PTO/SB/122 (11-08)

Approved for use through 11/30/2011. OMB 0651-0035
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it disptays a valid OMB control number.

(CHANGE OF

CORRESPONDENCE ADDRESS
Application

Address to:

Commissioner for Patents
P.O. Box 1450

\ Alexandria, VA 22313-1450

Application Number

na

Filing Date

herewith

First Named Inventor

Steven Morein

Art Unit na
Examiner Name na
00100.36.0001 /

Attorney Docket Number

Please change the Correspondence Address for the above-identified patent application to:

The address associated with
Customer Number:

29153

OR

Firm or
Individual Name

Address

City

State

Zip

Country

Telephone

Email

| am the:
[:] Applicant/Inventor

I:] Assignee of record of the entire interest.

Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96).

Attorney or agent of record. Registration Number 34,414

This form cannot be used to change the data associated with a Customer Number. To change the
data associated with an existing Customer Number use “Request for Customer Number Data Change” (PTO/SB/124).

D Registered practitioner named in the application transmittal letter in an application without an
executed oath or declaration. See 37 CFR 1.33(a)(1). Registration Number,

Signature I/Christopher J. Reckamp/
Typed or Printed .
Name &mstopher J. Reckamp

Date May 17,2011

Telephone

312-609-7599

forms if more than one signature is required, see below*.

NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple

*Total of 1 __ forms are submitted.

This collection of information is required by 37 CFR 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to compiete,
including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on
the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PT0-9199 and select option 2.

LG Ex. 1002
LG v. ATI
IPR2017-01225

LG Ex. 1002, pg 1

PTO/SB/14 (11-08)
Approved for use threugh 09/30/2010. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COCMMERCE

Under the Paperwork Reduction Act of 1995, no persens are required to respond to a collection of informatien unless it contains a valid OMB control number.

)) Attorney Docket Number | 00100.36.0001
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention | GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the
bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76.

This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the
document may be printed and included in a paper filed application.

Secrecy Order 37 CFR 5.2

Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to
37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

Applicant Information:
Applicant 1

Applicant Authority (&) Inventor ‘ (OLegal Representative under 35U.8.C. 117 ‘OPany of Interest under 35 U.S.C. 118

Prefix| Given Name Middle Name Family Name Suffix
Stephen L. Morein

Residence Information (Select One) (¢) US Residency () Non US Residency () Active US Military Service

City | Cambridge State/Province ‘ MA | Country of Residence i | us

Citizenship under 37 CFR 1.41(b} i us
Mailing Address of Applicant:

Address 1 10 Magazine

Address 2 Apt. 801

City ‘ Cambridge ‘ State/Province ‘ MA

Postal Code | 02139 ‘ Countryi | us

Applicant 2

Applicant Authority (@) Inventor ‘ {O)Legal Representative under 35U.S.C. 117 ‘OPany of Interest under 35 U.S.C_ 118

Prefix| Given Name Middle Name Family Name Suffix
Laurent Lefebvre

Residence Information (Select One) () US Residency (®) Non US Residency () Active US Military Service

City |Lachgnaie Country Of Residencei | CA

Citizenship under 37 CFR 1.41(b} i CA
Mailing Address of Applicant:

Address 1 124 Parenchere
Address 2
City ‘ Lachgnaie ‘ State/Province ‘ QcC
Postal Code | JBW 6AS ‘ Countryi | CA
Applicant 3
Applicant Authority (®Inventor ‘ {OLegal Representative under 35U.8.C. 117 ‘OPany of Interest under 35 U.S.C. 118
Prefix| Given Name Middle Name Family Name Suffix
Andrew E. Gruber
Residence Information (Select One) (8) US Residency () Non US Residency () Active US Military Service
City | Arington ‘ State/Province ‘ MA | Country of Residence i | us
EFS Web2.2.2

LG Ex. 1002, pg 2

PTO/SB/14 (11-08)

Approved for use threugh 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COCMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of informatien unless it contains a valid OMB control number.

Attorney Docket Number | 00100.36.0001

Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention | GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Gitizenship under 37 CFR 1.41(b} i us
Mailing Address of Applicant:

Address 1 215 Pleasant Street

Address 2

City ‘ Arlington ‘ State/Province ‘ MA

Postal Code | 02476 ‘ Countryi | us

Applicant 4

Applicant Authority (®Inventor ‘ {Olegal Representative under 35U.8.C. 117 ‘OPady of Interest under 35 U.S.C. 118

Prefix| Given Name Middle Name Family Name Suffix
Andi Skende

Residence Information {Select One) () US Residency () Non US Residency () Active US Military Service

City | Shrewsbury State/Province ‘ MA | Country of Residence i | us

Citizenship under 37 CFR 1.41{b} i us
Mailing Address of Applicant:

Address 1 49 Sheridan Drive, #11

Address 2

City Shrewsbury ‘ State/Province MA
Postal Code | 01545 ‘ Countryi | us

All Inventors Must Be Listed - Additional Inventor Information blocks may be

generated within this form by selecting the Add button. Add

Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below.
For further information see 37 CFR 1.33(a).

[] An Address is being provided for the correspondence Information of this application.

Customer Number 29153

Email Address creckamp@vedderprice.com | | Add Email | |Remove Email

Application Information:

Title of the Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
Attorney Docket Number| 00100.36.0001 ‘ Small Entity Status Claimed []

Application Type Nonprovisional

Subject Matter Utility

Suggested Class (if any) | Sub Class (if any)

Suggested Technology Center {if any)

Total Number of Drawing Sheets (if any) 5 | Suggested Figure for Publication (if any}

EFSWeb222

LG Ex. 1002, pg 3

PTO/SB/14 (11-08)
Approved for use threugh 09/30/2010. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COCMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of informatien unless it contains a valid OMB control number.

Attorney Docket Number | 00100.36.0001

Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention | GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Publication Information:
[] Request Early Publication (Fee required at time of Request 37 CFR 1.219)

Request Not to Publish. | hereby request that the attached application not be published under 35 U.S.

[[] C.122(b})and certify that the invention disclosed in the attached application has not and will not be the subject of
an application filed in ancther country, or under a multilateral international agreement, that requires publication at

eighteen months after filing.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing
this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32).

Enter either Customer Number or complete the Representative Name section below. |If both sections
are completed the Customer Number will be used for the Representative Information during processing.

Please Select One: (¢) Customer Number | (O US Patent Practitioner ‘ (O Limited Recognition {37 CFR 11.9)

Customer Number 29153

Domestic Benefit/National Stage Information:

This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, or 365(c) or indicate National Stage
entry from a PCT application. Providing this information in the application data sheet constitutes the specific reference required by
35U.8.C. 119(e) or 120, and 37 CFR 1.78(a}(2) or CFR 1.78(a}4), and need not otherwise be made part of the specification.

Prior Application Status | Pending
Application Number Continuity Type Prior Application Number Filing Date (YYYY-MM-DD}
Continuation of 12791597 2010-06-01
Additional Domestic Benefit/National Stage Data may be generated within this form o

by selecting the Add button.

Foreign Priority Information:

This section allows for the applicant to claim benefit of foreign priority and to identify any prior foreign application for which priority is
not claimed. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119(b)

and 37 CFR 1.55(a).

| Remove |
Application Number Country | Parent Filing Date (YYYY-MM-DD) Priority Claimed
(O Yes (O No
Additional Foreign Priority Data may be generated within this form by selecting the v

Add button.

Assignee Information:
Providing this information in the application data sheet does not substitute for compliance with any requirement of part 3 of Title 37

of the CFR to have an assignment recorded in the Office.

Assignee 1

EFSWeb222

LG Ex. 1002, pg 4

PTO/SB/14 (11-08)

Approved for use threugh 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COCMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of informatien unless it contains a valid OMB control number.

Attorney Docket Number | 00100.36.0001

Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention | GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

If the Assignee is an Organization check here.

Organization Name ATI Technologies ULC

Mailing Address Information:

Address 1 1 Commerce Valley Drive East

Address 2

City Markham State/Province ON
Country il cA Postal Code L3T 7X6
Phone Number 905-882-2600 Fax Number

Email Address

Additional Assignee Data may be generated within this form by selecting the Add

button. Add

Signature:

A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37
CFR 1.4(d) for the form of the signature.

Signature (/Christopher J. Reckamp/ Date (YYYY-MM-DD)| 2011-05-17

First Name | Christopher Last Name | Reckamp Registration Number | 34414

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which
is to file (and by the USPTO to process) an application. Confidentiality is governed by 35U.5.C. 122 and 37 CFR 1.14. This
collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data
sheet form to the USPTQ. Time will vary depending upon the individual case. Any comments on the amount of time you require to
complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR
COMPLETED FORMS TC THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

EFSWeb222

LG Ex. 1002, pg 5

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to
a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection
of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is
used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not
furnish the requested information, the U.S. Patent and Trademark Cffice may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.8.C. 552)
and the Privacy Act (5 U.5.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine

whether the Freedom of Information Act requires disclosure of these records.

2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence tc a court, magistrate, or
administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.

3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an
individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of
the record.

4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in

order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuant to 5 U.8.G. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed,
as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, tc another federal agency for purposes of National Security
review (35 U.5.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S5.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee,
during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records
management practices and programs, under authority of 44 U.5.C. 2904 and 2906. Such disclosure shall be made in accordance with the
G8A regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such
disclosure shall hot be used to make determinations about individuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the applicatich pursuant|
to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.5.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, tc the public if the record was filed in an application which became abandoned or in which the proceedings were
terminated and which application is referenced by either a published application, an application open to public inspections or an issued
patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the
USPTO becomes aware of a violation or potential violation of law or regulation.

EFSWeb222

LG Ex. 1002, pg 6

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention:

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name:

Stephen L. Morein

Filer:

Christopher J. Reckamp/Christine Wright

Attorney Docket Number: 00100.36.0001
Filed as Large Entity
Utility under 35 USC 111(a) Filing Fees
Description Fee Code Quantity Amount Suz-;'g(tsa)l in
Basic Filing:
Utility application filing 1011 1 330 330
Utility Search Fee 1111 1 540 540
Utility Examination Fee 1311 1 220 220
Pages:
Claims:
Independent claims in excess of 3 1201 4 220 880

Miscellaneous-Filing:

Petition:

LG Ex. 1002, pg 7

Description Fee Code Quantity Amount Sut—;l's(tsa)l in
Patent-Appeals-and-Interference:
Post-Allowance-and-Post-Issuance:
Extension-of-Time:
Miscellaneous:
Total in USD ($) 1970

LG Ex. 1002, pg 8

Electronic Acknowledgement Receipt

EFS ID: 10111290
Application Number: 13109738
International Application Number:
Confirmation Number: 2020

Title of Invention:

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name:

Stephen L. Morein

Customer Number:

29153

Filer:

Christopher J. Reckamp/Christine Wright

Filer Authorized By:

Christopher J. Reckamp

Attorney Docket Number: 00100.36.0001
Receipt Date: 17-MAY-2011
Filing Date:
Time Stamp: 17:29:16

Application Type:

Utility under 35 USC 111(a)

Payment information:

Submitted with Payment

yes

Payment Type Deposit Account
Payment was successfully received in RAM $1970

RAM confirmation Number 4141

Deposit Account 220259

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

LG Ex. 1002, pg 9

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:
Document o . File Size(Bytes Multi Pages
Document Description File Name (y)V . . 9
Number Message Digest | Part/.zip| (ifappl.)
76796
1 360001_Application.pdf yes 17
5a2195ef350dfe96b37393d43d086ca74d1
5a3al
Multipart Description/PDF files in .zip description
Document Description Start End
Specification 1 12
Claims 13 16
Abstract 17 17
Warnings:
Information:
. o 100418
5 Drawings-only bIaAck and white line 360001 _Drawings.pdf o 5
drawings
7e6a5c9ce489409aee520309316318a7b7d|
23112
Warnings:
Information:
1711262
3 Oath or Declaration filed 360001_Declaration.pdf no 2
16d034719fb41ea904c604c9522d66d301
6bde
Warnings:
Information:
52028
4 Change of Address 360001_Change.pdf no 1
acc3daf05193121879d529dab5b36dbed67]
aebde
Warnings:
Information:
1032318
5 Application Data Sheet 360001_ADS.pdf no 5
0457161¢63792567d97d4613dade7a99db|
6d9934
Warnings:
Information:
36605
6 Fee Worksheet (PTO-875) fee-info.pdf no 2
€9542301783d22714df47e76295ef00c937
37ec
Warnings:

LG Ex. 1002, pg 10

Information:

Total Files Size (in bytes):i 3009427

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for

an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

LG Ex. 1002, pg 11

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
RELATED APPLICATIONS
[0001] This application is a continuation of co-pending U.S. Application Serial No.
12/791,597, filed June 1, 2010, entitled “GRAPHICS PROCESSING ARCHITECTURE
EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., owned by
instant assignee and is incorporated herein by reference, which is a continuation of co-pending
U.S. Application Serial No. 11/842,256, filed August 21, 2007, entitled “GRAPHICS
PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER?”, having as inventors
Steven Morein et al., owned by instant assignee and is incorporated herein by reference, which is
a continuation of U.S. Application Serial No. 11/117,863, filed April 29, 2005, which has issued
into U.S. Patent No. 7,327,369, entitled “GRAPHICS PROCESSING ARCHITECTURE
EMPLOYING A UNIFIED SHADER?”, having as inventors Steven Morein et al., and owned by
instant assignee and is incorporated herein by reference which is a continuation of U.S.
Application Serial No. 10/718,318, filed on November 20, 2003, which has issued into U.S.
Patent No. 6,897,871, entitled “GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A
UNIFIED SHADER?”, having as inventors Steven Morein et al., and owned by instant assignee
and is incorporated herein by reference.
FIELD OF THE INVENTION
[0002] The present invention generally relates to graphics processors and, more
particularly, to a graphics processor architecture employing a single shader.
BACKGROUND OF THE INVENTION
[0003] In computer graphics applications, complex shapes and structures are formed

through the sampling, interconnection and rendering of more simple objects, referred to as

CHICAGO/#2201074.1

LG Ex. 1002, pg 12

primitives. An example of such a primitive is a triangle, or other suitable polygon. These
primitives, in turn, are formed by the interconnection of individual pixels. Color and texture are
then applied to the individual pixels that comprise the shape based on their location within the
primitive and the primitives orientation with respect to the generated shape; thereby generating
the object that is rendered to a corresponding display for subsequent viewing.

[0004] The interconnection of primitives and the application of color and textures to
generated shapes are generally performed by a graphics processor. Conventional graphics
processors include a series of shaders that specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display device. As illustrated in FIG. 1, a
conventional shader 10 can be represented as a processing block 12 that accepts a plurality of
bits of input data, such as, for example, object shape data (14) in object space (X,y,z); material
properties of the object, such as color (16); texture information (18); luminance information (20);
and viewing angle information (22) and provides output data (28) representing the object with
texture and other appearance properties applied thereto (x”, y*, z°).

[0005] In exemplary fashion, as illustrated in FIGS. 2A-2B, the shader accepts the vertex
coordinate data representing cube 30 (FIG. 2A) as inputs and provides data representing, for
example, a perspectively corrected view of the cube 30" (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an appropriate transformation matrix to the data
representing the initial cube 30. More specifically, the representation illustrated in FIG. 2B is
provided by a vertex shader that accepts as inputs the data representing, for example, vertices
Vx, Vy and V, among others of cube 30 and providing angularly oriented vertices Vx-,Vy- and

V7, including any appearance attributes of corresponding cube 30°.

CHICAGO/#2201074.1

LG Ex. 1002, pg 13

[0006] In addition to the vertex shader discussed above, a shader processing block that
operates on the pixel level, referred to as a pixel shader is also used when generating an object
for display. Generally, the pixel shader provides the color value associated with each pixel of a
rendered object. Conventionally, both the vertex shader and pixel shader are separate
components that are configured to perform only a single transformation or operation. Thus, in
order to perform a position and a texture transformation of an input, at least two shading
operations and hence, at least two shaders, need to be employed. Conventional graphics
processors require the use of both a vertex shader and a pixel shader in order to generate an
object. Because both types of shaders are required, known graphics processors are relatively
large in size, with most of the real estate being taken up by the vertex and pixel shaders.
[0007] In addition to the real estate penalty associated with conventional graphics
processors, there is also a corresponding performance penalty associated therewith. In
conventional graphics processors, the vertex shader and the pixel shader are juxtaposed in a
sequential, pipelined fashion, with the vertex shader being positioned before and operating on
vertex data before the pixel shader can operate on individual pixel data.
[0008] Thus, there is a need for an improved graphics processor employing a shader that
is both space efficient and computationally effective.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The present invention and the associated advantages and features thereof, will
become better understood and appreciated upon review of the following detailed description of
the invention, taken in conjunction with the following drawings, where like numerals represent
like elements, in which:

[0010] FIG. 1 is a schematic block diagram of a conventional shader;

CHICAGO/#2201074.1

LG Ex. 1002, pg 14

[0011] FIGS. 2A-2B are graphical representations of the operations performed by the

shader illustrated in FIG. 1;

[0012] FIG. 3 is a schematic block diagram of a conventional graphics processor
architecture;
[0013] FIG. 4A is a schematic block diagram of a graphics processor architecture

according to the present invention;
[0014] FIG. 4B is a schematic block diagram of an optional input component to the
graphics processor according to an alternate embodiment of the present invention; and
[0015] FIG. 5 is an exploded schematic block diagram of the unified shader employed in
the graphics processor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION
[0016] Briefly stated, the present invention is directed to a graphics processor that
employs a unified shader that is capable of performing both the vertex operations and the pixel
operations in a space saving and computationally efficient manner. In an exemplary
embodiment, a graphics processor according to the present invention includes an arbiter circuit
for selecting one of a plurality of inputs for processing in response to a control signal; and a
shader, coupled to the arbiter, operative to process the selected one of the plurality of inputs, the
shader including means for performing vertex operations and pixel operations, and wherein the
shader performs one of the vertex operations or pixel operations based on the selected one of the
plurality of inputs.
[0017] The shader includes a general purpose register block for storing at least the
plurality of selected inputs, a sequencer for storing logical and arithmetic instructions that are

used to perform vertex and pixel manipulation operations and a processor capable of executing

CHICAGO/#2201074.1

LG Ex. 1002, pg 15

both floating point arithmetic and logical operations on the selected inputs according to the
instructions maintained in the sequencer. The shader of the present invention is referred to as a
“unified” shader because it is configured to perform both vertex and pixel operations. By
employing the unified shader of the present invention, the associated graphics processor is more
space efficient than conventional graphics processors because the unified shader takes up less
real estate than the conventional multi-shader processor architecture.

[0018] In addition, according to the present invention, the unified shader is more
computationally efficient because it allows the shader to be flexibly allocated to pixels or
vertices based on workload.

[0019] Referring now to FIG. 3, illustrated therein is a graphics processor incorporating a
conventional pipeline architecture. As shown, the graphics processor 40 includes a vertex fetch
block 42 which receives vertex information relating to a primitive to be rendered from an off-
chip memory 55 on line 41. The fetched vertex data is then transmitted to a vertex cache 44 for
storage on line 43. Upon request, the vertex data maintained in the vertex cache 44 is
transmitted to a vertex shader 46 on line 45. As discussed above, an example of the information
that is requested by and transmitted to the vertex shader 46 includes the object shape, material
properties (e.g. color), texture information, and viewing angle. Generally, the vertex shader 46 is
a programmable mechanism which applies a transformation position matrix to the input position
information (obtained from the vertex cache 44), thereby providing data representing a
perspectively corrected image of the object to be rendered, along with any texture or color
coordinates thereof.

[0020] After performing the transformation operation, the data representing the

transformed vertices are then provided to a vertex store 48 on line 47. The vertex store 48 then

CHICAGO/#2201074.1

LG Ex. 1002, pg 16

transmits the modified vertex information contained therein to a primitive assembly block 50 on
line 49. The primitive assembly block 50 assembles, or converts, the input vertex information
into a plurality of primitives to be subsequently processed. Suitable methods of assembling the
input vertex information into primitives is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmitted to a rasterization engine 52, which
converts the previously assembled primitives into pixel data through a process referred to as
walking. The resulting pixel data is then transmitted to a pixel shader 54 on line 53.

[0021] The pixel shader 54 generates the color and additional appearance attributes that
are to be applied to a given pixel, and applies the appearance attributes to the respective pixels.
In addition, the pixel shader 54 is capable of fetching texture data from a texture map 57 as
indexed by the pixel data from the rasterization engine 52 by transmitting such information on
line 55 to the texture map. The requested texture data is then transmitted back from the texture
map 57 on line 57" and stored in a texture cache 56 before being routed to the pixel shader on
line 58. Once the texture data has been received, the pixel shader 54 then performs specified
logical or arithmetic operations on the received texture data to generate the pixel color or other
appearance attribute of interest. The generated pixel appearance attribute is then combined with
a base color, as provided by the rasterization engine on line 53, to thereby provide a pixel color
to the pixel corresponding at the position of interest. The pixel appearance attribute present on
line 59 is then transmitted to post raster processing blocks (not shown).

[0022] As described above, the conventional graphics processor 40 requires the use of
two separate shaders: a vertex shader 46 and a pixel shader 54. A drawback associated with such

an architecture is that the overall footprint of the graphics processor is relatively large as the two

CHICAGO/#2201074.1

LG Ex. 1002, pg 17

shaders take up a large amount of real estate. Another drawback associated with conventional
graphics processor architectures is that can exhibit poor computational efficiency.

[0023] Referring now to FIG. 4A, in an exemplary embodiment, the graphics processor
60 of the present invention includes a multiplexer 66 having vertex (e.g. indices) data provided at
a first input thereto and interpolated pixel parameter (e.g. position) data and attribute data from a
rasterization engine 74 provided at a second input. A control signal generated by an arbiter 64 is
transmitted to the multiplexer 66 on line 63. The arbiter 64 determines which of the two inputs
to the multiplexer 66 is transmitted to a unified shader 62 for further processing. The arbitration
scheme employed by the arbiter 64 is as follows: the vertex data on the first input of the
multiplexer 66 is transmitted to the unified shader 62 on line 65 if there is enough resources
available in the unified shader to operate on the vertex data; otherwise, the interpolated pixel
parameter data present on the second input will be passed to the unified shader 62 for further
processing.

[0024] Referring briefly to FIG. 5, the unified shader 62 will now be described. As
illustrated, the unified shader 62 includes a general purpose register block 92, a plurality of
source registers: including source register A 93, source register B 95, and source register C 97, a
processor (e.g. CPU) 96 and a sequencer 99. The general purpose register block 92 includes
sixty four registers, or available entries, for storing the information transmitted from the
multiplexer 66 on line 65 or any other information to be maintained within the unified shader.
The data present in the general purpose register block 92 is transmitted to the plurality of source
registers via line 109.

[0025] The processor 96 may be comprised of a dedicated piece of hardware or can be

configured as part of a general purpose computing device (i.e. personal computer). In an

CHICAGO/#2201074.1

LG Ex. 1002, pg 18

exemplary embodiment, the processor 96 is adapted to perform 32-bit floating point arithmetic
operations as well as a complete series of logical operations on corresponding operands. As
shown, the processor is logically partitioned into two sections. Section 96 is configured to
execute, for example, the 32-bit floating point arithmetic operations of the unified shader. The
second section, 96A, is configured to perform scaler operations (e.g. log, exponent, reciprocal
square root) of the unified shader.

[0026] The sequencer 99 includes constants block 91 and an instruction store 98. The
constants block 91 contains, for example, the several transformation matrices used in connection
with vertex manipulation operations. The instruction store 98 contains the necessary instructions
that are executed by the processor 96 in order to perform the respective arithmetic and logic
operations on the data maintained in the general purpose register block 92 as provided by the
source registers 93-95. The instruction store 98 further includes memory fetch instructions that,
when executed, causes the unified shader 62 to fetch texture and other types of data, from
memory 82 (FIG. 4A). In operation, the sequencer 99 determines whether the next instruction to
be executed (from the instruction store 98) is an arithmetic or logical instruction or a memory
(e.g. texture fetch) instruction. If the next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not shown) which retrieves the required
information from memory 82 (FIG. 4A). The retrieved information is then transmitted to the
sequencer 99, through the vertex texture cache 68 (FIG. 4A) as described in greater detail below.
[0027] If the next instruction to be executed is an arithmetic or logical instruction, the
sequencer 99 causes the appropriate operands to be transferred from the general purpose register
block 92 into the appropriate source registers (93, 95, 97) for execution, and an appropriate

signal is sent to the processor 96 on line 101 indicating what operation or series of operations are

CHICAGO/#2201074.1

LG Ex. 1002, pg 19

to be executed on the several operands present in the source registers. At this point, the
processor 96 executes the instructions on the operands present in the source registers and
provides the result on line 85. The information present on line 85 may be transmitted back to the
general purpose register block 92 for storage, or transmitted to succeeding components of the
graphics processor 60.

[0028] As discussed above, the instruction store 98 maintains both vertex manipulation
instructions and pixel manipulation instructions. Therefore, the unified shader 99 of the present
invention is able to perform both vertex and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present invention is able to perform both the
vertex shading and pixel shading operations on data in the context of a graphics controller based
on information passed from the multiplexer. By being adapted to perform memory fetches, the
unified shader of the present invention is able to perform additional processes that conventional
vertex shaders cannot perform; while at the same time, perform pixel operations.

[0029] The unified shader 62 has ability to simultaneously perform vertex manipulation
operations and pixel manipulation operations at various degrees of completion by being able to
freely switch between such programs or instructions, maintained in the instruction store 98, very
quickly. In application, vertex data to be processed is transmitted into the general purpose
register block 92 from multiplexer 66. The instruction store 98 then passes the corresponding
control signals to the processor 96 on line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have enough available space therein to store the
incoming vertex data, such information will not be transmitted as the arbitration scheme of the
arbiter 64 is not satisfied. In this manner, any pixel calculation operations that are to be, or are

currently being, performed by the processor 96 are continued, based on the instructions

CHICAGO/#2201074.1

LG Ex. 1002, pg 20

maintained in the instruction store 98, until enough registers within the general purpose register
block 92 become available. Thus, through the sharing of resources within the unified shader 62,
processing of image data is enhanced as there is no down time associated with the processor 96.
[0030] Referring back to FIG. 4A, the graphics processor 60 further includes a cache
block 70, including a parameter cache 70A and a position cache 70B which accepts the pixel
based output of the unified shader 62 on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pixel information present in the cache
block 70 is then transmitted to the primitive assembly block 72 on line 71. The primitive
assembly block 72 is responsible for assembling the information transmitted thereto from the
cache block 70 into a series of triangles, or other suitable primitives, for further processing. The
assembled primitives are then transmitted on line 73 to rasterization engine block 74, where the
transmitted primitives are then converted into individual pixel data information through a
walking process, or any other suitable pixel generation process. The resulting pixel data from
the rasterization engine block 74 is the interpolated pixel parameter data that is transmitted to the
second input of the multiplexer 66 on line 75.

[0031] In those situations when vertex data is transmitted to the unified shader 62
through the multiplexer 66, the resulting vertex data generated by the processor 96, is transmitted
to a render back end block 76 which converts the resulting vertex data into at least one of several
formats suitable for later display on display device 84. For example, if a stained glass
appearance effect is to be applied to an image, the information corresponding to such appearance
effect is associated with the appropriate position data by the render back end 76. The

information from the render back end 76 is then transmitted to memory 82 and a display

10

CHICAGO/#2201074.1

LG Ex. 1002, pg 21

controller line 80 via memory controller 78. Such appropriately formatted information is then
transmitted on line 83 for presentation on display device 84.

[0032] Referring now to FIG. 4B, shown therein is a vertex block 61 which is used to
provide the vertex information at the first input of the multiplexer 66 according to an alternate
embodiment of the present invention. The vertex block 61 includes a vertex fetch block 61A
which is responsible for retrieving vertex information from memory 82, if requested, and
transmitting that vertex information into the vertex cache 61B. The information stored in the
vertex cache 61B comprises the vertex information that is coupled to the first input of
multiplexer 66.

[0033] As discussed above, the graphics processor 60 of the present invention
incorporates a unified shader 62 which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on the instructions stored in the instruction
store 98. In this fashion, the graphics processor 60 of the present invention takes up less real
estate than conventional graphics processors as separate vertex shaders and pixel shaders are no
longer required. In addition, as the unified shader 62 is capable of alternating between
performing vertex manipulation operations and pixel manipulation operations, graphics
processing efficiency is enhanced as one type of data operations is not dependent upon another
type of data operations. Therefore, any performance penalties experienced as a result of
dependent operations in conventional graphics processors are overcome.

[0034] The above detailed description of the present invention and the examples
described therein have been presented for the purposes of illustration and description. It is

therefore contemplated that the present invention cover any and all modifications, variations and

11

CHICAGO/#2201074.1

LG Ex. 1002, pg 22

equivalents that fall within the spirit and scope of the basic underlying principles disclosed and

claimed herein.

12

CHICAGO/#2201074.1

LG Ex. 1002, pg 23

CLAIMS

What is claimed is:

1. A method comprising:

performing vertex manipulation operations and pixel manipulation operations by
transmitting vertex data to a general purpose register block, and performing vertex operations on
the vertex data by a processor unless the general purpose register block does not have enough
available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by
the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the
sequencer maintaining instructions operative to cause the processor unit to execute vertex
calculation and pixel calculation operations on selected data maintained in the general purpose
register block; and

wherein the processor unit executes instructions that generate a pixel color in response to
the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.

3. A unified shader comprising:

13

CHICAGO/#2201074.1

LG Ex. 1002, pg 24

a processor unit operative to perform vertex calculation operations and pixel calculation
operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel
information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation
operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel
information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

5. A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions
operative to cause the processor unit to execute vertex calculation and pixel calculation
operations on selected data maintained in a store depending upon an amount of space available in

the store.

14

CHICAGO/#2201074.1

LG Ex. 1002, pg 25

6. The shader of claim 5, wherein the sequencer further includes circuitry operative

to fetch data from a memory.

7. The shader of claim 5, further including a selection circuit operative to provide

information to the store in response to a control signal.

8. The shader of claim 5, wherein the processor unit executes instructions that

generate a pixel color in response to the selected one of the plurality of inputs.

9. The shader of claim 5, wherein the processor unit executes vertex calculations

while the pixel calculations are still in progress.

10. The shader of claim 5, wherein the processor unit generates vertex position and

appearance data in response to a selected one of the plurality of inputs.

11. The shader of claim 7, wherein the control signal is provided by an arbiter.

12. A graphics processor comprising:
a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculations are still in progress.

13. The graphics processor of claim 12 wherein the unified shader comprises a

sequencer coupled to the processor unit, the sequencer maintaining instructions operative to

15

CHICAGO/#2201074.1

LG Ex. 1002, pg 26

cause the processor unit to execute vertex calculation and pixel calculation operations on

selected data maintained in a store depending upon an amount of space available in the store.

14. The graphics processor of claim 12 comprising a vertex block operative to fetch

vertex information from memory.

15. A unified shader comprising:
a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. The shader of claim 15 comprising an instruction store and wherein the processor
unit performs the vertex manipulation operations and pixel manipulation operations at various

degrees of completion based on switching between instructions in the instruction store.

16

CHICAGO/#2201074.1

LG Ex. 1002, pg 27

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
ABSTRACT
[0035] A graphics processing architecture employing a single shader is disclosed. The
architecture includes a circuit operative to select one of a plurality of inputs in response to a
control signal; and a shader, coupled to the arbiter, operative to process the selected one of the
plurality of inputs, the shader including means for performing vertex operations and pixel
operations, and wherein the shader performs one of the vertex operations or pixel operations
based on the selected one of the plurality of inputs. The shader includes a register block which is
used to store the plurality of selected inputs, a sequencer which maintains vertex manipulation
and pixel manipulations instructions and a processor capable of executing both floating point
arithmetic and logical operations on the selected inputs in response to the instructions maintained

in the sequencer.

17

CHICAGO/#2201074.1

LG Ex. 1002, pg 28

(z"A'x)

8¢

(LYV ¥OIlud)
I OId
JT1ONY
J oNmaA
2z
\ JONVNINNT
0¢ v.iva
MAAVHS ENINEN
o1/
y, 40100
9l 3dVHS
J Lodrso

Nrk

LG Ex. 1002, pg 29

o i 30

30e
Y/ K /
30f
v
/
30a
30e
Vi k30b
FIG. 2A
(PRIOR ART)
\'/'Z, K 30a’ v,
30"
V'
FIG. 2B
(PRIOR ART)

LG Ex. 1002, pg 30

55 /57

Z
MEMORY TE),\;L%RE
41 43
/ 44
VERTEX FETCH V-CACHE
T
42 45
VERTEX VERTEX |48
SHADER 7 STORE
_46
47 — 49
PRIMITIVE |50
ASSEMBLY
40
|51
RASTERIZATION |52
ENGINE
L s
TO
57<_; PIXEL
SHADER
FROM TEXTURE 547/
57~ J | CACHE | 58”7
56/ *
|59
FIG. 3 POST RASTER
(PRIOR ART) PROCESSING

LG Ex. 1002, pg 31

INDICES

ARBITER 73\ MUX /66
647 63 65
[% 67
|’ SsTOMEMORY
UNIFIED /58
SHADER TEXTURE _ﬁl"g'\:?f\(
I VERTEX | gg
69A CACHE
|85
@
70A
76 PARAMETER ¥
C CACHE 70
RENDER 4
BACK 70B
END POSITION }
CACHE
| 77
. 71
4 PRIMITIVE | }2
79 MEMORY ASSEMBLY
CONTROLLER
|73
80
r RASTERIZATION|%*
DISPLAY 81 ENGINE
CONTROLLER
~75
83_
DISPLAY MEMORY
FIG. 4A

LG Ex. 1002, pg 32

INDICES

61

/
VERTEX VERTEX TO MUX
FETCH CACHE
7 7 FIG. 4B
N61A “61B
FROM MUX MFEE'\%';Y
9
L65 /9 67
98
0 INSTRUCTION |J
STORE
1 /92 -
69A
-
91
63 CONSTANTS V
o4)
A109
| 95 | o7
SOURCE A SOURCE B SOURCE C
93 |
96A
Y,
CPU
\96’|‘ (SCALER)
T
101
-85

FIG. 5

LG Ex. 1002, pg 33

DECLARATION Attorney Docket Number §180.02.8001
FORUTILITY OR DESIGN : First Named Inventor: Morein of ak
PATENT APPLICATION COMPLETE IR KNOWN
3T CFR 16T © Application Number: Unknown

B Declaration Submitied with Inftia] Filing, OR Filing Date:
3 Declaration Submitted after Inittal Filing {3 Group Art Unit: Unknown
{37 CFR 1.16{e)} required) : Exuminer Name: Unimown

As 2 below named {nventor, ¥ hersby deelnre thats

Ty residence, post affice address, and citfzensiip are as stated below next to my nane,

I beliave § am the origival, Srst and sole inveator (if only one name is Hsted below} or an eniginal, Srat and joint
imreentor {if plural names are listed below) of the subject matter which s claimed and for which o patext is sought on
fhe joventim entitied: A GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER e

A,

the specification of which:
ity
-3¢ atinched heveta,

Jeeewas filed on _____ ss United States Application MNumber : or 28 PCT
Taternational AppHeation Number e and was amended on (MM/DD/YYYY) o

applicable).

T horehy statz thet I have reviewed and understand the confents of the above identified specification, inchiding e
claims, as amended by sny smendment specifically referred fo shove.)

1 acknowiedgs ths duty to disclose information which is material to patentability ss defined fn 37 CFR 1.56.

¥ fimrehy clainn forsign priodty bensfits under 35 WAL, SRS} ar 365(b) of any foreipn application(s) for patent or Inventor’s sertifionte, or
285{a) of any FOT intemational application which desigoated st jeast one sounfyy other than the United States of Ameries, listed below and kave

alse idaraifiad below, by thecking the box, any foreign epplication far patent or inventar’s certificate, or of any PUT imtersational application

having 8 filing dete beiore et of the application on which pricnily fs claimad, .
Prisr Forsign : Foreign Filing Date | Priority Not Copy Attached?
Application Number{s} Country {MM/DD/YYYY) Claimed YES KO

3

= L. . a1 . se ‘. . P B]y o . N
3 Acditional foreign sppication nusmbers sre Hsted on a supplememial priority duts sheet PTO/SBAIE aitsched hereto.

T hereby efefm the benedit wnder 33 US.C. 119(0) of any United States provisional appiicaticn{s) Hsted below,

Appleation Number(s) v - " Filing Data (IM/BDAYYY)

1 Addisional provisional application nurnbers sre listed on & supplernental priseity data sheet PTQ/SBAIZE attachod hereta, -

¥ beraby sinfm the bemeft under 35 U.S.CL 124 of any United States spplication(s), or 3653(c) of any PCT intematione! application gesignating the
Uited States of Amarica, Hated below and, nsofer as the subjest matter of sach of the claims of this application iv nof disclosed & the prier
United Statss oy POT Tniemationa? application in the marmer provided by the first parsgraph of 35 US.C 113, L achknowledge the doty io disclose
infuemation which is material to patentability s defived i 37 CFR 1.55 which bacame availzble betwees the Hiing date of the prior spplication
arid the rational or PCT intemations) filing date of this application. .) i . .

U8, Pavent Applicatien or PCT Parent Filing Date - Parent Patent Number
Parent Numbsr - ADDDIYYYYY ,) {if applicsbie)

I} Addisional U.8. or POT internatinna! spplication nunibers.ave Hsted on 2 supplernenial prioity daw sheet FTO/SRAGZE sttached herato,

1

LG Ex. 1002,

pg 34

SOR1I60BT

As 2 named fuventer, 1 hereby appoint the following registered practitioner(s) fo prosecuts this apphication and o
transaction all business in the Patert and Tredemark Office connected therewith:

Nams Registration Number Name Registration Number
Christopher J. Reckamp 34,414 Angelo I Bufalino 28,622
Joseph P, Xrause 33,378 Robert Beiser 28,687
Michael J. Turgeon 39,404 Breat A, Boyd 51,020

Timothy I, Bechen 48,128

{3 addivional registered pracsitioner(s) named on suppicmental Registered Prastitioner Information s

. Biirect all sorrespondencs o

Yedder, Price, Kaufman & Karmmbolz

232 N. LaSalle Sireet, Suite 2680
© Chicage, Hiinols 60681
 Telephone: 312-689-7588
Facsimiles 312-809-5005

v

1 hersby declare that afi

belivved o be true; wnd Rirther that these siatements were mude with the knowledge that wi

cet PT/ABMAZC atached haretol

statoments made hevein of Ty own knowledge are tue and that aff stslements rmade on inforsnation and beliel we
false staternents and the Hke so made sre

punishabie by fne or ivprizonment, or botly, under 18 US.C. 1001 and that such willfd false sletements muy jeopardize the validity of e

_ appiieation or any pater {ssued thereon.

bl

A petition has hesn fled for this unsigned Invanior

Name of Sole or ¥irst Iuventor: 3
Given Name (first and oiddie B D Family Neme or Swnams
Stoven e . Morsin
Inventer's M : Date
Sienature i
Residence <71 O Cambridge | Siate: et | Cowntry: US | Citizenshyp: US

TPost Office SAddress | 10 Megazine, Apt 301

City: Cambridgs { State: sheme 21 4

i ; ZiP1 02138

§ Couairy: US

Wame of Additional Joint Inventer:

[A peiffion bas been filed for this unsigned fnvendor

Given Name {frsf gnd middie [if any]}

Family Name or Surpame

Tavrent P Lefebvre
e | e 2| Wei/es
Residence Gyt £ Addigudoe| Siae Be Tounlty: Codado4 | Cilirenshipt (faf DR
Post Office Address B PARcue teRS ;
{ Staw: [2P = G- C

City: F

| Loty CAGAOS

Name of Additional Jolnt Inventor:

{1 A petition has been filed for this unsigned inventos

Given Name {first and middle [if sy}

Pamily Naree or Sumams

Andy Gruber
Invenior’s g D:g:e/ j
Signature A ' Lirpisd
Residence LTty Artington ¥ S Maine Afg] | Couniry: US | Cittzenship: US

i 215 Pleasuant Street

Post Office Address

Citys Ariington | Suste: Meiee 543

Comitry: US

frrweed]

Name of Additional Jeint Inventer:

3 A petition has been filed for this unsigued inventor

Given Name {(first and nuddie {if aov]}

Family Name or Surgame

Skende

Andi

Inventor’s v N E{ | Date,

Signature N e ’ 08§ 2ofaogd

Residence City: Sheewsbury | Stave Mede 727 | Countiy: US [Citizenship: US

Post Office Addresg | 40 Sheridan Dive, #11

; ZiPUis4As

| Counpy: 118

City: Shrewsbury | State: Maiao £t 4

LG Ex. 1002, pg 35

PATENT APPLICATION FEE DETERMINATION RECORD Application or Docket Number
Substitute for Form PTO-875 13/109,738
APPLICATION AS FILED - PART | OTHER THAN
(Column 1) (Column 2) SMALL ENTITY OR SMALL ENTITY
FOR NUMBER FILED NUMBER EXTRA RATE($) FEE($) RATE($) FEE($)
BASIC FEE
o) B o 0 N/A N/A N/A N/A 330
SEARCH FEE
P e A, N/A N/A N/A N/A 540
EXAMINATION FEE
AU N/A N/A N/A N/A 220
TOTAL CLAIMS]
(37 CFR 1.16(i)) 16 minus 20= OR |x 52 = 0.00
INDEPENDENT CLAIMS *
(37 CFR 1.16(h)) 7 minus 3 = 4 X 220 = 880
If the specification and drawings exceed 100
APPLICATION SIZE | sheets of paper, the application size fee due is
FEE $270 ($135 for small entity) for each additional 0.00
(37 CFR 1.16(s)) 50 sheets or fraction thereof. See 35 U.S.C.
41(a)(1)(G) and 37 CFR 1.16(s).
MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR 1.16(j)) 0.00
* |f the difference in column 1 is less than zero, enter "0” in column 2. TOTAL TOTAL 1970
APPLICATION AS AMENDED - PART I
OTHER THAN
(Column 1) (Column 2) (Column 3) SMALL ENTITY OR SMALL ENTITY
CLAIMS HIGHEST
REMAINING NUMBER PRESENT ADDITIONAL ADDITIONAL
< AFTER PREVIOUSLY EXTRA RATE(®) FEE($) RATE(S) FEE($)
E AMENDMENT PAID FOR
LU Total . i - =
=S (37 CF(:H 16(7)) Minus x = OR |[«x =
% Independent * Minus | *** =
& (37 CFR 1.16(h) X = OR |x -
<§: Application Size Fee (37 CFR 1.16(s))
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CGFR 1.16(j)) OR
TOTAL OR TOTAL
ADD'L FEE ADD'L FEE
(Column 1) (Column 2) (Column 3)
CLAIMS HIGHEST
REMAINING NUMBER PRESENT ADDITIONAL ADDITIONAL
m AFTER PREVIOUSLY EXTRA RATE(S) FEE(S) RATE(S) FEE(S)
E AMENDMENT PAID FOR
LU Total * Minus | ** = X -
= (37 CF?H.IB(H) OR |«x -
% Independent * Minus | *** = X = OR |x =
w (37 CFR 1.16(h) = =
<§(Application Size Fee (37 CFR 1.16(s))
OR
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CGFR 1.16(j))
TOTAL OR TOTAL
ADD'L FEE ADD'L FEE
* If the entry in column 1 is less than the entry in column 2, write "0" in column 3.
** |f the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20".
*** |f the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter "3".
The "Highest Number Previously Paid For" (Total or Independent) is the highest found in the appropriate box in column 1.

