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Regular-Pulse Excitation—A Novel Approach to
Effective and Efficient Multipulse Coding of Speech

PETER KROON, SsTUDENT MEMBER, IEEE, ED F. DEPRETTERE, MEMBER, IEEE, AND ROB J. SLUYTER

Abstract—This paper describes an effective and efficient time do-

main speech encoding technique that has an appealing low complexity, 4

and produces toll quality speech at rates below 16 kbits/s. The pro-
posed coder uses linear predictive techniques to remove the short-time
correlation in the speech signal. The remaining (residual) information
is then modeled by a low bit rate reduced excitation sequence that,
when applied to the time-varying model filter, produces a signal that
is “close” to the reference speech signal. The procedure for finding
the optimal constrained excitation signal incorporates the solution of a
few strongly coupled sets of linear equations and is of moderate com-
plexity compared to competing coding systems such as adaptive trans-
form coding and multipulse excitation coding. The paper describes the
novel coding idea and the procedure for finding the excitation se-
quence. We then show that the coding procedure can be considered as
an ‘“‘optimized” baseband coder with spectral folding as high-fre-
quency regeneration technique. The effect of various analysis param-
eters on the quality of the reconstructed speech is investigated using
both objective and subjective tests. Further, modifications of the basic
algorithm, and their impact on both the quality of the reconstructed
speech signal and the complexity of the encoding algorithm, are dis-
cussed. Using the generalized baseband coder formulation, we dem-
onstrate that under reasonable assumptions concerning the weighting
filter, an attractive Iow~complexity/high-quality coder can be obtained.

I. INTRODUCTION

AN interesting application area for digital speech cod-

ing can be found in mobile telephony systems and
computer networks. For these applications, toll quality
speech at bit rates below 16 kbits/s is a prerequisite. Many
of the conventional speech coding techniques [1] fail to
obey this condition. However, a class of coders, the so-
called delayed decision coders (DDC) [1, ch. 9], seems
to be promising for these applications. Coders that belong
to this class utilize an encoding delay to find the “‘best’®
quantized version of the input speech signal or a trans-
formed version of it. Quite effective algorithms can be
designed by combining predictive and DDC techniques to
yield low bit rate waveform matching encoding schemes.
A powerful and common approach is to use a slowly time-

P. Kroon was with the Department of Electrical Engineering, Delft Uni-
versity of Technology, Delft, The Netherlands. He is now with the Acous-
tics Research Department, AT&T Bell Laboratories, Murray Hill, NJ
07974.

E. F. Deprettere is with the Department of Electrical Engineering, Delft
University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.

R. J. Sluyter is with the Philips Research Laboratories, 5600 MD Eind-
hoven, The Netherlands.

IEEE Log Number 8609633,

#

_varying linear predictive (LP) filter to model the short-
time spectral envelope of the quasi-stationary speech sig-
nal. The problem that remains is how to describe the re-
sulting prediction residual that contains the necessary in-
formation to describe the fine structure of the underlying
spectrum. In other words, what is the ‘‘best’’ low-capac-
ity model for the speech prediction residual subjected to
one or more judgment criteria. These may include objec-
tive and subjective quality measures (such as rate distor-
tions and listening scores, respectively), but coder com-
plexity can also be taken into account. Although certain
models have been shown to behave very satisfactorily [2]-
[4], the question of optimality remains difficult to answer,

In this paper we address the problem of finding an ex-
citation signal for an LP speech coder that not only en-
Sures a comparable quality with existing approaches, but
is also structurally powerful. By the latter we mean that a
fast realization algorithm and a corresponding high
throughput (VLSI) implementation can be obtained. We
Propose a method in which the prediction residual is mod-
eled by a signal that resembles an upsampled sequence
and has, therefore, a regular (in time) structure. Because
of this regularity, we refer to this coder as the regular-
pulse excitation (RPE) coder [5]. The values of the non-
zero samples in this signal are optimally determined by a
least-squares analysis-by-synthesis fitting procedure that
can be expressed in terms of matrix arithmetic.

In Section II we describe in more detail the regular-
pulse excitation coding procedure and the algorithm for
finding the excitation sequence. In Section III we show
that the proposed encoding procedure can be interpreted
in terms of optimized baseband coding. In Section IV, the
influence of the various analysis parameters on the quality
of the reconstructed speech is investigated. Further, to ex-
ploit the long-term correlation in the speech signal, the
use of a pitch predictor is discussed. Modifications to the
basic procedure, to attain a further reduction in complex-
ity without noticeable quality loss, are described in Sec-
tion V. Finally, in Section VI, we describe the effect of

quantization on the quality of the reconstructed speech
signal.

II. Basic CopEer STRUCTURE

The basic coder structure can be viewed as a residual
modeling process, as depicted in Fig. 1. In this figure, the
residual r(n) is obtained by filtering the speech signal s(n)

0096-3518/86/1000-1054$01.00 © 1986 IEEE

o E=

KROON et al.: REGULAR-PULSE EXCITATION

s(n)

| e(n)
EXCITATION SIC
H GENERATOR A(z/y)
]
]
I
H ERROR
S T MINIMIZATION
(a)
A
EXCITATION v(n) S 5{n)

~ ™| GENERATOR 1 A

(b)

Fig. 1. Block diagram of the regular-pulse excitation coder: (a) encoder,
(b) decoder.

SR e ek R B B e
Fig. 2. Possible excitation patterns with L = 40 and N = 4.

through a pth-order time-varying filter A(z),
p
4@ =1+ X a2, M

which can be determined with the use of linear prediction
(LP) techniques as described in, e.g., [6]. The diﬂfer'ence
between the LP-residual r(n) and a certain model residual
v(n) (to be defined below) is fed through the shaping filter
1/A(z/),

: = . RN I e 2)
Agy |, i P
k=1awz

This filter, which serves as an error weighting fgnction,
plays the same role as the feedback filter in adaptive pre-
dictive coding with noise shaping (APC-NS) [7] and the
weighting filter in multipulse excitation (MPE) coders [2].
The resulting weighted difference e(n) is squareq a}nd ac-
cumulated, and is used as a measure for determmmg the
effectiveness of the presumed model v (n) of the residual
r(n). :

