 5 k;1x[k],
03an — 0%, afln] > 03:,

032M] = { 0, otherwise,
and 03, is a known constant proportional to the noise power.
(a) Is the system linear?

(b) Is the system shift invariant?

(c) Is the system stable?

(d) Is the system causal?

(e) For a fixed x[n], determine y[n] when a}, is very large (large noise power) and when
' ,3 is very small (small noise power). Does y[n] make sense for these extreme cases?

Consider a random process x[n] that is the reSponse of the linear time-invariant system

shown in Figure P2.89-1. In the figure, w[n] represents a real zero-mean stationary white-

noise process with E{w2[n]} = 03,.

WW 1 "0'5 e “"1 a Flgure P2.89-1

(a) Express £{x2[n]} in terms of ¢xx[n] or CD” (eja’);
(b) Determine ¢xx(eJ"’), the power density spectrum of x[n].

(c) Determine 9b“ [n], the correlation function of x[n].

Consider a linear time-invariant system whose impulse response is real and is given by h[n].

Suppose the responses of the system to the We inputs x[n] and v[n] are, respectively, y[n]

and z[n], as shown in Figure P2.90-1.

hnx[n] y[n]

vlnl zln] Figure P2.90-1
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The inputs x[n] and v [n] in the figure represent real zero—mean stationary random processes

with autocorrelation functions ¢n[n] and ¢W[n], cross-correlation function (fin, [n], power

spectra (Dxx(ej"’) and <l>vu(ej“’), and cross power spectrum (Dxu(ej‘”).

(a) Given ¢xx[n], ¢.,u[n], ¢x.,[n], d>xx(ej“’), ¢W(ej“’), and d>xv(ej‘”), determine (byz(ej“’), the
cross power spectrum of y[n] and z[n], where ¢yz(ej“’) is defined by

J:

¢yz[n] (—> ¢yz(ejw)v -

with ¢yz[nl = Elylkldk - n]}- I _
(b) Is the cross power spectrum <va (elm) always nonnegative; i.e., is ¢xu(e1“’) z 0 for all

450? Justify your answer.

Consider the LTI system shown in Figure P2.91-1. The input to this system, e[n], is a station-

ary zero-mean white-noise signal with average power of. The first system is a backward-
difference system as defined in Eq. 2.45 with f[n] = e[n] — e[n — 1]. The second system is

an ideal lowpass filter with frequency response

17 < CDC!

0, wc < |w| 5 71'.

'e[1'1] #1 flnl #2 8M Fiure P2.91-1

(:1) Determine an expression for CD ff(€jw), the power spectrum of f[n], and plot this ex—
pression for —27r < w < 27:.

(b) Determine an expression for (b ff [m], the autocorrelation function of f[n].
(c) Determine an expression for ¢gg(ej"’), the power spectrum of g[n], and plot this

expression for —2n < w < 221.

(d) Determine an expression for 082, the average power of the output.

H209”) = {



THE Z—TRANSFORM

3.0 INTRODUCTION

We have seen that the Fourier transform plays a key role in representing and analyzing

discrete—time signals and systems. In this chapter, we develop the z-transform repre—

sentation of a sequence and study how the properties of a sequence are related to the

properties of its z—transform. The z-transform for discrete-time signals is the counter-

part of the Laplace transform for continuous-time signals, and they each have a similar

relationship to the corresponding Fourier transform. One motivation for introducing

this generalization is that the Fourier transform does not converge for all sequences and

it is useful to have a generalization of the Fourier transform that encompasses a broader

class of signals. A second advantage is that in analytical problems the z-transform no—
tation is often more convenient than the Fourier transform notation.

3.1 z-TRANSFORM

The Fourier transform of a sequence x[n] was defined in Chapter 2 as
00

X921“) = Z x[n1e-J'w". (3.1)
n=—oo

The z-transform of a sequence x[n] is defined as
00

X(z) = Z: x[n1z-". (3.2)
n=—OO

94
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This equation is, in general, an infinite sum or infinite power series, with 2 being a com-

plex variable. Sometimes it is useful to consider Eq. (3.2) as an operator that transforms

a sequence into a function, and we will refer to the z-transform operator Z {-1, defined as
00

Z{x[n]} = Z x[n]z-" = X(z). (3.3)
“2—00

With this interpretation, the z-transform operator is seen to transform the sequence x[n]

into the function X(z), where z is a continuous complex variable. The correspondence

between a sequence and its z-transform is indicated by the notation

x[n] (i) X(z). (3-4)

The z-transform, as we have defined it in Eq. (3.2), is often referred to as the

two-sided or bilateral z—transform, in contrast to the one-sided or unilateral z-transform,
which is defined as

(X)

X(z) = Zx[n]z_”. (3.5)
n=0

Clearly, the bilateral and unilateral transforms are equivalent only if x[n] = 0 for n < 0.

In this book, we focus on the bilateral transform exclusively.

It is evident from a comparison of Eqs. (3.1) and (3.2) that there is a close rela-

tionship between the Fourier transform and the z—transform. In particular, if we replace

the complex variable 2 in Eq. (3.2) with the complex variable 61"”, then the z-transform

reduces to the Fourier transform. This is one motivation for the notation X(elw) for the

Fourier transform; when it exists, the Fourier transform is simply X(z) with z 2 el‘”. This

corresponds to restricting z to have unity magnitude; i.e., for |zl = 1, the z-transform

corresponds to the Fourier transform. More generally, we can express the complex

variable 2 in polar form as

2 = rel”.

With 2 expressed in this form, Eq. (3.2) becomes
00

X(rej‘“) = Z x[n](rej‘”)_n,

or n=—oo

X(rej‘”) = Z (x[n]r_”)e_j“’”. (3.6)

Equation (3.6) can be interpreted as the Fourier transform of the product of the original

sequence x[n] and the exponential sequence r‘". Obviously, for r = 1, Eq. (3.6) reduces

to the Fourier transform of x[n].

Since the z-transform is a function of a complex variable, it is convenient to de-

scribe and interpret it using the complex z—plane. In the z-plane, the contour corre-

sponding to izl = 1 is a circle of unit radius, as illustrated in Figure 3.1. This contour is

referred to as the unit circle. The z—transform evaluated on the unit circle corresponds

to the Fourier transform. Note that a) is the angle between the vector to a point z on the

unit circle and the real axis of the complex z—plane. If we evaluate X(2) at points on the
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3w: z-plane

Unit circle

Figure 3.1 The unit circle in the

complex z-plane.

 
unit circle in the z-plane beginning at z = 1 (i.e., a) = 0) through z = j (i.e., a) = 7r/2)

to z = —1 (i.e., a) = 71'), we obtain the Fourier transform for 0 5 w 5 JT. Continuing

around the unit circle would correspond to examining the Fourier transform from a) = IT

to w = 27: or, equivalently, from a) = —n' to w = 0. In Chapter 2, the Fourier trans-

form was displayed on a linear frequency axis. Interpreting the Fourier transform as the

z—transform on the unit circle in the z-plane corresponds conceptually to wrapping the

linear frequency axis around the unit circle with a) = 0 at z = 1 and w = Jr at z = —1.

With this interpretation, the inherent periodicity in frequency of the Fourier transform

is captured naturally, since a change of angle of 2n radians in the z—plane corresponds

to traversing the unit circle once and returning to exactly the same point.

As we discussed in Chapter 2, the power series representing the Fourier transform

does not converge for all sequences; i.e., the infinite sum may not always be finite.

Similarly, the z-transform does not converge for all sequences or for all values of z.

For any given sequence, the set of values of z for which the z-transform converges is

called the region ofconvergence, which we abbreviate ROC. As we stated in Sec. 2.7, if

the sequence is absolutely summable, the Fourier transform converges to a continuous

function of a). Applying this criterion to Eq. (3.6) leads to the condition

2 [x[n]r_”| < 00 (3.7)
n=—oo

for convergence of the z-transform. It should be clear from Eq. (3.7) that, because of

the multiplication of the sequence by the real exponential r‘", it is possible for the

z-transform to converge even if the Fourier transform does not. For example, the se-

quence x[n] = u[n] is not absolutely summable, and therefore, the Fourier transform

does not converge absolutely. However, r‘"u[n] is absolutely summable if r > 1. This

means that the z-transform for the unit step exists with a region of convergence lzl > 1.

Convergence of the power series of Eq. (3.2) depends only on lzl, since |X(z)| < 00

1f 00

Z lenll lzl‘” < 00, (3.8)
n=—oo

i. e., the region of convergence of the power series in Eq. (3.2) consists of all values of 2

such that the inequality in Eq. (3.8) holds. Thus, if some value of 2, say, z = Z1, is in the

ROC, then all values of Z on the circle defined by 12! = |z1| will also be in the ROC. As

one consequence of this, the region of convergence will consist of a ring in the z—plane
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Figure 3.2 The region of convergence

(ROC) as a ring in the z-plane. For

specific cases, the inner boundary can

extend inward to the origin, and the ROC
becomes a disc. For other cases, the

outer boundary can extend outward to

infinity.

 
centered about the origin. Its outer boundary will be a circle (or the ROC may extend

outward to infinity), and its inner boundary will be a circle (or it may extend inward to

include the origin). This is illustrated in Figure 3.2. If the ROC includes the unit circle,

this of course implies convergence of the z-transform for |z| = 1, or equivalently, the

Fourier transform of the sequence converges. Conversely, if the ROC does not include

the unit circle, the Fourier transform does not converge absolutely.

A power series of the form of Eq. (3.2) is a Laurent series. Therefore, a number of

elegant and powerful theorems from the theory of functions of a complex variable can be

employed in the study of the z-transform. (See, for example, Churchill and Brown, 1990.)

A Laurent series, and therefore the z-transform, represents an analytic function at every

point inside the region of convergence; hence, the z-transform and all its derivatives

must be continuous functions of z within the region of convergence. This implies that if

the region of convergence includes the unit circle, then the Fourier transform and all its

derivatives with respect to a) must be continuous functions of a). Also, from the discussion

in Section 2.7, the sequence must be absolutely summable, i.e., a stable sequence.

Uniform convergence of the z—transform requires absolute summability of the

exponentially weighted sequence, as stated in Eq. (3.7). Neither of the sequences

 sinwcn
x1[n]= , —oo<n<oo,rm

and

x2[n] = cosmon, —00 < n < 00,

is absolutely summable. Furthermore, neither of these sequences multiplied by r’"

would be absolutely summable for any value of r. Thus, these sequences do not have

a z—transform that converges absolutely for any z. However, we showed in Section 2.7

that even though sequences such as x1 [n] are not absolutely summable, they do have

finite gergy, and the Fourier transform converges in the mean-square sense to a discon-
tinfiaus periodic function. Similarly, the sequence x2 [n] is neither absolutely nor square
summable, but a useful Fourier transform for x2 [11] can be defined using impulses. In both

cases the Fourier transforms are not continuous, infinitely differentiable functions, so

they cannot result from evaluating a z—transform on the unit circle. Thus, in such cases it

is not strictly correct to think of the Fourier transform as being the z-transform evaluated

on the unit circle, although we nevertheless use the notation X(eja’) that implies this.
The z-transform is most useful when the infinite sum can be expressed in closed

form, i.e., when it can be “summed” and expressed as a simple mathematical formula.
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Among the most important and useful z—transforms are those for which X(z) is a rational

function inside the region of convergence, i.e.,

P(z)

X(z) Q(Z), (3.9)
where P(z) and Q (z) are polynomials in z. The values of z for which X(z) = 0 are called

the zeros of X(z), and the values of z for which X(z) is infinite are referred to as the

poles of X(z). The poles of X(z) for finite values of z are the roots of the denominator

polynomial. In addition, poles may occur at z = 0 or z = 00. For rational z-transforms,

a number of important relationships exist between the locations of poles of X(z) and

the region of convergence of the z-transform. We discuss these more specifically in

Section 3.2. First, however, we illustrate the z—transform with several examples.

 

Example 3.1 Right-Sided Exponential Sequence

Consider the signal x[n] = a"u[n]. Because it is nonzero only for n :_> 0, this is an

example of a right-sided sequence. From Eq. (3.2),

X(z) = Z = a"u[n]z‘" 2 201(1)".
n=—oo n=0

For convergence of X(z), we require that
00

E [oz—1|” < oo.
n=0

Thus, the region of convergence is the range of values of z for which |az*1| < 1 or,

equivalently, lzl > In |. Inside the region of convergence, the infinite series converges to

 

X(z) = Emil)" = —1— = z . lzl > lal. (3.10)

Here we have used the familiar formula for the sum of terms of a geometric

series. The z-transform has a region of convergence for any finite value of lal. The

Fourier transform of x[n], on the other hand, converges only if |a| < 1. For a = 1, x[n]

is the unit step Sequence with z—transform

1
X = ,(Z) 1 — Z_1 |z| > 1. (3.11)

 

In Example 3.1, the infinite sum is equal to a rational function of 2. inside the

region of convergence; for most purposes, this rational function is a much more con-

venient representation than the infinite sum. We will see that any sequence that can

be represented as a sum of exponentials can equivalently be represented by a rational

z-transform. Such a z-transform is determined to within a constant multiplier by its

zeros and its poles. For this example, there is one zero, at z = 0, and one pole, at z = a.

The pole—zero plot and the region of convergence for Example 3.1 are shown in Fig-

ure 3.3 where a “0” denotes the zero and an “x” the pole. For lal > 1, the ROC does

not include the unit circle, consistent with the fact that, for these values of a, the Fourier

transform of the exponentially growing sequence a"u[n] does not converge.
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z-plane

Unit circle

9R6 
Figure 3.3 Pole—zero plot and region

of convergence for Example 3.1.

Example 3.2 Left-Sided Exponential Sequence

Now let x[n] = —a"u[—n — 1]. Since the sequence is nonzero only for n 5 —1, this is

a left-sided sequence. Then

—1

X(z) :: — i a"u[—n —1].z_’1 = — Z a"z_"
"Zroo Do n=_co (3.12)

=_Za—nzn: __Z(a—lz)n'
n=1 n:

If la‘lzi < 1 or, equivalently, |z| < la], the sum in Eq. (3.12) converges, and

1 1 z
X =1— —— = —— = , . 3.13(z) 1— a‘lz 1— az‘1 z — a Izl < M ( )

 

9m z-plane

Unit circle

 
Figure 3.4 Pole—zero plot and region of convergence for Example 3.2.

The pole—zero plot and region of convergence for this example are shown in Figure 3.4.

Note that for |a| < 1, the sequence —a"u[—n — 1] grows exponentially as n —-> —00,

and thus, the Fourier transform does not exist.
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Comparing Eqs. (3.10) and (3.13) and Figures 3.3 and 3.4, we see that the sequences

and, therefore, the infinite sums are different; however, the algebraic expressions for

X(z) and the corresponding pole—zero plots are identical in Examples 3.1 and 3.2. The

z-transforms differ only in the region of convergence. This emphasizes the need for spec-

ifying both the algebraic expression and the region of convergence for the z—transform

of a given sequence. Also, in both examples, the sequences were exponentials and the

resulting z-transforms were rational. In fact, as is further suggested by the next exam-

ple, X(z) will be rational whenever x[n] is a linear combination of real or complex

exponenuah.

Example 3.3 Sum of Two Exponential Sequences

Consider a signal that is the sum of two real exponentials:

x[n] = u[n] + (—%)" u[n]. (3.14)

 
(a) (b)

 
(C)

Figure 3.5 Pole—zero plot and region of convergence for the individual terms

and the sum of terms in Examples 3.3 and 3.4. (a) 1/(1 — g2“), |2| >

(b)1/(1 + 132-1), [2| > .1..(c)1/(1 — gz-1)+1/(1 +gz-1),izi > g.
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The z—transform is then

X(z)= Z {(1)"u[n]+(_g)"u[n]}z—n

= Z (i)nulnlz’"+ Z (-%)”u[n]z‘" (3.15)

=Z(%z‘1)"+Z(-%z”)"
n=0 n=0

_ __1 +_ 1 __i:fzfl_
‘1—%z-‘ 1+ %z-‘ — (l-éz-U (1+ 32“)

1

= zz( _E) (3.16)l 1 ‘
( — 3) (z + 3)

For convergence of X(z), both sums in Eq. (3.15) must converge, which requires that

both Ez‘ll < 1 and z—1| < 1 or, equivalently, Izl > % and Izl > Thus, the
region of convergence is the region of overlap, Izl > The pole—zero plot and ROC
for the z—transform of each of the individual terms and for the combined signal are

shown in Figure 3.5.

In each of the preceding examples, we started with the definition of the sequence

and manipulated each of the infinite sums into a form whose sum could be recog-

nized. When the sequence is recognized as a sum of exponential sequences of the form

of Examples 3.1 and 3.2, the z-transform can be obtained much more simply using

the fact that the z-transform operator is linear. Specifically, from the definition of the

z-transform, Eq. (3 .2), if x[n] is the sum of two terms, then X(2) will be the sum of the

corresponding z-transforms of the individual terms. The ROC will be the intersection

of the individual regions of convergence, i.e., the values of z for which both individual

sums converge. We have already demonstrated this fact in obtaining Eq. (3.15) in Ex-

ample 3.3. Example 3.4 shows how the z-transform in Example 3.3 can be obtained in

a much more straightforward manner.

E ample 3.4 Sum of TWO Exponentials (Again)

A ain, let x [n] be given by Eq. (3.14). Then using the general result of Example 3.1 with

a = :7 and a = — the z-transforms of the two individual terms are easily seen to be
‘ z

(WWI ‘—> 1 1, Izl > 5 (3.17)
1 — il—

(—§)"u[n] (i —1—, Izl > g (3.18)
1 + %z—1

and, consequently,

1 1

(3)"u["]+ (—%)"uln] <5» Izl > a (3.19)
1— éz‘l 1+%Z‘1,

as we had determined in Example 3.3. The pole—zero plot and ROC for the z-transform

of each of the individual terms and for the combined signal are shown in Figure 3.5.
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All the major points of Examples 3.1—3.4 are summarized in Example 3.5.

Example 3.5 TWO-Sided Exponential Sequence

Consider the sequence

x[n] = (—%)n u[n] — G)" u[—n — 1]. (3.20)

Note that this sequence grows exponentially as n —> —00. Using the general result of

Example 3.1 with a = —%, we obtain

I It 3 1
—— un<—>_, |z|>—,

and using the result of Example 3.2 with a = % yields

—e)"ur—n—u i» —1_. m < 5

Thus, by the linearity of the z—transform,

H
+X(Z)

3.21

2(1—az-1) _ we) ‘ )
(Haze) (l—éz-U ‘ (Ha (z—t)‘

In this case. the ROC is the annular region % < |z| < 1. Note that the rational function, 2

in this example is identical to the rational function in Examples 3.3 and 3.4, but the

ROC is different in the three cases. The pole—zero plot and the ROC for this example

are shown in Figure 3.6.

 ll

  
Figure 3.6 Pole—zero plot and region of convergence for Example 3.5.

Note that the ROC does not contain the unit circle, so the sequence in Eq. (3.20) does
not have a Fourier transform.

In each of the preceding examples, we expressed the z-transform both as a ratio

of polynomials in z and as a ratio of polynomials in z‘l. From the form of the definition

of the z—transform as given in Eq. (3.2), we see that, for sequences that are zero for
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n < 0, X(2) involves only negative powers of 2. Thus, for this class of signals, it is

particularly convenient for X(z) to be expressed in terms of polynomials in z‘1 rather

than 2; however, even when x[n] is nonzero for n < 0, X(2) can still be expressed in

terms of factors of the form (1 — az‘l). It should be remembered that such a factor

introduces both a pole and a zero, as illustrated by the algebraic expressions in the

preceding examples.

From these examples, it is easily seen that infinitely long exponential sequences

have z—transforms that can be expressed as rational functions of either 2 or z“. The

case where the sequence has finite length also has a rather simple form. If the sequence

is nonzero only in the interval N1 5 n 5 N2, the z-transform
N2

X(z) = Z x[n]z—“ (3.22)
n=N1

has no problems of convergence, as long as each of the terms |x[n]z‘"| is finite. In

general, it may not be possible to express the sum of a finite set of terms in a closed

form, but in such cases it may be unnecessary. For example, it is easily seen that if

x[n] = 8[n] + 8[n — 5], then X(z) = 1 + 2‘5, which is finite for [2| > 0. An example

of a case where a finite number of terms can be summed to produce a more compact

representation of the z-transform is given in Example 3.6.

Example 3.6 Finite-Length Sequence

Consider the signal

x[n]_fi a", OEHEN—l,
— 0, otherwise.

Then

N—l N—l

X(z) = Eff" = Zen—1)”
"=0 "=0 (3.23)

_ 1_(aZ-1)N 1 zN_aN
— l—atz‘1 =W z—a'

where we have used the general formula in Eq. (2.56) to sum the finite series. The

ROC is determined by the set of values of z for which

N—l

E fizz—11" < 00.
11:0

Since there are only a finite number of nonzero terms, the sum will be finite as long

as az‘1 is finite, which in turn requires only that lal < 00 and z 76 0. Thus, assuming

that la! is finite, the ROC includes the entire z-plane, with the exception of the origin

(z = 0). The pole-Zero plot for this example, with N = 16 and a real and between zero

and unity, is shown in Figure 3.7. Specifically, the N roots of the numerator polynomial
are at

“Hawk/N), k=0,1,...,N—1. (3.24)

(Note that these values satisfy the equation 2” = a” , and when a = 1, these complex
values are the Nth roots of unity.) The zero at k = 0 cancels the pole at z = a.
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z-plane

Unit circle

 

Chap. 3

Figure 3.7 Pole—zero plot for Exampie 3.6 with N = 16 and a real such that

0 < a < 1. The region of convergence in this example consists of all values of z

ammz=0

Consequently, there are no poles other than at the origin. The remaining zeros are al

TABLE 3.1

Sequence

1. 5[n]

2. u[n]

3. —u[-n —- 1]

4. 6[n — m]

5. a"u[n]

6. —a"u[—n — 1]

7. na”u[n]

8. —na”u[—n — 1]

9. [cosmon]u[n]

10. [sinwon]u[n]

11. [r”cosw0n]u[n]

12. [r"sinw0n]u[n]

a",

13. {0' otherwise
OEHSN—l,

k=1,

SOME COMMON Z-TRANSFORM PAIRS

 

 

 

 

Transform

1

1

1 — 2‘1
1

1 — z—1

2—":

l

1 — az*1
1

1 — az—1

az—l

(1 — az'l)2

az—l

(1 — 02“)2

1 — [cos wok—1

1 — [2comuo]z‘1 + z‘2

[sin cmflz‘1

1 — [2 cosmok—1 + 2—2

1 — [r cos cook—1

1 — [2r cos wok-1 + rzzr2

[r sincuok‘1

1 — [2r cos wok—1 + r22—2

1 -— aNZ‘N

1 — az—l

...,N—1.

ROC

All 2

lzl>1

lzl<1

All 2 except 0 (if m > 0)

or 00 (if m < 0)

lzl > lal

lzl < M

IZi > Ial

|2I < Ial

|Z| > 1

Id >1

[2| > r

|z|>r

|z|>0

(3.25;
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The transform pairs corresponding to some of the preceding examples, as well as a

number of other commonly encountered z-transform pairs, are summarized in Table 3.1.

We will see that these basic transform pairs are very useful in finding z—transforms given

a sequence or, conversely, in finding the sequence corresponding to a given z-transform.

3.2 PROPERTIES OF THE REGION OF CONVERGENCE

FOR THE z-TRANSFORM

The examples of the previous section suggest that the properties of the region of con-

vergence depend on the nature Of the signal. These properties are summarized next,

followed by some discussion and intuitive justification. We assume specifically that the

algebraic expression for the z-transform is a rational function and that x[n] has finite

amplitude, except possibly at n = 00 or n = —oo.

PROPERTY 1: The ROC is a ring or disk in the z-plane centered at the origin; i.e.,

05rR<|z|<rLgoo.

PROPERTY 2: The Fourier transform Of x[n] converges absolutely if and only if

the ROC of the z—transform of x[n] includes the unit circle.

PROPERTY 3: The ROC cannot contain any poles.

PROPERTY 4: If x[n] is afinite-duration sequence, i.e., a sequence that is zero except

in afinite interval —oo < N1 5 n _<_ N2 < 00, then the ROC is the entire z-plane,

except possibly z = 0 or z = 00.

PROPERTY 5: If x[n] is a right-sided sequence, i.e., a sequence that is zero for

n < N1 < co, the ROC extends outward from the outermost (i.e., largest

magnitude) finite pole in X(z) to (and possibly including) 2 = 00.

PROPERTY 6: If x[n] is a left-sided sequence, i.e., a sequence that is zero for n >

N2 > —oo, the ROC extends inward from the innermost (smallest magnitude)

nonzero pole in X(z) to (and possibly including) z : 0.

PROPERTY 7: A two-sided sequetge is an infinite-duration sequence that is neither
right sided nor left sided. If/i[n]rfils\a.two-sided sequence, the ROC will consist

Of a ring in the z-plane, bounded on the interior and exterior by a pole and,

consistent with property 3, not containing any poles.

PROPERTY 8: The ROC must be a connected region.

As discussed in Section 3.1, property 1 results from the fact that convergence of

Eq. (3.2) for a given x[n] is dependent only on |z|, and property 2 is a consequence of

the fact that Eq. (3.2) reduces to the Fourier transform when |z| = 1. Property 3 follows

from the recognition that X(z) is infinite at a pole and therefore, by definition, does not

converge.

Properties 4 through 7 can all be developed more or less directly from the inter-

pretation of the z-transform as the Fourier transform of the original sequence, modified

by an exponential weighting. Let us first consider property 4. Figure 3.8 shows a finite—

duration sequence and the exponential sequence r‘" for 1 < r (a decaying exponential)

and for O < r < 1 (a growing exponential). Convergence of the z-transform is implied

by absolute summability of the sequence x[n]lz|‘“ or, equivalently, x[n]r‘“. It should
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zfiLLllutlr: 
(a)

 
(b)

  
r‘” for 0 < r <1 Figure 3.8 Finite-length sequence and

weighting sequences implicit in

convergence of the z—transform.

(a) The finite-length sequence x[n].
(b) Weighting sequence r"’7 fort < r.

(c) Weighting sequence r‘” for
(c) 0 < r < 1.

be evident from Figure 3.8 that, since x[n] has only a finite number of nonzero values, as

long as each of these values is finite, x[n] will be absolutely summable. Furthermore, this

will not be affected by the exponential weighting if the weighting sequence has finite

amplitude in the interval where x[n] is nonzero, i.e., N1 _<_ n 5 N2. Therefore, for a

finite-duration sequence, x[n]r ”' will be absolutely summable for 0 < r < 00. The only

possible complication arises for r = 0 or for r = 00. If x[n] is nonzero for any positive

values of n (i.e., if N2 > 0), and if r, or, equivalently, lzl, is zero, then x[n]r‘“ will be

infinite for 0 < n 5 N2. Correspondingly, if x[n] is nonzero for any negative values of

n (i.e., if N1 < 0), then x[n]r—“ will be infinite for N1 5 n < 0 if r, or, equivalently, lzl,
is infinite.

Property 5 can be interpreted in a somewhat similar manner. Figure 3.9 illustrates

a right-sided sequence and the exponential sequence r‘” for two different values of r.

A right-sided sequence is zero prior to some value of n, say, N1. If the circle lzl = r0 is in

the ROC, then x[n]r0_” is absolutely summable, or equivalently, the Fourier transform of

x[n]r0"1 converges. Since x[n] is right sided, the sequence x[n]rl‘" will also be absolutely

summable if rl‘" decays faster than r6”. Specifically, as illustrated in Figure 3.9, this more
rapid exponential decay will further attenuate sequence values for positive values of n

and cannot cause sequence values for negative values of n to become unbounded, since

x[n]z_” = 0 for n < N1. Based on this property, we can conclude that, for a right—sided

sequence, the ROC extends outward from some circle in the z-plane, concentric with the

origin. This circle, in fact, is at the outermost pole in X(z). To see this, assume that the

poles occur at z = d1, . . . , ally, with d1 having the smallest magnitude, i.e., corresponding
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x [n]

 

UWMuuii
Figure 3.9 Right-sided sequence and

weighting sequences implicit in

convergence of the z-transform. (a) The

right-sided sequence x[n].

(b) Weighting sequence ro’” tort < r0.
(c) Weighting sequence ff" for r1 > r0.

 
to the innermost pole, and dN having the largest magnitude, i.e., corresponding to the

outermost pole. To simplify the argument, we will assume that all the poles are distinct,

although the argument can be easily generalizw/d/for multiple-order poles. As we will
see in Section 3.3, for N1 5 n, x[n] will consist of a sum of exponentials of the form

N

x[n] = Z Agog)", n 3 N1. (3.26)
k=1

The least rapidly increasing of these exponentials, as n increases, is the one correspond-

ing to the innermost pole, i.e., d1 , and the most slowly decaying (or most rapidly growing)

is the one corresponding to the outermost pole, i.e., dN. Now let us consider x[n] with

the exponential weighting r‘” applied, i.e.,

N

xlnlr‘” = r‘” 2 Ak(dk)”, n 2 N1, (3.27)
k=1

N .

= Z Ak(dkr"1)”, n 3 N1. (3.28)
k=1
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Absolute summability of x[n]r‘" requires that each exponential in Eq. (3.28) be abso-

lutely summable; i.e.,

Z |dkr“1|" < 00, k: N, (3.29)
M=N1

or equivalently,

|r| > |de, k: 1, (3.30)

Since the outermost pole, dN, is the one with the largest absolute value,

lrl > Ile; (3.31)

i.e., the ROC is outside the outermost pole, extending to infinity. If N; < 0, the ROC

will not include [Z] = 00, since r‘" is infinite for r infinite and n negative.

As suggested by the preceding discussion, it is possible to be very precise about

property 5 (as well as the associated properties 6 and 7). The essence of the argument,

however, is that for a sum of right-sided exponential sequences with an exponential

weighting applied, the exponential weighting must be restricted so that all of the expo-

nentially weighted terms decay with increasing n.

For property 6, which is concerned with left-sided sequences, an exactly parallel

argument can be carried out. Here, however, x[n] will consist of a sum of exponentials

of the same form as Eq. (3.28), but for n 5 N2; i.e.,
N

x[n] = Z Ak(dk)". n 5 N2. (3.32)
[(21

or, with exponential weighting,

N

x[n]r-" = Z Ak(dkr”l)", n 5 N2. (3.33)
k=1

Since x[n] now extends to —oo along the negative n—axis, r must be restricted so that for

each dk, the exponential sequence (rig-1)" decays to zero as n decreases toward —oo.

Equivalently,

Ir|<|dkl. k=1,...,N,

or, since d1 has the smallest magnitude,

M < tail; (3.34)

i.e., the ROC is inside the innermost pole. If the left-sided sequence has nonzero values

for positive values of n, then the ROC will not include the origin, z = 0.

For right-sided sequences, the ROC is dictated by the exponential weighting re-

quired to have all exponential terms decay to zero for increasing n; for left—sided se-

quences, the exponential weighting must be such that all exponential terms decay to

zero for decreasing n. For two-sided sequences, the exponential weighting needs to be

balanced, since if it decays too fast for increasing n, it may grow too quickly for de—

creasing n and vice versa. More specifically, for two~sided sequences, some of the poles

contribute only for n > 0 and the rest only for n < 0. The region of convergence is
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Em z-plane

Unit circle

 
(b)

 
(d) (6)

Figure 3.10 Examples of four 2- transforms with the same pole—zero locations,

illustrating the different possibilities for the region of convergence. Each ROC

corresponds to a different sequence: (b) to a right-sided sequence, (c) to a left-

sided sequence, (d) to a two-sided sequence, and (e) to a two-sided sequence.
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bounded on the inside by the pole with the largest magnitude that contributes for n > O

and on the outside by the pole with the smallest magnitude that contributes for n < 0.

Property 8 is somewhat more difficult to develop formally, but, at least intuitively,

it is strongly suggested by our discussion of properties 4 through 7. Any infinite two-

sided sequence can be represented as a sum of a right—sided part (say, for n a 0) and a

left-sided part that includes everything not included in the right-sided part. The right-

sided part will have an ROC given by Eq. (3.31), while the ROC of the left-sided part

will be given by Eq. (3.34). The ROC of the entire two-sided sequence must be the

intersection of these two regions. Thus, if such an intersection exists, it will always be a

simply connected annular region of the form

rR < |z| < rL.

There is a possibility of no overlap between the regions of convergence of the right-

and left-sided parts; i.e., rL < rR. An example is the sequence x[n] = (%)nu[n] —

(—é)" u[—n — 1]. In this case, the z-transform of the sequence simply does not exist. If
such cases arise, however, it may still be possible to use the z-transform by considering

the sequence to be the sum of two sequences, each of which has a z-transform, but

the two transforms cannot be combined in algebraic expressions, since they have no
common ROC.

As we indicated in comparing Examples 3.1 and 3.2, the algebraic expression or

pole—zero pattern does not completely specify the z-transform of a sequence; i.e., the

ROC must also be specified. The properties considered in this section limit the possible

ROC’s that can be associated with a given pole—zero pattern. To illustrate, consider

the pole-zero pattern shown in Figure 3.10(a). From properties 1, 3, and 8, there are

only four possible choices for the ROC. These are indicated in Figures 3.10(b), (c), (d),

and (6), each being associated with a different sequence. Specifically, Figure 3.10(b)

corresponds to a right-sided sequence, Figure 3.10(c) to a left-sided sequence, and

Figures 3.10(d) and 3.10(c) to two different two-sided sequences. If we assume, as

indicated in Figure 3.10(a), that the unit circle falls between the pole at z = b and the

pole at z = c, then the only one of the four cases for which the Fourier transform would

converge is that in Figure 3.10(c).

In representing a sequence through its z—transform, it is sometimes convenient

to specify the ROC implicitly through an appropriate time-domain property of the

sequence. This is illustrated in Example 3.7.

Example 3.1 Stability, Causality, and the ROC

Consider a system with impulse response h[n] for which the z—transform H(z) has the

pole—zero plot shown in Figure 3.11. There are three possible ROC’s consistent with

properties 1—8 that can be associated with this pole—zero plot. However, if we state

in addition that the system is stable (or equivalently, that Mn] is absolutely summable

and therefore has a Fourier transform), then the ROC must include the unit circle.

Thus, stability of the system and properties 1—8 imply that the ROC is the region

% < |z| < 2. Note that as a consequence, h[n] is two sided, and therefore, the system
is not causal.

If we state instead that the system is causal, and therefore that h[n] is right sided,

then property 5 would require that the ROC be the region [2] > 2. Under this
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Sim z -plane

Unit circle

 
Figure 3.11 Pole—zero plot for the system function in Example 3.7.

condition, the system would not be stable; i.e., for this specific pole—zero plot, there is

no ROC that would imply that the system is both stable and causal.

3.3 THE INVERSE z-TRANSFORM

One of the important roles of the z-transform is in the analysis of discrete-time linear

systems. Often, this analysis involves finding the z-transform of sequences and, after

some manipulation of the algebraic expressions, finding the inverse z-transform. There

are a number of formal and informal ways of determining the inverse z-transform from

a given algebraic expression and associated region of convergence. There is a formal

inverse z-transform expression that is based on the Cauchy integral theorem (Churchill

and Brown, 1990). However, for the typical kinds of sequenc s and z—transforms that

we will encounter in the analysis of discrete linear time-invariagsgstems, less formal
procedures are sufficient and preferable. In Sections 33.1—33.3 consider some of

these procedures, specifically the inspection method, partial fraction expansion, and

power series expansion.

3.3.1 Inspection Method

The inspection method consists simply of becoming familiar with, or recognizing “by

inspection,” certain transform pairs. For example, in Section 3.1, we evaluated the

z-transform for sequences of the form x[n] = a”u[n], where a can be either real or

complex. Sequences of this form arise quite frequently, and consequently, it is particu-

larly useful to make direct use of the transform pair

2 1

If we need to find the inverse z-transform of

X(z) =, lzl > a (3.36)1— %z‘1
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and we recall the z—transform pair of Eq. (3.35), we would recognize “by inspection” the

associated sequence as x[n] = u[n]. If the ROC associated with X(z) in Eq. (3.36)
had been [2] < %, we can recall transform pair 6 in Table 3.1 to find by inspection that
x[n] = —(%)n u[—n — 1].

Tables of z—transforms, such as Table 3.1, are invaluable in applying the inspection

method. If the table is extensive, it may be possible to express a given z-transform as

a sum of terms, each of whose inverse is given in the table. If so, the inverse transform

(i.e., the corresponding sequence) can be written from the table.

3.3.2 Partial Fraction Expansion

As already described, inverse z-transforms can be found by inspection if the z-transform

expression is recognized or tabulated. Sometimes X(2) may not be given explicitly

in an available table, but it may be possible to obtain an alternative expression for

X(2) as a sum of simpler terms, each of which is tabulated. This is the case for any

rational function, since we can obtain a partial fraction expansion and easily identify

the sequences corresponding to the individual terms.

To see how to obtain a partial fraction expansion, let us assume that X(z) is

expressed as a ratio of polynomials in z‘l; i.e.,

X(z) = L. (3.37)

Such z-transforms arise frequently in the study of linear time—invariant systems. An

equivalent expression is

X(z) = —"=———. (3.38)

Equation (3.38) explicitly shows that for such functions, there will be M zeros and N

poles at nonzero locations in the z-plane. In addition, there will be either M — N poles

at z = 0 if M > N or N — M zeros at z = 0 if N > M. In other words, z-transforms of the

form of Eq. (3.37) always have the same number of poles and zeros in the finite z-plane,

and there are no poles or zeros at z = 00. To obtain the partial fraction expansion of

X(z) in Eq. (3.37), it is most convenient to note that X(2:) could be expressed in the
form

M

H(1 — Cid—1)

X(z) = (3.39)
H(1 — dkz_1)
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where the ck’s are the nonzero zeros of X (z) and the dk’s are the nonzero poles of X(z).

If M < N and the poles are all first order, then X(z) can be expressed as

N Ak
X(z) = Z mid—4. (3.40)k=l

Obviously, the common denominator of the fractions in Eq. (3.40) is the same as the

denominator in Eq. (3.39). Multiplying both sides of Eq. (3.40) by (1 — dkz_l) and

evaluating for z : dk shows that the coefficients, Ak, can be found from

Ak = (l — dkz'1)X(z))z=dk. (3.41)

Example 3.8 Second-Order z-Transform

Consider a sequence x[n] with z-transform

X(z) = Izl > 1. (3.42)

 
Figure 3.12 Pole—zero plot and R00 for Example 3.8.

The pole—zero plot for X(z) is shown in Figure 3.12. From the region of convergence

and property 5, Section 3.2, we see that x[n] is a right-sided sequence. Since the poles

are both first order, X(z) can be expressed in the form of Eq. (3.40); i.e.,

X(z):

From Eq. (3.41),

Therefore,



114 The z—Transform Chap. 3

Since x[n] is right sided, the ROC for each term extends outward from the outermost

pole. From Table 3.1 and the linearity of the z—transform, it then follows that

x[n] =2 u[n] — u[n].

Clearly, the numerator that would result from adding the terms in Eq. (340) would

be at most of degree (N — 1) in the variable z‘l. If M 2 N, then a polynomial must

be added to the right-hand side of Eq. (3.40), the order of which is (M — N). Thus, for

M 3 N, the complete partial fraction expansion would have the form

M—N _r N Ak
X(z) = Z 13,2: + Eli—(17. (3.43)

r=0 k=1 kz

If we are given a rational function of the form of Eq. (3.37), with M _>_ N, the B,’s can

be obtained by long division of the numerator by the denominator, with the division

process terminating when the remainder is of lower degree than the denominator. The

Ak’s can still be obtained with Eq. (3.41).

If X(2) has multiple—order poles and M 3 N, Eq. (3.43) must be further modified.

In particular, if X(z) has a pole of order s at z = d,- and all the other poles are first-order,

then Eq. (3.43) becomes

M—N N Ak s C
X(z) = Z B,z—' + Z ———_, + 2+3. (3.44)

r=0 k=1.k¢i 1 — dkz m=l (1 — d’z )

The coefficients Ak and B, are obtained as before. The coefficients Cm are obtained

from the equation

 1 ds‘m S _1

Cm _ (s _ m)!(_dl.)s—~m {dws_m[(1 de) X(W )]}w=dliI - (3-45)
Equation (3.44) gives the most general form for the partial fraction expansion of a

rational z-transform expressed as a function of 2‘1 for the case M 2 N and for di a pole

of order s. If there are several multiple-order poles, there will be a term like the third

sum in Eq. (3.44) for each multiple-order pole. If there are no multiple-order poles,

Eq. (3.44) reduces to Eq. (3.43). If the order of the numerator is less than the order

of the denominator (M < N), then the polynomial term disappears from Eqs. (3.43)

and (3.44).

It should be emphasized that we could have achieved the same results by assuming

that the rational z—transform was expressed as a function of z instead of z‘l. That is,
instead of factors of the form (1 — az‘l), we could have considered factors of the form

(2. — a). This would lead to a set of equations similar in form to Eqs. (3.39)—(3.45) that

would be convenient for use with a table of z—transforms expressed in terms of z. Since

Table 3.1 is expressed in terms of 2‘1, the development we pursued is more useful.

To see how to find the sequence corresponding to a given rational z-transform, let

us suppose that X(z) has only first-order poles, so that Eq. (3.43) is the most general

form of the partial fraction expansion. To find x[n], we first note that the z-transform

operation is linear, so that the inverse transform of individual terms can be found and

then added together to form x[n].
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The terms B, z" correspond to shifted and scaled impulse sequences, i.e., terms

of the form B,8[n — r]. The fractional terms correspond to exponential sequences. To

decide whether a term Ak

1 — de"1

corresponds to (dk)"u[n] or —(dk)”u[—n — 1], we must use the properties of the region of

convergence that were discussed in Section 3.2. From that discussion, it follows that if

X(2) has only simple poles and the ROC is of the form rR < lzl < rL, then a given pole dk

will correspond to a right-sided exponential (dk)"u[n] if ldkl < rR, and it will correspond

to a left-sided exponential if |de > rL. Thus, the region of convergence can be used

to sort the poles. Multiple-order poles also are divided into left—sided and right-sided

contributions in the same way. The use of the region of convergence in finding inverse

z-transforms from the partial fraction expansion is illustrated by the following examples.

Example 3.9 Inverse by Partial Fractions

To illustrate the case in which the partial fraction expansion has the form of Eq. (3.43),

consider a sequence x[n] with z-transform

1 + 2271+ 2.4 (1+ 2—1)?‘
Xz = _ —=—-—————, |z|>1. 3.46() 1_%z_1+%z_2 (1_%z—1)(1_Z—1) ( )

 
Figure 3.13 Pole—zero plot for the z-transform in Example 3.9.

The pole—zero plot for X(z) is shown in Figure 3.13. From the region of convergenCe

and property 5, Section 3.2, it is clear that x[n] is a right-sided sequence. Since M =

N = 2 and the poles are all first order, X(z) can be represented as

X(Z)=Bo+

 

The constant Bo can be found by long division:

2

%z‘2 — gz‘l + 1 lz‘2 + 22_1+ 1
21—2 — 32‘1 + 2

52-1 — 1
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Since the remainder after one step of long division is of degree 1 in the variable z‘1 ,

it is not necessary to continue to divide. Thus, X(z) can be expressed as

X(z) = 2 + (3.47)
( — %z“) (1 — z“).

Now the coefficients A1 and A2 can be found by applying Eq. (3.41) to Eq. (3.46) or,

equivalently, Eq. (3.47). Using Eq. (3.47), we obtain

 

 

_ -1 1

A‘ = (1 ‘ =‘9’( —§z _z ) 1:1/2

—1+5z“ _1
A = 2+ 1 2: =8.2 <1—%z-1)<1—z-'>)‘ )i

Therefore,

9 8

X(z) = — If] + 1_ Z4 (3-48)

From Table 3.1, we see that since the ROC is |z| > 1,

 

2 (—3—) 26[n],

1 z

1 _1 4—) (%)nu[n]

1 z

1— Z_l 4—) u[fl]

Thus, from the linearity of the z-transform,

x[n] = 28[n] — 9 it[n] + 8u[n].

In Section 3.4 we will discuss and illustrate a number of properties of the

z-transform that, in combination with the partial fraction expansion, provide a means

for determining the inverse z-transform from a given rational algebraic expression and

associated ROC, even when X(z) is not exactly in the form of Eq. (3.39).

3.3.3 Power Series Expansion

The defining expression for the z-transform is a Laurent series where the sequence

values x[n] are the coefficients of f". Thus, if the z-transform is given as a power series
in the form

00

Xe) = 2 any"

= ~~+ x[—2]z2 + x[—1]z + x[0] + x[1]z‘1 + x[2]z‘2 + - ‘ -,

we can determine any particular value of the sequence by finding the coefficient of the

appropriate power of 2—1. We have already used this approach in finding the inverse

transform of the polynomial part of the partial fraction expansion when M :_> N. This

(3.49)
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approach is also very useful for finite-length sequences where X(z) may have no simpler

form than a polynomial in z‘1.

Example 3.1 0 Finite-Length Sequence

Suppose X(z) is given in the form

X(z) = z2 (1 — %z_1)(1+ z_l)(1— [1). (3.50)

Although X(z) is obviously a rational function, its only poles are at z = 0, so a partial

fraction expansion according to the technique of Section 3.3.2 is not appropriate.

However, by multiplying the factors of Eq. (3.50), we can express X(z) as

X(z) =z2— %z—1+%z‘1.

Therefore, by inspection, x[n] is seen to be

1, n = —2,

—%, n = —1,

x[n] = —1, n = 0,

1%: n= ,
0, otherwise.

Equivalently,

xln] = 6[n + 2] — %5[n +1] — am] + %8[n 41].

In finding z-transforms of a sequence, we generally seek to sum the power series

of Eq. (3.49) to obtain a simpler mathematical expression, e.g., a rational function. If

we wish to use the power series to find the sequence corresponding to a given X(2)

expressed in closed form, we must expand X(z) back into a power series. Many power

series have been tabulated for transcendental functions such as log, sin, sinh, etc. In

some cases such power series can have a useful interpretation as z-transforms, as we

illustrate in Example 3.11. For rational z-transforms, a power series expansion can be

obtained by long division, as illustrated in Examples 3.12 and 3.13.

Example 3.1 I Inverse 'lTansform by Power
Series Expansion

Consider the z-transform

X(z) =log(1+ az—l), lzl > lal. (3.51)

Using the power series expansion for log(1 + x), with |x| < 1, we obtain

0° _ n+1 n —n

X(z) = Z (D—naL_
n=l
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Therefore,

n+19:

xlnl={(_1) n ’ n 21’ (3.52)0, n 5 0.

Example 3.1 2 Power Series Expansion by
Long Division

Consider the z-transform

X(z) = lzl > lal. (3.53)
l—az—l’

Since the region of convergence is the exterior of a circle, the sequence is a right—sided

one. Furthermore, since X (z) approaches a finite constant as 2 approaches infinity, the

sequence is causal. Thus, we divide, so as to obtain a series in powers of z“. Carrying

out the long division, we obtain

1+az”1+a2z‘2+---

l—az‘l 1

1 —az_1

(12—1

dz 1 022 2

azz—z

or

1 —1 2 2
=1+az +az +~

Hence, x[n] = a”u[n].

Example 3.1 3 Power Series Expansion for a
Left-Sided Sequence

As another example, we can consider the same ratio of polynomials as in Eq. (3.53),

but with a different region of convergence:

1
X =——,(Z) l—aZ‘1 [z] < lal. (3.54)

Becausc of the region of convergence, the sequence is a left-sided one, and since X(2)

at z = 0 is finite, the sequence is zero for n > 0. Thus, we divide, so as to obtain a series

in powers of 2 as follows:

_a_1z_a_2z_2 _...

_H+Z Z

z—-a‘1z2

a—lz2

Therefore, x[n] = —a”u[—n — 1].
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3.4 z-TRANSFORM PROPERTIES

Many of the properties of the z-transform are particularly useful in studying discrete-

time signals and systems. For example, these properties are often used in conjunction

with the inverse z-transform techniques discussed in Sec. 3.3 to obtain the inverse z-

transform of more complicated expressions. In Chapter 5 we will see that the properties

also form the basis for transforming linear constant-coefficient difference equations to

algebraic equations in terms of the transform variable z, the solution to which can then

be obtained using the inverse z-transform. In this section, we consider some of the most

frequently used properties. In the following discussion, X(z) denotes the z-transform

of x[n], and the ROC of X(z) is indicated by Rx; i.e.,

x[n] (—3» X(z), ROC = R...