LG Ex. 1002, pg 36

UNITED STATES PATENT AND TRADEMARK OFFICE

UNTTED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

PQ. Box 1450

Alexandria, Virginia 22313-1450

WWW.uspto.gov’

APPLICATION FILING or GRP ART
NUMBER I 371(c) DATE UNIT I FIL FEE REC'D I ATTY DOCKET.NO ITOT CLAIMSIIND CLAIMSl
13/109,738 05/172011 2628 1970 00100.36.0001 16 7
CONFIRMATION NO. 2020
29153 FILING RECEIPT
ADVANCED MICRO DEVIGES, INC.
C/O VEDDER PRICE P.C. T T
00000004794362

222 N.LASALLE STREET
CHICAGO, IL 60601

Date Mailed: 06/01/2011

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination
in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the
application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.
Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please
submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the
changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit
any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply
to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Stephen Morein, Cambridge, MA;
Laurent Lefebvre, Lachgnaie, CANADA;
Andy Gruber, Arlington, MA;
Andi Skende, Shrewsbury, MA;
Assignment For Published Patent Application
ATI TECHNOLOGIES ULC, Markham, CANADA

Power of Attorney:

Robert Beiser--28687 Timothy Bechen--48126
Angelo Bufalino--29622 Brent Boyd--51020
Joseph Krause--32578

Christopher Reckamp--34414

Michael Turgeon--39404

Domestic Priority data as claimed by applicant
This application is a CON of 12/791,597 06/01/2010
which is a CON of 11/842,256 08/21/2007 ABN
which is a CON of 11/117,863 04/29/2005 PAT 7,327,369
which is a CON of 10/718,318 11/20/2003 PAT 6,897,871

Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the
USPTO. Please see http://www.uspto.gov for more information.)

If Required, Foreign Filing License Granted: 05/27/2011

page 1 of 3

LG Ex. 1002, pg 37

The country code and number of your priority application, to be used for filing abroad under the Paris Convention,
is US 13/109,738

Projected Publication Date: 09/08/2011
Non-Publication Request: No

Early Publication Request: No
Title

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
Preliminary Class
345

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no
effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent
in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international
application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same
effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing
of patent applications on the same invention in member countries, but does not result in a grant of "an international
patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent
protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an
application for patent in that country in accordance with its particular laws. Since the laws of many countries differ
in various respects from the patent law of the United States, applicants are advised to seek guidance from specific
foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must
issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application
serves as a request for a foreign filing license. The application's filing receipt contains further information and
guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents” (specifically, the
section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign
patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it
can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish
to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative,
this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may
call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

page 2 of 3

LG Ex. 1002, pg 38

LICENSE FOR FOREIGN FILING UNDER
Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 & 5.15
GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under
37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless
it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This
license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter
as imposed by any Government contract or the provisions of existing laws relating to espionage and the national
security or the export of technical data. Licensees should apprise themselves of current regulations especially with
respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of
State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and
Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of
Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12,
if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed
from the filing date of this application and the licensee has not received any indication of a secrecy order under 35
U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

page 3 of 3

LG Ex. 1002, pg 39

Doc code: IDS

Doc description: Information Disclosure Statement (IDS) Filed

PTO/SB/08a (01-10)

Approved for use through 07/31/2012. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF CCMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respend to a collection of information unless it contains a valid OMB control number.

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number 13109738
Filing Date 2011-05-17
First Named Inventor | Stephen Morein
Art Unit | 2628
Examiner Name | na

Attorney Docket Number | 00100.36.0001

U.S.PATENTS Remove
Examiner| Cite Kind Name of Patentee or Applicant Pages,Columns, Lines where
- Patent Number Issue Date . Relevant Passages or Relevant
Initial No Code? of cited Document)
Figures Appear
1 5550962 1996-08-27 Nakamura et al.
2 5818469 1998-10-06 Lawless et al.
3 6118452 2000-09-12 Gannett
4 6353439 2002-03-05 Lindholm et al.
5 6384824 2002-05-07 Morgan et al.
6 6417858 2002-07-09 Bosch et al.
7 6573893 2003-06-03 Naqvi et al.
8 6650327 2002-11-18 Alirey et al.

EFS Web 2.1.17

LG Ex. 1002, pg 40

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number 13109738
Filing Date 2011-05-17
First Named Inventor | Stephen Morein
Art Unit | 2628
Examiner Name | na

Attorney Docket Number

| 00100.36.0001

9 6650330 2003-11-18 Lindholm et al.
10 6704018 2004-03-09 Mori et al.

11 6724394 2004-04-20 Zatz etal.

12 6731289 2004-05-04 Peercy et al.
13 6809732 2004-10-26 Zatz etal.

14 6864893 2005-03-08 Zatz

15 6897871 2005-05-24 Morein et al.
16 6980209 2005-12-27 Donham et al.
17 7015913 2006-03-21 Lindholm et al.
18 7038685 2006-05-02 Lindholm

19 7327369 2008-02-05 Morein et al.

EFS Web 2.1.17

LG Ex. 1002, pg 41

Application Number 13109738
Filing Date 2011-05-17
INFORMATION DISCLOSURE First Named Inventor | Stephen Morein
STATEMENT BY APPLICANT ——— 220
(Not for submission under 37 CFR 1.99)
Examiner Name | na
Attorney Docket Number | 00100.36.0001
20 5485559 1996-01-16 Sakaibara et al.
21 7239322 B2 2007-07-03 Lefebvre et al.
22 7746348 B2 2010-06-29 Lefebvre et al.
23 7742053 B2 2010-06-22 Lefebvre et al.
If you wish to add additional U.S. Patent citation information please click the Add button. Add
U.S.PATENT APPLICATION PUBLICATIONS Remove
Examiner| .. Publication Kind | Publication Name of Patentee or Applicant Pages,Columns, Lines where
. Cite No . Relevant Passages or Relevant
Initial Number Code| Date of cited Document)
Figures Appear
1 20030076320 A1l 2003-04-24 Collodi
2 20030164830 Al 2003-09-04 Kent
3 20040041814 A1l 2004-03-04 Wyatt et al.
4 20040164987 Al 2004-08-26 Aronson et al.
5 20050068325 A1l 2005-03-31 Lefebvre et al.

EFS Web 2.1.17

LG Ex. 1002, pg 42

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number

13109738

Filing Date

2011-05-17

First Named Inventor | Stephen Morein

Art Unit

|2628

Examiner Name

|na

Attorney Docket Number

| 00100.36.0001

6 20100231592 Al 2010-09-16 Morein et al.
7 20030030643 Al 2003-02-13 Taylor et al.
8 20070222785 Al 2007-09-27 Lefebvre et al.
9 20070222787 A1 2007-09-27 Lefebvre et al.
10 20050200629 Al 2005-09-15 Morein et al.
1" 20070222786 A1 2007-09-27 Lefebvre et al.
12 20070285427 Al 2007-12-13 Morein et al.
13 20100156915 A1 2010-06-24 Lefebvre et al.
If you wish to add additional U.S. Published Application citation information please click the Add button. Add
FOREIGN PATENT DOCUMENTS Remove
Name of Patentee or Pages,Columns Lines
Examiner| Cite | Foreign Document | Country Kind | Publication Avplicant of cited where Relevant T5
Initial* No | Number3 Code? j Code4| Date PR Passages or Relevant
Document .
Figures Appear
1 2299408 EP A2 2011-03-23 Morein et al. []

EFS Web 2.1.17

LG Ex. 1002, pg 43

Application Number 13109738
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

First Named Inventor | Stephen Morein

Art Unit | 2628

Examiner Name | na

Attorney Docket Number |00100_36_0001

2 2309460 EP A1 2011-04-13 Morein et al.]
3 2296116 EP A2 2011-03-16 Morein et al.]
If you wish to add additional Foreign Patent Document citation information please click the Add button ~ Add
NON-PATENT LITERATURE DOCUMENTS Remove
. . Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item
Examiner| Cite S . .)
i (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s}, TS
Initials No . - .
publisher, city and/or country where published.
1 European Patent Office Examination Report; EP Application No. 04798938.9; dated November 9, 2006; pages 1-3. |:|
2 PURCELL, TIMOTHY J. et al_; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH "02; San Antonio, TX; D
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703-712.
3 MARK, WILLIAM R. et al.; CG: A system for programming graphics hardware in a C-like language; SIGGRAPH '03;]
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896-907.
4 BRETERNITZ, JR., MAURICIO et al ; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline D
Programs on a General-Purpose CPU; IEEE; 2003; pgs. 1-11.
5 International Search Report and Written Opinion; International Application No. PCT/IB2004/003821; dated March 22, D
2005.
6 EP Supplemental Search Report; EP Application No. 10075688.1; dated February 25, 2011. |:|
7 EP Supplemental Search Report; EP Application No. 10075686.5; dated February 25, 2011. D

EFS Web 2.1.17

LG Ex. 1002, pg 44

Application Number 13109738
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

First Named Inventor | Stephen Morein
Art Unit | 2628

Examiner Name | na

Attorney Docket Number |00100_36_0001

8 EP Supplemental Search Report; EP Application No. 10075687.3; dated February 25, 2011. |:|

9 EP Supplemental Search Report; EP Application No. 10075685.7; dated February 25, 2011. |:|

10 ELDRIDGE, MATTHEW et al.; Pomegranate: A Fully Scalable Graphics Architecture; Computer Graphics, SIGGRAFPH D
2000 Conference Proceedings; July 23, 2000.

11 OWENS, JOHN D. et al_; Polygon Rendering on a Stream Architecture; Proceedings 2000 SIGGRAPH/Eurographics D
Workshop on Graphics Hardware; August 21, 2000.

12 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008. D

13 Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009. |:|

14 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010 D

If you wish to add additional non-patent literature document citation information please click the Add button ~ Add

EXAMINER SIGNATURE

Examiner Signature Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 801.04. 2 Enter office that issued the document, by the two-letter code (WIPO

Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
1 Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here if
English language translation is attached.

EFS Web 2.1.17

LG Ex. 1002, pg 45

Application Number 13109738
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

First Named Inventor | Stephen Morein
Art Unit | 2628

Examiner Name | na

Attorney Docket Number |00100_36_0001

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication
[] from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the
information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a
foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification
after making reasonable inquiry, no item of information contained in the information disclosure statement was known to

[] any individual designated in 37 CFR 1.56(c) moare than three months prior to the filing of the information disclosure
statement. See 37 CFR 1.97(e}(2).

See attached certification statement.
[] Fee setforthin 37 CFR 1.17 (p) has been submitted herewith.

[] None

SIGNATURE
A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the
form of the signature.

Signature [Christopher J. Reckamp/ Date (YYYY-MM-DD) 2011-07-14

Name/Print Christopher J. Reckamp Registration Number 34,414

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the
public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR
1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed
application form to the USPTQ. Time will vary depending upon the individual case. Any comments on the amount of time you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S.
Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND
FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria,
VA 22313-1450.

EFS Web 2.1.17

LG Ex. 1002, pg 46

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the
attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised
that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited
is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to
process and/or examine your submission related to a patent application or patent. If you do not furnish the requested
information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Infermation Act

(5 U.S.C. 552} and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the
Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.

2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a
court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement
negotiations.

3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a

request involving an individual, to whom the record pertains, when the individual has requested assistance from the
Member with respect to the subject matter of the record.

4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for
the information in order to perform a contract. Recipients of information shall be required to comply with the
requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records
may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant
to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of
National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or
hisfher designee, during an inspection of records conducted by GSA as part of that agency's responsibility to
recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and
2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this
purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make
determinations about individuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of
the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record
may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in
an application which became abandoned or in which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspections or an issued patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law
enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

EFS Web 2.1.17

LG Ex. 1002, pg 47

EP 2299 408 A2

(1 9) Europilsches

Patentamt
European
Patent Office
Office européen

des brevets

AR ATIONT TR

(11) EP 2 299 408 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
23.03.2011 Bulletin 2011/12

(21) Application number: 10075687.3

(22) Date of filing: 19.11.2004

(51) IntCl.:
GO6T 15/00 (2971.01) GOGBT 15/80 (2011.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HUIE IS IT LI LU MC NL PL PT RO SE SISK TR
Designated Extension States:
AL HRLT MK YU

(30) Priority: 20.11.2003 US 718318

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
04798938.9 /1 706 847

(71) Applicant: ATl Technologies Inc.
Markham,
Ontario L3T 7X6 (CA)

(72) Inventors:
* Morein, Steven
Cambridge, MA 02139 (US)

¢ Lefebvre, Laurent
Lachenaie
Quebec J6W 6A5 (CA)
¢ Gruber, Andy
Arlington, MA 02476 (US)
* Skende, Andi
Shrewsbury, MA 01545 (US)

(74) Representative: Waldren, Robin Michael
Marks & Clerk LLP
90 Long Acre
London
WC2E 9RA (GB)

Remarks:

This application was filed on 01-10-2010 as a
divisional application to the application mentioned
under INID code 62.

(54) A graphics processing architecture employing a unified shader

(57) A graphics processor, comprising: an arbiter cir-
cuit for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the arbiter
circuit, operative to process the selected one of the plu-

rality of inputs, the shaderincluding means for performing
vertex operations and pixel operations, and performing
one of the vertex operations or pixel operations based
on the selected one of the plurality of inputs, wherein the
shader provides a appearance attribute.

10

r12

14
OBJECT {

SHAPE

o
COLOR 1

28

TEXTURE { 18 SHADER x,y,2)

DATA 20
LUMINANCE———%i——
VIEWI
oL ———
FIG. 1
(PRIOR ART)

Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 48

1 EP 2 299 408 A2 2

Description
FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Colorand texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
objectthatis rendered to a corresponding display for sub-
sequent viewing.

[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10
can be represented as a processing block 12 thataccepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance
properties applied thereto (x', y’, Z').

[0004] Inexemplaryfashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,
vertices V,, V,, and V,, among others of cube 30 and
providing angularly oriented vertices V,.,V,; and V,, in-
cluding any appearance attributes of corresponding cube
30'.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shaderis also used when
generating an object for display. Generally, the pixel
shader provides the color value associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

10

16

20

25

30

35

40

45

50

55

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.

[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shader and the pixel shader are juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader that is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in-
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.

[0009] The shaderincludesageneral purpose register
block for storing at least the plurality of selected inputs,
asequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader of the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi-shader processor architecture.

[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
cause it allows the shader to be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 49

3 EP 2 299 408 A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1is a schematic block diagram of a conventional
shader;

FIGS. 2A-2B are graphical representations of the op-
erations performed by the shader illustrated in FIG.
1

FIG. 3is a schematic block diagram of a conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in-
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodiment of the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex
cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to
a vertex shader 46 on line 45. As discussed above, an
example of the information that is requested by and trans-
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-
tained therein to a primitive assembly block 50 on line

10

16

20

25

30

35

40

45

50

55

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the
pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit-
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall
footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu-
tational efficiency.

[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo-
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in-
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.

[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 50

5 EP 2 299 408 A2 6

62 willnow be described. Asillustrated, the unified shader
62 includes a general purpose register block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data
presentin the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e, personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-
erations as well as a complete series of logical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-
tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-
er 62 to fetch texture and other types of data, from mem-
ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] Ifthe nextinstruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97) for execution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

10

16

20

25

30

35

40

45

50

55

line 85 may be transmitted back to the general purpose
register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.

[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixelshading operations on data in the context of agraph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the same time, perform pixel
operations.

[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control sighals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this
manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information presentin the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block
70 into a series of triangles, or other suitable primitives,
for further processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 online 75.

LG Ex. 1002, pg 51

7 EP 2 299 408 A2 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76 is then transmitted
to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment of the presentinvention. The
vertex block 61 includes a vertex fetch block 61A which
isresponsible for retrieving vertex information from mem-
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored
inthe vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this
fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type of data operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposes of illustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. A graphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the ar-
biter circuit, operative to process the selected one
of the plurality of inputs, the shader including means
for performing vertex operations and pixel opera-

10

16

20

25

30

35

40

45

50

55

10.

tions, and performing one of the vertex operations
or pixel operations based on the selected one of the
plurality of inputs, wherein the shader provides a ap-
pearance attribute.

The graphics processor of claim 1, further including
a vertex storage block for maintaining vertex infor-
mation.

The graphics processor of claim 2, wherein the ver-
tex storage block further includes a parameter cache
operative to maintain appearance attribute data for
a corresponding vertex and a position cache opera-
tive to maintain position datafora corresponding ver-
tex.

The graphics processor of claim 1, wherein the ap-
pearance attribute is color, and the color is associ-
ated with a corresponding pixel when the selected
one of the plurality inputs is pixel data.

The graphics processor of claim 1, wherein the ap-
pearance attribute is position, and the position at-
tribute is associated with a corresponding vertex
when the selected one of the plurality of inputs is
vertex data.

The graphics processor of claim 5, wherein the ap-
pearance attribute is color, and the color attribute is
associated with a corresponding pixel when the se-
lected one of the plurality of inputs is pixel data.

The graphics processor of claim 5, wherein the ap-
pearance attribute is one of the following: color, light-
ing, texture, normal and position data.

The graphics processor of claim 1, wherein the ap-
pearance value is depth.

The graphics processor of claim 1, further including
a selection circuit, wherein the selection circuit is a
multiplexer, and the control signal is provided by an
arbiter, wherein the arbiter is coupled to the multi-
plexer.

The graphics processor of claim 1, wherein the shad-
er provides vertex position data and further including
a primitive assembly block, coupled to the shader,
operative to generate primitives in response to the
vertex position data.

LG Ex. 1002, pg 52

EP 2 299 408 A2

(LYY YORId)
L "Old
ONY
| NNu oﬁg_,m___>
|||w|lmoz<z_s_3
0e viva

(2 A'%) H3AVHS WARELL
o B
ol

AdVHS

oz , lﬂulpomﬂmo
2

LG Ex. 1002, pg 53

EP 2 299 408 A2

30
e " /
v, - .
) pof
A
30a 30e
V, \30b
FIG. 2A
(PRIOR ART)
K /- 30a° V.’
30"
V'
FIG. 2B
(PRIOR ART)

LG Ex. 1002, pg 54

EP 2 299 408 A2

55 57
TEXTURE
MEMORY MAP
41 43
/[44
VERTEX FETCH V-CACHE
C
42 e
VERTEX VERTEX /48
SHADER STORE
\-46
47 L 49
PRIMITIVE |50
ASSEMBLY
40
|51
“RASTERIZATION /52 -
ENGINE -
. 53]
To, /5
57 PIXEL
, SHADER
FROM TEXTURE 54
57— | CACHE [58~/
56—/
|59
FIG. 3 POST RASTER
ROCESSING
(PRIOR ART) P

LG Ex. 1002, pg 55

EP 2 299 408 A2

INDIICES
ARBITER ‘7X\ MUX /166
~7 63
64 65 op .
c 67
| ~°{ sTO MEMORY
UNIFIED %8
SHADER TEXTURE | MEMORY
VERTEX | &b 7 DATA
60 ! 69
80 69A CACHE
i85
78 PARAMETER |
L CACHE 70
RENDER 4
BACK
END POSITION [0
CACHE
77
. 71 -
7 -
s PRIMITIVE | /2
79 MEMORY ASSEMBLY
CONTROLLER | 73
80
e RASTERIZATION|/*
DISPLAY 81 ENGINE
CONTROLLER
<75
83 '
84 82
DISPLAY : MEMORY
FIG. 4A

LG Ex. 1002, pg 56

EP 2

299 408 A2

INDICES
61
Ve
VERTEX VERTEX | |TOMuX
FETCH CACHE
FIG. 4B
/ /
“ 1A - “61B
FROM MUX MEMORY
9
865 /9 67
0 INSTRUGTION |J°°
: 02 STORE
)
~69A
o1
& CONSTANTS I/]
-
94 /
109
[95 197
SOURCE A SOURCE B SOURCE C
o3 [
[BA
v,
CPU
56T (SCALER)
\.,
101
\-85

FIG. 5

10

LG Ex. 1002, pg 57

EP 2 309 460 A1

(1 9) Europiisches

Patentamt
European
Patent Office
Office européen

des brevets

1) EP 2 309 460 A1

(12) EUROPEAN PATENT APPLICATION

{43) Date of publication:
13.04.2011 Bulletin 2011/15

{21) Application number: 10075688.1

{(22) Date of filing: 19.11.2004

(51) Int Cl:

GO6T 15/00(2011.01) GO6T 15/802011.01)

{84) Designated Contracting States:
ATBEBG CH CY CZDE DK EEES FIFR GB GR
HUIEISITLILUMC NL PL PTRO SE SISKTR
Designated Extension States:
ALHRLT MK YU

(30) Priority: 20.11.2003 US 718318

{62) Document number(s) of the earlier application(s} in
accordance with Art. 76 EPC:
04798938.9 /1 706 847

{71) Applicant: ATl Technologies ULC
Markham, Ontario L3T 7X6 (CA)

{72) Inventors:
¢ Morein, Steven
Cambridge, Massachusetts 02139 (US)

¢ Lefebvre, Laurent
Lachenale J6W BAS (CA)
¢ Gruber, Andy
Arlington, Massachusetts 02476 (US)
¢ Skende, Andi
Shrewsbury, Massachusetts 01545 (US)

(74) Representative: Waldren, Robin Michael

Marks & Clerk LLP
90 Long Acre
London

WC2E 9RA (GB)

Remarks:

This application was filed on 01-10-2010 as a
divisional application to the application mentioned
under INID code 62.

{54) A graphics processing architecture employing a unified shader

(57) A graphics processor, comprising: an arbiter cir-
cuit for selecting one of a plurality of inputs in response
to a control signal; a shader, coupled to the arbiter circuit,
operative to process the selected one of the plurality of
inputs, the shader including means for performing vertex
operations and pixel operations, and performing one of
the vertex operations or pixel operations based on the
selected one of the plurality of inputs, wherein the shader

r-v12

provides a appearance attribute; a vertex storage block
for maintaining vertex information; wherein the vertex
storage block further includes a parameter cache oper-
ative to maintain appearance attribute data for a corre-
sponding vertex and a position cache operative to main-
tain position data for a corresponding vertex; and wherein
the appearance attribute is color, and the color is asso-
ciated with a corresponding pixel when the selected one
of the plurality inputs is pixel data.

10

14 8
OBJECT f
SHAPE 16
GOLOR——C18—— .
TEXTURE SHADER &y 2)
DATA 20
LUMIN."ANCE———L—22
VIEWING
ANGLE
FIG. 1
(PRIOR ART)

Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 58

1 EP 2 309 460 A1 2

Description
FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
object thatis rendered to a corresponding display for sub-
sequent viewing.

[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn cn a screen, or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10
can berepresented as a processing block 12 thataccepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (18); texture infor-
mation (18); luminance informaticn (20); and viewing an-
gle information (22} and provides output data (28) rep-
resenting the object with texture and other appearance
properties applied thereto (x', y’, Z').

[0004] Inexemplary fashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ {FIG. 2B} as an ocutput. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix toc the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,
vertices Vy, Vy and V7, among others of cube 30 and
providing angularly oriented vertices Vy,Vy and V5, in-
cluding any appearance attributes of corresponding cube
30.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shader provides the color value associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

io

15

20

25

30

35

40

45

50

55

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.

[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shader and the pixel shader are juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, thereis a need for an improved graphics
processor employing a shader that is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative tc process
the selected one of the plurality of inputs, the shader in-
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.

[0009] The shaderincludes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencer for storing logical and arithmetic instructions
that are used tc perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader of the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi-shader processor architecture.

[0010] In addition, according tc the present invention,
the unified shader is more computationally efficient be-
cause it allows the shader to be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 59

3 EP 2 309 460 A1 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1is a schematic block diagram of a conventional
shader;

FIGS. 2A-2B are graphical representations of the op-
erations performed by the shader illustrated in FIG.
1;

FI1G. 3is a schematic block diagram of a conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in-
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodiment of the presentinven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex
cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to
a vertex shader 46 on line 45. As discussed above, an
example of the information that is requested by and trans-
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color}, texture information, and
viewing angle. Generally, the vertex shader 46 is a pro-
grammakble mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operaticn,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-
tained therein to a primitive assembly block 50 on line

io

15

20

25

30

35

40

45

50

55

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57" and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the
pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com-
bined with a base coler, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearance attribute present online 59 is then transmit-
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall
footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu-
taticnal efficiency.

[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo-
lated pixel parameter {e.g. position} data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 83. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input of the mul-
tiplexer 86 is transmitted to the unified shader 62 on line
65 if there is encugh resources available in the unified
shader to operate on the vertex data; otherwise, the in-
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.

[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 60

5 EP 2 309 460 A1 6

62 willnowbe described. Asillustrated, the unified shader
62 includes a general purpose register block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 86 and a sequencer 89. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the infoermation transmitted
from the multiplexer 66 online 65 or any other information
to be maintained within the unified shader. The data
present in the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e. personal com-
puter}. In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-
erations as well as a complete series of logical operations
on corresponding operands. As shown, the processoris
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-
tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-
er 62 to fetch texture and cther types of data, from mem-
ory 82 (FIG. 4A). In operaticn, the sequencer 92 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic orlogical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the nextinstruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purposeregisterblock 92 intc the appropriate source reg-
isters (93, 85, 97) for execution, and anappropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

io

15

20

25

30

35

40

45

50

55

line 85 may be transmitted back to the general purpose
register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.

[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operatiocns, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on datainthe context of a graph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additicnal processes that conventicnal vertex shad-
ers cannot perform; while at the same time, perform pixel
operations.

[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 82
from multiplexer 66. The instruction store 98 then passes
the correspending control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available spacetherein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this
manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 82, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which
accepts the pixel based cutput of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block
70 into a series of triangles, or other suitable primitives,
forfurther processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 online 75.

LG Ex. 1002, pg 61

7 EP 2 309 460 A1 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. the infor-
mation from the render back end 76 is then transmitted
to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, shown therein is a
vertex block 81 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment of the presentinvention. The
vertex block 61 includes a vertex fetch block 61A which
isresponsible for retrieving vertexinformation frommem-
ory 82, ifrequested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored
inthe vertex cache 61 B comprises the vertexinformation
that is coupled to the first input of multiplexer 6.
[0026] Asdiscussedabove, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this
fashion, the graphics processor 60 of the presentinven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In additicn, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon ancther
type of data operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventicnal graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposes of illustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. A graphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; a shader, coupled to the arbiter
circuit, operative to process the selected one of the
plurality of inputs, the shader including means for
performing vertex operations and pixel operations,

io

15

20

25

30

35

40

45

50

55

and performing one of the vertex operations or pixel
operations based on the selected one of the plurality
ofinputs, wherein the shader provides a appearance
attribute; a vertex storage block for maintaining ver-
tex information; wherein the vertex storage block fur-
ther includes a parameter cache operative to main-
tain appearance attribute data for a corresponding
vertex and a position cache operative to maintain
position data for a corresponding vertex; and where-
in the appearance attribute is color, and the color is
associated with a corresponding pixel when the se-
lected one of the plurality inputs is pixel data.

The graphics processor of claim 1 wherein the ap-
pearance attribute is position, and the position at-
tribute is associated with a corresponding vertex
when the selected one of the plurality of inputs is
vertex data.

LG Ex. 1002, pg 62

EP 2 309 460 A1

(LYY ¥ORId)
I "9l

FIONV

[] onmai

[£A

IU‘IMOZ(Z_ED._
02

viva

(2 A'%) HIAVHS Eu EL C
o J"w_o._oo
8l

AeVHS

- llulkomao
Zl L

LG Ex. 1002, pg 63

EP 2 309 460 A1

30e
vy, €/
v, : _
., Jaof
.\‘
i
30a
30e
v, \30b
FIG. 2A
(PRIOR ART)
e /‘ 30a" VY,
30t
Vy'
FIG. 2B
(PRIOR ART)

LG Ex. 1002, pg 64

EP 2 309 460 A1

s 57
MEMORY T MALF"RE
»-41 <
/ -
VERTEX FETCH V-CACHE
<42 _ 45
VERTEX VERTEX |4
SHADER 7‘ STORE
a6
47 | 49
PRIMITIVE |50
’ ASSEMBLY
40
|51
"RASTERIZATION | 52 -
ENGINE -
. 53]
TO
i <—£5—— PIXEL
| . SHADER
FROM TEXTURE 54~
57~ | CACHE [58~
56~ -
)
FIG. 3 POST RASTER
PROCESSING

(PRIOR ART)

LG Ex. 1002, pg 65

EP 2 309 460 A1

INDICES
ARBITER ?_—MUX / &6
—7 B
64 —-—65 62 .
- 87
L~ T0MEMORY
UNIFIED 68
SHADER TEXTORE MEMORY
60 | VERTEX | g F DATA.
= B69A CACHE
i85
76 PARAMETER P 2
£ CACHE 70
RENDER ¥
BACK
END POSITION P =
CACHE
| 77
78 =i i
7 PRIMITVE | /2
79 MEMORY ASSEMBLY
CONTROLLER
73
)
£ RASTERIZATION|/*
DISPLAY | 51 ENGINE
CONTROLLER
_ 75
83— -84 B2
DISPLAY - MEMORY
FIG. 4A

LG Ex. 1002, pg 66

EP 2 309 460 A1

INDICES

61
yd
VERTEX VERTEX TO MUX
FETCH CAGCHE 3
FIG. 4B
/ /[
N 1A - “g1B
FROM MUX MI;EEMr%iY
9
1155 2 67
0 INSTRUCTION }9 8
- az STORE
)
69A
a1
53 CONSTANTS ,
~eq J
08
| 95 | o7
SOURCE A SOURCE B SOURCEC
93
| 95A
CPU
g6 T (SCALER)
~101

~85

FIG. 5 ksz

10

LG Ex. 1002, pg 67

EP 2 309 460 A1

uropsisches
European I
0) e EUROPEAN SEARCH REPORT APPlioation Number

des brevets

EPO FORM 1503 03.82 (Po4C01) M

EP 10 07 5688

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Gitation of document with indication, where appropriate,

of relevant passages

Relevant
o claim

CLASSIFICATION OF THE
APPLICATION (IPC)

A

US 20037164830 AL (KENT OSMAN)

4 September 2003 (2003-09-04)

* abstract; figures 1A,1B,1C,1D *

* paragraphs [0006], [0007], [0012] *
* paragraphs [0079], [0091] - [0095],
[0162], [0154] - [P15%6], [0170] *

US 6 417 858 Bl (BOSCH DEREK ET AL)
July 2002 (2002-07-09)

abstract; figures 2,3,4,5 *

column 3, lines 22-32 *

column 8, 1ine 47 - line 61 *

column 9, line 10 - line 21; claim 24 *

* ¥ ¥ ¥0O

US 6 353 439 Bl (LINDHOLM JOHN ERIK ET AL}
5 March 2002 (2002-93-05)

* column 8, lines 22-53; figures
1B,2B,4,4B *

BRETERNITZ M ET AL: "Compilation,
architectural support,and evaluation of
SIMD graphics pipeline pregrams on &
general -purpaose CPU",

27 September 2003 (2003-09-27), PARALLEL
ARCHITECTURES AND COMPILATION TECHNIQUES,
2003. PACT 2003. PROCEEDINGS. 12TH
INTERMATIONAL CONFERENCE ON 27 SEPT. - 1
OCT. 2003, PISCATAWAY, NJ, USA,IEEE,
PAGE(S) 135-145, XP0l0P662182,

ISBN: ©-7695-2021-9

* page 1 - page 3; figures 1,2 *

-/--

The present search report has been drawn up for all claims

1,2

INV.
GO6T15/00
GO6T15/80

TECHNICAL FIELDS
SEARCHED (IPC)

Ga6T

Place of search Date of completion of the search

Munich 25 February 2011

Meinl, Wolfgang

Examiner

CATEGORY OF CITED DOCUMENTS

T : theary or principle underlying the invention

X : partisularly relevant if talen alone

Y : particularly relevant if combined with another
dooument of the aame oategory

A : technological background

Q : non-written disclosure

P : intermediate document

E : earlier patent document, but published on, or
after the filing date

D : dooument oited in the application

L : daoument oited for other reasons

& : member of the same patent family, corresponding
document

11

LG Ex. 1002, pg 68

EP 2 309 460 A1

des

Europiisches
Patentamt

European

Patent Office

ce curopéen
brevets

%)

EPO FORM 1502 03.82 (PO4C0O1)

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 10 D7 5688

Categary

Gitation of document with indication, where appropriate,
of relevant passages

Relevant
to claim

CLASSIFICATION OF THE
APPLICATION (IPC)

A

OWENS J D ET AL: "POLYGON RENDERING ON A
STREAM ARCHITECTURE",

PROCEEDINGS 2000 SIGGRAPH/EUROGRAPHICS
WORKSHOP ON GRAPHICS HARDWARE. INTERLAKEN,
SWITZERLAND, AUG. 21 - 22, 2000; [SIGGRAPH
/ EUROGRAPHICS WORKSHOP ON GRAPHICS
HARDWARE], NEW YORK, NY : ACM, US,

21 August 2000 (2000-08-21), pages 23-32,
XPoo0964471,

DOI: DOI:10.1145/346876.346883

ISBN: 978-1-58113-257-1

* abstract; figures 1,3 *

* Sections 2, 2.1, 2.2, 3. *

MARK W R ET AL: "Cg: a system for
programming graphics hardware in a C-like
language",

ACM TRANSACTIONS ON GRAPHICS ACM USA,

vol. 22, no. 3, July 2003 (2003-07), pages
896-907, XPD02624786,

ISSN: 0730-0301

* abstract; figure 2 *

* page 899, column 1, lines 17-50 *

The present search report has been drawn up for all claims

1,2

1,2

TECHNICAL FIELDS
SEARCHED (IPC)

Flacs of search Date of completion of the eearch

Munich 25 February 2011

Meinl, Wolfgang

Examiner

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone after the filing date

Y : partisularly ralsvant if combined with ancthar
cdocument cf the same category

A : technological background

© : non-written disclosure

P :intel

T : theory or principle underlying the invention
E : earlier patent dooument, but published on, or

D : document citad in the application
L : document cited for other reasons

rmediate dooument daosument

& : member of the same patent family, corresponding

12

LG Ex. 1002, pg 69

EPO FORM P0459

ANNEX TO THE EUROPEAN SEARCH REPORT

EP 2 309 460 A1

ON EUROPEAN PATENT APPLICATION NO.

EP 10 07 5688

This annex lists the patent family members relating to the patent documents cited in the above-mentiened European search repert.
The members are as containsd in the Europsan Patent Office EDP fils on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-02-2011
e =
US 2003164830 Al 04-09-2003 NONE
e Bl sioroe wewe T
T

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

13

LG Ex. 1002, pg 70

EP 2296 116 A2

(19)

Europilsches
Patentamt

European

Patent Office

Office européen
des brevets

(12)

(43) Date of publication:
16.03.2011 Bulletin 2011/11

(21) Application number: 10075686.5

(22) Date of filing: 19.11.2004

(81

LT

(11) EP 2 296 116 A2

EUROPEAN PATENT APPLICATION

Int Cl.:
GO6T 15/00 (2011.07)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HUIE IS IT LI LU MC NL PL PT RO SE SISK TR
Designated Extension States:
AL HRLT MK YU

(30) Priority: 20.11.2003 US 718318

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
04798938.9 /1 706 847

(71) Applicant: ATl Technologies Inc.
Markham,
Ontario L3T 7X6 (CA)

(72) Inventors:
* Morein, Steven
Cambridge, Massachusetts 02139 (US)

(74)

Lefebvre, Laurent

Lachenaie, Quebec J6W 6A5 (CA)
Gruber, Andy

Arlington, Massachusetts 02476 (US)
Skende, Andi

Shrewsbury, Massachusetts 01545 (US)

Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre

London

WC2E 9RA (GB)

Remarks:

This application was filed on 01-10-2010 as a
divisional application to the application mentioned
under INID code 62.

(54)

(567) A method comprising:

performing vertex manipulation operations and pixel ma-
nipulation operations by transmitting vertex datatoa gen-
eral purpose register block, and performing vertex oper-
ations on the vertex data by a processor unless the gen-
eral purpose register block does not have enough avail-
able space therein to store incoming vertex data; and
continuing pixel calculation operations that are to be or
are currently being performed by the processor based
on instructions maintained in an instruction store until
enough registers within the general purpose register
block become available.

A graphics processing architecture employing a unified shader

INDICES
66
| %10 Memory
UNIFIED 58 MEMORY
SHADER TEXTURE| 5~
& T VERTEX [gp [DATA
69A CACHE
|85
76 PARAMETER 70A
— CACHE 70
RENDER 4
BACK 0B
END POSITION
CACHE
|77
7
8
PRIMITIVE
9 MEMORY ASSEMBLY
CONTROLLER 7a
% RASTERIZATION|/*
DISPLAY 1 ENGINE
CONTROLLER
T 75
- .
e 82
DISPLAY MEMORY
FIG. 4A

Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 71

1 EP 2 296 116 A2 2

Description
FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Colorand texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
objectthatis rendered to a corresponding display for sub-
sequent viewing.

[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10
can be represented as a processing block 12 thataccepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance
properties applied thereto (x', y’, Z').

[0004] Inexemplaryfashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,
vertices Vy, Vy and V, among others of cube 30 and
providing angularly oriented vertices Vy., Vy: and Vz, in-
cluding any appearance attributes of corresponding cube
30'.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shaderis also used when
generating an object for display. Generally, the pixel
shader provides the color value associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

10

16

20

25

30

35

40

45

50

55

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.

[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shader and the pixel shader are juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader that is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in-
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.

[0009] The shaderincludesageneral purpose register
block for storing at least the plurality of selected inputs,
asequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader of the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi-shader processor architecture.

[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
cause it allows the shader to be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 72

3 EP 2 296 116 A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1is a schematic block diagram of a conventional
shader;

FIGS. 2A-2B are graphical representations of the op-
erations performed by the shader illustrated in FIG.
1

FIG. 3is a schematic block diagram of a conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in-
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodiment of the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex
cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to
a vertex shader 46 on line 45. As discussed above, an
example of the information that is requested by and trans-
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-
tained therein to a primitive assembly block 50 on line

10

16

20

25

30

35

40

45

50

55

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the
pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit-
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall
footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu-
tational efficiency.

[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo-
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in-
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.

[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 73

5 EP 2 296 116 A2 6

62 willnow be described. Asillustrated, the unified shader
62 includes a general purpose register block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data
presentin the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-
erations as well as a complete series of logical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-
tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-
er 62 to fetch texture and other types of data, from mem-
ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] Ifthe nextinstruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97) for execution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

10

16

20

25

30

35

40

45

50

55

line 85 may be transmitted back to the general purpose
register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.

[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixelshading operations on data in the context of agraph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the same time, perform pixel
operations.

[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control sighals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this
manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information presentin the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block
70 into a series of triangles, or other suitable primitives,
for further processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 online 75.

LG Ex. 1002, pg 74

7 EP 2 296 116 A2 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76 is then transmitted
to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment of the presentinvention. The
vertex block 61 includes a vertex fetch block 61A which
isresponsible for retrieving vertex information from mem-
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored
inthe vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this
fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type of data operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposes of illustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. A method comprising:
performing vertex manipulation operations and
pixel manipulation operations by transmitting

vertex data to a general purpose register block,
and performing vertex operations on the vertex

10

16

20

25

30

35

40

45

50

55

data by a processor unless the general purpose
register block does not have enough available
space therein to store incoming vertex data; and
continuing pixel calculation operations that are
to be or are currently being performed by the
processor based on instructions maintained in
an instruction store until enough registers within
the general purpose register block become
available.

2. A unified shader, comprising:

a general purpose register block for maintaining
data;
a processor unit operative to:

perform vertex manipulation operations and
pixel manipulation operations by transmit-
ting vertex data to a general purpose regis-
ter block, and perform vertex operations on
the vertex data unless the general purpose
register block does not have enough avail-
able space therein to store incoming vertex
data and continue pixel calculation opera-
tions that are to be or are currently being
performed based on instructions main-
tained in an instruction store until enough
registers withinthe general purpose register
block become available.

LG Ex. 1002, pg 75

EP 2 296 116 A2

(LYv yoRid)
} "Old

31ONY

| Nmu ONIMIIA
|||u||.moz<z__>_3
0z

viva

(2'A'%) Y3IAQVHS ol] 3unixaL
Jl' d0700
9L

AdVHS

gz i J 1o3rao
2

LG Ex. 1002, pg 76

EP 2 296 116 A2

Va Y 30

30
e “ (/
VZ
‘\\ ‘ J30f
/
30a
30e
v, \30b
FIG. 2A
(PRIOR ART)
V.r f 30a” v,
30"
V'
FIG. 2B
(PRIOR ART)

LG Ex. 1002, pg 77

EP 2 296 116 A2

MEMORY TEMAP: TURE
—41 3
w A"
/4 44
VERTEX FETCH V-CACHE /
T
42 L_ 45
VERTEX VERTEX |48
SHADER 7’ STORE
\-46
47 - 49
PRIMITIVE |50

ASSEMBLY

51

'RASTERIZATION | 52
ENGINE -
. 53]
TO
57 — PIXEL
. . SHADER
FROM TEXTURE 54/
5777 | CACHE | 58”7/
56—/
59
d
FIG. 3 POST RASTER
ESS
(PRIOR ART) PROCESSING

LG Ex. 1002, pg 78

EP 2 296 116 A2

INDICES
ARBITER 7\ MUX /66
—7 63
o —5 62 n
£ 67
. ~°" <To MEMORY
UNIFIED 58 ME
SHADER TEXTUREL 5V MORY
. VERTEX | g [DATA
69A CACHE
85
76 PARAMETER | O
L CACHE 70
RENDER 4
BACK 0B
END POSITION P
CACHE
77
78 ik 7
c PRIMITIVE | /2
79 MEMORY ASSEMBLY
CONTROLLER
73
80
’ RASTERIZATION| 7
DISPLAY 81 ENGINE
CONTROLLER
<75
83|
DISPLAY MEMORY
FIG. 4A

LG Ex. 1002, pg 79

EP 2 296 116 A2

INDICES
61
. £
VERTEX VERTEX TO MUX
FETCH CACHE
7 7 FIG. 4B
N61A - 618
FROM MUX MEMORY
99 FETCH
l/65 67
0 INSTRUCTION J9 8
- 02 STORE
J
~69A
91
63 CONSTANTS ,
04 J
A109
| 95 1 97
SOURCE A SOURCE B SOURCE C
o3 |
96A
¥,
CPU
CosT (SCALER)
~101
85

FIG. 5 Kez

10

LG Ex. 1002, pg 80

PATENT COOPERATION TREATY
PCT

INTERNATIONAL SEARCH REPORY

23554

FOT Adticle 18 and Rules 43 and $4)

ARPRCATS OF aRINYs S relarenge FOR FURTHER ——— " I
BH~47386 ACTION 55 wall g5, whers spnicatie, e 5 botow,

§ nternasionat aphication Noe, internatonal Ning date {daywimonthiyess; {Eariest) Prionily Tale {@ayimontivyean
FCT/¥B2002 /603821 18/11/2004 204312003
Appliaan SRR

ATT TECHROLNGEIRS, IRC

Trig imemations Rezend Muport has been prepared by Tis intemational Searohing Authadly ans is Sansmited o the appiteam
& copy s being ransmitiag o the ntemational Bursas,

This infervatiuned Saarch Repost covsists ol atotw of 4 sheels

@ 113 280 ACCOMPANISS Dy & topy of sach privr At document tited i this report.

1. Basie of e roposd

& Wi regad 10 1he leapuagy, he nmations! search was sanried ma on the basis of e Infematonal appiination in the
RgURgs I which ¥ was fied, uninss othareiss Naoaied undss this tam.

.

{1 The intersatonal sbarch was carvied st o a2 bashs of & bansiation of fe emstional spplication fmished ©
=T s Aeahonity (Rl 2L UM

&,)_5 With segand o any nucleslide andior aming arld sequance disciosad in his intemational sppication, ses B No.i.