The excitation sequence v (n) is determined for adjaf:ent
frames consisting of L samples each, and is constrained
as follows. Within a frame, it is required to correspond to
an upsampled version of a certain ‘‘optimal’’ vector b =
(b(1), - - -, b(Q)) of length Q(Q < L). Thus, each seg-
ment of the excitation signal contains Q equidistant sam-
ples of nonzero amplitude, while the remaining samples
are equal to zero. The spacing between nonzero samples
iSN = L/Q. For a particular coder, the parameters L gnd
N are optimally chosen but are otherwise fixed quantities.
The duration of a frame of size L is typically 5 ms. Each
excitation frame can support N sets of Q equidfsta'nt non-
Zero samples, resulting in N candidate excitation se-
quences. Fig. 2 shows the possible excitation patterns for
a frame containing 40 samples and a spacing of N = 4,

1055

In this figure, the locations of the pulses are marked by a
vertical dash and the zero samples by dots. If k (k = (
2, +++, N) denotes the phase of the upsampled version
of the vector b"", i.e., the position of the first nonzero
sample in a particular segment, then we have to compute
for every value of k the amplitudes b*(-) that minimize
the accumulated squared error. The vector that yields Fhe
minimum error is selected and transmitted. The decodlpg
procedure is then straightforward, as is shown in Fig.
1(b).

A. Encoding Algorithm
Denoting by M, the Q by L position matrix with entries

mi; =1 ifj=i*N+k—1
O0=<si=Q0-1 3
m; = 0 otherwise PR g

the segmental excitation row vector v, corresponding to
the kth excitation pattern, can be written as

v® = b(k)Mk_ 4)
Let H be an uppertriangular L by L matrix whose jth row
(j=0,+--,L = 1) contains the (truncated) response

h(n) of the error weighting filter 1/4(z/~) caused by a unit
impulse 6(n — j). That is,

h(0) h(1) L — 1)]

0  h0) h(L - 2)
H=|0 o WL - 3)| . (5)

B o e e

If ey denotes the output of the weighting filter due .to_t'he
memory hangover (i.e., the output as a resu.lt of the initial
filter state) of previous intervals, then the glgnal e(n) pro-
duced by the input vector b* can be described as

e =e® —pPH, k=1,:--- N, (6)
where

e? = e, + rH, (7

H, = M}H, (8)

and the vector r represents the residual 7 (n) for the current
frame. The objective is to minimize the squared error

E® — e(k)e(k)t, 9)

where ¢ denotes transpose. For a given phase the optimal
amplitudes 5*(-) can be computed from (6) and (9), by
requiring e H/, to be equal to zero. Hence,

b9 = OHiIHH] ™. (10)
By substituting (10) in (6) and thereafter the resulting

expression in (9), we obtain the following expression for
the error:

E(k) s e(O)[I e H;([HkH;‘]_lHk_] e(o)!' (11)

28
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The vector 5% that yields the minimum value of E® over
all k is then selected. The resulting optimal excitation
vector v is entirely characterized by its phase k and the
corresponding amplitude vector 5%, The whole procedure
comprises the solution of N sets of linear equations as
given by (10). A fast algorithm to compute the N vectors
b simultaneously has been presented in [8] and [9]. We
shall show in Section V that a further reduction in com-
plexity can be obtained by exploiting the nature of the
matrix product H, H in (10).

III. GENERALIZED BASEBAND CoODING

It may be observed that the regular-pulse excitation se-
quence bears some resemblance to the excitation signal of
excited baseband coder (BBC) using spectral folding as
high-frequency regeneration technique [4], [10]. In this
section we show that the RPE coder can be interpreted as
a generalized version of this baseband coder. For this pur-
pose we use the block diagram of Fig. 3. The blocks
drawn with solid lines represent the conceptual structure
of a residual excited BBC coder with spectral folding. For
this coder, the index % has no significance and is set to
zero. In this scheme, the LP-residual signal r(n), ob-
tained by filtering the speech signal through the filter A(z),
is band-limited by an (almost) ideal low-pass filter Fy(2),
downsampled to b‘o)(n) and transmitted. At the receiver,
this signal is upsampled to vn) to recover the original
bandwidth, and is fed through the synthesis filter to re-
trieve the speech signal §(n). When the dashed blocks are
included in Fig. 3, one provides a possibility to optimize
the filter Fi(z), i.e., to replace the ideal low-pass filter
Fy(z) by another filter, which is more tailored to “‘opti-
mal’’ waveform matching, where the optimality criterion
is to minimize the (weighted) mean-squared error between
the original and the reconstructed signal.

We shall now show that for this *‘optimized’’ BBC ver-
sion, the output of the filter F,(z), after down- and upsam-
pling, is exactly the excitation signal v®(n) as computed

riny
e utkl) bkn) {‘*'
et Tl e
i
! St o = e(n) re===-—mo !
L ERROR | ! 1 j

l}
- M————— =
MINIMIZAT] l
M ZAHaMg 2

Fig. 3. Block diagram of a BBC coder (solid lines), and an RPE coder
(solid and dashed lines).

=1, .- /N), an FIR filter Fi(2) such that the weighted
least-squares error £, ¢’(n) over the interval L is minimal.
Define Fi(z) as
B
Fyo) = 2 o~ (12)

i=0

and

fo = [£®(0) IO 5 i A 1]. (13)

Let r,(n) and r-m)(n.=0, >+, L = 1) denote the
residual samples of the current frame and those of the pre-
vious frame, respectively. Then we can write for the out-
put u®(n) of the filter F(2)

[r.0 ) Nl =D
r-L -1 r,(0) r+d = 2)
WO =50, @ -3 ro(L — 1) Fath 8
| r (1) r_(2) r+0) |
= fOR. (14)

The vector 5%, which is the downsampled version of
u® (with downsampling factor N ), can be written as

p® = f(k)RML x
=f(k)Rk (15)

by the RPE algorithm, Thus, let there exist for each k, (k  with
Fr+(k—1) PS4 B s = YN e sy
L2 28 -3 & k) Y0~ )N =9 k)
Ro=|r@L-3+k - (16)
L r_(k) rs@-nDN+k |
where M, is the position matrix as defined in (3), and
where the definition (L + k) = r.(k). The excitation
vector »* can be expressed as the product
B e 5 ek 0---.0---r+((Q—1)N—1+k)0---0
v""=f(’" 5 0) r_(L—.2+k) Q% i) r.((0 - l)'N—2+k) (| s |
0...0,._(/() 0---0 -
k—1 N —k N —k ' (17)
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Fig.'4. Power spectra | Fy(e )| for different values of k, obtained from a
5 ms speech segment.

