
Netflix, Inc. et al. Exhibit 1003
Page 1 of 91

US006910068B2

«2) United States Patent (10) Patent No.: US 6,910,068 B2
Zintel et al. (45) Date of Patent: Jun. 21, 2005

(54) XML-BASED TEMPLATE LANGUAGE FOR (58) Field of Search ..0.........0..:ccceeeeeeees 709/218, 220,
DEVICES AND SERVICES 709/225, 229, 249

(75) Inventors: William M. Zintel, Kenmore, WA (56) References Cited
(US); Amar S. Gandhi, Redmond, WA
(US); Ye Gu, Seattle, WA (US); U.S. PATENT DOCUMENTS
Shyamalan Pather, Redmond, WA 5,394,556 A 2/1995 Oprescuresceseeceeeee 395/800
(US); Jeffrey C. Schlimmer, Redmond, 5,491,800 A 2/1996 Goldsmith et al. 395/200.12
WA (US); Christopher M. Rude, .
Redmond, WA (US); Daniel R. (Continued)
Weisman, Kirkland, WA (US); Donald FOREIGN PATENT DOCUMENTS
R. Ryan, Redmond, WA (US); Paul J.
Leach, Seattle, WA (US); Ting Cai, wo WO 99/35856 7A999
Redmond, WA (US); Holly N. Knight, OTHER PUBLICATIONS
Woodinville, WA (US); Peter S. Ford,
Carnation, WA (US) A. Kung, B. Raither, S. McConnell, Electronic Commerce

Services Expand Home Automation Capabilities, TRIA-
(73) Assignee: Microsoft Corporation, Redmond, WA LOG, EMMSEC 799 Conference, Jun. 1999, pp. 1-7.

(US) (Continued)
(*) Notice:—Subject to any disclaimer, the termofthis primary Examiner—Jeffrey Gaffin

patent is extended or adjusted under 35 Assistant Examiner—Mohammad O. Farooq
U.S.C. 154(b) by 841 days. (74) Attorney, Agent, or Firm—Lee & Hayes, PLLC

(21) Appl. No.: 09/811,362 (57) ABSTRACT
Auniversal plug and play (UPnP) device makesitself known

>) Bled: through a set of processes-discovery, description, control,
(22) Filed: Mar. 16, 2001 eventing, and presentation. Following discovery of a UPnP
(65) Prior Publication Data device, an entity can learn more about the device and its

capabilities by retrieving the device’s description. The
US2002/0029256 A1 Mar. 7, 2002 description includes vendor-specific manufacturer informa-

Under 37 C AT tion like the model name and number, serial number, manu-(Under37CFR 1.47) facturer name, URLsto vendor-specific Web sites, etc. The
Related U.S. Application Data description also includesa list of any embedded devices or

services, as well as URLsfor control, eventing, and presen-

(63) Continuation-in-part of application No. 09/496,318,filed on tation. The descriptionis written by a vendor,andis usually
Feb. 1. 2000. based on a device template produced by a UPnP forum

(60) Provisional application No. 60/190,943,filed on Mar. 21, working committee. The template is derived from a template
2000, provisional application No. 60/160,235,filed on Oct. language that is used to define elements to describe the
18, 1999, and provisional application No. 60/139,137, filed device and any services supported by the device. The
oa Jun. 11, 1999. template language is written using an XML-based syntax

(SL) Tmt. C0? cieceececcccecsessessessesseeseeseeseeseeees GO06F 15/177 that organizes and structures the elements.
(52) U.S. Che oes, 709/220; 709/218; 709/225;

709/229; 709/249 38 Claims, 48 Drawing Sheets

] PERSONAL COMPUTER]___895
PROCESSING my [ur + ic- iyaaa

‘CRERATING |__- 5SYSTEN
Fe uTEM -

a “ awu yo
| row

ei2~

Poel er}

Netflix, Inc. et al. Exhibit 1003

Page 1 of 91

Netflix, Inc. et al. Exhibit 1003
Page 2 of 91

US 6,910,068 B2
Page 2

U.S. PATENT DOCUMENTS

5,559,967 A 9/1996 Oprescu et al... 395/285
5,627,964 A 5/1997 Reynolds et al. 395/183.22
5,745,126 A * 4/1998 Jain et al. wee 382/154
5,748,980 A 5/1998 Lipe et al. wo... 395/828
5,764,930 A 6/1998 Staats...eee 395/287
5,787,246 A 7/1998 Lichtman etal. 395/200.5
5,787,259 A 7/1998 Haroun et al. 395/200.83
5,793,979 A 8/1998 Lichtmanet al. 395/200.56
5,809,331 A 9/1998 Staats et al. oe. 395/830
5,881,230 A 3/1999 Christensen et al. 395/200.33
5,903,728 A 5/1999 Semenzato0... 395/200.47
5,903,894 A 5/1999 Renerisou...eeeeeeeeeee 707/100
5,938,752 A 8/1999 Leung etal. oe. 710/126
6,083,276 A 7/2000 Davidsonetal.
6,101,499 A 8/2000 Ford et al. oo... eee eee 707/10
6,167,448 A 12/2000 Hemphillet al.
6,466,971 B1 10/2002 Humplemanetal.
6,477,566 B1 * 11/2002 Davis et al. oe. 709/223
6,507,856 Bl * 1/2003 Chenetal. we. 715/513
6,546,419 B1 4/2003 Humplemanetal.
6,553,402 B1 * 4/2003 Makarioset al. 709/201
6,560,633 B1 * 5/2003 Roberts et al... 709/202

OTHER PUBLICATIONS

Web Interface Definition Language (WIDL), NOTE-
widl—970922, WebMethods, Inc. 1997, pp. 1-15.
“Home Plug & Play™: CAL-based Interoperability for
HomeSystems,” HomePNP™Specification. Version 1.0, pp.
1-111, (Apr. 9, 1998).
White Paper, “HAVi, the A/V digital network revolution,”
HAVi Organization, pp. 1-7 (1999).
“Specification of the Home Audio/Video Interoperability
(HAVi) Architecture,” The HAVi Specification. Version 1.0
(Jan. 18, 2000).
Anderson, “FireWire System Architecture: Second Edition,
IEEE 1394a,” chapters 1-4 (1999).
Technical White Paper, “Jini Architectural Overview,” Sun
Microsystems, Inc. (1999).
“Salutation Consortium Frequently Asked Questions,” The
Salutation Consortium, pp. 1-6 (priorto filing date).
“Salutation Architecture Specification (Part-I), Version
2.0c,” The Salutation Consortium, (Jun. 1, 1999).
“How it works,” Thalia, pp. 1-3 (prior to filing date).
“Sun Microsystems and Thalia Productions Inc. to Collabo-
rate to Co—Develop Network Software and Protocols for the
Home, Results to Make Networked Appliances for the
Homea Reality,” Sunbeam Corporation, pp. 1-2 (2000).
“Sunbeam Joins Microsoft in the Universal Plug and Play
Forum to Establish A ‘Universal’ Smart Appliance Technol-
ogy Standard,” Sumbeam Corporation, pp. 1-2 (2000).

“Time for Smart Talk is Over, Sunbeam Trumps Small
Appliance Industry With Smart Appliance Debut,” Sunbeam
Corporation, pp. 1-4 (2000).
“Lonworks Core Technology,” Echelon Corporation, pp.
1-2 (2000).
“Underlying Protocol of Echelon’s Lonworks® Network
Adopted as New ANSIStandard, Free Reference Implemen-
tation Available to Developers,” Echelon Corporation, pp.
1-2 (2000).
Handleyet al., “SIP: Session Initiation Protocol,” The Inter-
net Society, pp. 1-130 (Aug. 6. 2000).
Rosenberg et al., “SIP Extensions for Instant Messaging,”
Internet Engineering Task Force, pp. 1-30 Jun. 15, 2000).
Rosenberg et al., “SIP Extensions for Presence,” Internet
Engineering Task Force, pp. 1-77 (Jun. 15, 2000).
Tsang et al., “Requirements for Networked Appliances:
Wide-Area Access, Control, and Interworking,” Internet
Engineering Task Force, pp. 1-9 (Sep. 2000).
Tsang et al., “SIP Extensions for Communicating with
Networked Appliances,” Internet Engineering Task Force,
pp. 1-9 (Nov. 2000).
Moyeret al., “Framework Draft for Networked Appliances
Using the Session Initiation Prtocol,” Internet Engineering
Task Force, pp. 1-31 (Nov. 2000).
Marples,“Naming and Accessing Network Appliances using
extensions to the Session Initiation Protocol,” SZP for
Toaster, Telcordia Technologies (2000).
“Networked Appliances,” AR Greenhouse, Telcordia Tech-
nologies, pp. 1-2 (Dec. 15, 2000).
Moyeret al., “SIP for Light Bulbs, Using SIP to Support
Communication with Networked Appliances,” Telcordia
Technologies (Aug. 2, 2000).
Bennett et al., “Integrating Presence with Multi-media
Communications,” White Paper, Dynamicsoft., pp. 1-18
(2000).
Rosenberg et al., “An Application Server Architecture for
Communications Services,” White Paper, Dynamicsoft., pp.
1-13 (2000).
“EIB Technology,” EIB (2000).
Freemanetal., “JavaSpaces™Principles, Patterns, and Prac-
tice,” Addison—Wesley Longman,Inc., Reading, Massachu-
setts (1999, Sun Microsystems,Inc.).
Arnold et al., “The Jini™Specification,’ Addison—Wesley
Longman,Inc., Reading, Massachusetts (1999, Sun Micro-
systems, Inc.).
Edwards, “Core Jini™, Second Edition,” Prentice Hall PTR,
Upper Saddle River, New Jersey (2001).

* cited by examiner

Netflix, Inc.et al. Exhibit 1003
Page 2 of 91

Netflix, Inc. et al. Exhibit 1003
Page 3 of 91

U.S. Patent Jun. 21, 2005 Sheet 1 of 48 US 6,910,068 B2

FIG. 1 100 \
MULTIPLE —~— 102 493 MULTIPLE

FUNCTION DEVICE FUNCTION DEVICE

DEVICE CONTROL

104 PROTOCOLS 107

conOL i EVENTS CONTROLLEDPOINT DEVICE

DEVICE CONTROL

106 PROTOCOLS 105

EVENTS
CONTROLLED

DEVICE
FIG.2

100

x

USER CONTROL

POINT

USER CONTROL

POINT 105

oe BRIDGED
DEVICE

 120

NS

BRIDGED DEVICES

BRIDGED

DEVICE

CONTROLLED

DEVICE
 CONTROLLED

DEVICE 107

Netflix, Inc. et al. Exhibit 1003
Page 3 of 91

Netflix, Inc. et al. Exhibit 1003
Page 4 of 91

U.S. Patent Jun. 21, 2005 Sheet 2 of 48 US 6,910,068 B2

FIG. 3 200 202
\

220=ROOT DEVICE 210 211

DISCOVERY PRESENTATION

DESCRIPTION}|DEVICE é
SERVER

21 212 213

PRESENTATION
SERVER SERVICE SERVICE

DESCRIP-

TION 214 215
DOCUMENT

PRESENTATION

223 216 217

PRESENTATION
SERVER SERVICE SERVICE

\

CONTROL

LOGIC

CONTROL
232 SERVER

SERVICE

STATE

EVENT TABLE
SOURCE

234

Netflix, Inc. et al. Exhibit 1003

Page 4 of 91

Netflix, Inc. et al. Exhibit 1003
Page 5 of 91

U.S. Patent Jun. 21, 2005 Sheet 3 of 48 US 6,910,068 B2

FIG. 4 251 250

TV/VCR

DISCOVERY

DESCRIPTION

SERVER

CLOCK

CLOCK

DISCOVERY

SERVER

DESCRIPTION

SERVER DESCRIP-
TION

DOCUMENT

DESCRIP-

TION

DOCUMENT

Netflix, Inc. et al. Exhibit 1003

Page 5 of 91

Netflix, Inc. et al. Exhibit 1003
Page 6 of 91

U.S. Patent Jun. 21, 2005 Sheet 4 of 48 US 6,910,068 B2

FIG. 5
300

“s
104

EVENT

SUBSCRIBE

COMMAND

 CONTROLLED DEVICE

232

EVENT

SUBSCRIP-
TION

SERVER

CONTROL

SERVER

 FRONT
PANEL

CONTROL

SERVICE

STATE

TABLE

 COMMAND
320

INFRARED

REMOTE

Netflix, Inc. et al. Exhibit 1003
Page 6 of 91

Netflix, Inc. et al. Exhibit 1003
Page 7 of 91

U.S. Patent Jun.21, 2005 Sheet 5 of 48 US 6,910,068 B2

FIG. 6

USAGE 360
350

DESRIPTION 358

DISCOVERY 356

NAMING 354

ADDRESSING 382

Netflix, Inc. et al. Exhibit 1003
Page 7 of 91

Netflix, Inc. et al. Exhibit 1003
Page 8 of 91

U.S. Patent Jun. 21, 2005 Sheet 6 of 48 US 6,910,068 B2

FIG. 7
200 202

ROOT DEVICE

220

PRESENT-

eyinial ATION SERVICE /\ CONTROL
DESCRIP- SERVER SERVER

TION 205

URL DESCRIPTION
SERVER

PRESENT-
ATION serveRVICE

 EVENT

SUB-

SCRIP-
TION

SERVER

 EVENT

SOURCE 234

-_—

Netflix, Inc. et al. Exhibit 1003
Page 8 of 91

Netflix, Inc. et al. Exhibit 1003
Page 9 of 91

U.S. Patent Jun. 21, 2005 Sheet 7 of 48 US 6,910,068 B2

406 Jf 106 104
CONTROLLED USER

DEVICE CONTROL

POINT

COMMANDS

DRATOR

SERVICE CONTROL
CONTROL SERVER

PROTOCOL

Netflix, Inc. et al. Exhibit 1003

Page 9 of 91

Netflix, Inc. et al. Exhibit 1003
Page 10 of 91

U.S. Patent Jun.21, 2005 Sheet 8 of 48 US 6,910,068 B2

FIG. 9
104

USER CONTROL POINT

APPLICATIONS OBJECT INTEGRATION
INTERFACES

ICLOCK

CONTRACT

PACKETS NETWORK
REQUEST/ DATA
RESPONSE PACKETS
PATTERNS

PROTOCOLS

CONTROLLED DEVICE

(E.G., CLOCK)

CONTROL

SERVER
DESCRIP-

Netflix, Inc. et al. Exhibit 1003

Page 10 of 91

Netflix, Inc. et al. Exhibit 1003
Page 11 of 91

U.S. Patent Jun. 21, 2005 Sheet 9 of 48 US 6,910,068 B2

 450

 DEVICE

FINDER

FIG.10 9
\

CreateServiceObject()

410

REHYDRATOR

QueryStateVariable() InvokeAction()

460
SERVICE OBJECT

QueryStateVariable()
9 {UPNP-

SERVICE InvokeAction()

Netflix, Inc. et al. Exhibit 1003
Page 11 of 91

Netflix, Inc. et al. Exhibit 1003
Page 12 of 91

U.S. Patent Jun. 21, 2005

FIG. 11 104

USER CONTROL POINT

DISCOVERY

CLIENT

DESCRIP-
TION CLIENT

VISUAL
NAVIGATION

APPLICA-

TION

Sheet 10 of 48 US 6,910,068 B2

106

CONTROLLED DEVICE

DISCOVERY

SERVER

DESCRIP-||DESCRIP-
TION TION

SERVER DOCUMENT

PRESENT-

ATION

SERVER

CONTROL

SERVER

Netflix, Inc. et al. Exhibit 1003
Page 12 of 91

Netflix, Inc. et al. Exhibit 1003
Page 13 of 91

U.S. Patent Jun. 21, 2005

FIG. 12 104

USER CONTROLPOINT

DISCOVERY

CLIENT

cere. |__| seTION CLIENT TION SERVER

SUBSCRIP
-TION

CLIENT
APPLICA-

TION
Sheet 11 of 48 US 6,910,068 B2

106

CONTROLLED DEVICE

DISCOVERY

SERVER

EVENT

SUBSCRIP
-TION

SERVER

Netflix, Inc. et al. Exhibit 1003
Page 13 of 91

Netflix, Inc. et al. Exhibit 1003
Page 14 of 91

U.S. Patent Jun.21, 2005 Sheet 12 of 48 US 6,910,068 B2

FIG, 13
COMBINED BRIDGE AND

USER CONTROL POINT

DESCRIP-

DESCRIP-

COVERY TION SOURCE eee REHYDRATOR
SERVER SERVER

_SPL

SERVICE
EVENTS PROVIDER

BRIDGED
DEVICE

Netflix, Inc.et al.

Exhibit 1003

Page 14 of 91

Netflix, Inc. et al. Exhibit 1003
Page 15 of 91

U.S. Patent Jun.21, 2005 Sheet 13 of 48 US 6,910,068 B2

USER CONTROLPOINT CONTROLLED DEVICE

SSDP DISCOVERY REQUEST
DISCOVERY DISCOVERYcues { DISCOVERY RESPONSE(URL) \ SERVER

Pakse
DESCRIPTION, ISSUE GET(DESCRIPTION URL)

REQUESTS FOR RESPONSE(UPnP
ADDITIONAL DESCRIPTION

INFORMATION)

y RESPONSE

DEVICE
DESGRIPTION GET NAME DESCRIPTION

SERVICE SERVER

REHYDRATOR, ADD
DEVICE ICON TO RESPONSE

USER INTERFACE)

’
VISUAL

NAVIGATION

|
(USER SELECTS DEVICE

ICON)

’ GET(PRESENTATION URL)
PRESENTATIONwser{|neSpONSEBROWSE { RESPONSE } (WEB) SERVER

(EMBEDDED SCRIPTIN
WEB PAGEDISPLAYS

DEVICE Ul; SCRIPT
CALLS REHYDRATOR

TO INTERACT WITH

DEVICE) GET/PUT(CONTROLURL)

REHYDRATOR { } CONTROL SERVER
Netflix, Inc. et al. Exhibit 1003

Page 15 of 91

Netflix, Inc. et al. Exhibit 1003
Page 16 of 91

U.S. Patent Jun. 21, 2005

FIG. 15

root

Sheet 14 of 48 US 6,910,068 B2

specVersionMajor
specVersionMinor
URLBase

manufacturer

manufacturerURL
modelName

modeiNumber

modelDescription
modelURL

UPC

serialNumber

device

UDN

friendlyName
deviceType
presentationURL
iconList

icon

size

color

depth

imageType
imageURL

icon

icon

service

serviceType
control|URL

eventSubURL
SCPD

service

service

device

service

service

device

service
device

device

Exhibit 1003Netflix, Inc. et al.
, Page 16 of 91

Netflix, Inc. et al. Exhibit 1003
Page 17 of 91

U.S. Patent Jun. 21, 2005 Sheet 15 of 48 US 6,910,068 B2

FIG. 16

<device>

<iconList>

<icon>

<size> 16</size>

<colar>0</color>

<depth>8</depth>
<imageType>PNG</imageType>


</icon>

<icon>

<size>32</size>

<color>0</color>

<dapth>B</depth>
<imageType>PNG</imageType>


</icon>

<icon>

<size>48</size>

<color>0</color>

<depth>8</depth>
<imageType>PNG</imageType>


</icon>

<icon>

<size>16</size>
<color>1</cojor>

<depth>8</depth>
<imageType>PNG</imageType>


</icon><device>
<icon>

<size>32</size>

<color>0</color>

<depth>8</depth>
<imageType>PNG</imageType>


</icon>

<icon>

<size>48</size>

<color>0</color>

<depth>8</depth>
<imageType>PNG</imageType>


<ficon>

<ficonList>

_ <device>

Netflix, Inc.et al. Exhibit 1003
Page 17 of 91

Netflix, Inc. et al. Exhibit 1003
Page 18 of 91

U.S. Patent Jun.21, 2005 Sheet 16 of 48 US 6,910,068 B2

FIG. 17

<?xml version="1.0"?>

<scpd xmins="x-schema:scpdl-schema.xml">
<service StateTable>

<stateVariable>

<name>currentChannel</name>

<dataType>number</dataType>
<allowedValueRange>

<minimum>0</minimum>

<maximum>55</maximum>

<step>1</step>
</allowedValueRange>

</stateVariable>

</serviceStateTable>

<actionList>

<action>

<name>ChannelUp</name>
</action>

<action>

<name>ChannelDown</name>

</action>

<action>

<name>SetChannel</name>

<argument>
<name>newChannel</name>

<relatedStateVariable>

currentChannel

</relatedStateVariable>

</argument>
</action>

</actionList>

</scpd>

Netflix, Inc. et al. Exhibit 1003
Page 18 of 91

Netflix, Inc. et al. Exhibit 1003
Page 19 of 91

U.S. Patent Jun. 21, 2005 Sheet 17 of 48 US 6,910,068 B2

FIG, 18

<contract>

<protocol id="protocolDef">
<HTTP version="1.1">

<URL></URL>

<M-POST>

<MAN>hitp:/Awww.microsoft.com/protocels/ex/XOAP</MAN>
</M-POST>

<HEADER name="Content-Type" value="text/xmi" />
<!-- Need to put in extension headers here -->

</HTTP>

</protocol>

<RequestResponse name="queryStateVariable">
<protoco} is="protocolDef">
<in is="queryStateVariable">
<out is="queryStateVariableResponse">
<error is="queryStateVariableResponse">

</RequestResponse>

<RequesiResponse name="invokeAction">
<protocol is="protocolDef'>
<in is="SerializedStream">

<out is="invokeActionResponse”>
<error is="invokeActionResponse">

</RequestResponse>

<Schema name="upnp_scpdl"
xmlins="urn:schemas-microsoft-com:xml-data”

xmins:dt="urn:schemas-microsoft-com:datatypes">

<!-- Common -->

<ElementType name="_return" content="textOnly"dt:type="string” />
<ElementType name="_fault" content="textOnly" di:type="string" />

<!-- Query State Variable Call -->

<ClementType name="variableName" content="textOnly” dt:iype="string” />

<ElementType name="queryStateVariable" content="eltOnly” model="closed">
<element type="variableName” />

</ElementType>

<!-- Query State Variable Response —>

Netflix, Inc. et al. Exhibit 1003
Page 19 of 91

Netflix, Inc. et al. Exhibit 1003
Page 20 of 91

U.S. Patent Jun. 21, 2005 Sheet 18 of 48 US 6,910,068 B2

FIG. 19

<ElementType name="queryStateVariableResponse" content="eltOnly"
model="closed">

<group order="one">
<element type="_return">
<element type="_fault">

</group>
</ElementType>

<!-- Invoke Action Call —>

<AttributeType name="main" dt:type="idref” />
<AttributeType name="headers"dt:type="idref”/>
<AttributeType name="id" dt:type="id" />

<ElementType name="sequenceNumber" content="textOnly" dt:type="int">
<AttrbuteType name="dt" dt:type="string" dt:values="int" />

<attribute type="dt" />
</ElementType>

<ElementType name="headers" content="eltOnly" model="closed"
<attribute type="id" required="yes"/>
<element type="sequenceNumber" />

</ElementType>

<ElementType name="actionName" content="textOnly” dt:type="string”/>
<ElementType name="actionArg" content="textOnly" dt:type="string” />

<ElementType name="invokeAction" content="eltOnly” model="closed">
<attribute type="id" required="yes" />

<element type="actionName">
<element type="actionArg"” minOccurs="0" maxOccurs="*">

</ElementType>

Netflix, Inc. et al. Exhibit 1003
Page 20 of 91

Netflix, Inc. et al. Exhibit 1003
Page 21 of 91

U.S. Patent Jun. 21, 2005 Sheet 19 of 48 US 6,910,068 B2

FIG, 20

<ElementType name="SerializedStream" content="eltOnly” model="closed">
<attribute type="main” required="yes"/>
<attribute type="headers" required="yes” />

<element type="headers">
<element type="invokeAction">

</ElementType>

<!— Invoke Action Response -->

<ElementType name="invokeActionResponse” content="eltOnly” model="closed">
<group order="one">

<element type="_return">
<element type="_fault">

</group>
</ElementType>

</Schema>

</contract>

Netflix, Inc. et al. Exhibit 1003
Page 21 of 91

Netflix, Inc. et al. Exhibit 1003
Page 22 of 91

U.S. Patent Jun. 21, 2005 Sheet 20 of 48 US 6,910,068 B2

FIG. 21

<?xml version="1.0"?>

<Schema name="upnp_scpdl"
xmins="urn:schemas-microsoft-com:xml-data”

xmins:dt="urn:schemas-microsoft-com:datatypes">

<!-- Common Elements and Attributes -->

<ElementType name="name" content="textOnly" dt:type="string” />

<]-- Service State Table -->

<ElementType name="minimum"”content="textOnly" dt:type="number"/>
<ElementType name="maximum"content="textOnly" dt:type="number"/>
<ElementType name="step" content="textOnly" dt:type="number”/>

<ElementType name="allowedValueRange” content="eltOnly"” model="closed">
<element type="minimum"/>
<element type="maximum"/>
<element type="step" minOccurs="0"/>

</ElementType>

<ElementType name="allowedValue” content="textOnly" />

<ElementType name="allowedValueList" content="eltOnly” model="closed">
<element type="allowedValue" minOccurs="1" maxOccurs=""" />

</ElementType>

<ElementType name="dataType” content="textOnly" dt:type="string"/>

<ElementType name="stateVariable” content="eltOnly" model="closed">
<element type="name"/>

Netflix, Inc. et al. Exhibit 1003
Page 22 of 91

Netflix, Inc. et al. Exhibit 1003
Page 23 of 91

U.S. Patent Jun. 21, 2005 Sheet 21 of 48 US 6,910,068 B2

FIG, 22

<element type="dataType" />

<group minOccurs="0" maxOccurs="1" order="one">
<element type="allowedValueRange”/>
<element type="allowedVaiueList" />

</group>
</ElementType>

<ElementType name="deviceStateTable” content="eltOnly" mode!="closed">
<element type="stateVariable" minOccurs="1" maxOccurs="*" />

</ElementType>

<!-- Action List -->

<ElementType name="relatedStateVariable" content="textOnly"dt:type="string"/>

<ElementType name="argument" content="eltOnly” model="closed">
<element type="name"/>
<element type="relatedStateVariable" />

</ElementType>

<ElementType name="action” content="eltOnly" model="closed">
<element type="name"/>
<element type="argument” minOccurs="0" maxOccurs="*" />

</ElementType>

<ElementType name="actionList" content="eltOnly” model="closed">
<element type="action" minOccurs="0" maxOccurs=""" />

</ElementType>

<!-- Root Element -->

<ElementType name="dcepd" content="eltOnly" model="ciosed">
<element type="deviceStateTable" />
<element type="actionList® />

</ElementType>
</Schema>

Netflix, Inc. et al. Exhibit 1003
Page 23 of 91

Netflix, Inc. et al. Exhibit 1003
Page 24 of 91

U.S. Patent Jun. 21, 2005 Sheet 22 of 48 US 6,910,068 B2

FIG. 23 ON 602 604
VBSCRIPT/

JSCRIPT

SHELL FOLDER C APPLICATION

UPNP AP] (REHYDRATOR)

[eeroairfe
 SSDP SERVICE

GENA SERVER

SSDP/UDP

GENA/HTTP/TCP

CONTROLLED DEVICE

210|service||SERVICE

21 4

626

HTTP SERVER

GENA CLIENT API

620

SERVICE SERVICE

Netflix, Inc.et al. Exhibit 1003
Page 24 of 91

Netflix, Inc. et al. Exhibit 1003
Page 25 of 91

U.S. Patent Jun. 21, 2005 Sheet 23 of 48 US 6,910,068 B2

FIG. 24

USER CONTROL POINT CONTROLLED DEVICE

RegisterEventSource()

SUBSCRIBE (Callback + Timeout)
RegisterNotification()

RESPONSE;SID + TIMEOUT

NOTIFY (SID) SubmitUpnpProperty-
Event()

200 OK

NOTIFY (SID) SubmitUpnpProperty-
Event()

200 OK
UNSUBSCRIBE(SID)

DeRegisterNotification()

Netflix, Inc. et al. Exhibit 1003
Page 25 of 91

Netflix, Inc. et al. Exhibit 1003
Page 26 of 91

U.S. Patent Jun. 21, 2005 Sheet 24 of 48 US 6,910,068 B2

FIG. 25

PROCESSING|_--82fe
UNIT | | OPERATING | 835

| | SYSTEM
| ——— JTTT TTT

|) APPLICATIONS |~— 86
— eee eee al
cro Cr eee _

MODULES

SERIAL
PORT

INTERFACE

REMOTE

COMPUTER

GATEWAY

ca
MEMORY

STORAGE

 NETWORK
ADAPTER

Netflix, Inc. et al. Exhibit 1003
Page 26 of 91

Netflix, Inc. et al. Exhibit 1003
Page 27 of 91

U.S. Patent Jun. 21, 2005 Sheet 25 of 48 US 6,910,068 B2

FIG. 26

900 EMBEDDED COMPUTING DEVICE

 OPERATIONAL

CIRCUITRY

PROCESSING

UNIT MEMORY

 NETWORK
ADAPTER

NETWORK

MEDIA

FIG, 27 920
Ne 925

DEVICE FUNCTIONS foo|
924 SIMPLE

DISCOVERY EVENTING

928 930
DHCP DNS

AUTOIP TCP/IP STACK MDNS

910 PHYSICAL MEDIA

922

 926

Netflix, Inc. et al. Exhibit 1003
Page 27 of 91

Netflix, Inc. et al. Exhibit 1003
Page 28 of 91

U.S. Patent Jun.21, 2005 Sheet 26 of 48 US 6,910,068 B2

FIG. 28
934

oo «(CX
(TIMEOUT

ASSIGN AUTO!P ADDRESS

DNS NAME MULTICAST

ANNOUNCE SERVICE

(TIMEOUT - WAIT FOR RESPONSE)

DISCOVER SERVICE

RESPONSE TO DISCOVER

XML DEVICE DESCRIPTION

 EMBEDDED

COMPUTING

DEVICE

940 DHCP BROADCAST

900 \ ADDRESS FROM DHCP SERVER

 EMBEDDED

COMPUTING

DEVICE

DISCOVER LISTENER

RESPONSE TO DISCOVER

ANNOUNCE SERVICE TO LISTENER

DIRECTORY UPDATED BY

LISTENER

DEVICE SPECIFIC NEGOTIATION
CLIENT

DEVICE
LDAP QUERY DIRECTORY

Netflix, Inc. et al. Exhibit 1003

Page 28 of 91

Netflix, Inc. et al. Exhibit 1003
Page 29 of 91

U.S. Patent Jun.21, 2005 Sheet 27 of 48 US 6,910,068 B2

950

FIG. 30 \
952

955 956

APPLICATIONS fof
SIMPLE DISCOVERY

ADSI 954

WINSOCK
958

TCP/IP STACK

NDIS
960

NIC

Netflix, Inc. et al. Exhibit 1003
Page 29 of 91

Netflix, Inc. et al. Exhibit 1003
Page 30 of 91

U.S. Patent Jun. 21, 2005 Sheet 28 of 48 US 6,910,068 B2

FIG. 31 1° sass
‘ 1050

AIC 1030 1054
POWER 1043

iS} LIGHTING 4042

CONTROL

1041 DVD

1006 USBUSB

1016 1017

MODEM

1012

XDSL

1011

TELEPHONE

1010

Netflix, Inc. et al. Exhibit 1003

Page 30 of 91

Netflix, Inc. et al. Exhibit 1003
Page 31 of 91

U.S. Patent Jun. 21, 2005 Sheet 29 of 48 US 6,910,068 B2

FIG, 32

[
object,
uuid(<foo>),
duai,

helpstring("IUPNPDevice interface"),
pointer_default(unique)
]

{
interface JUPNPDevice: (Dispatch

[propget, id(DISPID_UPNPDEVICE_DESCRIPTIONDOCUMENT),
helpstring("returns the document from which the properties of this device are

being read")]
HRESULT DescriptionDocumeni([restricted, hidden, out, retval]

[UPNPDescriptionDocument ** ppuddDocument);
purpose: returns the document from which the properties of this device are

being read.
parameters: ppuddDocument, A reference to the description document

object from which data about the device is being read. This must be freed when no
longer needed.

return values: S_OK, ppuddDocumentis a refernce to the device's
description document.

[propget, id(DISPID_UPNPDEVICE_ISROOTDEVICE),
helpstring(“denotes whetherthe physical location information of this device can

be set")}
HRESULT IsRootDevice([out, retval] VARIANT_BOOL* pvarb);

parameters: pvarb, the address of a VARIANT_BOOLthatwill receive the
value of VARIANT_TRUEif the current device is the topmost device in the device
tree, and will receive the value of VARIANT_FALSE otherwise.

return values: S_OK, varb is set to the appropriate value
note: if a device is a root device, calls RootDevice() or ParentDevice() will

return NULL

fpropget, id(DISPID_UPNPDEVICE_ROOT),
helpstring("returns the top device in the device tree")]

HRESULT RootDevica(fout, retval] IUPNPDevice ** ppudDeviceRoot);
purpose:returns the top device in the device tree

Netflix, Inc. et al. Exhibit 1003
Page 31 of 91

Netflix, Inc. et al. Exhibit 1003
Page 32 of 91

U.S. Patent Jun. 21, 2005 Sheet 30 of 48 US 6,910,068 B2

FIG. 33

parameters: ppudDeviceRoot, On return, this refers to the "root" device of
the current device tree. The root device is the topmost parent of the current device.
lf the current device is the root device this method will set *ppudDeviceRoot to null,
and return S_FALSE.

return values: S_OK, *ppudDeviceRoot contains a reference to the root
device. S_FALSE,the current device is the root device. *ppudDeviceRootis null.