&0 U1 Cotain olaims ware found snsearshable {Soe Box 1,

o

{1 unity of invention is laslsing (see Box i),

4. Vi g f e iy,
X1 the bt noprved 93 submited by the applicant,

7] oo tont has beas estusisted by s Authorty to read as fllows:

Yorrid

&,V regard 1w sbetvact,
(1 e Wxtis approved &g mibwited by the anplivant,
[et has boen sstasisted, acoording to Rule B8.3(}, by this Authorty s R appsans i Bax No, 1Y, The agsicant
oy, withiss o8 month Fom the date of maiing of his inlermationa! soarch report, BubMIt comments 16 BYs Suhority,
8. Wih ragard o S dravings,

& the Nguse o the drawinge 10 b¢ guttishet wilh the abstactis Figurs Ko, _ 8%

(R} ae suggesied by the applicant,
£ . .
L as selesied By e Authonily, badause the applicant lalled fo suggest a figure.

rrrog soron

§ - os seleoed by this Authortty, betause this Sgure beltar sharactenzes e invantion,
B L1 none ot the figures s 10 be published with e absteant,

{

LG Ex. 1002, pg 81

o INTERMATIONAL SEARCH REPORT

Wemrnainngt Appisetian Be

PCT/IR2B04 /003821

3 CIRESRCATIONGY T MATTER
IFC 7 SOETISA00

Aorovclig o Patens Classificalion (90} or to buth nasonal clsssifcation ang F°C
8. FIZLOS BEARGNED
i documeniation searched {dlassitivativn symiem ftwed dy classification syntoss

IFC 7 GoeY
g et SORAHOG HHReF T MY O 3 00 sRtet that Btk SOCUTONTS R Bioluded B The Tokis saarchatt
RROIMRIC R tans et Gurireg tha skt s&af:.i* ERRTR Of Rte DASQ A5d, wWherm preminel, senrol term sed)

EFG~-Internat, INSPEC

<. WU“EN?“ LONSISERED TO BE NELEVANT

Tategony © 1 £2aton of WoEners, wilh dicatiin, wherd |preuprisiy, of thw melevant paesages Fobuvan ivaaim Ne,

& 3184830 AL {XENT QEMAN) 1~13
“e&ber 2003 {2§§3—§9~8§3
?‘aah 0TS, CROSY - fO09RY,
P, TOIS4Y ~ OIBEY, QIO
B58% Bl {BOBCH DERER EY ALY 1428
802 f2362~é?—99;

Ting 47 « ling 61

Ying 10 ~ Yine 21; olaim 24

A U5 & 34
B July

3w 2’,‘
=
=3
(e RS R ¢] h:‘]

§ 383 439 By {i SBSGL& SOHN ERIK ET 8L 1430
‘3rcn EaﬁN {2002-03~08)
umpy 38, Yine 16 - Yine B8; figures
2

X
5
482

§

P {7
Lo £

e fomen

E ¥ % Furthes Sochments are fisted I s aorinuation of box &, ¥ 1 Petent fard ramders e aied it sanex.

L A T
Seacial categurien ot oo dorumnts > ia&fmmmiwlxmdﬁﬁaﬂm ntornatiomal fing shate

88 s st oithe s wideh I8 nad gﬁ;ﬂﬂgﬁ\- dale and -g;eﬁ mﬁ&:&mﬁ spidication g;i
PR M ke mmm | .
e ?&_ﬁer dm.m‘ﬂt Bt pubiinhing on oy aﬂe* ihe imarnatione oxr e oinimed vt
Hing et e o vl o Saniot be consdensd fo
A "*c:;#r‘m‘ :«N?a mggx{r;vg:&wr ‘;m proqy samisyor inesdes g Braeniive slep whes fie doctiman B tekee skans
5 o e putiioation date o ancifier "y gosuvosnt of poaniuias telvance; e iekted wenion
cHafiin oF SN pecEl eRon {85 Specied; feovReRtey mpggw 10 fvolie 8B vesiive. step whsa the
REgE ST m‘\‘mng o a0 orRi discionin, use, sxhitlion ot Sraument & pombdnesd with ORe 7 NS SRS BIER Bt
offes 10 fnents, surd onvubination babng obviows i & Rrenon idled
© grouman sa_msm geics b the internationst Sing date but & tha 2
Wiar thah he psiy 8o alshnasd 8¢ gucumnt meimber of B seme palant famtly
Db of the sk oot SHDR Wk S SeRrol Daty of makieg of the flematirnal @anh rpos
& g 5 3
2 March 2008 22/83/2008
Name xad swing o 3) Auitsoriond offiver
£ \apea» Fratent (:N:s P8 538 Patantiaan @
2. MV
Tk \ﬂ‘ -¥03 mea Tr, 33 Gt apom, 3
Fom R 1705 3403018 Tibaux, ¥

Foem FCTATAR I fsetonad sty 4 SRy ARG

page 1 of 2

LG Ex. 1002, pg 82

[5C

INTERRATIONAL SEARCH REPORY

istacnatieant Appicstien Ko

FOTSIRo0B4/ 003821

Cilantinustion) DUCUENTS CIMNDERED YO 88 AELEVANY

Celegary

Qson of ity incheat

where e, Of the relsvant jaskages

Rshowant 1o 1328n M

&

BRETERNITZ M EY AL: “Compilation,

grchitectural sypport,and evaluation of

SIKD graphics pipeling programs on 3

general-purpase CRYS

27 Ssplember 2003 {2003-08-273, PARALLEL

ARCHITECTURES AND COMPILATION TECHNIGUES,

SOD3. PACT 2B03, PROCEEDINGS. 12TH

IBTERNATIONAL CONFURENCE ON 27 SEPY. - 1

QUY. 2003, PISCATANAY, NJ, USK IEEE,

PAGE{S} 135-148 | XPO10BE2182

TERN: D-T7HRR-2021-%

page 2, Tsfi-hand column, paragraph 4 ~
3, right~hand oolumn, paragraph 4§

page s,

~28

P

Foan KITABRIELR

¥ 2008}

on o et et}

page 2 a¥f 2

LG Ex. 1002, pg 83

~erevige.

INTERNATIONAL SEARCH RRPORT

Intormation on patent amilly members

Inievndtivasl Appleatden Ne

FOTAIB2004/ 003821

Patert dogument Eublivation Patent farily Fubfination

citen Y seRroh et dase member{s} ol

US 2003164830 AL 04~09-2003 NONE

Us 8417858 8l 09-07-2002 NONE

U3 6353438 Bl U5~03-2002 U8 6198488 81 06~03-2001
AU 1348501 A 12~08-2001
CA 2382371 Al §7-06-2001
£r 1261938 Al (4~12-2002
JF - 20035158851 1 07 ~U5-2003
WO (141068 AL QF-086-2001
S 2003112246 Al 19-06-2003
s ZO0I0I7826 AL 30082001
us 6844880 B2 18- 2005
AU 2064501 A 32-~06~2001
CA 2382370 Al 7-06~3001
£p 1238371 &1 13~08-2002
P 2003516883 71 §7-08-2003
WO 0141072 Al OT-08~-2001
s 2002196359 A1 &§~12~-2002
U§ 2002180740 Al 98~12~2002
U5 2003112248 Al 18-86-2003
us 2003193054 Al S&-06-2003
US 200318856k Al {8-10-2003
U3 6452598 &1 3F-GR-2002
us £342888 B1 29012002
Us 2001005209 AL 28~-06-2001
Uz 2002108519 AL 08~08-2002
US 2003103050 Al 5052003
Us 2802027853 AL {3-03-2002
U5 2002047848 A 5~04-2002

Form FOTRBMYD fputert tanily wias] {drmiry By

LG Ex. 1002, pg 84

PATENY COOPERATION TREATY

Feoe the
INTERNATIONAL SEARCHING AUTHORITY

To: | PCT

e BT AD WRITTEN OPINION OF THE
SR Tonn PUTASARZD INTERNATIONAL SEARCHING AUTHORITY

{POT Rulp 43bis. 1)

Deate of malliog
fapdnoniiear 500 form POTASALS Seanad shes

Apgsicants or agent's e reference) FOR FURTHER ACTION

seg forey POTASARRE San pasagraph 2 below

intornation apptcation Ne, interrationat fitng Wt (apAnoniESAT Prinity date (dayinanibeen
POTAB2GR4D382Y 18.11.2004 20.11. 2008

Intermational Fatent Sisenticaters (P07} or ot natenat dlassiication and 196 '

SOETISNG

Spplicent)

ATETECHNOLQGIES NC

=y

This opinion containg indications relating lo the Sollowing ftems:

& Boxdes Basls of the apinias

I3 sox v Peiorky

{3 BogxNo i Noreastablishmast of opision with regard o novelly, iovestive step and industsial sppicability
Hox Mo, 1 Lack of unity of ivention

BaxNo. ¥ Reasonad statement unter Bule 43bis. {2}l with regas o ncvelty, inventive step or industrial
applicabiity; chations and explanations suppotiing such stalernan

{3 Box Mo Vi Cortain dapurkents cited
{3 Box Mo, Vi Cenain defecis b the international application
LY BoxNo. VL Certain observatinns on the intemational sppination

2. FURTHER ACTION

&

¥ a demand for infomationsl preliminary examination i3 made, s opinion will usually be considersd lo be &
weitten opirinn of e Internationad Palidny Examining Authority CIPER", Howeves, this does not apsly where
the appliivant chooses an Authorily other thas this one to be the IFEA and the chosen IPEA tas sotiferd the
internafional Buresu under Rule 58, 14ds(b) that wiitien opinlons o ihls internaional Searching &utharity

Wit not e s sonsidersd.

¥ihis apinion is, as provided sbove, wonsidered fo be & wilten spinion of tha IPES, the appticant is ovited o
subml ¢ the IPEA 8 writion meply logether, whers spproprale, with amendments, before the expiration of tivee
monthe from the dite of malling of Form POTASARE0 or befors the expiration of 22 manths from the priorily dale,
witichever sapiras ladar

For further aptinss, ses Form POTISARES.

(3. Forhuther detalis, ase antes fo Form POTASARSE.

Nawve sndf maifing eddsens of the 184 Authorized Gfftoer
e j@“"*%:’:- .
Europaas Fatent Offcs : g%} %%
A cacves s Tibatx, M 9
s TobooAD 88 2393 -0 Ty S2R65S eprau o % vé-»*‘& &
Fox: o 8% 298 - 4455 Telaphone Ne. 40 8F 339926858 Mot s

Form (POTARARIT) {Cover Sheat) {danury 2004}

LG Ex. 1002, pg 85

WRITTEN OFINION OF THE international appiication No.
INTERMATIONAL SEARCHING AUTHORITY PETIBRR00400382¢

Box No.{ Sasis of the opinion

1. Wih regard 1o the language, this opinion has been established on the basis of the iblomnationa! appiication i
the language Wowhich § was Hisd, unless otherwise indicated under this #em.

L4 This opindon has been established on the basis of a translation from the origing! fanguage into the fullowing
fanguage . winch is the language of 2 fransistion furnished for the purposes of ilervational search
{under Rules 12.3 and 233, 1b)

<. -With regand o any suclestide andor amino acld sequence disciosed in the international application and
nogessany W e olaimed invention, this opinion has bien sslablished on the basis of

a. Wype of matsial
3 table{s) relaled o the saquance listing
b. format of material
£ in written format
3 o computer meadable fore
<. time of Hlingdurmishing:
1 conained i the international application as Hod,
£ #ied togather with the interrational application in computer readable form.
3 fumished subsequently to this Authority for the purposes of search,

& 0 in addition, inihe vase that more than ane version or copy of 4 seqpencs iisting andior table refaing thereto
has been filed or lurnished, the required statemonts that the information In the subsequent or gaditional
capies is identical 1o that in the application as filed or does not go beyond the application as fHed, as
appropriate, weam henished,

4, Sdddinnal convvienia

Form PLTSSATIST {Sanuary 2004)

LG Ex. 1002, pg 86

WRITTEN OFINION QF THE internaticnal appiioation No,
INTERNATIONAL SEARCHING AUTHORITY PCTAB2004003821

T Box Np. ¥ Reasoned statement under Rule 4851, Ha)(h) with regard 10 novelty, inventive step or
industrial spplicabiiity; ciistions and explanations supporting such statemeant

1. Statemasyt

Movely (N} Yes: Glgims $-2p
ot Claims

inventive step {5} Yas: Olaims 136
No: Claims

ndusidal sppinaliite (&) Yes: Claims 320

M Claima

o

. etathons and explanations

5o separsie shesl

Form POTISASIT {Sanvary $004}

LG Ex. 1002, pg 87

WRITTEN OPIRION OF THE international application No.
INTERNMATIONAL SEARCHING
AUTHORITV (SEPARATE SHEEN POTAR2004/003821

Re em V.

The Ioliowing documenis are referred to in this communication:

01 UR 2003/154B30 A1 {(KENT OSMAN) 4 September 2003 (2003-08-04)

D20 US-B1-5 417 858 (BOSCH DEREK ET AL} & July 2002 (2002-07-08)

D30 US-B1-6 353 438 (LINDHOLM JORN ERIK ET AL} § March 2002 {SO02-03-08)

D4 SRETERNITI M ET AL: "Compilation, architectural suppor,and evaluation of
SIMD graphics pipefing programs on a general-purpose OPLE 27 September
<003 {2003-08-27}, PARALLEL ARCHITECTURES AND COMPILATION
TECHNIQUES, 2003. PACT 2003. PROCEEDINGS. 12TH INTERNATIONAL
CONFERENGE ON 27 SEPT. - 1 OQCT. 2003, PISCATAWAY, NJ, USA IEEE,
FAGE(S) 135-148 , XPO10662182 ISBN: 0-7695-2021-8

2 Document D1, which is considered to represent the most relevant state of the art for
the subject-matier of claim 1, discloses the references In parentheses appiving to
this document) 8 graphics processor comprising & shader {"Shading Unil®, ses
paragraph 79} connected 10 a "Pixel Unit" by a private dala path. A “Verex Shadi ng
Unit” pedonms the vertex operations on the vertices entered in double butlersd inpaat
butfers in round robin fashion.

An arbiter {in the “Context Unit", see paragraph 102) selects one of a plurality of

R i~ B B

& B 2 B

Forey POTASAZET (Sopaate Shoed {Kheet 1) {ERO-damiary 20043

LG Ex. 1002, pg 88

WRITTEN OPINION OF THE ntemational spotication N,
INTERNATIONAL SEARCHING
AUTHORITY (SEPARATE SHEET) PLTAR004/003821

Sppe | vaen

7%

%

/2R ¢ s A & T e

R o

Form FOTABARSY (Sepevat Shoot) {Shwet 2) EPC-Jenuary 20043

LG Ex. 1002, pg 89

WRITTEN QFINION OF THE imemationa apphoation No.
INTERNATIONAL SEARCHING
AUTHORITY (SEPARATE SHEET) POTAB2004/003821

&

o IR T o

s B B

R B

BTN * A & S ¢ H

L SR G v

G

I ST SR N

Foom PUTABAZET {Separge Sheet) {Shem 3) (EPC-january 2004}

LG Ex. 1002, pg 90

WRITTEN OPINION OF THE intermatinnal appination No.
INTERNATIONAL SEARCHING
AUTHORITY (SEPARATE SHEET) i} PCTAB2004/003821

g e

LR S

R R R Rl R

5 NS B o

Farn POTASAIISY (Napamte Bhesll {Sheet 43 {EPO: Janwary 2004}

LG Ex. 1002, pg 91

WHRITTER OPINION OF THE international applioatinn Np,
INTERNATIONAL SEARCHING
AUTHORITY {SEPARATE SHEET) POTABR004/0036821

b B I T oA

322

e ok gy e

Form POTASAZT (Separsin Bhast) {Shem §) (EP0-Janvary 2004}

LG Ex. 1002, pg 92

WRITTEN OPINION OF THE intemational apptication Ne.
INTERNATIONAL SEARCHING
AUTHORITY (SEPARAYE SHEET PCTAB2004/003821

£ 0N T D D o

oo

RTINS < R o B o5 Sl S ¢ R <1

A J 4

@ oo ow o e

Form POTASARST {Separate Sheet) (Sheet) ERO-danuary 2004)

LG Ex. 1002, pg 93

AR

WRITTEN OPHINION OF THE Irfernational application Nao.
INTERNATIONAL SEARCHING
AUTHORITY (SEPARATE SHEET) 7 PCTABROO4/003821

From thig, the subject-matier of independent olaim { differs in that the shader
periarms both verlex operations and pixel aperations {performing one of the vertex
operalions of pixel operations based on a selected input), thus sonstituling a “unified
shader™ in the sense of the application and providing an appearance alirbuts.

21 The subject-matter of claim 1 i therefore novel {Article 33(8) PO

3 Document D2, which ts considered to represent the most relevant state of the art for
the subject-matter of claim 14, discloses {ihe references in parentheses appiving to

this dosumenty:

D2 disoloses a sequencer "main sequencer” 515) confroliing instructions for inter alla
the shader wit {380).

A similar system is disclosed in D3,

From ihis, the subject-matter of independent claim 1 giffers in that the sequenceris in
a unified shader in the sense of the application.

Foemy POTABAEAT (Sepavals Sheall (Shem THEPG-Janurry 2004}

LG Ex. 1002, pg 94

WRITTEN OPINION OF THE internationial spplication Mo,
INTERNATIONAL SEARCHING
AUTHORITY (SEPARATE SHEET) POTARZO04/003821

3.1 The sublect-matter of claim 14 is therefore novel (Article 33(2) PCT)

4 The problem to be solved by the present invention may he regarded as to design a
shader able to simultaneously perform vertex manipulations and pixe! manipulations
at various degrees of completion and o freely and quickly switch between the
program instructions for performing such operations.

4.1 The solution to this problem proposed in claims 1 and 14 of the present application is
considered 85 involving an inventive step (Articie 33(3) POT) becauss the available
priar arl isaches away from & unified shader performing vertex operations and pixel
sperations {performing one of the veriex operations or pixel operations based on a
selectad input) as claimed in claims 1 and 14, since the pror gt uses the vertes
shader and the pixgl shader in diffevent phases of & graphics operation algodthms
{sea 4 page 2, left-hand column, paragraph 4 - right-hand column, parageaph 3 and
focates them in different enlities (see D4 page 2 right-hand column Jast paragraph -
page 3. left-hand column, first paragraph).

5 Although claims 1 and 14 have been drafied as separaie independlent claims, they
appear 1o relale effeclively to the same subject-matter {unified shader) and to differ
fron each other only with regard to the definition of the subject-matier for which
profection is soughl. The aforementioned claims thersfore lack conciseness and ag
such do not meet the requitements of Aricle 8 PCT,

Form PUTASARST {Sepanie Sheet} {Shee 8} {EPO-Jantary 2004}

LG Ex. 1002, pg 95

Electronic Acknowledgement Receipt

EFS ID: 10516788
Application Number: 13109738
International Application Number:
Confirmation Number: 2020
Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
First Named Inventor/Applicant Name: Stephen Morein
Customer Number: 29153
Filer: Christopher J. Reckamp/Christine Wright
Filer Authorized By: Christopher J. Reckamp
Attorney Docket Number: 00100.36.0001
Receipt Date: 14-JUL-2011
Filing Date: 17-MAY-2011
Time Stamp: 10:53:09
Application Type: Utility under 35 USC 111(a)

Payment information:

Submitted with Payment no
File Listing:
Document .. . File Size(Bytes)/ Multi Pages
D t D t FileN f . .
Number ocument Description rie Name Message Digest | Part/.zip| (if appl.)
18220
1 Transmittal Letter 360001_IDSCoverSheet.pdf no 1
9d16005ch579bb43c005776d9¢540ch522|
Warnings:
Information:

LG Ex. 1002, pg 96

614273
Information Disclosure Statement (IDS)
2 360001_IDS.pdf no 8
Form (SBO8) - P
63418bb63ea68e1617a9a01ae9c60a8f6d7|
388c
Warnings:
Information:
246983
3 Foreign Reference EP2299408A2.pdf no 10
09f1ee596dd08ae098b8de90753cca7 1578
e874
Warnings:
Information:
328840
4 Foreign Reference EP2309460A1.pdf no 13
652151662ba7749073d0478aad 63179399
113ab
Warnings:
Information:
251856
5 Foreign Reference EP2296116A2.pdf no 10
3837df67af513987e35¢30ecd 59d833d5¢c)
767e
Warnings:
Information:
97607
6 Non Patent Literature NPL1.pdf no 3
48c81a430e79648900c23d28f2748cc808f3|
<064
Warnings:
Information:
1165150
7 Non Patent Literature NPL2.pdf no 12
a4a9767027a73f7b846165895994d405151
47e9d
Warnings:
Information:
862733
8 Non Patent Literature NPL3.pdf no 10
d8b6fc637196ac63024fdcad91205f2d4fa3
8e63
Warnings:
Information:
1641023
9 Non Patent Literature NPL4.pdf no 11
9a70a0366cch14a76cb08fa9239cfd5d4bal
Warnings:
Information:
795051
10 Non Patent Literature NPL5.pdf no 15
9e7a348ae054¢810318a669211fb8a8479fd]
foe2
Warnings:
Information:

LG Ex. 1002, pg 97

128778
11 Non Patent Literature NPL6.pdf no 3
5e72407f302a6fc732392€92519bdcefdad3)
e48e
Warnings:
Information:
85580
12 Non Patent Literature NPL7.pdf no 2
<80ba23171009ea917b5af1b38bb401073d
4334d
Warnings:
Information:
125523
13 Non Patent Literature NPL8.pdf no 3
30150629503 15b0fc5eee6fb58c9ef3457ce)
dee5
Warnings:
Information:
94932
14 Non Patent Literature NPL9.pdf no 2
103209cd7e559d624e99a1ca%eda5062b82)
dd118
Warnings:
Information:
1320776
15 Non Patent Literature NPL10.pdf no 12
08d008e350c1d039118d 16ea605cdb10b73]
cadea
Warnings:
Information:
27430
16 Non Patent Literature NPL12.pdf no 1
934b6429d64be53326e40de2alfefc12a21]
0043
Warnings:
Information:
95853
17 Non Patent Literature NPL13.pdf no 2
b97d9c1be4736¢1e004665027a211369d44]
eb22e
Warnings:
Information:
791431
18 Non Patent Literature NPL14.pdf no 13
e7424e47ecbdf946ad92946192b1b43afa3
Warnings:
Information:
1258222
19 Non Patent Literature NPL11.pdf no 10
9b87dd5¢1e49d6956277a8777615f14b724
dbbe4
Warnings:
Information:

LG Ex. 1002, pg 98

Total Files Size (in bytes):‘ 9950261

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for

an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

LG Ex. 1002, pg 99

PATENT APPLICATION
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Steven Morein et al. Examiner: na
Serial No.: 13/109,738 Art Unit: na
Filing Date: May 17,2011 Docket No.: 00100.36.0001

Confirmation No.: 2020
Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED
SHADER

INFORMATION DISCLOSURE STATEMENT
IN ACCORDANCE WITH 37 CFR §§ 1.97(b) AND 1.98

Pursuant to 37 CFR §§ 1.97(b)(3) and 1.98, Applicants respectfully submit Form
PTO/SB/08A. The submission of the listed document is not an admission that the information is
prior art, analogous or otherwise material. It is respectfully requested that the listed document be
considered and made of record in the present application.

Respectfully submitted,

Date: July 14,2011 By: /Christopher J. Reckamp/
Christopher J. Reckamp
Registration No. 34,414

Vedder Price P.C.

222 N. LaSalle Street
Chicago, IL 60601
(312) 609-7500

FAX: (312) 609-5005

CHICAGO/#2205021.1

LG Ex. 1002, pg 100

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O.Box 1450

Alexandria, Virginia 22313-1450

WWW.USpto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. CONFIRMATION NO. |
13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020
29153 7590 07/21/2011
ADVANCED MICRO DEVICES, INC. | EXAMINER |
C/O VEDDER PRICE P.C. WASHBURN, DANIEL C
222 N.LASALLE STREET
CHICAGO, IL 60601 | ART ONIT | parsNvBER |
2628
| MAIL DATE | DELIVERY MODE |
07/21/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

LG Ex. 1002, pg 101

Application No. Applicant(s)
13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
DANIEL WASHBURN 2628

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)X] Responsive to communication(s) filed on 17 May 2011.
2a)[] This action is FINAL. 2b)[X] This action is non-final.
3)[] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4K Claim(s) 1-16is/are pending in the application.

4a) Of the above claim(s) ______is/are withdrawn from consideration.
5] Claim(s) is/are allowed.
6)X] Claim(s) 1-16is/are rejected.
7)[J Claim(s) ____is/are objected to.
8)[] Claim(s) _____are subject to restriction and/or election requirement.

Application Papers

9)[] The specification is objected to by the Examiner.
10)X] The drawing(s) filed on 17 May 2011 is/are: a)[X] accepted or b)[] objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
1)[] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)[] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)[JAIl b)[] Some * ¢)[] None of:
1.[] Certified copies of the priority documents have been received.
2.0 Certified copies of the priority documents have been received in Application No.
3.[] Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)
1) x Notice of References Cited (PTO-892) 4) D Interview Summary (PTO-413)
2) [] Notice of Draftsperson’s Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. __
3) [Information Disclosure Statement(s) (PTO/SB/08) 5) [Notice of Informal Patent Application
Paper No(s)/Mail Date 6) D Other: ____
U.S. Patent and Trademark Office
PTOL-326 (Rev. 08-06) Office Action Summary Part of Paper No./Mail Date 20110712

LG Ex. 1002, pg 102

Application/Control Number: 13/109,738 Page 2
Art Unit: 2628

DETAILED ACTION
Claim Rejections - 35 USC § 102
The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351(a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by
Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by
transmitting vertex data to a general purpose register block, and performing vertex
operations on the vertex data by a processor unless the general purpose register block
does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to
operate on surface, primitive, vertex, fragment, pixel, sample or any other data. For
simplicity, the remainder of this description will use the term 'samples' to refer to
graphics data such as surfaces, primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities".

LG Ex. 1002, pg 103

Application/Control Number: 13/109,738 Page 3
Art Unit: 2628

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources such as locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel
manipulation operations by transmitting vertex data to a general purpose register block
(sample data, such as vertex or pixel data, is transmitted to Register File 350) and
performing vertex operations on the vertex data by a processor unless the general
purpose register block does not have enough available space therein to store incoming
vertex data (the multi-threaded processing unit 400 carries out vertex operations on
vertex data unless the Register File 350 doesn’t have enough room to store the
incoming vertex data, in which case the thread associated with the vertex data and
vertex operations must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction store

until enough registers within the general purpose register block become available (

LG Ex. 1002, pg 104

Application/Control Number: 13/109,738 Page 4
Art Unit: 2628

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on
thread execution priorities and outputs selected thread entries to Instruction Cache 410.
Instruction cache 410 determines if the program instructions corresponding to the
program counters and sample type included in the thread state data for each thread
entry are available in Instruction Cache 410 ... The program instructions corresponding
to the program counters from the one or more thread entries are output by Instruction
Cache 410 to ... Instruction Scheduler 430 ... Each clock cycle, Instruction Scheduler
430 evaluates whether any instruction within the IWU [instruction window unit] 435 can
be executed based on the availability of computation resources in an Execution Unit
470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing
pixel calculation operations that are to be or are currently being performed by the
processor based on instructions maintained in an instruction store until enough registers
within the general purpose register block become available, as the Execution Unit 470
may be carrying out calculations for one or more high priority pixel threads based on
instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex
thread is waiting for the one or more pixel threads to finish such that when the pixel
threads finish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amount of resources to

the queued up vertex thread).

LG Ex. 1002, pg 105

Application/Control Number: 13/109,738 Page 5
Art Unit: 2628

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources such as locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread.”);

a processor unit (FIG. 4 “Execution Unit 470" and “PCU 375");

a sequencer, coupled to the general purpose register block and the processor
unit, the sequencer maintaining instructions operative to cause the processor unit to
execute vertex calculation and pixel calculation operations on selected data maintained
in the general purpose register block (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."); and

wherein the processor unit executes instructions that generate a pixel color in
response to the selected one of the plurality of inputs and generates vertex position and
appearance data in response to a selected one of the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... and output
the processed sample to a destination specified by the instruction. The destination may
be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device

LG Ex. 1002, pg 106

Application/Control Number: 13/109,738 Page 6
Art Unit: 2628

coordinates ... Execution Pipelines 240 output processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260 ... Each Execution Pipeline 240 signals to
Pixel Input Buffer 240 when a sample can be accepted ... programmable computation
units (PCUs) within an Execution Pipeline 240 ... perform operations such as
tessellation, perspective correction, texture mapping, shading, blending, and the like.
Processed samples are output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

Thus, the Execution Unit 470 is considered a processor unit that executes
instructions that generate a pixel color in response to the selected one of the plurality of
inputs and generates vertex position and appearance data in response to a selected
one of the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel
calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processor unit operative to perform vertex calculation operations and pixel calculation

operations); and

LG Ex. 1002, pg 107

Application/Control Number: 13/109,738 Page 7
Art Unit: 2628

shared resources, operatively coupled to the processor unit (FIG. 4 illustrates
Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the
Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex data or
pixel information and operative to perform pixel calculation operations until enough
shared resources become available and then use the shared resources to perform
vertex calculation operations (7:37-43, all types of processing threads can use the
Register File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor unit will
allocate the pixel data to the Register File 350 and will perform pixel calculation
operations until enough shared resources become available in the Register File 350 to
begin carrying out vertex threads, which may happen as a result of a completion of most
of the pixel threads or a shift in priority such that the vertex threads now have the
highest priority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

LG Ex. 1002, pg 108

Application/Control Number: 13/109,738 Page 8
Art Unit: 2628

a processor unit operative to perform vertex calculation operations and pixel
calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operatively coupled to the processor unit (see the
corresponding section in the rejection of claim 3);

the processor unit operative to use the shared resources for either vertex data or
pixel information and operative to perform vertex calculation operations until enough
shared resources become available and then use the shared resources to perform pixel
calculation operations (7:37-43, all types of processing threads can use the Register
File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor unit will
allocate the vertex data to the Register File 350 and will perform vertex calculation
operations until enough shared resources become available in the Register File 350 to
begin carrying out pixel threads, which may happen as a result of a completion of most
of the vertex threads or a shift in priority such that the pixel threads now have the

highest priority, and then use the Register File 350 to perform pixel calculation

operations.

LG Ex. 1002, pg 109

Application/Control Number: 13/109,738 Page 9
Art Unit: 2628

RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470" and “PCU 375”);

a sequencer coupled to the processor unit, the sequencer maintaining
instructions operative to cause the processor unit to execute vertex calculation and pixel
calculation operations on selected data maintained in a store depending upon an
amount of space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively
considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining
instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amount of space available in the Register File 350).

LG Ex. 1002, pg 110

Application/Control Number: 13/109,738 Page 10
Art Unit: 2628

RE claim 6, Lindholm describes the shader of claim 5, wherein the sequencer
further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shader of claim 5, further including a
selection circuit operative to provide information to the store in response to a control
signal (

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide
information to the store (Register File 350) in response to a control signal, where the
control signal is the thread allocation priority associated with each thread or thread
type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the processor unit
executes instructions that generate a pixel color in response to the selected one of the
plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution Pipeline
240 ... Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample
can be accepted ... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations such as tessellation, perspective correction, texture
mapping, shading, blending, and the like. Processed samples are output from each
Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shader of claim 5, wherein the processor unit

executes vertex calculations while the pixel calculations are still in progress (

LG Ex. 1002, pg 111

Application/Control Number: 13/109,738 Page 11
Art Unit: 2628

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”).

RE claim 10, Lindholm describes the shader of claim 5, wherein the processor
unit generates vertex position and appearance data in response to a selected one of the
plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 output processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the control
signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic ... In an
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samples or allocate locations in Register File 350 using thread allocation
priorities based on an amount of sample data in Pixel Input Buffer 215 and another
amount of sample data in Vertex Input Buffer 220 ... In a further alternate embodiment,
Thread Control Unit 420 is configured to assign threads to source samples or allocate
locations in Register File 350 using thread allocation priorities based on graphics
primitive size”.

LG Ex. 1002, pg 112

Application/Control Number: 13/109,738 Page 12
Art Unit: 2628

Thus, while an arbiter isn't explicitly described, the Examiner considers it inherent
that some portion of the system acts as an arbiter, and therefore can be considered an
arbiter, as some portion of the system assigns priorities to thread and sample types
according to the current processing circumstances, in order to more efficiently process
the data).

RE claim 12, Lindholm describes a graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations
while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”).

RE claim 13, Lindholm describes the graphics processor of claim 12 wherein the
unified shader comprises a sequencer coupled to the processor unit, the sequencer
maintaining instructions operative to cause the processor unit to execute vertex
calculation and pixel calculation operations on selected data maintained in a store
depending upon an amount of space available in the store (see the corresponding
section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processor of claim 12 comprising

a vertex block operative to fetch vertex information from memory (see the rejection of

claim 6).

LG Ex. 1002, pg 113

Application/Control Number: 13/109,738 Page 13
Art Unit: 2628

RE claim 15, Lindholm describes a unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and
pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source
samples or allocate locations in Register File 350 using thread allocation priorities
based on an amount of sample data in Pixel Input Buffer 215 and another amount of
sample data in Vertex Input Buffer 220 ... In a further alternate embodiment, Thread
Control Unit 420 is configured to assign threads to source samples or allocate locations
in Register File 350 using thread allocation priorities based on graphics primitive size
(number of pixels or fragments included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an
instruction store and wherein the processor unit performs the vertex manipulation
operations and pixel manipulation operations at various degrees of completion based on
switching between instructions in the instruction store (FIG. 4 and 8:15-46 describes
Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and
pixel manipulation operations at various degrees of completion based on switching

between instructions in the instruction store).

LG Ex. 1002, pg 114

Application/Control Number: 13/109,738 Page 14
Art Unit: 2628

Conclusion

Any inquiry concerning this communication or earlier communications from the
examiner should be directed to DANIEL WASHBURN whose telephone number is
(571)272-5551. The examiner can normally be reached on 9:30 A.M. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s
supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone number for
the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the
Patent Application Information Retrieval (PAIR) system. Status information for
published applications may be obtained from either Private PAIR or Public PAIR.
Status information for unpublished applications is available through Private PAIR only.
For more information about the PAIR system, see http:/pair-direct.uspto.gov. Should
you have questions on access to the Private PAIR system, contact the Electronic
Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a
USPTO Customer Service Representative or access to the automated information
system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
7112111

LG Ex. 1002, pg 115

Application/Control No. Applicant(s)/Patent Under
Reexamination
)) 13/109,738 MOREIN ET AL.
Notice of References Cited . .
Examiner Art Unit
DANIEL WASHBURN 2628 Page 1 of 1
U.S. PATENT DOCUMENTS
* Document Number Date Name Classification
Country Code-Number-Kind Code MM-YYYY
* | A | US-7,038,685 05-2006 Lindholm, John Erik 345/501
B | US-
c | US-
D | US-
E | US-
F | US-
G | US-
H | US-
| | US-
J | US-
K | US-
L | US-
M | US-
FOREIGN PATENT DOCUMENTS
* Docum_ent Nurrlt?er ?ate Country Name Classification
Country Code-Number-Kind Code | MM-YYYY
N
O
P
Q
R
S
T
NON-PATENT DOCUMENTS
* Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
U
\Y
w
X
*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
U.S. Patent and Trademark Office
PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20110712

LG Ex. 1002, pg 116

Application/Control No.

Applicant(s)/Patent Under
Reexamination

Index of Claims 13109738 MOREIN ET AL.
Examiner Art Unit
DANIEL WASHBURN 2628
v Rejected - Cancelled N | Non-Elected A Appeal
= Allowed + Restricted I | Interference o) Objected
[Claims renumbered in the same order as presented by applicant O cpA O T.D. O R.1.47
CLAIM DATE
Final Original |07/12/2011
1 v
> v
3 v
4 v
5 v
6 v
7 v
8 v
9 v
10 %
11 v
12 v
13 4
14 v
15 v
16 %

U.S. Patent and Trademark Office

Part of Paper No. : 20110712

LG Ex. 1002, pg 117

Search Notes

Application/Control No.

Applicant(s)/Patent Under
Reexamination

13109738 MOREIN ET AL.
Examiner Art Unit
DANIEL WASHBURN 2628
SEARCHED
Class Subclass Date Examiner
345 501 7/12/11 DW
SEARCH NOTES
Search Notes Date Examiner
Searched EAST (all databases) see search history printout 7/12/11 DW
Also see search histories for apps 12/791,597 and 11/842,256 7/12/11 DW
conducted inventor name search 7/12/11 DW
INTERFERENCE SEARCH
Class Subclass Date Examiner

/DANIEL WASHBURN/

Primary Examiner.Art Unit 2628

U.S. Patent and Trademark Office

Part of Paper No. :

LG Ex. 1002, pg 118

Page 1 of 1

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginia 22313-1450

WWW.uspto.gov

BIB DATA SHEET
CONFIRMATION NO. 2020

SERIAL NUMBER | FILING or 371(c) CLASS GROUP ART UNIT [ATTORNEY DOCKET
13/109,738 05/17/2011 345 2628 00100.36.0001
RULE
APPLICANTS

Stephen Morein, Cambridge, MA;
Laurent Lefebvre, Lachgnaie, CANADA,;
Andy Gruber, Arlington, MA;

Andi Skende, Shrewsbury, MA;

** CONTINUING DATA
This application is a CON of 12/791,597 06/01/2010 ABN
which is a CON of 11/842,256 08/21/2007 ABN
which is a CON of 11/117,863 04/29/2005 PAT 7,327,369
which is a CON of 10/718,318 11/20/2003 PAT 6,897,871

*k FOREIGN APPLICATIONS kkdkkdkkkkdkkhkkhkkhkhhhhkhhkkhk
** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **

05/27/2011
Foreign Priority claimed U ves WNo STATEOR | SHEETS TOTAL |INDEPENDENT
35 USC 119(a-d) conditions met D Yes aNo D M%ﬁ:ﬁgs COUNTRY DRAWINGS CLAIMS CLAIMS
Verified and /lvaﬁgjll—FBLU%N/ MA 5 16 7
Acknowledged Examiner’s Signature Initials
ADDRESS

ADVANCED MICRO DEVICES, INC.
C/O VEDDER PRICE P.C.

222 N.LASALLE STREET
CHICAGO, IL 60601

UNITED STATES

TITLE
GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

|Q All Fees

|01.16 Fees (Filing)

FEES: Authority has been given in Paper |
FILING FEE i im
RECEIVED [No. to charge/credit DEPOSIT ACCOUNT ‘D 1.17 Fees (Processing Ext. of time) I

1970 |No. for following: |0 1.18 Fees (Issue)
‘D Other
|Q Credit

BIB (Rev. 05/07).

LG Ex. 1002, pg 119

EAST Search History

EAST Search History

EAST Search History (Prior Art)

DBs

Default

Plurals {Time Stamp

‘Ref |Hits Search Query
Operator
L1 1 ("7038685").PN. iUS-PGPUB; OR OFF 2011/07/12
USPAT; USOCR 13:27
L2 1217 {345/501.ccls. US-PGPUB; OR ON 2011/07/12
§ USPAT; USOCR; 13:29
FPRS; EPO;
JPO; DERWENT;
IBM_TDB

EAST Search History (I nterference)

< This search history is empty>

7/12/2011 1:53:40 PM
C:\ Documents and Settings\ dwashburn1\ My Documents\ EAST\ Workspaces\ Morein
etal. 11117863.wsp

file:///Cl/Documents%20and %20Settings/dwashburn1/My %20Do...3109738/EASTSearchHistory.13109738_AccessibleVersion.htm7/12/2011 1:53:57 PM

LG Ex. 1002, pg 120

UNITED STATES PATENT AND TRADEMARK OFFICE

UNTTED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

PQ. Box 1450

Alexandria, Virginia 22313-1450

WWW.uspto.gov’

| APPLICATION NUMBER | FILING OR 371(C) DATE | FIRST NAMED APPLICANT | ATTY. DOCKET NO./TITLE |
13/109,738 05/17/2011 Stephen Morein 00100.36.0001
CONFIRMATION NO. 2020
29153 PUBLICATION NOTICE
ADVANCED MICRO DEVICES, INC.
G/O VEDDER PRICE P.C. N AT T
000000049722760

222 N.LASALLE STREET
CHICAGO, IL 60601

Title:GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Publication No.US-2011-0216077-A1
Publication Date:09/08/2011

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37
CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the
Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to
applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth
in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of
Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382,
by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of
Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the

dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent
Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and
Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to
publication, such status information is confidential and may only be obtained by applicant using the private side of
PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent
Electronic Business Center at 1-866-217-9197.

Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

LG Ex. 1002, pg 121

PATENT APPLICATION
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stephen Morein et al. Examiner: Daniel C. Washburn
Serial No.: ~ 13/109,738 Art Unit: 2628
Filing Date: May 17,2011 Docket No.: 00100.36.0001

Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED
SHADER

Mail Stop Amendment

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

RESPONSE

Dear Sir:

In response to the office action mailed July 21, 2011, Applicants petition for a three

month extension of time and respond as follows:

Listing of the Claims begins on page 2 of this paper.

Remarks begin on page 6 of this paper.

BDDBO01 9084641v1

LG Ex. 1002, pg 122

Listing of the Claims:

1. (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by
transmitting vertex data to a general purpose register block, and performing vertex operations on
the vertex data by a processor unless the general purpose register block does not have enough
available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by
the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. (original) A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the
sequencer maintaining instructions operative to cause the processor unit to execute vertex
calculation and pixel calculation operations on selected data maintained in the general purpose
register block; and

wherein the processor unit executes instructions that generate a pixel color in response to
the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.

3. (original) A unified shader comprising:

BDDBO01 9084641v1 2

LG Ex. 1002, pg 123

a processor unit operative to perform vertex calculation operations and pixel calculation
operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for cither vertex data or pixel
information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation
operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel
information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

5. (original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions
operative to cause the processor unit to execute vertex calculation and pixel calculation
operations on selected data maintained in a store depending upon an amount of space available in

the store.

BDDBO01 9084641v1 3

LG Ex. 1002, pg 124

6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in response to a control signal.

8. (original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in response to the selected one of the plurality of inputs.

9. (original) The shader of claim 5, wherein the processor unit executes vertex

calculations while the pixel calculations are still in progress.

10. (original) The shader of claim 5, wherein the processor unit generates vertex

position and appearance data in response to a selected one of the plurality of inputs.

11. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. (original) A graphics processor comprising:
a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculations are still in progress.

BDDBO01 9084641v1 4

LG Ex. 1002, pg 125

13. (original) The graphics processor of claim 12 wherein the unified shader
comprises a sequencer coupled to the processor unit, the sequencer maintaining instructions
operative to cause the processor unit to execute vertex calculation and pixel calculation
operations on selected data maintained in a store depending upon an amount of space available in

the store.

14. (original) The graphics processor of claim 12 comprising a vertex block operative

to fetch vertex information from memory.

15. (original) A unified shader comprising:
a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. (original) The shader of claim 15 comprising an instruction store and wherein the
processor unit performs the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching between instructions in the instruction store.

BDDBO01 9084641v1 5

LG Ex. 1002, pg 126

REMARKS

Applicants respectfully traverse and request reconsideration.

Claims 1-16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by
U.S. Patent No. 7,038,685 (Lindholm). Applicants respectfully submit herewith Declarations
under 37 C.F.R. § 1.131 for inventors Laurent Lefebvre, Andrew E. Gruber, Stephen L. Morein
and Andi P. Skende establishing conception and reduction to practice of the currently claimed
subject matter prior to the June 30, 2003 priority date of Lindholm. It is believed that Lindholm
does not claim the same patentable invention as defined by 37 C.F.R. § 41.203(a) and that the
present rejection is not based on a statutory bar, i.e., Lindholm qualifies as prior art only under
35 US.C. § 102(e). Accordingly, the attached Declarations are relied on to establish prior
reduction to practice of the claimed subject matter, particularly with regard to independent
claims 1-5, 12 and 15.