As we have seen, Rx represents a set of values of 2 such that rR < |zl < rL. For

properties that involve two sequences and associated z-transforms, the transform pairs
will be denoted as

x1 [n] <—Z+ X1(z), ROC = R...

x2[n] (i) X2(Z), ROC = Rn.

3.4. 1 Linearity

The linearity property states that i,

ax1[n] + bx2[n] (—1» aX1(Z) + bX2(z), ROC contains \Rx, fl Rn,

and follows directly from the z-transform definition, Eq. (3.2). As indicated, the region

of convergence is at least the intersection of the individual regions of convergence.

For sequences with rational z—transforms, if the poles of aX1(z) + bX2(z) consist of

all the poles of X1(z) and X2(z) (i.e., if there is no pole—zero cancellation), then the

region of convergence will be exactly equal to the overlap of the individual regions

of convergence. If the linear combination is such that some zeros are introduced that

cancel poles, then the region of convergence may be larger. A simple example of this

occurs when x1[n] and x2[n] are of infinite duration, but the linear combination is of

finite duration. In this case the region of convergence of the linear combination is the

entire z—plane, with the possible exception of z = 0 or z = 00. An example was given in

Example 3.6, where x[n] can be expressed as

x[n] = a"u[n] —- a"u[n — N].

Both a”u[n] and a”u[n — N] are infinite-extent right-sided sequences, and their

z-transforms have a pole at z = a. Therefore, their individual regions of convergence

would both be |z| > Jul. However, as shown in Example 3.6, the pole at z = a is can-

celed by a zero at z = a, and therefore, the ROC extends to the entire z—plane, with the

exception of z = 0.

We have already exploited the linearity property in our previous discussion of the

use of the partial fraction expansion for evaluating the inverse z-transform. With that

procedure, X(z) is expanded into a sum of simpler terms, and through linearity, the
inverse z-transform is the sum of the inverse transforms of each of these terms.
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3.4.2 Time Shifting

According to the time-shifting property,

x[n — no] <——Z—> ["0 X(z), ROC = RJ|E (except for the
possible addition or

deletion of z = 0 or z = 00).

The quantity no is an integer. If no is positive, the original sequence x[n] is shifted right,

and if no is negative, x[n] is shifted left. As in the case of linearity, the ROC can be

changed, since the factor ["0 can alter the number of poles at z = 0 or z = 00.

The derivation of this property follows directly from the z—transform expression

in Eq. (3.2). Specifically, if y[n] = x[n — no], the corresponding z-transform is
00

Y(z) = Z x[n - no]z_".
n=—oo

With the substitution of variables m = n — no,
00

Yo) = Z x[sz-(m+"°>
m=—oo

or

Y(z) = z‘”°X(z).

The time-shifting property is often useful, in conjunction with other properties

and procedures, for obtaining the inverse z-transform. We illustrate with an example.

Example 3.1 4 Shifted Exponential Sequence

Consider the z-transform

1

X(z)= 1. we
2—7:

 

From the ROC, we identify this as corresponding to a right-sided sequence. We

can first rewrite X(z) in the form

X(z) = —1—, lzl > z. (3.55)

-.r This z-transform is of the form of Eq. (3.39) with M = N = 1, and its expansion in the

_ form of Eq. (3.43) is

4
Xz =—4+—.

() 1—413“ (3.56)

From Eq. (3.56), it follows that x[n] can be expressed as

x[n] = —4.s[n] + 4 G)" u[n]. (3.57)
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An expression for x[n] can be obtained more directly by applying the time-shifting

property. First, X(2) can be written as

_ 1

X(Z) = Z 1, IZI > (3.58)
From the time-shifting property, we recognize the factor z‘! in Eq. (3.58) as being

. . . . . 1 n .
assoc1ated With a time shift of one sample to the right of the sequence (3) u[n]; 1.e.,

x[n] = (%)n71u[n — 1]. (3.59)

It is easily verified that Eqs. (3.57) and (3.59) are the same for all values of n; i.e., they

represent the same sequence.

3.4.3 Multiplication by an Exponential Sequence

The exponential multiplication property is expressed mathematically as

z8x[nl «3—» X(z/zo), ROC = Izole.

The notation ROC = {2:0le denotes that the ROC is R. scaled by Izol; i.e., if R. is the

set of values of z such that rR < |z| < rL, then lzole is the set of values of z such that

1Z0|7R < IZI < lZolrL- \

This property is easily shown simply by substituting z3x[n] into Eq. (3.2). As a
consequence of the exponential multiplication property, all the pole—zero locations are

scaled by a factor zg, since, if X(z) has a pole at z = 21 , then X(z§'z) will have a pole at
z = 2021. If 20 is a positive real number, the scaling can be interpreted as a shrinking or

expanding of the z-plane; i.e., the pole and zero locations change along radial lines in the

z-plane. If 20 is complex with unity magnitude, so that 20 = ejw“ , the scaling corresponds

to a rotation in the z-plane by an angle of mo; i.e,, the pole and zero locations change

in position along circles centered at the origin. This in turn can be interpreted as a

frequency shift or translation, associated with the modulation in the time domain by

the complex exponential sequence eju’o". That is, if the Fourier transform exists, this

property has the form

ejw°”x[n] <—f—> X(ej(‘”““°)).

Example 3.1 5 Exponential Multiplication

Starting with the transform pair

2 1

u[n] <-—> 1 _Z_1.
 

lzl > 1, (3.60)

we can use the exponential multiplication property to determine the z—transform of

x[n] = r" cos(cu0n)u[n]. (3.61)

First, x[n] is expressed as

x[n] = %(rej‘”°)"u[n] + %(re‘j“’”)"u[n].
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Then, using Eq. (3.60) and the exponential multiplication property, we see that
1

%(re’“’°)"u[n] <3» ITr—ja—Wfi, |z| > r,

1 ‘ Z l
§(re_""°)”u[n] <—> 7W, |z| > r.

From the linearity property, it follows that

i %

X(Z) = W+W. lZl > r (3.62)
(1—rcoswoz ) |Z|>r_

_ 1 — 2r coswoz‘1 +rzz—2’

3.4.4 Differentiation of X(z)

The differentiation property states that

z dX(Z)

nx[n] +—> —z dz , ROC = Rx.
 

This property is verified by differentiating the z-transform expression of Eq. (3.2); i.e.,

 

X(z) = i x[n]z_",

= Z nx[n]z_" Zlnxlnll-

We illustrate the use of the differentiation property with two examples.

Example 3.16 Inverse of Non-Rational z-Transform

In this example, we use the differentiation property together with the time-shifting

property to determine the inverse z—transform considered in Example 3.11. With

X(z) = log(1 + az‘l). lzl > lal,

we first differentiate to obtain a rational expression:

dX(z) _ —az_2
dz _ 1 +az-1'

 

From the differentiation property,

nx[n](i_de(z)_ (1.2—1
dz —1+az_1’

 

|z| > lal. (3.63)
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The inverse transform of Eq. (3.63) can be obtained by the combined use of the

z-transform pair of Example 3.1, the linearity property, and the time-shifting property.

Specifically, we can express nx[n] as

nx[n] = a(~a)"_1u[n — 1].
Therefore,

x[n] = (#1)"+1 071411 — 1] <3) log(1+az_1), |z| > lal.

Example 3.1 7 Second-Order Pole

As another example of the use of the differentiation property, let us determine the

z-transform of the sequence

x[n] = na"u[n] = n(a"u[n]).

From the z-transform pair of Example 3.1 and the differentiation property, it follows
that

X(z) = —zdiz. |z| > lal
az—l

= —-—(1_az_l)2, IZI > MI-
Therefore,

na"u[n] (i) (1—_a::_—1)2, |z| > |a|.

3.4.5 Conjugation of a Complex Sequence

The conjugation property is expressed as

x*[n] (i) X*(z*), ROC = Rx.

This property follows in a straightforward manner from the definition of the z-transform,

the details of which are left as an exercise (Problem 3.51).

3.4.6 Time Reversal

By the time-reversal property,

x*[—n] «i» X*(1/z*), ROC = —1—.
Rx

The notation ROC = 1/ R)[ implies that RJ|r is inverted; i.e., if Rx is the set of values of z

such thatrR < |z| < rL, then the ROC is the set ofvalues of z such that 1/rL < |z| < 1/rR.

Thus, if zo is in the ROC for x[n], then 1/ z3 is in the ROC for the z-transform of x*[—n].

If the sequence x[n] is real or we do not conjugate a complex sequence, the result
becomes

x[—n] (i) X(1/z), ROC = Ri.
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As with the conjugation property, the time-reversal property follows easily from the

definition of the z-transform, and the details are left as an exercise (Problem 3.51).

Example 3.18 Time-Reversed Exponential Sequence

As an example of the use of the property of time reversal, consider the sequence

x[n] = a‘"u[—n],

which is a time-reversed version of a"u[n]. From the time-reversal property, it follows
that

1 —a'lz‘1

l—az _1—a—‘z—"

 —1
|.X(Z) = Izl < la

3.4.7 Convolution of Sequences

According to the convolution property,

x1[n] * x2[n] (i) X1(z)X2(z), ROC contains RX, 0 RM.

To derive this property formally, we consider

y[n] = Z xltklxztn—k],

so that :00

Y(z) = Z ylnlz’"

= Z { Z x1[k]x2[n—k]}z_".n=—oo kz—oo

If we interchange the order of summation,
00

Y(z) = Z x1[k] Z x2[n—k]z_".
kz—oo

Changing the index of summation in the second sum from n to m = n — k, we obtain

Y(z) = Z x1[k]{ Z xz[mlz""}z"‘~kz—oo mz-OO

Thus, for values of 2 inside the regions of convergence of both X1(z) and X2(z), we can
write

Y(z) = X1(z)X2(Z),

where the region of convergence includes the intersection of the regions of convergence

of X1(z) and X2(z). If a pole that borders on the region of convergence of one of the

z-transforms is canceled by a zero of the other, then the region of convergence of Y(z)

may be larger. As we develop and exploit it in Chapter 5, the convolution property

plays a particularly important role in the analysis of LTI systems. Specifically, as a con-
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sequence of this property, the z-transform of the output of an LTI system is the product

of the z-transform of the input and the z-transform of the system impulse response. The

z-transform of the impulse response of an LTI system is typically referred to as the

system function.

Example 3.1 9 Evaluating a Convolution Using
the z-TI-ansform

Let x1[n] = a"u[n] and x2 [n] = u[n]. The corresponding z-transforms are
00

_ 1

X1(Z) = Ed’z ’1 = 1__—az_l, '1' > '0'.
11:0

and

°° 1

X2(Z)=Z%Z—n=1—:F, IZI>1.It:

If |a| < 1, the z-transform of the convolution of x1 [n] with x2 [n] is then

1 2z
Y = —~—— = —, 1. 3.64(Z) (1 — az'1)(1 — z‘l) (z — a)(z — 1) lzl > ( )

9m

z-plane

916

Region of
convergence

 
Figure 3.14 Pole—zero plot for the z—transform of the convolution of the

sequences u[n] and a"u[n].

The poles and zeros of Y(z) are plotted in Figure 3.14, and the region of convergence

is seen to be the overlap region. The sequence y[n] can be obtained by determining
the inverse z—transfonn. Expanding Y(z) in Eq. (3.64) in a partial fraction expansion,

we get

1 1

Y(z)= (—————a |z|>1.
 

l—a l—z"1 1 —az—1

Therefore,

1

1 _ a (u[n] — a”+1u[n]).
 

ylnl =
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TABLE 3.2 SOME z-TRANSFORM PROPERTIES 

 

Section

Reference Sequence Transform ROC

x[n] X(Z) RI

x1[n] X1(Z) Rx]

x2[n] Xz(z) RI2

3.4.1 an [n] + bx2[n] aX1(z) + bX2(z) Contains Rx1 fl sz

3.4.2 x[n — no] z‘"0 X(z) RI, except for the possible
addition or deletion of

the origin or 00

3.4.3 zgx[n] X(z/zo) Izole

3.4.4 nx[n] —zd};(z) RI, except for the possible
2 addition or deletion of

the origin or 00

3.4.5 x"[n] X‘(z") RI

1

’Re[x[n]} §[X(z) + X*(z*)] Contains Rx
1

Jm[x[n]} i—T[X(z) — X‘(z")] Contains R;I

3.4.6 x*[—n] X*(1/z*) l/Rx

3.4.7 x1[n] * x2[n] X1(Z)X2(Z) Contains Rx1 0 ml

3.48 Initial-value theorem:

x[n] = 0, n < 0 lim X(z) = x[0]2—500
 

3.4.8 Initial-Value Theorem

If x[n] is zero for n < 0 (Le, if x[n] is causal), then

x[0] : lim X(z).Z—*OO

This theorem is shown by considering the limit of each term in the series of Eq. (3.2).

(See Problem 3.56.)

3.4.9 Summary of Some z-Transform Properties

We have presented and discussed a number of the theorems and properties of

z-transforms, many of which are useful in manipulating z—transforms. These proper-
ties and a number of others are summarized for convenient reference in Table 3.2.

3.5 SUMMARY

In this chapter, we have defined the z-transform of a sequence and shown that it is a

generalization of the Fourier transform. The discussion focused on the properties of

the z—transform and techniques for obtaining the z—transform of a sequence and vice
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versa. Specifically, we showed that the defining power series of the z-transform may

converge when the Fourier transform does not. We explored in detail the dependence

of the shape of the region of convergence on the properties of the sequence. A full

understanding of the properties of the region of convergence is essential for successful

use of the z-transform. This is particularly true in developing techniques for finding

the sequence that corresponds to a given z-transform, i.e., finding inverse z—transforms.

Much of the discussion focused on z-transforms that are rational functions in their region

of convergence. For such functions, we described a technique of inverse transformation

based on the partial fraction expansion of X(2). We also discussed other techniques for

inverse transformation, such as the use of tabulated power series expansions and long
division.

An important part of the chapter was a discussion of some of the many properties

of the z-transform that make it useful in analyzing discrete-time signals and systems/A

variety of examples demonstrated how these properties can be used to find direct and
inverse z-transforms. 5

Basic Problems with Answers

 

3.1. Determine the z-transform, including the region of convergence, for each of the following

sequences:

(a) (%)"u[n]

(b) —(%)nu[—n—1]

(c) (%)"u[—n]
(d) 3W

(e) 8[n — 1]

(f) 3[" +1]

(g) (%)"(u[n1—u[n— 10])
3.2. Determine the z—transform 0f the sequence

n, OgngN—l,

x[”]= N N<n.

3.3. Determine the z-transform of each of the following sequences. Include with your answer

the region of convergence in the z-plane and a sketch of the pole—zero plot. Express all

sums in closed form; a can be complex.

(a) xa[n] = ulnl, 0 < |ot| < 1.

1, 0 5 n 5 N — 1,

(b) xb[n] : {0, otherwise.
n, 0 5 n S N,

(c) xc[n]= 2N—n, N+1§n52N,

0, otherwise.

Hint: Note that xb[n] is a rectangular sequence and xc [n] is a triangular sequence. First

express xc [n] in terms of xb [n].
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3.4. Consider the z-transform X(z) whose pole—zero plot is as shown in Figure P3.4-1.

(1]) Determine the region of convergence of X(z) if it is known that the Fourier transform

exists. For this case, determine whether the corresponding sequence x[n] is right sided,

left sided, or two sided. -\
(b) How many possible two-sided sequences have the pole—zero plot shown in Fig-\

ure P3.4—1?

(c) Is it possible for the pole—zero plot in Figure P3.4-1 to be associated with a sequence

that is both stable and causal? If so, give the appropriate region of convergence.

9m

Unit circle

 
Figure P3.4-1

3.5. Determine the sequence x[n] with z-transform

X(z) = (1 + Zz)(1+ 32-1)(1— 51).

3.6. Following are several z—transforms. For each, determine the inverse z-transform using both

methods—partial fraction expansion and power series expansion—discussed in Section 3.3.

In addition, indicate in each case whether the Fourier transform exists.
1

(a) X(z) = HT, IZI >%2

1

(b) X(Z)=fijzjs |Z|<%2

1— lz‘1
(c)Xz)=—~2——. IZI>l( 1+ %z‘1+§z‘2 2

_ ifl 1
(d) X(z) — 1_ ,2, 12:1 > 54

1—az'1
(e) X(z) = _——« IZI>|1/a|

z 1—a

3.7. The input to a causal linear time-invariant system is

x[n] = u[—n — 11+ 6)" u[n].

The z-transform of the output of this system is
1

— - z

Y(z) = ——2——.
(1 - iz‘1)(1 + z“)

(a) Determine H(z), the z-transform of the system impulse response. Be sure to specify

the region of convergence.

(b) What is the region of convergence for Y(z)?

(c) Determine y[n].
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3.8. The system function of a causal linear time-invariant system is

l—z'1
Hz 2—.
() 1+%z—1

The input to this system is

x[n] = u[n] + u[—n — 1].

(a) Find the impulse response of the system, h[n].

(b) Find the output y[n].

(c) Is the system stable? That is, is h[n] absolutely summable?

3.9. A causal LTI system has impulse reSponse h[n], for which the z-transform is

H(z) =

(a) What is the region of convergence of H(z)?

(b) Is the system stable? Explain.

(c) Find the Z-transform X(z) of an input x[n] that will produce the output

ylnl = —%(-i)”u[nl — §(2)”ul-n -1l-

(d) Find the impulse response h[n] of the system.

3.10. Without explicitly solving for X(z), find the region of convergence of the z-transform of

each of the following sequences, and determine whether the Fourier transform converges:

«0 M = [(l)"+ (%)"l uln— 101

1, —10 s n s 10.

(b) xlnl - {0, otherwise,
(c) x[n] = 2”u[—-n]

(a) xln] = [(l)” — (eh/5"] utn — 1]
(e) x[n] = u[n +10] — u[n + 5]

(n xln] = (%)"‘1u[n] +(2 + 31)"-2ut—n — 1]

3.11. Following are four z—transforms. Determine which ones could be the z-transform of a causal

sequence. Do not evaluate the inverse transform. You should be able to give the answer by

inspection. Clearly state your reasons in each case.

(1-2“)2

‘“’ < +24)
_ 2

(b) (2 1)
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3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.
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Sketch the pole—zero plot for each of the following z-transforms and shade the region of

convergence:

1 — %z—1X = R0 : 2
(5:) 1(2) 1+22_1 C l21<

1 — %z_1
0’) X2 Z = , x2 n causal“ (1 ez-Iw — gz-l) ”

1 —1 _ 2 —2
(c) X3(z) = +1: Z , x3[n] absolutely summable.

_ _z—1 + Z—Z

A causal sequence g[n] has the z-transform

G(z) = sin(z‘1)(1 + 32-2 + 22—4).

Find g[11].
1

If H(z) = 1 1 and h[n] = Ala’l‘u[n] + A2a§u[n], determine the values of A1, A2, (11,
and a;

1 _ ;z_10

If H(z) = 1 10? for |z| > 0, is the corresponding LTI system causal? Justify your_ _z-

anSWCr. 2

When the input to an LTI system is

x[n] = u[n] + (2)"u[—n — 1],
the corresponding output is

y[n] = 5 u[n] —5 u[n].
(:1) Find the system function H(z) of the system. Plot the pole(s) and zero(s) of H(z) and

indicate the region of convergence.

([1) Find the impulse response h[n] of the system.

(c) Write a difference equation that is satisfied by the given input and output.

(d) Is the system stable? Is it causal?

Consider an LTI system with input x[n] and output y[n] that satisfies the difference equation

ylnl — gin — 11+ yln —2] = xln] —x[n — 1].
Determine all possible values for the system’s impulse response h[n] at n = 0.

A causal LTI system has the system function

1+ 22‘1 + z—2

H(Z) : (1+ %z*1) (1 — 2—1).

(a) Find the impulse response of the system, h[n].

(1)) Find the output of this system, y[n], for the input

x[n] = elm/2)”.

For each of the following pairs of input z—transform X(z) and system function H(z), deter-

mine the region of convergence for the output z—transform Y(z):
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(a)

1 1
X =__, _

(Z) 1+%z_1 IZI>2
1 1

H =— —

(Z) 1_%z_1. lzrl>4
(b)

1

X(Z)= m. IZI<2
1 1

H =___, _
(Z) 1_%z_1 IZI>3

(c)

X(z) 1 Izl 3= ———, — < <

(1 — §z—1)(1 + 3z-1) 5

1+3:-1 1
H Z = _-', Z > —

() 1+%Z_1 || 3
3.20. For each of the following pairs of input and output z—transforms X(z) and Y(z), determine

the region of convergence for the system function H(z):

(a)

X(z) = lzl >3

Y(z) = +224» IZI >2
(b)

X(z) = 1 2Z4. IZI <%
1

Y“) = (1— %z“)1(1+%z‘1)' %< 'Z' < 5

Basic Problems

3.21. Consider a linear time-invariant system with impulse responSe

a", n30,

hln]={0 n<0
and input

_ 1, 05n5(N—1),x[n] _ {0, otherwise.
(8) Determine the output y[n] by explicitly evaluating the discrete convolution of x[n]

and h[n].

(b) Determine the output y[n] by computing the inverse z-transform of the product of

the z-transforms of x[n] and h[n].
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3.22. Consider an LTI system that is stable and for which H(z), the z-transform of the impulse

response, is given by
3

HZ =——-——.
() 1+%z—1

Suppose x[n], the input to the system, is a unit step sequence.

(a) Find the output y[n] by evaluating the discrete convolution of x[n] and h[n].

(b) Find the output y[n] by computing the inverse z—transform of Y(z).

3.23. An LTI system is characterized by the system function

1—1-2

=—__(22) m);

(3) Determine the impulse response of the system,

(b) Determine the difference equation relating the system input x[n] and the system

output y[n].

3.24. Sketch each of the following sequences and determine their z-transforms, including the

region of convergence:

(3) Z 5[n —4k]
kz—oc

(b) % [ea/'7'" + cos(%n) + sin +27rn)] u[n]
3.25. Consider a right—sided sequence x[n] with z—transform

1 _ 22
(1 — az“)(1 — bz'1)*(z - a)(z - b)'

In Section 3.3 we considered the determination of x[n] by carrying out a partial fraction

expansion, with X (2:) considered as a ratio of polynomials in 2". Carry out a partial frac-

tion expansion of X(2), considered as a ratio of polynomials in z, and determine x[n] from

this expansion.

X(Z)=

Advanced Problems

3.26. Determine the inverse z-transform of each of the following. In Parts (a)—(c), use the methods

specified. In Part (d), use any method you prefer.

(a) Long division:

1— l -1

X(z) = x[n] a right-sided sequence
1 ‘l' 32—1

(b) Partial fraction:

3

X(z) = —l—T—, x[n] stable
Z — z — 31—1

(c) Power series:

X(z)=ln(1~ 4z), lzl < §

1

(d) X(z) = —.——. lzl > (3)”
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3.27. Using any method, determine the inverse z—transform for each of the following:
1

(a) X(z) = 12———~
(1+ 52-1) (1 — 2z-1)(1— 32-1)

(b) X(z) = ez’1
3~2

(c) X(z): :4".
3.28. Determine the inverse z-transform of each of the following. You should find the z—transform

properties in Section 3.4 helpful.

32—3

( — tz-‘V’
(b) X(z) = sin(z), ROC includes |z| = 1

z7 — 2

1 — 2—7,

, stable sequence

 

left-sided sequence

(a) X(Z) = x[n] left sided

(c) X(z) =

 

|z|>1

3.29. Determine a sequence x[n] whose z—transform is X(z) = eZ + 21”, z :,£ 0.

3.30. Determine the inverse z-transform of

X(z) = log2(§ — z), lzl < %,

by

(a) using the power series
°° i

log(1—x)=—le—.. |x|<1;
i=1

(b) first differentiating X(z) and then using the derivative to recover x[n].

3.31. For each of the following sequences, determine the z-transform and region of convergence,

and sketch the pole—zero diagram:

(a) x[n] = a”u[n] + b"u[n] + c"u[—n — 1], |a| < |b| < lcl

(b) x[n] = nza”u[n]

(c) x[n] = e"4 [cos u[n] — e"4 [cos u[n — 1]

3.32. The pole—zero diagram in Figure P3.32-1 corresponds to the z—transform X(z) of a causal

sequence x[n]. Sketch the pole—zero diagram of Y(z), where y[n] = x[—n +3]. Also, specify

the region of convergence for Y(z).

fim

“y1 9R6
Figure P3.32-1

3.33. Let x[n] be the sequence with the pole—zero plot shown in Figure P3.33—1. Sketch the

pole—zero plot for:

(a) y[n] = (%)"x[n]
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3.34.

3.35.

3.36.

3.37.

3.38.

3.39.
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71'"

(b) w[n] = cos(7)x[n]

 
Figure P3.33-1

Consider an LTI system that is stable and for which H(z), the z-transform of the impulse

response, is given by

3 — 7 -1 + 52-2
H(z) =

1 — 32‘1 + 2‘2

Suppose x[n], the input to the system, is a unit step sequence.

(3) Find the output y[n] by evaluating the discrete convolution of x[n] and h[n].

(b) Find the output y[n] by computing the inverse z-transform of Y(z).

Determine the unit step response of the causal system for which the z-transform of the

impulse response is

1 — Z3

1 — Z4-

If the input x[n] to an LTI system is x[n] = u[n], the output is

yln] = (%)"‘]uln +1].

(2) Find H(z), the z-transform of the system impulse response, and plot its pole—zero

diagram.

(h) Find the impulse response h[n].

(c) Is the system stable?

(d) Is the system causal?

11(2) =

 

Consider a sequence x[n] for which the z-transform is
1 1

X =_3_ A
(z) 1_%Z_1+1_2z_1

and for which the region of convergence includes the unit circle. Determine x[0] using the
initial-value theorem.

Consider a stable linear time-invariant system. The z—transform of the impulse response is

z‘1 + 2‘2
1 _ 1 -1 ‘

(1‘ iz 1)(1+ 3Z )

Suppose x[n], the input to the system, is 2u[n]. Determine y[n] at n = 1.

11(2) =

Suppose the z-transform of x[n] is

X(z) =
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It is also known that x[n] is a stable sequence.

(a) Determine the region of convergence of X(z).

(b) Determine x[n] at n = —8.

In Figure P3.40-1, H(z) is the system function of a causal LTI system.

(a) Using z-transforms of the signals shown in the figure, obtain an expression for W(z) in
the form

W(Z) = H1(Z)X(Z) + H2(Z)E(Z).

where both H1(z) and H2(z) are expressed in terms of H(z).

(b) For the special case H(z) = z‘l/(l — 2“), determine H1(z) and H2(z).

(c) Is the system H(z) stable? Are the systems H1(z) and H2(z) stable?

e[n]

 
Figure P3.40-1

In Figure P3.41-l, h[n] is the impulse response of the LTI system within the inner box. The

input to system h[n] is v[n], and the output is w[n]. The z—transform of h[n], H(z), exists in

the following region of convergence:

0 < rmin < |z| < rmax < 00.

(a) Can the LT] system with impulse response h[n] be BIBO stable? If so, determine

inequality constraints on rm“ and rmax such that it is stable. If not, briefly explain why.

(b) Is the overall system (in the large box, with input x[n] and output y[n]) LTI? If so, find

its impulse response g[n]. If not, briefly explain why.

(c) Can the overall system be BIBO stable? If so, determine inequality constraints relating

a, rmin, and rm“ such that it is stable. If not, briefly explain why.

 
Figure P3.41-1

A causal and stable LTI system 8 has its input x[n] and output y[n] related by the linear

constant-coefficient difference equation
10

yln] + Zakytn — k1 = xln] + fixln — 1].
k=l

Let the impulse response of S be the sequence h[n].

(a) Show that h[0] must be nonzero.

(b) Show that (11 can be determined from the knowledge of h[0] and h[1].

(c) If h[n] = (0.9)"cos(Jrn/4) for 0 5 n g 10, sketch the pole—zero plot for the system

function of S, and indicate the region of convergence.
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3.43. When the input to an LTI system is

x[n] = u[n] + 2"u[—n — 1],

the output is

y[n] =6 u[n] —6 u[n].

(a) Find the system function H(z) of the system. Plot the poles and zeros of H(z), and

indicate the region of convergence.

(b) Find the impulse reSponse h[n] of the system.

(c) Write the difference equation that characterizes the system.

(d) Is the system stable? Is it causal?

3.44. When the input to a causal LTI system is

x[n] = —§— u[n] — §Z”u[—n — 1],

the z-transform of the output is

(a) Find the z—transform of x[n].

(b) What is the region of convergence of Y(z)?

(c) Find the impulse response of the system.

(d) Is the system stable?

3.45. Let x[n] be a discrete-time signal with x[n] = 0 for n 5 0 and z—transform X(z). Further-

more, given x[n], let the discrete—time signal y[n] be defined by

1

y[n] ___ { ;x[n], n > 0,0, otherwise.

(a) Compute Y(z) in terms of X(z).

(b) Using the result of Part (a), find the z-transform of

1

n +6[n]

 

w[n] = u[n — 1].

3.46. The signal y[n] is the output of an LTI system with impulse response h[n] for a given input

x[n]. Throughout the problem, assume that y[n] is stable and has a z-transform Y(z) with the

pole—zero diagram shown in Figure P3.46-1. The signal x[n] is stable and has the pole—zero

diagram shown in Figure P3.46-2.
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z-plane

Figure P3.46—1

0.5

09m(z)
—0.5   

flea) Figure P3 46-2

(2) What is the region of convergence, Y(z)?

(b) Is y[n] left sided, right sided, or two sided?

(c) What is the ROC of X(z)?

(d) Is x[n] a causal sequence? That is, does x[n] : 0 for n < 0?

(e) What is x[0]‘?

(f) Draw the pole—zero plot of H(z), and specify its ROC.

(g) Is h[n] anticausal? That is, does h[n] = 0 for n > 0?

Extension Problems

3.47. Letx[n] denote a causal sequence; i.e.,x[n] = 0, n < 0. Furthermore, assume thatx[0] #— 0.

3.48.

(a) Show that there are no poles or zeros of X(z) at z = 00, Le, that lim X(z) is nonzero
and finite. Ewe

(b) Show that the number of poles in the finite z-plane equals the number of zeros in the

finite z—plane. (The finite z—plane excludes z = 00.)

Consider a sequence with z—transform X(z) = P(z)/Q(z), where P(z) and Q(z) are poly-

nomials in z. If the sequence is absolutely summable and if all the roots of Q(z) are inside

the unit circle, is the sequence necessarily causal? If your answer is yes, clearly explain. If

your answer is no, give a counterexample.
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3.49.

3.50.

3.51.

3.52.

3.53.
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Let x[n] be a causal stable sequence with z-transform X(z). The complex cepstrum £[n] is

defined as the inverse transform of the logarithm of X(z); i.e.,

X’(z) = log X(z) (—2—)

where the ROC of X(z) includes the unit circle. (Strictly speaking, taking the logarithm of
a complex number requires some careful considerations. Furthermore, the logarithm of a

valid z-transform may not be a valid z-transform. For now, we assume that this operation

is valid.)

Determine the complex cepstrum for the sequence

x[n] = 5[n] +aS[n — N], where la| <1.

Assume that x[n] is real and even; i.e., x[n] = x[—n]. Further, assume that 2:0 is a zero of

X(z); i.e., X(Z()) = 0.

(a) Show that 1/20 is also a zero of X(z).

(b) Are there other zeros of X(z) implied by the information given?

Using the definition of the z-transform in Eq. (3.2), show that if X(z) is the z-transform of

x[n] = xR[n] + jx1[n], then

(a) x*[n] (—3—) X*(z*)

(b) x[—n] «3 mm

m min] 41> %[X(z)+ X120]

(«1) xiin] «‘1 gymz) — X*(z*>1
Consider a real sequence x[n] that has all the poles and zeros of its z-transform inside the

unit circle. Determine, in terms of x[n], a real sequence x1 [n] not equal to x[n], but for which

x1[0] = x[O], 1x1[n]| = |x[n]l, and the z-transform of x1 [n] has all its poles and zeros inside
the unit circle.

A real finite—duration sequence whose z-transform has no zeros at conjugate reciprocal pair

locations and no zeros on the unit circle is uniquely specified to within a positive scale factor

by its Fourier transform phase (Hayes et al., 1980).

An example of zeros at conjugate reciprocal pair locations is z : a and (a*)“. Even

though we can generate sequences that do not satisfy the preceding set of conditions, almost

any sequence of practical interest satisfies the conditions and therefore is uniquely specified

to within a positive scale factor by the phase of its Fourier transform.

Consider a sequence x[n] that is real, that is zero outside 0 5 n 5 N — 1, and whose

z-transform has no zeros at conjugate reciprocal pair locations and no zeros on the unit

circle. We wish to develop an algorithm that reconstructs cx[n] from <iX(ef”’), the Fourier

transform phase of x[n], where c is a positive scale factor.

(a) Specify a set of ( N — 1) linear equations, the solution to which will provide the recovery

of x[n] to within a positiVe or negative scale factor from tan{<tX(e1"“)}. You do not have

to prove that the set of (N — 1) linear equations has a unique solution. Further, show

that if we know <tX(ej“’) rather than just tan{<1X(ej“’)}, the sign of the scale factor
can also be determined.

(b) Suppose

0, n<0,

1, n=0,

x[n]: 2, n=1,
3, n22,

0, n>3
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Using the approach developed in Part (a), demonstrate that cx[n] can be determined
from <IX(eJ"’), where c is a positive scale factor.

For a sequence x[n] that is zero for n < 0, use Eq. (3.2) to show that

lim X(z) = x[0].Z—DOO

What is the corresponding theorem if the sequence is zero for n > 0?

The aperiodic autocorrelation function for a real-valued stable sequence x[n] is defined as
C!)

can] = Z xlklxln+kl
k=—oo

(a) Show that the z-transform of cxx[n] is

Gnu) = X(z)X(z—‘)-

Determine the region of convergence for Cxx(z).

(b) Suppose that x[n] = a"u[n]. Sketch the pole—zero plot for C1,,(z), including the region

of convergence. Also, find C” [n] by evaluating the inverse z-transform of Cxx(z).

(c) Specify another sequence, x1 [n], that is not equal to x[n] in Part (b), but that has the

same autocorrelation function, cube], as x[n] in Part (b).

(d) Specify a third sequence, x2[n], that is not equal to x[n] or x1 [n], but that has the same

autocorrelation function as x[n] in Part (b).

Determine whether or not the function X(z) = z“ can correspond to the z-transform of a

sequence. Clearly explain your reasoning.

Let X(z) denote a ratio of polynomials in z; i.e.,

B (z)

A(z)'

Show that if X(z) has a first-order pole at z = 20, then the residue of X(z) at z = 2:0 is

equal to

X(z)=

13(Z0)

A’(zo)’

where A’(zo) denotes the derivative of A(z) evaluated at z = zo.

 



4
SAMPLING OF

CONTINUOUS—TIME SIGNALS

4.0 INTRODUCTION

Discrete—time signals can arise in many ways. but they most commonly occur as repre-

sentations of sampled continuous-time signals. It is remarkable that under reasonable

constraints, a continuous-time signal can be quite accurately represented by samples

taken at discrete points in time. In this chapter we discuss the process of periodic sam-

pling in some detail. including the phenomenon of aliasing. which occurs when the

signal is not bandlimited or when the sampling rate is too low. Of particular impor—

tance is the fact that continuous-time signal processing can be implemented through a

process of sampling, discrete-time processing. and the subsequent reconstruction of a

continuous-time signal.

4.1 PERIODIC SAMPLING

Although other possibilities exist (see Steiglitz. 1965; Oppenheim and Johnson, 1972),

the typical method of obtaining a discrete-time representation of a continuous—time

signal is through periodic sampling. wherein a sequence of samples. x[n], is obtained

from a continuous-time signal xc(t) according to the relation

x[n] = x6017”). —oo < n < 00. (4.1)

In Eq. (4.1). T is the sampling period, and its reciprocal. fi- = 1/ T. is the sampling

140
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_ Figure 4.1 Block diagram_ T

xm xC(n ) representation of an ideal
continuous-to-discrete-time (C/D)

T converter.

frequency, in samples per second. We also express the sampling frequency as S2,. = 221/ T

when we want to use frequencies in radians per second.

We refer to a system that implements the operation of Eq. (4.1) as an ideal

continuous-to-discrete-time (C/D) converter, and we depict it in block diagram form

as indicated in Figure 4.1. As an example of the relationship between x(.(t) and x[n],

in Figure 2.2 we illustrated a continuous-time speech waveform and the corresponding

sequence of samples.

In a practical setting, the operation of sampling is implemented by an analog-to-

digital (A/D) converter. Such systems can be viewed as approximations to the ideal

C/D converter. Important considerations in the implementation or choice of an A/D

converter include quantization of the output samples, linearity of quantization steps,

the need for sample—and-hold circuits, and limitations on the sampling rate. The effects

of quantization are discussed in Sections 4.8.2 and 4.8.3. Other practical issues of A/D

conversion are electronic circuit concerns that are outside the scope of this text.

The sampling operation is generally not invertible; i.e., given the output x[n],

it is not possible in general to reconstruct x60), the input to the sampler, since many

continuous—time signals can produce the same output sequence of samples. The inherent

ambiguity in sampling is a fundamental issue in signal processing. Fortunately, it is

possible to remove the ambiguity by restricting the input signals that go into the sampler.

It is convenient to represent the sampling process mathematically in the two stages

depicted in Figure 4.2(a). The stages consist of an impulse train modulator followed

by conversion of the impulse train to a sequence. Figure 4.2(b) shows a continuous-

time signal xc(t) and the results of impulse train sampling for two different sampling

rates. Figure 4.2(c) depicts the corresponding output sequences. The essential difference

between x5(t) and x[n] is that xs(t) is, in a sense, a continuous—time signal (specifically,

an impulse train) that is zero except at integer multiples of T. The sequence x[n], on

the other hand, is indexed on the integer variable n, which in effect introduces a time

normalization; i.e., the sequence of numbers x[n] contains no explicit information about

the sampling rate. Furthermore, the samples of xc(t) are represented by finite numbers

in x[n] rather than as the areas of impulses, as with xs(t).

It is important to emphasize that Figure 4.2(a) is strictly a mathematical represen-

tation that is convenient for gaining insight into sampling in both the time domain and

frequency domain. It is not a close representation of any physical circuits or systems

designed to implement the sampling operation. Whether a piece of hardware can be

construed to be an approximation to the block diagram of Figure 4.2(a) is a secondary

issue at this point. We have introduced this representation of the sampling operation

because it leads to a simple derivation of a key result and because the approach leads to

a number of important insights that are difficult to obtain from a more formal derivation

based on manipulation of Fourier transform formulas.
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OD converter

 

  

 
 

Conversion from

impulse train
to discrete—time

sequence
x[n] : xl,(nT)

 
  

—2T—T 0 T 2T 1 —2T —T 0 T 2T I

  
—4—3—27l 01 234 n

(C)

Figure 4.2 Sampling with a periodic impulse train followed by conversion to

a discrete—time sequence. (a) Overall system. (b) xs(t) for two sampling rates.

(0) The output sequence for the two different sampling rates.

4.2 FREQUENCY-DOMAIN REPRESENTATION OF SAMPLING

To derive the frequency—domain relation between the input and output of an ideal C/D

converter, let us first consider the conversion of xc(t) to x5(t) through modulation of

the periodic impulse train
DC

s(t) = Z 50 — nT).
n=7C>C

(4.2)

where 6(t) is the unit impulse function, or Dirac delta function. We modulate s(t) with

xc(t), obtaining

x5(r) : xc(t)s(t)

=xc(t) ZOE 5(t—nT).
nzioc

(4.3)
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Through the “sifting property“ of the impulse function, x30) can be expressed as
DC

x41) = Z x(.(nT)8(t — nT). (4.4)
112*06

Let us now consider the Fourier transform of x_¢(r). Since‘ from Eq. (4.3), x_‘.(t) is

the product of x(.(t) and 5(1‘), the Fourier transform of x5(r) is the convolution of the

Fourier transforms X09) and SUEZ). The Fourier transform of a periodic impulse

train is a periodic impulse train (Oppenheim and Willsky. 1997). Specifically,

5('o)— 2” 552 kg) (45)j — T A. . .-k:—oe

where S2,. = 27r/ T is the sampling frequency in radians/s. Since

. 1 . .

where * denotes the operation of continuous-variable convolution. it follows that

1 5X)

Xxum = ? Ext-(1m — km). (4.6)kzvcc

Equation (4.6) provides the relationship between the Fourier transforms of the in-

put and the output of the impulse train modulator in Figure 4.2(a). We see from Eq. (4.6)

that the Fourier transform of X). (r) consists of periodically repeated copies of the Fourier

transform of x(.(t). The copies of X(v(jS2) are shifted by integer multiples of the sam—

pling frequency and then superimposed to produce the periodic Fourier transform of

the impulse train of samples. Figure 4.3 depicts the frequency—domain representation of

impulse train sampling. Figure 4.3(a) represents a bandlimited Fourier transform whose

highest nonzero frequency component in X(.(jQ) is at SEN. Figure 4.3(b) shows the pe—

riodic impulse train 509), and Figure 4.3(c) shows XX(jS2)r the result of convolving

X(.(jQ) with 5(1'52). From Figure 4.3(c), it is evident that when

Q’s» — 9N > RN. OT 95 > 291V.

the replicas of X(.(j52) do not overlap. and therefore, when they are added together in

Eq. (4.6), there remains (to within a scale factor of 1/ T) a replica of X(.(jS2) at each

integer multiple of S25. Consequently, x(.(t) can be recovered from x50) with an ideal

lowpass filter. This is depicted in Figure 4.4(a), which shows the impulse train modu-

lator followed by a linear time-invariant system with frequency response H,(}'SZ). For

XCUSZ) as in Figure 4.4(b), X500) would be as shown in Figure 4.4(c). where it is

assumed that $23 > ZQN. Since

Xr(j9) = Hr(jQ)X5(jQ)~ (4-8)

it follows that if H,(j52) is an ideal lowpass filter with gain T and cutoff frequency QC
such that

QN < QC < (S25 — 9N), (4.9)

then

Xr(j9) = XCUQ). (4-10)

as depicted in Figure 4.4(e).
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an. —n o v n, 20. so

Figure 4.3 Effect in the frequency

domain of sampling in the time domain.

(a) Spectrum of the original signal.

(b) Spectrum of the sampling function.
(0) Spectrum of the sampled signal with

$25 > 2m]. (d) Spectrum otthe
sampled signal with :25 < 29M.

 
If the inequality of Eq. (4.7) does not hold, i.e., if S25 5 ZSZN, the copies of X609)

overlap, so that when they are added together, Xc( j S2) is no longer recoverable by

lowpass filtering. This is illustrated in Figure 4.3(d). In this case, the reconstructed

output x,(t) in Figure 4.4(a) is related to the original continuous-time input through

a distortion referred to as aliasing distortion, or simply, aliasing. Figure 4.5 illustrates

aliasing in the frequency domain for the simple case of a cosine signal. Figure 4.5(a)

shows the Fourier transform of the signal

xc(t) = cos Slot. (4.11)

Figure 4.5(b) shows the Fourier transform of xs(t) with 520 < 95/2, and Figure 4.5(c)

shows the Fourier transform of xs(t) with $20 > 93/2. Figures 4.5(d) and (6) correspond

to the Fourier transform of the lowpass filter output for £20 < 95/22 = a/ T and $20 >

n/ T, respectively, with BC = 95/2. Figures 4.5(c) and (e) correspond to the case of
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I f 1 Figure 4.4 Exact recovery of a
’1 N 1-" 5 continuous-time signal from its samples

(6) using an ideal lowpass filter.

aliasing. With no aliasing (Figures 4.5(b) and (d)). the reconstructed output is

x,(t) = cos SZOI. (4.12)

With aliasing, the reconstructed output is

x,(t) = cos(§25 — S20)I; (4.13)

i.e., the higher frequency signal cos S20! has taken on the identity (alias) of the lower

frequency signal 005(st — $20)! as a consequence of the sampling and reconstruction.

This discussion is the basis for the Nyquist sampling theorem (Nyquist 1928; Shannon,

1949)‘ stated as follows.
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Figure 4.5 The effect of aliasing in the

(e) sampling of a cosine signal.

Nyquist Sampling Theorem: Let x(.(t) be a bandlimited signal with

X6012): 0 for 19] 3 RN. (4.14a)

Then xc(t) is uniquely determined by its samples x[n] = xc(nT), n = 0, ii, i2. .... if

2

s2: = g 3 2m. (4.14b)

The frequency 9N is commonly referred to as the Nyquistfrequency, and the frequency

ZQN that must be exceeded by the sampling frequency is called the Nyquist rare.

Thus far, we have considered only the impulse train modulator in Figure 4.2(a).

Our eventual objective is to express X(ej“’), the discrete—time Fourier transform of the

sequence x[n], in terms of X3 (jSZ) and Xc(jS'2). To this end, let us consider an alternative

expression for X309). Applying the continuous-time Fourier transform to Eq. (4.4),
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we obtain

X5(jQ) = Z awry-I'm". (4_15)

Since

xini = xc(nT) (4.16)

and

X03119) = Z x[n]e—jwn.

it follows that

Xs-(J'S?) = X(€j‘”)l(i):s2r = Mei“)- (4.18)

Consequently. from Eqs. (4.6) and (4.18).

. a 1 °°m > .

X(e’ ): 7, [2—30 X(.(j(S2 —- kSZQ). (4.19)
or equivalently,

‘ 1 Dc a) 271k
X W = # XC ‘ — — — . 4.20(e ) T3; (;(T T ( )

From Eqs. (4.18)—(4.20), we see that X(ej‘“) is simply a frequency-scaled version of

X,.(jSZ) with the frequency scaling specified by a) = SZT. This scaling can alternatively

be thought of as a normalization of the frequency axis so that the frequency S2 = $25 in

X5(jS2) is normalized to a) : 271 for X(ej‘”). The fact that there is a frequency scaling

or normalization in the transformation from X5052) to X(ef"”) is directly associated

with the fact that there is a time normalization in the transformation from x_\.(t) to x[n].

Specifically, as we see in Figure 4.2, x3(t) retains a spacing between samples equal to the

sampling period T. In contrast, the “spacing” of sequence values x[n] is always unity;

i.e., the time axis is normalized by a factor of T. Correspondingly, in the frequency

domain the frequency axis is normalized by a factor of fY = l/ T.

Example 4.1 Sampling and Reconstruction
of a Sinusoidal Signal

If we sample the continuous-time signal x(.(t) = cos(4000m) with sampling period

T = 1/6000, we obtain x[n] = x(.(nT) = cos(400071 Tn) = cos(w()n). where a)“ =

40007: T = 271/3. In this case, 525 = 211/ T : 120001 and the highest frequency of the

signal is 520 = 4000”. so the conditions of the Nyquist sampling theorem are satisfied

and there is no aliasing. The Fourier transform of xc-(t) is

X419): mm — 40007:) + 718(9 + 40007:).
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Figure 4.6 Continuous-time (a) and discrete-time (b) Fouriertransformsforsam-

pled cosine signal with frequency :20 = 400011 and sampling period T = 1/6000.

and Figure 4.6(a) shows

1 ’X.

xii/'9) = 7 2 X1019 7km) (421)
k=7x

for $23 = 12.00011. Note that X..(j§2) is a pair of impulses at Q = :l:400()11. and

we see shifted copies of this Fourier transform centered on i9... 129,-. etc. Plot-

ting X(ej"’) = X,..(jw/T) as a function of the normalized frequency a) = QT gives

Figure 4,6(b). where we have used the fact that scaling the independent variable of

an impulse also scales its area. i.e.. 6(10/ T) : T500). Note that the original frequency

90 : 400011 corresponds to the normalized frequency a)” = 400011 T = 211/3, which

satisfies the inequality a)” < 11. corresponding to the fact that 90 = 400011 < 11/ T =

600011. Figure 4.6(a) also shows the frequency response of the ideal reconstruction

filter H,(jQ) for the given sampling rate of Q". = 12.00011. It is clear from this figure

that the signal that would be reconstructed would have frequency 9“ : 400011, which

is the frequency of the original signal rift).