{propget, id(DISPID_UPNPDEVICE_PARENT),
helpstring(“returns the parent of the current device")|

HRESULT ParentDevice({out, retval] IUPNPDevice ** ppudDeviceParent);
parameters: ppudDeviceParent, On return, if the device has a parent, this is

the address of a IUPNPDevice object which can describe the parent. This must be
released when no longer needed. If the device has no parent(it is a "root" device),
than this value will be set to null.

return values: S_OK, ppudDeviceParent contains a reference to the device's
parent. S_FALSE, the current device is the root device, which has no parent.
*ppudDeviceRootis null.

[propget, id(DISPID_UPNPDEVICE_CHILDREN),
helpstring("returns a collection of the children of the current device")|

HRESULT Children([out, retval] IUPNPDevices ** ppudChildren);
parameters: ppudChildren, On retum, this is the address of a newly-created

IUPNPDevicescollection that can enumerate this device's children. This must be

released when no longer needed. If the device has no children, this method will
return a collection object with a length of zero.

return values: S_OK, ppudChildren containsa list of the device's children.

[propget, id(DISPID_LUPNPDEVICE_UDN),
helpstring("returns the UDN of the device")]

HRESULT UniqueDeviceName((out, retval] BSTR * pbstrUDN);
parameters: pbstrUDN, On retum, this contains the address of a newly-

allocated string which contains the device's Unique Device Name (UDN). The UDN
is globally unique across all devices - no two devices will ever have the same UDN.
This value must be freed when no longer needed.

return values: S_OK pbstrUDNcontains the UDNofthe device

Netflix, Inc. et al. Exhibit 1003
Page 32 of 91

Netflix, Inc. et al. Exhibit 1003
Page 33 of 91

U.S. Patent Jun. 21, 2005 Sheet 31 of 48 US 6,910,068 B2

FIG. 34

(propget, id(DISPID_UPNPDEVICE_DISPLAYNAME),
helpstring("returns the (optional) display name of the device")]

HRESULT DisplayName([out, retval] BSTR * pbstrDisplayName);
parameters: pbstrDisplayName, On return, this contains the address of the

device's display name. This value must be freed when no longer needed. If the
device does not specify a display name,this parameterwill be set to null.

return values: S_OK, bstrDisplayName contains the display nameof the
device. pbstrDisplayName must be freed. S_FALSE, the device did not specify a
display name. *pbstrDisplayNameis set to null.

note: it is possible for multiple devices to have the same display name.
Applications should use UniqueDeviceName() to determineif two device objects
refer to the same device.

{propget, id(DISPID_UPNPDEVICE_CANSETDISPLAYNAME),
helpstring(“denotes whether the physical location information of this device can

be set")]
HRESULT CanSetDisplayName({out, retval] VARIANT_BOOL* pvarb);

parameters: pvarb, the address of a VARIANT_BOOL.This is true (!=0) on
return when the device's display name can be set (via SetDisplayName)

return values: S_OK varb is set to the appropriate value

fid(DISPID_UPNPDEVICE_SETDISPLAYNAME),
helpstring(“sets the display name on the device")]

HRESULTSetDisplayName([in] BSTR bstrDisplayName);
parameters: bstrDisplayName,the value to set the device's display nameto.
return values: S_OK,varbis set to the appropriate value.
note: On success,this method sets the display name used by a device.

Note that this method changes the display name on the deviceitself, not simply on
the local object. This will block while the nameis beingset.
Additionally, this change will be made on the device alone, and will not be reflected
in the current device object. After a successful call to this method, DisplayName
will continue to return the ‘old' value). To read the device's current name, the caller
must re-load the device's description.

[propget, id(DISPID_UPNPDEVICE_DEVICETYPE),

Netflix, Inc. et al. Exhibit 1003
Page 33 of 91

Netflix, Inc. et al. Exhibit 1003
Page 34 of 91

U.S. Patent Jun. 21, 2005 Sheet 32 of 48 US 6,910,068 B2

FIG, 35

helpstring("returns the device type URI")]
HRESULT Type(fout, retval] BSTR * pbsirType);

parameters: pbstrType, On return, this contains the address of a newly-allocated
string containing the device's type URI. This value must be freed when no longer
needed.

return values: S_OK, bstrType contains the type URIof the device, and must be
freed when no longer needed.

[propget, id(DISPID_UPNPDEVICESERVICES),
heipstring(“returns the collection of services exposed by the device")}
HRESULT Services(jout, retval] IUPNPServices ** ppusServices);

parameters: ppusServices, On return, this is the address of a newly-created
IUPNPServicescollection that can enumerate the services exposed by the device.
This must be released when no longer needed. If the device exposes no services, this
methodwill return a collection object with a length of zero.

return values: S_OK, pusServices containsalist of the device's children.

[propget, id(DISPID_UPNPDEVICE_SERVICEIDENTIFIER),
heilpstring(‘returns the (optional) service identifier of the device")]

HRESULTServiceldentifier([out, retval] BSTR * pbstrServicelD);
parameters: pbstrServicelD, On return, this contains the address of a newly-

allocated string containing the contents of the device's Serviceldentifier element, if the
device specifies one. This value must be freed when no longer needed. If the device
does not specify a Serviceldentifier value, this parameterwill be set to null.

return value: S_OK, bstrServicelD contains the service identifier of the device.
pbstrServicelD must be freed. S_FALSE,the device did not specify a service identifier.
*pbstrServicelDis set to null.

note having a Serviceldentitier is mutually exclusive with having services. Any
device will either have a list of services or a Serviceldentifier, but not both.

[id(DISPID_UPNPDEVICEDESCRIPTION_LOADSMALLICON),
helpstring("loads a smail (titlebar-sized) icon representing the device, encodedin the

specified format"}}
HRESULT LoadSmalllcon({in] BSTR bstrEncodingFormat,
{out, retval] BSTR * pbstriconURL);

parameters:

Netflix, Inc. et al. Exhibit 1003
Page 34 of 91

Netflix, Inc. et al. Exhibit 1003
Page 35 of 91

U.S. Patent Jun.21, 2005 Sheet 33 of 48 US 6,910,068 B2

FIG. 36

bstrEncodingFormat, A string containing the mime-type representing the desired
encoding format of the icon. pbstriconURL, On return, “pbstriconURL contains a
newly-allocated string representing the URL from which the icon can be loaded.
This string must be freed when no longer needed.

return values: S_OK, *pbstriconURL contains a reference to an icon,
encodedin the desired encoding format.

fid(DISPID_UPNPDEVICEDESCRIPTION_LOADICON),
helpstring(“loads a standard-sized icon representing the device, encoded in the

specified format")
HRESULTLoadicon({in} BSTR bstrEncodingFormat,
fout, retval] BSTR * pbstriconURL);

parameters: bstrEncodingFormat, A string containing the mime-type
representing the desired encoding format of the icon. pbstrlconURL, On return,
*pbstriconURLcontains a newly-allocated string representing the URL from which
the icon can be loaded. This string must be freed when no longer needed.

return values: S_OK, *pbstriconURL contains a reference to an icon,
encodedin the desired encoding format.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_PRESENTATIONURL),
helpstring("obtains a presentation URL to a web pagethat can control the

device")]
HRESULT PresentationURL([out, retval} BSTR * pbstrURL);

parameters: pbstrURL, on returm, the address of a newly-allocatedstring
containing the web-page-based control URL. If the device did not specify a
presentation URL, an empystring ("") will be returned.

return vaiues:S_OK, bstrURL contains a newly-allocated URL that must be
freed when no longer needed. S_FALSE, the device does not have a presentation
URL. pbstrURLis set to null.

([propget, id(DISPID_UPNPDEVICEDESCRIPTION_PHYSICALLOCATION),
helpstring("a set of properties describing the device's physical location")]

HRESULTPhysicalLocation((out, retval] IUPNPPropertyBag * pupl);
parameters: pup! on return, the address of a newly-allocated

UPNPPropertyBag object which contains information about the device's physical
location

return values

Netflix, Inc. et al. Exhibit 1003
Page 35 of 91

Netflix, Inc. et al. Exhibit 1003
Page 36 of 91

U.S. Patent Jun.21, 2005 Sheet 34 of 48 US 6,910,068 B2

FIG. 37

S_OKup! contains a newly-allocated object that the caller must free whenit
is no longer needed.

note: if the object does not provide any description information, an empy
property bag will be retumed. See SetPhysicalLocation for a listing of defined
values in a physical location property bag.

[propget,
id(DISPID_UPNPDEVICEDESCRIPTION_CANSETPHYSICALLOCATION),

helpstring("denotes whetherthe physical location information of this device can
be set")]

HRESULT CanSeiPhysicalLocation({out, retval] VARIANT_BOOL * pvarb);
parameters: pvarb the address of a VARIANT_BOOL. This is true (!=0) on

return when the device's physical location can be set (via SetPhysicalLocation)
return values: S_OK varb is set to the appropriate value

fid(DISPID_UPNPDEVICEDESCRIPTION_SETPHYSICALLOCATION),
helpstring("writes a set of properties describing the device's physical location to

the device")]
HRESULT SetPhysicalLocation([in] |UPNPPropertyBag * pupl);

parameters: pup! A UPNPPropertyBag object which contains the name-
value pairs representing the device's current location. the function will not free the
object.

return values: S_OK he device has been updated with the supplied
physical location information

note: the following are standard values in the physical location property bag:
country, campus, building, floor, wing, room, latitude, longitude, altitude. These
values can be used programmatically to implement sorting orfiltering functionality
based on the device's location. Additionally the property bag supports the following
value: description, which contains a user-displayable string representing a device's
location which doesnot have programattic significance. Additionally, the physical
location update will be made on the device alone, and will not be reflected in the
current device object. After a successful call to this method, PhysicalLocation will
continue to return the ‘old’ value. To read the device's current name,the caller
must re-load the device's description.
}

Netflix, Inc. et al. Exhibit 1003
Page 36 of 91

Netflix, Inc. et al. Exhibit 1003
Page 37 of 91

U.S. Patent Jun. 21, 2005 Sheet 35 of 48 US 6,910,068 B2

FIG. 38

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_PRODUCTNAME),
helpstring("a displayable string containing the product name")]

HRESULT ProductName({out, retval] BSTR * pbstr);
parameters: pbstr on return, the address of a newly-allocated string

containing the product nameof the device.
return values: S_OKpbstr contains a newly-allocated string that must

be freed when no longer needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_DESCRIPTION),
helpstring("displayable summary of the device's function")]

HRESULTDescription(fout, retval] BSTR * pbstr);
parameters: pbstr on return, the address of a newly-allocated string

containing a short description of the device meaningful to the user.
return values: S_OK pbstr contains a newly-allocated string that must

be freed when no longer needed.

{propget, id(DISPID_UPNPDEVICEDESCRIPTION_MODELNAME),
helpstring("displayable model name")]

HRESULT ModelName((out, retval] BSTR * pbstr);
parameters: pbstr on return, the address of a newly-allocatedstring

containing the manufactuer's model name of the device.
return values: S_OK pbstr contains a newly-allocated string that must

be freed when nolonger needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_SERIALNUMBER),
helpstring("displayable serial number")]

HRESULTSerialNumber(fout, retval] BSTR * pbstr);
parameters: pbstr on return, the address of a newly-allocated string

containing the manufacturer's serial numberof the device.
return values: S_OK pbstr contains a newly-allocated string that must

be freed when no longer needed.
note: a device's serial numberis not guaranteed to be globally unique. The

DeviceUniqueName should always be usedto distinguish devices.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_MANUFACTURERNAME),
helpstring("displayable manufacturer name")}

HRESULT ManufacturerName(jout, retval] BSTR * pbstr);
parameters

Netflix, Inc. et al. Exhibit 1003
Page 37 of 91

Netflix, Inc. et al. Exhibit 1003
Page 38 of 91

U.S. Patent Jun.21, 2005 Sheet 36 of 48 US 6,910,068 B2

FIG. 39

pbstr, on return, the address of a newly-allocated string containing the name of the
device's manufactuer.

return values: S_OK, pbstr contains a newly-allocated string that must be
freed when no longer needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_MANUFACTURERURL),
helpstring("URL to the manufacturer's website")]

HRESULT ManufacturerURL([out, retval] BSTR * pbstr);
parameters: pbstr, on return, the address of a newly-allocated string

containing the URL of the manufacturer's website.
return values: S_OK, pbstr contains a newly-allocated string that must be

freed when no longer needed.

{propget, id(DISPID_UPNPDEVICEDESCRIPTION_MODELNAME),
helpstring("displayable model name")]

HRESULT ModelName({out, retval] BSTR * phstr);
parameters: pbstr, on return, the address of a newly-allocated string

containing the manufactuer's model namefor the device.
return values: S_OK,pbstr contains a newly-allocated string that must be

treed when no longer needed.

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_SUPPORTLIST),
helpstring("technical support contact information")]

HRESULT SupportList([out, retval] BSTR * pbstr);
parameters: pbstr, on return, the address of a newly-allocated, multi-line

string containing phone numbers and otherinformation that can guide the userto
technical support. This string must be freed when no longer needed.

return values: S_OK, pbstr contains a newly-allocated string that must be
freed when no longer needed.

{propget, id(DISPID_UPNPDEVICEDESCRIPTION_FAQLIST}),
helpstring("FAQ access display information")]

HRESULT FAQList([out, retval] BSTR * pbstr);
parameters: pbstr, on return, the address of a newly-allocated, multi-line

string containing FAQ information that can provide the user with URLsat which
device FAQs may belocated.

return values: S_OK, pbstr contains a newly-allocated string that must be
freed when no longer needed.

Netflix, Inc. et al. Exhibit 1003
Page 38 of 91

Netflix, Inc. et al. Exhibit 1003
Page 39 of 91

U.S. Patent Jun. 21, 2005 Sheet 37 of 48 US 6,910,068 B2

FIG. 40

[propget, id(DISPID_UPNPDEVICEDESCRIPTION_UPDATELIST),
helpstring(“information explaining where the user can update the device's

firmware")]
HRESULT UpdateList((out, retval] BSTR * pbstr);

parameters: pbstr, on return, the address of a newly-allocated, multi-line
string containing information and URLs from which the user can download updates
for the device's firmware.

return values: S_OK, pbstr contains a newly-allocated string that must be
freed when no longer needed.

Netflix, Inc. et al. Exhibit 1003
Page 39 of 91

Netflix, Inc. et al. Exhibit 1003
Page 40 of 91

U.S. Patent Jun.21, 2005 Sheet 38 of 48 US 6,910,068 B2

FIG.41

[
object,
uuid(FDBC0C73-BDA3-4C66-AC4F-F2D96FDAD68C),
dual,

helpstring(“IUPNPDevices Interface’),
pointer_default(unique)
]
IUPNPPropertyBag
{

[propget, id(DISPID_UPNP_PROPERTYBAG_READ),
helpstring("reads a value from the property bag")]

HRESULTRead([in] BSTR bstrName,(out, retval] VARIANT * pvarResult);
parameters: bstrName, nameof the property to read. case is ignored.

pvarResultvalue of the property. if the property doese notexist, this is of type
VT_EMPTY

retum values: S_OK, the value was found in the property bag, and returned
in pvarResult. SFALSE, there was no value with the given namein the property
bag. *pvarResult is of type VT_EMPTY

[propget, id(DISPID_UPNP_PROPERTYBAG_WRITE),
helpstring("writes a value to the property bag”)]

HRESULT Write({in}] BSTR bstrName, [in] VARIANT * pvarValue);
parameters: bstrName, nameof the property to write. case is preserved

whenwriting. The supplied value will replace any other values of the same name,
evenif they differ in case. pvarValue, value of the property to write.

return values: S_OK, the value was written to the property bag, replacing the
value currently associated with this property,if it existed.

[propget, id(DISPID_UPNP_PROPERTYBAG_DELETE),
helpstring("removes a value from the property bag")

HRESULTDelete({in} BSTR bstrName);
parameters: bstrName, nameof the value to removefrom the property gab.

case is ignored whenfinding a value to remove.
retum values: S_OK, the value has been removed from the property bag.

S_FALSE,the value was not found in the property bag.

}:

Netflix, Inc. et al. Exhibit 1003
Page 40 of 91

Netflix, Inc. et al. Exhibit 1003
Page 41 of 91

U.S. Patent Jun. 21, 2005 Sheet 39 of 48 US 6,910,068 B2

FIG. 42

[
object,
uuid(A295019C-DC65-47DD-90DC-7FE918A1AB44),
dual,

helpstring("IUPNPService Interface"),
pointer_default(unique)
j
interface IUPNPService: IDispatch
{
[id(1), helpstring("method GetProperty")]
HRESULT GetProperty(
(in] BSTR bstrPropertyName,
fout, retval] VARIANT *pValue
);

[id(2), helpstring("method InvokeAction")]
HRESULTInvokeAction(
[in] BSTR bstrActionName,
[in] VARIANT saActionArgs,
{out, retval] long *plStatus
);

[propget, id(3), helpstring("property DCPI")]
HRESULT DCPI(
[out, retval] BSTR *pVal
);

[propget, id(4),
helpstring("returns a manufactuer-defined extension property")]
HRESULT VendorExtension([out, retval] VARIANT * pvarValue);

parameters: pvarValueOnreturn, this variantis filled with the value of the
“extension” element. If none exists, pvarValue is set to VT_EMPTY

return values: S_OK,varValueis set to the extension element. S_FALSE,
no vendorextension element exists. pvarValue is VT_EMPTY

Netflix, Inc. et al. Exhibit 1003
Page 41 of 91

Netflix, Inc. et al. Exhibit 1003
Page 42 of 91

U.S. Patent Jun. 21, 2005 Sheet 40 of 48 US 6,910,068 B2

FIG. 43

[
object,
uuid(FDBC0C73-BDA3-4C66-AC4F-F2D96FDAD68C),
dual,

helpstring("IUPNPDevices Interface"),
pointer_default(unique)

interface IUPNPDevices: IDispatch
{
[propget, id(1), helpstring(“property Count")}
HRESULT Count(
{out, retval] long *pVal
);

[propget, id(DISPID_NEWENUM), helpstring("property |NewEnum")]
HRESULT _NewEnum(
[out, retval] LPUNKNOWN ‘pVal
);

{propget, id(DISPID_VALUE), helpstring("property Item")]
HRESULTItem(
[in] long IiIndex,
{out, retval] VARIANT *pVal
);
};

Netflix, Inc. et al. Exhibit 1003
Page 42 of 91

Netflix, Inc. et al. Exhibit 1003
Page 43 of 91

U.S. Patent Jun. 21, 2005 Sheet 41 of 48 US 6,910,068 B2

FIG. 44

[
object,
uuid(3F8C8E9E-9A7A-4DC8-BC41-FF31FA374956),
dual,

helpstring("IUPNPServices Interface"),
pointer_default(unique)
]
interface IUPNPServices: IDispatch
{
(propget, id(1), helpstring("property Count")]
HRESULT Count(
fout, retval] long *pVal
);

[propget, id(DISPID_NEWENUM), helpstring("property _NewEnum")|
HRESULT _NewEnum(
[out, retval] LPUNKNOWN “*pVal
);

[propget, id(DISPID_VALUE), helpstring("property Item")]
HRESULTItem(
{in} long Index,
[out, retval] VARIANT *pVal
);
}

Netflix, Inc. et al. Exhibit 1003
Page 43 of 91

Netflix, Inc. et al. Exhibit 1003
Page 44 of 91

U.S. Patent Jun. 21, 2005 Sheet 42 of 48 US 6,910,068 B2

FIG. 45

<contract>

<protocol id="protocolDef">
<HTTP version="1.1">

<URL> http://investor.msn.com/stockquote </URL>
<M-POST>

<MAN?> http://Awww.upnp.org/service-contral/m-post </MAN>
<M-POST>

<HEADER name="Content-Type” value="text/xml" />
</HTTP>

</protocol>

<RequestResponse name="getQuote">
<protocol is="protocolDef" />
<in is="symbol"/>
<out —is="stockQuote"/>

<error is="error" />

</RequestResponse>

<RequestResponse name="getQuotes">
<protocol is="protocolDef/>
<in —_is="symbols"/>
<out _is="stockQuotes" />

<error is="error" />

</RequestResponse>

<!__ // schema definition follows —->

<schema xmIins="urn:schema-microsoft-com:xml-data"

xmins:dt="urn:schema-microsoft-com:datatypes">

<ElementType name="symbol" dt:type="string" />

<ElementType name="symbols">
<element type="symbol" maxOccurs="*" />

</ElementType>

<ElementType name="stockQuote">
<element type="company"/>
<element type="ticker" />

Netflix, Inc.et al. Exhibit 1003
Page 44 of 91

Netflix, Inc. et al. Exhibit 1003
Page 45 of 91

U.S. Patent Jun. 21, 2005 Sheet 43 of 48 US 6,910,068 B2

FIG. 46

<element type="previousClose"/>
<element type="openingTrade”/>
<element type="lastTrade"/>
<element type="volume"/>

</ElementType>

<ElementType dt:type="string" name="company"/>
<ElementType dt:type="string" name="ticker" />
<ElementTypedt:type="string" name="previousClose"/>
<ElementTypedt:type="string" name="openingTrade”/>
<ElementType dt:type="string" name="lastTrade"/>
<ElementType dt:type="string" name="volume”/>

<ElementType name="stockQuotes">
<element name="stockQuote” maxOccurs="*" />

</Element>

<ElementType name="error">
<element type="reason"/>

</ElementType>

<ElementType dt:type="string” name="reason"/>

</schema>

</contract>

Request for "getQuote"

M-POST/stockquotes HTTP/1.1
Host: amarg5:8586
Content-Type: text/xml
Man: "htto:/Avww.upnp.org/service-contral/m-post"; ns=01
01-MethodName: getQuotes
01-MessageType: Call
Accept-Language: en-gb, en;q=0.8
Referer: http://amarg5/uPnPService/Services/Stock/Client/ticker.htm
Content-Length: 327
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Connection: Keep-Alive

Netflix, Inc. et al. Exhibit 1003
Page 45 of 91

Netflix, Inc. et al. Exhibit 1003
Page 46 of 91

U.S. Patent Jun. 21, 2005 Sheet 44 of 48 US 6,910,068 B2

FIG. 47

<symbol>MSFT</symbol>
Responsefor "getQuote”

HTTP/1.1 200 OK

Connection: close

Cache-Control: private
Date: Mon Aug 16 15:37:35 PDT 1999
Expires: Mon Aug 16 15:37:35 PDT 1999
Content-Type: text/xml
Content-Length: 7912
Man: "http:/Awww.upnp.org/service-control/m-post"; ns=01
Ext:

01-MessageType: CallResponse

<stockQuote>

<company>Microsoft%20Corporation</company>
<ticker>MSFT</ticker>

<previousClose>84%201 1/16</previousClose>
<openingIrade>85%201/16</openingTrade>
<lastTrade>84%205/16</lastTrade>

<volume>28.66%20Mil</volume>

</stockQuote>

Netflix, Inc. et al. Exhibit 1003
Page 46 of 91

Netflix, Inc. et al. Exhibit 1003
Page 47 of 91

U.S. Patent Jun. 21, 2005 Sheet 45 of 48 US 6,910,068 B2

FIG. 48

<!-- XDR Schemafor protocol section of contract -->

<schema name="contract"

xmins="urn:schema-microsoft-com:xmi-data"

xmins:dt="urn:schema-microsoft-com:datatypes">

<ElementType name="contract"
xmins:protocolNS="contract-protocol”

xmins:msgPatternNS="contract-msgPatterns"
xmins:schemaNS="urn:schema-microsoft-com:xmi-data">

<element type="protocolNS:protocol" />

<element type="msgPatternNS:RequestResponse" minOccurs="0"
maxOccurs="*" />

<element type="msgPatternNS:SolicitResponse” minOccurs="0" maxOccurs="*"
[>

<element type="schemaNS:schema" minOccurs="0" maxOccurs=""" />

</ElementType>

</schema>

Netflix, Inc. et al. Exhibit 1003
Page 47 of 91

Netflix, Inc. et al. Exhibit 1003
Page 48 of 91

U.S. Patent Jun. 21, 2005 Sheet 46 of 48 US 6,910,068 B2

FIG. 49

Protocol

<!-- XDR Schemafor protocol section of contract -->

<schema name="contract-protocol"
xmins="urn:schema-microsoft-com:xml-data"

xmins:dt="urn:schema-microsoft-com:datatypes">

<ElementType name="protocol">

<l-- ID -->

<AttributeType name="id" dt:type="id"/>
<Attribute type="id" />

<group order="one">
<element xmins:http="contract-protocol-HTTP" type="http: HTTP"/>
<element xmins:gena="contract-protocol-GENA" type="gena:GENA"/>
// other protocol definitions go here

</group>

</ElementType>

</schema>

Netflix, Inc. et al. Exhibit 1003
Page 48 of 91

Netflix, Inc. et al. Exhibit 1003
Page 49 of 91

U.S. Patent Jun. 21, 2005 Sheet 47 of 48 US 6,910,068 B2

FIG. 50

HTTP

<!-- XDR Schema for HTTP section of contract -->

<schema name="contract-protocol-HTTP"
xmins="urn:schema-microsoft-com:xml-data"

xmins:dt="urn:schema-microsoft-com:datatypes">

<ElementType name="HTTP">

<!-- HTTP version -->

<AttributeType name="VERSION"dt:type="string” default="1.1" />
<Attribute type="VERSION"/>

<!-- The Verb to use -->

<group order="one">
<element type="GET" />
<element type="POST" />
<element type="M-POST"/>

</group>

<!-- The protocol data -->
<element type="URL" />
<element type="QUERY" minOccurs="0"/>
<element type="HEADER" minOccurs="0"/>

</ElementType>

<ElementType name="URL"dt:type="string” />

<ElementType name="QUERY">
<attribute type="name"=/>
<attribute type="value" />
<attribute type="required”/>

</ElementType>

Netflix, Inc. et al. Exhibit 1003
Page 49 of 91

Netflix, Inc. et al. Exhibit 1003
Page 50 of 91

U.S. Patent Jun. 21, 2005 Sheet 48 of 48 US 6,910,068 B2

FIG.51

<ElementType name="HEADER">
<attribute type="name" />
<attribute type="value" required="yes" />

</ElementType>

<!-- Verb declarations -->

<ElementType name="GET"/>

<ElementType name="POST">
<element type="PARAM" minOccurs="0" maxOccurs="*"/>

</ElementType>

<ElementType name="PARAM">
<element type="name"/>
<element type="default" />
<element type="value” />
<element type="required” />

</ElementType>

<AttributeType name="name" _dt:type="string” required="yes"/>
<AttributeType name="default" dt:type="string” />
<AttributeType name="value" dt:type="string" />
<AttributeType name="required”dt:type="boolean" default="no"/>

<ElementType name="M-POST">
<element type="MAN"/>

</ElementType>

<ElementType name="MAN"dt:type="string” />

</schema>

Netflix, Inc.et al. Exhibit 1003
Page 50 of 91

Netflix, Inc. et al. Exhibit 1003
Page 51 of 91

US 6,910,068 B2
1

XML-BASED TEMPLATE LANGUAGE FOR
DEVICES AND SERVICES

RELATED APPLICATION DATA

This is a continuation-in-part of U.S. patent application
Ser. No. 09/496,318, entitled “Dynamic Self-Configuration
For Ad Hoc Peer Networking”, filed Feb. 1, 2000, which is
based on provisional application No. 60/139,137 filed Jun.
11, 1999, and provisional application No. 60/160,235 filed
Oct. 18, 1999. This also claims priority to provisional
application No. 60/190,943, filed Mar. 21, 2000, which is
hereby incorporated by reference.

TECHNICAL FIELD

This invention relates generally to dynamic connectivity
among distributed devices and services, and more particu-
larly relates to providing a capability for devices to auto-
matically self-configure to interoperate with other peer net-
working devices on a network, such as in a pervasive
computing environment.

BACKGROUND AND SUMMARY

The cost of computing and networking technologies have
fallen to the point where computing and networking capa-
bilities can be built into the design of many electronic
devices in the home, the office and public places. The
combination of inexpensive and reliable shared networking
media with a new class of small computing devices has
created an opportunity for new functionality based mainly
on the connectivity among these devices. This connectivity
can be used to remotely control devices, to move digital data
in the form of audio, video andstill images between devices,
to share information among devices and with the uncon-
strained World Wide Web of the Internet (hereafter “Web”)
and to exchangestructured and secure digital data to support
things like electronic commerce. The connectivity also
enables many new applications for computing devices, such
as proximity-based usage scenarios where devices interact
based at least in part on geographical or other notions of
proximity. A prevalent feature of these connectivity sce-
narios is to provide remote access and control of connected
devices and services from another device with user interface

capabilities (e.g., a universal remote controller, handheld
computer or digital assistant, cell phones, and the like).
These developments are occurring at the same time as more
people are becoming connected to the Internet and as
connectivity solutions are falling in price and increasing in
speed. These trends are leading towards a world of ubiqui-
tous and pervasive networked computing, whereall types of
devices are able to effortlessly and seamlessly interconnect
and interact.

In the above ubiquitous and pervasive networked com-
puting scenarios, the devices desirably can interoperate on
an ad hoc peer-to-peer networking connectivity basis. Such
a peer networking connectivity model enables any net-
worked device to initiate a communication with any other
networked device, without having established a prior rela-
tionship or maintaining a persistent relationship between the
devices. This peer networking connectivity also allows
multiple devices to establish one or more connections with
a single device, and it allows for a device to be capable of
both initiating and accepting connections to/from other
devices.

The prevalent model for device connectivity, however,
has been that of host-peripheral connectivity, typified by the

10

15

20

25

30

35

40

45

50

55

60

65

2

personal computer and its many peripheral devices (e.g.,
data storage drives, user input devices, displays, printers,
scanners, etc.) connected via various buses (e.g., PCI,
VESA, AGP, Microchannel, ISA, EISA, USB), ports (e.g.,
serial, parallel), and connectors (e.g., PS/2 connector). This
host-peripheral connectivity model is characterized in that
the host and peripherals typically have persistent relation-
ships and stable configurations. This persistent relationship
is created, by example, through a set-up and configuration
process through which appropriate driver software is
installed by a user or administrator onto the host for use in
controlling the peripheral, and updating the host’s configu-
ration to include peripheral device settings. Such persistent
configured relationships with a user installation/
configuration experience are generally inappropriate to the
ubiquitous and pervasive computing environment where
portable and mobile devices desirably can instantly connect
and interact with other computing devices in their environ-
ment without having establishedpriororpersistent relation-
ships.

More specifically, two common computing networks
where many of these small, network-capable computing
devices are expected to be used include the home and small
office. Such networks are commonly not actively managed
by experienced administrators. In fact, due to the lack of
networking experience of a large majority of the users of
these networks, lengthy, complex and/or involved user
installation and setup experiences pose a significant impedi-
ment to adoption and penetration of such networks and
devices into homes and smalloffices.

Further, the establishmentof persistent relationships with
other devices in the configuration of these small, network-
capable computing devices is inappropriate to many usage
scenarios. For example, portable computing devices (such as
a handheld computeror digital assistant, cell phones, and the
like) may be used to access information (such as transpor-
tation departure/arrival times, store locations, etc.) from
other devices on networks in public places (such as malls
and airports). Not only would a user installation/
configuration experience upon each such use pose an
inconvenience, but the establishment of persistent configu-
ration information poses configuration management issues
and consumes device resources. As another example,
devices (such as printers, scanners, monitors and etc.) on an
office or home network may interact with many portable
computing devices (such as the laptops, cameras, and other
equipment of the mobile professional) that are introduced
into its network. Again, in device connectivity models
requiring establishing persistent device relationship
configurations, such one-time and occasional relationships
between these devices would results in configuration insta-
bility requiring management and maintenance of ever-
changing persistent device configurations. Due to the time
and cost (or lack of) active administration of these devices,
any requirement to manage and maintain changingpersistent
device configurations on networked devices is undesirable.

Accordingly, there is a need for a device connectivity
model that supports ad hoc peer networking among com-
puting devices with preferably zero user installation or
configuration experience and without persistent device con-
figuration.

In accordance with a technology described herein, a
universal plug and play (UPnP) device makesitself known
and available for communication with other entities on a

network through a set of processes-discovery, description,
control, eventing, and presentation (herein also termed “self-
bootstrapping”). Following discovery of a UPnP device, an

Netflix, Inc.et al. Exhibit 1003
Page 51 of 91

Netflix, Inc. et al. Exhibit 1003
Page 52 of 91

US 6,910,068 B2
3

entity can learn more about the device andits capabilities, or
interact with the device, by retrieving the device’s descrip-
tion from a URL provided by the device in an initial
discovery message.

The description is expressed in XML and includes
vendor-specific manufacturer information like the model
nameand number,serial number, manufacturer name, URLs
to vendor-specific Web sites, etc. The description also
includesa list of any embedded devicesor services, as well
as URLsfor control, eventing, and presentation.

The description is written by a vendorandis usually based
on a standard device template produced by a UPnP forum
working committee. The template is derived from a template
language that utilizes standard XML constructions. The
template language includesa first set of elements to describe
the UPnP device and a second set of elements to describe

any services supported by the device. The template language
is written using an XML-based syntax that organizes and
structures the first and second sets of elements.

Additional features and advantages will be made apparent
from the following detailed description of the illustrated
embodiment, which proceeds with reference to the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS.1 and 2 are block diagramsof a device architecture
per Universal Plug and Play using user control points,
controlled devices and bridges for connectivity between
devices.

FIG.3 is a block diagram of a device model per Universal
Plug and Play.

FIG. 4 is a block diagram illustrating example devices
conforming to the device model of FIG. 3.

