
LG Ex. 1002, pg 1

LG Ex. 1002
LG v. ATI

IPR2017-01225

PTO/SB/122 (11-08)
Approvedfor use through 11/30/2011. OMB 0651-0035

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respondto a collection of information unlessit displays a valid OMB control number.

CHANGE OF

CORRESPONDENCE ADDRESS

Addressto: Art Unit
Commissioner for Patents
P.O. Box 1450 Examiner Name

Alexandria, VA 22313-1450

Please change the Correspondence Address for the above-identified patent application to:

The address associated with
Customer Number: 29153

OR

Firm or
Individual Name

Address

Country

Telephone

This form cannot be used to change the data associated with a Customer Number. To change the
data associated with an existing Customer Number use “Request for Customer Number Data Change” (PTO/SB/124).

lam the:

Applicant/Inventor

Assignee of record of the entire interest.
Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96).

Attorney or agent of record. Registration Number 34.414

Registered practitioner namedin the application transmittal letter in an application without an
executed oath or declaration. See 37 CFR 1.33(a)(1). Registration Number.

Signature /Christopher J. Reckamp/
Typed or Printed .Name Ghristopher J. Reckamp

Date May 17,2011 Telephone. 15609-7599

NOTE: Signaturesofall the inventors or assigneesof record of the entire interestor their representative(s) are required. Submit multiple
forms if more than one signatureis required, see below".

*Total of 4 forms are submitted.

This collection of information is required by 37 CFR 1.33. The information is required to obtain or retain a benefit by the public whichistofile (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete,
including gathering, preparing, and submitting the completed application form to the USPTO.Timewill vary depending upon the individual case. Any comments on
the amountof time you require to complete this form and/or suggestionsfor reducing this burden, should be sentto the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissionorfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

ifyou need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

LG Ex. 1002

LG v. ATI

IPR2017-01225

LG Ex. 1002, pg 1

LG Ex. 1002, pg 2

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

cat

Application Data Sheet 37 CFR 1.76
Application Number

Title of Invention|GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
The application data sheetis part of the provisional or nonprovisional application for which it is being submitted. The following form contains the
bibliographic data arrangedin a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76.
This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the
document may be printed and included in a paper filed application.

Secrecy Order 37 CFR 5.2

[_] Portionsorall of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuantto
37 CFR 5.2 (Paperfilers only. Applications that fall under Secrecy Order may notbefiled electronically.)

Applicant Information:

Applicant 1

Applicant Authority @/nventor|()Legal Representative under 35 U.S.C. 117 CParty ofInterest under 35 U.S.C. 118
Prefix} Given Name Middle Name Family Name

Stephen L. Morein

Residence Information (Select One) (@) US Residency ~ Non US Residency (©) Active USner Service
Cambridge State/Province Country of Residence i

SicersipnrTERIA[UE
Mailing Address of Applicant.
Address 1 10 Magazine

Address 2 Apt. 801

Applicant2

Applicant Authority (@)Inventor|()Legal Representative under 35 U.S.C. 117 C)Party ofInterest under 35 U.S.C. 118

Laurent Lefebvre

Residence Information (Select One) ©) US Residency (@) NonUS Residency (©) Active US Military Service

Lachgnaie Country Of Residencei

Citizenship under 37 CFR 1.41{b}i

Mailing Address of Applicant:
Address 1 124 Parenchere

Postal Code JeW 6A5 Countryi

Applicant 3

Applicant Authority @!/nventor|(Legal Representative under 35 U.S.C. 117 ©)Partyof Interest under 35 U.S.C. 118
Prefix} Given Name Middle Name Family Name

Andrew E. Gruber

Residence Information (Select One) (@) US Residency ©) NonUSResidency () Active US Military Service

City|Arlington State/Province|MA Country of Residencei|US

EFS Web 2.2.2

LG Ex. 1002, pg 2

LG Ex. 1002, pg 3

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number|00100.36.0001
Application Data Sheet 37 CFR 1.76 —

Application Number

Title of Invention|GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Mailing Address of Applicant:

Address 1 215 Pleasant Street

Address 2

Arlington State/Province

Applicant4

Applicant Authority (Inventor|()Legal Representative under 35 U.S.C. 117 Partyof Interest under 35 U.S.C. 118

Andi Skende

ResidenceInformation (Select One) (@) US Residency ©) NonUS Residency (©) Active US Military Service

Shrewsbury State/Province Country of Residence i

Citizenship under 37 CFR 1.41{b}i Us

Mailing Address of Applicant:

Address 1 49 Sheridan Drive, #11

City Shrewsbury State/Province

Postal Code | 01545 Countryi | Us

All Inventors Must Be Listed - Additional Inventor Information blocks may be
generated within this form by selecting the Add button. A“

Correspondence Information:

Enter either Customer Number or complete the CorrespondenceInformation section below.
For further information see 37 CFR 1.33(a). [_] An Addressis being provided for the correspondenceInformation of this application.

Customer Number 29153

Email Address creckamp@vedderprice.com | Add Email

Application Information:

Title of the Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Attorney Docket Number| 00100.36.0001 Small Entity Status Claimed [|

Application Type Nonprovisional

Subject Matter Utility
Suggested Class (if any)

Suggested Technology Center(if any)

Total Number of Drawing Sheets {if any) Suggested Figure for Publication (if any}

EFS Web 2.2.2

LG Ex. 1002, pg 3

LG Ex. 1002, pg 4

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number|00100.36.0001
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention|GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
Publication Information:

[_] Request Early Publication (Fee required at time of Request 37 CFR 1.219)

Request Not to Publish.| hereby requestthat the attached application not be published under 35 U.S.
C. 122(b} and certify that the invention disclosed in the attached application has not and will not be the subject of
an application filed in another country, or under a multilateral international agreement, that requires publication at
eighteen monthsafterfiling.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing
this information in the Application Data Sheet does not constitute a powerof attorney in the application (see 37 CFR 1.32).
Enter either Customer Number or complete the Representative Name_section below. If both sections
are completed the Customer Numberwill be used for the Representative Information during processing.

Please Select One: (e) Customer Number | ©) US PatentPractitioner ©) Limited Recognition (37 CFR 11.9)
Customer Number 29153

Domestic Benefit/National Stage Information:
This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, or 365(c) or indicate National Stage
entry from a PCTapplication. Providing this information in the application data sheet constitutes the specific reference required by
35 U.S.C. 119{e) or 120, and 37 CFR 1.78{a)(2) or CFR 1.78(a}(4), and need not otherwise be made part of the specification.

Prior Application Status|Pending

Application Number Continuity Type Prior Application Number Filing Date (YYYY-MM-DD}

Continuation of 12791597 2010-06-01

Additional Domestic Benefit/National Stage Data may be generated within this form
by selecting the Add button. Aa

Foreign Priority Information:
This section allows for the applicant to claim benefit of foreign priority and to identify any prior foreign application for which priority is
not claimed. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119{b)
and 37 CFR 1.55{a).

 Application Number Country i ParentFiling Date (YYYY-MM-DD} Priority Claimed

© Yes © No

Additional Foreign Priority Data may be generated within this form by selecting the Add
Add button.

Assignee Information:
Providing this information in the application data sheet does not substitute for compliance with any requirementof part 3 of Title 37
of the CFR to have an assignmentrecordedin the Office.

Assignee 1
EFS Web 2.2.2

LG Ex. 1002, pg 4

LG Ex. 1002, pg 5

PTO/SB/14 (11-08)
Approved for use through 09/30/2010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number|00100.36.0001
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention|GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

If the Assignee is an Organization check here.

Organization Name ATI Technologies ULC

Mailing Address Information:

Address 1 1 Commerce Valley Drive East

Address 2

fciy«idthom——SSC«dSterovinceNCS

[PhoneNumber—__[eosamzaewosfFaxNumbor|

Additional Assignee Data may be generated within this form by selecting the Add
button.

Signature:

A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37
CFR1.4(d) for the form of the signature.

Signature=|/Christopher J. Reckamp/ Date (YYYY-MM-DD)| 2011-05-17

First Name|Christopher Last Name|Reckamp Registration Number|34414

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which
is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This
collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data
sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amountof time you require to
complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR
COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

EFS Web 2.2.2

LG Ex. 1002, pg 5

LG Ex. 1002, pg 6

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to
a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection
of this information is 35 U.S.C. 2(b)(2}; (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is
used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not
furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonmentof the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom ofInformation Act (5 U.S.C. 552)
and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Departmentof Justice to determine
whether the Freedom of Information Act requires disclosure of these records.

2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence te a court, magistrate, or
administrative tribunal, including disclosures to opposing counsel in the course of settlement negctiations.

3. A recordin this system of records may be disclosed, as a routine use, to a Memberof Congress submitting a request involving an
individual, to whom the record pertains, whenthe individual has requested assistance from the Memberwith respect to the subject matter of
the record.

4. A recordin this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in
order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuant to 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records maybe disclosed,
as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

6. A recordin this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security
review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee,
during an inspection of records conducted by GSA aspart of that agency's responsibility to recommend improvementsin records
managementpractices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the
GSA regulations governing inspection of records for this purpose, and any otherrelevant (i.e., GSA or Commerce)directive. Such
disclosure shall not be used to make determinations aboutindividuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuan
to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record wasfiled in an application which became abandoned or in which the proceedings were
terminated and which application is referenced by either a published application, an application open to public inspections or an issued
patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency,if the
USPTO becomes aware of a violation or potential violation of law or regulation.

EFS Web 2.2.2

LG Ex. 1002, pg 6

LG Ex. 1002, pg 7

Electronic Patent Application Fee Transmittal

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen L. Morein

Filer: Christopher J. Reckamp/Christine Wright

Filed as Large Entity

Utility under 35 USC 111(a)Filing Fees

Sub-Totalin

USD($)

Claims:

Independent Claimsin excess of el

Miscellaneous-Filing:

LG Ex. 1002, pg 7

Description Fee Code Quantity

LG Ex. 1002, pg 8

Sub-Totalin

Description Fee Code Quantity Amount USD(S)

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Miscellaneous:

Total in USD ($) 1970

LG Ex. 1002, pg 8

LG Ex. 1002, pg 9

Electronic Acknowledgement Receipt

10111290

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen L. Morein

Customer Number: 29153

reChristopher Reckemp/Christine Neigh
Filer Authorized By: Christopher J, Reckamp

Attorney Docket Number: 00100,36.0001

Time Stamp: 17:29:16

Application Type: Utility under 35 USC 111(a)

Paymentinformation:

Submitted with Payment

Payment Type Deposit Account

Payment was successfully received in RAM $1970

Deposit Account 220259

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpaymentas follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

LG Ex. 1002, pg 9

LG Ex. 1002, pg 10

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

ar File Size(Bytes)/ Multi PagesDocumentDescription|Flee Message Digest|Part/.zip| (if appl.)
Document

Number

360001_Application.pdf

76/96

5a2195ef350dfe96b37393d43d086ca74d1
5a3al

Multipart Description/PDFfiles in .zip description

DocumentDescription

Specification

Claims

Abstract

Warnings:

Drawings-only black and white line
drawings

360001_Drawings.pdf

100418

Jebabc9ced844U9aeed 203093 163 18as/b/d
231f2

Information:

1711262

Oath or Declarationfiled 360001_Declaration.pdf 160347 19fh4 1ea9046049572663017]
96b4e

Information:

Information:

Change of Address 360001_Change.pdf acc3Ual0S 193121879d529dab536dbed6:
aesde

Warnings:

Application Data Sheet 360001_ADS.pdf

1032318

0457161¢63792567d97d461 3dade7a99db}
6d9934

Information:

Fee Worksheet (PTO-875) fee-info.pdf

36605

9542301 783d227 14df47076295ef00<937.
37ec

Warnings:

LG Ex. 1002, pg 10

LG Ex. 1002, pg 11

Information:

Total Files Size (in bytes) 3009427

This AcknowledgementReceipt evidences receipt on the noted date by the USPTO ofthe indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar toa
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new applicationis being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownon this
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submissionto enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptanceof the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary componentsfor
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shown on this AcknowledgementReceiptwill establish the international filing date of
the application.

LG Ex. 1002, pg 11

LG Ex. 1002, pg 12

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

RELATED APPLICATIONS

[0001] This application is a continuation of co-pending U.S. Application Serial No.

12/791,597, filed June 1, 2010, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., owned by

instant assignee and is incorporated herein by reference, which is a continuation of co-pending

U.S. Application Serial No. 11/842,256, filed August 21, 2007, entitled “GRAPHICS

PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER”, having as inventors

Steven Morein et al., owned by instant assignee and is incorporated herein by reference, whichis

a continuation of U.S. Application Serial No. 11/117,863, filed April 29, 2005, which has issued.

into U.S. Patent No. 7,327,369, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., and owned by

instant assignee and is incorporated herein by reference which is a continuation of U.S.

Application Serial No. 10/718,318, filed on November 20, 2003, which has issued into U.S.

Patent No. 6,897,871, entitled “GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A

UNIFIED SHADER’, having as inventors Steven Morein et al., and owned by instant assignee

and is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to graphics processors and, more

particularly, to a graphics processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0003] In computer graphics applications, complex shapes and structures are formed

through the sampling, interconnection and rendering of more simple objects, referred to as

CHICAGO/#2201074.1

LG Ex. 1002, pg 12

LG Ex. 1002, pg 13

primitives. An example of such a primitive is a triangle, or other suitable polygon. These

primitives, in turn, are formed by the interconnection of individual pixels. Color and texture are

then applied to the individual pixels that comprise the shape based on their location within the

primitive and the primitives orientation with respect to the generated shape; thereby generating

the object that is rendered to a corresponding display for subsequent viewing.

[0004] The interconnection of primitives and the application of color and textures to

generated shapes are generally performed by a graphics processor. Conventional graphics

processors include a series of shaders that specify how and with what correspondingattributes, a

final image is drawn on a screen, or suitable display device. As illustrated in FIG. 1, a

conventional shader 10 can be represented as a processing block 12 that accepts a plurality of

bits of input data, such as, for example, object shape data (14) in object space (x,y,z); material

properties of the object, such as color (16); texture information (18); luminance information (20);

and viewing angle information (22) and provides output data (28) representing the object with

texture and other appearance properties applied thereto (x’, y”, z’).

[0005] In exemplary fashion,as illustrated in FIGS. 2A-2B, the shader accepts the vertex

coordinate data representing cube 30 (FIG. 2A) as inputs and provides data representing, for

example, a perspectively corrected view of the cube 30° (FIG. 2B) as an output. The corrected

view may be provided, for example, by applying an appropriate transformation matrix to the data

representing the initial cube 30. More specifically, the representation illustrated in FIG. 2B is

provided by a vertex shader that accepts as inputs the data representing, for example, vertices

Vx. Vy and Vz, among others of cube 30 and providing angularly oriented vertices Vx,,Vy: and

V7z,, including any appearanceattributes of corresponding cube 30”.

CHICAGO/#2201074.1

LG Ex. 1002, pg 13

LG Ex. 1002, pg 14

[0006] In addition to the vertex shader discussed above, a shader processing block that

operates on the pixel level, referred to as a pixel shaderis also used when generating an object

for display. Generally, the pixel shader provides the color value associated with each pixel of a

rendered object. Conventionally, both the vertex shader and pixel shader are separate

components that are configured to perform only a single transformation or operation. Thus, in

order to perform a position and a texture transformation of an input, at least two shading

operations and hence, at least two shaders, need to be employed. Conventional graphics

processors require the use of both a vertex shader and a pixel shader in order to generate an

object. Because both types of shaders are required, known graphics processors are relatively

large in size, with most of the real estate being taken up by the vertex and pixel shaders.

[0007] In addition to the real estate penalty associated with conventional graphics

processors, there is also a corresponding performance penalty associated therewith. In

conventional graphics processors, the vertex shader and the pixel shader are juxtaposed in a

sequential, pipelined fashion, with the vertex shader being positioned before and operating on

vertex data before the pixel shader can operate on individual pixel data.

[0008] Thus, there is a need for an improved graphics processor employing a shaderthat

is both space efficient and computationally effective.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention and the associated advantages and features thereof, will

become better understood and appreciated upon review of the following detailed description of

the invention, taken in conjunction with the following drawings, where like numerals represent

like elements, in which:

[0010] FIG. | is a schematic block diagram of a conventional shader;

CHICAGO/#2201074.1

LG Ex. 1002, pg 14

LG Ex. 1002, pg 15

[0011] FIGS. 2A-2B are graphical representations of the operations performed by the

shaderillustrated in FIG.1;

[0012] FIG. 3 is a schematic block diagram of a conventional graphics processor

architecture;

[0013] FIG. 4A is a schematic block diagram of a graphics processor architecture

according to the present invention;

[0014] FIG. 4B is a schematic block diagram of an optional input componentto the

graphics processor according to an alternate embodimentofthe present invention; and

[0015] FIG. 5 is an exploded schematic block diagram of the unified shader employed in

the graphics processorillustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0016] Briefly stated, the present invention is directed to a graphics processor that

employs a unified shader that is capable of performing both the vertex operations and the pixel

operations in a space saving and computationally efficient manner. In an exemplary

embodiment, a graphics processor according to the present invention includes an arbiter circuit

for selecting one of a plurality of inputs for processing in response to a control signal; and a

shader, coupled to the arbiter, operative to process the selected one of the plurality of inputs, the

shader including means for performing vertex operations and pixel operations, and wherein the

shader performs one ofthe vertex operations or pixel operations based on the selected one ofthe

plurality of inputs.

[0017] The shader includes a general purpose register block for storing at least the

plurality of selected inputs, a sequencer for storing logical and arithmetic instructions that are

used to perform vertex and pixel manipulation operations and a processor capable of executing

CHICAGO/#2201074.1

LG Ex. 1002, pg 15

LG Ex. 1002, pg 16

both floating point arithmetic and logical operations on the selected inputs according to the

instructions maintained in the sequencer. The shader of the present invention is referred to as a

“unified” shader because it is configured to perform both vertex and pixel operations. By

employing the unified shader of the present invention, the associated graphics processor is more

space efficient than conventional graphics processors because the unified shader takes up less

real estate than the conventional multi-shader processor architecture.

[0018] In addition, according to the present invention, the unified shader is more

computationally efficient because it allows the shader to be flexibly allocated to pixels or

vertices based on workload.

[0019] Referring now to FIG.3, illustrated therein is a graphics processor incorporating a

conventional pipeline architecture. As shown, the graphics processor 40 includes a vertex fetch

block 42 which receives vertex information relating to a primitive to be rendered from an off-

chip memory 55 on line 41. The fetched vertex data is then transmitted to a vertex cache 44 for

storage on line 43. Upon request, the vertex data maintained in the vertex cache 44 is

transmitted to a vertex shader 46 on line 45. As discussed above, an example of the information

that is requested by and transmitted to the vertex shader 46 includes the object shape, material

properties (e.g. color), texture information, and viewing angle. Generally, the vertex shader 46 is

a programmable mechanism which applies a transformation position matrix to the input position

information (obtained from the vertex cache 44), thereby providing data representing a

perspectively corrected image of the object to be rendered, along with any texture or color

coordinates thereof.

[0020] After performing the transformation operation, the data representing the

transformed vertices are then provided to a vertex store 48 on line 47. The vertex store 48 then

CHICAGO/#2201074.1

LG Ex. 1002, pg 16

LG Ex. 1002, pg 17

transmits the modified vertex information contained therein to a primitive assembly block 50 on

line 49. The primitive assembly block 50 assembles, or converts, the input vertex information

into a plurality of primitives to be subsequently processed. Suitable methods of assembling the

input vertex information into primitives is known in the art and will not be discussed in greater

detail here. The assembled primitives are then transmitted to a rasterization engine 52, which

converts the previously assembled primitives into pixel data through a process referred to as

walking. The resulting pixel data is then transmitted to a pixel shader 54 online 53.

[0021] The pixel shader 54 generates the color and additional appearanceattributes that

are to be applied to a given pixel, and applies the appearance attributes to the respective pixels.

In addition, the pixel shader 54 is capable of fetching texture data from a texture map 57 as

indexed by the pixel data from the rasterization engine 52 by transmitting such information on

line 55 to the texture map. The requested texture data is then transmitted back from the texture

map 57 on line 57° and stored in a texture cache 56 before being routed to the pixel shader on

line 58. Once the texture data has been received, the pixel shader 54 then performsspecified

logical or arithmetic operations on the received texture data to generate the pixel color or other

appearance attribute of interest. The generated pixel appearance attribute is then combined with

a base color, as provided by the rasterization engine on line 53, to thereby provide a pixel color

to the pixel corresponding at the position of interest. The pixel appearanceattribute present on

line 59 is then transmitted to post raster processing blocks (not shown).

[0022] As described above, the conventional graphics processor 40 requires the use of

two separate shaders: a vertex shader 46 and a pixel shader 54. A drawback associated with such

an architecture is that the overall footprint of the graphics processoris relatively large as the two

CHICAGO/#2201074.1

LG Ex. 1002, pg 17

LG Ex. 1002, pg 18

shaders take up a large amountof real estate. Another drawback associated with conventional

graphics processor architectures is that can exhibit poor computational efficiency.

[0023] Referring now to FIG. 4A, in an exemplary embodiment, the graphics processor

60 of the present invention includes a multiplexer 66 having vertex (e.g. indices) data provided at

a first input thereto and interpolated pixel parameter (e.g. position) data and attribute data from a

rasterization engine 74 provided at a second input. A control signal generated by an arbiter 64 is

transmitted to the multiplexer 66 on line 63. The arbiter 64 determines which of the two inputs

to the multiplexer 66 is transmitted to a unified shader 62 for further processing. The arbitration

scheme employed by the arbiter 64 is as follows: the vertex data on the first input of the

multiplexer 66 is transmitted to the unified shader 62 on line 65 if there is enough resources

available in the unified shader to operate on the vertex data; otherwise, the interpolated pixel

parameter data present on the second input will be passed to the unified shader 62 for further

processing.

[0024] Referring briefly to FIG. 5, the unified shader 62 will now be described. As

illustrated, the unified shader 62 includes a general purpose register block 92, a plurality of

source registers: including source register A 93, source register B 95, and source register C 97, a

processor (e.g. CPU) 96 and a sequencer 99. The general purpose register block 92 includes

sixty four registers, or available entries, for storing the information transmitted from the

multiplexer 66 on line 65 or any other information to be maintained within the unified shader.

The data present in the general purpose register block 92 is transmitted to the plurality of source

registers via line 109.

[0025] The processor 96 may be comprised of a dedicated piece of hardware or can be

configured as part of a general purpose computing device (i.e. personal computer). In an

CHICAGO/#2201074.1

LG Ex. 1002, pg 18

LG Ex. 1002, pg 19

exemplary embodiment, the processor 96 is adapted to perform 32-bit floating point arithmetic

operations as well as a complete series of logical operations on corresponding operands. As

shown, the processor is logically partitioned into two sections. Section 96 is configured to

execute, for example, the 32-bit floating point arithmetic operations of the unified shader. The

second section, 96A, is configured to perform scaler operations (e.g. log, exponent, reciprocal

square root) of the unified shader.

[0026] The sequencer 99 includes constants block 91 and an instruction store 98, The

constants block 91 contains, for example, the several transformation matrices used in connection

with vertex manipulation operations. The instruction store 98 contains the necessary instructions

that are executed by the processor 96 in order to perform the respective arithmetic and logic

operations on the data maintained in the general purpose register block 92 as provided by the

source registers 93-95. The instruction store 98 further includes memory fetch instructions that,

when executed, causes the unified shader 62 to fetch texture and other types of data, from

memory 82 (FIG. 4A). In operation, the sequencer 99 determines whetherthe nextinstruction to

be executed (from the instruction store 98) is an arithmetic or logical instruction or a memory

(e.g. texture fetch) instruction. If the next instruction is a memory instruction or request, the

sequencer 99 sends the request to a fetch block (not shown) which retrieves the required

information from memory 82 (FIG. 4A). The retrieved information is then transmitted to the

sequencer 99, through the vertex texture cache 68 (FIG. 4A) as described in greater detail below.

[0027] If the next instruction to be executed is an arithmetic or logical instruction, the

sequencer 99 causes the appropriate operands to be transferred from the general purpose register

block 92 into the appropriate source registers (93, 95, 97) for execution, and an appropriate

signal is sent to the processor 96 on line 101 indicating what operation orseries of operations are

CHICAGO/#2201074.1

LG Ex. 1002, pg 19

LG Ex. 1002, pg 20

to be executed on the several operands present in the source registers. At this point, the

processor 96 executes the instructions on the operands present in the source registers and

provides the result on line 85. The information present on line 85 may be transmitted back to the

general purpose register block 92 for storage, or transmitted to succeeding components of the

graphics processor 60.

[0028] As discussed above, the instruction store 98 maintains both vertex manipulation

instructions and pixel manipulation instructions. Therefore, the unified shader 99 of the present

invention is able to perform both vertex and pixel operations, as well as execute memory fetch

operations. As such, the unified shader 62 of the present invention is able to perform both the

vertex shading and pixel shading operations on data in the context of a graphics controller based.

on information passed from the multiplexer. By being adapted to perform memory fetches, the

unified shader of the present invention is able to perform additional processes that conventional

vertex shaders cannot perform; while at the same time, perform pixel operations.

[0029] The unified shader 62 has ability to simultaneously perform vertex manipulation

operations and pixel manipulation operations at various degrees of completion by being able to

freely switch between such programsor instructions, maintained in the instruction store 98, very

quickly. In application, vertex data to be processed is transmitted into the general purpose

register block 92 from multiplexer 66. The instruction store 98 then passes the corresponding

control signals to the processor 96 on line 101 to perform such vertex operations. However,if

the general purpose register block 92 does not have enough available space therein to store the

incoming vertex data, such information will not be transmitted as the arbitration scheme of the

arbiter 64 is not satisfied. In this manner, any pixel calculation operations that are to be, or are

currently being, performed by the processor 96 are continued, based on the instructions

CHICAGO/#2201074.1

LG Ex. 1002, pg 20

LG Ex. 1002, pg 21

maintained in the instruction store 98, until enough registers within the general purpose register

block 92 become available. Thus, through the sharing of resources within the unified shader 62,

processing of image data is enhanced as there is no downtime associated with the processor96.

(0030) Referring back to FIG. 4A, the graphics processor 60 further includes a cache

block 70, including a parameter cache 70A and a position cache 70B which accepts the pixel

based output of the unified shader 62 on line 85 and stores the respective pixel parameter and

position information in the corresponding cache. The pixel information present in the cache

block 70 is then transmitted to the primitive assembly block 72 on line 71. The primitive

assembly block 72 is responsible for assembling the information transmitted thereto from the

cache block 70 into a series of triangles, or other suitable primitives, for further processing. The

assembled primitives are then transmitted on line 73 to rasterization engine block 74, where the

transmitted primitives are then converted into individual pixel data information through a

walking process, or any other suitable pixel generation process. The resulting pixel data from

the rasterization engine block 74 is the interpolated pixel parameter data that is transmitted to the

second input of the multiplexer 66 on line 75.

[0031] In those situations when vertex data is transmitted to the unified shader 62

through the multiplexer 66, the resulting vertex data generated by the processor 96, is transmitted

to a render back end block 76 which converts the resulting vertex data into at least one of several

formats suitable for later display on display device 84. For example, if a stained glass

appearance effect is to be applied to an image, the information corresponding to such appearance

effect is associated with the appropriate position data by the render back end 76. The

information from the render back end 76 is then transmitted to memory 82 and a display

10
CHICAGO/#2201074.1

LG Ex. 1002, pg 21

LG Ex. 1002, pg 22

controller line 80 via memory controller 78. Such appropriately formatted information is then

transmitted on line 83 for presentation on display device 84.

[0032] Referring now to FIG. 4B, shown therein is a vertex block 61 which is used to

provide the vertex information at the first input of the multiplexer 66 according to an alternate

embodiment of the present invention. The vertex block 61 includes a vertex fetch block 61A

which is responsible for retrieving vertex information from memory 82, if requested, and

transmitting that vertex information into the vertex cache 61B. The information stored in the

vertex cache 61B comprises the vertex information that is coupled to the first input of

multiplexer 66.

[0033] As discussed above, the graphics processor 60 of the present invention

incorporates a unified shader 62 which is capable of performing both vertex manipulation

operations and pixel manipulation operations based on the instructions stored in the instruction

store 98. In this fashion, the graphics processor 60 of the present invention takes up less real

estate than conventional graphics processors as separate vertex shaders and pixel shaders are no

longer required. In addition, as the unified shader 62 is capable of alternating between

performing vertex manipulation operations and pixel manipulation operations, graphics

processing efficiency is enhanced as one type of data operations is not dependent upon another

type of data operations. Therefore, any performance penalties experienced as a result of

dependentoperations in conventional graphics processors are overcome.

[0034] The above detailed description of the present invention and the examples

described therein have been presented for the purposes of illustration and description. It is

therefore contemplated that the present invention cover any and all modifications, variations and

11
CHICAGO/#2201074.1

LG Ex. 1002, pg 22

LG Ex. 1002, pg 23

equivalents that fall within the spirit and scope of the basic underlying principles disclosed and

claimed herein.

12
CHICAGO/#2201074.1

LG Ex. 1002, pg 23

LG Ex. 1002, pg 24

CLAIMS

Whatis claimedis:

1, A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. A unified shader, comprising:

a general purpose register block for maintaining data;

a processorunit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one ofthe plurality of inputs.

3. A unified shader comprising:

13
CHICAGO/#2201074.1

LG Ex. 1002, pg 24

LG Ex. 1002, pg 25

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processorunit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform vertex calculation operations.

4, A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform pixel calculation operations.

5. A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountof space available in

the store.

14
CHICAGO/#2201074.1

LG Ex. 1002, pg 25

LG Ex. 1002, pg 26

6. The shaderof claim 5, wherein the sequencerfurther includes circuitry operative

to fetch data from a memory.

7. The shader of claim 5, further including a selection circuit operative to provide

information to the store in response to a control signal.

8. The shader of claim 5, wherein the processor unit executes instructions that

generate a pixel color in responseto the selected one ofthe plurality ofinputs.

9, The shader of claim 5, wherein the processor unit executes vertex calculations

while the pixel calculationsare still in progress.

10. The shader of claim 5, wherein the processor unit generates vertex position and

appearance data in response to a selected one of the plurality of inputs.

11. The shader of claim 7, wherein the control signal is provided by anarbiter.

12. A graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculationsare still in progress.

13. The graphics processor of claim 12 wherein the unified shader comprises a

sequencercoupled to the processorunit, the sequencer maintaining instructions operative to

15
CHICAGO/#2201074.1

LG Ex. 1002, pg 26

LG Ex. 1002, pg 27

cause the processorunit to execute vertex calculation and pixel calculation operations on

selected data maintained in a store depending upon an amountof space available in the store.

14. The graphics processor of claim 12 comprising a vertex block operative to fetch

vertex information from memory.

15. A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. The shader of claim 15 comprising an instruction store and wherein the processor

unit performs the vertex manipulation operations and pixel manipulation operations at various

degrees of completion based on switching between instructions in the instruction store.

16
CHICAGO/#2201074.1

LG Ex. 1002, pg 27

LG Ex. 1002, pg 28

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

[0035] A graphics processing architecture employing a single shaderis disclosed. The

architecture includes a circuit operative to select one of a plurality of inputs in response to a

control signal; and a shader, coupled to the arbiter, operative to process the selected one of the

plurality of inputs, the shader including means for performing vertex operations and pixel

operations, and wherein the shader performs one of the vertex operations or pixel operations

based on the selected one of the plurality of inputs. The shader includes a register block which is

used to store the plurality of selected inputs, a sequencer which maintains vertex manipulation

and pixel manipulations instructions and a processor capable of executing both floating point

arithmetic and logical operations on the selected inputs in response to the instructions maintained

in the sequencer.

17
CHICAGO/#2201074.1

LG Ex. 1002, pg 28

LG Ex. 1002, pg 29

(LuVYOMd)L‘Old

ATONVONIMAIAAONVNIANTVLiVvddenLxalYO109AdVHSLoardo

YsqVvHS

cl

LG Ex. 1002, pg 29

LG Ex. 1002, pg 30

30

FIG. 2A

(PRIOR ART)

FIG. 2B

(PRIOR ART)

LG Ex. 1002, pg 30

LG Ex. 1002, pg 31

8° aLot.
i TEXTURE |

MEMORY 7 AP !

a 3
44

VERTEX FETCH V-CACHE

42 15

VERTEX VERTEX 48
SHADER STORE

46
AT 49

PRIMITIVE 50
ASSEMBLY

51

RASTERIZATION [52
ENGINE

53

TO 55
57 PIXEL

SHADER

FROM TEXTURE 54
o7 CACHE|58

56

59

FIG. 3 POST RASTER

(PRIOR ART) PROCESSING

LG Ex. 1002, pg 31

LG Ex. 1002, pg 32

INDICES

64 63
65

UNIFIED

SHADER MEMORY
DATA

60

RENDER

BACK

END POSITION

CACHE

71

PRIMITIVE

9 MEMORY ASSEMBLY

CONTROLLER 73

RASTERIZATION

DISPLAY ENGINE
CONTROLLER

8 84 82

DISPLAY MEMORY

FIG. 4A

LG Ex. 1002, pg 32

LG Ex. 1002, pg 33

INDICES

VERTEX

CACHE

FIG. 4B

61A 61B

FROM MUX MEMORY

67

CONSTANTS

SOURCE A
LG Ex. 1002, pg 33

LG Ex. 1002, pg 34

DECLARATION Attorney Docket Number 0190.02.0001

FOR UTILITY OR DESIGN : First Named Inventor: Moreim ef al
PATENT APPLICATION COMPLETE IFKNOWN

(37 CYR 163} ' Application Numter: Unknown
BS Declaration Submitted with Initial Filing, OR FilingDate: co
CL Declaration Submitted after Inittal Fi ting {surcharge Group Art Unin Uninimown

(37 CERL16(e3) required) Examiner Name: Unknown

As a belownamed inventor, I hereby declarc that:

Myresidence post office addresa, and cHizenship ere as statedbelow next to my nants.Lheliave]amthe original, first and sole inventor (if only one name is Usted below) or an original, first and joint
inventor (if plural names are listed below} ofthe subject matter which is claimed and for which s patentis sought on
the invention entiied: A GR:APEOCS PROCESSING ARCHITECTURE EMPLOYING A UNIRIED
SHADER

 x“
oF

Let

the specification of which:
RMe-ig atiached hereta.

Cleewas Aled og as UnitedStates AApplication Nunaber sr as PCTinternational Application eternaADE WEE mended¢onaanDDYYYY)GE
applicable). :

Thereby state thet I have reviewed endunderstfand aecontents ofthe above identified specification, inchiding the
claims, as amended byany amendment specifically re sred to ahove.. ;Tacknowledgs the duty to disclose information whichiis material to patentability aa defined in 27 CFR 1.36.