Example 4.2 Aliasing in the Reconstruction
of an Undersampled Sinusoidal Signal

Now suppose that the continuous-time signal is x..(r) = cos(16.000111‘), but the sam-

pling period is T = [/6000. asitwas in Example 4.1.This sampling period failsto satisfy

the Nyquist criterion. since 95 = 211/ T = 12.0001 < 290 = 32.00011. Consequently.

we expect to see aliasing. Now we see an interesting result. The Fourier transform

X109) for this case is identical to that of Figure 4.6(a). However. now the impulse

located at Q = —400011 is from Xlt(j(9 — $11)) in Eq. (4.21) rather than from X(.(j9.)

and the impulse at Q = 400011 is from X(t(j(§2 + (2,1)). Plotting X(ej‘“) : X_‘(ja)/ T)

as a function of w yields the same graph as shown in Figure 4.6(b). since we are

normalizing by the same sampling period. The fundamental reason for this is that
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the sequence of samples is the same in both cases; i.e.,

cos(16,00011n/6000) = cos(211n + 400011n/6000) = cos(211n/3).

(Note that we can add any integer multiple of 211 to the argument of the cosine

without changing its value.) Thus, we have obtained the same sequence of samples,

x[n] = cos(211n/3), by sampling two different continuous—time signals with the same

sampling frequency. In one case the sampling frequency satisfied the Nyquist criterion,

and in the other case it did not. As before, Figure 4.6(a) shows the frequency response

of the ideal reconstruction filter H,(jfl) for the given sampling rate of S2,. = 1200011.

It is clear from this figure that the signal that would be reconstructed would have

frequency (20 = 400011, which is not the frequency of the original signal x(.(t),

Example 4.3 A Second Example of Aliasing

As a final example, suppose that the signal is again x,.(t) = cos(4000111). as it was in

Example 4.1; i.e., the frequency is again S2” = 400011. However, now the sampling

period is increased to T = 1/1500. Once more, this sampling period fails to satisfy

the Nyquist criterion, since 52, = 211/ T = 300011 < 290 = 800011. Consequently, we

expect to see aliasing again. Figure 4.7(a) shows the plot of X5109) in this case. This

time the impulse located at Q = —100011 is from XL.(j(Q — (25)), and the impulse at

S2 = 100011 is from XC(j(Q+Q,.)). Plotting X(e1"") = X_,(ja)/T) as a function of

0) yields the graph shown in Figure 4.7(b), which we see is identical to Figure 4.6(b).

Again, this Fourier transform corresponds to the sequence x[n] = cos(211n/3). AC—

cordingly, we see that the same discrete-time signal may result from sampling the same

continuous-time signal at two different sampling rates if one of those sampling rates

fails to satisfy the sampling theorem. The frequency response of the ideal reconstruc-

tion filter H,(jS'2) for the given sampling rate of 525 = 300011 is shown Figure 4.7(a).

It is clear from this figure that the signal that would be reconstructed using sampling

period T = 1/1500 would have frequency 820 = 100011 and not 400011.

XXUQ)

 
—400011 400011 0400017 —200011~150011-100011 0

(8)

100071 150071 200011 300011

X0”) = 21.02.11)

  I71 11 11 11 11 [11l I I | j |
#811 —211 _4_11 A11 _2_11 0 2:1 11 411 211 Sir w

3 3 3 3 3 3

(b)

Figure4.7 Continuous-time(a)anddiscrete-time(b)Fouriertransformstorsam-

pled cosine signal with frequency $20 = 400011 and sampling period T = 1/1500.
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4.3 RECONSTRUCTION OF A BANDLIMITED SIGNAL

FROM ITS SAMPLES

According to the sampling theorem, samples of a continuous—time bandlimited signal

taken frequently enough are sufficient to represent the signal exactly, in the sense that

the signal can be recovered from the samples and with knowledge of the sampling

period. Impulse train modulation provides a convenient means for understanding the

process of reconstructing the continuous-time bandlimited signal from its samples.

In Section 4.2 we saw that if the conditions of the sampling theorem are met and if

the modulated impulse train is filtered by an appropriate lowpass filter, then the Fourier

transform of the filter output will be identical to the Fourier transform of the original

continuous-time signal xc(t), and thus, the output of the filter will be x,.(r). If we are

given a sequence of samples, x[n], we can form an impulse train x,(t) in which successive

impulses are assigned an area equal to successive sequence values, i.e.,
00

x,(:) = Z x[n]6(r — nT). (4.22)
HZ—OO

The nth sample is associated with the impulse at t 2 HT, where T is the sampling

period associated with the sequence x[n]. If this impulse train is the input to an ideal

lowpass continuous-time filter with frequency response H,(jSZ) and impulse response

h,(t), then the output of the filter will be
00

x,(t) = Z x[n]h,(t —nT). (4.23)
H=700

A block diagram representation of this signal reconstruction process is shown in Fig—

ure 4.8(a). Recall that the ideal reconstruction filter has a gain of T (to compensate

for the factor of 1/ T in Eq. (4.19) or (4.20)) and a cutoff frequency 52C between RN

and S2, — ON. A convenient and commonly used choice of the cutoff frequency is

$2,. = 95/2 2 31/ T. This choice is appropriate for any relationship between $2,. and

{ZN that avoids aliasing (i.e., so long as {2, > ZSZN). Figure 4.8(b) shows the frequency

response of the ideal reconstruction filter. The corresponding impulse response, h,(t),

is the inverse Fourier transform of H,(j5'2), and for cutoff frequency 31/ T it is given by

sin(m/T)

zrt/T '

This impulse response is shown in Figure 4.8(c). From substituting Eq. (4.24) into

Eq. (4.23), it follows that

h,(r) = (4.24)

_ 0° sin[Jr(t—nT)/T]
x,(t)_ Z Affidm.n=*00

From the frequency-domain argument of Section 4.2, we saw that ifx[n] : xc(n T),

where XC(jQ) = 0 for |§Z| 3 71/ T, then x,(r) is equal to xc(t). It is not immediately

obvious that this is true by considering Eq. (4.25) alone. However, useful insight is

gained by looking at that equation more closely. First let us consider the function h,(t)

given by Eq. (4.24). We note that

(4.25)

h,(0) = 1. (4.26a)
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Figure 4.8 (a) Block diagram of an
ideal bandlimited signal reconstruction

I system. (b) Frequency response of an

ideal reconstruction filter. (c) Impulse

(C) response of an ideal reconstruction filter.

  
This follows from l’Hopital’s rule. In addition.

h,(nT):O forn::tl,:t2,.... (4.26b)

It follows from Eqs. (4.26a) and (4.26b) and Eq. (4.23) that ifx[n] : xC(nT), then

x, (mT) = xc(mT) (4.27)

for all integer values of m. That is, the signal that is reconstructed by Eq. (4.25) has the

same values at the sampling times as the original continuous—time signal, independently

of the sampling period T.

In Figure 4.9, we show a continuous-time signal xc(t) and the corresponding mod—

ulated impulse train. Figure 4.9(c) shows several of the terms

sin[zr(t —nT)/ T]

fin] 7r(r—nT)/T
and the resulting reconstructed signal x, (I). As suggested by this figure, the ideal lowpass

filter interpolates between the impulses of x,(t) to construct a continuous-time signal

xr(t). From Eq. (4.27), the resulting signal is an exact reconstruction of xc(t) at the

sampling times. The fact that, if there is no aliasing, the lowpass filter interpolates the
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Figure 4.9 Ideal bandlimited

interpolation.

 
 

  
 

 

|
|

Ideal :Convert from .reconstruction

|
|
|
|

: sequence to filter I D/Cx n im ulse train . t x n x t

: lI T

: Sampling l
I period T :i_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J

(a) (b)

Figure 4.10 (a) Ideal bandlimited signal reconstruction. (b) Equivalent represen-
tation as an ideal D/C converter.

correct reconstruction between the samples follows from our frequency-domain analysis

of the sampling and reconstruction process.

It is useful to formalize the preceding discussion by defining an ideal system for

reconstructing a bandlimited signal from a sequence of samples. We will call this system

the ideal discrete-to-continnous-time (D/C) converter. The desired system is depicted in

Figure 4.10. As we have seen, the ideal reconstruction process can be represented as the
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conversion ofthe sequence to an impulse train. as in Eq. (4.22). followed by filtering with

an ideal lowpass filter. resulting in the output given by Eq. (4.25). The intermediate step

of conversion to an impulse train is a mathematical convenience in deriving Eq. (4.25)

and in understanding the signal reconstruction process. However, once we are familiar

with this process, it is useful to define a more compact representation, as depicted in

Figure 4.l()(b), where the input is the sequence x[n] and the output is the continuous—

time signal x,(t) given by Eq. (4.25).

The properties of the ideal D/C converter are most easily seen in the frequency

domain. To derive an input/output relation in this domain. consider the Fourier trans-

form of Eq. (4.23) or Eq. (4.25). which is

X,(j§2)= Z x[n]H,(jS2)e‘jQI"’.

By factoring H,(j§2) out of the sum. we can write

mm) = Hromem'). (4.28)

Equation (428) provides a frequency—domain description of the ideal D/C converter.

According to Eq. (4.28). X(ej"’) is frequency scaled (i.e.. a) is replaced by Q T). The ideal

lowpass filter H, (j (2) selects the base period of the resulting periodic Fourier transform

X(efm') and compensates for the 1/ Tscaling inherent in sampling. Thus. ifthe sequence

x[n] has been obtained by sampling a bandlimited signal at the Nyquist rate or higher,

then the reconstructed signal x,(z) will be equal to the original bandlimited signal. In

any case, it is also clear from Eq. (4.28) that the output of the ideal D/C converter

is always bandlimited to at most the cutoff frequency of the lowpass filter. which is

typically taken to be one-half the sampling frequency.

4.4 DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS

A major application of discrete—time systems is in the processing of continuous-time sig-

nals. This is accomplished by a system of the general form depicted in Figure 4.11. The

system is a cascade of a C/D converter, followed by a discrete—time system, followed by

a D/C converter. The block diagram of Figure 4.11 represents a large class of systems.

since the sampling rate and the discrete-time system can be chosen as we wish. Note

that the overall system is equivalent to a continuous-time system. since it transforms

the continuous-time input signal xc(t) into the continuous-time output signal y,(t). The

properties of the overall system are dependent on the choice of the discrete-time system

and the sampling rate. We assume in Figure 4.11 that the OD and D/C converters have

the same sampling rate. This is not essential. and later sections of this chapter and some

of the problems at the end of the chapter consider systems in which the input and output

sampling rates are not the same.
 

Figure 4.11 Discrete-time processing

of continuous-time signals.
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The previous sections of the chapter have been devoted to understanding the

C/D and D/C conversion operations in Figure 4.11. For convenience, and as a first step

in understanding the overall system of Figure 4.11, we summarize the mathematical

representations of these operations.

The C/D converter produces a discrete-time signal

x[n] : xc(nT (4.29)

i.e., a sequence of samples of the continuous—time input signal xc(t). The discrete—time

Fourier transform of this sequence is related to the continuous-time Fourier transform

of the continuous-time input signal by

X(ej“’) — l X ' w 2” (4 30)
_ T kzgoo “ 1 T T ‘ '

The D/C converter creates a continuous-time output signal of the form

' °° sin[ir(t —nT)/ T]

y,(t)=n;my[nl WWW, ,
where the sequence y[n] is the output of the discrete-time system when the input to the

system is x[n]. From Eq. (4.28), Y,(j9), the continuous-time Fourier transform of y,(t),
and Y(e}“’), the discrete-time Fourier transform of y[n], are related by

11(19): Rommel“)

_ TY(emT), |Q|<7r/T,
_ 0, otherwise.

Next, let us relate the output sequence y[n] to the input sequence x[n], or equiva-

lently, Y(e/‘”) to X(ej‘“). A simple example is the identity system. i.e., y[n] : x[n]. This

is the case that we have studied in detail already. We know that if x(.(t) has a bandlimited

Fourier transform such that Xc(j§2) = 0 for |Q| 3 11/ T and if the discrete-time system

in Figure 4.11 is the identity system such that y[n] = x[n] = xc(n T ). then the output will

be y,(t) : xc(r). Recall that, in proving this result, we utilized the frequency-domain

representations of the continuous-time and discrete—time signals, since the key concept

of aliasing is most easily understood in the frequency domain. Likewise, when we deal

with systems more complicated than the identity system, we generally carry out the

analysis in the frequency domain. If the discrete—time system is nonlinear or time vary-

ing, it is usually difficult to obtain a general relationship between the Fourier transforms

of the input and the output of the system. (In Problem 4.33, we consider an example of

the system of Figure 4.11 in which the discrete-time system is nonlinear.) However, the

linear time-invariant case leads to a rather simple and very useful result.

(4.31)

(4.32)

4.4.! Linear Time-Invariant Discrete-Time Systems

If the discrete-time system in Figure 4.11 is linear and time invariant, we then have

Y(ej‘”) = H(ej‘“)X(ef‘“), (4.33)

where H(e/‘“) is the frequency response of the system or, equivalently, the Fourier
transform of the unit sample response, and X(ejw) and Y(ej‘“) are the Fourier transforms

of the input and output, respectively. Combining Eqs. (4.32) and (4.33), we obtain

mm) = Hr(js2)H(ejm)X(efm). (4.34)



Sec. 4.4 Discrete-Time Processing of Continuous-Time Signals 155

Next, using Eq. (4.30) with a) = QT. we have

mm = Hrommem); i X. (j (s2 —. (4.35)
' ((2700

If X6052) = 0 for |S2| 2 71/ T, then the ideal lowpass reconstruction filter H,(j52)

cancels the factor 1/?" and selects only the term in Eq. (4.35) for k = 0; i.e.,

. H(ei9T)X,.(j§2). |§2| < n/ T.
11(19): {0. |§2| 3 Jr/T. (4'36)

Thus, if Xc(jS2) is bandlimited and the sampling rate is above the Nyquist rate, the

output is related to the input through an equation of the form

where

J97.

Haloszbfl“ )‘ {2:33; (4.38)
That is, the overall continuous-time system is equivalent to a linear time-invariant system

whose effective frequency response is given by Eq. (4.38).

It is important to emphasize that the linear and time-invariant behavior of the

system of Figure 4.11 depends on two factors. First, the discrete-time system must be

linear and time invariant. Second, the input signal must be bandlimited. and the sampling

rate must be high enough so that any aliased components are removed by the discrete-

time system. As a simple illustration of this second condition being violated. consider the

case when xc(t) is a single unit-amplitude pulse whose duration is less than the sampling

period. If the pulse is unity at t = 0. then x[n] = 6[n]. However, it is clearly possible

to shift the pulse so that it is not aligned with any of the sampling times, i.e., x[n] = 0

for all n. Obviously, such a pulse, being limited in time. is not bandlimited. Even if the

discrete-time system is the identity system. such that y[n] = x[n], the overall system will

not be time invariant. In general, if the discrete-time system in Figure 4.11 is linear and

time invariant. and if the sampling frequency is ab0ve the Nyquist rate associated with

the bandwidth of the input x60), then the overall system will be equivalent to a linear

time-invariant continuous-time system with an effective frequency response given by

Eq. (4.38). Furthermore, Eq. (4.38) is valid even if some aliasing occurs in the C/D

converter, as long as H(ej“’) does not pass the aliased components. Example 4.4 is a

simple illustration of this.

Example 4.4 Ideal Continuous-Time Lowpass Filtering
Using a Discrete-Time Lowpass Filter

Consider Figure 4.11, with the linear time-invariant discrete-time system having fre-

quency response

1. lwl < wr.if!) _

H“) )_ {0. wt» < |w| 5 Jr. (439)
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H(€jm)

  
(b)

Figure 4.12 (a) Frequency response of discrete-time system in Figure 4.11.

(b) Corresponding effective continuous-time frequency response for bandlimited
inputs.

This frequency response is. of course, periodic with period 2n. as shown in Fig-

ure 4.12(a). For bandlimited inputs sampled above the Nyquist rate. it follows from

Eq. (4.38) that the overall system of Figure 4.11 will behave as a linear time—invariant

continuous-time system with frequency response

1. |S2Tl < wt. or M < cut/T.
Hcff(jQ) = (4.40)

0. |S2T| > cut. or |Q| > (0.4/ T.

As shown in Figure 4.12(b), this effective frequency response is that ofan ideal lowpass

filter with cutoff frequency QC = ruc/ T

As an interpretation of this result, consider the graphical illustration given in

Figure 4.13. Figure 4.13(a) indicates the Fourier transform of a bandlimited signal.

Figure 4.13(b) shows the Fourier transform of the intermediate modulated impulse

train, which is identical to X0245”), the discrete-time Fourier transform of the sequence

ofsamples evaluated form = QT. In Figure 4.13(c),the discrete-time Fourier transform

of the sequence of samples and the frequency response of the discrete-time system

are both plotted as a function of the normalized discrete-time frequency variable a).

Figure 4.13(d) shows Y(el“’) = H(ej‘“)X(el“’), the Fourier transform of the output

of the discrete—time system. Figure 4.13(e) illustrates the Fourier transform of the

output of the discrete—time system as a function of the continuous-time frequency 52.

together with the frequency response of the ideal reconstruction filter H,(j52) of the

D/C converter. Finally, Figure 4.13(f) shows the resulting Fourier transform of the

output of the D/C converter. By comparing Figures 413(3) and 4.13(f). we see that

the system behaves as a linear time-invariant system with frequency response given

by Eq. (4.40) and plotted in Figure 4.12(b).



 

  
(f)

Figure 4.13 (a) Fourier transform of a bandlimited input signal. (b) Fourier

transform of sampled input plotted as a function of continuous-time frequency
9. (c) Fourier transform X (elm) of sequence of samples and frequency response
Me”) of discrete-time system plotted vs. a). (d) Fourier transform of output of

discrete-time system. (e) Fourier transform of output of discrete-time system and

frequency response of ideal reconstruction filter plotted vs. 9. (f) Fouriertransform

of output.
157
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Several important points are illustrated in Example 4.4. First, note that the ideal

lowpass discrete-time filter with discrete-time cutoff frequency cur has the effect of an

ideal lowpass filter with cutoff frequency RC = a),/ T when used in the configuration

of Figure 4.11. This cutoff frequency depends on both a), and T. In particular, by using

a fixed discrete—time lowpass filter, but varying the sampling period T, an equivalent

continuous-time lowpass filter with a variable cutoff frequency can be implemented.

For example, if T were chosen so that QNT < we, then the output of the system of

Figure 4.1] would be y,(t) = xc(t). Also, as illustrated in Problem 4.25, Eq. (4.40) will

be valid even if some aliasing is present in Figures 4.13(b) and (c), as long as these

distorted (aliased) components are eliminated by the filter H(ej“’). In particular, from

Figure 4.l3(c), we see that for no aliasing to be present in the output, we require that

(211 — QNT) > (QC, (441)

compared with the Nyquist requirement that

(27: — QNT) > QNT. (4.42)

As another example of continuous-time processing using a discrete-time system, let us

consider the implementation of an ideal differentiator for bandlimited signals.

Example 4.5 Discrete-Time Implementation of an Ideal
Continuous-Time Bandlimited Differentiator

The ideal continuous-time differentiator system is defined by

(1'

yc(t) = d—[[x,»(t)]. (4.43)

with corresponding frequency response

H,.(j§2) = jQ. (4.44)

Since we are considering a realization in the form of Figure 4.1]. the inputs are re-

stricted to be bandlimited. For processing bandlimited signals, it is sufficient that

,, . _ 1'52. lfll < n/T.He“(1“)“ {0, lfll 2 MT. (4'45)
as depicted in Figure 414(3). The correSponding discrete-time system has frequency

response

H(ej“’) = le < n, (4.46)
and is periodic with period 271. This frequency response is plotted in Figure 4.14(b).

The corresponding impulse response can be shown to be

7m cos rm — sin rm 

 

h[n] = Tsz 00 < n < 00,
or equivalently,

0, n = 0,

h[n] = { consign. n # 0- (4.47)
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<1 H( 61"”)

 
(b)

Figure 4.14 (a) Frequency response of a continuous-time ideal bandlimited dif-

ferentiator HOUQ) = jsz, lszl < n/ T. (b) Frequency response ofa discrete-time
filter to implement a continuous-time bandlimited differentiator.

Thus, if a discrete-time system with this impulse response was used in the config-

uration of Figure 4.11, the output for every bandlimited input would be the derivative

of the input.

Example 4.6 Illustration of Example 4.5
with a Sinusoidal Input

Suppose that the bandlimited differentiator of Example 4.5 has input xc.(t)

cos(§20t) with £20 < 71/ T. The sampled input will be x[n] = cos(w0n), where a)“

QOT < 71, and the discrete-time Fourier transform, expressed as a function of 52, is

. 1 w

X(emT) : T 2: [715(9 — r20 — ms.) + 215(52 + no — k 52,.)1.k=—oo
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If we focus on the base band of frequencies —H/ T < £2 < n/ T, we obtain

X(emT) : ZTMQ — $20) + %5(§2 + £20) for 1:21 5 n/ T. (4.48)

To express the discrete-time Fourier transform in terms of to, we substitute S2 = w/ T

into Eq. (4.48) and use the fact that 5(w/ T) = T8(w). The result is

X(ej“) = n5(w — am) + n6(w + we). lwl S 71'.

The discrete-time Fourier transform X(ej‘“) repeats periodically, of course, with pe-

riod Zn in the variable w, and X(emT) repeats periodically with period 27t/ T. Now,

from Eq. (4.46), the discrete-time Fourier transform of the output is

Y(ej“’) : H(efw)X(eiw)

ijMMw — w”) + 16(co + (90)]
jwrflf Two?!

T T

From Eq. (4.32), the continuous—time Fourier transform of the output of the D/C

converter is. for (9| 5 71/ T,

  

5(a) — can) — 5(0) + am), le 5 TI.

  

  

140“) = Hr(jQ)Y(ejQT) = TYW‘”)

= T []w;n8(SZT—S20T)— ’w‘)”a(or+s20r)]
— T W” 15(9 {2) jaw l5(§2+s2)
— T T U T T U

= jQ()H5(§Z — S20) — anTHKS-Z + 520).

Thus, the reconstruction filter selects the two impulses at i9“, so it follows that

1 4 1 .

yr“) = 1.903619“ — ]'Q()E€_]Qm = —Q() sin(§2()t).

and we obtain the expected result that

W) = % [x40].

4.4.2 Impulse Invariance

We have shown that the cascade system of Figure 4.11 can be equivalent to a linear time-

invariant system for bandlimited input signals. Let us now assume that, as depicted in

Figure 4.15, we are given a desired continuous-time system that we wish to implement

in the form of Figure 4.11. With Hc(j§2) bandlimited, Eq. (4.38) specifies how to choose

H(ej“’) so that Heff(jS2) : Hc(jS2). Specifically,

HM”) z mow/T), lwl < 71', (4.49)
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Continuous-time

LTI system

hL.(t), Hc.(jfl) 

 
 

Discrete-time

LTI system
hinl H(€’“’) . M!) =yc-(I)
 

  
 

Hui-mm = Harm

(b)

Figure 4.15 (a) Continuous-time LTI system. (b) Equivalent system for bandlim-

ited inputs.

with the further requirement that T be chosen such that

mom) 2 0. mi 3 n/ T. (450)

Under the constraints of Eqs. (4.49) and (4.50). there is also a straightforward and useful

relationship between the continuous-time impulse response h(.(t) and the discrete-time

impulse response h[n]. In particular. as we shall verify shortly.

h[n] = Th(.(nT): (4.51)

i.e.. the impulse response of the discrete-time system is a scaled. sampled version of

h{.(t). When h[n] and h(.(t) are related through Eq. (4.51). the discrete—time system is

said to be an impulse—invariant version of the continuous-time system.

Equation (4.51) is a direct consequence of the discussion in Section 4.2. Specifically,

with x[n] and x(r.(t) respectively replaced by h[n] and h(.(t) in Eq. (4.16). i.e.,

hlnl = ht-(nT), (4.52)

Eq. (4.20) becomes

‘ 1 3c a) 27rk
ja) : ! . . _ _ —_H“) réflvir Ti) <53)

0T, if Eq. (4.50) is satisfied.

5 l a)jru _ _ -_

H(e )— Thin-(1T), lwl : Jr. (4.54)
Modifying Eqs. (4.52) and (4.54) to account for the scale factor of T in Eq. (4.51), we
have

hm 2 mar), (4.55)

H(ej‘”) 2 H6 (, lwl 5 n. (4.56)
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Example 4.7 A Discrete-Time Lowpass Filter Obtained By
Impulse Invariance

Suppose that we wish to obtain an ideal lowpass discrete-time filter with cutoff fre-

quency my < H. We can do this by sampling a continuous-time ideal lowpass filter with

cutoff frequency 9‘; = (UC/ T < n/ T defined by

. _ 1. M < QC.H‘Um — {0. |§2| g
The impulse reSponse of this continuous-time system is

sin(§2(.t)

Hf ‘
h(.(t) =

so we define the impulse response of the discrete-time system to be

I Qt. T - Ikin] = mom 2 TM 2 2100—"),
””T nn

where (yt— = 52C T. We have already shown that this sequence corresponds to the
discrete—time Fourier transform

1. lwl < a)“fru _

H(e )— {0. (of < lwl 5 II.
which is identical to H(-(ja)/ T), as predicted by Eq. (4.56).

Example 4.8 Impulse Invariance Applied
to Continuous-Time Systems with Rational
System Functions

Many continuous-time systems have impulse responses composed of a sum of expo-

nential sequences of the form

h(‘(r) = Ae"'°’u(t).

Such time functions have Laplace transforms

A

S—Su

 

HC(S) :

If we apply the impulse invariance concept to such a continuous—time system, we obtain

the impulse response

h[n] = Thc(nT) = Ae‘VOT"u[n],

which has z-transform system function

A T

H(z) = —«1_ esurrl

and frequency response

- A T

H(e"") =
1_ esoTe—jw'

In this case, Eq. (4.56) does not hold exactly, because the original continuous-time

system did not have a strictly bandlimited frequency response, and therefore, the re—

sulting discrete—time frequency response is an aliased version of HC(j§2). Even though
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aliasing occurs in such a case as this, the effect may be small. Higher order systems

whose impulse responses are sums of complex exponentials may in fact have fre-

quency responses that fall off rapidly at high frequencies. so that aliasing is minimal if

the sampling rate is high enough. Thus, one approach to the discrete-time simulation

of continuous—time systems and also to the design of digital filters is through sampling

of the impulse response of a corresponding analog filter.

4.5 CONTINUOUS-TIME PROCESSING OF DISCRETE-TIME SIGNALS

In Section 4.4, we discussed and analyzed the use ofdiscrete—time systems for processing

continuous-time signals in the configuration of Figure 4.11. In this section we consider

the complementary situation depicted in Figure 4.16, which is appropriately referred to

as continuous-time processing of discrete-time signals, While the system of Figure 4.16 is

not typically used to implement discrete—time systems. it provides a useful interpretation

of certain discrete-time systems.

From the definition of the ideal D/C converter, X(.(jQ) and therefore also YCUQ),

will necessarily be zero for 1le 3 71/ T. Thus, the C/D converter samples y((t) without

aliasing, and we can express x(.(r) and yc(t) respectively as

_ 3° sin[7r(t—nT)/T]
xc(t) _ fizz—“DAMW (4.57)

and

0c Sin[7'r(r—nT)/T]
W) = Z yin] (4.58)

’12—00 7r(t — nT)/T ’

where x[n] = x6017“) and y[n] = y(.(nT). The frequency-domain relationships for

Figure 4.16 are

X609) 2 Haw”), m < 71/ T, (4.593)

11(19): Hc(j§2)Xc(jQ). IQI < 71/1", (45%)

Y(ej“’) = lTYC. lwl < 71'. (4.596)
Therefore, by substituting Eqs. (4.59a) and (4.5%) into Eq. (4.59c), it follows that the

overall system behaves as a discrete—time system whose frequency response is

H(eiw) = H. , [col < 7r, (4.60)

h[n], H(ef"’)

 
Figure 4.16 Continuous-time

__________________________ _ a processing of discrete—time signals.
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or equivalently, the overall frequency response of the system in Figure 4.16 will be equal

to a given H(el"’) if the frequency response of the continuous-time system is

H(.(jQ) = HM”). (9| < n/T. (4.61)

Since X(.(jQ) = 0 for |Q| :_> IT/ T, H(.(jS2) may be chosen arbitrarily above yr/ T. A

convenient, but arbitrary, choice is H..(jQ) : O for |Ql 3 716/ T.

With this representation of a discrete-time system. we can focus on the equivalent

effect of the continuous-time system on the bandlimited continuous—time signal L-(f).

This is illustrated in Examples 4.9 and 4.10.

Example 4.9 Noninteger Delay

Let us consider a discrete-time system with frequency response

mam) = (M. (at < H. (4.62)

When A is an integer. this system has a straightforward interpretation as a delay
of A. Le.

y[n] = x[n i A]. (4.63)

When A is not an integer. Eq. (4.63) has no formal meaning. because we cannot shift

the sequence .r[n] by anything but an integer. However. with the use of the system of

Figure 4.16. a useful time-domain interpretation can be applied to the system specified

by Eq. (4.62). Let H6052) in Figure 4.16 be chosen to be

H.062) : HMS”) = (Ir/9137'. (4.64)

Then. from Eq. (4.61). the overall discrete-time system in Figure 4.16 will have the

frequency response given by Eq. (4.62). whether or not A is an integer. To interpret

the system of Eq. (4.62). we note that Eq. (4.64) represents a time delay of A T seconds.
Therefore.

_v(.(l) : .r(‘(t — AT). (4.65)

Furthermore. _r(.(t) is the bandlimited interpolation of .r[n]. and y[n] is obtained by

sampling y..(t). For example. if A = 1. y[n] would be the values of the bandlimited[\JI

 

/ \

fl Dill/VI”
o T 2T I

(a)

.\’(-(f) :xi.(1_ I)/—- 2

// \\ // ‘/ ‘v[rr]

_;i 1\; L
0 T 2T f

(b)

Figure 4.17 Continuous-time processing of the discrete-time sequence in part

(a) can produce a new sequence with a “half-sample“ delay, as in part (b).
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interpolation halfway between the input sequence values. This is illustrated in Fig-

ure 4.17. We can also obtain a direct convolution representation for the system defined

by Eq. (4.62). From Eqs. (4.65) and (4.57), we obtain

ylnl = yc-(nT) = .n-(nT — AT)

— 3c sin[fr(f—AT—kT)/T]
_ [(2:06deWHT (466)

_ w Sinzr(nwk—A)
__ kgxden—(nfi!

which is, by definition, the convolution of x[n] with

sin rr(n « A)

Mn] : Ir(n — A)
—00 < n < 00.

When A is not an integer, h[n] has infinite extent. However, when A = no is an integer,

it is easily shown that h[n] = 5[n«nu], which is the impulse response ofthe ideal integer

delay system.

The noninteger delay represented by Eq. (4.66) has considerable practical sig-

nificance, since such a factor often arises in the frequency-domain representation of

systems. When this kind of term is found in the frequency response of a causal discrete-

time system, it can be interpreted in the light of this example. This interpretation is

illustrated in Example 4.10.

Example 4.1 0 Moving-Average System
with Noninteger Delay

In Example 2.20, we considered the general moving—average system and obtained its

frequency response. For the case of the causal (M + 1)—point moving—average system,

M1 = 0 and M2 = M, and the frequency response is

1 WWW
sin(w/2) .

 

H(ej“’) = (4.67)lwl < 71'.
(M+1)

  1 sin (w(M +1)/2)

M + 1 sin(w/2)

 

 

Figure 4.18 The moving-average system represented as a cascade of two

systems.

This representation of the frequency response suggests the interpretation of the

(M + 1)-point moving-average system as the cascade of two systems. as indicated

in Figure 4.18. The first system imposes a frequency-domain amplitude weighting. The

second system represents the linear-phase term in Eq. (4.67). If M is an even integer

(meaning the moving average of an odd number of samples), then the linear—phase
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term corresponds to an integer delay, i.e.,

y[n] : w[n — M/Z]. (4.68)

However, if M is odd, the linear—phase term corresponds to a noninteger delay, specifi-

cally, an integer-plus—one-halfsample interval. This noninteger delay can be interpreted

in terms of the discussion in Example 4.9; i.e.. y[n] is equivalent to bandlimited interpo-

lation of w[n]. followed by a continuous-time delay of MT/2 (where Tis the assumed,

but arbitrary, sampling period associated with the D/C interpolation of w[n]), followed

by C/D conversion again with sampling period T. This fractional delay is illustrated in

Figure 4.19. Figure 4.19(a) shows a discrete-time sequence x[n] = cos(0.257m). This

 

—l

  
 

—5 0 5 10 15 20

 

  
 

—5 0 5 10 15 20II

(b)

Figure 4.19 illustration of moving-average filtering. (a) Input signal x[n] =

cos(0.25nn). (b) Corresponding output of six-point moving-average filter.

sequence is the input to a six-point (M = 5) moving-average filter. In this example, the

input is “turned on” far enough in the past so that the output consists only of the steady-

state response for the time interval shown. Figure 4.19(b) shows the corresponding

output sequence, which is given by

y[n] = H(ej0.253r)%ej0_25nn + H(e—j0.25n)%e—j0_25nn

1 Sini3(0v25”)i e—j(0.257r)5/2€j0.25nn: _ 1 Sinl3(—0-257T)lej(n.25n)5/2e—jn,25nn
2 6 sin(0.1257r) +imam—0.125”)

= 0.308 cos[0.253r(n — 2.5)].

Thus, the six-point moving—average filter reduces the amplitude of the cosine signal

and introduces a phase shift that corresponds to 25 samples of delay. This is readily

apparent in Figure 4.19, where we have plotted the continuous-time cosines that would
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be interpolated by the ideal D/C converter for both the input and the output sequence.

Note in Figure 4.l9(b) that the six-point moving—average filtering gives a sampled

cosine signal such that the sample points have been shifted by 2.5 samples with respect

to the sample points of the input. This can be seen from Figure 4.l9(b) by comparing

the positive peak at 10 in the interpolated cosine for the input to the positive peak

at 12.5 in the interpolated cosine for the output. Thus. the six-point moving—average

filter is seen to have a delay of 5/2 = 2.5 samples.

4.6 CHANGING THE SAMPLING RATE USING

DISCRETE-TIME PROCESSING

We have seen that a continuous—time signal x(,(r) can be represented by a discrete-time

signal consisting of a sequence of samples

x[n] = xc(n T ). (4.69)

Alternatively. our previous discussion has shown that. even if x[n] was not obtained

originally by sampling. we can always use the bandlimited interpolation formula of

Eq. (4.25) to find a continuous-time bandlimited signal x,(r) whose samples are x[n] :

x6017“).

It is often necessary to change the sampling rate of a discrete-time signal, i.e.. to

obtain a new discrete-time representation of the underlying continuous—time signal of
the form

x’[n] : x(‘(n T’). (4.70)

where T’ 75 T. One approach to obtaining the sequences x’[n] from x[n] is to recon—

struct xc(r) from x[n] using Eq. (4.25) and then resample x(.(r) with period T’ to obtain

x’[n]. Often, however. this is not a desirable approach. because of the nonideal analog

reconstruction filter, D/A converter. and A/D converter that would be used in a practi-

cal implementation. Thus, it is of interest to consider methods of changing the sampling

rate that involve only discrete-time operations.

4.6.1 Sampling Rate Reduction by an Integer Factor

The sampling rate of a sequence can be reduced by “sampling” it. i.e.. by defining a new

sequence

xd[n] = x[nM] = x((nMT). (4.71)

Equation (4.71) defines the system depicted in Figure 4.20, which is called a sampling rate

compressor (see Crochiere and Rabiner, 1983) or simply a compressor. From Eq. (4.71).

it is clear that xd[n] is identical to the sequence that would be obtained from xc(r) by

x [n] xd[n] = .r [nM]

Sampling Sampling Figure 4.20 Representation of a
Pemd T Perlod T = M7 compressor or discrete-time sampler.
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sampling with period T’ = MT. Furthermore. if X(.(jS2) : 0 for |Q| 3 9N, then xd[n]

is an exact representation of xc(t) if 71/ T’ = JT/(MT) 3 RN. That is, the sampling rate

can be reduced by a factor of Mwithout aliasing if the original sampling rate was at least

M times the Nyquist rate or if the bandwidth of the sequence is first reduced by a factor

of M by discrete-time filtering. In general, the operation of reducing the sampling rate

(including any prefiltering) will be called downsampling.

As in the case of sampling a continuous-time signal, it is useful to obtain a

frequency-domain relation between the input and output of the compressor. This time,

however, it will be a relationship between discrete-time Fourier transforms. Although

several methods can be used to derive the desired result, we will base our derivation on

the results already obtained for sampling continuous-time signals. First recall that the

discrete—time Fourier transform of x[n] = xc(nT) is

X(efw) : L X. (j —. (4.72)
Similarly. the discrete-time Fourier transform of xd[n] = x[nM] = x(.(n T’) with T’ =
MT is

 - l x a) 27W
X( 1‘“ = — X6 ’ — — . 4.73mm Kgfib r» ()

Now, since T’ : MT, we can write Eq. (4.73) as

‘ 1 a) 21w
X 1‘” = — XC ‘ —— — — . 4. 4ae) Manw (1(MT _MT)) (7)

To see the relationship between Eqs. (4.74) and (4.72), note that the summation index r

in Eq. (4.74) can be expressed as

r = i + kM, (4.75)

where k andi are integers such that —00 < k < 00 and 0 g i 5 M — 1. Clearly, r is still

an integer ranging from —oo to 00, but now Eq. (4.74) can be expressed as

Xd(ejw) = f: X, (j — g —. (4.76)[:0 k=ioc

The term inside the square brackets in Eq. (4.76) is recognized from Eq. (4.72) as

..1°O 4‘k

Awewp—Zx@CJM—ZD. mm
 

T MT T.:_00

Thus, we can express Eq. (4.76) as

, 1 M" _ .

Xd(em) = M Z X(ejtw/M42m/M))_ (478)
[:0
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There is a strong analogy between Eqs. (4.72) and (4.78): Equation (4.72) expresses

the Fourier transform of the sequence of samples. x[n] (with period T). in terms of the

Fourier transform of the continuous—time signal 111(1); Equation (4.78) expresses the

Fourier transform of the discrete—time sampled sequence 11,1[11] (with sampling period M)

in terms of the Fourier transform of the sequence x[n]. If we compare Eqs. (4.73) and

(4.78). we see that Xd(ej“‘) can be thought of as being composed of either an infinite set

of copies of X(.(jS2), frequency scaled through a) : Q T’ and shifted by integer multiples

of 211/ T’ (Eq. (4.73)). or M copies of the periodic Fourier transform X(ej“’). frequency

scaled by M and shifted by integer multiples of 211 (Eq. (4.78)). Either interpretation

makes it clear that Xd(ej‘“) is periodic with period 211 (as are all discrete—time Fourier

transforms) and that aliasing can be avoided by ensuring that X(el‘”) is bandlimited.
1.e..

X(efw) = 0. (UN 5 |a1| g 11. (4.79)

and 211/M 3 2wN.

Downsampling is illustrated in Figure 4.21. Figure 4.21 (a) shows the Fourier trans-

form of a bandlimited continuous-time signal. and Figure 4.21(b) shows the Fourier

transform of the impulse train of samples when the sampling period is T. Figure 4.21(e)

shows X(ej"’) and is related to Figure 4.21(b) through Eq. (4.18). As we have already

seen, Figures 4.21(b) and (c) differ only in a scaling of the frequency variable. Fig-

ure 4.21(d) shows the discrete-time Fourier transform of the downsampled sequence

when M = 2. We have plotted this Fourier transform as a function of the normalized

frequency a) = QT“. Finally. Figure 4.21(e) shows the discrete—time Fourier transform

of the downsampled sequence plotted as a function of the continuous-time frequency

variable 52. Figure 4.21(e) is identical to Figure 4.21(d), except for the scaling of the

frequency axis through the relation 52 = w/ T’.

In this example, 211/ T = 49/1; i.e.. the original sampling rate is exactly twice the

minimum rate to avoid aliasing. Thus. when the original sampled sequence is down-

sampled by a factor of M = 2. no aliasing results. If the downsampling factor is more

than 2 in this case. aliasing will result. as illustrated in Figure 4.22.

Figure 4.22(a) shows the continuous—time Fourier transform of x(v(t). and Fig-

ure 4.22(b) shows the discrete—time Fourier transform of the sequence x[n] = x..(nT).

when 211/ T = 482/). Thus. wN : QNT : 11/2. Now, if we downsample by a factor of

M = 3, we obtain the sequence xd[n] = x[3n] = x((n3T) whose discrete-time Fourier

transform is plotted in Figure 4.22(c) with normalized frequency a) : QT’. Note that

because MwN : 311/2, which is greater than 11, aliasing occurs. In general. to avoid

aliasing in downsampling by a factor of M requires that

wNM < 11 or am < 11/M. (4.80)

If this condition does not hold, aliasing occurs. but it may be tolerable for some appli-

cations. In other cases, downsampling can be done without aliasing if we are willing to

reduce the bandwidth of the signal x[n] before downsampling. Thus. if x[11] is filtered

by an ideal lowpass filter with cutoff frequency 11/M. then the output fin] can be down—

sampled without aliasing, as illustrated in Figures 4.22(d). (e). and (f). Note that the

sequence .i'd[n] : 1?[nM] no longer represents the original underlying continuous-time

signal x..(t). Rather, .i:(1[n] = 12601 T’). where T’ 2 MT. and 2(0) is obtained from x(,(t)

by lowpass filtering with cutoff frequency 52.. : 11/ T’ = 11/(MT).
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Figure 4.21 Frequency-domain illustration of downsampling.
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Figure 4.22 (a)—(c) Downsampling with aliasing. (d)—(f) Downsampling with
prefiitering to avoid aliasing.
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lM - -
xiini = x [an

Sampling Sampling sampling Figure 4.23 General system for
Period T period T Period T' = MT sampling rate reduction by M.

Lowpass filter
Gain 2 1

Cutoff = 7T/M
  
   ,r[n] i [n]

From the preceding discussion, we see that a general system for downsampling by

a factor of M is the one shown in Figure 4.23. Such a system is called a decimamr, and

downsampling by lowpass filtering followed by compression has been termed decimation

(Crochiere and Rabiner, 1983).

4.6.2 Increasing the Sampling Rate by an Integer Factor

We have seen that the reduction of the sampling rate of a discrete-time signal by an

integer factor involves sampling the sequence in a manner analogous to sampling a

continuous-time signal. Not surprisingly, increasing the sampling rate involves opera-

tions analogous to D/C conversion. To see this, consider a signal x[n] whose sampling

rate we wish to increase by a factor of L. If we consider the underlying continuous-time

signal xc(t), the objective is to obtain samples

x,[n] = xC(n T’), (4.81)

where T’ = T/L, from the sequence of samples

x[n] = xc(nT). (4.82)

We will refer to the operation of increasing the sampling rate as upsampling.

From Eqs. (4.81) and (4.82) it follows that

xi[n] = x[n/L] = xC(nT/L), n = 0,:1:L,j:2L,.... (4.83)

Figure 4.24 shows a system for obtaining x,~[n] from x[n] using only discrete-time pro-

cessing. The system on the left is called a sampling rate expander (see Crochiere and

Rabiner, 1983) or simply an expander. Its output is

_ x[n/L], n = 0, :l:L, :l:2L,xe[n] — {0, otherwise, (4'84)
or equivalently,

xe[n] = Z x[k]6[n — kL]. (4.85)
k=—OO

The system on the right is a lowpass discrete-time filter with cutoff frequency yr/L and

gain L. This system plays a role similar to the ideal D/C converter in Figure 4.1()(b).

First we create a discrete-time impulse train xe[n], and then we use a lowpass filter to

reconstruct the sequence.

The operation of the system in Figure 4.24 is most easily understood in the fre-

quency domain. The Fourier transform of xe [n] can be expressed as

X4621“): i ( i x[k]6[n — km) e—fw"n:—oo k=—oo

(4.86)00

= Z x[k]e’j“’u‘ = X(ej“’L).
kI—OO



Sec. 4.6 Changing the Sampling Rate Using Discrete-Time Processing 173

Lowpass filler
Gain : L

Cutoff: w/L
  
 

 

 

 
.r[n] x,- [17]

Sampling Sampling Sampling Figure 4.24 General system for
pCI‘lOd T period T‘ = period TI 2 increase

Thus. the Fourier transform of the output of the expander is a frequency—scaled

version of the Fourier transform of the input; i.e.._ an is replaced by wL so that a) is now

normalized by

a) = or: (4.87)

This effect is illustrated in Figure 4.25. Figure 4.25(a) shows a bandlimited continuous—

time Fourier transform. and Figure 4.25(b) shows the discrete-time Fourier transform of

the sequence x[n] 2 xy(nT ), where 11/ T 2 SEN. Figure 4.25(c) shows X(,(er"'i) according

to Eq. (4.86), with L = 2. and Figure 4.25(e) shows the Fourier transform of the desired

signal x,» We see that X,-(ef'(“) can be obtained from X()(cj“‘) by correcting the ampli—

tude scale from 1/ Tto l/ T’ and by removing all the frequency-scaled images of X((j§2)

except at integer multiples of 271. For the case depicted in Figure 4.25. this requires a

lowpass filter with a gain of 2 and cutoff frequency 1/2, as shown in Figure 4.25(d).

In general. the required gain would be L, since L(l/ T) = [l/(T/L)] = UT. and the

cutoff frequency would be rr/L.

This example shows that the system of Figure 4.24 does indeed give an output

satisfying Eq. (4.81) if the input sequence x[n] = x(y(nT) was obtained by sampling

without aliasing. That system is therefore called an interpolator, since it fills in the missing

samples, and the operation of upsampling is therefore considered to be synonymous

with interpolation.

As in the case of the D/C converter, it is possible to obtain an interpolation formula

for x)[n] in terms of x[n]. First note that the impulse response of the lowpass filter in

Figure 4.24 is

min] = (4.88)
Using Eq. (4.85), we obtain

_ x sin[71(n — kL)/L]
xi[n] _ Z gig—W. (4.89)k:—oc

The impulse response 11,- [n] has the properties

hi[0]=1.
4.90

h,»[n]=(), n:iL,i2L..... ( )

Thus, for the ideal lowpass interpolation filter, we have

x,—[n] = x[n/L] = XL~(n T/L) = x6017“), n : 0, iL, i2L, . . ., (4.91)

as desired. The fact that x,[n] = xc(n T’) for all n follows from our frequency-domain

argument.

In practice, ideal lowpass filters cannot be implemented exactly. but we will see

in Chapter 7 that very good approximations can be designed. (Also, see Schafer and
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Figure 4.25 Frequency-domain illustration of interpolation.
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Rabiner, 1973. and Oetken et al., 1975.) In some cases. very simple interpolation proce—

dures are adequate. Since linear interpolation is often used (even though it is generally

not very accurate), it is worthwhile to examine linear interpolation within the general

framework that we have just developed.

Linear interpolation can be accomplished by the system of Figure 4.24 ifthe filter

has impulse response

_ _ 1“I'll/L» IHIEL,hlm[n] _ {0, otherwise, (4'92)
as shown in Figure 4.26 for L = 5. With this filter. the interpolated output will be

xrinini = Z Xelklhiinl" — k] = Z xlklhnnln - M]. (4.93)
k=—CX; k=70C

Figure 4.27(a) depicts x(,[n] and xlin[n] for the case L = 5. From this figure. we see that

1 It - [n]
4/5 1111

3/5 1.:5

I I 1/5. . l l .—.— Figure4.26 Impulse responsefor
'7 linearinterpolation.

 

O

 

 

Figure 4.27 (a) Illustration of linear

interpolation by filtering. (b) Frequency

response of linear interpolator compared

(b) with ideal lowpass interpolation filter.
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xlin[n] is identical to the sequence obtained by linear interpolation between the samples.
Note that

hlinlo] : 1-
(4.94)

h11n[n] =0, n:iL,:tZL,...,

so that

xlin[n] = x[n/ L] at n : 0, :l:L, :tZL, . . .. (4.95)

The amount of distortion in the intervening samples can be gauged by compar-

ing the frequency response of the linear interpolator with that of the ideal lowpass

interpolator for a factor-of—L interpolation. It can be shown (see Problem 4.50) that

. 2

sm(wL/2)] I (496)'(u _._, iHunk] )_ L l sin(w/2)
This function is plotted in Figure 4.27(b) for L = 5, together with the ideal lowpass

interpolation filter. From the figure we see that if the original signal is sampled at the

Nyquist rate, linear interpolation will not be very good, since the output of the filter

will contain considerable energy in the band JT/L < |w| 5 7T. However, if the original

sampling rate is much higher than the Nyquist rate, then the linear interpolator will

be more successful in removing the frequency—scaled images of X(.(j§2) at multiples of

Zn/L. This is because Hlin(el‘”) is small at these normalized frequencies and at higher

sampling rates the shifted copies of X(.(j S2) are more localized at these frequencies. This

is intuitively reasonable, since, if the original sampling rate greatly exceeds the Nyquist

rate. the signal will not vary significantly between samples, and thus, linear interpolation

should be more accurate for oversampled signals.