Regarding the reduction to practice evidenced by the attached Declarations, Applicants
first note that, properly presented, a Rule 131 declaration may demonstrate prior invention if it
provides a “showing of facts . . . as to establish reduction to practice prior to the effective date of
the reference.” 37 C.F.R. § 1.131(b). As set forth in M.P.E.P. § 715.07(I), evidence in support
of asserted facts demonstrating prior invention may be provided in the form of “an
accompanying model.” With regard to an apparatus and/or process implemented by an
integrated circuit or the like, Applicants respectfully submit that a simulation of such an
apparatus and/or circuit may effectively serve as a “model” demonstrating successful reduction
to practice. Specifically, Applicants respectfully submit that evidence of (i) a successful
computer-based simulation of a physical embodiment and/or (ii) a description of a physical

embodiment capable of translation to implement the actual physical embodiment, coupled with

BDDBO01 9084641v1 6

LG Ex. 1002, pg 127

successfully testing of the resulting physical embodiment is sufficient to demonstrate an actual
reduction to practice for the purposes of Rule 131 declaration. (See McDonnell Douglas Corp. v.
U.S., 670 F. 2d 156, 161 (Ct. Cl. 1982) (where court concludes that “physical tests proved that
the computer approved device . . . failed in actual practice . . . to perform in the manner
intended” and that subsequent successful physical testing was the first reduction to practice, a
necessary implication is that a valid reduction to practice would result if actual physical testing
demonstrates that prior computer simulation was adequate.); Mosaid Tech. Inc, v. Samsung Elec.
Co., 362 F.Supp.2d 526, 547 (D.N.J. 2005) (noting that the McDonnell case suggested “that a
computer simulation may be a valid reduction to practice, but not if subsequent, actual physical
testing proves that it is inadequate,” and that “there are areas of science where a successfully run
simulation represents the end of the inventive process and the construction of the physical
embodiment is but a matter of mere routine and mechanical application [such that] a simulation
should be a valid reduction to practice.”))

With regard to the instant application, as shown in the attached Declarations, Applicants
have provided evidence that both a simulation and hardware design description (expressed in a
hardware design language capable of conversion to a physical embodiment) subsequently lead to
a successfully tested physical embodiment of (and, therefore, actual reduction to practice of) the
subject matter recited in the independent claims. More particularly, the attached Declarations
demonstrate invention of the recited subject matter in claims 1-5, 12 and 15 prior to the effective
filing date of the Lindholm reference.

Thus, in light of the Declarations, Applicants respectfully submit that Lindholm is not
available as prior art against, and therefore obviates the sole basis for rejecting, the above claims,

which claims are therefore in suitable condition for allowance. Applicants further note that

BDDBO01 9084641v1 7

LG Ex. 1002, pg 128

claims 6-11, 13, 14 and 16 are dependent upon, and therefore incorporate the limitations of,
respective ones of claims 5, 12 and 15. As such, claims 6-11, 13, 14 and 16 are also allowable
for the same reasons presented above relative to their respective independent claims.

Applicant respectfully submits that the claims are now believed to be in condition for
allowance and that a timely Notice of Allowance be issued in this case. If the Examiner believes
that personal communication will expedite prosecution of this application, the Examiner is
invited to telephone the undersigned at (312) 356-5094.

Respectfully submitted,
Dated: January 18, 2012 By:__ /Christopher J. Reckamp/

Christopher J. Reckamp
Reg. No. 34,414

Facgre Baker Daniels LLP
311 S. Wacker Drive
Chicago, IL 60606
PHONE: (312) 356-5094
FAX: (312) 212-6501

BDDBO01 9084641v1 8

LG Ex. 1002, pg 129

PATENT
ATTORNEY DOCKET NO. ¢0100.36.0001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Stephen Morein et al.

Serial No. 13/109,738 Art Unit: 2628

Filed: May 17, 2011 Examiner: Daniel C. Washburn

For: GRAPHICS PROCESSING
ARCHITECTURE EMPLOYING A
UNIFIED SHADER

Confirmation No. 2020

DECLARATION UNDER 37 C.F.R. § 1.131

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22314-1450

Sir:

We, Stephen L Morein a citizen of the U.S. residing at 367 Santana Heights, Unit 3027,
San Jose California 95128; Laurent Lefebvre, a citizen of Canada residing at 1055 Garden
Avenue, Mascouche, Quebec, CANADA, J7L-0A1; Andrew E. Gruber a citizen of the U.S.
residing at 251 Pleasant Street, Arlington, Massachusetts 02476; and Andi Petrit Skende a citizen

of the U.S. residing at 35 Sunrise Avenue, Worcester, Massachusetts 01606, do hereby declare
that:

1. We are joint inventors of the subject matter described and claimed in U.S. Patent
Application No. 13/109,738 (hereinafter “the Invention™), filed in the United States of America
on May 17, 2011, entitled “Graphics Processing Architecture Employing a Urified Shader”,
which application is a continuation of and claims priority to U.S. Patent Aoplication No.
12/791,597 filed June 1, 2010, which application is a continuation of and claims priority to U.S.
Patent Application No. 11/842,256 filed August 21, 2007, which application is a continuation of
and claims priority to U.S. Patent Application No. 11/117,863 filed April 29, 2005 (now U.S.
Patent No. 7,327,369), which application is a continuation of and claims priority to U.S. Patent
Application No. 10/718,318 filed November 20, 2003 (hereinafter “the ‘318 application”; now
U.S. Patent No. 6,897,871).

2. We conceived the Invention prior to June 30, 2003 while employed by ATI
Technologies Inc. and/or one of its wholly owned subsidiaries (“ATI”) as indicated by attached
Exhibits A and B. Exhibit A is a copy of emulation code files entitled Reg_file.cpp,
Instruction_store.cpp, Arbiter.cpp, Gpr_manager.cpp, sq_alu.cpp and sq_block_model.cpp that,

CHICAGO/#2239588.1

LG Ex. 1002, pg 130

based on information and belief, we invented and assisted in coding prior to June 30, 2003 the
(“Model Code™). Exhibit B is a copy of hardware register transfer level (RTL) files (“the Chip
Design Code™) entitled sq gpr alloc.v, Sq alu instr seq.v, sq_instruction_store v,
sp_macc_gpr.v, sp_vector.v, sq.v, sq_export_alloc.v, sq ctl_flow_seq.v, sq alu_instr_seq.v,
sq_thread arb.v and sq shader seq.v, that, based on information and belief, we assisted in
creating prior to June 30, 2003. Prior to June 30, 2003 we created a graphics processing system
that operated as claimed using a computer system that successfully executed the Model Code.
Prior to June 30, 2003 we also created a graphics processing system as claimed in the form of a
computer system that used an RTL simulator to successfully validate the operation of an
integrated circuit version of the claimed graphics processing system and method At least the
following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software instructions
written in the well-known C++ language. When executed by the computer system , the

Model Code caused the computer system to operate as claimed in at least claims 1-5, 12
and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the claimed
subject matter for its intended purpose through emulation thereof.

c. As shown in Exhibit B, the Chip Design Code comprises various instructions
written in a well-known hardware description language. The Chip Design Code was used
by an RTL simulator system to validate the operation of an integrated circuit version of
the claimed graphics processing system and method as claimed in at least claims 1-5, 12
and 15. As further known by practitioners in the field of integrated circuit design, such
instructions are used to generate gate level detail for silicon fabrication.

d. On information and belief, the computer system operating the Model Code and
the RTL simulator system operating the Chip Design Code represents the claimed
structure and operation embodied in an integrated graphics processing circuit chip
referred to as the ATI XENOS chip produced by ATI on or about October, 2004 that was
incorporated in the XBOX 360 product. ’

Accordingly, the contents of Exhibits A and B establish the possession by us of the whole

Invention, falling within the scope of currently pending claims, such as but not limited to at least
claims 1-5, 12 and 15.

CHICAGO/#2239528.1

LG Ex. 1002, pg 131

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or impriso
under § 1001 of Title 18 of the United States Code and that such willful fal
jeopardize the validity of the application or any patent issued therefrom. ~

Dated:légﬂ P l/ /) Ao/}

Dated:

Laurent Lefebvre
Dated:

Andrew E. Gruber
Datéd:

Andi Petrit Skende

3

CHICAGO/#2239588.1

LG Ex. 1002, pg 132

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonraent, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
Jjeopardize the validity of the application or any patent issued therefrom.

Dated:

Stephen L. Morein

Dated:_ OCTORER ﬁi o/ % 4/

Laurent Lefebvre

Dated:
Andrew E. Gruber
Dated:
Andi Petrit Skende
3
CHICAGOA#2239588.1

LG Ex. 1002, pg 133

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
Jeopardize the validity of the application or any patent issued therefrom.

Dated:

Stephen L. Morein

Dated:

Laurent Lefebvre

Dated:_Jfy /23/ // (/L/Z { Z(,

Andrew E. Gruber

Dated:

Andi Petrit Skende

CHICAGO/#2239588.1

LG Ex. 1002, pg 134

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information snd belief are believed to be
trie; and each of us further declare that these statements were made with the lmowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or hoth,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom. i

Dated: ;
Stephen L. Morein [
Dated: t
Laurent Lefebvre]
Dated:
Andrew E. Gruber

i w ‘
Dated: Decamwber WY, 200 qi -

Andi Petrit Skende

CHICAGO#2239588.1

LG Ex. 1002, pg 135

EXHIBIT A - MODEL CODE

Reg_file.cpp

#include "reg file.h"

RegFile::RegFile()

{

for (int i=0;1<128;i++)

for (int j=0;3<16;7j++)
for (int k=0;k<4;k++)
regValues[i].val[j].field[k].clamp(@);

}
void RegFile::GetConstValues(const RegVect* &Values,int Addr)
{

Values = &(regValues[Addr].val[@]);
}
void RegFile::GetValues(RegVect* &alues,int Addr)
{

Values = &(regValues[Addr].Val[@]);
}

Instruction store:
Instruction_store.cpp

#include "instruction_store.h”

IStore::IStore()
{

for (int i=0;1<4096;i++)

{
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]
instructions[i]

}

.byte0=0x00;
.bytel1=0x00;
.byte2=0x00;
.byte3=0x09;
.byte4=0x00;
.byte5=0x00;
.byte6=0x00;
.byte7=0x00;
.byte8=0x009;
.byte9=0x00;
.bytel0=0x00;
.bytel1=0x00;

void IStore::GetInst(Instruction &inst,int addr)

{

inst = instructions[addr];

}

LG Ex. 1002, pg 136

void IStore::GetInst(ALU_Instruction &alulnst, int addr)
{

aluInst.SrcASel ((instructions[addr].bytell & ©x80) >> 7);
aluInst.SrcBSel ((instructions[addr].bytell & ©x40) >> 6);
aluInst.SrcCSel ((instructions[addr].bytell & ©x20) >> 5);
aluInst.VectorOpcode = ((instructions[addr].bytell & ©x1F));
aluInst.SourceARegPointer = ((instructions[addr].bytel@));
aluInst.SourceBRegPointer = ((instructions[addr].byte9));
aluInst.SourceCRegPointer = ((instructions[addr].byte8));
aluInst.Constan@RelAbs = ((instructions[addr].byte7 & ©x80) >> 7);
aluInst.ConstanlRelAbs = ((instructions[addr].byte7 & ©x40) >> 6);
aluInst.RelativeAddrRegSel = ((instructions[addr].byte7 & ©x20) >> 5);
aluInst.PredicateSelect = ((instructions[addr].byte7 & ©x18) >> 3);
aluInst.SourceANegate = ((instructions[addr].byte7 & @x04) >> 2);
aluInst.SourceBNegate = ((instructions[addr].byte7 & @x02) >> 1);
aluInst.SourceCNegate = ((instructions[addr].byte7 & ©x01))
alulnst.SourceASwizzle ((instructions[addr].byte6));
aluInst.SourceBSwizzle = ((instructions[addr].byte5));
aluInst.SourceCSwizzle = ((instructions[addr].byte4));
aluInst.ScalarOpcode = ((instructions[addr].byte3 & @xfc) >> 2);
aluInst.ScalarClamp = ((instructions[addr].byte3 & 0x02) >> 1);
aluInst.VectorClamp = ((instructions[addr].byte3 & 0x01))3
aluInst.ScalarWriteMask = ((instructions[addr].byte2 & Oxf@) >> 4);
aluInst.VectorWriteMask = ((instructions[addr].byte2 & @xo0f));
aluInst.ScalarResultPointer = ((instructions[addr].bytel))
aluInst.VectorResultPointer = ((instructions[addr].byte®@))5

}

void IStore::GetInst(TInstrPacked &texInst, int addr)
{

}

void IStore::GetInst(CF_Instruction &cfInst, int addr, bool left)
{

texInst.unpack((const uint8%*)(&instructions[addr]));

// read from bytes 11 thru 6
if (left)
{
cfInst.opCode = ((instructions[addr].bytell & OxF@) >> 4);
cfInst.addrMode = ((instructions[addr].bytell & ©x08) >> 3);
cfInst.bufferSel = ((instructions[addr].bytell & 0x06) >> 1);
cfInst.condition = ((instructions[addr].bytell & 0x04) >> 2);
cfInst.boolAddr = ((instructions[addr].bytell & @x@3) << 6) |
((instructions[addr].bytel@ & OxFC) >> 2);
cfInst.direction = ((instructions[addr].bytel® & ©x02) >> 1);
cfInst.instTypeSer = ((instructions[addr].bytel@ & 0x03) << 16) |
((instructions[addr].byte9) << 8) |
((instructions[addr].byte8));
cfInst.predBreak = ((instructions[addr].byte8 & ©x20) >> 5);
cfInst.loopId = ((instructions[addr].byte8 & Ox1F));
cfInst.count = ((instructions[addr].byte7 & @xFQ) >> 4);
cfInst.force = ((instructions[addr].byte7 & ©x20) >> 5);
cfInst.jcAddress = ((instructions[addr].byte7 & @x1F) << 8) |
((instructions[addr].byte6));
cfInst.address = ((instructions[addr].byte7 & OxOF) << 8) |
((instructions[addr].byte6));
cfInst.allocSize = ((instructions[addr].byte6 & ©xOF));

LG Ex. 1002, pg 137

// read from bytes 5 thru ©

else
{
cfInst.opCode = ((instructions[addr].byte5 & OxFQ) >> 4);
cfInst.addrMode = ((instructions[addr].byte5 & ©x08) >> 3);
cfInst.bufferSel = ((instructions[addr].byte5 & @x06) >> 1);
cfInst.condition = ((instructions[addr].byte5 & 0x04) >> 2);
cfInst.boolAddr = ((instructions[addr].byte5 & 0x03) << 6) |
((instructions[addr].byte4 & OxFC) >> 2);
cfInst.direction = ((instructions[addr].byte4 & ©0x02) >> 1);
cfInst.instTypeSer = ((instructions[addr].byte4 & @0x@3) << 16) |
((instructions[addr].byte3) << 8) |
((instructions[addr].byte2));
cfInst.predBreak = ((instructions[addr].byte2 & ©x20) >> 5);
cfInst.loopId = ((instructions[addr].byte2 & ©x1F));
cfInst.count = ((instructions[addr].bytel & @xFQ) >> 4);
cfInst.force = ((instructions[addr].bytel & ©x20) >> 5);
cfInst.jcAddress = ((instructions[addr].bytel & ©Ox1F) << 8) |
((instructions[addr].byte@));
cfInst.address = ((instructions[addr].bytel & @x@F) << 8) |
((instructions[addr].byte®));
cfInst.allocSize = ((instructions[addr].byte® & ©xOF));
}
}
void IStore::SetInst(const Instruction &inst,int addr)
{
instructions[addr]=inst;
}

Performing operations on pixels or vertices:

Arbiter.cpp
boolean Arbiter::chooseAluStation(int &lineNumber, Shader_Type &sType,
bool otherAluRunning,const CfMachine& otherCFMachine,bool &predOn)

{

int i;

int vertexPick = -1;

int pixelPick = -1;

bool pcSpace;

int lineCheck;

predOn = true;

// do pixels first
lineCheck = pixelHead;
for (i1=0;i<pixelRsCount;i++)
{
if (pixelStation[lineCheck].status.valid != 0 &&
pixelStation[lineCheck].status.ressourceNeeded == ALU
&& !pixelStation[lineCheck].status.event)
{
// no allocation needed
if (pixelStation[lineCheck].status.allocation == SQ_NO_ALLOC)

{
¥

// we need to make sure there is space in the appropriate buffer

pixelPick = lineCheck;

LG Ex. 1002, pg 138

else if (pixelStation[lineCheck].status.allocation == SQ_MEMORY &&
(pixelStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ->GetExportBuffer()/4
&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())

{
X

else if (pixelStation[lineCheck].status.allocation ==
SQ_PARAMETER_PIXEL &&

pixelPick = lineCheck;

pixelStation[lineCheck].status.allocationSize <= sq->pSX_SQ-

>GetExportBuffer()/4
&& pendingAllocs < 2 && sg->pSX_SQ->GetValid())
{
pixelPick = lineCheck;
}
// make sure the status says we can pick this pixel
if (pixelPick != -1)
{

// check for serial with texture pending
if (pixelStation[pixelPick].status.serial &&
pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;
// if last or alloc is set we can only pick the two oldests
threads also for color exports
else if ((pixelStation[pixelPick].status.last
|| pixelStation[pixelPick].status.allocation ==
SQ_PARAMETER_PIXEL)&&
I(pixelPick==pixelHead || pixelPick==((pixelHead-
1)%MAX_PIX_RESERVATION_SIZE)))
pixelPick = -1;
// cannot pick last if texture reads are outstanding
else if (pixelStation[pixelPick].status.last &&
pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;
// can only pick the second to old if the first is already
running and last is set
else if (pixelStation[pixelPick].status.last && pixelHead !=
pixelPick)
{
if (pixelStation[pixelPick].status.first ||
IpixelStation[pixelHead].status.last
|| pixelStation[pixelHead].status.valid)
pixelPick = -1;

else
{
predOn = false;
break;
}
}
else
break;

}
}// endif pixels

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}// end for loop

lineCheck = vertexHead;
for (i=0;i<vertexRsCount;i++)

LG Ex. 1002, pg 139

{

if (vertexStation[lineCheck].status.valid != 0 &&
vertexStation[lineCheck].status.ressourceNeeded == ALU
&&!vertexStation[lineCheck].status.event)
{
// no allocation needed
if (vertexStation[lineCheck].status.allocation == SQ NO_ALLOC)

{
vertexPick = lineCheck;
)
// we need to make sure there is space in the appropriate buffer
else
{

if (vertexStation[lineCheck].status.allocation == SQ_MEMORY)

{
if
(((vertexStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ-
>GetExportBuffer()/4)
&& sq->pSX_SQ->Getvalid() && pendingAllocs <2)
{

}

vertexPick = lineCheck;

else if (vertexStation[lineCheck].status.allocation ==
SQ_PARAMETER_PIXEL)
{
// determine if there is space in the PCs for an
eventual PC export
pcSpace =
checkPC((vertexStation[lineCheck].status.allocationSize+1)*4);
if (pcSpace)
{

// make sure every older threads have their
position allocated

bool alloc_done = true;

int alloc_line = vertexHead;

while (lineCheck != alloc_line)

{
if
(vertexStation[alloc_line].status.pcAllocated == false)
{
alloc_done = false;
break;

alloc_line
(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;

}
if (alloc_done)
{

}

vertexPick = lineCheck;

}
}

else if (vertexStation[lineCheck].status.allocation ==
SQ_POSITION
&& (sq->pSX_SQ->GetPositionReady() >=
vertexStation[lineCheck].status.allocationSize)
&& sq->pSX_SQ->GetValid()

LG Ex. 1002, pg 140

&& pendingAllocs <2)

{
// make sure every older threads have their position
allocated
bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{
if
(vertexStation[alloc_line].status.posAllocated == false)
{
alloc_done = false;
break;
}
alloc_line =
(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;
}
if (alloc_done)
{
vertexPick = lineCheck;
}
}
}
// make sure the status says we can pick this vertex
if (vertexPick != -1)
{

// check for serial with texture pending
if (vertexStation[vertexPick].status.serial &&
vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;
// if last is set we can only pick the two oldests threads
else if (vertexStation[vertexPick].status.last &&
I (vertexPick==vertexHead || vertexPick==((vertexHead-
1)%MAX_VTX_RESERVATION_SIZE)))
vertexPick = -1;
// cannot pick last if texture reads are outstanding
else if (vertexStation[vertexPick].status.last &&
vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;
// can only pick the second to old if the first is already
running
else if ((vertexStation[vertexPick].status.last) && vertexHead
I= vertexPick)
{
if (vertexStation[vertexPick].status.first ||
lvertexStation[vertexHead].status.last
|| vertexStation[vertexHead].status.valid)

vertexPick = -1;
else
{
predOn = false;
break;
¥
}
else
break;
}// endif vertex
6

LG Ex. 1002, pg 141

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}// end for loop

// right now vertices have priority over pixels always,
// will have to change this when the registers are there.
if (vertexPick != -1)
{

lineNumber = vertexPick;

sType = VERTEX;

// HERE WE MUST DO THE ALLOCATION
// also send a pulse to the SX if we need a buffer (position or multipass)

if (vertexStation[vertexPick].status.allocation I= SQ_NO_ALLOC)
{
// parameter cache allocation
if (vertexStation[vertexPick].status.allocation ==
SQ_PARAMETER_PIXEL)

{
vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].data.pcBasePtr = sq->pcHead;
vertexStation[vertexPick].data.exportId = 0;
if (sq-
>pcHead+(vertexStation[vertexPick].status.allocationSize)*4 < 128)
{

sq->pcHead = sqg-
>pcHead+(vertexStation[vertexPick].status.allocationSize)*4;

}

else
{
sq->pcHead =
(vertexStation[vertexPick].status.allocationSize)*4-(128-sq->pcHead);
sq->checkHigh = !sg->checkHigh;
¥
sqg-
>pcAllocated.push((vertexStation[vertexPick].status.allocationSize)*4);

// position
else if (vertexStation[vertexPick].status.allocation == SQ_POSITION)
{

// starting a new allocation

pendingAllocs ++;

vertexStation[vertexPick].status.posAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq->pSQ_SX->Setvalid(true);

uinteger<3> st;

st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportld);
vertexStation[vertexPick].data.exportId = exportld;
exportId = lexportld;

uinteger<2> temp;

temp = 2;

sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);

7

LG Ex. 1002, pg 142

temp = vertexStation[vertexPick].status.allocationSize-1;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);
¥
// multipass
else
{
// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportld);
vertexStation[vertexPick].data.exportId = exportld;
exportId = lexportId;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = vertexStation[vertexPick].status.allocationSize;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);

}

// dump the interface
if (sgq->m_dumpSQ > @)

{
sq->pSQ_SX->GetNewAll(&(sq->m_sqSxDump->_data));
if (sq->m_sqSxDump->_data.Valid)
{
sq->m_sqSxDump->Dump();
¥
}

// clear the allocation fields
vertexStation[vertexPick].status.allocationSize = ©;
vertexStation[vertexPick].status.allocation = SQ_NO_ALLOC;

}

return true;
if (pixelPick = -1)
{

lineNumber = pixelPick;
sType = PIXEL;

if (pixelStation[pixelPick].status.allocation != SQ_NO_ALLOC)
{

// starting a new allocation
pendingAllocs ++;

if (pixelStation[pixelPick].status.allocation == SQ_PARAMETER_PIXEL)
{

sq->pSQ_SX->Setvalid(true);

uinteger<3> st;

st = pixelStation[pixelPick].data.state;

sq->pSQ_SX->SetSQ_SX exp_state(st);

LG Ex. 1002, pg 143

sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportld);
pixelStation[pixelPick].data.exportId = exportId,;
exportId = lexportId;

uinteger<2> temp;

sq->setContextNumber(st);

uint8 mode = sq->SQ_PROGRAM CNTL.getPS EXPORT_ MODE();
// exporting Z

if (mode &©x01)

temp = 1;
// not exporting Z
else

temp = 0;

sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize-temp-1;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);

}

// multipass

else

{
sq->pSQ_SX->SetvValid(true);
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportld);
pixelStation[pixelPick].data.exportId = exportId;
pixelStation[pixelPick].status.pulseSx = true;
exportId = lexportId;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);
pixelStation[pixelPick].status.pulseSx = true;

}

// dump the interface
if (sq->m_dumpSQ > ©)

{
sq->pSQ_SX->GetNewAll(&(sq->m_sqSxDump->_data));
if (sq->m_sqSxDump->_data.Vvalid)
{
sq->m_sqSxDump->Dump();
}
}

// clear the allocation fields
pixelStation[pixelPick].status.allocationSize = ©;
pixelStation[pixelPick].status.allocation = SQ_NO_ALLOC;

}

return true;

}

return false;

LG Ex. 1002, pg 144

Checking for GPR space:
Gpr_manager.cpp

#include "gpr_manager.h"
#include "user_block_model.h"

GPR_manager: :GPR_manager (cUSER_BLOCK_SQ *pSQ)

{

}

// set the pointer to the SQ
sq = pSQ;

// set the limits (READ REGISTERS)
pixLimit = sq->SQ_GPR_MANAGEMENT.REG_SIZE_PIX;
vertLimit = 128-sq->SQ_GPR_MANAGEMENT.REG_SIZE_VTX;

baseCountPix = 0;
freeCountPix = ©;
pixTestHigh = true;

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;

boolean GPR_manager::testAllocate(int number_gpr,int &base_addr,Shader_Type stype)

{

bool wrap = false;
int testBaseCount;

if (stype == PIXEL)

testBaseCount = baseCountPix;
base_addr= baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)

{
if (freeCountPix==baseCountPix && pixTestHigh &&
freeCountPix != -1)
{
return false;
}
else
return true;
}

if (testBaseCount + number_gpr < pixLimit)
testBaseCount = testBaseCount + number_gpr;

else
{
testBaseCount = number_gpr-(pixLimit-testBaseCount);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;
wrap = true;
}
if (pixTestHigh)
{

10

LG Ex. 1002, pg 145

if (wrap)

pixTestHigh = IpixTestHigh;
if (testBaseCount >= freeCountPix && freeCountPix != -1)
{

// allocation succesfull

return false;

}
else
{
// not enough space in GPRs
return true;
}
}
else
{
if (wrap)
pixTestHigh = lpixTestHigh;
if (testBaseCount <= freeCountPix && freeCountPix != -1)
{
// allocation succesfull
return false;
}
else
{
return true;
}
}
¥
// vertices
else
{

testBaseCount = baseCountVert;
base_addr= baseCountVert;

// special case for MAX GPRs

if (number_gpr == -(vertLimit-128))
{
if (freeCountVert==baseCountVert && vertTestHigh &&
freeCountVert != -1)
{
return false;
}
else

return true;

}

if (testBaseCount - number_gpr >= vertLimit)
testBaseCount = testBaseCount - number_gpr;

else
{
testBaseCount = 128-(number_gpr-(testBaseCount-vertLimit));
// we wrapped change the test type
vertTestHigh = lvertTestHigh;
wrap = true;
)
if (vertTestHigh)
{

if (wrap)

11

LG Ex. 1002, pg 146

}

vertTestHigh = lvertTestHigh;
if (testBaseCount <= freeCountVert && freeCountvVert I= -1)
{

// allocation succesfull

return false;

}
else
{
return true;
}
¥
else
{
if (wrap)
vertTestHigh = lvertTestHigh;
if (testBaseCount >= freeCountVert && freeCountvVert I= -1)
{
// allocation succesfull
return false;
}
else
{
return true;
}
¥

void GPR_manager::allocate(int number_gpr,int &base_addr,

{

Shader_Type stype)

if (stype == PIXEL)

}

base_addr = baseCountPix;

// special case for MAX GPRs

if (number_gpr == pixLimit)
{

freeCountPix = -1;
}

if (baseCountPix + number_gpr < pixLimit)
baseCountPix = base_addr + number_gpr;

else

{
baseCountPix = number_gpr-(pixLimit-base_addr);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;

}

// vertices

else

{

base_addr = baseCountVert;
// special case for MAX GPRs

if (number_gpr == -(vertLimit-128))
{

12

LG Ex. 1002, pg 147

freeCountVert = -1;

¥

if (baseCountVert - number_gpr >= vertLimit)
baseCountVert = base_addr - number_gpr;

else
{
baseCountVert = 128-(number_gpr-(base_addr-vertLimit));
// we wrapped change the test type
vertTestHigh = lvertTestHigh;
}
}
}
void GPR_manager::deAllocate(int number_gpr,Shader_Type stype)
{
switch (stype)
{
case PIXEL:
// special case for MAX GPRs
if (number_gpr == pixLimit)
{
baseCountPix = 0;
freeCountPix = 0;
pixTestHigh = true;
break;
if (freeCountPix + number_gpr < pixLimit)
freeCountPix += number_gpr;
else
{
freeCountPix = number_gpr-(pixLimit-freeCountPix);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;
¥
break;
case VERTEX:
// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{
baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;
break;
if (freeCountVert - number_gpr > vertLimit)
freeCountVert -= number_gpr;
else
{
freeCountVert = 128-(number_gpr-(freeCountVert-vertLimit));
// we wrapped change the test type
vertTestHigh = lvertTestHigh;
¥
break;
¥
}

13

LG Ex. 1002, pg 148

Write data to the GPRs:
Sq_block_model.cpp

// write to the SP dummy interface
RegVect* values;

regFile[j]->GetValues(values,address);

interpData.Address[i]=i+base_ptr;
interpData.NumParams = interp_params;

for (int k=0;k<16;k++)

{
interpData.InterpData[i][k][]j].field[@]=values[k].field[@];
interpData.InterpData[i][k][j].field[1]=values[k].field[1];
interpData.InterpData[i][k][]j].field[2]=values[k].field[2];
interpData.InterpData[i][k][j].field[3]=values[k].field[3];
¥

// increment the GPR address
if (address+1 < gpr_manager->pixLimit)

{

address ++;
}
else
{

address = 0;
}

sq_alu.cpp

#include "user_block_model.h"
#include "sq_alu.h"
#include "sq_sp.h"
#include <iostream>
#include "Scalar_HW/mathen.h"

using namespace std;

/1
SQ_ALU::SQ_ALU()
{
CoissuedInstruction = true;
mathScalar = new MathEn();
>

SQ_ALU:~SQ_ALUY()

delete mathScalar;

h

M- This function represents the entry point to the ALU from the Sequencer-----—--—---------

14

LG Ex. 1002, pg 149

void SQ_ALU::Execute(RegFile* Reg, OutBuffer &ExportBuffer ,const CStore & Constants,uint32
SrcAAddr, uint32 SrcBAddr, uint32 SrcCAddr,uint32 DestAddr, uint32 ScalarDestAddr, Alulnstruction
Instruction,
unsigned int valids[], uint32 Vectorindex,SQ_SP* pSQ_SP,
Shader_Type currentAluType,bool pred[],cUSER_BLOCK_SQ*

pSQ,int idAlu)
{
int i;
sq = pSQ;

/I fill the dummy interface

SQ_SP_data SPData;

static Constant constant[4];

static int PMasks[4][4] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static int CMask[4] = {0,0,0,0};

static int RAddr[4] = {0,0,0,0};

static int WAddr[4] = {0,0,0,0};

static bool REn[4] = {false false,false false};

static bool WEnN[4] = {false,false,false,false};

SPData.Phase = Vectorlndex;
for (i=0;i<4;i++)

SPData.ConstantValue[i]=constant[VectorIndex].field[0];
SPData.ExportValid[i]=validsi];
SPData.ExportWValid[i]=2;

SPData.Valids[i] = PMasks[VectorIndex][il;

}

SPData.ExportCount=Vectorindex;
SPData.ExportLast=0;

SPData.CMask = CMask[VectorIndex];
SPData.RdAddr = RAddr[Vectorindex];
SPData.WrAddr = WAddr[Vectorindex];
SPData.RdEnable = REn[Vectorindex];
SPData.WrEnable = WEn[VectorIndex];
SPData.IndexCnt = 0;

SPData.SType = currentAluType;

if (SPData.Phase == 0)
SPData.InstStart = true;
else
SPData.InstStart = false;

switch(Vectorindex)

{
case 0:
SPData.Instruction = Instruction.SrcASel + (Instruction.SourceANegate << 2) +
(Instruction.SourceASwizzle << 4) +
((Instruction.VectorResultPointer&0x3F)<<12);
break;
case 1:

SPData.Instruction = Instruction.SrcBSel + (Instruction.SourceBNegate << 2) +
(Instruction.SourceBSwizzle << 4) +
((Instruction.ScalarResultPointer&0x3F)<<12);

break;

15

LG Ex. 1002, pg 150

case 2:
SPData.Instruction = Instruction.SrcCSel + (Instruction.SourceCNegate << 2) +
(Instruction.SourceCSwizzle << 4);
break;
case 3:
SPData.Instruction = Instruction.VectorOpcode + (Instruction.ScalarOpcode << 5)+
(Instruction.VectorClamp << 11) +
(Instruction.ScalarClamp << 12)+
(Instruction.VectorWriteMask << 13) +
(Instruction.ScalarWriteMask << 17);
break;
}

// do all the static stuff for next turn

if (Instruction.SrcASel)
Constants.GetConstValue(constant[VectorIndex],SrcAAddr);

else if (Instruction.SrcBSel)
Constants.GetConstValue(constant[VectorIindex],SrcBAddr);

else if (Instruction.SrcCSel)
Constants.GetConstValue(constant[Vectorindex],SrcCAddr);

for (i=0;i<4;i++)
PMasks[Vectorindex][i] = validsli];

switch(Vectorindex)

{
case 0: // interpolator and SRC A
CMask[VectorIindex] = 127-SrcAAddr;
RAddr[Vectorindex] = SrcAAddr;
WAddr[Vectorindex] = 126-SrcAAddr;
REn[VectorIndex] = true;
WEn[Vectorindex] = false;
break;
case 1: //[TX and SRC B
CMask[Vectorindex] = 125-SrcBAddr;
RAddr[Vectorindex] = SrcBAddr;
WAddr[VectorIndex] = 124-SrcBAddr;
REn[Vectorindex] = true;
WEn[Vectorindex] = false;
break;
case 2: // Vector and SRC C
CMask[Vectorindex] = Instruction.VectorWriteMask;
RAddr[Vectorindex] = SrcCAddr;
REn[Vectorindex] = false; // no tree operands for now
/I if exporting
if (((Instruction.VectorResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[VectorIindex] = Instruction.VectorResultPointer & 0x3F;
WEn[VectorIindex] = false;
}
else {
WAddr[Vectorindex] = DestAddr;
WERn[Vectorindex] = true;
}
break;
case 3: // Scalar and TX
CMask[Vectorindex] = Instruction.ScalarWriteMask;

16

LG Ex

. 1002, pg 151

RAddr[Vectorindex] = 123-ScalarDestAddr;
REn[Vectorindex] = false;
/I'if exporting
if (((Instruction.ScalarResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[Vectorindex] = Instruction.ScalarResultPointer & 0x3F;
WEn[VectorIndex] = false;

}

else {
WAddr[Vectorindex] = ScalarDestAddr;
WEn[Vectorindex] = true;
}*/ // No scalar ops for now...
break;
}

pSQ_SP->SetAll(&SPData);
pSQ_SP->SetValid(true);

/*

/I Real Emulator code

CurrentRegFile = Reg;

OutputBuffer = &ExportBuffer;

CurrentAlulnstruction = Instruction;

AluPhase = Vectorindex;

AluType = currentAluType;

Predicates = &(pred[0]);

validBits= &(valids[0]);

Aluld = idAlu;

ExecuteAlulnstruction(SrcAAddr,SrcBAddr,SrcCAddr,DestAddr,ScalarDestAddr,Vectorindex,Con
stants);

}
I

void SQ_ALU::ExecuteAlulnstruction(uint32 SrcAPtr, uint32 SrcBPtr, uint32 SrcCPtr, uint32 DstPtr,uint32
ScalarDestPtr,uint32 Vectorindex,const CStore & Constants)

{
VectorData SrcA, SrcB, SrcC, VectorResult;

mfloat<8,23,128> ScalarResult;
VectorData TempSrc;

bool error = false;

const RegVect* InputVectorA;

const RegVect* InputVectorB;

const RegVect* InputVectorC;

Constant ConstantA;

Constant ConstantB;

Constant ConstantC;
RegisterFileRead(SrcAPtr,SrcBPtr,SrcCPtr,InputVectorA,InputVectorB,InputVectorC);
/IGoing through all the 128bit vectors (16 of them)

/[They all have the same relative location inside their respective GPR files.
for(uint8 vector_id = 0; vector_id <16 ; vector_id ++)

17

LG Ex. 1002, pg 152

SrcAReg.red =InputVectorA[vector_id].field[0];
SrcAReg.green =InputVectorA[vector_id] field[1];
SrcAReg.blue =InputVectorAlvector_id].field[2];
SrcAReg.alpha =InputVectorA[vector_id] field[3];

SrcBReg.red =InputVectorB[vector_id].field[0];
SrcBReg.green =InputVectorB[vector_id].field[1];
SrcBReg.blue =InputVectorB[vector_id].field[2];
SrcBReg.alpha =InputVectorB[vector_id].field[3];

SrcCReg.red =InputVectorC[vector_id].field[0];
SrcCReg.green =InputVectorC[vector_id] field[1];
SrcCReg.blue =InputVectorC[vector_id].field[2];
SrcCReg.alpha =InputVectorC[vector_id].field[3];

// set the constants

int cAddr =0;

/I relative addressing of the constant store via address register

if (CurrentAlulnstruction.SrcASel == 0 && CurrentAlulnstruction.ConstanORelAbs ==

CurrentAlulnstruction.RelativeAddrRegSel == 1)

{
cAddr = SrcAPtr + ConstantOffsets[AluPhase* 16+vector_id];
if (AluType == VERTEX)
{
if ((cAddr - sq->SQ_VS_CONST.getBASE())
> 50->SQ_VS_CONST.getSIZE())
{
cAddr=0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;
1
}
else
{
if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getSIZE())
cAddr =0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;
}
!
Constants.GetConstValue(ConstantA, cAddr);
}
else

Constants.GetConstValue(ConstantA,SrcAPtr);
// relative addressing of the constant store via address register
if (((CurrentAlulnstruction.SrcASel == 1 &&
CurrentAlulnstruction.SrcBSel == 0 && CurrentAlulnstruction.Constan0ORelAbs

(CurrentAlulnstruction.SrcASel == 0 &&

18

LG Ex. 1002, pg 153

CurrentAlulnstruction.SrcBSel == 0 && CurrentAlulnstruction.Constan1RelAbs
- Tsé CurrentAlulnstruction.RelativeAddrRegSel == 1)

cAddr = SrcBPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> 50->SQ_VS_CONST.getSIZE())

{
cAddr =0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;
}
}
else
{
if ((cAddr - sg->SQ_PS_CONST.getBASE())
> 5g->SQ_PS_CONST.getSIZE())
{
cAddr =0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;
1
}
Constants.GetConstValue(ConstantB, cAddr);
}
else

Constants.GetConstValue(ConstantB, SrcBPtr);

// relative addressing of the constant store via address register
if (((CurrentAlulnstruction.SrcASel == 1 &&
CurrentAlulnstruction.SrcBSel == 1 &&
CurrentAlulnstruction.SrcCSel == 0 && CurrentAlulnstruction.Constan0RelAbs

((CurrentAlulnstruction.SrcASel == 0 ||

CurrentAlulnstruction.SrcBSel == 0) && CurrentAlulnstruction.SrcCSel ==
&& CurrentAlulnstruction.Constan1RelAbs == 1)) &&
CurrentAlulnstruction.RelativeAddrRegSel == 1)

cAddr = SrcCPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)

{

if ((cAddr - sg->SQ_VS_CONST.getBASE())
> sg->SQ_VS_CONST.getSIZE())

{
cAddr = 0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;
}
}
else
{

19

LG Ex. 1002, pg 154

if ((cAddr - sq->SQ_PS_CONST.getBASE())
>sq->SQ_PS_CONST.getSIZE())

{
cAddr = 0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;
}
}
Constants.GetConstValue(ConstantC, cAddr);
}
else

Constants.GetConstValue(ConstantC, SrcCPtr);

// there was an addressing error
if (error)

if (sg->SQ_DEBUG_MISC_0.getDB_PROB_ON())

{
if (sq->SQ_DEBUG_MISC_0.getDB_PROB_COUNT() == 0)
{
sq->SQ_DEBUG_MISC_0.setDB_PROB_COUNT(1);
sg->SQ_DEBUG_MISC_0.setDB_PROB_ADDR(0);
}
else

sq->SQ_DEBUG_MISC_0.setDB_PROB_COUNT(sg-
>SQ_DEBUG_MISC_0.getDB_PROB_COUNT()+1);

}
1

/Imuxing&swizzling&modification of input arguments
/1
uint32 SrcASel,SrcBSel,SrcCSel;

SrcASel = CurrentAlulnstruction.SrcASel;
SrcBSel = CurrentAlulnstruction.SrcBSel;
SrcCSel = CurrentAlulnstruction.SrcCSel;

uint8 SrcASelRelAbs, SrcBSelRelAbs,SrcCSelRelAbs;

SrcASelRelAbs = ((CurrentAlulnstruction.SourceARegPointer)>>6) & 0x01;
SrcBSelRelAbs = ((CurrentAlulnstruction.SourceBRegPointer)>>6) & 0x01;
SrcCSelRelAbs = ((CurrentAlulnstruction.SourceCRegPointer)>>6) & 0x01;

switch(SrcASel)

{
case NON_CONSTANT:
switch(SrcASelRelAbs)

{

case ABSOLUTE_REG:

case RELATIVE_REG:
SrcA.alpha = SrcAReg.alpha;
SrcA.red = SrcAReg.red;
SrcA.green = SrcAReg.green;
SrcA.blue = SrcAReg.blue;
break;

default:

20

LG Ex. 1002, pg 155

break;

}
break;

case CONSTANT:
SrcA.red = ConstantA field[0];
SrcA.green = ConstantA field[1];
SrcA.blue = ConstantA field[2];
SrcA.alpha = ConstantA field[3];
break;

switch(SrcBSel)

{
case NON_CONSTANT:
switch(SrcBSelRelAbs)

{

case ABSOLUTE_REG:

case RELATIVE_REG:
SrcB.alpha = SrcBReg.alpha;
SrcB.red = SrcBReg.red;
SrcB.green = SrcBReg.green;
SrcB.blue = SrcBReg.blue;
break;

default:
break;

}

break;

case CONSTANT:
SrcB.red = ConstantB field[0];
SrcB.green = ConstantB field[1];
SrcB.blue = ConstantB field[2];
SrcB.alpha = ConstantB.field[3];
break;

}
switch(SrcCSel)

{
case NON_CONSTANT:
switch(SrcCSelRelAbs)

{

case ABSOLUTE_REG:

case RELATIVE_REG:
SrcC.alpha = SrcCReg.alpha;
SrcC.red = SrcCReg.red;
SrcC.green = SrcCReg.green;
SrcC.blue = SrcCReg.blue;
break;

default:
break;

tbreak;

case CONSTANT:

SrcC.red = ConstantC.field[0];

SrcC.green = ConstantC field[1];

SrcC.blue = ConstantC.field[2];

SrcC.alpha = ConstantC field[3];

21

LG Ex

. 1002, pg 156

break;

}

/Iswizzling of arguments

uint8 SrcASwizzleAlpha = CurrentAlulnstruction.SourceASwizzle >> 6;

uint8 SrcASwizzleBlue = (CurrentAlulnstruction.SourceASwizzle >> 4)&0x3;
uint8 SrcASwizzleGreen = (CurrentAlulnstruction.SourceASwizzle >>2)&0x3;
uint8 SrcASwizzleRed = (CurrentAlulnstruction.Source ASwizzle)&0x3;

TempSrc.alpha = SrcA.alpha;
TempSrc.red = SrcA.red;
TempSrc.green =SrcA.green;
TempSrc.blue= SrcA.blue;

switch(SrcASwizzleAlpha)

case 0:break;

case 1:
SrcA.alpha = TempSrc.red;
break;

case 2:
SrcA.alpha = TempSrc.green;
break;

case 3:
SrcA.alpha = TempSrc.blue;
break;

}

switch(SrcASwizzleRed)

case 0:break;

case 1:
SrcA.red = TempSrc.green;
break;

case 2:
SrcA.red = TempSrc.blue;
break;

case 3:
SrcA.red = TempSrc.alpha;
break;

}

switch(SrcASwizzleGreen)

case 0:break;

case 1:
SrcA.green = TempSrc.blue;
break;

case 2:
SrcA.green = TempSrc.alpha;
break;

case 3:
SrcA.green = TempSrc.red;
break;

}

22

LG Ex. 1002, pg 157

switch(SrcASwizzleBlue)

case 0:break;

case 1:
SrcA.blue = TempSrc.alpha;
break;

case 2:
SrcA.blue = TempSrc.red,;
break;

case 3:
SrcA.blue = TempSrc.green;
break;