Hence, with the matrix H and the initial error ¢© as de-
fined in the previous section,

e® = o© _ f(k)Rk M.H

St £ (18)
Minimizing e®e®”’, we obtain as solution
f© = €ORH) [RHRHY] ™. (19)

Substituting this result in (15), we obtain the ()‘/)ector.b("),
which is equal to the pulse amplitude vector b obtalngd
via the procedure described in Section II (see the proof in
the Appendix). ;

Fig?lz gives an example of the spectra | Fe(e )|? ob-
tained from real speech data. From this figure we see that
the filters Fi(z) are rather different from the one (Fo(2)
used in the classical baseband coder, and have a more all-

ass character.

i Although the RPE algorithm and the optirpa! BBC al-
gorithm are conceptually equivalent, the opt.lmlzed BBC
variant will in general not offer any computatlo'nal ad\{al_l-
tage over the RPE approach. However, in Section V, itis
demonstrated that under certain reasonable assumptions
concerning the weighting filter, the BBC approach can
provide an attractive alternative in practice.

IV. EVALUATION OF THE RPE ALGORITHM

Fig. 5 shows a typical example of the \yavefonns as
produced by the RPE coder, using the analysis parameters
listed in Table 1. The corresponding short-time power
Spectra of the speech signal s(n) (solid line) ar.1d t}.le re-
constructed signal §(n) (dashed line) are s}_lown in Fig. 6.
To give an impression of the signal-to-noise ratio over a
complete utterance, we show in Fig. 7 the segmental SI:IR
(SNRSEG) computed every 10 ms for the utterance ‘‘a
lathe is a big tool”’ spoken by both a female and a male
Speaker.

A. RPE Analysis Parameters

The RPE analysis parameters that could affect the final
Speech quality are listed below:
1) predictor parameters,
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(c) oy ty b Iign vy Ty A ey oy vk
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TIME (ms)
i i ignal §(n), (c)
Fig. 5. (a) Speech signal s(n), (b) reconstn:lcted speech signa
Excitation signal v (n), and (d) difference signal s(n) — §(n) in the RPE
coding procedure.

TABLE I
DEFAULT PARAMETERS RPE ANALYSIS

Parameter Value

sampling frequency 8 kHz -

LP analysis procedure autocorrelation

order (p) 12

update rate coefficients 10 ms : :
analysis frame size 25 ms Hamming window
pulse spacing N 4

frane size L 5 ms

weight factor y 0.80

75

|

ol | |
- /L WWW | ”m\

FREQUENCY (kHz)
i igi id line) and the
Fig. 6. Power spectra of the original speqch segment (solid |
%econstructcd speech segment (dashed line). The spectra were obtmn'ed
with a Hamming window using the last 32 ms segment of the data dis-
played in Fig. 5.

o

RELATIVE POWER (dB)

.0

2) pulse spacing N,

3) frame size L, and

4) error weighting filter.

To evaluate the coder behavior, we used a set of default
parameter values (see Table I), while the parameter under
investigation was varied. : :

The effects of the predictor parameters in A.PC-llke
schemes have been extensively studied in t.he. lltel_'ature
(e.g., [1]), and will not be discussed in d\etful in tl}ls pa-
per. We found that good results were obtained with the
autocorrelation method using a Hamming window on 25
ms frames. The predictor coefficients were updated every
20 ms and the predictor order p was chosen to be equal to
12. :
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We mentioned earlier that for the case in which there is
no phase adaptation (on a frame basis), that is, k is fixed
and equal to 1, the structure of the excitation signal re-
sembles the upsampled residual signals used in BBC cod-
ers with spectral folding. This observation can give us a
rough estimate of the maximum spacing (N) between the
pulses, to ensure a good synthetic speech quality. Assum-
ing a maximum fundamental frequency of 500 Hz, we
have to use a sampling rate of minimally 1000 Hz. Hence,
for an 8 kHz sampling rate, the pulse spacing should be
less than or equal to 8. _

To investigate the effect of different frame sizes L and
pulse spacings N, we computed the segmental SNR values
of the reconstructed speech signals for various values of
these parameters. Fig. 8 shows the averaged segmental
SNR values for two female and two male speakers' for
different values of N and L. As far as possible, we have
chosen the same frame size for different values of N. From
this figure, Wwe see that the SNR increases with the number
of pulses and decreases with increasing frame size. How-

'The utterances are: *‘A lathe is a big tool” and ““An icy wind raked
the beach.” ]

L L 3 PP I e 1001 ) Vi e oW

n

w

Fig. 9. RPE excitation patterns with D = 12, L = 24, and N = 3

TABLE II
SNR VALUES FOR DiFFERENT VALUES OF L AND D
L:D SNRSEG SNR
20:20 14.58 dB 11.80 dB
40:20 14.75 dB 11.90 dB
40:40 14.28 dB 11.17 dB
80:40 14.58 dB 11.29 dB
80:80 13.80 dB 10.44 dB

ever, there is no real tradeoff between the values of L and
N. Informal listening tests confirmed the ranking as intro-
duced by the SNR measurements. For values of N greater
than 5, some of the utterances (especially those by female
speakers) sounded distorted. From our experiments, we
found that N = 4 and L = 5 ms will give the best results
considering the bit rate constraints.

The pulse amplitudes b®(-) and phase k are computed
every L samples, which means that the phase adaptation
rate is equal to 1/L. To investigate the effect of this *‘dis-
turbance,’’ without changing the size of L, we considered
phase adaptation every D samples, where the value of D
is less than or equal to L, and L/D must be an integer
ratio. Within a frame of size L, the possible number of
excitation sequences is then given by

B=N'""30<=FIp. (20)

Hence, a value of D smaller than L results in a more com-
plex procedure for the computation of the optimum exci-
tation. Fig. 9 shows the possible excitation patterns for L
= 24 D=12:and N-= 3. Table II lists the resulting
averaged SNR values for different frame sizes L and ratios
L/D = 1 and 2. From this table we see a small improve-
ment in SNR for vallies of D less than L, at the expense
of a much higher complexity.