4.6.3 Changing the Sampling Rate by a Noninteger Factor

We have shown how to increase or decrease the sampling rate of a sequence by an

integer factor. By combining decimation and interpolation, it is possible to change

the sampling rate by a noninteger factor. Specifically, consider Figure 4.28(a), which

shows an interpolator that decreases the sampling period from T to T/L, followed by

a decimator that increases the sampling period by M, producing an output sequence

id[n] that has an effective sampling period of T’ = TM/L. By choosing L and M

appropriately, we can approach arbitrarily close to any desired ratio of sampling periods.

For example, if L : 100 and M = 101, then T’ = 1.01 T.

If M > L, there is a net increase in the sampling period (a decrease in the sampling

rate), and if M < L, the opposite is true. Since the interpolation and decimation filters in

Figure 428(3) are in cascade, they can be combined as shown in Figure 4.28(b) into one

lowpass filter with gain L and cutoff equal to the minimum of n/L and IT/M. If M > L,

then rr/M is the dominant cutoff frequency, and there is a net reduction in sampling

rate. As pointed out in Section 4.6.1, if x[n] was obtained by sampling at the Nyquist

rate, the sequence fd[n] will be a lowpass—filtered version of the original underlying

bandlimited signal if we are to avoid aliasing. On the other hand, if M < L, then 7r/L is

the dominant cutoff frequency, and there will be no need to further limit the bandwidth

of the signal below the original Nyquist frequency.
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Figure 4.28 (a) System for changing the sampling rate by a nonintegerfactor. (b)

Simplified system in which the decimation and interpolation filters are combined.

Example 4.1 1 Sampling Rate Conversion by

a Noninteger Rational Factor

Figure 4.29 illustrates sampling rate conversion by a rational factor. Suppose that a

bandlimited signal with Xc(j9) as given in Figure 4.29(a) is sampled at the Nyquist

rate; i.e.. 27r/ T = ZQN. The resulting discrete-time Fourier transform

in) l x _ a) Zak
X“ biz)“ l ?_T

k:—c>o

is plotted in Figure 4.29(b). If we wish to change the sampling period to T’ = (3/2) T,

we must first interpolate by a factor L = 2 and then decimate by a factor of M : 3.

Since this implies a net decrease in sampling rate, and the original signal was sampled

at the Nyquist rate, we must incorporate additional lowpass filtering in order to avoid

aliasing.

Figure 4.29(c) shows the discrete-time Fourier transform of the output of the

L = 2 upsampler. If we were interested only in interpolating by a factor of 2. we

could choose the lowpass filter to have a cutoff frequency of wc = 17/2 and a gain

of L = 2. However, since the output of the filter will be decimated by M : 3, we

must use a cutoff frequency of wc = JT/3, but the gain of the filter should still be

2 as in Figure 4.29(d). The Fourier transform idem) of the output of the lowpass
filter is shown in Figure 4.29(e). The shaded regions indicate the part of the signal

spectrum that is removed due to the lower cutoff frequency for the interpolation filter.

Finally, Figure 4.29(f) shows the discrete-time Fourier transform of the output of the

downsampler by M = 3. Note that the shaded regions show the aliasing that would

have occurred if the cutoff frequency of the interpolation lowpass filter had been Jr/2

instead of 7r/3.
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Figure 4.29 Illustration of changing the sampling rate by a noninteger factor.
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4.7 MULTIRATE SIGNAL PROCESSING

As we have seen, it is possible to change the sampling rate of a diSCrete-time signal by a

combination of interpolation and decimation. For example, if we want a new sampling

period of T’ = 1.01 T, we can first interpolate by L = 100 using a lowpass filter that cuts

off at wc = JT/101 and then decimate by M = 101. These large intermediate changes in

sampling rate would require large amounts of computation for each output sample if we

implement the filtering in a straightforward manner at the high intermediate sampling

rate that is required. Fortunately, it is possible to greatly reduce the amount of compu-

tation required by taking advantage of some basic techniques in the area of multirate

signalprocessing. Multirate techniques refer in general to utilizing upsampling, down-

sampling, compressors, and expanders in a variety of ways to increase the efficiency

of signal—processing systems. Besides their use in sampling rate conversion, they are

exceedingly useful in A/D and D/A systems that exploit oversampling and noise shap-

ing. Another important class of signal-processing algorithms that relies increasingly on

multirate techniques is filter banks for the analysis and/or processing of signals.

Because of their widespread applicability, there is a large body of results on multi—

rate signal processing. In this section, we will focus on two basic results and show how a

combination of these results can greatly improve the efficiency of sampling rate conver—

sion. The first result is concerned with the interchange of filtering and downsampling

or upsampling operations. The second is the polyphase decomposition.

4.7.1 Interchange of Filtering and Downsampling/Upsampling

We will first derive two identities that aid in manipulating and understanding the opera—

tion of multirate systems. It is straightforward to show that the two systems in Figure 4.30

are equivalent. To see the equivalence, note that in Figure 4.30(b),

Xb(efw) = H(ej‘“M)X(ej‘“), (4.97)

and from Eq. (4.78),
M—l

. 1 , .

Y(ej“’) : —M E :Xb(e1(‘“/M‘2”’/M)). (4.98)
i=0

Substituting Eq. (4.97) into Eq. (4.98) gives

M—l
. 1 , . , _

Y(e"") = —M E X(e’(‘”/M—2”’/M))H(e/(“"2’“). (4.99)
i=0

x[n] xaln] Yin]

(a)

xlnl 394"] wt] Figure4.3l] Twoequivalentsystems
(b) based on downsampling identities.
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Since H(ej(‘“’2”i)) = H(e/“’), Eq. (4.99) reduces to

Y(ej‘“)
_ 1 M" _ _

H(€}w)n_4 Z X(€f(lU/JM*2JTJ/1W))(:0 (4.100)

: H(ejm)Xa(ejlu).

which corresponds to Figure 4.3U(a).

A similar identity applies to upsampling. Specifically, using Eq. (4.86) in Sec-

tion 4.6.2, it is also straightforward to show the equivalence of the two systems in

Figure 4.31. We have. from Eq. (4.86) and Figure 4.31(a).

Ye.ch : X“ ejml.( ) (t ) _ (4.101)
: X(e}ml.)H(eij)-

Since, from Eq. (4.86),

Xb(€jru) : X(ejw[.)'

it follows that Eq. (4.101) is, equivalently,

y(e}.(u) = [_I(€j(uL))(h(€jzu)7

which corresponds to Figure 4.31 (b).

In summary, then, we have shown that the operations of linear filtering and down-

sampling or upsampling can be interchanged if we modify the linear filter.

xln] [n] In]

Figure 4.31 Two equivalent systems

based on upsampling identities.

 

4.7.2 Polyphase Decomposition:

The polyphase decomposition of a sequence is obtained by representing it as a super-

position of M subsequences, each consisting of every Mth value of successively delayed

versions of the sequence. When this decomposition is applied to a filter impulse re—

sponse, it can lead to efficient implementation structures for linear filters in several

contexts. Specifically, consider an impulse response h[n] that we decompose into M

subsequences hk[n] as follows:

_ h[n + k], n : integer multiple of M,["4"] — {0, otherwise. (4'102)
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By successively delaying these subsequences. we can reconstruct the original impulse

response h[n]; i.e..
M—l

h[n] = Z hk[n — k] (4.103)
k=0

This decomposition can be represented with the block diagram in Figure 4.32. If we

create a chain of advance elements at the input and a chain of delay elements at the

output. the block diagram in Figure 4.33 is equivalent to that of Figure 4.32. In the

decomposition in Figures 4.32 and 4.33. the sequences ek[n] are

ek[n] = h[nM+ k] = hk[HM] (4.104)

and are referred to in general as the polyphase components of Mn]. There are several

 
Figure 4.33 Polyphase decomposition

of filter h[n] using components ek[n}

with chained delays.
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other ways to derive the polyphase components, and there are other ways to index

them for notational convenience (Vaidyanathan, 1993), but the definition in Eq. (4.104)

is adequate for our purpose in this section.

Figures 4.32 and 4.33 are not realizations of the filter, but they show how the filter

can be decomposed into M parallel filters. We see this by noting that Figures 4.32 and

4.33 show that, in the frequency or z—transform domain, the polyphase representation

corresponds to expressing H(z) as
M—i

H(z) = Z Ek(zM)z*t. (4.105)
k=()

Equation (4.105) expresses the system function H(z) as a sum of delayed polyphase

component filters. For example, from Eq. (4.105), we obtain the filter structure shown

in Figure 4.34.

Figure 4.34 Realization structure

based on polyphase decomposition of

h[n].

 
4.7.3 Polyphase Implementation of Decimation Filters

One of the important applications of the polyphase decomposition is in the implemen—

tation of filters whose output is then downsampled as indicated in Figure 4.35.

In the most straightforward implementation of Figure 4.35, the filter computes

an output sample at each value of H. but then only one of every M output points

is retained. Intuitively, we might expect that it should be possible to obtain a more

efficient implementation which does not compute the samples that are thrown away.

To obtain a more efficient implementation, we can exploit a polyphase decomposi-

tion of the filter. Specifically, suppose we express h[n] in polyphase form with polyphase

components

ek[n] = h[nM + k]. (4.106)

From Eq. (4.105),
M—l

H(z) = Z Ek(ZM)Z_k- (4.107)
k:0

 
 Wlnl=ylan Figure 4.35 Decimation system.



Sec. 4.7 Multirate Signal Processing 183

With this decomposition and the fact that downsampling commutes with addition,

Figure 4.35 can be redrawn as shown in Figure 4.36. Applying the identity in Figure 4.30

to the system in Figure 4.36. we see that the latter then becomes the system shown in

Figure 4.37.

To illustrate the advantage of Figure 4.37 compared with Figure 4.35, suppose

that the input x[n] is clocked at a rate of 1 sample per unit time and that H(z) is an

N-point FIR filter. 1n the straightforward implementation of Figure 4.35, we require

N multiplications and (N — 1) additions per unit time. In the system of Figure 4.37,

each of the filters Ek(z) is of length N/M, and their inputs are clocked at a rate of

1 per M units of time. Consequently. each filter requires 1%,, multiplications per unit

time and — 1) additions per unit time, and the entire system then requires (N/ M)
multiplications and — 1) + (M — l) additions per unit time. Thus. we can achieve a
significant savings for some values of M and N.

Figure 4.36 Implementation of

decimation filter using polyphase

decomposition.

Figure 4.37 Implementation of

decimation filter after applying the

downsampling identity to the polyphase

decomposition.

 
4.7.4 Polyphase Implementation of Interpolation Filters

A savings similar to that just discussed for decimation can be achieved by applying

the polyphase decomposition to systems in which a filter is preceded by an upsampler

as shown in Figure 4.38. Since only every Lth sample of w[n] is nonzero, the most

straightforward implementation of Figure 4.38 would involve applying filter coefficients

to sequence values that are known to be zero. Intuitively, here again we would expect

that a more efficient implementation was possible.
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  yin] Figure 4.38 Interpolation system.

Figure 4.39 Implementation of

interpolation filter using polyphase

decomposition.

 

Figure 4.4!] Implementation of

interpolation filter after applying the

upsampiing identity to the polyphase

decomposition.

 
To implement the system in Figure 4.38 more efficiently, we again utilize the

polyphase decomposition of H(z). For example, we can express H(z) as in the form of

Eq. (4.107) and represent Figure 4.38 as shown in Figure 4.39. Applying the identity in

Figure 4.31, we can rearrange Figure 4.39 as shown in Figure 4.40.

To illustrate the advantage of Figure 4.40 compared with Figure 4.38, we note

that in Figure 4.38 if x[n] is clocked at a rate of 1 sample per unit time, then w[n] is

clocked at a rate of L samples per unit time. If H(z) is an FIR filter of length N, we then

require NL multiplications and (NL — 1) additions per unit time. Figure 4.40, on the

other hand, requires L(N/ L) multiplications and L — 1) additions per unit time for
the set of polyphase filters, plus (L — 1) additions, to obtain y[n], Thus, we again have

the possibility of significant savings in computation for some values of L and N.

For both decimation and interpolation, gains in computational efficiency result

from rearranging the operations so that the filtering is done at the low sampling rate.

Combinations of interpolation and decimation systems for noninteger rate changes lead

to significant savings when high intermediate rates are required.
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4.8 DIGITAL PROCESSING OF ANALOG SIGNALS

So far. our discussions of the representation of continuous—time signals by discrete—time

signals have focused on idealized models of periodic sampling and bandlimited interpo-

lation. We have formalized those discussions in terms of an idealized sampling system

that we have called the ideal continuous-ro—discrete (C/D) converter and an idealized

bandlimited interpolator system called the ideal discrete-IO-continuous (D/ C) converter.

These idealized conversion systems allow us to concentrate on the essential mathemati-

cal details of the relationship between a bandlimited signal and its samples. For example.

in Section 4.4 we used the idealized C/D and D/C conversion systems to show that linear

time-invariant discrete-time systems can be used in the configuration of Figure 4.41(a)

to implement linear time—invariant continuous-time systems if the input is bandlimited

and the sampling rate exceeds the Nyquist rate. In a practical setting. continuous-time

signals are not precisely bandlimited. ideal filters cannot be realized. and the ideal C/D

and D/C converters can only be approximated by devices that are called analog-to-

digital (A/D) and digital-to-analog (D/A) converters, respectively. The block diagram

of Figure 4.41(b) shows a more realistic model for digital processing of continuous-time

(analog) signals. In this section we will examine some of the considerations introduced

by each of the components of the system in Figure 4.41(b).

4.8.1 Prefiltering to Avoid Aliasing

In processing analog signals using discrete-time systems. it is generally desirable to

minimize the sampling rate. This is because the amount of arithmetic processing required

to implement the system is proportional to the number of samples to be processed.

If the input is not bandlimited or if the Nyquist frequency of the input is too high.

prefiltering may be necessary. An example of such a situation occurs in processing speech

signals. where often only the low-frequency band up to about 3—4 kHz is required for

intelligibility, even though the speech signal may have significant frequency content in

the 4 kHz to 20 kHz range. Also. even if the signal is naturally bandlimited. wideband

Discrete—time

system 

   
 

 

 
 

 

Anti-

aliasing
filter

Compensated
reconstruction

maum lion)

0))

Figure 4.41 (a) Discrete-time filtering of continuous-time signals. (b) Digital processing of
analog signals.
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additive noise may fill in the higher frequency range, and as a result of sampling, these

noise components would be aliased into the low-frequency band. If we wish to avoid

aliasing, the input signal must be forced to be bandlimited to frequencies below one-half

the desired sampling rate. This can be accomplished by lowpass filtering the continuous-

time signal prior to C/D conversion, as shown in Figure 4.42. In this context, the lowpass

filter that precedes the C/D converter is called an antialiasingfilter. Ideally, the frequency

response of the antialiasing filter would be

_ 1, £2 < 52,: < 7: T,

Haa(152)={0 >90 / (4.108)
From the discussion of Section 4.4.1, it follows that the overall system, from the output

of the antialiasing filter xa(t) to the output y,(t), will always behave as a linear time—

invariant system, since the input to the C/D converter, xa(t), is forced by the antialiasing

filter to be bandlimited to frequencies below 31/ T radians/s. Thus the overall effective

frequency response of Figure 4.42 will be the product of Haa(jS2) and the effective

frequency response from xa(t) to y,(t). Combining Eqs. (4.108) and (4.38) gives

. H ejQT , 52 < QC,
Heff(1s2)={0( ) > QC. (4.109)

Thus, for an ideal lowpass antialiasing filter, the system of Figure 4.42 behaves as a

linear time—invariant system with frequency response given by Eq. (4.109), even when

X6052) is not bandlimited. In practice, the frequency response H3309) cannot be

ideally bandlimited, but Haa(jS2) can be made small for |S2| > yr/ T so that aliasing

is minimized. In this case, the overall frequency response of the system in Figure 4.42

should be approximately

Helium ~ Haaommem). (4.110)

To achieve a negligibly small frequency response above 71/ T, it would be necessary

for Haa(j§2) to begin to “roll off,” i.e., begin to introduce attenuation, at frequencies

below 11/ T, Equation (4.110) suggests that the roll-off of the antialiasing filter (and

other linear time-invariant distortions to be discussed later) could be at least partially

compensated for by taking them into account in the design of the discrete—time system.
This is illustrated in Problem 4.56.

The preceding discussion requires sharp-cutoff antialiasing filters. Such sharp—

cutoff analog filters can be realized using active networks and integrated circuits. How-

ever, in applications involving powerful, but inexpensive, digital processors, these

continuous—time filters may account for a major part of the cost of a system for discrete-

time processing of analog signals. Sharp-cutoff filters are difficult and expensive to im-

plement, and if the system is to operate with a variable sampling rate, adjustable filters

would be required. Furthermore, sharp—cutoff analog filters generally have a highly non-

linear phase response, particularly at the passband edge. Thus, it is desirable for several

reasons to eliminate the continuous-time filters or simplify the requirements on them.
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Figure 4.43 Using oversampled A/D conversion to simplify a continuous-time

antialiasing filter.

One approach is depicted in Figure 4.43. With {ZN denoting the highest frequency

component to eventually be retained after the antialiasing filtering is completed, we

first apply a very simple antialiasing filter that has a gradual cutoff with significant

attenuation at MQN. Next, implement the C/D conversion at a sampling rate much

higher than ZQN, e.g., at 2MS2N. After that, sampling rate reduction by a factor of M

that includes sharp antialiasing filtering is implemented in the discrete-time domain.

Subsequent discrete-time processing can then be done at the low sampling rate to

minimize computation.

This use of oversampling followed by sampling rate conversion is illustrated in

Figure 4.44. Figure 4.44(a) shows the Fourier transform of a signal that occupies the

band lfll < 9N, plus the Fourier transform of what might correspond to high—frequency

“noise” or unwanted components that we eventually want to eliminate with the antialias-

ing filter. Also shown (dotted line) is the frequency response of an antialiasing filter that

does not cut off sharply. but gradually falls to zero at frequencies above a frequency

9“. Figure 4.44(b) shows the Fourier transform of the output of this filter. If the signal

x[,(r) is sampled with period T such that (221/ T — $2,.) > 9N, then the discrete-time

Fourier transform of the sequence fin] will he as shown in Figure 4.44(c). Note that the

“noise” will be aliased. but aliasing will not affect the signal band |w| < (UN 2 QNT.

Now, if T and T’ are chosen so that T’ = MT and 21/ T’ = 9N, then 5c[n] can be filtered

by a sharp-cutoff discrete-time filter (shown idealized in Figure 4.44(c)) with unity gain

and cutoff frequency 71/ M. The output of the discrete-time filter can be downsampled

by M to obtain the sampled sequence xd[n] whose Fourier transform is shown in Fig-

ure 4.44(d). Thus, all the sharp-cutoff filtering has been done by a discrete-time system,

and only nominal continuous-time filtering is required. Since discrete-time FIR filters

can have an exactly linear phase, it is possible using this oversampling approach to im-

plement antialiasing filtering with virtually no phase distortion. This can be a significant

advantage in situations where it is critical to preserve not only the frequency spectrum,

but the waveshape as well.

4.8.2 Analog-to—Digital (AID) Conversion

An ideal C/D converter converts a continuous-time signal into a discrete-time signal,

where each sample is known with infinite precision. As an approximation to this for

digital signal processing, the system of Figure 4.45 converts a continuous-time (analog)

signal into a digital signal, i.e., a sequence of finite-precision or quantized samples.

The two systems in Figure 4.45 are available as physical devices. The A/D converter
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is a physical device that converts a voltage or current amplitude at its input into a

binary code representing a quantized amplitude value closest to the amplitude of the

input. Under the control of an external clock. the A/D converter can be caused to

start and complete an A/D conversion every T seconds. However, the conversion is not

instantaneous, and for this reason, a high-performance A/D system typically includes

a sample-and-hold, as in Figure 4.45. The ideal sample-and-hold system is the system

whose output is
00

x0(t) = Z x[n]h0(r —nT),712—90
(4.111)
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Figure 4.45 (a) Representation of an
ideal sample—and-hold.

(b) Representative input and output

(b) signals for the sample-and-hold.

 
where x[n] = xa(nT) are the ideal samples of xg(t) and h(,(t) is the impulse response

of the zero-order—hold system. i.e..

1. 0 < t < T.

ho“) = {0. otherwise. (4'112)
If we note that Eq. (4.111) has the equivalent form

x00) = 110(1) * Z x(,(nT)5(t —nT), (4.113)
H=79C

we see that the ideal sample-and—hold is equivalent to impulse train modulation followed

by linear filtering with the zero-order-hold system, as depicted in Figure 4.46(a). The

relationship between the Fourier transform of x00) and the Fourier transform of xa(t)

can be worked out following the style of analysis of Section 4.2, and we will do a similar

analysis when we discuss the D/A converter. However, the analysis is unnecessary at

this point, since everything we need to know about the behavior of the system can be

seen from the time-domain expression. Specifically. the output of the zero-order hold

is a staircase waveform where the sample values are held constant during the sampling

period of T seconds. This is illustrated in Figure 4.46(b). Physical sample-and-hold

circuits are designed to sample x00) as nearly instantaneously as possible and to hold the

sample value as nearly constant as possible until the next sample is taken. The purpose of

this is to provide the constant input voltage (or current) required by the A/D converter.

The details of the wide variety of A/D conversion processes and the details of sample-

and-hold and A/D circuit implementations are outside the scope of this book. Many

practical issues arise in obtaining a sample-and-hold that samples quickly and holds the

sample value constant with no decay or “glitches.” Likewise, many practical concerns
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dictate the speed and accuracy of conversion of A/D converter circuits. Such questions

are considered in Hnatek (1988) and Schmid (1976), and details of the performance

of specific products are available in manufacturers’ specification and data sheets. Our

concern in this section is the analysis of the quantization effects in A/D conversion.

Since the purpose of the sample-and—hold in Figure 4.45 is to implement ideal sam-

pling and to hold the sample value for quantization by the A/D converter, we can repre-

sent the system of Figure 4.45 by the system of Figure 4.47, where the ideal C/D converter

represents the sampling performed by the sample-and-hold and, as we will describe later,

the quantizer and coder together represent the operation of the A/D converter.

The quantizer is a nonlinear system whose purpose is to transform the input sample

x[n] into one of a finite set of prescribed values. We represent this operation as

fin] = Q(x[n]) (4.114)

and refer to it [n] as the quantized sample. Quantizers can be defined with either uniform-

ly or nonuniformly spaced quantization levels; however, when numerical calculations

are to be done on the samples, the quantization steps usually are uniform. Figure 4.48

 
Figure 4.47 Conceptual representation

T of the system in Figure 4.45.

 
 

Two’s-complement Offsetbinary

  

code code

011 111

010 110

001 101

->§é 000 100
2 2 2 2 2 2

«A 111 011

110 010

101 001

100 000

Figure 4.48 Typical quantizer for A/D conversion.
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shows a typical uniform quantizer characteristic1 in which the sample values are rounded

to the nearest quantization level.

Several features of Figure 4.48 should be emphasized. First, note that this quan—

tizer would be appropriate for a signal whose samples are both positive and negative

(bipolar). If it is known that the input samples are always positive (or negative), then

a different distribution of the quantization levels would be appropriate. Next, observe

that the quantizer of Figure 4.48 has an even number of quantization levels. With an

even number of levels, it is not possible to have a quantization level at zero amplitude

and also have an equal number of positive and negative quantization levels. Generally,

the number of quantization levels will be a power of 2, but the number will be much

greater than eight, so this difference is usually inconsequential.

Figure 4.48 also depicts coding of the quantization levels. Since there are eight

quantization levels, we can label them by a binary code of 3 bits. (In general, 2‘13+1 levels

can be coded with a (B —+— 1)-bit binary code.) In principle, any assignment of symbols

can be used, and many binary coding schemes exist, each with its own advantages and

disadvantages, depending on the application. For example, the right-hand column of

binary numbers in Figure 4.48 illustrates the offset binary coding scheme, in which the

binary symbols are assigned in numeric order, starting with the most negative quantiza-

tion level. However, in digital signal processing, we generally wish to use a binary code

that permits us to do arithmetic directly with the code words as scaled representations

of the quantized samples.

The left-hand column in Figure 4.48 shows an assignment according to the two’s

complement binary number system. This system for representing signed numbers is

used in most computers and microprocessors; thus, it is perhaps the most convenient

labeling of the quantization levels. Note, incidentally, that the offset binary code can be

converted to two’s complement code simply by complementing the most significant bit.

In the two’s-complement system, the leftmost, or most significant, bit is considered

as the sign bit, and we take the remaining bits as representing either binary integers

or fractions. We Will assume the latter; i.e., we assume a binary fraction point between

the two most significant bits. Then, for the two’s-complement interpretation, the binary

symbols have the following meaning for B = 2:

Binary symbol Numeric value, 23

0,1 1 3/4

001 0 1/2

0001 1/4
0.00 0

1011 —1/4

1010 —1/2

1.01 —3/4

1000 —1 

In general, if we have a (B + 1)-bit binary two’s-complement fraction of the form

. I (1000102...(13,

then 1ts value 1s 0 1 B
—a02 + a12‘ + a22‘2 + - - - + aBZ' .

1Such quantizers are also called linear quantizers because of the linear progression of quantization
steps.
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Note that the symbol 0 denotes the “binary point” of the number. The relationship

between the code words and the quantized signal levels depends on the parameter

Xm in Figure 4.48. In general, this parameter is called the full-scale level of the A/D

converter. Typical values are 10, 5, or 1 volt. From Figure 4.48, we see that the step size

of the quantizer would in general be

2'an X"?

A : 28+1 :
 

The smallest quantization levels (:tA) correspond to the least significant bit of the

binary code word. Furthermore, the numeric relationship between the code words and

the quantized samples is

fin] = megm, (4.116)

since we have assumed that frB[n] is a binary number such that —l 5 33M] < 1 (for two’s

complement). In 'this scheme the binary coded samples J‘cB[n] are directly proportional

to the quantized samples (in two’s complement binary), and therefore, they can be used

as a numeric representation of the amplitude of the samples. Indeed, it is generally

appropriate to assume that the input signal is normalized, so that the numeric values of

fin] and fcg[n] are identical and there is no need to distinguish between the quantized

samples and the binary coded samples.

Figure 4.49 shows a simple example of quantization and coding of the samples of

a sine wave using a 3-bit quantizer. The unquantized samples x[n] are illustrated with

0 Quantized samples

0 Unquantized samples

— Output of ideal sample and hold ‘
— — - Output of D/A converter
 

 
 

o— 0—

Original
signal

an
'0
a
a
E
<

#A

—2A a ------ --

—3A

-4A 0'

0 T 2T 3T 4T 5T 1

23m]: 011 000 100 110 011 011

Figure 4.49 Sampling, quantization, coding, and WA conversion with a 3-bit quantizer.
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solid dots, and the quantized samples fin] are illustrated with open circles. Also shown

is the output of an ideal sample—and—hold. The dotted lines labeled “output of D/A

converter” will be discussed later. Figure 4.49 shows, in addition, the 3-bit code words

that represent each sample. Note that, since the analog input x,,(t) exceeds the full—scale

value of the quantizer, some of the positive samples are “clipped.”

Although much of the preceding discussion pertains to two’s-complement cod—

ing of the quantization levels. the basic principles of quantization and coding in A/D

conversion are the same regardless of the binary code used to represent the samples.

A more detailed discussion of the binary arithmetic systems used in digital computing

can be found in texts on computer arithmetic. (See, for example, Knuth, 1997.) We now

turn to an analysis of the effects of quantization. Since this analysis does not depend on

the assignment of binary code words, it will lead to rather general conclusions.

4.8.3 Analysis of Quantization Errors

From Figures 4.48 and 4.49, we see that the quantized sample J‘r[n] will generally be dif—

ferent from the true sample value x[n]. The difference between them is the quantization

error, defined as

e[n] = fin] — x[n]. (4.117)

For example,for the 3—bit quantizer ofFigure4.48,ifA/2 < x[n] 5 3A/2,thenfr[n] = A,
and it follows that

—A/2 < e[n] 5 A/Z. (4.118)

In the case of Figure 4.48, Eq. (4.118) holds whenever

—9A/2 < x[n] 5 7A/2. (4.119)

In the general case of a (B + 1)-bit quantizer with A given by Eq. (4.115). the quanti-

zation error satisfies Eq. (4.118) whenever

(—X,,, — A/Z) < x[n] _<_ (X,,, — A/Z). (4.120)

If x[n] is outside this range, as it is for the sample at t = 0 in Figure 4.49, then the

quantization error is larger in magnitude than A/Z, and such samples are said to be

clipped.

A simplified, but useful, model of the quantizer is depicted in Figure 4.50. In this

model, the quantization error samples are thought of as an additive noise signal. The

model is exactly equivalent to the quantizer if we know e[n]. In most cases, however,

xin] 9” fiini = Q(x[n])

fin] :x[n] + e[n]  
Figure 4.50 Additive noise model for

e[Ml quantizer.
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e[n] is not known, and a statistical model based on Figure 4.50 is then often useful in

representing the effects of quantization. We will also use such a model in Chapters 6 and

9 to describe the effects of quantization in signal—processing algorithms. The statistical

representation of quantization errors is based on the following assumptions:

1. The error sequence e[n] is a sample sequence of a stationary random process.

2. The error sequence is uncorrelated with the sequence x[n].

3. The random variables of the error process are uncorrelated; i.e., the error is a

white-noise process.

4. The probability distribution of the error process is uniform over the range of

quantization error.

As we will see, the preceding assumptions lead to a rather simple analysis ofquan-

tization effects. It is easy to find situations where these assumptions are not valid. For

example, if xa (t) is a step function, the assumptions would not be justified. However,

when the signal is a complicated signal, such as speech or music, where the signal fluc—

tuates rapidly in a somewhat unpredictable manner, the assumptions are more realistic.

Experiments have shown that, as the signal becomes more complicated, the measured

correlation between the signal and the quantization error decreases, and the error also

becomes uncorrelated. (See Bennett. 1948; Widrow, 1956, 1961.) In a heuristic sense,

the assumptions of the statistical model appear to be valid if the signal is sufficiently

complex and the quantization steps are sufficiently small so that the amplitude of the

signal is likely to traverse many quantization steps from sample to sample.

Example 4.1 2 Quantization Error For a
Sinusoidal Signal

As an illustration, Figure 451(3) shows the sequence of unquantized samples of the

cosine signal x[n] = 0.99 cos(n/lO). Figure 4.51(b) shows the quantized sample se—

quence fin] = Q[x[n]} for a 3-bit quantizer (B + 1 : 3), assuming that X," = 1. The

dashed lines in this figure show the eight possible quantization levels. Figures 4.51(c)

and 4.51(d) show the quantization error e[n] = fin] — x[n] for 3-bit and 8-bit quanti—

zation, respectively. In each case, the scale of the quantization error is adjusted so that

the range iA/Z is indicated by the dashed lines.

Notice that in the 3-bit Case, the error signal is highly correlated with the un-

quantized signal. For example, around the positive and negative peaks of the cosine,

the quantized signal remains constant over many consecutive samples, so that the er-

ror has the shape of the input sequence during these intervals. Also, note that during

the intervals around the positive peaks, the error is greater than A/Z in magnitude

because the signal level is too large for this setting of the quantizer parameters.

On the other hand, the quantization error for 8-bit quantization has no apparent

patterns.2 Visual inspection of these figures tends to confirm the preceding assertions

about the quantization-noise properties in the finely quantized (8-bit) case; i.e., the

error samples appear to vary randomly, with no correlation with the unquantized signal,

ZFor periodic cosine signals, the quantization error would, of course. be periodic, too. We used the
frequency am 2 1/10 to avoid this case in the example.
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Figure 4.51 Example of quantization noise. (a) Unquantized samples ofthe signal

x[n] = 0.99 cos(n/lo). (b) Quantized samples of the cosine waveform in part

(a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of

the signal in (a). (d) Quantization error sequence for 8-bit quantization of the

signal in (a).

and they range between —A/2 and +A/2. In Chapter 10 this will be demonstrated more

quantitatively when we calculate the power density spectrum and autocorrelation of

a quantization—noise sequence.

For quantizers that round the sample value to the nearest quantization level, as

shown in Figure 4.48, the amplitude of the quantization noise is in the range

—A/2 < e[n] S A/Z. (4.121)

For small A, it is reasonable to assume that e[n] is a random variable uniformly dis—

tributed from —A /2 to A /2. Therefore, the first-order probability density for the quan—

tization noise is as shown in Figure 4.52. (If truncation rather than rounding is used

in implementing quantization, then the error would always be negative, and we would

assume a uniform probability density from —A to 0.) To complete the statistical model

for the quantization noise, we assume that successive noise samples are uncorrelated

with each other and that e[n] is uncorrelated with x[n]. Thus, e[n] is assumed to be

a uniformly distributed white-noise sequence. The mean value of e[n] is zero, and its
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variance is

A/Z 1 A2

of = / 62—de = —. (4.122). _A/2 A 12

For a (B + 1)-bit,quantizer with full-scale value X,,,._ the noise variance, or power, is

 2—ZBX2

3= 12 (4.123)
0'

A common measure of the amount of degradation of a signal by additive noise is the

signal—to—noise ratio, defined as the ratio of signal variance (power) to noise variance.

Expressed in decibels (dB), the signal-to-noise ratio of a (B + 1)-bit quantizer is

03 12-22303
SNRzioiog10 F =1010gm —X2-

(4.124)
(’

XVH

= 6.028 + 10.8 — 20mg10.I

From Eq. (4.124), we see that the signal-to-noise ratio increases approximately 6 dB for

each bit added to the word length of the quantized samples, i.e., for each doubling of

the number of quantization levels. It is particularly instructive to consider the term

_2010g10 (4.125)
 

ax

in Eq. (4.124). First recall that Xm is a parameter of the quantizer, and it would usually

be fixed in a practical system. The quantity 0, is the rms value of the signal amplitude,

and it would necessarily be less than the peak amplitude of the signal. For example, if

xa(z) is a sine wave of peak amplitude Xp, then a, = Xp/fi. If a, is too large, the peak
signal amplitude will exceed the full-scale amplitude Xm of the A/D converter. In this

case Eq. (4.124) is no longer valid, and severe distortion results. If, on the other hand,

(II is too small, then the term in Eq. (4.125) will become large and negative, thereby

decreasing the signal-to-noise ratio in Eq. (4.124). In fact, it is easily seen that when 0,,

is halved, SNR decreases by 6 dB. Thus, it is very important that the signal amplitude

be carefully matched to the full—scale amplitude of the A/D converter.

For analog signals such as speech or music, the distribution of amplitudes tends

to be concentrated about zero and falls off rapidly with increasing amplitude. In such

cases, the probability that the magnitude of a sample will exceed three or four times the

rms value is very low. For example, if the signal amplitude has a Gaussian distribution,

only 0.064 percent of the samples would have an amplitude greater than 40,. Thus, to
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avoid clipping the peaks of the signal (as is assumed in our statistical model). we might

set the gain of filters and amplifiers preceding the A/D converter so that ox = X,,,/4.

Using this value of (II in Eq. (4.124) gives

SNR % 6B — 1.25 dB. (4.126)

For example, obtaining a signal-to—noise ratio of about 90—96 dB for use in high-quality

music recording and playback requires 16-bit quantization. but it should be remembered

that such performance is obtained only if the input signal is carefully matched to the

full-scale range of the A/D converter.

This trade-off between peak signal amplitude and absolute size of the quantization

noise is fundamental to any quantization process. We will see its importance again in

Chapter 6 when we discuss round-off noise in implementing discrete—time linear systems.

4.8.4 DIA Conversion

In Section 4.3, we discussed how a bandlimited signal can be reconstructed from a

sequence of samples using ideal lowpass filtering. In terms of Fourier transforms, the

reconstruction is represented as

X419) = X(ef“"‘>H,(js2). (4.127)

where X(e/"’) is the discrete-time Fourier transform of the sequence of samples and

X,(jS2) is the Fourier transform of the reconstructed continuous-time signal. The ideal
reconstruction filter is

T. |§2| < n/ T.H419): {0! '9' > M T. (4.128)
For this choice of H,(jQ), the corresponding relation between x,(r) and x[n] is

_ Dc sin[7r(t—nT)/T]
Xr([)— Z X[H]W.H:—OC

(4.129)

The system that takes the sequence x[n] as input and produces x,(r) as output is called

the ideal D/C converter. A physically realizable counterpart to the ideal D/C converter

is a digital-to-analog converter (D/A converter) followed by an approximate lowpass

filter. As depicted in Figure 4.53(a), a D/A converter takes a sequence of binary code

D/A
A converter
xln] x0140)

(a)

Xm £[n] Impulses hold We) Figure 4.53 (a) Block diagram of D/A
converter. (b) Representation in terms of

(b) a zero-order hold.
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words as its input and produces a continuous—time output of the form

310.1(1) = Z X,,.3B[n]h0(r — nT)
”=‘”C (4.130)9C

2 3c[n]h0(t — M)."2700

where h0(t) is the impulse response of the zero-order hold given by Eq. (4.112). The

dotted lines in Figure 4.49 show the output of a D/A converter for the quantized ex-

amples of the sine wave. Note that the D/A converter holds the quantized sample for

one sample period in the same way that the sample—and-hold holds the unquantized in—

put sample. If we use the additive-noise model to represent the effects of quantization,

Eq. (4.130) becomes
QC DC

x010): Z xlnlho(t—nT)+ Z elnlho(t—nT)- (4.131)
’12—’56 H:—"7\.;

To simplify our discussion, we define

X()([) = Z X[H]h()([ —nT).

e()(r) = e[n]h()(r—nT). (4.133)

so that Eq. (4.131) can be written as

xDA(t) = x()(t) + 600). (4.134)

The signal component x00) is related to the input signal x.,(t), since x[n] = xa(nT).

The noise signal 60(1) depends on the quantization—noise samples e[n] in the same

way that x0(t) depends on the unquantized signal samples. The Fourier transform of

Eq. (4.132) is

X009) = Z x[n]H0(jsz)ev'9“T

= ( xlnlejm”) H009) (4135)
= X(€jmi)Hn(ffl)-

Now, since

. 1 °° _ 27rk

Mel“) = i2; X. (1 (£2 4 . (4.136)
it follows that

X0(jS2) = X“ (j (12 — HOUSE). (4.137)
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If Xa(j§2) is bandlimited to frequencies below JT/ T, the shifted copies of X,,(j§2) do

not overlap in Eq. (4.137). and if we define a compensated reconstruction filter as

~ . Hrosz)
HIUQ) : . -

Ho(] 9)

 

(4.138)

then the output of the filter will be xt,(r) if the input is x00). The frequency response of

the zero-order—hold filter is easily shown to be

H009) = (4.139)

Therefore, the compensated reconstruction filter is

QT 2 » H,- .—/*eJQ’/-. ml < Jr/T.
H,( 152) = smmT/Z) (4.140)

0. ISZI > JT/ T.

Figure 4.54(a) shows |H()(j52)| as given by Eq. (4.139). compared with the magnitude

of the ideal interpolation filter |H,(j52)| as given by Eq. (4.128). Both filters have a

gain of T at $2 = 0, but the zero-order-hold. although lowpass in nature, does not

cut off sharply at $2 : zr/ T. Figure 4.54(b) shows the magnitude of the frequency

response of the ideal compensated reconstruction filter to be used following a zero-

order—hold reconstruction system such as a D/A converter. The phase response would

ideally correspond to an advance time shift of T/2 seconds to compensate for the delay

of that amount introduced by the zero—order hold. Since such a time advance cannot be

 

 
 

 

Ideal interpolating
/ filter H,(j.(2)Zero—order

hold

|H0(jfl)l

 

s 21 _ I 0 1 21 0
T T T T

(a)

lfirgml

1

Figure 4.54 (a) Frequency response

of zero-order hold compared with ideal

_ I I 0 interpolating filter. (b) Ideal
T T compensated reconstruction filter for

(b) use with a zero—order—hold output.
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Figure 4.55 Physical configuration for

T digital-to-analog conversion.

realized in practical real-time approximations to the ideal compensated reconstruction

filter, only the magnitude response would normally be compensated, and often even

this compensation is neglected, since the gain of the zero—order hold drops only to 2/7:

(or —4 dB) at £2 : n/ T.

Figure 4.55 shows a D/A converter followed by an ideal compensated recon-

struction filter. As can be seen from the preceding discussion, with the ideal compen-

sated reconstruction filter following the D/A converter, the reconstructed output sig-
nal would be

A _ x A sin[n(t—nT)/T]
Xr(t)— 2 “MW

[ . [ ] (4.141)_ ‘” sinHU—HTVT] °° ) sinn(t—nT)/T
_ Z xiniW-h Z LlnlW.“2“OC Ifz—CX)

In other words, the output would be

5c,(t) : x,,(t) -l— ea(t). (4.142)

where 60(1) would be a bandlimited white—noise signal.

Returning to a consideration of Figure 4.41(b), we are now in a position to un-

derstand the behavior of systems for digital processing of analog signals. If we assume

that the output of the antialiasing filter is bandlimited to frequencies below n/ T, that

FLUKE) is similarly bandlimited, and that the discrete-time system is linear and time
invariant, then the output of the overall system will be of the form

Mr) = ya(t) + ea(r). (4.143)

where

12(19): Hr(j:2)Ho(immei‘”)Hangman», (4.144)

in which H3309), H009), and FLUQ) are the frequency responses of the antialiasing
filter, the zero-order hold of the D/A converter, and the reconstruction lowpass filter,

respectively. H0497) is the frequency response of the discrete-time system. Similarly,

assuming that the quantization noise introduced by the A/D converter is white noise

with variance 062 = A2/12, it can be shown that the power spectrum of the output noise is

106.052) = iHr(j9)Ho(j£2)H(ei“T)izai (4.145)

i.e., the input quantization noise is changed by the successive stages of discrete- and

continuous-time filtering. From Eq. (4.144), it follows that, under the assumption of

negligible aliasing, the overall effective frequency response from xc(r) to 9,0) is

Heme) = Romano)H(e’”T)Haa(jsz). (4.146)
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If the antialiasing filter is ideal. as in Eq. (4.108). and if the compensation of the re-

construction filter is ideal. as in Eq. (4.140). then the effective frequency response is

as given in Eq. (4.109). Otherwise Eq. (4.146) provides a reasonable model for the ef-

fective response. Note that Eq. (4.146) suggests that compensation for imperfections in

any of the four terms can. in principle. be included in any of the other terms: e.g.. the

discrete-time system can include appropriate compensation for the antialiasing filter or
the zero—order hold or the reconstruction filter or all of these.

In addition to the filtering supplied by Eq. (4.146). Eq. (4.143) reminds us that the

output will also be contaminated by the filtered quantization noise. In Chapter 6 we

will see that noise can be introduced as well in the implementation of the discrete-time

linear system. This internal noise will. in general. be filtered by parts of the discrete-

time system implementation. by the zero-order hold of the D/A converter, and by the
reconstruction filter.

4.9 OVERSAMPLING AND NOISE SHAPING IN AID

AND D/A CONVERSION

In Section 4.8.1. we showed that oversampling can make it possible to implement sharp—

cutoff antialiasing filtering by incorporating digital filtering and decimation. As We

discuss in Section 4.9.1. oversampling and subsequent discrete—time filtering and down-

sampling also permit an increase in the step size A of the quantizer or. equivalently.

a reduction in the number of bits required in the analog~to-digital conversion. In Sec—

tion 4.9.2 we show how the step size can be reduced even further by using oversampling

together with quantization-noise feedback. and in Section 4.9.3 we show how the over-

sampling principle can be applied in D/A conversion.

4.9.1 Oversampled AID Conversion with Direct Quantization

To explore the relation between oversampling and the quantization step size. we con-

sider the system in Figure 4.56. To analyze the effect of oversampling in this system. we

consider x.,(t) to be a zero-mean. wide-sense-stationary. random process with power-

spectral density denoted by (13.1,” (j S2) and autocorrelation function denoted by gm” (.4, (I).

To simplify our discussion. we assume initially that x{,(r) is already bandlimited to (EN,
1.e..

<I>...,.\»..(jS2) = 0. ISM 2 m. (4.147)

A/D conversion Sampling rate conversion
—— ——— —I — — — u — — — — — — — _ ‘ — — —_‘
 

 
Figure 4.56 Oversampled A/D conversion with simple quantization and down-

sampling.
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2 = M]:

mo 1 xlnl xlnl+einl “c”
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T: 7’
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Figure 4.57 System of Figure 4.56 with quantizer replaced by linear noise model.

and we assume that 27r/ T : ZMQN. The constant M, which is assumed to be an integer,

is called the oversampling ratio. Using the additive noise model discussed in detail

in Section 4.8.3,‘we can replace Figure 4.56 by Figure 4.57. The decimation filter in

Figure 4.57 is an ideal lowpass filter with unity gain and cutoff frequency wc = rr/M.

Because the entire system of Figure 4.57 is linear, its output xd[n] has two components,

one due to the signal input xa (t) and one due to the quantization noise input e[n]. We

denote these components by xda [n] and xd€[n], respectively.

Our goal is to determine the ratio of signal power £{x§a[n]} to quantization—noise
power £{x(2,6[n]} in the output xd[n] as a function of the quantizer step size A and the
oversampling ratio M. Since the system of Figure 4.57 is linear, and since the noise is

assumed to be independent of the signal, we can treat the two sources separately in

computing the respective powers of the signal and noise components at the output.

First we will consider the signal component of the output. We begin by relating

the power spectral density, autocorrelation function, and signal power of the sampled

signal x[n] to the corresponding functions for the continuous-time analog signal xa (I).

Let ¢xx[m] and CD”(ej‘”) respectively denote the autocorrelation and power spectral

density ofx[n]. Then, by definition, ¢xx[m] = E{x[n + m]x[n]}, and since x[n] = xa (nT)

and x[n + m] = xa(nT + mT ),

£{x[n+m]x[n]} =£{xa((n+m)T)xa(nT)}. (4.148)

Therefore,

¢xx[m] = ¢xaxa(mT); (4.149)

i.e., the autocorrelation function of the sequence of samples is a sampled version of

the autocorrelation function of the corresponding continuous-time signal. In particular,

Eqs. (4.148) and (4.149), together with the wide-sense-stationarity assumption, imply

that Elxj (r)} is a constant independent of I. It then follows that

£{x2[n]} = £{x3(nr)} = £{x3(x)} for all n or r. (4.150)

Since the power spectral densities are the Fourier transforms of the autocorrelation

functions, as a consequence of Eq. (4.149),

4 1 °° 2 k

angel“) = 7 Z dame, (j (52 — . (4.151)kz—oo

Assuming that the input is bandlimited as in Eq. (4.147), and assuming oversampling
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$101,110)

  
_nN 0N n 717'

(a) (b)

Figure 4.58 illustration of frequency and amplitude scaling between come (jg)
and <I>XX(e/‘“).

by a factor of M so that 2n/T = ZMSZN, we obtain, by substituting S2 = w/T into

Eq. (4.151)

1 a)

' ri-u ' <<I>xx(e"") = T r r < T) (4.152)
0, JT/M < a) 5 II.

For example, if (bxflxu (jSZ) is as depicted in Figure 4.58(a). and if we choose the sampling

rate to be 271/ T = ZMSZN, then (urge/w) will be as depicted in Figure 4.58(b).