}

1

TempSrc.alpha = SrcB.alpha;
TempSrc.red = SrcB.red;
TempSrc.green =SrcB.green;
TempSrc.blue= SrcB.blue;

uint8 SrcBSwizzleAlpha = (CurrentAlulnstruction.SourceBSwizzle >> 6)&0x3;
uint8 SrcBSwizzleBlue = (CurrentAlulnstruction.SourceBSwizzle >> 4)&0x3;
uint8 SrcBSwizzleGreen = (CurrentAlulnstruction.SourceBSwizzle >>2)&0x3;
uint8 SrcBSwizzleRed = (CurrentAlulnstruction.SourceBSwizzle)&0x3;

switch(SrcBSwizzleAlpha)

case 0:break;

case 1:
SrcB.alpha = TempSrc.red;
break;

case 2:
SrcB.alpha = TempSrc.green;
break;

case 3:
SrcB.alpha = TempSrc.blue;
break;

}

switch(SrcBSwizzleRed)

case 0:break;

case 1:
SrcB.red = TempSrc.green,;
break;

case 2:
SrcB.red = TempSrc.blue;
break;

case 3:
SrcB.red = TempSrc.alpha;
break;

}

switch(SrcBSwizzleGreen)

23

LG Ex. 1002, pg 158

case 0:break;

case 1:
SrcB.green = TempSrc.blue;
break;

case 2:
SrcB.green = TempSrc.alpha;
break;

case 3:
SrcB.green = TempSrc.red;
break;

}

switch(SrcBSwizzleBlue)

case 0:break;

case 1:
SrcB.blue = TempSrc.alpha;
break;

case 2:
SrcB.blue = TempSrc.red;
break;

case 3:
SrcB.blue = TempSrc.green;
break;

}

1

TempSrc.alpha = SrcC.alpha;
TempSrc.red = SrcC.red;
TempSrc.green =SrcC.green;
TempSrc.blue= SrcC.blue;

uint8 SrcCSwizzleAlpha = CurrentAlulnstruction.SourceCSwizzle >> 6;

uint8 SrcCSwizzleBlue = (CurrentAlulnstruction.SourceCSwizzle >> 4)&0x3;
uint8 SrcCSwizzleGreen = (CurrentAlulnstruction.SourceCSwizzle >>2)&0x3;
uint8 SrcCSwizzleRed = (CurrentAlulnstruction.Source CSwizzle)&0x3;

switch(SrcCSwizzleAlpha)

case 0:break;

case 1:
SrcC.alpha = TempSrc.red;
break;

case 2:
SrcC.alpha = TempSrc.green;
break;

case 3:
SrcC.alpha = TempSrc.blue;
break;

1

switch(SrcCSwizzleRed)

24

LG Ex. 1002, pg 159

case 0:break;

case 1:
SrcC.red = TempSrc.green;
break;

case 2:
SrcC.red = TempSrc.blue;
break;

case 3:
SrcC.red = TempSrc.alpha;
break;

}

switch(SrcCSwizzleGreen)

case O:break;

case 1:
SrcC.green = TempSrc.blue;
break;

case 2:
SrcC.green = TempSrc.alpha;
break;

case 3:
SrcC.green = TempSrc.red;
break;

}

switch(SrcCSwizzleBlue)

case 0:break;

case 1:
SrcC.blue = TempSrc.alpha;
break;

case 2:
SrcC.blue = TempSrc.red;
break;

case 3:
SrcC.blue = TempSrc.green;
break;

}

// ABS MODIFIER

uint8 SrcAAbs = (CurrentAlulnstruction.SourceARegPointer>>7)&0x01;
uint8 SrcBAbs = (CurrentAlulnstruction.SourceBRegPointer>>7)&0x01;
uint8 SrcCAbs = (CurrentAlulnstruction.SourceCRegPointer>>7)&0x01;
uint8 CstOAbs = (CurrentAlulnstruction.VectorResultPointer>>7)&0x01;

if (SrcASel == NON_CONSTANT)
{
switch (SrcAAbs){
case NO_ABS_MOD:
break;
case ABS_MOD:
SrcA.red.abs();
SrcA.green.abs();

25

LG Ex

. 1002, pg 160

else

}

SrcA.blue.abs();
SrcA.alpha.abs();
break;

default:
break;

I

switch (CstOAbs){

case NO_ABS_MOD:
break;

case ABS_MOD:
SrcA.red.abs();
SrcA.green.abs();
SrcA.blue.abs();
SrcA.alpha.abs();
break;

default:
break;

j

if (SrcBSel == NON_CONSTANT)

{

switch (SrcBAbs){

case NO_ABS_MOD:
break;

case ABS_MOD:
SrcB.red.abs();
SrcB.green.abs();
SrcB.blue.abs();
SrcB.alpha.abs();
break;

default:
break;

¥

!
else if (SrcBSel == CONSTANT)

{

}

switch (CstOAbs){

case NO_ABS_MOD:
break;

case ABS_MOD:
SrcB.red.abs();
SrcB.green.abs();
SrcB.blue.abs();
SrcB.alpha.abs();
break;

default:
break;

>

if (SrcCSel == NON_CONSTANT)

{

26

LG Ex. 1002, pg 161

switch (SrcCAbs){

case NO_ABS_MOD:
break;

case ABS_MOD:
SrcC.red.abs();
SrcC.green.abs();
SrcC.blue.abs();
SrcC.alpha.abs();

PreviousScalar[Aluld][Vectorindex][vector_id].alpha.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].red.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].green.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].blue.abs();

break;
default:
break;
%
}
else if (SrcCSel == CONSTANT)
{
switch (CstOAbs){
case NO_ABS_MOD:
break;
case ABS_MOD:
SrcC.red.abs();
SrcC.green.abs();
SrcC.blue.abs();
SrcC.alpha.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].alpha.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].red.abs();
PreviousScalar[Aluld][Vectorindex][vector_id].green.abs();
PreviousScalar[Aluld][Vectorindex][vector_id].blue.abs();
break;
default:
break;
¥
}

I
//Inegate input modifiers

uint8 SrcANegate= CurrentAlulnstruction.SourceANegate;
uint8 SrcBNegate= CurrentAlulnstruction.SourceBNegate;
uint8 SrcCNegate= CurrentAlulnstruction.SourceCNegate;

switch(SrcANegate){

case NIL:break;

case NEGATE:
SrcA.alpha.neg();
SrcA.red.neg();
SrcA.green.neg();
SrcA.blue.neg();
break;

default:
break;

}

27

LG Ex. 1002, pg 162

switch(SrcBNegate){

case NIL:break;

case NEGATE:
SrcB.alpha.neg();
SrcB.red.neg();
SrcB.green.neg();
SrcB.blue.neg();
break;

default:
break;

}

switch(SrcCNegate){

case NIL:break;

case NEGATE:
SrcC.alpha.neg();
SrcC.red.neg();
SrcC.green.neg();
SrcC.blue.neg();

PreviousScalar[Aluld][VectorIndex][vector_id].alpha.neg();
PreviousScalar[Aluld][VectorIndex][vector_id].red.neg();
PreviousScalar[Aluld][Vectorindex][vector_id].green.neg();
PreviousScalar[Aluld][VectorIndex][vector_id].blue.neg();

break;
default:

break;
}
/!

//Execute ALU opcode
ExecuteAluOpcode(SrcA,SrcB,SrcC,VectorResult,ScalarResult,vector_id);

/I Clamp results if told to

VectorResult.red = Clamp(VectorResult.red,true);
VectorResult.green = Clamp(VectorResult.green true);
VectorResult.blue = Clamp(VectorResult.blue,true);
VectorResult.alpha = Clamp(VectorResult.alpha,true);

ScalarResult = Clamp(ScalarResult,false);

//Save Previous Vector and Scalar
PreviousVector[Aluld][VectorIindex][vector_id].alpha = VectorResult.alpha;
PreviousVector[Aluld][Vectorindex][vector_id].red = VectorResult.red;
PreviousVector[Aluld][Vectorindex][vector_id].green = VectorResult.green;
PreviousVector[Aluld][VectorIindex][vector_id].blue = VectorResult.blue;

PreviousScalar[Aluld][VectorIndex][vector_id].alpha = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].red = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].green = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].blue = ScalarResult;

It

28

LG Ex

. 1002, pg 163

/IAccumulate the result into an array of 16x128
VectorVector.Val[vector_id].field[0] =VectorResult.red;
VectorVector.Val[vector_id] field[1] =VectorResult.green;
VectorVector.Val[vector_id] field[2] =VectorResult.blue;
VectorVector.Val[vector_id].field[3] =VectorResult.alpha ;

ScalarVector.Val[vector_id].field[0] =ScalarResult;
ScalarVector.Val[vector_id].field[1] =ScalarResult;
ScalarVector.Val[vector_id].field[2] =ScalarResult;
ScalarVector.Val[vector_id].field[3] =ScalarResult;

I
//[Exporting the results
bool Export = (CurrentAlulnstruction.ScalarResultPointer>>7)&0x1;

if(Export)

/I fog exports

if (((CurrentAlulnstruction.VectorResultPointer&0x3F) >= 16) &&
((CurrentAlulnstruction.VectorResultPointer&0x3F) < 20) &&
(CurrentAlulnstruction.VectorWriteMask&0x01) &&

(CurrentAlulnstruction.ScalarWriteMask&0x01))

{
unsigned int inVect;
unsigned int inFog;
unsigned int blended;

/I RED

float value = VectorResult.red.getReal();

inVect = *(reinterpret_cast<unsigned int*>(&value));
value = ScalarResult.getReal();

inFog = *(reinterpret_cast<unsigned int*>(&value));
inFog = inFog >> 8;

blended = (inVect) | (inFog&0x3F);
value = *(reinterpret_cast<float*>(&blended));

/I export blended red
OutputBuffer->values[vector_id].field[0] = value;

/l GREEN

value = VectorResult.green.getReal();

inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>6)&0x3F);

value = *(reinterpret_cast<float*>(&blended));

/I export blended green
OutputBuffer->values[vector_id].field[1] = value;

// BLUE

value = VectorResult.blue.getReal();

inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>12)&0x3F);

value = *(reinterpret_cast<float*>(&blended));

29

LG Ex. 1002, pg 164

/I export blended blue
OutputBuffer->values[vector_id].field[2] = value;

/I ALPHA

value = VectorResult.alpha.getReal();

inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>18)&0x3F);

value = *(reinterpret_cast<float*>(&blended));

/I export blended alpha
OutputBuffer->values[vector_id].field[3] = value;

else

// RED COMPONENT
if (CurrentAlulnstruction.VectorWriteMask&0x01 &&
CurrentAlulnstruction.ScalarWriteMask&0x01)
OutputBuffer->values[vector_id].field[0] = 1.0;
else if (CurrentAlulnstruction.VectorWriteMask&0x01)
OutputBuffer->values[vector_id] field[0] = VectorResult.red;
else if (CurrentAlulnstruction.ScalarWriteMask&0x01)
OutputBuffer->values|vector_id].field[0] = ScalarResult;
/l GREEN COMPONENT
if ((CurrentAlulnstruction.VectorWriteMask>>1)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>1)&0x01)
OutputBuffer->values[vector_id].field[1] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>1)&0x01)
OutputBuffer->values[vector_id].field[1] = VectorResult.green;
else if ((CurrentAlulnstruction.ScalarWriteMask>>1)&0x01)
OutputBuffer->values[vector_id].field[1] = ScalarResult;
// BLUE COMPONENT
if ((CurrentAlulnstruction.VectorWriteMask>>2)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>2)&0x01)
OutputBuffer->values[vector_id].field[2] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>2)&0x01)
OutputBuffer->values[vector_id].field[2] = VectorResult.blue;
else if ((CurrentAlulnstruction.ScalarWriteMask>>2)&0x01)
OutputBuffer->values[vector_id] field[2] = ScalarResult;
/I ALPHA COMPONENT
if ((CurrentAlulnstruction.VectorWriteMask>>3)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>3)&0x01)
OutputBuffer->values[vector_id].field[3] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>3)&0x01)
OutputBuffer->values[vector_id].field[3] = VectorResult.alpha;
else if ((CurrentAlulnstruction.ScalarWriteMask>>3)&0x01)
OutputBuffer->values[vector_id].field[3] = ScalarResult;

}

/I predicate the exports here
int predValid;

int predicat;

int j;

for (int i=0;i<4;i++)

{

30

LG Ex. 1002, pg 165

predValid = validBits][i];

predicat = 0;
if (CurrentAlulnstruction.PredicateSelect == 2)
{

for (j=0;j<4;j++)
predicat += (!(Predicates[i*4+j]))<<j;
predValid &= predicat;

else if (CurrentAlulnstruction.PredicateSelect == 3)

{
for (j=0;j<4;j++)
predicat += Predicates[i*4+j]<<j;
predValid &= predicat;
1

OutputBuffer->valids[i]=predValid;

OutputBuffer->valid = true;

}

}
/hwrite the result into register files
RegisterFileWrite(CurrentAlulnstruction.VectorWriteMask, CurrentAlulnstruction. ScalarWriteMask,
ScalarDestPtr,DstPtr);

}
It

void SQ_ALU::ExecuteAluOpcode(VectorData SrcA, VectorData SrcB, VectorData SrcC, VectorData &
VectorResult,mfloat<8,23,128> & ScalarResult, int i)
{

mfloat<8,23,128> red;

mfloat<8,23,128> green;

mfloat<8,23,128> blue;

mfloat<8,23,128> alpha;

mfloat<8,23,128> one;
one.putReal((float)1.0);
mfloat<8,23,128> zero;
zero.putReal((float)0.0);
mfloat<8,23,128> two;
two.putReal((float)2.0);

CoissuedInstruction = true;

//[Executing Vector Opcode
switch(CurrentAlulnstruction.VectorOpcode)

{
case ADDyv:

if(sq->isHardwareAccurate())

{
VectorResult.alpha = multiply_add(SrcA.alpha,one,SrcB.alpha);
VectorResult.red = multiply_add(SrcA.red,one,SrcB.red);
VectorResult.green = multiply_add(SrcA.green,one,SrcB.green);
VectorResult.blue = multiply_add(SrcA.blue,one,SrcB.blue);

31

LG Ex. 1002, pg 166

else
{
VectorResult.alpha.add(SrcA.alpha,SrcB.alpha);
VectorResult.red.add(SrcA.red,SrcB.red);
VectorResult.green.add(SrcA.green,SrcB.green);
VectorResult.blue.add(SrcA.blue,SrcB.blue);
}
break;
}
case MAXv:
VectorResult.alpha.max(SrcA.alpha,SrcB.alpha);
VectorResult.red.max(SrcA.red,SrcB.red);
VectorResult.green.max(SrcA.green,SrcB.green);
VectorResult.blue.max(SrcA.blue,SrcB.blue);
break;
case MINv:
VectorResult.alpha.min(SrcA.alpha,SrcB.alpha);
VectorResult.red.min(SrcA.red,SrcB.red);
VectorResult.green.min(SrcA.green,SrcB.green);
VectorResult.blue.min(SrcA.blue,SrcB.blue);
break;
case MULv:

if(sq->isHardwareAccurate())

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,zero);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

}

else

VectorResult.alpha.mul(SrcA.alpha,SrcB.alpha);
VectorResult.red.mul(SrcA.red,SrcB.red);
VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.blue.mul(SrcA .blue,SrcB.blue);
}
break;
case SETEv:
VectorResult.alpha = (SrcA.alpha == SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red == SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green == SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue == SrcB.blue) ? 1.0:0.0;
break;
case SETGTv:
VectorResult.alpha = (SrcA.alpha > SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red > SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green > SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue > SrcB.blue) ? 1.0:0.0;
break;
case SETGTEv:
VectorResult.alpha = (SrcA.alpha >= SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red >= SrcB.red) 7 1.0:0.0;
VectorResult.green = (SrcA.green >= SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue >= SrcB.blue) ? 1.0:0.0;

32

LG Ex

. 1002, pg 167

break;
case SETNEv:
VectorResult.alpha = (SrcA.alpha != SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red != SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green != SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue != SrcB.blue) ? 1.0:0.0;
break;
case FRACv:
VectorResult.alpha.sub(SrcA.alpha,(float)((int)SrcA.alpha.getReal()));
VectorResult.red.sub(SrcA.red,(float)((int)SrcA.red.getReal()));
VectorResult.green.sub(SrcA .green,(float)((int)SrcA.green.getReal()));
VectorResult.blue.sub(SrcA blue,(float)((int)SrcA.blue.getReal()));
break;
case TRUNCv:
VectorResult.alpha = (float)((int)SrcA.alpha.getReal());
VectorResult.red = (float)((int)SrcA.red.getReal());
VectorResult.green = (float)((int)SrcA.green.getReal());
VectorResult.blue = (float)((int)SrcA.blue.getReal());
break;
case FLOORv:
if (SrcA.alpha.getReal() >= 0)
VectorResult.alpha = (float)((int)SrcA.alpha.getReal());
else
VectorResult.alpha = (float)((int)SrcA.alpha.getReal())-1.0f;
if (SrcA.red.getReal() >= 0)
VectorResult.red = (float)((int)SrcA.red.getReal());
else
VectorResult.red = (float)((int)SrcA.red.getReal())-1.0f;
if (SrcA.green.getReal() >= 0)
VectorResult.green = (float)((int)SrcA.green.getReal());
else
VectorResult.green = (float)((int)SrcA.green.getReal())-1.0f;
if (SrcA.blue.getReal() >= 0)
VectorResult.blue = (float)((int)SrcA.blue.getReal());
else
VectorResult.blue = (float)((int)SrcA.blue.getReal())-1.0f;
break;
case MULADDv:
if(sq->isHardwareAccurate())

{
VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,SrcC.alpha);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,SrcC.red);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,SrcC.green);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,SrcC.blue);

}

else

{

VectorResult.alpha.mad(SrcA.alpha,SrcB.alpha,SrcC.alpha);
VectorResult.red.mad(SrcA.red,SrcB.red,SrcC.red);
VectorResult.green.mad(SrcA.green,SrcB.green,SrcC.green);
VectorResult.blue.mad(SrcA.blue,SrcB.blue,SrcC.blue);

CoissuedInstruction = false;
break;

case DOT4v:
if(sq->isHardwareAccurate())

33

LG Ex. 1002, pg 168

else

}

break;

case DOT3v:
if(sq->isHardwareAccurate())

{

else

}

break;

case CNDEv:
VectorResult.alpha = (SrcA.alpha == 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red == 0.0) ? SrcB.red:SrcC.red;

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,zero);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.red);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.green);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.blue);

VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

alpha.mul(SrcA.alpha, SrcB.alpha);
red.mul(SrcA.red, SrcB.red);
green.mul(SrcA.green, SrcB.green);
blue.mul(SrcA.blue, SrcB.blue);

VectorResult.alpha.add(alpha,red);
VectorResult.alpha +=green;
VectorResult.alpha +=blue;
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.blue);
VectorResult.green = VectorResult.red;

VectorResult.blue = VectorResult.red;

VectorResult.alpha = VectorResult.red;

red.mul(SrcA.red,SrcB.red);
green.mul(SrcA.green, SrcB.green);
blue.mul(SrcA.blue,SrcB.blue);
VectorResult.red.add(red,green);
VectorResult.red += blue;
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

34

LG Ex

. 1002, pg 169

VectorResult.green = (SrcA.green == 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue == 0.0) ? SrcB.blue:SrcC.blue;
break;

case CNDGTv:
VectorResult.alpha = (SrcA.alpha > 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red > 0.0) ? SrcB.red:SrcC.red;
VectorResult.green = (SrcA.green > 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue > 0.0) ? SrcB.blue:SrcC.blue;
break;

case CNDGTEv:
VectorResult.alpha = (SrcA.alpha >= 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red >= 0.0) ? SrcB.red:SrcC.red;
VectorResult.green = (SrcA.green >= 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue >= 0.0) ? SrcB.blue:SrcC.blue;
break;

case CUBEv:
if (SrcA.red > SrcA.green && SrcA.red > SrcA blue)

VectorResult.red = SrcA.red;
if (SrcA.red >=0)

{
VectorResult.green =0;
VectorResult.alpha = -SrcA.blue;
VectorResult.blue = -SrcA.green;
}
else
{
VectorResult.green =1;
VectorResult.alpha = SrcA.blue;
VectorResult.blue = -SrcA.green;
}

else if (SrcA.green > SrcA.blue)

VectorResult.red = SrcA.green;
if (SrcA.green >= Q)

{
VectorResult.green =2;
VectorResult.alpha = SrcA.red;
VectorResult.blue = SrcA.blue;
}
else
{
VectorResult.green =3;
VectorResult.alpha = SrcA.red;
VectorResult.blue = -SrcA.blue;
}
}
else
{

VectorResult.red = SrcA.blue;
if (SrcA.blue >= 0)
{

VectorResult.green =4;
VectorResult.alpha = SrcA.red;
VectorResult.blue = -SrcA.green;

35

LG Ex. 1002, pg 170

else
{
VectorResult.green =5;
VectorResult.alpha = -SrcA.red;
VectorResult.blue = -SrcA.green;
}
if(sq->isHardwareAccurate())
{
VectorResult.red = multiply_add(VectorResult.red,two,zero);
}
else
{
VectorResult.red.mul(2,VectorResult.red);
}
break;
case MAX4v:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.blue && SrcA.red > SrcA.alpha)
VectorResult.alpha = SrcA.red;

else if (SrcA.green > SrcA.blue && SrcA.green > SrcA.alpha)
VectorResult.alpha = SrcA.green;

else if (SrcA.blue > SrcA.alpha)
VectorResult.alpha = SrcA.blue;

else
VectorResult.alpha = SrcA.alpha;

VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;
break;

case DOT2ADDv:

{

if(sq->isHardwareAccurate())

VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,VectorResult.red,SrcC.red);
VectorResult.alpha = VectorResult.red;

VectorResult.green = VectorResult.red;

VectorResult.blue = VectorResult.red;

}

else

{
VectorResult.red.mul(SrcA.red,SrcB.red);
VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.red.add(VectorResult.red,VectorResult.green);
VectorResult.red.add(VectorResult.red,SrcC.red);
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

1

break;

case PRED_SETE_PUSHYv:

36

LG Ex

. 1002, pg 171

/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{
if (SrcB.alpha.getReal() == 0.0f && SrcA.red.getReal() == 0.0f)
{
Predicates]i] = true;
VectorResult.red = 0.0f;
}
else
{
Predicates]i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;
}
}
break;

case PRED_SETGT_PUSHv:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{
if (SrcB.alpha.getReal() > 0.0f && SrcA.red.getReal() == 0.0f)
Predicates]i] = true;
VectorResult.red = 0.0f;
}
else
{
Predicates]i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;
}
)
break;

case PRED_SETGTE_PUSHv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{
if (SrcB.alpha.getReal() >= 0.0f && SrcA.red.getReal() == 0.0f)
{
Predicates]i] = true;
VectorResult.red = 0.0f;
}
else
{
Predicates]i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;
}
}
break;

case PRED_SETNE_PUSHYv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

{
if (SrcB.alpha.getReal() != 0.0f && SrcA.red.getReal() == 0.0f)

37

LG Ex. 1002, pg 172

Predicates]i] = true;
VectorResult.red = 0.0f;

}
else
{
Predicates]i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;
}
}
break;
case KILLEv:

/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() == SrcB.alpha.getReal() && SrcA.red.getReal() ==

SrcB.red.getReal() &&
SrcA.green.getReal() == SrcB.green.getReal() && SrcA.blue.getReal()

== SrcB.blue.getReal())
validBits[i/4] = validBits[i/4]&(0XEF>>(4-(i%4)));

}
break;
case KILLGTv:
I/l check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

{
SrcB.red.getReal() &&

if (SrcA.alpha.getReal() > SrcB.alpha.getReal() && SrcA.red.getReal() >

SrcA.green.getReal() > SrcB.green.getReal() && SrcA.blue.getReal() >
SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

3
break;
case KILLGTEv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

{
SrcB.red.getReal() &&

if (SrcA.alpha.getReal() >= SrcB.alpha.getReal() && SrcA.red.getReal() >=

SrcA.green.getReal() >= SrcB.green.getReal() && SrcA.blue.getReal()
>= SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

1

break;
case KILLNEv:
Il check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

38

LG Ex. 1002, pg 173

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() != SrcB.alpha.getReal() && SrcA.red.getReal() I=
SrcB.red.getReal() &&
SrcA.green.getReal() != SrcB.green.getReal() && SrcA.blue.getReal() !=
SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));
}

break;
case MOVAv:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

ConstantOffsets[i+AluPhase*16] = floor(SrcA.alpha.getReal()+0.5);

}
VectorResult.red = SrcA.red;
VectorResult.green = SrcA.green;
VectorResult.blue = SrcA.blue;
VectorResult.alpha = SrcA.alpha;
break;
case DSTv:
VectorResult.red = 1.0f;
if(sq->isHardwareAccurate())
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
else
VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.blue = SrcA.blue;
VectorResult.alpha = SrcB.alpha;

break;
default:
std::cerr << "Unsuported Vector Opcode in SP: " << CurrentAlulnstruction.VectorOpcode
<< std::endl;
}

//[Executing Scalar Opcode
//Note: There is a coissue only when vector opcode uses two sources or less

nanCheck nanValue;
Vector4 result,in;

if(CoissuedInstruction)

{

switch(CurrentAlulnstruction.ScalarOpcode)

{
case ADDs:
if(sq->isHardwareAccurate())

ScalarResult = multiply_add(SrcC.alpha,one,SrcC.red);
else
ScalarResult.add(SrcC.alpha,SrcC.red);
break;
case ADD_PREVs:
if(sq->isHardwareAccurate())

39

LG Ex. 1002, pg 174

ScalarResult =
multiply_add(SrcC.alpha,one,PreviousScalar[Aluld][AluPhase][i].red);
else
ScalarResult.add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;
case MULs:
if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,SrcC.red,zero);
else
ScalarResult.mul(SrcC.alpha,SrcC.red);
break;
case MUL_PREVs:
if(sq->isHardwareAccurate())
ScalarResult =
multiply_add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red,zero);
else
ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;
case MUL_PREV2s:
nanValue.f = PreviousScalar[Aluld][AluPhase][i].red.getReal();
if (nanValue.u == OxFF7FFFFF || nanValue.u == 0xFF800000 ||
SrcC.red.getReal() <= 0)

{ nanValue.u = OxXFF7FFFFF;
ScalarResult = nanValue.f;

}

else

{

if(sq->isHardwareAccurate())
ScalarResult =
multiply_add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);

}
break;

case MINs:
ScalarResult.min(SrcC.alpha,SrcC.red);
break;

case MAXs:
ScalarResult.max(SrcC.alpha,SrcC.red);
break;

case SETEs:
ScalarResult = (SrcC.alpha == 0.0) ? 1.0:0.0;
break;

case SETNEs:
ScalarResult = (SrcC.alpha != 0.0) ? 1.0:0.0;
break;

case SETGTs:
ScalarResult = (SrcC.alpha > 0.0) ? 1.0:0.0;
break;

case SETGTEs:
ScalarResult= (SrcC.alpha >= 0.0) ? 1.0:0.0;
break;

case FRACs:
ScalarResult.sub(SrcC.alpha,(float)((int)SrcC.alpha.getReal()));

40

LG Ex. 1002, pg 175

break;
case TRUNCs:
ScalarResult= (float)((int)SrcC.alpha.getReal());
break;
case FLOORs:
if (SrcC.alpha.getReal() > 0)
ScalarResult = (float)((int)SrcC.alpha.getReal());
else
ScalarResult = (float)((int)SrcC.alpha.getReal())-1.0f;
break;
case EXP_IEEE:
nanValue.f = SrcC.alpha.getReal();
110
if (SrcC.alpha.getReal() == 0.0f)

{
ScalarResult = 1.0f;

}
/I NAN
else if (nanValue.f I= nanValue.f)

{

ScalarResult = nanValue.f;

}
/I + INF
else if (nanValue.u == 0x7F800000)

ScalarResult = nanValue f;

}
I/l - INF
else if (nanValue.u == 0xFF800000)
{
ScalarResult = 0.0f;
}
/I + MAX_FLT
else if (nanValue.u == Ox7F7FFFFF)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}
/I - MAX_FLT
else if (nanValue.u == OxFF7FFFFF)
{
ScalarResult = 0.0f;
}
else
{
if(sq->isHardwareAccurate())
{
in.x = SrcC.alpha.getReal();
mathScalar->ExpBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;
}
else
{
ScalarResult = pow(2,SrcC.alpha.getReal());
}
}

41

LG Ex. 1002, pg 176

break;
case LOG_CLAMP:
nanValue.f = SrcC.alpha.getReal();

110
if (SrcC.alpha.getReal() == 0.0f)
{
nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;
}
// NAN
else if (nanValue.f != nanValue.f)
{
ScalarResult = nanValue f;
}
/I + INF
else if (nanValue.u == 0x7F800000)
{
ScalarResult = nanValue.f;
}
/I - INF
else if (nanValue.u == 0xFF800000)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue f;
}
/I neg
else if (nanValue.f < 0)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
}
else
{
if(sg->isHardwareAccurate())
{
in.x = SrcC.alpha.getReal();
mathScalar->LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;
}
else
{
ScalarResult = log(SrcC.alpha.getReal())/log(2);
}
}
break;

case LOG_IEEE:
nanValue.f = SrcC.alpha.getReal();

/10

if (SrcC.alpha.getReal() == 0.0f)

{
nanValue.u = OxFF800000;
ScalarResult = nanValue f;

1

/I NAN

else if (nanValue f != nanValue.f)

{

42

LG Ex. 1002, pg 177

ScalarResult = nanValue.f;

}

/I + INF

else if (nanValue.u == 0x7F800000)
{

ScalarResult = nanValue f;

}

// - INF

else if (hanValue.u == 0xFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue f;

}
// neg
else if (nanValue f < 0)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
}
else
{
if(sq->isHardwareAccurate())
{
in.x = SrcC.alpha.getReal();
mathScalar->LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;
}
else
{
ScalarResult = log(SrcC.alpha.getReal())/log(2);
}
}
break;

case RECIP_CLAMP:
nanValue.f = SrcC.alpha.getReal();

II+0
if (nanValue.u == 0x00000000)
{
nanValue.u = Ox7F7FFFFF;
ScalarResult = nanValue.f;
}
/-0
else if (nanValue.u == 0x80000000)
{
nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;
}
/I NAN

else if (nanValue.f = nanValue f)
ScalarResult = nanValue f;

}

/I + INF

else if (nanValue.u == 0x7F800000)

{
nanValue.u = 0x80000000;

43

LG Ex. 1002, pg 178

ScalarResult = nanValue.f;

}

/I - INF

else if (nanValue.u == 0xFF800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())

{
in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.x);
ScalarResult = result.x;
}
else
ScalarResult.div(1.0,SrcC.alpha);
break;

case RECIP_FF:
nanValue.f = SrcC.alpha.getReal();

/I+0
if (nanValue.u == 0x00000000)
{
nanValue.u = 0x00000000;
ScalarResult = nanValue f;
!
/1-0
else if (nanValue.u == 0x80000000)
{
nanValue.u = 0x80000000;
ScalarResult = nanValue.f;
!
/I NAN
else if (nanValue.f = nanValue f)
{
ScalarResult = nanValue.f;
1
/I + INF
else if (nanValue.u == 0x7F800000)
{
nanValue.u = 0x80000000;
ScalarResult = nanValue.f;
!
/I - INF
else if (nanValue.u == 0xFF800000)
{
nanValue.u = 0x00000000;
ScalarResult = nanValue.f;
!
else
{
if(sq->isHardwareAccurate())
{
in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in .x);
ScalarResult = result.x;
!

44

LG Ex. 1002, pg 179

else
ScalarResult.div(1.0,SrcC.alpha);
}
break;
case RECIP_I|EEE:
nanValue.f = SrcC.alpha.getReal();

/I+0
if (nanValue.u == 0x00000000)
{
nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;
}
/1-0
else if (nanValue.u == 0x80000000)
{
nanValue.u = OxFF800000;
ScalarResult = nanValue.f;
}
/Il NAN
else if (nanValue.f I= nanValue f)
{
ScalarResult = nanValue.f;
}
/I + INF
else if (nanValue.u == 0x7F800000)
{
nanValue.u = 0x80000000;
ScalarResult = nanValue.f;
!
/I - INF
else if (nanValue.u == 0xFF800000)
{
nanValue.u = 0x00000000;
ScalarResult = nanValue.f;
}
else
{
if(sq->isHardwareAccurate())
{
in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.x);
ScalarResult = result.x;
}
else
ScalarResult.div(1.0,SrcC.alpha);
}
break;

case RECIPSQ_CLAMP:
nanValue.f = SrcC.alpha.getReal();

II+0
if (nanValue.u == 0x00000000)
{
nanValue.u = 0x7F7FFFFF;
ScalarResult = nanValue f;
}
/-0

45

LG Ex. 1002, pg 180

else if (nanValue.u == 0x80000000)

{
nanValue.u = OxFF7FFFFF;

ScalarResult = nanValue.f;

}
/I NAN
else if (nanValue f != nanValue.f)

ScalarResult = nanValue f;

}
/I + INF
else if (nanValue.u == 0x7F800000)
{
nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}

/I - INF

else if (nanValue.u == 0xFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
}
/I -
else if (nanValue.f < 0.0f)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue f;

if(sq->isHardwareAccurate())

{
in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtFF(&result.x,&in.x);
ScalarResult = result.x;

}

else
ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());

break;

case RECIPSQ_FF:
nanValue.f = SrcC.alpha.getReal();

II+0
if (nhanValue.u == 0x00000000)
{
nanValue.u = 0x00000000;
ScalarResult = nanValue.f;
}
/-0
else if (nanValue.u == 0x80000000)
{
nanValue.u = 0x80000000;
ScalarResult = nanValue.f;
}
/I NAN

else if (nanValue.f I= nanValue.f)

ScalarResult = nanValue.f;

46

LG Ex. 1002, pg 181

/I + INF
else if (nanValue.u == 0x7F800000)

{
nanValue.u = 0x00000000;
ScalarResult = nanValue.f;
}
/Il - INF
else if (nanValue.u == 0xFF800000)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
}
/I -
else if (nanValue.f < 0.0f)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
}
else
{
if(sq->isHardwareAccurate())
{
in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtFF (&result.x,&in.x);
ScalarResult = result.x;
}
else
ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;

case RECIPSQ_IEEE:
nanValue.f = SrcC.alpha.getReal();

II+0
if (nanValue.u == 0x00000000)
{
nanValue.u = 0x7F800000;
ScalarResult = nanValue f;
!
/-0
else if (nanValue.u == 0x80000000)
{
nanValue.u = 0xFF800000;
ScalarResult = nanValue.f;
!
/I NAN
else if (nanValue f != nanValue.f)
{
ScalarResult = nanValue.f;
h
/I + INF
else if (nanValue.u == 0x7F800000)
{
nanValue.u = 0x00000000;
ScalarResult = nanValue f;
}
/I - INF

47

LG Ex. 1002, pg 182

else if (nanValue.u == OxFF800000)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
}
/-
else if (nanValue.f < 0.0f)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue f;

}
else
{
if(sq->isHardwareAccurate())
{
in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtFF(&result.x,&in.x);
ScalarResult = result.x;
!
else
ScalarResult = sgrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;
case MOVAs:

/I check for predication

if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal()+0.5);

ScalarResult = SrcC.alpha;

break;

case MOVA_FLOORs:

I/ check for predication

if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal());

ScalarResult = SrcC.alpha;

break;
case SUBs:
if(sq->isHardwareAccurate())
{
green = -1.0f;
ScalarResult = multiply_add(SrcC.red,green,SrcC.alpha);
}
else
ScalarResult.sub(SrcC.alpha,SrcC.red);
break;

case SUB_PREVs:
if(sq->isHardwareAccurate())

green = -1.0f;
ScalarResult =
multiply_add(PreviousScalar[Aluld][AluPhase][i].red,green,SrcC.alpha);
}
else

ScalarResult.sub(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

48

LG Ex. 1002, pg 183

case PRED_SETEs:
I/ check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{
if (SrcC.alpha.getReal() == 0.0f)
Predicates]i]= true;
ScalarResult = 0.0f;
}
else
{
Predicates[i] = false;
ScalarResult = 1.0f;
1
}
break;

case PRED_SETGTs:
I/ check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{
if (SrcC.alpha.getReal() > 0.0f)
{
Predicates]i]= true;
ScalarResult = 0.0f;
}
else
Predicates[i] = false;
ScalarResult = 1.0f;
¥
}
break;

case PRED_SETGTEs:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{
if (SrcC.alpha.getReal() >= 0.0f)
Predicatesi]= true;
ScalarResult = 0.0f;
}
else
{
Predicates[i] = false;
ScalarResult = 1.0f;
}
}
break;

case PRED_SETNEs:
/Il check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

49

LG Ex

. 1002, pg 184

if (SrcC.alpha.getReal() != 0.0f)

Predicatesli]= true;
ScalarResult = 0.0f;

!
else
{
Predicates]i] = false;
ScalarResult = 1.0f;
!
}
break;

case PRED_SET_INVs:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{
if (SrcC.red.getReal() == 1.0f)
{
Predicatesl[i]= true;
ScalarResult = 0.0f;
}
else
{
Predicates]i] = false;
if (SrcC.red.getReal() == 0.0f)
ScalarResult = 1.0f;
else
ScalarResult = SrcC.red.getReal();
}
}
break;

case PRED_SET_POPs:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

{
if (SrcC.red.getReal()-1.0f <= 0.0f)
{
Predicates[i]= true;
ScalarResult = 0.0f;
}
else
{
Predicatesi] = false;
ScalarResult = SrcC.red.getReal()-1.0f;
}
}
break;

case PRED_SET_CLRs:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

Predicates|i] = false;
/I set to max float

50

LG Ex

. 1002, pg 185

nanValue.u = Ox7F7FFFFF;
ScalarResult = nanValue.f;
}
break;
case PRED_SET_RESTOREs:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == ()
{
if (SrcC.red.getReal() == 0.0f)
Predicates]i] = true;
ScalarResult = 0.0f;
}
else
Predicates]i] = false;
ScalarResult = SrcC.red.getReal();
}
}
break;
case KILLEs:

/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{ if (SrcC.alpha.getReal() == 0.0f)
validBits[i/4] = validBits[i/4]&(0XEF>>(4-(i%4)));
} }
break;

case KILLGTs:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

{
if (SrcC.alpha.getReal() > 0.0f)
validBits[i/4] = validBits[i/4]&(0XEF>>(4-(i%4)));
}
}
break;

case KILLGTEs:
/I check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() >= 0.0f)
validBits[i/4] = validBits[i/4]&(0OXEF>>(4-(i%4)));

}

break;
case KILLNEs:
/Il check for predication

51

LG Ex. 1002, pg 186

if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates]i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == ()
{ if (SrcC.alpha.getReal() != 0.0f)
validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));
} }
break;

case KILLONEs:
I/l check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicatesi] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{ if (SrcC.alpha.getReal() == 1.0f)
validBits|[i/4] = validBits[i/4]&(OXxEF>>(4-(i%4)));
} }
break;

case SQRT_IEEE:
nanValue.f = SrcC.alpha.getReal();

/II+0
if (nanValue.u == 0x00000000)
{
nanValue.u = 0x00000000;
ScalarResult = nanValue.f;
}
/-0

else if (nanValue.u == 0x80000000)

{
nanValue.u = 0x80000000;

ScalarResult = nanValue f;

}
/I NAN
else if (nanValue.f I= nanValue.f)
{
ScalarResult = nanValue f;
}
/I + INF
else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}

I - INF

else if (nanValue.u == 0xFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
1
/-
else if (nanValue.f < 0.0f)
{
nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

52

LG Ex. 1002, pg 187

}

else
ScalarResult = pow(2,0.5*log(SrcC.alpha.getReal())/1og(2));
break;
default:
std::cerr << "Scalar Opcode Not supported: " <<
((int)CurrentAlulnstruction.ScalarOpcode) << std::endl;
break;
}

}
It

void SQ_ALU::RegisterFileRead(uint32 SrcAPtr,uint32 SrcBPtr,uint32 SrcCPtr,const RegVect*
&lnputVectorA,

const RegVect* &InputVectorB,const RegVect*
&lInputVectorC)

{
CurrentRegFile->GetConstValues(InputVectorA,SrcAPtr);
CurrentRegFile->GetConstValues(InputVectorB,SrcBPtr);
CurrentRegFile->GetConstValues(InputVectorC,SrcCPtr);

}

I

void SQ_ALU:: RegisterFileWrite(uint8 VectorWriteMask, uint8 ScalarWriteMask,uint32 ScalarAddr,

uint32 VectorAddr)
{

/lgrabing a pointer to the GPR entry in location VectorAddr
RegVect* CurrentRegEntry;
CurrentRegFile->GetValues(CurrentRegEntry, VectorAddr);

/I if not exporting
if (!((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))

if (VectorWriteMask != 0x0)

for (int vector_id = 0; vector_id < 16 ; vector_id ++){
for(int channel = 0; channel < 4 ; channel ++){
if (VectorWriteMask&(1<<channel))
if ((CurrentAlulnstruction.PredicateSelect&0x01) ==
Predicates[vector_id] ||
(CurrentAlulnstruction.PredicateSelect>>1) ==
0)
CurrentRegEntry[vector_id].field[channel] =
VectorVector.Val[vector_id].field[channel];

}

}

//grabing a pointer to the GPR entry in location ScalarAddr
CurrentRegFile->GetValues(CurrentRegEntry, ScalarAddr);
/I if not exporting

if (!((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))

if (ScalarWriteMask != 0x0)
{

53

LG Ex. 1002, pg 188

for (int vector_id = 0; vector_id < 16 ; vector_id ++){
for(int channel = 0; channel < 4 ; channel ++){
if (ScalarWriteMask&(1<<channel))
if ((CurrentAlulnstruction.PredicateSelect&0x01) ==
Predicates[vector_id] ||
(CurrentAlulnstruction.PredicateSelect>>1) ==
0)
CurrentRegEntry[vector_id].field[channel] =
ScalarVector.Val[vector_id].field[channel];

}

}
It

mfloat<8,23,128> SQ_ALU::Clamp(mfloat<8,23,128> result, bool vector)

{
mfloat<8,23,128> one;

one.putReal((float)1.0);

mfloat<8,23,128> zero;
zero.putReal((float)0.0);

mfloat<8,23,128> result_clamped ;

if(vector){
result_clamped = ((result > one) & CurrentAlulnstruction.VectorClamp) ? one: result;
result_clamped = ((result < zero) & CurrentAlulnstruction.VectorClamp) ? zero :
result_clamped;

}
else{
result_clamped = ((result > one) & CurrentAlulnstruction.ScalarClamp) ? one : result;
result_clamped = ((result < zero) & CurrentAlulnstruction.ScalarClamp) ? zero :
result_clamped;

return (result_clamped);

Sq_block model.cpp

#include <chip/ar_code/ar chip_interface.h>
#include <gfx/sq/user _block model.h>
#include <gfx/sx/user block model.h>
#include <gfx/sq/sq_dumps.h>

#include <sys/rom/user block model.h>
#include <reg/crayola_offset.h>

#include <numbers/numbers.h>

#include <tex/tconst.h>

#include <core/registry.h>

54

LG Ex. 1002, pg 189

#include <iostream>
#include <queue>

#include "reg_file.h"
#include "sq_alu.h"

#include "constant store.h"
#include "interpolators.h"
#include "instruction_store.h"
#include "arbiter.h"

#include "alu_types.h"”

/f#define DEBUG_SEQ
using namespace std;
/

cUSER_BLOCK SQ::cUSER BLOCK SQ (cAR_CHIP INTERFACE*
pchip, uint32 block id,

cMODEL BLOCK PARAMETERS& blockParameters) :
cAR_BLOCK SQ (pchip, block_id, blockParameters), interpolators(parameters)
{
int i,j;
std::cout << "block SQ constructor" << std::end];

#ifndef MSDOS
m_dumpSQ = Core::Registry::rcad("HKEY LOCAL MACHINEWSOFTWAREWATI
Technologies\\Debug\\SqDump", 0);
#else
m_dumpSQ = (uint32)(getenv("SqDump"));
#endif / End MSDOS

pSC _SQ=NULL;
pSC_SP=NULL;
pSQ_SC=NULL;
pVGT _SQ Verts=NULL;
pVGT _SQ verts ready=NULL;
pSQ_SP_Interp=NULL;
pSQ_SX=NULL;
pSP_SX=NULL;
pSQ_TP=NULL,

pSX SQ=NULL;
pSQ_SP=NULL;
pTP_SQ=NULL,;
pSQ_CP_PIX=NULL;
pSQ_CP_VTX =NULL;
pSQ_RB=NULL,;