Bid, OF < hareky claims foreign priority benefits under 35 URS. LERa}-(o}ar 305k} of any seein application(s) farpatent or inventors sertii
385{a) ofany FCT intemational application which designated at least one country other than the United States of America, ated below and have
alsa ideraifiad ‘below, by chesking the box, any foreign application for patent ur inventor's certificate, or af any PCT intemaiional application
having af thet of the agiication os which priority is claire ee _ ee

Prior Foreign I Foreign FilingDate Priority Not | Cepy Attacked?
Application Number(s} | Country (MMUDD/YYYY) = Clsimed XESXB _.i + —aeteeene eaenennenmnenneaenanenersoa arene

 iA

“4

: { i} oi O :poesene ree rternernrcrrentenennote = ferentenreeeneennnnnietnnnanann: t ud : m i i

1cpeeeenenateneeninea : : hese tantmotets A + t

II Additional forcign spplicetion numbers arm Heted on a supplemental priority dawsheet PTOSBYS2B alisched hereto.

ai application(s} listed below.

 Lherchy claimthe benefit andar 33 U.S.C, 119{e} of any United States provisi

} Application Nunber({s — __Bilin Bata GaDaliaMMDDATYY)eti }

oanee cnet eeeerererrtreneenerent ~ TE a ~ pean paneeenernnenrrneenel
{2 Addidonal provisional application numbers are listed on 2 supplemental pric ity data sheet PTC/SRAIZB attached heret
Aa

Thereby claim the boresit wader 35 U.S.C, 12) of any Onited States appiicafion(s), or 365Ke) of any PCoF intomational aapplication Secignating the
United States of Armatica, sted below and, insofar as the subject matter of cach of the claims of thaapptcation. is sot disclosed in the peerUnited Stnize or PCT Intemational application in the manner provided by the fiest parsgraph of 35 USC. 214, iacimowiedge fhe duty to disclose
information which is matererial Xeto patertability as defined is 3? CFR 1.55 which became avetizble between the fling date of the prior appHeationsand the rational or PCT international filing date of Gils application.

Pa

ge

r7 SeaKylie or PCT |~Parent.FilingDate ~~T Parent Patent Number i
LeneeenarentNumber i _MM@DAYYYY) ECPapplicable) 4

4 wL bh

LG Ex. 1002, pg 34

LG Ex. 1002, pg 35

oyoSxDQLGORE

=

As a named inventor, 1] hersby appoint the following regisiered pracitioner(s} tp prosecute this application and tc
transaction all busmiess in the Patent 2and Trademark Office connected therewith:

_.ams. | RegistrationNNumber| Nanie hemaistration Number |

TEs i AngeliBulsimo =
_TRES7eRobertBeiser Q
so4haCCBrent.Boyd 51020dt

Ba oe ie |

Joner{(s} named on supplemental Rewistermt Practitioner Information sheet PTO/SB/O2C sutached herete\

. Dhreci all correspondence to: Vadder, Price, Kaufman & Karmmbolz
: 222 N. LaSalle Street, Sulfe 2600 —

Chicaga, Hinois 60601
. Telephones 312-689-7509

Facsimile: 312-889-5005

J Rerebydeclare that a¥f slalements made herein of my own knowledge are true and thst alf statements made on information and belief ure
‘deligved i5 ba true: wad further chat chese siaisments were made with the knowledge that willful false statements and the Hke so made are

punishalle Byby She cr imprizenment, or both, under 18 U-S.C. 100% and that such wild false sletements may feopardize the validity of the_ applicationoramypatert issued thereon.

Name of9sarFirst Inventor: tA petition has heen filed for thie unsigned inventor~ ~ ange secmeeeenernna

aNameFast2anyndmundig32tiny} Faroily Name or SurnameGav

 (Steven Morin
! Taventor’s | Date tSignature rs od
Residence77 ASomeOS_|SiteanshipsUS2Post!stOfficeex _|_D)Mesazins,Apeue |i City: Cambridge_TSSie+BiaSfAAT BAPOSP:O213e {County: us : :

taseof Additional Jeint Inventer:_ a Apetition bas bee:onfiled for
(__Given Name(Uist and middie [ifany}} i _ Family Name u
i1auaurent|oe _
Yaw,Ynveutor’s i os
| oo ||

eoereerretberreetive

|

Signature <AEns SDRCSone[Residence_|Gb!GaciieuatelSeSewl CaneyuaaTSUibeenshine a
|Bost&LPRBAREHERE od
(SieSee gESteeae|Seadiog

_Name of Additional JointInventor: OFA petition hes tbeen iledfefor this 3unsigne<dimventor
(GivesName(first andtandmiddie {ifany __Fax1

Soavesnamnomnnrnns—

\ faventor’s

{ Signature = . . j
' Residence nity: Arlington i

i.PostOfficeAddress|215 Pleasant!se oe i3ficeAddress | FEnen . oe cod
Nanas,i|City:Arlingtonoe _|Siste:ate

_NameofAdditional Joint Inventor: CApetition &haa beenAi eforthfaisueuasienedinventor
__. “GivenName(first and middieifany]} a ,An
}Sahai
'Ynventor’s

Signatureee
Residence

|PostOfficeAides7.
baCity: Shree

 bene.al

LG Ex. 1002, pg 35

LG Ex. 1002, pg 36

PATENT APPLICATION FEE DETERMINATION RECORD
Substitute for Form PTO-875

APPLICATION AS FILED - PART |

(Column 1) (Column2) SMALL ENTITY

|FOR NUMBER FILED|NUMBER EXTRA RATE($) FEE(S)
BASIC FEE
(37 CFR 1.16(a), (b). or (c))
SEARCH FEE
(37 CFR 1.16(k), (i), or (m)}
EXAMINATION FEE
(37 CFR 1.16(0), (p), or (q)}

If the specification and drawings exceed 100
APPLICATION SIZE_|sheets of paper, the application size fee due is
FEE $270 ($135 for small entity) for each additional
(37 CFR 1.16(s)) 50 sheetsorfraction thereof. See 35 U.S.C.

41(a)(1)(G) and 37 CFR 1.16(s).

MULTIPLE DEPENDENT GLAIM PRESENT(37 CFR 1.16(j))

* |f the difference in column 1 is less than zero, enter "0" in column 2.

APPLICATION AS AMENDED- PARTII

(Column 1) (Column 2) (Column 3) SMALL ENTITY
CLAIMS HIGHEST

REMAINING NUMBER ADDITIONAL
AFTER PREVIOUSLY FEE($)AMENDMENT PAID FOR

eeeeee

ofApplication Size Fee (37 GFR 1.16(s
AMENDMENTA

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16()))

TOTAL
ADD'L FEE

(Column 1) (Column 2) (Column 3)
CLAIMS HIGHEST

REMAINING NUMBER ADDITIONAL
AFTER PREVIOUSLY FEE($)AMENDMENT PAID FOR

Total Minus +
(37 CFR 1.16(i))
Independent Minus

(37 CFR 1.16(h))
Application Size Fee (37 CFR 1.16(s})

AMENDMENTB
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 1.16()))

ADD'L FEE
* If the entry in column 1 is less than the entry in column 2, write "0" in column 3.

* If the "Highest Number Previously Paid For" IN THIS SPACEis less than 20, enter "20".
™ Ifthe "Highest Number Previously Paid For” IN THIS SPACEis less than 3, enter "3".

The "Highest NumberPreviously Paid For" (Total or Independent)is the highest found in the appropriate box in column 1.

Application or Docket Number
13/109,738

OTHER THAN
SMALL ENTITY

RATE($ FEE($)

TOTAL

OTHER THAN
SMALL ENTITY

ADDITIONAL
FEE($)

TOTAL
ADD'L FEE

ADDITIONAL
FEE($)

TOTAL
ADD'L FEE

LG Ex. 1002, pg 36

LG Ex. 1002, pg 37

UNITED StaTreS PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and ‘Trademark Office
Address: COMMTSSIONER, FOR PATENTSP.C. Box 1450

Alexandria, Virgnia 22313-1450Wwww.uspto.gov
APPLICATION FILINGor GRP AR’

NUMBER 371 (¢) DATE UNI FIL FEE REC'D ATTY.DOCKET.NO [TOT CLAIMS§IND CLAIMS

13/109,738 05/17/2011 2628 1970 00100.36.0001 CON FIRMATION NO.‘2020
29153 FILING RECEIPT

ADVANCEDMICRO DEVICES, ING.

C/O VEDDER PRICEP.C. IAEAEAC
222 N.LASALLE STREET

CHICAGO,IL 60601

Date Mailed: 06/01/2011

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination
in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the
application mustinclude the following identification information: the U.S. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.
Pleaseverify the accuracy of the data presented onthis receipt. If an error is noted onthis Filing Receipt, please
submit a written request for a Filing Receipt Correction. Please provide a copy ofthis Filing Receipt with the
changesnotedthereon.If you received a "Notice to File Missing Parts" for this application, please submit
any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processesthe reply
to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Stephen Morein, Cambridge, MA;
Laurent Lefebvre, Lachgnaie, CANADA;
Andy Gruber, Arlington, MA;
Andi Skende, Shrewsbury, MA;

AssignmentFor Published Patent Application
ATI TECHNOLOGIES ULC, Markham, CANADA

Powerof Attorney:
Robert Beiser--28687 Timothy Bechen--48126
Angelo Bufalino--29622 Brent Boyd--51020
Joseph Krause--32578
Christopher Reckamp--34414
Michael Turgeon--39404

Domestic Priority data as claimed by applicant
This application is a CON of 12/791 ,597 06/01/2010
whichis a CON of 11/842,256 08/21/2007 ABN
which is a GONof 11/117,863 04/29/2005 PAT 7,327,369
which is a GONof 10/718,318 11/20/2003 PAT 6,897,871

Foreign Applications (You maybeeligible to benefit from the Patent Prosecution Highway program atthe
USPTO.Please see http://www.uspto.gov for more information.)

If Required, Foreign Filing License Granted: 05/27/2011

page 1 of 3

LG Ex. 1002, pg 37

LG Ex. 1002, pg 38

The country code and numberof your priority application, to be usedforfiling abroad under the Paris Convention,
is US 13/109,738

Projected Publication Date: 09/08/2011

Non-Publication Request: No

Early Publication Request: No
Title

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Preliminary Class

345

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughouttheterritory of the United States and have no
effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent
in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international
application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same
effect as a regular national patent application in each PCT-member country. The PCT process simplifies thefiling
of patent applications on the same invention in member countries, but does notresult in a grant of "an international
patent" and doesnot eliminate the need of applicantsto file additional documents and fees in countries where patent
protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an
application for patent in that country in accordancewith its particular laws. Since the laws of many countries differ
in various respects from the patent law of the United States, applicants are advised to seek guidance from specific
foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions madein the United States, the Director of the USPTO must
issue a license before applicants can apply for a patentin a foreign country. Thefiling of a U.S. patent application
serves as a request for a foreign filing license. The application's filing receipt contains further information and
guidance asto the status of applicant's license for foreignfiling.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents” (specifically, the
section entitled "Treaties and Foreign Patents”) for more information on timeframes and deadlinesforfiling foreign
patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199,orit
can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish
to consult the U.S. Government website, http:/Avww.stopfakes.gov. Part of a Department of Commerceinitiative,
this website includes self-help "toolkits" giving innovators guidance on howto protectintellectual property in specific
countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may
call the U.S. Governmenthotline at 1-866-999-HALT (1-866-999-4158).

page 2 of 3

LG Ex. 1002, pg 38

LG Ex. 1002, pg 39

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184,if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED"followed by a date appears on this form. Such licenses are issuedin all applications where
the conditions for issuance of a license have been met, regardless of whetheror not a license may be required as
set forth in 37 CFR 5.15. The scope andlimitations of this license are set forth in 37 CFR 5.15(a) unless an earlier
license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicatedis the effective date of the license, unless an earlier license of similar scope has been granted under
37 GFR 5.13 or 5.14.

This licenseis to be retained by the licensee and may be used at any time onorafter the effective date thereof unless
itis revoked. This license is automatically transferred to any related applications(s)filed under 37 CFR 1.53(d). This
license is not retroactive.

The grantof a license does not in any waylessen the responsibility of a licensee for the security of the subject matter
as imposed by any Government contract or the provisions of existing laws relating to espionage and the national
security or the export of technical data. Licensees should apprise themselvesof current regulations especially with
respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of
State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and
Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Departmentof
Treasury (81 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted atthis time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOESNOTappearonthis form. Applicant maystill petition for a license under 37 CFR 5.12,
if a license is desired before the expiration of 6 months from thefiling date of the application. If 6 months has lapsed
from thefiling date of this application and the licensee has not received any indication of a secrecy order under 35
U.S.C. 181, the licensee may foreignfile the application pursuant to 37 CFR 5.15(b).

page 3 of 3

LG Ex. 1002, pg 39

LG Ex. 1002, pg 40

Doc code: IDS PTO/SB/08a (01-10)
eo : : . Approved for use through 07/31/2012. OMB 0651-0031

Doc description: Information Disclosure Statement (IDS) Filed U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit contains a valid OMB control number.

 13109738

2011-05-17

Application Number

Filing Date

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99}

First Named Inventor|Stephen Morein

Art Unit

Examiner Name na

Attorney Docket Number 00100.36.0001

U.S.PATENTS Remove

. . . Pages,Columns,Lines where
Examiner Cite Patent Number Issue Date Name of Patentee or Applicant Relevant Passages or RelevantInitial No of cited Document

Figures Appear

1 5550962 1996-08-27 Nakamuraet al.

2 5818469 1998-10-06 Lawlessetal.

3 6118452 2000-09-12 Gannett

4 6353439 2002-03-05 Lindholm et al.

5 6384824 2002-05-07 Morganetal.

6 6417858 2002-07-09 Boschetal.

7 6573893 2003-06-03 Naqvietal.

8 6650327 2002-11-18 Aireyet al.

EFS Web 2.1.17

LG Ex. 1002, pg 40

LG Ex. 1002, pg 41

Application Number 13109738

Filing Date

First Named Inventor|Stephen Morein

Art Unit

 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99}

Examiner Name | na
Attorney Docket Number 00100.36.0001

9 6650330 2003-11-18 Lindholm et al.

10 6704018 2004-03-09 Mori et al.

11 6724394 2004-04-20 Zatz et al.

12 6731289 2004-05-04 Peercy etal.

13 6809732 2004-10-26 Zatz et al.

14 6864893 2005-03-08

15 6897871 2005-05-24 Morein et al.

16 6980209 2005-12-27 Donhametal.

17 7015913 2006-03-21 Lindholm et al.

18 7038685 2006-05-02 Lindholm

19 7327369 2008-02-05 Morein et al.

EFS Web 2.1.17

LG Ex. 1002, pg 41

LG Ex. 1002, pg 42

Application Number 13109738

Filing Date

First Named Inventor|Stephen Morein

Art Unit

 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99}

Examiner Name | na
Attorney Docket Number 00100.36.0001

20 5485559 1996-01-16 Sakaibara etal.

21 7239322 2007-07-03 Lefebvre et al.

22 1746348 2010-06-29 Lefebvre et al.

23 7742053 2010-06-22 Lefebvre et al.

If you wish to add additional U.S. Patentcitation information please click the Add button. Add

U.S.PATENT APPLICATION PUBLICATIONS Remove

Examiner] . Publication Kind|Publication Name of Patentee or Applicant Pages,Columns,Lines where
wie Cite No . Relevant Passages or RelevantInitial Number Code’) Date of cited Document .

Figures Appear

1 20030076320 2003-04-24 Collodi

2 20030164830 2003-09-04

3 20040041814 2004-03-04 Wyatt etal.

4 20040164987 2004-08-26‘|Aronsonetal.

5 20050068325 2005-03-31 Lefebvre et al.

EFS Web 2.1.17

LG Ex. 1002, pg 42

LG Ex. 1002, pg 43

 Application Number 13109738

 Filing Date 2011-05-17
INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99}

First Named Inventor

Art Unit

Stephen Morein

Examiner Name | na
Attorney Docket Number 00100.36.0001

6 20100231592 2010-09-16 Morein et al.

7 20030030643 2003-02-13 Taylor etal.

8 20070222785 2007-09-27 Lefebvre et al.

9 20070222787 2007-09-27 Lefebvreet al.

10 20050200629 2005-09-15 Morein et al.

11 20070222786 2007-09-27 Lefebvreet al.

12 20070285427 2007-12-13 Morein et al.

13 20100156915 Al 2010-06-24 Lefebvre etal.

If you wish to add additional U.S. Published Application citation information please click the Add button. Add

FOREIGN PATENT DOCUMENTS Remove

Nameof Patentee or Pages,Columns,Lines

Examiner] Cite|Foreign Document Kind|Publication Applicantofcited where Relevant
Initial* Number? Code+) Date PP Passages or RelevantDocument .

Figures Appear

2299408 2011-03-23 Morein etal.

EFS Web 2.1.17

LG Ex. 1002, pg 43

LG Ex. 1002, pg 44

Application Number 13109738

Filing Date

First Named Inventor|Stephen Morein

Art Unit

 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99}

Examiner Name | na
Attorney Docket Number 00100.36.0001

2 2309460 2011-04-13 Morein etal.

3 2296116 2011-03-16 Morein etal.

If you wish to add additional Foreign Patent Documentcitation information please click the Add button Add

NON-PATENT LITERATURE DOCUMENTS Remove

. . Include name of the author (in CAPITAL LETTERS},title of the article (when appropriate), title of the itemExaminer] Cite _ . . .
eye (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), TSInitials No . : .

publisher, city and/or country where published.

1 European Patent Office Examination Report; EP Application No. 04798938.9; dated November9, 2006; pages 1-3. |

2 PURCELL, TIMOTHY J. et al.; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH "02; San Antonio, TX; Ol
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703-712.

3 MARK, WILLIAM R.et al.; CG: A system for programming graphics hardware in a C-like language; SIGGRAPH '03; ieSan Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896-907.

4 BRETERNITZ, JR., MAURICIO et al.; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline Ol
Programs on a General-Purpose CPU; IEEE; 2003; pgs. 1-11.

5 International Search Report and Written Opinion; International Application No. PCT/IB2004/003821; dated March 22, Cy2005.

6 EP Supplemental Search Report; EP Application No. 10075688.1; dated February 25, 2011. E]

7 EP Supplemental Search Report; EP Application No. 100/75686.5; dated February 25, 2011. [|

EFS Web 2.1.17

LG Ex. 1002, pg 44

LG Ex. 1002, pg 45

Application Number 13109738

Filing Date

First Named Inventor|Stephen Morein

Art Unit

 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99}

Examiner Name | na
Attorney Docket Number 00100.36.0001

8 EP Supplemental Search Report; EP Application No. 100/75687.3; dated February 25, 2011. |

9 EP Supplemental Search Report; EP Application No. 10075685.7; dated February 25, 2011. E]

10 ELDRIDGE, MATTHEWetal.; Pomegranate: A Fully Scalable Graphics Architecture; Computer Graphics, SIGGRAPH Cy
2000 Conference Proceedings; July 23, 2000.

11 OWENS, JOHND.et al.; Polygon Rendering on a Stream Architecture; Proceedings 2000 SIGGRAPH/Eurographics Ol
Workshop on Graphics Hardware; August 21, 2000.

12 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008. [|

13 Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009. E]

14 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010 [|

If you wish te add additional non-patentliterature documentcitation information please click the Add button Add

EXAMINER SIGNATURE

Examiner Signature Date Considered

*EXAMINER:Initial if reference considered, whetheror notcitation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enteroffice that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents,the indication of the year of the reign of the Emperor must precede the serial numberof the patent document.
4 Kind of documentby the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicantis to place a check markhereiff
English language translation is attached.

EFS Web 2.1.17

LG Ex. 1002, pg 45

LG Ex. 1002, pg 46

Application Number 13109738

Filing Date

First Named Inventor|Stephen Morein

Art Unit 2628

 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99}

Examiner Name | na
Attorney Docket Number 00100.36.0001

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication
[| from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the

information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a

foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification
after making reasonable inquiry, no item of information contained in the information disclosure statement was known to
any individual designated in 37 CFR 1.56(c) more than three monthsprior to the filing of the information disclosure
statement. See 37 CFR 1.97(e}(2).

Fee set forth in 37 CFR 1.17 (p) has been submitted herewith.

None
| See attached certification statement.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d} for the
form of the signature.

Signature /Christopher J. Reckamp/ Date (YYYY-MM-DD) 2011-07-14

Name/Print Christopher J. Reckamp Registration Number 34,414

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the
public whichis to file (and by the USPTOto process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR
1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed
application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amountof time you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S.
Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND
FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria,
VA 22313-1450.

EFS Web 2.1.17

LG Ex. 1002, pg 46

LG Ex. 1002, pg 47

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the
attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised
that: (1} the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited
is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to
process and/or examine your submission related to a patent application or patent. If you do not furnish the requested
information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonmentof the application or expiration of the patent.

The information provided by youin this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act
(5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the
Departmentof Justice to determine whether the Freedom of Information Act requires disclosure of these record s.

2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a
court, magistrate, or administrative tribunal, including disclosures to opposing counselin the course of settlement
negotiations.

3. A record in this system of records may be cisclosed, as a routine use, to a Member of Congress submitting a
request involving an individual, to whom the record pertains, when the individual has requested assistance from the
Memberwith respect to the subject matter of the record.

4. A recordin this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for
the information in order to perform a contract. Recipients of information shall be required to comply with the
requirements of the Privacy Act of 1974, as amended,pursuantto 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records
may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant
to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of
National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or
his/her designee, during an inspection of records conducted by GSAas part of that agency's responsibility to
recommend improvements in records managementpractices and programs, under authority of 44 U.S.C. 2904 and
2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this
purpose,and anyotherrelevant(i.e., GSA or Commerce) directive. Such disclosure shall not be used to make
determinations about individuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of
the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record
may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record wasfiled in
an application which became abandonedorin which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspections or an issued patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law
enforcement agency,if the USPTO becomes awareof a violation or potential violation of law or regulation.

EFS Web 2.1.17

LG Ex. 1002, pg 47

LG Ex. 1002, pg 48

EP2299408A2

(12)

(43)

(21)

(22)

EuropalschesPatentamt
EuropeanPatent Office
Office européendes brevets

(11) EP 2 299 408 A2

EUROPEANPATENTAPPLICATION

Date of publication:
23.03.2011 Bulletin 2011/12

Application number: 10075687.3

Dateoffiling: 19.11.2004

(51) Int Cl.:
GO6T 15/00 (2011.01) GO6T 15/80 (2011.01)

(84)

(30)

(62)

(71)

(72)

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT L1LU MC NL PL PT RO SE SISK TR

Designated Extension States:
AL HR LT MK YU

Priority: 20.11.2003 US 718318

Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
04798938.9 / 1 706 347

Applicant: ATI Technologies Inc.
Markham,
Ontario L3T 7X6 (CA)

Inventors:

Morein, Steven
Cambridge, MA 02139 (US)

Lefebvre, Laurent
Lachenaie

Quebec J6W 6A5 (CA)
Gruber, Andy
Arlington, MA 02476 (US)
Skende, Andi
Shrewsbury, MA 01545 (US)

Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre
London

WCGZE 9RA (GB)

Remarks:

This application was filed on 01-10-2010 as a
divisional application to the application mentioned
under INID code 62.

(54)

(57)

A graphics processing architecture employing a unified shader

Agraphics processor, comprising: an arbitercir-
cuit for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the arbiter
circuit, operative to process the selected one of the plu-

OBJECT.

rality of inputs, the shader including meansfor performing
vertex operations and pixel operations, and performing
one of the vertex operations or pixel operations based
on the selected oneof the plurality of inputs, wherein the
shaderprovides a appearanceattribute.

12

SHADER

40

Oy, Zz)

LUMINANCE

VIEWING
ANGLE

FIG. 1

(PRIOR ART)

Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 48

LG Ex. 1002, pg 49

1 EP 2 299 408 A2 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapesandstructures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
object that is rendered to a corresponding display for sub-
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de-
vice. Asillustrated in FIG. 1, a conventional shader 10
can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance
properties applied thereto (x’, y’, z’).
[0004] Inexemplaryfashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices V,, V, and V,, among others of cube 30 and
providing angularly oriented vertices V,.,Vy and V7, in-
cluding any appearanceattributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shaderprovides the color value associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

Qa

10

15

20

25

30

35

40

45

50

Qa

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors arerelatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shaderand the pixel shader are juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader thatis both spaceefficient
and computationally effective.

SUMMARYOFTHE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal:
anda shader, coupled to the arbiter, operative to process
the selected oneof the plurality of inputs, the shader in-
cluding meansfor performing vertex operations and pixel
operations, and wherein the shader performs oneof the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs accordingto the instructions maintainedin
the sequencer. The shader of the present invention is
referred to as a "unified" shader becauseit is configured
to perform both vertex and pixel operations. By employ-
ing the unified shaderof the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi:'shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
causeit allows the shaderto be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 49

LG Ex. 1002, pg 50

3 EP 2 299 408 A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1isa schematic block diagram of a conventional
shader;

FIGS. 2A-2B are graphical representations of the op-
erations performed by the shader illustrated in FIG.
1;

FIG. 3isa schematic block diagram of aconventional
graphics processorarchitecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the presentin-
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodimentof the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employedin the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,
the graphics processor40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example of the information that is requested by and trans-
mitted to the vertex shader46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

Qa

10

15

20

25

30

35

40

45

50

Qa

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is knownin the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearanceattributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored ina
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearanceattribute of interest.
The generated pixel appearanceattribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearanceattribute present on line 59 is then transmit-
ted to post raster processing blocks (not shown).
[0015] Asdescribed above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processoris relatively large as
the two shaders take up a large amountof real estate.
Another drawback associated with conventional graphics
processor architectures is that can exhibit poor compu-
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the presentin-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo-
lated pixel parameter (e.g. position) data and attribute
data from arasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed bythe arbiter 64
is as follows: the vertex data on thefirst input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shaderto operate on the vertex data; otherwise, the in-
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 50

LG Ex. 1002, pg 51

5 EP 2 299 408 A2 6

62 will now be described. Asillustrated, the unified shader
62 includes a general purposeregister block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general
purposeregister block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

presentin the general purposeregister block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-
icated piece of hardware or can be configured as part of
a general purpose computing device(i.e, personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-
erations as well as a complete series of logical operations
on corresponding operands. As shown, the pracessoris
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A,is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-
er 62 to fetch texture and other typesof data, from mem-
ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operandsto be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97) for execution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

Qa

10

15

20

25

30

35

40

45

50

Qa

line 85 may be transmitted back to the general purpose
register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a graph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memoryfetches,
the unified shaderof the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the sametime, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However,if
the general purpose register block 92 does not have
enough available spacetherein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration schemeofthe arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information present in the cache block70is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
for further processing. The assembledprimitives are then
transmitted on line 73 to rasterization engine block 74,
wherethe transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 on line 75.

LG Ex. 1002, pg 51

LG Ex. 1002, pg 52

7 EP 2 299 408 A2 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, if a stained glass appearanceeffectis
to be applied to an image, the information corresponding
to such appearanceeffect is associated with the appro-
priate position data by the render back end 76. Thein-
formation from the render back end 76is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, showntherein is a
vertex block 61 which is used to provide the vertex infor-
mation atthe first input of the multiplexer 66 according
to an alternate embodimentof the present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertex information from mem-
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

inthe vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type of data operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposesofillustration and description.
It is therefore contemplated that the present invention
cover any andall modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. Agraphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the ar-
biter circuit, operative to process the selected one
of the plurality of inputs, the shader including means
for performing vertex operations and pixel opera-

Qa

10

15

20

25

30

35

40

45

50

Qa

10.

tions, and performing one of the vertex operations
or pixel operations based on the selected oneof the
plurality of inputs, wherein the shaderprovides a ap-
pearanceattribute.

The graphics processorof claim 1, further including
a vertex storage block for maintaining vertex infor-
mation.

The graphics processorof claim 2, wherein the ver-
tex storage block further includes a parameter cache
operative to maintain appearanceattribute data for
a corresponding vertex and a position cache opera-
tive to maintain position data for a corresponding ver-
tex.

The graphics processorof claim 1, wherein the ap-
pearanceattribute is color, and the color is associ-
ated with a corresponding pixel when the selected
one of the plurality inputs is pixel data.

The graphics processorof claim 1, wherein the ap-
pearanceattribute is position, and the position at-
tribute is associated with a corresponding vertex
whenthe selected one of the plurality of inputs is
vertex data.

The graphics processorof claim 5, wherein the ap-
pearanceattribute is color, and the color attribute is
associated with a corresponding pixel when the se-
lected one of the plurality of inputs is pixel data.

The graphics processorof claim 5, wherein the ap-
pearanceattribute is one of the following: colar, light-
ing, texture, normal and position data.

The graphics processorof claim 1, wherein the ap-
pearancevalue is depth.

The graphics processorof claim 1, further including
a selection circuit, wherein the selection circuit is a
multiplexer, and the control signal is provided by an
arbiter, wherein the arbiter is coupled to the multi-
plexer.

The graphics processorof claim 1, wherein the shad-
er provides vertex position data and further including
a primitive assembly block, coupled to the shader,
operative to generate primitives in response to the
vertex position data.

LG Ex. 1002, pg 52

LG Ex. 1002, pg 53

EP 2 299 408 A2

(LUVYOrdd)L“Old

STONYONIMAIAJONVNINNTVivGSUNLXALYO1O9AdVHSLOSrgo

YaQVHsél

LG Ex. 1002, pg 53

LG Ex. 1002, pg 54

EP 2 299 408 A2

30

FIG. 2A

(PRIOR ART)

(PRIOR ART)

LG Ex. 1002, pg 54

LG Ex. 1002, pg 55

EP 2 299 408 A2

55 aZe
TEXTURE |

MEMORY MAP
rr!

VERTEX FETCH V-CACHE

VERTEX VERTEX
SHADER STORE

PRIMITIVE 0
ASSEMBLY

51

“RASTERIZATION|22 ~
ENGINE -

FROM TEXTURE
57 CACHE[58

56
59

FIG. 3 POST RASTER

(PRIOR ART) PROCESSING

53

TO 5
57 PIXEL

. SHADER

LG Ex. 1002, pg 55

LG Ex. 1002, pg 56

EP 2 299 408 A2

INDICES

avarrer [mKA
63

64 65

UNIFIED
SHADER MEMORY

DATA

RENDER

BACK
END

71

PRIMITIVE
ASSEMBLY

79 MEMORY
CONTROLLER 73

RASTERIZATION

DISPLAY 81 ENGINE
 CONTROLLER

 75

8 34 82

DISPLAY -|MEMORY

FIG, 4A

LG Ex. 1002, pg 56

LG Ex. 1002, pg 57

EP 2 299 408 A2

INDICES

FIG. 4B

FROM MUX MEMORY
FETCH

67

 SOURCE A SOURCE B

ee

10

LG Ex. 1002, pg 57

LG Ex. 1002, pg 58

EP2309460Al

EuropdischesPatentamt
EuropeanPatent Office
‘Office européendes brevets

(12)

(43) Date of publication:
13.04.2011 Bulletin 2011/15

(21) Application number: 10075688.1

(22) Dateoffiling: 19.11.2004

(11) EP 2 309 460 A1

EUROPEAN PATENT APPLICATION

(51) Int CL:
GO6T 15/00 (207.01) GO6T 15/80 (2071.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FIFR GB GR
HU IE IS ITLILU MC NL PL PT RO SE SISK TR

Designated Extension States:
AL HR LT MK YU

(30) Priority: 20.11.2003 US 718318

(62) Document number(s) of the earlier application(s) in
accordancewith Art. 76 EPC:
04798938.9 / 1 706 847

(71) Applicant: ATI Technologies ULC
Markham, Ontario L3T 7X6 (CA)

(72) Inventors:
¢ Morein, Steven

Cambridge, Massachusetts 02139 (US)

¢ Lefebvre, Laurent

Lachenale J6W BAS5(CA)
¢ Gruber, Andy

Arlington, Massachusetts 02476 (US)
¢ Skende, Andi

Shrewsbury, Massachusetts 01545 (US)

(74) Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre
London

WC2E 9RA (GB)

Remarks:

This application was filed on 01-10-2010 as a
divisional application to the application mentioned
under INID code 62.

(54)

(57) Agraphics processor, comprising: an arbitercir-
cuit for selecting one of a plurality of inputs in response
to a control signal; a shader, coupledto the arbitercircuit,
operative to process the selected oneof the plurality of
inputs, the shader including meansfor performing vertex
operations and pixel operations, and performing one of
the vertex operations or pixel operations based on the
selected oneofthe plurality of inputs, wherein the shader

OBJECT,

A graphics processing architecture employing a unified shader

provides a appearanceattribute; a vertex storage block
for maintaining vertex information; wherein the vertex
storage block further includes a parameter cache oper-
ative to maintain appearanceattribute data for a corre-
sponding vertex and a position cache operative to main-
tain position data for a corresponding vertex; and wherein
the appearance attribute is color, and the color is asso-
ciated with a corresponding pixel when the selected one
of the plurality inputs is pixel data.

40

12

«Ly. Zz)TEXTURE, SHADER
DATA

LUMINANCE

VIEWING
ANGLE

FIG. 1

(PRIOR ART)

Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 58

LG Ex. 1002, pg 59

1 EP 2 309 460 A1 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processorarchitecture employing a single shader.

BACKGROUND OFTHE INVENTION

[0002] In computer graphics applications, complex
shapesandstructures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
object thatis rendered to a corresponding display for sub-
sequent viewing.
[0003] Theinterconnection of primitives and the appli-
cation of color and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10
can berepresented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance
properties applied thereto (x’, y’, z’).
[6004] Inexemplary fashion,asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shaderthat
accepts as inputs the data representing, for example,
vertices Vy, Vy and Vz, among others of cube 30 and
providing angularly oriented vertices V,,Vy and V2, in-
cluding any appearanceattributes ofcorresponding cube
30°.

[0005] In addition to the vertex shader discussed
above, a shaderprocessing block that operates on the
pixel level, referred to as a pixel shaderis also used when
generating an object for display. Generally, the pixel
shaderprovides the color value associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

70

75

20

25

30

35

40

45

50

55

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shaderin order
to generate an object. Because both types of shaders
are required, known graphics processors arerelatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shaderand the pixel shader are juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individualpixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shaderthat is both spaceefficient
and computationally effective.