It is instructive to demonstrate that Eq. (4.150) is true by utilizing the power

spectrum. The total power of the original analog signal is given by

1 “N

51x30»: —/ <D_m,m(jS2)dS2.27'! _QN

From Eq. (4.152), the total power of the sampled signal is

1 H

34,
E{x2[n]} (bu(ej“’)dw (4.153)

1 WM 1 _a)
— —(ngxg (I—
271 gfl/M T T

Using the fact that QNT = JT/M and making the substitution S2 = w/T in Eq. (4.154)

gives

) dw. (4.154)

szN

Elxzfill} = i f chainsaw = 61x30».237 ,QN

Thus, the total power of the sampled signal and the total power of the original analog

signal are exactly the same. Since the decimation filter is an ideal lowpass filter with

cutoff wc = 11/ M, the signal x[n] passes unaltered through the filter. Therefore, the

downsampled signal component at the output, xda [n] = x[nM] = xa(nMT), also has

the same total power. This can be seen from the power spectrum by noting that, since

¢1x(el“’) is bandlimited to |a2| < n/M,
M-l

'w 1 . w—
(D-rdaxda (e) ) = M E : (Dxx(ej( 2JIM/2W)

k=0

1 ,

: 1T4¢-rx(efw/M) lwl < 77'

(4.155)
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Using Eq. (4.155), we obtain

1 "fl -

‘5 {xtzia [nil = — / ¢«Yl[lr<1'rru(elm)dw211H

1 7' l -

= E A—ldDM-(eW/MldwAFT

1 “W .

= —/ Cl>‘\.,‘.(e"“)dw = E{x2[n]}.2” err/M

which shows that the power of the signal component stays the same as it traverses the

entire system from the input xa (t) to the corresponding output component xdd [n]. In

terms of the power spectrum, this occurs because, for each scaling of the frequency axis

that results from sampling, we have a counterbalancing inverse scaling of the amplitude,

so that the area under the power spectrum remains the same as we go from CDXWUQ)

to ¢x_r(ej‘“) to (1))“me (6”) by sampling.

Now let us consider the noise component that is generated by quantization.

According to the model in Section 4.8.3, we assume that e[n] is a wide-sense—stationary

white—noise process with zero mean and variance3
2

02 = A_.
e 12

Consequently. the autocorrelation function and power density spectrum for e[n] are,

respectively,

calm] = 036%] (4.156)
and

$64621“): 02 lwl < 7:. (4.157)(’

In Figure 4.59, we show the power density spectrum of e[n] and of x[n]. The power

density spectrum of the quantized signal )‘c[n] is the sum of these, since the signal and

quantization-noise samples are assumed to be independent in our model.

Although we have shown that the power in either x[n] or e[n] does not depend

on M, we note that as the oversampling ratio M increases, less of the quantization-

noise spectrum overlaps with the signal spectrum. It is this effect of the oversampling

that lets us improve the signal-to-quantization—noise ratio by sampling-rate reduction.

Specifically, the ideal lowpass filter removes the quantization noise in the band JT/M <

lwl _<_ H, while it leaves the signal component unaltered. The noise power at the output

of the ideal lowpass filter is

g 2 t 1 fl/M 2d 092{e [n]}—2—H/fl/Mae CU—
Next, the lowpass filtered signal is downsampled, and, as we have seen, the signal power

in the downsampled output remains the same. In Figure 4.60, we sh0w the resulting

3Since the random process has zero mean. the average power and the variance are the same
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7 / __ Figure 4.59 Power spectral density of
‘ signal and quantization noise with an

7T (0 oversampling factor of M.

(p‘ihr ‘du( Bf“)

(DIM 81"”) = 03/M

/ Figure 4.60 Power spectral density of
signal and quantization noise after

*” 7T ‘0 downsampling.

power density spectrum of both x,;,,[n] and x(,€[n]. Comparing Figures 4.58(b). 4.59. and

4.60, we can see that the area under the power density spectrum for the signal has not

changed. since the frequency axis and amplitude axis scaling have been inverses of each

other. On the other hand, the noise power in the decimated output is the same as at the

output of the lowpass filter; i.e.,

l 7102 0.2 A22 e (I
:_ zd=fi:_i 4n

amt} 27:.4M‘” M 12M ( 8)

Thus, the quantization-noise power 5M; [11]} has been reduced by a factor of M through
the filtering and downsampling. while the signal power has remained the same.

From Eq. (4.158), we see that for a given quantization noise power. there is a

clear trade-off between the oversampling factor M and the quantizer step size A. Equa-

tion (4.115) states that for a quantizer with (8+ 1) bits and maximum input signal level

between plus and minus X,,,. the step size is

A : Xfll/zB!

and therefore,

 1 X)” 2

axing} = m ( 23> . (4.159)
Equation (4.159) shows that for a fixed quantizer, the noise power can be decreased

by increasing the oversampling ratio M. Since the signal power is independent of M,

increasing M will increase the signal-to-quantization-noise ratio. Alternatively, for a

fixed quantization noise power Pde = 5pc; [11]}, the required value for B is

1 1 1

B = —E log2 M — 310g2 12 — i log2 PM + logz Xm. (4.160)

From Eq. (4.160), we see that for every doubling of the oversampling ratio M, we need

1/2 bit less to achieve a given signal-to-quantization-noise ratio, or, in other words, if

we oversample by a factor M = 4, we need one less bit to achieve a desired accuracy in

representing the signal.
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4.9.2 Oversampled AID Conversion with Noise Shaping

1n the previous section, we showed that oversampling and decimation can improve the

signal—to-quantization—noise ratio. This seems to be a somewhat remarkable result. It

implies that we can, in principle, use very crude quantization in our initial sampling of

the signal, and if the oversampling ratio is high enough, we can still obtain an accurate

representation of the original samples by doing digital computation on the noisy sam-

ples. The problem with what we have seen so far is that. to make a significant reduction

in the required number of bits. we need very large oversampling ratios. For example, to

reduce the number of bits from 16 to 12 would require M : 44 = 256. This seems to be

a rather high cost. However. the basic oversampling principle can lead to much higher

gains if we combine it with the concept of noise spectrum shaping by feedback.

As was indicated in Figure 4.59. with direct quantization the power density spec-

trum of the quantization noise is constant over the entire frequency band. The basic

concept in noise shaping is to modify the A/D conversion procedure so that the power

density spectrum of the quantization noise is no longer uniform. but rather. is shaped

such that most of the noise power is outside the band lml < JT/M. In that way. the subse—

quent filtering and downsampling removes more of the quantization—noise power.

The noise-shaping quantizer. generally referred to as a sampled-data Delta-Sigma

modulator, is shown in Figure 4.61. (See Candy and Temes. 1992 for a collection ofpapers

on this topic.) Figure 4.61(a) shows a block diagram of how the system is implemented

with integrated circuits. The integrator is a switched-capacitor discrete—time integrator.

The A/D converter can be implemented in many ways. but generally. it is a simple

1-bit quantizer or comparator. The D/A converter takes the digital output and converts

it back to an analog pulse that is subtracted from the input signal at the input to the

integrator. This system can be represented by the discrete-time equivalent system shown

in Figure 4.61 (b). The switched-capacitor integrator is represented by an accumulator

system. and the delay in the feedback path represents the delay introduced by the D/A
converter.

 Sampled
data

integrator  
 
 

y [n}

 

 

D/A
converter

 
(b)

Figure 4.61 Oversampled quantizer with noise shaping.
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As before, we model the quantization error as an additive noise source so that the

system in Figure 4.61 can be replaced by the linear model in Figure 4.62. In this system,

the output y[n] is the sum of two components: y, [n] due to the input x[n] alone and é[n]

due to the noise e[n] alone.

We denote the transfer function from x[n] to y[n] as H_r(z) and from e[n] to y[n]

as H(,(z). These transfer functions can both be calculated in a straightforward manner
and are

Hx(z) = 1. (4.1613)

H..(z) = (1 — z-l). (4.161b)

Consequently.
yxin] = xin], (4.162a)

and

é[n] = e[n] — e[n — l]. (4.162b)

Therefore, the output y[n] can be represented equivalently as y[n] = x[n] + é[n]. where

x[n] appears unmodified at the output and the quantization noise e[n] is modified by the

first-difference operator H(.(z). This is depicted in the block diagram in Figure 4.63. With

the power density spectrum for e[n] given by Eq. (4.157). the power density spectrum

of the quantization noise é[n] that is present in y[n] is

(1355(6jw) = OEI l‘]¢)(eJ’-“’)|2
(4.163)

: a(,2[2 Sin(w/2)]2.

 
Figure 4.62 System of Figure 4.60 from xa(t) to y[n] with quantizer replaced by
a linear noise model.

 
 

T:

QNM

Figure 4.63 Equivalent representation of Figure 4.62.
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In Figure 4.64, we show the power density spectrum of é[n], the power spectrum of e[n],

and the same signal power spectrum that was shown in Figure 4.58(b) and Figure 4.59.

It is interesting to observe that the total noise power is increased from €{e2[n]] = a}

at the quantizer to E{éz[n]} = 2062 at the output of the noise-shaping system. However,
note that in comparison with Figure 4.59, the quantization noise has been shaped in

such a way that more of the noise power is outside the signal band lwl < rt/M than in

the direct oversampled case. where the noise spectrum is flat.

In the system of Figure 4.61, this out-of-band noise power is removed by the low-

pass filter. Specifically, in Figure 4.65 we show the power density spectrum of <1>_Wmu(ej‘“)
superimposed on the power density spectrum of d>y\.m,x(,p(efy‘“). Since the downsampler

does not remove any of the signal power. the signal power in xdu [n] is

Pd. = €{x§a[nl} = €{lenl} = mien.

The quantization-noise power in the final output is

1 ’7 > 1 A2 H w 2
— — 1w = —— I ——

Pdf_zjr flexmre )da) 2” 12M _fl(2s1n(2M)) dw. (4.164)
To compare this approximately with the results in Section 4.9.1. assume that M is suffi—

ciently large so that

(13;;(ejw) = 4agsin3 (nu/2)

   
  

3 EH

 
771' 0 71' a)

Figure 4.65 Power spectral density of the signal and quantization noise after

downsampling.
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With this approximation. Eq. (4.164) is easily evaluated to obtain

1 A2112
P P : — . 4.165d 36 M3 I )

From Eq. (4.165). we see again a trade-off between the oversampling ratio M and

the quantizer step size A. For a (B + 1)—bit quantizer and maximum input signal level

between plus and minus Xm, A = X,,,/23. Therefore. to achieve a given quantization-

noise power PM. we must have

3 1

B = —E log2 M +10g2(rr/6) — 510g2 R1!) + log2 X,,,. (4.166)

 

Comparing Eq. (4.166) with Eq. (4.160). we see that. whereas with direct quantization

a doubling of the oversampling ratio M gained 1/2 bit in quantization. the use of noise

shaping results in a gain of 1.5 bits.

Table 4.1 gives the equivalent savings in quantizer bits over direct quantization

with no oversampling (M = 1) for (a) direct quantization with oversampling. as dis-

cussed in Section 4.9.1. and (b) oversampling with noise shaping. as examined in this
section.

TABLE 4.1 EQUIVALENT SAVINGS IN

QUANTIZER BITS RELATIVE TO M = 1 FOR

DIRECT QUANTIZATION AND FIRST-ORDER

NOISE SHAPING

Direct Noise

M quantization shaping

4 '1 2.2

8 1.5 3.7

16 2 5.1

32 2.5 6.6

64 3 8.1

The noise-shaping strategy in Figure 4.61 can be extended by incorporating a

second stage of accumulation as shown in Figure 4.66. In this case. with the quantizer

again modeled as an additive noise source e[n]. it can be shown that

yln] = xln] + é’[nl

where, in the two-stage case, é[n] is the result of processing the quantization noise e[n]

x00) .V ["1 
Figure 4.66 Oversampled quantizer with second-order noise shaping.



210 Sampling of Continuous-Time Signals Chap. 4

TABLE 4.2 REDUCTlON 1N QUANTIZER

BITS AS ORDER p 0F NOISE SHAPING

Oversampling factor M
Quantizer —.___.—__

order p 4 8 16 32 64

0 1.0 1.5 2.0 2.5 3.0

1 2.2 3.7 5.1 6.6 8.1

2 2.9 5.4 7.9 10.4 12.9

3 3.5 7.0 10.5 14.0 17.5

4 4.1 8.5 13.0 17.5 22.0

5 4.6 10.0 15.5 21.0 26.5

through the transfer function

H.(z) = (1 — z-')2. (4.167)

The corresponding power density spectrum of the quantization noise now present in

ylnl is

ogre”) = crf[25in(w/2)]4. (4.168)

with the result that, although the total noise power at the output of the two—stage noise-

shaping system is greater than for the one-stage case, even more of the noise lies outside

the signal band. More generally. p stages of accumulation and feedback can be used,

with corresponding noise shaping given by

¢é§(€jw) = a§[2sin(w/2)]2P. (4.169)

In Table 4.2, we show the equivalent reduction in quantizer bits as a function of the order

p of the noise shaping and the oversampling ratio M. Note that with p = 2 and M = 64,

we obtain almost 13 bits of increase in accuracy, suggesting that a 1-bit quantizer could

achieve about 14-bit accuracy at the output of the decimator.

Although multiple feedback loops such as the one shown in Figure 4.66 promise

greatly increased noise reduction, they are not without problems. Specifically, for large

values of p, there is an increased potential for instability and oscillations to occur.

An alternative structure known as multistage noise shaping (MASH) is considered in
Problem 4.62.

4.9.3 Oversampling and Noise Shaping
in DIA Conversion

In Sections 4.9.1 and 4.9.2, we discussed the use of oversampling to simplify the process

of analog-to-digital conversion. As we mentioned, the signal is initially oversampled

to simplify antialias filtering and improve accuracy, but the final output xd[n] of the

A/D converter is sampled at the Nyquist rate for xa (t). The minimum sampling rate is,

of course, highly desirable for digital processing or for simply representing the analog

signal in digital form, as in the CD audio recording system. It is natural to apply the

same principles in reverse to achieve improvements in the D/A conversion process.

The basic system, which is the counterpart to Figure 4.56, is shown in Figure 4.67.

The sequence yd[n], which is to be converted to a continuous-time signal, is first
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Sampling rate increase by M

 
T

. m

Figure 4.68 First-order noise-shaping

system for oversampled D/A

quantization.

Figure 4.69 System of Figure 4.68

with quantizer replaced by linear noise
model.

upsampled to produce the sequence y[n], which is then requantized before sending

it to a D/A converter that accepts binary samples with the number of bits produced by

the requantization process. We can use a simple D/A converter with few bits if we can

be assured that the quantization noise does not occupy the signal band. Then the noise

can be removed by inexpensive analog filtering.

In Figure 4.68, we show a structure for the quantizer that shapes the quantization

noise in a similar manner to the first-order noise shaping provided by the system in

Figure 4.61. To analyze the system in Figures 4.67 and 4.68, we replace the quantizer

in Figure 4.68 by an additive white-noise source e[n], so that Figure 4.68 is replaced by

Figure 4.69. The transfer function from fin] to y[n] is unity, i.e. the upsampled signal

fln] appears at the output unaltered. The transfer function Ht,(z) from e[n] to y[n] is

He(z) 2 1 — z“.
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Therefore, the quantization noise component é[n] that appears at the output of the

noise-shaping system in Figure 4.69 has the power density spectrum

chew”) 2 03(2 sin M2)? (4.170)

where, again, of = A2/12.

An illustration of this approach to D/A conversion is given in Figure 4.70. Fig—

ure 4.70(a) shows the power spectrum (Divr,y{,(ej“’) of the input yd[n] in Figure 4.67. Note
that we assume that the signal yd[n] is sampled at the Nyquist rate. Figure 4.70(b) shows

the corresponding power spectrum at the output of the upsampler (by M). and Fig-

ure 4.70(c) shows the quantization noise spectrum at the output of the quantizer/noise—

shaper system. Finally. Figure 4.70(d) shows the power spectrum ofthe signal component

 

 

 

l w“rl,\'rl((1f(ll)

m
in 0 77 w

(a)

M wide“)

l |

in. — 1 0 1 71’ w
M M

(b)

(1);;(ejw) = 4a; sin2 (Lu/2)

|

—’7T 0 17 w

  
(d)

Figure 4.70 (a) Power spectral density ofsignal yd[n]. (b) Power spectral density

of signal fin]. (c) Power spectral density of quantization noise. (d) Power spectral

density of the continuous-time signal and the quantization noise.



Sec. 4.10 Summary 213

superimposed on the power spectrum of the noise component at the analog output of

the D/C converter of Figure 4.67. In this case, we assume that the D/C converter has an

ideal lowpass reconstruction filter with cutoff frequency Tf/(MT ). which will remove as

much of the quantization noise as possible.

In a practical setting. we would like to avoid sharp-cutoff analog reconstruction

filters. From Figure 4.70(d). it is clear that if we can tolerate somewhat more quantization

noise. then the D/C reconstruction filter need not roll off so sharply. Furthermore. if we

use multistage techniques in the noise shaping. we can obtain an output noise spectrum
of the form

Chadd”) = 03(2 sin w/2)2p.

which would push more of the noise to higher frequencies. In this case. the analog

reconstruction filter specifications could be relaxed even further.

4.1 0 SUMMARY

In this chapter. we developed and explored the relationship between continuous-time

signals and the discrete-time sequences obtained by periodic sampling. The fundamental

theorem that allows the continuous-time signal to be represented by a sequence of

samples is the Nyquist theorem. which states that. for a bandlimited signal. periodic

samples are a sufficient representation. as long as the sampling rate is sufficiently high

relative to the highest frequency in the continuous-time signal. Under this condition.

the continuous-time signal can be reconstructed from the samples by lowpass filtering.

corresponding to bandlimited interpolation. If the sampling rate is too low relative to

the bandwidth of the signal. then aliasing distortion occurs.

The ability to represent signals by sampling permits the discrete-time processing of

continuous-time signals. This is accomplished by first sampling. then applying discrete—

time processing. and. finally. reconstructing a continuous-time signal from the result.

Examples given were lowpass filtering and differentiation.

A particularly important class of processing is the class corresponding to sampling

rate changes. Downsampling a discrete-time signal corresponds in the frequency domain

to a replication of the discrete-time spectrum and rescaling of the frequency axis. which

may require additional bandlimiting to avoid aliasing. Upsampling corresponds to ef-

fectively increasing the sampling rate and is also represented in the frequency domain

by a rescaling of the frequency axis. By combining upsampling and downsampling by

integer amounts, noninteger sampling rate conversion can be achieved. We also showed

how this can be efficiently done using multirate techniques.

In the final sections of the chapter, we explored a number of practical considera-

tions associated with the discrete-time processing of continuous—time signals. including

the use of prefiltering to avoid aliasing, quantization error in analog-to-digital conver—

sion. and some issues associated with the filtering used in sampling and reconstruct-

ing the continuous-time signals. Finally, we showed how discrete-time decimation and

interpolation and noise shaping can be used to simplify the analog side of A/D and
D/A conversion.
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PROBLEMS 

Basic Problems with Answers

4.1. The signal

x¢_.(t) : sin (2n(100)t)

was sampled with sampling period T = 1/400 second to obtain a discrete-time signal x[n].

What is the resulting signal x[n]?

4.2. The sequence
:1

x[n] = cos. —00 < n < 00.
was obtained by sampling a continuous-time signal

x(.(t) = cos(520t), —oo <1 < 00.

at a sampling rate of 1000 samples/s. What are two possible positive values of $20 that could

have resulted in the sequence x[n]?

4.3. The continuous-time signal

x(.(t) : cos (400011!)

is sampled with a sampling period T to obtain a discrete—time signal

x[n] = cos.

(2) Determine a choice for T consistent with this information.

(b) Is your choice for T in Part (a) unique? If so. explain why. If not, specify another choice

of T consistent with the information given.

4.4. The continuous~time signal

Aft-(I) = sin (20m) + COS (407”)

is sampled with a sampling period T to obtain the discrete-time signal

x[n] = sin +cos.
(3) Determine a choice for T consistent with this information.

(b) Is your choice for T in Part (a) unique? If so, explain why. If not, specify another choice

of T consistent with the information given.

4.5. Consider the system of Figure 4.11, with the discrete-time system an ideal lowpass filter

with cutoff frequency 71/8 radians/s.

(a) If xr(t) is bandlimited to 5 kHz, what is the maximum value of T that will avoid aliasing
in the C/D converter?

(b) If 1/ T = 10 kHz, what will the cutoff frequency of the effective continuous-time filter
be?

(c) Repeat Part (b) for 1/ T = 20 kHz.

4.6. Let h(.(r) denote the impulse response of a linear time-invariant continuous-time filter and

hd[n] the impulse response of a linear time-invariant discrete-time filter.
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(a) If

8—1”. I 3 0‘

w — {0. , < 0.
where a is a positive real constant. determine the continuous-time filter frequency

response and sketch its magnitude.

(b) lfhd[n] = Tht.(nT)with hL.(!)asin part(a).determinethe discrete-time filterfrequency

response and sketch its magnitude.

(c) For a given value of a. determine. as a function of T. the minimum magnitude of the

discrete-time filter frequency response.

4.7. Asimple model ofa multipath communication channel is indicated in Figure P4.7-1. Assume

that stir) is bandlimited such that S(.(jS2) = () for |Q| 3 7r/ T and that x(.(r) is sampled with

a sampling period T to obtain the sequence

x[n] = )QUTT).

 
 

 

X(.(t) = s[.(r) + ast.(1— 7,1)

Figure P4.7-1

(a) Determine the Fourier transform of x(.(t) and the Fourier transform of x[n] in terms of

SCUQ).

(b) We want to simulate the multipath system with a discrete—time system by choosing

H(e“”) in Figure P4.7—2 so that the output r[n] = x(.(nT) when the input is s[n] =

s'fi.(nT ). Determine 11(61‘“) in terms of T and Id.

(c) Determinetheimpulsc rcsponseh[n] in Figure P4.7-2 when (i) rd = Tand (ii) rd 2 T/Z.

 
  4"] =14”) Figure P4.7-2

4.8. Consider the system in Figure P4.8—1 with the following relations:

X419) :0. im 3271 x104.

x[n] = x(.(nT).

y[n] = T Z x[k].
k:—:x:

 
Figure P4.8-1

(a) For this system, what is the maximum allowable value of T if aliasing is to be avoided,

ie, so that x¢.(r) can be recovered from x[n].

(b) Determine h[n].
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4.11.

4.12.

4.13.

4.14.
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(c) In terms of X(ej“’), what is the value of y[n] for n = 00?

(d) Determine whether there is any value of T for which
DC

y[n] = / xc(r)dt. (P4.8-1) 
If there is such a value for T. determine the maximum value. If there is not, explain and

specify how T would be chosen so that the equality in Eq. (P4.8-1) is best approximated.

Consider a stable discrete—time signal x[n] whose discrete-time Fourier transform X(ej‘")

satisfies the equation

X(ej“’) = new-M)

and has even symmetry. i.e.. x[n] = x[—n].

(a) Show that X(ej‘“) is periodic with a period 71.

(b) Find the value of x[3]. (Him: Find values for all odd-indexed points.)

(c) Let y[n] be the decimated version of x[n], i.e., y[n] = x[2n]. Can you reconstruct x[n]

from y[n] for all n. If yes. how? If no, justify your answer.

Each of the following continuous-time signals is used as the input xc(t) for an ideal C/D

converter as shown in Figure 4.1 with the sampling period T specified. In each case, find

the resulting discrete-time signal x[n].

(a) xc(t) = cos (27r(1000)r). T = (1/3000) sec

(b) x(.(t) : sin (271(1000)t). T = (1/1500) sec

(c) xc(t) = sin (2n(1000)t) / (III). T = (1/5000) sec

The following continuous-time input signals xc(t) and corresponding discrete-time output

signals x[n] are those of an ideal C/D as shown in Figure 4.1. Specify a choice for the

sampling period T that is consistent with each pair of xc(t) and x[n]. In addition, indicate

whether your choice of T is unique. If not, specify a second possible choice of T consistent

with the information given.

(a) x(_-(I) = sin(107rt). x[n] = sin(7m/4)

(b) xc(t) = sin(10m)/(10m‘). x[n] = sin(nn/2)/(7rn/2)

In the system of Figure 4.11, assume that

H(ej‘") = jw/ T. —:r5w<7r.

and T = 1/10 sec.

(a) For each of the following inputs xc(t). find the corresponding output yr (1).

(i) xc(t) = cos(6nt)

(ii) x(.(t) = cos(14nt)

(b) Are the outputs yc(t) those you would expect from a differentiator?

In the system shown in Figure 4.16, 116(1) 2 6(1 — T/2).

(a) Suppose the input x[n] = sin(rm/2) and T = 10. Find y[n].

(b) Suppose you use the same x[n] as in Part (a), but halve T to be 5. Find the resulting

y[nl-

(c) In general, how does the continuous-time LTI system hc(t) limit the range of the sam-

pling period T that can be used without changing y[n]?

Which of the following signals can be downsampled by a factor of 2 using the system in

Figure 4.20 without any loss of information?

(a) x[n] = 6[n — no], for no some unknown integer

(b) x[n] : cos(rrn/4)

(c) x[n] = cos(nn/4) + cos(3nn/4)
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(d) x[n] = sin (rm/3) /(rrn/3)

(e) x[n] = (—1)" sin (nn/3)/(rrn/3)

4.15. Consider the system shown in Figure P4.15-1. For each of the following input signals x[n],

indicate whether the output x,[n] = x[n].

(a) x[n] = cos(rrn/4)

(b) x[n] = c0s(7m/2)
(c)

X[n] _ [sin(rtn/8)] 2rm

Him: Use the modulation property of the Fourier transform to find X(ej“’).

 
Figure P4.15-1

4.16. Consider the system in Figure 4.28. The input x[n] and corresponding output id[n] are given

for a specific choice of M/L in each of the following parts. Determine a choice for M/L

based on the information given, and specify whether your choice is unique.

(a) x[n] = sin (rm/3) /(7rn/3). Lilli] = sin (53TH/6) /(5rm/6)

(b) x[n] = cos (37rn/4). Elfin] = cos(7rn/2)

4.17. Each of the following parts lists an input signal x[n] and the upsampling and downsampling

rates L and M for the system in Figure 4.28. Determine the corresponding output join].

(a) x[n] = sin(27m/3)/rm. L : 4. M = 3

(b) x[n] = sin(3nn/4). L = 3. M = 5

4.18. For the system shown in Figure 4.28, X(e/°"). the Fourier transform of the input signal

x[n], is shown in Figure P4.18-1. For each of the following choices of L and M. specify the
maximum possible value of am such that Xd(el“’) = aX(efM"-’/") for some constant a.

net“)

-r We we 77 Figure P4.18-1

4.19. The continuous—time signal x603) with the Fourier transform Xc(j52) shown in Fig-

ure P4.19-1 is passed through the system shown in Figure P4.19—2. Determine the range

of values for T for which x,(r) = xc(t).

Xt-(J'Q)

 
3 Figure P4.19-1
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Figure P4.19-2

4.20. Consider the system in Figure 4.11. The input signal x(.(t) has the Fourier transform shOWn

in Figure P4.20-1 with S20 = 211(1000) radians/second. The discrete—time system is an ideal

lowpass filter with frequency response

- 1, lwi < a)...It» _

H(e )_ {0, otherwise.
X00)

1

‘00 90 0 Figure P4.2n-1

(a) What is the minimum sampling rate F. : 1/ T such that no aliasing occurs in sampling

the input?

(b) If we : 71/2, what is the minimum sampling rate such that y((r) : x60)?

Basic Problems

4.21. A complex-valued continuous-time signal x((t) has the Fourier transform shown in Fig-

ure P4.21-1, where ((22 — $21) = A9. This signal is sampled to produce the sequence

x[rz] : x6017").

Xt-(J'Q)

 

an

Figure P4.21-1

(3) Sketch the Fourier transform X(ef“’) of the sequence x[n] for T = 71/ (22.

(b) What is the lowest sampling frequency that can be used without incurring any aliasing

distortion, i.e., so that xc(t) can be recovered from x[n]?

(c) Draw the block diagram of a system that can be used to recover xc(t) from x[n] if the

sampling rate is greater than or equal to the rate determined in Part (b). Assume that

(complex) ideal filters are available.

4.22. A continuous-time signal xc(t), with Fourier transform XC (jQ) shown in Figure P4.22-1, is

sampled with sampling period T = 211/90 to form the sequence x[n] = xc(nT ).
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Xt-(J’Q)

410 A flu Do Do 0

2 2 Figure P4.22-1

(a) Sketch the Fourier transform X(ej“’) for M < 71'.

(b) The signal x[n] is to be transmitted across a digital channel. At the receiver, the original

signal x..(t) must be recovered. Draw a block diagram ofthe recovery system and specify
its characteristics. Assume that ideal filters are available.

(c) In terms of S2“. for what range of values of T can x(.(r) be recovered from x[n]?

4.23. In Figure P4.23-1. assume that X410) 2 t). |Q| 3 77/ T1. For the general case in which

T. 7+ T3 in the system. express yL.(r) in terms of x(.(r). Is the basic relationship different for

T] > T2 and T] < T2?

 
Figure P4.23-1

4.24. In the system of Figure P4.24—1, X410) and H(ef‘”) are as shown. Sketch and label the

Fourier transform of y(.(r) for each of the following cases:

(a)1/T|=l/Tz =104

(b) 1/T1=1/T3 :2 x104

(c)1/Tl=2 x104. l/Tg :104

(d) 1/T. =104. UT: :2 ><104

 
A100)

1

—21T><5><103 27TX5><103 n

H(ej“’)

1

—7T _: 1 7T Lu
2 2

Figure P4.24-1
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4.25. Figure P4.25-l shows the overall system for filtering a continuous-time signal using a

discrete-time filter. The frequency responses of the reconstruction filter H,(j§2) and the

discrete-time filter H(ef"”) are shown in Figure P4.25-2.

3(1) :3“) 5(r7nT)n:—m

  

 
 
 

 

  
 
  

 
 
 

  

Convert from

impulse train
to discrete—time

sequence

Ideal
reconstruction

filter
Hrml)

 
 
  

Convert to

impulse
trainx10) Mr)

Figure P4.25-1

 
277 X 104 (1

Al: Al:
Figure P4.25-2

(a) For X(.(jS2) as shown in Figure P4.25-3 and 1/ T = 70 kHz, sketch XXUSZ) and X(ej“’).

Xt-(jfl)

—2vr >< 104 2w >< 10“ 0 Figure P4.25-3

Hcff(jn)

 
c 9c ‘1 Figure P4.25-4

For a certain range of values of T, the overall system, with input xc(r) and output y(;(t),

is equivalent to a continuous-time lowpass filter with frequency response prf(jS2)

sketched in Figure P4.25-4.

(b) Determine the'range of values of T for which the information presented in (a) is true

when XL.(jS2) is bandlimited to |§2| g 27-: x 104 as shown in Fig. P4.25-3.

(c) For the range of values determined in (b), sketch QC as a function of 1/ T.

Note: This is one way of implementing a variable-cutoff continuous—time filter using fixed

continuous-time and discrete-time filters and a variable sampling rate.

4.26. Consider the sequence x[n] whose Fourier transform X(ej“’) is shown in Figure P4.26-1.
Define

[]_ x[n]. n: Mk. k=0.:l:1,:l:2.....
x“ n _ 0. otherwise
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and

xd[n] = x5[Mn] = x[Mn].

(a) Sketch X503”) and Xd(ej“’) for each of the following cases:

(i) M: 1am = 7r/2

(ii) M = 3, (DH 2 7r/4

(b) What is the maximum value of (UH that will avoid aliasing when M = 3?

X(eiw)

—wu 0 wu W 277 m Figure P4.26-1

4.27. Using Parseval’s theorem. briefly explain why the amplitude of the Fourier transform

changes during downsampling but not during upsampling.

4.28. (a) Is the system in Figure 4.11 linear for a given choice of T ? Ifso. provide a brief argument

demonstrating that it satisfies linearity. If not. provide a counterexample.

(b) Is the system in Figure 4.11 time invariant for a given choice of T? If so. provide a brief

argument demonstrating that it satisfies time invariance. If not. provide a counterex-

ample.

Advanced Problems

4.29. Consider the systems shown in Figure P4291 Suppose that H1(ej"’) is fixed and known.

Find H2(ej“’). the frequency response of an LTI system, such that yz [n] = y] [n] if the inputs
to the systems are the same.

 

x[nl yzln]

(b) Figure P4.29-1

4.30. In the system of Figure 4.1 1, assume that the discrete-time system is linear and time invariant

and that X609) 2 0 for |S2| 3 40007r. Determine the largest possible value for T and the

corresponding frequency response H(ej‘“) for the discrete-time system such that

. _ |S2|XC(jS2). 10007: (191(200071.Y” (19) i {0. otherwise.
4.31. In the system of Figure 4.11, assume that XL.(jS2) = O for |S2| > zr/ T. Determine and plot

the magnitude and phase of the frequency response of the discrete—time LTI system such

that the output y,(t) is the running integral of the input. i.e..

W) = / new.DC
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4.32. A bandlimited continuous-time signal is known to contain a 60-Hz component, which we

want to remove by processing with the system of Figure 4.11, where T = 10—4.

(3) What is the highest frequency that the continuous-time signal can contain if aliasing is
to be avoided?

(b) The discrete-time system to be used has frequency response

f. [1 — rim-Wm — e‘“‘“*‘”°’l
Hl"

Sketch the magnitude and phase of H(ef'“’).

(c) What value should be chosen for am to eliminate the 60-Hz component?

4.33. Consider the system in Figure 4.11 with Xc(jQ) = 0 for |SZ| 3 2:1(1000) and the discrete-

time system a squarer, i.e.. y[n] = x2[n]. What is the largest value of T such that yc(t) =2
lit-(t)?

4.34. For the LTI system in Figure P4.34-1,

H(efw) = Elm/2. lwl 5 yr (half-sample delay).

xln] yin] Figure P4.34-1

(a) Determine a choice for T and hc(t) in the system of Figure 4.16 so that the system in

Figure P4.34-1 with H(el“’) as specified is equivalent to the system in Figure 4.16.

(b) Determine and sketch y[n] when the input sequence is

 
Figure P4.34-2

4.35. Consider the system of Figure 4.16 with the continuous-time LTI system causal and char-

acterized by the linear constant-coefficient differential equation

d2 C t
it; ) + 4 dt + 3yc(t) = xc(t)'

The overall system is equivalent to a causal discrete-time LTI system. Determine the fre-

quency response H(el‘”) of the equivalent discrete-time system when T = 0.1s.

4.36. In Figure P4.36-1, x[n] = xc(nT) and y[n] = x[2n].

(3) Assume that xc(t) has a Fourier transform such that Xc(jQ) = 0, IQI > 2:1(100). What

value of T is required so that

  

X(ej“’) = O, 7—;- < lwl 5 Jr?
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(b) How should T’ be chosen so that yC(t) 2 x60)?

 
Figure P4.36-1

4.37. Suppose that you obtained a sequence 5 [n] by filtering a speech signal 31(1) with a continuous—

time lowpass filter with a cutoff frequency of 5 kHz and then sampling the resulting output

at a 10-kHz rate, as shown in Figure P4.37—1. Unfortunately, the speech signal 51(1) was

destroyed once the sequence s[n] was stored on magnetic tape. Later, you find that what

you should have done is followed the process shown in Figure P4.37-2. Develop a method to

obtain s] [n] from s[n] using discrete-time processing. Your method may require a very large

amount of computation, but should not require a C/D or D/C converter. If your method

uses a discrete-time filter, you should specify the frequency response of the filter.

  4176000) 217(5000) 5)

Hllfl(j'(l)
1

4170000) 277(3000) {1

T = 10‘“ Figure P4.37-1

 
Figure P4.37-2

4.38. Consider the system shown in Figure P4.38-1, where

mew) = { 1, lwl < rr/L.0, Ir/L < le 5 JT.

Sketch YCUQ) if X609) is as shown in Figure P4.38-2.

 
Figure P4.38-1

XCUQ)

 

.(l.

"lifl "llfi
Figure P4.38-2
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4.39. The system shown in Figure P4.39-1 approximately interpolates the sequence x[n] by a

factor L. Suppose that the linear filter has impulse response h[n] such that h[n] : h[—n]

and h[n] = 0 for |n| > (RL — 1). where R and L are integers; i.e., the impulse response is

symmetric and of length (2 RL — 1) samples.

 
Figure P4.39-1

(a) In answering the following, do not be concerned about the causality of the system; it can

be made causal by including some delay. Specifically, how much delay must be inserted

to make the system causal?

(b) What conditions must be satisfied by h[n] in order that y[n] = x[n/L] for n = 0, :lzL,
12L, i3L, . . .?

(c) By exploiting the symmetry of the impulse response, show that each sample of y[n] can

be computed with no more than RL multiplications.

(d) By taking advantage of the fact that multiplications by zero need not be done, show

that only 2R multiplications per output sample are required.

4.40. In the system of Figure P4.40—1,

Xc(1'9)=0~ IQI BIT/T-

and V
e'lm lad < n/lnlw _ -mg )—{0. Jr/L<|a)|51r.

How is y[n] related to the input signal xc(t)?

 
Figure P4.40-1

4.41. Consider the system shown in Figure P4.41-1. The input to this system is the bandlimited

signal whose Fourier transform is shown in Figure P4.20-1 with 520 = :r/ T. The discrete-time

LTI system in Figure P4.41-1 has the frequency response shown in Figure P4.41-2.

 
Figure P4.41—1

I1(ejw)

 
4 Figure P4.41-2
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(3) Sketch the Fourier transforms X(e/"“), X(.(efw), Y£,(ej‘“), and Y((jS2).

(b) For the general case when Xc(j§2) = 0 for |52| 3 11/ T. express Y(.(jS2) in terms of

X6052). Also, give a general expression for y(.(r) in terms of x(.(r) when x(.(r) is band-
limited in this manner.

Let xc(t) be a real-valued continuous—time signal with highest frequency 2:1(250) radi-

ans/second. Furthermore, let y(.(t) : xtv(r — 1/1000).

(3) If x[n] = x(.(n/500), is it theoretically possible to recover xii!) from x[n]? Justify your
answer.

(b) If y[n] = yc(n/50()), is it theoretically possible to recover y(.(r‘) from y[n]? Justify your
answer.

(c) Is it possible to obtain y[n] fromx[n] using the system in Figure P4.42-1? lfso, determine

H] (elm).

(d) It is also possible to obtain y[n] from x[n] without any upsampling or downsampling

using a single LTI system with frequency response [13(91‘”). Determine H2(€jw).

Figure P4.42-1

Consider the system shown in Figure P4.43—1 for discrete-time processing 0fthe continuous-

time input signal g(.(r). The input signal g(.(t) is of the form g(.(r) = If}.(t) + (q-(f). where the

Fourier transforms of 12(1) and e(.(t) are shown in Figure P4.43—2. Since the input signal is

not bandlimited, a continuous—time antialiasing filter HMUSZ) is used. The magnitude of

the frequency response for Hm.(j§2) is shown in Figure P4.43-3. and the phase response of

the antialiasing filter is [HMUSD 2 ~93.

x[n] y [n]

 
  

 

D-T LTI

system

ECU) H(t"‘”)

l l
Figure P4.43-1

  

  

17r(j!1) 13.(f$1)

A B

—400w 400w n 7400n 400w s)

Figure P4.43-2

I Hmtrm l

—8007T — 400w 400w 800w (I
Figure P4.43-3
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(a) If the sampling rate is 271/ T = 160021, determine the magnitude and phase of H(ef‘”),

the frequency response of the discrete-time system, so that the output is yt-(t) = filt).

(b) Is it possible that yc(r) : fc(t) if 271/ T < 160071? If so, what is the minimum value of

211/ T? Determine H(ef“‘) for this choice of 271/ T.

Consider the system given in Figure P4.44-1. You may assume that R(.(j§2) is bandlimited;

i.e., Rc(j§2) = 0, |§2| 3 221(1000), as shown in the figure.

 
. 1.0 s | | 5

.N1—— seconds HQ”) = w wu2000
0,wu< lwl Err

R4111)

 
727T1000

Figure P4.44-1

2171000

(3) Sketch R(ef‘“) and X(ei‘”).
(b) Choose nonzero values for mo and T2 such that

yln] = achITZ)

for some nonzero constant a. (You do not have to determine the value of a.)

(c) Using the value of (1)0 you obtained in Part (b), determine a choice for T3 such that

3(0) = Err-(I)

for some nonzero constant fl. (You do not have to determine the value of ,8.)

Assume that the continuous-time signal xc(t) in Figure P4.45-1 is exactly bandlimited and

exactly time limited so that

xc(r) = 0 fort < 0 andt > 10 seconds

and

XC(jS2) = 0 for |§2| 3 271 x104.

While no continuous—time signal can be exactly bandlimited and time limited, the assump-

tion that a signal satisfies both constraints often an excellent approximation and one that

we typically rely on in discrete-time processing of continuous-time signals. The continuous-

time signal xc(r) is sampled as indicated in Figure P4.45-1 to obtain the sequence x[n],

which we want to process to estimate the total area A under xc(t) as precisely possible.

Discrete-time

system

T Figure P4.45-1

 AA = estimate ofA
Xc-(f) 
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10

A:/ xc(t)dt.0

Specify a choice for the impulse response h[n] for the discrete—time system and the largest

possible value of T to obtain as accurate an estimate as possible of A. State specifically

whether your estimate will be exact or approximate.

4.46. Consider the system in Figure P4.46—1 with Hn(z), H1(z), and H2(z) as the system functions

of LTI systems. Assume that x[n] is an arbitrary stable complex signal without any symmetry

properties.

Specifically, we define

 
Figure P4.4B-1

(a) Let Ho(z) = 1, H1(z) : 2‘1, and H2(z) = [2. Can you reconstruct x[n] from yu[n],

y1 [n], and y2[n]? If so, how? If not, justify your answer.

(b) Assume that Hotel”). H1(ej‘“), and H2(ef‘”) are as follows:

[col 5 7r/3,

otherwise,

. 1y

H()(ejm) I { 0.

- 1, 71/3 < |w| E 27r/3.1w _

H1(€ )_ 0. otherwise,

1

0H29”) = {
Can you reconstruct x[n] from y0[n], y1[n]. and y2[n]? If so, how? If not. justify your
answer.

Now consider the system in Figure P4.46—2. Let H3(ej“’) and H4031“) be the frequency

responses of the LTI systems in this figure. Again, assume that x[n] is an arbitrary stable

complex signal with no symmetry properties.

211/3 < lwl 5 11'.
otherwise.

 
Figure P4.46-2

(c) Suppose that H3(ej‘“) : 1 and

1, 0gw<m

H4(ejw) = { _1‘I —71'gw<0.

Can you reconstruct x[n] from y3[n] and y4[n]? If so, how? If not, justify your answer.
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Extension Problems

4.47. In many applications, discrete-time random signals arise through periodic sampling of

continuous-time random signals. We are concerned in this problem with a derivation of

the sampling theorem for random signals. Consider a continuous—time. stationary, random

process defined by the random variables {xa(t)}, where I is a continuous variable. The
autocorrelation function is defined as

¢.i-....-..(t) = (‘3{X(f)x*(t + r)}-

and the power density spectrum is

Flinn-(Q) : / ¢.\1,\1(T)€FIQT(/t.- ’39

A discrete-time random process obtained by periodic sampling is defined by the set of

random variables [x[n]}, where x[n] = x,,(nT) and T is the sampling period.

(a) What is the relationship between (15“ [n] and 91)“! (t)?

(b) Express the power density spectrum of the discrete-time process in terms of the power

density spectrum of the continuous—time process.

(c) Under what condition is the discrete-time power density spectrum a faithful represen—

tation of the continuous-time power density spectrum?

4.48. Consider a continuous-time random process x(.(t) with a bandlimited power density spec-

trum Pm“ (S2) as depicted in Figure P4.48-l. Suppose that we sample x(v(r) to obtain the

discrete-time random process x[n] : x..(nT ).

 
‘90 “o 9 Figure P4.48-1

(a) What is the autocorrelation sequence of the discrete-time random process?

(b) For the continuous-time power density spectrum in Figure P4.48—1, how should T be

chosen so that the discrete-time process is white. i.e.. so that the power spectrum is
constant for all a)?

(c) If the continuous-time power density spectrum is as shown in Figure P4.48-2, how

should T be chosen so that the discrete—time process is white?

  
‘00 “0 D Figure P4.48-2

(d) What is the general requirement on the continuous-time process and the sampling

period such that the discrete—time process is white?
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4.49. This problem explores the effect of interchanging the order of two operations on a signal.

namely, sampling and performing a memoryless nonlinear operation.

(a) Consider the two signal-processing systems in Figure P4.49-1. where the C/D and D/C

converters are ideal. The mapping g[x] = x2 represents a memoryless nonlinear device.

For the two systems in the figure, sketch the signal spectra at points 1. 2. and 3 when

the sampling rate is selected to be 1/ T = 2_f;,, Hz and )Q-(I) has the Fourier transform

shown in Figure P4.49-2. Is y1(t) = y2(I)? If not. why not? Is y1([) = x2“)? Explain
your answer.

System 1:

 
 

T T Figure P4.49-1

X(jfl)

1

-2771?” 0 Wm 9 Figure P4.49-2

(b) Consider System 1, and let x(t) = A cos (30m). Let the sampling rate be 1/ T = 40 Hz.

Is y1(t) 2 x30)? Explain why or why not.
(c) Consider the signal-processing system shown in Figure P4.49-3, where g[x] = x3 and

g‘1[v] is the (unique) inverse, i.e.. g‘1[g(x)] = x. Let x(I) : A cos (30m) and 1/7" =

40 Hz. Express v[n] in terms of x[n]. Is there spectral aliasing? Express y[n] in terms of

x[n]. What conclusion can you reach from this example? You may find the following

identity helpful:

cos3 $20: = gcos £20! + % cos 352m.

 
T Figure P4.49-3
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4.51.

4.52.
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((1) One practical problem is that of digitizing a signal having a large dynamic range. Sup—

pose we compress the dynamic range by passing the signal through a memoryless non—

linear device prior to A/D conversion and then expand it back after A/D conversion.

What is the impact of the nonlinear operation prior to the A/D converter in our choice

of the sampling rate?

Figure 4.24 depicts a system for interpolating a signal by a factor of L. where

KM- xiii/Ll. nzt). iL. i2L.etc....
c _ 0. otherwise.

and the lowpass filter interpolates between the nonzero values of x.,[n] to generate the

upsampled or interpolated signal x,- [n]. When the lowpass filter is ideal. the interpolation is

referred to as bandlimited interpolation. As indicated in Section 4.6.2. simple interpolation

procedures are adequate in many applications Two simple procedures often used are zero—

order-hold and linear interpolation. For zero-order—hold interpolation, each value of x[n]

is simply repeated L times; i.e..

x40]. r120. 1.....L—l.

x..[L]. 11:1,. L+l.....2L—l.
xilnl= n=2L. 21.+1.....x. [2 L].

Linear interpolation is described in Section 4.6.2.

(a) Determine an appropriate choice for the impulse response of the lowpass filter in

Figure 4.24 to implement zero-ordervhold interpolation. Also. determine the corre—

sponding frequency response.

(b) Equation (4.92) specifies the impulse response for linear interpolation. Determine the

corresponding frequency response. (You may find it helpful to use the fact that hlin[n]

is triangular and consequently corresponds to the convolution of two rectangular se-

quences.)

(c) Sketch the magnitude of the filter frequency response for zero—order—hold and linear

interpolation. Which is a better approximation to ideal bandlimited interpolation?

We wish to compute the autocorrelation function of an upsampled signal. as indicated in

Figure P4.51-1. It is suggested that this can equivalently be accomplished with the system of
Figure P4.51-2. Can 112(61‘“) be chosen so that ¢3[n] = $1M]? If not. why not? If so, specify

H2(€jw).

 Ideal lowpass
filter cutoff

7T/L

 

 

 
 

Figure P4.51~1

 4min] Figure P4.51-2

We are interested in upsampling a sequence by a factor of 2. using a system of the form of

Figure 4.24. However. the lowpass filter in that figure is to be approximated by a five-point

filter with impulse response h[n] indicated in Figure P4.52-l. In this system, the output y1[n]

is obtained by direct convolution of h[n] with w[n].
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4 H

—»
,r[n] win] ."1 in] Figure P4.52-1

(a) A proposed implementation of the system with the preceding choice of Mn] is shown

in Figure P4.52-2. The three impulSe responses 111 [n]. light], and 113[n] are all restricted

to be zero outside the range 0 5 n E 2. Determine and clearly justify a choice for

h1[n], h2[n], and h3[n] so that y1[n] : yg[n] for any x[n]. i,e., so that the two systems
are identical.

 
Figure P4.52-2

(b) Determine the number of multiplications per output point required in the system of

Figure P4524 and in the system of Figure P4.52-2. You should find that the system of

Figure P4.52-2 is more efficient.