55

LG Ex. 1002, pg 190

regFile[0]=NULL;
regFile[1]J=NULL,;
regFile[2]=NULL;
regFile[3]=NULL;
arbiter=NULL;
gpr_manager=NULL;
m_sqTpDump =NULL;
m_spSxDump =NULL;
m_sqSxDump =NULL;

idle0 =1idlel 7=0;

if(m_dumpSQ>0) {
m_sqTpDump =new cSqTp_Dump("sq_tp.dmp");
m_spSxDump =new cSpSx_Dump("sp_sx.dmp");
m_sqSxDump =new cSqSx_Dump("sq_sx.dmp");
m_sqScDump =new ¢SqSc_Dump("sq_sc.dmp");
m_sqSpInterpDump = new cSqSplnterp Dump("sq_sp_interp.dmp™);
pcFile = fopen("sq_sx_pc.dmp”,"wb™");

auto_count_pix = 0;
auto_count_vtx = 0;

// set up the register files
for (i=0;i<4;i++)
regFile[i]= new RegFile();

// clean the output buffer
outBuffer.valid = false;
for (i=0;i<16;i++)

{
outBuffer.values[i].field[0]=0.0;
outBuffer.values[i].field[1]=0.0;
outBuffer.values[i].field[2]=0.0;
outBuffer.values[i].field[3]=0.0;
}

//ORDER ISRGBA Ain [3]Bin[2] Gin[1] and R in [0] OR
//ORDER IS XYZW W in [3] Zin [2] Y in [1] and X in [0]

// init the parameter store to all Os

for (j=0;j<16;j++)

{

for (i=0;1<128;i++)
{
parameters[i].Val[j].field[0] = 0.0;

56

LG Ex. 1002, pg 191

parameters[i].Val[j].field[1] = 0.0;
parameters[i].Val[j].field[2] = 0.0;
parameters[i].Val[j].field[3] = 0.0;

}

// clean the pixel input buffer
for (j=0;j<4;j++)
{

interp[j].new_vector = false;
interp[j].pc_dealloc = 0;
interp[j].state_id = 0;

}

// clear the vertex shader ready counts
for (i=0;i<8;i++)

{
}

for (i=0;1<64;i++)
for (j=0;j<2:j++)

vertexReady[1]=0;

stagingRegisters[i][j].field[0] = 0.0f;
stagingRegisters[i][j].field[1] = 0.0f;
stagingRegisters[i][j].field[2] = 0.0f;
stagingRegisters[i][j].field[3] = 0.0f;

}

for (i=0;1<3;i++)
for (j=0;j<16;j++)
{
RTParameters[i][j].field[0] = 0.0f;
RTParameters[i][j].field[1] = 0.0f;
RTParameters[i][j].field[2] = 0.0f;
RTParameters[i][j].field[3] = 0.0f;

}

// set the parameter cache head to 0
pcHead = 0;

// set the parameter cache head to 127
pcFree = 127,

// set the test type

checkHigh = true;

// create the ALU arbiter

57

LG Ex. 1002, pg 192

}

arbiter = new Arbiter(this,m dumpSQ);

// create the GPR manager
gpr_manager = new GPR_manager(this);

current_write state = 0;

void cUSER_BLOCK SQ::Reset()

{

int 1,j;
for (i=0;i<4;i++)
delete regFile[i];

delete arbiter;
delete gpr_manager;

regFile[0]=NULL;
regFile[1]=NULL;
regFile[2]=NULL;
regFile[3]=NULL;
arbiter=NULL;

gpr manager=NULL,;

idle0 = idlel 7= 0;

auto_count_pix = 0;
auto_count_vtx = 0;

// set up the register files
for (i=0;i<4;i++)
regFile[i]= new RegFile();

// clean the output buffer
outBuffer.valid = false;
for (i=0;i<16;i++)

{
outBuffer.values[i].field[0]=0.0;
outBuffer.values[i].field[1]=0.0;
outBuffer.values[i].field[2]=0.0;
outBuffer.values[i].field[3]=0.0;
}

//ORDER ISRGBA Ain[3]Bin[2] Gin[l] and R in [0] OR
//ORDER IS XYZW W in [3] Zin[2] Y in[1] and X in [0]

// init the parameter store to all Os

58

LG Ex. 1002, pg 193

for (j=0;j<16;j++)
{

for (i=0;i<128;i++)

{
parameters[i].Val[j].field[0] = 0.0;
parameters[i].Val[j].field[1] = 0.0;
parameters[i].Val[j].field[2] = 0.0;
parameters[i].Val[j].field[3] = 0.0;
}

}

// clean the pixel input buffer
for (j=0;j<4;j++)

interp[j].new_vector = false;
interp[j].pc_dealloc = 0;
interp[j].state_id = 0;

}

// clear the vertex shader ready counts
for (i=0;i<8;i++)

{
}

for (i=0;1<64;i++)
for (j=0;j<2;j++)

vertexReady[1]=0;

stagingRegisters[i][j].field[0] = 0.0f;

stagingRegisters[i][j].field[1] = 0.0f;

stagingRegisters[i][j].field[2] = 0.0f;

stagingRegisters[i][j].field[3] = 0.0f;
}

for (1=0;1<3;i++)
for (j=0;j<16;j++)
{

RTParameters[i][j].field[0] = 0.0f;
RTParameters[i][j].field[1] = 0.0f;
RTParameters[i][j].field[2] = 0.0f;
RTParameters[i][j].field[3] = 0.0f;

}

// set the parameter cache head to 0
pcHead = 0;
// set the parameter cache head to 127

59

LG Ex. 1002, pg 194

pcFree = 127;
// set the test type
checkHigh = true;

// create the ALU arbiter
arbiter = new Arbiter(this,m_dumpSQ);

// create the GPR manager
gpr_manager = new GPR_manager(this);

current_write state = 0;
)
s

cUSER BLOCK SQ::~cUSER_BLOCK SQ(void)
{ . .
nti;
for (i=0;i<4;i++)
delete regFile[i];

if(m_dumpSQ>0) {

delete(m_sqTpDump);

delete(m_spSxDump);

delete(m_sqSxDump);
delete(m_sqScDump);
delete(m_sqSpInterpDump);
fprintf(pcFile,"END\n");
fclose(pcFile);

delete arbiter;
delete gpr_manager;

}

ekttt s e e ettt ot ol e ettt sl s s ettt o ko
s sk kokokosk ook
// Main function for block
N**
s sfeokokoskoskosk

void cUSER_BLOCK SQ::Main()
{
Fetch();
Process();

Output();
}
N**

ek

// Fetch function for block

60

LG Ex. 1002, pg 195

//**
seokok koo

void cUSER_BLOCK SQ::Fetch(void)
{

static sq_indx_count = 0;

// grab the output of the PA and copy it localy
pSC_SQ->GetAll(&sc_sq_data);
pSC_SP->GetAll(&sc_sp_data);

// grab the output of the VGT and copy it localy
pVGT _SQ Verts->GetAll(&vgt _sq verts_data);

if('pVGT _SQ verts ready->GetReady())
vgt sq_verts data.VGT _SQ_send = false;
#if 0
if (vgt sq verts data. VGT SQ send && vgt sq verts data. VGT SQ indx valid) {
sq_indx_count++;

}
if (vgt sq verts data. VGT SQ send &&
vgt sq verts data.VGT _SQ end of vtx vect) {
printf("sq_block_model: eov -- received %d real indices from
VGT\n",sq_indx_count);
fflush(stdout);
sq_indx_count = 0;
}
#endif

// ok for more new stuff
pVGT _SQ verts ready->SetReady(true);

// invalidate the TP interface
pSQ _TP->SetValid(false);

// invalidate SX interfaces
pSQ_SX->SetValid(false);

pSQ _SX->SetSQ SX exp_valid(false);
pSQ SX->SetSQ SX free done(false);
pSP_SX->SetValid(false);

// invalidate SP interface
PSQ_SP->SetValid(false);

// invalidate CP interfaces
pSQ_CP_VTX->SetValid(false);

61

LG Ex. 1002, pg 196

pSQ_CP_PIX->SetValid(false);

// invalidate SP interface
pSQ_SP_Interp->SetValid(false);

// invalidate SC interface
pSQ SC->SetSQ _SC dec cntr_cnt(false);
pSQ SC->SetSQ_SC_free buf(false);

/I TEXTURE PIPE INTERFACE READ
static int phase = 0;
// grab the return from the texture pipe if valid
if (pTP_SQ->GetValid())
{
TXColor returnColor;
uinteger<7> registerAddress;
RegVect* txAddr;
int valid;

registerAddress = pTP_SQ->GetTP_SP_gpr_dst();
regFile[phase]->GetValues(txAddr,registerAddress);

// Here we write the data to the GPRs. We only write data that has a
// write mask activated
for (int i=0;i<16;i++)

{
returnColor = pTP_SQ->GetTP_SP_data(i);
valid = pTP_SQ->GetTP_SP_pix_mask(i/4).getValue();
if ((valid>>(1%4))&0x01)
{
if (pTP_SQ->GetTP_SP_cmask(0))
txAddr[i].field[0]=returnColor.x;
if (pTP_SQ->GetTP_SP_cmask(1))
tx Addr[i].field[1]=returnColor.y;
if (pTP_SQ->GetTP_SP_cmask(2))
txAddr[i].field[2]=returnColor.z;
if (pTP_SQ->GetTP_SP_cmask(3))
tx Addr[i].field[3]=returnColor.w;
)
§
// increment the phase
phase ++;
if (phase == 4)
{

62

LG Ex

. 1002, pg 197

phase =0;

// all texture instrucions of the clause have returned we can place
// the vector back in the next RS

if (pTP_SQ->GetTP_SQ_data_rdy())

// set the ready flag in the RS
if (pTP_SQ->GetTP_SQ_type() == VERTEX)

{
arbiter->vertexStation[pTP_SQ-
>GetTP_SQ thread id()].status.texReadsOutstanding = false;

}

else

{
arbiter->pixelStation[pTP_SQ-
>GetTP_SQ thread id()].status.texReadsOutstanding = false;
}
}

——

ekttt e ettt ot ol ettt s s et ot koo
i sfe ok keoskokok
// Process pixels function for block
//**
5 o ok sk ok
void cUSER_BLOCK SQ::ProcessPixels(void)
{
int i,j;
int deallocating = 0,
int ready = 0;
static bool first_transfert = true;
static int buf read = 0;
static int lineSQ[4] = {0,0,0,0};
static int lineSP[4] = {0,0,0,0};
static int SQ_buf id =0;
static int QWrote = 0;
bool pulsed = false;

PixInputs pix;

// first deal with these one clock transfers

63

LG Ex. 1002, pg 198

if (sc_sq data.SC SQ event && sc_sq data.SC_SQ wvalid)

// filter out all events but fot the PS DEALLOC and PS TS DEALLOC
if (sc_sq data.SC_SQ event id == PS DEALLOC I
sc_sq data.SC SQ event id ==PS DONE TS
|| sc_sq data.SC_SQ event id ==RST PIX CNT)
{

pix.event = s¢_sq data.SC_SQ event id;
pix.state = sc_sq_data.SC _SQ state id;
eventFIFO.push(pix);
if (pix.state == 0)

idle0 ++;
else

idlel 7 ++;

}
pSQ _SC->SetSQ _SC dec cntr_cnt(true);
pulsed = true;
}
// new vector and dealloc tokens (without any other data)
else if (first_transfert && sc_sq data.SC_SQ quad mask[0] ==0
&& sc sq_data.SC SQ quad mask[1] == 0 &&
sc_sq data.SC SQ quad mask[2] ==0 &&
sc_sq data.SC SQ quad mask[3] ==0 && sc_sq_data.SC SQ valid)
{

if (s¢_sq data.SC SQ pc dealloc > 0)
{
pix.event = 200+sc_sq data.SC_SQ pc dealloc;
pix.state = sc_sq_data.SC_SQ _state id;
eventFIFO.push(pix);
pSQ _SC->SetSQ _SC dec cntr_cnt(true);
pulsed = true;
if (pix.state == 0)
idle0 ++;
else
idlel 7 ++;

}
if (sc_sq_data.SC_SQ new_vector)
{
pSQ _SC->SetSQ _SC dec cntr_cnt(true);
pix.event = 300;
pix.state = sc_sq_data.SC_SQ state id;
eventFIFO.push(pix);
pulsed = true;
if (pix.state == 0)
1dle0 ++;
clse

64

LG Ex. 1002, pg 199

idlel 7 ++;
}
}

// accumulate the control data if something sent by the SC
else if (sc_sq data.SC_SQ valid)

if (first_transfert)

{
if (sc_sq data.SC SQ state id == 0)
idle0 += 4,
clse
idlel 7+=4;
)

first transfert = false;

// get the first pixel group signal and save it

if (sc_sq_data.SC_SQ_new_vector !=0)

{
interp[SQ_buf id].new vector =sc sq data.SC SQ new vector;
pulsed = true;
pSQ _SC->SetSQ _SC dec cntr_cnt(true);

J
if (sc_sq_data.SC SQ pc dealloc > 0)
{

}

// load the control data in the control buffers
for (i=0;i<4;i++)

{

interp[SQ _buf id].pc_dealloc +=sc_sq data.SC_SQ pc_dealloc;

if (sc_sq data.SC SQ quad mask[i])

/I get the associated state and save it
interp[SQ _buf id].state id =sc_sq data.SC SQ_ state id;

interp[SQ_buf id].nolncrement =
sc_sq_data.SC_SQ no_inc pix_cnt;

interp[SQ_buf id].ptrO[lineSQJ[1]%4][i] =
sc_sq_data.SC_SQ pc_ptr0;

interp[SQ_buf id].ptr1[lineSQ[i]%4][i] =
sc_sq data.SC_SQ pc ptrl;

interp[SQ_buf id].ptr2[lineSQJ1]%4][i] =
sc_sq_data.SC_SQ pc_ptr2;

interp[SQ_buf id].provok[lineSQ[i]%4][i] =
sc_sq data.SC _SQ provok vtx;

65

LG Ex. 1002, pg 200

interp[SQ_buf id].pix_mask[lineSQ[i]%4][i] =
sc_sq_data.SC_SQ pix_mask[i];

interp[SQ_buf id].lod correct[lineSQ[1]%4][i]
sc_sq data.SC SQ lod correct[i].getValue();

// get the primitive type
interp[SQ_buf id].prim_type[lineSQ[1]%4][i] =
sc_sq data.SC SQ prim_type;

lineSQJi] = (lineSQJ[i]+1)%4;
QWrote ++;

}

// manage completion of a pixel vector
if (QWrote == 16)

QWrote = 0;

// a valid non event vector is 100
pix.event = 100;
eventFIFO.push(pix);
first_transfert = true;

setContextNumber(interp[SQ_buf id].state id.getValue());

// increment by one more buffer is sending two buffers down

if (SQ_CONTEXT MISC.getSC_SAMPLE CNTL() ==
CENTROIDS AND CENTERS){

}
SQ buf id =(SQ_buf id+1)%4;

SQ buf id = (SQ buf id+1)%4;

}

// if the event fifo contains something, try to put it in the RS
if (leventFIFO.empty())
{

pix = eventFIFO.front();

if (pix.event < 100)

{
if (pix.event == RST PIX CNT)
{
if (pix.state == 0)
1dle0 --;
else
66

LG Ex. 1002, pg 201

idlel 7 --;
auto_count_pix = 0;

(larbiter-

eventFIFO.pop();
}
else if
>AddVector(pix.event,PIXEL,pix.state,interp[buf read].pix_mask,true,interp[buf read].lod corr
ect))
{
eventFIFO.pop();
}
else if (pix.event == 100 && !pulsed)
{
ready=1;
else if (pix.event >= 200 && pix.event < 300)
{
deallocating = pix.event - 200;
eventFIFO.pop();
if (pix.state == 0)
idle0 --;
else
idlel 7 --;
}

// new vector
else if (pix.event == 300)

{
if (vertexReady[pix.state]>0)
{
vertexReady[pix.state]--;
eventFIFO.pop();
if (pix.state == 0)
idle0 --;
else
idlel 7 --;
}
}

}

// accumulate data interface
if (sc_sp_data.SC_SP wvalid)
{
for (i=0;i<4;i++)
{
if (sc_sp_data.SC SP wvalid[i])
{

67

LG Ex. 1002, pg 202

//'ij data
if (sc_sp_data.SC_SP_type[i] == CENTROID)

{
for (j=0;j<4;j++)
{
interp[lineSP[i]/4].1[lineSP[1]%4][i1*4+]] =
sc_sp_data.SC SP ij data[i].I[j];
interp[lineSP[i]/4].J[lineSP[i]%4][i*4+]] =
sc_sp_data.SC SP ij data[i].J[j];
}
else if (sc_sp data.SC _SP_type[i] == CENTER)
{

for (j=0;j<4;j++)
{

interp[(lineSP[1]/4+1)%4].1[lineSP[i]%4][1*4+j] = sc_sp_data.SC_SP ij data[i].I[j];
interp[(lineSP[1]/4+1)%4].J[lineSP[i]%4][i*4+j] = sc_sp_data.SC_SP ij data[i].J[j];
}
}
/] xy data
else if (sc_sp data.SC _SP_type[i] = XY FACENESS)

{
interp[lineSP[i]/4]. X[lineSP[i]%4][1] =
(sc_sp data.SC _SP ij data[i].I[0] >> 12) & 0xfff;
interp[lineSP[i]/4].Y[lineSP[i]%4][1] =
(sc_sp_data.SC_SP_ij data[i].I[0] & 0xfff);
interp[lineSP[1]/4].face[lineSP[1]%4][i] =
(sc_sp data.SC SP ij data[i].I[0] >> 24) & 0x1;

// change line in the SP
if (sc_sp_data.SC SP last quad data[i])
{

// if sending more than one buffer
if ((lineSP[i]+1)%4 == 0)
{

setContextNumber(interp[lineSP[i]/4].state_id.getValue());
if
(SQ_CONTEXT_MISC.getSC_SAMPLE_CNTL() == CENTROIDS_AND_CENTERS)
lineSP[i] = (lineSP[i]+4)%16;
}

lineSP[i] = (lineSP[i]+1)%16;

68

LG Ex. 1002, pg 203

}

// if 1J buffer filled, interpolate the results

// also allocate the GPRs.

if (ready > 0)

{
// set the state to the current state
setContextNumber(interp[buf read].state id.getValue());

int base_ptr;

int numReg;

numReg =SQ PROGRAM_CNTL.getPS NUM_REG()+I;
boolean GPR_full = true;

boolean station_full =true;

int address;

// if the data is ready in the PC
if (linterp[buf read].new_ vector |
vertexReady[interp[buf read].state id]>0 ||
interp[buf read].prim_type[0][0] >=4) // Real Time
{

// check for space in both GPRs and reservation station 0
GPR_full = gpr_manager->testAllocate(numReg,base ptr,PIXEL);
if ({GPR_full)
{
station_full = arbiter->AddVector(base ptr,PIXEL,

interp[buf read].state_id,interp[buf read].pix mask,false,
interp[buf read].lod correct);
}

// if we have place for everything AND there is valid data
// in the PCs if this is the first vector...
if {GPR_full && !station_full)
{
// Structure for the SQ->SP dummy interface
SQ_SP_interp_data interpData;

// clear the firstVector flag and decrement the count if
// the pixel group was accepted
if (interp[buf read].new_vector)

{

interp[buf read].new_vector = false;
vertexReady[interp[buf read].state id]--;

69

LG Ex. 1002, pg 204

}

gpr_manager->allocate(numReg,base_ptr,PIXEL);
// loop for the four lines
for (j=0;j<4;j++)
{
address = base_ptr;
int IJlineIndex;
// loop for the number of parameters to interpolate
int interp_params;
if (SQ PROGRAM_CNTL.getPARAM_GEN()
&& SQ PROGRAM_CNTL.getGEN_INDEX PIX())
interp_params =
SQ PROGRAM_CNTL.getVS EXPORT COUNT()+3;
else if
(SQ_PROGRAM_CNTL.getPARAM_GEN() I
SQ_PROGRAM_CNTL.getGEN INDEX PIX())
interp_params =
SQ PROGRAM CNTL.getVS EXPORT COUNT()+2;
else
interp_params =
SQ_PROGRAM _CNTL.getVS_EXPORT _COUNT()+1;

if (interp_params > 16)
interp_params = 16;

for (i=0;i<interp_params;i++)

{
int shade =
SQ INTERPOLATOR CNTL.getPARAM_SHADE();
bool flat = !((shade >> (interp params-
1))&0x01);

// deal with the center/centroid stuff here

Dlinelndex = j;

uint ijBuffer;

ijBuffer = buf read;

if
(SQ_INTERPOLATOR_CNTL.getSAMPLING _PATTERN() !=0)

int samplingPattern =

SQ_INTERPOLATOR_CNTL.getSAMPLING PATTERN();

if ((samplingPattern >> 1)&0x01)
ijBuffer = (buf read+1)%4;

70

LG Ex. 1002, pg 205

interpolators.Interpolate(regFile[j],address,interp[ijBuffer].I[[JlineIndex],
interp[ijBuffer].J[JlineIndex],

interp[buf read].ptrO[j],interp[buf read].ptr1[j],
interp[buf read].ptr2[j],i,interp[buf read].prim_type[j],this,

interp[buf read].X[j],interp[buf read].Y[j],interp[buf read].face[j].flat,interp[buf read].p
rovok[j],!interp[buf read].nolncrement);

// write to the SP dummy interface
RegVect* values;

regFile[j]->GetValues(values,address);

interpData.Address[i]=it+base ptr;
interpData.NumParams = interp params;

for (int k=0;k<16;k++)
{

interpData.InterpData[i][k][j].field[0]=values[k].field[0];
interpData.InterpData[i][k][j].field[1]=values[k].field[1];
interpData.InterpData[i][k][j].field[2]=values[k].field[2];
interpData.InterpDatali] [k][j].ﬁeld[S]Zvalues}Fk] field[3];

// increment the GPR address
if (address+1 < gpr_manager->pixLimit)

{

address ++;
}
else
{

address = 0;
}

}
}
pSQ_SP_Interp->SetAll(&interpData);
pSQ_SP_Interp->SetValid(true);

// dump the SQ->SP interpolator dummy interface
ifm_dumpSQ>0) {

71

LG Ex. 1002, pg 206

if (pSQ_SP_Interp->GetNewValid())
{
pSQ_SP_Interp-
>GetNewAll(&(m_sqSpInterpDump->_data));
m_sqSplnterpDump->Dump();
}
}

// signify to the SC that we freed a buffer
pSQ _SC->SetSQ_SC free buf(true);

/I And a control line

pSQ _SC->SetSQ _SC dec cntr_cnt(true);

// pop the event queue to signify that we consumed a buffer
eventFIFO.pop();

// set the deallocation flags
if (interp[buf read].pc_dealloc >0)

deallocating = interp[buf read].pc_dealloc;
interp[buf read].pc_dealloc = 0;
}

/I swap buffers
buf read = (buf read+1)%4;
// increment one more if multiple buffers for current state
if (SQ_CONTEXT MISC.getSC SAMPLE CNTL() ==
CENTROIDS AND CENTERS)
buf read = (buf read+1)%4;

} // endif GPR and RS ready
} // endif data ready
} // endif ready process pixel

// dump the SQ->SC interface
if(m_dumpSQ>0) {

if (pSQ_SC->GetNewValid())

{
pSQ_SC->GetNewAll(&(m_sqScDump->_data));
m_sqScDump->Dump();

}

}

//PC Deallocation
static int deallocation = 0;
int dealloc;

72

LG Ex. 1002, pg 207

while (deallocating > 0)
{

// new dealocation scheme (groups of 16)
if (pcAllocated.empty())

{

std::cerr << "Error in SQ, trying to dealocate empty parameter
stores" << std::endl;

}
dealloc = pcAllocated. front()/4;
deallocation ++;

if (deallocation == 4)

{
pcAllocated.pop();

deallocation = 0;

}

if (pcFree + dealloc < 128)
pcFree += dealloc;

else
{
pcFree = dealloc-(128-pcFree);
checkHigh = !checkHigh;
}
deallocating --;
} // end while PC dealloc
}
void cUSER BLOCK SQ::ProcessVerts(void)
{

static int stageCount = 0;

// current staging register layer
static int layer =0;

static bool doubleSent = false;
static uinteger<4> valids[4][4];
static bool ready = false;

// used to keep the state around if we need to stall
static uinteger<3> vState;

// compute the number of valid pipes

73

LG Ex. 1002, pg 208

int dis pChip->pROM-

>ROM_BAD PIPE DISABLE REGISTER.DISABLE SP VTX;

if (vgt sq verts data. VGT SQ send && Iready &&
lvgt sq verts data. VGT SQ event)
{

vState = vgt sq verts data. VGT SQ_state;

RegVect value;

value.field[0]= vgt sq verts data.VGT SQ vsisr_data[0];
value.field[1]= vgt_sq_verts_data. VGT_SQ_vsisr_data[1];
value.field[2]=vgt sq verts data.VGT SQ vsisr data[2];

stagingRegisters[stageCount][layer] = value;

if (stageCount == 0 && layer == 0)

{
if (vState == 0)
idle0 += 4,
else
idlel 7+=4;
}

if ((stageCount%4) == 0 && layer==0)
valids[stageCount/16][(stageCount/4)%4] =0;

// only validate if VsisrData is valid
if (vgt sq_verts data.VGT_SQ indx valid)

if (layer == 0)

valids[stageCount/16][(stageCount/4)%4] +=
1<<(stageCount%4);
stageCount++;
if (stageCount%4 == 0)
{
if (((stageCount == 16 || stageCount == 32 || stageCount ==
48) && dis&0x01) ||

((stageCount ==4 || stageCount == 20 || stageCount
== 36 || stageCount == 52) && dis&0x02) ||

((stageCount == 8 || stageCount == 24 || stageCount
== 40 || stageCount == 56) && dis&0x04) ||

((stageCount == 12 || stageCount == 28 ||
stageCount == 44 || stageCount == 60) && dis&0x08))
{
stageCount += 4;
}

74

LG Ex. 1002, pg 209

}

// reset the layer to 0
layer = 0;

if (vgt sq verts data. VGT SQ end of vtx vect)
{

for (int i=stageCount;i<64;i++)

if ((1%4) == 0)
valids[i/16][(i/4)%4] =0;
}
if ('vgt sq verts data. VGT SQ wvsisr_continued)
ready = true;

}
if (vgt_sq_verts_data. VGT_SQ_vsisr continued)

layer = 1;
if ((stageCount-4)%4 == 0 && (stageCount-4) >0)

if (((stageCount == 16 || stageCount == 32 || stageCount ==
48) && dis&0x01) ||
((stageCount == 4 || stageCount == 20 || stageCount

== 36 || stageCount == 52) && dis&0x02) ||
((stageCount == 8 || stageCount == 24 || stageCount

== 40 || stageCount == 56) && dis&0x04) ||

((stageCount == 12 || stageCount == 28 ||
stageCount == 44 || stageCount == 60) && dis&0x08))
{
stageCount -= 4;
}
3
stageCount --;

doubleSent = true;

}

// regular end of vector (not early terminated)
if (stageCount == 64)
ready = true;

}

// event processing
static int eventld;

75

LG Ex. 1002, pg 210

1sentEvt)

static bool sentEvt = false;
float templd;
static int evState;

if (vgt sq verts data. VGT SQ send && vgt sq verts data. VGT SQ event &&

{

templd = vgt sq verts data. VGT SQ vsisr data[0].getReal();

eventld = reinterpret_cast<uint32&>(templd);
eventld = eventld & 0x1F;

// filter out all events but fot the VS DEALLOC and VS_TS DEALLOC
if (eventld == VS _DEALLOC || eventld == VS DONE TS // ¢p events

| eventid == CONTEXT DONE

CACHE_FLUSH_TS

| eventld == CACHE FLUSH

CACHE FLUSH AND INV TS EVENT
|| eventld == CACHE_FLUSH _AND INV_EVENT) // Rb events

{
sentEvt = true;
evState = vgt_sq verts_data. VGT SQ_state;
if (evState == 0)
idle0 ++;
else
idlel 7 ++;
}

else if (eventld == RST_VTX CNT)
auto_count_vtx = 0;

}
if (sentEvt)
{
if
>AddVector(eventld, VERTEX evState,valids,true,interp[0].lod_correct))
{
sentEvt = false;
}
else // we are full stop sending data
{
vgt sq verts data. VGT SQ send = false;
pVGT SQ verts ready->SetReady(false);
§
}
if (ready)

// set the state to the current vector
setContextNumber(vState.getValue());

76

|l eventld ==

I eventld ==

('arbiter-

LG Ex. 1002, pg 211

// copy everything to GPRs

int base_ptr;

int numReg;

numReg =SQ PROGRAM_ CNTL.getVS NUM REG()+1;
boolean GPR_full=true;

boolean station_full=true;

// check for space in both GPRs and reservation station 0
GPR_full = gpr _manager->testAllocate(numReg,base ptr, VERTEX);
if (!GPR_full)

{
station_full = arbiter->AddVector(base ptr, VERTEX,
vState,valids,false,interp[0].lod_correct);
}
if ({GPR_full && !station_full)
{

gpr_manager->allocate(numReg,base ptr, VERTEX);
// allocation succesfull write the data

int i,j;

RegVect* vtAddr;

RegVect* vtAddrl;

RegVect* vtAuto;

int address;

for (j=0;j<4;j++)

/I counting GPRs in reverse order for vertices
address = base ptr;
regFile[j]->GetValues(vtAddr,address);
if (address > gpr_manager->vertLimit)
address --;
clse
address = 127,
regFile[j]->GetValues(vtAddrl,address);
if (address > gpr_manager->vertLimit)
address --;
else
address = 127;
regFile[j]->GetValues(vtAuto,address);
for (1=0;i<16;i++)
{
vtAddr|i]=stagingRegisters[j*16+i][0];
if (doubleSent)
{

77

LG Ex. 1002, pg 212

vtAddrl[i]=stagingRegisters[j*16+i][1];
}

// auto generated index
if
(SQ PROGRAM_CNTL.getGEN INDEX_ VTX())

vtAuto[i].field[0]=auto _count vtx;
auto_count vtx ++;

§
}
}
// clear the buffers
stageCount = (dis&0x01)*4;
layer = 0;

doubleSent = false;
ready = false;

}
else // we are full
{
vgt sq verts data. VGT SQ send = false;
pVGT SQ verts ready->SetReady(false);
}

}

[/ s s e st stk sk sk stttk ek steotoloskoskokokokolokokokokokoskoskokokokolotok solokoskokokokoiololokoiolokokokokokoisiokokoRoiokokokoRoRRok
ok ok sk koo

// Process function for block
N**

5o ok sk oskok ok
void cUSER BLOCK SQ:: Process(void)
{
ProcessVerts();
ProcessPixels();
// execute the arbiter
arbiter->Execute();
}

[/ A s st sttt st sttt stttk stk steotototoiotokosiotolosiololoskoloekootoeiooloiok tolololololoiololeiololoioskoloiolkoloiokoloiokoRok
ok sk sk skokok

// Output function for block

ﬁ**
seokok koo

78

LG Ex. 1002, pg 213

void cUSER_BLOCK SQ::Output(void)

{ . .
nti,
static int current_export = 0;
static int export_count = 0;
static int currentPtr[4];
if (outBuffer.valid)
{
outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT
if ((outputType == VERTEX) && (currentExportDest < 16))
{
int pcPointer;
// new export block reset the counts
currentPtr[0] = currentAluPC;
currentPtr[1] =
(currentAluPC+(SQ_PROGRAM _CNTL.getVS_EXPORT _COUNT()+1))%128;
currentPtr[2] =
(currentAluPC+(SQ_PROGRAM_CNTL.getVS _EXPORT COUNT()+1)*2)%128;
currentPtr[3] =

(currentAluPC+H(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*3)%128;

// set pcPointer to the correct value
pcPointer = (currentPtr[current_export] +
currentExportDest)%128;

// copy data to the PCs
int valid;
for (i=0;i<16;i++)
{
valid = outBuffer.valids[i/4].getValue();
if ((valid >> 1%4) &0x01)
{
if (export_mask & 0x01)
parameters[pcPointer]. Val[i].field[0] =
outBuffer.values|[i].field[0];
if (export_mask & 0x02)
parameters|pcPointer]. Val[i].field[1] =
outBuffer.values[i].field[1];
if (export mask & 0x04)
parameters|pcPointer]. Val[i].field[2] =
outBuffer.values[i].field[2];
if (export_mask & 0x08)
parameters[pcPointer]. Val[i].field[3] =
outBuffer.values[i].field[3];

79

LG Ex. 1002, pg 214

}

// dump the values to a file
iflm_dumpSQ>0) {

dumpPcValues(export_mask, pcPointer, outBuffer);
}

current_export+-+;
if (current_export == 4)
{

current_export=0;

}// end parameter cache export

// other exports

else

{
pSP_SX->SetValid(true);
for (1i=0;i<16;i++)

{

pSP_SX-
>SetSP_SX color(outBuffer.values[i].field[0],i*4);

pSP_SX-
>SetSP_SX color(outBuffer.values[i].field[1],i*4+1);

pSP_SX-
>SetSP_SX_color(outBuffer.values[i].field[2],i*4+2);

pSP_SX-

>SetSP_SX _color(outBuffer.values[i].field[3],i*4+3);
pSP_SX->SetSP_SX exp pvalid(outBuffer.valids[i/4],i/4);
}

uinteger<6> dest;
dest = currentExportDest;

pSP_SX->SetSP_SX dest(dest);
pSP_SX->SetSP_SX alu_id(currentExportAlu);
uinteger<2> exp_count;

€xp_count = export_count;

pSP_SX->SetSP_SX export_count(exp_count);
export_count = (export_count+1)%4;

pSP_SX->SetType(outputType);
if(m_dumpSQ>0) {

pSP_SX->GetNewAll(&(m_spSxDump->_data));
m_spSxDump->Dump();

}

80

LG Ex. 1002, pg 215

} // end other exports

}

bool cUSER BLOCK SQ::handleRegisterAccess(ACCESS access, uint32 spaceOffset,
uint32 byteEnable, uint32& data)
{
bool handled = false;

static int count = 0;
TConstPacked tstate;
Loop loop;
uint32 cfBool,
uint32 gfxDecode;

if (access == WRITE_ACCESS)

{
// Remove GFX decode from spaceOffset
if (spaceOffset >= 0x8000 && spaceOffset < 0x10000)
{
gfxDecode = (spaceOffset >> 12) & 0x7;
spaceOffset = spaceOffset & ~(0x7 << 12);

}

// grab the CP_STATE_COPY
if (spaceOffset == (mmGFX_ COPY_STATE<<2))
{
int previous_write_state = data & 0x7;
current_write_state = gfxDecode;

// clear the vertex ready counts for the new state to come (may
have been screwed up

// by the mem exports.

vertexReady[current_write_state]=0;

// copy the constant tables
int 1;

for (1i=0;1<512;i++)

{

constantStore[previous_write_state].GetConstValue(cst,i);
constantStore[current write state]. WriteValue(cst,i);

for (i=0;1<32;i++)

{

textureStateStore[previous_write state]. GetConstTState(tstate,1);
textureStateStore[current_write_state]. WriteTState(tstate,i);

81

LG Ex. 1002, pg 216

for (i=0;1<8;i++)

{

cfBool

controlFlowStore[previous_write_state].GetConstBooleans(i);

controlFlowStore[current_write_state]. WriteBooleans(cfBool,i);

for (1i=0;1<32;i++)

{

controlFlowStore[previous_write_state].GetConstLoop(loop,i);

}

controlFlowStore[current_write state]. WriteLoop(loop,i);

}
else if ((spaceOffset >= (mmSQ INSTRUCTION_ ALU 0<<2)) && (spaceOffset <
((mmSQ INSTRUCTION_ALU 0 + 4096*3)<<2)))

{

int

address ((spaceOffset>>2) -

(mmSQ_INSTRUCTION_ALU 0))/3;
Packet pckt;
pckt = reinterpret_cast<Packet&>(data);
switch (count){

case 0:

case 1:

case 2:

35

inst.byteQ = pckt.byte0;
inst.bytel = pckt.bytel;
inst.byte2 = pckt.byte2;
inst.byte3 = pckt.byte3;
break;

inst.byte4 = pckt.byte0;
inst.byte5 = pckt.bytel;
inst.byte6 = pckt.byte2;
inst.byte7 = pckt.byte3;
break;

inst.byte8 = pckt.byte0;
inst.byte9 = pckt.bytel;
inst.byte10 = pckt.byte2;
inst.bytel 1 = pckt.byte3;
break;

count ++;

// write the instruction to instruction memory
if (count == 3)

82

LG Ex. 1002, pg 217

count = 0;
instructionStore.SetInst(inst,address);

}

handled = true;

}

else if ((spaceOffset >= (mmSQ CONSTANT RT 0<<2)) && (spaceOffset <
((mmSQ_CONSTANT RT 0 + 256%4)<<2)))

int address = ((spaceOffset>>2) - (mmSQ CONSTANT RT 0))/4;
cst.field[count].putField(data);
count ++;
if (count == 4)
{
count = 0;
constantStore[0]. WriteValue(cst,address);

}

handled = true;

}

else if ((spaceOffset >= (mmSQ CONSTANT 0<<2)) && (spaceOffset <
((mmSQ_CONSTANT 0 + 512%4)<<2)))

int address = ((spaceOffset>>2) - (mmSQ CONSTANT 0)) /4,
cst.field[count].putField(data);
count ++;
if (count == 4)
{

count = 0;

constantStore[current_write_state]. WriteValue(cst,address);

}

handled = true;

}
else if ((spaceOffset >= (mmSQ FETCH 0<<2)) && (spaceOffset <
(mmSQ_FETCH_0 + 32%6)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQ FETCH 0))/6;
tStateData[count] = data;

count ++;
if (count == 6)
{
count = 0;

tstate.unpack(tStateData);

&3

LG Ex. 1002, pg 218

textureStateStore[current_write_state]. WriteTState(tstate,address);

1
s

handled = true;

}
else if ((spaceOffset >= (mmSQ_FETCH _RT 0<<2)) && (spaceOffset <
((mmSQ _FETCH_RT 0 + 32%6)<<2)))

int address = ((spaceOffset>>2) - (mmSQ_FETCH_RT 0))/6;
tStateData[count] = data;
count ++;
if (count == 6)
{
count = 0;
TConstPacked tstate;
tstate.unpack(tStateData);
textureStateStore[0]. WriteTState(tstate,address);

}

handled = true;

}
else if ((spaceOffset >= (mmSQ_CF_BOOLEANS<<2)) && (spaceOffset
< ((mmSQ_CF_BOOLEANS + 8)<<2)))

{
int address = ((spaceOffset>>2) - (mmSQ CF BOOLEANS)),

controlFlowStore[current write state]. WriteBooleans(data,address);
handled = true;

}
else if ((spaceOffset >= (mmSQ_CF_LOOP<<2)) && (spaceOffset <
(mmSQ_CF_LOOP + 32)<<2)))

{
int address = ((spaceOffset>>2) - (mmSQ_CF_LOOP));
Loop loop;
loop.count = data & OxFF;
loop.start= (data >> 8) & OxFF;
loop.step = (data >> 16) & OxFF;

controlFlowStore[current write state]. WriteLoop(loop,address);
handled = true;

}
else if ((spaceOffset >= (mmSQ CF RT BOOLEANS<<2)) &&
(spaceOffset < (mmSQ_CF_RT_BOOLEANS + 8)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQ CF RT BOOLEANYS));

84

LG Ex. 1002, pg 219

controlFlowStore[0]. WriteBooleans(data,address);
handled = true;

}
else if ((spaceOffset >= (mmSQ_CF_RT LOOP<<2)) && (spaceOffset <
(mmSQ _CF RT LOOP + 32)<<2)))
{

int address = ((spaceOffset>>2) - (mmSQ_CF_RT LOOP));
Loop loop;

loop.count = data & O0xFF;
loop.start= (data >> 8) & OxFF;
loop.step = (data >> 16) & OxFF;

controlFlowStore[0]. WriteLoop(loop,address);
handled = true;

}
else if ((spaceOffset >= (mmSQ RT VO PARAMO R<<2)) &&
(spaceOffset < (mmSQ _RT VO PARAMO R + 16*3%4)<<2)))

{
int address = ((spaceOffset>>2) - (mmSQ _RT VO PARAMO R));

RTParameters[address/(16*4)][address/4].field[address%od |==reinterpret cast<float&>(d
ata);
handled = true;

}

return handled;

}

void cUSER BLOCK SQ::setParameter(float param, int index, int memNum, int field)
{

}

bool cUSER_BLOCK SQ::Idle()
{

parameters[index].Val[memNum].field[field|=param;

bool idle=true;

if (idle0 > 0 || idlel 7 >0)
idle = false;

#ifdef DEBUG_SEQ
static bool prev_idle = true;
if (idle '=prev_idle)

85

LG Ex. 1002, pg 220

values)

oNoNoNe!

if (idle)
std::cerr << "Sequencer Idle" << std::end];
else
std::cerr << "Sequencer Active" << std::endl;
prev_idle = idle;
}
#endif

return idle;

}

bool cUSER_ BLOCK SQ::1dle0()

{
if (idle0 >0)
return false;
clse
return true;

}

bool cUSER BLOCK SQ::Idlel 7()

if (idlel_7 >0)
return false;

86

else
return true;
}
void cUSER_BLOCK SQ::dumpPcValues(int expmask,int pcPointer,const OutBuffer&
{
static bool first = true;
int i,
if (first)
{
first = false;
fprintf(pcFile,"--PC Pointer (PC) (7 bits)\n");
fprintf(pcFile,"--Channel Mask (MSK) (4 bits)\n");
fprintf(pcFile,"--Data Mask (VAL) (16 bits)\n");
fprintf(pcFile,"--Colors (COL) (32 bits)\n");
fprintf(pcFile,"--P MV C C C
C C C C C C C
C C C C C C C
C C C C C C C
C C C C C C C

Nnonn®
oXeXo o ke

LG Ex. 1002, pg 221

C C C C C C C C C C
C C C C C C C C C\n");
fprintf(pcFile,"--C SA 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2 2 2
2 2 3 3 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 6
6 6 6'\n"),
fprintf(pcFile,"-- KL 0 1 2 3 4 5
6 7 8 9 0 1 2 3 4 5 6
7 8 9 0 1 2 3 4 5 6 7
8 9 0 1 2 3 4 5 6 7 8
9 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 0
1 2 3\n");
}
fprintf(pcFile," %02x %x %x%x%x%x",

pcPointer,expmask,outBuffer.valids[0].getValue(),

outBuffer.valids[1].getValue(),outBuffer.valids[2].getValue(),outBuffer.valids[3].getVal

ue());

for (i=0;i<16;i++)

{
fprintf(pcFile,"% 010.5¢ % 010.5¢ % 010.5¢ % 010.5¢ ",
outBuffer.values[i].field[0].getReal(),
outBuffer.values[i].ficld[1].getReal(),
outBuffer.values[i].field[2].getReal(),
outBuffer.values[i].field[3].getReal());

}

fprintf(pcFile,"\n");

float var[4];

fprintf(pcFile," ");

for (i=0;i<16;i++)
{
for (int w=0;w<4;w++)
var|[w] = outBuffer.values[i].ficld[w].getReal();

fprintf(pcFile,"%08x %08x %08x %08x ",
(reinterpret_cast<unsigned int>(&var[0])),
(reinterpret_cast<unsigned int>(&var[1])),

87

LG Ex. 1002, pg 222

(reinterpret_cast<unsigned int>(&var[2])),
(reinterpret_cast<unsigned int>(&var[3]))

)

fprintf(pcFile,"\n");
}

Sq_block model.cpp

//***

// Output function for block
//***

void cUSER_BLOCK_SQ: :Output(void)