B. Application of a Pitch Predictor

An examination of the regular-pulse excitation (see, for
example, Fig. 5) reveals the periodic structure of the ex-
citation for voiced sounds. Obviously, the RPE algorithm
aligns the excitation ““grid”’ to the major pitch pulses,
thereby introducing the possibility that the remaining
pulses within the grid are not optimally located. If we
model the major pitch pulses with a pitch predictor/syn-
thesizer, the remaining excitation sequence can be mod-

KROON et al.: REGULAR-PULSE EXCITATION

eled by the regular-pulse excitation sequence. A simple
but effective pitch predictor is the so-called one-tap pre-
dictor,

L= P@)=pz¥, 1)

where M represents the distance between adjacent pitch
pulses and B is a gain factor. The pitch predictor param-
eters can be determined either in an open-loop configu-
ration [11], or in a closed-loop configuration [12]. In the
latter case, the parameters can be optimally computed by
including a pitch generator 1/P(z) in the closed-loop dia-
gram of Fig. 1. The parameters 8 and M are determined
such that the output of the pitch generator due to its initial
state is optimally close (in the weighted sense) to the ini-
tial error signal (). Once B and M have been deter-
mined, the remaining regular-pulse excitation signal is
computed as described in Section II, except that this sig-
nal is now to be fed through both the pitch generator and
the weighting filter. The advantage of determining the
pitch parameters within the analysis loop is that the pitch
generator is then optimally contributing to the minimiza-
tion of the weighted error. To be more specific, let y,, (n)
be the response of the pitch generator to an input v (n),
which is zero forn > 0,

Yu(n) = v(n) + Byy(n — M). 22)

Let zy(n) represent the response of the weighting filter to
the input signal y,,(n), defined in (22), and let e (n) rep-
resent the initial error as defined in (7). The error to be
minimized will then be

EM, B) = 2 (e%n) — Bzy(n))*. (23)

The approach is to compute 3 for all possible values of M
within a specified range, and then select the pair (M, )
for which E(M, ) is minimal.

The range of M should be chosen to accommodate to
the variation in pitch frequency in the speech signal.
However, in simulations with a one-tap predictor using
different ranges of M, we found that a range of M between
16 and 80 (i.e., a fundamental frequency between 100 and
470 Hz) is satisfactory. The effect of pitch prediction is
demonstrated in Fig. 10, by using the same speech seg-
ment as used in Fig. 5. The short-time power spectra of
the speech signal s(n) (solid line) and of the error signal
$(n) — $(n) (dashed line) for y = 0.80, without and with
pitch filter, are shown in Figs. 11 and 12, respectively.
The effect of pitch prediction on the averaged segmental
SNR values is shown in Fig. 13. These figures show that
the effect of pitch prediction is to decrease the absolute
level of noise power and to flatten its spectrum, and
thereby improving the performance in terms of SNR. This
effect was most noticeable for high-pitched (average pitch
2250 Hz) speakers.

C. Error Weighting Filter

Although the effect of noise shaping can be heard, the
real mechanism behind this effect is not clear. We will
Not pursue the question whether the proposed noise-shap-
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Fig. 10. (a) Speech signal s(n), (b) reconstructed speech signal §(n), '(c)
excitation signal (i.e., output of the pitch generator), (d) difference sig-
nal s(n) — $(n) in the RPE coding procedure with pitch prediction.
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Fig. 11. Power spectra of the speech signal (solid line) and the difference
signal s(n) — §(n) (dashed line) fory = 0.80. The spectra were obtained
from the last 32 ms segment of Big. 5.
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Fig. 12. Power spectra of the speech signal (solid line.) and thq diffcrence
signal s(n) — §(n) (dashed line) for v = 0.80, and pltch_predlctlon. The
spectra were obtained from the last 32 ms segment of Fig. 10.
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Fig. 13. Segmental SNR values obtained from RPE encoded speech with
(+pp) and without (—pp) pitch prediction for different update rates of
the predictors and different pulse spacings N (f = female, m = male).
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ing filter of (2) is an effective choice or not, and concen-
trate instead on the effect of the suggested filter and its
control parameter +. This parameter determines the
amount of noise power in the formant regions of the
speech spectrum. Noise shaping reduces the SNR, but im-
proves the perceived speech quality. An optimal value for
¥ was found to be between 0.80 and 0.90 at an 8 kHz

sampling rate, and resulted in an average 2 dB decreag{e»

in SNR.

Aside from the value of 7, the order of the noise-shap-
ing filter could also be of importance. By default, the coef-
ficients {a;} and the order p of 1/A(z/7y) are equal to those
of the predictor A(z), but instead, we can compute a gth-
order predictor (¢ < p) and use the resulting g coefficients
to define the weighting filter. While reducing the order,
we nevertheless must take care that the noise remains
properly weighted. We examined the effect of decreasing
the order of the weighting filter 1/A(z/7), and observed
that for low orders (2-4), the results were close to those
obtained with a 16th-order filter. However, the compu-
tational savings obtained by reducing the order of the
weighting filter are marginal.

The time-varying nature of the weighting filter provides
a significant contribution to the complexity of the analysis
procedure, since the system of linear equations to be
solved is entirely built on the impulse response of this
filter. It is obvious that the computational complexity
would be considerably lower in case a weighting filter
could be chosen such that the matrix to be inverted no
longer depends on short-time data. It turns out that this is
possible by choosing the weighting filter equal to 1/ C(zlvy),

i 1
C(zly)

5 : 24)
45 kZ ayet
E 1

where {c,} are the coefficients of the fixed low-order pre-
dictors as used in DPCM systems, which are based on the
averaged spectral characteristics of speech. We carried out
comparative listening tests on the results obtained with
fixed weighting filters of different orders (g = 1 to 3).
The value of v was set to 0.80 and we used for {c;} the
coefficients tabulated in [13]. It was surprising to find that
the effects of the weighting filters 1/A(z/y) and 1/C(z/v)
were judged to be almost equivalent. This remarkable re-
sult can be exploited to dramatically reduce the complex-

ity of the proposed coder, as we will show in the next
section.

V. CoMpLExITY REDUCTION OF THE RPE Cober

The analysis procedure of the RPE coder necessitates
the solution of N sets of linear equations, where N rep-
resents the spacing between successive pulses within a
frame in the excitation model. However, the matrices
HH, which have to be inverted, can be solved very ef-
ficiently as was described in [8] and [9]. We shall not
pursue the details of this procedure here, but we shall in-
stead look for modifications of the algorithm to reduce the
complexity without affecting the coder performance.

A. Modification of H H\, to a Toeplitz Matrix

To begin with, we can reconfigure the algorithm to force
the matrix product H, H', in (10) to become a single Toe-
plitz matrix which is independent of the phase k. Thus,
let

h(n) = y"gn), n=0,1,2, ¥ 25)

be the impulse response of the weighting filter 1/A(z/y),
where g(n) is the impulse response of the all-pole filter
1/A(z). For values of || less than one, h(n) converges
faster to zero than g(n) and, as a result, the L by 2 L. matrix
built on A(n) can be very well approximated by the up-
pertriangular Toeplitz matrix H in (26).