FIG. 5 is a block diagram illustrating device state syn-
chronization using a state table and eventing.

FIG.6 is a block diagram oflayers in a self-bootstrapping
process including addressing, naming, discovery and
description layers per the device control model of FIG. 3.

FIG.7 is a block diagram illustrating device addressing.
FIG. 8 is a block diagram of a programmatic interface-

to-network messaging adapter or Rehydrator in the device
control model of FIG.3.

FIG. 9 is a general data flow diagram of the Rehydrator
of FIG. 8 in the device control model of FIG.3.

FIG. 10 is a block diagram of an implementation design
of the Rehydrator of FIG. 8.

FIGS. 11 and 12 are block diagramsillustrating an inter-
nal software architecture of the user control point and
controlled device in the device control model of FIG.3.

FIG. 13 is a block diagram illustrating an internal soft-
ware architecture of a combined bridge and user control
point in the device control model of FIG.3.

FIG. 14 is a data flow diagram illustrating a typical
browsing protocol sequence in the device control model of
FIG.3.

FIG. 15 is a listing showing a layout of a description
document in the device control model of FIG.3.

FIG. 16 is a listing of an exemplary icon list of a
Description Document in the device control model of FIG.
3.

FIG. 17 is a listing of an exemplary service control
protocol declaration in a Description Document in the
device control model of FIG.3.

FIGS. 18, 19, and 20 are a listing of an XML schemafor
a contract in the device control model of FIG.3.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 21 and 22 are a listing of an XML schemafor a
Service Control Protocol Declaration Language used in the
device control model of FIG.3.

FIG. 23 is a block diagram of an exemplary implemen-
tation of an eventing model used in the device control model
of FIG.3.

FIG. 24 is a data flow diagram illustrating subscription,
notification and unsubscription in the eventing model of
FIG. 23.

FIG.25 is a block diagram of a computer system that may
be used in the device control model of FIG.3.

FIG.26 is a block diagram of a device having embedded
computing and networking capability per Universal-Plug-
and-Play (UPnP) standards that may be used in combination
with the computer system of FIG. 25 in the device control
model of FIG.3.

FIG.27 is a block diagram of a software architecture per
UPnPstandards in the embedded computing device of FIG.
26

FIG.28 is a data flow diagram of a process for automatic
network introduction of the embedded computing device of
FIG. 26 into an ad hoc computer network environment per
the UPnPprotocol.

FIG.29 is a data flow diagram of a process for automatic
network introduction of the embedded computing device of
FIG. 26 into a configured computer network environment
per the UPnP protocol.

FIG. 30 is a block diagram of a software architecture of
a client device per UPnP standards having embedded com-
puting and networking capability that may be used in the
device control model of FIG.3.

FIG.31 is a block diagram of an exemplary homeoroffice
pervasive computing environment having a variety of com-
puters as per FIG. 25 and embedded computing devices as
per FIG. 26 interconnected per UPnP standards that may be
used in the device control model of FIG.3.

FIGS. 32 through 44 are program listings of interfaces
used in the Rehydrator implementation design of FIG. 10.

FIGS. 45-47 are an XMLformatlisting that depicts an
exemplary contract for interacting with a stock quote Ser-
vice.

FIGS. 48-51 are an XMLformatlisting that depicts an
XMLschemafor defining Contracts.

DETAILED DESCRIPTION

The following detailed description is directed toward
self-bootstrapping or automatic dynamic self-configuring of
devices for ad hoc peer networking with other devices on a
computing network that avoid user installation experience,
persistent relationship configurations, and software driver
downloads. In one described implementation, this self-
bootstrapping is used in a device architecture 100 (FIG. 1),
connectivity model, and device control protocol proposed by
Microsoft Corporation, called Universal Plug and Play
(“UPnP”).
Universal Plug and Play

Universal Plug and Play (UPnP) is an open network
architecture that is designed to enable simple, ad hoc com-
munication among distributed devices and services from
many vendors. UPnP leverages Internet technology and can
be thought of as an extension of the Web model of mobile
Web browserstalking to fixed Web servers to the world of
peer-to-peer connectivity among mobile and fixed devices.
UPnP embraces the zero configuration mantra of Plug and
Play (PnP) but is not a simple extension of the PnP host/
peripheral model.

Netflix, Inc.et al. Exhibit 1003
Page 52 of 91

Netflix, Inc. et al. Exhibit 1003
Page 53 of 91

US 6,910,068 B2
5

The cost, size and battery consumption of computing
technology—including processing, storage and displays—
continues to fall. This trend is enabling the evolution of
stand-alone, single or limited function computing devices
such as digital cameras, audio playback devices, smart
mobile phones and handheld computers. Concurrent with
this, the economical storage and transmission of digital
audio, video and still images is enabling highly flexible
models for managing entertainment content.

While many of these devices are capable of useful stand-
alone operation, seamless connectivity with the PC can
enhance the value to the customer of both stand-alone

devices and the PC. Good examples of this synergy are
digital image capture combined with PC image
manipulation, storage and email transfer/Web publishing
and information synchronization between a PC and a hand-
held computer or smart mobile phone.

Since manyof these devices, and the PCitself, are mobile,
a suitable communication architecture must enable a highly
dynamic connectivity model and must enable peer-to-peer
operating among arbitrary combinations of devices.

The Internet has created a widespread awareness of the
value of simple, universal communication that is indepen-
dent of the underlying transmission technology and inde-
pendent of technology from any single vendor.

UPnP makesit possible to initiate and control the transfer
of bulk data (e.g. files) or A/V data streams from any device
on the network, to any device on the network, under the
control of any device on the network. UPnP enables the ad
hoc addition or removal of devices on the network, and it
enables multiple controlling devices to remain in syne with
each other.

UPnmPreusesexisting protocols and technology whenever
possible. The transition to this highly connected (and
connectable) world will not occur overnight. UPnP builds on
existing Internet protocols, but accommodates devices that
cannot run the complete UPnP protocol suite. UPnP provides
an architecture that enables legacy devices to communicate
with UPnP devices.

IP internetworking has been chosen as a UPnPbaseline
dueto its proven ability to span different physical media, to
enable real world multiple vendor interoperation and to
achieve synergy with the Internet and home and office
intranets. Internet synergy enables applications such as IP
telephony, multiple player games, remote control of home
automation and security, Internet based electronic
commerce, in addition to simple email and Web browsing.
UPnP’s scope includes remote control of devices and bulk
data transfer, and can be easily extended to specify A/V
streaming.

UPnP’s media independence enables a great deal of
flexibility in the packaging of products. UPnP enables an
A/V system to be controlled through an A/C power com-
munications technology, while the transmission of A/V
streams among the componentsis analog or digital. One of
the controllers of this system could be on the television,
while another is on a PC,and yet another connected via radio
or infrared.

Unlike Plug and Play, Universal Plug and Playis built on
top of networking and enables ad hoc peer-to-peer connec-
tivity. Networking, in this context, describes a style of
connectivity that enables any networked device to initiate a
communication with any other networked device, without
having established a prior relationship or maintaining a
persistent relationship between the devices. Networking also
allows multiple devices to establish one or more connections
with a single device, and it allows for a device to be capable

10

15

20

25

30

35

40

45

50

60

65

6

of both initiating and accepting connections to/from other
devices. The PnP, or host/peripheral, model is suitable
wheneverthere is a natural persistent relationship between
two devices (e.g. a keyboard, mouse and display maintain
and a persistent relationship with a host computer). Even
though networking does not mandate low level persistent
relationships, it provides the needed anchors (addresses) for
applications to choose to maintain associations as a conve-
nience for the customer (e.g. remembering commonly used
networked printers).

In order to achieve multiple vendor peer-to-peer interop-
eration among devices, vendors desirably agree on common
technology and standards up to the highest level of desired
functional interoperation.

UPnPleverages formal protocol contracts to enable peer-
to-peer interoperation. Protocols contracts enable real-world
multiple-vendor interoperation.

UPnPprovides a device-driven auto-configuration capa-
bility that preserves the experience that customers have on
the Web. Today, it is possible to navigate around the Web
without loading programs beyond the browseritself. UPnP
enables the browser to be extended to control devices.

Because UPnP devices are controlled with explicit
protocols, the browser must somehow learn how to talk to
UPnP devices. This learning process is driven entirely from
the device itself and is accomplishing entirely by uploading
an XML document that describes the capabilities of the
device. The architectural component that enables device-
driven auto-configuration is called the Rehydrator. The job
of the Rehydrator is to convert between APIs and protocols.

There are some scenarios where the Web UI modelis not

sufficient for a rich customer experience. It would not be
convenient to have a separate Web interface for each light
switch in a house. To support a rich user interface and to
enable the aggregation of devices into a single UI, UPnP
enables application control in addition to browser control of
devices. This is achieved simply by enabling applications to
call the same Rehydrator APIs that the browser does. Appli-
cations can also directly generate and consume the raw
UPnP control protocols, provided they are not interested in
the device-driven auto-configuration enabled by the Rehy-
drator.

UPnP assumes that there will be more than one device

with UI that wants to control other devices in any given
network, and it provides a simple mechanism that enables
these control points to remain in sync. This mechanism can
easily support device front panels and wireless remotesthat
do not run UPnP protocols. The UPnP control model is
third-party control; any device can transfer bulk data (e.g.
files) or A/V data streams from any device on the network,
to any device on the network, underthe control of any device
on the network.

Terminology
The detailed description that follows uses the terminology

defined below.

Module. A componentof a device, software program, or
system that implements some “functionality”, which can be
embodied as software, hardware, firmware, electronic
circuitry, or etc.

User Control Point. The set of modules that enable
communication with a UPnP Controlled Device. User Con-

trol Points initiate discovery and communication with Con-
trolled Devices, and receive Events from Controlled
Devices. User Control Points are typically implemented on
devices that have a user interface. This user interface is used
to interact with Controlled Devices over the network. The

modules minimally include a Discovery Client, a Descrip-

Netflix, Inc.et al. Exhibit 1003
Page 53 of 91

Netflix, Inc. et al. Exhibit 1003
Page 54 of 91

US 6,910,068 B2
7

tion Client, a Rehydrator, an Event Subscription Client and
an Event Sink,. User Control Points may also include Visual
Navigation, a Web browser and an application execution
environment. User Control Points can add value to the

network by aggregating the control of multiple Controlled
Devices (the universal remote) or they can implement a
function as simpleas initiating the transfer of data to or from
a Controlled Device. Examples of devices that could be User
Control Points are the personal computer (PC), digital
television (DTV), set-top box (STB), handheld computer
and smart mobile phone, and the like. Nothing prevents a
single device from implementing the functionality of a User
Control Point and one or more Controlled Devices at the
same time.

Controlled Device. The set of modules that perform
certain tasks (e.g., printing) and communicate with a User
Control Point. Controlled Devices respond to discovery
requests, accept incoming communications from User Con-
trol Points and may send Events to User Control Points.
Devices that support Controlled Device functionality may
also support local user interfaces such as front panel displays
or wireless remotes. The modules minimally include a
Discovery Server, a Description Server, a Control Server, an
Event Subscription Server and an Event Source. Controlled
Devices mayalso include a Presentation (e.g., Web) Server.
Examples of devices that could be Controlled Devices are
the VCR, DVD player or recorder, heating/ventilation/air-
conditioning equipment (HVAC),lighting controller, audio/
video/imaging playback device, handheld computer, smart
mobile phone and the PC, and the like. Nothing prevents a
single device from implementing the functionality of a User
Control Point and one or more Controlled Devices at the
same time.

Bridge. Aset of modules that enables Bridged and Legacy
Devices to interact with native UPnP devices. The bridge
itself exposes a collection of UPnP Controlled Devices to
User Control Points. The Bridge maps between native UPnP
Device Control Protocols and the underlying protocols or
other control methods exposed by the Bridged and Legacy
Devices. Optionally, such a device could expose UPnP
Controlled Devices to Legacy Devices in the manner
required by the Legacy Devices. Nothing prevents a single
device from implementing the functionality of a User Con-
trol Point, one or more Controlled Devices and a Bridge at
the sametime.

Service Provider. A module used by a UPnP Bridge that
translates between UPnPprotocols and the protocols used by
Bridged and Legacy Devices. No Service Providers are
required for communication among native UPnP devices.

Bridged Device. A device that cannot participate in UPnP
at the native protocol level, either because the device does
not have sufficient resources or because the underlying
media is unsuitable to run TCP and HTTP. Examples of
devices that could be Bridged Devices are power line-
controlled A/V equipment, light switches, thermostats,
wristwatches and inexpensive toys. Bridged Devices are
UPnP complaint and are exposed to other UPnP devices
through a UPnP Bridge.

Legacy Device. Any non-UPnP compliant device that
must be exposed to other UPnP devices through a UPnP
Bridge.

Device Model. The UPnP model of Controlled Devices.

The Device Model includes the addressing schemes,
Description Document, Devices and Services hierarchy and
the functional description of Services.

Device Control Protocol (DCP). A complete set of UPnP
protocols and schemas used to interact with a UPnP Con-
trolled Device.

10

15

20

25

30

35

40

45

50

55

60

65

8
Device Definition. The formal definition of a Device

Type. A Device Definition includes a Device Type Identifier,
the fixed elements in the Description Document, the
required set of Service Definitions in the Root Device, and
the hierarchy of required Devices and Service Definitions.

Service Definition. The formal definition of a Service

Type. A Service Definition includes a Service Type
Identifier, definition of the Service State Table (SST), defi-
nition of the Service Command Set, the Service Control
Protocol (SCP) and Service Control Protocol Declaration
(SCPD).

Device. In the context of the Device Model, a container
for Services. A Device generally models a physical entity
such as a VCR,but can also represent a logical entity. A PC
emulating the traditional functions of a VCR would be an
example of a logical device. Devices can contain other
Devices. An example would be a TV/VCR packagedinto a
single physical unit. UPnP enables the association of user
interface (display icon and root Web page) with every
Device, including Root Device.

Root Device. The topmost Device in a hierarchy of nested
Devices. A Device with no nested Devices is always a Root
Device.

Device Type. A relatively high level classification of
Devices with common functionality. Device Type is
intended to enable Devices to be simply and automatically
grouped for search and/or presentation. An example of a
Device Type is “VCR”. Device Types are formally defined
in terms of a required set of Service Definitions of minimum
version that a compliant Device must support. UPnP sup-
ports searches for all Devices of a specified Device Type.

Device Type Identifier. A unique identifier that identifies
a Device Definition. This identifier adheres to the format of

a Uniform Resource Identifier (URI). See, T. Berners-Lee,
R. Fielding, L. Masinter, “Uniform Resource Identifiers
(URI): Generic Syntax”, which can be found at http://
www.ieff.org/rfc/rfc2396.txt.

Device Friendly Name. A human readable string that is
usually initialized by vendorsat the time of manufacturer of
a Device. Every Device, including Root Devices, has a
Device Friendly Name. Atypical Device Friendly Name will
contain manufacturer and model information, and especially
when interpreted by humans, can be used to enable a more
precise identification of a UPnP Device from the set of
discovered Devices. Once identified, the Unique Device
Name (UDN) can be used to unambiguously identify the
same Device in the future. UPnP enables Device Friendly
Names to be changed by User Control Points. The Device
Friendly Name should not be used as device identifier.

Unique Device Name (UDN). The fundamental identifier
of a Device. Every Device, including Root Devices, has
exactly one UDN. The UDN is globally unique and
permanent, even across powercycles and physical location
changes. The UDN is the only UPnP device identifier
guaranteed never to change. UPnP enables searches for
devices by UDN.

Description Document. A structured unit of data that is
used by a User Control Point or UPnP Bridge to learn the
capabilities of a Controlled Device. Description Documents
are retrieved from the Description Server on a UPnP Con-
trolled Device. There is one Description Documentfor every
Root Device that describes the Root Device and all non-

Root Devices. Description Documents adhere to XML
grammar. To support localization, multiple Description
Documents can exist. A User Control Point requests the
preferred localized Description Document by using the
standard HTTP“accept-language” header.

Netflix, Inc.et al. Exhibit 1003
Page 54 of 91

Netflix, Inc. et al. Exhibit 1003
Page 55 of 91

US 6,910,068 B2
9

Service. The fundamental UPnP controllable entity (but
not the finest level of control). An example of a Service is
“Clock”. Services are defined with a mandatory common
base set of functionality. Vendors can extend the base set
with proprietary extensions provided the base functionality
is implemented. Service Definitions are versioned and later
versions are constrained to be supersets of previous ver-
sions. UPnP enables searches for all Devices that contain a

specified Service of a minimum version. This search would
find all clocks, regardless of their packaging. A search for
Device Type “Clock” would be usedto find only stand-alone
clocks.

Service Type. A classification of Services by their func-
tion.

Service Type Identifier. A unique identifier that identifies
a Service Definition. This identifier adheres to the format of

a Uniform Resource Identifier (URI). See, T. Berners-Lee,
R. Fielding, L. Masinter, “Uniform Resource Identifiers
(URD: Generic Syntax”, which can be found at http://
www.ietf.org/rfce/rfc2396.txt.

Service State Table (SST). A logical table consisting of
rows of [Variable, Type, Legal Values, Default Value, Cur-
rent Value] that represents the current electrical, mechanical
and/or logical state of a Service. SST instances are stored on
the Controlled Device itself and are the ultimate authority of
the state of the Service. All local user interface, such as front
panels or wireless remotes are required to update the SST on
UPnP compliant devices.

SST Definition:
Service Command Set. A set of Commands that can be

invoked on a Service. Commands generally result in
changes in the Current Value field of one or more rowsof a
SST. Commands are logically represented in the format
Command (Variable=New Value, Variable=New Value, ...).
Services mustaccept orreject the complete set of changes to
a SST. There is a mandatory standard Query Commandthat
is used to retrieve the Current Value of any row of a SST.

Service Command Set Definition

Service Control Protocol (SCP). The protocol used to
invoke Commands against a Service and to return results.
There is exactly one SCP per Service Definition. SCPs
adhere to the grammar of SCP XML schema. SCPs can be
generated by an automatedtool that accepts a SST Definition
and a Command Set Definition as input.

Service Control Protocol Declaration (SCPD). A formal
representation of the schema of a Service. The SCPD
declares the rows of a Service’s SST and the associated

Command Set. SCPDs are uploaded from Controlling
Devices in their Description Documents and enable User
Control Points or Bridges to invoke Commands on the
Service without any prior or persistent knowledge of the
capabilities (or schema) of the Service. There is exactly one
SCPD per Service Definition. SCPDs adhere to XML gram-
mar. SCPDs can be generated by an automated tool that
accepts a SST Definition and a CommandSet Definition as
input.

Event. An unsolicited message generated by a Controlled
Device and delivered to one or more User Control Points.
Events are used to maintain a consistent view of the state of
Service across all interested User Control Points. UPnP

leverages the GENAeventarchitecture (see “Generic Event
Notification”) to transport event messages. All events are
delivered using TCP/IP for reliability.

Generic Event Notification Architecture (GENA). An
event transport protocol. GENA leverages TCP/HTTPas a
transport. GENA has been submitted as an Internet Draft to
the IETF. See, J. Cohen, S. Aggarwal, Y. Goland, “General

10

15

20

25

30

35

40

45

50

55

60

65

10

Event Notification Architecture Base: Client to Arbiter’,
which can be found at http:/Awww.ietf.org/internet-drafts/
draft-cohen-gena-client-00.txt.

Simple Service Discovery Protocol (SSDP). A simple
network device discovery protocol. UPnP uses SSDP to
allow User Control Points to find Controlled Devices and

Services. SSDPoperates in a default, completely automatic
multicast UDP/IP based modein addition to a server-based

mode that uses TCP/IP for registrations and query. Transi-
tions between the default dynamic mode and server-based
modeare automatic and transparent to upper level software.
SSDPenables every Controlled Device to control the life-
time that its Description URLis cached in all User Control
Points. This enables a Controlled Device to remain visible to

User Control Points for a relatively long time (through
powercycles), in addition to enabling a Controlled Device
to appear and disappear very quickly, all under the control
of the Controlled Device. SSDP and related Multicast and

Unicast UDP HTTP Messages specifications have been
submitted as Internet Drafts to the IETF. See, Y. Goland,
“Multicast and Unicast UDP HTTP Messages”, which can
be found at http://www.ietf.org/internet-drafts/draft-goland-
http-udp-00.txt; and Y. Goland, T. Cai, P. Leach., Y. Gu, S.
Albright, “Simple Service Discovery Protocol/1.0”, which
can be found at http:/Awww.ietf.org/internet-drafts/draft-cai-
ssdp-v1-02.txt.

Client. In the context of UPnP, Client refers to a module
that initiates a TCP/HTTP connection to a peer HTTPserver.

Server. In the context of UPnP, Server refers to an HTTP
server. This is a module that accepts incoming TCP/HTTP
connections and either returns a Web page or forwards the
payload data to another module. Client and Server describe
only the direction of initiation of TCP/HTTP connections.
There is no relationship between the low level concepts of
Client and Server and the high level concepts of User
Control Point and Controlled Devices. Logically, User Con-
trol Points always discover and initiate communication with
Controlled Devices, but this communication requires Client
and Server functionality on both sides.

Hostname. A Hostname is the Domain Name System
(DNS) or NetBIOS Name Service (NBNS) that, when
resolved to an IP address, represents a network interface that
can be used to establish TCP/IP level connectivity to User
Control Points, Controlled Devices or Bridges. Hostnames
can be used to provide persistent network level addressing
on a network where IP addresses are dynamically assigned
and of unknown lifespan or to integrate with an existing
managed network. UPnP provides an algorithm for seeding
a device’s hostname from its UDN at manufacturing time.

Uniform Resource Locator (URL). A format for express-
ing Web addresses. URLs minimally contain an identifica-
tion of the protocol family that the URL is valid for, a
Hostname, and a path. UPnP uses URIs as addresses
wheneverthe module accepting the incoming connection is
an HTTP server.

Description URL. The URL returned from a Controlled
Device or Bridge in response to any UPnP SSDP query. This
URLalwayspoints to a Description Server on the Controlled
Device. An HTTP GETcanbeissued on this URLtoretrieve

the Description Document. This URLis valid as an address
for the lifetime of the Hostname embedded in the URL.

Discovery Server. The module that runs in a Controlled
Device or Bridge that responds to SSDP queries. This Server
is unique in that it must support UDP/HTTPin addition to
TCP/HTTP.

Discovery Client. The module that runs in a User Control
Point that initiates SSDP queries.

Netflix, Inc.et al. Exhibit 1003
Page 55 of 91

Netflix, Inc. et al. Exhibit 1003
Page 56 of 91

US 6,910,068 B2
11

Description Server. The module that runs in a Controlled
Device or Bridge that responds to HTTP GETs and returns
Description Documents. This service consists of a TCP/
HTTP server than can retrieve and return a Description
Documentfrom persistent storage (like a filesystem).

Visual Navigation. User Control Point functionality that
displays the icons of discovered Devices and enables the
transfer of control to a browseror application to interact with
the Controlled Device. In Windows, Visual Navigation
could be implemented as a folder of icons.

Presentation URL. A URLthat can be used by a User
Control Point to navigate to the Presentation Server of a
Controlled Device. This URLis returned in the Description
Documentandis valid as an address for the lifetime of the

Hostname embedded in the URL. All Devices, including
non-Root Devices, can have an associated Presentation
URL.

Presentation Server. AWeb Server in most commoncases.

The module that runs in a Controlled Device that responds
to HTTP GETs or Presentation URLs and returns user

interface using Web technologies (JavaScript, Jscripte,
ECMAScript, VBScript, ActiveXe, Java Applet, etc.).

Browser. A Presentation Client. A Web browser extended

with a Rehydrator.
Control URL. A URLthat can be used by a User Control

Point to navigate to the Control Server of a Controlled
Device or Bridge. This URL is returned in the Description
Documentandis valid as an address for the lifetime of the
Hostname embedded in the URL. All Services have an
associated Control URL.

Control Server. The module that runs in a Controlled

Device or Bridge that responds to Commands invoked on a
Service by a User Control Point. Commands are encoded
and sent using the SCP specified in the Service Definition.
This service consists of a TCP/HTTP server that passes
control to the native control logic of a Service, updates the
SST and generates an event if the SST changes.

Rehydrator. In UPnP, a Control Client. A User Control
Point module that translates between native operating sys-
tem APIs and SCPs and events. The Rehydrator uploads
SCPDs from Controlled Devices and Bridges and generates
appropriate SCPs in response to application API requests to
invoke Commands.

Event Subscription URL. A URLthat can be used by a
User Control Point to navigate to the Event Subscription
Server of a Controlled Device or Bridge. This URL is
returned in the Description Document and is valid as an
address for the lifetime of the Hostname embedded in the

URL. All Services have an associated Event Subscription
URL.

Event Subscription Server. The module that runs in a
Controlled Device or Bridge that responds to GENA SUB-
SCRIBErequests from User Control Points. ASUBSCRIBE
informs the Controlled Device or Bridge of the User Control
Point’s desire to receive future events. This service consists

of a TCP/HTTP server that adds the User Control Point’s
Event Sink URLtothelist of destinations to be NOTIFY’d

whenever the SST associated with the Service changes.
Event Subscription Client. The module that runs in a User

Control Point that sends GENA SUBSCIBE messagesto the
Event Subscription Server.

Event Sink URL. A URL, supplied by a User Control
Point, that is used as an address to send event NOTIFYsto.
This URL is valid as an address for the lifetime of the

Hostname embedded in the URL. There is no explicit
relationship between Event Sink URLs and Subscription
Identifiers.

10

15

20

25

30

35

40

45

50

55

60

65

12

Subscription Identifier (SID). A header in the GENA
NOTIFY message that identifies the source of an event. In
UPnP, the SID can be considered as an alias for the Event
Source instance.

Event Sink. The module that runs in a User Control Point

that accepts incoming GENA event NOTIFYs.This service
consists of a TCP/HTTPserver that passes the event infor-
mation to interested applications running on the User Con-
trol Point.

Event Source. The module that runs in a Controlled

Device or Bridge that sends GENA NOTIFYsto the Event
Sink Servers of SUBSCRIBES User Control Points.

Domain Name System (DNS). A distributed system of
servers that locates the IP addresses of other computers on
a network based on their hierarchical names.

NetBIOS Name Server (NBNS). A server that locates the
IP addresses of other computers on a network based on their
flat NetBIOS computer names.

Multicast’ DNS (MDNS). A peer-to-peer translation
scheme that does not require involvement of DNSservers.
UPnP Technologies Overview

An overview of technologies utilized in UPnP follows.
Device Discovery: Simple Service Discovery Protocol

(SSDP)
TCP/IPprovides the ability to initiate a connection with

a specified application running on a specific device, pro-
vided both the network address of the device (IP address)
and the application address (port) are known. Generally,
application addresses (ports) are standardized and widely
known, but the problem of learning the IP address of a
device remains.

Simple Service Discovery Protocol (SSDP)is a protocol
that enables devices to learn of the existence of potential
peer devices and the required information (an IP address)
needed to establish TCP/IP connections to them. The suc-
cessful result of an SSDP search is a Uniform Resource

Locator (URL). The Hostname embedded in the URL can be
resolved to an IP address that can be used to make a
connection to the discovered device. The name to address

resolution is outside of the functionality of SSDP.
SSDP specifies a default, completely automatic, best-

effort multicast UDP-based operating mode,in addition to a
server mode that uses TCP for registration and query.
Fall-forward to server mode and fallback to the default

dynamic mode can occur automatically and transparently as
a server is added or removed from a network. Server mode

can be used to reduce networktraffic, to implement searches
based on location or policy and to integrate with a directory
system.

SSDPrequires that all devices specify a maximum life-
time that SSDP level knowledge of the device will remain
cached in other network devices. If a device does not refresh
the cache of other network devices before this interval

expires, the device will be assumed to have disappeared
from the network. This interval can be chosen to be larger
than a typical power down cycle to enable device visibility
to persistfor a relatively long time, or a smaller interval can
be chosen to enable more dynamic visibility control. In all
cases, devices that are abruptly removed from the network
will eventually disappear from all networked devices.

In response to an SSDP search, UPnP devices return a
Description URL in the SSDP Location and optionally the
Alternate Location (AL) SSDP headers. An example loca-
tion header is a follows:

Location: http://device.local/description/path/
description.xml

In this example, the device.local is the Hostname of the
Controlled Device, and the “description/path/

Netflix, Inc.et al. Exhibit 1003
Page 56 of 91

Netflix, Inc. et al. Exhibit 1003
Page 57 of 91

US 6,910,068 B2
13

description.xml” element of the URL is the path and name
of the Description Document on the device.

Eventing: Generic Eventing Notification (GENA)
Eventing,in the context of UPnP,is the ability for a device

to initiate a connection at any time to one or more devices
that have expressed a desire to receive events from the
source device. Events are used to enable synchronization
among multiple devices organized into a many to one
relationship. UPnP events are mainly used for asynchronous
notifications of state changes.

TCP/IP provides the fundamental support for the connec-
tions that carry event information reliably. Generic Event
Notification (GENA) adds conventions for establishing rela-
tionships between interested devices and an addressing
scheme to enable the unambiguous delivery of events.
GENAleverages HTTP addressing and encapsulation.

User Control Points, Controlled Devices and Bridges
With reference now to FIGS. 1 and 2, UPnP is an

application-level distributed network architecture where the
logical nodes on the network are User Control Points
104-105, Controlled Devices 106-107 and Bridges 120.
Theseclassifications refer to functionality rather than physi-
cal entities. The functionality of UPnP User Control Points
104-105, Controlled Devices 106-107 and Bridges 120 can
be packaged into physical entities (e.g., multiple function
devices 102-103) in any combination.

The primary distinction between a User Control Point
104-105 and a Controlled Device 106-107is that the User

Control Point is always the communication initiator. After
the initial communication, User Control Points can receive
events from Controlled Devices.

Controlled Devices 106-107 are responsible for storing
and updating the state of Services. User Control Points are
required to synchronize to the state on Controlled Devices
and to share state directly among themselves.

User Control Points typically have user interface that is
used to access one or more Controlled Devices on the

network. Controlled Devices typically only have local user
interfaces.

Bridges 120 (FIG. 2) expose devices that do not expose
native UPnP protocols as native UPnP Controlled Devices.
The Bridge itself looks to other UPnP User Control Points
like a set of Controlled Devices.

The following table lists the modules in the User Control
Points 104-105 and Controlled Devices 106-107, along
with their functions.

User Control Point Controlled Device

Function Module Function Module

Initiate discovery Discovery Client Respond to Discovery Server
of Controlled discovery
Devices. requests.
Retrieve Description Client Provide Description
Description Description ServerDocuments. Documents.

Display a folder Visual Navigation
of icons per
discovered
Device and allow
transfer of
control to a
selected device.
View user Web Browser Provide user Presentation

inteface for
remote User
Control Points.

interface exposed
by a Controlled
Device.

(Web) Server

10

15

20

25

30

35

40

45

50

55

60

65

-continued

User Control Point Controlled Device

Function Module Function Module

Execute Application
applications. Execution

Environment

Invoke Rehydrator Accept Control Server
Commands on a incoming plus native
Controlled Device Commands in control logic
by sending SCPs and
Service Control execute them.
Protocols in

response to local
APIcalls.

Inform a Event Accept requests Event
Controlled Device Subscription for Events and Subscription
of a desire to Client remember Server
receive Events. them.
Receive an Event. Event Sink Send an Event. Event Source

Device Model
The UPnP Device Model 200 shown in FIG. 3 is the

model of a UPnP Controlled Device or Bridge that is
emulating native Controlled Devices. The Device Model
includes the addressing scheme, eventing scheme, Descrip-
tion Document schema, Devices and Services schema and
hierarchy, and the functional description of modules. The
UPnP Device Model extends beyond simple API or a
commandand control protocol definitions to enable multiple
User Control Points to have a consistent view of Controlled

Devices. This requires that the state of running services be
formally modeled and that all state changes be visible to
User Control Points. Central to the distributed UPnP archi-
tecture is the rule that Controlled Devices are the ultimate

authority for the state of Services running on them.
Service

The fundamental controllable entity in UPnPis a Service
210-217. Every running instance of a Service includes:
A Service State Table (SST) 230, which represents the

current state of the Service.

The SST 230 can be used to represent the operational
mode of device or to act as an information source or sink for

structured data or simple files. The SST of a VCR 254 (FIG.
4) could represent the current transport mode, tuner channel
selection, input and output switch selections, audio and
video decoding format and current timer program. The SST
of clock 251 (FIG. 4) would likely represent the current
time. The SST of an image rendering device could imple-
ment a video frame-buffer that can accept raw pixel infor-
mation or formatted JPG files. The SST of an audio or video

playback device could implementa transfer buffer or queue
of material to be played. The SST of PDA could implement
a collection of formatted data that has changed and needed
to be synchronized with another device, in addition to a
transfer buffer for accepting incoming formatted data.

The logical structure of a SST published in the Service
Definition, but the actual storage format of an instance of a
SSTis entirely up the device. The only interaction with a
SSTis through a formal application level network protocol.
A Control Server 232, which accepts incoming Commands

expressed in the Service’s Service Control Protocol
(SCP). The Control Server passes the commandto the
Service’s native commandprocessing logic and waits for
command completion. When the command is completed
successfully, the SST is updated, an event is generated,
and a successful response is returned to the User Control
Point. In the event of an illegal command or unsuccessful

Netflix, Inc.et al. Exhibit 1003
Page 57 of 91

Netflix, Inc. et al. Exhibit 1003
Page 58 of 91

US 6,910,068 B2
15

command, no changes are made to the SST anda failure
response is returned. The Command and response
sequence is payload to a TCP/HTTP request/response.