{
int i;
static int current_export = 0;
static int export_count = 9;
static int currentPtr[4];
if (outBuffer.valid)
{
outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT
if ((outputType == VERTEX) && (currentExportDest < 16))
int pcPointer;
// new export block reset the counts
currentPtr[@] = currentAluPC;
currentPtr[1] =
(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1))%128;
currentPtr[2] =
(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*2)%128;
currentPtr[3] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*3)%128;

// set pcPointer to the correct value
pcPointer = (currentPtr[current_export] + currentExportDest)%128;

// copy data to the PCs
int valid;
for (i=0;i<16;i++)
{

valid = outBuffer.valids[i/4].getValue();

if ((valid >> i%4) &ox01)

{

if (export_mask & 0x01)
parameters[pcPointer].val[i].field[@]

n

outBuffer.values[i].field[@];
if (export_mask & 0x02)
parameters[pcPointer].val[i].field[1]

outBuffer.values[i].field[1];
if (export_mask & 0x04)
parameters[pcPointer].val[i].field[2]

outBuffer.values[i].field[2];
if (export_mask & 0x08)

88

LG Ex. 1002, pg 223

parameters[pcPointer].val[i].field[3] =
outBuffer.values[i].field[3];

}

// dump the values to a file
if(m_dumpSQ>0) {
dumpPcValues (export_mask, pcPointer, outBuffer);

}

current_export++;
if (current_export == 4)
{

current_export=0;

}// end parameter cache export
// other exports
else
{
pSP_SX->Setvalid(true);
for (i=0;i<16;i++)

{
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[@],i*4);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[1],i*4+1);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[2],i*4+2);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[3],i*4+3);
pSP_SX->SetSP_SX_exp_pvalid(outBuffer.valids[i/4],1/4);

}

uinteger<6> dest;
dest = currentExportDest;

pSP_SX->SetSP_SX_dest(dest);
pSP_SX->SetSP_SX_alu_id(currentExportAlu);
uinteger<2> exp_count;

exp_count = export_count;
pSP_SX->SetSP_SX_export_count(exp_count);
export_count = (export_count+1)%4;

pSP_SX->SetType(outputType);

if(m_dumpSQ>0) {
pSP_SX->GetNewAll (&(m_spSxDump->_data));
m_spSxDump->Dump () ;

} // end other exports

Regarding fetching data from memory, The texture fetcher allows fetching from memory. The

arbiter.cpp file picks the programs that need to fetch data in this function:
boolean Arbiter::chooseTexStation(int &lineNumber,Shader_Type &sType)

{
int i;
int vertexPick = -1;
int pixelPick = -1;
int lineCheck;

// do pixels first

&9

LG Ex. 1002, pg 224

lineCheck = pixelHead;
for (i=0;i<pixelRsCount;i++)

{
if (pixelStation[lineCheck].status.valid &&
pixelStation[lineCheck].status.ressourceNeeded == TEXTURE
&& !pixelStation[lineCheck].status.event)

{
pixelPick=1ineCheck;
¥
// enforce restrictions based on the status
if (pixelPick I= -1)
{
// no texture ops while texture reads are outstanding
if (pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;
else
break;
¥

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}

lineCheck = vertexHead;
for (i=0;i<vertexRsCount;i++)
{
if (vertexStation[lineCheck].status.valid &&
vertexStation[lineCheck].status.ressourceNeeded == TEXTURE
&& l!vertexStation[lineCheck].status.event)

{
}

vertexPick=1ineCheck;

// enforce restrictions based on the status
if (vertexPick != -1)
{
// no texture ops while texture reads are outstanding
if (vertexStation[vertexPick].status.texReadsOutstanding)

vertexPick = -1;
else
break;
}
lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}
if (vertexPick != -1)
{
lineNumber = vertexPick;
sType = VERTEX;
return true;
}
if (pixelPick != -1)
{
lineNumber = pixelPick;
sType = PIXEL;
return true;
¥

90

LG Ex. 1002, pg 225

return false;

Then fills in a request in this function:
void Arbiter::fillTextureInterface(int textureInstAddr,int texturePhase,boolean last)
{

const RegVect* txAddr;

TXAddr address;

uinteger<7> registerAddress;

uinteger<7> writeAddress;

uint8 maxSize;

int basePtr = textureCFMachine.stationData->data.gprBase;

sq->pSQ_TP->Setvalid(true);

// Get the instruction
TInstrPacked inst;

// set the state to the current running ALU
sq->setContextNumber(textureCFMachine.stationData->data.state);

sg->instructionStore.GetInst(inst,textureInstAddr);
switch (textureCFMachine.sType)
{
case PIXEL:
maxSize = sq->gpr_manager->pixLimit;
// compute the addresses (read address)
if ((inst.getSRC_GPR() + basePtr) < maxSize)
registerAddress = inst.getSRC_GPR() + basePtr;

else

registerAddress = inst.getSRC_GPR()-(maxSize-basePtr);
// write address
if ((inst.getDST_GPR() + basePtr) < maxSize)
writeAddress = inst.getDST_GPR() + basePtr;
else
writeAddress = inst.getDST_GPR()-(maxSize-basePtr);
break;
case VERTEX:
maxSize = sq->gpr_manager->vertLimit;
// compute the addresses (read address)
if ((basePtr - inst.getSRC_GPR()) >= maxSize)
registerAddress = basePtr - inst.getSRC_GPR();
else
registerAddress = 128-(inst.getSRC_GPR()-(basePtr-maxSize));
// write address
if ((basePtr - inst.getDST_GPR()) >= maxSize)
writeAddress = basePtr - inst.getDST_GPR();

else
writeAddress = 128-(inst.getDST_GPR()-(basePtr-maxSize));
break;
¥
sq->regFile[texturePhase]->GetConstValues(txAddr,registerAddress);
int i;

for(i=0;i<16;i++)

//Do the swizzle for the TP

91

LG Ex. 1002, pg 226

inst.doSrcSwizzle(txAddr[i].field[@], txAddr[i].field[1], txAddr[i].field[2],
txAddr[i].field[3],
address.x, address.y, address.z);
sq->pSQ_TP->SetSP_TP_fetch_addr(address,i);
}
for (i=0;i<4;i++)
{
uinteger<4> valids;
valids = textureCFMachine.stationData->data.valids[texturePhase][i];
// modify the mask to turn on any pixels that are off if not fetch valid
only
if (linst.getFETCH_VALID ONLY())
{
if (valids.getValue() != @)
valids = OxOF;

}

// now modify the mask based on the predicate vector
if (inst.getPRED_SELECT())
{
bool pred = (inst.getPRED_CONDITION() == 1);
if (pred != textureCFMachine.stationData-
>data.predicates[texturePhase*16+i*4])
{
// kill the pixel
valids = valids.getValue() & OxE;

if (pred != textureCFMachine.stationData-
>data.predicates[texturePhase*16+i*4+1])
{
// kill the pixel
valids = valids.getValue() & OxD;

}

if (pred != textureCFMachine.stationData-
>data.predicates[texturePhase*16+i*4+2])

{
// kill the pixel

valids = valids.getValue() & 0xB;

if (pred != textureCFMachine.stationData-
>data.predicates[texturePhase*16+i*4+3])

// kill the pixel
valids = valids.getvalue() & ox7;

}
}
sq->pSQ_TP->SetSQ_TP_pix_mask(valids,i);

// send the LOD correction bits

uinteger<9> LODCorrect;

LODCorrect = textureCFMachine.stationData-
>data.LodCorrect[texturePhase][1i];

sq->pSQ_TP->SetSQ_TP_lod_correct(LODCorrect,i);

}

92

LG Ex. 1002, pg 227

sq->pSQ_TP->SetSQ_TP_write_gpr_index(writeAddress);

sq->pSQ_TP->SetSQ_TP_last(last);

uinteger<6> line;

line = textureCFMachine.lineNumber;

sq->pSQ_TP->SetSQ_TP_thread_id(line);

sq->pSQ_TP->SetSQ_TP_type(textureCFMachine.sType);

TConstPacked tpConst;

sq->textureStateStore[textureCFMachine.stationData-
>data.state].GetConstTState(tpConst,inst.getCONST_INDEX());

sq->pSQ_TP->SetSQ_TP_const(tpConst);

sq->pSQ_TP->SetSQ_TP_instr(inst);

uinteger<3> ctxId;

ctxId = textureCFMachine.stationData->data.state;

sq->pSQ_TP->SetSQ_TP_ctx_id(ctxId);

if(sq->m_dumpSQ>0) {
sq->pSQ_TP->GetNewAll(&(sq->m_sqTpDump->_data));
sq->m_sqTpDump->Dump();

93

LG Ex. 1002, pg 228

EXHIBIT B — CHIP DESIGN CODE

sq_gpr_alloc.v
/*

hers's a description of the basic operation:

O 1 = «<- tail O 1 «<- tail e @ 3 «<- head, tail
1 <- head 1 2 1 2 «<- tail 1 2
2 2 2 2 2 2 2
3 3 2 3 2 3 2
4 4 <- head 4 ~ «<- head 4 3
5 5 5 5 3
6 _ <-max 6 = <-max 6 __ ~ <-max 6 _ <-max
7 , 7 , 7 , 7 ,
- initially, head = tail = @, and max is set to be one more than the maximum allowable location
- req 1 allocates one location, head is incremented to 1
- req 2 allocates three locations, head is incremented to 4
- another request for 3 spaces would not be granted since there are now only two free locations
- when the space taken by req 1 is dealloc'd, increment tail to 1 (frees up one location)
- now req 3 allocates three locations, head is incremented to 7, which is greater than max, so it is
wrapped around by subtracting max (7 - 6 = 1)
*/

// - keep track of the free space -

wire [PTR_WIDTH-1:0] pix_free; // number of free pixel locations
wire [PTR_WIDTH-1:0] vtx_free; //

assign pix_free = pix_wrapped_q ? pix_tail_q - pix_head_q : pix_max_q - pix_head_qg + pix_tail_q;
assign vtx_free = vtx_wrapped_q ? vtx_head_q - vtx_tail_q : ~vtx_max_q - vtx_tail_q + vtx_head_q; //
~vtx_max = 127 - vtx_max

wire pix_ok_to_alloc = (pix_alloc_space <= pix_free); // OK to allocate pixel space
wire pix_alloc = pix_ok_to_alloc & pix_alloc_req; // signals the start of a pixel alloc operation
wire pix_dealloc = pix_dealloc_req; // signals the start of a pixel dealloc operation (always
OK to dealloc?)
wire pix_head_wraps = (new_pix_head >= pix_max_q); // new pix_head wraps
wire pix_tail wraps = (new_pix_tail >= pix_max_q); // new pix_tail wraps

wire vtx_ok_to_alloc = (vtx_alloc_space <= vtx_free); // OK to allocate vertex space

wire vtx_alloc = vtx_ok_to_alloc & vtx_alloc_req; // signals the start of a vertex alloc operation
wire vtx_dealloc = vtx_dealloc_req; // signals the start of a vertex dealloc operation

wire vtx_head_wraps = (new_vtx_head <= vtx_max_q); // new vtx_head wraps

wire vtx_tail_wraps = (new_vtx_tail <= vtx_max_q); // new vtx_tail wraps

case (ra_current_state)
IDLE:
begin
// - look for any of the four requests
// - if the request is accepted
// - go to the corresponding acknowledge state
// - update the base_ptr register on alloc requests

if (pix_alloc)
begin
ra_next_state = P_ALLOC_ACK;
next_pix_alloc_ack = HI;

if (pix_head_wraps)

LG Ex. 1002, pg 229

begin
next_pix_wrapped = HI;
next_pix_head = new_pix_head - pix_max_q;
end
else
begin
next_pix_head = new_pix_head;
end

next_base ptr = pix_head_q; // for pixels, the space starts with the current head pointer
end

else if (vtx_alloc)
begin
ra_next_state = V_ALLOC_ACK;
next_vtx_alloc_ack = HI;

if (vtx_head_wraps)
begin
next_vtx_wrapped = HI;
next_vtx_head = new_vtx_head + ~vtx_max_q; // ~vtx_max = 127 - vtx_max
//next_base_ptr = new_vtx_head + ~vtx_max + 1; // for verts, the space starts with
the new head pointer
end
else
begin
next_vtx_head = new_vtx_head;
//next_base_ptr = new_vtx_head + 1; // for verts, the space starts with the new head
pointer
end

next_base_ptr = next_vtx head + 1; // for verts, the space starts with the new head
pointer
// (coding trick - commented out lines above explain)

end

Sq alu_instr seq.v

IITTTTITTIE LTI T LTI I T LTI 7T i 17 1i7r7777717¢0717117111117
// sq_alu_instr_seq.v

/!

// - receives instruction from alu instr queue (AIQ)

// - reads constants (but data goes directly to ais_output mux)

// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:0] aiq_export_info; // {exp_id, pulse_sx}
input [0:0] aiq_last_in_group; // last instruction flag
input [0:0] aiq_last_in_shader; // last instruction flag

input [0:0] aiq_thread_type; // ©: pixel, 1: vertex (shows we operate on either pixel or vertex)
input [2:0] aiq_context_id; // context_id (from ctl packet)
input [5:0] aiq_thread_id; // clause number

// - recall that a © here means src is a constant (while 1 means src is a gpr)...
wire ca_fetch = ~aiq_instr[95];
wire cb_fetch = ~aiq_instr[94];

wire cc_fetch = ~aiq_instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
// before entering the AIQ

wire [8:0] ca_addr = {aiq_instr[63], aiq_instr[87:80]};
wire [8:0] cb_addr = {aiq_instr[62], aiq_instr[79:72]};
wire [8:0] cc_addr = {aiq_instr[61], aiq_instr[71:64]};

R ERRRRSEEEEEEE
// -- Input Staging Register --

LG Ex. 1002, pg 230

Il mmmmmmmm e
// - need to send the vector type and the thread_id back to the thread buffers when
// the all the instructions we wanted to run for this thread are done (this will
// cause the thread to become valid again)

// - register this info in from the AIQ on an AIQ pop in order to hold it until the
// AIS is done

case (ais_current_state)
AISO:
// - wait until this machine is started by the AIQ read SM
// - write OSR data into thread buff on new thread (when there was a previous thread...)

// - ais_done does updates the thread_buff and clears the alu_instr_pending status bit

// - don't assert ais_done yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)

begin

ais_instr_stall = HI;
if (ais_start)
begin
//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag q) ais_done = HI;
ais_instr_start = HI;
ais_instr_stall = LO;
ais_next_state = AIS1;
end
end
AIS1: begin ais_next_state = AIS2; end
AIS2: begin ais_next_state = AIS3; end
AIS3: begin ais_next_state = AIS4; end
// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //
AIS4: begin ais_next_state = AIS5; end
AIS5: begin ais_next_state = AIS6; end
AIS6:
begin
// - the pred set data is loaded now from the previous instr, so assert done now

// - also write new predicate data into predicate register (in ais_output)

if (isr_new_thread q & osr_pred_set flag q) ais_done = HI;

1d_osr = HI;
ais_next_state = AIS7;
end
AIS7:

// - pop the thread off the reservation station buffer when the last instr of the shader is
executed

// - send free_done when pulse_sx is set, or this is the last instruction of a pixel shader
(since this

// is when the pixel export is done)

begin
if (isr_last_in_group_q & ~isr_last_in_shader_q) ais_done = HI;

if (isr_pulse_sx_q) ais_free_done = HI; // pixel last logic put into pulse_sx generation
if (isr_last_in_shader_q) ais_pop = HI;

ais_next_state = AISO;
end

endcase
end

LG Ex. 1002, pg 231

// - end ais state machine

The ais machine is the “alu instruction sequencer” it executes instructions on either vertices or pixels depending on type. The file

sq instruction_store.v contains the memory with all the instructions to be performed on either PS or VS:

Sq_instruction_store v

// Access to the is (instruction store) is divided into 4 phases:

// ©: texture instruction read

// 1: alu instruction read

// The alu phase alternates between phases for alu® and alul.

// 2: CP write (or read for debug)

// 3: control flow instruction read

// The control flow phase is shared for accesses by alu@, alul and tex
// controlled by is_sub_phase.

// address mux

always @(/*AUTOSENSE*/addr or data_cnt or i_alu@_addr
or i_alu@_cf_addr or i_alul_addr or i_alul_cf_addr
or i_is_phase or i_is_sub_phase or i_tex_addr
or i_tex_cf_addr or g_rbi_addr_in)

begin
// default values
d_addr = addr;
d_we = 1'be;

case (i_is_phase)

TEX_PHASE :
begin
d_addr = i_tex_addr;
end

ALU_PHASE :
begin
d_addr = i_is_sub_phase[@] ? i_alul_addr : i_alu@_addr;
d_we = &data_cnt; // data_cnt == 3
end

CP_PHASE :
begin
d_addr = g_rbi_addr_in[11:0]; // top bits are zeros by now
end

CF_PHASE :
begin
case (i_is_sub_phase)
2'b00 :
d_addr
2'ble :
d_addr
default :
d_addr = i_tex_cf_addr;
endcase // case(i_is_sub_phase)
end
endcase // case(i_is_phase)

i_alu@_cf_addr;

i_alul_cf_addr;

end // always @ (...

Claim 2:

LG Ex. 1002, pg 232

Sp_macc_gpr.v

// Filename T macc_reg.v

// Description : This module represents the MACC (Multiply and Accumulate) unit plus
// : the corrensponding GPR (register file) module.

// Author : Andi Skende

rfsd2_128x128cmlsw8_core ugpr_mem(.QB(reg_data),
.ADRA_buf(gpr_wr_addr),
.DA_buf(input_gpr),
.WEMA_buf(subword_write_mask),
.WEA_buf(gpr_wr_ena),
.MEA_buf(gpr_wr_ena),
.CLKA(sclk),
.BISTEA(1'b0),
.ADRB_buf(sq_sp_gpr_rd_addr),
.OEB_buf(1'b1),
.MEB_buf(sq_sp_mem_rd_ena),
.CLKB(sclk),
.BISTEB(1'b@),
.AWTB(1'b0)

>
This is the instantiation of the GPR memory, 128x128.

Sp_vector.v (shows the instanciation of 4 multiply accumulate modules and 1 scalar module):

//Scalar Unit instantiation

sp_scalar_lut uscalar(
.1AG_ME_OPCODE (scalar_opcode),
.1AG_ME_IN_A(scalar_input_alpha),
.1AG_ME_IN B(scalar_input_red),
.iAG_ME_IN_C(32'b@),
.1AG_ME_ABS_A(scalar_input_abs),
.1AG_ME_ABS_B(scalar_input_abs),
.1AG_ME_ABS_C(scalar_input_abs),
.1AG_ME_A_NEGATE(scalar_input_negate),
.1AG_ME_B_NEGATE(scalar_input_negate ~ scalar_opcode_sub),
.1AG_ME_C_NEGATE(scalar_input_negate),
.OME_RESULT(scalar_result),

.sclk(sclk)

);

//replicating the scalar_result (32 bits) to all of the four channels of the write back path into GPRs

//masking is done at the GPRs input

assign scalar_result_bus = { scalar_result, scalar_result, scalar_result, scalar_result};

sp_macc_gpr usp_macc_gpro(.ovector_output(VectorResulto),
.oscalar_input_alpha(scalar_input®_alpha),
.oscalar_input_red(scalar_input@_red),
.oscalar_input_negate(scalar_input@_negate),
.oscalar_input_abs(scalar_input@_abs),
.oscalar_opcode(scalar_opcoded),
.oreg_data(RegData®), .oexport_dst(sq_sp_exp_dst),

.sq_sp_instruct(sq_sp_instruct),.sq_sp_instruct_start(sq_sp_instruct_start),.sq_sp_stall(sq_sp_stall),

.sq_sp_gpr_rd_addr(sq_sp_gpr_rd_addr),

LG Ex. 1002,

pg 233

.sq_sp_gpr_wr_addr(sq_sp_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enad), .sq_sp_mem_rd_ena(sq_sp_mem_rd_ena),.sq_sp_
mem_wr_ena(sq_sp_mem_wr_enad),

.sq_sp_gpr_cmask(sq_sp_channel_mask),.sq_sp_pred_override(sq_sp_pred_override),

.sq_sp_gpr_phase_mux(sq_sp_gpr_phase_mux), .iInterpolated(InputData®), .sq_sp_constant(sq_sp_constant),
.iscalar_data(scalar_result_bus), .tp_sp_data(tp_sp_data),
.tp_sp_gpr_dst(tp_sp_gpr_dst),

.tp_sp_gpr_cmask(tp_sp_gpr cmask),.tp_sp data valid(tp_sp_data_valid[@]),

.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpri(.ovector_output(VectorResultl),
.oscalar_input_alpha(scalar_inputl_alpha),
.oscalar_input_red(scalar_inputl_red),
.oscalar_input_negate(scalar_inputl_negate),
.oscalar_input_abs(scalar_inputl_abs),
.oscalar_opcode(scalar_opcodel),

.oreg_data(RegDatal), .sq_sp_instruct(g@_instruct),.sq_sp_instruct_start(g@_instruct_start),.sq_sp_stall(qe
_instruct_stall),

.sq_sp_gpr_rd_addr(q@_gpr_rd_addr),

.sq_sp_gpr_wr_addr(q@_gpr_wr_addr), .sq_sp_wr_ena(sq_sp_wr_enal),.sq_sp_mem_rd_ena(qgd_gpr_mre),.sq_sp_mem_w
r_ena(sqg_sp_mem_wr_enal),

.sq_sp_gpr_cmask(q@_gpr_cmask), .sq_sp_pred_override(q@_pred_override),

.sq_sp_gpr_phase_mux(q@_gpr_phase_mux), .iInterpolated(InputDatal), .sq_sp_constant(g@_sq_constant),
.iscalar_data(scalar_result_bus),.tp_sp_data(tp_sp_data),
.tp_sp_gpr_dst(qe_tp_gpr_dst),

.tp_sp_gpr_cmask(qe_tp_gpr_cmask),.tp_sp_data_valid(tp_sp_data_valid[1]),

.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr2(.ovector_output(VectorResult2),
.oscalar_input_alpha(scalar_input2_alpha),
.oscalar_input_red(scalar_input2_red),
.oscalar_input_negate(scalar_input2_negate),
.oscalar_input_abs(scalar_input2_abs),
.oscalar_opcode(scalar_opcode2),

.oreg_data(RegData2),.sq_sp_instruct(ql_instruct),.sq_sp_instruct_start(ql_instruct_start),.sq_sp_stall(ql
_instruct_stall),

.sq_sp_gpr_rd_addr(ql_gpr_rd_addr),

.sq_sp_gpr_wr_addr(ql_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_ena2),.sq_sp_mem_rd_ena(ql_gpr mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena2),

.sq_sp_gpr_cmask(ql_gpr_cmask),.sq_sp_pred_override(ql_pred_override),

.sq_sp_gpr_phase_mux(ql_gpr_phase_mux), .iInterpolated(InputData2), .sq_sp_constant(ql_sq_constant),
.iscalar_data(scalar_result_bus), .tp_sp_data(tp_sp_data),
.tp_sp_gpr_dst(ql_tp_gpr_dst),

.tp_sp_gpr _cmask(ql_tp_gpr cmask),.tp_sp data valid(tp_sp_data_valid[2]),

.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr3(.ovector_output(VectorResult3),
.oscalar_input_alpha(scalar_input3_alpha),
.oscalar_input_red(scalar_input3_red),
.oscalar_input_negate(scalar_input3_negate),
.oscalar_input_abs(scalar_input3_abs),
.oscalar_opcode(scalar_opcode3),

.oreg_data(RegData3), .sq_sp_instruct(q2_instruct),.sq_sp_instruct_start(q2_instruct_start),.sq_sp_stall(q2
_instruct_stall),

.sq_sp_gpr_rd_addr(q2_gpr_rd_addr),
.sq_sp_gpr_wr_addr(q2_gpr_wr_addr), .sq_sp_wr_ena(sq_sp_wr_ena3), .sq_sp_mem_rd_ena(q2_gpr_mre),.sq_sp_mem_w
r_ena(sqg_sp_mem_wr_ena3),

.sq_sp_gpr_cmask(q2_gpr_cmask), .sq_sp_pred_override(q2_pred_override),

LG Ex. 1002, pg 234

.sq_sp_gpr_phase_mux(q2_gpr_phase_mux), .iInterpolated(InputData3), .sq_sp_constant(q2_sq_constant),
.iscalar_data(scalar_result_bus), .tp_sp_data(tp_sp_data),.sclk(sclk),

.tp_sp_gpr_cmask(q2_tp_gpr_cmask),.tp_sp_data_valid(tp_sp_data_valid[3]),

.tp_sp_gpr_dst(q2_tp_gpr_dst),

.srst(srst));

//Muxing the gpr vector results into one final vector result conrolled by the phase_mux signal or a
registered version of it

output

[1

:0]

SQ_SP_gpr_wr_addr;
u@_SQ_SP_gpr_wr_end;
u@_SQ_SP_gpr_wr_enl;
u@_SQ_SP_gpr_wr_en2;
u@_SQ_SP_gpr_wr_en3;
ul_SQ SP_gpr_wr_eno;
ul_SQ _SP_gpr_wr_enl;
ul_SQ_SP_gpr_wr_en2;
ul_SQ_SP_gpr_wr_en3;
u2_SQ_SP_gpr_wr_eno;
u2_SQ_SP_gpr_wr_enl;
u2_SQ_SP_gpr_wr_en2;
u2_SQ_SP_gpr_wr_en3;
u3_SQ_SP_gpr_wr_eno;
u3_SQ_SP_gpr_wr_enl;
u3_SQ_SP_gpr_wr_en2;
u3_SQ _SP_gpr_wr_en3;
SQ_SP_gpr_rd_addr;
SQ_SP_gpr_rd_en;
SQ_SP_gpr_phase_mux;
SQ_SP_channel_mask;

SQ_SP_gpr_input_mux;

output [AUTO_COUNT_SIZE - 1 :0] SQ_SP_auto_count;

[0:0] SQ _SP_instruct_start;
[0:0] SQ_SP_stall;

[23:0] SQ _SP_instruct;
[127:0] SQ_SP_const;

[0:
:0]

(o

[7
[7

[3:
[3:
[3:
[3:

o]

:0]
:0]

SQ_SP_exporting;
SQ_SP_exp_id;

u@_SQ SX_kill _mask; // valid bits/kill mask
ul_SQ SX_kill mask;

u@_SQ_SP_pred_override;
ul_SQ_SP_pred_override;
u2_SQ_SP_pred_override;
u3_SQ _SP_pred_override;

LG Ex. 1002, pg 235

Sq_export_alloc.v
always @(alloc_cmd)
begin

casez (alloc_cmd)

// - vitx pos alloc
sx_exp_cmd = 5'ble_00_1;
sx_exp_cmd = 5'b10_01_1;

7'b1_01 0001 :
7'b1_01 0010 :

// - vtx pass thru

sx_exp_cmd = 5'bl1l_00_1;
sx_exp_cmd = 5'b1ll_01_1;
sx_exp_cmd = 5'b1ll 10 1;

7'b1_11 0100 :
7'b1l_11_1000 :
7'bl_11_1160 :

// - pix without z

sx_exp_cmd = 5'boo_00_1;
sx_exp_cmd = 5'be@_01_1;
sx_exp_cmd = 5'b00_10 1;
sx_exp_cmd = 5'be0_11_1;

7'b0_10_0010 :
7'b0_10_0100 :
7'b0_10 0110 :
7'b0_10_1000 :

// - pix with z

7'b0_10 0011 :
7'b0_10_o101 :
7'b0_10 0111 :
7'b0_10_1001 :

sx_exp_cmd = 5'bo1l_00_1;
sx_exp_cmd = 5'b0l_01_1;
sx_exp_cmd = 5'bol_10 1;
sx_exp_cmd = 5'b01_11_1;

// - pix pass thru

sx_exp_cmd = 5'bll_00 1;
sx_exp_cmd = 5'b1ll_01_1;
sx_exp_cmd = 5'b11_10 1;

7'b0_11_0100 :
7'b0_11_1000 :
7'b0_11_1100 :

default: sx_exp_

endcase
end

cmd = 5'bxxxx@;

Shows the SQ able to execute any types of export commands (position, pass-thru (appearance), pix (color).

An example of a shared resource is the instruction store, accesses to it are controlled by:

sq ctl flow seq.v
module sq_ctl_flow_seq

(
cfs_type_strap,

is_phase,
is_subphase,
cfs_phase,
cfc_phase,

// local registers
// - per chip
inst_base_vtx,
inst_base_pix,

// - per context
vs_program_base_set,
ps_program_base_set,

vs_export_count_set,
vs_export_mode_set,
ps_export_mode_set,

//

/!
//
/!
//

//
//

/!
//

//
/7
//

// thread arbiter input

arb_rts,
arb_state,
arb_status,
arb_thread_type,
cfs_rtr_q,

/!
/7
/!
/7
/!

00:alu@, ?1:tex, 1@:alul

00:CF, 01:Tex, 10:ALU, 11:CP
00:alu@, 01:tex, 10:alul, 1l:tex
00:alu@, 01:tex, 1@:alul, 11l:tex
@0:alu, 1:tex,

vertex base
pixel base

connected to SQ VS _PROGRAM.BASE (12 bits)
connected to SQ_PS_PROGRAM.BASE (12 bits)

connected to SQ_PROGRAM_CNTL.VS_EXPORT_COUNT (4 bits)
connected to SQ PROGRAM_CNTL.VS_EXPORT_MODE (3 bits)
connected to SQ _PROGRAM_CNTL.PS_EXPORT_MODE (3 bits)

vertex or pixel
CFS can take a new packet

LG Ex. 1002, pg 236

Sq_alu_instr_seq.v

LITTETTTIIL LTI 7T T TP TT LTI 777177 r T 7777 77777777771777070744717177717171711717717
// sq_alu_instr_seq.v

//

// - receives instruction from alu instr queue (AIQ)

// - reads constants (but data goes directly to ais_output mux)

// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:0] aiq_export_info; // {exp_id, pulse_sx}
input [@:0] aiq_last_in_group; // last instruction flag
input [0:0] aiq_last_in_shader; // last instruction flag

input [@0:0] aiq_thread_type; // ©: pixel, 1: vertex (shows we operate on either pixel or vertex)
input [2:0] aiq_context_id; // context_id (from ctl packet)
input [5:0] aiq_thread_id; // clause number

// - recall that a © here means src is a constant (while 1 means src is a gpr)..

wire ca_fetch = ~aiq_instr[95];
wire cb_fetch = ~aiq_instr[94];
wire cc_fetch = ~aiq_instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
// before entering the AIQ

wire [8:0] ca_addr = {aiq_instr[63], aiq_instr[87:80]};
wire [8:0] cb_addr = {aiq_instr[62], aiq_instr[79:72]};
wire [8:0] cc_addr = {aiq_instr[61], aiq_instr[71:64]};

e

// - need to send the vector type and the thread_id back to the thread buffers when
// the all the instructions we wanted to run for this thread are done (this will
// cause the thread to become valid again)

// - register this info in from the AIQ on an AIQ pop in order to hold it until the
// AIS is done

case (ais_current_state)
AISO:
// - wait until this machine is started by the AIQ read SM
// - write OSR data into thread buff on new thread (when there was a previous thread..)

// - ais_done does updates the thread_buff and clears the alu_instr_pending status bit

// - don’t assert ais_done yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)

begin

ais_instr_stall = HI;

if (ais_start)
begin
//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag q) ais_done = HI;

ais_instr_start = HI;

ais_instr_stall LO;

ais_next_state = AISI1;
end

n

end

AIS1: begin ais_next_state = AIS2; end

AIS2: begin ais_next_state = AIS3; end
AIS3: begin ais_next_state = AIS4; end
// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //

AIS4: begin ais_next_state = AIS5; end

LG Ex. 1002, pg 237

AISS5: begin ais_next_state = AIS6; end

AIS6:

begin
// - the pred set data is loaded now from the previous instr, so assert done now
// - also write new predicate data into predicate register (in ais_output)

if (isr_new_thread_g & osr_pred_set_flag q) ais_done = HI;

1d_osr = HI;
ais_next_state = AIS7;
end
AIS7:

// - pop the thread off the reservation station buffer when the last instr of the shader is
executed

// - send free_done when pulse_sx is set, or this is the last instruction of a pixel shader
(since this

// is when the pixel export is done)

begin
if (isr_last_in_group_gq & ~isr_last_in_shader_q) ais_done = HI;

if (isr_pulse_sx_q) ais_free_done = HI; // pixel last logic put into pulse_sx generation
if (isr_last_in_shader_q) ais_pop = HI;

ais_next_state = AISO;
end

endcase
end

// - end ais state machine

sq thread arb.v
// - vertex request priority encoder

reg [0:0] vtx_winner_vld;
reg [3:0] vtx_winner;

always @(vtx_req_q)
begin
casez (vtx_req_q)
16'b0000_0000_0000_0000: begin vtx_winner_vld = LO; vtx _winner = 4'hf; end
16'b1000_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'hf; end
16'b?100_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'he; end

16'b??10_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'hd; end
16'b???1_0000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4"hc; end
16'b????_1000_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'hb; end
16'b????_?100_0000_0000: begin vtx_winner_vld = HI; vtx_winner = 4'ha; end
16'b????_??10 0000 0000: begin vtx_winner_vld = HI; vtx winner = 4'h9; end
16'b????_???1 0000 0000: begin vtx_winner_vld = HI; vtx_winner = 4'h8; end
16'b????_???? 1000 0000: begin vtx_winner_vld = HI; vtx_winner = 4'h7; end
16'b????_???? ?100_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h6; end
16'b????_???? ??10 _0000: begin vtx_winner_vld = HI; vtx_winner = 4'h5; end
16'b????_???? ???1_0000: begin vtx_winner_vld = HI; vtx_winner = 4'h4; end
16'b????_??2??_????_1000: begin vtx_winner_vld = HI; vtx_winner = 4'h3; end
16'b??2?_???? _?P???_?100: begin vtx_winner_vld = HI; vtx_winner = 4'h2; end
16'b??2?_ 2?22 ????_??10: begin vtx_winner_vld = HI; vtx_winner = 4'hl; end
16'b??2?_?2?? _?P2??_???1: begin vtx_winner_vld = HI; vtx_winner = 4'h@; end
default: begin vtx_winner_vld = X; vtx_winner = 4'bxxxx; end
endcase

end

// - pixel request priority encoder

10

LG Ex. 1002, pg 238

reg [0:0] pix_winner_vld;
reg [3:0] pix_winner;

always @(pix_req_q)
begin
casez (pix_req_q)
//16'b0000_0000_0000_0000: begin pix_winner_vld = LO; pix_winner = 4'hf; end
16'b1000_0000_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'hf; end
16'b?100 0000 0000 0000: begin pix_winner_vld = HI; pix_winner = 4'he; end
16'b??10_0000_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'hd; end
16'b???1_ 0000 0000 0000: begin pix_winner_vld = HI; pix_winner = 4'hc; end
16'b????_ 1000 0000 _0000: begin pix_winner_vld = HI; pix_winner = 4'hb; end
16'b????_?100_0000_0000: begin pix_winner_vld = HI; pix_winner = 4'ha; end
16'b????_??10 0000 _0000: begin pix_winner_vld = HI; pix_winner = 4'h9; end
16'b????_???1 0000 _0000: begin pix_winner_vld = HI; pix_winner = 4'h8; end
16'b????_???? 1000 0000: begin pix_winner_vld = HI; pix_winner = 4'h7; end
16'b????_???? ?100_0000: begin pix_winner_vld = HI; pix_winner = 4'h6; end
16'b????_????_??10_0000: begin pix_winner_vld = HI; pix_winner = 4'h5; end
16'b????_???? ???1 _0000: begin pix_winner_vld = HI; pix_winner = 4'h4; end
16'b???? _???? ???? _1000: begin pix_winner_vld = HI; pix_winner = 4'h3; end
16'b????_???? ????_?100: begin pix_winner_vld = HI; pix_winner = 4'h2; end
16'b??2?_ 2?22 ???? _??10: begin pix winner_vld = HI; pix_winner = 4'hl; end
16'b??2?_?2?? ?2??_?2?1: begin pix_winner_vld = HI; pix_winner = 4'h@; end

//default: begin pix_winner_vld = X; pix_winner = 4'bxxxx; end
default: begin pix_winner_vld = LO; pix_winner = 4'bxxxx; end
endcase

end

// - if cfsl is enabled, alternate btwn rtse and rtsl

// - if cfsl is disabled, mask rtsl and always use rtse@

// - what is the algorithm here? really want to send the thread to the CFS that's available (default
// to cfs@ if both are available)

// - so getting rid of forced toggle btwn cfs@ and cfsl - remember to to comment out cfs_turn

// - there is only one winner max per cycle, so only one of the two RTSs is active in one cycle

// - it doesn't matter which ALU pipe is used to process a thread, as long as threads are processed in
order

// of being selected by the arbiter (i.e. there should be no way for a thread in one ALU pipe to pass
a thread

// in the other ALU pipe when they are from the same context)

//assign arb_rts@ = arb_rts & (~cfs_turn | ~cfsl enable);
//assign arb_rtsl = arb_rts & cfs_turn & cfsl_enable;

//wire [@:0] cfs_rtr = cfs_rtr@ | cfs_rtri;

wire [0:0] send_to_cfs® = cfs_rtro;
wire [0:0] send_to_cfsl = ~cfs_rtre & cfs_rtrl & cfsl_enable;

assign arb_rtse = arb_rts & send_to_cfso;
assign arb_rtsl = arb_rts & send_to_cfsl;

wire [0:0] arb_xfc@ = arb_rtse & cfs_rtro;
wire [0:0] arb_xfcl = arb_rtsl & cfs_rtri;

wire [@:0] arb_xfc = arb_xfc@ | arb_xfci;

// - choose between tex state/status and pix state/status depending on overall winner
// - vtx tex has no lod

// - vtx alu has no lod

// - pix tex does have LOD (PIX_CTL_PKT_WIDTH and CTL_PKT_WIDTH have lod)

// - pix alu has no lod

11

LG Ex. 1002, pg 239

always @(type_winner_q or vtx_state or pix_state)
begin
//arb_state = {STATE_WIDTH{LO}};
case (type_winner_q)
HI: arb_state = vtx_state; // these are unequal - msb's get @'s by above assignment
LO: arb_state = pix_state;
//default: arb_state = {STATE_WIDTH{X}};
endcase
end

always @(type_winner_q or vtx_status or pix_status)
begin
//arb_status = {STATUS_WIDTH{LO}};
case (type_winner_q)
HI: arb_status = vtx_status;
LO: arb_status = pix_status;
//default: arb_status = {STATUS_WIDTH{X}};
endcase
end

sq_shader seq.v

// shader_seq.v

I

// - instantiates 16 reservation stations

/

/[issues:

/-

/
i

module sq_shader_seq
(

shader_seq_type, // a strap that tells this module if it's a vertex or pixel shader seq

/I control packet input

input_cp, // control packet data from the input SM
input_rts, /I rts from the input SM
input_rtr, /I rtr from texture RSO

// texture clause arbiter interface

tex_req, /I 8 texture RS requests

tex_cp, // vector of 8 control packets

tex_rtr, /I 8 RTSs (not fulls) to the ALU arbiters

tca_winner_ack, /I 8 ack bits from arb - only the winner bit is set

tca_empty_ack, /1 8 ack bits from arb - each empty requesting clause is ack'd to move it to next
RS

TP_SQ_data_rdy, // data ready indicator from TPC - increment the alu RS counter
TP_SQ_type, /I the vector type: pixel=0, vertex=1
TP_SQ_clause_num, // the alu RS number whose count should be incremented

/1 alu clause arbiter interface

alu_req, I
alu_cp, I
alu_rtr, 1
aca_winner_ack, I
aca_empty_ack, 1

12

LG Ex. 1002, pg 240

ais0_data_rdy,
ais0_vector_type,
ais0_clause_num,

ais1_data_rdy,
ais1_vector_type,
ais1_clause_num,

/1 exit SM interface

/I done indicator from AISO - increment the tex RS counter
/I the vector type: pixel=0, vertex=1
// the tex RS number whose count should be incremented

/I done indicator from AIS1 - increment the tex RS counter
/Il the vector type: pixel=0, vertex=1
// the tex RS number whose count should be incremented

state_change,// a pulse high indicates that the state exiting the SS has changed

old_state,
dealloc_req,
dealloc_ack,

clk,
reset

I/l -- parameters --

/I the state that has finished (because a new state has emerged)
// request to deallocate GPRs
/I the dealloc request has been acknowleged

parameter CP_WIDTH = 8;
parameter STATE_WIDTH = 3;

parameter FIFO_WIDTH = CP_WIDTH,;
parameter FIFO_DEPTH = 4;
parameter FIFO_ADDR_BITS = 2;

parameter LO = 1'b0;
parameter HI = 1'b1;
parameter X = 1'bx;

1

/! - ios --
/I

input shader_seq_type;

input [CP_WIDTH-1:0] input_cp;
input input_rts;
output input_rtr;

output [8:0]

tex_req;

output [8*CP_WIDTH-1:0] tex_cp;

output [8:1]

input [7:0]
input [7:0]

tex_rtr;

tca_winner_ack;
tca_empty_ack;

input [0:0] TP_SQ_data_rdy;
input [0:0] TP_SQ_type;
input [2:0] TP_SQ_clause_num;

output [7:0]

alu_req;

13

LG Ex. 1002, pg 241

output [8*CP_WIDTH-

output [7:0]

input [7:0]
input [7:0]

input
input
input [2:0]

input
input
input [2:0]

output
output [2:0]
output
input

input
input

1:0] alu_cp;
alu_rtr;

aca_winner_ack;
aca_empty_ack;

ais0_data_rdy;
ais0_vector_type;
ais0_clause_num;

ais1_data_rdy;
ais1_vector_type;
ais1_clause_num;

state_change;

old_state;

dealloc_req;
dealloc_ack;

clk;
reset;

/I - output register declarations

/lreg [8:0] tex_req;
/lreg [7:0] alu_req;

I

/I -- internal signals --

1

wire [CP_WIDTH-1:0] tex_ctl_pkt0;
wire [CP_WIDTH-1:0] tex_ctl_pkt1;
wire [CP_WIDTH-1:0] tex_ctl_pkt2;
wire [CP_WIDTH-1:0] tex_ctl_pkt3;
wire [CP_WIDTH-1:0] tex_ctl_pkt4;
wire [CP_WIDTH-1:0] tex_ctl_pkt5;
wire [CP_WIDTH-1:0] tex_ctl_pkt6;
wire [CP_WIDTH-1:0] tex_ctl_pkt7;
wire [CP_WIDTH-1:0] alu_ctl_pkt0;
wire [CP_WIDTH-1:0] alu_ctl_pkt1;
wire [CP_WIDTH-1:0] alu_ctl_pkt2;
wire [CP_WIDTH-1:0] alu_ctl_pkt3;
wire [CP_WIDTH-1:0] alu_ctl_pkt4;
wire [CP_WIDTH-1:0] alu_ctl_pkt5;
wire [CP_WIDTH-1:0] alu_ctl_pkt6;
wire [CP_WIDTH-1:0] alu_ctl_pkt7;

// group all the control packets together into one big vector for output to the arbiter

wire [8*CP_WIDTH-1:0] tex_cp = {tex_ctl_pkt7, tex_ctl_pki6, tex_ctl_pkt5, tex_ctl_pkt4,
tex_ctl_pkt3, tex_ctl_pkt2, tex_ctl_pkt1, tex_ctl_pkt0};

wire [8*CP_WIDTH-1:0] alu_cp = {alu_ctl_pkt7, alu_ctl_pkt6, alu_ctl_pkt5, alu_ctl_pkt4,

LG Ex

. 1002, pg 242

alu_ctl_pkt3, alu_ctl_pkt2, alu_ctl_pkt1, alu_ctl_pkt0};

reg [0:0] tpc_data_rdy;
reg [0:0] tpc_type;
reg [2:0] tpc_clause_num,;

1
// -- combinational logic --
1

/I - select the RS counter to increment based on clause number sent by TPC/AIS

/l - counts represent the number of valid entries in a RS FIFO; because ctl packets are
/I moved into the next RS before the vector they represent has actually finished, the
/I count is used to gate the requests to the next arbiter until the clause is actually

/I done

/I - this is a decoder enabled by data_rdy

reg [7:0] tpc_cnt_inc;
reg [7:0] aisO_cnt_inc;
reg [7:0] ais1_cnt_inc;

always @(tpc_data_rdy or tpc_clause_num or tpc_type or shader_seq_type)
begin
tpc_cnt_inc = 8'h00;
if (tpc_data_rdy & (tpc_type == shader_seq_type))
tpc_cnt_inc[tpc_clause_num] = 1'b1;
end

always @(ais0_data_rdy or ais0_clause_num or aisQ_vector_type or shader_seq_type)
begin
ais0_cnt_inc = 8'h00;
if (ais0_data_rdy & (ais0_vector_type == shader_seq_type))
ais0_cnt_inc[ais0_clause_num] = 1'b1;
end

always @(ais1_data_rdy or ais1_clause_num or ais1_vector_type or shader_seq_type)
begin
ais1_cnt_inc = 8'h00;
if (ais1_data_rdy & (ais1_vector_type == shader_seq_type))
ais1_cnt_inc[ais1_clause_num] = 1'b1;
end

wire [7:0] ais_cnt_inc = ais0_cnt_inc | ais1_cnt_inc;

/ - create the RS request by masking the RS FIFO rts when the associated RS count is zero

/I - this is done because a control packet is moved to the next RS before the RS can actually tell
/[the arbiter about it

/I -in both cases, in order to facilitate the advancement of empty clauses, the packet is moved

/I tothe next RS when the arbiter selects it

/I -in the case of alu RSs, the TPC must indicate that the texture data has been loaded into the
/I GPRs before incrementing the count

/I -in the case of tex RSs, the AIS will increment the count when it's done

/Iwire [FIFO_ADDR_BITS-1:0] tex_count [0:8]; // tex_count[8] is for the exit RS

15

LG Ex. 1002, pg 243

/lwire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]

wire [8:0]
wire [7:0]

alu_count [0:7];

tex_count0;
tex_count1;
tex_count2;
tex_count3;
tex_count4;
tex_count5;
tex_count6;
tex_count7;
tex_count8;
alu_count0;
alu_countf;
alu_count2;
alu_count3;
alu_count4;
alu_countb;
alu_count6;
alu_count7;

tex_rts;
alu_rts;

/l tex_rts[8] is for the exit RS

// - this could be done in the reservation station...
/lalways @(tex_rts or tex_count)

/I for (i=0; i<9; i=i+1) begin

/I tex_req[i] = tex_rts[i] & |(tex_count][i]);

/I end

/lalways @(alu_rts or alu_count)

/I for (i=0; i<8; i=i+1) begin

/I alu_req]i] = alu_rts[i] & |(alu_count][i]);

/I end

assign tex_req[0] = tex_rts[0] & |tex_countO;
assign tex_req[1] = tex_rts[1] & |tex_count1;
assign tex_req[2] = tex_rts[2] & |tex_count2;
assign tex_req[3] = tex_rts[3] & |tex_count3;
assign tex_req[4] = tex_rts[4] & |tex_count4;
assign tex_req[5] = tex_rts[5] & |tex_countb;
assign tex_req[6] = tex_rts[6] & |tex_count;
assign tex_req[7] = tex_rts[7] & |tex_count7;
assign tex_req[8] = tex_rts[8] & |tex_count8;
assign alu_req[0] = alu_rts[0] & |alu_count0;
assign alu_req[1] = alu_rts[1] & |alu_count1;
assign alu_req[2] = alu_rts[2] & |alu_count2;
assign alu_req[3] = alu_rts[3] & |alu_count3;
assign alu_req[4] = alu_rts[4] & |alu_count4;
assign alu_req[5] = alu_rts[5] & |alu_count5;
assign alu_req[6] = alu_rts[6] & |alu_countb;
assign alu_req[7] = alu_rts[7] & |alu_count7;

I - the acknowledge to a RS is the OR of the winner and empty ack vectors

/I - the ack advances the ctl packet to the next RS

/I - want to advance when either the clause was picked by the arbiter or when

/I the clause is empty (no instructions)

16

LG Ex. 1002, pg 244

wire [7:0] tca_ack = tca_winner_ack | tca_empty_ack;

/Iwire [7:0] aca_winner_ack = aca0_winner_ack | aca1_winner_ack;
/Iwire [7:0] aca_empty_ack =acal_empty_ack |acal_empty_ack;

wire [7:0] aca_ack = aca_winner_ack | aca_empty_ack;
1

/I -- registers --

I

/I - block input registers for signals from TPC

always @(posedge clk)
begin
tpc_data_rdy <=TP_SQ_data_rdy;
tpc_type <= TP_SQ_type;
tpc_clause_num <= TP_SQ_clause_num;

end
/!
/] -- state machines --
1
1
/I -- module instatiations --
/!