P(O) h(1) -+ - h(L — 1) 0 S b

0 () - - hL-2) hL - 1) 0
2D 1 B DML —2) 0
L0 0 - nO) h(L — 1) 0]
(26)

Notice that the matrix HH' is also a Toeplitz matrix.
Moreover, when substituting H from (26) into (8), we
shall have that the matrices H H| are independent of the
phase index k and are equal to a single Toeplitz matrix.
It should also be remarked that the matrix of (26) is an L
by 2L matrix instead of an L by L. Thus, when substitut-
ing H of (26) in (7) and (8), the vectors e, ¢, and e®
in (6) and (7) will now be of length 2 L, while the vectors
v® and r in (4) and (7) remain of dimension L. The RPE
encoding procedure that is based on the mapping H in
(26), and for which g(n) in (25) is the impulse response
of the transfer function 1/A(z), will be referred to as
RPMI. Fig. 14(a) shows the segmental SNR values per
10 ms for this method (dashed line) and the original
method (solid line) for the utterance “‘a lathe is a big tool”’
spoken by both a male and a female speaker.

B. Modification of H,H}, to a Band Matrix

In the previous subsection, a computationally attractive
scheme was obtained by forcing the matrix operator H to
be of the form of (26). Recall, however, that this structure
is almost naturally emerging when the mapping originally
defined via (5) is taken to be of dimension L by 2 L instead
of L by L. This is the more so when h(n) in (26) is the
impulse response of the fixed filter 1/C(z/7y) of (24). But
an even more interesting observation is that the resulting
single Toeplitz matrix, whether data dependent or not, is
strongly diagonal dominant. Hence, when minimizing
E® in (11), where now H is built on 1/C(z/%), or equiv-
alently, when maximizing

T® = ¢OH{H.H]'H, ¢ @7

We can conveniently replace the (Toeplitz) matrix H,H}
with a diagonal matrix r, I, where r, — TiZd k), yield-

e ]
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Fig. 14. Segmental SNR ratios for RPE (solid line) and modified methods,
(a) RPM1 and (b) RPM2 (dashed line) for a female and male speaker.

TABLE III
SNR VALUES OBTAINED WITH THE ORIGINAL AND THE MODIFIED RPE
ALGORITHMS RPM1 AND RPM2 DESCRIBED IN SECTION V-A AND V-B. THE
PROCEDURES RPF1 AND RPF2 ARE DESCRIBED IN SECTION V-C,

Method SNRSEG SNR
RPE 14.28 dB 11.17 dB
RPM1 12.98 dB 10.93 dB
RPM2 13.00 dB 11.03 dB
RPF1 10.04 dB 9.38 dB
RPF2 10.40 dB 9.21 dB
ing
1
T(k) SET e(0) Hf( H, e(O),, 28)
To

which means that no matrix inversion is needed to find
the Optimum phase k. Table III lists the SNR and SNRSEG
values for the different methods, obtained by averaging
the results of the same four utterances used in previous
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examples. Method RPM2 refers to the procedure de-
scribed in this subsection, where the optimal phase index
k is determined from (28), after which the excitation string
b® is computed according to (10). From this table, we
see that the modifications introduced resulted in a slight
decrease in SNR. But from informal listening tests, the
modified methods were judged to be almost equivalent to
the original RPE method. Fig. 14(b) shows the segmental
SNR values per 10 ms for RPM?2 (dashed lines) and the
original method (solid line) for the utterance “‘a lathe is a
big tool’” spoken by both a male and a female speaker.

C. Avoiding Matrix Inversion

The discussions in the previous two subsections have
led to the conclusion that the complexity of the RPE coder,
although moderate by itself, can be substantially reduced
without any significant degradation of the speech quality.
We shall show in this subsection that it is even possible
to obtain an extremely simple encoding algorithm that
turns out to yield an applicable practical version of the
(conceptual) optimal baseband coder which was described
in Section III and was shown there to be equi(tglent to the
RPE coder. Thus, let 4(n) in (26) be the impulse response
of the time-invariant filter 1/C(z/y) as defined in (24).
Next, use in (8) the matrix H as defined in (26) and dis-
card the zeroth-order approximation e, in (7). Then (6)
and (10) become

e® = rH — p®H, (29)
and
b“[H.H}] = rHH'M., (30)
respectively. Now denoting
S = HH', 31
and recalling that :
HkH;( = r()I, (32)
with
L=1
ro = 2 K,
i=0
as a coder constant, it is easy to show that
1
b® = — rSM.. (33)
o

Interpreting M} as a downsampling operator, (33) says
that 5* resembles® a downsampled output of a smoother
S whose input is a scaled version of the residual r [see
Fig.15(a)]. The excitation selection in the diagram of Fig.
15(a) is based on the minimization of the approximation
error given by (11). Under the above-mentioned con-
straints, this equation becomes

E® = rHH'r' — rpp®p®. (34)
*This statement must be carefully interpreted. In fact, (33) is a block

smoother, and hence, the boundary conditions of the smoother’s internal
state must be properly taken into account..
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Fig. 15. Simplified RPE procedure (a) and excitation selection (b). The
smoother is represented by a triangle shape.
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Fig. 16. Segmental SNR for RPF1 procedure (solid line) and RPF2 pro-
cedure (dashed line) for a female (a) and a male (b) speaker.

Hence,
min {E®} = max {6%p™" (35)

The whole procedure is now extremely simple. The resid-
ual signal r is “‘smoothed’’ with the smoother § = HH'.
The resulting output vector is downsampled by applying
M, and the b® for which p®p® i maximum is selected
[see Fig. 15(b)]. Notice that since H is built on 1/ C(zly),
tl}e smoother § will be of low order (typically 3rd order),
since h(n) is a rapidly decaying sequence. For compari-
son, the averaged SNRSEG values obtained with this pro-
cedure have been included in Table III. In this table, the
RPE coder using a fixed weighting filter is referred to as
RPF1, while the procedure outlined above is referred to
as RPF2. In Fig. 16, the same comparison is made of the
segmental SNR as a function of time for the utterance ‘‘a
lathe is a big tool”’ spoken by both a male and a female
speaker. From this figure, it is clear that for a fixed
weighting filter procedure RPF2 provides a quality com-
parable to that of procedure RPF1. The advantage of the
former is its ease of implementation.