An Event Subscription Server and Event Source 234. The
Event Subscription Server accepts incoming GENA SUB-
SCRIBE messages from User Control Points and adds
them to a list of User Control Points interested in SST

change events from the Service. The Event Source ini-
tiates a TCP/HTTP connection to each interested User
Control Point and sends a GENA NOTIFYeach timethe

Service’s DST changes. The NOTIFY payload includes
the changed contents of the DST.

A Control URLthat identifies the Control Server.

An Event URLthatidentifies the Event Subscription Server.
The formal definition of a Service (Service Definition)

includes:

The definition of the SST. SST layouts are logically speci-
fied in terms of rows of [Variable, Type, Legal Values,
Default Value]. The actual instance of a SST would also
include a Current Value field in every row.

The definition of the Service Command Set that can be

invoked against the Service’s SST. Commandsarelogi-
cally specified in terms of Command(Variable=New
Value, Variable=New Value, ...). If a Commandresults
in more than a single Variable change, the updates are
atomic and the Command will fail if it is illegal to make
the specified change to any one Variable.

The definition of a structured unit of data called a Service

Control Protocol Declaration (SCPD). SCPD is used to
advertise the layout (schema) of the SST and Command
Set of the Service to a User Control Point or Bridge. The
SCPD enables the User Control Point to invoke Com-

mands(through the Rehydrator) on the Controlled Device
without any prior or persistent knowledge of the capa-
bilities of the device. The SCPD is uploaded from the
Controlling Device as part of the Description Document.
Generation of the SCPD for a Service based on its SST

definition and CommandSetdefinition can be fully auto-
mated.

The definition of a network protocol used to invoke Com-
mandsagainst the SST associated with a Service and to
return results. The SCP can be generated from the SCPD.
The Rehydrator’s job is to convert SCPDs into SCPs. The
reason for a formal SCP specification is to enable the
implementation of the Control Serveritself and to enable
simple peer-to-peer device interoperation using only pub-
lished protocols.

An identifier, called the Service Type Identifier, that identi-
fies a unique Service Definition. Service Definitions are
versioned in controlled manner. Every later version of a
Service must be proper superset of the previous version.
Device

According to the device model 200 shown in FIG.3, a
UPnP Device 202-205 (e.g., multiple function devices
102-103 of FIG. 1 and bridged devices 122-123 of FIG.2)
is a logical container of one or more Services 210-217.
Generally a Device represents a physical entity such as a
VCR.Typical Services in the VCR Device example might be
“TRANSPORT”, “TUNER”, “TIMER” and “CLOCK”.
While Devices are often physical entities, a PC emulating
the traditional functions of a VCR could also be modeled in

the same way as the stand-alone VCR. Devices can contain
other Devices. An example would be a TV/VCR 250 (FIG.
4) packaged into a single physical unit. A Device (e.g.,
devices 202-203) may also be a logical container of other
Devices. The top-most Device in a hierarchy of nested
Devices 203-205 is called the Root Device 202. A Device

with no nested Devices is always a Root Device.

10

15

20

25

30

35

40

45

50

55

60

65

16

The UPnP Device Model was designed to be general and
flexible. It should be possible to model an entire Nuclear
Power Plant as a single Service or as a deeply nested
hierarchy of Devices and Services. In general, a Service
210-217 is cohesive set of functions that enables flexible

packaging into a variety of Devices. Services can be ver-
sioned independently of Devices.

All Devices, including Root Devices belong to one or
more Device Types. Device Types are intended to enable
instances of Devices to be simply and automatically grouped
for presentation. An example of a Device Type is “VCR”
254 (FIG.4). Device Types are formally defined in terms of
a minimalset of versioned Services that a Device of Device

Type must support. Device Types are not formally ver-
sioned. Device Type is a relatively high level grouping. A
Device of Device Type only ensures that minimal set of
Services of a minimal version is present. There can be other
Services, higher versioned Services and Services with ven-
dor extensions present on such a Device.

UPnPenables SSDPlevel searches for a unique instance
of a Device (by UDN), all Devices of type Device Type and
all Devices that contain at least one Service Type of mini-
mum version. The result of an SSDP search is always a URL
that points to the Description Document contained in the
Root Device. In the event that matching Device is not the
Root Device, the Description Documenthasa tree of nested
Devices that can be traversed to find the matching Device.

Every Device includes:
One or more Device Types.
One or more Services.

Optionally, one or more Devices.
Optionally, a Presentation (Web) Server 220-223that can be

used to expose Device user interface. Every Presentation
Server has an associated Presentation URL.

A globally unique identifier called the Unique Device Name
(UDN). The UDN is the fundamental identifier of an
instance of a Device. Every Device, including Root
Devices, has exactly one UDN.
Every Root Device 202 also includes the Description

Document 226 and Description Server 228 for all Devices
under and includingitself.

The formal definition of a Device (Device Definition 226)
includes:

The fixed elements of the Description Document that
describe the Device.

The required hierarchy of Devices and Service Definitions.
There can be many Device Definitions that belong to a

single Device Type.
Device Types
The formal definition of a Device Type includes:

A Device Type Identifier.
The required hierarchy of Devices and Service Definitions

of minimum versions.
Service State Table

A Service State Table (SST) logically consists of rowsof:
Variable, Type, Legal Values, Default Value, Current

Value Although entries of the Service State Table in UPnP
consist of these five items, the state table alternatively can
contain feweror additional items. Generally, each entry will
minimally consist of a Variable nameor identifier, and its
current value.

Netflix, Inc.et al. Exhibit 1003
Page 58 of 91

Netflix, Inc. et al. Exhibit 1003
Page 59 of 91

US 6,910,068 B2
17

The following table lists various Types available in UPnP.

Description ExampleType

String
Number

A sequence of UNICODEcharacters.
A number, with no limit on digits; may
potentially have a leading sign,
fractional digits, and optionally an
exponent. Punctuation as in US
English.
TRUEor FALSE.
A date in ISO8601 format, with
optional time and optional zone.
Fractional seconds may be as precise
as nanoseconds. See, “Data elements
and interchange formats - Information
interchange - Representation of dates
and times“, which can be found at
http://wwwiso.ch/markete/8601.pdf.
An unstructured sequence of bytes.

15, 3.14, —
123.456E+10

Boolean
DateTime 19941105T08:1

5:5+03

ByteBlock

The ByteBlock is essentially a data buffer. In one use, a
variable of this type can be used to effect transfer ofafile
from the Controlled Device to the User Control Point. The

file to be transferred is kept in the Service State Table as the
current value of this variable. On a changeinthefile, the file
is transferred to any subscribing User Control Point in an
event notification.

The reason for representing Services this wayis to ensure
that the state of a Service is easily available in a common
way to multiple User Control Points.

An SST can be used to represent to current operational
modeof device, act as an information source or sink and/or
simply be a repository for commands. The SST of a VCR
Service could represent the current transport mode, tuner
channel selection, input and output switch selections, audio
and video decoding format and current timer program.
Alternatively, the VCR 254 could be represented as a
Transport Service 260, Tuner Service, I/O Switch Service,
A/V Decoding Configuration Service and Programmable
Timer Service 261.

The SST of a clock 251 would likely represent the current
time. Additionally an alarm clock could include Service
Variables to configure the clock.

The SST of an image rendering device could implement
a video frame-buffer that can accept raw pixel information
or formatted JPG files. The SST of an audio or video

playback device could implementa transfer buffer or queue
of material to be played. The SST of PDA could implement
a collection of formatted data that has changed and needed
to be synchronized with another device, in addition to a
transfer buffer for accepting incoming formatted data.

User Control Point Synchronization
In accordance with an device state and eventing model

illustrated in FIG. 5, UPnP rules require that every change
to an SST generate a corresponding event to announce the
change to the all interested User Control Points.

UPnP Self-Bootstrapping
With reference to FIG. 6, UPnPself-bootstrapping 350 is

an integrated set of technologies organized as layers of a
stack that include addressing 352, naming 354, discovery
356, and description 358 layers. The technologies in these
layers is discussed in detail below. At the addressing layer
352, UPnP utilizes the Dynamic Host Configuration Proto-
col (DHCP) and AutoIP protocol for device addressing
described below, which operate to dynamically assign an
address to a UPnP device when introduced on a network. At

the naming layer 354, UPnP utilizes the Domain Name
System (DNS) and multicast DNS protocols and/or the

10

15

20

25

30

35

40

45

50

55

60

65

18

NetBIOS Name Service (NBNS) protocol to provide ser-
vices to refer to devices using names according to a naming
convention. At the discovery layer 356, UPnP utilizes the
Simple Service Discovery Protocol (SSDP) protocol by
which a UPnP device can discover other devices present on
the network. At the description layer 358, UPnP utilizes
XML-based schemato describe device structures and opera-
tional functions exposed by a UPnP Controlled Device and
XML message-based protocols for their invocation. The
UPnP user control points can use this XML-based schema
description to invoke and thereby control the UPnP Con-
trolled Device at a usage layer 360.

Device Addressing
With reference now to FIG. 7, UPnP is built on top of

HTTPand leverages the native address format of the Web,
Uniform Resource Locators (URLs), beyond the basic net-
work addressing. URLs minimally contain an identification
of the application protocol family (“http”) that the URL is
valid for, a Hostnameand a path. In the context of UPnP, the
path part of a URL can representeither a filesystem path or
simply an identifier of the local system module and context
that can process incoming messages.

While UPnP modules are described as HTTP servers,
there is no requirement that implementations be based on
actual Web servers. In most cases, the job of the HTTP
server is simply to accept the incoming connection, look at
the local destination part of the address (the path) and
forward the payload to another module. UPnP enables, but
does not require, that all HTTP Servers be based on a
commonsoftware implementation or runtime instance. Con-
trolled Devices and Bridges can include a TCP port speci-
fication as part of a URL to override the default value of 80.

The successful result of a SSDP level search in UPnP is

always one or more Description URLs. These URLs can be
used to navigate to the Description Document of a Con-
trolled Device or Bridge. A User Control Point uploads the
Description Documentand extracts the URLsof the Servers
running on the Controlled Device or Bridge.

All URLsreturned in the Description Document have a
lifetime equal to the lifetime of the Hostname embedded in
them. User Control Points can store these URLsas addresses

without going through a search sequence first. Once they
have been advertised in a Description Document, Controlled
Device and Bridges cannot arbitrarily change Server URLs.

Whenever a Hostnamechanges, all URLs associated with
all Devices addressed by that Hostnameare invalidated. The
UDNis the only UPnPidentifier guaranteed never to change.
Any persistent associations maintained by applications
should at least store the UDN to able to unambiguously
identify the target Device.

The lifetime of a Description URL is determined by
Controlled Device or Bridge that advertises it. If a Con-
trolled Device or Bridge allows an SSDP advertisement of
a Description URL to expire, the URLis invalidated.

User Control Points use the Event Subscription URL
returned by the Controlled Device or Bridge to connect to
the Event Subscription Server. This server does the house-
keeping of remembering all User Control Points that are
interested in receiving Events on a Service. The Event
Subscription Server needs an address to send the events back
to. This address is called the Event Sink URL, and is
supplied to the Controlled Device or Bridge in the GENA
SUBSCRIBE message. The lifetime of an event
subscription, and the Event Sink URL,is determined by the
timeout on the SUBSCRIBE message.

Further details of UPnP addressing are listed in the
following table.

Netflix, Inc.et al. Exhibit 1003
Page 59 of 91

Netflix, Inc. et al. Exhibit 1003
Page 60 of 91

US 6,910,068 B2

UPnP Addresses

URL Function

Description Points to the Description Server and Document path on a
URL Root Device. This URL is returned by the Description

Server as part of the discovery process.
Presentation Points to a Presentation (Web) Server on a Controlled
URL Device. There is one Presentation URL per Device,

including Root Devices. This URL can be entered into the
address bar of a Web browser to navigate to the root Web
page of a Device. This URLis returned in the DescriptionDocument.

Points to the Control Server implementing a Service on a
Controlled Device. There is one Control URL perinstance
of a Service. This URLis returned in the Description

Control URL Document.

Event Points to an Event Subscription Server on a
Subscription Device. This URLis returned in the Description Document.URL

Event Sink Points to an Event Sink (an HTTP Server) on a User
URL Control Point. This URL is specified by the User Control

Point in the GENA SUBSCIBE message.

Device Discovery and Identification
UPnP enables SSDPsearches for a unique Root or non-

Root Device by UDN,devices of a specified Device Type
and devices containing a Service of a specified Service Type.

UPnP SSDP Level Searches and Results

Search for Returns

A unique Root
Device

(by UDN)
A unique non-
Root Device

(by UDN)
Type of Device

A single Description URL pointing to the Description
Server and Document path on the Root Device.

A single Description URL pointing to the Description
Server and Document path on the Root Device that
contains the non-Root Device.

A set of Description URLs pointing to the Description
Servers/Documentpaths of all Root Devices that match
the Device Type, or contain a non-Root Device that
matches the Device Type.
A set of Description URLs pointing to the Description
Servers/Documentpaths of all Root Devices that contain
a matching Service, or contain a non-Root Device that
contains a matching Service.

Type of
Service

SSDPspecifies Service Type (ST), Notification type (NT),
and Unique Service Name (USN) headerfields for queries
and for announcements. UPnP uses the ST or NT header to

carry one of the UPnP defined identifiers. A unique USN is
required for each unique SSDP announcement.

Multiple instances of the same Service Type within a
Controlled Device 106-107 or Bridge 120 are not indepen-
dently announced.

UPnP search identifiers are used during the discovery
process. The result of a successful discovery is one or more
Description URLs. The format for search identifiers is:

upnp:searchtype:[allformat | UDNformat| srvformat
| devformat]
searchtype =[UDN | SrvType | DevType| all]allformat = all

UDNformat = UDN:namespace:uniqueid
namespace =[GUID | IEEEMAC| 1394]

srvformat = SrvType:servicetype:version
devformat = DevType:devicetype

10

15

20

25

30

35

40

45

50

55

60

65

20

UPnP Search Identifiers

Format Example

all upnp:all upnp:all
Unique Device upnp:UDN:namespace:u§ upnp:UDN:IEEEMAC:0C009
Name (UDN)©niqueid 9123456
Device Type upnp:DevType:devicety—upnp:DevType:ver

pe
Service Type|upnp:SrvType: servicety upnp SrvType:clock:1

pe:ver

SSDPspecifies that SSDP announcements must be made
for all SSDP searchable values. The SSDP announcements

with “all” as the notification header value must carry the
Root Device UDN as the USN header value. SSDP

announcements for Device Types must carry the UDNofthe
Root Device concatenated with the Device Type URIas the
USNheader value. SSDP announcements for a Service Type
will carry the UDN of the Root Device concatenated with
the Service Type URIvalue as the USN header value. SSDP
announcements of UDNswill repeat the UDN value as the
USN header.

UPnP SSDP Announcements

UPnP Notification
Type

“al”?
Root Device UDN

Announcement SSDP USN

Root Device UDN

Unique Root Root Device UDN
Device

Unique non-Root Non-Root Device Non-Root Device UDN
Device UDN

Device Type Device Type Root Device UDN + Device
Identifier Type Identifier

Service Type Service Type Root Device UDN + Service
Identifier Type Identifier

UPnP Bridges 120 (FIG. 2) announce Bridged Devices
122-123 and associated Services using SSDP. The identifi-
ers associated with the Bridged Devices are unique for the
device, and they do not duplicate identifiers for Controlled
Devices and Services directly available on the Bridgeitself.
This means that a Bridge that is also a Controlled Device
must announce Bridged Devices and local Controlled
Devices independently, with appropriate unique identifiers,
Description Documents and associated URLs.

Description
The UPnP Description Document 226 (FIG. 3) provides

the information necessary to identify, describe, connect and
control a UPnP Controlled Device 106-107 or Bridge 120
from a User Control Point 104-105.

The Description Document is an XML document. UPnP
defines the use of HTTP and XML for the Description
Document and wire protocols. UPnP adheres to the schema
declaration rules of XML-Data and processing rules of Y.
Goland, “Flexible XML Processing Profile.”

The top level XML elements are separated into three
categories: per Device, per Service and shared.

Rehydrator
With reference now to FIG. 8, all (UPnP) Controlled

Devices 106-107 (FIG. 1) or Bridges 120 (FIG. 2) expose
one or more Services 210-217 (FIG. 3) that can be con-
trolled remotely. Controlling such Services involves a mes-
sage exchange between a User Control Point 104 and the
device 106. This message exchange happens according to a

Netflix, Inc.et al. Exhibit 1003
Page 60 of 91

Netflix, Inc. et al. Exhibit 1003
Page 61 of 91

US 6,910,068 B2
21

specific Service Control Protocol (SCP) 402, which specifies
the content and sequence of the messages exchanged.

User Control Points 104 are not required to have any prior
knowledge of the SCPs 402 required to control the Services
on the various devices. Therefore, a Controlled Device or
Bridge must be able to describe to a User Control Point the
protocols required to control its Services, such that the User
Control Point will be able to implement these protocols
dynamically. This requires a standard way of declaring
Service Control Protocols in a concise and unambiguous
fashion. UPnPintroduces a technique for declaring Service
Control Protocols using a series of XML documents.

A Rehydrator 410 is a module that exposes a suitable API
to applications and either invokes Commands on a Service
or queries the state of that Service, or receives and responds
to events. The primary job of the Rehydrator is to map
between API calls and the Service Control Protocol

sequence that invokes the Command.
As part of the Service Definition 406, a Service State

Table 230 and Command Set 408 are defined. These things
can be combined in a deterministic way defined by UPnP to
produce a Service Control Protocol Definition (SCPD) 406,
which includes a Service Control Declaration 404 and a

Service Control Protocol 402. The SCPD 406is a represen-
tation of the schemaof a Service. It is possible to reconstruct
the SST, Command Set and SCP from the SCPD.

The SCPD is directly embedded into the Description
Document 226 of a Controlled Device. When the Descrip-
tion Documentis uploaded into the User Control Point 104,
the Rehydrator 410 can extract the SCPD from it. At this
point, the Rehydrator has enough information to issue Ser-
vice specific SCPs 402.

General Operation of the Rehydrator
More generally with reference to FIG. 9, the Rehydrator

410 operates as a universal adapter to provide a program-
matic interface to any service-specific protocol of a remote
computing device. The Rehydrator 410 simply obtains a data
description or declaration of the methods, properties and
events of the remote service, as well as a definition of the
protocol of network data messages through which the Rehy-
drator invokes the methods, queries or sets the properties,
and receives event notifications. In UPnP, this data descrip-
tion takes the form of the Description Document 226, which
contains a Contract 412. The Contract defines network data

packets 413 (e.g., XMLdata), request/responsepatterns, and
protocol (e.g., GENA, HTTP, SSDP) via which the packets
are exchanged. This information is sufficient for the Rehy-
drator to exchange the appropriate network data packets to
interact with the Controlled Device Service, including to
invoke commands,query and set properties, and receive and
respond to events, without download of any executable code
to the User Control Point 104 device and with a zero

installation or configuration experience.
The Description Document 226 also includes a declara-

tion of the methods, properties and events for the Service.
Based on this declaration, the Rehydrator produces a cor-
responding programmatic interface for use by applications at
the User Control Point. The programmatic interface is an
application programminginterface that can be in the form of
an object integration interface of an object-oriented pro-
gramming model, such as Microsoft COM, CORBA,Java
classes, and scripting engine name extensions. In the
example illustrated in FIG. 9, the Rehydrator 410 exposes a
COM object integration interface (“IClock” interface 414),
with methods getTime() and setTime(), for a Controlled
Device having a “Clock” Service with GetTime and SetTime
commands. The Rehydrator 410 converts calls of an appli-

10

15

20

25

30

35

40

45

50

55

60

65

22

cation program 416 to the [Clock interface 414 into the
network data messages specified in the Contract to invoke
the corresponding commands of the Clock Service. The
Rehydrator 410 likewise creates suitable further program-
matic interfaces for other Services (e.g., Services 210-217
of FIG. 3) based on the Description Document of their
respective Controlled Devices.

Accordingly, the Rehydrator operates as a universal proxy
object with data-driven conversion of programmatic inter-
faces to network data messages. Further, the Rehydrator
produces the programmatic interface at the User Control
Point based solely on an XML data description. This opera-
tion allows the Rehydrator to producejust-in-time transient
interfaces to remote device Services without the complexity
of code downloadsandinstallation or configuration. Upon a
later release of the interface by the application, the Rehy-
drator destroys the interface without need to de-install or
clean up persistent configuration data in a registry or con-
figuration file of the operating system or object execution
run-time.

Rehydrator Implementation
Summary. With reference to FIG. 10, a preferred imple-

mentation 440 of the Rehydrator 410 is as an internal
Microsoft Windows componentthat routes service control
requests from the UPnP API to devices. Applications wish-
ing to control a service on a UPnP device obtain a Service
object through the UPnP API and use the methods of this
object to query the state variables of the service and invoke
its actions. Those methods use the Rehydrator API to turn
the service control requests into network messages that
travel to the UPnP device. In this sense, the Rehydrator
performs a mapping between API calls and network proto-
cols.

Basic Functionality. The preferred implementation of the
Rehydrator is able to translate a service control call to the
UPnP APIinto the appropriate network messages defined by
the Service Control Protocol.

Asynchronous Event Notification. The preferred imple-
mentation of the Rehydrator is able to notify UPnP API
clients of any asynchronousevents generated by the devices
they are controlling. Event notification is done by meansof
the event interfaces defined below.

Error Reporting. For a variety of reasons, state variable
queries and action invocations may fail. The preferred
implementation of the Rehydrator is able to provide a way
to communicate the success or failure status of such opera-
tions to the parties initiating them.

Rehydrator Implementation Design.As illustrated in FIG.
10, the preferred implementation of the Rehydrator is used
in two ways. First, the Device Finder 450 uses it to create
Service objects 460. Then, these Service objects use it to
carry out service control operations (querying state variables
and invoking actions).

Creating Service Objects. When the Device Finder 450
creates a Device object, it invokes the Rehydrator 410 to
create Service objects 460 for each of the service instances
on that device. Each service instance supports a particular
Service Control Protocol and the Rehydrator needs a
description of this protocol in order to create a properly
hydrated Service object.

The Service Control Protocol is declared in two separate
XML documents: the DCPD and the Contract. The Rehy-
drator needs the information in both documents. These two

documents are passed to the Rehydrator as IXMLDOM-
Document interface pointers in the
RehydratorCreateServiceObject(_) API call.

Netflix, Inc.et al. Exhibit 1003
Page 61 of 91

Netflix, Inc. et al. Exhibit 1003
Page 62 of 91

US 6,910,068 B2
23

HRESULT

RehydratorCreateServiceObject(
IN [IXMLDOMDocument *pDCpD,

IN TIXMLDOMDocument
OUT I[UPnPService

*pContractDocument,
**pNewServiceObject);

This API returns a pointer to an [UPnPService interface
on a newly created Service object. In addition to the creating
the Service object, the Rehydrator sets up its internal data
structures so that it can properly handle requests to control
the service. Specifically, it creates a list of the properties and
actions exported by the service. Since all service instances
of the same service type export the same properties and the
same actions, this information is kept only once for each
service type and is indexed by Service Type Identifier.

The Rehydratorstores the information that is specific to a
particular service instance as private data within the Service
object itself. This includes the control URL and information
about the control server 232 (such as the HTTP verbsit
supports). The Service Type Identifier is the link between the
Service object that represents one instance of a service type
and the Rehydrator internal data structures that contain
information commonto all instances of that service type.
The Service Type Identifier is stored as a private data
member in the Service object.

Querying Service Properties. Applications can query the
values of service properties by invoking the
TUPnPService::GetProperty() method on a Service object.
Internally, this method makes a call to the
RehydratorQueryStateVariable() function.

HRESULT

RehydratorQueryStateVariable
IN LPCTSTR 1peszVerb,
IN LPCTSTR 1peszControlURL,
IN LPCTSTR IpeszSTI,
IN LPCTSTR 1poszVarName,
OUT VARIANT *pValue);

The first two in parameters to this function supply the
service instance specific information: the HTTP verb to use
and the control URLto which the network messages will be
targeted. The third parameter is the Service Type Identifier
that will be used to locate the Service Control Protocol

information in the Rehydrator’s internal data structures. The
fourth parameter is the name of the variable that is being
queried (the Rehydrator will validate this against is internal
list of state variables exported by the service) and the final
parameter is the address of a VARIANTstructure in which
the Rehydrator will place the variable’s value.

This function will generate an HTTP request to the control
server on the device. The body of this request will be an
XMLfragment containing a XOAP-encoded request for the
variable’s value. The following is an example of such a
request (the exact header and payload formatof this message
is defined in the service contract):

M-POST/clockService HTTP/1.1
Host: spather-xeon:8586
Content-Type: text/xml
Man: “http://www.microsoft.com/protocols/ext/XOAP”;
ns=01

01-MethodName: queryStateVariable
01-MessageType: Call

10

15

20

25

30

35

40

45

50

55

60

65

24

-continued

Accept-Language: en-gb, en;q=0.8
Referer: http://myhouse/VCR1Presentation
Content-Length: 84
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT 5.0)
Connection: Keep-Alive
<queryStateVariable>

<variabieName>currentTime</variableName>
</queryStateVariable>

The control server will respond to this message with
another XML fragment: the XOAP-encoded method
response. The following is an example of such a response:

HTTP/1.1 200 OK
Connection: Close

Cache-Control: privateDate: Mon Oct 11 12:13:38 PDT 1999

Expires: Mon Oct 11 12:13:38 PDT 1999
Content-Type: text/xml
Content-Length: 62
Man: “http://www.microsoft.com/protocols/ext/XOAP”;ns=01

01-MessageType: CallResponse
<queryStateVariableResponse>

<_return>12:13:28</_return>
</queryStateVariableResponse>

The rehydrator will extract the return value from this
XMLfragment, place it in the VARIANTstructure whose
address was passed as the last parameter to
RehydratorGetServiceProperty() and then return.

Invoking Service Actions. The process of invoking a
service action is very similar to querying a state variable. An
application calls [UPnPService::InvokeAction() on a Ser-
vice object, passing it the name of an action to invoke, and
an array of arguments to the action. Internally,
IUPnPService::InvokeAction() calls
RehydratorInvokeServiceAction(), declared as shown
below.

HRESULT

RehydratorInvokeServiceAction(
IN LPCTSTR 1peszVerb,
IN LPCTSTR 1peszControlURL,
IN LPCTSTR 1peszSTI,
IN LPCTSTR 1peszActionName,
IN SAFEARRAY saActionArgs,
OUT LONG *pStatus);

As wasthe case for querying state variables, the service
instance specific information is passed in the first two
parameters, followed by the Service Type Identifier in the
third. The action nameandan array of arguments are passed
as the next two parameters, and the final parameter is the
address of a variable in which to store the status of the

operation.

RehydratorInvokeServiceAction() will send an HTTP
request to the control server identified by the second param-
eter. As before, the body of this message will be an XML
fragment containing a XOAP-encoded method call. An
example HTTP request to invoke an action is shown below.

Netflix, Inc.et al. Exhibit 1003
Page 62 of 91

Netflix, Inc. et al. Exhibit 1003
Page 63 of 91

US 6,910,068 B2

A relative URL does not contain the “:” character and is
of the form:

" pathnameM-POST/clockService HTTP/1.1

Host: spather-xeon: 8586 /pathname .
Content-Type: text/xml 5 Relative URLSare a compact representation of the loca-

Man:“hitp:/iwww.microsofi.com/protocols/ext/SOAP”; tion of a resource relative to an absolute base URL. Allns='

relative URLs in a Description Document are appended to
the value of the Description Document element <URLbase>
to form fully qualified URLs.

Binary Data
Some elements of a Description Document are binary.

$; XMLdoes not directly support the embedding of binary
Connection: Keep-Alive Ls data. In orderto include binary data directly in a Description<SerializedStream main=“invokeAction’> .

<invokeAction id=“invokeAction’’> 5 Document, one must convert the data to text using the Base
64 encoding scheme. This tends to increase the size of the
data by 25% on the average. Much of this overhead can be
eliminated if the binary data is passed by reference instead
of by value. To reference binary data, a URLto the data is
provided in a Description Document. The binary data can be

01-MethodName: invokeAction

01-MessageType: Call
Accept-Language: en-gb, en;q=0.8
Referer: http://myhouse/VCR1 Presentation 10
Content-Length: 119
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01;
Windows NT 5.0)

<actionName>setCurrentTime</actionName>
<actionArg>15:41:29</actionArg>

</invokeAction>
</SerializedStream>

: . . - 20 : . :
The encoding of the body of this message is again“"retrieved by doing a HTTP GETwith that URL.

Speciane service conte The Rebydrator wit wa As an example, consider the <image> element in the
or tl co [P response to this request, which would loo following Description Document:

something like the example below.

25

<iconList>
HITP/1.1 200 OK <icon>
Connection: Close <size>16</size>
Cache-Control: private <imageType>PNG</imageType>
Date: Mon Oct 11 15:22:38 PDT 1999 <color>1</color>
Expires: Mon Oct 11 15:22:38 PDT 1999 30 <depth>8</depth>
Content-Type: text/xm1 <image>
Content-Length: 50 “http://device.local/iconpath/icon.png”/>
Man: “http://www. microsoft.com/protocols/ext/XOAP”; <ficon>
ns=01 </iconList>
01-MessageType: CallResponse
<invokeActionResponse> 35

<_return>0</_return>
</invokeActionResponse>

The icon would be retrieved with an HTTP GETofthe

following format:

After receiving a response such as this, the Rehydrator
will extract the return value, place it in the out parameter it 4,
was passed, and then return.

FIGS.32 through 44 are program listings defining various
interfaces used in the preferred implementation of the
Rehydrator, including an IUPNPDevice Interface, an IUP-
NPPropertyBag Interface, an IUPNPService Interface, an
IUPNPDevices Interface, and an IUPNPServices Interface. 45

Description Document
With reference to FIG. 14, User Control Points 104 can

retrieve a Description Document 226 by issuing an HTTP
GET on a Description URL. This URL is returned in the
location header of either an SSDP announcement or an 59

SSDP query response.
The HTTP GET mustinclude an accept-language header

that is used to request the preferred languageof the response.
If the requested language is not supported, a Description
Documentin the default language supported by the Con- 55
trolled Device or Bridge may be returned.

An HTTP GET is used to retrieve sub elements of a

Description Document that are expressed as URLs.
URLHandling
URLs embedded in Description Documents 226 take one 60

of 3 forms: a fully qualified URL or a relative URL.

GETiconpath/icon.png HTTP 1.1
Host: device.local

The HTTP response would look like:

HITP/1.1 200 OK
Content-Type: image/png
Content-length: ###
<binary color icon data in the PNG format>

Description Document Layout
The basic layout of the Description Document 226 is

shown in FIG. 15.

The following table lists Description Document elements
that are sub-elements to the root element.

Root The XMLroot element of a UPnP DescriptionDocument.

specVersionMajor The major version of the UPnP Architectural
Fully qualified URLs take the form:
http://devicename/pathname
The devicename part of the URL is a Hostname or IP

address and the pathnameisa filesystem path or equivalent.
A fully qualified URL is used “as is” to establish an HTTP
connection to a device.

65

Reference that this Description Document was
created against. This value must be 1.

specVersionMajor The minor version of the UPnP Architectural
Reference that this Description Document was
created against.
This value must be 0.

Exhibit 1003
Page 63 of 91

Netflix, Inc.et al.

Netflix, Inc. et al. Exhibit 1003
Page 64 of 91

URLBase

manufacturer

manufacturerURL

modelName

modelDescription

modelNumber

modelURL

UPC

serialNumber

The Description Document elements listed
associated with devices.
rootDevice

device

UDN

friendlyName

deviceType

presentationURL
iconList

icon

size

color

depth

imageType

image

27

-continued

An optional element used to constru
URLs. Relative URLS are appended

US 6,910,068 B2

ct fully qualified
to the value of

<uURLBase> to create fully qualified URLs. If this
elementis present, it must agree wil
header.

h the HITP Base

A required element that contains a textual
manufacturer name.

An optional element containing a U.
the Web page of the manufacturer.
A required element containing a text
A required element containing a text
description.

RL that points to

ual product name.
ual product

An optional element containing a textual product
model number.

An optional element containing a U.
the Web page of the product.

RL that points to

An optional element containing the
Product Code (UPC).

product Universal

An optional element containing a textual item serial
number.

A required sub elemen

in the following table are

of the root. This element
is a container for one or more service elements
and the elements that describe the rootDevice.
An optional sub element of the root
element!
elements as a rootDevice element.

A required sub element of every roo
element containing the
A required sub element
element!

element can be updated remotely.
A required sub element of every roo
element!
Identifier.
An optional

element containing a Presentation U
A required sub element of every roo
element. This element is a container

icon elements. UPnP requires a base

of every roo containing a textual friendly

or another device
. This element contains the same kinds of

Device or device

Unique Device Name.
Device or device
name. This

Device or device

containing a standardized Device Type

sub element of a rootDevice or device
RL.
Device or device
for one or more
set of six icons

that must exist in the iconList. All devices must

support PNG icon image formats of
16, 32 by 32 and 48 by 48 pixels in
black and white at 8 bit depth. Addit

hree sizes, 16 by
both color and

tional formats

and sizes, including JPEG, GIF, BMP, ICON and
VML, may be supported by adding them to the list.
A required
elementis
icon.
A required sub element o
must be icon elements
with the values 16, 32
other sizes.
A required sub element o
value 0 or 1. Each icon o
exist in color and black and white.
A required sub element o

required icons
A required sub element o

identifies the format of the binary ic
vml, gif, bmp, or ico.
A required sub element o

references a binary icon.

sub element o:
a container for

every icon elemen
with associated size elements

and 48. Other icons may specify

every icon elemen
size 16, 32 or 48 must

every icon element.
must exist with a value of8.

every icon elemen

every icon elemen

every iconList element. This

the elements that define an

. There

with

All

that

on: png, jpeg,

that

The following elements of the Description Documentare associated with
Services.
service

serviceType

controlURL

eventSubURL

SCPD

An optional sub element of the rootDevice or
another device element. This elementis a container
for the Service Definition.