SUMMARYOF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one ofthe plurality of inputs, the shaderin-
cluding meansfor performing vertex operations andpixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.
[0009] Theshader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencerfor storing logical and arithmetic instructions
that are used toe perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader becauseit is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader of the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi-shader processor architecture.
[0010]=In addition, according to the present invention,
the unified shader is more computationally efficient be-
causeit allows the shaderto be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 59

LG Ex. 1002, pg 60

3 EP 2 309 460 A1 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages andfeatures thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sentlike elements, in which:

FIG. 1is aschematic block diagram of a conventional
shader;

FIGS. 2A-2B are graphical representations of the op-
erations performed by the shaderillustrated in FIG.
1;

FIG. 3is a schematic block diagram of a conventional
graphics processorarchitecture;

FIG. 4A is a schematic block diagram of a graphics
processorarchitecture according to the present in-
vention;

FIG. 4B is a schematic block diagram of an optional
input componentto the graphics processor accord-
ing to an alternate embodimentof the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sorillustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG.3,illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,
the graphics processor40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex

cache 44for storage online 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example of the information that is requested by and trans-
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color}, texture information, and
viewing angle. Generally, the vertex shader 46is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

70

75

20

25

30

35

40

45

50

55

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembledprimitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 online 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearanceattributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexedby the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored ina
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the
pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearanceattribute of interest.
The generated pixel appearance attribute is then com-
bined with a base coler, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel correspondingat the position of interest. The pixel
appearanceattribute present online 59 is then transmit-
ted to pest raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processoris relatively large as
the two shaders take up a large amountof real estate.
Another drawback associated with conventional graphics
processor architectures is that can exhibit poor compu-
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processer 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo-
lated pixel parameter (e.g. position} data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines whichof the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data onthefirst input of the mul-
tiplexer 66 is transmitted to the unified shader 62 online
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in-
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 60

LG Ex. 1002, pg 61

5 EP 2 309 460 A1 6

62 willnow be described. Asillustrated, the unified shader
62 includes a general purpose register block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general
purposeregister block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

presentin the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-
icated piece of hardware or can be configured aspart of
a general purpose computing device (i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-
erations as well as a complete series of logical operations
on corresponding operands. As shown, the processoris
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and aninstruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-
er 62 to fetch texture and other types of data, from mem-
ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whetherthe next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the nextinstruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purposeregister block 92 inte the appropriate source reg-
isters (93, 95, 97) for execution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operandspresentin the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

70

75

20

25

30

35

40

45

50

55

line 85 may be transmitted back to the general purpose
register block 92 for storage,or transmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on datainthe context of a graph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventicnal vertex shad-
ers cannot perform; while at the sametime, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block $2
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However,if
the general purpose register block 92 does not have
enoughavailable space therein to store the incoming ver-
tex data, such information will net be transmitted as the
arbitration schemeofthe arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resourceswithin the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information presentin the cache block 70is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
for further processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
wherethe transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 online 75.

LG Ex. 1002, pg 61

LG Ex. 1002, pg 62

7 EP 2 309 460 A1 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example,if a stained glass appearanceeffect is
to be applied to an image, the information corresponding
to such appearanceeffect is associated with the appro-
priate position data by the render back end 76. the infor-
mation from the render back end 76 is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, showntherein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment of the present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertex information frommem-
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprises the vertex information
that is coupled to thefirst input of multiplexer 66.
[9026] Asdiscussed above, the graphics processor 60
of the presentinvention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-
tions, graphics processingefficiency is enhanced as one
type of data operations is not dependent upon ancther
type ofdata operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventicnal graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposesofillustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. Agraphics processor, comprising: an arbiter circuit
for selecting oneof a plurality of inputs in response
to a control signal; a shader, coupled to the arbiter
circuit, operative to process the selected one of the
plurality of inputs, the shader including means for
performing vertex operations and pixel operations,

70

75

20

25

30

35

40

45

50

55

and performing one of the vertex operations or pixel
operations based onthe selected oneofthe plurality
ofinputs, wherein the shader provides a appearance
attribute; a vertex storage block for maintaining ver-
tex information; wherein the vertex storage blockfur-
ther includes a parameter cache operative to main-
tain appearance attribute data for a corresponding
vertex and a position cache operative to maintain
position data for a corresponding vertex; and where-
in the appearanceattribute is color, and the coloris
associated with a corresponding pixel when the se-
lected one of the plurality inputs is pixel data.

The graphics processorof claim 1 wherein the ap-
pearanceattribute is position, and the position at-
tribute is associated with a corresponding vertex
when the selected one of the plurality of inputs is
vertex data.

LG Ex. 1002, pg 62

LG Ex. 1002, pg 63

EP 2 309 460 A1

(LuvYOldd)a)F

(2144x)YaqVHS

ch

LG Ex. 1002, pg 63

LG Ex. 1002, pg 64

EP 2 309 460 A1

FIG. 2A

(PRIOR ART)

FIG. 2B

(PRIOR ART)

LG Ex. 1002, pg 64

LG Ex. 1002, pg 65

EP 2 309 460 A1

55 57potensewersenoneoun

TEXTURE
MEMORY MAP

beeeeeeeeeel

vere

VERTEX VERTEX
SHADER STORE

PRIMITIVE 50
ASSEMBLY

51

“RASTERIZATION 2°
ENGINE -

53

TO 5
57 PIXEL

SHADER

FROM TEXTURE 5a
57 CACHE 58

56
50

FIG, 3 POST RASTER
OCESS

(PRIOR ART) PROCESSING

LG Ex. 1002, pg 65

LG Ex. 1002, pg 66

EP 2 309 460 A1

INDICES

6
64 65

UNIFIED
SHADER MEMORY

60 DATA.

79

MEMORY
CONTROLLER

DISPLAY

CONTROLLER

8 a4 : 82

DISPLAY . MEMORY

FIG. 4A

LG Ex. 1002, pg 66

LG Ex. 1002, pg 67

EP 2 309 460 A1

INDICES 61

MEMORY

FROM MUX 5 FETCH
67

10

LG Ex. 1002, pg 67

LG Ex. 1002, pg 68

EP 2 309 460 A1

EuropischesPatentamt
European

Application Number
hia EUROPEAN SEARCH REPORTdevbrew EP 10 67 5688

DOCUMENTS CONSIDEREDTOBE RELEVANT

US 2003/164830 Al (KENT OSMAN) INV.
4 September 2003 (2003-09-04) GQ6T15/00
* abstract; figures 1A,1B,1C,1D * G06T15/80
* paragraphs [0006], [0007], [0012] *
* paragraphs [0079], [0091] - [0095],
[9102], [0154] - [6156], [0170] *

US 6 417 858 B1 (BOSCH DEREK ET AL)
July 2002 (2002-07-09)
abstract: figures 2,3,4,5 *
column 3, lines 22-32 *
column 8, line 47 - line 61 *
column 9, line 10 - line 21; claim 24 *

+++WO
US 6 353 439 Bl (LINDHOLM JOHN ERIK ET AL)
5 March 2002 (2002-03-05)
* column 8, lines 22-53; figures
1B,2B,4,4B *

BRETERNITZ M ET AL: "Compilation,

architectural support,and evaluation of|extenTe)|SIMD graphics pipeline programs on a SEARCHED|Seaateeeee
general-purpose CPU", GO6T
27 September 2003 (2003-09-27), PARALLEL
ARCHITECTURES AND COMPILATION TECHNIQUES,
2003. PACT 2003. PROCEEDINGS. 12TH
INTERNATIONAL CONFERENCE ON 2/7 SEPT. - 1

OCT. 2003, PISCATAWAY, NJ, USA,IEEE,
PAGE(S) 135-145, XP010662182,
ISBN: 0-7695-2021-9

* page 1 - page 3; figures 1,2 *

-/--

The present search report has been drawn up forall claims
Place of search Date of completion of the search Examiner

CATEGORYOF CITED DOCUMENTS T : theary or principle underlying the invention
E: earlier patent document, but published on,or

X: partisularly relevant if taken alone after thefiling date
YY: partiqularly relevant if combined with another D : dooumentaited in the application

dooument of the same category L : dooument sited for other reas
A: technological background
O: non-written disclosure &: memberof the samepatenP: intermediate document document

EPOFORM180303.82(PO4C01)PO

11

LG Ex. 1002, pg 68

LG Ex. 1002, pg 69

EP 2 309 460 A1

EuropaischesPatentamt
European

Patent Office EUROPEAN SEARCH REPORT Application Number
Officeeuropéen EP 10 O07 5688

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate, Relevant}SLASaIRCATIONOFTHE|OF THEof relevant passages to claim APPLICATION}SLASaIRCATIONOFTHE|
OWENS J D ET AL: “POLYGON RENDERING ON A {1,2
STREAM ARCHITECTURE",
PROCEEDINGS 2000 SIGGRAPH/EUROGRAPHICS
WORKSHOP ON GRAPHICS HARDWARE. INTERLAKEN,
SWITZERLAND, AUG. 21 - 22, 2000; [SIGGRAPH
/ EUROGRAPHICS WORKSHOP ON GRAPHICS
HARDWARE], NEW YORK, NY : ACM, US,
21 August 2000 (2000-08-21), pages 23-32,
XP000964471,
DOI: DOI:10.1145/346876.346883
ISBN: 978-1-58113-257-1

* abstract; figures 1,3 *
* Sections 2, 2.1, 2.2, 3. *

MARK WR ET AL: "Cg: a4 system for
programming graphics hardware in a C-like
language",
ACM TRANSACTIONS ON GRAPHICS ACM USA,
vol. 22, no. 3, July 2003 (2003-07), pages
896-907, XP002624786,
ISSN: 0730-0301 TECHNICALFIELDS

* abstract; figure 2 * SEARCHED (IPC)
* page 899, column 1, lines 17-50 *

Place of search Date of completion of the search Examiner

25 February 2011 Meinl, Wolfgang
CATEGORY OF CITED DOCUMENTS T: theory or principle underlying the invention

E: earlier patent dooument, but published on, or
X: particularly relevantif taken alone after thefiling date
Y : particularly relevant if combined with ancther D: documentcited in the application

document of the same category L: documentcited for other reasons
A: technological background
QO: non-written disclosure &: memberof the same patent family, correspondingP: intermediate daoument dooument

MN

EPOFORM150303.82(P04C01)

12

LG Ex. 1002, pg 69

LG Ex. 1002, pg 70

EPOFORMP0459

EP 2 309 460 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEANPATENTAPPLICATION NO. EP 10 07 5688

This annexlists the patent family membersrelating to the patent documents cited in the above-mentioned European searchreport.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no wayliable for these particulars which are merely given for the purpose of information.

25-02-2011

Patent document Publication Patent family Publication
cited in search report date member(s} dats

US 2003164830 Al 04-09-2003 NONE

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

13

LG Ex. 1002, pg 70

LG Ex. 1002, pg 71

EP2296116A2

(1 9) EuropalschesPatentamt
EuropeanPatent Office

desbrevetr (11) EP 2 296 116 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: (51) Int CL:
16.03.2011 Bulletin 2011/11 GO6T15/00 (2017.01)

(21) Application number: 10075686.5

(22) Dateoffiling: 19.11.2004

(84) Designated Contracting States: ¢ Lefebvre, Laurent
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Lachenaie, Quebec J6W 6A5 (CA)
HU IE IS IT L1LU MC NL PL PT RO SE SISK TR ¢ Gruber, Andy
Designated Extension States: Arlington, Massachusetts 02476 (US)
AL HR LT MK YU *« Skende, Andi

Shrewsbury, Massachusetts 01545 (US)
(30) Priority: 20.11.2003 US 718318

(74) Representative: Waldren, Robin Michael
(62) Document number(s) of the earlier application(s) in Marks & Clerk LLP

accordance with Art. 76 EPC: 90 Long Acre
04798938.9 / 1 706 847 London

WC2E SRA (GB)

(71) Applicant: ATI Technologies Inc.
Markham, Remarks:
Ontario L3T 7X6 (CA) This application wasfiled on 01-10-2010 as a

divisional application to the application mentioned
(72) Inventors: under INID code 62.

¢ Morein, Steven
Cambridge, Massachusetts 02139 (US)

(54) A graphics processing architecture employing a unified shader

(57)=Amethod comprising:
performing vertex manipulation operations and pixel ma- INDICES
nipulation operations by transmitting vertex data toa gen-
eral purpose register block, and performing vertex oper-
ations on the vertex data by a processor unless the gen-
eral purpose register block does not have enough avail-

able spacetherein to store incoming vertex data; and ee
continuing pixel calculation operations that are to be or
are currently being performed by the processor based
on instructions maintained in an instruction store until

enough registers within the general purpose register
block become available.

FIG. 4A

Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 71

LG Ex. 1002, pg 72

1 EP 2 296 116 A2 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapesandstructures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re-
spect to the generated shape; thereby generating the
object that is rendered to a corresponding display for sub-
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de-
vice. Asillustrated in FIG. 1, a conventional shader 10
can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep-
resenting the object with texture and other appearance
properties applied thereto (x’, y’, z’).
[0004] Inexemplaryfashion, asillustrated in FIGS. 2A-
2B, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view of the cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap-
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices Vy, Vy and Vz, among others of cube 30 and
providing angularly oriented vertices Vy, Vy and Vz, in-
cluding any appearanceattributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shaderprovides the color value associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

Qa

10

15

20

25

30

35

40

45

50

Qa

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex-
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors arerelatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there-
with. In conventional graphics processors, the vertex
shaderand the pixel shader are juxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader thatis both spaceefficient
and computationally effective.

SUMMARYOFTHE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal:
anda shader, coupled to the arbiter, operative to process
the selected oneof the plurality of inputs, the shader in-
cluding meansfor performing vertex operations and pixel
operations, and wherein the shader performs oneof the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se-
lected inputs accordingto the instructions maintainedin
the sequencer. The shader of the present invention is
referred to as a "unified" shader becauseit is configured
to perform both vertex and pixel operations. By employ-
ing the unified shaderof the present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi:'shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
causeit allows the shaderto be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 72

LG Ex. 1002, pg 73

3 EP 2 296 116 A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under-
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1isa schematic block diagram of a conventional
shader;

FIGS. 2A-2B are graphical representations of the op-
erations performed by the shader illustrated in FIG.
1;

FIG. 3isa schematic block diagram of aconventional
graphics processorarchitecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the presentin-
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodimentof the present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employedin the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor-
porating a conventional pipeline architecture. As shown,
the graphics processor40 includes a vertex fetch block
42 which receives vertex information relating to a primi-
tive to be rendered from an off-chip memory 55 on line
41. The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example of the information that is requested by and trans-
mitted to the vertex shader46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

Qa

10

15

20

25

30

35

40

45

50

Qa

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim-
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is knownin the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearanceattributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored ina
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearanceattribute of interest.
The generated pixel appearanceattribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearanceattribute present on line 59 is then transmit-
ted to post raster processing blocks (not shown).
[0015] Asdescribed above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processoris relatively large as
the two shaders take up a large amountof real estate.
Another drawback associated with conventional graphics
processor architectures is that can exhibit poor compu-
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the presentin-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo-
lated pixel parameter (e.g. position) data and attribute
data from arasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed bythe arbiter 64
is as follows: the vertex data on thefirst input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shaderto operate on the vertex data; otherwise, the in-
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 73

LG Ex. 1002, pg 74

5 EP 2 296 116 A2 6

62 will now be described. Asillustrated, the unified shader
62 includes a general purposeregister block 92, a plu-
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc-
essor (e.g. CPU) 96 and a sequencer 99. The general
purposeregister block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

presentin the general purposeregister block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded-
icated piece of hardware or can be configured as part of
a general purpose computing device(i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bit floating point arithmetic op-
erations as well as a complete series of logical operations
on corresponding operands. As shown, the pracessoris
logically partitioned into two sections. Section 96 is con-
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A,is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc-
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad-
er 62 to fetch texture and other typesof data, from mem-
ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operandsto be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97) for execution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

Qa

10

15

20

25

30

35

40

45

50

Qa

line 85 may be transmitted back to the general purpose
register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a graph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memoryfetches,
the unified shaderof the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the sametime, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane-
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However,if
the general purpose register block 92 does not have
enough available spacetherein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration schemeofthe arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 70B which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information present in the cache block70is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsible for assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
for further processing. The assembledprimitives are then
transmitted on line 73 to rasterization engine block 74,
wherethe transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input of the multiplexer 66 on line 75.

LG Ex. 1002, pg 74

LG Ex. 1002, pg 75

7 EP 2 296 116 A2 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, if a stained glass appearanceeffectis
to be applied to an image, the information corresponding
to such appearanceeffect is associated with the appro-
priate position data by the render back end 76. Thein-
formation from the render back end 76is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 4B, showntherein is a
vertex block 61 which is used to provide the vertex infor-
mation atthe first input of the multiplexer 66 according
to an alternate embodimentof the present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertex information from mem-
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

inthe vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera-
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type of data operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposesofillustration and description.
It is therefore contemplated that the present invention
cover any andall modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. Amethod comprising:

performing vertex manipulation operations and
pixel manipulation operations by transmitting
vertex data to a general purpose register block,
and performing vertex operations on the vertex

Qa

10

15

20

25

30

35

40

45

50

Qa

data by a processorunless the general purpose
register block does not have enough available
spacetherein to store incoming vertex data; and
continuing pixel calculation operations that are
to be or are currently being performed by the
processor based on instructions maintained in
an instruction store until enough registers within
the general purpose register block become
available.

2. Aunified shader, comprising:

ageneral purposeregister block for maintaining
data;
a processorunit operative to:

perform vertex manipulation operations and
pixel manipulation operations by transmit-
ting vertex data to a general purpose regis-
ter block, and perform vertex operations on
the vertex data unless the general purpose
register block does not have enough avail-
able spacetherein to store incoming vertex
data and continue pixel calculation opera-
tions that are to be or are currently being
performed based on instructions main-
tained in an instruction store until enough
registers within the general purposeregister
block becomeavailable.

LG Ex. 1002, pg 75

LG Ex. 1002, pg 76

EP 2 296 116 A2

(LuvYOrdd)bOidYSQVHS
LG Ex. 1002, pg 76

LG Ex. 1002, pg 77

EP 2 296 116 A2

FIG. 2A

(PRIOR ART)

FIG. 2B

(PRIOR ART)

LG Ex. 1002, pg 77

LG Ex. 1002, pg 78

EP 2 296 116 A2

85 oea
i TEXTURE |

MEMORY | Ul |
| |Lneweeeensooeeeewea:

41 43
44

N42 45

VERTEX VERTEX 48
SHADER STORE

46
47 49

PRIMITIVE 50
ASSEMBLY

51

‘RASTERIZATION|52 ~
ENGINE -

53

TO 5
57 PIXEL

; SHADER

FROM TEXTURE 52
57 CACHE|65é

59

FIG. 3 POST RASTER

(PRIOR ART) PROCESSING

LG Ex. 1002, pg 78

LG Ex. 1002, pg 79

EP 2 296 116 A2

INDICES

aa 63

UNIFIED
SHADER

RENDER
BACK
END

47

18

79 MEMORY

CONTROLLER

DISPLAY

CONTROLLER
81

8 84

DISPLAY

MEMORY
DATA

 71

PRIMITIVE

ASSEMBLY

73

RASTERIZATION
ENGINE

75

82

MEMORY

FIG. 4A

LG Ex. 1002, pg 79

LG Ex. 1002, pg 80

EP 2 296 116 A2

INDICES

VERTEX
CACHE

FIG. 4B

FROM MUX MEMORY
99 FETCH

67

 CONSTANTS

SOURCE A

10

LG Ex. 1002, pg 80

LG Ex. 1002, pg 81

PATENT COGPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

aera

(CY Article 1G and Rules 43 and 44}

FOR FURTHER seo Form POTARA220
ACTION QS Well Ss, WHEE annitable, fen: § below.

Applioaal’s of agati's Me mfarance

| SH-4 7356
. Svternaional aonieaton No.

 P inemnalona Ning dale [dawmonnyeant Sarliest} Priorly Gate(aavinontpanr

A fan Pero
20/22 208).hat

L9/aL2004

Agpicard

ATE TECHNOLOGIES, INC

pereetiniernninstrniiaennamninnnanenntenrernaanannnnnnninrverannnnnranannenitnuaetnratnanennnnunanrarnannannnenanaeteeNeNAADRNALNN

ne,

iXt SHS ike AggaMpahied by | copy at each Gros. at document Sted 4 this port.

; Thig imemuvional Qeaut Msporl has heen separed by thislemetonal Searing Authamly ang ip maneriited tethe aidicandt
according Wi Anicde 18. 4 cony {8 being transmitted fo the iatemational Bureau.

‘This Intamatinnad Search Meport consists of a iota ofa crete: BRE.

a. WES fag$0 the Reegniage. the Infemationsl saarch was carried out on the basis of the infernationat sontingtion in theIaruage if which N was fied unibes othanwise indicated under this fam.

P| The inlerintonal serch was carted cut aia the basis of 2 basistationaf the Intemational application famishad fo
“~" gris Austonty (Sade 2.47571.

etietuiirvevreiroutemerreeen4eeeeee
&. a With tagard {o ary nuclestide and/or amino ecid sequence dievinsed ih the Intemational application, age Baw Noo.

a. ma: Ganais olnine ivere found unseanhable (See Box Hj.

% «EF] initaf fevention ftasking (se9 Box it),

$$. WG pages fe he Ste,

Fx] the tentis approved a8 auhuniiied by the applicant
f} heteat has beeneetustahed ny this Authonty to read ag fotews:

&. WH) ragevel S898 sbatrac?,

[t} the text's appreved as submitiadby the annllcant,
[_] ie texthas boon astabiehedt, according to Rule BA9(p), hy this Authodty as Raposars io Box No. iV. The angicant

May. wHhls ase mouth kom the date of mailing of this inlamadongl earchmpert, submit commants % ANS Suntory.

8. With ragard ts the drawings,

a. the Sguee uf thesdrawiegs to be cuttighedt with the abstract is Figures Ne. SA en
[E) ae suggewed by the applica,

(| ae gelectedt ty ths Authority, beeauas the applicant lalied to suggest a figure.
|_| -88 safeoled by this Authonty, because this Sgure better sharactarizes the Ameanian,
woo. Ot the figures is to bs publahed with the abstract.

bsetniermenisenssiieinsteinLiisi,
we £3

LG Ex. 1002, pg 81

LG Ex. 1002, pg 82

”
“ INTERNATIONAL SEARCH REPORT

{ internstiens&spteation Ne

POT/T BSO04/NG382 f

SSCATION.GFSpasect MATES
SOG TIS/00
 LA:

te =nay oO wd

Aacordiing ty inigmalionas Pater
8. FRLOS SEARCHER

Minimum cocumentition searched (classitication susie fined by classification syRbe}
IPC 7 Ghat

Shessifioation (FC? or 10 both navonat cissaifestion gad PC

smaarreorrsvnsrsriveridreecedoernetseetistsserroreresessssssrstdatttsBrbtcccsQocumenation segnzhed atker than minkeums decueneniation i ike exket frat suoh Socuments am viludad inthe fiekis eaarchadt

Si cannulae’ Gustigy the lenesvietReal SAAT

| EPOeInternal. INSPEC y ingen of data Dasa and, whent practinel search ferns used

 Rightyant fatedNe,

OURREARRAANSCORROOORIS

G 2005 168890 Al (KENT OSMAN) {33
& September 2005 (2005-09-04)
parsgrapha “9O79!, “GO9L! - ‘ogast.
“Ole! , <OUSdt ~ “O156t, OTFg

A US 6 §1¥ 858 8} CBOSCH DEREK ET AL) $4-20
9 duly 2602 (2002-07-99)
cola8, Tine 4? « ling 61
caluat §. Tine 10+ line 21; claim 24:
Figure 5

Wi § $83 439 81 CLUINDHOLM JOHN ERIX. ET ALD
& Napch 2802 (2002-03-05)
column 25, lise 16 - Tine 65: figures

wfones

 Ps Sparks categorie ot Shad comune: “Wr laine rscuient published atlas tie inidmatinnd Rag site

5 ; ee-ntlontydate ard not in conflict with the snsdicationbel :AY document defising the quien! ataie dF ihe ad which 1s ne ‘ a : s ; ves :congddered te be of particular slevance sientaaieesstons iss princinie we treary-sinckeyoig the
“ES mailer deesinautd Out pedison up alter she’ international °M doctment of partioutas mlevanog: ihe claimed inventing ‘Ring de ann be onnghiard navel or canned be coneklered {9

; "he SogurentSSaay oeSoubis.on prodly aeinis} or iivaly en Beseniive atep his the Gocknae hy taka slog
HACEWSSARTO RERSDISH Hie DubNationdate wtanother *y* documont of paetionlae ralgvanon: the ciated Hvention
GRRE OF Shay RUSTTSAO ES SPaesied! aannat ba considered to involve an iets siapwien the

“OP. document ptonng te an oral disclonue,use, wantition ar danument ip. combdnest with one-or more citer such Se
olftar means mens, SUA Oivnbination belts obvious fo & pendeked ;i <8 gicurinal published oriot tn the iemations (agatate det i the art i:

ialer then She. paodate clined “Se document manner of he sara Osten amy
Este of 7 :

the actual ooMpieioN ef the Inemaloamsemen 1 Date oF making of the flemallone: saamh reno

2 Merch 2005

Name and maling ackvens of ths8
Uorpaah Patent Otios, PB, S818 Petartiaan g
Fa. RRSMY Fits

Ted (oF) SGM, Fe 83 GST ane a,Fam GS-0340-3048

22/03/2008
Autiodead.otiver

Tibaux, #

 Form POTASSMeson aheatt Hisruineg BG)

page loaf 2

LG Ex. 1002, pg 82

LG Ex. 1002, pg 83

preetyIDERARASRARASPOLEAOOEPLPEEAELEPELLLEEAEEAEEOtCCEEERESSEETTTPISASSSESESESIOSSSEDPRNTAODRIETEEDEEREDEAAADDEAERAllySALAAASEEAESSELSESRANIROCAARREARSAEREEEPERSELLOLSEEEELLLEEEECEEEEEEEREEPELLPEDIFSSSESIEESIISLEPSDRIIDPOOOOLPPPODPLPELIETEEEEEDEEEETLLLELETPLESEESSSSIRISIODIDDAOPLUPPEPPDIDPDLDPIDPELEDDIID
:t

ve

Bhye.

1-26

ge 2 8

&.

FOORPCPEEEEEECLEELEEEDEEAESIFESSSESIEDDDODDOORMODDDOATPESPEAPPEDEPADPEDEPAPOLLEEEEEEMEEEEEEEEEEEBCESISICEDIDOIPEIIEDSERIDBAEIIIELDLLDLGOEEDDEDEDdddibbidaidaidannenananscscsSLEEPLLLLSIOSOOLIOELOOOORRNAOOOTCCCOOOOELCFELEEEEEEEEEEEEERECEEEEEEEERUEEESESCEEESSSSELLDLSILILEDIDPLIDIDDDBADDEOOOSPCCOITEDSIEDTTIESABELEEEaé«:
" TRalerant fo magei

intaeneniasat Agpicaiios Ke
f{2004/O038e1

PARALLEL

"Cenp i lation,
architectural suppert,and evaluation of

slums, paragraph 4 ~

(OMPILATION TECHNIQUES,

hh-hand column, paragraph 4

20R3. PACT 2003. PROCEEDINGS. 12TH
TNTERRA
OCT.

>5

%F

we

AL

ATAWAY, Nd, USA, TERE,

e
i

fXe

fi~hand

URES AND

TONAL CONFERENCE ON 27 SEPT. - 1

INTERNATIONAL SEARCH REPORT

Q-FORS-202 1-9

graphics pipeline preqrams an a
general-purpose CPUF

Saptesber 2003 (2003-09-27),

e003, PIs
E(S} 135-146 , XPQ1geEZ18

ERNIT? §

EeOEfee
Rat

yertehPEOD
hakrend,breetawk.aGeTSbentaca

if

&
g

ay:
ay

BRE

A
&

3

we

BintekTH,he

Chstion of SoGanenl wih indlasiion, where apnropinte, ofthe rekvant pasmages

OPEPEOTSAECAAELELTLEEEEAS

ANNADACLECLEELLEECLEECESSCinaiWevnTSTARAmnARARESOARRDPRDELODEDDODODDODOCCORLEEEEEECEELELEEEDELOESSSEETEAASLEEEROEARDIREAEEEDDIDEDLEDLOEDDEDLODDDDOOPOCSOTOOITVINSEAEAALIATEAEE64ESSanibUSnaeEIBEDADELEPIIPLLLELIEEE:
CuGantiniation) DOCUMENTS CONRDERED TO SE RELEVANT

:
r

SRT FNTAGAEIO (Gantingation gf aacendsia} Lugosi BAO}

x,

COEELAREEREELMEELLEEASERISEPIIIIPPEDEEBEBEESEDPPEELSSPOOPOLEDLECOOOLLECCEELDOELELPLEPLDLDPLLPPIPPPPDDTPEEIERIDIISETSRSDLEPATCOCCOLPLPEPEETERELELOCEETEBEDECLEUDEEEEEAECEMEESAEEAESENSEAACEAETSIRIDESESIRESESSESSIEESSESSEECICOLELIDELLPPEDETELIPIETELEELDEDDEEEAECLDDEDOEOLEbebtvittaAPLILLEESEEESREREIPLEDIDIPD:
&

Sed

vieeyesentzance

LG Ex. 1002, pg 83

LG Ex. 1002, pg 84

aerogenes INTERNATIONAL SEARCH REPORT
Information on patent family members

Patent document Publication
died fnsemch reget i daeaeAnRRnenBas

US 203164830 AL 04-19-2003 NONE

ase Bl 89-07-2002 NONE US &4

O8-03-2002 US
AU
cA
Ee
Jf

US 6383438 81

 : SOTIB$

Patent family
member(s}

O19B488 81
TR4RS0T A
2302371 Al
1261939 Al

2003515861 7
OLS1O69 Al

2003112246 Al
ZOO ROL7O26 -Al

6844880 81
#064503 A
2392370 Al
1238372 Al

£0038 15853 T
SI4iOea Al

2002298259 Al
#002180740 Al
200712245 Al
2003103054 Al
£003180565 Al

5452595 81
S34288E BI

£00L005209 Al
2BOZTORRIS Al
2003103050 Al
2002027553 Ai
2002047846 Al

penenn
) Extemationsl Aepiarion No;

20048/003821

Bubtination
aie

seenhoeteSekadeaREAL OOTEE RE ELnrRoEARV OFARASApOPYRDRYREIESRNHNRNCNOHFHNN,

06-03-2001
12-06-2001
O7~O8-2001
O4-12-Pa02
OF-08-2003
07-06-2001
39-06-2003
30-08-2001
ESE-2008
12-06-2001
§7~-06-2001
fi-de-2002
OP-O8-2009
OF~O8-2001
#6~12-2002
O8-12-2008
18-06-2003
§8~08-2003
G9~T0-2003
{7-8-2002
29-04-2002

28-06-2001
O8-H8-2002
{8-06-2003
O7~03-2002
25-04-2002SAASannmrineae tr SANIRNFAEAANnAreaaeENHAARAN CEN OPERE AASRAEER AA

LG Ex. 1002, pg 84

enrenereneceeees

LG Ex. 1002, pg 85

PATENT COOPERATION TREATY

From the
INTERNATIONAL SCAROHING AUTHORITY

snoretannednanannermanantnnseanstent —
i sy YRea §

oar ws

| Fat

| com tore BCTRGA, WRITTEN OPINION OF THE
| BoeHie POTARAE2O INTERNATIONAL SEARCHING AUTHORITY

(PCY Rulp 495i. 4}

 eeetenpaEE,
 "

jeatnontivvess) seo foun BOTASAO 1G fesonag sheath

Bpplicantsor agentsile mlerence VEQHEURTHERACTONSSS
gee lores POTABAR20 | See pasageaph 2 belowaa i eeeee

(MematiangappgcationNo.
PCTAB2OO0D82 1

 corancecanand 49.44 2004 | 26.44.2008J 1

1 Intemational Patent GlassMeation (PC!orbotnational damsificationandPQ
| GOBTISOC
1 Anphioant:

i ATETECHNOLOGIES, ING

: 7}

| 4. ‘Thi opinion oonteins indications relating te the follawing tema: i

‘ & Box No.} Basis nf the opinian
} [3 Box Ne}|Pdorty

LJ Sos oH Nereastaliighmest of. opinion with regard ts sowally, inventive Qep endindents! auplioatiiiy i
CJ Sox No. Mo Lack of.unity of invantion ‘
iS BoxNo.¥ Reasoned siaiemant under Arde 43bis. 1 {all with eegard to navelty, Inventive sles or industrial

i apolicabiily; citations and explanations aupporiing such stabement :
i (2 Box No Vi Gantain desuments cited
i {2 Box Ne. Vi Cerisin defaeis is the Intemational application j
i Ci Sox No. VI Certain observations on the intamational sagieation

i

2. FURTHER SCHON i

Ha demand for inlemational prelitinary examination is mada, this opinion will usually be consered io be @
: writes opinion of theinternational Prelirninasy Examining Authority (uPEA%, However, thls dows aot apaly where
i ihe appiesni chooses an Authority other than this ane to be the [PEA and the chocan [PEA bas action the

intamational Bureau under Rude €8.1iia(h} thaf written opinions of this Intemational Searching AuthorityWH et be sc considered,

Wihis opines is, as provided above, considered to be a written pinion of tha IPRA, the applicant is invited te
submi tc the PEA 3 writien teply iogetter, where appragraly, with amendments, kefore the expiration of three
manthg form the date of mailing of Farm POTASAZ20 ay balors the expitatiad of 22 months fromthe orinrily dale,
whichever exoves ister

For iucther options, sae Fann POTASA220.

3. Fordurther details, cee sptes to For POTASAR2D.

i
i
i

seentenneeerennin

 European Patent Oiler .
EMS0068 Munich Tibatsx, M
Tol .69 89 2395 «0 Tx: SARG58 eprnu a i . é
Fox! a8 AS SRNS 445s Telephone No. 4B 88 9396-2658 Segia?

Por (POTISARG) (lover Sheets Mansuay 26643

LG Ex. 1002, pg 85

LG Ex. 1002, pg 86

WRITTEN ORINION OF THE internalinnal ayplication No.
INTERRATIONAL SEARCHING AUTHORITY FATTABLO040382tWateeineneanne

AANHRRARADAANAADAAN AAR

Box No.) Sasis of the opinion _— _

¥, Wh regard to the language, ihe opinion has been established on the basis of the International appiination ie
the language in which § was Siec, untesas otherwise indicated under this Ken.

iJ This opinion has been established on the basis of a translation fromthe original language info ine following
language . which is the language of a translation furnished for the purposes of international search
funder Rules 12.3 and 23. t(O}.

2. With regard to any nucleotide andor amino ach] sequence disclosed in the international apolication and
nacessaryto the claimed invention. his opinion has been setablishad on the basis of:

@. iype of malanal

Le a@ sequence Iating

C2 tables} relaleci in ihe sequence isting

b. format of maternal

(J in writen format

{in computer readable finn

©. Une. of Hingdurnishing:

C3 comained in the intersational application as ed,

LI fifed together with the international application in. computer madable tom.

CF furnished subsequently to this Authority for the purposes of search.

%. OF in ackiiion, inthe case that more than ane version or copy of a sequence fisting anddy table relgting therete
has been fied of furnished, the required sialements that the information in the subsequent or additignal
S088 16 identical io that in the application as filed or does not go beyond the applicationas Med, as
appropiate, wer fished,

4, Additional covurients:

Form PITTSSAS23T Manuany 2004)

LG Ex. 1002, pg 86

LG Ex. 1002, pg 87

cagtess

WRITTEN OFINION OF THE

INTERNATIONAL SEARCHING AUTHORITYateRRAAAARANOVNICAENAABARRE

wea

Box No. Reasoned statement under Rule 42.O/6.tla}() with regard to novelty, leventive step or
industrial applicability; cationsand explanations supporthig such statement4

35

he

Staiemant

Novelly(§}

inventive step GS}

‘dustrial apolicability (£8)

. Gialions and gaclanations

see separate sheet

Form POTMSAS Sa) Danuary S004)

Yee:

No

Yas:

Noe

Yea:

Nee

Claims
Chaime

Gaims

Claims

Clans

Clana

infemational apnlination No.
PCTABZOOANOBR2 1cancena eee

LG Ex. 1002, pg 87

LG Ex. 1002, pg 88

WRITTEN SPINION OF THE intemational application No.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) PCTIBZ04/003827

Re Hern ¥.