4.53. Consider the analysis—synthesis system shown in Figure P4.53-1. The lowpass filter li(;[n]

is identical in the analyzer and synthesizer. and the highpass filter [11 [n] is identical in the

analyzer and synthesizer. The Fourier transforms of [m [n] and h] [n] are related by

H1 (8”) : H()(€j(w+'7)).

 
  

 
i'lnl : .Voinl + M in]

Analyzer Synthesizer

Figure P4.53-1
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(a) If X(9”) and Ho(ei‘”) are as shown in Figure P4.53-2, sketch (to within a scale factor)

Xo(ej“’), Go(€jw), and Y0(€jw).

(b) Write a general expression for Go(e1“’) in terms of X(em) and Ho(ej“’). Do not assume
that X(ej‘“) and Ho(ej‘“) are as shown in Figure 4.53-2.

X(ef‘”)
A

—11' 0 11' to

H003”)

1

—21r —1r _ 11' 0 1_'r 7r Lu

2 2 Figure P4.53-2

(c) Determine a set of conditions on Ho(el"”) that is as general as possible and that will

guarantee that y[n] is proportional to x[n — nd] for any stable input x[n].

Note: Analyzer—synthesizer filter banks of the form developed in this problem are very

similar to quadrature mirror filter banks. For further reading, see Crochiere and Rabiner

(1983), pp. 378—392.

Consider a real-valued sequence x[n] for which
21'

—slwlsn-Xi“:
(6)0. 3

One value of x[n] may have been corrupted, and we would like to approximately or exactly

recover it. With £[n] denoting the corrupted signal,

£[n] = x[n] for n 79 no,

and )‘c[no] is real but not related to x[no]. In each of the following three cases, specify a

practical algorithm for exactly or approximately recovering x[n] from 5c[n]:
(a) The value of no is known.

(b) The exact value of no is not known, but we know that no is an even number.

(c) Nothing about no is known.

Communication systems often require conversion from time-division multiplexing (TDM)

to frequency-division multiplexing (FDM). In this problem, we examine a simple example

of such a system. The block diagram of the system to be studied is shown in Figure P4.55-1.

The TDM input is assumed to be the sequence of interleaved samples

{ x1 in/Zlw[n] =
x2[(n — 1)/Zl

Assume that the sequences x1[n] = xcl(nT) and x2[n] = xcz(nT) have been obtained

by sampling the continuous-time signals x610) and x620), respectively, without aliasing.

for n an even integer,

for n an odd integer.
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Modulator 1

Modulator 2

Assume also that these two signals have the same highest frequency, 9N. and that the

sampling period is T = 71/ RN.

(a) Draw a block diagram of a system that produces x1[n] and x2 [n] as outputs; i.e., obtain

a system for demultiplexing a TDM signal using simple operations. State whether or

not your system is linear, time invariant, causal, and stable.

 
  

  
TDM

demultiplex   

TDM

signal

Figure P4.55-1

The kth modulator system (k = l or 2) is defined by the block diagram in Figure P4.55—2.

The lowpass filter Hi(ef“’), which is the same for both channels, has gain L and cutoff fre—

quency rr/L, and the highpass filters Hk(ej‘“) have unity gain and cutoff frequency wk. The

modulator frequencies are such that

wzzwi +1T/L and Luz-Hr/Lgn' (assume an > 71/2).

 
C05 wk" Figure P4.55-2

(b) Assume that QN = 27: x 5 x 103. Find an and L so that, after ideal D/C conversion

with sampling period T/L, the Fourier transform of yc(t) is zero. except in the band of

frequencies

21? x105 5 lw| g 211' x105 +29»

XdUQ) 14200)
A B

-9~ “N 9 —“~ “N 9 Figure P4.55-3

(c) Assume that the continuous-time Fourier transforms of the two original input signals

are as sketched in Figure P4.55-3. Sketch the Fourier transforms at each point in the

system.

(d) Based on your solution to Parts (a)—(c), discuss how the system could be generalized

to handle M equal-bandwidth channels.

4.56. In Section 4.8.1, we considered the use of prefiltering to avoid aliasing. In practice, the

antialiasing filter cannot be ideal. However, the nonideal characteristics can be at least

partially compensated for with a discrete-time system applied to the sequence x[n] that is

the output of the C /D converter.
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Consider the two systems in Figure P4.56-1. The antialiasing filters Hideal(j§2) and

Haa(j§2) are shown in Figure P4.56-2. H(ej“’) in Figure P4.56-1 is to be specified to com-

pensate for the nonideal characteristics of Haa( jSZ).

Sketch H(e}"”) so that the two sequences x[n] and w[n] are identical.

System 1:

System 2: 
T Figure P4.56-1

 
E
T

Figure P4.56-2

4.57. As discussed in Section 4.8.2, to process sequences on a digital computer, we must quantize

the amplitude of the sequence to a set of discrete levels. This quantization can be expressed

in terms of passing the input sequence x[n] through a quantizer Q(x) that has an input—

output relation as Shown in Figure 4.48.

As discussed in Section 4.8.3, if the quantization interval A is small compared with

changes in the level of the input sequence, we can assume that the output of the quantizer
is of the form

yin] = xlnl + elnl.

where e[n] = Q (x[n]) — x[n] and e[n] is a stationary random process with a first—order prob-

ability density uniformly distributed between —A /2 and A /2, uncorrelated from sample to

sample and uncorrelated with x[n], so that 5{e[n]x[m] = 0 for all m and n.

Let x[n] be a stationary white-noise process with zero mean and variance of.
(3) Find the mean, variance, and autocorrelation sequence of e[n].

(b) What is the signal-to-quantizing—noise ratio 03/082?
(c) The quantized signal y[n] is to be filtered by a digital filter with impulse response

h[n] 2 all" + (—a)“]u[n]. Determine the variance of the noise produced at the output
due to the input quantization noise, and determine the signal—to-noise ratio at the

output.
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In some cases we may want to use nonlinear quantization steps, for example, logarithmically

spaced quantization steps. This can be accomplished by applying uniform quantization to

the logarithm of the input as depicted in Figure P4.57-1, where Q[-] is a uniform quantizer

as specified in Figure 4.48. In this case, if we assume that A is small compared with changes

in the sequence ln(x[n]), then we can assume that the output of the quantizer is

1n(y[n]) = mm» + elnl

Thus,

yin] = xln] - exp(etni).

For small 6, we can approximate exp(e[n]) by (1 —+— e[n]), so that

ylnl k xln](1+ 8[11]) = xlnl + flnl-

This equation will be used to describe the effect of logarithmic quantization. We assume

e[n] to be a stationary random process, uncorrelated from sample to sample, independent

of the signal x[n], and with first-order probability density uniformly distributed between

:le /2.

(P457)

 
Figure P4.57-1

((1) Determine the mean, variance, and autocorrelation sequence of the additive noise f [in]

defined in Eq. (P457).

(e) What is the signal—to-quantizing-noise ratio of M}? Note that in this case cal/0% is inde-
pendent of 03. Within the limits of our assumption, therefore, the signal—to-quantizing—
noise ratio is independent of the input signal level, whereas, for linear quantization, the

ratio 03/an depends directly on of.
The quantized signal y[n] is to be filtered by means of a digital filter with impulse

response h[n] = Ha" + (-a)"]u[n]. Determine the variance of the noise produced at
the output due to the input quantization noise, and determine the signal-to-noise ratio

at the output.

(D

Figure P4.58-1 shows a system in which two continuous-time signals are multiplied and

a discrete-time signal is then obtained from the product by sampling the product at the

Nyquist rate; i.e., y1[n] is samples of yc(t) taken at the Nyquist rate. The signal x1(r) is

bandlimited to 25 kHz (X109) = 0 for |$2| 3 Sn x 104), and x2(t) is limited to 2.5 kHz
(X209) = 0for |§2| 3 (27/2) x 104).

MM=»MD

  
T = Nyquist rate Figure P4.58-1

In some situations (digital transmission, for example), the continuous-time signals have

already been sampled at their individual Nyquist rates, and the multiplication is to be

carried out in the discrete-time domain, perhaps with some additional processing before

and after multiplication, as indicated in Figure P4.58-2. Each of the systems A, B, and C
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either is an identity or can be implemented using one or more of the modules shown in

Figure P4.58-3.

 
Figure P4.58-2

SDI] L = O +L +21;
Module} —-—-> TL 8M] : {Sin/ 1 ’1 q— :_ .0 otherwrse

Module 11

Module III 
Figure P4.58-3

For each of the three systems A, B, and C, either specify that the system is an identity

system or specify an appropriate interconnection of one or more of the modules shown in

Figure P4.58-3. Also, specify all relevant parameters L, M, and a)“. The systems A, B, and

C should be constructed such that y; [n] is proportional to y1[n], i.e.,

yfin] = ky1[n] = kyc(nT) = kx1(nT) x x2(nT),

and these samples are at the Nyquist rate, i.e., yz [n] does not represent oversampling or

undersampling of yc(t).

4.59. Suppose sc(t) is a speech signal with the continuous-time Fourier transform SC( jSZ) shown

in Figure P4.59-1. We obtain a discrete-time sequence s,[n] from the system shown in

Figure P4.59—2, where H(ej“) is an ideal discrete-time lowpass filter with cutoff frequency

wc and a gain of unity throughout the passband, as shown in Figure 2.17. The signal s,[n]

will be used as an input to a speech coder, which operates correctly only on discrete-time

samples representing speech sampled at an 8-kHz rate. Choose values of L, M, and wc that

produce the correct input signal s, [n] for the speech coder.

SCOT!)

—27r'4000 0 277-4000 Quad/S) Figure P4.59-1
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5cm 
T = (1/44.1) ms

Figure P4.59-2

4.60. In many audio applications, it is necessary to sample a continuous-time signal xc(t) at

a sampling rate 1/ T = 44 kHz. Figure P4.60-1 shows a straightforward system, includ-

ing a continuous-time antialias filter Hao(jS2), to acquire the desired samples. In many

applications, the “4x oversampling” system shown in Figure P4.60—2 is used instead of the

conventional system shown in Figure P4.60-1. In the system in Figure 134.60-2,

' 1! E 71/4;1w _

H(e ) — { 0, otherwise,

 
(1/7) = 44 kHz Figure P4.6lJ-1

an ideal lowpass filter, and

. 1, min,

Ha1(}Q) : >
for someOg 9p 5 S25 5 oo.

 
(UT)=4X44kHz=176kHz HgmeP4fiDQ

Assuming that H(ej“’) is ideal, find the minimal set of specifications on the antialias

filter Ha1(jS2), i.e., the smallest 9p and the largest 9,, such that the overall system of

Figure P4.60-2 is equivalent to the system in Figure P4.60-1.

4.61. In this problem, we will consider the “double integration” system for quantization with

noise shaping shown in Figure 4.61-1. In this system,

1 2:—1
H =

1_ r] and 2(23) 1 _ Z_1,
  

111(2) =

and the frequency response of the decimation filter is

‘0.) _ 1! < n/M!Hm] )— {0, n/M: m 5 n.
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The noise source e[n], which represents a quantizer, is assumed to be a zero-mean white-

noise (constant power spectrum) signal that is uniformly distributed in amplitude and has

noise power 062 = A2/12.

 
  

 
v[n] : w[Mn]

Figure P4.61-1

(3) Determine an equation for Y(z) in terms of X(z) and E(z). Assume for this part that

E(z) exists. From the z-transform relation, show that y[n] can be expressed in the form

y[n] = x[n — l] + f[n]. where f[n] is the output due to the noise source e[n]. What is

the time—domain relation between f[n] and e[n]‘?

(b) Now assume that e[n] is a white-noise signal as described prior to Part (21). Use the

result from Part (a) to show that the power spectrum of the noise f[n] is

ply-(em) = 160.2 sin4tw/2)-

What is the total noise power (a?) in the noise component of the signal y[n]? On the
same set of axes, sketch the power spectra Pale”) and Pff((’jw) for 0 g u) 5 21.

(c) Now assume that X(ef“‘) = O for n/M < a) g 71. Argue that the output of H3(z) is

w[n] = x[n — 1] + State in words what g[n] is.

((1) Determine an expression for the noise power a; at the output of the decimation filter.
Assume that 71/ M << yr, i.e., M is large. so that you can use a small-angle approximation

to simplify the evaluation of the integral.

(e) After the decimator, the output is v[n] = w[Mn] = x[Mn — l] + q[n], where q[n] :

g[Mn]. Now suppose that x[n] = xc(nT) (i.e., x[n] was obtained by sampling a

continuous-time signal). What condition must be satisfied by X(.(jS2) so that .r[n — 1]

will pass through the filter unchanged? Express the “signal component" of the output

v[n] in terms of xc(t). What is the total power a; of the noise at the output? Give an
expression for the power spectrum of the noise at the output, and, on the same set of

axes, sketch the power spectra Pee(el‘”) and RM (elm) for O 5 a) g 71.

4.62. For sigma-delta oversampled A/D converters with high-order feedback loops, stability

becomes a significant consideration. An alternative approach referred to as MASH achieves

high-order noise shaping with only first-order feedback. The structure for second-order

MASH noise shaping is shown in Figure P4.62-2 and analyzed in this problem.

Figure P4.62-1 is a first-order sigma—delta (2 — A) noise shaping system, where the

effect of the quantizer is represented by the additive noise signal e[n]. The noise e[n] is

explicitly shown in the diagram as a second output of the system. Assume that the input

x[n] is a zero—mean wide—sense stationary random process. Assume also that e[n] is zero—

mean, white, wide-sense stationary, and has variance 082. €[n] is uncorrelated with x[n].
(a) For the system in Figure P4.62-1, the output y[n] has a component yx[n] due only to

x[n] and a component ye[n] due only to e[n], i.e., y[n] : yx[n] + y€[n].

(i) Determine yx[n] in terms of x[n].

(ii) Determine flew), the power spectral density of ye[n].
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elnl Figure P4.62-1

 
62W Figure P4.62-2

(b) The system of Figure P4.62-1 is now connected in the configuration shown in Fig—

ure P4.62-2. which shows the structure of the MASH system. Notice that el[n] and

e3[n] are the noise signals resulting from the quantizers in the sigma-delta noise shap—

ing systems. The output of the system r[n] has a component r,[n] due only to x[n], and

a component r(. [n] due only to the quantization noise, i.e.. r[n] = r,r [n] + r(,[n]. Assume

that e] [n] and ez [n] are zero-mean, white, wide-sense stationary, each with variance (71,2.
Also assume that er [n] is uncorrelated with e;

(i) Determine r_\.[n] in terms of x[n].

(ii) Determine 116(0)). the power spectral density of re[n].



5
TRANSFORM ANALYSIS OF
LINEAR TIME—INVARIANT

SYSTEMS

5.0 INTRODUCTION

In Chapter 2 we developed the Fourier transform representation of discrete-time signals

and systems, and in Chapter 3 we extended that representation to the z—transform. In

both chapters, the emphasis was on the transforms and their properties, with only a

brief preview of the details of their use in the analysis of linear time-invariant (LTI)

systems. In this chapter, we develop in more detail the representation and analysis of

LTI systems using the Fourier and z-transforms. The material is essential background

for our discussion in Chapter 6 of the implementation of LTI systems and in Chapter 7

of the design of such systems.

As developed in Chapter 2, an LTI system can be completely characterized in the

time domain by its impulse response h[n], with the output y[n] due to a given input x[n]

specified through the convolution sum
00

y[n] = x[n] * h[n] = Z x[k]h[n — k]. (5.1)
k=—oo

Alternatively, as discussed in Section 2.7, since the frequency response and impulse

response are directly related through the Fourier transform, the frequency response,

assuming it exists (i.e., converges), provides an equally complete characterization of LTI

systems. In Chapter 3 we developed the z-transform as a generalization of the Fourier

transform, and we showed that Y(z), the z-transform of the output of an LTI system, is

related to X(z), the z-transform of the input, and H(z), the z-transform of the system

impulse response, by

Y(z) = H(z)X(z). (5.2)
240
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with an appropriate region of convergence. H(z) is referred to as the system function.

Since the z—transform and a sequence form a unique pair, it follows that any LTI system

is completely characterized by its system function, again assuming convergence.

As we will see in this chapter, both the frequency response and the system function

are extremely useful in the analysis and representation of LTI systems, because we can

readily infer many properties of the system response from them.

5.1 THE FREQUENCY RESPONSE OF LTI SYSTEMS

The frequency response H(ej“’) of an LTI system was defined in Section 2.6 as the

complex gain (eigenvalue) that the system applies to the complex exponential input

(eigenfunction) ejw". Furthermore, in Section 2.9.6 we developed the fact that, since the

Fourier transform of a sequence represents a decomposition as a linear combination

of complex exponentials, the Fourier transforms of the system input and output are

related by

Y(ej“’) = H(eiw)X(efw), (5.3)

where X(elm) and Y(e1"") are the Fourier transforms of the system input and output,

respectively. With the frequency response expressed in polar form, the magnitude and

phase of the Fourier transforms of the system input and output are related by

IY(e"“’)I = IH(e"‘“)I - IX(e"“’)I, (5.4a)

<tY(ef‘”) = <IH(ej“’) + <X(eiw). (5.4b)

|H(ej‘”)l is referred to as the magnitude response or the gain of the system, and <IH(ej“’)

is referred to as the phase response or phase shift of the system.

The magnitude and phase effects represented by Eqs. (5.4a) and (5.4b) can be

either desirable, if the input signal is modified in a useful way, or undesirable, if the

input signal is changed in a deleterious manner. In the latter case, we often refer to

the effects of an LTI system on a signal, as represented by Eqs. (5.4a) and (5.4b), as

magnitude and phase distortions, respectively.

5.1.1 Ideal Frequency-Selective Filters

An important implication of Eq. (5.4a) is that frequency components of the input are

suppressed in the output if |H(ej“’)| is small at those frequencies. Whether this sup-

pression of Fourier components is viewed as desirable or undesirable depends on the

specific problem. Example 2.19 formalized the general notion of frequency-selective

filters through the definition of certain ideal frequency responses. For example, the

ideal lowpass filter was defined as the discrete-time linear time—invariant system whose

frequency response is

1y < wt“),

0, wc < le S 71;Heel“) = { (5.5)
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and, of course, Hip (elm) is also periodic with period 211'. The ideal lowpass filter selects
the low-frequency components of the signal and rejects the high-frequency components.

The corresponding impulse response was shown in Example 2.22 to be

sin wcn

h1p[n] = 7m , —oo < n < 00. (5.6)
 

Analogously, the ideal highpass filter is defined as

thw) = {0’ 'w' < “’0 (5.7)1! wC < S Hy

and since th(ej"’) = 1 — Hlp(el“’), its impulse response is

hhpin] = 5lnl 4min] = 8ln] — 52‘3". (5.8)
 

The ideal highpass filter passes the frequency band we < a) 5 7r undistorted and rejects

frequencies below me. Other ideal frequency-selective filters were defined in Exam—

ple 2.19.

The ideal lowpass filters are noncausal, and their impulse responses extend from

—00 to +00. Therefore, it is not possible to compute the output of either the ideal

lowpass or the ideal highpass filter either recursively or nonrecursively; i.e., the systems

are not computationally realizable.

Another important property of the ideal lowpass filter as defined in Eq. (5.5) is

that the phase response is specified to be zero. If it were not zero, the low-frequency

band selected by the filter would also have phase distortion. It will become clear later

in this chapter that causal approximations to ideal frequency-selective filters must have

a nonzero phase response.

5.1 .2 Phase Distortion and Delay

To understand the effect of the phase of a linear system, let us first consider the ideal

delay system. The impulse response is

hid[n] = 6[n — nd], (5.9)

and the frequency response is

Hid(el“’) = e‘jwn“, (5.10)

or

lHid(ej‘”)| = 1, (5.11a)

4H,..(efw) = —wnd, |w| < 7:, (5.1113)

with periodicity 211 in an assumed. For now, we will assume that nd is an integer.

In many applications, delay distortion would be considered a rather mild form

of phase distortion, since its effect is only to shift the sequence in time. Often this
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would be inconsequential, or it could easily be compensated for by introducing delay

in other parts of a larger system. Thus, in designing approximations to ideal filters and

other linear time-invariant systems, we frequently are willing to accept a linear phase

response rather than a zero phase response as our ideal. For example, an ideal lowpass

filter with linear phase would be defined as

'w e—jwndv lwi < we,
Hlp(e] )= {0, 606 < lwl E It.

Its impulse response is

h]p[n] =w, —00 < n < oo. (5.13)
7’01 — Nd)

In a similar manner, we could define other ideal frequency-selective filters with linear

phase. These filters would have the desired effect of isolating a band of frequencies in the

input signal, as well as the additional effect of delaying the output by nd. Note, however,

that no matter how large we make nd, the ideal lowpass filter is always noncausal.

A convenient measure of the linearity of the phase is the group delay. The basic

concept of group delay relates to the effect of the phase on a narrowband signal. Specifi—

cally, consider the output of a system with frequency response H(ejw) for a narrowband

input of the form x[n] = s[n] Cos(w0n). Since it is assumed that X(eja’) is nonzero only

around a) = mg, the effect of the phase of the system can be approximated around

a) = coo as the linear approximation

<1H(ef‘°) 2 —¢0 — wnd. (5.14)

With this approximation, it can be shown (see Problem 5.57) that the response y[n] to

x[n] = s[n] cos(a)0n) is approximately y[n] = |H(ej“’°)|s[n — nd] cos(w0n — (:50 — wand).

Consequently, the time delay of the envelope s[n] of the narrowband signal x[n] with

Fourier transform centered at coo is given by the negative of the slope of the phase at

coo. In considering the linear approximation to <IH(ei“’) around 0) = we, as given in

Eq. (5.14), we must consider the phase response as a continuous function of a). The

phase response specified in this way will be denoted as arg[H(ei“’)] and is referred to

as the continuous phase of H(e1"").

With phase specified as a continuous function of a), the group delay of a system is
defined as

to») = gunman] = —%{arg[H(eIw)1}. (5.15)
The deviation of the group delay from a constant indicates the degree of nonlinearity

of the phase.

Example 5.1 Effects of Attenuation and Group Delay

As an illustration of the effect of group delay, consider a filter with frequency response

magnitude and group delay shown in Figure 5.1. In Figure 5.2, we show an input signal

and its spectrum. In Figure 5.3 is the resulting output signal. Note that the input signal

consists of three consecutive narrowband pulses, at frequencies a) = 0.8521, w = 0.2571',
and a) = 0.511.



Group Delay

Groupdelay(samples) i—a>—-NNB8g8e
O

O 0.21r 0.477 0.61r 0.87r 1r 1.27r 1.47r 1.67r 1.87r 27r

Radian frequency (w)

(8)

Frequency Response Magnitude

All.
0 0.21r 0.47r 0.6‘rr 0.871" 11' 12W 1.47r 1.61r 1.87r 211'

Radian frequency (w)

(b)

Magnitude(dB) Il i—ai—-I‘5'8‘5'
.L)8

Figure 5.1 Frequency response magnitude and group delay for the filter in

Example 5.1.

Input Signal x [n]

 
Sample number (n)

(a)

Fourier Transform Magnitude of Input 1 [n]
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E
3., 10
ii

5

0 A ... r..-l and... .-..AUAA. _..._,.- . .. . . . . . . . . . . _ L
0 0.27r 0.47r 0.61r 0.81r 1r 1.211' 1.471' 1.611 1.81r 2 17

Radian frequency (w)
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244 Figure 5.2 Input signal and associated Fourier transform magnitude for
Example 5.1.
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Output Signal y[n]

0 50 100 150 200 250 300 350 400

Sample number(n)

Figure 5.3 Output signal for Example 5.1.

Since the filter has considerable attenuation at a) = 0.8571, the pulse at that frequency

is not clearly present in the output. Also, since the group delay at a) = 0.2521 is

approximately 200 samples and at a) = 0.57: is approximately 50 samples, the second

pulse in x[n] will be delayed by about 200 samples and the third pulse by 50 samples,
as we see is the case in Figure 5.3.

5.2 SYSTEM FUNCTIONS FOR SYSTEMS CHARACTERIZED

BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE

EQUATIONS

While ideal frequency-selective filters are useful conceptually, they cannot be imple-

mented with finite computation. Therefore, it is of interest to consider a class of systems

that can be implemented as approximations to ideal frequency-selective filters.

In Section 2.5, we considered the class of systems whose input and output satisfy

a linear constant-coefficient difference equation of the form

N M

Z aky[n — k] = Z bkx[n — k]. (5.16)
k=0 k=0

We showed that if we further assume that the system is causal, the difference equation

can be used to compute the output recursively. If the auxiliary conditions correspond

to initial rest, the system will be causal, linear, and time invariant.

The properties and characteristics of LTI systems for which the input and output

satisfy a linear constant-coefficient difference equation are best developed through the

z—transform. Applying the z-transform to both sides of Eq. (5.16) and using the linearity

property (Section 3.4.1) and the time-shifting property (Section 3.4.2), we obtain

N M

Z akz—kY(Z) = Z 1%ka(Z),
k=0k=0
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or equivalently,

N M

(Z akz‘k) Y(z) = ka_k) X(z)- (5-17)k=0 k=o

From Eq. (5.2) and Eq. (5.17), it follows that, for a system whose input and output satisfy

a difference equation of the form of Eq. (5.16), the system function has the algebraic
form

M

Zbk2_k

H(z) = % = ’30—. (5.18)
2 akZ_k
k=0

H(z) in Eq. (5.18) is a ratio of polynomials in z"1 , because Eq. (5.16) consists of a linear

combination of delay terms. Although Eq. (5.18) can, of course, be rewritten so that

the polynomials are expressed as powers of 2 rather than of z‘l, it is common practice

not to do so. Also, it is often convenient to express Eq. (5.18) in factored form as
M

(1 — c z‘l)

m.) = (a) (5.19)
M He ~ dkz-l)

k=1

Each of the factors (1 — ckz‘l) in the numerator contributes a zero at z = ck and a pole

at z = 0. Similarly, each of the factors (1 — dkz‘l) in the denominator contributes a zero

atz=0andapoleatz=dk.

There is a straightforward relationship between the difference equation and the

corresponding algebraic expression for the system function. Specifically, the numerator

polynomial in Eq. (5 .18) has the same coefficients and algebraic structure as the right-

hand side of Eq. (5.16) (the terms of the form bkz_k correspond to bkx[n — k]), while the

denominator polynomial in Eq. (5.18) has the same coefficients and algebraic structure

as the left-hand side of Eq. (5 .16) (the terms of the form akz‘k correspond to aky[n — k]).

Thus, given either the system function in the form of Eq. (5 .18) or the difference equation

in the form of Eq. (5.16), it is straightforward to obtain the other.

Example 5.2 Second-Order System

Suppose that the system function of a linear time-invariant system is

(1 + 2—1)2

(1 — 52“) (1+ iz‘l)

To find the difference equation that is satisfied by the input and output of this system, we

express H(z) in the form of Eq. (5.18) by multiplying the numerator and denominator

factors to obtain the ratio of polynomials

1+223‘1+z‘2 _ Y(z)

1+ 312—1 — gz‘z X(Z).

H(z) = (5.20)

H(z) = (5.21)
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Thus,

(1 + 332" — 32—2) Y(z) = (1 + 2z‘l + z‘2)X(z).

and the difference equation is

y[n] + %y[n — 1] — §y[n — 2] = x[n] + 2x[n — 1] + x[n — 2]. (5.22)

Note that once the correspondence is well understood, it is possible to proceed directly

from Eq. (5.21) to Eq. (5.22) without the intervening algebra (and vice versa).

5.2.1 Stability and Causality

To obtain Eq. (5.18) from Eq. (5.16), we assumed that the system was linear and time

invariant, so that Eq. (5.2) applied, but we made no further assumption about stability or

causality. Correspondingly, from the difference equation, we can obtain the algebraic

expression for the system function, but not the region of convergence. Specifically,

the region of convergence of H(z) is not determined from the derivation leading to

Eq. (5.18), since all that is required for Eq. (5.17) to hold is that X(z) and Y(x) have

overlapping regions of convergence. This is consistent with the fact that, as we saw in

Chapter 2, the difference equation does not uniquely specify the impulse response of a

linear time—invariant system. For the system function of Eq. (5.18) or (5.19), there are a

number of choices for the region of convergence. For a given ratio of polynomials, each

possible choice for the region of convergence will lead to a different impulse response,

but they will all correspond to the same difference equation. However, if we assume that

the system is causal, it follows that h[n] must be a right-sided sequence, and therefore,

the region of convergence of H(z) must be outside the outermost pole. Alternatively, if

we assume that the system is stable, then, from the discussion in Section 2.4, the impulse

response must be absolutely summable, i.e.,

Z |h[n]| < oo. (5.23)

Since Eq. (5.23) is identical to the condition that

f: |h[n]z‘”l < oo (5.24)
71=—CX)

for lzl = 1, the condition for stability is equivalent to the condition that the ROC of

H(2) include the unit circle.

Example 5.3 Determining the ROC

Consider the LTI system with input and output related through the difference equation

y[n] — %y[n — 1] + y[n — 2]: x[n]. (5.25)

From the previous discussions, H(z) is given by

1 1

H(z) = ——— = ———— (5.26)
1— gz-l + z-2 (1 — 1Z4) (1 — 2z-1)'



248 Transform Analysis of Linear Time-Invariant Systems Chap. 5

.Slm z-plane

Unit circle

 
Figure 5.4 Pole—zero plot for Example 5.3.

The pole—zero plot for H(z) is indicated in Figure 5.4. There are three possible choices

for the ROC. If the system is assumed to be causal, then the ROC is outside the

outermost pole, i.e., |z| > 2. In this case the system will not be stable, since the ROC

does not include the unit circle. If we assume that the system is stable, then the ROC

will be % < lzl < 2. For the third possible choice of ROC, |z| < %, the system will be
neither stable nor causal.

As Example 5.3 suggests, causality and stability are not necessarily compatible require-

ments. In order for a linear time-invariant system whose input and output satisfy a

difference equation of the form of Eq. (5 .16) to be both causal and stable, the ROC of

the corresponding system function must be outside the outermost pole and include the

unit circle. Clearly, this requires that all the poles of the system function be inside the
unit circle. '

5.2.2 Inverse Systems

For a given linear time-invariant system with system function H(z), the corresponding

inverse system is defined to be the system with system function Hi(z) such that if it is

cascaded with H(z), the overall effective system function is unity; i.e.,

 

G(z) = H(z)H.-(z)=1. (5.27)

This implies that

1
H; = —. 5.28(z) Hm ( )

I The time-domain condition equivalent to Eq. (5.27) is

gin] =11an man] = 6M (5.29)

From Eq. (5.28), the frequency response of the inverse system, if it exists, is

. 1

Hi(ejw) = (5.30)mew);
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Le, Hi(e1"") is the reciprocal of H(efa’). Equivalently, the log magnitude, phase, and

group delay of the inverse system are negatives of the corresponding functions for

the original system. Not all systems have an inverse. For example, the ideal lowpass

filter does not. There is no way to recover the frequency components above the cutoff

frequency that are set to zero by such a filter.

Many systems do have inverses, and the class of systems with rational system

functions provides a very useful and interesting example. Specifically, consider

M

110 - ckz_1)

H(z) = k;—“—. (5.31)
H(1 — de_1)
k=1

with zeros at z = ck and poles at z = dk, in addition to possible zeros and/or poles at
z=0andz=oo.Then

N

H(l — dkz‘l)

Him = (10) _k;1; (5.32)
b0 _1

H(1 * CkZ )
k=1

i.e., the poles of H,-(z) are the zeros of H(z) and vice versa. The question arises as to what

region of convergence to associate with H,-(z). The answer is provided by the convolu-

tion theorem, expressed in this case by Eq. (5.29). For Eq. (5.29) to hold, the regions of

convergence of H(z) and H,» (z) must overlap. If H(z) is causal, its region of convergence
IS

|z| > mIax ldkl. (5.33)

Thus, any appropriate region of convergence'for H;(z) that overlaps with the region

specified by Eq. (5.33) is a valid region of convergence for H,- (z). Some simple examples

will illustrate some of the possibilities.

Example 5.4 Inverse System for First-Order System

Let H(z) be

1 — 0.52‘1
H = ——

(z) 1 — 0.91—1

with ROC lzl > 0.9. Then H.(z) is

1 — 0.92‘]

Him _ 1— 0.51-1‘

Since Hg(z) has only one pole, there are only two possibilities for its ROC, and

the only choice for the ROCof H,-(z) that overlapswith |z| > 0.9is [z] > 0.5.Therefore,
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the impulse response of the inverse system is

hi[n] = (0.5)"u[n] — 0.9(0.5)"-1u[n — 1].

In this case, the inverse system is both causal and stable.

Example 5.5 Inverse for System with a Zero in the ROC

Suppose that H(z) is

z‘1 — 0.5

H(z) = |z| > 0.9.

The inverse system function is

As before, there are two possible regions of convergence: |z| < 2 and |z| > 2.

In this case, however, both regions overlap with |z| > 0.9, so both are valid inverse

systems. The corresponding impulse response for an ROC |z| < 2 is

h;1[n] = 2(2)"u[—n — 1] — 1.8(2)"_1u[—n]

and, for an ROC lzl > 2, is

ham = —2(2)"u[n]+1.8(2)"_1u[n u 1].

We see that h;1[n] is stable and noncausal, while hi2[n] is unstable and causal.

A generalization from Examples 5.4 and 5.5 is that if H(z) is a causal system with

zeros at ck, k = 1, . . ., M, then its inverse system will be causal if and only if we associate

the region of convergence,

lzl > meleI.

with Hi(z). If we also require that the inverse system be stable, then the region of

convergence of Hi(z) must include the unit circle. Therefore, it must be true that

mix |ck| < 1;

i.e., all the zeros of H(z) must be inside the unit circle. Thus, a linear time-invariant

system is stable and causal and also has a stable and causal inverse if and only if both

the poles and the zeros of H(z) are inside the unit circle. Such systems are referred to

as minimum-phase systems and will be discussed in more detail in Section 5.6.

5.2.3 Impulse Response for Rational System Functions

The discussion of the partial fraction expansion technique for finding inverse

z-transforms (Section 3.3.2) can be applied to the system function H(z) to obtain a

general expression for the impulse response of a system that has a rational system
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1
function as in Eq. (5.19). Recall that any rational function of z’ with only first-order

poles can be expressed in the form

hfl—N _r N {qk
H(z) = Z 3,2: + Z —1_ dkrl, (5.34)r=0 k=1

where the terms in the first summation would be obtained by long division of the denom-

inator into the numerator and would be present only if M 3 N. The coefficients Ak in

the second set of terms are obtained using Eq. (3.41). If H(z) has a multiple-order pole,

its partial fraction expansion would have the form of Eq. (3.44). If the system is assumed

to be causal, then the ROC is outside all of the poles in Eq. (5.34), and it follows that
AL—N N

h[n] = Z B,5[n — r] + Z Akd£u[n], (5.35)
r=0 k=1

where the first summation is included only if M 3 N.

In discussing LTI systems, it is useful to identify two classes. In the first class, at

least one nonzero pole of H(z) is not canceled by a zero. In this case there will be at least

one term of the form Ak(dk)’1u[n], and h[n] will not be of finite length, i.e., will not be

zero outside a finite interval. Systems of this class are therefore called infinite impulse

response (IIR) systems. A simple IIR system is diSCUSsed in the following example.

Example 5.6 A First-Order IIR System

Consider a causal system whose input and output satisfy the difference equation

y[n] — ay[n — 1] = x[n]. (5.36)

The system function is (by inspection)

H(z) =

 

(5.37)
1—az'1’

 
Figure 5.5 Pole—zero plot for Example 5.6.

Figure 5.5 shows the pole—zero plot of H(z). The region of convergence is |z| > |a|,

and the condition for stability is |a| < 1. The inverse z-transform of H(z) is

h[n] = a"u[n]. (5.38)
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For the second class of systems, H(z) has no poles except at z = 0; i.e., N = 0

in Eqs. (5.16) and (5.18). Thus, a partial fraction expansion is not possible, and H(z) is

simply a polynomial in 2‘]L of the form

H(z) = Z bkz‘k. (5.39)

(We assume, without loss of generality, that do = 1.) In this case, H(z) is determined to

within a constant multiplier by its zeros. From Eq. (5.39), h[n] is seen by inspection to be

M

bn. 0 S n E M,

hln] = gbkfln — k] = {0. otherwise. (5'40)

In this case, the impulse response is finite in length; i.e., it is zero outside a finite interval.

Consequently, these systems are calledfinite impulse response (FIR) systems. Note that

for FIR systems, the difference equation of Eq. (5.16) is identical to the convolution

sum, i.e.,

y[n] = Z bkx[n — k]. (5.41)
k=0

Example 5.7 gives a simple example of an FIR system.

Example 5.1 A Simple FIR System

Consider an impulse response that is a truncation of the impulse response of Exam-

ple 5.6:

a”, 0 5 n 5 M,

Mn] _ {0 otherwise.

Then the system function is

M

n _n 1 _ aM+lz—M—1

n=0

Since the zeros of the numerator are at

z, = aej2”k/(M+1), k = 0,1, ..., M, (5.43)

where a is assumed real and positive, the pole at z = a is canceled by a zero. The
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pole—zero plot for the case M = 7 is shown in Figure 5.6.

9m z-plane

 
 

 
/ Seventh-

order

pole\

Figure 5.6 Pole—zero plot for Example 5.7.

The difference equation satisfied by the input and output of the linear time-

invariant system is the discrete convolution

M

y[n] = Zakxht — k]. (5.44)
k=0

However, Eq. (5.42) suggests that the input and output also satisfy the difference

equafion

y[n] — ay[n — 1]: x[n] — aM+1x[n — M — 1]. (5.45)

These two equivalent difference equations result from the two equivalent forms of

H(z) in Eq. (5.42).

5.3 FREQUENCY RESPONSE FOR RATIONAL SYSTEM

FUNCTIONS

If a stable linear time-invariant system has a rational system function (i.e., if its input

and output satisfy a difference equation of the form of Eq. (5.16), then its frequency

response (the system function of Eq. (5.18) evaluated on the unit circle) has the form
M

E :bke—jwk

H(eiw) = ":0—. (5.46)

k=0

That is, H(ej“’) is a ratio of polynomials in the variable e‘j‘”. To determine the magni-

tude, phase, and group delay associated with the frequency response of such systems, it
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is useful to express H(ej“’) in terms of the poles and zeros of H(2:). Such an expression
results from substituting z = ef‘” into Eq. (5.19):

H(1 - Ck€_]w)

H(e1w) = (E) i=1——4. (5.47)
do fifl d e‘j‘”)'— k

k=1

From Eq. (5.47), it follows that

M -

H — ace—WI
b0

|H(ej‘")| = 'a—O’ ",jl————. (5.48)
H I1 — dkeriwl
k=1

Sometimes it is convenient to consider the magnitude squared, rather than the magni-

tude, of the system function. The magnitude-squared function is

|H(ej“’)|2 = H(e1'“’)H*(e"").

where * denotes complex conjugation, and for H(e1“’) as in Eq. (5.47),

M

, H(1 — cke_j“’)(1 — czeju’)2

lH(ej“’)|2 = "Ni————. (5.49)
[[(1 — dke-fw)(1 — dgefw)
k=1

From Eq. (5.48), we see that |H(el‘")| is the product of the magnitudes of all the zero

factors of H(2:) evaluated on the unit circle, divided by the product of the magnitudes of

all the pole factors evaluated on the unit circle. It is common practice to transform these

products into a corresponding sum of terms by considering 2010g10 |H(efw)| instead of
|H(ef"’)|. The logarithm of Eq. (5.48) is

be

M

201 1 — 4‘“a0 +2 oglol cke |
k=1 (5.50)N

— Z 2010g10 )1 — dke—fwl
k=1

2010810 |H(€jw)| I 2010310   

The function 2010g10 |H(ej“’)| is referred to as the log magnitude of H(ef0’) and is

expressed in decibels (dB). Sometimes this quantity is called the gain in dB; i.e.,

Gain in dB 2 2010g10|H(e1“’)|. (5.51)
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Note that zero dB corresponds to a value of |H(ej“’)| = 1, while |H(ej“’)i = 10’" is

20m dB. Also, |H(ej“’)| = 2’" is approximately 6m dB. When |H(e/"")| < 1, the quantity

2010g10 |H(ej‘”)| is negative. This would be the case, for example, in the stopband of a
frequency—selective filter. It is common practice to define

Attenuation in dB = _2010g10 |H(ejw)|
(5.52)

= —Gain in dB.

The attenuation is therefore a positive number when the magnitude response is less

than unity. For example, a 60—dB attenuation at a given frequency a) means that at that

frequency |H(ej“’)| = 0.001.

Another advantage to expressing the magnitude in decibels stems from Eq. (5.4a),

which, after taking logarithms of both sides, becomes

2010g10 |Y(ej“’)| = 2010g10 |H(ej‘”)| + 2010g10 |X(ej“’)|, (5.53)

so the frequency response in dB is added to the log magnitude of the input Fourier trans—

form to find the log magnitude of the output Fourier transform. If Eq. (5.53) replaces

Eq. (5.43) in Eqs. (5.4), then the effects of both magnitude and phase are additive.

The phase response for a rational system function has the form

. b0 M . N _
<iH(e"") = <1 LT] + Z <t[1 — eke—1‘”]— Z <1[1 — dke‘fw]. (5.54)

0 k=1 k=l

As in Eq. (5.50), the zero factors contribute with a plus sign and the pole factors con-

tribute with a minus sign.

The corresponding group delay for a rational system function is

N M d

grd[H(e"‘”)l = 2 gauge — die—WI) — Z Ebrgil — eke—I'd), (5.55)
k=l k=l

where arg[ ] represents the continuous phase. An equivalent expression is

we2 — Rewke-Iw} M w — Re{cke_1w}
— 5.56

} I; 1 ( )

N

jw = —.___— —————.grd[H(e )] k; 1 + ldk|2 — 2Re{dke-I‘w + le|2 — 2Re{cke—1w}

In Eq. (5.54), as written, the phase of each of the terms is ambiguous; i.e., any integer

multiple of 2H can be added to each term at each value of a) without changing the value

of the complex number. The expression for the group delay, on the other hand, involves

differentiating the continuous phase.

When the angle of a complex number is computed, with the use of an arctangent

subroutine on a calculator or with a computer system subroutine, the principal value is

obtained. The principal value of the phase of H(ej“’) is denoted as ARG[H(ej“’)], where

—JT < ARG[H(ej“’)] g n. (5.57)
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Any other angle that gives the correct complex value of the function H(ei‘”) can be

represented in terms of the principal value as

<tH(ei“’) = ARG[H(ei“’)] + 27rr(w), (5.58)

where r(a)) is a positive or negative integer that can be different at each value of (0.

Similarly, in calculating any of the individual terms in Eq. (5.54), we would typically

obtain the principal value.

If the principal value is used to compute the phase response as a function of 0),

then ARG[H(ei“’)] may be a discontinuous function. The discontinuities introduced

by taking the principal value will be jumps of 27: radians. This is illustrated in Fig-

ure 5.7(a), which shows a continuous—phase function arg[H(ei“’)] and its principal value
ARG[H(e’“’)] plotted over the range 0 5 a) 5 Jr. The phase function plotted in Fig-

ure 5.7(a) exceeds the range —JT to +1. The principal value, shown in Figure 5.7(b),

arglliL1(€""’)l

 
ARG[H(efw)]

Fiure 5.7 (a) Continuous-phase

curve for a system function evaluated on

the unit circle. (b) Principal value of the

phase curve in part (a). (c) Integer

multiples of 221' to be added to ,
ARG[H(e"“)] to obtain arg[H(el°’)].
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has jumps of 221 due to the integer multiples of 271 that must be subtracted in certain

regions to bring the phase curve within the range of the principal value. Figure 5.7(c)

shows the corresponding value of r(a)) in Eq. (5.58).

Let us consider Eq. (5.54) when the principal value is used to compute the indi-

vidual contributions to the phase. It is not difficult to see that

M

ARG[H(e"‘”)] = ARGB—g] + Z ARG[1 — eke-1w]
H (5.59)N

— Z ARG[1 — dke-Iw] + 27rr(a)),
16:].

where r(w) is an integer that can be different at each value of a). The last term, +22",

is required because, in general, the principal value of a sum of angles is not equal to the

sum of the principal values of the individual angles. This is of considerable importance

in the theory of cepstral analysis and homomorphic systems. (See Oppenheim, Schafer,

and Stockham, 1968 and Tribolet, 1977.) However, it presents no problem in plotting

phase functions, since the principal value can be used to compute the phase function for

each pole and zero, and an appropriate multiple of 2x can then be added or subtracted

as in Eq. (5.59) to obtain the principal value of the total phase function.

The principal value of the phase function can be computed using Eq. (5.59).

Alternatively, we can use the relation

 

1140(0)] , (5.60)ARG[H(ej“’)] = arctan[ .
where HR(el‘”) and H,(ej‘") are the real and imaginary parts, respectively, of H(ej“’).

However, in computing the group delay function of Eq. (5.15), it is the derivative of the

continuous phase function, i.e., arg[H(ef“’)], in which we are interested:

grd[H(e"“’)] = —%{arg[H(eiw)n (5.61)

Except at the discontinuities of ARG[H(ej“’)] corresponding to jumps between +2:

and —n,

fiiargimewm = %{ARG[H(ej“’)l}- (5.62)

Consequently, the group delay can be obtained from the principal value by differenti—

ating, except at the discontinuities. Similarly, we can express the group delay in terms

of the ambiguous phase <IH(ei“’) as

grd[H(ef“’)] = —%[<H(ej“’)], (5.63)

with the interpretation that impulses caused by discontinuities of size 271 in <IH(ej“’)

are ignored.
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5.3.1 Frequency Response of a Single Zero or Pole

Equations (5.50), (5.54), and (5.56) represent the magnitude in dB, the phase, and the

group delay, respectively, as a sum of contributions from each of the poles and zeros of

the system function. To obtain further insight into the properties of frequency responses

of stable linear time-invariant systems with rational system functions, it is worthwhile

to first examine the properties of a single factor of the form (1 — reer—j‘”), where r is

the radius and 6 is the angle of the pole or zero in the z-plane. This factor is typical of

either a pole or a zero at a radius r and angle 6 in the z—plane.

The square of the magnitude of such a factor is

I1 — name-(ml2 = (1 — rei0e_i“’)(1 — re‘jgef‘”) = 1+r2 — 2r cos(w — 6). (5.64)

Since, for any complex quantity C,

1010g10 |C|2 = 2010g10|C|,

the log magnitude in dB is

2010g10 |1 — remark“! =10log10[1+ r2 — 2r cos(w — 6)]. (5.65)

The principal value phase for such a factor is

ARG[1 — reige—jw] = arctan rsin(w—-6) (5.66)1—rcos(w — 6)

Differentiating the right-hand side of Eq. (5.66) (except at discontinuities) gives the

group delay of the factor as

2 2

r —rcos(w—6) _r —rcos(w—6)d1_ i9 -iw =__..______—__,._.
gr [ re 6 ] 1+r2—2rcos(w—6) l1—re/9e‘la’lz (5.67)

The functions in Eqs. (5.64)—(5.67) are, of course, periodic in a) with period 211. Fig—

ure 5.8(a) shows a plot of Eq. (5.65) as a function of a) over one period (0 5 a) < 271)

for several values of 6 with r = 0.9. Note that the function dips sharply in the vicinity of

a) = 6. Note also, from Eq. (5.65), that when r is fixed, the log magnitude is a function

of (a) — 6), so as 6 changes, the clip is shifted in frequency. In general, the maximum

value of Eq. (5.65) occurs at (a) — 6) = Jr and is

101og,0(1 + r2 + 2r) = 201og,0(1 + r),

which, for r = 0.9, is equal to 5.57 dB. Similarly, the minimum value of Eq. (5.65),

occurring at w = 6, is

101og,0(1+ r2 — 2r) = 2010g10|1— r],

which is equal to —20 dB for r = 0.9. Note that the plot of the magnitude-squared

function in Eq. (5.64) would look similar to Figure 5.8(a), except that it would have a

much wider relative range of values. Hence, its plot would appear much sharper for the
same value of r.
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Figure 5.8 Frequency response for a single zero, with r = 0.9 and the three

values of 6 shown. (a) Log magnitude. (b) Phase. (0) Group delay.
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Figure 5.8(b) shows the phase function in Eq. (5.66) as a function of a) for r = 0.9

and several values of 9. Note that the phase is zero at a) = 9 and that, for fixed r, the

function simply shifts with 9. Figure 5.8(c) shows the group delay function in Eq. (5.67)

for the same conditions on r and 9. Note that the high positive slope of the phase around

a) = 9 corresponds to a large negative peak in the group delay function at a) = 9.