A required sub element of every service element
containing a standardized Service Type Identifier.
A required sub element of every service containing a
Control URL.

A required sub element of every service containing an
Event Subscription URL.

A required sub element of every service. The SCPD is
a container for the standardized Service Control
Protocol Declaration associated the Service.

10

15

20

25

30

35

45

50

55

65

28

FIG. 16 shows an exemplary icon list in a Description
Document 226.

Service Control Protocol and SCP Declaration

As part of the Service Definition 406 shown in FIG.8, a
Service State Table 230 and CommandSet 408 are defined.

The SCPD 406 is a representation of the schema of a
Service. It is possible to reconstruct the SST 230, Command
Set 408 and SCP 402 from the SCPD deterministically.

The declaration of such a protocol must specify the list of
Variables that can be queried, the set of Commandsthat can
be invoked, as well as the wire protocol (the content and
sequence of network messages) required to carry out these
operations. SCPD is specified in two XML documents. The
first or Service Control Definition document 404, written in
a language called Service Control Protocol Declaration
Language (SCPDL), declares the list of state Variables and
Commandsassociated with the Service Type to be controlled
by the protocol. The second or Service Control Protocol
document 402 is written in Contract Definition Language
(CDL) and declares the wire protocol that will be used to
query the valuesofthe state variables and invokethe actions
associated with the service.

Declaring the Service State Table and Command Set
ASCPDL document 404is used to specify the list of state

Variables that a SCP can query and the set of Commandsthat
it can invoke. SCPDL is an XML schema,a set of rules for
writing XML documents (Service Control Protocol
Declarations).

FIG. 17 shows an exemplary SCPDL document. This
XMLdocumentconsists of a root <scpd> element contain-
ing two sub-elements, <serviceStateTable> and <action-
List>. Within the <serviceStateTable> element is a <stat-
eVariable> element for each state variable associated with

the service. The Service in this example is a TV tuner with
has only one state variable, currentChannel. The elements
within the <stateVariable> element specify the name, data
type and allowed values for the state variable. Had the
Service more state variables, they would be represented by
additional <stateVariable> elements within the <deviceS-
tateTable> element.

The <actionList> element contains an <action> element

for every action associated with the Service. The elements
within an <action> element specify the name of the action
and any arguments the action may take. In this case, the
service supports two actions that do not take arguments,
ChannelUp and ChannelDown, and another, SetChannel,
that takes a new channel number as an argument. The
<argument> element and the elements nested withinit define
the argument. The <relatedStateVariable> element within
<argument> specifies the name of one of the state variables
to which the argumentis related. In the UPnP Device Model,
all arguments to actions must correspond directly to some
state variable.

Declaring the Contract
The Contract is a specification of the wire protocol that

will be used to query state Variables, invoke Commandsand
carry notifications or events. This contract specifies the type
of protocol used, the network endpoint to which messages
are sent, the contents of those messages, the contents of the
expected responses and the contents of events. Contracts are
written in Contract Definition Language (CDL).

All UPnP SCPswill use essentially the same contract. A
specific contract applies to a single Service instance (since
it specifies the network endpoint to which messagesare sent
and network endpoints are specific to service instances).
However, other than the network endpoint definition, all
contracts for all Service instances should be the same.

Netflix, Inc.et al. Exhibit 1003
Page 64 of 91

Netflix, Inc. et al. Exhibit 1003
Page 65 of 91

US 6,910,068 B2
29

FIGS. 18-20 show an exemplary Contract. This Contract
defines two methods: queryStateVariable and invokeAction.
These methods are invoked by exchanging XML messages
with a Control Server on a UPnP Controlled Device or

Bridge. The Contract completely defines the header and
payload of each message. By passing the appropriate argu-
ments to these methods, any of the state Variables declared
in the SCPDL declaration can be queried and any of the
actions invoked.

FIGS.21 and 22 show an XML schemafor the SCPDL.

Basic UPnP Eventing Architecture
With reference to FIG. 23, the UPnP architecture 200

(FIG.3) requires that clients of the UPnP API be enabled to
receive notifications reliably from UPnP services 210-217
as their states change. Since state changes are relatively
common, the eventing subsystem is efficiency and perfor-
mance is a major consideration in this design. FIG. 23 and
the following discussion describe the Basic UPnP Eventing
Architecture 600, which encompasses both the controlled
device (CD) 106 and user control point (UCP) 104 sides of
the eventing service. It also includes the support APIs for
both a low-level service interaction and a higher level
COM-based wrapper of those APIs. The latter enables
automation controllers like Visual Basic and JScript 602 to
receive event notifications.

What is an Event?

Property change events are defined as any change in the
value of a row of the Device State Table (DST) 230 (FIG.3)
for a service 210-217. This change will be reflected as a
property change notification. For example, if a “VCR”
device has a “VCR Transport” service, one row in that
service’s DST may be TapeState and the value could be
TapePresent. If the tape is ejected, the new value would be
TapeAbsent. This state change would be reflected as a
notification sent to all subscribers.

Whatis a Notification?

A UPnPeventnotification is an XML message sent over
HTTP/TCP to each and every subscriber to a particular
UPnPservice. The content of the XMLis defined below. The

important contents of this message are the unique identifier
for the subscription, the property name, new value, and
property type.

Notification Processing
In UPnP, the listener to Notifications is the SSDP service

itself. SSDP already listens on another multicast address for
“alive” and “byebye” messages sent by UPnP devices. The
same listener will listen on a TCP portfor notifications sent.
All subscriptions sent from that UCP contain the same
callback URL andsoall notifications will be directed to that
URL. When a notification arrives the SSDP service will

examine the NT headerof the message and determineifit is
an event notification. If so, the message is parsed further to
determineif it should be forwarded on to subscribers (which
must exist). GENAdefines the format of the HTTP message,
what headers can be used, and what they can be used for.

GENA

GENAis the protocol of communication that, in a pre-
ferred embodiment, UPnP devices use to send eventnotifi-
cations. Therefore, UPnP devices that wish to notify UCPs
of state changes are recommended to use GENA.Notifica-
tion subscribers will never be required to interact with a
UPnP device directly and so they are not required to use
GENA.The eventing API will encapsulate this complexity.
Other appropriate event transport protocols may be used,
such as publish/subscribe systems.

Receiving Notifications
Applications written in C (C Application 604)will be able

to utilize the SSDP C API 610 to receive callbacks when

10

15

20

25

30

35

40

45

50

55

60

65

30

notifications are processed by the SSDP service. This is
analogous to SSDP clients registering for notifications that
services have becomeavailable. When a UCPregisters for
a notification, it passes as a parameter the URLof the service
for whichit is interested in receiving notifications. This URL
is obtained from the description document for that service.
(Whena service is registered on a UPnPdevice,it uses this
same URLto listen for subscription requests).

When a notification message is received by the SSDP
service listener, the SID header is checked against the list of
subscribers it maintains. If a subscriber is found, the call-
back function for that subscriber is invoked, with one of the
parameters being the contents of the notification message.
Thenotification client that implements the callback function
can process this message in any appropriate way.

Notifications in the UPnP API
The UPnP API 410 is a consumerof the basic C interface

provided by the SSDP C API 610 component. In order to
integrate seamlessly, the registration of notifications is
handled by the Service Object 612 inside the UPnP Object
Model. Service objects will register for notifications when
they are created. This ensures that the DST is maintained by
the UPnP API and is kept up to date. They will implement
the callback function required by the registration function.If
this callback function is invoked, it will pass on that noti-
fication to UCPs. The UCPscan be written in C, C++, VB,
or script code, so the mechanism for passing on notifications
can be different.

Script Support
A feature of the illustrated eventing system is that it

supports script languages such as VBScript and JavaScript
602. For VBScript, this is made possible by providing a
property on the Service object that, when set, contains the
IDispatch pointer for a VBScript function or subroutine that
will be the event handler. When the Service object’s noti-
fication callback is invoked,it checks to see if thisDispatch
pointer was set, and if so, it calls IDispatch::Invoke on
DISPID 0 of that interface to call the VBScript subroutine.
An equivalent mechanism is implemented for JScript.

Eventing Subsystem Terminology
UCP—User control point. Any piece of software that

searches for devices and controls them.
CD—controlled device. A hardware or software device

that announcesits availability thru SSDP and allowscontrol
by UCPs.

Subscriber—A UCP who wishes to be notified of event

changes.
Notifying Resource (or simply “Resource”)—For the

purposes of this document, this will always be a service
contained within a UPnP CD 106.

Event Source—a service that provides events. UPnP
services are event sources. All notifying resources are event
sources and vice versa.

Event—message generated when a changein a resource’s
state occurs.

Property—asingle entry in the service’s state table whose
DefaultValue can change. Properties and events always have
a one to one correspondence.
Subscribing To Resources

Integrating With The UPnP API
The UPnP API 410 exposes several interfaces with which

a consumer can find and enumerate devices, control
services, and get properties on devices and services. To
allow the integration of events into this model, we add a new
property to the [UPnPServiceinterface called EventHandler.
Whenthis property is set, it tells the Service object 612 that
its client is interested in receiving notifications for that

Netflix, Inc.et al. Exhibit 1003
Page 65 of 91

Netflix, Inc. et al. Exhibit 1003
Page 66 of 91

US 6,910,068 B2
31

service. The SSDP API RegisterNotification() API is called
when the Service object is created so that it can maintain a
local copy of the DST for that service. The Service object
knows the URL of the service and therefore it can provide
this as a parameter to RegisterNotification().
RegisterNotification() is also provided a callback function
which is a static member of the Service object class. This
function will be invoked for each and every notification sent
by that particular UPnPservice.

The Notification Callback

The Service object 612 includes a static memberfunction
called EventNotifyCallback() which is invoked for each
notification sent by the UPnP service. The callback is passed
the entire HTTP message contents in a structure which is a
parameter to the function. The prototype lookslike this:

static VOID

CUPnPService::EventNotifyCallback(SSDP_CALLBACK_TYP
E ssdpType,
SSDP_MESSAGE*pssdpMsg,

LPVOIDpeontext);

The ssdpType parameter should always be SSDP_
PROPCHANGE. The pssdpMsg parameter contains the
relevant information about the event. The key piece of
information is the body of the XML message. The body
contains information about what property changed, whatits
new value is and what type it is, among other information.
The pcontext parameter will always be the this pointer of the
Service object. This allows the code to call a methodto fire
the event to the UCP. Thecallback will parse the XML body
using the XML DOMservices. Property changesare iterated
and the local DST is updated to reflect these changes. After
this processing is done, an event notification may be fired for
each property that was changed to the owner of the sub-
scription if one exists. Depending on what environment the
owner is written in (C++ or script, etc... .), a different
mechanism for firing the event may be employed.

Aspecial case for this processis the very first notification
received after a subscription is established. This notification
contains the entire set of properties and their values and is
used to locally syne up the DST. Events will not be fired to
clients of the UPnP APIin this case.

Firing Notifications
When the EventNotifyCallback() function is called, the

local copy of the DST for the service is updated. After this,
an event needsto be fired if a subscriber exists. A subscriber

exists if the put_EventHandler() method wascalled, either
from VBScript, C++ code, or another source. To abstract
away this complexity, a new interface called [UPnPEvents is
needed.

This interface currently has one method called
NotifyEvent() which takes several parameters. When put__
EventHandler() function is called, its argument is an TUn-
known. This pointer is Queryinterface’d() for [Dispatch
first, and if it succeeds, then IDispatch::Invoke() is called
with DISPID 0 to invoke the default method. This allows

VBScript 602 to be called. If that fails, however, it is
Queried for [UPnPEvents, and if that succeeds, the
NotifyEvent() method is called with the same parameters as
for Invoke(). The handles C++ UCPseffectively.

Subscribing with C++
To subscribe to a UPnPservice from C++, a UCP instan-

tiates a UPnPservice object, issues QueryInterface() to it for
IUPnPEvents, and calls the
WUPnPEvents::SetEventCallback() function. This function
takes 2 parameters, a callback function pointer and a context
pointer.

10

15

20

30

35

40

45

50

55

60

65

32

Subscribing With VBScript
To subscribe to a UPnP service’s events,all that needs to

be done by a script 602 is to create a function or subroutine
as a handler function and set the pointer of that function to
the EventHandler property of the Service object. Now,
anytime an eventis fired, this VBScript function or subrou-
tine will be called. In VBScript, this is written as the
following:

Dim UPnPAPI

Set UPnPAPI = CreateObject(“UPnPAPI.1”)
Devices = UPnPAPI.FindDevices(. . . })For each device in Devices

For each service In devices.services

If service.depi = “clock.v1”
Service.EventHandler =

GetRef (“clock__PropertyChanged”)
End if

Next service
Next device

Sub clock_PropertyChanged(prop, value)
MsgBox “The time has changed. It is now” &

value & “.”
End Sub

In this example, the script enumerates all devices, looking
for any device that supports the “Clock” interface. Whenit
finds a device that supports that interface, it enumerates that
device’s services looking for the one that has the “clock.v1”
interface. Once it finds that service, it sets that service’s
EventHandler property to the VBScript subroutine called
“clock_PropertyChanged”. This nameis arbitrary.
Sending and Receiving Notifications

GENAClient API

GENAclients are actually UPnP services. AGENAclient
creates a new event source whenit is initialized. The GENA

client API 620 facilitates this. It also provides a way for
GENAclients to send their notification messages.It is also
important to note that the HTTP server that lives on the
UPnPdevice is also a client of this API. The GENAclient

API consists of the following functions:
RegisterUpnpEventSource()
The RegisterUpnpEventSource() API gives a GENA

client the ability to register itself as an event source. The
prototype is as follows:

BOOLRegisterUpnpEventSource (
LPTSTR szRequestUri,
DWORDcProps,
UPNP_PROPERTY “*rgProps
)s

Parameters: szRequestUri [in] an arbitrary Request-Uri
that SUBSCRIBE requests will be sent to. When a SUB-
SCRIBE request arrives at the given URI, it is acknowl-
edged and the subscriber is added to the list of notification
recipients. Note that this URI should match the URI pro-
vided in the description for this service. CProps [in] the
number of properties that this event source provides.
RgProps [in] Array of UPNP_PROPERTY structures which
contain information about each property. The property infor-
mation is derived from the DST for the event source.

Return Value: The function returns a TRUEif successful.

If the given URL has already been registered as an event
source, the return value is FALSE and GetLastError(_)
returns ERROR_ALREADY_EXISTS.

Notes: The initial state of the event source needs to be

given to the API so that it can effectively maintain the
up-to-date state of the event source.

Netflix, Inc.et al. Exhibit 1003
Page 66 of 91

Netflix, Inc. et al. Exhibit 1003
Page 67 of 91

US 6,910,068 B2
33

DeRegisterUpnpEventSource()
The DeRegisterUpnpEventSource() API gives a GENA

client the ability to deregisteritself as an event source. The
prototype is as follows:

VOID DeRegisterUpnpEventSource(
LPCTSTR szRequestUri

ys

Parameters: szRequestUri [in] an arbitrary Request-Uri
that SUBSCRIBE requests will be sent to. When a SUB-
SCRIBE request arrives at the given URI, it is acknowl-
edged and the subscriber is added to the list of notification
recipients. Note that this URI should match the URI pro-
vided in the description for this service.

UPNP PROPERTY

typedef struct _UPNP_PROPERTY {
LPTSTR szName;
LPTSTR szValue;
LPTSTR szType;

} UPNP_PROPERTY;

Where szNameis the name of the property, szValueis the
current value of property, and szTypeis the type of property
(string, integer, etc... .).

SubmitUpnpPropertyEvent()
The SubmitUpnpPropertyEvent() API allows the GENA

client to submit a UPnP property change event to be sent to
subscribers as a notification. The prototype is as follows:

BOOL SubmitUpnpPropertyEvent(
LPCTSTR szRequestUri,
DWORD dwFlags,

DWORDcProps,
UPNP_PROPERTY *rgProps
ds

Parameters: “szRequestUri [in]”’ identifies the event
source to which this event belongs. This is the same
Request-Uri passed to RegisterUpnpEventSource().
“DwFlags [in]’ is unused. “CProps [in]’ is the number of
events that are being submitted. “RgProps [in]” is an array
of UPNP_PROPERTY structures which contain informa-
tion about each event.

Return Value: If the function fails, the return value is
FALSE. The get extended error information, call the
GetLastError() function.

Notes: Whena series of properties is submitted for event
notification, the local version of the property state for the
given event source is updated with the list of properties
passed in. SubmitUpnpPropertyEvent() calls
SubmitEvent() after it has generated an XML body.

SubmitEvent()
The SubmitEvent() API allows the GENAclient to

submit an unstructured event to be sent to subscribers as a

notification. The prototype is as follows:

BOOLSubmitEvent(
LPCTSTR szRequestUri,
DWORD dwFlags,

10

15

20

25

30

35

40

45

50

55

60

65

34

-continued

LPCTSTR szHeaders,
LPCTSTR szEventBody

ds

Parameters: SzRequestUri [in] identifies the event source
to which this event belongs. This is the same Request-Uri
passed to RegisterUpnpEventSource(). DwFlags [in]
Unused. SzHeaders[in] null-terminated text string contain-
ing the headers for the event, each separated by CRLF.
SzEventBody[in] null-terminated text string containing the
body of the event message.

Return Value: If the function fails, the return value is
FALSE. The get extended error information, call the
GetLastError() function.

Notes: If no subscribers exist, the function does nothing.
If one or more subscribers exist, a message is sent to each
subscriber. SubmitEvent() will always send to all subscrib-ers.

UPnP Controlled Device Event Architecture

In UPnP, every UPnP service 210-211 that supports
property change event notifications is to be a GENAclient.
Therefore, when the service is initialized, it must register
itself as a GENA event source. It will do this with the

RegisterUpnpEventSource() API. This returns a handle
which can be used in subsequent APIs.

RegisterUpnpEventSource() takes a URL and an array of
properties as parameters. Inside the API, an entry in an array
of structures is initialized and the index is returned as the
handle. The structure contains the source URLas one of the

members. A second member of the structure, an array of
destination URLs,is left uninitialized. This is filled in each
time as subscriber is added for that event source. Another

member of the structure is the list of properties that this
event source provides. This is effectively a cached copy of
the DST for the event source. As events are submitted, the
local properties are updated.

When SubmitUpnpPropertyEvent() is called, each prop-
erty submitted replaces the corresponding property already
maintained by the API. If no subscribers exist, the request to
submit an eventis ignored. If one or more subscribers exist,
their callback URLsare looked up in the list of subscribers
for the given event source and a NOTIFY message is
constructed and sent to each URL,oneat a time,in order of
subscription.

If an event is submitted and no responseis received (or a
CD-side error occurs), the CD continues to attempt to send
to the UCP. If the subscription timeout expires, then the
subscription is removed. If the UCP becomes available
again,it will re-subscribe becauseit will notice the sequence
numbers are not contiguous.

When an HTTP server 626 receives a SUBSCRIBE

message, it passes it along to a function which parses the
message for the necessary information. The Request-URI
identifies the service that is to be subscribed to. The callback
URLis obtained from the “Callback” header. Since the

Callback header can contain multiple URLs,it picksthe first
“http:H/’ URLit finds. It then adds the subscriberto the list
of subscribers for this event source. A unique subscription
identifier is constructed which it will send back to the

subscriber in the HTTP response to the SUBSCRIBE
request.

If no event source matches the Request-URI from the
subscription message, the HTTP server should return “404
Not Found”.

When a subscription is added, the local copy of the DST
is sent as a NOTIFY message. This special NOTIFY mes-

Netflix, Inc.et al. Exhibit 1003
Page 67 of 91

Netflix, Inc. et al. Exhibit 1003
Page 68 of 91

US 6,910,068 B2
35

sage contains sequence number 0 which informs the UCP
that this is an initial state population event and not a
notification where every event has changed.

When a CD receives an UNSUBSCRIBE message, it
checks the “SID”headerto obtain the subscription identifier.
It looks up the subscriber ID in thelist of subscribers for that
event source and removesthe destination URL entry asso-
ciated with it.
GENAServer API

GENAservers 630 are generally going to be UPnP UCPs.
A GENAserver is anything that receives and processes
NOTIFY messages to handle notifications from resources
and sends SUBSCRIBE and UNSUBSCRIBE messages to
receive notifications from resources. These APIs leverage
the already existing SSDP APIs. The following are the
changes to the APIs:

RegisterNotification()
The RegisterNotification() allows a UPnP UCPto request

notification when an event occurs for a given UPnPservice.
The prototype is as follows:

HANDLERegisterNotification (
NOTIFY_TYPEnt,
| 22
LPTSTR szResourceType,
if
/{ SSDP_PROPCHANGEis used.
LPTSTR szEventUrl,
ServiceCallbackFune fnCallback,
void *pContext
ds

/{ SSDP_ALIVE|
SSDP_PROPCHANGE
// based on NOTIFY_TYPE, unused

Parameters: Nt [in] An enumeration that determines the
type of notification requested. The values are: SSDP_
ALIVE—a service has become available, and SSDP_
PROPCHANGE—aproperty has changed on the service.
SzResourceType[in] A null-terminated string specifying the
resource type desired. For SSDP__ALIVE,this is the service
type, for SSDP_PROPCHANGEthis is unused. SzEven-
tUrl [in] A null-terminated string specifying the URL that a
subscription request should be sent to. FnCallback [in] A
pointer to a function that will be called each time a notifi-
cation is received. The function pointer is defined in the
SSDPspec. PContext [in] This parameter is included as a
parameter when invoking the client-supplied callback func-
tion.

Return Value: If the function succeeds, the return value is
a handle used in a subsequent call to the
DeregisterEventNotification() function.If the functionfails,
the return value is INVALID.HANDLEVALUEerror

code. To get extended error information, call GetLastError.
ServiceCallbackFunc

typedef enum _SSDP_CALLBACK_TYPE {
SSDP_FOUND=0,
SSDP_ALIVE=1,
SSDP_BYEBYE= 2,
SSDP_DONE= 3,
SSDP_PROPCHANCE= 4,

} SSDP_CALLBACK_TYPE, * PSSDP_CALLBACK_TYPE;

UPnP UCPArchitecture
Whena UPoP UCP wishesto subscribe to notifications for

a particular UPnPservice,it calls the RegisterNotification()
API. It passes to this API a notification type that identifies
the type of notification being requested, a URL to which a

10

15

20

25

30

35

40

45

50

55

60

36

subscription should be sent, and a callback function and
context for use when the notification is received.

RegisterNotification() will compose a SUBSCRIBE
message, using the data passed in, and send that to the URL
specified by the caller. The Callback header of the SUB-
SCRIBE message will be composed on the fly, as an
arbitrary URL for notifications to be sent to for this sub-
scription. This callback URL will likely be a constant since
the server API will always know how to handle requests sent
to this URL.It will then send the SUBSCRIBE message and
await a response.

RegisterNotification() in the SSDP API does not currently
send HTTP requests, but it can be modified to doso.It also
needs to await a response which it will also be modified to
do so.

When the response is received, the Subscription-ID
header contains a SID whichis associated with the callback

function specified by the caller.
Immediately after the response is received, the UCP

should expect an initial NOTIFY message that contains the
complete set of properties maintained by the CD. This
becomesthe local cached DST on the UCP side. From this

point on, all modifications to the table are made via NOTIFY
messages. This initial NOTIFY message will have sequence
number0 that indicatesit is an initial property set and not an
update. The UCP can use this information in any wayit sees
fit. This ensures the UCP’s state table is always in syne with
the one on the CD.

When a message is received by the HTTP server on the
UPnP UCP,it is passed to a function which determines the
method name and Request-URI. If this is a NOTIFY
message, the headers are parsed and packaged up into a
structure. The callback function that was specified to
RegisterNotification() is called with that structure as one of
the parameters. UCPs who implementthe callback function
can find the headers and body of the NOTIFY message and
do additional processing based on the notification type.

This all requires that the SSDP HTTPserverlisten on a
TCPsocket in addition to the UDP multicast port it already
listens to. However, once a NOTIFY messageis received,it
is processed in the same way regardless of from which
connection it originated.

Handling Failures
The following are subscription/notification failures that

can occur and their solutions:

Leaked Subscriptions
To protect against subscriptions that exist on the con-

trolled device, but no longer on the UCP, weinstitute the
timeout feature of GENA subscriptions. The scenarioisthis:
A UCP subscribes to a CD, then the UCP reboots.
Meanwhile, the CD isstill trying to send notificationsto that
UCP.If the UCP never comes back, the subscription would
be leaked because the UCP never told the CD that it was

going away. So to correct this, each subscription request
includes an arbitrary timeout value which indicates to the
CD that the UCP will be re-subscribing every n seconds
indicated in the timeout header of the subscription request.
If the timeout expires on the CD, the subscription is
removed. The UCPis required to re-subscribe before the
timeout period has elapsed.If it fails to do so, the subscrip-
tion will be terminated by the CD.

Some time before the timeout expires on the UCP, a
re-subscribe message should be sent. The re-subscribe mes-
sage is similar to the subscribe message, but it does not
contain an NT or Callback header. If the UCP is unable to

re-subscribe within the timeout period, the subscription will
be terminated by the CD.If the UCP sends a re-subscribe

Netflix, Inc.et al. Exhibit 1003
Page 68 of 91

Netflix, Inc. et al. Exhibit 1003
Page 69 of 91

US 6,910,068 B2
37

after the CD has terminated the subscription, the CD will
return “412 Precondition Failed”.

Reboot of a Controlled Device

If a controlled device reboots, information aboutall ofits
subscribers would be lost. To prevent this, the subscriber
information will be persisted across reboots of the device.
Because the subscription info contains a timeout member,
the absolute expiration time will be used when the subscrip-
tion information is persisted. That way, when the device
comes back up,it can check the timeout for each subscriber
andif that time has passed, the subscription will be removed.

Network Error Sending Event Notifications

If a controlled device receives an error sending an event
notification to a subscriber, it will NOT cease to send
notifications. It will continue to send notifications and

receive errors until the subscription expires. The problem for
the UCP is that it will have missed a number of event

notifications and so its state table will be out of sync. To
correct this, each event notification message will contain a
32-bit sequence numberthat starts at 0 and increments for
each message sent to a subscriber. If a subscriber receives a
notification with a sequence numberthat is not exactly one
more than the previous notification, it will know that it has
lost events and will ignore all future notifications until it
receives one with sequence number 0 again. Events with
sequence number0 indicate that the event is an “initial state”
event.

Once it realizes that is has lost one or more events, the
UCPwill send an UNSUBSCRIBE message, followed by a
SUBSCRIBE message. This is not the same as a
re-subscription because re-subscriptions do not cause the
CD to start the sequence over at 0. In this case, the active
unsubscribe/subscribe will cause the CD to restart the

sequence at 0 and send the entire state table with the first
notification message.

The SUBSCRIBE Message
When a UPnP UCPwishesto subscribe to event notifi-

cations for a UPnP service 210-211, it will form a SUB-
SCRIBE message of the following format:

SUBSCRIBEservicel HTTP/1.1
Host: ver.local:200
NT: upnp:event
Callback: <http://remote1.local:923/upnp>
Timeout: Second-600

The response is as follows::
HITP/1.1 200 O.K.
SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91e6bf6
Timeout: Second-600

This example of a GENA SUBSCRIBE request and
response demonstrates a subscription to event notifications
for “service1.” The host is “ver.local.” All notifications for

this service will be sent to the callback URL http://
remote1.local:923/upnp. In the response, the “Subscription-
ID” header provides the subscriber with an identifier to use
when it wants to unsubscribe to this resource. The ““Tim-
eout” header indicates that the subscriber will send a

re-subscription request before 10 minutes have elapsed. If
the device does not receive this request within that period of
time, it will remove the subscription.

The Re-SUBSCRIBE Message
When a UPnP UCP wishes to re-subscribe to event

notifications for a UPnP service,it will form a SUBSCRIBE
message of the following format:

10

15

20

25

30

35

40

45

50

55

65

38

SUBSCRIBEservicel HTTP/1.1
Host: ver.local:200

SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91 e6bf6
Timeout: Second-600

The response would be as follows::
HITP/1.1 200 O.K.
SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91 e6bf6
Timeout: Second-600

Note that the NT and Callback headers are absent, but the
SID headerexists. This tells the CD 106 which subscription
is being renewed and restarts the timeout. When the CD
receives this message,it will persist the subscriptions to disk
(or other persistent data storage medium), updating the
absolute timeout based on the current time and a new

timeout sent by the UCP (if it was different).
The NOTIFY Message
When a resource wishes to send an event notification,it

will form a NOTIFY message of the following format:

NOTIFY upnp HTTP/1.1
Host: remote1.local:923
NT: upnp:event
NTS: upnp:propertychanged
SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91 e6bf6
Seq: 123
Content-Length: xxx
Content-Type: text/xml
<event XML schema>

The response is as follows::
HTTP/1.1 200 O.K.

This example of a GENA NOTIFYrequest and response
demonstrates that a “upnp:propertychanged”event is being
sent to http://remotel.local:923/upnp. The USNheaderiden-
tifies “ver.service1” as the event source. The XML contains

the property name, value, and type. The “Seq” header
indicates the sequence numberofthe notification. Sequence
number0 indicates the initial state update for the subscriber.

Property Change Event XML Schema
A UPnPproperty change event will be of the following

form:

<U:propertyset xmlns:U="upnp’’>
<U:propcount>2</U:propoount>

<U:property>
<U:foo>

<U:type>string</U:type>
goodbye

</U:foo>
</U:property>
<U:property>
<KU:bar>

<U:type>integer</U:type>27
</U:bar>
</U:property>
</U:propertyset>

Here, a property named “foo”is of type “string” and has
a value of “goodbye” and a property named “bar”has a type
of “integer” and has a value of 27. The XML will be contains
a list of multiple properties that have changed, along with a
count to make it easy to determinethis.

The UNSUBSCRIBE Message
When a UPnP UCP wishes to unsubscribe to event

notifications for a UPnPservice, it will form an UNSUB-

Netflix, Inc.et al. Exhibit 1003
Page 69 of 91

Netflix, Inc. et al. Exhibit 1003
Page 70 of 91

US 6,910,068 B2
39

SCRIBE message of the following format:

UNSUBSCRIBEservicel1 HTTP/1.1
Host: verlocal:200

SID: uuid:kj9d4fae-7dec-11d0-a765-00a0c91e6bf6
The response would be as follows::
HITP/1.1 200 O.k.

This example of a GENA UNSUBSCRIBErequest and
response demonstrates that the UCP is no longer interested
in receiving event notifications from http://ver.local/
service1:200.

Step By Step: UCP to CD & Back
This section will take a step by step approach to what

happens on both sides (UCP & CD) ofan eventnotification.
The description starts at the initialization of a UPnP device.
FIG.24 illustrates the subscription, notification, and unsub-
scription process.
1. A UPnP device called “ver” initializes.

a. It sets itself up to be an HTTP server by doing the
following:
i. It binds to a TCP socket using its IP address and an

arbitrary port number. This address/port pair will be
referenced by all incoming URL requests.

ul. It listens for incoming connection requests on that
socket and sets itself up to accept any incoming
connections.

b. It sets itself up to be an HTTP client by doing the
following:
i. Calls InternetOpen() to get a handle to the internet

session

c. For each service it exposes, it does the following:
i. It calls the SSDP API RegisterUpnpEventSource() to

let the SSDP server know that it will be accepting
subscriptions and sending event notifications. At this
point, it has no subscribers. Note that this is called
before the service has announceditself so that it can

be ready to accept subscriptions immediately.
RegisterUpnpEventSource() sends no networktraf-
fic on the wire. It is a local initialization only.
RegisterUpnpEventSource() does the following:
1. Adds a structure to the list of event sources

containing the following:
a. A URL to which subscribers will send sub-

scription requests
b. A list of destination URLs. A notification

message will be sent to each destination URL.
c. The state table for the event source. This

structure contains the property name, value,
and type for each property supported by the
service.

ii. It calls the SSDP API RegisterService() to let the
world know that it has become available.

RegisterService() will send out an SSDP “alive”
message on the multicast channel that will be heard
by any device running the SSDPservice.

d. It starts sending events immediately, even without
subscribers. Each event submission updates the local
state table. This submission needs to be atomic with

regard to adding subscribers, so between the time the
SubmitEvent() API is called, and the time the local
state table is updated, no subscriptions can be added or
removed.

2. Meanwhile, a UPnP UCPinitializes.

a. It initializes its HTTP server, passively listening on a
TCPport.

10

15

20

25

30

35

40

45

50

55

60

40

b. If the UCP started up before the UPnP device
initialized, it won’t see any services becomeavailable.
Whenthe device finally starts, the UCP will benotified.

c. Once the UPnP services have been announced the UCP
will be able to access one or more of them.

d. The UCP drives the UPnP API to instantiate a UPnP

Service Object.
e. The UPnP Service Object does the following whenit is

instantiated:

i. It obtains the event subscription URL from the
description for that service.

ii. It calls the SSDP API RegisterNotification() speci-
fying SSDP_PROPCHANGEasthe event type, the
event subscription URL, a callback function pointer
(which is a static member functionof the class), and
a context pointer (which is the “this” pointer of the
class). RegisterNotification() does the following:
1. It makes an LRPCcall to the SSDP service. The

rest happens on the service side.
2. If this is the first time it is called for SSDP__

PROPCHANGE notifications,
RegisterNotification() will call InternetOpen() to
get a handle to an internet session. This handle is
shared among all local UPnP UCPs.