VI. QUANTIZATION

To quantize the pulses (i.e., entries of b®), we used an
8-level adaptive quantizer whose input range was adjusted
to the largest pulse amplitude within the current frame of
size L. The quantization bins can be determined by ,
Lloyd-Max procedure (nonuniform), but we fBund that 2
uniform quantizer also performs quite well. The quantizer
‘hormalization factor is logarithmically encoded with 6 bits
and is transmitted every L samples (typically 5 ms). The
norrpalized pulses are encoded using 3 bits per pulse. To
minimize quantization errors, the quantizer has to be in-
corporated in the minimization procedure. This can be
done in two ways. In the first case (RPQ1), only the op-
timal excitation vector is quantized; and in the second case
(RPQ2), every candidate 5% is quantized and the quan-
tized vector that produces a minimum error is selected.
From segmental SNR measurements, we found that RPQ2
yields a higher SNR, and in listening tests the quality of
the reconstructed speech of RPQ2 was judged to be some-
what better than that of RPQI.

The 12 reflection coefficients were transformed to in-
verse sine coefficients and encoded with 44 bits/set. The
bit-allocation and quantizer characteristics were deter-
mined by the minimum deviation method [14]. Using 3
bits/pulse and a pulse spacing of N = 4, the excitation
signal can be encoded with 7 kbits/s. The predictor coef-
ficients can be encoded with 2.2 kbits/s resulting in a total
bit rate of 9.2 kbits/s. The quality of the reconstructed
speech was judged to be good but definitely not transpar-
ent. In informal listening tests, it was determined that the
RPE approach has fewer artifacts than the baseband coder
as proposed in [4], and that the performance is compara-
ble to that of the MPE schemes. A pitch predictor will
enhance the coder performance but goes at the cost of an
additional 1000 bits/s (4 bits for 8 and 6 bits for M fi

VII. CoNcLusioN

In this paper, a novel coding concept has been proposed
that uses linear prediction to remove the short-time cor-
relation in the speech signal. The remaining residual sig-
nal is then modeled by a regular (in time) excitation se-
quence, that resembles an upsampled sequence. This
model excitation signal is determined in such a way that
the perceptual error between the original and the recon-
structed signal is minimized. The computational effort is
only moderate and can be further reduced by using a fixed
error weighting filter and an appropriate vector size (min-
Imization segment length). The coder can produce high-
quality speech at bit rates around 9600 bits/s by using a
pulse spacing equal to 4 and quantizing each pulse with 3
bits. The use of pitch prediction improves the speech
quality but, in general, the RPE coder performs ade-
quately without a pitch predictor. Other applications for
the proposed coder can be found in the area of wide-band
speech coding (7 kHz bandwidth) as encountered in tele-
and video-conferencing applications [15]. ‘

KROON et al.: REGULAR-PULSE EXCITATION

APPENDIX

The excitation vector b*, obtained with the optimized
BBC (Section III), coincides with the vector 5% produced
by the RPE algorithm (Section II).

Proof: Equation (19)-can be written as

SORIHH{IR, = ¢"H}R,.
Multiplying both sides to the right by R, gives
FORIHH]R,R, = ¢"H.R'R,.

Now assuming that R} R, is nonsingular (which will al-
most always be the case for speech signals), we can as
well write

FORIHHY) = ¢OH,,

Substituting 5* for f ®R,, see (15), in this equation, we
obtain (10). O
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frequency shift (Corresp.); T-ASSP Aug 86 1008-1010

Nagai, Nobuo, see Miyanaga, Yoshikazu, 7-ASSP Jun 86 423-433

Nehorai, Arye, and Boaz Porat, Adaptive comb filtering for harmonic signal
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domain; T-ASSP Oct 86 1139-1152

¥
(0]

Ogawa, Hidemitsu, see Oja, Erkki, T-ASSP Dec 86 1643-1653
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transform; T-ASSP Aug 86 979-989

-

Pakula, Lewis, and Steven M. Kay. Detection performance of the circular
correlation coefficient receiver; T-ASSP Jun 86 399-404
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SUBJECT INDEX
A

Acoustic communication; cf. Underwater acoustic communication
Acoustic signal detection : ;
phase-angle estimation from cross-spectral matrix. Vezzosi, Georges, T-
ASSP Jun 86 405-422
Acoustic tracking; cf. Sonar tracking
Acoustic transducers; cf, Microphones
Adaptive arrays % : y
adaptive array algorithms for recursive soluthn of matrix problems
arising in optimal beamforming and direction-finding. Schreiber,
Robert, T-ASSP Oct 86 1038-1045 :
broadband beamforming; generalized sidelobe canceler. Buckley, Kevin
M., T-ASSP Oct 86 1322-1323
microphone-array system for noise reduction, Kaneda, Yutaka, + , T-
ASSP Dec 86 1391-1400
Adaptive codin g
sl:Abband cﬁding with adaptive predictionn for 56 kb/s audio,
Richardson, Edward B, + , T-ASSP Aug 86 691-696
Adaptive equalizers 5 : i
gradient algorithm with simplified arithmetic for channel equalization.
Xue, Ping, + , T-ASSP Dec 86 1603-1611
Adaptive estimation L
IIR structure for sinusoidal enhancement, frequency estimation, and
detection. Hush, Don R., + , T-ASSP Dec 86 1380-1390