The folowing documents are referred to in this communication:

Di: US 2003/154830 Al (KENT OSMAN) 4 September 2003 (2003-09-04)
DS: USB1-6 417 858 (BOSCH DEREK ET AL} $ July 2002 (2002-07-09)
Dg: US-B1-€ 353 439 (LINDHOLM JOHN ERIK ET AL} § March 2002 (2002-03-05)
D4. BRETERNITZ M ET AL: “Compilation, architectural suppari,and evaluation of

SIMD graphics pipeline programs on a general-purpose CPL27 September
2003 (2003-09-27), PARALLEL ARGHITESTURES AND COMPILATION
TECHNIQUES, 2003. PACT 2003. PROCEEDINGS. 12TH INTERNATIONAL
CONFERENGE ON 27 SEPT. - 1 OGT. 2008, PISGATAWAY, Nu USAIEEE.
PAGE(S) 135-148 , XPO010662182 ISBN: 0-7695-2021-9

« Uocunent D1, which is considered to represent the most relevant state of the ar for
the sujeci-matier of claim 1, discloses (the references in parentheses angling to
iis document) & graphics processor comprising a shader (Shading Unik’, see
paragraph 7S) connected to a “Pixel Unit” by a private data path. A “Vertex Shading
Unit performs ihe vertex operations on the vertiees entered in double suffered input
aulfers in sound robin fashion.

An arbiter (in the “Cantext Unit’, see paragraph 102) selects one of a plurality of

"~ WorereOm
SioFceWhoh

Fors POTASA227 (Gensnaie Sheet) (Sheet tT} TESSDJanuary 2008)

LG Ex. 1002, pg 88

LG Ex. 1002, pg 89

WRITTEN OPINION OF THE international sonlioation Ne.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) | POTARSNN4008821

seas

oeI>mexe
or

Foun POTASAQS(Sapurats Sheed} (Sheet 2) (EROSanuary 20043

LG Ex. 1002, pg 89

LG Ex. 1002, pg 90

WRITTEN OPINION OF THE international applination No.
INTERNATIONAL SEARCHING

AUTHOSITY(SEPARATE SHEET} aw PPTABEOE4/O03824

we

fheeeeo
wotoomgy

"OhmeoegD
“mewhtteYP

igaepaoongam
Form POUASAZa7 (Sepande Sheet} (Sheet 33 (EPOlanuary 2004}

LG Ex. 1002, pg 90

LG Ex. 1002, pg 91

WRITTEN OPINION OF THE infematignal appination No.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) _ POTABZ004/008821

oewkpy

BS

rterteBy

Mm~~Oylar
Farm POTASASS7 (Seperate Sheet (Sheet 4} EPOJanuary 2004}

LG Ex. 1002, pg 91

LG Ex. 1002, pg 92

WRITTEN GPINION OF THE international apnlieation Ne.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET POT{B2004/003827

SyEengagorea
ay

ee
me

eo

Sonn POTASARS? Senaisie Sheets (Gina! 8 (EPOJanuary 200d}

LG Ex. 1002, pg 92

LG Ex. 1002, pg 93

WRITTEN OPINION OF THE infeniational aptdication No.
INTERNATIONAL SEARCHING |

AUTHORITY (SEPARATE SHEET PCTAB2004003821

wage

SPOmeethEtBheefe
“*1)03oFthoh
waOMe

8REenem
Form POTHSAGS? (Sepmais Sheet) (Sheet 4) HERGdanuary 2604}

LG Ex. 1002, pg 93

LG Ex. 1002, pg 94

“EARNER

WRITTEN OFINION OF THE inernational anniicatun No.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) _ PCTHB2004003821

Fram this, the subject-matter of independent claim < differs in that the shader
performs both vertex operations and pixel operations (pesiorming one of the vertex
operations or pixel operations based on a selected input}, thus oonstiuting a “unified
shaderin the sense of the application and providing an appearance altrbute.

&.1 The subject-matter of claim { is therefore novel (Articie SHe} PST}

3 Document D2, which is cansicered to represent the most relevant state of the art for
the subject-matier of claim 14, discloses (ihe references in parentheses apolying to
this document)

Dé disnloses a sequencer ("main sequencer 575) contreting instruntions forinter alla\ G g
the shader unit 80}.

A similar system is disclosed in O03.

From ihis, the sublect-matier of independent claim 4 differs in that the sequencer is in
@ unified shader in the sense of the appiication.

Fore POTASAZAY (Sapersie Shes} (Shes TyTERGJanuary 28}

LG Ex. 1002, pg 94

LG Ex. 1002, pg 95

WRITTEN OFINION OF THE internation! eoulication Ne.
INTERNATIONAL SEARCHING

AUTHORITY (SEPARATE SHEET) POTABZO04/003821

3.1 The subject-matter of claim 14 is therefore novel (Aricle 3912) PCT}

4 he problem to be scived by the present invention may be regarded as fo design a
shader able to simultaneously perform vertex manipulations and pixel manipulations
ai vanous degrees of completion and io freely andquickly switch between the
program instructions for perfarming such operations.

4,1 The solutionto this problem proposed in claims 1 anc! 14 of the present application is
considered as involving an inventive step (Article 33(4) PCT) because the available
prior ari leaches away from a unified shader performing vertex operations and pixel
operatons (performing one of the veriex operations ar pixel operatiang based ona
Selected inpul) as claimed in claims 1 and 14, since the por art uses the vertex
Shader and the pixel shader in different phases of ¢ graphies operation algedthmes
(see O4 page 2, left-hand column, paragraph 4 - right-hand column, paragraph 3and
iocates them in aifferent entities (see D4 page 2 right-hand column last paragraph -
bage ¢, jef-hand column, fret paragraph).

S Although claims | ancl t4 have been drafted as separate independent claims, they
appearto relate effectively to the same subject-matter (unified shader and to differ
from each other only with regard to the definition of the subject-matter for which
protection is sought. The aforementioned claims therefore lack canciseness and as
such do not meal the requirements of Aricle 6 PCT,

For POTIGASS? (Sopamis Sheet (Sheet 8} (EPO-Janwary 2064}

LG Ex. 1002, pg 95

LG Ex. 1002, pg 96

Electronic Acknowledgement Receipt

10516788

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

reChristopher Reckemp/Christine Neigh
Filer Authorized By: Christopher J, Reckamp

Attorney Docket Number: 00100,36.0001

Filing Date: 17-MAY-2011

Time Stamp: 10:53:09

Application Type: Utility under 35 USC 111(a)

Paymentinformation:

Document DocumentDescription File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

Transmittal Letter 360001_|DSCoverSheet.pdf 9d 16005 cb579bb43<00577609<540cb522|
21b70f

«
Information:

LG Ex. 1002, pg 96

LG Ex. 1002, pg 97

. . 614273
Information Disclosure Statement (IDS)

Form (SB08) 360001_IDS.pdf 63418bh63ea68e1617a9aN1 aedc6Nasted7|
3388c

Information:

246983

Foreign Reference EP2299408A2.pdf 09f1 ee596dd 08aed98b8de9075 3c.a71578
eB74

Information:

328840

Foreign Reference EP2309460A1.pdf 652.15 1662ba7749073d047Baad6f3179399)
113ab

Warnings:

Information:

251856

Foreign Reference EP2296116A2.pdf 3837df67afS 13987c35c30ecd59d833d5cc5}
W67e

Warnings:

48c81a430e79648900c23 d28f2748cc808I3|
<064

1165150

a4a9767027a73f7b846 165895 994405151
A7e9d

862733

Non Patent Literature NPL3.pdf d8b6fc637196ac63024fdcad91205f2d4fa3
$e63

Information:

1641023

Non Patent Literature NPL4.pdf 9a70a0366cch 1 4a76cb08fa9239cfd 5d4bagy

Warnings:

Information:

795051 | no
9e7a348ae054c8 103 18a66921 1f8a8479fq

(62
Non Patent Literature NPLS5.pdf

Warnings:

Information:

LG Ex. 1002, pg 97

LG Ex. 1002, pg 98

Non Patent Literature NPL6.pdf

128778

5724079302 afte7323929751 9hdcet4ad3|
e48e

Information:

Non PatentLiterature

Information:

NPL7.pdf £80ba23171009ea91 7b5 af1 b38LL40107 3d}
4334d

Non Patent Literature

Warnings:

NPL8.pdf

125523

30150629503 15bOfch eee6fo58c9efI45 Ace]
dce5

Information:

Non Patent Literature

Warnings:

NPL9.pdf

94932

£03209cd70559d624099a1 ca9edaS062b82!
dd118

Information:

Non Patent Literature NPL10.pdf

1320776

08d008e350c1d0391f8d 16ea605cdb10b73}
cadea

Information:

Non Patent Literature NPL12.pdf 934b6429d64be5f3326e40de2a1 fefcl2a21|
0043

Non Patent Literature

Information:

NPL13.pdf b97d9c1be4736c1e004655027a2 11369044]
eb222e

Non Patent Literature

Warnings:

NPL14.pdf

791431

€7424e47echdf946ad 92946 192b1b43afa3
1h54h

Information:

Non Patent Literature

Warnings:

NPL11.pdf

1258222 | no
9b87dd5c1e49d6956277a877761 5f14b72a}

dbbe4

Information:

LG Ex. 1002, pg 98

LG Ex. 1002, pg 99

Total Files Size (in bytes) 9950261

This AcknowledgementReceipt evidences receipt on the noted date by the USPTOof the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidenceof receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new applicationis being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptance of the application asa
nationalstage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary componentsfor
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the InternationalFiling Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shown on this AcknowledgementReceiptwill establish the international filing date of
the application.

LG Ex. 1002, pg 99

LG Ex. 1002, pg 100

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Steven Moreinet al. Examiner: na
Serial No.: 13/109,738 Art Unit: na

Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

INFORMATION DISCLOSURE STATEMENT

IN ACCORDANCE WITH37 CER§§1.97(b) AND 1.98

Pursuant to 37 CFR §§ 1.97(b)(3) and 1.98, Applicants respectfully submit Form

PTO/SB/08A. The submission of the listed documentis not an admission that the information is

prior art, analogous or otherwise material. It is respectfully requested that the listed document be

considered and made of record in the present application.

Respectfully submitted,

Date: July 14, 2011 By:/ChristopherJ.Reckamp/
Christopher J. Reckamp
Registration No. 34,414

VedderPrice P.C.

222 N. LaSalle Street

Chicago, IL 60601
(312) 609-7500
FAX: (312) 609-5005

CHICAGO/#2205021.1

LG Ex. 1002, pg 100

LG Ex. 1002, pg 101

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O, Box 1450
Alexandria, Virginia 22313-1450
www .uspto. gov

 APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEYDOCKET NO. CONFIRMATION NO.

13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020

29153 7590 07/21/2011

ADVANCED MICRO DEVICES. INC.
C/O VEDDERPRICEP.C. WASHBURN,DANIEL C
222 N.LASALLE S'TREET

CHICAGO,IL 60601 ART UNIT PAPER NUMBER

MAIL DATE DELIVERY MODE

tyaie) «

07/21/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

LG Ex. 1002, pg 101

LG Ex. 1002, pg 102

Application No. Applicant(s)

13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
DANIEL WASHBURN 2628

-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY (80) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensions oftime may be available under the provisions of 37 CFR 1.136(a}. In no event, however, may a reply betimely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period tor reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Anyreply received by the Office later than three months after the mailing date of this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)EX] Responsive to communication(s) filed on 17 May 2017.
2a)L] This action is FINAL. 2b) This action is non-final.
3) Sincethis application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-76 is/are pending in the application.
4a) Of the above claim(s)__is/are withdrawn from consideration.

5)L) Claim(s)__is/are allowed.
6)X] Claim(s) 1-16 is/are rejected.
7)L Claim(s) ___is/are objectedto.
8)L] Claim(s)__ are subject to restriction and/or election requirement.

Application Papers

9)L] The specification is objected to by the Examiner.
10)X] The drawing(s)filed on 17 May 2071 is/are: a) accepted or b)[] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacementdrawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121 (d).

1) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgmentis madeof a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a)DAll 6) Some*c)L Noneof:

1.1] Certified copiesof the priority documents have been received.
2.0) Certified copies of the priority documents have been received in Application No.
3.1 Copiesof the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action fora list of the certified copies not received.

Attachment(s)

1) x] Notice of References Cited (PTO-892) 4) CT Interview Summary (PTO-413)
2) CJ Notice of Draftsperson’s Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. ___
3) FJ Information Disclosure Statement(s) (PTO/SB/08) 5) L] Noticeof Informal Patent Application

Paper No(s)/Mail Date 6) oO Other:
U.S. Patent and Trademark Office

PTOL-326 (Rev. 08-06) Office Action Summary Part of Paper No./Mail Date 20110712

LG Ex. 1002, pg 102

LG Ex. 1002, pg 103

Application/Control Number: 13/109,738 Page 2

Art Unit: 2628

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section madein this Office action:

A personshall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by anotherfiled in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an applicationfiled in the United States
only if the international application designated the United States and was published under Article 21 (2)
of suchtreaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex

operations on the vertex data by a processorunless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmedto
operate on surface,primitive, vertex, fragment, pixel, sample or any other data. For
simplicity, the remainderof this description will use the term ‘samples’ to refer to
graphics data such as surfaces,primitives, vertices, pixels, fragments,or the like."

6:38-59: “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types mayincludepixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesor allocate locations in Register File 350 using thread
allocation priorities”.

LG Ex. 1002, pg 103

LG Ex. 1002, pg 104

Application/Control Number: 13/109,738 Page 3

Art Unit: 2628

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources suchas locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread.”

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedatato at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations andpixel

manipulation operations by transmitting vertex data to a general purposeregister block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purpose register block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which case the thread associated with the vertex data and

vertex operations must wait until enough space becomesavailable); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor basedoninstructions maintained in an instruction store

until enough registers within the general purposeregister block becomeavailable(

LG Ex. 1002, pg 104

LG Ex. 1002, pg 105

Application/Control Number: 13/109,738 Page 4

Art Unit: 2628

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesor allocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or morethread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.
Instruction cache 410 determinesif the program instructions corresponding to the
program counters and sample typeincluded in the thread state data for each thread
entry are available in Instruction Cache 410 ... The program instructions corresponding
to the program counters from the one or morethread entries are output by Instruction
Cache 410 to ... Instruction Scheduler 430 ... Each clock cycle, Instruction Scheduler
430 evaluates whether any instruction within the IWU [instruction window unit] 435 can
be executed based on the availability of computation resources in an Execution Unit
470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resourcesare not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source datato at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing

pixel calculation operations that are to be or are currently being performed bythe

processor basedoninstructions maintained in an instruction store until enough registers

within the general purpose register block becomeavailable, as the Execution Unit 470

may be carrying out calculations for one or more high priority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or more pixel threadsto finish such that whenthe pixel

threadsfinish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amountof resources to

the queued up vertex thread).

LG Ex. 1002, pg 105

LG Ex. 1002, pg 106

Application/Control Number: 13/109,738 Page 5

Art Unit: 2628

RE claim 2, Lindholm describes a unified shader, comprising:

a general purposeregister block for maintaining data (

7:37-48: “Once a thread is assigned to a source sample, the threadis allocated
storage resources such as locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread.”);

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer, coupled to the general purpose register block and the processor

unit, the sequencer maintaining instructions operative to cause the processorunit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purpose register block(

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."); and

wherein the processor unit executes instructions that generate a pixel color in

response to the selected oneofthe plurality of inputs and generates vertex position and

appearancedata in responseto a selected oneof the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... and output
the processed sample to a destination specified by the instruction. The destination may
be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 mayreceive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device

LG Ex. 1002, pg 106

LG Ex. 1002, pg 107

Application/Control Number: 13/109,738 Page 6

Art Unit: 2628

coordinates ... Execution Pipelines 240 output processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260 ... Each Execution Pipeline 240 signals to
Pixel Input Buffer 240 when a sample can be accepted ... programmable computation
units (PCUs) within an Execution Pipeline 240 ... perform operations such as
tessellation, perspective correction, texture mapping, shading, blending, and the like.
Processed samplesare output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

Thus, the Execution Unit 470 is considered a processorunit that executes

instructions that generate a pixel color in responseto the selected oneofthe plurality of

inputs and generates vertex position and appearance data in response to a selected

one of the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wherethe at least two thread types mayinclude pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processorunit operative to perform vertex calculation operations and pixel calculation

operations); and

LG Ex. 1002, pg 107

LG Ex. 1002, pg 108

Application/Control Number: 13/109,738 Page 7

Art Unit: 2628

shared resources, operatively coupled to the processorunit (FIG.4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processorunit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources becomeavailable and then use the shared resources to perform

vertex calculation operations (7:37-43,all types of processing threads can usethe

Register File 350, where thread typesinclude vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samples or allocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources maybe in graphics memory. When storage
resourcesare not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, whenpixel threads havepriority over vertex threads the processorunit will

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources becomeavailable in the Register File 350 to

begin carrying out vertex threads, which may happenas a result of a completion of most

of the pixel threadsora shift in priority such that the vertex threads now havethe

highest priority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

LG Ex. 1002, pg 108

LG Ex. 1002, pg 109

Application/Control Number: 13/109,738 Page 8

Art Unit: 2628

a processorunit operative to perform vertex calculation operations andpixel

calculation operations (see the corresponding sectionin the rejection of claim 3); and

shared resources, operatively coupled to the processorunit (See the

corresponding section in the rejection of claim 3);

the processorunit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform vertex calculation operations until enough

shared resources become available and then use the shared resourcesto perform pixel

calculation operations (7:37-43, all types of processing threads can use the Register

File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesorallocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resourcesare not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedatato at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processorunit will

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources becomeavailable in the Register File 350 to

begin carrying out pixel threads, which may happenas a result of a completion of most

of the vertex threadsora shift in priority such that the pixel threads now havethe

highestpriority, and then use the Register File 350 to perform pixel calculation

operations.

LG Ex. 1002, pg 109

LG Ex. 1002, pg 110

Application/Control Number: 13/109,738 Page 9

Art Unit: 2628

RE claim 5, Lindholm describes a unified shader comprising:

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencercoupled to the processorunit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amountof space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the |WU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesor allocate locations in Register File 350 using thread
allocation priorities”.

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resourcesare not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and source datato at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amountof space available in the Register File 350).

LG Ex. 1002, pg 110

LG Ex. 1002, pg 111

Application/Control Number: 13/109,738 Page 10

Art Unit: 2628

RE claim 6, Lindholm describes the shaderof claim 5, wherein the sequencer

further includescircuitry operative to fetch data from a memory(

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shaderof claim 5, further including a

selection circuit operative to provide information to the store in response to a control

signal (

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in responseto a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shaderof claim 5, wherein the processorunit

executes instructions that generate a pixel color in response to the selected oneof the

plurality of inputs (

5:11-35 “Pixel Inout Buffer 215 outputs the samples to each Execution Pipeline
240 ... Each Execution Pipeline 240 signals to Pixel Inout Buffer 240 when a sample
can be accepted ... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations suchas tessellation, perspective correction, texture
mapping, shading, blending, and the like. Processed samples are output from each
Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shaderof claim 5, wherein the processorunit

executes vertex calculations while the pixel calculations arestill in progress(

LG Ex. 1002, pg 111

LG Ex. 1002, pg 112

Application/Control Number: 13/109,738 Page 11

Art Unit: 2628

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wherethe at least two thread types mayinclude pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsofdifferent types.”).

RE claim 10, Lindholm describes the shaderof claim 5, wherein the processor

unit generates vertex position and appearancedata in responseto a selected oneof the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 mayreceive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 output processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shacerof claim 7, wherein the control

signal is provided by an arbiter(

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on thepriority assigned to each sample
type. The threadallocation priority may be fixed, programmable, or dynamic ... In an
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samples or allocate locations in Register File 350 using thread allocation
priorities based on an amount of sample data in Pixel Input Buffer 215 and another
amount of sample data in Vertex Input Buffer 220 ... In a further alternate embodiment,
Thread Control Unit 420 is configured to assign threads to source samplesorallocate
locations in Register File 350 using thread allocation priorities based on graphics
primitive size”.

LG Ex. 1002, pg 112

LG Ex. 1002, pg 113

Application/Control Number: 13/109,738 Page 12

Art Unit: 2628

Thus, while an arbiter isn't explicitly described, the Examiner considersit inherent

that someportion of the system acts as an arbiter, and therefore can be considered an

arbiter, as someportion of the system assignspriorities to thread and sample types

according to the current processing circumstances,in order to moreefficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:

a unified shader comprising a processorunit that executes vertex calculations

while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wherethe at least two thread types mayincludepixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threads of different types.”).

RE claim 13, Lindholm describes the graphics processorof claim 12 wherein the

unified shader comprises a sequencercoupled to the processorunit, the sequencer

maintaining instructions operative to cause the processorunit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amount of space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processorof claim 12 comprising

a vertex block operative to fetch vertex information from memory (seethe rejection of

claim 6).

LG Ex. 1002, pg 113

LG Ex. 1002, pg 114

Application/Control Number: 13/109,738 Page 13

Art Unit: 2628

RE claim 15, Lindholm describes a unified shader comprising:

a processorunit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload(

7:6-36 “Thread Control! Unit 420 is configured to assign threads to source
samples or allocate locations in Register File 350 using thread allocation priorities
based on an amountof sample data in Pixel Input Buffer 215 and another amount of
sample data in Vertex Input Buffer 220 ... In a further alternate embodiment, Thread
Control Unit 420 is configured to assign threads to source samples or allocate locations
in Register File 350 using thread allocation priorities based on graphics primitive size
(numberof pixels or fragments included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsof different types.”).

RE claim 16, Lindholm describes the shaderof claim 15 comprising an

instruction store and wherein the processorunit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching betweeninstructions in the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsofdifferent types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

betweeninstructions in the instruction store).

LG Ex. 1002, pg 114

LG Ex. 1002, pg 115

Application/Control Number: 13/109,738 Page 14

Art Unit: 2628

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBURNwhosetelephone numberis

(571)272-5551. The examiner can normally be reached on 9:30 A.M. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone numberfor

the organization wherethis application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For moreinformation about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA)or 571-272-1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
7/12/11

LG Ex. 1002, pg 115

LG Ex. 1002, pg 116

Application/Control No. Applicant(s)/Patent Under
Reexamination

13/109,738 MOREIN ET AL.
Notice of References Cited

Examiner Art Unit

DANIEL WASHBURN 2628

U.S. PATENT DOCUMENTS

Document Number Date eg
Cauntry Code-Number-Kind Cade MM-YYYY Name Classification

S-7,038,685 05-2006 Lindholm, John Erik 345/501

Page 1 of 1

CcCy;];Ccl]cy]cIyc
Cc

CIc]}cyTc
c

 Cc

FOREIGN PATENT DOCUMENTS

Document Number Date “gai
Country Cade-Number-Kind Code MM-YYYY Country Name Classification

c

NON-PATENT DOCUMENTS

*A copyof this reference is not being furnished with this Office action. (See MPEP § 707. 05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20110712

LG Ex. 1002, pg 116

LG Ex. 1002, pg 117

Application/Control No.

Index of Claims 13

Examiner

DANIEL WASHBURN

Reexamination

109738 MOREIN ETAL.

Art Unit

2628

Applicant(s)/Patent Under

Final

CLAIM

(J Claims renumbered in the same order as presented by applicant LJ CPA O T.D. O R1.47

|Originalforazors||
pot

ee

Po2|ve|

3 v

4 Vv

5 v

|6|v|ftff
aa
Pos|ve|Tf

9 v

10 v

11 v

aeG
vy{[
2ee

15 v

16 v

U.S. Patent and Trademark Office Part of Paper No. : 20110712

LG Ex. 1002, pg 117

LG Ex. 1002, pg 118

Application/Control No. Applicant(s)/Patent Under
Reexamination

Search Notes 13109738 MOREIN ETAL.

Examiner Art Unit

DANIEL WASHBURN 2628

SEARCHED

Subclass Examiner
712i

SEARCH NOTES

Search NotesSearched EAST(all databases) see search history printout fae
Also see search histories for apps 12/791 ,597 and 11/842,256 7/12/11 DW
conducted inventor name search 7/12/11 DW

INTERFERENCE SEARCH

a

/DANIEL WASHBURN/

Primary Examiner.Art Unit 2628
U.S. Patent and Trademark Office Part of Paper No.:

LG Ex. 1002, pg 118

LG Ex. 1002, pg 119

V2) UNITED STATES PATENT AND TRADEMARK OFTICE
BIB DATA SHEET

Page 1 of 1

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
www.1spto.gov

CONFIRMATION NO. 2020

SERIAL NUMBER FILINGor. 371(c) GROUPART UNIT ATTORNEY DOCKET
13/109,738 05/17/2011

RULE

APPLICANTS

Stephen Morein, Cambridge, MA;
Laurent Lefebvre, Lachgnaie, CANADA;
Andy Gruber, Arlington, MA;
Andi Skende, Shrewsbury, MA;

** CONTINUING DATA **tttthtttttentiiciiie

This application is a CON of 12/791,597 06/01/2010 ABN
which is a CON of 11/842,256 08/21/2007 ABN
which is a CON of 11/117,863 04/29/2005 PAT 7,327,369
which is a CON of 10/718,318 11/20/2003 PAT 6,897,871

kK FOREIGN APPLICATIONS KEKREKERERHEEKEERERERERERERE

** IF REQUIRED, FOREIGN FILING LICENSE GRANTED**
05/27/2014

Foreign Priority clairned O Yes WNo STATE OR SHEETS
35 USC 119(a-d) conditions met a) Yes WNo Q) Metafter COUNTRY DRAWINGSVerified and /DANIEL C

WASHBURN! MA 5
Acknowledged Examiner's Signature Initials

ADDRESS

ADVANGED MICRO DEVICES, INC.
C/O VEDDERPRICEP.C.
222 N.LASALLE STREET

CHICAGO, IL 60601
UNITED STATES

00100.36.0004

TOTAL=|INDEPENDENT
CLAIMS CLAIMS

16 7

TITLE

GRAPHICS PROCESSING ARCHITEGTURE EMPLOYING A UNIFIED SHADER

LI All Fees

O 1.16 Fees(Filing) |
FILING FEE |FEES: Authority has been given in Paper
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT

for following: L) 1.18 Fees (Issue)

L) Other

Q Credit

BIB (Rev.05/07).

L) 1.17 Fees (Processing Ext. of time)

LG Ex. 1002, pg 119

LG Ex. 1002, pg 120

EASTSearch History

EAST Search History

EAST Search History (Prior Art)

x ‘("7038685").PN.

1217 (345/501.ccls.

i;88

(US- PGPUB:
'USPAT; USOCR
‘US- PGPUB;
‘USPAT; USOCR;
‘FPRS; EPO;
\JPO; DERWENT;
‘1BM_TDB

EAST Search History (Interference)

<This search h

7/12/2011 1

istory is empty>

:53:40 PM

‘OFF

we
i::
$; ;

i :
;; i
: :; :; :

$: ;

2011/07/12 :; 7,; i
: :; :8 . g
13 21 :ue \

i: :

2011/07/12 ‘; 7, :
: :: :; ;
: :
13:29 ;
; i
8 . g; :; :
; :; ;
i :g: i
: :: :gi :‘

i:

C:\ Documents and Settings\ dwashburn1\ My Documents\ EAST\ Workspaces\ Morein
et al. 111178 63.wsp

file:///Cl/Documents%20and%20Settings/dwashburn 1/My%20Do...3 109738/EASTSearchHistory. 13109738AccessibleVersion.htm7/12/2011 1:53:57 PM

LG Ex. 1002, pg 120

LG Ex. 1002, pg 121

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and ‘Trademark Office
Address: COMMTSSIONER, FOR PATENTSPC. Box 1450

Alexandria, Virgnia 22313-1450Wwww.uspto.gov

 APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO/TTILE

13/109,738 05/17/2011 Stephen Morein 00100.36.0001
CONFIRMATION NO.2020

29153 PUBLICATION NOTICE

ADVANCED MICRO DEVICES, INC.

C/O VEDDER PRICEP.C. AMUN000000049722760
222 N.LASALLE STREET

CHICAGO, IL 60601

Title:;GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Publication No.US-201 1-0216077-A1
Publication Date:09/08/201 4

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37
CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the
Internet at www.uspto.gov. The direct link to access the publication is currently http:/Awww.uspto.gov/pattt/.

The publication process established by the Office does not provide for mailing a copy of the publication to
applicant. A copy of the publication may be obtained from the Office upon paymentof the appropriate fee set forth
in 37 GFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of
Public Records. The Office of Public Records can be reachedbytelephone at (703) 308-9726 or (800) 972-6382,
by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of
Public Records, Alexandria, VA 22313-1450orvia the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the
dates of receipt of correspondencefiled in the Office, may also be accessed via the Internet through the Patent
Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and
Retrieval (PAIR) system. The direct link to accessthis status information is currently htto://pair.uspto.gov/. Prior to
publication, such status information is confidential and may only be obtained by applicant using the private side of
PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent
Electronic Business Center at 1-866-217-9197.

Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

LG Ex. 1002, pg 121

LG Ex. 1002, pg 122

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

Applicants:|Stephen Moreinetal. Examiner: Daniel C. Washburn
Serial No.:—13/109,738 Art Unit: 2628
Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYINGA UNIFIED

SHADER

Mail Stop Amendment
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

RESPONSE

DearSir:

In responseto the office action mailed July 21, 2011, Applicants petition for a three

month extension of time and respond as follows:

Listing of the Claims begins on page 2 ofthis paper.

Remarksbegin on page6 ofthis paper.

BDDBO1 9084641v1

LG Ex. 1002, pg 122

LG Ex. 1002, pg 123

Listing of the Claims:

1, (original) A mcthod comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block becomeavailable.

2. (original) A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one ofthe plurality of inputs and generates vertex position and appearance data in

response to a selected one ofthe plurality of inputs.

3. (original) A unified shader comprising:

BDDBO1 9084641v1 2

LG Ex. 1002, pg 123

LG Ex. 1002, pg 124

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and opcrative to perform vertex calculation opcrations until cnough shared resources

becomeavailable and then use the shared resources to perform pixel calculation operations.

5. (original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountofspace available in

the store.

BDDBO1 9084641v1 3

LG Ex. 1002, pg 124

LG Ex. 1002, pg 125

6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

opcrative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in response to a controlsignal.

8. (original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in responseto the selected one of the plurality of inputs.

9. (original) The shader of claim 5, wherein the processor unit executes vertex

calculations while the pixel calculationsare still in progress.

10.—(original) The shaderof claim 5, whercin the processor unit generates vertex

position and appearance data in response to a selected one ofthe plurality of inputs.

11. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12.—(original) A graphics processor comprising:

a unified shader comprising a processorunit that executes vertex calculations while the

pixel calculationsare still in progress.

BDDBO1 9084641v1 4

LG Ex. 1002, pg 125

LG Ex. 1002, pg 126

13. (original) The graphics processor of claim 12 wherein the unified shader

comprises a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountofspace available in

the store.

14. (original) The graphics processor of claim 12 comprising a vertex block operative

to fetch vertex information from memory.

15. (original) A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operationsat

various degrees of completion based on switching between instructions in the instructionstore.

BDDBO1 9084641v1 5

LG Ex. 1002, pg 126

LG Ex. 1002, pg 127

REMARKS

Applicants respectfully traverse and request reconsideration.

Claims 1-16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

U.S. Patent No. 7,038,685 (Lindholm). Applicants respectfully submit herewith Declarations

under 37 C.F.R. § 1.131 for inventors Laurent Lefebvre, Andrew E. Gruber, Stephen L. Morein

and Andi P. Skende establishing conception and reduction to practice of the currently claimed

subject matter prior to the June 30, 2003 priority date of Lindholm. It is believed that Lindholm

docs not claim the same patentable invention as defined by 37 C.F.R. § 41.203(a) and that the

present rejection is not based onastatutory bar, i.c., Lindholm qualifies as prior art only under

35 U.S.C. § 102(e). Accordingly, the attached Declarations are relied on to establish prior

reduction to practice of the claimed subject matter, particularly with regard to independent

claims 1-5, 12 and 15.

Regarding the reduction to practice evidenced by the attached Declarations, Applicants

first note that, properly presented, a Rule 131 declaration may demonstrate prior invention if it

provides a “showingoffacts . . . as to establish reduction to practice prior to the effective date of

the reference.” 37 C.F.R. § 1.131(b). As set forth in M.P.E.P. § 715.07(1), evidence in support

of asserted facts demonstrating prior invention may be provided in the form of “an

accompanying model.” With regard to an apparatus and/or process implemented by an

integrated circuit or the like, Applicants respectfully submit that a simulation of such an

apparatus and/or circuit may effectively serve as a “model” demonstrating successful reduction

to practice. Specifically, Applicants respectfully submit that evidence of (i) a successful

computer-based simulation of a physical embodiment and/or (11) a description of a physical

embodiment capable of translation to implement the actual physical embodiment, coupled with

BDDBO1 9084641v1 6

LG Ex. 1002, pg 127

LG Ex. 1002, pg 128

successfully testing of the resulting physical embodimentis sufficient to demonstrate an actual

reduction to practice for the purposes of Rule 131 declaration. (Sec McDonnell Douglas Corp. v.

U.S., 670 F. 2d 156, 161 (Ct. Cl. 1982) (where court concludes that “physical tests proved that

the computer approved device . . . failed in actual practice . . . to perform in the manner

intended” and that subsequent successful physical testing was the first reduction to practice, a

necessary implication is that a valid reduction to practice would result if actual physical testing

demonstrates that prior computer simulation was adequate.); Mosaid Tech. Inc, v. Samsung Elec.

Co., 362 F.Supp.2d 526, 547 (D.N.J. 2005) (noting that the McDonnell case suggested “that a

computer simulation may be a valid reduction to practice, but not if subsequent, actual physical

testing proves that it is inadequate,” and that “there are areas of science where a successfully run

simulation represents the end of the inventive process and the construction of the physical

embodimentis but a matter of mere routine and mechanical application [such that] a simulation

should be a valid reduction to practice.”’))

With regard to the instant application, as shown in the attached Declarations, Applicants

have provided evidence that both a simulation and hardware design description (expressed in a

hardware design language capable of conversion to a physical embodiment) subsequently lead to

a successfully tested physical embodiment of (and, therefore, actual reduction to practice of) the

subject matter recited in the independent claims. More particularly, the attached Declarations

demonstrate invention of the recited subject matter in claims 1-5, 12 and 15 prior to the effective

filing date of the Lindholm reference.

Thus, in light of the Declarations, Applicants respectfully submit that Lindholm is not

available as prior art against, and therefore obviates the sole basis for rejecting, the above claims,

which claims are therefore in suitable condition for allowance. Applicants further note that

BDDBO1 9084641v1 7

LG Ex. 1002, pg 128

LG Ex. 1002, pg 129

claims 6-11, 13, 14 and 16 are dependent upon, and therefore incorporate the limitations of,

respective ones of claims 5, 12 and 15. As such, claims 6-11, 13, 14 and 16 are also allowable

for the same reasons presented aboverelative to their respective independent claims.

Applicant respectfully submits that the claims are now believed to be in condition for

allowanceandthat a timely Notice of Allowancebe issued in this case. If the Examiner believes

that personal communication will expedite prosecution of this application, the Examiner is

invited to telephone the undersignedat (312) 356-5094.