3. It calls Internetconnect() passing the server name
given in the URL it was passed.

4. It calls HttpOpenRequest() passing in the rest of
the URLit was passed.

5. The handles returned by these functions are saved
with the structure that maintains the subscription.

6. It composes a SUBSCRIBE message, using the
data passed in, by calling
HttpAddRequestHeaders(). It adds the “NT”,
“Callback”, and “Timeout” headers. The Callback
header of the SUBSCRIBE message will be com-
posed on the fly, as an arbitrary URL for notifi-
cations to be sent to for this subscription. The
server nameis the local IP address, and the portis
the same one referred to by step 2a above.

7. It calls HttpSendRequest() to send the request to
the CD. This is a synchronous function that will
return when the request has been responded to by
the CD.

8. It calls HttpQueryInfo(. . . , HTTP_QUERY_
CUSTOM, .. .) to get the “Subscription-ld”
header. The resulting SID will be stored with the
subscription structure.

9. It calls HttpQueryInfo(... , HTTP_QUERY_
CUSTOM,.. .) to get the “Timeout” header. The
resulting timeout value will be stored with the
subscription structure.

10. A timeris started for re-subscription based on the
timeout value returned in the response. When the
timer goesoff, the re-subscription will be sent.

11. The SID, callback function pointer, and timeout
values are stored in a structure that maintains the

list of local subscriptions.
3. Back on the UPnP CD, the subscription request is

received by the HTTP server. The following occurs:
a. The request is parsed into URI, NT, Callback, and

Timeoutfields.

b. The NT field must match “upnp:event”. If it doesn’t, the
CD responds with “412 Precondition Failed.”

c. The URI identifies the event source. The URI is
converted into a URL and matchedwith the list of event

sources registered on the CD.If no match is found, the
CD responds with “404 Not Found”.

Netflix, Inc.et al. Exhibit 1003
Page 70 of 91

Netflix, Inc. et al. Exhibit 1003
Page 71 of 91

US 6,910,068 B2
41

d. If a match is found, the following occurs:
1. The Callback URL is added to a list of subscriber

URLs.

i. The Timeout value is processed and an absolute time
is stored with the event source data. If this time

42
a. The event source handle is converted to an event source

structure.

b. The properties that have changed as a result of the event
are passed into the function and updated in the local list

5 of properties stored with the event source.
expires and a re-subscribe message has not been . For each subscriber, the following occurs:

__ received, the subscription is removed. . i. InternetConnect() is called, passing the server name
iii.A new SID is created, and stored with the subscriber specified in the callback URL for this subscription.

vy aN Seatenee saber «¢ initialized to 0 ii. upOpenReanesi() is called, passing in the rest of: : the callbac .

v.A subscription response is composed, including an 7 ni. A NOTIFY message is composed, using the data
coho of the Timeout header and the SID just created. passed in, by calling HttpAddRequestHeaders(). Itvi. Lhe response 1s sent. adds the “NT”, “NTS”, “SID”, “Seq”, “Content-

vu. If the response is sent successfully, the list of event Length”, and “Content-Type” headers. ,
sources is persisted to disk for recovery purposes. 1. The NT headerwill always be “upnp:event”. The

viii. A timer is started using the same timeout value as 15 NTS header will always be “UPnP:property-
the header echoed to the UCP. When this timer change”.
elapses, the subscription is removed. If the CD 2. The SID header contains the SID stored in the
receives a re-subscribe request, this timer will be event source structure
reset. In an ideal world, the timer will never elapse. 3. The sequence number for the event source is

ix. An initial event notification is sent to initialize the 20 incremented and the Seq headeris created with
UCP’s state table. The following describes that pro- this value.
Cess: 4. The Content-Length header will be the number of

1. InternetOpen() is called if an existing internet bytes in the XML body.
session handle does notexist. 5. The Content-Type header will always be “text/

2. InternetConnect() is called, passing the server 55 xml”.

namespecified in the callback URLfor this sub- 6. The body of the message is composedfrom thelistScripuon. of properties stored within the event source struc-
3. HttpOpenRequest() is called, passing in the rest of hare P

the callback URL. . a. Write the <propertyset> opening tag.
4. A NOTIFY messageis composed, using the data ,, b. Write the <propcount>n</propcount> tag.

passed in, by calling HitpAddRequestHeaders(). Where n is the numberoftotal properties.
It adds the NT NTS”, SID » “Seq”, “Content- c. For each property that has been submitted:
Length”, and Content-Type headerS- ° i. Write the <property> opening tag.
a.The NT header will always be “upnp:event”. Write th ino t h .

The NTS header will always be “UPnP:prop- Be Nate te <prop> opening tag, wiere Prop Is
ertychange”. 35 . the name of the property.

b. The SID header contains the SID stored in the i.Write the <type>type</type> tag, where type
event source structure is the stringized type name of the property

c. The Seq header will always be 0. __ type.
d. The Content-Length headerwill be the number iv. Write the property value.

of bytes in the XML body. 40 v. Write the </prop> closing tag.
e.The Content-Type header will always be “text/ vi. Write the </property> closing tag

xml”. d. Write the </propertyset> closing tag

f. The body of the message is composedfrom the iv. SubmitEvent() is called, passing the event source
list of properties stored within the event source handle, the handle to the headers created by 4c(i)
structure: 45 thru 4c(iii) above, and the body created in step

i. Write the <propertyset>openingtag. 4c(iii)6. SubmitEvent() does the following:
ii. Write the <propcount>n</propcount>tag. 1. It calls HttpSendRequestEx(), then

Where n is the numberof total properties. InternetWriteFile() on the body, then
iii. For each property: HttpEndRequest() to send the request to the CD.
1. Write the <property> openingtag. 50 2. The response is ignored except for debugging
2. Write the <prop>opening tag, wherepropis the purposes.

5. The UPnP UCPreceives the notification message. The
message is processed as follows:
a. The HTTPserver receives a NOTIFY message with a

Request-URI and several other headers.
b. The NOTIFY message is parsed, looking at the “NT”

headerfirst. If this header contains “upnp:event”, then
the messageis further processed for eventnotifications

name of the property.
3. Write the < type>type</type> tag, where type

is the stringized type name of the property
type. 55

4. Write the property value.
5. Write the </prop> closing tag.
6. Write the </property> closing tag
iv. Write the </propertyset> closing tag

5. It calls HttpSendRequestEx(), then
InternetWriteFile(), then HttpEndRequest() to
send the request to the CD.

6. The response is ignored except for debugging
purposes.

60
as follows:

i. The message is parsed for the NTS header. If that
contains “upnp:propertychanged”, then the message
is parsed further as follows:
1. The messageis parsed for the SID header. The SID

indicates to the UPnP control point which sub-
4. The UPnP CD nowis ready to send an event notification. 65

It does this by calling the SubmitUpnpPropertyEvent()
API. The following occurs inside that API:

scription this message applies to.
2. The messageis parsed for the “Seq” header.If this

header contains a value of 0, the UCP knowsthis

Netflix, Inc. et al. Exhibit 1003
Page 71 of 91

Netflix, Inc. et al. Exhibit 1003
Page 72 of 91

US 6,910,068 B2
43

is an initial state populate request. If the local
sequence numberis exactly one less than the Seq
header, the local sequence number is updated
(incremented), and the message is processed fur-
ther.

3. The Request-URI can be ignored, since the HTTP
server knows all NOTIFY messages with an NT
header of “upnp:event” are sent to the same
Request-URI.

4. If the Seq header contains a numberthat is not
exactly one more than the local sequence number,
the UCP knowsit has missed an event. In this

state, it needs to unsubscribe and re-subscribe to
the event source in order to re-sync its state.

5. The SID is matched against the list of subscrip-
tions maintained on the UCP. When the SID is

matched, its associated callback function is
invoked.

6. The callback function is passed an SSDP_
MESSAGEstructure which contains all the rel-

evant headers and the body of the XML message
received.

7. The callback function is implemented by the UPnP
API, as a static member of the Service object.
Whenthis function is called, the following occurs:
a.The body of the message is parsed using the

XML DOMservices.

b. As properties are enumerated, their values are
stored in the local state table for the service.

c. An eventis fired to all high-level clients of the
UPnP API. This event contains the list of

properties that have changed and their new
values.

6. The re-subscription timer for one of the UCPs subscrip-
tions expires. The following occurs:
a. A re-subscribe message is composed. This message is

very similar to a subscribe message except in doesn’t
include an NT or Callback header, but it does have a
SID header.

b. The request is sent to the CD.
c. The response contains the new timeout value.
d. The timer is reset with this timeout.

UCPState Synchronization Models
CD-Initiated NeedsSyne method
This method begins with the CD sendingits initial state to

the subscriber the first time an event is submitted by the
service. UCPs will subscribeto the servicefirst, then receive
notifications for events as they occur. The first event will
happen to be the initial state of the service. The UCP state
table will always be in syne with this method.

When the CD sends a notification to a subscriber and

receives an error. In this case, it marks the subscriber as
“NeedsSync” and the next time an event is submitted, all
events are sent to the subscriber. The problem with this is
that the API needs to keep track of which subscribers need
syncing and which ones don’t. The client of this API (the
UPnPservice) would need to send separate messages to each
subscriber and know which ones needed all events and

which ones just wanted the ones that changed.
UCP-initiated Syne
This methodstates that the UCP should subscribe to event

notifications, then call a function that obtained the state from
the service. This meansthat any events that were received in
the meantime would need to be matched against the incom-
ing set of events and replaced if they were older. This
methodleads to synchronization issues where the UCP may
receive events that are newer but when it queries for the

10

15

20

25

30

35

40

45

50

55

60

65

44

state, it gets an older view of the table. This requires using
sequence numbers to determine which information is newer.
If the view of the table received by the query is too old,it
has to be discarded. Alternatively, the properties that were
not received by event notification would not be overwritten,
but all other properties would be. Using sequence numbers
make this more complicated.

CD-initiated Syne
This preferred method takes a simpler approach. Any time

the UCP subscribesto a service, the service will immediately
afterwards, send the entire contents of the state table with the
first notification. This precludes the UCP from making a
query for the state table. Subsequent events update the local
state table on the UCP.If the connectionis lost, the UCP will
lose its subscription. If the UCPrealizes it has not received
an event after a certain amount of time has elapsed, it will
re-subscribe. At that point, the CD will re-send the entire
state table again, and the UCPis ensured to be up to date.
Exemplary Computer Hardware

FIG. 25 and the following discussion are intended to
provide a brief, general description of a suitable computer
which may be used in the above described UPnP device
control model. This conventional computer 820 (such as
personal computers, laptops, palmtops or handheld-PCs,
set-tops, servers, mainframes, and other variety computers)
includes a processing unit 821, a system memory 822, and
a system bus 823 that couples various system components
including the system memory to the processing unit 821.
The processing unit may be any of various commercially
available processors, including Intel x86, Pentium and com-
patible microprocessors from Intel and others, including
Cyrix, AMD and Nexgen; Alpha from Digital; MIPS from
MIPS Technology, NEC, IDT, Siemens, and others; and the
PowerPC from IBM and Motorola. Dual microprocessors
and other multi-processor architectures also can be used as
the processing unit 821.

The system bus may be any of several types of bus
structure including a memory bus or memorycontroller, a
peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, VESA, AGP,
Microchannel, ISA and EISA, to name a few. The system
memory includes read only memory (ROM) 824 and ran-
dom access memory (RAM) 825. A basic input/output
system (BIOS), containing the basic routines that help to
transfer information between elements within the computer
820, such as during start-up, is stored in ROM 824.

The computer 820 further includes a hard disk drive 827,
a magnetic disk drive 828, e.g., to read from or write to a
removable disk 829, and an optical disk drive 830, e.g., for
reading a CD-ROMdisk 831orto read from or write to other
optical media. The hard disk drive 827, magnetic disk drive
828, and optical disk drive 830 are connected to the system
bus 823 by a hard disk drive interface 832, a magnetic disk
drive interface 833, and an optical drive interface 834,
respectively. The drives and their associated computer-
readable media provide nonvolatile storage of data, data
structures, computer-executable instructions, etc. for the
computer 820. Although the description of computer-
readable media above refers to a hard disk, a removable
magnetic disk and a CD,it should be appreciated by those
skilled in the art that other types of media which are readable
by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, and the like,
may also be used in the exemplary operating environment.

Anumberof program modules may bestored in the drives
and RAM 825, including an operating system 835, one or
more application programs 836, other program modules 837,
and program data 838.

Netflix, Inc.et al. Exhibit 1003
Page 72 of 91

Netflix, Inc. et al. Exhibit 1003
Page 73 of 91

US 6,910,068 B2
45

A user may enter commands and information into the
computer 820 through a keyboard 840 and pointing device,
such as a mouse 842. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 821 through a serial port
interface 846 that is coupled to the system bus, but may be
connected by other interfaces, such as a parallel port, game
port or a universalserial bus (USB). A monitor 847 or other
type of display device is also connected to the system bus
823 via an interface, such as a video adapter 848. In addition
to the monitor, computers typically include other peripheral
output devices (not shown), such as speakers andprinters.

The computer 820 operates in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 849. The remote computer 849
may be a server, a router, a peer device or other common
network node, and typically includes manyorall of the
elements described relative to the computer 820, although
only a memory storage device 850 has been illustrated in
FIG. 25. The logical connections depicted in FIG. 25 include
a local area network (LAN) 851 and a wide area network
(WAN) 852. Such networking environments are common-
place in offices, enterprise-wide computer networks, intra-
nets and the Internet.

When used in a LAN networking environment, the com-
puter 820 is connected to the local network 851 through a
network interface or adapter 853. When used in a WAN
networking environment, the computer 820 typically
includes a modem 854 or other means for establishing
communications (e.g., via the LAN 851 and a gateway or
proxy server 855) over the wide area network 852, such as
the Internet. The modem 854, which may be internal or
external, is connected to the system bus 823 via the serial
port interface 846. In a networked environment, program
modules depicted relative to the computer 820, or portions
thereof, may be stored in the remote memorystorage device.
It will be appreciated that the network connections shown
are exemplary and other meansof establishing a communi-
cations link between the computers may be used.

In accordance with the practices of persons skilled in the
art of computer programming, the present invention is
described below with reference to acts and symbolic repre-
sentations of operations that are performed by the computer
820, unless indicated otherwise. Such acts and operations
are sometimes referred to as being computer-executed. It
will be appreciated that the acts and symbolically repre-
sented operations include the manipulation by the process-
ing unit 821 of electrical signals representing data bits which
causes a resulting transformation or reduction of the elec-
trical signal representation, and the maintenanceofdata bits
at memory locations in the memory system (including the
system memory 822, hard drive 827, floppy disks 829, and
CD-ROM 831)to thereby reconfigure or otherwise alter the
computer system’s operation, as well as other processing of
signals. The memory locations where data bits are main-
tained are physical locations that have particular electrical,
magnetic, or optical properties corresponding to the data
bits.

Exemplary Embedded Computing Device
FIGS. 26 and 27 are intended to provide a brief, general

description of a suitable embedded computing device 900
which may be used in the illustrated implementation of the
invention. The embedded computing device 900 can be any
variety of device incorporating electronics to control opera-
tional functions (operational circuitry 906), and in which
computing and networking capabilities are embedded. For

10

15

20

25

30

35

40

45

50

55

60

65

46

example, devices in which computing and networking func-
tions can be embedded include communications devices

(e.g., telephones, cell phones, audio and video conferencing
systems, 2-wayradios, etc.), office equipment(printers, fax
machines, copiers, dictation, etc.), audio-video equipment
(audio and video recorders and players, including
televisions, radio receivers, compact disk (CD), digital video
disk (DVD), camcorders,etc.), entertainment devices (set-
top boxes, game consoles,etc.), environment control equip-
ment (thermostats, heating/ventilation/air-conditioning
equipment, light switches, etc.), security systems, home
appliances (coffee makers, dishwashers, clothes washer/
dryer), automobiles, public facilities equipment(signs, traf-
fic signals, etc.), manufacturing equipment, and many oth-ers.

With reference to FIG. 26, the device 900 includes a
processing unit 902, and a memory 904 to provide embed-
ded computing capability. The processing unit 902 has
hardware interfaces to the operational circuitry 906 that
operates devices functions. The processing unit 902 can be
a microprocessor or micro-controller, such as are available
from Intel, Motorola, IBM, and others. The memory 904
preferably incorporates RAM and ROM to hold software
and data for basic operating code as well as for user
applications.

The device 900 also includes a network adapter 908 for
connecting with a network media 910 that is interconnected
with the computer network in which the authoritative names
registry (described below) is implemented in accordance
with the invention. The network adapter 908 can be a
network interface card (or chip set integrated on a single
board with the processing unit 902) appropriate to the
particular network media 910. The network media can be
any of various wired or wireless network media, including
Ethernet, TEEE 1394 (a.k.a. firewire), radio frequency
(includingsatellite, cell, pager, commercial signal sideband,
etc.), power line carrier (PLC), phoneline, and television
cable, among others.

With reference now to FIG. 27, the embedded computing
device 100 (FIG. 26) has a software architecture 120 that
conforms to the above described UPnP device control

model. UPnP provides a mechanism for the embedded
computing device to operate in the Internet, as well as
networks that have no administrator and no connection to

the Internet, and hence no access to configuration services
like the Dynamic Host Configuration Protocol (DHCP).
DHCPis a mechanism for providing devices with configu-
ration information neededto accessthe Internet. The mecha-

nism functions through the use of a multicast request for
configuration information that is generally responded to with
an IP address and DNSserver location. Additional informa-

tion can only be returned in the response.
In non-configured (ad-hoc) networks, UPnP uses the

AutolP protocol. AutolP is an enhancement to DHCPthat
allows devices to claim IP addresses in the absence of a

DHCP server or similar IP configuration authority. IP
addresses are claimed from a reserved range that is not
allowed to be transmitted on the open Internet; thus they are
only good for the local network. The embedded computing
device 100 claims an address by randomly generating an
address in the reserved range and then making an ARP
request to see if anyone else has already claimed that
address. AutolP systems will continually check for the
presence of a DHCPserverso that if one should ever come
online,all the AutolP devices will attempt to switch their IP
addresses to one provided by the DHCPserver. This allows
a network to operate in isolation, be connected to the

Netflix, Inc.et al. Exhibit 1003
Page 73 of 91

Netflix, Inc. et al. Exhibit 1003
Page 74 of 91

US 6,910,068 B2
47

Internet with DHCP support and then to be returned to
isolation. This type of scenario will be common in homes
that use dial-up access.

UPuPalso uses the Internet Domain Name System (DNS)
for addressing the embedded computing device 900. The
DNSis a mapping system that translates human readable
domain names, like microsoft.com, into their equivalent IP
address. Most corporate intranets implement an internal
version of the same technology to provide the sameservices.
In small networks, such as at home or in small business,
DNSservers may not exist. Multicast DNS allows DNS
requests to be multicast. This allows a machine to see
requests for its own name and respond to them. Like Auto]P,
Multicast DNS is only used when a DNSserver is not
available. (For more information, see B. Woodcock, Zocolo,
and B. Manning, “Multicast Discovery of DNS Services,”
which can be found at http://search.ietf.org/internet-drafts/
draft-manning-multicast-dns-01 txt.)

UPnP implements a peer discovery mechanism that uses
the Simple Service Discovery Protocol (SSDP) for discov-
ery of devices on IP networks. SSDPis based on profiles. A
single identifier specifies a profile that defines a contract
between the client and service (e.g., operational functions
provided by the embedded computing device). By identify-
ing itself with the profile, the service advertises compliance
with the associated contract. Using a single identifier makes
it possible to implement an extremely simple discovery
system. Clients send out a User Datagram Protocol (UDP)
multicast packet containing the identifier of the desired
service on some standard channel. Services listen on the

standard channel, read the request, see whether they provide
the service, and respond if so.

UPnP also provides a Directories mechanism to allow
discovery to scale—to the entire Internet if needed. When
present, a directory will read all incoming service requests
and respond to them itself. This requires that all services
(e.g., the embedded computing device 900) register with the
directory so that the directory is able to properly answer on
their behalf. The directory is also responsible for commu-
nicating with other directories in order to determine whether
the service is available within the local network, the WAN
and potentially the Internet.

To simplify the discovery protocol, directories are treated
as proxies. A proxy is a service that accepts requests and
takes responsibility for finding the proper response. When a
client comesonline, it will perform discovery for the proxy.
If the proxy is present, then the client will send all future
discovery requests to the proxy. If the proxy isn’t present,
then the client will send all discovery requests to the
reserved discovery multicast channel. Regardless of the
presence of a proxy, the client’s request format and proce-
dures will always be the same. The only difference will be
the address to which the client sends its requests. For
services, the difference between a proxied and unproxied
network is their need to answer discovery requests. On a
proxied network, services need do nothing once they have
registered with the proxy. On an unproxied network, they
answer discovery requests directly.

SSDP uses the UDP-and Transmission Control Protocol

(TCP)-based Hyptertext Transport Protocol (HTTP) to pro-
vide for service discovery. SSDP uses a Uniform Resource
Identifier (URD) to represent the service and the OPTIONS
method to provide for discovery. SSDP also will provide
support for proxies. These proxies, which are really just
fronts for directories, redirect discovery requests to them-
selves. It is the proxy’s job to collect announce requests in
order to determine whatservices are available as well as to

10

15

20

25

30

35

40

45

50

55

60

65

48

communicate with other proxies in order to provide for
scalable service discovery.

The discovery process returns only the basic information
needed to connect to the embedded computing device. Once
a service has discovered its peers, the service often needs to
find out more information in order to work best with them.

The description process returns a schemaproviding descrip-
tive data about the service.

A schemais a structured data definition that defines a set

of structured values that provide descriptive information
about a service. UPnP uses the Extensible Markup Language
(XML) for schema, because XML’sself-describing struc-
tured data format provides the level of expressiveness and
extensibility needed by a universal schema and data format.

Accordingly, UPnP supports automatic network
introduction, meaning that devices and their related services
have the ability to be self-describing and allow automatic
configuration. When a device is plugged into the computer
network, the device automatically configures itself and
acquires a TCP/IP address. The device then announcesits
presence to other devices already on the network using a
simple discovery protocol based on the Internet HTTP
protocol and is immediately ready to share its services with
any device that requests them.

With UPnP, device developers are not required to develop
specific device drivers to operate under UPnP. The task of
preparing a device for operation in this network environment
thus is fairly simple. Moreover, in configured networks,
dynamic detection allows an operating system to immedi-
ately begin using added devices or stop using removed
devices without rebooting.

UPnP Devices support automatic discovery,
identification, and configuration to achieve interoperability
in the home environment, but must also operate correctly in
a managed corporate network. Devices can be networked
instead of being attached directly to a PC, and devicesareall
autonomouscitizens on the network, able to talk with each
other and exchange information. UPnP provides a unified
way of performing directory services with automatic con-
figuration. Capability for simple discovery mechanism used
in the home environmentprovidesthe ability for any device
to become a node on the global Internet. Additionally,
directory services can be leveraged if they are available in
the corporate environment.

UPnPprovides a commonsetof interfaces for accessing
devices and services, enabling the operational unification of
diverse media types. Communications protocols for Univer-
sal Plug and Play are based on industry standards, especially
key Internet standards such as TCP/IP, HTML, XML, HTTP,
DNS, LDAP, and others. Individual implementations for
particular networks and buses are built on established pro-
tocols.

As shownin FIG.27, the software architecture 920 of the
embedded computing device 900 (FIG. 26) includes the
following software code modules that implement UPnP:
device functions 922, simple discovery 924, Hypertext
Transport Protocol (HTTP) 925, Transmission Control
Protocol/Internet Protocol (TCP/IP) stack 926, Dynamic
Host Configuration Protocol (DHCP) with AutolP extension
928, Domain Name System (DNS) with Multicast DNS
extension 930, and physical media 910 (also shownin FIG.
26). The device functions 922 is a software code module to
implement the device’s functionality. For example, where
the embedded computing device is a VCR, the device
functions code can include code to implementstart, stop,
pause, record and other functions that the VCR can perform.

The simple discovery 924 is a software code module
(about 4 Kbytes) that implements a simple discovery pro-

Netflix, Inc.et al. Exhibit 1003
Page 74 of 91

Netflix, Inc. et al. Exhibit 1003
Page 75 of 91

US 6,910,068 B2
49

cedure (described below) for automatic network introduc-
tion under the UPnPprotocol.

The simple discovery procedure additionally provides an
Extensible Markup Language (XML) format device
description, which is downloadedto clients that access the
device to allow activation of device functionality from the
client. XMLis a textual, tag-based markup language.It was
originally designed to be the “Webby” simplification of
SGML (Standard Generalized Markup Language), and is
therefore intended to be used to create “vocabularies” of tags
that can be used to apply semantic markup to documents,
such as who the author was, what constitutes a paragraph
(semantically, not from a display point of view), when the
authorlast had breakfast, and so on. (For more information,
see A. Layman, E. Jung, E. Maler, H. Thompson,J. Paoli, J.
Tigue, N. H. Mikula, S. De Rose, “XML-Data”, which can
be found at http:/Awww.w3.org/TR/1998/NOTE-xml-data-
0105; and MSDN Online, XML Data Center at http://
msdn.microsoft.com/xml/default.asp.) In the context of
UPnP, XMLis used to provide the description of services
and capabilities of the embedded computing device. The
embedded computing device makes its features visible to
clients by providing its XML device description, which the
client can use to activate device functions 922. For example,
if the device is a camera, the client’s browser can direct the
camera to zoom in/out or adjust contrast using the mecha-
nism of XML.

The XML device description can provide links (via a
uniform resource locator or URL address) to an accompa-
nying XSL formatstyle sheet. The XSL style sheets are used
to present the data in different ways,1.e., the style sheets are
applied to present different views of the same data. For
example, if the device contains a file system, one style sheet
can show the file selections, another showsthe file sizes in
some sort of diagram; yet another style sheet could make
thumbnails of these imagefiles.

The HTTP 925 is a software code modules (about 20
Kbytes) that implements the standard HTTPprotocol, which
is an open standard mechanism for client/server message-
based communication. HTTP provides for proxying, content
negotiation and security. (For more information, see R.
Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee,
“Hypertext Transfer Protocol -HTTP/1.1”, which can be
found at http://www.ietf.org/rfc/ric2068 txt.)

The TCP/IP stack 926 implements the standard TCP/IP
networking protocols for communication on the computer
network. The Internet Protocol (IP) is the foundation pro-
tocol of the Internet. It defines how a single messageis sent
from a source through zero or more routers to its final
destination. It covers issues such as message length, mes-
sage fragmentation, addressing, and routing concerns. The
Transmission Control Protocol (TCP) is an IP-based proto-
col that provides support for the reliable, ordered delivery of
messages over IP. Additionally, User Datagram Protocol
(UDP) and Internet Group Management Protocol (IGMP)
multicast send/listen capability are included in the imple-
mentation.

The AutolP 928 is a software code module also used for
automatic network introduction via AutolP in the UPnP

protocol. AutolP uses a predefined set of IP addresses and,
when a device is connected to the network, it pings an
address in this address space. If it gets no replies, the device
assumesthat the address is available and assignsit to itself.
To make this functionality even more useful it is combined
with Multicast DNS,in which the deviceitself holds its own
name. Thus it is not even necessary to determine what IP
address the device assigned to itself, because its name can

10

15

20

25

30

35

40

45

50

55

60

65

50

always be used instead. An IP Multicast is a mechanism for
sending a single message to multiple recipients. IP multi-
casting is especially useful for discovery operations where
one does not know exactly who has the information one
seeks. In such cases, one can send a request to a reserved IP
multicast address. Any services that can provide the
requested information will also subscribe to the multicast
request and thus be able to hear the information request and
properly respond. Multicast DNSis a proposal to the IETF
on rules for making normal DNS requests using multicast
UDP.(For more information, see B. Woodcock, B. Manning,
“Multicast Discovery of DNS Services”, which can be found
at http://www. ietf.orglinternet-drafts/draft-manning-
multicast-dns-01.txt.)

The DHCP 930 is a software code module that imple-
ments the Dynamic Host Configuration Protocol (DHCP),
which is a mechanism for providing devices with configu-
ration information neededto accessthe Internet. The mecha-

nism functions through the use of a multicast request for
configuration information that is generally responded to with
an IP address and DNSserver location. Additional informa-

tion can only be returned in the response.
FIGS. 28 and 29 show processes 934, 940 per the UPnP

protocol for automatic network introduction of the embed-
ded computing device 900 (FIG. 26) into an ad hoc (where
the device does not have a configured IP address) and a
configured computer network environment, respectively.
The automatic network introduction process establishes an
appropriate configuration (e.g., with an IP address) of the
embedded computing device upon connection to a server
computer on a computer network, so as to enable access to
the device from a client. The processes 934, 940 involve five
phases: AutolP, announce, discovery, response to discovery,
and device description.

At the AutolP phase, the AutolP module 928 of the
embedded computing device 900 uses a predefined set of IP
addresses and, when the device is connected to the network,
it pings an address in this address space. If no reply is
received, the device 900 assumesthat the address is avail-
able and assigns it to itself. Alternatively, the device 900
may combine AutolP with Multicast DNS,and itself hold its
own name. In which case, it is not necessary to determine
what IP address the device assigned to itself, because its
name can always be used instead.

At the announcephase, the embedded computing device
900 sends out a small multicast packet so that other devices
can find it on the network. The multicast message packet
essentially says, “I am here, I am, (say), a camera, and you
can reach meat this IP address or URL.”

At the discovery phase, the embedded computing device
900 listens for a discovery packet coming from a simple
discovery client, i.e., the device announces itself, then
listens for discovery. The discovery packetalsois sent out by
multicast.

At responseto discovery, the embedded computing device
900 listens to the multicast address and then parses the
information from a Simple Discovery request to decide if the
request is for its kind of device. If so, the device 100 then
sends back a response packet containing the following
information: the IP address or URL whereit can be reached;
identification of its own device type; and the discovery
packet ID so the requesting client knows which request is
being answered.

Both the Announce and Discovery packets also contain a
link or a URL to an XMLfile that is used by the embedded
computing device at the device description phase to describe
itself (i.e., its functionality). This XML data contains all the

Netflix, Inc.et al. Exhibit 1003
Page 75 of 91

Netflix, Inc. et al. Exhibit 1003
Page 76 of 91

US 6,910,068 B2
51

facts about the device. XML can also have URLsthat point
to appropriate style sheets (XSL files) that are used for
optimal presentation. The XSL style sheets are used to
present the data in different ways, 1.e., the style sheets are
applied to present different views of the same data. For
example, if the device contains a file system, one style sheet
can show the file selections; another showsthe file sizes in
some sort of diagram; yet another style sheet could make
thumbnails of these imagefiles.
Exemplary Client

With reference now to FIG. 30, a client that accesses and
uses the embedded computing device 900 over the computer
network has an exemplary client software architecture 950,
which includes software code modules for applications 952,
simple discovery 954, XML 955, LDAP 956, TCP/IP stack
958 and a network interface card (NIC) 960 that provides a
physical connection to the computer network. The applica-
tions 952 is a software code module that provides a user
interface features for locating desired devices (e.g., embed-
ded computing device 900) and services on the computer
network, and also user interface features to interact with the
located device or service. The applications 952 can include
an Internet browser, such as the Microsoft Internet Explorer,
that can present the XML device description in accordance
with an associated XSL style sheet for interaction with the
embedded computing device and activation of its opera-
tional functionality.

The simple discovery 954 is a module that implements the
above-described simple discovery per the UPnP protocol.
The XML 955 is a module that processes the XML device
description and XSL style sheets for presentation in the
application’s user interface. The LDAP 956 implements the
standard LDAP directory protocol for name look-up. The
TCPAP stack 958 implements the TCP/IP protocol for
communications over the computer network.
Illustrative Pervasive Computing Environment

FIG. 31 illustrates a pervasive computing environment
1000, such as maybe installed in a home,office or public
place, which includes a large number of embedded comput-
ing devices, such asthe illustrated device 900 (FIG. 26). The
pervasive computing environment 1000 includes personal
computers 1002, 1004 (e.g., of the type shown in FIG. 25)
connected via a local area network (LAN) 1006. The PC
1002 is connected via a universal serial bus 1016 to a

telephone modem 1010, XDSL interface 1011 or a cable
modem 1012, which in turn provide a connection with the
computer network, e.g., the Internet.

Various embedded computing devices also connectto the
computer network via various network connections to the
PCs 1002, 1004. These include an audio device 1014 (e.g.,
speakers, radio tuner, microphone), and printer 1015 which
connect to the PC 1004 through a USB 1017. Also, a digital
camera 1020, a handheld PC (H/PC) 1021 and another
personal computing device 1022 connect via an infrared port
(IRDA) 1024, which also attaches to the PC 1004 through
the USB 1017. Also, lighting switches 1030 and like home
appliances are connected via an A/C power line-based
networking 1032 to the PC 1002. Further, a chain of IEEE
1394 cables 1048 connect a digital TV 1040, DVD player
1041, digital video camcorder (DV/DVC) 1042, an audio
device 1043 (e.g., CD player/recorder, radio receiver,
amplifier, and like audio system component), and a game
console 1044. Devices, such as a portable telephone 1050
and remote control 1051, have a radio frequency network
connection with the PC 1004.

With their various inter-networked connections, the
embedded computing devices are “visible” and accessible

10

15

20

25

30

35

40

45

50

55

60

65

52

from a client device 950 (FIG. 31) also connected to the
computer network.

Contract Definition Language
Overview

Contracts describe the public behavior of UPnP devices,
and alternatively of other entities on the Web (reachable via
HTTP, mostly) or other computer network that react to and
emit messages. The Contract is written in a Contract Defi-
nition Language (CDL). The messages for the most part are
structured documents, e.g., in XML. The messages may also
be HTML pages, streaming media, images or other
datatypes.