+ Check author entry for coauthors

speech signals; estimation of time-varying  ARMA  parameters.
Miyanaga, Yoshikazu, + , T-ASSP Jun 86 423-433
Adaptive estimation; cf, Adaptive Kalman filtering
Adaptive filters ;
adaptive comb filtering for harmonic signal enhancement. Nehorai,
Arye, + , T-ASSPOct 86 1124-1138 ]
adaptive Gaussian filtering in routine ECG/VCG analysis. Ta/mon, Jan
L., + ,T-ASSPJun 86527-534 :
block processing fast-transversal-filter a#ptive algorithm. Cioffi, John
M., T-ASSP Feb 86 77-90 '
block realization of multirate adaptive digital filters. Lee, Jae Chon, + ,
T-ASSP Feb 86 105-117
complex adaptive algorithm for IIR filtering. Shynk, John J, T-ASSP
Oct 86 1342-1344 :
IIR structure for sinusoidal enhancement, frequency estimation, and
detection. Hush, Don R., + , T-ASSP Dec 86 1380-1390 - :
nonlinear digital filters using distributed arithmetic, Sicuranza, Giovanni
L., + , T-ASSPJun 86 518-526
nonlinear quantization effects in frequency-domain complex scalar LMS
adaptive algorithm. Sherwood, Douglas T., + , T-ASSP Feb 86
140-151
normalized frequency-domain LMS adaptive algorithm. Bershad, Neil
J, + , T-ASSPJun 86 452-461 : -
normalized least-mean-square adaptive filter algorithm with Gaussian
inputs; analysis. Bershad, Neil J,, T-ASSP Aug 86 793-806
optimum data nonlinearity in LMS adaptation. Bershad, Neil J,, T-ASSP
Feb 86 69-76 5
parameter drift in LMS adaptive filters. Sethares, William A, +,T
ASSP Aug 86 868-879
recursive center-frequency adaptive filters for enhancement of bypass
signals. Raja Kumar, Ratnam V., + , T-ASSP Jun 86 633—63_7
reply to comments on ‘Comparison of the convergence of two algorithms
for adaptive FIR digital filters’ by T. A. C. M. Claasen and W. F. G.
Mecklenbriucker. Claasen, T. A. C M., + , T-ASSP Feb 86
202-203 (Original paper, Jun 81 670-678) : 3
rotational search methods for adaptive Pisarenko harmonic retrieval.
Fuhrmann, DanielR., + , T-ASSP Dec 86 15501565
self-orthogonalizing block adaptive filter (SOBAF) that yields FIR filter
structures. Panda, Ganapati, + , T-ASSP Dec 86 1573-1582
stochastic operator norms for two-parameter adaptive lattice filters.
Sohie, GuyR. L., + , T-ASSP Oct 86 11621165 ¥
tracking properties and steady-state performance of RLS adaptive filter
algorithms.  Eleftheriou, Evangelos, + , T-ASSP Oct 86
1097-1110
transform-domain LMS adaptive digital filters; performance Lee, Jae
Chon, + , T-ASSPJun 86499-510
variable-step adaptive filter algorithm; application to FIR and IIR
filters. Harris, Richard W, + , T-ASSP Apr 86 309-316
zero-tracking adaptive filters. Orfanidis, Sophocles J, + » T-ASSP, Dec
86 15661572
Adaptive Kalman filtering : :
robust adaptive Kalman filtering for systems with unknown step inputs
and non-Gaussian measurement errors. Kirlin, R. Lynn, + , T-
ASSP Apr 86 252-263
Adaptive signal detection 3 g .
detecting transient signals of unknown waveform in white Gaussian
noise. Porat, Boaz, + , T-ASSP Dec 86 1410-1418
Adaptive signal processing
&aptivﬂntgrpolation of discrete-time signals that can be modeled as
autoregressive processes. Janssen, A. J. E. M,, + , T- -ASSP Apr 86
317-330 :
adaptive noise cancellation applied to case where acoustic barrier exists
between primary and reference microphones. Harrison, William
A., + ,T-ASSPFeb8621-27
book review; Adaptive Signal Processing (Widrow, B., and Stearns, S.
D.; 1985). Morgan, Dennis R., T-ASSPAug861017—1018
recursive estimation algorithm using selective updating for spectral
analysis and adaptive signal processing. Huang, Y. F., T-ASSP Oct
861331-1334 ¥ :
Adaptive signal processing; cf. Adaptive arrays; Adaptive equalizers;
Adaptive filters
Addition :
optimization of one-bit full adders embedded in regular structures.
Iwano, Kazuo, + , T-ASSP Oct 86 1289-1300
Aircraft; cf. Helicopters
All-pass circuits e
first-order two-dimensional all-pass digital filter realization. Sudhakara
Reddy, M., + , T-ASSPAugB61011—lpl3
Angular position measurement; cf. Direction-finding
Antenna arrays i :
unconstrained  partitioned realization for derivative-constrained
broadband antenna array processors. Er, Meng Hwa, + , T-ASSP
Dec 86 1376-1379 3

t Check author entry for subsequent corrections/comments

Antenna arrays; cf, Adaptive arrays
Approximation methods; cf, Filters; Interpolation;
approximation; Polynomial approximation
Arithmetic; cf. Addition; Distributed arithmetic; Floating-point arithmetic;
Multiplication
Arithmetic coding; cf, Residue coding
Array processing
adaptive array algorithms for recursive solution of matrix problems
arising in optimal beamforming and direction-finding Schreiber,
Robert, T-ASSP Oct 86 1038-1045
array filters for attenuating coherent interference in the presence of
random noise. Hanna, Magdy T, + ,T- ~ASSP Aug 86 661-668
broadband beamforming; generalized sidelobe canceler, Buckley, Kevin
M., T-ASSP Oct 86 1322-1323
detection of wave reflectors and wave sources in earth subsurface. Pitas,
loannis, + , T-ASSP Oct 86 1245-1257
endfire line array shadings designed to provide useful amount of
supergain. Cox, Henry, + , T-ASSP Jun 86 393-398
exact maximum-likelihood parameter estimation of superimposed
ex;g)onential signals in noise. Bresler, Yoram, + , T- -ASSP Oct 86
1081-1089
modal decomposition signal subspace algorithms for estimating location
of multiple wideband emitters arriving at sensor array. Su,
Guaning, + , T-ASSP Jun 86 585-602
number of signals resolvable by uniform linear array. Bresler,
Yoram, + , T-ASSP Dec 8613611375
ring array processor architecture for highly parallel dynamic time
warping for real-time speech recognition. Takahashi, Jun-ichi, + ,
T-ASSP Oct 86 1310-1318
Array processing; cf, Adaptive arrays; Signal processing antennas
Arrays; cf, Antenna arrays
Audio coding
subband coding with adaptive predictionn for 56 kb/s audio.
Richardson, Edward B, + , T-ASSP Aug 86 691-696
Audio systems
multiprocessor digital signal processing system for real-time audio
applications. Morley, Robert T e T-ASSP Apr 86 225-231
Audio systems; cf. Microphones
Autoregressive moving-average processes
adaptive identification of time-varying ARMA speech model. Miyanaga,
Yoshikazu, + , T-ASSP Jun 86 423-433
computation of exact information matrix of Gaussian time series with
stationary. random components. Porat, Boaz, + , T-ASSP Feb 86
118-130
identification of systems from data measurements using ARMA lattice
models. Lim, Yong Ching, + , T- ~ASSP Aug 86 824-828
MEM and ARMA estimators of signal carrier frequency. EJ-Henna wey,
M.S., + , T-ASSP Jun 86 618-620
modeling and identification of Symmetric noncausal impulse responses.
Tugnait, Jitendra K., T-ASSP Oct 86 1171-1181
numerator estimators for ARMA spectra compared. Moses, Randolph
L, + , T-ASSP Dec 86 1668-1671
parameter estimation for ARMA models; algebraic approach. Cadzow,
James A., + , T-ASSP Jun 86 462-469
unbiased parameter estimation of nonstationary signals in noise.
Alengrin, G, + , T-ASSP Oct 86 1319-1322
Autoregressive processes
adaptive interpolation of discrete-time signals that can be modeled as
allxtore:;gressive processes. Janssen, A. J. E. M, +, T-ASSP Apr 86
317-330
autoregressive moving-average modeling of digital systems using two-
channel autoregressive lattice. Lim, Yong Ching, + , T-ASSP
Aug 86 824-828
Cramer - Rao bounds for autoregressive parameter estimation as
function of data length. Giannella, Fernando, T-ASSP Aug 86
994-995
glottal inverse filtering by joint estimation of AR system with linear
input model Milenkovic, Paul, T- ~ASSP Feb 86 2842
multichannel AR spectrum estimation; optimum approach in reflection
coefficient domain. Ning, Taikang, + , T-ASSP Oct 86 1139-1152
properties of lattice autoregressive filters. Picinbono, Bernard, + , T-
ASSP Apr 86 342-349
relation’ between maximum entropy probability density function and
autoregressive model. Choi, B. S, T-ASSP Dec 86 1659-1661
unbiased parameter estimation of nonstationary signals in noise.
Alengrin, G, + , T-ASSP Oct 86 1319-1322