Respectfully submitted,

Dated: January 18, 2012 By:____/Christopher J. Reckamp/
Christopher J. Reckamp
Reg. No. 34,414

Faegre Baker Daniels LLP
3118. Wacker Drive

Chicago, IL 60606
PHONE: (312) 356-5094
FAX: (312) 212-6501

BDDBO1 9084641v1 8

LG Ex. 1002, pg 129

LG Ex. 1002, pg 130

PATENT

ATTORNEY DOCKET NO.00100.36.0001

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

Applicant: Stephen Morein etal.

Serial No. 13/109,738 Art Unit:2628

Filed: May17, 2011 Examiner: Daniel C. Washburn

For: GRAPHICS PROCESSING

ARCHITECTURE EMPLOYING A

UNIFIED SHADER

Confirmation No. 2020

DECLARATION UNDER37 C.F.R. § 1.131

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22314-1450

Sir:

We, Stephen L Morein a citizen of the U.S. residing al 367 Santana Heights, Unit 3027,
San Jose California 95128; Laurent Lefebvre, a citizen of Canada residing at 1055 Garden
Avenue, Mascouche, Quebec, CANADA, J7L-0A1; Andrew E. Gruber a citizen of the U.S.
residing at 251 Pleasant Street, Arlington, Massachusetts 02476; and Andi Petrit Skendeacitizen
of the U.S. residing at 35 Sunrise Avenue, Worcester, Massachusetts 01606, do hereby declare
that:

1, Wearejoint inventors of the subject matter described and claimed in U.S. Patent
Application No. 13/109,738 (hereinafter “the Invention”), filed in the United States of America
on May 17, 2011, entitled “Graphics Processing Architecture Employing a Urified Shader”,
which application is a continuation of and claims priority to U.S. Patent Aoplication No.
12/791,597 filed June 1, 2010, which application is a continuation ofand claimspriority to U.S.
Patent Application No. 11/842,256 filed August 21, 2007, which application is a continuation of
and claims priority to U.S. Patent Application No. 11/117,863 filed April 29, 2005 (now U.S.
Patent No. 7,327,369), which application is a continuation of and claims priority to U.S. Patent
Application No. 10/718,318 filed November 20, 2003 (hereinafter “the ‘318 application”; now
U.S.Patent No. 6,897,871).

2. We conceived the Invention prior to June 30, 2003 while employed by ATI
Technologies Inc, and/or one ofits wholly owned subsidiaries (“ATI”) as indicated by attached
Exhibits A and B. Exhibit A is a copy of emulation code files entitled Reg_file.cpp,
Instruction_store.epp, Arbiter.cpp, Gpr_manager.cpp, sq_alu.cpp and sq_block_model.cpp that,

CHICAGO/#2239588.1

LG Ex. 1002, pg 130

LG Ex. 1002, pg 131

based on information and belief, we invented and assisted in coding prior to June 30, 2003 the
(“Model Code”). Exhibit B is a copy of hardware register transfer level (RTL)files (“the Chip
Design Code”) entitled sq_gpr_alloc.v, Sq_aluinstrseq.v, sq_instruction_store_v,
Sp_macc_gpr.v, sp_vector.v, sq.v, sq_export_alloc.v, sq_ctl_flow_seq.v, sq_alu_instr_seq.v,
sq_thread_arb.v and sq_shader_seq.v, that, based on information and belief, we assisted in
creating prior to June 30, 2003. Prior to June 30, 2003 we created a graphics processing system
that operated as claimed using a computer system that successfully executed the Model Code.
Prior to June 30, 2003 we also created a graphics processing system as claimed in the form of a
computer system that used an RTL simulator to successfully validate the operation of an
integrated circuit version of the claimed graphics processing system and method Atleast the
following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software instructions
written in the well-known C++ language. When executed by the computer system , the
Model Code caused the computer system to operate as claimed in at least claims 1-5, 12
and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the claimed
subject matter for its intended purpose through emulationthereof.

c. As shown in Exhibit B, the Chip Design Code comprises various instructions
written in a well-known hardware description language. The Chip Design Code was used
by an RTL simulator system to validate the operation of an integrated circuit version of
the claimed graphics processing system and method asclaimed in at least claims 1-5, 12
and 15. As further known bypractitioners in the field of integrated circuit design, such
instructions are used to generate gate level detail for silicon fabrication.

d. On information and belief, the computer system operating the Model Code and
the RTL simulator system operating the Chip Design Code represents the claimed
structure and operation embodied in an integrated graphics processing circuit chip
referred to as the ATI XENOSchip produced by ATI onor about October, 2004 that was
incorporated in the XBOX 360 product.

Accordingly, the contents of Exhibits A and B establish the possession by us of the whole
Invention,falling within the scope of currently pending claims, such as but notlimited to at least
claims 1-5, 12 and 15.

CHICAGO/#2239538.1

LG Ex. 1002, pg 131

LG Ex. 1002, pg 132

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonge€nt, or both,under § 1001 of Title 18 of the United States Code and that such willful "ecm mayjeopardize the validity of the application or anypatent issued therefrom.4

Dated:

Laurent Lefebvre

Dated:

Andrew E. Gruber

Dated:
Andi Petrit Skende

3
CHICAGOH2239588.1

LG Ex. 1002, pg 132

LG Ex. 1002, pg 133

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Dated:

Stephen L. Morein

Dated: OCTOC fj CELL1 Loe
Laurent Lefebvre

Dated:

Andrew E. Gruber

Dated:

Andi Petrit Skende

3
CHICAGO/#2239588.1

LG Ex. 1002, pg 133

LG Ex. 1002, pg 134

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and cach of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity ofthe application or anypatent issued therefrom.

Dated:

Stephen L. Morcin

Dated:

Dated: lo [23 | tl

Laurent Lefebvre

Dated:

Andi Petrit Skende

CHICAGO/#2239588.1

LG Ex. 1002, pg 134

LG Ex. 1002, pg 135

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information andbelief are believed to be
trie; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Dated: a
Stephen L. Morein |

Dated: ee
Laurent Lefebvre |

Dated:

Andrew E, Gruber

Dated:_Decamber22,200)sfhSaoSSK
Andi Fetrit Skende

CHICAGOMH223 9588.|

LG Ex. 1002, pg 135

LG Ex. 1002, pg 136

Reg_file.cpp

#include "regfile.h”

RegFile: :RegFile()

EXHIBIT A —- MODEL CODE

{
for (int i=@3;1<128;1i++)

for (int j=@;j<16;j++)
for (int k=03;k<4;k++)

regValues[i].Val[j].field[k].clamp(9);
t

void RegFile::GetConstValues(const RegVect* &Values,int Addr)
{

Values = &(regValues[Addr].Val[2]);
t

void RegFile: :GetValues(RegVect* &Values,int Addr)
{

Values = &(regValues [Addr] .Val[Q]);
t

Instruction store:

Instruction_store.cpp
#include "instruction_store.h”

IStore: :IStore()
{

for (int i=@3;1<4096; i++)
{

instructions[i]
instructions[i]
instructions[i]
instructions [i]
instructions[i]
instructions[i]
instructions[i]
instructions [i]
instructions [i]
instructions[i]
instructions[i].
instructions[i].

}

. byted=0xe0;

. byte1=0xee;

. byte2=0x9a;

. byte3=0xe0;

.byte4=0x00;

.byte5=0xe0;

. byte6=0xe0e;

.byte7=0xe0;

. byte8=0x00;

. byte9=0x00;
byte10=0xee;
byte11=0xee;

void IStore::GetInst(Instruction &inst,int addr)
{

inst = instructions[addr];
}

LG Ex. 1002, pg 136

LG Ex. 1002, pg 137

void IStore::G

{
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst.
aluInst.
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst
aluInst

}

etInst(ALU_Instruction &aluInst, int addr)

-SrcASel = ((instructions[addr].byte11 & @x8@) >> 7);
-SrcBSel = ((instructions[addr].byte11 & @x4@) >> 6);
-SrcCSel = ((instructions[addr].byte11 & @x2@) >> 5);
-VectorOpcode = ((instructions[addr].byte11 & @x1F));
-SourceARegPointer = ((instructions[addr].byte1@));
-SourceBRegPointer = ((instructions[addr].byte9));
-SourceCRegPointer = ((instructions[addr].byte8));
-Constan@RelAbs = ((instructions[addr].byte7 & @x8@) >> 7);
-ConstaniRelAbs = ((instructions[addr].byte7 & @x4@) >> 6);
RelativeAddrRegSel = ((instructions[addr].byte7 & @x2@) >> 5);
PredicateSelect = ((instructions[addr].byte7 & @x18) >> 3);

-SourceANegate = ((instructions[addr].byte7 & @x@4) >> 2);
-SourceBNegate = ((instructions[addr].byte7 & @x@2) >> 1);
-SourceCNegate = ((instructions[addr].byte7 & @x@1))3
-SourceASwizzle = ((instructions[addr].byte6));
-SourceBSwizzle = ((instructions[addr].byte5));
-SourceCSwizzle = ((instructions[addr].byte4));
-ScalarOpcode = ((instructions[addr].byte3 & @xfc) >> 2);
-ScalarClamp = ((instructions[addr].byte3 & @x@2) >> 1);
-VectorClamp = ((instructions[addr].byte3 & @x@1))3
-ScalarwriteMask = ((instructions[addr].byte2 & @xf@) >> 4);
-VectorwriteMask = ((instructions[addr].byte2 & @xe@f));
-ScalarResultPointer = ((instructions[addr].byte1) 3
.VectorResultPointer = ((instructions[addr].byte@))3

void IStore::GetInst(TInstrPacked &texInst, int addr)
{

t

texInst .unpack((const uint8*) (&instructions[addr]));

void IStore::GetInst(CF_Instruction &cfInst, int addr, bool left)
{

// read

if (lef
{

from bytes 11 thru 6
t)

cfInst.opCode = ((instructions[addr].byte11 & @xF@) >> 4);
cfInst.addrMode = ((instructions[addr].byte11 & @x@8) >> 3);
cfInst.bufferSel = ((instructions[addr].byte11 & @x@6) >> 1);
cfInst.condition = ((instructions[addr].byte11 & @x@4) >> 2);
cfInst.boolAddr = ((instructions[addr].bytel1 & @x@3) << 6) |

(Cinstructions[addr].byte1@ & @xFC) >> 2);
cfInst.direction = ((instructions[addr].byte1® & @x@2) >> 1);
cfInst.instTypeSer = ((instructions[addr].byte1@ & @x@3) << 16) |

((instructions[addr].byte9) << 8) |
(Cinstructions[addr] .byte8)) ;

cfInst.predBreak = ((instructions[addr].byte8 & @x2@) >> 5);
cfInst.loopId = ((instructions[addr].byte8 & @x1F));
cfInst.count = ((instructions[addr].byte7 & @xF@) >> 4);
cfInst.force = ((instructions[addr].byte7 & @x2@) >> 5);
cfInst.jcAddress = ((instructions[addr].byte7 & @x1F) << 8) |

(Cinstructions[addr] .byte6));
cfInst.address = ((instructions[addr].byte7 & @x@F) << 8) |

(Cinstructions[addr].byte6));
cfInst.allocSize = ((instructions[addr].byte6 & @x@F));

LG Ex. 1002, pg 137

LG Ex. 1002, pg 138

}

// read from bytes 5 thru @
else

{
cfInst.opCode = ((instructions[addr].byte5 & @xF@) >> 4);
cfInst.addrMode = ((instructions[addr].byte5 & @x@8) >> 3);
cfInst.bufferSel = ((instructions[addr].byte5 & @x@6) >> 1);
cfInst.condition = ((instructions[addr].byte5 & @x@4) >> 2);
cfInst.boolAddr = ((instructions[addr].byte5 & @x@3) << 6) |

((instructions[addr].byte4 & @xFC) >> 2);
cfInst.direction = ((instructions[addr].byte4 & @x@2) >> 1);
cfInst.instTypeSer = ((instructions[addr].byte4 & @x@3) << 16) |

((instructions[addr].byte3) << 8) |
((instructions[addr].byte2));

cfInst.predBreak = ((instructions[addr].byte2 & @x2@) >> 5);
cfInst.loopId = ((instructions[addr].byte2 & @x1F));
cfInst.count = ((instructions[addr].bytel & @xF@) >> 4);
cfInst.force = ((instructions[addr].byte1l & @x20) >> 5);
cfInst.jcAddress = ((instructions[addr].byte1 & @x1F) << 8) |

(Cinstructions[addr] .byte@));
cfInst.address = ((instructions[addr].bytel & @x@F) << 8) |

(Cinstructions[addr] .byte@));
cfInst.allocSize = ((instructions[addr].byte® & Ox®F));

}

void IStore::SetInst(const Instruction &inst,int addr)
{

}
instructions[addr]=inst;

Performing opcrations on pixcls or vertices:
Arbiter.cpp
boolean Arbiter: :chooseAluStation(int &lineNumber, Shader_Type &sType,

{
bool otherAluRunning, const CfMachine& otherCFMachine,bool &predOn)

int i;
int vertexPick = -1;
int pixelPick = -1;
bool pcSpace;
int lineCheck;
predOn = true;

// do pixels first
lineCheck = pixelHead;
for (i=@;i<pixelRsCount; i++)
{

if (pixelStation[lineCheck].status.valid != @ &&
pixelStation[lineCheck].status.ressourceNeeded == ALU

&& IpixelStation[lineCheck].status.event)
{

// no allocation needed

if (pixelStation[lineCheck].status.allocation == SQ_NO_ALLOC)
{

t
// we need to make sure there is space in the appropriate buffer

pixelPick = lineCheck;

LG Ex. 1002, pg 138

LG Ex. 1002, pg 139

else if (pixelStation[lineCheck].status.allocation == SQMEMORY &&
(pixelStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ->GetExportBuffer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

t
else if (pixelStation[lineCheck].status.allocation ==

SQ_PARAMETER_PIXEL &&

pixelPick = lineCheck;

pixelStation[lineCheck].status.allocationSize <= sq->pSX_SQ-
>GetExportBuffer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

pixelPick = lineCheck;
}
// make sure the status says we can pick this pixel
if (pixelPick != -1)
{

// check for serial with texture pending
if (pixelStation[pixelPick].status.serial &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;

// if last or alloc is set we can only pick the two oldests
threads also for color exports

else if ((pixelStation[pixelPick].status.last
|| pixelStation[pixelPick].status.allocation ==

SQPARAMETER_PIXEL)&&
](pixelPick==pixelHead || pixelPick==((pixelHead-

1)%MAX_PIX_RESERVATION_SIZE)))
pixelPick = -1;

// cannot pick last if texture reads are outstanding
else if (pixelStation[pixelPick].status.last &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;

// can only pick the second to old if the first is already
running and last is set

else if (pixelStation[pixelPick].status.last && pixelHead |=
pixelPick)

{
if (pixelStation[pixelPick].status.first ||

IpixelStation[pixelHead].status.last
|| pixelStation[pixelHead].status.valid)
pixelPick = -1;

else

{
predOn = false;
break;

}
}
else

break;
}

}// endif pixels

dineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}// end for loop

lineCheck = vertexHead;
for (i=@;i<vertexRsCount; i++)

LG Ex. 1002, pg 139

LG Ex. 1002, pg 140

{
if (vertexStation[lineCheck].status.valid != @ &&

vertexStation[lineCheck].status.ressourceNeeded == ALU
&&! vertexStation[lineCheck].status.event)

t
// no allocation needed

if (vertexStation[lineCheck].status.allocation == SQNOALLOC)
{

vertexPick = lineCheck;
}
// we need to make sure there is space in the appropriate buffer
else

{
if (vertexStation[lineCheck].status.allocation == SQMEMORY)
{

if

(((vertexStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ-
>GetExportBuffer()/4)

&& Ssq->pSX_SQ->GetValid() && pendingAllocs <2)
{

}
vertexPick = lineCheck;

else if (vertexStation[lineCheck].status.allocation ==

{
SQ_PARAMETER_PIXEL)

// determine if there is space in the PCs for an
eventual PC export

pcSpace =
checkPC((vertexStation[lineCheck].status.allocationSize+1)*4);

if (pcSpace)
{

// make sure every older threads have their
position allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.pcAllocated == false)
{

alloc_done = false;
break;

alloc_line =
(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;

}
if (alloc_done)
{

}
vertexPick = lineCheck;

}
}
else if (vertexStation[lineCheck].status.allocation ==

SQ_POSITION
&& (Ssq->pSX_SQ->GetPositionReady() >=

vertexStation[lineCheck].status.allocationSize)
&& sq->pSX_SQ->GetValid()

LG Ex. 1002, pg 140

LG Ex. 1002, pg 141

&& pendingAllocs <2)
t

// make sure every older threads have their position
allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.posAllocated == false)
{

alloc_done = false;
break;

}
alloc_line

(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;
}
if (alloc_done)
{

vertexPick = lineCheck;
t

}
}
// make sure the status says we can pick this vertex
if (vertexPick != -1)
{

// check for serial with texture pending
if (vertexStation[vertexPick].status.serial &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// if last is set we can only pick the two oldests threads
else if (vertexStation[vertexPick].status.last &&

I (vertexPick==vertexHead || vertexPick==((vertexHead-
1)%MAX_VTX_RESERVATION_SIZE)))

vertexPick = -1;
// cannot pick last if texture reads are outstanding
else if (vertexStation[vertexPick].status.last &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// can only pick the second to old if the first is already
running

else if ((vertexStation[vertexPick].status.last) && vertexHead
l= vertexPick)

1
if (vertexStation[vertexPick].status.first ||

IvertexStation[vertexHead].status.last
|| vertexStation[vertexHead].status.valid)
vertexPick = -1;

else

{
predOn = false;
break;

}
}
else

break;

}// endif vertex

6

LG Ex. 1002, pg 141

LG Ex. 1002, pg 142

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}// end for loop

// right now vertices have priority over pixels always,
// will have to change this when the registers are there.
if (vertexPick != -1)
{

lineNumber = vertexPick;
sType = VERTEX;

// HERE WE MUST DO THE ALLOCATION

// also send a pulse to the SX if we need a buffer (position or multipass)

if (vertexStation[vertexPick].status.allocation != SQ_NO_ALLOC)
1

// parameter cache allocation
if (vertexStation[vertexPick].status.allocation ==

SQ_PARAMETER_PIXEL)
{

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].data.pcBasePtr = sq->pcHead;
vertexStation[vertexPick].data.exportId = @;

if (sq-
>pcHead+(vertexStation[vertexPick].status.allocationSize)*4 < 128)

{
sq->pcHead = sq-

>pcHead+(vertexStation[vertexPick].status.allocationSize)*4;
}
else

{
sq->pcHead =

(vertexStation[vertexPick].status.allocationSize)*4-(128-sq->pcHead);
sq->checkHigh = !sq->checkHigh;

}
sq-

>pcAllocated.push((vertexStation[vertexPick].status.allocationSize)*4);

// position
else if (vertexStation[vertexPick].status.allocation == SQPOSITION)
{

// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.posAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQSX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exportId = exportid;
exportId = !exportid;
uinteger<2> temp;
temp = 2;
Sq->pSQ_SX->SetSQ_SX_exp_type(temp) ;
sq->pSQ_SX->SetSQSX_exp_valid(true);

7

LG Ex. 1002, pg 142

LG Ex. 1002, pg 143

temp = vertexStation[vertexPick].status.allocationSize-1;
sq->pSQ_SX->SetSQSX_exp_number(temp) ;

I
// multipass
else

{
// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq->pSQSX->SetValid(true) ;
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQSX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exportId = exportId;
exportiId = !exportiId;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQSX_exp_type(temp);
sq->pSQSX->SetSQSX_exp_valid(true);
temp = vertexStation[vertexPick].status.allocationSize;
Ssq->pSQ_SX->SetSQ_SX_exp_number(temp);

}

// dump the interface
if (sq->m_dumpSQ > @)
{

sq->pSQ_SX->GetNewAl1(&(sq->m_sqSxDump->_data));
if (sq->m_sqSxDump->_data.Valid)
{

sq->m_sqSxDump - >Dump();
}

}

// clear the allocation fields

vertexStation[vertexPick].status.allocationSize = @;
vertexStation[vertexPick].status.allocation = SQ_NO_ALLOC;

t
return true;

if (pixelPick != -1)
t

lineNumber = pixelPick;
sType = PIXEL;

if (pixelStation[pixelPick].status.allocation != SQ_NO_ALLOC)
{

// starting a new allocation
pendingAllocs ++;

if (pixelStation[pixelPick].status.allocation == SQPARAMETER_PIXEL)
{

sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQSX_exp_state(st);

LG Ex. 1002, pg 143

LG Ex. 1002, pg 144

sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exportId = exportId;
exportId = !exportiId;
uinteger<2> temp;

sq->setContextNumber(st);
uint8 mode = sq->SQPROGRAM_CNTL.getPSEXPORT_MODE();
// exporting Z
if (mode &@x@1)

temp = 1;
// not exporting Z
else

temp = 0;
sq->pSQ_SX->SetSQSX_exp_type(temp) ;
sq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize-temp-1;
sq->pSQ_SX->SetSQSX_exp_number(temp) ;

}
// multipass
else

{
sq->pSQSX->SetValid(true) ;
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQSX_exp_state(st);
sq->pSQ_SX->SetSQSX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exportId = exportId;
pixelStation[pixelPick].status.pulseSx = true;
exportid = !exportid;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQ_SX_exp_type(temp) ;
sq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize;
sq->pSQ_SX->SetSQSX_exp_number(temp) ;
pixelStation[pixelPick].status.pulseSx = true;

}

// dump the interface
if (sq->m_dumpSQ > @)
{

sq->pSQ_SX->GetNewAl11(&(sq->m_sqSxDump->_data));
if (sq->m_sqSxDump->_data.Valid)
1

sq->m_sqSxDump->Dump();
}

}

// clear the allocation fields

pixelStation[pixelPick].status.allocationSize = 9;
pixelStation[pixelPick].status.allocation = SQ_NO_ALLOC;

}
return true;

}

return false;

LG Ex. 1002, pg 144

LG Ex. 1002, pg 145

Checking for GPR space:
Gpr_manager.cpp

#include "“gpr_manager.h”
#include "user_block_model.h"

GPR_manager: :GPR_manager(cUSER_BLOCK_SQ *pSQ)
{

}

// set the pointer to the SQ
Sq = PSQ;

// set the limits (READ REGISTERS)
pixLimit = sq->SQ_GPR_MANAGEMENT.REG_SIZE_PIX;
vertLimit = 128-sq->SQ_GPR_MANAGEMENT.REG_SIZE_VTX;

baseCountPix = @;
freeCountPix = @;
pixTestHigh = true;

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;

boolean GPR_manager::testAllocate(int number_gpr,int &base_addr,Shader_Type stype)
{

bool wrap = false;
int testBaseCount;

if (stype == PIXEL)

testBaseCount = baseCountPix;
base_addr= baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

if (freeCountPix==baseCountPix && pixTestHigh &&
freeCountPix != -1)

{
return false;

}
else

return true;
t

if (testBaseCount + number_gpr < pixLimit)
testBaseCount = testBaseCount + number_gpr;

else

{
testBaseCount = number_gpr-(pixLimit-testBaseCount) ;
// we wrapped change the test type
pixTestHigh = !pixTestHigh;
wrap = true;

}
if (pixTestHigh)
{

10

LG Ex. 1002, pg 145

LG Ex. 1002, pg 146

}

if (wrap)
pixTestHigh = !pixTestHigh;

if (testBaseCount >= freeCountPix && freeCountPix != -1)
{

// allocation succesfull

return false;
t
else

{
// not enough space in GPRs
return true;

t
}
else

{
if (wrap)

pixTestHigh = !pixTestHigh;
if (testBaseCount <= freeCountPix && freeCountPix != -1)
{

// allocation succesfull

return false;
t
else

{
return true;

t
}

// vertices
else

{
testBaseCount = baseCountVert;
base_addr= baseCountvert;

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

if (freeCountVert==baseCountVvert && vertTestHigh &&
freeCountvert != -1)

{
return false;

}
else

return true;
}

if (testBaseCount - number_gpr >= vertLimit)
testBaseCount = testBaseCount - number_gpr;

else

{
testBaseCount = 128-(number_gpr-(testBaseCount-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;
wrap = true;

}
if (vertTestHigh)
{

if (wrap)

1]

LG Ex. 1002, pg 146

LG Ex. 1002, pg 147

vertTestHigh = !vertTestHigh;
if (testBaseCount <= freeCountVert && freeCountVert != -1)
{

// allocation succesfull

return false;
}
else

{
return true;

}
}
else

{
if (wrap)

vertTestHigh = !vertTestHigh;
if (testBaseCount >= freeCountVert && freeCountVert != -1)
1

// allocation succesfull

return false;
}
else

{
return true;

}
}

}

void GPR_manager: :allocate(int number_gpr,int &base_addr,
Shader_Type stype)

{
if (stype == PIXEL)

base_addr = baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

freeCountPix = -1;
}

if (baseCountPix + number_gpr < pixLimit)
baseCountPix = base_addr + number_gpr;

else

{
baseCountPix = number_gpr-(pixLimit-base_addr);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;

t
}
/{ vertices
else

{
base_addr = baseCountVert;

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
t

12

LG Ex. 1002, pg 147

LG Ex. 1002, pg 148

freeCountVvert = -1;
}

if (baseCountVert - number_gpr >= vertLimit)
baseCountVert = base_addr - number_gpr;

else

{
baseCountVert = 128-(number_gpr-(base_addr-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;

}
}

}

void GPR_manager::deAllocate(int number_gpr,Shader_Type stype)
{

switch (stype)
{
case PIXEL:

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

baseCountPix = @;
freeCountPix = @;
pixTestHigh = true;
break;

if (freeCountPix + number_gpr < pixLimit)
freeCountPix += number_gpr;

else

{
freeCountPix = number_gpr-(pixLimit-freeCountPix);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;

t
break;

case VERTEX:

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;
break;

if (freeCountVert - number_gpr > vertLimit)
freeCountVert -= number_gpr;

else

t
freeCountVert = 128-(number_gpr-(freeCountVert-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;

}
break;

}3
}

13

LG Ex. 1002, pg 148

LG Ex. 1002, pg 149

Write data to the GPRs:

Sq_block_model.cpp
// write to the SP dummy interface
RegVect* values;

regFile[j]->GetValues(values, address) ;

interpData.Address[i]=it+tbaseptr;
interpData.NumParams = interp_params;

for (int k=0;k<16;k++)
{

interpData.InterpData[i][k][j].field[9@]=values[k].field[@];

interpData. InterpData[i][k][j].field[1]=values[k].field[1];

interpData.InterpData[i][k][j].field[2]=values[k].field[2];

interpData.InterpData[i][k][j].field[3]=values[k].field[3];
t
// increment the GPR address

if (address+1 < gpr_manager->pixLimit)
{

address ++}
}
else

{
address = @;

I

sq_alu.cpp

#include "user_block_model.h"
#include "sq_alu.h"
#include "sq_sp.h"
#include <iostream>

#include "Scalar_HW/mathen.h"

using namespacestd;

|[------------===nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

$Q_ALU::SQ_ALU()
{

CoissuedInstruction = true;

mathScalar = new MathEn();

ik

SQ_ALU::~SQ_ALU()

delete mathScalar;
}

I----- This function represents the entry point to the ALU from the Sequencer------------------

14

LG Ex. 1002, pg 149

LG Ex. 1002, pg 150

void SQ_ALU::Execute(RegFile* Reg, OutBuffer &ExportBuffer const CStore & Constants,uint32
srcAAddr, uint32 SrcBAddr, uint82 SrcCAddr,uint32 DestAddr, uint32 ScalarDestAddr, Alulnstruction
Instruction,

unsigned int valids[], uint32 Vectorlndex,SQ_SP* pSQ_SP,
Shader_Type currentAluType,bool pred[]cUSER_BLOCK_SQ*

pSQ int idAlu)
{

int i;

sq = pSQ;
// fill the dummyinterface
SQ_SP_data SPData;
static Constant constant[4];
static int PMasks[4][4] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static int CMask[4] = {0,0,0,0};
static int RAddr[4] = {0,0,0,0};
static int WAddr[4] = {0,0,0,0};
static bool REn[4] = {false,false,false,false};
static bool WEn[4] = (false, false false false};

SPData.Phase = VectorIndex;
for (i=0;i<4;i++)

SPData.ConstantValue[i]J=constant[VectorIndex].field[0];
SPData.ExportValid[i]=valids[i];
SPData.ExportWValid[i]=2;
SPData.Valids[i] = PMasks[VectorIndex][i];

}

SPData.ExportCount=Vectorindex;
SPData.ExportLast=0;
SPData.CMask = CMask[VectorIndex];
SPData.RdAddr = RAddr[Vectorlndex];
SPData.WrAddr = WAddr[VectorIndex];
SPData.RdEnable = REn[VectorlIndex];
SPData.WrEnable = WEn[VectorIndex];
SPData.|IndexCnt = 0;
SPData.SType = currentAluType;

if (SPData.Phase == 0)
SPData.InstStart = true;

else

SPData.InstStart = false:

switch(VectorIndex)
{
case 0:

SPData. Instruction = Instruction.SrcASel + (Instruction.SourceANegate << 2) +
(Instruction.SourceASwizzle << 4) +
(Instruction.VectorResultPointer&0x3F)<<12);

break:
case 1:

SPData. Instruction = Instruction.SrcBSel + (Instruction.SourceBNegate << 2) +
(Instruction.SourceBSwizzle << 4) +
((Instruction.ScalarResultPointer&0x3F)<<12);

break;

15

LG Ex. 1002, pg 150

LG Ex. 1002, pg 151

case 2:

SPData. Instruction = Instruction.SrcCSel + (Instruction.SourceCNegate << 2) +
(Instruction.SourceCSwizzle << 4);

break;
case 3:

$PData. Instruction = Instruction.VectorOpcode + (Instruction.ScalarOpcode << 5)+
(Instruction.VectorClamp << 11) +

(Instruction.ScalarClamp << 12)+
(Instruction.VectorW riteMask << 13) +

(Instruction.ScalarWriteMask << 17);
break;

}

// do all the static stuff for next turn

if (Instruction.SrcASel)
Constants.GetConstValue(constant[Vectorlndex], SrcAAddr);

else if (Instruction.SrcBSel)
Constants.GetConstValue(constant[Vector|ndex],SrcBAddr);

else if (Instruction.SrcCSel)
Constants.GetConstValue(constant[Vector|ndex],SrcCAddr);

for (i=0;i<4;i++)
PMasks[VectorIndex][i] = valids[i);

switch(Vectorlndex)
{
case 0: // interpolator and SRC A

CMask[Vectorlndex] = 127-SrcAAddr;
RAddr[Vectorlndex] = SrcAAdar;
WAddr[Vector|ndex] = 126-SrcAAddr;
REn[Vector|Index] = true;
WeEn[VectorIndex] = false;
break;

case 1: //TX and SRC B

CMask[Vectorlndex] = 125-SrcBAdadr;
RAddr[Vectorlndex] = SrcBAddr;
WAddr[Vectorlndex] = 124-SrcBAddr;
REn|VectorIndex] = true;
WEn[VectorIndex] = false;
break;

case 2: // Vector and SRC C

CMask[VectorIndex] = Instruction.VectorW riteMask;
RAddr[VectorIndex] = SreCAdadr;
REn[VectorIndex] = false; // no tree operands for now
// if exporting

if (((Instruction.VectorResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[VectorlIndex] = Instruction.VectorResultPointer & Ox3F;
WeEn[VectorIndex] = false;

}
else {

WAdadr[Vectorlndex] = DestAddr;
WEn[Vectorlndex] = true;

}
break;

case 3: // Scalar and TX

CMask[VectorlIndex] = Instruction.ScalarWriteMask;

16

LG Ex. 1002, pg 151

LG Ex. 1002, pg 152

RAdadr[VectorIndex] = 123-ScalarDestAddr;
REn[VectorIndex] = false;
// if exporting

if (((Instruction.ScalarResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[VectorIndex] = Instruction.ScalarResultPointer & Ox3F;
WeEn[VectorIndex] = false;

}
‘ia

else {
WAddr[Vectorlndex] = ScalarDestAddr;
WeEn|[VectorIndex] = true;

}*/ 1/ No scalar ops for now...

stants);

—

void SQ_ALU::ExecuteAlulnstruction(uint382 SrcAPtr, uint32 SrcBPtr, uint32 SrcCPtr, uint32 DstPtr,uint32

break;

}

pSQ_SP->SetAll(&SP Data);
pSQ_SP->SetValid(true);

/{ Real Emulator code

CurrentRegFile = Reg;
OutputBuffer = &ExportBuffer;
CurrentAlulnstruction = Instruction;
AluPhase = Vectorlndex;
AluType = currentAluType;
Predicates = &(pred[0]);
validBits= &(valids[0]);
Aluld = idAlu;

ExecuteAlulnstruction(SrcAAddr, SrcBAddr,SrcCAddr, DestAddr,ScalarDestAddr,VectorIndex,Con

ScalarDestPtr,uint32 Vectorindex,const CStore & Constants)
{

VectorData SrcA, SrcB, SrcC, VectorResult;
mfloat<8,23,128> ScalarResult;

VectorData TempSrc;

bool error = false;

const RegVect* InputVectorA;
const RegVect* InputVectorB;
const RegVect* InputVectorC;

Constant ConstantA;
Constant ConstantB;
Constant ConstantC;

RegisterFileRead(SrcAPtr,SrcBPtr,SrcCPtr, InputVectorA, InputVectorB, InputVectorC);

/{Going through all the 128bit vectors (16 of them)
/!Theyall have the same relative location inside their respective GPRfiles.
for(uint8 vector_id = 0; vector_id <16 ; vector_id ++)

17

LG Ex. 1002, pg 152

LG Ex. 1002, pg 153

SrcAReg.red =InputVectorA[vector_id].field[0];
SrcAReg.green =InputVectorA[vector_id].field[1];
SrcAReg.blue =InputVectorA[vector_id].field[2];
SrcAReg.alpha =InputVectorA[vector_id].field[3];

SrcBReg.red =InputVectorB[vector_id].field[0];
SrcBReg.green =InputVectorB [vector_id].field[1];
SrcBReg.blue =InputVectorB[vector_id].field[2];
SrcBReg.alpha =InputVectorB[vector_id].field[3];

SrcCReg.red =InputVectorC[vector_id].field[0];
SrcCReg.green =InputVectorC[vector_id].field[1];
SrcCReg.blue =InputVectorC[vector_id].field[2];
SrcCReg.alpha =InputVectorC[vector_id].field[3];

// set the constants

int cAddr =0;

// relative addressing of the constant store via address register
if (CurrentAlulnstruction.SrcASel == 0 && CurrentAlulnstruction.Constan0RelAbs ==

CurrentAlulnstruction.RelativeAddrRegSel == 1)
{

cAddr = SrcAPtr + ConstantOffsets[AluPhase*16+vector_id];
if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getSIZE())

cAddr = 0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)

error = true;

}
}
else

{
if ((cAddr - sq->SQ_PS_CONST.getBASE())

> sq->SQ_PS_CONST.getSIZE())
{

cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}

Constants.GetConstValue(ConstantA, cAddr);
}
else

Constants.GetConstValue(ConstantA,SrcAPtr);