A simple geometric construction is often very useful in approximate sketching of

frequency-response functions directly from the pole—zero plot. The procedure is based

on the facts that the frequency response corresponds to the system function evaluated

on the unit circle in the z-plane and that the complex value of each pole and zero factor

can be represented by a vector in the z-plane from the pole or zero to a point on the

unit circle. Let us first illustrate the procedure for a first-order system function of the
form

- z — re”H(z) = (1 — re”z_1)= £——), r <1. (5.68)
z

In Section 5.3.2, we will consider higher order examples. Such a factor has a pole at

z = 0 and a zero at z = re”, as illustrated in Figure 5.9. Also indicated in this figure

are the vectors v1, v2, and v3 = v1 — vz, representing the complex numbers e1”, re”,
and (em — re”), respectively. In terms of these vectors, the magnitude of the complex
number

e” — re”

e”

is the ratio of the magnitudes of the vectors V3 and v1, i.e.,

ej‘” — re”

em
[1—- re”e‘j‘”| = = —, (5-69)  

Figure 5.9 z—plane vectors for a

first-order system tunction evaluated on
the unit circle, with r < 1.
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or, since IV1I = 1, Eq. (5.69) is just equal to |V3i. The corresponding phase is

<I(l — rage—1"”) = <t(ej‘" — rejg) — <t(e1"") = <I(V3) — <I(V1)

=¢3—¢1=¢3-w-

Typically, a vector such as V3 from a zero to the unit circle is referred to as a zero vector,

and a vector from a pole to the unit circle is called a pole vector. Thus, the contribution

of a single zero factor (1 —rej9 2—1) to the magnitude function at frequency a) is the length
of the zero vector V3 from the zero to the point z = em on the unit circle. The vector has

minimum length when a) = 6. This accounts for the sharp dip in the magnitude function

at a) = 9 in Figure 5.8(a). Note that the pole vector V1 from the pole at z = 0 to z = ej‘”

always has unit length. Thus, it does not have any effect on the magnitude response.

Equation (5.70) states that the phase function is equal to the difference between the

angle of the zero vector from the zero at reje to the point z = ej‘” and the angle of the
pole vector from the pole at z = 0 to the point z = ej‘”.

The pole—zero plot for the case 6 = It is shown in Figure 5.10, and the pole and zero

vectors are shown for two different values of (1). Clearly, as to increases from zero, the

magnitude of the vector V3 decreases until it reaches a minimum at a) = If, thereby ac-

counting for the shape of the curve corresponding to 6 = It in Figure 5.8(a). The angle of

vector V3 in Figure 5.10 increases more slowly than a) at first, so that the phase curve starts

out negative; then, when a) is close to It , the angle of vector V3 increases more rapidly than

to, thereby accounting for the steep positive slope of the phase function around a) = it.

Note that when a) = If, the angles of vectors V3 and V1 are equal, so the net phase is zero.

The dependence of the frequency-response contributions of a single factor

(1 — rejee‘j‘”) on the radius r is shown in Figure 5.11 for 6 = Jr and several values of r.

Note that the log magnitude function plotted in Figure 5.11(a) dips more sharply as r be—

comes closer to 1; indeed, the magnitude in dB approaches —00 at a) = 9 as r approaches

1. The phase function plotted in Figure 5.11(b) has positive slope around a) = 6, which

becomes infinite as r approaches 1. Thus, for r = 1, the phase function is discontinuous,

with a jump of It radians at a) = 6. Away from a) = 6, the slope of the phase function is

negative. Since the group delay is the negative of the slope of the phase curve, the group

(5.70)

9m z-plane

K,
e45“

gte

Figure 5.10 z-plane vectors for a

first-order system function evaluated on

‘ the unit circle, with 9 = 7r, r < 1. The
pole vector v1 and the zero vector v3 are
shown for two different values of a).
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Figure 5.11 Frequency response fora single zero. with 0 = 71', r = 1, 0.9, 0.7,

and 0.5. (3) Log magnitude. (b) Phase. (0) Group delay for r = .9, 0.7, and 0.5.
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9m

  
 z-plane

Unit circle

 
 
 

 

Figure 5.12 z—plane vectors for a zero

at z = —1 for two different frequencies

closetoyr (w :21 —sandn +5).

delay is negative around a) = 9, and it dips sharply as r approaches 1. Figure 5.11(c)

shows that as we move away from a) = 9, the group delay becomes positive and relatively

flat. When r = 1, the group delay is equal to % everywhere, except at a) = 6, where it is
undefined.

The geometric construction for a zero on the unit circle at z = —1 is shown in

Figure 5.12. Indicated are vectors for two different frequencies, a) = (:1 — s) and a) =

(:1 + e), where s is small. Two observations can be made. First, the length of the vector

V3 approaches zero as a) approaches the angle of the zero vector (8 —+ 0). Therefore,

the multiplicative contribution to the frequency response is zero (—00 dB). Second, the

vector V3 changes its angle discontinuously by it radians as (1) goes from (21 — s) to (21 +5).

Figures 5.8 and 5.11 were restricted to r 5 1. If r > 1, the log magnitude function

behaves similarly to the case r < 1; Le, it dips more sharply as r —+ 1, as shown in

Figure 5.13(a). The phase function in Figure 5.13(b) shows a discontinuity of 271 radi-

ans at a) = 6 for all values of r > 1. The source of this discontinuity can be seen from

Figure 5.14, which shows vectors for a) = (:1 — e) and a) = (n + 5). Note that the pole

vector v1 has an angle of a), which varies continuously from a) = 0 to a) = 277. The angle

of the zero vector V3 is labeled (b3 in the figure. If this angle is measured positively in the

counterclockwise direction, the figure shows that ([53 jumps from zero to 2:1 radians as

0) goes from (:1 — s) to (:1 + 8). This jump of 221 radians is evident in Figure 5.13(b). The

discontinuity of 271 radians can be interpreted as being due to computing the principal-

value phase function. The angle ¢>3 can also be seen to be positive for a) = (31' — s) and

negative for a) = (:1 + 8). With this interpretation, the angle is continuous at a) = 6.

However, since the total angle of the factor (1 — rejge‘j‘”) is less than —21 radians at

a) = (:1 +8), the principal value would appear as in Figure 5.13(b).
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Figure 5.13 Frequency response tor a single real zero outside the unit circle,

with 6 = n, r = 1/0.9, 1.25, 2. (a) Log magnitude. (b) Phase (principal value).
(c) Group delay.
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 Figure 5.14 z-plane vectors fora

single zero evaluated on the unit circle,
withe =n,r >1.

The phase curves in Figure 5.13(b) all have negative slope. Therefore, the group

delay function for r > 1 is positive for all a). This is also easily seen by considering

Eq. (5.67) for r > 1.

The preceding discussion and Figures 5.8, 5.11, and 5.13 all pertain to a single

factor of the form (1 — reme‘j‘“). If the factor represents a zero of H(z), then the curves

of Figures 5.8, 5.11, and 5.13 will contribute to the frequency-response functions with

positive algebraic sign. If the factor represents a pole of H(2), then all the contributions

will enter with opposite sign. Thus, the contribution of a pole z = rel6 would be the

negative of the curves in Figures 5.8 and 5.11. Instead of dipping toward zero (—oo dB),

the magnitude function would peak around a) = 6. The dependence on r would be the

same as for a zero; i.e., the closer r is to 1, the more peaked will be the contribution to

the magnitude function. For stable and causal systems, there will, of course, be no poles

outside the unit circle; i.e., r will always be less than 1.

5.3.2 Examples with Multiple Poles and Zeros

In this section, we illustrate the use of the results of Section 5.3.1 to determine the

frequency response of systems with rational system functions.

Example 5.8 Second-Order llR System

Consider the second—order system

1 1
H = .——r—_ = ———————.

(Z) (1 — relaz—1)(1 — re—Jaz'l) 1— 2r costalz‘1 + r22—2 (5.71)

The difference equation satisfied by the input and output of the system is

y[n] — 2r cos 6y[n — 1] + r2y[n — 2] = x[n].

Using the partial fraction expansion technique, we can show that the impulse response
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z—plane

Figure 5.15 Pole—zero plot for Example 5.8.

Unit circle

  
of a causal system with this system function is

r” sin[6(n +1)]11 = —— . 5. 2
in] sing u[n] ( 7 )

The system function in Eq. (5.71) has a pole at z = re” and at the conjugate
location, 2 = re‘f'e, and two zeros at z = 0. The pole—zero plot is shown in Figure 5.15.
From our discussion in Section 5.3.1,

  

2010g10 |H(ej‘”)| = — 1010g10[1+ r2 — 2r cos(w — 6)]
(5.73a)

— 1010g10[1+ r2 — 2r cos(w + 6)],

. r sin(w — 6) r sin(w + 6)w = — —— — t ——— 5.7<IH(e ) arctan [1_rcos(w_6)] are an [1_rcos(w+6) , ( 3b)
and

. 2— —6 2— 9
grd[H(ejw)] = _ r r cos(w ) r r cos(w + ) (5.73m)

1+r2—2rcos(w—6)_1+r2—2rcos(w+6)'

These functions are plotted in Figure 5.16 for r = 0.9 and 6 = 21/4.

Figure 5.15 shows the pole and zero vectors v1, 122, and V3. The magnitude re-

sponse is the product of the lengths of the zero vectors (which in this casc are always

unity), divided by the product of the lengths of the pole vectors. That is,

w __£fl:____L__
"We )' lV1l - lvzl lvli - lvzl‘ (5'74)

When a) a 6, the length of the vector v1 = 31"“ — rel"? becomes small and changes

significantly as w varies about 6, while the length of the vector vz = ej‘” — re"?
changes only slightly as a) varies around to = 6. Thus, the pole at angle 6 dominates

the frequency response around w = 6, as is evident from Figure 5.16. By symmetry,

the pole at angle —6 dominates the frequency response around a) = —6.
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Figure 5.16 Frequency response for a complex-conjugate ‘pair of poles as in
Example 5.8, with r = 0.9, 21/4. (a) Log magnitude. (b) Phase. (0) Group delay.
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Example 5.9 Second-Order FIR System

Consider an FIR system whose impulse response is

h[n] = 6[n] — 2r cos96[n — 1] + r26[n — 2]. (5.75)

The corresponding system function is

H(z) = 1 — 2r cos 92—1 + r2z_2. (5.76)

which is the reciprocal of the system function in Example 5.8. Therefore, the frequency-

response plots for this FIR system are simply the negative of the plots in Figure 5.16.

Note that the pole and zero locations are interchanged in the reciprocal.

Example 5.10 Third-Order IIR System

In this example, we consider a lowpass filter designed using one of the approximation

methods to be described in Chapter 7. The system function to be considered is

0.05634(1 + z‘1)(1 — 1.0166z“ + 2—2)
H = ————~—————.

(Z) (1 — 0.683z-l)(1 — 1.4461z-1 + 0.7957z-2)' (5.77)

and the system is specified to be stable. The zeros of this system function are at the

following locations:

Radius Angle

1 7r rad

1 :l:1.0376 rad (59.450) 

The poles are at the following locations:

Radius Angle

0.683 0

0.892 $06257 rad (35.850)

The pole—zero plot for this system is shown in Figure 5.17. Figure 5.18 shows the

9m z- lane
Unit circle p

‘
O

9R6

0

Figure 5.17 Pole+zero plot for the lowpass filter of Example 5.10.
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Figure 5.18 Frequency response for the lowpass filter 01 Example 5.10. (a) Log
magnitude. (b) Phase. (c) Group delay.
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log magnitude, phase, and group delay of the system. The effect of the zeros that

are on the unit circle at a) = 31210376 and Jr is clearly evident. However, the poles

are placed so that, rather than peaking for frequencies close to their angles, the total

log magnitude remains close to 0 dB over a band from a) = 0 to a) = 0.2:r (and,

by symmetry, from a) : 1.83 to a) : 27:), and then it drops abruptly and remains

below —25 dB from about a) = 0.311r to 1.7m As suggested by this example, useful

approximations to frequency-selective filter responses can be achieved using poles to

build up the magnitude response and zeros to suppress it.

In this example, we see both types of discontinuities in the plotted phase curve.

At no 2 0.22m there is a discontinuity of 211 due to the use of the principal value in

plotting. At a) = i1.0376 and a) = Jr, the discontinuities of 71' are due to the zeros on
the unit circle.

5.4 RELATIONSHIP BE1WEEN MAGNITUDE AND PHASE

The frequency response of a linear time~invariant system is the Fourier transform of the

impulse response. In general, knowledge about the magnitude provides no information

about the phase, and vice versa. However, for systems described by linear constant-

coefficient difference equations, i.e., rational system functions, there is some constraint

between magnitude and phase. In particular, as we discuss in this section, if the magni-

tude of the frequency response and the number of poles and zeros are known, then there

are only a finite number of choices for the associated phase. Similarly, if the number of

poles and zeros and the phase are known, then, to within a scale factor, there are only

a finite number of choices for the magnitude. Furthermore, under a constraint referred

to as minimum phase, the frequency-response magnitude specifies the phase uniquely,

and the frequency-response phase specifies the magnitude to within a scale factor.

To explore the possible choices of system function, given the square of the mag—

nitude of the system frequency response, we consider [ Heal“)!2 expressed as

|1l1’(6”"")|2 = H(ej‘”)H*(el“’)
(5.78)

= H(Z)H*(1/Z*)lz=e:w-

Restricting the system function H(z) to be rational in the form of Eq. (5.19), i.e.,

M

b H(1 — cszl)
H(z) = (4’) ———";l , (5.79)00

Ha - dkz-l)
k=1

H*(—1—) = (E L, (5.80)
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where we have assumed that a0 and b0 are real. Therefore, Eq. (5.78) states that the

square of the magnitude of the frequency response is the evaluation on the unit circle
of the z-transform

C(z) = H(z)H*(1/z*) (5.81)

M

[[(1 — ckz_l)(1 — 4:2)2

= (5’2) _____k=1. (5.82)610

k

N

110— dkz‘l)(1 — dgz)
:1

If we are given |H(ej"’)|2, then by replacing 61"” by z, we can construct C(z). From C(z),

we would like to infer as much as possible about H( z). We first note that for each pole dk

of H(z), there is a pole of C(z) at dk and Mg)“. Similarly, for each zero ck of H(z), there
is a zero of C(2) at ck and (c;)‘1. Consequently, the poles and zeros of C(z) occur in con-
jugate reciprocal pairs, with one element of each pair associated with H(z) and one ele—

ment of each pair associated with H*(l / 2*). Furthermore, if one element of each pair is

inside the unit circle, then the other (i.e., the conjugate reciprocal) will be outside the unit

circle. The only other alternative is for both to be on the unit circle in the same location.

If H(z) is assumed to correspond to a causal, stable system, then all its poles must

lie inside the unit circle. With this constraint, the poles of H( z) can be identified from the

poles of C(2). However, with this constraint alone, the zeros of H(z) cannot be uniquely

identified from the zeros of C( z). This can be seen from the following example.

Example 5.1 1 Systems with the Same C(z)

Consider two stable systems with system functions

2(1 — z_l)(l + 0.52’1)

H“) = (1 — 0.86i”/4z_1)(1 — Darin/4r!) (5.83)

and

(1 — z-‘)(1 + 2z“)

H2“) 2 (1 — 0.8ein/4z—1)(1 — 0.8e—In/4rl) (5.84)

The pole—zero plots for these systems are shown in Figures 5.19(a) and 5.19(b),

respectively.

Now,

C1 (z) 2 H1 (z)H1*(l/z*)

_ 2(1 — z-1)(1+ 0.5z-1)2(1 — z)(1+ 05.2) (5-85)
— (1 — 0.861.77/4Z_1)(1 — 0.8e—ffl/4z*1)(1 — 0.8e‘JI”/4z)(1 — 0,8effl/4z)

  

and

C2(z) = H2(Z)H2*(1/Z*)

_ (1 — z-1)(1+ 2z-1)(1 — z)(1+ 22:) (5-86)
— (l — 0.861.77/4z—1)(1 — 0.8e—f’7/4z‘1)(1 — 0.86‘in/4z)(1 —— 0.86jfl/4Z).

 



272 Transform Analysis of Linear Time-Invariant Systems Chap. 5
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‘g’m z-plane

Unit circle

 
(C)

Figure 5.19 Pole—zero plots fortwo system functions and theircommon magnitude-

squared function. (a) H1(z). (b) H2(z). (c) 01(2), 02(2).

Using the fact that

4(1+o.5z-1)(1+0.5z) =(1+2z-1)(1+2z), (5.87)

we see that C1(z) = C2(z). The pole—zero plot for C1 (z) and C2(z) is shown in Fig-

ure 5.19(c).

The system functions H1 (z) and H2(z) in Example’5.11 differ only in the location of

the zeros. In the example, the factor 2(1 + 0.5z‘1) = (z‘1 + 2) contributes the same to
the square of the magnitude of the frequency response as the factor (1 + 2z‘1), and
consequently, | H1(ej“’)| and | H2(e1"")| are equal. However, the phase functions for these

two frequency responses are different.
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Example 5. I 2

Suppose we are given the pole—zero plot for C(2) in Figure 5.20 and want to determine

the poles and zeros to associate with H(z). The conjugate reciprocal pairs of poles and

zeros for which one element of each is associated with H(z) and one with H*(1/2*)
are as follows:

Pole pair 1 2 (P1, P4)

Pole pair 2 : (P2, P5)

Pole pair 3 : (P3, P6)

Zero pair 1 : (21,24)

Zero pair 2 : (22, 25)

Zero pair 3 : (23, Z6)

Knowing that H(z) corresponds to a stable, causal system, we must choose the poles

from each pair that are inside the unit circle, i.e., P1, P2, and P3. No such constraint is

imposed on the zeros. However, if we assume that the coefficients ak and bk are real

in Eqs. (5.16) and (5.18), the zeros (and poles) either are real or occur in complex

conjugate pairs. Consequently, the zeros to associate with H(z) are

23 or 26
and

(21,22) or (24, 25).

  
 

9m
0 Z4

z-plane

Unit circle

Figure 5.20 Pole—zero plot for the magnitude-squared function in Example 5.12.

Therefore, there are a total of four different stable, causal systems with three poles

and three zeros for which the pole—zero plot of C(z) is that shown in Figure 5.20 and,

equivalently, for which the frequency-response magnitude is the same. If we had not
assumed that the coefficients ak and bk were real, the number of choices would be
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greater. Furthermore, if the number of poles and zeros of H(z) were not restricted,

the number of choices for H(z) would be unlimited. To see this, assume that H(z) has
a factor of the form

z‘l—a
*

1 — (12—1 '

i.e.,
1 a:

th) = mail——_1 . (5.88)(12

Factors of this form are referred to as all-pass factors, since they have unity magnitude

on the unit circle; they are discussed in more detail in Section 5.5. It is easily verified
that

C(Z) = H(Z)H*(1/Z*) = H1(Z)Hf(1/Z*); (5.89)

i.e., all-pass factors cancel in C(z) and therefore would not be identifiable from the

pole—zero plot of C(z). Consequently, if the number of poles and zeros of H(z) is

unspecified, then, given C(z), any choice for H(z) can be cascaded with an arbitrary

number of all-pass factors with poles inside the unit circle (i.e., lal < 1).

5.5 ALL-PASS SYSTEMS

As indicated in the discussion of Example 5.12, a stable system function of the form

Z—l _ 0+
Hap(Z) =

1 — az—1

has a frequency-response magnitude that is independent of a). This can be seen by
writing Hap(e“”) in the form

(5.91)

In Eq. (5.91), the term e‘j‘” has unity magnitude, and the remaining numerator and

denominator factors are complex conjugates of each other and therefore have the same

magnitude. Consequently, |Hap(ei“’)| = 1. A system for which the frequency-response
magnitude is a constant is called an all-pass system, since the system passes all of the

frequency components of its input with constant gain or attenuation. The most general

form for the system function of an all-pass system with a real-valued impulse response

is a product of factors like Eq. (5.90), with complex poles being paired with their con-

jugates; i.e.,

H (z) — Afi ——z-1_ d" ———-(Z_l_ emu—1 ‘ 6") (5 92)
ap — k=11_ dkz—l k=1 (1‘ ekz_1)(1— glitz—1), .

where A is a positive constant and the dk’s are the real poles, and the ek’s the complex

poles, of Hap(z). For causal and stable all-pass systems, [de < 1 and lekl < 1. In terms
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Figure 5.21 Typical pole~zero plot tor

an all-pass system.

of our general notation for system functions, all-pass systems have M = N = 2M6 + M,

poles and zeros. Figure 5.21 shows a typical pole—zero plot for an all-pass system. In

this case M, = 2 and M6 = 1. Note that each pole of Hap(z) is paired with a conjugate
reciprocal zero.

The frequency response for a general all-pass system can be expressed in terms of

the frequency responses of first-order all-pass systems like that specified in Eq. (5.90).

For a causal all-pass system, each of these terms consists of a single pole inside the

unit circle and a zero at the conjugate reciprocal location. The magnitude response for

such a term is, as we have shown, unity. Thus, the log magnitude in dB is zero. With a

expressed in polar form as a = rely, the phase function for Eq. (5.90) is

6—1” — re‘j" r sin(a) — 6)
<1 — —a) — 2 arctan .

Likewise, the phase of a second-order all-pass system with poles at z = new and z =
rte—1'9 is

{I [ (6—1“ — re‘j9)(e_f‘” — reje) r sin(a) — 6)
— ’2‘” - 2 arctanl ]1 — r cos(w — 6)

(5.94)
‘ 6

-2 arctan[ rsm(w+ )1—r cos(w+ 6)

Example 5. ‘l 3 First- and Second-Order All-Pass Systems

Figure 5.22 shows plots of the log magnitude, phase, and group delay for two first-

order all-pass systems, one with a real pole at z = 0.9 (6 = 0, r = 0.9) and another

with a pole at z = —0.9 (6 = n, r = 0.9). For both systems, the radii of the poles are

r = 0.9. Likewise, Figure 5.23 shows the same functions for a second-order all-pass

system with poles at z = 0.96jH/4 and z = 0.9e7j"/4.
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Figure 5.22 Frequency response for all-pass filters with real poles at z = 0.9

(solid line) and z = —0.9 (dashed line). (a) Log magnitude. (b) Phase (principal
value). (c) Group delay.
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Figure 5.23 Frequency response of second-order all-pass system with poles at
z = 0.98iW‘. (a) Log magnitude. (b) Phase (principal value). (c) Group delay.
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Example 5.13 illustrates a general property of causal all-pass systems. In Fig—

ure 5.22(b). we see that the phase is nonpositive for 0 < a) < 71'. Similarly, in Fig—

ure 5.23(b), if the discontinuity of 21': resulting from the computation of the principal

value is removed, the resulting continuous—phase curve is nonpositive for 0 < a) < 11'.

Since the more general all-pass system given by Eq. (5.92) is just a product of such first-

and second-order factors, we can conclude that the (continuous) phase, arg[Hap(ej“’)],
of a causal all-pass system is always nonpositive for O < a) < 11'. This may not appear to

be true if the principal value is plotted, as is illustrated in Figure 5.24, which shows the

log magnitude, phase, and group delay for an all-pass system with poles and zeros as in

Figure 5.21. However, we can establish this result by first considering the group delay.

The group delay of the simple one-pole all-pass system of Eq. (5.90) is the negative

derivative of the phase given by Eq. (5.93). With a small amount of algebra, it can be
shown that

1'0

grd [
e‘jw — re‘ 1— r2 1— r2
—,_A =_= 5.951 _ rage-1w] 1+ r2 — 2r cos(w — 6) ll — re'lge_""|2 ( )

Since r < 1 for a stable and causal all-pass system, from Eq. (5.95) the group delay

contributed by a single causal all-pass factor is always positive. Since the group delay of

a higher order all-pass system will be a sum of positive terms, as in Eq. (5.95), it is true

in general that the group delay of a causal rational all-pass system is always positive.

This is confirmed by Figures 5.22(c), 5.23(c), and 5.24(c), which show the group delay

for first-order, second-order, and third—order all-pass systems, respectively.

The positivity of the group delay of a causal all-pass system is the basis for a simple

proof of the negativity of the phase of such a system. First, note that

  

argtH.p(efw)1 = — / grleap(e"‘°)ld¢ + argmaaem (5.96)0

for 0 g a) 5 71'. From Eq. (5.92), it follows that

M M.
- 'I—dk LII—em

a 10 = A = A. 5. 7Hp(e) g1_dkgll_eklz (9)
Therefore, arg[Hap(ej0)] = 0, and since

grleap(ej‘“)l : 0, (598)

it follows from Eq. (5.96) that

arg[Hap(ej“’)] 5 0 forO 5 a) < 7:. (5.99)

The positivity of the group delay and the nonpositivity of the continuous phase are

important properties of causal all-pass systems.

All-pass systems have many uses. They can be used as compensators for phase (or

group delay) distortion, as we will see in Chapter 7, and they are useful in the theory

of minimum-phase systems, as we will see in Section 5.6. They are also useful in trans-

forming frequency-Selective lowpass filters into other frequency-selective forms and in

obtaining variable-cutoff frequency—selective filters. These applications are discussed

in Chapter 7 and applied in the problems in that chapter.
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5.6 MINIMUM-PHASE SYSTEMS

In Section 5.4, we showed that the frequency-response magnitude for an LTI system

with rational system function does not uniquely characterize the system. If the system is

stable and causal, the poles must be inside the unit circle, but stability and causality place

no such restriction on the zeros. For certain classes of problems, it is useful to impose

the additional restriction that the inverse system (one with system function 1/H(z))

also be stable and causal. As discussed in Section 5.2.2, this then restricts the zeros, as

well as the poles, to be inside the unit circle, since the poles of 1 /H(z) are the zeros of

H(z). Such systems are commonly referred to as minimum-phase systems. The name

minimum-phase comes from a property of the phase response, which is not obvious

from the preceding definition. This and other fundamental properties that we discuss

are unique to this class of systems, and therefore, any one of them could be taken as

the definition of the class. These properties are developed in Section 5.6.3.

If we are given a magnitude-squared function in the form of Eq. (5.82) and we

know that the system is a minimum—phase system, then H(z) is uniquely determined

and will consist of all the poles and zeros of C(z) = H(z) H*(1/z*) that lie inside the

unit circle.1 This approach is often followed in filter design when only the magnitude

response is determined by the design method used. (See Chapter 7.)

5.6.1 Minimum-Phase and All-Pass Decomposition

In Section 5.4 we showed that, from the square of the magnitude of the frequency re—

sponse alone, we could not uniquely determine the system function H(z), since any

choice that had the given frequency-response magnitude could be cascaded with arbi-

trary all—pass factors without affecting the magnitude. A related observation is that any

rational system function2 can be expressed as

H(Z) Z Hmin(Z)Hap(Z)v (5.100)

where Hmin(z) is a minimum-phase system and Hap(z) is an all-pass system.

To show this, suppose that H(z) has one zero outside the unit circle at z = 1/c*,

where |c| < 1, and the remaining poles and zeros are inside the unit circle. Then H(z)

can be expressed as

H(z) = H1(z)(z‘1 — c’“), (5.101)

where, by definition, H1(z) is minimum phase. An equivalent expression for H(z) is

1 z—l _ can:
H(z) = H1(z)(1 — cz‘ )—_. (5.102)

1 — cz 1

Since |c| < 1, the factor H1(z)(1 — cz_1) also is minimum phase, and it differs from H(z)

only in that the zero of H(z) that was outside the unit circle at z = 1 /c* is reflected inside

1We have assumed that C(z) has no poles or zeros on the unit circle. Strictly speaking, systems with
poles on the unit circle are unstable and are generally to be avoided in practice. Zeros on the unit circle,

however, often occur in practical filter designs. By our definition, such systems are nonminimum phase, but

many of the properties of minimum-phase systems hold even in this case.

2Somewhat for convenience, we will restrict the discussion to stable, causal systems, although the
observation applies more generally.
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the unit circle to the conjugate reciprocal location z = c. The term (z‘1 — c*) /(1 — cz"1)

is all-pass. This example can be generalized in a straightforward way to include more

zeros outside the unit circle, thereby showing that, in general, any system function can

be expressed as

H(z) = Hmin(z)Hap(z), (5.103)

where Hmin(z) contains the poles and zeros of H(z) that lie inside the unit circle, plus

zeros that are the conjugate reciprocals of the zeros of H(z) that lie outside the unit

circle. Hap(z) is comprised of all the zeros of H(z) that lie outside the unit circle, together
with poles to cancel the reflected conjugate reciprocal zeros in Hmin(z).

Using Eq. (5.103), we can form a nonminimum-phase system from a minimum-

phase system by reflecting one or more zeros lying inside the unit circle to their conjugate

reciprocal locations outside the unit circle, or, conversely, we can form a minimum-

phase system from a nonminimum-phase system by reflecting all the zeros lying outside

the unit circle to their conjugate reciprocal locations inside. In either case, both the

minimum-phase and the nonminimum-phase systems will have the same frequency-

response magnitude.

Example 5.1 4 Minimum-PhaselAll-Pass Decomposition

To illustrate the decomposition of a stable, causal system into the cascade of a minimum-

phase and an all-pass system, consider the two stable, causal systems specified by the

system functions

1 + 32—1

1 + 52—

and

(1 + ge+1”/4z 1) (1 + %6 MHZ—1)
H2(Z) — 1 _1

i — 32 )

The first system function, H1(z), has a pole inside the unit circle at z = —%, but
a zero outside at z = —3. We will need to choose the appropriate all-pass system to

reflect this zero inside the unit circle. From Eq. (5.101), we have c = —%. Therefore,
from Eqs. (5.102) and (5.103), the all-pass component will be

—1 1
z + —

H Z = *3:
ap( ) 1 + %Z_,

and the minimum—phase component will be

1 + 12'1

Hmin(z) =
1 + EZ—

i.e.,

1+lz'1 24+l

H1(Z)= 3——i’_1 ——131 .
1+‘2'Z 1-1-32
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The second system function, H2(z), has two complex zeros outside the unit circle

and a real pole inside. We can express H2(z) in the form of Eq. (5.101) by factoring

gel’T/‘t and grin/4 out of the numerator terms to get

[9 (1+ ge—jrr/4z—l) (1+ gejrr/4z—l)]

[ (z-1 + (z-1 + gee/4)X ——————-—— .

(1+ ge—jn/4z—l) (1+ gen/4T1)

The first term in square brackets is a minimum-phase system, while the second

term is an all-pass system.

5.6.2 Frequency-Response Compensation

In many signal-processing contexts, a signal has been distorted by an LTI system with an

undesirable frequency response. It may then be of interest to process the distorted signal

with a compensating system, as indicated in Figure 5.25. This situation may arise, for

example, in transmitting signals over a communication channel. If perfect compensation

is achieved, then sc[n] = s[n], i.e., Hc(z) is the inverse of Hd(z). However, if we assume

that the distorting system is stable and causal and require the compensating system to

be stable and causal, then perfect compensation is possible only if Hd(z) is a minimum—

phase system, so that it has a stable, causal inverse.

Based on the previous discussions, assuming that Hd(z) is known or approximated

as a rational system function, we can form a minimum—phase system Hd min(z) by reflect-

ing all the zeros of Hd(z) that are outside the unit circle to their conjugate reciprocal

locations inside the unit circle. Hd(z) and Hdmin(z) have the same frequency-response

magnitude and are related through an all-pass system Hap(z), i.e.,

Hd(z) = Hdmin(z)Hap(Z)-

 
 
 

Distorting Compensating
system system

HA2) Hc(z) . . . .
Figure 5.25 Illustration of distortion

l_ ___________________ __i compensation by linearfiltering.

  : Sclnl
|
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Choosing the compensating filter to be

1

HC z = ———, 5.105( ) Hdmin(Z) ( )

we find that the overall system function relating s[n] and sc[n] is

G(Z) : Hd(Z)HC(Z) = Hap(Z);

i.e., G(z) corresponds to an all-pass system. Consequently, the frequency-response mag-

nitude is exactly compensated for, while the phase response is modified to <IHap(ej“’).
The following example illustrates compensation of the frequency response mag—

nitude when the system to be compensated for is a nonminimum—phase FIR system.

Example 5.1 5 Compensation of an FIR System

Consider the distorting system function to be

Hd(Z) = (1 - 0-9e’0‘6”z‘1)(1 — 0.9e—1'0-6" 3—1)

(5.107)

X (1 —1-25e’°-8"z—1)(1 — 1.25e-1'0-8nz—1).

The pole—zero plot is shown in Figure 5.26. Since Hd(z) has only zeros (all poles are

at z = 0), it follows that the system has a finite-duration impulse response. Therefore

the system is stable; and since Hd(z) is a polynomial with only negative powers of z,

the system is causal. However, since two of the zeros are outside the unit circle, the

system is nonminimum phase. Figure 5.27 shows the log magnitude, phase, and group

delay for Hd(ej“’).

 
Figure 5.26 Pole—zero plot of FIR system in Example 5.15.
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Figure 5.29 Frequency response of all-pass system of Example 5.15. (The sum of

corresponding curves in Figures 5.28 and 5.29 equals the corresponding curve in

Figure 5.27 with the sum ofthe phase curves taken modulo 21:.) (a) Log magnitude.

(b) Phase (principal value). (c) Group delay.
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The corresponding minimum-phase system is obtained by reflecting the zeros

that occur at z = 1.253103” to their conjugate reciprocal locations inside the unit

circle. If we express Hd(z) as

Hd(z) = (1 — 0.9ej0'6flz’1)(1 — 0.9(5710‘61’271)(1.25)2

v r (5.108)
x (z-1 — 0.8e-IW)(2-l — 0.8e10-87r),

then

Hm,,,(z) = (125)2(1 — 0.9121116” z-1)(1 — 0.9e"j‘]'6” z")

_ I (5.109)
x (1 — 0.8e-I"-8”z-1)(1 — 0.861087%” ).

and the all-pass system that relates Hmin(z) and H(I(z) is

—l _ —j().8zr —l [0.811
Hap(z) = (z e )(z e ) (5.110)

(1 — 0.8efm‘rz-l )(1 — 0.8e—1'“'8”Z‘1)'

The log magnitude, phase, and group delay of Hmin(ef‘”) are shown in Figure 5.28.

Figures 527(3) and 5.28(a) are, of course, identical. The log magnitude, phase, and

group delay for Hap(e1"“) are plotted in Figure 5.29.
Note that the inverse system for H(1(z) would have poles at z = 1.25eii”-8” and

at z = 0.9.9506”, and thus, the causal inverse would be unstable. The minimum-phase

inverse would be the reciprocal of Hmin(z), as given by Eq. (5.109), and if this inverse

were used in the cascade system of Figure 5.25, the overall effective system function

would be Hap(z), as given in Eq. (5110).

5.6.3 Properties of Minimum-Phase Systems

We have been using the term “minimum phase” to refer to systems that are causal
and stable and that have a causal and stable inverse. This choice of name is motivated

by a property of the phase function that, while not obvious, follows from our chosen

definition. In this section, we develop a number of interesting and important properties

of minimum—phase systems relative to all other systems that have the same frequency-

response magnitude.

The Minimum Phase-Lag Property

The use of the terminology “minimum phase” as a descriptive name for a system having

all its poles and zeros inside the unit circle is suggested by Example 5.15. Recall that, as a

consequence of Eq. (5.100), the continuous phase, i.e., arg[H(ej“’)], of any nonminimum—

phase system can be expressed as

arg[H(ej‘“)] = argthmejwn + argtHapteIwu. (5.111)

Therefore, the continuous phase that would correspond to the principal-value phase

of Figure 5.27(b) is the sum of the continuous phase associated with the minimum-

phase function of Figure 5.28(b) and the continuous phase of the all-pass system asso-

ciated with the principal-value phase shown in Figure 5.29(b). As was shown in Sec—

tion 5.5, and as indicated by the principal-value phase curves of Figures 5.22(b), 5.23(b),

5.24(b), and 5.29(b), the continuous-phase curve of an all—pass system is negative for
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0 s a) 5 7r. Thus, the reflection of zeros of Hmjn(Z) from inside the unit circle to conju—

gate reciprocal locations outside always decreases the (continuous) phase or increases

the negative of the phase, which is called the phase-lag function. Hence, the causal,

stable system that has [Hmin(ej“’)| as its magnitude response and also has all its zeros

(and, of course, poles) inside the unit circle has the minimum phase-lag function (for

0 5 a) < 71') of all the systems having that same magnitude response. Therefore, a more

precise terminology is minimum phase-lag system, but minimum phase is historically

the established terminology.

To make the interpretation of minimum phase-lag systems more precise, it is

necessary to impose the additional constraint that H(ej‘“) be positive at a) = 0, Le,

H(ef0) = :0: h[n] > 0. (5.112)
n=—oo

Note that H(ej°) will be real if we restrict h[n] to be real. The condition of Eq. (5.112) is
necessary because a system with impulse response —h[n] has the same poles and zeros

for its system function as a system with impulse response h[n]. However, multiplying by

—1 would alter the phase by JT radians. Thus, to remove this ambiguity, we must impose

the condition of Eq. (5.112) to ensure that a system with all its poles and zeros inside the

unit circle also has the minimum phase-lag property. However, this constraint is often

of little significance, and our definition at the beginning of Section 5.6, which does not

include it, is the generally accepted definition of the class of minimum-phase systems.

The Minimum Group-Delay Property

Example 5.15 illustrates another property of systems whose poles and zeros are all

inside the unit circle’. First note that the group delay for the systems that have the same

magnitude response is

grd[H(e’“’)] = grderm(eiw)1+ grdrHap<eioi (5.113)

The group delay for the minimum-phase system shown in Figure 5.28(c) is always less

than the group delay for the nonminimum-phase system shown in Figure 5.27(c). This is

because, as Figure 5.29(c) shows, the all-pass system that converts the minimum-phase

system into the nonminimum-phase system has a positive group delay. In Section 5.5, we

showed this to be a general property of all-pass systems; they always have positive group

delay for all a). Thus, if we again consider all the systems that have a given magnitude

response [Hmin(ei‘”) l, the one that has all its poles and zeros inside the unit circle has the

minimum group delay. An equally appropriate name for such systems would therefore

be minimum group-delay systems, but this terminology is not generally used.

The Minimum Energy-Delay Property

In Example 5.15, there are a total of four causal FIR systems with real impulse responses

that have the same frequency-response magnitude as the system in Eq. (5.107). The

associated pole—zero plots are shown in Figure 5.30, where Figure 5.30(d) corresponds

to Eq. (5.107) and Figure 5.30(a) to the minimum-phase system of Eq. (5.109). The

impulse responses for these four cases are plotted in Figure 5.31. If we compare the
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Z-plane

 
 

 

Figure 5.30 Four systems, all having

the same frequency-response

magnitude. Zeros are at ail combinations
of 0.93i/0-5" and 0.83ii0-3” and their

reciprocals.

four sequences in this figure, we observe that the minimum-phase sequence appears to

have larger samples at its left-hand end than do all the other sequences. Indeed, it is

true for this example and, in general, that

mm s Ihmm[0]| (5.114)

for any causal, stable sequence h[n] for which

[Helen = IHmin(ej”’)i- (5.115)

A proof of this property is suggested in Problem 5.65.

All the impulse responses whose frequency-response magnitude is equal to
|Hmin(ef‘”)| have the same total energy as hmin[n], since, by Parseval’s theorem,

°° H ' . 1 7r .
Zihiniiz = i / theWnZdw= — / iHminwwnzdw

_0 2n _,, 2:1 _,,
"‘ (5.116)

= Z lhminlnnz-
11:0
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halni
3.39

 
(d) Figure 5.31 Sequences corresponding

to the pole-zero plots of Figure 5.30.

If we define the partial energy of the impulse response as
P1

E [n] = Z Ih[m]i2, (5.117)
m=0

then it can be shown that (see Problem 5.66)

2 MM2 5 Z lhmin[m]|2 (5.118)
m:0 m=0
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Figure 5.32 Partial energies for the four sequences of Figure 5.31. (Note that

Ea[n] is for the minimum-phase sequence ha[n] and Eb[n] is for the maximum-

phase sequence hb[n].)

for all impulse responses h[n] belonging to the family of systems that have magni-

tude response given by Eq. (5.115). According to Eq. (5.118), the partial energy of

the minimum-phase system is most concentrated around n = 0; i.e., the energy of the

minimum—phase system is delayed the least of all systems having the same magnitude

response function. For this reason, minimum-phase (lag) systems are also called min-

imum energy-delay systems, or simply, minimum-delay systems. This delay property is

illustrated by Figure 5.32, which shows plots of the partial energy for the four sequences

in Figure 5.31. We note for this example, and it is true in general, that the minimum

energy delay occurs for the system that has all its zeros inside the unit circle (i.e., the

minimum-phase system) and the maximum energy delay occurs for the system that has

all its zeros outside the unit circle. Maximum energy-delay systems are also often called

maximum-phase systems.

5.7 LINEAR SYSTEMS WITH GENERALIZED

LINEAR PHASE

In designing filters and other signal—processing systems that pass some portion of the

frequency band undistorted, it is desirable to have approximately constant frequency-

response magnitude and zero phase in that band. For causal systems, zero phase is

not attainable, and consequently, some phase distortion must be allowed. As we saw

in Section 5.1.2, the effect of linear phase with integer slope is a simple time shift. A

nonlinear phase, on the other hand, can have a major effect on the shape of a signal,

even when the frequency-response magnitude is constant. Thus, in many situations it is

particularly desirable to design systems to have exactly or approximately linear phase.

In this section, we consider a formalization and generalization of the notions of linear
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phase and ideal time delay by considering the class of systems that have constant group

delay. We begin by reconsidering the concept of delay in a discrete-time system.

5.1.1 Systems with Linear Phase

Consider an LTI system whose frequency response over one period is

H1d(ej‘“) = 6—1.“, |w| < 7r, (5.119)

where a is a real number, not necessarily an integer. Such a system is an “ideal delay”

system, where a is the delay introduced by the system. Note that this system has constant

magnitude response, linear phase, and constant group delay; i.e.,

|H,d(eiw)| = 1, (5.120a)

<IHid(ej‘”) = —a)a, (5.12013)

grd[H,d(efw)] = at. (5.1200)

The inverse Fourier transform of Hid(ej‘*’) is the impulse response

hid[n] = W, —00 < n < 00. (5.121)
The output of this system for an input x[n] is

00

yin] = x[n] * Sly—(“L”) = Z glam—’53). (5.122)
7r(n—a)— k=_oo 71(n—k—a)

If a = nd, where ndjs an integer, then, as mentioned in Section 5.1.2,

hid[n] = 6[n — nd] (5.123)

and

y[n] = x[n] * 6[n — nd] = x[n — nd]. (5.124)

That is, if a = nd is an integer, the system with linear phase and unity gain in Eq. (5.119)

simply shifts the input sequence by nd samples. If a is not an integer, the most straight-

forward interpretation is the one developed in Example 4.9 in Chapter 4. Specifi-

cally, a representation of the system of Eq. (5.119) is that shown in Figure 5.33, with

mm = 6(t — (IT) and Hc(jS2) = e‘jnaT, so that

H(ej“’) = trim“, |w| < If. (5.125)

In this representation, the choice of T is irrelevant and could simply be normalized

to unity. It is important to stress again that the representation is valid whether or not

x[n] was originally obtained by sampling a continuous-time signal. According to the

representation in Figure 5.33, y[n] is the sequence of samples of the time-shifted, band—

limited interpolation of the input sequence x[n]; i.e., y[n] = xC(nT — a T). The system

of Eq. (5 .119) is said to have a time shift of or samples, even if a is not an integer. If the

group delay a is positive, the time shift is a time delay. If a is negative, the time shift is
a time advance.
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Figure 5.33 Interpretation of 

noninteger delay in discrete-time

systems.

Figure 5.34 Representation of a

linear-phase LTI system as a cascade of

a magnitude filter and a time shift.

 
This discussion also provides a useful interpretation of linear phase when it is as—

sociated with a nonconstant magnitude response. For example, consider a more general

frequency response with linear phase, i.e.,

H(ef“’) = |H(ef“’)|e‘j“"’, lwl < 7r. (5.126)

Equation (5.126) suggests the interpretation of Figure 5.34. The signal x[n] is filtered

by the zero—phase frequency response |H(ej“’)l, and the filtered output is then “time

shifted” by the (integer or noninteger) amount or. Suppose, for example, that H(ej“’) is

the linear-phase ideal lowpass filter

‘w _ e—jwaa < (0C1H1p(el )— {0! 606 < M S m (5.127)
The corresponding impulse response is

mph] =W (5128)
7r(n — a)

Note that Eq. (5.121) is obtained if (06 = 7r.

Example 5.16 Ideal Lowpass with Linear Phase

The impulse response of the ideal lowpass filter illustrates some interesting properties

of linear-phase systems. Figure 5.35(a) shows h1p[n] for wc = 0.47r and a 2 nd 2 5.

Note that when a is an integer, the impulse response is symmetric about n = nd; i.e.,

sin wc (2nd — n — nd)

hippnd — n] = Jr(2nd — n — nd)

2 #5132313)” (5.129)
= h1p[n].

In this case we could define a zero-phase system

Hide”) = Hrp(e’"’)e"“’"" = |H1p(€j"’)l. (5130)

where the impulse response is shifted to the left by nd samples, yielding an even

sequence

sin wcn
hip in] =
 

M = h.p[—n]. (5.131)
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Figure 5.35(b) shows hlp[n] for wt = 0.471 and a = 4.5. This is typical of the case when
the linear phase corresponds to an integer plus one-half. As in the case of the integer

delay, it is easily shown that ifa is an integer plus one-half (or 2:1 is an integer), then

hlp[2a — n] = h1p[n]. (5.132)

In this case, the point of symmetry is a, which is not an integer. Therefore, since the

symmetry is not about a point of the sequence, it is not possible to shift the sequence to

obtain an even sequence that has zero phase. This is similar to the case of Example 4.10
with M odd.

Figure 5.35(c) represents a third case, in which there is no symmetry at all. In
this case, a), = 0.47: and or = 4.3.

In general a linear-phase system has frequency response

H(ej“’) = iH(ef‘")[e—W. (5.133)

As illustrated in Example 5.16, if 20: is an integer (i.e., if a is an integer or an integer

plus one-half), the corresponding impulse response has even symmetry about or, i.e.,

h[2a — n] = h[n]. (5.134)

If 20: is not an integer, then the impulse response will not have symmetry. This is illus-

trated in Figure 5.35(c), which shows an impulse response that is not symmetric, but

that has linear phase, or equivalently, constant group delay.

5.7.2 Generalized Linear Phase

In the discussion in Section 5.7.1, we considered a class of systems whose frequency

response is of the form of Eq. (5.126), i.e., a real-valued nonnegative function of a) mu]-

tiplied by a linear phase term e‘ju’“. For a frequency response of this form, the phase of
H(e1“") is entirely associated with the linear phase factor e‘jw“, i.e., <tH(ej“’) = —a)a,

and consequently, systems in this class are referred to as linear—phase systems. In the

moving average of Example 4.10, the frequency response in Eq. (4.67) is a real-valued

function of a) multiplied by a linear-phase term, but the system is not, strictly speaking,

a linear-phase system, since, at frequencies for which the factor

1 sin[w(M +1)/2]

M+1 sin(w/2)

is negative, this term contributes an additional phase of It radians to the total phase.

Many of the advantages of linear-phase systems apply to systems with frequency

response having the form of Eq. (4.67) as well, and consequently, it is useful to generalize

somewhat the definition and concept of linear phase. Specifically, a system is referred to

as a generalized linear-phase system if its frequency response can be expressed in the form

H(ejw) : 14(ejw)e—l'01m+jl37

where a and [3 are constants and A(e/“’) is a real (possibly bipolar) function of a). For

the linear-phase system of Eq. (5.127) and the moving-average filter of Example 4.10,

,8 = 0. We see, however, that the bandlimited differentiator of Example 4.5 has the

form of Eq. (5.135) with a = 0, fl = 21/2, and A(el"’) = w/ T.
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A system whose frequency response has the form of Eq. (5.135) is called a gen-

eralized linear-phase system because the phase of such a system consists of constant

terms added to the linear function —wa; i.e. —a)a + 13 is the equation of a straight line.

However, if we ignore any discontinuities that result from the addition of constant phase

over all or part of the band |a)| < 11', then such a system can be characterized by constant

group delay. That is, the class of systems such that

run) = grdrHreiwn = —a‘irarng(eiw)n = a (5.136)a)

have linear phase of the more general form

arg[H(efm)] = 5 — war, 0 < a) < n, (5.137)

where ,6 and a are both real constants.