Least-squares

B

Bandpass filters
bandpass and bandstop recursive filters with low sensitivity.
Bhattacharya, M, + | T- ~ASSP Dec 86 1485-1492
efficient calculation of signal and noise variances for bandpass filter. Lue,
Hsien-Chiang, + , T-ASSP Aug 86 1002-1004

+ Check author entry for coauthors
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Bandstop filters
bandpass and bandstop recursive filters with low sensitivity.
Bhattacharya, M., + , T-ASSPD@C86]485—1492
Bearings (direction-finding); cf, Direction-ﬁnding
Biomedical signal processing; cf, Cardiography, ECG
Block coding; cf, Image coding
Book reviews
Adaptive Signal Processing (Widrow, B., and Stearns, S. D. 1985).
Morgan, Dennis R., T-ASSP Aug 86 1017-1018
Fast Algorithms for Digital Signal Processing (Blahut, R. E.; 1985).
Steinhardt, Allan, T-ASSP Feb 86 221
Optimum Signal Processing: An Introduction (Orfanidis, S. J.; 1985).
Wakefield, Gregory H, T- -ASSP Aug 86 1018-1019
Radar Data Processing: Vol. I—Introduction and Tracking’ (Farina, A.,
and Studer, F. A.; 1985). Hero, Alfred, T-ASSP Oct 86 1350~1351
Recursive Estimation and Time-Series Analysis (Young, P.; 1984).
Wang, H., T-ASSP Dec 86 1678

C

Cardiography, ECG
adaptive Gaussian filtering in routine ECG/VCG analysis. Ta/mon, Jan
L, + , T-ASSPJun 86 527-534
Cardiography, VCG
adaptive Gaussian filtering in routine ECG/VCG analysis. Talmon, Jan
L, + ,T-ASSPJun 86527-534
Cepstral analysis
comments on ‘A general method of minimum Cross-entropy spectral
estimation’ by M. A. Tzannes, et al.. Burr, Robert L., + , T-ASSP
Oct 86 1324-1326 (Original paper,Jun 85 748-752)
short-time complex cepstrum of voiced speech; new model, Verhelst,
Werner, + , T-ASSP Feb 86 43-51
speaker-independent isolated word recognition using dynamic features
of speech spectrum. Furuj, Sadaoki, T-ASSP Feb 86 5259
Character recognition, handwriting
VLSI architecture for dynamic time-warp recognition of handwritten
symbols. Cheng, Heng-Da, -+ » T-ASSP Jun 86 603-613
Chebyshey functions
computation of line spectral frequencies for parameterizing analysis and
synthesis filters used in linear predictive coding of speech. Kabal,
Peter, + , T-ASSP Dec 86 1419-1426
Circuits; cf. All-pass circuits; Feedback circuits; Filters
Coding/decoding; cf, Residue coding
Comb filters
adaptive comb filtering for harmonic signal enhancement. Nehorai,
Arye, + , T-ASSP Oct 86 1124-1138
Communication switching; cf, Packet switching
Communication systems; cf, Speech communication
Computer fault tolerance
design of fault-tolerant computer-implemented signal detectors, Meyer,
Gerard G. L., + , T-ASSP Aug 86 973-979
Computer languages
SIGNAL, data-flow-oriented language for signal processing. Le
Guernic, Paul, -+ 7 T—ASSPApr 86 362-374
Computer pipeline processing; cf. Pipeline processing
Computer reliability; cf, Computer fault tolerance
Computers; cf. Parallel processing; Pipeline processing
Convolution
higher-radix aperiodic convolution algorithms for all filter lengths up to
36. Balla, Prabhakara C, + , T-ASSP Feb 86 60-68
implementations of quadratic digital filters using _systolic arrays,
distributed arithmetic, and linear convolutions with multipliers.
Chiang, Hsing-Hsing, + , T- -ASSP Dec 86 1511-1528
index transforms of multidimensional cyclic convolutions and discrete
Fourier transforms. Hekrdla, Josef, T- ~ASSP Aug 86 996-997
Correlation
five correlation methods for delay estimation compared by computer
simulation. Fertner, Antoni, + , T-ASSP Oct 86 1329-1330
measurement/computation of spectral correlation functions for time
series that exhibit cyclostationarity. Gardner, William A., T-ASSP
Oct 861111-1123
time-delay estimation by combining efficient algorithms and generalized
cross-correlation methods, Hertz, David, T-ASSP Feb 86 1-7
Covariance matrices
estimating covariance matrix by signal subspace averaging. Karasalo,
likka, T-ASSP Feb 86 8-12
projection approach to bearing estimations. Yeh, Chien-Chung, T-ASSP
Oct 86 1347-1349
relation between maximum likelihood estimation of structured
co;an'agce matrices and periodograms; Dembo, A., T-ASSP Dec 86
1661-1662
Cross-entropy minimization; cf, Minimum-entropy methods

t Check author entry for subsequent corrections/comments
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