// relative addressing of the constant store via address register
if (((CurrentAlulnstruction.SrcASel == 1 &&

CurrentAlulnstruction.SrcBSel == 0 && CurrentAlulnstruction.Constan0RelAbs

)Ih
(CurrentAlulnstruction.SrcASel == 0 &&

18

LG Ex. 1002, pg 153

LG Ex. 1002, pg 154

) Il

}
else

CurrentAlulnstruction.SrcBSel == 0 && CurrentAlulnstruction.Constan1RelAbs

CurrentAlulnstruction.RelativeAddrRegSel == 1)

cAddr = SrcBPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getSIZE())

cAddr= 0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)

error = true;

}
}
else

{
if ((cAddr - sq->SQ_PS_CONST.getBASE())

> sq->SQ_PS_CONST.getSIZE())

cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}

Constants.GetConstValue(ConstantB, cAddr);

Constants.GetConstValue(ConstantB, SrcBPtr);

// relative addressing of the constantstore via address register
if (((CurrentAlulnstruction.SrcASel == 1 &&

CurrentAlulnstruction.SrcBSel == 1 &&
CurrentAlulnstruction.SrcCSel == 0 && CurrentAlulnstruction.Constan0RelAbs

((CurrentAlulnstruction.SrcASel ==0||
CurrentAlulnstruction.SrcBSel == 0) && CurrentAlulnstruction.SrcCSel ==
&& CurrentAlulnstruction.Constan1RelAbs == 1)) &&
CurrentAlulnstruction.RelativeAddrRegSel == 1)

cAddr = SrcCPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)

if ((cAddr - sq->SQ_VS_CONST.getBASE())
>sq->SQ_VS_CONST.getSIZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}
}
else

{

19

LG Ex. 1002, pg 154

LG Ex. 1002, pg 155

if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getSIZE())

{
cAddr = 0;
if (((validBits[vector_id/4])>>(vector_id%4))&0x01)

error = true;

}
}

Constants.GetConstValue(ConstantC, cAddr);
}
else

Constants.GetConstValue(ConstantC, SrcCPtr);

// there was an addressing error
if (error)

if (sq->SQ_DEBUG_MISC_0.getDB_PROB_ON())
{

if (sq->SQ_DEBUG_MISC_0.getDB_PROB_COUNT() == 0)
{

sq->SQ_DEBUG_MISC_0.setDB_PROB_COUNT(1);
sq->SQ_DEBUG_MISC_0.setDB_PROB_ADDR(0);

}
else

sq->SQ_DEBUG_MISC_0.setDB_PROB_COUNT(sq-
>SQ_DEBUG_MISC_0.getDB_PROB_COUNT()+1);

}
}

/muxing&swizzling&modification of input arguments
||--------------—--—--------------—--—-------=

uint32 SrcASel,SrcBSel,SrcCSel:
SrcASel = CurrentAlulnstruction.SrcASel;
SrcBSel = CurrentAlulnstruction.SrcBSel;
SrcCSel = CurrentAlulnstruction.SrcCSel:

uint8 SrcASelRelAbs, SrcBSelRelAbs,SrcCSelRelAbs;
SrcASelRelAbs = ((CurrentAlulnstruction.SourceARegPointer)>>6) & 0x01;
SrcBSelRelAbs = ((CurrentAlulnstruction.SourceBRegPointer)>>6) & 0x01;
SrcCSelRelAbs = ((CurrentAlulnstruction.SourceCRegPointer)>>6) & 0x01;

switch(SrcASel)
{
case NON_CONSTANT:

switch(SrcASelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcA.alpha = SrcAReg.alpha;
SrcA.red = SrcAReg.red;
SrcA.green = SrcAReg.green;
SrcA.blue = SrcAReg.blue;
break;

default:

20

LG Ex. 1002, pg 155

LG Ex. 1002, pg 156

break;
}
break;

case CONSTANT:

SrcA.red = ConstantAfield[0];
SrcA.green = ConstantAfield[1];
SrcA.blue = ConstantA.field[2];
SrcA.alpha = ConstantAfield[3];
break:

switch(SrcBSel)
{
case NON_CONSTANT:

switch(SrcBSelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcB.alpha = SrcBReg.alpha;
SrcB.red = SrcBReg.red;
SrcB.green = SrcBReg.green;
SrcB.blue = SrcBReg.blue;
break;

default:

break;
}
break;

case CONSTANT:

}

SrcB.red = ConstantBfield[0];
SrcB.green = ConstantBfield[1];
SrcB.blue = ConstantB.field[2];
SrcB.alpha = ConstantB.field[3];
break;

switch(SrcCSel)
{
case NON_CONSTANT:

switch(SrcCSelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcC.alpha = SrcCReg.alpha;
SrcC.red = SrcCReg.red;
SrcC.green = SrcCReg.green;
SrcC. blue = SrcCReg.blue;
break;

default:

break;

}break;
case CONSTANT:

SrcC.red = ConstantC.field[0];
SrcC.green = ConstantCfield[1];
SrcC.blue = ConstantC.field[2];
SrcC.alpha = ConstantC field[3];

21

LG Ex . 1002, pg 156

LG Ex. 1002, pg 157

break;
}

Hswizzling of arguments
uint8 SrcASwizzleAlpha = CurrentAlulnstruction.SourceASwizzle >> 6;
uint8 SrcASwizzleBlue = (CurrentAlulnstruction.SourceASwizzle >> 4)&0x3;
uint8 SrcASwizzleGreen = (CurrentAlulnstruction.SourceASwizzle >>2)&0x3;
uint8 SrcASwizzleRed = (CurrentAlulnstruction.SourceASwizzle)&0x3;

TempSrc.alpha = SrcA.alpha;
TempSrc.red = SrcA.red;
TempSrc.green =SrcA.green;
TempSrc.blue= SrcA.blue;

switch(SrcASwizzleAlpha)

case 0:break;
case 1:

SrcA.alpha = TempSrc.red;
break:

case 2:

SrcA.alpha = TempSrc.green;
break;

case 3:

SrcA.alpha = TempSrc.blue;
break;

}

switch(SrcASwizzleRed)

case 0:break;
case 1:

SrcA.red = TempSrc.green;
break:

case 2:

SrcA.red = TempSrc.blue;
break:

case 3:

SrcA.red = TempSrc.alpha;
break;

}

switch(SrcASwizzleGreen)

case 0:break;
case 1:

SrcA.green = TempSrc.blue;
break;

case 2:

SrcA.green = TempSrc.alpha;
break:

case 3:

SrcA.green = TempSrc.red;
break;

}

22

LG Ex . 1002, pg 157

LG Ex. 1002, pg 158

switch(SrcASwizzleBlue)

case Q:break;
case 1:

SrcA.blue = TempSrc.alpha;
break;

case 2:

SrcA.blue = TempSrc.red;
break;

case 3:

SrcA.blue = TempSrc.green;
break;

}
|frommenemannnnnnnnnnnnnnnnnnnnnnnnn

TempSrc.alpha = SrcB.alpha;
TempSrc.red = SrcB.red;
TempSrc.green =SrcB green;
TempSrc.blue= SrcB.blue;

uint8 SrcBSwizzleAlpha = (CurrentAlulnstruction.SourceBSwizzle >> 6)&0x3;
uint8 SrcBSwizzleBlue = (CurrentAlulnstruction.SourceBSwizzle >> 4)&0x3;
uint8 SrcBSwizzleGreen = (CurrentAlulnstruction.SourceBSwizzle >>2)&0x3;
uint8 SrcBSwizzleRed = (CurrentAlulnstruction. SourceBSwizzle)&0x3;

switch(SrcBSwizzleAlpha)

case 0:break;
case 1:

SrcB.alpha = TempSrc.red;
break;

case 2:

SrcB.alpha = TempSrc.green;
break;

case 3:

SrcB.alpha = TempSrc.blue;
break;

}

switch(SrcBSwizzleRed)

case 0Q:break;
case 1:

SrcB.red = TempSrc.green;
break;

case 2:

SrcB.red = TempSrc.blue;
break;

case 3:

SrcB.red = TempSrc.alpha;
break;

}

switch(SrcBSwizzleGreen)

23

LG Ex . 1002, pg 158

LG Ex. 1002, pg 159

case 0:break;
case 1:

SrcB.green = TempSrc. blue;
break;

case 2:

SrcB.green = TempSrc.alpha;
break;

case 3:

SrcB.green = TempsSrc.red;
break;

}

switch(SrcBSwizzleBlue)

case 0:break;
case 1:

SrcB.blue = TempSrc.alpha;
break:

case 2:

SrcB.blue = TempSrc.red;
break;

case 3:

SrcB.blue = TempSrc.green;
break;

}

|fenernanannnnnn-

TempSrc.alpha = SrcC.alpha;
TempSrc.red = SreC.red;
TempSrc.green =SrcC.green;
TempSrc.blue= SrcC.blue;

uint8 SrcC SwizzleAlpha = CurrentAlulnstruction.SourceCSwizzle >> 6;
uint8 SrcC SwizzleBlue = (CurrentAlulnstruction.SourceCSwizzle >> 4)&0x3;
uint8 SrcCSwizzleGreen = (CurrentAlulnstruction.SourceCSwizzle >>2)&0x3;
uint8 SrcCSwizzleRed = (CurrentAlulnstruction.SourceCSwizzle)&0x3;

switch(SrcCSwizzleAlpha)
{
case O:break;
case 1:

SrcC.alpha = TempSrc.red;
break:

case 2:

SrcC.alpha = TempSrc.green;
break;

case 3:

SrcC.alpha = TempSrc.blue;
break;

}

switch(SrcCSwizzleRed)

24

LG Ex . 1002, pg 159

LG Ex. 1002, pg 160

case 0:break;
case 1:

SrcC.red = TempSrc.green;
break;

case2:

SrcC.red = TempSrc.blue;
break;

case 3:

SrcC.red = TempSrc.alpha;
break;

}

switch(SrcCSwizzleGreen)

case 0:break;
case 1:

SrcC.green = TempSrc.blue;
break;

case 2:

SrcC.green = TempSrc.alpha;
break;

case 3:

SrcC.green = TempSrc.red;
break;

}

switch(SrcCSwizzleBlue)

case 0:break;
case 1:

SrcC.blue = TempSrc.alpha;
break:

case 2:

SrcC.blue = TempSrc.red;
break:

case 3:

SrcC.blue = TempSrc.green;
break;

}

// ABS MODIFIER

uint8 SrcAAbs = (CurrentAlulnstruction.SourceARegPointer>>7)&0x01;
uint8 SrcBAbs = (CurrentAlulnstruction.SourceBRegPointer>>7)&0x01;
uint8 SrcCAbs = (CurrentAlulnstruction.SourceCRegPointer>>7)&0x01;
uint8 Cst0Abs = (CurrentAlulnstruction. VectorResultPointer>>7)&0x01;

if (SrcASel == NON_CONSTANT)
{

switch (SrcAAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcA.red.abs();
SrcA.green.abs();

25

LG Ex. 1002, pg 160

LG Ex. 1002, pg 161

else

}

SrcA.blue.abs();
SrcA.alpha.abs();
break;

default:

break;

}

switch (Cst0Abs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcA.red.abs();
SrcA.green.abs();
SrcA.blue.abs();
SrcA.alpha.abs();
break;

default:

break;
}

if (SrcBSel == NON_CONSTANT)
{

switch (SrcBAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcB.red.abs();
SrcB.green.abs();
SrcB.blue.abs();
SrcB.alpha.abs();
break;

default:

break;

}
}
else if (SrcBSel == CONSTANT)
{

}

switch (Cst0Abs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcB.red.abs();
SrcB .green.abs();
SrcB.blue.abs();
SrcB.alpha.abs();
break;

default:

break:

}

if (SrcCSel == NON_CONSTANT)
{

26

LG Ex . 1002, pg 161

LG Ex. 1002, pg 162

switch (SrcCAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC.blue.abs();
SrcC.alpha.abs();

PreviousScalar[Aluld][VectorIndex][vector_id].alpha.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].red.abs();
PreviousScalar[Aluld][VectorIndex][vector_id].green.abs();
PreviousScalar[Aluld][Vector|ndex][vector_id].blue.abs();
break;

default:

break;

}
}
else if (SrcCSel == CONSTANT)
{

switch (Cst0Abs){
case NO_ABS_MOD:

break:
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC. blue.abs();
SrcC.alpha.abs();

PreviousScalar[Aluld][VectorIndex][vector_id].alpha.abs();
PreviousScalar[Aluld][Vector|ndex][vector_id].red.abs();
PreviousScalar[Aluld][Vector|ndex][vector_id].green.abs();
PreviousScalar[Aluld][Vector|ndex][vector_id].blue.abs();
break;

default:

break;

h
}

|fonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

/inegate input modifiers
uint8 SrcANegate= CurrentAlulnstruction.SourceANegate;
uint8 SrcBNegate= CurrentAlulnstruction.SourceBNegate;
uint8 SrcCNegate= CurrentAlulnstruction.SourceC Negate;

switch(SrcANegate){
case NIL:break;
case NEGATE:

SrcA.alpha.neg();
SrcA.red.neg();
SrcA.green.neg();
SrcA.blue.neg();
break;

default:

break;

}

27

LG Ex. 1002, pg 162

LG Ex. 1002, pg 163

switch(SrcBNegate){
case NIL:break;
case NEGATE:

SrcB.alpha.neg();
SrcB.red.neg();
SrcB.green.neg();
SrcB.blue.neg();
break;

default:

break:
}

switch(SrcCNegate){
case NIL:break;
case NEGATE:

SrcC.alpha.neg();
SrcC.red.neg();
SrcC.green.neg();
SrcC. blue.neg();

PreviousScalar[Aluld][Vectorlndex][vector_id].alpha.neg();
PreviousScalar[Aluld][VectorIndex][vector_id].red.neg();
PreviousScalar[Aluld][VectorIndex][vector_id].green.neg();
PreviousScalar[Aluld][Vectorlndex][vector_id].blue.neg();
break;

default:

break;
}

||----------—---------------------=====

/Execute ALU opcode
ExecuteAluOpcode(SrcA,SrcB,SrcC , VectorResult, ScalarResult,vector_id);

// Clamp results if told to
VectorResult.red = Clamp(VectorResult.red, true);
VectorResult.green = Clamp(VectorResult.green, true);
VectorResult.blue = Clamp(VectorResult.blue,true);
VectorResult.alpha = Clamp(VectorResult.alpha, true);

ScalarResult = Clamp(ScalarResult,false);

//Save Previous Vector and Scalar

PreviousVector[Aluld][VectorIndex][vector_id].alpha = VectorResult.alpha;
PreviousVector[Aluld][Vector|ndex][vector_id].red = VectorResult.red;
PreviousVector[Aluld][VectorIndex]|vector_id].green = VectorResult.green;
PreviousVector[Aluld][VectorIndex][vector_id].blue = VectorResult. blue;

PreviousScalar[Aluld][VectorIndex][vector_id].alpha = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].red = ScalarResult;
PreviousScalar[Aluld][Vectorlndex][vector_id].green = ScalarResult;
PreviousScalar[Aluld][VectorIndex][vector_id].blue = ScalarResult;

[n—_n-—-—

28

LG Ex. 1002, pg 163

LG Ex. 1002, pg 164

/Accumulate the result into an array of 16x128
VectorVector.Val[vector_id].field[0] =VectorResult.red;
VectorVector.Val[vector_id].field[1] =VectorResult.green;
VectorVector.Val[vector_id].field[2] =VectorResult.blue;
VectorVector.Val[vector_id].field[3] =VectorResult.alpha ;

ScalarVector.Val[vector_id].field[0] =ScalarResult;
ScalarVector.Val[vector_id].field[1] =ScalarResult;
ScalarVector.Val[vector_id].field[2] =ScalarResult;
ScalarVector.Val[vector_id].field[3] =ScalarResult;

[frommrnnnnnnnnnnnnnnnnnnnnnnnnnenanennmenananannn

//Exporting the results
bool Export = (CurrentAlulnstruction.ScalarResultPointer>>7)&0x1;

if(Export)

/! fog exports
if (((CurrentAlulnstruction.VectorResultPointer&0x3F) >= 16) &&

((CurrentAlulnstruction.VectorResultPointer&0x3F) < 20) &&
(CurrentAlulnstruction.VectorWriteMask&0x01) &&

(CurrentAlulnstruction.ScalarWriteMask&0x01))
{

unsignedint inVect;
unsigned int inFog;
unsigned int blended;

//RED

float value = VectorResult.red.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
value = ScalarResult.getReal();
inFog = *(reinterpret_cast<unsigned int*>(&value));
inFog = inFog >> 8;

blended = (inVect) | (inFog&0x3F);
value = *(reinterpret_cast<float*>(&blended));

Hf export blended red
OutputBuffer->values[vector_id].field[0] = value;

// GREEN

value = VectorResult.green.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>6)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended green
OutputBuffer->values[vector_id].field[1] = value;

4 BLUE

value = VectorResult.blue.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect)| ((inFog>>12)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

29

LG Ex. 1002, pg 164

LG Ex. 1002, pg 165

// export blended blue
OutputBuffer->values[vector_id].field[2] = value;

it ALPHA

value = VectorResult.alpha.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>18)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended alpha
OutputBuffer->values[vector_id].field[3] = value;

else

// RED COMPONENT

if (CurrentAlulnstruction.VectorW riteMask&0x01 &&
CurrentAlulnstruction. ScalarW riteMask&0x01)

OutputBuffer->values[vector_id].field[0] = 1.0;
else if (CurrentAlulnstruction.VectorW riteMask&0x01)

OutputBuffer->values[vector_id].field[0] = VectorResult.red;
else if (CurrentAlulnstruction.ScalarWriteMask&0x01)

OutputBuffer->values[vector_id].field[0] = ScalarResult;
// GREEN COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>1)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>1)&0x01)

OutputBuffer->values[vector_id].field[1] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>1)&0x01)

OutputBuffer->values[vector_id].field[1] = VectorResult.green;
else if ((CurrentAlulnstruction.ScalarW riteMask>> 1)&0x01)

OutputBuffer->values[vector_id].field[1] = ScalarResult;
// BLUE COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>2)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>2)&0x01)

OutputBuffer->values[vector_id].field[2] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>2)8&0x01)

OutputBuffer->values[vector_id].field[2] = VectorResult.blue;
else if ((CurrentAlulnstruction.ScalarWriteMask>>2)&0x01)

OutputBuffer->values[vector_id]-field[2] = ScalarResult;
Hf ALPHA COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>3)&0x01 &&
(CurrentAlulnstruction. ScalarWriteMask>>3)&0x01)

OutputBuffer->values[vector_id].field[3] = 1.0;
else if ((CurrentAlulnstruction.VectorWriteMask>>3)&0x01)

OutputBuffer->values[vector_id].field[3] = VectorResult.alpha;
else if ((CurrentAlulnstruction.ScalarW riteMask>>3)&0x01)

OutputBuffer->values[vector_id].field[3] = ScalarResult;
}

I! predicate the exports here
int predValid;
int predicat;
int j;
for (int i=0;i<4;i++)
{

30

LG Ex. 1002, pg 165

LG Ex. 1002, pg 166

predValid = valid Bits[i];
predicat = 0;

if (CurrentAlulnstruction.PredicateSelect == 2)
{

for (j=0;j<4;j++)
predicat += (!(Predicates[i*4+j]))<<j;

predValid &= predicat;

else if (CurrentAlulnstruction.PredicateSelect == 3)
{

for (j=0;j<4;j++)
predicat += Predicates[i*4+j]<<j;

predValid &= predicat;
}

OutputBuffer->valids[i]=predValid;

OutputBuffer->valid = true;
}

}
/Mvrite the result into register files

RegisterFileWrite(CurrentAlulnstruction.VectorWriteMask,CurrentAlulnstruction.ScalarWriteMask,
ScalarDestPtr,DstPtr);

}

[fanaaeeneenenen

void SQ_ALU::ExecuteAluOpcode(VectorData SrcA, VectorData SrcB, VectorData SrcC, VectorData &
VectorResult,mfloat<8,23,128> & ScalarResult, int i)
{

mfloat<8,23,128> red:
mfloat<8,23,128> green;
mfloat<8,23,128> blue;
mfloat<8,23,128> alpha;

mfloat<8,23,128> one;
one.putReal((float)1.0);
mfloat<8,23,128> zero;
zero.putReal((float)0.0);
mfloat<8,23,128> two;

two.putReal((float)2.0);

CoissuedInstruction = true;

//Executing Vector Opcode
switch(CurrentAlulnstruction.VectorOpcode)
{
case ADDv:

if(sq->isHardwareAccurate())
{

VectorResult.alpha = multiply_add(SrcA.alpha,one,SrcB.alpha);
VectorResult.red = multiply_add(SrcA.red,one,SrcB.red);
VectorResult.green = multiply_add(SrcA.green,one,SrcB.green);
VectorResult.blue = multiply_add(SrcA.blue,one, SrcB. blue);

3]

LG Ex. 1002, pg 166

LG Ex. 1002, pg 167

else

{
VectorResult.alpha.add(SrcA.alpha,SrcB.alpha);
VectorResult.red.add(SrcA.red,SrcB.red);
VectorResult.green.add(SrcA.green,SrcB.green);
VectorResult.blue.add(SrcA.blue,SrcB blue);

}
break;

}
case MAXv:

VectorResult.alpha.max(SrcA.alpha,SrcB.alpha);
VectorResult.red.max(SrcA.red,SrcB.red);
VectorResult.green.max(SrcA.green,SrcB.green);
VectorResult.blue.max(SrcA. blue, SrcB. blue);
break;

case MINv:

VectorResult.alpha.min(SrcA.alpha,SrcB.alpha);
VectorResult.red.min(SrcA.red,SrcB.red);
VectorResult.green.min(SrcA.green,SrcB.green);
VectorResult.blue.min(SrcA.blue,SrcB. blue);
break:

case MULv:

if(sq->isHardwareAccurate())

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,zero);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

}
else

VectorResult.alpha.mul(SrcA.alpha,SrcB.alpha);
VectorResult.red.mul(SrcA.red,SrcB red);
VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.blue.mul(SrcA.blue,SrcB. blue);

}
break;

case SETEv:

VectorResult.alpha = (SrcA.alpha == SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red == SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green == SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue == SrcB.blue) ? 1.0:0.0;
break;

case SETGTV:

VectorResult.alpha = (SrcA.alpha > SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red > SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green > SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue > SrcB.blue) ? 1.0:0.0;
break:

case SETGTEv:

VectorResult.alpha = (SrcA.alpha >= SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red >= SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green >= SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue >= SrcB.blue) ? 1.0:0.0;

32

LG Ex. 1002, pg 167

LG Ex. 1002, pg 168

break;
case SETNEv:

VectorResult.alpha = (SrcA.alpha != SrcB.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red != SrcB.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green != SrcB.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.blue != SrcB blue) ? 1.0:0.0;
break;

case FRACv:

VectorResult.alpha.sub(SrcA.alpha, (float)((int)SrcA.alpha.getReal()));
VectorResult.red.sub(SrcA.red, (float)((int)SrcA.red.getReal()));
VectorResult.green.sub(SrcA.green (float)((int)SrcA.green.getReal()));
VectorResult.blue.sub(SrcAblue, (float)((int)SrcA.blue.getReal()));
break;

case TRUNCv:

VectorResult.alpha = (float)((int)SrcA.alpha.getReal());
VectorResult.red = (float)((int)SrcA.red.getReal());
VectorResult.green = (float)((int)SrcA.green.getReal());
VectorResult.blue = (float)((int)SrcA.blue.getReal());
break;

case FLOORV:

if (SrcA.alpha.getReal() >= 0)
VectorResult.alpha = (float)((int)SrcA.alpha.getReal());

else

VectorResult.alpha = (float)((int)SrcA.alpha.getReal())-1.0f;
if (SrcA.red.getReal() >= 0)

VectorResult.red = (float)((int)SrcA.red.getReal());
else

VectorResult.red = (float)((int)SrcA.red.getReal())-1.Of;
if (SrcA.green.getReal() >= 0)

VectorResult.green = (float)((int)SrcA.green.getReal());
else

VectorResult.green = (float)((int)SrcA.green.getReal())-1 Of;
if (SrcA. blue.getReal() >= 0)

VectorResult.blue = (float)((int)SrcA. blue.getReal());
else

VectorResult. blue = (float)((int)SrcA.blue.getReal())-1 OF;
break:

case MULADDv:

if(sq->isHardwareAccurate())
{

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,SrcC.alpha);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,SrcC.red);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,SrcC.green);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,SrcC. blue);

}
else

{
VectorResult.alpha.mad(SrcA.alpha,SrcB.alpha,SrcC.alpha);
VectorResult.red.mad(SrcA.red,SrcB.red,SrcC.red);
VectorResult.green.mad(SrcA.green,SrcB.green,SrcC.green);
VectorResult.blue.mad(SrcA.blue,SrcB.blue,SrcC.blue);

CoissuedInstruction = false;
break;

case DOTAv:

if(sq->isHardwareAccurate())

33

LG Ex. 1002, pg 168

LG Ex. 1002, pg 169

else

}
break;

case DOT3v:

if(sq->isHardwareAccurate())
{

else

}
break;

case CNDEv:

VectorResult.alpha = (SrcA.alpha == 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red == 0.0) ? SrcB.red:SrcC.red;

VectorResult.alpha = multiply_add(SrcA.alpha, SrcB.alpha,zero);
VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.red);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult.green);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,VectorResult. blue);
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

alpha.mul(SrcA.alpha, SrcB.alpha);
red.mul(SrcA.red, SrcB.red);
green.mul(SrcA.green, SrcB.green);
blue.mul(SrcA.blue, SrcB.blue);

VectorResult.alpha.add(alpha,red);
VectorResult.alpha +=green;
VectorResult.alpha +=blue;
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrcB.blue,zero);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,VectorResult.red,VectorResult. blue);
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;
VectorResult.alpha = VectorResult.red;

red.mul(SrcA.red,SrcB.red);
green.mul(SrcA.green, SrcB.green);
blue.mul(SrcA. blue, SrcB. blue);
VectorResult.red.add(red,green);
VectorResult.red += blue;
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

34

LG Ex. 1002, pg 169

LG Ex. 1002, pg 170

VectorResult.green = (SrcA.green == 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue == 0.0) ? SrcB.blue:SrcC.blue;
break;

case CNDGTVv:

VectorResult.alpha = (SrcA.alpha > 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red > 0.0) ? SrcB.red:SrcC.red;
VectorResult.green = (SrcA.green > 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue > 0.0) ? SrcB.blue:SrcC.blue;
break;

case CNDGTEv:

VectorResult.alpha = (SrcA.alpha >= 0.0) ? SrcB.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red >= 0.0) ? SrcB.red:SrcC.red;
VectorResult.green = (SrcA.green >= 0.0) ? SrcB.green:SrcC.green;
VectorResult.blue = (SrcA.blue >= 0.0) ? SrcB.blue:SrcC.blue;
break;

case CUBEv:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.blue)
{

VectorResult.red = SrcA.red;

if (SrcA.red >= 0)
{

VectorResult.green =0;
VectorResult.alpha = -SrcA.blue;
VectorResult.blue = -SrcA.green;

}
else

{
VectorResult.green =1;
VectorResult.alpha = SrcA.blue;
VectorResult.blue = -SrcA.green;

}
}
else if (SrcA.green > SrcA.blue)

VectorResult.red = SrcA.green;
if (SrcA.green >= Q)
{

VectorResult.green =2;
VectorResult.alpha = SrcA.red;
VectorResult.blue = SrcA.blue;

}
else

{
VectorResult.green =3;
VectorResult.alpha = SrcA.red;
VectorResult.blue = -SrcA.blue;

}
}
else

{
VectorResult.red = SrcA.blue;
if (SrcA.blue >= 0)
{

VectorResult.green =4;
VectorResult.alpha = SrcA.red;
VectorResult.blue = -SrcA.green;

35

LG Ex . 1002, pg 170

LG Ex. 1002, pg 171

else

{
VectorResult.green =5;
VectorResult.alpha = -SrcA.red;
VectorResult.blue = -SrcA.green;

}

if(sq->isHardwareAccurate())
{

VectorResult.red = multiply_add(VectorResult.red,two,zero);
}
else

{
VectorResult.red.mul(2,VectorResult.red);

}
break;

case MAX4v:

if (SrcA.red > SrcA.green && SrcA.red > SrcA. blue && SrcA.red > SrcA.alpha)
VectorResult.alpha = SrcA.red;

else if (SrcA.green > SrcA.blue && SrcA.green > SrcA.alpha)
VectorResult.alpha = SrcA.green;

else if (SrcA.blue > SrcA.alpha)
VectorResult.alpha = SrcA.blue;

else

VectorResult.alpha = SrcA.alpha;

VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;
break;

case DOT2ADDv:

{
if(sq->isHardwareAccurate())

VectorResult.red = multiply_add(SrcA.red, SrcB.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,VectorResult.red,SrcC.red);
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

else

{
VectorResult.red.mul(SrcA.red,SrcB.red);
VectorResult.green.mul(SrcA.green,SrcB green);
VectorResult.red.add(VectorResult.red,VectorResult.green);
VectorResult.red.add(VectorResult.red,SrcC.red);

VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

}
break;

case PRED_SETE_PUSHv:

36

LG Ex. 1002, pg 171

LG Ex. 1002, pg 172

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcB.alpha.getReal() == 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates|i] = true;
VectorResult.red = 0.0f;

}
else

{
Predicates|i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case PRED_SETGT_PUSHv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i]||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcB.alpha.getReal() > 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates|i] = true;
VectorResult.red = 0.0f;

}
else

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case PRED_SETGTE_PUSHv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcB.alpha.getReal() >= 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

}
else

{
Predicates|i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case PRED_SETNE_PUSHv:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcB.alpha.getReal() != 0.0f && SrcA.red.getReal() == 0.0f)

37

LG Ex. 1002, pg 172

LG Ex. 1002, pg 173

Predicates|i] = true;
VectorResult.red = 0.0f;

}
else

{
Predicates|i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

}
}
break;

case KILLEv:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x0 1) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() == SrcB.alpha.getReal() && SrcA.red.getReal() ==
SrcB.red.getReal() &&

SrcA.green.getReal() == SrcB.green.getReal() && SrcA. blue.getReal()
== SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4))),

}
break;

case KILLGTv:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() > SrcB.alpha.getReal() && SrcA.red.getReal() >
SrcB.red.getReal() &&

SrcA.green.getReal() > SrcB.green.getReal() && SrcA.blue.getReal() >
SrcB.blue.getReal())

validBits[i/4] = valid Bits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLGTEv:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() >= SrcB.alpha.getReal() && SrcA.red.getReal() >=
SrcB.red.getReal() &&

SrcA.green.getReal() >= SrcB.green.getReal() && SrcA.blue.getReal()
>= SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLNEv:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

38

LG Ex. 1002, pg 173

LG Ex. 1002, pg 174

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcA.alpha.getReal() != SrcB.alpha.getReal() && SrcA.red.getReal() !=
SrcB.red.getReal() &&

SrcA.green.getReal() != SrcB.green.getReal() && SrcA.blue.getReal() !=
SrcB.blue.getReal())

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case MOVAv:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

ConstantOffsets[i+AluPhase*1 6] = floor(SrcA.alpha.getReal()+0.5);
}
VectorResult.red = SrcA.red;

VectorResult.green = SrcA.green;
VectorResult.blue = SrcA.blue;

VectorResult.alpha = SrcA.alpha;
break:

case DSTv:

default:

<< std::endl;
}

VectorResult.red = 1.0f;
if(sq->isHardwareAccurate())

VectorResult.green = multiply_add(SrcA.green, SrcB.green,zero);
else

VectorResult.green.mul(SrcA.green,SrcB.green);
VectorResult.blue = SrcA.blue;

VectorResult.alpha = SrcB.alpha;
break;

std::cerr << "Unsuported Vector Opcode in SP: "<< CurrentAlulnstruction.VectorOpcode

//Executing Scalar Opcode
//Note: There is a coissue only when vector opcode uses two sources orless

nanCheck nanValue;
Vector4 result,in;

if(Coissuedinstruction)
{

switch(CurrentAlulnstruction.ScalarOpcode)
{
case ADDs:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,one,SrcC.red);

else

ScalarResult.add(SrcC.alpha,SrcC red);
break;

case ADD_PREVs:
if(sq->isHardwareAccurate())

39

LG Ex. 1002, pg 174

LG Ex. 1002, pg 175

ScalarResult =

multiply_add(SrcC.alpha,one,PreviousScalar[Aluld][AluPhase]|i].red);
else

ScalarResult.add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

case MULs:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha ,SrcC.red,zero);

else

ScalarResult.mul(SrcC.alpha,SrcC.red);
break;

case MUL_PREVs:
if(sq->isHardwareAccurate())

ScalarResult =

multiply_add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

case MUL_PREV2s:
nanValue.f = PreviousScalar[Aluld][AluPhase][i].red.getReal();
if (nanValue.u == OxFF7FFFFF|| nanValue.u == 0xFF800000||

SrcC.red.getReal() <= 0)
{

nanValue.u = OxFF/FFFFF;
ScalarResult = nanValue.f;

}
else

if(sq->isHardwareAccurate())
ScalarResult =

multiply_add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC alpha,PreviousScalar[Aluld][AluPhase][i].red);
}
break;

case MINs:

ScalarResult.min(SrcC.alpha,SrcC.red);
break;

case MAXs:

ScalarResult.max(SrcC.alpha,SrcC.red);
break;

case SETEs:

ScalarResult = (SrcC.alpha == 0.0) ? 1.0:0.0;
break;

case SETNEs:

ScalarResult = (SrcC.alpha != 0.0) ? 1.0:0.0;
break;

case SETGTs:

ScalarResult = (SrcC.alpha > 0.0) ? 1.0:0.0;
break;

case SETGTEs:

ScalarResult= (SrcC.alpha >= 0.0) ? 1.0:0.0;
break;

case FRACs:

ScalarResult.sub(SrcC.alpha,(float)((int)SrcC.alpha.getReal()));

40

LG Ex. 1002, pg 175

LG Ex. 1002, pg 176

break;
case TRUNCs:

ScalarResult= (float)((int)SrcC.alpha.getReal());
break;

case FLOORs:

if (SrcC.alpha.getReal() > 0)
ScalarResult = (float)((int)SrcC.alpha.getReal());

else

ScalarResult = (float)((int)SrcC.alpha.getReal())- 1.0f;
break;

case EXP_IEEE:
nanValue.f = SrcC.alpha.getReal();
0

if (SrcC.alpha.getReal() == 0.0f)

ScalarResult = 1.0f;

}
NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValue.f;
}
I} + INF

else if (nanValue.u == 0x7F800000)

ScalarResult = nanValue f;
}
IT - INF

else if (nanValue.u == OxFF800000)

ScalarResult = 0.0f;
}
if + MAX_FLT
else if (nanValue.u == 0x7F7FFFFF)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}
I! - MAX_FLT
else if (nanValue.u == OxFF7FFFFF)
{

ScalarResult = 0.0f;
}
else

{
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->ExpBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

}
else

{
ScalarResult = pow(2,SrcC.alpha.getReal());

}
}

Al

LG Ex. 1002, pg 176

LG Ex. 1002, pg 177

break;
case LOG_CLAMP:

nanValue.f = SrcC.alpha.getReal();
HO

if (SrcC.alpha.getReal() == 0.0f)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;