Recall that we showed in Section 5.7.1 that the impulse responses of linear-phase

systems may have symmetry about a if 20: is an integer. To see the implication of this for

generalized linear-phase systems, it is useful to derive an equation that must be satisfied

by h[n], a, and 13 for constant group-delay systems. This equation is derived by noting

that, for such systems, the frequency response can be expressed as

H(ejw) = A(ejm)ei(fi—aw)
, . , (5.138)

= A(e"") c0503 ~ (00:) + jA(e"“) Sln(,8 — wet),

or equivalently, as 00

H(ej“’) = Z h[n]e""""

‘0; 00 (5.139)

= Z h[n]cosam— j Z h[n]sinam,

where we have assumed that h[n] is real. The tangent of the phase angle of H(ej°’) can

be expressed as

—— f: h[n] sin am
sin(,8 — war) __ "roe

005w — ma) :0: h[n] cos am
n=—oo

Cross multiplying and combining terms with a trigonometric identity leads to the

equation

tan(fl — amt) =

00

Z h[n] sin[w(n — a) + 5] = 0 for all a). (5.140)
nz—oo

This equation is a necessary condition on h[n], a, and ,6 for the system to have constant

group delay. It is not a sufficient condition, however, and, due to its implicit nature, it

does not tell us how to find a linear-phase system. For example, it can be shown that

one set of conditions that satisfies Eq. (5.140) is

13 = 0 or JT, (5.141a)

2a = M = an integer, (5.141b)

h[20r — n] = h[n]. (5.141c)
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With fl = 0 or 7r, Eq. (5.140) becomes

i0: h[n] sin[w(n — 0)] = 0, (5.142)

from which it can be shown that if 20: is an integer, terms in Eq. (5.142) can be paired so

that each pair of terms is identically zero for all a). These conditions in turn imply that

the corresponding frequency response has the form of Eq. (5.135) with )6 = 0 or at and

A(e1‘“) an even (and, of course, real) function of (1).

Alternatively, if )‘3 = rr/2 or 3Ir/2, then Eq. (5140) becomes

2 h[n] cos[w(n — a)] = 0, (5.143)

and it can be shown that

[5‘ = 31/2 or 37r/2, (5.144a)

2a = M 2 an integer, (5.144b)

and

h[2a -— n] = —h[n] (5.144c)

satisfy Eq. (5.143) for all w. Equations (5.144) imply that the frequency response has

the form of Eq. (5.135) with )‘3 = rr/2 and A(ef‘“) an odd function of a).

Note that Eqs. (5.141) and (5.144) give two sets of conditions that guarantee gener-

alized linear phase or constant group delay, but as we have already seen in Figure 535(0),

there are other systems that satisfy Eq. (5.135) without these symmetry conditions.

5.7.3 Causal Generalized Linear-Phase Systems

If the system is causal, then Eq. (5.140) becomes

Zap] sin[a)(n 4 a) + ,3] = 0 for all a). (5.145)
=0

Causality and the conditions in Eqs. (5.141) and (5.144) imply that

h[n]=0, n<0 and n>M;

i.e., causal FIR systems have generalized linear phase if they have impulse response

length (M + 1) and satisfy either Eq. (5.141c) or (5.1440). Specifically, it can be shown
that if

h[n] = {hw‘ "1’ 0 5 ” 5 M' (5.146a)0, otherwise,

then

H(ej“’) = Ae(efw)e-in/2, (5.146b)
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where Ae(ej‘”) is a real, even, periodic function of a). Similarly, if

—h[M—n], OSnEM,hm _ { 0» otherwise, (5.147a)
then it follows that

H(ej‘”) = jAo(€jw)€_jwM/2 = A0(ej‘”)e_j‘”M/Z+i”/2, (5.147b)

where A0(ej‘”) is a real, odd, periodic function of a). Note that in both cases the length

of the impulse response is (M + 1) samples.

The conditions in Eqs. (5.146a) and (5.147a) are sufficient to guarantee a causal

system with generalized linear phase. However, they are not necessary conditions.

Clements and Pease (1989) have shown that causal infinite-duration impulse responses

can also have Fourier transforms with generalized linear phase. The corresponding sys-

tem functions, however, are not rational, and thus, the systems cannot be implemented

with difference equations.

Expressions for the frequency response of FIR linear-phase systems are useful in

filter design and in understanding some of the properties of such systems. In deriving

these expressions, it turns out that significantly different expressions result, depending

on the type of symmetry and whether M is an even or odd integer. For this reason, it is

generally useful to define four types of FIR generalized linear-phase systems.

Type I FIR Linear-Phase Systems

A type I system is defined as a system that has a symmetric impulse response

h[n] = h[M— n], 0 5 n 5 M, (5.148)

with M an even integer. The delay M/2 is an integer. The frequency response is

. M .

H(e"") = Z h[n]e"‘““. (5.149)
=0

By applying the symmetry condition, Eq. (5.148), the sum in Eq. (5.149) can be rewritten
in the form

M/2

H(efw) = e—fwM/Z (Zam cos wk), (5.150a)k=0

where

a[0] = h[M/2], (5.150b)

a[k] = 2h[(M/2) — k], k = 1, 2, . . . , M/Z. (5.150c)

Thus, from Eq. (5.1503), we see that H(ei“’) has the form of Eq. (5.146b), and in par-

ticular, fl in Eq. (5.135) is either 0 or 7r.
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Type II FIR Linear-Phase Systems

A type II system has a symmetric impulse response as in Eq. (5.148), with M an odd

integer. H(ej“’) for this case can be expressed as

(M+1)/2

H(ej“’) = e‘jwM/2{ Z b[k] cos [w (k— }, (5.151a)k=1

where

b[k] = 2h[(M +1)/2 — k], k = 1, 2, . . . , (M + 1)/2. (5.151b)

Again, H(ej“’) has the form of Eq. (5.146b) with a time delay of M/2, which in this case

is an integer plus one-half, and [3 in Eq. (5.135) is either 0 or 71'.

Type III FIR Linear-Phase Systems

If the system has an antisymmetric impulse response

h[n] = —h[M — n], 0 S n < M, (5.152)

with M an even integer, then H(ej“’) has the form

M/2

H(ej“’) = je”j“”w2 [24k] sin wk] , (5.153a)k=1

where

c[k] = 2h[(M/2) — k], k = 1, 2, . . . , M/2. (5.153b)

In this case, H(ej“’) has the form of Eq. (5.147b) with a delay of M/2, which is an integer,

and ,6 in Eq. (5.135) is 11/2 or 37r/2.

Type IV FIR Linear-Phase Systems

If the impulse response is antisymmetric as in Eq. (5.152) and M is odd, then

(M+1)/2

H(eiw) = je-fwM/Z Z d[k] sin [0) (k— §)] , (5.154a)
k=1

where

d[k] = 2h[(M + 1)/2 — k], k = 1, 2, . . . , (M +1)/2. (5.154b)

As in the case of type III systems, H(ei“’) has the form of Eq. (5.147b) with delay M/2,

which is an integer plus one-half, and )3 in Eq. (5.135) is 7r/2 or 371/2.
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odd, mm = h[M — n]. (c) Type III, M
even, h[n] = —h[M — n]. (d) Type IV,

(d) M odd, h[n] = —h[M — n].

  

Examples ofFIR Linear-Phase Systems

Figure 5.36 shows an example of each of the four types of FIR linear-phase systems.

The associated frequency responses are given in Examples 5.17—5.20.

Example 5.1 7 Type I Linear-Phase System

If the impulse response is

1, 0 g n 5 4,

hln] — {0, otherwise, (5'155)
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as shown in Figure 5.36(a), the system satisfies the condition of Eq. (5.148). The fre—

quency response is
4

_ _ 1 __ e—ij1w _ —1wn _

H(e )-Ze —1_e—jw
"=0 (5.156)

_ e_jm2 sin(5w/2)
— Sin(w/2) i

The magnitude, phase, and group delay of the system are shown in Figure 5.37. Since

M = 4 is even, the group delay is an integer, i.e., a = 2.

Example 5.18 Type II Linear-Phase System

If the length of the impulse response of the previous example is extended by one sam-

ple, we obtain the impulse response of Figure 5.36(b), which has frequency response

—jw5/2 Sin(3w)
sin(w/2)-

The frequency-response functions for this system are shown in Figure 5.38. Note that

the group delay in this case is constant with a = 5/2.

H(ej‘”) = c (5.157)

Example 5.19 Type III Linear-Phase System

If the impulse response is

Iz[n] = 6[n] — 6[n — 2], (5.158)

as in Figure 5.36(c), then

H(ej“’)=1—e_j2“’

= f [2 sin(w)]e-1'w_ (5.159)
The frequency-response plots for this example are given in Figure 5.39. Note

that the group delay in this case is constant with a = 1.

Example 5.20 Type IV Linear-Phase System

In this case (Figure 5.36(d)), the impulse response is

h[n] = 8[n] — 6[n — 1], (5.160)

for which the frequency response is

H02”) 2 1— 6‘1”
(5.161)

= j[2 sin(w/2)]e_j“’/2.

The frequency response for this system is shown in Figure 5.40. Note that the group

delay is equal to % for all a).
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Locations of Zerosfor FIR Linear-Phase Systems

The preceding examples illustrate the properties of the impulse response and the fre-

quency response for all four types of FIR linear-phase systems. It is also instructive to

consider the locations of the zeros of the system function for FIR linear-phase systems.

The system function is

H(z) = Z h[n]z—". (5.162)

In the symmetric cases (types I and II), we can use Eq. (5.148) to express H(2) as

M 0

H(z) = Z h[M — n]z_" = Z h[k]zkz_M
"=0 k=M (5.163)

= z‘MH(2:‘1 ).

From Eq. (5.163), we conclude that if zo is a zero of H(2:), then

H(zo) = ngH(zo-1) = 0. (5.164)

This implies that if 2:0 = new is a zero of H(z), then 261 = r’le‘je is also a zero of H(z).
When h[n] is real and 20 is a zero of H(z), 23 2 ref” will also be a zero of H(z), and

by the preceding argument, so will (229—1 = r‘leje. Therefore, when h[n] is real, each
complex zero not on the unit circle will be part of a set of four conjugate reciprocal
zeros of the form

(1 — re{-Bz'1)(1 — re‘jgz'1)(1 — r_lejgz_1)(1 — Fle‘jgfl).

If a zero of H(z) is on the unit circle, Le, 20 = ej", then 251 = (2‘19 = 25, so zeros on
the unit circle come in pairs of the form

(1 — ejgz"1)(1 — 6—1951).

If a zero of H(z) is real and not on the unit circle, the reciprocal will also be a zero of

H(z), and H(z) will have factors of the form

(1 :l: rz‘1)(1 :t r_1z“1).

Finally, a zero of H(z) at z = :1:1 can appear by itself, since 3:1 is its own reciprocal and

its own conjugate. Thus, we may also have factors of H(z) of the form

(1 :l: z‘l).

The case of a zero at z = —1 is particularly important. From Eq. (5.163),

H(—1)=(—1)MH(—1).

If M is even, we have a simple identity, but if M is odd, H(—1) = —H(—1), so H(-—1)

must be zero. Thus, for symmetric impulse responses with M odd, the system function
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Em z_plane 9m Z_planecircle circle

 
(c) (d) Figure 5.41 Typical plots of zeros for

linear-phase systems. (a) Type I.

(b) Type ll. (c) Type "I. (d) Type IV.

must have a zero at z = —1. Figures 5 .41(a) and 5.41(b) show typical locations of zeros

for type I (M even) and type II (M odd) systems, respectively.

If the impulse response is antisymmetric (types 111 and IV), then, following the

approach used to obtain Eq. (5.163), we can show that

H(z) = —z—MH(z-1). (5.165)

This equation can be used to show that the zeros of H(z) for the antisymmetric case are

constrained in the same way as the zeros for the symmetric case. In the antisymmetric

case, however, both z = 1 and z = —1 are of special interest. If z = 1, Eq. (5.165)
becomes

H(l) = —H(1). (5.166)

Thus, H(z) must have a zero at z = 1 for both Meven and M odd. If z = —1,Eq. (5.165)

gives

H(—1)=(—1)‘M+1H(—1). (5.167)

In this case, if (M — 1) is odd (i.e., if Mis even), H(—1)= —H(—1), so z = —1 must be

a zero of H(z) if M is even. Figures 5.41(c) and 5.41(d) show typical zero locations for

type III and IV systems, respectively.

These constraints on the zeros are important in designing FIR linear-phase sys—

tems, since they impose limitations on the types of frequency responses that can be

achieved. For example, we note that, in approximating a highpass filter using a symmetric
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impulse response, M should not be odd, since the frequency response is constrained to

be zero at a) = 7T(Z = —1).

5.7.4 Relation of FIR Linear-Phase Systems to

Minimum-Phase Systems

The previous discussion shows that all FIR linear-phase systems with real impulse re-

sponse have zeros either on the unit circle or at conjugate reciprocal locations. Thus,

it is easily shown that the system function of any FIR linear-phase system can be fac—

tored into a minimum—phase term Hmin(z), a maximum—phase term Hmax(z), and a term

Huc(z) containing only zeros on the unit circle; i.e.,

H(z) = Hmin(z)Huc(Z)Hmax(Z)y

where

Hmax(Z) = Hmin(Z_1)Z—Mi

and M,- is the number of zeros of Hmin(z). In Eq. (5.168a), Hun-“(2) has all M,- of its zeros

inside the unit circle, and Huc(z) has all M0 of its zeros on the unit circle. Hmax(z) has

all M, of its zeros outside the unit circle, and, from Eq. (5.168b), its zeros are the recip-

rocals of the zeros of Hmin(z). The order of the system function H(z) is therefore M =

2M; —+— M0.

Example 5.21 Decomposition of a Linear-Phase System

As a simple. example of the use of Eqs. (5.168), consider the minimum-phase system
function of Eq. (5.109), for which the frequency response is plotted in Figure 5.28. The

system obtained by applying Eq. (5.168b) to Hmin(z) in Eq. (5.109) is

Hmax(z) =(0-9)2(1—1-11116j0'6”z_1)(1—1.1111e’f0‘6”z_1)

x (1 —1.25e_j0'8”z_1)(1—1.256j0'8”z_]).

Hmax(z) has the frequency response shown in Figure 5.42. Now, if these two systems

are cascaded, it follows from Eq. (5.168) that the overall system

H(z) = Hmin(Z)Hmax(Z)

has linear phase. The frequency response of the composite system would be obtained

by adding the respective log magnitude, phase, and group—delay functions. Therefore,

2010g101H(eiw)| = 2010g10|Hmin(efw)| + 2010g10|Hmax(efw)|
_ (5.169)
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Similarly,

<1H(efw) = <Hmm(eiw) + <1Hmax(eiw). (5.170)

From Eq. (5.168b), it follows that

<1Hmax(e"“’) = —wM.- — <1Hmin(ei‘”). (5.171)

and

<1H(ej‘”) = —wM,-,

where M,- = 4 is the number of zeros of Hmin(z). In like manner, the group-delay
functions of Hmin(el‘”) and Hmax(e/“’) combine to give

grd[H(el“’)] = M, = 4.

The frequency-response plots for the composite system are given in Figure 5.43. Note

that the curves are sums of the corresponding functions in Figures 5.28 and 5.42.

5.8 SUMMARY

In this chapter, we developed and explored the representation and analysis of LTI

systems using the Fourier and z-transforms. The importance of transform analysis for

LTI systems stems directly from the fact that complex exponentials are eigenfunctions

of such systems and the associated eigenvalues correspond to the system function or

frequency response.

A particularly important class of LTI systems is that characterized by linear

constant-coefficient difference equations. Transform analysis is particularly useful for

analyzing these systems, since the Fourier transform or z-transform converts a differ-

ence equation to an algebraic equation. In particular, the system function is a ratio

of polynomials, the coefficients of which correspond directly to the coefficients in the

difference equation. The roots of these polynomials provide a useful system representa-

tion in terms of the pole—zero plot. Systems characterized by difference equations may

have an impulse response that is infinite in duration (IIR) or finite in duration (FIR).

The frequency response of LTI systems is often characterized in terms of mag-

nitude and phase or group delay, which is the negative of the derivative of the phase.

Linear phase is often a desirable characteristic of a system frequency response, since it

is a relatively mild form of phase distortion, corresponding to a time shift. The impor-

tance of FIR systems lies in part in the fact that such systems can be easily designed

to have exactly linear phase (or generalized linear phase), while, for a given set of fre-

quency response magnitude specifications, IIR systems are more efficient. These and

other trade-offs will be discussed in detail in Chapter 7.

While, in general, for LTI systems, the frequency-response magnitude and phase

are independent, for minimum-phase systems the magnitude uniquely specifies the

phase and the phase uniquely specifies the magnitude to within a scale factor.

Nonminimum-phase systems can be represented as the cascade combination of a

minimum-phase system and an all-pass system. Relations between Fourier transform

magnitude and phase will be discussed in considerably more detail in Chapter 11.
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Basic Problems with Answers

5.1. In the system shown in Figure PS.1-1, H(ej‘“) is an ideal lowpass filter. Determine whether

for some choice of input x[n] and cutoff frequency we, the output can be the pulse

[n]_ 1, 0521510,
y _ 0, otherwise,

shown in Figure P5.1-2.

xlnl yin]

H(ej“’)
1

“T “"v "’c 7" “’ FigureP5.1-1

yin]

fi—O—O—Ol—I-J—I—LO—O—O—
0 10 " Figure P5.1-2

5.2. Consider a stable linear time-invariant system with input x[n] and output y[n]. The input

and output satisfy the difference equation

y[n - 1] - %’y[nl + yin +1] = x[nl-

(3) Plot the poles and zeros in the z-plane.

(b) Find the impulse response h[n].

5.3. Consider a linear time-invariant discrete-time system for which the input x[n] and output

y[n] are related by the second—order difference equation

y[n — 1] + §y[n — 2] = x[n].

From the following list, choose two possible impulse responses for the system:

(a) (—%)n+1u[n + 1]
(b) 3"+1u[n + 1]

(c) 3(—3)"+2u[—n —— 2]

(d) %(—%)"uI—n—2J
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(e) (—%)n+l u[—n — 2]

(f) G)"+1 u[n+1]
(g) (—3)”+‘u[nl

(h) "mulnl

5.4. When the input to a linear time-invariant system is

x[n] = u[n] + (2)"u[—n — 1],

the output is

y[n] = 6 (1§)nu[n] — 6 G)” u[n].

(3) Find the system function H(z) of the system. Plot the poles and zeros of H(z), and

indicate the region of convergence.

(b) Find the impulse response h[n] of the system for all values of n.

(c) Write the difference equation that characterizes the system.

(d) Is the system stable? Is it causal?

5.5. Consider a system described by a linear constant-coefficient difference equation with initial-

rest conditions. The step response of the system is given by

y[n] = (%)nu[n] + (%)nu[n] + u[n].

(a) Determine the difference equation.

(b) Determine the impulse response of the system.

(c) Determine whether or not the system is stable.

5.6. The following information is known about a linear time-invariant system:

(a) The system is causal.

(b) When the input is

x[n] = -13 Q)" u[n] — §(2)nu[—n — 1],

the z-transform of the output is

l—z’2

Y“) =

(c) Find the z—transform of x[n].

(d) What are the possible choices for the region of convergence of Y(z)?

(e) What are the possible choices for the impulse response of the system?

5.7. When the input to a linear time-invariant system is

x[n] = 5u[n],

the output is
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5.8.

5.9.

5.10.

5.11.
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(it) Find the system function H(z) of the system. Plot the poles and zeros of H(z), and

indicate the region of convergence.

(b) Find the impulse response of the system for all values of n.

(c) Write the difference equation that characterizes the system.

A causal linear time-invariant system is described by the difference equation

y[n] = %y[n — 1] +y[n — 2] +x[n — 1].

(a) Find the system function H(z) = Y(z)/ X(z) for this system. Plot the poles and zeros

of H(z), and indicate the region of convergence.

(b) Find the impulse response of the system.

(c) You should have found the system to be unstable. Find a stable (noncausal) impulse

response that satisfies the difference equation.

Consider a linear time-invariant system with input x[n] and output y[n] for which

yin - 1] — §y[n1+ yin + 1] = xlnl

The system may or may not be stable or causal.

By considering the pole—zero pattern associated with the preceding difference equa-

tion, determine three possible choices for the impulse response of the system. Show that

each choice satisfies the difference equation. Indicate which choice corresponds to a stable

system and which choice corresponds to a causal system.

If the system function H(z) of a linear time-invariant system has a pole—zero diagram as

shown in Figure P5.10—1 and the system is causal, can the inverse system Hi(z), where

H(z) H;(z) = 1, be both causal and stable? Clearly justify your answer.

Unit
circle

 
Figure P5.10-1

The system function of a linear time-invariant system has the pole—zero plot shown in Fig-

ure P5.11-1 Specify whether each of the following statements is true, is false, or cannot be

determined from the information given.

(a) The system is stable.

(b) The system is causal.

(c) If the system is causal, then it must be stable.

(d) If the system is stable, then it must have a two-sided impulse response.
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Unit circle Figure P5.11-1

5.12. A discrete-time causal LTI system has the system function

__ (1 +0.2z‘1)(1 — 91‘2)
Hm _ (1 +0.81z-2) ‘

(a) Is the system stable?

(1)) Find expressions for a minimum-phase system H1(z) and an all-pass system Hap(z)
such that

[1(2) = H1 (Z)Hap(z)‘

5.13. Figure P5.13-1 shows the pole—zero plots for four different LTI systems. Based on these

plots, state whether or not each system is an all-pass system.

 
Figure P5.13-1
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5.14. Determine the group delay for 0 < a) < 71' for each of the following sequences:

(a)

n—l, 151155,

x1[n]= 9—n, 5<n59,
0, otherwise.

III-1| lfll

we) +<a> -
5.15. Consider the class of discrete-time filters whose frequency response has the form

(b)

H(e/"") = |H(eiw)|e-fw,

where |H(ej“’)| is a real and nonnegative function of w and a is a real constant. As discussed

in Section 5.7.1, this class of filters is referred to as linear-phase filters.

Consider also the class of discrete-time filters whose frequency response has the form

H(ej“’) = A(ej‘”)e_j"w+jfi,

where A(ei‘”) is a real function of a), a is a real constant, and fl is a real constant. As discussed

in Section 5.7.2, filters in this class are referred to as generalized linear-phase filters.

For each of the filters in Figure P5.15-1, determine whether it is a generalized linear-

phase filter. If it is, then find A(ej“’), a, and ,6. In addition, for each filter you determine

to be a generalized linear-phase filter, indicate whether it also meets the more stringent

criterion for being a linear-phase filter.

 

. h[n] 3 h[n] 3 h[n]
2 2 2

l 11 | 1 1 1
0 n O n 0 n

(a) (b) (C)

1 1 h[n] 1 h[n]

0 n

(d) (6)

Figure P5.15-1

5.16. Figure P5.16-1 plots the continuous-phase arg[H(e1“’)] for the frequency response of a

specific LTI system, where

arg[H(ej‘”)] = —aw

for le < n and a is a positive integer.
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arg[11{(I-”"")]

 
Figure P5.16-1

Is the impulse response h[n] of this system a causal sequence? If the system is definitely

causal, or if it is definitely not causal, give a proof. If the causality of the system cannot

be determined from Figure P5.16—1, give examples of a noncausal sequence and a causal

sequence that both have the foregoing phase response arg[H(e1“’)].

5.17. For each of the following system functions, state whether or not it is a minimum-phase

system. Justify your answers:

_ (1—22‘1)(1+%z‘1)
H1“) ’ <1- ez-I) (1+ e4)”

_ (1+ (Hz-1)
H2“) ‘ (1— gz-I) (1+ éz—l)’

_%Z—1
H = .

3‘” (l-éz—‘)(1+%z-1)

H4(z)= Z_1(1-%Z_1)
(1 - éz—‘)(1+%z—1)'

5.18. For each of the following system functions Hk(z), specify a minimum—phase system function

Hmin(;) such that the frequency-response magnitudes of the two systems are equal, i.e.,
IHk(e"")l = IHmin(e"")|-

(a)

1 —2z-1

H1(Z) = 1 %z_1
(b)

(1 +3z-1) (1 — %z_1)H =

2(Z) z_1 + %Z_1)
(c)

1 —3 -1 1— l -1
H3(Z)= ( z )( 42 )

(1 - %z“) (1 - éz“)

5.19. Figure P5.19-1 shows the impulse responses for several different LTI systems. Find the

group delay associated with each system.



318 Transform Analysis of Linear Time-Invariant Systems Chap. 5

h1[n] 2 2 h2[n]

n—o
D—l

“T

hslnl

  
Figure P5.19-1

5.20. Figure P5.20-1 shows just the zero locations for several different system functions. For

each plot, state whether the system function could be a generalized linear-phase system

implemented by a linear constant-coefficient difference equation with real coefficients.

 
Figure P5.20-1
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Basic Problems

5.21. Let h1p[n] denote the impulse response of an ideal lowpass filter with unity passband gain and

cutoff frequency a)C = 11/4. Figure P5.21-1 shows five systems, each of which is equivalent

to an ideal LTI frequency-selective filter. For each system shown, sketch the equivalent

frequency response, indicating explicitly the band-edge frequencies in terms of me. In each

casc, Specify whether the system is a lowpass, highpass, bandpass, bandstop, or multiband
filter.

 
x[n] = {mph/2]. It even

x[n] ,
0 n odd

(d)

(6) Figure P5.21-1

5.22. Consider a causal linear time-invariant system with system function

1 _ a—lz—l
H(z) = _1 .1 — az

where a is real.

(a) Write the difference equation that relates the input and the output of this system.

(b) For what range of values of a is the system stable?

(c) For a = %, plot the pole~zero diagram and shade the region of convergence.
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(d) Find the impulse response h[n] for the system.

(e) Show that the system is an all-pass system, i.e., that the magnitude of the frequency

response is a constant. Also, specify the value of the constant.

5.23. (a) For each of the four types of causal linear phase FIR filters discussed in Section 5.7.3,

determine whether the associated symmetry imposes any constraint on the frequency

reSponse at a) = 0 and/or a) = 7r.

(b) For each of the following types of desired filter, indicate which of the four FIR filter

types would be useful to consider in approximating the desired filter:

Lowpass

Bandpass

Highpass

Bandstop

Differentiator

5.24. Let x[n] be a causal, N—point sequence that is zero outside the range 0 5 n g N — 1. When

x[n] is the input to the causal LTI system represented by the difference equation

yln] - iyln - 2] = xln - 2]— ixln],

the output is y[n], also a causal, N-point sequence.

(a) Show that the causal LTI system described by this difference equation represents an

all—pass filter.

(b) Given that

N—l

Z lxlnllz = 5.
n20

determine the value of

N-l

Z lylnllz-
n20

5.25. Is the following statement true or false?

Statement: It is not possible for a noncausal system to have a positive constant group
delay; i.e., grd[H(e!w)] = 1'0 > 0.

If the statement is true, give a brief argument justifying it. If the statement is false, provide

a counterexample.

5.26. Consider the z—transform

rz‘1
H = ——————,(Z) 1 — (2r cos w0)z‘1 + r22—2 |z[ > r.

Assume first that mo yé 0.

(a) Draw a labeled pole—zero diagram and determine h[n].

(b) Repeat Part (a) when mg 2 0. This is known as a critically damped system.
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5.27. An LTI system with impulse response In [n] is an ideal lowpass filter with cutoff frequency
a)C = 71/2. The frequency response of the system is H1(ej‘”). Suppose a new LTI system

with impulse reSponse h2[n] is obtained from h] [n] by

h2[fl] = (—1)nh1

Sketch the frequency response H2(ej“’).

Advanced Problems

5.28. The system function H(z) of a causal linear time-invariant system has the pole-zero con-

figuration shown in Figure P5.28-1. It is also known that H(z) = 6 when 2 = 1.

 
Figure P5.28-1

(:1) Determine H(z).

(b) Determine the impulse response h[n] of the system.

(c) Determine the response of the system to the following input signals:

0) xln] = “[n] - %u[n -1]
(ii) The sequence x[n] obtained from sampling the continuous—time signal

x(t) = 50 + 10 cos 20711‘ + 30 cos 4071':

at a sampling frequency 525 = 27r(40) rad/s

5.29. The system function of a linear time-invariant system is given by

21

(1 — %2‘1) (1 — zz—1)(1 — 4z—l)'

 

H(z) =

It is known that the system is not stable and that the impulse response is two sided.

(a) Determine the impulse reSponse h[n] of the system.

(b) The impulse response found in Part (a) can be expressed as the sum of a causal impulse

response h] [n] and an anticausal impulse response h2[n]. Determine the corresponding

system functions H1(z) and H2(z).

5.30. A signal x[n] is processed by a linear time-invariant system H(z) and then downsampled

by a factor of 2 to yield y[n], as shown in Figure P5.30~1. The pole—zero plot for H(z) is

shown in Figure P5.30—2.

(a) Determine and sketch h[n], the impulse reSponse of the system H(z).
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(b) A second system is shown in Figure P5.30—3, in which the signal x[n] is first time com-

pressed by a factor of 2 and then passed through an LTI system G(z) to obtain r[n].

x[n] w[n] y["l=W[2"] Figure P5.3o-1

Unit
. 9m Mth-order pole at z = 0,c1rcle

M 2 2 and M is an integer

 
Figure P5.30-2

A
xln] rlnl Figure Ps.3o-3

Determine whether G(z) can be chosen so that y[n] = r[n] for any input x[n]. If your

answer is no, clearly explain. If your answer is yes, specify G(z). If your answer depends

on the value of M, clearly explain how. (M is constrained to be an integer greater than

or equal to 2.)

5.31. Consider a linear time-invariant system whose system function is

z—2

H(z) = —————(1_ %z_1)(1 _ 3z_1).

(a) Suppose the system is known to be stable. Determine the output y[n] when the input

x[n] is the unit step sequence.

(b) Suppose the region of convergence of H(z) includes z = 00. Determine y[n] evaluated

at n = 2 when x[n] is as shown in Figure P5.31-1.

x[n]

  
n

Figure P5.31-1

(c) Suppose we wish to recover x[n] from y[n] by processing y[n] with an LTI system whose

impulse response is given by hi [n]. Determine hi[n]. Does h;[n] depend on the region

of convergence of 11(2)?

5.32. The Fourier transform of a stable linear time-invariant system is purely real and is shown

in Figure P5.32-1. Determine whether this system has a stable inverse system.
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5.33.

5.34.
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Figure P5.32-1

A sequence x[n] is the output of a linear time-invariant system whose input is s[n]. This

system is described by the difference equation

x[n] = s[n] ~ e"g“s[n — 8], (P5.33—1)

where 0 < a.

(it) Find the system function

_&
H1(Z) — a

and plot its poles and zeros in the z—plane. Indicate the region of convergence.

(b) We wish to recover s[n] from x[n] with a linear time-invariant system. Find the system
function

Y(z)

Hzm = X(z)

such that y[n] = s[n]. Find all possible regions of convergence for 112(2), and for each,

tell whether or not the system is causal and/or stable.

(c) Find all possible choices for the impulse response h2[n] such that

y[n] = h2[n] * x[n] = s[n]. (P5.33-2)

(d) For all choices determined in Part (c), demonstrate, by explicitly evaluating the con-

volution in Eq. P5.33-2, that when s[n] : 5[n], y[n] = 6[n].

Note: As discussed in Problem 4.7, Eq. P5.33—1 represents a simple model for a multipath

channel. The systems determined in Parts (b) and (c), then, correspond to compensation

systems to correct for the multipath distortion.

Consider a linear time-invariant system whose impulse response is

h[n] = (%)nu[n] + (%)nu[n].

The input x[n] is zero for n < 0, but in general, may be nonzero for 0 5 n 5 00. We would

like to compute the output y[n] for 0 5 n g 109, and in particular, we want to compare the
use of an FIR filter with that of an IIR filter for obtaining y[n] over this interval.

(3) Determine the linear constant-coefficient difference equation for the IIR system relat-

ing x[n] and y[n].

(b) Determine the impulse response hl [n] of the minimum-length LTI FIR filter whose

output y1 [n] is identical to the output y[n] for 0 5 n 5 109.
(c) Specify the linear constant-coefficient difference equation associated with the FIR filter

in Part (b).
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(d) Compare the number of arithmetic operations (multiplications and additions) required

to obtain y[n] for 0 5 n 5 109 using the linear constant-coefficient difference equations
in Part (a) and in Part (c).

5.35. Consider a causal linear time-invariant system with system function H(z) and real impulse
response. H(z) evaluated for z = 91‘“ is shown in Figure P5.35-1.

20 log10|H(ej‘")l

 
Figure P5.35-1

(a) Carefully sketch a pole—zero plot for H(z) showing all information about the pole and

zero locations that can be inferred from the figure.

(b) What can be said about the length of the impulse response?

(c) Specify whether <IH(ej“’) is linear.

(d) Specify whether the system is stable.

5.36. A causal linear time-invariant system has the system function

(1 — 1.52-1 — z‘2)(1+0.9z“)

m2) = (1— z“)(1 + 0.7jz‘1)(1 - 0-7171)-
 

(a) Write the difference equation that is satisfied by the input and the output of the system.

(b) Plot the pole—zero diagram and indicate the region of convergence for the system
function.

(c) Sketch |H(ej“’)l.

(d) State whether the following are true or false about the system:

(i) The system is stable.

(ii) The impulse response approaches a constant for large n.

(iii) The magnitude of the frequency response has a peak at approximately a) = 2!: 11/4.

(iv) The system has a stable and causal inverse.

5.37. Consider a causal sequence x[n] with the z-transform

m) = (1— az-l) (1— £24) (1— e),
 

For what values of a is a"x[n] a real, minimum-phase sequence?
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5.38. Consider the linear time-invariant system whose system function is

H(z) = (1 — 0.9e1'0-6"z*1)(1 — 0.9e‘10‘6flz'1)(1 — 1.2se1'081z-1x1 — 1.25.2403” z“).

(3) Find all causal system functions that result in the same frequency-response magnitude

as H(z) and for which the impulse responses are real valued and of the same length

as the impulse response associated with H(z). (There are four different such system

functions.) Identify which system function is minimum phase and which, to within a

time shift, is maximum phase.

(b) Find the impulse responses for the system functions in Part (a).

(c) For each of the sequences in Part (b), compute and plot the quantity

Eln] = EMMY
m=0

for 0 5 n 5 5. Indicate explicitly which plot corresponds to the minimum-phase system.

5.39. Shown in Figure P5.39-1 are eight different finite-duration sequences. Each sequence is

four points long. The magnitude of the Fourier transform is the same for all sequences.

Which of the sequences has all the zeros of its z-transforrn inside the unit circle?

20.33 17.67
967 13.33

  
17.67 1333  

21.33 2033

 
Figure P5.39-1

5.40. Each of the pole—zero plots in Figure P5.40—1, together with the specification of the region

of convergence, describes a linear time-invariant system with system function H(z). In each

case, determine whether any of the following statements are true. Justify your answer with

a brief statement or a counterexample.

(a) The system is a zero-phase or a generalized linear-phase system.

(b) The system has a stable inverse Hg(z).
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35m

  
. l . é

Roc.lzi<2 ROC.izl>2

(a) (b)

5‘m
 

 

 
Unit

circle

 
(C) (d)

Figure P5.40-1

5.41. Figure P5.41-1 shows two different interconnections of three systems. The impulse re-

sponses h1[n], h2[n], and h3[n] are as shown in Figure P5.41-2. Determine whether system

A and/or system B is a generalized linear—phase system.

System A
 

 
Figure P5.41-1
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Figure 6.4, on the other hand, represents H(z) as 

1 
(6.13) 

or, equivalently, through the equations 

W(z) Hz(z)X(z) = 
1 

X(z), (6.14a) 

Y(z) = H1(z)W(z) = (~bkz-k) W(z). (6.14b) 

In the time domain, Figure 6.4 and, equivalently, Eqs. (6.14a) and (6.14b) can be rep­
resented by the pair of difference equations 

N 

w[n] = '2:: akw[n- k] + x[n], 
k=l 

M 

y[n] = '2:: bkw[n- k]. 
k=O 

(6.15a) 

(6.15b) 

The block diagrams of Figures 6.3 and 6.4 have several important differences. In 
Figure 6.3, the zeros of H(z), represented by H1 (z), are implemented first, followed by 
the poles, represented by Hz(z). In Figure 6.4, the poles are implemented first, followed 
by the zeros. Theoretically, the order of implementation does not affect the overall 
system function. However, as we will see, when a difference equation is implemented 
with finite-precision arithmetic, there can be a significant difference between two sys­
tems that are theoretically equivalent. Another important point concerns the number 
of delay elements in the two systems. As drawn, the systems in Figures 6.3 and 6.4 each 
have a total of (N + M) delay elements. However, the block diagram of Figure 6.4 can 
be redrawn by noting that exactly the same signal, w[n], is stored in the two chains of 
delay elements in the figure. Consequently, the two can be collapsed into one chain, as 
indicated in Figure 6.5. 

The total number of delay elements in Figure 6.5 is less than in either Figure 6.3 
or Figure 6.4, and in fact it is the minimum number required to implement a system 
with system function given by Eq. (6.8). Specifically, the minimum number of delays 
required is, in general, max(N, M). An implementation with the minimum number of 
delay elements is commonly referred to as a canonic form implementation. The non­
canonic block diagram in Figure 6.3 is referred to as the direct form I implementation 
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6.3 BASIC STRUCTURES FOR IIR SYSTEMS 

In Section 6.1, we introduced two alternative structures for implementing a linear time­
invariant system with system function as in Eq. (6.8). In this section we present the 
signal flow graph representations of those systems, and we also develop several other 
commonly used equivalent flow graph network structures. Our discussion will make 
it clear that, for any given rational system function, a wide variety of equivalent sets 
of difference equations or network structures exists. One consideration in the choice 
among these different structures is computational complexity. For example, in some 
digital implementations, structures with the fewest constant multipliers and the fewest 
delay branches are often most desirable. This is because multiplication is generally 
a time-consuming and costly operation in digital hardware and because each delay 
element corresponds to a memory register. Consequently, a reduction in the number 
of constant multipliers means an increase in speed, and a reduction in the number of 
delay elements means a reduction in memory requirements. 

Other, more subtle, trade-offs arise in VLSI implementations, in which the area 
of a chip is often an important measure of efficiency. Modularity and simplicity of data 
transfer on the chip are also frequently very desirable in such implementations. In 
multiprocessor implementations, the most important considerations are often related 
to partitioning of the algorithm and communication requirements between processors. 
Another major consideration is the effects of a finite register length and finite-precision 
arithmetic. These effects depend on the way in which the computations are organized, 
i.e., on the structure of the signal flow graph. Sometimes it is desirable to use a structure 
that does not have the minimum number of multipliers and delay elements if that 
structure is less sensitive to finite register length effects. 

In this section, we develop several of the most commonly used forms for imple­
menting a linear time-invariant IIR system and obtain their flow graph representations. 

6.3.1 Direct Forms 

In Section 6.1, we obtained block diagram representations of the direct form I (Fig­
ure 6.3) and direct form II, or canonic direct form (Figure 6.5), structures for a linear 
time-invariant system whose input and output satisfy a difference equation of the form 

N M 

y[n] L.'>ky[n- k] = l:.:)kx[n- k], (6.26) 
k=l 

with the corresponding rational system function 

M 

LbkZ-k 

k=O H(z) (6.27) 
N 

1 L:akz-k 
k=l 

In Figure 6.14, the direct form I structure of Figure 6.3 is shown using signal flow graph 
conventions, and Figure 6.15 shows the signal flow graph representation of the direct 
form II structure of Figure 6.5. Again, we have assumed for convenience that N = M. 







Sec. 6.3 

x[n] 

Basic Structures for IIR Systems 

yJ[n] 

\ bm I bo2 I \ bo3 I 
z-l z-' z-l y[n] 

all bll a12 bl2 au b13 

z-l z-l z-l 
azt bzl azz bzz az3 b23 

Figure 6.18 Cascade structure for a sixth-order system with a direct form II 
realization of each second-order subsystem. 
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for many types of implementations is obtained by combining pairs of real factors and 
complex conjugate pairs into second-order factors so that Eq. ( 6.29) can be expressed as 

H(z) = ITN., bok + b1kC
1 

bzkZ-
2

, 
1 - atkz- 1 - azkz-2 

k=l 

(6.30) 

where Ns = L(N 1)/2J is the largest integer contained in (N + 1)/2. In writing 
H(z) in this form, we have assumed that M < N and that the real poles and 
zeros have been combined in pairs. If there are an odd number of real zeros, one 
of the coefficients b2k will be zero. Likewise, if there are an odd number of real 
poles, one of the coefficients a2k will be zero. The individual second-order sections 
can be implemented using either of the direct form structures; however, the previous 
discussion shows that we can implement a cascade structure with a minimum num­
ber of multiplications and a minimum number of delay elements if we use the direct 
form II structure for each second-order section. A cascade structure for a sixth-order 
system using three direct form II second-order sections is shown in Figure 6.18. The 
difference equations represented by a general cascade of direct form II second-order 
sections are of the form 

Yo[n] = x[n], 

wk[n] = a1kwk[n- 1] + azkwk[n- 2] + Yk-l[n], k = 1, 2, ... , Ns. 

(6.31a) 

(6.31b) 

Yk[n] = bokwk[n] + blkwk[n 1] + b2kwk[n 2], k = 1, 2, ... , Ns. (6.3lc) 

y[n] = YNJnJ. (6.31d) 

It is easy to see that a variety of theoretically equivalent systems can be obtained 
by simply pairing the poles and zeros in different ways and by ordering the second-order 
sections in different ways. Indeed, if there are N_, second-order sections, there are Ns l 
( Ns factorial) pairings of the poles with zeros and Ns l orderings of the resulting second­
order sections, or a total of (Ns !)2 different pairings and orderings. Although these all 
have the same overall system function and corresponding input-output relation when 
infinite-precision arithmetic is used, their behavior with finite-precision arithmetic can 
be quite different, as we will see in Section 6.8. 
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w[n] bo 

X [n] y[n] 
z-1 

a! bl 

z-1 

az bz 

Figure 6.27 Direct form II structure for Example 6.8. 

bo vo[n] 

x[n] y[n] 
z-1 

bl a! 

v1 (n) 
z-1 

bz az 

v2[n] 

Figure 6.28 Transposed direct form II structure for Example 6.8. 

it is not immediately clear that the two sets of difference equations are equivalent. 
One way to show this equivalence is to use the z-transform representations of both 
sets of equations, solve for the ratio Y(z)/ X(z) H(z) in both cases, and compare the 
results. Another way is to substitute Eq. (6.44d) into Eq. (6.44c), substitute the result 
into Eq. (6.44a), and finally, substitute that result into Eq. (6.44b). The final result is 

y[n] = a1y[n- 1] + azy[n- 2] + box[n] + btx[n- 1] + bzx[n- 2). (6.45) 

Since the network of Figure 6.27 is a direct form II structure, it is easily seen that 
the input and output of the system in Figure 6.27 also satisfies the difference equa­
tion (6.45). Therefore, for initial-rest conditions, the systems in Figures 6.27 and 6.28 
are equivalent. 

The transposition theorem can be applied to any of the structures that we have 
discussed so far. For example, the result of applying the theorem to the direct form I 
structure of Figure 6.14 is shown in Figure 6.29, and similarly, the structure obtained by 
transposing the direct form II structure of Figure 6.15 is shown in Figure 6.30. Clearly, 
if a signal flow graph configuration is transposed, the number of delay branches and the 
number of coefficients remain the same. Thus, the transposed direct form II structure 
is also a canonic structure. 

An important point becomes evident through a comparison of Figures 6.15 and 
6.30. Whereas the direct form II structure implements the poles first and then the 
zeros, the transposed direct form II structure implements the zeros first and then the 
poles. These differences can become important in the presence of quantization in finite­
precision digital implementations or in the presence of noise in discrete-time analog 
implementations. 

When the transposition theorem is applied to cascade or parallel structures, the 
individual second-order systems are replaced by transposed structures. For example, 
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1 o­zj 

z-plane 

1 
O Zt 

Figure 6.36 Symmetry of zeros for a 
linear-phase FIR filter. 

As a consequence, real zeros not on the unit circle occur in reciprocal pairs. Complex 
zeros not on the unit circle occur in groups of four, corresponding to the complex con­
jugates and reciprocals. If a zero is on the unit circle, its reciprocal is also its conjugate. 
Consequently, complex zeros on the unit circle are conveniently grouped into pairs. 
Zeros at z = ±1 are their own reciprocal and complex conjugate. The four cases are 
summarized in Figure 6.36, where the zeros at z1, zj, 11 z1, and 11 zj are considered as a 
group of four. The zeros at 22 and 11 z2 are considered as a group of two, as are the zeros 
atz3 and zj. The zero at Z4 is considered singly. If H(z) has the zeros shown in Figure6.36, 
it can be factored into a product of first-, second-, and fourth-order factors. Each of these 
factors is a polynomial whose coefficients have the same symmetry as the coefficients 
of H(z); i.e., each factor is a linear-phase polynomial in z- 1. Therefore, the system can 
be implemented as a cascade of first-, second-, and fourth-order systems. For example, 
the system function corresponding to the zeros of Figure 6.36 can be expressed as 

H(z) h[0](1 z-1)(1 az-1 + z-2)(1 + bz-1 + z-2 ) 
(6.54) 

where 

c = -2'Re(z1 + 11zd, 

This representation suggests a cascade structure consisting of linear-phase elements. It 
can be seen that the order of the system function polynomial is M = 9 and the number 
of different coefficient multipliers is five. This is the same number ( ( M + 1) 12 = 5) 
of constant multipliers required for implementing the system in the linear-phase di­
rect form of Figure 6.34. Thus, with no additional multiplications, we obtain a modular 
structure in terms of a cascade of short linear-phase FIR systems. 

6.6 OVERVIEW OF FINITE-PRECISION NUMERICAL EFFECTS 

We have seen that a particular linear time-invariant discrete-time system can be im­
plemented by a variety of computational structures. One motivation for considering 
alternatives to the simple direct-form structures is that different structures that are the­
oretically equivalent may behave differently when implemented with finite numerical 
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precision. In this section, we give a brief introduction to the major numerical problems 
that arise in implementing discrete-time systems. A more detailed analysis of these 
finite-word-length effects is given in Sections 6.7-6.9. 

6.6.1 Number Representations 

In theoretical analyses of discrete-time systems, we generally assume that signal values 
and system coefficients are represented in the real-number system. However, with ana­
log discrete-time systems, the limited precision of the components of a circuit makes 
it difficult to realize coefficients exactly. Similarly, when implementing digital signal­
processing systems, we must represent signals and coefficients in some digital number 
system that must always be of finite precision. Most general-purpose digital computers, 
DSP chips, or special-purpose hardware use a binary number system. 

The problem of finite numerical precision has already been discussed in Sec­
tion 4.8.2 in the context of AID conversion. We showed there that the output samples 
from an AID converter are quantized and thus can be represented by fixed-point binary 
numbers. For compactness and simplicity in implementing arithmetic, one of the bits 
of the binary number is assumed to indicate the algebraic sign of the number. Formats 
such as sign and magnitude, one's complement, and two's complement are possible, but 
two's complement is most common.3 A real number can be represented with infinite 
precision in two's-complement form as 

X= Xm (-bo + fb;2-i), 
1=1 

(6.55) 

where Xm is an arbitrary scale factor and the b; 's are either 0 or 1. The quantity bo is 
referred to as the sign bit. If bo = 0, then 0 < x < Xm, and if b0 = 1, then - Xm ::: x < 0. 
Thus, any real number whose magnitude is less than or equal to Xm can be represented 
by Eq. (6.55). An arbitrary real number x would require an infinite number of bits for 
its exact binary representation. As we saw in the case of AID conversion, if we use only 
a finite number of bits (B + 1 ), then the representation of Eq. (6.55) must be modified 
to 

(6.56) 

The resulting binary representation is quantized, so that the smallest difference between 
numbers is 

~ = Xm2- 8 . (6.57) 

In this case, the quantized numbers are in the range - Xm ::: i < Xm. The fractional 
part of i can be represented with the positional notation 

is= b0<>b1bzb3 · · · bs, (6.58) 

where<> represents the binary point. 

3 A detailed description of binary number systems and corresponding arithmetic is given by Knuth 
(1997). 
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