/1 16 reservation stations: 8 texture, 8 alu

/I - the RSs are connected tex to alu to tex etc., with an exit RS connected after alu rs7 (like tex rs8)
/I - the write rts/rtr for tex rs0 is from the input sm

// - the read rts's are qualified with the RS count and sent to the arbiter

/I - the arbiter sends an ack which rtr's the sender and rts's the receiver (i.e. next RS)

/l - the next RS rtr goes back to the arbiter and must be high to enable a grant

wire tex_rs0_cnt_inc = input_rts & input_rtr;
res_station // tex rsO

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs0

(.write_rts(input_rts), .write_rtr(input_rtr), .write_data(input_cp),
read_rts (tex_rts[0]), .read_rtr (fca_ack[0]), .read_data (tex_ctl_pkt0),
.empty_inc(LO), .count_inc(tex_rs0_cnt_inc), .count(tex_count0),

clk(clk), .reset(reset)
);
res_station // alu rsO
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs0
(.write_rts(tca_ack[0]), .write_rtr(alu_rtr[0]), .write_data(tex_ctl_pkt0),
read_rts (alu_rts[0]), read_rtr (aca_ack[0]), .read_data (alu_ctl_pkt0),
.empty_inc(tca_empty_ack[0]), .count_inc(tpc_cnt_inc[0]), .count(alu_count0),
.clk(clk), .reset(reset)
);

res_station // tex rs1

17

LG Ex. 1002, pg 245

#(DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_tex_rs1
(-write_rts(aca_ack[0]), write_rtr(tex_rtr[1]), .write_data(alu_ctl_pkt0),
.read_rts (tex_rts[1]), read_rtr (tca_ack[1]), .read_data (tex_ctl_pkt1),
.empty_inc(aca_empty_ack[0]), .count_inc(ais_cnt_inc[0]), .count(tex_count1),
.clk(clk), .reset(reset)

res_station // alu rs1

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_alu_rs1
(.write_rts(tca_ack[1]), .write_rtr(alu_rtr[1]), .write_data(tex_ctl_pkt1),
read_rts (alu_rts[1]), .read_rtr(aca_ack[1]), .read_data (alu_ctl_pkt1),

.empty_inc(tca_empty_ack[1]), .count_inc(tpc_cnt_inc[1]), .count(alu_count1),
clk(clk), .reset(reset)

);

res_station // tex rs2

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_tex_rs2
(-write_rts(aca_ack[1]), .write_rtr(tex_rtr[2]), .write_data(alu_ctl_pkt1),
read_rts (tex_rts[2]), .read_rtr(tca_ack[2]), .read_data (tex_ctl_pkt2),
.empty_inc(aca_empty_ack[1]), .count_inc(ais_cnt_inc[1]), .count(tex_count2),
clk(clk), .reset(reset)

)

res_station // alu rs2

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_alu_rs2
(.write_rts(tca_ack[2]), .write_rtr(alu_rtr[2]), .write_data(tex_ctl_pkt2),
read_rts (alu_rts[2]), .read_rtr(aca_ack[2]), .read_data (alu_ctl_pkt2),
.empty_inc(tca_empty_ack[2]), .count_inc(tpc_cnt_inc[2]), .count(alu_count2),
clk(clk), .reset(reset)

);

res_station // tex rs3

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_tex_rs3
(.write_rts(aca_ack[2]), .write_rtr(tex_rtr[3]), .write_data(alu_ctl_pkt2),
read_rts (tex_rts[3]), .read_rtr(tca_ack[3]), .read_data (tex_ctl_pkt3),
.empty_inc(aca_empty_ack[2]), .count_inc(ais_cnt_inc[2]), .count(tex_count3),
clk(clk), .reset(reset)

);

res_station // alu rs3

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), . ADDR_BITS(FIFO_ADDR_BITS))

u_alu_rs3
(-write_rts(tca_ack[3]), .write_rtr(alu_rtr[3]), .write_data(tex_ctl_pkt3),
.read_rts (alu_rts[3]), .read_rtr(aca_ack|[3]), .read_data (alu_ctl_pkt3),
.empty_inc(tca_empty_ack[3]), .count_inc(tpc_cnt_inc[3]), .count(alu_count3),
.clk(clk), .reset(reset)

res_station // tex rs4

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), . ADDR_BITS(FIFO_ADDR_BITS))

u_tex_rs4
(-write_rts(aca_ack[3]), .write_rtr(tex_rtr[4]), .write_data(alu_ctl_pkt3),
.read_rts (tex_rts[4]), .read_rtr(tca_ack[4]), .read_data (tex_ctl_pkt4),
.empty_inc(aca_empty_ack[3]), .count_inc(ais_cnt_inc[3]), .count(tex_count4),
.clk(clk), .reset(reset)

re's_station /l alu rs4

18

LG Ex

. 1002, pg 246

#(DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_alu_rs4
(-write_rts(tca_ack[4]), .write_rtr(alu_rtr[4]), .write_data(tex_ctl_pkt4),
.read_rts (alu_rts[4]), .read_rtr(aca_ack[4]), .read_data (alu_ctl_pkt4),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[4]), .count(alu_count4),
.clk(clk), .reset(reset)

re,s_station I tex rsb

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_tex_rsb
(-write_rts(aca_ack[4]), .write_rtr(tex_rtr[5]), .write_data(alu_ctl_pkt4),
read_rts (tex_rts[5]), .read_rtr(tca_ack[5]), .read_data (tex_ctl_pkt5),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[4]), .count(tex_count5),
clk(clk), .reset(reset)

);

res_station // alu rs5

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_alu_rs5
(-write_rts(tca_ack[5]), .write_rtr(alu_rtr[5]), .write_data(tex_ctl_pkt5),
read_rts (alu_rts[5]), .read_rtr(aca_ack[5]), .read_data (alu_ctl_pkt5),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[5]), .count(alu_count5),
clk(clk), .reset(reset)

)

res_station // tex rs6

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_tex_rsb6
(.write_rts(aca_ack[5]), .write_rtr(tex_rtr[6]), .write_data(alu_ctl_pkt5),
read_rts (tex_rts[6]), .read_rtr(tca_ack[6]), .read_data (tex_ctl_pkt6),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[5]), .count(tex_count6),
clk(clk), .reset(reset)

);

res_station // alu rs6

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))

u_alu_rs6
(.write_rts(tca_ack[6]), .write_rtr(alu_rtr[6]), .write_data(tex_ctl_pkt6),
.read_rts (alu_rts[6]), .read_rtr(aca_ack[6]), .read_data (alu_ctl_pkt6),
.empty_inc(tca_empty_ack[6]), .count_inc(tpc_cnt_inc[6]), .count(alu_count6),
clk(clk), .reset(reset)

)

res_station // tex rs7

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), . ADDR_BITS(FIFO_ADDR_BITS))

u_tex_rs7
(-write_rts(aca_ack[6]), .write_rtr(tex_rtr[7]), .write_data(alu_ctl_pkt6),
read_rts (tex_rts[7]), .read_rtr(tca_ack[7]), .read_data (tex_ctl_pkt7),
.empty_inc(aca_empty_ack[6]), .count_inc(ais_cnt_inc[6]), .count(tex_count7),
clk(clk), .reset(reset)

);

res_station // alu rs7

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), . ADDR_BITS(FIFO_ADDR_BITS))

u_alu_rs7
(-write_rts(tca_ack[7]), .write_rtr(alu_rtr[7]), .write_data(tex_ctl_pkt7),
read_rts (alu_rts[7]), .read_rtr(aca_ack[7]), .read_data (alu_ctl_pkt7),
.empty_inc(tca_empty_ack[7]), .count_inc(tpc_cnt_inc[7]), .count(alu_count7),
.clk(clk), .reset(reset)

);

19

LG Ex

. 1002, pg 247

wire [2:0] new_state;

/I exit RS
res_station
#(.DATA_BITS(STATE_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs8
(.write_rts(aca_ack[7]), .write_rtr(tex_rtr[8]), .write_data(alu_ctl_pkt7[STATE_WIDTH-1:0]),
read_rts (tex_rts[8]), .read_rtr(exit_sm_rtr), .read_data (new_state),
.empty_inc(aca_empty_ack[7]), .count_inc(ais_cnt_inc[7]), .count(tex_count8),
clk(clk), .reset(reset)

’

I
/I -- exit state machine --
/!

exit_sm
u_exit_sm

(

.new_state_rts(tex_req[8]),
.new_state_rtr(exit_sm_rtr),
.new_state(new_state),

.state_diff(state_change),
.old_state_q(old_state),

.dealloc_req(dealloc_req),
.dealloc_ack(dealloc_ack),

.clk(clk),
.reset(reset)

endmodule

20

LG Ex. 1002, pg 248

Electronic Patent Application Fee Transmittal

Application Number:

13109738

Filing Date:

17-May-2011

Title of Invention:

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name:

Stephen Morein

Filer:

Christopher J. Reckamp/Christine Wright

Attorney Docket Number:

00100.36.0001

Filed as Large Entity

Utility under 35 USC 111(a) Filing Fees

Description

Fee Code

Quantity

Amount

Sub-Total in
UsD($)

Basic Filing:

Pages:

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Extension - 3 months with $0 paid

1253

1270

1270

LG Ex. 1002, pg 249

o . Sub-Total in
Description Fee Code Quantity Amount UsD($)
Miscellaneous:
Total in USD ($) 1270

LG Ex. 1002, pg 250

Electronic Acknowledgement Receipt

EFS ID: 11860180
Application Number: 13109738
International Application Number:
Confirmation Number: 2020
Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
First Named Inventor/Applicant Name: Stephen Morein
Customer Number: 29153
Filer: Christopher J. Reckamp/Christine Wright
Filer Authorized By: Christopher J. Reckamp
Attorney Docket Number: 00100.36.0001

Receipt Date: 18-JAN-2012

Filing Date: 17-MAY-2011

Time Stamp: 12:01:42

Application Type: Utility under 35 USC 111(a)

Payment information:
Submitted with Payment yes
Payment Type Deposit Account
Payment was successfully received in RAM $1270
RAM confirmation Number 11637
Deposit Account 020390
Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:
Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

LG Ex. 1002, pg 251

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)
File Listing:
Document s . File Size(Bytes Multi Pages
Document Description File Name (y)V . . 9
Number Message Digest | Part/.zip| (ifappl.)
120979
1 360001_Response.pdf yes 8
5ea628e325d222b0f8f3ef2eed 1ab6f5fd85
Multipart Description/PDF files in .zip description
Document Description Start End
Amendment/Req. Reconsideration-After Non-Final Reject 1 1
Claims 2 5
Applicant Arguments/Remarks Made in an Amendment 6 8
Warnings:
Information:
124271
2 Miscellaneous Incoming Letter 360001_Declaration.pdf no 6
bbbébc0b6e0428a869fch8a54972857d 38
43dd7
Warnings:
Information:
738779
3 Miscellaneous Incoming Letter 360001_ExhibitA.pdf no 93
Tb5bd3d447e9b644e4b83f48ef84eaeb5f3
<50d
Warnings:
Information:
260167
4 Miscellaneous Incoming Letter 360001_ExhibitB.pdf no 20
23¢581deb4alade2018254c5a4bf3caddOc|
519al
Warnings:
Information:
30614
5 Fee Worksheet (SB06) fee-info.pdf no 2
156554244122¢7c58b7a8c2f31ad5fe86e79)
a08a
Warnings:
Information:
Total Files Size (in bytes){ 1274810

LG Ex. 1002, pg 252

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

LG Ex. 1002, pg 253

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O.Box 1450

Alexandria, Virginia 22313-1450

WWW.USpto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR | ATTORNEY DOCKETNO. | CONFIRMATION NO. |
13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020
29153 7590 03/15/2012
EXAMINER
ADVANCED MICRO DEVICES, INC. | |
C/O Faegre Baker Daniels LLP WASHBURN, DANIEL C
311 S. WACKER DRIVE T N ———
CHICAGO, IL 60606 | | |
2628
| NOTIFICATION DATE | DELIVERY MODE |
03/15/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the

following e-mail address(es):

inteas @faegrebd.com
cynthia.payson@faegredb-.com

PTOL-90A (Rev. 04/07)

LG Ex. 1002, pg 254

Application No. Applicant(s)
13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
DANIEL WASHBURN 2628

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any

earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)K Responsive to communication(s) filed on 18 January 2012.
2a)[X] This action is FINAL. 2b)[] This action is non-final.
3)[J An election was made by the applicant in response to a restriction requirement set forth during the interview on
__ ;therestriction requirement and election have been incorporated into this action.
4)[J Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims
5)X Claim(s) 1-16is/are pending in the application.
ba) Of the above claim(s) is/are withdrawn from consideration.
6)[] Claim(s) is/are allowed.
7)XI Claim(s) 1-16is/are rejected.
)
)

) 1-16
8)[] Claim(s) _____is/are objected to.
9)[] Claim(s) ____are subject to restriction and/or election requirement.

Application Papers

10)X] The specification is objected to by the Examiner.
11)] The drawing(s) filed on _____is/are: a)[_] accepted or b)[] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
12)[] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

13)[] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)J Al b)[Some * ¢)[] None of:
1.[] Certified copies of the priority documents have been received.
2.[] Certified copies of the priority documents have been received in Application No. ____
3.[] Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)
1) D Notice of References Cited (PTO-892) 4) D Interview Summary (PTO-413)
2) [] Notice of Draftsperson’s Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. __
3) X Information Disclosure Statement(s) (PTO/SB/08) 5) [Notice of Informal Patent Application
Paper No(s)/Mail Date 6) D Other: ____
U.S. Patent and Trademark Office
PTOL-326 (Rev. 03-11) Office Action Summary Part of Paper No./Mail Date 20120311

LG Ex. 1002, pg 255

Application/Control Number: 13/109,738 Page 2
Art Unit: 2628

DETAILED ACTION
Specification

Applicant is reminded of the proper language and format for an abstract of the
disclosure.

The abstract should be in narrative form and generally limited to a single
paragraph on a separate sheet within the range of 50 to 150 words. It is important that
the abstract not exceed 150 words in length since the space provided for the abstract
on the computer tape used by the printer is limited. The form and legal phraseology
often used in patent claims, such as "means” and "said,"” should be avoided. The
abstract should describe the disclosure sufficiently to assist readers in deciding whether
there is a need for consulting the full patent text for details.

The language should be clear and concise and should not repeat information
given in the title. It should avoid using phrases which can be implied, such as, "The
disclosure concerns," "The disclosure defined by this invention,” "The disclosure
describes," etc.

Declaration filed under 37 CFR 1.131
The declaration filed 1/18/12 under 37 CFR 1.131 has been considered but is
ineffective to overcome the prior art reference Lindholm (US 7,038,685, “the Lindholm
reference”).
The declaration does not meet the requirements of 37 CFR 1.131 section (a).
37 CFR 1.131 section (a) states (in relevant part):

‘(@) When any claim of an application or a patent under reexamination is
rejected, the inventor of the subject matter of the rejected claim, the owner of the patent
under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may submit an
appropriate oath or declaration to establish invention of the subject matter of the
rejected claim prior to the effective date of the reference or activity on which the
rejection is based. The effective date of a U.S. patent, U.S. patent application
publication, or international application publication under PCT Article 21(2) is the earlier
of its publication date or date that it is effective as a reference under 35 U.S.C. 102(e).
Prior invention may not be established under this section in any country other
than the United States, a NAFTA country, or a WTO member country. Prior
invention may not be established under this section before December 8, 1993, in

LG Ex. 1002, pg 256

Application/Control Number: 13/109,738 Page 3
Art Unit: 2628

a NAFTA country other than the United States, or before January 1, 1996, in a
WTO member country other than a NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by ATI
Technologies Inc. and/or one of its wholly owned subsidiaries ("ATI") as indicated by
attached Exhibits A and B ... Prior to June 30, 2003 we created a graphics processing
system that operated as claimed using a computer system that successfully executed
the Model Code. Prior to June 30, 2003 we also created a graphics processing system
as claimed in the form of a computer system that used an RTL simulator to successfully
validate the operation of an integrated circuit version of the claimed graphics processing
system and method.”

As quoted from Applicants' declaration, section 2 describes conception and
reduction to practice of the claimed invention prior to June 30, 2003. Section 2 further
describes that the conception and reduction to practice of the claimed invention was
carried out while the inventors were employed by ATI Technologies Inc. and/or one of
its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify whether or
not the conception and reduction to practice was carried out in the United States, a
NAFTA country, or a WTO member country. As quoted from 37 CFR 1.131 section (a),
“[plrior invention may not be established under this section in any country other than the
United States, a NAFTA country, or a WTO memory country”. Thus, the declaration is
ineffective to overcome the Lindholm reference due to this first deficiency.

Further, the declaration does not meet the requirements of 37 CFR 1.131 section
(b).

37 CFR 1.131 section (b) states:

“(b) The showing of facts shall be such, in character and weight, as to
establish reduction to practice prior to the effective date of the reference, or conception

LG Ex. 1002, pg 257

Application/Control Number: 13/109,738 Page 4
Art Unit: 2628

of the invention prior to the effective date of the reference coupled with due diligence
from prior to said date to a subsequent reduction to practice or to the filing of the
application. Original exhibits of drawings or records, or photocopies thereof, must
accompany and form part of the affidavit or declaration or their absence must be
satisfactorily explained.”

MPEP 715.07 [R-3] "Facts and Documentary Evidence", section I. "General
Requirements”, offers further guidance regarding the requirements of 37 CFR 1.131
section (b).

MPEP 715.07, section |., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.131 is priority of invention and
this may be done by any satisfactory evidence of the fact. FACTS, not conclusions,
must be alleged. Evidence in the form of exhibits may accompany the affidavit or
declaration. Each exhibit relied upon should be specifically referred to in the affidavit or
declaration, in terms of what it is relied upon to show ... when reviewing a 37 CFR
1.131 affidavit or declaration, the examiner must consider all of the evidence presented
in its entirety, including the affidavits or declarations and all accompanying exhibits,
records and “notes.” An accompanying exhibit need not support all claimed limitations,
provided that any missing limitation is supported by the declaration itself. Ex parte
Ovshinsky, 10 USPQ2d 1075 (Bd. Pat. App. & Inter. 1989).

The affidavit or declaration and exhibits must clearly explain which facts or
data applicant is relying on to show completion of his or her invention prior to the
particular date. Vague and general statements in broad terms about what the
exhibits describe along with a general assertion that the exhibits describe a
reduction to practice “amounts essentially to mere pleading, unsupported by
proof or a showing of facts” and, thus, does not satisfy the requirements of 37
CFR 1.131(b). In re Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant
must give a clear explanation of the exhibits pointing out exactly what facts are
established and relied on by applicant. 505 F.2d at 718-19, 184 USPQ at 33. See
also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964) (Affidavit “asserts that
facts exist but does not tell what they are or when they occurred.”).” (emphasis added)

Section 2 of Applicants' declaration describes (in relevant part):
“Prior to June 30, 2003 we created a graphics processing system that operated
as claimed using a computer system that successfully executed the Model Code. Prior

to June 30, 2003 we also created a graphics processing system as claimed in the form
of a computer system that used an RTL simulator to successfully validate the operation

LG Ex. 1002, pg 258

Application/Control Number: 13/109,738 Page 5
Art Unit: 2628

of an integrated circuit version of the claimed graphics processing system and method
At least the following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software
instructions written in the well-known C++ language. When executed by the
computer system, the Model Code caused the computer system to operate as
claimed in at least claims 1-5, 12 and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the
claimed subject matter for its intended purpose through emulation thereof.

c¢. As shown in Exhibit B, the Chip Design Code comprises various
instructions written in a well-known hardware description language. The Chip
Design Code was used by an RTL simulator system to validate the operation of
an integrated circuit version of the claimed graphics processing system and
method as claimed in at least claims 1-5, 12 and 15. As further known by
practitioners in the field of integrated circuit design, such instructions are used to
generate gate level detail for silicon fabrication.
d. On information and belief, the computer system operating the Model
Code and the RTL simulator system operating the Chip Design Code represents
the claimed structure and operation embodied in an integrated graphics
processing circuit chip referred to as the ATI XENOS chip produced by ATl on or
about October, 2004 that was incorporated in the XBOX 360 product.
Accordingly, the contents of Exhibits A and B establish the possession by us of
the whole Invention, failing within the scope of currently pending claims, such as but not
limited to at least claims 1-5, 12 and 15.”
As quoted from Applicants' declaration, section 2 describes that Exhibit A is
Model Code that, when executed by the computer system, caused the computer system
to operate as claimed in at least claims 1-5, 12, and 15 of the Invention. Further,
section 2 describes that Exhibit B is Chip Design Code that was used by an RTL
simulator system to validate operation of an integrated circuit version of the claimed
graphics processing system and method as claimed in at least claims 1-5, 12, and 15.
However, section 2, and the declaration as a whole, fails to clearly explain which

facts or data applicant is relying on to show completion of his or her invention prior to

LG Ex. 1002, pg 259

Application/Control Number: 13/109,738 Page 6
Art Unit: 2628

the June 30, 2003. The portions of Applicants' declaration quoted above are considered
nothing more than vague and general statements in broad terms about what the exhibits
describe along with general assertions that the exhibits describe a reduction to practice,
which does not satisfy the requirements of 37 CFR 1.131 section (b). Thus, the
declaration is ineffective to overcome the Lindholm reference due to this second
deficiency.

Regarding claim 1, the Examiner is unable to determine which portions of Exhibit
A and/or Exhibit B describe the claimed method steps of “performing vertex
manipulation operations and pixel manipulation operations...and continuing pixel
calculation operations that are to be or are currently being performed by the
processor..."

Regarding claim 2, the Examiner is unable to determine which portions of Exhibit
A and/or Exhibit B describe the claimed “unified shader, comprising: a general purpose
register block...a processor unit; and a sequencer, coupled to the general purpose
register block and the processor unit...”

Regarding claims 3 and 4, the Examiner is unable to determine which portions of
Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor
unit...and shared resources...the processor unit operative to use the shared
resources...”

Regarding claim 5, the Examiner is unable to determine which portions of Exhibit
A and/or Exhibit B describe the claimed “unified shader comprising: a processor unit; a

sequencer coupled to the processor unit...”

LG Ex. 1002, pg 260

Application/Control Number: 13/109,738 Page 7
Art Unit: 2628

Regarding claim 12, the Examiner is unable to determine which portions of
Exhibit A and/or Exhibit B describe the claimed “graphics processor comprising: a
unified shader comprising a processor unit...”

Regarding claim 15, the Examiner is unable to determine which portions of
Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor
unit flexibly controlled...”

Thus, for at least the reasons given above, the declaration filed 1/18/12 under 37
CFR 1.131 is ineffective to overcome the Lindholm reference.

As an additional note, the Examiner would like to point out that US Pat
7,015,913, to Lindholm et al., filed June 27", 2003, appears, after brief review, to
include a disclosure that is similar to US Pat 7,038,685 to Lindholm, which is used in the
rejections that follow (see FIG. 2 of each patent). The Examiner has not given Lindholm
et al. (US 7,015,913) a thorough review as to whether or not it teaches one or more of
Applicants’ claims, but it may be worth Applicants’ time to review Lindholm et al. (US
7,015,913) and adjust the declaration such that conception and reduction to practice of
the claimed invention is declared to have occurred prior to June 27", 2003 (if such a
statement is true), in order to avoid a future rejection based on the teachings of prior art
reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 102
The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

LG Ex. 1002, pg 261

Application/Control Number: 13/109,738 Page 8
Art Unit: 2628

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351(a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by
Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by
transmitting vertex data to a general purpose register block, and performing vertex
operations on the vertex data by a processor unless the general purpose register block
does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to
operate on surface, primitive, vertex, fragment, pixel, sample or any other data. For
simplicity, the remainder of this description will use the term 'samples’ to refer to
graphics data such as surfaces, primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities".

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources such as locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."

LG Ex. 1002, pg 262

Application/Control Number: 13/109,738 Page 9
Art Unit: 2628

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel
manipulation operations by transmitting vertex data to a general purpose register block
(sample data, such as vertex or pixel data, is transmitted to Register File 350) and
performing vertex operations on the vertex data by a processor unless the general
purpose register block does not have enough available space therein to store incoming
vertex data (the multi-threaded processing unit 400 carries out vertex operations on
vertex data unless the Register File 350 doesn’t have enough room to store the
incoming vertex data, in which case the thread associated with the vertex data and
vertex operations must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being
performed by the processor based on instructions maintained in an instruction store
until enough registers within the general purpose register block become available (

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on
thread execution priorities and outputs selected thread entries to Instruction Cache 410.
Instruction cache 410 determines if the program instructions corresponding to the
program counters and sample type included in the thread state data for each thread

entry are available in Instruction Cache 410 ... The program instructions corresponding
to the program counters from the one or more thread entries are output by Instruction

LG Ex. 1002, pg 263

Application/Control Number: 13/109,738 Page 10
Art Unit: 2628

Cache 410 to ... Instruction Scheduler 430 ... Each clock cycle, Instruction Scheduler
430 evaluates whether any instruction within the IWU [instruction window unit] 435 can
be executed based on the availability of computation resources in an Execution Unit
470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction.”

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing
pixel calculation operations that are to be or are currently being performed by the
processor based on instructions maintained in an instruction store until enough registers
within the general purpose register block become available, as the Execution Unit 470
may be carrying out calculations for one or more high priority pixel threads based on
instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex
thread is waiting for the one or more pixel threads to finish such that when the pixel
threads finish the system will deallocate the resources assigned to the completed pixel
threads in the Register File 350 and will allocate the requested amount of resources to
the queued up vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread.”);

a processor unit (FIG. 4 “Execution Unit 470" and “PCU 375”);

LG Ex. 1002, pg 264

Application/Control Number: 13/109,738 Page 11
Art Unit: 2628

a sequencer, coupled to the general purpose register block and the processor
unit, the sequencer maintaining instructions operative to cause the processor unit to
execute vertex calculation and pixel calculation operations on selected data maintained
in the general purpose register block (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."); and

wherein the processor unit executes instructions that generate a pixel color in
response to the selected one of the plurality of inputs and generates vertex position and
appearance data in response to a selected one of the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... and output
the processed sample to a destination specified by the instruction. The destination may
be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 output processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260 ... Each Execution Pipeline 240 signals to
Pixel Input Buffer 240 when a sample can be accepted ... programmable computation
units (PCUs) within an Execution Pipeline 240 ... perform operations such as
tessellation, perspective correction, texture mapping, shading, blending, and the like.
Processed samples are output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

LG Ex. 1002, pg 265

Application/Control Number: 13/109,738 Page 12
Art Unit: 2628

Thus, the Execution Unit 470 is considered a processor unit that executes
instructions that generate a pixel color in response to the selected one of the plurality of
inputs and generates vertex position and appearance data in response to a selected
one of the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel
calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a
processor unit operative to perform vertex calculation operations and pixel calculation
operations); and

shared resources, operatively coupled to the processor unit (FIG. 4 illustrates
Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the
Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources become available and then use the shared resources to perform

LG Ex. 1002, pg 266

Application/Control Number: 13/109,738 Page 13
Art Unit: 2628

vertex calculation operations (7:37-43, all types of processing threads can use the
Register File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor unit will
allocate the pixel data to the Register File 350 and will perform pixel calculation
operations until enough shared resources become available in the Register File 350 to
begin carrying out vertex threads, which may happen as a result of a completion of most
of the pixel threads or a shift in priority such that the vertex threads now have the
highest priority, and then use the Register File 350 to perform vertex calculation
operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel
calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operatively coupled to the processor unit (see the
corresponding section in the rejection of claim 3);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform vertex calculation operations until enough

LG Ex. 1002, pg 267

Application/Control Number: 13/109,738 Page 14
Art Unit: 2628

shared resources become available and then use the shared resources to perform pixel
calculation operations (7:37-43, all types of processing threads can use the Register
File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor unit will
allocate the vertex data to the Register File 350 and will perform vertex calculation
operations until enough shared resources become available in the Register File 350 to
begin carrying out pixel threads, which may happen as a result of a completion of most
of the vertex threads or a shift in priority such that the pixel threads now have the
highest priority, and then use the Register File 350 to perform pixel calculation
operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375");

a sequencer coupled to the processor unit, the sequencer maintaining
instructions operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amount of space available in the store (

LG Ex. 1002, pg 268

Application/Control Number: 13/109,738 Page 15
Art Unit: 2628

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations.”

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage
resources for storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively
considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining
instructions operative to cause the Execution Unit 470 to execute vertex calculation and
pixel calculation operations on selected data maintained in a Register File 350
depending upon an amount of space available in the Register File 350).

RE claim 6, Lindholm describes the shader of claim 5, wherein the sequencer
further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shader of claim 5, further including a
selection circuit operative to provide information to the store in response to a control

signal (

LG Ex. 1002, pg 269

Application/Control Number: 13/109,738 Page 16
Art Unit: 2628

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide
information to the store (Register File 350) in response to a control signal, where the
control signal is the thread allocation priority associated with each thread or thread
type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the processor unit
executes instructions that generate a pixel color in response to the selected one of the
plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution Pipeline
240 ... Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample
can be accepted ... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations such as tessellation, perspective correction, texture
mapping, shading, blending, and the like. Processed samples are output from each
Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shader of claim 5, wherein the processor unit
executes vertex calculations while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”).

LG Ex. 1002, pg 270

Application/Control Number: 13/109,738 Page 17
Art Unit: 2628

RE claim 10, Lindholm describes the shader of claim 5, wherein the processor
unit generates vertex position and appearance data in response to a selected one of the
plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 output processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the control
signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic ... In an
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samples or allocate locations in Register File 350 using thread allocation
priorities based on an amount of sample data in Pixel Input Buffer 215 and another
amount of sample data in Vertex Input Buffer 220 ... In a further alternate embodiment,
Thread Control Unit 420 is configured to assign threads to source samples or allocate
locations in Register File 350 using thread allocation priorities based on graphics
primitive size”.

Thus, while an arbiter isn't explicitly described, the Examiner considers it inherent
that some portion of the system acts as an arbiter, and therefore can be considered an
arbiter, as some portion of the system assigns priorities to thread and sample types
according to the current processing circumstances, in order to more efficiently process
the data).

RE claim 12, Lindholm describes a graphics processor comprising:

LG Ex. 1002, pg 271

Application/Control Number: 13/109,738 Page 18
Art Unit: 2628

a unified shader comprising a processor unit that executes vertex calculations
while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution
Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”).

RE claim 13, Lindholm describes the graphics processor of claim 12 wherein the
unified shader comprises a sequencer coupled to the processor unit, the sequencer
maintaining instructions operative to cause the processor unit to execute vertex
calculation and pixel calculation operations on selected data maintained in a store
depending upon an amount of space available in the store (see the corresponding
section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processor of claim 12 comprising
a vertex block operative to fetch vertex information from memory (see the rejection of
claim 6).

RE claim 15, Lindholm describes a unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and
pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source
samples or allocate locations in Register File 350 using thread allocation priorities
based on an amount of sample data in Pixel Input Buffer 215 and another amount of

sample data in Vertex Input Buffer 220 ... In a further alternate embodiment, Thread
Control Unit 420 is configured to assign threads to source samples or allocate locations

LG Ex. 1002, pg 272

Application/Control Number: 13/109,738 Page 19
Art Unit: 2628

in Register File 350 using thread allocation priorities based on graphics primitive size
(number of pixels or fragments included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an
instruction store and wherein the processor unit performs the vertex manipulation
operations and pixel manipulation operations at various degrees of completion based on
switching between instructions in the instruction store (FIG. 4 and 8:15-46 describes
Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threads of different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and
pixel manipulation operations at various degrees of completion based on switching
between instructions in the instruction store).

Conclusion

THIS ACTION IS MADE FINAL. Applicantis reminded of the extension of time
policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the event a first reply is filed within

TWO MONTHS of the mailing date of this final action and the advisory action is not

LG Ex. 1002, pg 273

Application/Control Number: 13/109,738 Page 20
Art Unit: 2628

mailed until after the end of the THREE-MONTH shortened statutory period, then the
shortened statutory period will expire on the date the advisory action is mailed, and any
extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of
the advisory action. In no event, however, will the statutory period for reply expire later
than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the
examiner should be directed to DANIEL WASHBURN whose telephone number is
(571)272-5551. The examiner can normally be reached on 9:30 A.M. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s
supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone number for
the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the
Patent Application Information Retrieval (PAIR) system. Status information for
published applications may be obtained from either Private PAIR or Public PAIR.
Status information for unpublished applications is available through Private PAIR only.
For more information about the PAIR system, see http:/pair-direct.uspto.gov. Should
you have questions on access to the Private PAIR system, contact the Electronic
Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a
USPTO Customer Service Representative or access to the automated information
system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
31112

LG Ex. 1002, pg 274

Application/Control No. Applicant(s)/Patent Under
Reexamination
Search Notes 13109738 MOREIN ET AL.
Examiner Art Unit
DANIEL WASHBURN 2628
SEARCHED
Class Subclass Date Examiner
345 501 7/12/11 DW
above updated 3/11/12 DW
SEARCH NOTES
Search Notes Date Examiner
Searched EAST (all databases) see search history printout 7/12/11 DW
Also see search histories for apps 12/791,597 and 11/842,256 7/12/11 DW
conducted inventor name search 7/12/11 DW
updated search in EAST (all databases) see search history printout 3/11/12 DW
INTERFERENCE SEARCH
Class Subclass Date Examiner

/DANIEL WASHBURN/

Primary Examiner.Art Unit 2628

U.S. Patent and Trademark Office

Part of Paper No. : 20120311

LG Ex. 1002, pg 275

Hecelpi date: 07/14/2011 13109738 - Ghlbwfes)

Lo . . . Approved for use through 07/31/2012. OMB 0651-0031
Doc description: Information Disclosure Statement (IDS) Filed \U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Application Number 13109738
Filing Date 2011-05-17
INFORMATION DISCLOSURE First Named Inventor ‘ Stephen Morein
STATEMENT BY APPLICANT F2a28
(Not for submission under 37 CFR 1.99)
Examiner Name ‘ na
Attorney Docket Number |00100.36.0001
U.S.PATENTS Remove
Examiner| Cite Kind Name of Patentee or Applicant Pages,Columns, Lines where
AV Patent Number Issue Date . Relevant Passages or Relevant
Initial No Cede! of cited Document .
Figures Appear
1 5550962 1996-08-27 Nakamura et al.
2 5818469 1998-10-06 Lawless et al.
3 6118452 2000-09-12 Gannett
4 6353439 2002-03-05 Lindholm et al.
5 6384824 2002-05-07 Morgan et al.
6 6417858 2002-07-09 Bosch et al.
7 6573893 2003-06-03 Nagvi et al.
8 6650327 2002-11-18 Airey et al.

EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W./

LG Ex. 1002, pg 276

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17
INFORMATION DISCLOSURE First Named Inventor ’ Stephen Morein
STATEMENT BY APPLICANT | [oe28
(Not for submission under 37 CFR 1.99)
Examiner Name ‘ na
Attorney Docket Number |00100.36.0001
9 6650330 2003-11-18 Lindholm et al.
10 6704018 2004-03-09 Mori et al.
11 6724394 2004-04-20 Zatz etal.
12 6731289 2004-05-04 Peercy et al.
13 6809732 2004-10-26 Zatzetal.
14 6864893 2005-03-08 Zatz
15 6897871 2005-05-24 Morein et al.
16 6980209 2005-12-27 Donham et al.
17 7015913 2006-03-21 Lindholm et al.
18 7038685 2006-05-02 Lindholm
19 7327369 2008-02-05 Morein et al.

EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W./

LG Ex. 1002, pg 277

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17
INFORMATION DISCLOSURE First Named Inventor ’ Stephen Morein
STATEMENT BY APPLICANT | 2628
(Not for submission under 37 CFR 1.99)
Examiner Name ‘ na
Attorney Dacket Number | 00100.36.0001
20 5485559 1996-01-16 Sakaibara et al.
21 7239322 B2 2007-07-03 Lefebvre et al.
22 7746348 B2 2010-06-29 Lefebvre et al.
23 7742053 B2 2010-06-22 Lefebvre et al.
If you wish to add additional U.S. Patent citation information please click the Add button. Add
U.S.PATENT APPLICATION PUBLICATIONS Remove
Examiner| .. Publication Kind | Publication Name of Patentee or Applicant Pages,Columns Lines where
ek Cite No . Relevant Passages or Relevant
Initial Number Cede’| Date of cited Document .
Figures Appear
1 20030076320 A1 2003-04-24 Collodi
2 20030164830 Al 2003-09-04 Kent
3 20040041814 Al 2004-03-04 Whyatt et al.
4 20040164987 Al 2004-08-26 Aronson et al.
5 20050068325 Al 2005-03-31 Lefebvre et al.

EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W./

LG Ex. 1002, pg 278

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17

INFORMATION DISCLOSURE First Named Inventor ’ Stephen Morein

STATEMENT BY APPLICANT -

N nit | 2628

(Not for submission under 37 CFR 1.99)
Examiner Name ‘ na
Attorney Dacket Number | 00100.36.0001

6 20100231592 A1 2010-09-16 Morein et al.
7 20030030643 Al 2003-02-13 Taylor et al.
8 20070222785 A1 2007-09-27 Lefebvre et al.
9 20070222787 A1 2007-09-27 Lefebvre et al.
10 20050200629 Al 2005-09-15 Morein et al.
1 20070222786 A1 2007-09-27 Lefebvre et al.
12 20070285427 Al 2007-12-13 Morein et al.
13 20100156915 A1 2010-06-24 Lefebvre et al.
If you wish to add additional U.S. Published Application citation information please click the Add button. Add
FOREIGN PATENT DOCUMENTS Remove
Name of Patentee or Pages,Columns,Lines
Examiner| Cite | Foreign Document | Country Kind | Publication Applicant of cited where Relevant 15
Initial* No | Number3 Code? j Code4| Date PP Passages or Relevant
Document .
Figures Appear
1 2299408 EP A2 2011-03-23 Morein et al.]

EFS Web 2.1.17

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W./

LG Ex. 1002, pg 279

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17
INFORMATION DISCLOSURE First Named Inventor ’ Stephen Morein
STATEMENT BY APPLICANT 2628
(Not for submission under 37 CFR 1.99)
Examiner Name ‘ na
Attorney Docket Number |00100.36.0001
2 2309460 EP A1l 2011-04-13 | Morein et al.]
3 2296116 EP A2 2011-03-16 | Morein et al.]
If you wish to add additional Foreign Patent Document citation information please click the Add button ~ Add
NON-PATENT LITERATURE DOCUMENTS Remove
. .. | Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item
Examiner| Cite o . .)
e (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), TS
Initials No . - .
publisher, city and/or country where published.
1 European Patent Office Examination Report; EP Application No. 04798938.9; dated November 9, 2006; pages 1-3. |:|
2 PURCELL, TIMOTHY J. et al_; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH "02; San Antonio, TX; D
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703-712.
3 MARK, WILLIAM R. et al.; CG: A system for programming graphics hardware in a C-like language; SIGGRAFH '03; D
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896-907.
4 BRETERNITZ, JR., MAURICIO et al_; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline D
Programs on a General-Purpose CPU; IEEE; 2003; pgs. 1-11.
5 International Search Report and Written Opinion; International Application No. PCT/IB2004/003821; dated March 22, D
2005.
6 EP Supplemental Search Report; EP Application No. 10075688.1; dated February 25, 2011. |:|
7 EP Supplemental Search Report; EP Application No. 10075686.5; dated February 25, 2011.]
EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W./

LG Ex. 1002,

pg 280

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Filing Date 2011-05-17

First Named Inventor ’ Stephen Morein
Art Unit | 2628

Examiner Name ‘ na

Attorney D