}
/f NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValue f;

}
i+ INF

else if (nanValue.u == 0x7F800000)

ScalarResult = nanValue.f;
}
it - INF

else if (nanValue.u == O0xFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue Ff;

}
If neg
else if (nanValue.f < Q)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
else

{
if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

}
else

{
ScalarResult = log(SrcC.alpha.getReal())/log(2);

}
}
break;

case LOG_IEEE:
nanValue.f = SrcC.alpha.getReal();
H0

if (SrcC.alpha.getReal() == 0.0f)
{

nanValue.u = 0xFF800000;
ScalarResult = nanValuef;

}
i NAN

else if (nanValue.f != nanValue.f)
{

42

LG Ex. 1002, pg 177

LG Ex. 1002, pg 178

ScalarResult = nanValue.f;
}
H+ INF

else if (nanValue.u == 0x7F800000)
{

ScalarResult = nanValue.f;
}
I - INF

else if (nanValue.u == 0xFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue f;

}
neg
else if (nanValue.f < 0)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
else

{
if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->LogBase2FullDX4(&result.x, &in.x);
ScalarResult = result.x;

}
else

{
ScalarResult = log(SrcC.alpha.getReal())/log(2);

}
}
break;

case RECIP_CLAMP:
nanValue.f = SrcC.alpha.getReal();
i1+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x7F7FFFFF;
ScalarResult = nanValue.f;

}
H-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;

}
IT NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValue-f;
}
i+ INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x80000000;

43

LG Ex. 1002, pg 178

LG Ex. 1002, pg 179

ScalarResult = nanValue.f;
}
Ht - INF

else if (nanValue.u == 0xFF800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->RecipF F(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrcC.alpha);
break;

case RECIP_FF:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue Ff;

}
1-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
If NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValue.f;
}
if + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
It - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
else

{
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.x);
ScalarResult = result.x;

}

44

LG Ex. 1002, pg 179

LG Ex. 1002, pg 180

else

ScalarResult.div(1.0,SrcC.alpha);
}
break;

case RECIP_IEEE:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}
1-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF800000;
ScalarResult = nanValue.f;

}
If NAN

else if (nanValue.f != nanValue f)

ScalarResult = nanValue.f;

}
/{ + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
/{ - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
else

{
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x, &in.x);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrcC.alpha);
}
break;

case RECIPSQ_CLAMP:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x7F7FFFFF;
ScalarResult = nanValuef;

45

LG Ex. 1002, pg 180

LG Ex. 1002, pg 181

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;

}
I} NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValue f;
}
I+ INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
if - INF

else if (nanValue.u == 0xFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
If -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue Ff;

if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtF F(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
break:

case RECIPSQ_FF:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
i-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue-.f;

}
// NAN

else if (nanValue.f != nanValue.f)

ScalarResult = nanValue.f;

46

LG Ex. 1002, pg 181

LG Ex. 1002, pg 182

it + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
if - (NF

else if (nanValue.u == 0xFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
if-

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
else

{
if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->RecipSqrtFF (&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;

case REGIPSQ_IEEE:
nanValue.f = SrcC.alpha.getReal();
+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue-f;

}
1-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = OxFF800000;
ScalarResult = nanValue-f;

}
If NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValue Ff;
}
If + INF

else if (nanValue.u == 0x7F 800000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
i - INF

47

LG Ex. 1002, pg 182

LG Ex. 1002, pg 183

else if (nanValue.u == 0OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
I -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue f;

}
else

{
if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar->RecipSaqrtF F(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;

case MOVAs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) ==
ConstantOffsets[i+AluPhase* 16] = floor(SrcC.alpha.getReal()+0.5);

ScalarResult = SrcC.alpha;
break;

case MOVA_FLOORs:
/f check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal());

ScalarResult = SrcC.alpha;
break:

case SUBs:

if(sq->isHardwareAccurate())
{

green = -1.0f;
ScalarResult = multiply_add(SrcC.red,green,SrcC.alpha);

}
else

ScalarResult.sub(SrcC.alpha,SrcC.red);
break;

case SUB_PREVs:
if(sq->isHardwareAccurate())
{

green = -1.0f;
ScalarResult =

multiply_add(PreviousScalar[Aluld][AluPhase]|i].red,green,SrcC.alpha);
}
else

ScalarResult.sub(SrcC.alpha,PreviousScalar[Aluld][AluPhase]|i].red);
break;

48

LG Ex. 1002, pg 183

LG Ex. 1002, pg 184

case PRED_SETEs:
'f check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.alpha.getReal() == 0.0f)

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SETGTs:
!f check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.alpha.getReal() > 0.0f)

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SETGTEs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.alpha.getReal() >= 0.0f)
{

Predicates|i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates|[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SETNEs:
/! check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

49

LG Ex. 1002, pg 184

LG Ex. 1002, pg 185

if (SrcC.alpha.getReal() != 0.0f)
{

Predicates[i]= true;
ScalarResult = 0.0f;

else

{
Predicates[i] = false;
ScalarResult = 1.0f;

}
}
break;

case PRED_SET_INVs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.red.getReal() == 1.0f)
{

Predicates[i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
if (SrcC.red.getReal() == 0.0f)

ScalarResult = 1.0f;
else

ScalarResult = SrcC.red.getReal();
}

}
break;

case PRED_SET_POPs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.red.getReal()-1.0f <= 0.0f)
{

Predicates|i]= true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
ScalarResult = SrcC.red.getReal()-1.Of;

}
}
break;

case PRED_SET_CLRs:
/! check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicatesfi]||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

Predicates|i] = false;
i! set to maxfloat

50

LG Ex. 1002, pg 185

LG Ex. 1002, pg 186

nanValue.u = Ox7F/FFFFF;
ScalarResult = nanValue.f;

}
break;

case PRED_SET_RESTOREs:
/! check for predication
if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicatesfi||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.red.getReal() == 0.0f)
{

Predicates[i] = true;
ScalarResult = 0.0f;

}
else

{
Predicates[i] = false;
ScalarResult = SrcC.red.getReal();

}
}
break;

case KILLEs:

/f check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() == 0.0f)

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(1%4)));

}
break;

case KILLGTs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicatesf[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.alpha.getReal() > 0.0f)

valid Bits[i/4] = validBits[i/4]&(OxEF>>(4-(1%4)));

}
break;

case KILLGTEs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)
{

if (SrcC.alpha.getReal() >= 0.0f)

valid Bits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));
}

}
break:

case KILLNEs:

/! check for predication

3]

LG Ex. 1002, pg 186

LG Ex. 1002, pg 187

if (CurrentAlulnstruction.PredicateSelect&0x01) == Predicates{[i] ||
(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() != 0.0f)

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(1%4)));

}
break:

case KILLONEs:

// checkfor predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates|i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == 0)

if (SrcC.alpha.getReal() == 1.0f)

validBits[i/4] = validBits[i/4]&(OxEF>>(4-(1%4)));

}
break:

case SQRT_IEEE:
nanValue.f = SrcC.alpha.getReal();
/1+0

if (nanValue.u == 0x00000000)
{

nanValue.u = 0x00000000;
ScalarResult = nanValue.f;

}
i-0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0x80000000°
ScalarResult = nanValue.f;

}
If NAN

else if (nanValue.f != nanValue.f)
{

ScalarResult = nanValuef;

}
If + INF

else if (nanValue.u == 0x7F800000)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}
It - INF

else if (nanValue.u == OxFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue-.f;

}
if-

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

52

LG Ex. 1002, pg 187

LG Ex. 1002, pg 188

}
else

ScalarResult = pow(2,0.5*log(SrcC.alpha.getReal())/log(2));
break;

default:

std::cerr << "Scalar Opcode Not supported: " <<
((int)CurrentAlulnstruction.ScalarOpcode) << std::endl;

break;

}
}

}
|[onannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnninnnnnnnnnnnnnnnnnnnnnnnne

void SQ_ALU::RegisterFileRead(uint32 SrcAPtr,uint32 SrcBPtr,uint32 SrcCPtr,const RegVect*
&InputVectorA,

const RegVect* &lnputVectorB,const RegVect*
&lnputVectorC)
{

CurrentRegFile->GetConstValues(InputVectorA,SrcAPtr);
CurrentRegFile->GetConstValues(InputVectorB ,SrcBPtr);
CurrentRegFile->GetConstValues(InputVectorC ,SrcCPtr);

}
|,nnnmnnanannaannannnnanannnnnnnnnnnnn

void SQ_ALU:: RegisterFileWrite(uint8 VectorWriteMask, uint8 ScalarWriteMask,uint32 ScalarAdadr,
uint32 VectorAddr)

{

/{grabing a pointer to the GPRentry in location VectorAddr
RegVect* CurrentRegEntry;
CurrentRegFile->GetValues(CurrentRegEntry, VectorAddr);

/! if not exporting
if (((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))

if (VectorWriteMask!= 0x0)

for (int vector_id = 0; vector_id < 16 ; vector_id ++){
for(int channel = 0; channel < 4 ; channel ++){

if (VectorWriteMask&(1<<channel))
if ((CurrentAlulnstruction.PredicateSelect&0x01) ==

Predicates[vector_id]||
(CurrentAlulnstruction.PredicateSelect>>1) ==

0)
CurrentRegEntry[vector_id].field[channel] =

VectorVector.Val[vector_id].field[channel];

}

}

//grabing a pointer to the GPR entryin location ScalarAddr
CurrentRegFile->GetValues(CurrentRegEntry, ScalarAddr);
// if not exporting
if (!((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))

if (ScalarWriteMask != 0x0)
{

33

LG Ex. 1002, pg 188

LG Ex. 1002, pg 189

for (int vector_id = 0; vector_id < 16 ; vector_id ++)f{
for(int channel = 0; channel < 4 ; channel ++){
if (ScalarWriteMask&(1<<channel))

if ((CurrentAlulnstruction.PredicateSelect&0x01) ==
Predicates[vector_id]||

(CurrentAlulnstruction.PredicateSelect>>1) ==
0)

CurrentRegEntry[vector_id].field[channel] =
ScalarVector.Val[vector_id].field[channel];

mfloat<8 23,128> SQ_ALU::Clamp(mfloat<8,23,128> result, bool vector)

mfloat<8,23,128> one;
one.putReal((float) 1.0);
mfloat<8,23,128> zero;

Zero.putReal((float)0.0);
mfloat<8,23,128> result_clamped ;

if(vector){
result_clamped = ((result > one) & CurrentAlulnstruction.VectorClamp) ? one: result;
result_clamped = ((result < zero) & CurrentAlulnstruction.VectorClamp)? zero :

result_clamped;
}
else{

result_clamped = ((result > one) & CurrentAlulnstruction.ScalarClamp) ? one : result;
result_clamped = ((result < zero) & CurrentAlulnstruction.ScalarClamp) ? zero :

result_clamped;
}
return (result_clamped);

Sq_block_model.cpp
#include <chip/ar_code/ar_chip_interface.h>
#include <gfx/sq/uscr_block_model.h>
#include <gfx/sx/user_block_model.h>
#include <gfx/sq/sq_dumps.h>
#include <sys/rom/user_block_model.h>
#include <reg/crayola_offset.h>
#include <numbers/numbers.h>

#include <tex/tconst.h>

#include <core/registry.h>

34

LG Ex. 1002, pg 189

LG Ex. 1002, pg 190

#include <iostream>

#include <queue>

#include "reg_file.h"
#include "sq_alu.h"
#include "constant_store.h"
#include "interpolators.h"
#include "instruction_store.h"
#include "arbiter.h"

#include "alu_types.h"

//#define DEBUG_SEQ

using namespace std;

|

cUSERBLOCK_SQ::cUSER_BLOCKSQ (cAR_CHIP_INTERFACE*

cMODELBLOCKPARAMETERS& blockParameters):
pchip, uint32 block_id,

cARBLOCKSQ (pchip, block_id, blockParameters), interpolators(parameters)
{

int i,j;
std::cout << "block SQ constructor" << std::endl;

#ifndef MSDOS

Technologies\\Debug\\SqDump", 0);
#else

m_dumpSQ = (uint32)(getenv("SqDump"));
#endif // End MSDOS

psC_SQ=NULL;
psC_SP=NULL;
pSQ_SC=NULL;
pVGT_SQVerts=NULL;
pVGTSQvertsready=NULL;
psQ_SP_Interp=NULL;
psQ_SX=NULL;
pSP_SX=NULL;
psQ_TP=NULL;
psX_SQ=NULL;
psQ_SP=NULL;
pIP_SQ=NULL;
psQ_CP_PIX =NULL;
psQ_CP_VTX=NULL;
psQRB=NULL;

55

m_dumpSQ = Core::Registry::read("HKEYLOCALMACHINE\\SOFTWARE\MATI

LG Ex. 1002, pg 190

LG Ex. 1002, pg 191

regFile[O|—-NULL;
regFile[1J=NULL;
regFile[2]=NULL;
regFile[3J=NULL;
arbiter=NULL;

gpr_manager=NULL;
m_sqlpDump = NULL;
m_spSxDump =NULL;
m_sqSxDump = NULL;

idle = idlel_7 = 0;

if(m_dumpSQ>0) {
m_sqIpDump =newcSqTp_Dump("sq_tp.dmp”");

mspSxDump =new cSpSxDump("sp_sx.dmp”");
m_sqSxDump =new cSqSxDump("sq_sx.dmp");
m_sqScDump =new cSqSc_Dump("sq_sc.dmp");
m_sqSpInterpDump =new cSqSpInterp_Dump("sq_sp_interp.dmp");
pcFile = fopen("sq_sx_pc.dmp","wb");

am

auto_count_pix = 0;
auto_count_vtx = 0;

// sct up the register files
for (i=0;1<4;i+-+)

regFile[i]J= new RegFileQ;

// clean the output buffer
outBuffer.valid = false;
for G=0;i<16;1++)
§
t

outBuffer.values[i].field[0]=0.0;
outBuffer.values[i].field[1]=0.0;
outBuffer.values[i].field[2]=0.0;
outBuffer.values[1].field[3]=0.0;

I

// ORDERIS RGBAA in [3] B in [2] Gin [1] and R in [0] OR
// ORDER IS XYZW W in [3] Z in [2] Y in [1] and X in [0]

// init the parameterstore to all 0s
for (j=0;j<16;j++)5
r

for (=03;1<128;i++)
{

parameters[i].Vall[j].field[0] = 0.0;

56

LG Ex. 1002, pg 191

LG Ex. 1002, pg 192

parameters[i].Val[j].field[1] = 0.0;
parameters[i].Vall[j].field[2] = 0.0;
parameters[i].Val[j].ficld[3] = 0.0;

}

// clean the pixel input buffer
for (j=0;j<4,j++)5
r

interp[j].new_vector = false;
interp[j].pc_dealloc = 0;
interp[j].state_id = 0;

// clear the vertex shader ready counts
for G=0;1<8;i++)
{

3

for G=0;1<64;i++)
for (j=0;)<2;j++)
{

vertexReady[i]=0;

stagingRegisters|i][j].field[0] = 0.0f;
stagingRogisters[i][j].ficld[1] = 0.0f;
stagingRegisters[i][j].field[2] = 0.0f;
stagingRegisters[i][j].field[3] = 0.0f;

j

for (i=0;1<3;i++)
for (j=0,j<16,j++)
{

RTParameters[i][j].field[0] = 0.0f;
RTParameters[i][j].field[1] = 0.0f;
RTParameters[i][j].field[2] = 0.0f;
RTParameters[i][j].field[3] = 0.06

j

// set the parameter cache head to 0
pcHead = 0;
// set the parameter cache head to 127
pcFree = 127;
// set the test type
checkHigh = true;

// create the ALU arbiter

57

LG Ex . 1002, pg 192

LG Ex. 1002, pg 193

a
s

arbiter = new Arbiter(this,m_dumpSQ);

// create the GPR manager
gpr_manager = new GPR_manager(this);

currentwritestate = 0;

void cCUSER_BLOCK_SQ::Reset(Q)
{

inti,j;
for (=0;1<4;i++)

delete regFile[i];

delete arbiter;
delete gpr_manager;

regFile[O]=NULL;
regFile[1]=NULL;
regFile[2]=NULL;
regFile[3 J=NULL;
arbiter=NULL;

gpr_manager=NULL;

idlcO = idle1_7 = 0;

auto_count_pix = 0;
auto_count_vtx = 0;

// set up the register files
for G=0;1<4;i++)

regFile[i]J= new RegFileQ;

// clean the output buffer
outBuffer.valid = false;

for G=0;i<16;1++)s
U

outBuffer.valucs[i].ficld[0]=0.0;
outBuffer.values[i].field[1]=0.0;
outBuffer.values[1].field[2]=0.0;
outBuffer.values|1].field[3 J=0.0;

y
J

// ORDER IS RGBAAin [3] B in [2] G in [1] and R in [0] OR
// ORDER IS XYZW W in [3] Z in [2] Y in [1] and X in [0]

// init the parameterstore to all Os

38

LG Ex. 1002, pg 193

LG Ex. 1002, pg 194

for §=0,j<16,)++)
{

}

for (=0;1<128;i++)
{

parameters[i].Val[j].field[0] = 0.0;
parameters[1].Vall[j].field[1] = 0.0;
parameters[i].Val[j].field[2] = 0.0;
parameters[i].Val[j].field[3] = 0.0;

}

// clean the pixel input buffer
for (j=0;j<4;j++)
5
Xr

}

interp[j].new_vector = false;
interp[j].pc_dealloc = 0;
interp[j].state_id = 0;

// clear the vertex shader ready counts
for (i=0;1<8;i++)
f
Xr

}
vertexReady[1]=0;

for G=0;1<64;1++)
for (j=0:)<2;j++)
{

stagingRegisters[i][j].field[0] = 0.0f;
stagingRegisters[i][j].field[1] = 0.0f;
stagingRegisters[i][j].field[2] = 0.0f;
stagingRegisters[1i][j].field[3] = 0.0f;

}

for G=0;1<3;i++)
for G=0;j<16,j++)
t

RTParameters[i][}].ficld[0] = 0.0f;
RTParameters[i][j].field[1] = 0.0f;
RTParameters[i][j].field[2] = 0.0f;
RTParameters[i][j]-field[3] = 0.061

J

// set the parameter cache head to 0
pcHead = 0;
// set the parameter cache head to 127

59

LG Ex. 1002, pg 194

LG Ex. 1002, pg 195

pcFree = 127;
// set the test type
checkHigh = truc;

// create the ALU arbiter

arbiter = new Arbiter(this,m_dumpSQ);

// create the GPR manager
gpr_manager = new GPR_manager(this);

currentwritestate =0;
}

cUSERBLOCKSQ::~cUSERBLOCK.SQ(void)
{

int 1;
for (=0;1<4;i++)

delete regFile[1];

if(m_dumpSQ>0) {
delete(m_sqTpDump);
delete(m_spSxDump);
delete(m_sqSxDump);

delete(m_sqScDump);
delete(m_sqSpInterpDump);
fprintf(pcFile,"END\n");
fclose(pcFile);

delete arbiter;
delete gpr_manager;

}

[8 PR me ne ea ae he ae ie ae ae ae fe fe fe oft a ae ae ie aie ae ae ae fe fe ft ai ae ae ie aie ake ae ae fe fe ft ai ae ae ie afta ae ae fe fe oft ni ae ae ie aie ae ae fe fe fe oft ai ae ae ie aie ae ae fe aie
PRR OR 28 oR oR Ok

// Main function for block

[RB PS Ae ie eee ie eeeeeEe aE ge 2 aE EEee ee Ei EE ie 2ee ie a fe ie ete fe it aE fe a ee ae ie 2 ae it ee
De ok of aig oie of

void cCUSER_BLOCK_SQ::MainQ

FetchQ;
Process();
OutputQ;

[PR A As hs he 8 hs 2 eeeh he i eR2eRe he AC Re he AE iee ieee ie oe ie 2 ae Ae fe ACR fe ois eae oie 2 ae ie ik
De KOR De oe oe oe

// Fetch function for block

60

LG Ex. 1002, pg 195

LG Ex. 1002, pg 196

[RB PS Ae ie eee ie eeeeeEe aE ge 2 aE EEee ee Ei EE ie 2ee ie a fe ie ete fe it aE fe a ee ae ie 2 ae it ee
Bie 2 oe aie He a ie

void cCUSER_BLOCK_SQ::Fetch(void)
{

static sq_indx_count = 0;

// grab the output of the PA andcopyit localy
psC_SQ->GetAll(&sc_sq_data);
psSC_SP->GetAll(&sc_sp_data);

// grab the output of the VGT and copyit localy
pVGTSQVerts->GetAll(&vgt_sq_vertsdata);

if(@pVGT_SQverts_ready->GetReady())
vetsqvertsdataVGTSQsend = false;

#if 0

if (vgt_sq_verts_data.VGT_SQsend && vgt_sq_verts_data.VGT_SQindx_valid) {
sq_indx_count++;

}
if (vet_sq_vertsdata.VGTSQsend &E&

vgt_sq_vertsdata.VGTSQendofvtx_vect) {
printf("sq_block_model: cov -- received %d_real indices from

VGT\n"»sq_indx_count);
fflush(stdout);
sq_indxcount = 0;

}
fendif

// ok for more newstuff

pVGT_SQvertsready->SetReady(true);

// invalidate the TP interface

psQ_TP->SetValid(false);

// invalidate SX interfaces

psQ_SX->SetValid(false);
psQ_SX->SctSQSXexpvalid(falsc);
psQ_SX->SetSQSX_freedone(false);
pSP_SX->SetValid(false);

// invalidate SP interface

psQ_SP->SetValid(false);

// invalidate CP interfaces

psQCPVTX->SetValid(false);

61

LG Ex. 1002, pg 196

LG Ex. 1002, pg 197

psQ_CP_PIX->SetValid(false);

// invalidate SP interface

psQ_SP_Interp->SetValid(false);

// invalidate SC interface

psQ_SC->SetSQSCdeccntr_cnt(false);
psQ_SC->SetSQSC_free_buf(false);

// TEXTURE PIPE INTERFACE READ

static int phase = 0;
// grab the return from the texture pipeifvalid
if (pTP_SQ->GetValidQ)
5
Xr

TXColor returnColor;
uinteger<7> registcrAddress;
RegVect* txAddr;
int valid;

registerAddress = pTP_SQ->GetTP_SP_gprdstQ);
regFile[phase]->GetValues(txAddr,registerAddress);

// Here we write the data to the GPRs. We only write data that has a
// write mask activated

for (int 1=0;1<16;i++)
{

returnColor = pTP_SQ->GetTP_SP_data(i);
valid = pTPSQ->GetTPSPpixmask(i/4).getValueQ);
if ((valid>>(i%4))&0x01)
{

if (pTP_SQ->GetTP_SP_cmask(0))
txAddr[i].field[0]=returnColor.x;

if (pTPSQ->GetTPSPcmask(1))
txAddr[i].field[1]=returnColor.y;

if (pTP_SQ->GetTP_SP_cmask(2))
txAddr[i].field[2]=returnColor.z;

if (pTP_SQ->GetTPSPcmask(3))
txAddr[i].ficld[3]=returnColor.w;

3
j

// increment the phase
phase ++;

if (phase == 4)
{

62

LG Ex. 1002, pg 197

LG Ex. 1002, pg 198

phase =0;
// all texture instrucions of the clause have returned we can place
// the vector back in the next RS

if (pTP_SQ->GetTP_SQdata_rdy())

// set the ready flag in the RS
if (pTP_SQ->GetTP_SQ_typeQ == VERTEX)

arbiter->vertexStation[pTP_SQ-
>GetTPSQthread_id()].status.texReadsOutstanding = false;

else

{
arbiter->pixelStation[pTP_SQ-

>GetTPSQthread_id()].status.texReadsOutstanding = false;

}

~~

Fis 2s oe it oe os ok

// Process pixels function for block
/[SB Pe Ae he eee ise eee eeeee fe ae ie 2 ae 2 ae ee fe ie oe fe 2 2 fe 2 ae ae 2 a ea ae ie ae fe ie 2 ae eae fe ofc ae fe ae fe ae ie 2 ae ee fe

DEK OR RE a oe

void cCUSER_BLOCK_SQ::ProcessPixels(void)
{

int i,j;
int deallocating = 0;

int ready = 0;

static bool first_transfert = true;
static int bufread = 0;
static int linceSQ[4] = {0,0,0,0};
static int lineSP[4] = {0,0,0,0};
static int SQ_buf_id = 0;

static int QWrote = 0;
bool pulsed = false;
PixInputs pix;

// first deal with these one clock transfers

63

LG Ex. 1002, pg 198

LG Ex. 1002, pg 199

if(sc_sqdata.SCSQevent && sc_sqdatasSSCSQvalid)
{

// filter out all events but fot the PSDEALLOC and PS_TSDEALLOC
if (sc_sqdataSCSQeventid == PSDEALLOC |

sc_sqdataSCSQeventid==PSDONETS
|| sc_sq_data.SCSQeventid==RSTPIXCNT);

x

pix.event = sc_sqdataSCSQevent_id;
pix.state = sc_sqdata.SCSQstateid;
eventFIFO.push(pix);
if (pix.state == 0)

idleO ++;
else

idlel_7 ++;
j
pSQSC->SctSQSCdeccntr_cnt(truc);
pulsed = true;

}
// new vector and dealloc tokens (without any other data)
else if (first_transfert && sc_sq_data.SSC_SQquad_mask[0] == 0

&E sc_sqdatasSSCSQquadmask[1] == 0 &E&
sc_sqdataSCSQquadmask[2] ==0 &&

sc_sqdatasSSCSQquadmask[3]==0 && scsqdata.SCSQvalid)
{

if (sc_sq_data.SC_SQ_pc_dcalloc > 0)

pix.event = 200+sc_sqdata.SC_SQpc_dealloc;
pix.state = scsqdata.SSCSQstateid;
eventFIFO.push(pix);
pSQ_SC->SetSQSCdec_cntr_cnt(true);
pulsed = true;
if (pix.state == 0)

idleO ++,
else

idlel_7 ++;

if (sc_sqdata.SSCSQnewvector)
{

pSQ_SC->SetSQSCdec_cntr_cnt(true);
pix.event = 300;
pix.state = sc_sqdata.SCSQstateid;
eventFIFO.push(pix);
pulsed = true;
if (pix.state == 0)

idleO ++;
else

64

LG Ex. 1002, pg 199

LG Ex. 1002, pg 200

idlel_7 ++;
}

}
// accumulate the control data if something sent by the SC
else if (sc_sqdatasSC_SQvalid)s
t

if (first_transfert)

if (sc_sqdata.SCSQstateid == 0)
idleO += 4;

else

idlel_7+=4;
}
first_transfert = false;

// get the first pixcl group signal and saveit
if (sc_sq_data.SCSQnewvector != 0)
{

interp[SQbufid].newvector =scsqdataSSC_SQnewvector;
pulsed = true;
pSQ_SC->SetSQSCdec_cntr_cnt(true);

}
if (sc_sqdataSCSQpcdealloc > 0)
{

interp[SQbuf_id].pc_dealloc += sc_sqdataSCSQpcdcalloc;

// load the control data in the control buffers

for G=0;1<4;i++)
{

if (sc_sq_datasSC_SQquadmask[i])

// get the associated state and save it
interp[SQbufid].stateid=scsqdata.SCSQstateid;

interp[SQ_buf_id].noIncrement =
sc_sq_data.SCSQnoincpixcnt;

interp[SQ_buf_id].ptr0[lincSQ[i]%4][i] =
sc_sqdata.SCSQpc_ptr0;

interp[SQ_buf_id].ptr1[lineSQ[i]%4] [i] =
sc_sqdata.SSCSQpcptrl;

interp[SQ_buf_id].ptr2[lineSQ[i]%4][i] =
sc_sq_data.SC_SQpc_ptr2;

interp[SQ_buf_id].provok[lineSQ[i]%4][i] =
sc_sqdataSCSQprovok_vtx;

65

LG Ex. 1002, pg 200

LG Ex. 1002, pg 201

interp[SQ_buf_id].pix_mask[lineSQ(i]%4][i]
scsqdata.SCSQpixmask[i];

interp[SQ_buf_id].lod_correct[lineSQ[i]%4] [i]
sc_sqdata.SCSQlodcorrect[i].getValueQ);

// get the primitive type
interp[SQ_buf_id].prim_type[lineSQ/i]%4] [i]

sc_sqdata.SCSQprimtype;

lineSQUi] = CineSQ[i]+1)%4;
QWrote ++;

}

// manage completion of a pixel vector
if (QWrote == 16)

QWrote = 0;

// a valid non event vector is 100

pix.event = 100;
eventFIFO.push(pix);
first_transfert = true;

setContextNumber(interp[SQ_buf_id].state_id.gctValuc(Q)):
// increment by one more buffer is sending two buffers down
if|(SQCONTEXTMISC.getSC_SAMPLECNTLQ ==

CENTROIDSANDCENTERS){
SQbufid=(SQ_bufid+1)%4;

3
SQbufid=(SQ_bufid+1)%4;

}

// if the event fifo contains something, try to putit in the RS
if (leventFIFO.emptyQ)
f
a

pix = eventFIFO.frontQ);
if (pix.event < 100)

if (pix.event == RST_PIX_CNT)
{

if (pix.state == 0)
idleO --;

else

66

LG Ex. 1002, pg 201

LG Ex. 1002, pg 202

idlel7 --;
autocountpix = 0;
eventFIFO.popQ);

}
else if (‘arbiter-

>AddVector(pix.event,PIXEL,pix.state,interp[buf_read].pix_mask,true,interp[bufread].lodcorr
ect))

{

}
}
else if (pix.event == 100 && !pulsed)

eventFIFO.popQ;

ready=1;
}
else if (pix.cvent >= 200 && pix.cvent < 300)
{

deallocating = pix.event - 200;
eventFIFO.popQ;
if (pix.state == 0)

idleO --;
else

idlel_7 --;
}
// new vector

else if (pix.event == 300)
{

if (vertexReady[pix.state]>0)i
v

vertexReady[pix.state]--;
eventFIFO.popQ;
if (pix.state == 0)

idleQ --;
else

idlel7 --;

;

// accumulate data interface

if (sc_sp_data.SCSPvalid)

for (i=0;1<4;i++)
{

if(sc_spdata.SC_SP_valid[i])
{

67

LG Ex. 1002, pg 202

LG Ex. 1002, pg 203

// iy data
if (sc_spdata.SCSPtype[i] == CENTROID)

for (j=0;)<4;j+1)
{

interp[lineSP[i]/4].I[lineSP[i]%4][i*4+j —
ll

sc_spdata.SCSPidata[i].I[j];
interp[lineSP[i]/4].J[lineSP[i]%4][i*444]

sc_spdata.SC_SP4data[i].J[j];
}

j
else if (sc_spdata.SC_SP_type[i] == CENTER)

for (j=0;)<4;j)++)
{

interp[(lineSP[i]/4+1)%4].I[lineSP[i]%4][1*4+4] =se_sp_data.SCSP4dataf[i].I[j];

interp[(lineSP[i]/44-1)%4].J[lineSP[i]%4][i*444] = sc_spdata.SSCSPidatafi].J[j];

}
}
// xy data
else if (sc_spdata.SC_SP_type[i] == XY_FACENESS)
{

interp[lincSP[i]/4].X[lineSP[i]%4][i]
(sc_spdata.SC_SPijdatafi].I[0] >> 12) & Oxfff;

interp[lineSP[1]/4].Y[lineSP[i1]%4][i]
(scspdata.SCSPijdata[i].I[0] & Oxfff);

interp[lineSP[i]/4].face[lineSP[i]%4][i] =
(sc_spdata.SCSPijdata[i].I[0] >> 24) & 0x1;

// change line in the SP
if (sc_sp_data.SC SP last quad data[i])
t

// if sending more than one buffer
if ((lineSP[i}+1)%4 == 0)

setContextNumber(interp[lineSP[1]/4].state_id.getValueQ);
if

(SQCONTEXTMISC.getSC_SAMPLECNTL(Q == CENTROIDSANDCENTERS)
lineSP[i] = (ineSP[i]+4)% 16;

}
lineSP[i] = (lineSP[1]+1)%16;

68

LG Ex. 1002, pg 203

LG Ex. 1002, pg 204

;

//if IJ buffer filled, interpolate the results
// also allocate the GPRs.

if (ready > 0)
5
r

// set the state to the current state

setContextNumber(interp[bufread].state_id.getValueQ);

int base_ptr;
int numReg;
numReg = SQPROGRAM_CNTL.getPSNUM_REGO+1,;
boolean GPR_full = true;
boolcan station_full =truc;
int address;

// if the data is ready in the PC
if (interp[buf_read].new_vector |

vertexReady[interp[buf_read].state_id]>0||
interp[buf_read].prim_type[0][0] >= 4) // Real Time

{
// check for space in both GPRsandreservation station 0
GPR_full = gpr_manager->testAllocate(numReg,base_ptr,PLXEL);
if (GPR_full)
{

stationfull = arbiter->AddVector(base_ptr,PIXEL,

interp[buf_read].state_id,interp[buf_read].pix_mask,false,
interp[buf_read].lod_correct);

5

//if we have place for everything ANDthereis valid data
//in the PCsifthis is the first vector...

if {GPR_full && !station_full)
t

// Structure for the SQ->SP dummyinterface
SQ_SP_interp_data interpData;

// clear the firstVector flag and decrement the countif
// the pixel group was accepted
if (interp[buf_read].new_vector)

interp[buf_read].new_vector = false;
vertexReady[interp[buf_read].stateid]--;

69

LG Ex. 1002, pg 204

LG Ex. 1002, pg 205

}

gpr_managcr->allocate(numReg,basc_ptr,PIXEL);
// loop for the four lines
for (j=0;j<4,j++)
{

address = base_ptr;
int [JlineIndex;
// loop for the number of parameters to interpolate
int interp_params;
if (SQPROGRAMCNTL.getPARAMGEN()

&& SQPROGRAMCNTL.getGEN_INDEXPIXQ())
interp_params =

SQPROGRAMCNTL.getVS_EXPORTCOUNT()+3;
else if

(SQPROGRAM_CNTL.gctPARAMGENQ |
SQPROGRAMCNTL.getGEN_INDEXPIX())

interp_params =
SQPROGRAMCNTL.getVS_EXPORTCOUNT()+2;

else

interp_params =
SQPROGRAMCNTL.getVS_EXPORT_COUNT()+1;

if (interpparams > 16)

interp_params = 16;

for G=0;i<interp_params;it++)
{

int shade =

SQ_INTERPOLATORCNTL.getPARAMSHADE();
bool flat = '((shade >> (interp_params-

1))&0x01);

// deal with the center/centroid stuff here

TJlineIndex = j;
uint 1jBuffer;
ijBuffer = buf_read;
if

(SQ_INTERPOLATOR_CNTL.getSAMPLING_PATTERN(O!= 0)

int samplingPattern =
SQ_INTERPOLATOR_CNTL.getSAMPLING_PATTERNO;

if ((samplingPattern >> i)&0x01)
ijBuffer = (buf_read+1)%4;