The contract will describe the following attributes:

end-point (well-defined name)
protocol

messaging patterns

delivery characteristics

payloads
All of these attributes may not be present in the contract

as some of them (the end-point, for instance) may not be
available at development time.

Protocol Description
Entities on the Web can be accessed using multiple

protocols: HTTP, GENA, SMTP, FTP, MSMQ, . . . This
section discusses how the protocol bindings are explicitly
declared. The templates for describing the protocol use the
format:

<protocol><HTTP>

// HTTPspecific settings go here
</HTTP>

</protocol>
<protocol><HTTP>

// GENAspecific settings go here
</HTTP>

</protocol>

The “protocol” element may have an “id” attribute. This
is useful when multiple messaging patterns will use the same
protocol definition. This will be covered in more detail
below.

For the sake of convenience, we only cover HTTP-based
protocols here. Extending this model to cover the other
protocols is straightforward.

HTTP

GET

<protocol>
<HTTP version=“1.0">
<GET/>
<URL> http://neteye.local/fullsize.jpg

</URL>
</HTTP></protocol>
GETwith query string
<protocol>

<HTTP version=“1.1">
<GET/>
<URL> http://search. yahoo.com/bin/search
</URL>
<QUERYname=“pattern” required=“yes”/>
<QUERYname=“limit” value=“50” required=“no”

[>
<QUERY name=“xml” value=“yes” required=“yes”

Netflix, Inc.et al. Exhibit 1003
Page 76 of 91

Netflix, Inc. et al. Exhibit 1003
Page 77 of 91

US 6,910,068 B2
53

-continued

[>
</HTTP>

</protocol>

This description indicates that the following are valid
URLs:

http://search.yahoo.com/bin/search?pattern=Rio+
player&limit=50&xml=yes

http://search.yahoo.com/bin/search?xml=yes&pattern=
Rio+player

The reason for not associating the query variables with the
GETverbis becauseit is valid to send a POST message to
a URL containing query variables.

The “value”attribute for the “QUERY” element implies
that the value is static—it is to be treated as a part of the
URL.Declaring it this way allows the appropriate construc-
tion of the query string to be handled bythe caller.

POST

<protocol>
<HTTPversion=“1.1”>

<URL>

http://www.amazon.com/exec/obidos/generic-
quicksearch-query </URL>

<POST>
<PARAM name=“mode”

required=“yes” />
<PARAM name=“keyword-query”

required=“yes” />
<PARAM name=“zipcode”

required=“yes” />
</POST>

</HTTP>
</protocol>

default=“blended”

value=“98112”

The default attribute indicates that the parameter’s value
can be changed.

M-POST

<protocol id=“protocolDef’>
<HTTP version=“1.1">

<URL> http://investor.msn.com/stockquotes.xsp
</URL>

<QUERYname=“symbol”required=“yes” />
<M-POST>

<MAN>http://www.upnp.org/service-control/m-
post </MAN>

</M-POST>
<HEADER name=“Content-Type” value=“text/xml”/>

</HTTP>
</protocol>

The M-POSTand the enclosed MAN elements declare the

mandatory extension mechanism to be used. The optional
extension mechanism can also be handled in this way.

The “HEADER?”element allows the declaration of HTTP
headers to be used.

GENA

Payload Description

10

15

20

25

30

35

40

45

50

55

54

Below is an example of an XMLpayload description.

<schema xmlns=“urn:schema-microsoft-com:xml-data”
xmins :dt=“urn:schema-microsoft-

com:datatypes’’>
if
// symbol: a ticker symbol
if
<ElementType name=“symbol”dt:type=“string” />
if
// symbols: array of “symbol” elements
if
<ElementType name=“symbols’”>

<element type=“symbol” maxOccurs“*” />
</ElementType>
if
// stockQuote: quote details
if
<ElementType name=“stockQuote’’>

<element type=“company”/>
<element type=“ticker” />
<element type=“previousclose” />
<element type=“openingTrade”/>
<element type=“lastTrade” />
<element type=“volume” />

</ElementType>
<ElementType dt:type=“string” name=“company” />
<ElementType dt:type=“string” name=“ticker” />
<ElementType dt:type=“string” name=“previousClose”
[>
<ElementType dt:type=“string” name=“openingTrade”
[>
<ElementType dt:type=“string” name=“lastTrade” />
<ElementType dt:type=“string” name=“volume”/>
if
// stockQuotes: array of “stockQuote” elements
if
<ElementType name=“stockQuotes’’>

<element name=“stockQuote” maxOccurs=“*” />
</Element>
if
/{ error: error info
if
<ElementType name=“error’>

<element type=“reason”/>
</ElementType>
<ElementType dt:type=“string” name=“reasons />
</schema>
Using this declaration, the below are valid XML fragments:
<symbol> MSFT </symbol>
<symbols>

<symbol>MSFT=</symbol>
<symbol>IBM </symbol>
<symbol>AOL </symbol>
<symbol>YHOO-</symbol>
<symbol>AMZN_ </symbol>

</ symbols>
<stockQuote>

<company>Microsoft%20Corporation</company>
<ticker>MSPT </ticker>
<previousClose>84%2011/16</previousClose>
<openingTrade>85 %201/16</openingTrade>
<lastTrade>84%205/16</lastTrade>
<volume>28.66%20Mil</volume>

</stockQuote>

Messaging Patterns

The messaging pattern declaration acts as an anchor for
pulling togetherthe protocol, delivery characteristics and the
payload information. The messaging pattern declarations
can include these types.

Request/response

Solicit/response

One way

Exhibit 1003
Page 77 of 91

Netflix, Inc.et al.

Netflix, Inc. et al. Exhibit 1003
Page 78 of 91

US 6,910,068 B2
55

Request/response (RR). The RR pattern is named. The
two samples below are equivalent mechanismsfor declaring
the protocol to be used for the RR messaging pattern. The
linking mechanism is useful when multiple RR pairs use the
same protocol data. This is the case for UPnP. Also,a service
may employ multiple protocols for achieving the same
“method”-call. The “is” attribute accepts a list of ID-Refs—
implying that either of the protocols are equally suitable for
accessing the functionality.

<RequestResponse name=“getImage”>
<protocol>

<HTTPversion==“1.0">
<GET/>
<URL> http://172.30.184.20/fullsize.jpg

</URL>
</HTTP>

</protocol>

</RequestResporise>
<protocol id=“protocolDef1”’>

<HTITP version=“1.0">
<GET/>
<URL> http://172.30.184.20/fullsize.jpg </URL>

</HTTP>
</protocol>
<RequestResponse name=“getImage”>

<protocol is=“protocolDef1”/>

</RequestResponse>

The payloads for request, response and error, in case of
XMLdata, are identified by the names of the elements
referenced by the “is” attribute. The schema information is
assumed to be in the same document. Below are examples
using the two schemes:

<RequestResponse name=“getQuote”’>
// protocol declaration goes here
<in is=“symbol” />
<out is=“stockQuote” />
<error is=“error” />

</RequestResponse>
<RequestResponse name=“getQuote”

xmins:f=“http: //electrocommerce.org/finance.xml”
xmins:c=“http: //electrocommerce.org/common.xml”

// protocol declaration goes here
<in is=“f:symbol” />
<out is=“f:stookQuote” />
<error is=“c:error” />

</RequestResponse>

The CDLdescribed herein keeps the element declarations
in the “schema” block rather than sprinkle them in with the
messaging pattern definitions. The reasons for this are:

Re-use of element declarationsis easy.

We can re-use fragment validation support asis.

Keeping schemasin one place is consistent with the use
of in-line schemas in SQLI2 and ADO.

In case the request or response are not XML documents
but HTML documents, or binary files, the following syntax
will be used. The contained elementdefines the nature of the

data. The use of MIME isnot in the HTTP-specific sense but
in the “nature of the payload” sense. The presence of the “is”
attributes indicates that the MIMEtypeis “text/xml.”

10

15

20

25

30

35

40

45

50

55

60

65

56

<RequestResponse name=“getImage”>

<out>

<mime type=“image/jpeg’’/>
</out>

</RequestResponse>

Delivery Characteristics
The contract may specify the delivery characteristics

(sometimesalso referred to as quality of service) required or
supported by the server. Examples are:

Ordered, best-effort

Guaranteed delivery

Fire-and-forget

Exactly once
Atleast once

Transactional

EXAMPLE

FIGS. 45-47 depict an exemplary contract for interacting
with a stock quote Service.

FIGS. 48-51 depict an XML schemafor defining Con-
tracts.

Having described and illustrated the principles of our
invention with referenceto an illustrated embodiment,it will
be recognized that the illustrated embodiment can be modi-
fied in arrangement and detail without departing from such
principles. It should be understood that the programs,
processes, or methods described herein are not related or
limited to any particular type of computer apparatus, unless
indicated otherwise. Various types of general purpose or
specialized computer apparatus may be used with or perform
operations in accordance with the teachings described
herein. Elements of the illustrated embodiment shown in

software may be implemented in hardware and vice versa.

In view of the many possible embodiments to which the
principles of our invention may be applied, it should be
recognized that the detailed embodiments are illustrative
only and should not be taken as limiting the scope of our
invention. Rather, we claim as our invention all such
embodiments as may come within the scope andspirit of the
following claims and equivalents thereto.

UPnP Template Language
UPnP forum working committees define UPnP device

templates to describe various devices and services. The
templates are written in a UPnP template language, which
evolved in part from the Contract Definition Language
described in the previous section. The template language
defines well-formed templates for devices and services.It is
written in XML syntax and is derived from XML Schema.
Because the UPnP template language, UPnP device
templates, and UPnP device descriptions are all machine-
readable, automated tools can automatically check to ensure
that the templates and descriptions have all required
elements, are correctly nested, and have valuesof the correct
data types.

To describe the UPnP template language,it is useful to
once again visit the general UPnP device architecture in
terms of a set of processes-discovery, description, control,
eventing, and presentation-that utilize the following protocol
stack.

Netflix, Inc.et al. Exhibit 1003
Page 78 of 91

Netflix, Inc. et al. Exhibit 1003
Page 79 of 91

US 6,910,068 B2
57

Protocol Stack

UPnP vendor
UPnP Forum
UPnP Device Architecture
SSDP/GENA/SOAP
HTTPMU
UDP
IP

At the highest layer, messages logically contain only
UPnPvendor-specific information about their devices. Mov-
ing down the stack, vendor content is supplemented by
information defined by UPnP forum working committees,
which is written in the template language.

Messagesare formatted using the Simple Service Discov-
ery Protocol (SSDP), General Event Notification Architec-
ture (GENA), and Simple Object Access Protocol (SOAP).
The above messages are delivered via HTTP, either a
multicast or unicast variety running over UDP,orthe stan-
dard HTTP running over TCP. Ultimately, all messages
above are delivered over IP.

To briefly recap the UPnP networking process, given an IP
address, the first step 1s discovery. When a device is added
to the network, the UPnP discovery protocol allows that
device to advertise its services to control points on the
network. Similarly, when a control point is added to the
network, the UPnP discovery protocol allows that control
point to search for devices of interest on the network. The
fundamental exchange in both cases is a discovery message
containing a few, essential specifics about the device or one
ofits services, e.g., its type, identifier, and a pointer to more
detailed information. The UPnP discovery protocolis based
on the Simple Service Discovery Protocol (SSDP).

The second step in UPnP networkingis description. After
a control point has discovered a device, the control pointstill
knowsverylittle about the device. For the control point to
learn more aboutthe device andits capabilities, or to interact
with the device, the control point retrieves the device’s
description from the URL provided by the device in the
discovery message. Devices may contain other, logical
devices, as well as functional units, or services. The UPnP
description for a device is expressed in XML and includes
vendor-specific manufacturer information like the model
nameand number,serial number, manufacturer name, URLs
to vendor-specific Web sites, etc. The description also
includesa list of any embedded devicesor services, as well
as URLs for control, eventing, and presentation. How
devices are described using the template language is
explained below in more detail.

The third step in UPnP networking is control. After a
control point has retrieved a description of the device, the
control point has the bare essentials for device control. To
learn more about the service, a control point retrieves a
detailed UPnP description for each service. The description
for a service is also expressed in XML and includesa list of
the commands, or actions, the service responds to, and
parameters, or arguments, for each action. The description
for a service also includesa list of variables, which model
the state of the service at run time and are described in terms

of their data type, range, and event characteristics. To control
a device, a control point sends an action request to a device’s
service by sending a suitable control message to the URL for
control URL for the service (provided in the device
description). Control messages are also expressed in XML
using the Simple Object Access Protocol (SOAP). In

10

15

20

25

30

35

40

45

50

55

60

65

58

response to the control message, the service provides a
simple acknowledgement; unlike function calls, no service-
specific value is returned. The effects of the action, if any,
are modeled by changes in the variables that describe the
run-time state of the service.

The fourth step in UPnP networking is eventing. A UPnP
description for a service includesa list of actions the service
respondsto anda list of variables that model thestate of the
service at run time. The server publishes updates when these
variables change, and a control point may subscribe to
receive this information. The server publishes updates by
sending event messages, which contain the namesof one of
morestate variables and the current value of those variables.

These messages are also expressed in XML and formatted
using the General Event Notification Architecture (GENA).
A special initial event message is sent when a control point
first subscribes; this event message contains the names and
values for all evented variables and allows the subscriber to

initialize its model of the state of the service. To support
scenarios with multiple control points, eventing is designed
to keep all control points equally informed aboutthe effects
of any action. Therefore, all subscribers are sent all event
messages, subscribers receive event messages for all
evented variables (not just some), and event messages are
sent no matter why the state variable changed (either in
response to a requested action or because the state the
service is modeling changed).

The fifth step in UPnP networking is presentation. If a
device has a URLfor presentation, then the control point can
retrieve a page from this URL,load the page into a browser,
and depending on the capabilities of the page, allow a user
to control the device and/or view device status. The degree
to which each of these can be accomplished depends on the
specific capabilities of the presentation page and device.

UPnP Template Language for Devices
The template language can be applied to create descrip-

tions for both devices and the services. The template lan-
guage as it pertains to devices is described in this section. A
following section addresses the template language as it
pertains to services.

After a control point has discovered a device, the control
point still knows very little about the device. It only knows
the information that was in the discovery message (e.g., the
device’s (or service’s) UPnP type, the device’s universally-
unique identifier, and a URL to the device’s UPnP
description). For the control point to learn more about the
device and its capabilities, or to interact with the device, the
control point retrieves the device’s description from the
URLprovided by the device in the discovery message.

The UPnP description for a device includes vendor-
specific, manufacturer information like the model name and
number, serial number, manufacturer name, URLs to
vendor-specific Websites, etc. (details below). The descrip-
tion also includesa list of any embedded devicesor services,
as well as URLsfor control, eventing, and presentation. The
device vendor writes the description for the device. The
description is in XML syntax and is usually based on a
standardized device template produced by a UPnP forum
working committee.

A single physical device may include multiple logical
devices. Multiple logical devices can be modeled as a single
root device with embedded devices (and services) or as
multiple root devices (perhaps with no embedded devices).
In either case, there is one UPnP description for each root
device, with embedded device descriptions as needed.

Retrieving the UPnP description for a device is simple:
the control point issues an HTTP GET request on the URL

Netflix, Inc.et al. Exhibit 1003
Page 79 of 91

Netflix, Inc. et al. Exhibit 1003
Page 80 of 91

US 6,910,068 B2
59

in the discovery message, and the device returns the descrip-
tion document. The protocol stack, method, headers, and
body for the response and request are explained in detail
below.

Vendors can differentiate their devices by extending
services, including additional UPnPservices, or embedding
additional UPnP devices. When a control point retrieves a
particular device’s description, these added features are
exposed to the control point for control, eventing, and
presentation.

The following subsection A explains how devices are
described, explaining details of vendor-specific information,
embedded devices, and URLs for control, eventing, and
presentation. Subsections B and C explain UPnP device
templates and the UPnP template language as it pertains to
describing devices. Finally, subsection D explains in detail
how a control point retrieves a description from a device.

A. Device Description

The UPnPdescription for a device contains several pieces
of vendor-specific information, definitions of embedded
devices and services, and URLs for control, eventing, and
presentation of the device. To illustrate these, below is a
listing with placeholders(in italics) for actual elements and
values. Some of these placeholders would be specified by a
UPnPforum working committee (underlined) or by a UPnP
vendor(bold). Elements of the template language are bolded
and underlined. Immediately following the listing is a
detailed explanation of the elements,attributes, and values.

<?xml version=“1.0"?>

<root: xmlns=“urn: schemas-upnp-org:device:1:0">
<specVersion>

<major>1</major>
<minor>0</minor>

</specVersion>
<URLBase>base URLforall relative URLs</URLBase>
<device>

<deviceType>urn:schemas-upnp-org:device:device-
type</deviceType>

<friendlyName>short user-friendly title</friendlyName>
<modelDescription>long user-friendly

title</modelDescription>
«<modelName>model name</modelName>
«<modelNumber>model number</modelNumber>
«<modelURL>URLto model site</modelURL>
<manufacturer>manufacturer name</manufacturer>
<manufacturerURL>URL to manufacturer

site</manufacturerURL>
«<serialNumber>manufacturer’s serial number</serialNumber>
<UDN>uuid:schemas-upnp-org:device:device-type:
UUID</UDN>
<UPC>Universal Product Code</UPC>
<iconList>

<icon>

<mimetype>image/format</mimetype>
<width>horizontal pixels</width>
<height>vertical pixels</height>
<depth>color depth</depth>
<url>URLto icon</url>

</icon>
XMLto declare other icons, if any, go here

</iconList>
<serviceList>

<service>

<serviceType>
urm:schemas-upnp-org:service:service-type:

service-version

</serviceType>
<serviceld>service ID</serviceld>
<SCPDURL>URLto service description</SCPDURL>
<controlURL>URLfor control</controlURL>
<eventSubURL>URL,for eventing</eventsubURL>

10

15

20

25

30

35

40

45

50

55

60

65

60

-continued

</service>
Declarations for other serivces defined by a UPnP Forum

working committee (if any) go nere
Declarations for other services added by UPnP vendor(if

any) go here
</serviceList>
<deviceList>

Descriptions of embedded devices defined by a UPnP
Forum working committee (if any) go here

Description of embedded devices added by UPnP vendor(if
any) go here

</deviceList>
<presentationURL>URLfor presentation</presentationURL>

</device>
</root>

Listed below are details for each of the elements,
attributes, and values appearing in the listing above. All
elements and attributes are case sensitive; HTTP specifies
case sensitivity for URLs; other values are not case sensitive
except where noted. The order of elements is insignificant.
Except where noted: required elements occur exactly once
(no duplicates), and recommendedor optional elements may
occur at most once.
xml

Required for all XML documents. Case sensitive.
Root

Required. Must have urn:schemas-upnp-org:device:1:0 as
the value for the xmlnsattribute; this references the UPnP
Template Language (described below). Case sensitive. Con-
tains all other elements describing the root device, 1e.,
contains the following sub elements:

SpecVersion

Required. Contains the following sub elements:

major

Required. Major version of the UPnP Device Architec-
ture. Must be 1.

minor

Required. Minor version of the UPnP Device Architec-
ture. Must be 0.

URLBase

Optional. Defines the base URL. Used to construct fully-
qualified URLs. All relative URLs that appear else-
wherein the description are appendedto this base URL.
If URLBase is empty or not given, the base URLis the
value of the LOCATIONheaderin the discovery mes-
sage. Specified by UPnP vendor. Single URL.

device

Required. Contains the following sub elements:

deviceType
Required. UPnP device type.

For standard devices defined by a UPnP forum
working committee, must begin with
urn:schemas-upnp-org:device: followed by a
device type suffix (as shownin the listing above).

For non-standard devices specified by UPnP
vendors, must begin with urn:, followed by a
domain name owned by the vendor, followed by
device:, followed by a device type suffix, i.e., urn:
domain-name:device: device-type.

Single URI.

FriendlyName
Required. Short description for end user. Should be

localized (cf. ACCEPT-LANGUAGE header).
String. Should be <64 characters.

Netflix, Inc.et al. Exhibit 1003
Page 80 of 91

Netflix, Inc. et al. Exhibit 1003
Page 81 of 91

US 6,910,068 B2
61

manufacturer

Required. Manufacturer’s name. Specified by UPnP
vendor. String. Should be <64 characters.

manufacturerURL

Optional. Web site for Manufacturer. Mayberelative to
base URL.Specified by UPnP vendor. Single URL.

ModelDescription
Recommended. Long description for end user. Should

be localized (cf. ACCEPT-LANGUAGEheader).
Specified by UPnP vendor.

String. Should be <128 characters.
ModelName

Required. Model name. Specified by UPnP vendor.
String. Should be <32 characters.

ModelNumber

Recommended. Model number. Specified by UPnP
vendor. String. Should be <32 characters.

ModelURL

Optional. Web site for model. May berelative to base
URL. Specified by UPnP vendor. Single URL.

PresentationURL

Recommended. URLto presentation hosted by device
(cf. section on Presentation). Maybe relative to base
URL. Specified by UPnP vendor. Single URL.

SerialNumber

Recommended.Serial number. Specified by UPnP ven-
dor. String. Should be <64 characters.

UDN

Required. Universal Device Name. Universally-unique
identifier for the device, whether root or embedded.
For standard devices defined by a UPnP forum

working committee, must begin with
uuid:schemas-upnp-org:device: followed by the
device type, colon; UPnP vendorspecifies UUID
suffix (as shownin the listing above).

For non-standard devices specified by UPnP
vendors, must begin with uuid:, followed by a
domain name owned by the vendor, followed by
:device:, followed by the device type, colon, fol-
lowed by a UUID suffix, 1e., uuid:domain-
name:device:device-type:UUID.

Single URI.
UPC

Optional. Universal Product Code. 12-digit, all-
numeric code that identifies the consumer package.
Managed by the Uniform Code Council. Single
UPC.

IconList

Required if and only if device has one or more icons.
Contains the following sub elements:

Icon

Recommended.Icon to depict device in a control point
UI. Recommend one icon in each of the following
sizes (widthxheightxdepth): 16x16x1, 16x16x8,
32x32x1, 32x32x8, 48x48x1, 48x48x8. Contains
the following sub elements:

Mimetype
Required. Icon’s MIMEtype (cf. RFC 2387). Single

MIMEimagetype.
Width

Required. Horizontal dimension of icon in pixels.
Integer.

Height
Required. Vertical dimension oficon in pixels. Inte-

ger.

10

15

20

25

30

35

40

45

50

55

60

65

62

Depth
Required. Numberof color bits per pixel. Integer.

Url

Required. Pointer to icon image. (XML does not
support embedding of binary data. See note
below.) Retrieved via HTTP. Mayberelative to
base URL. Specified by UPnP vendor. Single
URL.

ServiceList

Required. Contains the following sub elements:
Service

Required. Repeated once for each service defined by
a UPnP forum working committee. If UPnP ven-
dor differentiates device by adding additional,
standard UPnPservices, repeated once for addi-
tional service. Contains the following sub ele-
ments:

ControlURL

Required. URL for control (cf. section on
Control). Mayberelative to base URL.Speci-
fied by UPnP vendor. Single URL.

EventSubURL

Required. URL for eventing (cf. section on
Eventing). May be relative to base URL.
Specified by UPnP vendor. Single URL.

SCPDURL

Required. URLfor service description (nee Ser-
vice Control Protocol Definition URL). (cf.
section on Control.) May berelative to base
URL.Specified by UPnP vendor. Single URL.

Serviceld

Required. Service identifier. Must be unique
within this device description. <format TBD>.
Defined by a UPnP Forum working committee.
Single URI.

ServiceType
Required. UPnPservice type.
For standard service types defined by a UPnP

Forum working committee, must begin with
urn:schemas-upnp-org:service: followed by a
service type suffix (as shown in the listing
above).

For non-standard service types specified by UPnP
vendors, must begin with um:, followed by a
domain name owned by the vendor, followed
by service:, followed by a service type suffix,
i.e., urn:domain-name:service:service-
type:service-version.

Single URI.
DeviceList

Required if and only if root device has embedded
devices.

Contains the following sub elements.
Device

Required. Repeat once for each embedded device
defined by a UPnP Forum working committee. If
UPnP vendordifferentiates device by embedding
additional UPnP devices, repeat once for each
embedded device. Contains sub elements as
defined above for root sub element device.

For future extensibility, when processing XMLlike the
listing above, devices and control points may ignore any
unknownelements and any subelements or content as speci-
fied by the Flexible XML Processing Profile (FXPP).

XML does not support directly embedding binary data,
e.g., icons in UPnP descriptions. Binary data may be con-
verted into text (and thereby embedded into XML)using an

Netflix, Inc. et al. Exhibit 1003
Page 81 of 91

Netflix, Inc. et al. Exhibit 1003
Page 82 of 91

US 6,910,068 B2
63

XMLdata type of either bin.base64 (a MINE-style base 64
encoding for binary data) or bin.hex (hexadecimal digits
represent octets). Alternatively, the data can be passed
indirectly, as it were, by embedding a URL in the XML and
transferring the data in response to a separate HTTPrequest;
the icon(s) in UPnP descriptions are transferred in this latter
manner.

B. UPnP Device Template
The listing of the preceding subsection A illustrates the

relationship between a UPnP device description and a UPnP
device template. As explained above, the description for a
device is written by the vendor, in XML, according to a
device template produced by a UPnP forum working com-
mittee as a way to standardize devices.

By appropriate specification of placeholders, the listing
above can be either a UPnP device template or a UPnP
device description. Recall that some placeholders
(underlined) would be defined by a UPnP forum working
committee, i.e., the UPnP device type identifier) required
UPnPservices, and required UPnP embedded devices (if
any). If these were defined, the listing would be a UPnP
device template, codifying the standard for this type of
device. UPnP device templates are one of the key deliver-
ables from UPnP forum working committees.

Taking this one step further, the remaining placeholders
(bolded) in the listing in subsection A would be specified by
the vendor(i.e., vendor-specific information). If these place-
holders were specified (as well as the others), the listing
would be a device description, suitable to be delivered to a
control point to enable control, eventing, and presentation.

Put another way, the UPnP device template defines the
overall type of device, and each UPnP device description
instantiates that template with vendor-specific information.
Thefirst is created by a UPnP forum working committee; the
latter, by a UPnP vendor.

C. Device Template Language
The UPnP template language well-formed templates for

devices and services. This subsection C providesis a listing
and explanation of the language as it pertains to devices. A
following section entitled “UPnP template language for
Services” explains the UPnP template language asit pertains
to services.

The UPnP template language is written in XML syntax
and is derived from XML Schema(Part 1: Structures, Part
2: Datatypes). XML Schemaprovides a set of XML con-
structions that express language concepts like required vs.
optional elements, elementnesting, and data types for values
(as well as other properties not of interest here). The UPnP
template language uses these XML Schemaconstructions to
define elements such as specVersion, URLBase, and
deviceType, which are found in the above listing. Because
the UPnP template language is constructed using another,
precise language, it is unambiguous. Additionally, because
the UPnP template language, UPnP device templates, and
UPnP device descriptions are all machine-readable, auto-
mated tools can automatically check to ensure the latter two
have all required elements, are correctly nested, and have
values of the correct data types.

Below is the UPnP template language for devices as
defined by the UPnP device architecture. The elements it
defines are used in UPnP device templates; they are bolded
and underlined both belowasin the listing above. The listing
below is where these elements are defined and the listing
above is where they are used. Immediately following this is
a brief explanation of the XML Schema elements,attributes,
and values used.

10

15

20

25

30

35

40

45

50

55

60

65

64

<?xml version=“1.0” ?>

<Schema name=“urn:schemas-upnp-org:device:1:0”
xmlns=“urn:schemas-microsoft-com:xml-data”

xmlns:dt=“urn:schemas-microsoft-com:datatypes’”’>
<ElementType name=“root” content=“eltOnly”>

<element type=“specVersion”/>
<element type=“URLBase” minOccurs=“0” />
<element type=“device”/>

</ElementType>
<ElementType name=“specVersion”’>

<element type=“major”/>
<element type=“minor” />

</ElementType>
<ElementType name=“major”dt:type=“int” />
<ElementType name=“minor” dt:type=“int” />
<ElementType name=“URLBase”dt:type=“uri” />
<ElementType name=“device” content=“eltOnly”>

<element type=“UDN”/>
<element type=“friendlyName”/>
<element type=“deviceType” />
<element type=“presentationURL” minOccurs=“0”/>
<element type=“manufacturer”/>
<element type=“manufacturertURL” minOccurs=“0”/>
<element type=“modelName”/>
<element type=“modelNumber” minOccurs=“0”/>
<element type=“modelDescription” minOccurs=“0” />
<element type=“modelURL” minOccursr=“0”/>
<element type=“UPC” minOccurs=“0”/>
<element type=“serialNumber” minOccurs=“0”/>
<element type=“iconList” />
<element type=“serviceList” />
<element type=“deviceList’” minOccurs=“0” />

</ElementType>
<ElementType name=“UDN”dt:type=“uri’” />
<ElementType name=“friendlyName”dt:type=“string” />
<ElementType name=“deviceType” dt:type=“uri” />
<ElementType name=“presentationURL”dt:type=“uri” />
<ElementType name=“manufacturer”dt:type=“string” />
<ElementType name=“manufacturerURL”dt:type=“uri” />
<ElementType name=“modelName”dt:type=“string” />
<ElementType name=“modelNumber”dt:type=“string” />
<ElementType name=“modelDescription” dt:type=“string” />
<ElementType name=“modelURL”dt:type=“uri” />
<ElementType name=“UPC”dt:type=“string” />
<ElementType name=“serialNumber”dt:type=“string” />
<ElementType name=“iconList” content=“eltOnly’’>

<element type=“icon” maxOccurs=“*”/>
</ElementType>
<ElementType name=“icon” content=“eltOnly’>

<element type=“mimetype”/>
<element type=“width” />
<element type=“height”/>
<element type=“depth”/>
<element type=“url” />

</ElementType>
<ElementType name=“mimetype” dt:type=“string”/>
<ElementType name=“width” dt:type=int” />
<ElementType name=“height” dt:type=“int” />
<ElementType name=“depth”dt:type=“int” />
<ElementType name=“url”dt:type=“uri” />
<ElementType name=“deviceList” content=“eltOnly’>

<element type=“device” maxOccurs=“*”/>
</ElementType>
<ElementType name=“serviceList“ content=“eltOnly”>

<element type=“service” maxOccurs=“*”/>
</ElementType>
<ElementType name=“service” content=“eltOnly’>

<element type=“serviceType”/>
<element type=“serviceld” />
<element type=“controlURL”/>
<element type=“eventSubURL”/>
<element type=“SCPDURL”/>

</ElementType>
<ElementType name=“serviceType”dt:type=“uri” />
<ElementType name=“serviceld” dt:type=“uri’ />
<ElementType name=“controlURL”dt:type=“uri’”/>

Exhibit 1003
Page 82 of 91

Netflix, Inc.et al.

Netflix, Inc. et al. Exhibit 1003
Page 83 of 91

US 6,910,068 B2
65

-continued

<ElementType name=“eventSubURL”dt:type=“uri’”/>
<ElementType name=“SCPDURL”dt:type=uri’”/>

</Schema>

ElementType
Defines an element in the new, derived language. name

attribute defines element name. dt:type attribute defines the
data type for the value of element in the new, derived
language.
Element

References an element for the purposes of declaring
nesting minOccurs attribute defines minimum number of
times the element must occur; default is minOccurs=1;
optional elements have minOccurs=0. maxOccurs attribute
defines maximum numberof times the element must occur;
default is maxOccurs=1; elements that can appear one or
more times have maxOccurs=*.

D. Retrieving a Device Description
As explained above,after a control point has discovered

a device, it still knowsvery little about the device. To learn
more about the device and its capabilities, the control point
must retrieve the UPnP description for the device using the
URLprovided by the device in the discovery message. This
is an HTTP-based process and uses the following subset of
the overall UPnP protocol stack.

Atthe highest layer, description messages contain vendor-
specific information, e.g., device type, service type, and
required services. Moving downthe stack, vendor contentis
supplemented by information from a UPnP forum working
committee, e.g., model name, model number, and specific
URLs. Messages from the layers above are hosted in UPnP-
specific protocols. In turn, the above messagesare delivered
via HTTP over TCP overIP.

Using this protocolstack, retrieving the UPnP description
for a device is simple: the control point issues an HTTP GET
request to the URLin the discovery message, and the device
returns its description in the body of an HTTPresponse. The
headers and bodyfor the response and request are explained
in detail below.

First, a control point sends a request with method GET in
the following format. Values in italics are placeholders for
actual values.

GETpath to device descripticn HTTP/1.1
HOST:host for device description:port for device description
ACCEPT-LANGUAGE:language preferred by control point

There is no message body for request to retrieve a
description.

Listed below are details for the request line and headers
appearing in the request. All header valuesare case sensitive
except where noted.
Request Line
GET

Method defined by HTTP.
Path to Device Description

Path componentof device description URL (LOCATION
header in discovery message). Single, relative URL.
HTTP/1.1

HTTPversion.
Headers
HOST

Required. Domain nameor IP address and optional port
components of device description URL (LOCATIONheader

10

15

20

25

30

35

40

45

50

55

60

65

66

in discovery message). If the port is empty or not given,port
80 is assumed.
ACCEPT-LANGUAGE

Recommended. Preferred language(s) for device descrip-
tion. If no description is available in this language, device
may return a description in a default language. RFC 1766
language tag(s).

After a control point sends a request, the device sends a
response in the following format, where valuesin italics are
placeholders for actual values.

HTTP/1.1 200 OK
CONTENT-LENGTH:bytes in body
CONTENT-TYPE: text/xml
DATE: when responded
SERVER: OS/version, JPnp / 1.0, product / version

The bodyof this response is a UPnP device description as
explained in detail above.

Listed below are details for the headers appearing in the
response. All header values are case sensitive except where
noted.
Headers
CONTENT-LENGTH

Required. Length of body in bytes. Integer.
CONTENT-TYPE

Required. Must be text/xml.
DATE

Recommended. Whenresponse was generated. RFC 1123
date.
SERVER

Required. Concatenation of OS name,slash, OS version,
UPnP/1.0, product name, slash, and product version. String.
UPnP Template Language for Services

After a control point has (1) discovered a device and (2)
retrieved a description of the device, the control point has
the bare essentials for device control. To learn more about a

particular service supported by the device, a control point
retrieves a detailed UPnP description for each service.

A UPnP description for a service includes a list of the
commands, or actions, the service responds to, and
parameters, or arguments, for each action. A service descrip-
tion also includesa list of variables. These variables model

the state of the service at run time, and are described in terms
of their data type, range, and event characteristics. This
section explains the description of actions, arguments, state
variables, and properties of those variables.

Like the UPnP description for a device, the UPNP
description for a service is written by the vendor. The
description is in XML syntax and is based on a standard
service template. As with the device template, the service
template is produced by a UPnP forum working committee,
and they derive the template from the UPnP template
language, augmenting it with human language where nec-
essary. As explained above, the UPnP template languageis
derived from standard constructions in XML. This section

explains the format for a UPnP service description, UPnP
service templates, typical augmentations in human
language, and the part of the UPnP template language that
covers services.

To control a device, a control point requests a device’s
service to perform an action. To dothis, a control point sends
a suitable control message to the control URL forthe service
(providedin the device description). In response, the service
provides a simple acknowledgement; unlike function calls,
no service-specific value is returned. The effects of the

Netflix, Inc.et al. Exhibit 1003
Page 83 of 91

Netflix, Inc. et al. Exhibit 1003
Page 84 of 91

US 6,910,068 B2

action, if any, are modeled by changes in the variables that
describe the run-time state of the service. When these state -continued

variables change, events are published to all interested " _: : : : working committee (if any) go here
control points. This section explains the protocol stack for, Declarations for other actions added by UPnP vendor(if
and format of, control messages. 5 any) go here

To prevent a race condition between events headed for isonsables
control points and requested actions headed for a service, estateVariable>
control messages may include a key. With each new event <name>variable name</name>
message a service generates, the service increments the key, <dataType>variable data type</dataType>: : 10 <defaultValue>default value</defaultValue>
and includes that key in the event message. Whena control <allowedValueRange>
point sends a control message, it may choose to include a eminimum>minimum value</minimum>
key. If a control message includes a key, the service checks <maximum>maximum value</maximum>
to see if the key is current, i.e., if no events have been sent <step>increment value</step>. . . . : </allowedvalueRange>
since this key wasissued.If the key is current(orif there was is e/stateVariable>
no key in the control message), then the service acknow1- Declarations for other state variables defined by UPnP
edges the action request. If the keyis not current, the service Forum working committee (if any) go here
fails the action request. This section briefly explains the _Declarations for other state variables added by UPnP

vendor (if any) go here
event key.. </serviceStateTable>

To determine the current value of a state variable, a </sepd>. : oe . 20
control point may poll the service. Similar to requesting an

action, a control point sends a suitable query message to the Listed below are details for each of the elements,
control URL for the service. In response, the service pro- attributes, and values appearing in the listing above. All
vides the value of the variable. This section also explains the elements andattributes are case sensitive; values are not
format of these query messages. 95 case sensitive except where noted. Except where noted, the

The remainder of this section first explains how services order of elements is insignificant. Except where noted,
are described in subsection A, explaining details of actions, required elements occur exactly once (no duplicates), and
arguments, state variables, and properties of those variables. recommended or optional elements may occur at most once.
In subsections B and C, UPnP service templates, typical xml . .
ways to augmentservice descriptions with human language, 3 Required for all XML documents. Casesensitive.
and the UPnP template languageas it pertains to services are sepd . ; ; 4.
explained. In subsection D, how a control point retrieves a Required. Must have urn:schemas-upnp-org:service: 1:0
service description is described as the value for the xmlnsattribute; this references the UPnP

. , , Template Language (explained below). Case sensitive. Con-
A. Service Description tains all other elements describing the service, i.c., contains
The UPnP description for a service defines actions and 35 the following sub elements:

their arguments, and state variables and their data type, actionList
range, and event characteristics. Each action may have zero Required if and only if the service has actions. Contains
or more arguments. Each argument should correspond to a the following sub elements:
state variable. This direct-manipulation programming model Action
reinforces simplicity. 40 Required for each action defined by a UPnP Forum

To illustrate these points, below is a listing with place- working committee. If UPnP vendor differentiates
holders (in italics) for actual elements and values. For a Service by, adding additional actions, required for
standard UPnPservice, some of these placeholders would be cach additional action. Contains the following sub
defined by a UPnP forum working committee (underlined) elements:
or specified by a UPnP vendor (bolded). For a vendor-unique 45 Name . . .

. . Required. Name of action. String. Should be <32
service, all of these placeholders would be specified by a characters
UPnPvendor. Elements of the template language defined by _.

: . : ArgumentListthe UPnP device architecture are bolded and underlined for . : .
: : eas Required if and only if parameters are defined for

later reference. Immediately following the listing is a .
detailed explanation of the elements, attributes, and values. 8 action. .

? ? Repeat once for each parameter. Contains the fol-
lowing sub elements:

Argument
<?xml version=“1.072> Required. Contains the following sub elements:
<scpd xmlns=“urn:schemas-upnp-org:service:1:0"> 55 Name

<actionList> Required. Name of formal parameter. Should be<action> :

ename>action name</name> name of a state variable that models an effect
<argumentList> the action causes.

<argument> String. Should be <32 characters.
<name>formal parameter name</name> 60 relatedStateVariable<relatedStateVariable>state variable : :

name</relatedStateVariable> Required. Must be the nameofa state variable.
</argument> ServiceStateTable

Declarations for other arguments defined by URP Forum Required if and only if the service has state variables.
working committee (if any) go here C . he followi b el .<fargumentList> ontainst e following sub elements:

</action> 65 StateVariable
Declarations for other actions defined by URnP Forum Required for each state variable defined by a UPnP

Forum working committee. If UPnP vendor dif-

Netflix, Inc. et al. Exhibit 1003
Page 84 of 91

Netflix, Inc. et al. Exhibit 1003
Page 85 of 91

US 6,910,068 B2
69

ferentiates service by adding additional state
variables, required for each additional variable.
sendEvents attribute defines whether event mes-

sages will be generated when the value of this
state variable changes; non-evented state variables
have sendEvents=no; default is sendEvents=yes.
Contains the following sub elements:name

Required. Nameof state variable. Defined by a
UPnP Forum working committee for standard
state variables; specified by UPnP vendorfor
extensions. String. Should be <32 characters.

DataType
Required. Defined by a UPnP Forum working

committee for standard state variables; speci-
fied by UPnP vendor for extensions. Must be
one of the following values:

i4

Fixed point, integer number. May havea leading
sign. May have leading zeros. (No currency
symbol.) (No grouping of digits to the left of
the decimal, e.g., no commas.) Must be
between-2147483648 and 2147483647, ie., 4
byte, long integer. (Same as i4 data type
defined by XML Schema, Part 2: Datatypes.)

R8

Floating point number. Mantissa (left of the
decimal) and/or exponent may have a leading
sign. Mantissa and/or exponent mayhavelead-
ing zeros. Decimal character in mantissa is a
period, i.e., whole digits in mantissa separated
from fractional digits by period. Mantissa
separated from exponent by E. (No currency
symbol.) (No grouping of digits in the
mantissa, e.g., no commas.) Must be between
-1.79769313486232E308 and

-4.94065645841247E-324 for negative
values, and between 4.94065645841247E-324
and 1.79769313486232E308 for positive
values, ie., IEEE 64-bit (8-byte) double.
(Same as 18 data type defined by XML
Schema, Part 2: Datatypes).

String
Unicodestring. (Sameas string data type defined

by XML.)
DateTime

Date and Time in ISO 8601 format (Same as
datetime data type defined by XML Schema,
Part 2: Datatypes.)

Boolean

0, false, or no for false; 1, true, or yes for true.
(Same as boolean data type defined by XML
Schema, Part 2: Datatypes.)

Bin.hex or bin.bin64

Hexadecimal representation of binary data.
(Same as bin.base64 and bin-hex data types
defined by XML Schema, Part 2: Datatypes.)

DefaultValue

Recommended. Expected, initial value. Defined
by a UPnP Forum working committee or del-
egated to UPnP vendor. Must match data type.
Mustsatisfy allowedValueList or allowedValu-
eRange constraints.

AllowedValueList

Recommended. Enumerates legal string values.
Prohibited for data types other than string. At
most one of allowedValueRange and allowed-

10

15

20

25

30

35

40

45

50

55

60

65

70

ValueList may be specified. Sub elements are
ordered (e.g., see NEXTSTRING__
BOUNDED). Contains the following sub ele-
ments:

AllowedValue

Required. A legal value for a string variable.
Defined by a UPnP Forum working committee
for standard state variables; specified by UPnP
vendor for extensions. String. Should be <32
characters.

AllowedValueRange
Recommended.Defines boundsfor legal numeric

values; defines resolution for numeric values.
Prohibited for data types other than i4 and r8.
At most one of allowedValueRange and
allowedValueList may be specified. At least
one of the following sub elements must be
included. Contains the following sub elements:

Minimum

Required. Inclusive lower bound. Defined by a
UPnP Forum working committee or delegated
to UPnP vendor. Single 14 or r8.

Maximum

Required. Inclusive upper bound. Defined by a
UPnP Forum working committee or delegated
to UPnP vendor. Single 14 or r8.

Step
Recommended. Size of an increment operation,

Le., value of s in the operation v=v+s. Defined
by a UPnP Forum working committee or del-
egated to UPnP vendor. Single i4 or r8.

For future extensibility, when processing XMLlike the
listing above, devices and control points ignore any
unknown elements and any sub elements or content as
specified by the Flexible XML Processing Profile (FXPP).

Note that it is logically possible for a service to have no
actions but have state variables and eventing; such a service
would be an autonomous information source. Conversely, it
is also logically possible for a service to have no state
variables (and no eventing) but have actions; such a service
might be stateless and cause short-term environmental
effects.

Services standardized by UPnP forum working commit-
tees are versioned. Every later version of a service is a
superset of the previous version, 1.e., it includes all actions
and state variables exactly as they are defined by earlier
versions of the service. The UPnP service type remains the
same across all versions of a service whereas the service

version must be larger for later versions.
B. UPnP Service Template
The listing abovealso illustrates the relationship between

a UPoPservice description and a UPnPservice template. As
explained above, the UPnP description for a service is
written by a UPnP vendor, in XML, following a UPnP
service template. A UPnP service template is produced by a
UPnP forum working committee as a way to standardize
devices.

By appropriate specification of placeholders, the listing
above can be either a UPnP service template or a UPnP
service description. Recall that some placeholders would be
defined by a UPnP forum working committee (underlined),
1.e., actions and their parameters, and states and their data
type, range, and event characteristics. If these were
specified, the listing above would be a UPnP service
template, codifying the standard for this type of service.
Along with UPnP device templates, UPnP service templates
are one of the key deliverables from UPnP forum working
committees.

Netflix, Inc.et al. Exhibit 1003
Page 85 of 91

Netflix, Inc. et al. Exhibit 1003
Page 86 of 91

US 6,910,068 B2
71

Taking this one step further, the remaining placeholders in
the listing above would be specified by a UPnP vendor
(bolded), ie., additional, vendor-specified actions and state
variables. If these placeholders were specified (as well as the
others), the listing would be a UPnP service description,
suitable for effective control of the service within a device.

Put another way, the UPnP service template defines the
overall type of service, and each UPnPservice description
instantiates that template with vendor-specific additions.
Thefirst is created by a UPnP forum working committee; the
latter, by a UPnP vendor.

C. Service Template Language
The paragraphs above explain UPnPservice descriptions

and illustrate how one would be instantiated from a UPnP

<?xml version=“
<Schema name=

72

Service Template. Like UPnP device templates, UPnP ser-
vice templates are produced by UPnP forum working
committees, and these templates are derived from the UPnP
template language. This template language defines well-
formed templates for devices and services. Below isalisting
of this language as it pertains to services. The elements it
defines are used in UPnPservice templates. The elements are
bolded and underlined here and in the listing above. Below
is where these elements are defined, whereas above is where
they are used.

Immediately following this is a brief explanation of the
XML Schema elements, attributes, and values used. The
reference to XML Schemaat the end of the section has
further details.

10

02>

“urn:schemas-upnp-org:service:1:0”
xmlns=“urn:schemas-microsoft-com:xml-data”

xmins:dt=“urn:schemas-microsoft-com:datatypes’’>
<ElementType name=“name” content=“textOnly” dt:type=“string”

[>
<ElementType name=“defaultValue” content=“textOnly”

dt:type=“string” />
<ElementType name=“minimum”content=“textOnly”

dt:type=“number”/>
<ElementType name=“maximum”content=“textOnly”

dt:type=“number”/>
<ElementType name=“step” content=“textOnly”dt:type=“number”

[>

<ElementType name=“allowedValueRange” content=“eltOnly”

model=“closed

</Element

29, >

<element type=“minimum”/>
<element type=“maximum’”/>
<element type=“step” minOccurs=“0” >

‘Type>
<ElementType name=“allowedValue” content=“textOnly”/>
<ElementType name=“allowedValueList” content=“eltOnly”

model=“closed

[>
</Element

29, >
63k?

<element type=“allowedvalue” minOccurs=“1” maxOccurs=

‘Type>
<ElementType name=“dataType” content=“textOnly”

dt:type=“string” />
<ElementType name=“stateVariable” content=“eltOnly”

model=“closed

|>

29, >

<element type=“name”/>
<element type=“dataType”/>
<element type=“defaultValue” minOccurs=“0” maxOccurs=“1”

<group minOccurs=“0” maxOccurs=“1” order=“one’’>

[>

<element type=“allowedValueList” />
<element type=“allowedValueRange” />

</group>
<AttributeType name=“sendEvents”/>
<attribute default=“yes” type=“sendEvents” required=“no”

</ElementType>
<ElementType name=“serviceStateTable” content=“eltOnly”

model=“closed”>

[>

cep?
<element type=“stateVariaible” minOccurs=“1” maxOccurs=

</ElementType>
<ElementType name=“relatedStateVariable” content=“textOnly”

dt:type=“string” />
<ElementType name=“argument” content=“eltonly”

model=“closed”>

<element type=“name”/>
<element type=“relatedStateVariable” />

</ElementType>
<ElementType name=“argumentList” content=“eltOnly”

Exhibit 1003
Page 86 of 91

Netflix, Inc.et al.

Netflix, Inc. et al. Exhibit 1003
Page 87 of 91

US 6,910,068 B2
73

-continued

model=“closed”>

<element type=“argument” minOccurs=“1” maxOccurs=“*” />
</ElementType>
<ElementType name=“action” content=“eltOnly” model=“closed’’>

<element type=“name”/>
<element type=“argumentList” minOcours=“0” maxOccurs=

[>
</ElementType>
<ElementType name=“actionList” content=“eltOnly”

model=“closed’’>

<element type=“action” minOccurs=“0” maxOccurs=“*” />
</Element Type>
<ElementType name=“scpd” content=“eltOnly” model=“closed”>

<element type=“serviceStateTable” />
<element type=“actionList’/>

</ElementType>
</Schema>

Attribute

References an attribute in the new, derived language for
the purposes of declaring in which elements it may appear.
Like any XML element, the AttributeType element may
haveattributes of its own. Using the required attribute within
this element indicates whetherthe attribute must be present;
optional attributes have required =no.
AttributeType

Defines an attribute in the new, derived language. Like
any XML element, the AttributeType element may have
attributes of its own. Using the nameattribute within this
element defines the nameofthe attribute as it will be used

in the derived language.
Element

References an element for the purposes of declaring
nesting. minOccurs attribute defines minimum numberof
times the element must occur; default is minOccurs=1;
optional elements have minOccurs=0. maxOccurs attribute
defines maximum numberof times the element must occur;
default is maxOccurs=1; elements that can appear one or
more times have maxOccurs=*.

ElementType
Defines an element in the new, derived language. name

attribute defines element name. dt:type attribute defines the
data type for the value of element in the new, derived
language. model attribute indicates whether elements in the
new, derived language can contain elements not explicitly
specified here; when only previously specific elements may
be used, model=closed. content attribute indicates what
content may contain; elements that contain only other ele-
ments have content=eltOnly; elements that contain only
strings have content=textOnly.

Group
Organizes content into a group to specify a sequence

minOccursattribute defines minimum numberof times

the group must occur maxOccurs attribute defines
maximum numberof times the group must occur order
attribute constrains the sequence of elements; when at
most one element is allowed, order=one.

D. Augmenting the UPnP Template Language
As is the case with describing devices, some properties of

services are difficult to capture in the XML Schema formal-
ism. For services in particular, it is useful to describe the
effect actions have on state variables. This procedural infor-
mation is awkward to describe in a declarative language like
XML, so below is a recommended vocabulary for UPnP
forum working committees to use when defining service
actions or for UPnP vendors to use when they wish to
documentthe effects of extra actions.

cep?

20

25

30

35

40

45

50

55

60

65

74

ASSIGN(vy,a)
Variable v becomesthe value of argumenta, i.e., v=a. V

and a must be the same data type. <why both this and SET?>
DECREMENT(v)

Equivalent to INCREMENT(v) with allowedValueRange
step treated as—step.
DECREMENT_BOUNDED(v)

Equivalent to INCREMENTBOUNDED (v) with
allowedValueRangestep treated as step.
DECREMENT_WRAP (v)

Equivalent to INCREMENT_WRAP (v) with allowed-
ValueRange step treated as step.
INCREMENT(v)

Variable v becomesthe value of v plus allowedValueR-
ange step, i.e., v=v+step. Equivalent to DECREMENT(v)
with allowedValueRange step treated as step. v must be
either 14 or r8 and must have an allowedValueRange defi-
nition.

INCREMENT_BOUNDED(v)
Variable v becomesthe value of v plus allowedValueR-

ange step, 1e., v=v+tstep.
If step is greater than 0 and if v plus step would be greater

than allowedValueRange maximum, then v becomes maxi-mum.

If step is less than 0 and if v plus step would be less than
allowedValueRange minimum, then v becomes minimum.

Equivalent to DECREMENT_BOUNDED (v) with
allowedValueRangestep treated as step. v must be either 14
or r8 and must have an allowedValueRange definition.
INCREMENT_WRAP (vy,c)

Variable v becomesthe value of v plus allowedValueR-
ange step, 1e., v=v+tstep.

If step is greater than 0, andifv plus step would be greater
than allowedValueRange maximum, then v becomes mini-
mum plus step minus1, i.e., veminimum+step —1;if step is
1, this simplifies to v=minimum.

If step is less than 0 and if v plus step would be less than
allowedValueRange minimum, then v becomes maximum
plusstep plus 1, i.e., vemaximum+step+1; if step is -1, this
simplifies to v=maximum.

Equivalent to DECREMENT_WRAP (v) with allowed-
ValueRangestep treated as step. v mustbe either 14 or r8 and
must have an allowedValueRange definition.
NEXT_STRING_BOUNDED(v)

Variable v becomes the next allowedValue after the cur-

rent value of v. If v was already the last allowedValue, then
v does not change. v must be a string data type and must
have an allowedValueList definition.

Netflix, Inc. et al. Exhibit 1003
Page 87 of 91

Netflix, Inc. et al. Exhibit 1003
Page 88 of 91

US 6,910,068 B2
75

NEXT_STRING_WRAP (v)
Variable v becomes the next allowedValue after the cur-

rent value of v. If v was already the last allowedValue, then
v becomesthe first allowedValue. v must be a string data
type and must have an allowedValueList definition.
PREV_STRING_BOUNDED(v)

Variable v becomesthe previous allowedValue before the
current value of v. If v was already the first allowedValue,
then v does not change. v mustbe a string data type and must
have an allowedValueList definition.

PREV_STRING_WRAP (v)
Variable v becomesthe previous allowedValue before the

current value of v. If v was already the first allowedValue,
then v becomesthelast allowedValue. v must bea string data
type and must have an allowedValueList definition.
SET (y,c)

Variable v becomesthe value of constantc, i.e., v=c. v and
c must be the same data type.
TOGGLE(v)

Variable v becomes the boolean negation of the value of
v, 1.e., V=NOT v. v must be boolean.

E. Retrieving a Service Description
As explained above,after a control point has discovered

a device and hasretrieved a device description, it may need
to learn more about the services provided by the device.
Nearly identical to the process for retrieving a device
description, a control point mayretrieve a service descrip-
tion using a description URL in the description (vs.
discovery) message.
Conclusion

Although the invention has been described in language
specific to structural features and/or methodologicalacts, it
is to be understood that the invention defined in the

appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claimed invention.

Weclaim:

1. A method comprising:
creating a device template using a template language

written in XML syntax;
defining, from the device template, a device description

for a self-describing network device; and
automaticallly evaluating, via a computer software tool,

whether the device description is well formed.
2. A method as recited in claim 1, wherein the template

language is derived from XML schema.
3. A method as recited in claim 1, wherein the self-

describing network device comprises a universal plug and
play device.

4. A method as recited in claim 1, further comprising
storing the device description on a computer-readable
medium.

5. A method as recited in claim 1, further comprising:
creating a service template from a template language

written in XML syntax; and
defining, from the service template, a service description

for a service supported by the self-describing network
device.

6. A method comprising:
creating a service template from a template language

written in XML syntax;
defining, from the service template, a service description

for a service supported by a self-describing network
device; and

automaticallly evaluating, via a computer software tool,
whether the device description is well formed.

10

15

20

25

30

35

40

45

50

55

60

65

76

7. Amethodas recited in claim 6, wherein the template
language is derived from XML schema.

8. A method as recited in claim 6, wherein the self-
describing network device comprises a universal plug and
play device.

9. A method as recited in claim 6, further comprising
storing the service description on a computer-readable
medium.

10. A method of describing a a self-describing network
device, comprising:

storing a description of the self-describing network
device, the description comprising a set of elements to
describe the self-describing network device and an
XML-based syntax that structures the set of elements
such that, when the data structure is read by a comput-
ing device, the computing device can learn about the
self-describing network device;

makingthe description available to the computing device;
and

wherein the set of elements includesat least one of:

a first element to identify one or more versions of a
template lenguage;

a second elementto identify the self-describing network
device; and

a third element to specify a base universal resource
locator (URL).

11. A method as recited in claim 10, wherein the storing
comprises storing the description at the self-describing net-
work device.

12. A method as recited in claim 10, wherein the self-
describing network device comprises a universal plug and
play device.

13. A method as recited in claim 10, wherein the second
element includes at least one of:

a first subelement to specify a type of self-describing
network device;

a second subelementto identify a user;
a third subelementto identify a manufacturer;
a fourth subelementto specify a URL of a website for the

manufacturer;

a fifth subelement to provide a word description of the
self-describing network device for the user;

a sixth subelement to specify a model name of the
self-describing network device;

a seventh subelement to specify a model number ofthe
self-describing network device;

an eighth subelementto specify a URL of a websitefor the
self-describing network device;

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelementto specify a universal product code
of the self-describing network device;

a thirteenth subelement to specify any icons associated
with the self-describing network device;

a fourteenth subelement to identify any of one or more
services supported by the self-describing network
device; and

a fifteenth subelement to identify any of one or more
devices embedded within the self-describing network
device.

Netflix, Inc.et al. Exhibit 1003
Page 88 of 91

Netflix, Inc. et al. Exhibit 1003
Page 89 of 91

US 6,910,068 B2
77 78

14. A method as recited in claim 10, further comprising an XML-based syntax that organizes andstructuresthe set
storing a set of elements to describe at least one service of elements such that, whenthe data structure is read by
supported by the self-describing network device. a computing device, the camputing device can learn

15. A method as recited in claim 10, wherein the sotoring about the self-describing network device;
comprises storing the description at the self-describing net- 5 wherein the set of elements includes at least one of:
work device, the method further comprising storing a set
elements to describe at least one sevice supported by the
self-describing network device at a location remite from the
self-describing network device.

16. A method of describing a self-describing network 10 : . .
device, comprising: a third element to specify abase universal resource locator

(URL).
21. A data structure stored as recited in claim 20, wherein

the second elementincludesat least one of:

a first element to identify one or more versions of the
template language;

a second elementto identify the self-describing network
device; and

storing a description of the self-describing network
device, the description comprising a set of elements to
describe the self-describing network device and an
XML-based syntax that structures the set of elements 15 a first subelement to specify a type of self-describing
such that, when the data structure is read by a comput- network device,
ing device, the computing device can learn about the a second subelementto identify a user;

self-describing network device; a third subelementto identify a manufacturer;
making the description available to the computing device; 59 2 fourth subelementto specify a URL of a website for the

and manufacturer;
storing a set of elements to describe at least one service a fifth subelement to provide a word description of the

supported by the self-describing network device, self-describing network device for the user;
wherein the set of elements to describe the service
: a sixth subelement to specify a model name of theincludesat least one of:

25 self-describing network device;
a first element to identify any of one or more actions a seventh subelementto specify a model numberof the

performed by the service, and self-describing network device;
a second element to identify any of one or morestate an eighth subelementto specify a URL of a websitefor the

variables in the service. self-describing network device;
17. A method asrecited in claim 16, wherein the first 30

element includes at least one subelement for each corre-

spondingaction, the subelement containing a namestring to
hold a name of the action and an argumentlist to hold
parameters of the action.

18. A method as recited in claim 16, wherein the second 35
element includesat least one of:

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelementto specify a universal product code
of the self-describing network device;

40 a thirteenth subelement to specify any icons associated
with the self-describing network device;

a first subelement to identify a name ofa state variable;

a second subelement to specify a data type of the state
variable;

a third subelementto specify a default value of the state

variable; . a fourteenth subelement to identify any of one or more
a fourth subelement to enumerate legal string values; and services supported by the self-describing network
a fifth subelement to define bounds of legal numeric device; and

values. 45 a fifteenth subelement to identify any of one or more
19. A data structure stored on a computer-readable devices embedded within the self-describing network

medium, the data structure being constructed according to device.
an XML-based template language, the data structured com- 22. A data structure stored on a computer-readable
prising. medium, the data structure being constructed according to

a set of elements to describe a self-describing network 59 an XML-based template language, the data structure com-
device; and prising:

an XML-based syntax that organizes and structuresthe set a set of elements to describe a service supported by a
of elements such that, when the data structure is read by self-describing network device; and
a computing device, the computing device can learn an XML-based syntaxthat organizes andstructures the set
about the self-describing network device, %8 of elements such that, when the datastructure is read by

wherein the set of elements requires: a computing device, the computing device can learn
a first element to identify one or more versions of the about the service supported by the self-describing net-

template language; and work device;
a second element to identify the self-describing network ¢|wherein the set of elements includes at least oneof:

device. a first clement to identify any of one or more actions
20. A data structure stored on a computer-readable performed by the service; and

medium, the data structure being constructed according to a second element to identify any of one or more state
an XML-based template language, the data structure com- variables in the service.
prising: 65 23.Adata structure stored as recited in claim 22, wherein

a set of elements to describe a self-describing network the first element includes at least one subelement for each
device; and corresponding action, the subelementcontaining at least one

Netflix, Inc. et al. Exhibit 1003
Page 89 of 91

Netflix, Inc. et al. Exhibit 1003
Page 90 of 91

US 6,910,068 B2
79

of a namestring to hold a name of the action, an argument
list to hold parameters of the action, and a data type of the
parameters.

24. A data structure stored as recited in claim 22, wherein
the second element includesat least oneof:

a first subelement to identify a name ofa state variable;

a second subelement to specify a data type of the state
variable;

a third subelementto specify a default value of the state
variable;

a fourth subelenient to enumerate legal string values; and

a fifth subelement to define bounds of legal numeric
values.

25. One or more computer-readable media, comprising
stored thereon:

a first set of elements to describe a self-describing net-
workdevice, the first set of elements being written in
an XMLsyntax;

a second set of elements to describe a service supported
by the self-describing network device, the secondset of
elements being written in an XML syntax; and

a code segment that, when executed, returns the first set
of elements andat least a reference to the second set of

elements to an entity requesting a description of the
self-describing network device.

26. One or more computer-readable media as recited in
claim 25, wherein the first set of elements are stored on a
computer-readable media located at the self-describing net-
work device and the second set of elements are stored on a

separate computer-readable medium located remotely from
the self-describing network device, but accessible via a
network.

27. One or more computer-readable media as recited in
claim 25, wherein the first set of elements includesat least
one of:

a first element to identify one or more versions of the
template language;

a second elementto identify the self-describing network
device; and

a third element to specify a base universal resource
locator (URL).

28. One or more computer-readable media as recited in
claim 25, wherein the second element of the first set of
elements includes at least one of:

a first subelement to specify a type of self-describing
network device;

a second subelement to identify a user;

a third subelement to identify a manufanturer;

a fourth subelement to specify a URLof a website for the
manufacturer;

a fifth subelement to provide a word description of the
self-describing network device for the user;

a sixth subelement to specify a model name of the
self-describing network device;

a seventh subelement to specify a model numberof the
self-describing network device;

an eighth subelementto specify a URL of a website for the
self-describing network device;

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

10

15

20

25

30

35

40

45

50

55

60

65

80

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelementto specify a universal product code
of the self-describing network device;

a thirteenth subelement to specify any icons associated
with the self-describing network device;

a fourteenth subelement to identify any of one or more
services supported by the self-describing network
device; and

a fifteenth subelement to identify any of one or mare
devices embedded within the self-describing network
device.

29. One or more computer-readable media as recited in
claim 25, wherein the second set of elements includes at
least one of:

a first element to identify any of one or more actions
performed by the service; and

a second element to identify any of one or more state
variables in the service.

30. One or more computer-readable media as recited in
claim 29, wherein the first element of the second set of
elements includes at least one subelement for each corre-

sponding action, the subelement containing a namestring to
hold a name of the action and an argumentlist to hold
parameters of the action.

31. One or more computer-readable media as recited in
claim 29, wherein the second element of the second set of
elements includesat least one of;

a first subelementto identify a name of a state variable;

a second subelement to specify a data type of the state
variable;

a third subelementto specify a default value of the state
variable;

a fourth subelement to enumerate legal string values; and

a fifth subelement to define bounds of legal numeric
values.

32. One or more computer-readable media as recited in
claim 25, wherein the code segmentis configured to respond
to an HTTP GETrequest by returning the description in a
body of an HTTP response.

33. A self-describing network device comprising:
a memory;

a description of the self-describing network device stored
in the memory, the description comprising a set of
elements written in an XML syntax to describe the
self-describing network device; and

a processor coupled to the memory to submit the descrip-
tion to a remote entity on a network;

wherein the set of elements comprises at least one of:

a first element to identify one or more versions of a
template language;

a second elementto identify the self-describing network
device; and

a third element to specify a base universal resource
locator (URL).

34. A self-describing network device as recited in claim
33, wherein the description data comprises a first set of
elements a first set of elements to describe the self-

describing network device and a second set of elements to
describe a service supported by the self-describing network
device.

35. A self-describing network device as recited in claim
33, wherein the second element includes at best one of:

Netflix, Inc.et al. Exhibit 1003
Page 90 of 91

Netflix, Inc. et al. Exhibit 1003
Page 91 of 91

US 6,910,068 B2
81

a first subelement to specify a type of self-describing
network device;

a second subelement to identify a user;

a third subelement to identify a manufacturer;

a fourth subelement to specify a URLof a website for the
manufacturer;

a fifth subelement to provide a word description of the
self-describing network device for the user;

a sixth subelement to specify a model name of the
self-describing network device;

a seventh subelement to specify a model numberof the
self-describing network device;

an eighth subelementto specify a URL of a website for the
self-describing network device;

a ninth subelement to specify a URL of a website for a
presentation hosted by the self-describing network
device;

a tenth subelement to specify a serial number of the
self-describing network device;

an eleventh subelement to specify a universal device
name of the self-describing network device;

a twelfth subelement to specify a universal product code
of the self-describing network device;

a thirteenth subelement to specify any icons associated
with the self-describing network device;

a fourteenth subelement to identify any of one or more
services supported by the self-describing network
device; end

a fifteenth subelement to identify any of one or more
devices embedded within the self-describing network
device.

10

15

20

25

30

82

36. A self-describing network device comprising:
memory

a description the self-describing network device stored in
the memory, the description comprising a set of ele-
ments written in an XML syntax to describe the self-
describing network device; and

a processor coupled to the memory to submit the descrip-
tion to a remote entity on a network;

wherein the set of elements includes at least one of:

a first element to identify any of one or more actions
performed by a service supported by the self-describing
network device; and

a second element to identify any of one or more state
variables in the service.

37. A self-describing network device as recited in claim
36, wherein the first element includes at least one subele-
ment for each corresponding action, the subelement con-
taining a name string to hold a name of the action and an
argumentlist to hold parameters of the action.

38. A self-describing network device as recited in claim
36, wherein the second element includesat least one of:

a first subelementto identify a name of a state variable;

a second subelement to specify a data type of the state
variable;

a third subelementto specify a default value of the state
variable;

a fourth subelement to enumerate legal string values; and

a fifth subelement to define bounds of legal numeric
values.

Netflix, Inc.et al. Exhibit 1003
Page 91 of 91