70

LG Ex. 1002, pg 205

LG Ex. 1002, pg 206

interpolators. Interpolate(regFile[j],address,interp[1jBuffer].I[TJlineIndex],
interp[ijBuffer].J[TJlincIndex],

interp[buf_read].ptrO[j],interp[buf_read].ptr1[j],

interp[buf_read].ptr2[j],1,interp[buf_read].prim_type[j],this,

interp[buf_read].X[j].,interp[buf_read].Y[j],interp[buf_read].face[j],flat,interp[buf_read].p
rovok{j],!interp[buf_read].noIncrement);

// write to the SP dummyinterface
RegVect* values;

regFile[j |->GetValues(values,address);

interpData.Address[i]=it+base_ptr;
interpData.NumParams= interp_params;

for (int k=0;k<16;k++)
{

interpData.InterpData[i][k][j].field[0]—values[k].field[0];

interpData.InterpData[i][k][j].ficld[1]J=valucs[k].ficld[1];

interpData.InterpData[i][k][j].field[2J-values[k].field[2];

interpData.InterpData]i][k][j].field[3 |=values[k].field[3];
}
// mcrement the GPR address

if (addresst+1 < gpr_manager->pixLimit)
{

address ++;
}
else

{
address = 0;

}

5
psQ_SP_Interp->SetAll(&interpData);
psQSP_Interp->SetValid(true);

// dump the SQ->SPinterpolator dummy interface
if(m_dumpSQ>0) {

LG Ex. 1002, pg 206

LG Ex. 1002, pg 207

if (pSQ_SP_Interp->GetNewValidQ)

psQ_SP_Interp-
>GetNewAll(&(m_sqSpInterpDump->_data));

CENTROIDS_AND_CENTERS)

m_sqSpInterpDump->Dump();
jY

J

// signify to the SC that we freed a buffer
psQSC->SetSQSC_free_buf(true);
// And a controlline

psQSC->SetSQSCdec_cntr_cnt(true);

// pop the event queueto signify that we consumed a buffer
eventFIFO.popQ);

// set the deallocation flags
if (interp[buf_read].pc_dealloc >0)

deallocating = interp[buf_read].pc_dealloc;
interp[buf_read].pc_dealloc = 0;

}

// swap buffers
buf_read = (buf_rcad+1)%4;
// increment one more ifmultiple buffers for current state
if (SQCONTEXT_MISC.getSC_SAMPLECNTLQ ==

buf_read = (buf_read+1)%4;

} / endif GPR and RSready
\ // endif data ready

} // endif ready process pixel

// dump the SQ->SC interface
if(m_dumpSQ>0){

if (pPSQSC->GetNewValid())

psQ_SC->GetNewAll(&(m_sqScDump->_data));
m_sqScDump->DumpQ);

5
s

//PC Deallocation

static int deallocation = 0;
int dealloc;

72

LG Ex. 1002, pg 207

LG Ex. 1002, pg 208

while (deallocating > 0)
{

//new dcealocation scheme (groups of 16)
if (pcAllocated.empty())
{

std::cerr << "Error in SQ, trying to dealocate empty parameter
stores" << std::endl;

3
dealloc = pcAllocated.front()/4;
deallocation ++;

if (deallocation == 4)

pcAllocated.popQ);
deallocation = 0;

}

if (pcFree + dealloc < 128)
pcFree += dealloc;

else

{
pcFree = dealloc-(128-pcFree);
checkHigh = !checkHigh;

}
dcallocating --;

 // end while PC dealloc
}

void cCUSER_BLOCK_SQ::ProcessVerts(void)
{

Static int stageCount = 0;

// current staging register layer
static int layer =0;

static bool doubleSent = false;

static uinteger<4> valids[4][4];

static bool ready = false;

// used to keep the state aroundifwe needto stall
static uinteger<3> vState;

// compute the numberofvalid pipes

73

LG Ex. 1002, pg 208

LG Ex. 1002, pg 209

int dis pChip->pROM-
>ROMBADPIPEDISABLEREGISTER.DISABLESPVTX;

if (vgt_sq_vertsdataVGT_SQ_send && !ready &&
!vet_sq_vertsdata.VGT_SQevent)s

au

vState = vet_sqvertsdata.VGTSQstate;

RegVect value;
value. field[0|= vgt_sqvertsdata.VGTSQvsisr_data[0];
value.field[1]= vgtsqvertsdata.VGTSQvsisr_data[1];
value.field[2]= vgt_sq_vertsdata.VGTSQvsisr_data[2];

stagingRegisters[stageCount] [layer] = value;

if (stagcCount == 0 && layer == 0)

if (vState == 0)
idleO += 4;

else

idlel_7+=4;
}

if ((stageCount%4) == 0 && layer==0)
valids[stageCount/16][(stageCount/4)%4] =0;

// only validate ifVsisrData is valid
if (vetsqvertsdataVGTSQindxvalid)i
x

if (layer == 0)
valids[stageCount/16][(stageCount/4)%4| +=

1<<(stageCount%4);
stageCountt++;
if (stageCount%4 == 0)

if (((stageCount == 16 || stageCount == 32|| stageCount ==
48) && dis&0x01) ||

((stageCount == 4 || stagcCount == 20|| stagcCount
== 36 || stageCount == 52) && dis&0x02)||

((stageCount == 8 || stageCount == 24|| stageCount
== 40 || stageCount == 56) && dis&0x04)||

((stageCount == 12 || stageCount == 28 ||
stageCount == 44|| stageCount == 60) && dis&0x08))

{
stageCount += 4;

j

74

LG Ex. 1002, pg 209

LG Ex. 1002, pg 210

}

// reset the layer to 0
layer = 0;

if (vgt_sq_vertsdata.VGTSQendof_vtx_vect)

for (int i=stageCount;i<64;1++)

if ((i%4) == 0)
valids[i/16][(i/4)%4] =0;

if (fvgt_sq_vertsdata.VGTSQvsisr_continued)
ready = true;

3

if (vgt_sq_vertsdataVGT_SQ_vsisr_continued)

layer = 1;
if ((stageCount-4)%4 == 0 && (stageCount-4) >0)

if (((stageCount == 16 || stageCount == 32|| stageCount ==
48) && dis&0x01) ||

((stageCount == 4 || stagcCount == 20|| stagcCount
== 36 || stageCount == 52) && dis&0x02)||

((stageCount == 8 || stageCount == 24|| stageCount
== 40 || stageCount == 56) && dis&0x04)||

((stageCount == 12 || stageCount — 28 ||
stageCount == 44|| stageCount == 60) && dis&0x08))

{
stageCount -= 4;

j
}
stageCount--;
doubleSent= true;

j

// regular end of vector (not early terminated)
if (stageCount == 64)

ready = true;

}

// event processing
static int eventld;

75

LG Ex. 1002, pg 210

LG Ex. 1002, pg 211

static bool sentEvt = false;

float templd;
static int evState;

if (vgt_sq_vertsdata.VGTSQsend && vgtsqvertsdataVGTSQevent &&
!sentEvt) s

t

templId = vgt_sq_vertsdata.VGT_SQvsisr_data[0].getRealQ;
eventld = reinterpret_cast<uint32&>(templd);
eventId = eventId & Ox1F;

// filter out all events but fot the VSDEALLOC and VS_TSDEALLOC
if (eventId == VS_DEALLOC|| eventId == VS_DONETS// cp events

| eventld == CONTEXTDONE || eventld ==
CACHEFLUSH_TS

| eventld == CACHEFLUSH | eventld===
CACHEFLUSHANDINVTSEVENT

|| eventId == CACHE_FLUSH_AND_INV_EVENT) // Rb events
{

sentEvt = true;

evState = vet_sq_vertsdata.VGTSQstate;
if (evState == 0)

idleO ++;
else

idlel_7 ++;
}
else if (eventId == RST_VTX_CNT)

autocountvtx = 0;
}

if (sentEvt)
‘
a

if (tarbiter-
>AddVector(eventld,VERTEX,evState,valids,true,interp[0].lod_correct))

{
sentEvt = false;

else // we are full stop sending data
{

vgt_sq_vertsdata.VGTSQsend = false;
pVGT_SQvertsready->SetReady(false);

j
5

if (ready)
‘
d

// set the state to the current vector

setContextNumber(vState.getValue(Q));

76

LG Ex. 1002, pg 211

LG Ex. 1002, pg 212

// copy everything to GPRs
int base_ptr;
int numReg;
numReg = SQPROGRAMCNTL.getVS_NUM_REGO+1;
boolean GPR_full=true;
boolean station_full=true;

// check for space in both GPRsandreservation station 0
GPR_full = gpr_manager->testAllocate(numReg,baseptr,VERTEX);
if (!GPR_full)
{

station_full = arbiter->AddVector(base_ptr,VERTEX,
vState,valids,false,interp[0].lod_correct);

j

if (1GPR_full && !station_full)
{

gpr_manager->allocate(numReg,base_ptr,VERTEX),
// allocation succesfull write the data

int 1,J;
RegVect* vtAddr;
RegVect* vtAddr1;
RegVect* vtAuto;
int address;

for G=0,j<4;j++)
t

// counting GPRsin reverse order for vertices
address = base_ptr;
regFile[j]->GetValues(vtAddr,address);
if (address > gpr_manager->vertLimit)

address--;
else

address = 127;

regFile[j]->GetValues(vtAddr1 address);
if (address > gpr_manager->vertLimit)

address--;
else

address = 127;
regFile[j |->GetValues(vtAuto,address);
for G=0;1<16;i++)

vtAddr[i]=stagingRegisters[j* 16+i][0];
if (doubleSent)
{

77

LG Ex. 1002, pg 212

LG Ex. 1002, pg 213

vtAddr1 [iJ=stagingRegisters[j*16+1][1];
}
// auto generated index
if

(SQPROGRAMCNTL.getGENINDEXVTX())

vtAuto[1].field[0]=auto_count_vtx;
auto_count_vtx ++,

}
j

// clear the buffers

stageCount = (dis&0x01)*4;
layer = 0;
doublcSent = false;
ready = false;

else // we are full

{
vget_sq_vertsdata.VGT_SQsend = false;
pVGTSQvertsready->SetReady(false);

}

[PR Re Be Re he ae ie eae ee fe ie it ae ae ae ie ea ae fe fe fe it i ae ae ie ie at ae fe fe ft it a ae fe ie ie at ae fe fe fe ft a ae ae ie ie ae ae fe fe fe oft a ae ae it aie a ae fe aie
Die eos ok oe aso

// Process function for block

[PR A As hs he 8 hs 2 eeeh he i eR2eRe he AC Re he AE iee ieee ie oe ie 2 ae Ae fe ACR fe ois eae oie 2 ae ie ik
De OK of 2 eo

void CUSER_BLOCK_SQ:: Process(void)
{

ProcessVerts();
ProcessPixels();

// execute the arbiter

arbiter->Execute();
}

J[He wa ae he he ae oe aie ae ae fee fe oie ae ae ake oe fe ake ae fe 2 ae fea fe afc ae fe ake ae fe aie 2k fe afte ale ake ae fe a ae oie ake aie 2 ae afta fe aft ae fe aie os fe ae ae oie a fe aft ae fe
is so ok os as ok

// Output function for block
[RB PS Ae ie eee ie eeeeeEe aE ge 2 aE EEee ee Ei EE ie 2ee ie a fe ie ete fe it aE fe a ee ae ie 2 ae it ee

Bie 2 oe aie He a ie

78

LG Ex. 1002, pg 213

LG Ex. 1002, pg 214

void cUSERBLOCK_SQ::Output(void)

{ . .
Int 1;

static int currentexport = 0;
static int export_count = 0;
static int currentPtr[4];

if (outBuffer.valid)§
a

outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentExportDest < 16))
{

int pcPointer;
// new export block reset the counts
currentPtr[0] = currentAluPC;
currentPtr[1] =

(currentAluPC+(SQ_PROGRAMCNTL.getVS_EXPORT_COUNTQ+1))%128;
currentPtr[2| =

(currentAluPC+(SQPROGRAMCNTL.getVS_EXPORT_COUNT()+1)*2)%128;
currentPtr[3] =

(currentAluPC+(SQ_PROGRAMCNTL.getVS_EXPORT_COUNT()+1)*3)%128:

// set pcPointer to the correct value
pcPointer = (currentPtr[current_cxport] +

currentExportDest)% 128;

// copy data to the PCs
int valid;
for (i=0;1<16;i++)
{

valid = outBuffer.valids[1/4].getValueQ);
if (valid >> 1%4) &0x01)

if (export_mask & 0x01)
parameters[pcPointer].Val[i].field[0] =

outBuffer.values|i].field[0];
if (export_mask & 0x02)

parameters[pcPointer].Val[i].field[1] =
outBuffer.values[i].field[1];

if (export_mask & 0x04)
parameters[pcPointer].Val[i].field[2] =

outBuffer.values[i].field[2];
if (export_mask & 0x08)

parameters[pcPointer].Val[i].field[3] =
outBuffer.values[i].field[3];

79

LG Ex. 1002, pg 214

LG Ex. 1002, pg 215

j

// dump the valuestoafile
if(m_dumpSQ>0) {

dumpPcValues(export_mask, pcPointer, outBuffer);
}

current_exportt+;

if (current_export == 4)
{

current_export=0;

\// end parameter cache export
// other exports
else

pSP_SX->SetValid(true);
for (=0;1<16;i++)(
v

poP_Sx-
>SetSP_SX_color(outBuffer.values[i].field[0],i*4);

psP_SxX-
>SetSPSX_color(outBuffer.values|i].field[1],1*4+1);

psP_SxX-
>SetSP_SX_color(outBuffer.values[i].field[2],i*4+2);

psP_SxX-
>SetSP_SX_color(outBuffer.values|i].field[3],i*4+3);

pSP_SX->SetSP_SX_exp_pvalid(outBuffer.valids[i/4],1/4);
}
uinteger<6> dest;
dest = currentExportDest;

pSP_SX->SetSP_SX_dest(dest);
pSP_SX->SetSP_SX_alu_id(currentExportAlu);
uinteger<2> exp_count;
expcount = export_count;

pSP_SX->SctSP_SX_cxport_count(cxp_count);
exportcount = (export_countt1)%4;

pSP_SX->SetType(outputType);

if(m_dumpSQ>0) {
pSP_SX->GetNewAll(&(m_spSxDump->_data));
m_spSxDump->DumpQ);

}

80

LG Ex. 1002, pg 215

LG Ex. 1002, pg 216

} // end other exports

}

bool cUSERBLOCK.SQ::handleRegisterAccess(ACCESS access, uint32 spaceOffset,
uint32 byteEnable, uint32& data)§

v

bool handled = false;
static int count = 0;
TConstPacked tstate;
Loop loop;
uint32 cfBool;
uint32 gfxDecode;

if (access == WRITE_ACCESS)
t

// Remove GFX decode from spaceOffset
if (spaceOffset >= 0x8000 && spaceOffset < 0x10000)

efxDecode = (spaceOffset >> 12) & 0x7;
spaceOffset = spaceOffset & ~(0x7 << 12);

y
5

// grab the CPSTATECOPY
if (spaccOffsct == (mmGFX_COPY_STATE<<2))

int previous_write_state = data & 0x7;
currentwritestate = gfxDecode;

// clear the vertex ready counts for the new state to come (may
have been screwed up

// by the mem exports.
vertexReady[currentwritestate]=0;

// copy the constant tables
Int 1;
for (i=0;1<512;i++)
{

constantStore[previouswritestate].GetConstValue(cst,i);
constantStore[current_write_state].WriteValue(cst,i);

for (1=0;1<32;1++)

textureStateStore[previous_write_state].GetConstTState(tstate,i);
textureStateStore[currentwritestate].WriteTState(tstate,i);

81

LG Ex. 1002, pg 216

LG Ex. 1002, pg 217

for (=0;i<8;i++)
{

cfBool =

controlFlowStore[previous_write_state].GetConstBooleans(1);

controlFlowStore[current_write_state].WriteBooleans(cfBool,i);

for (1=0;1<32;1++)

controlFlowStore[previous_write_state].GetConstLoop(loop,i);
controlFlowStore[current_write_state].WriteLoop(loop,i);

}
j

else if ((spaccOffsct >= (mmSQINSTRUCTIONALU_0<<2)) && (spaccOffset <
((mmSQ_INSTRUCTION_ALU_0 + 4096*3)<<2)))

int address = ((spaceOffset>>2) -
(mmSQ_INSTRUCTION_ALU_0)) /3;

Packet pckt;
pckt = reinterpret_cast<Packet&>(data);
switch (count) {
case 0:

inst.bytc0 = pckt.bytc0;
inst.bytel = pckt.bytel;
inst.byte2 = pckt.byte2;
inst.byte3 = pckt.byte3;
break;

case 1:

inst.byte4 = pckt.byte0;
inst.byteS = pckt.bytel;
inst.byte6 = pckt.byte2;
inst.byte7 = pckt.byte3;
break;

case 2:

inst.byte8 = pckt.byte0;
inst.byte9 = pckt.byte1;
inst.byte10 = pckt.byte2;
inst.bytel 1 = pckt.byte3;
break;

b;
count ++;

// write the instruction to instruction memory
if (count == 3)

82

LG Ex. 1002, pg 217

LG Ex. 1002, pg 218

count = 0;
instructionStore.SctInst(inst,address);

}

handled = true;
y
5

else if ((spaceOffset >= (mmSQCONSTANTRT0<<2)) && (spaceOffset <
(immSQCONSTANTRT_0+ 256*4)<<2)))

int address = ((spaceOffset>>2) - (mmSQCONSTANTRT0)) /4;
est.field[count].putField(data);
count ++;

if (count == 4)
t

count = 0;

constantStore[0].WriteValue(cst,address);
}

handled = true;
y
5

else if ((spaceOffset >= (mmSQCONSTANT0<<2)) && (spaceOffset <
((mmSQCONSTANT0+ 512*4)<<2)))

{
int address = ((spaccOffsct>>2) - (mmSQCONSTANT.0)) /4;

cst.field[count].putField(data);
count ++;

if (count == 4)
{

count = 0;

constantStore[currentwritestate].WriteValue(cst,address),
j

handled = true;
y
5

else if ((spaceOffset >= (mmSQFETCH0<<2)) && (spaceOffset <
((mmSQFETCH_0 + 32*6)<<2)))

int address = ((spaceOffset>>2) - (mmSQFETCH_0))/6;
tStateData[count] = data;
count ++;

if (count == 6)
{

count = 0;

tstate.unpack(tStateData);

83

LG Ex. 1002, pg 218

LG Ex. 1002, pg 219

textureStateStore[currentwritestate].WriteTState(tstate,address);

handled = true;
y
5

else if ((spaceOffset >= (mmSQFETCHRT0<<2)) && (spaceOffset <
((mmSQ_FETCH_RT_0 + 32*6)<<2)))

int address = ((spaceOffset>>2) - (mmSQFETCHRT_0))/6;
tStateData[count] = data;
count ++;

if (count == 6)

count = 0;
TConstPackedtstate;
tstatc.unpack(tStatcData);
textureStateStore[0].WriteTState(tstate,address);

}
handled = true;

)
5

else if ((spaceOffset >= (mmSQ_CF_BOOLEANS<<2)) && (spaceOffset
<((mmSQ_CF_BOOLEANS+ 8)<<2)))

int address = ((spaceOffset>>2) - (mmSQCFBOOLEANS));

controlFlowStore[current_write_state].WriteBooleans(data,address);
handled = true;

y
5

else if ((spaceOffset >= (mmSQCF_LOOP<<2)) && (spaceOffset <
((mmSQ_CF_LOOP + 32)<<2)))

{
int address = ((spaceOffset>>2) - (mmSQCFLOOP));
Loop loop;

loop.count = data & OxFF;
loop.start= (data >> 8) & OxFF;
loop.step = (data >> 16) & OxFF;

controlFlowStore[currentwritestate].WriteLoop(loop,address);
handled = true;

y
5

else if ((spaceOffset >= (mmSQCFRTBOOLEANS<<2)) &&
(spaceOffset < ((mmSQ_CF_RT_BOOLEANS+ 8)<<2)))

{
int address = ((spaceOffset>>2) -(mmSQCFRTBOOLEANS));

84

LG Ex. 1002, pg 219

LG Ex. 1002, pg 220

controlFlaowStore[0].WriteBooleans(data,address);
handled = truc;

x
5

else if ((spaceOffset >= (mmSQ_CFRTLOOP<<2)) && (spaceOffset <
((mmSQ_CFRTLOOP + 32)<<2)))f

a

int address = ((spaceOffset>>2) - (mmSQ_CF_RT_LOOP));
Loop loop;

loop.count = data & OxFF;
loop.start= (data >> 8) & OxFF;
loop.step = (data >> 16) & OxFF;

controlFlowStore[0].WriteLoop(loop,address);
handled = truc;

y
5

else if ((spaceOffset >= (mmSQRT_V0OPARAMOR<<2)) &&
(spaceOffset < ((mmSQRTVOPARAMOR + 16*3*4)<<2)))i

v

int address = ((spaceOffset>>2) - (mmSQRT_VOPARAMOR));

RTParameters[address/(16*4)|[address/4].field[address%4]==reinterpret_cast<float&>(d
ata);

handled = truc;

}

return handled;
}

void CUSERBLOCKSQ::setParameter(float param, int index, int memNum,intfield)
{

}

bool cCUSER_BLOCKSQ::IdleQ

parameters[index].Val[memNum].field[field]J=param;

bool idle=true;

if (idleO > 0 || idlel_7 >0)
idle = false;

#ifdef DEBUG_SEQ
static bool prev_idle = true;
if (idle != prev_idle)

85

LG Ex. 1002, pg 220

LG Ex. 1002, pg 221

ws
if (idle)

std::cerr << "Sequencer Idle" << std::endl;
else

std::cerr << "Sequencer Active" << std::endl,
prev_idle = idle;Y

5

#endif

return idle;
}

bool cUSER_BLOCK_SQ::Idle0Q

if (idleO >0)
return false;

else

return true;

}

bool cUSER_BLOCK_SQ::Idle1_70

if (idlel_7 >0)
return false;

clse

return true;

}

void cUSER_BLOCK_SQ::dumpPcValues(int expmask,int pcPointer,const OutBuffer&
values)

{
static bool first = true;
int1;

if (first)
5
a

first = false;
fprintf(pcFile,"--PC Pointer (PC) (7 bits)\n");
fprintf(pcFile,"--Channel Mask (MSK) (4 bits)\n");
fprintf(pcFile,"--Data Mask (VAL) (16 bits)\n");
fprintf(pcFile,"--Colors (COL) (32 bits)\n");
fprintf(pcFile,"--P MV C C C Cc Cc

C Cc C C C Cc C C Cc C

C C C C C C C C C C

C C C C C C C C C C

C Cc C C Cc C C Cc C C

86

LG Ex. 1002, pg 221

LG Ex. 1002, pg 222

Cc Cc Cc C Cc Cc Cc Cc Cc Cc

Cc C Cc Cc Cc Cc C Cc C \n");
fprintf(pcFile,"--C SA 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1

| 1 | 2 2 2 2 2 2 2 2

2 2 3 3 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 6

6 6 6 \n");
fprintf(peFile,"-- KL 0 1 2 3 4 5

6 7 8 9 0 1 2 3 4 5 6

7 8 9 0 1 2 3 4 5 6 7

8 9 0 1 2 3 4 5 6 7 8

9 0 1 2 3 4 5 6 7 8 9

0] 2 3 4 5 6 7 8 9 0

1 2 3 \n");
}

fprintf(pcFile,” %02x %x MxV%x%ox%x",
pcPointer,expmask,outBuffer.valids[0].getValueQ),

outBuffer.valids[1].getValueQ,outBuffer.valids[2].getValue(),outBuffer.valids[3].getVal
ue());

for G=0;i1<163i++)
5
r

fprintf(peFile,"% 010.5¢ % 010.5e % 010.5e % 010.5e",
outBuffer.values[i].field[0].getRealQ,
outBuffer.values[i].field[1].getRealQ),
outBuffer.values[i].field[2].getRealQ),
outBuffer.values[i].field[3].getReal());

}

fprintf(pcFile,"\n");

float var[4];
fprintf(pcFile,” ")s

for G=0;1<16;1++)
5

for Gint w=0;w<4;wt++)
var[w] = outBuffer.values[i].field[w].getRealQ);

fprintf(pcFile,"%08x %08x %08x %08x ",
(reinterpret_cast<unsigned int>(&var[0])),
(reinterpret_cast<unsigned int>(&var[1])),

87

LG Ex. 1002, pg 222

LG Ex. 1002, pg 223

(reinterpret_cast<unsigned int>(&var[2])),
(reinterpret_cast<unsigned int>(&var[3]))
);

fprintf(pcFile,"\n");
j

Sq_blockmodel.cpp
[FOROICICI IC ICI ICAI ICI ICICI ICC IC ICR ACI III ICI ICICI I ICA Hea Hee a ea ef 2 2 ae ai aCa He a He

// Output function for block
[FRR COI IO CIC CCC AC A A A AS CS 2 EE AS EE AS AESEE EE A CE HE SESEES Se fe SE Se Ee fe

void cUSER_BLOCK_SQ: :Output(void)
{

int i;
static int current_export = Q;
static int export_count = @;
static int currentPtr[4];

if (outBuffer.valid)
{

outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentExportDest < 16))

int pcPointer;
// new export block reset the counts
currentPtr[@] = currentAluPC;
currentPtr[1] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1))%128;
currentPtr[2] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*2)%128;
currentPtr[3] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*3)%128;

// set pcPointer to the correct value
pePointer = (currentPtr[current_export] + currentExportDest)%128;

// copy data to the PCs
int valid;
for (1=0;1<16;1i++)
{

valid = outBuffer.valids[i/4].getValue();
if ((valid >> i%4) &@x@1)
{

if (export_mask & @x@1)
parameters[pcPointer].Val[i].field[9]

outBuffer.values[i].field[0];
if (export_mask & @x@2)

parameters[pcPointer] .Val[i].field[1]
outBuffer.values[i].field[1];

if (export_mask & 9x@4)
parameters [pcPointer] .Val[i].field[2]

outBuffer.values[i].field[2];
if (export_mask & @x@8)

88

LG Ex. 1002, pg 223

LG Ex. 1002, pg 224

parameters[pcPointer] .Val[i].field[3] =
outBuffer.values[i].field[3];

}

// dump the values to a file
if(m_dumpSQ>@) {

dumpPcValues(export_mask, pcPointer, outBuffer);
}

current_export++;
if (current_export == 4)
{

current_export=@;

}// end parameter cache export
// other exports
else

{
pSP_SX->SetValid(true);
for (1=03;1<16;i++)
{

pSP_SX->SetSP_SX_color(outBuffer.values[i].field[@],i*4);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[1],i*4+1);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[2],i*4+2);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[3],i*4+3);
pSP_SX->SetSP_SX_exp_pvalid(outBuffer.valids[i/4],i/4);

}
uinteger<6> dest;
dest = currentExportDest;

pSP_SX->SetSP_SX_dest(dest) ;
pSP_SX->SetSP_SX_alu_id(currentExportAlu) ;
uinteger<2> exp_count;
exp_count = export_count;
pSP_SX->SetSP_SX_export_count(exp_count) ;
export_count = (export_count+1)%4;

pSP_SX->SetType(autputType);

if(m_dumpSQ>@) {
pSP_SX->GetNewAl11(&(m_spSxDump->_data));
m_spSxDump->Dump();

} // end other exports

Regarding fetching data from memory, Thetexture fetcher allows fetching from memory. The
arbiter.cpp file picks the programsthat need to fetch data in this function:
boolean Arbiter: :chooseTexStation(int &lineNumber,Shader_Type &sType)
{

int i;
int vertexPick = -1;
int pixelPick = -1;
int lineCheck;

// do pixels first

89

LG Ex. 1002, pg 224

LG Ex. 1002, pg 225

lineCheck = pixelHead;
for (i=@;i<pixelRsCount; i++)
{

if (pixelStation[lineCheck].status.valid &&
pixelStation[lineCheck].status.ressourceNeeded == TEXTURE

&& !pixelStation[lineCheck].status.event)
{

pixelPick=lineCheck;
}
// enforce restrictions based on the status

if (pixelPick != -1)
1

// no texture ops while texture reads are outstanding
if (pixelStation[pixelPick].status.texReadsOutstanding)

pixelPick = -1;
else

break;

}

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}

lineCheck = vertexHead;
for (i=0;i<vertexRsCount; i++)
{

if (vertexStation[lineCheck].status.valid &&
vertexStation[lineCheck].status.ressourceNeeded == TEXTURE

&& !vertexStation[lineCheck].status.event)
{

}
vertexPick=lineCheck;

// enforce restrictions based on the status

if (vertexPick != -1)
{

// no texture ops while texture reads are outstanding
if (vertexStation[vertexPick].status.texReadsOutstanding)

vertexPick = -1;
else

break;
}

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}

if (vertexPick != -1)
{

lineNumber = vertexPick;
sType = VERTEX;
return true;

}
if (pixelPick != -1)
{

lineNumber = pixelPick;
sType = PIXEL;
return true;

}

90

LG Ex. 1002, pg 225

LG Ex. 1002, pg 226

return false;

Thenfills in a request in this function:
void Arbiter::fillTextureInterface(int textureInstAddr,int texturePhase,boolean last)
{

const RegVect* txAddr;
TXAddr address;
uinteger<7> registerAddress;
uinteger<7> writeAddress;
uint8 maxSize;
int basePtr = textureCFMachine. stationData->data.gprBase;

sq->pSQ_TP->SetValid(true);

// Get the instruction

TInstrPacked inst;

// set the state to the current running ALU
sq->setContextNumber (textureCFMachine. stationData->data.state) ;

sq->instructionStore.GetInst(inst, textureInstAddr);
switch (textureCFMachine.sType)
{
case PIXEL:

maxSize = sq->gpr_manager->pixLimit;
// compute the addresses (read address)
if ((inst.getSRC_GPR() + basePtr) < maxSize)

registerAddress = inst.getSRC_GPR() + basePtr;
else

registerAddress = inst.getSRC_GPR()-(maxSize-basePtr) ;
// write address

if ((inst.getDST_GPR() + basePtr) < maxSize)
writeAddress = inst.getDST_GPR() + basePtr;

else

writeAddress = inst.getDST_GPR()-(maxSize-basePtr);
break;

case VERTEX:

maxSize = sq->gpr_manager->vertLimit;
// compute the addresses (read address)
if ((basePtr - inst.getSRC_GPR()) >= maxSize)

registerAddress = basePtr - inst.getSRC_GPR();
else

registerAddress = 128-(inst.getSRC_GPR()-(basePtr-maxSize));
// write address

if ((basePtr - inst.getDST_GPR()) >= maxSize)
writeAddress = basePtr - inst.getDST_GPR();

else

writeAddress = 128-(inst.getDST_GPR()-(basePtr-maxSize));
break;

}3
sq->regFile[texturePhase] ->GetConstValues(txAddr, registerAddress) ;
int i;
for(i=0;1<16;i++)

//Do the swizzle for the TP

9]

LG Ex. 1002, pg 226

LG Ex. 1002, pg 227

inst.doSrcSwizzle(txAddr[i].field[@], txAddr[i].field[1], txAddr[i].field[2],
txAddr[i].field[3],

address.x, address.y, address.z);
sq->pSQ_TP->SetSP_TP_fetch_addr(address,i);

}
for (i1=@;1<4;i++)
{

uinteger<4> valids;
valids = textureCFMachine.stationData->data.valids[texturePhase][i];
// modify the mask to turn on any pixels that are off if not fetch valid

only
if (linst.getFETCHVALIDONLY())
{

if (valids.getValue() != @)
valids = @x®F;

}

// now modify the mask based on the predicate vector
if (inst.getPRED_SELECT())
{

bool pred = (inst.getPRED_CONDITION() == 1);
if (pred != textureCFMachine. stationData-

>data.predicates[texturePhase*16+i*4])
{

// kill the pixel
valids = valids.getValue() & @xE;

if (pred != textureCFMachine.stationData-
>data.predicates[texturePhase*16+i*4+1])

{
// kill the pixel
valids = valids.getValue() & @xD;

t
if (pred != textureCFMachine.stationData-

>data.predicates[texturePhase*16+i*4+2])
{

// kill the pixel
valids = valids.getValue() & xB;

if (pred != textureCFMachine.stationData-
>data. predicates [texturePhase*16+i*4+3])

// kill the pixel
valids = valids.getValue() & 9x7;

}
}
sq->pSQ_TP->SetSQ_TP_pix_mask(valids,i);

// send the LOD correction bits

uinteger<9> LODCorrect;
LODCorrect = textureCFMachine. stationData-

>data. LodCorrect[texturePhase] [i];
sq->pSQ_TP->SetSQ_TP_lod_correct(LODCorrect,i);

}

92

LG Ex. 1002, pg 227

LG Ex. 1002, pg 228

sq->pSQ_TP->SetSQ_TP_write_gpr_index(writeAddress);
sq->pSQ_TP->SetSQ_TP_last(last);
uinteger<6> line;
line = textureCFMachine.lineNumber;
sq->pSQ_TP->SetSQ_TP_thread_id(line);
sq->pSQ_TP->SetSQ_TP_type(textureCFMachine. sType);
TConstPacked tpConst;
sq->textureStateStore[textureCFMachine.stationData-

>data.state].GetConstTState(tpConst, inst.getCONST_INDEX());
sq->pSQ_TP->SetSQ_TP_const(tpConst) ;
sq->pSQ_TP->SetSQ_TP_instr(inst);
uinteger<3> ctxId;
ctxId = textureCFMachine. stationData->data.state;
sq->pSQ_TP->SetSQ_TP_ctx_id(ctxId) ;

if(sq->m_dumpSQ>e) {
sq->pSQ_TP->GetNewAl11(&(sq->m_sqTpDump->_data));
Sq->m_sqTpDump ->Dump();

93

LG Ex. 1002, pg 228

LG Ex. 1002, pg 229

EXHIBIT B — CHIP DESIGN CODE

sq_gpr_alloc.v
/*

/f

hers's a description of the basic operation:

@ 1<- tail @ 1<- tail (ae @3 ~ <«- head, tail
1. <- head 1.2 1.2 <- stail 1.2
20 2.2, 2.2, 2.2,
3 32 302 302
4 4 <- head 4s S--sChead 43.
5 5 5 5.3
6s X= sohax 6CK - sax 6CK-sotax 6S-somax
7 ——_— J 7 SS 2 7 SE a 7 J

- initially, head = tail = @, and max is set to be one more than the maximum allowable location
- req 1 allocates one location, head is incremented to 1
- req 2 allocates three locations, head is incremented to 4
- another request for 3 spaces would not be granted since there are now only two free locations
- when the space taken by req 1 is dealloc'd, increment tail to 1 (frees up one location)
- now req 3 allocates three locations, head is incremented to 7, which is greater than max, so it is

wrapped around by subtracting max (7 - 6 = 1)

*/

- keep track of the free space -

wire [PTR_WIDTH-1:@] pix_free; // number of free pixel locations
wire [PTR_WIDTH-1:0] vtx_free; /f

assign pix_free = pix_wrapped_q ? pix_tail_q - pix_head_q : pix_max_q - pix_head_q + pix_tail_q;
assign vtx_free = vtx_wrapped_q ? vtx_head_q - vtx_tail_q : ~vtx_max_q - vtx_tail_q + vtx_head_q; ff

~vtx_max = 127 - vtx_max

wire pix_ok_to_alloc = (pix_alloc_space <= pix_free); // OK to allocate pixel space
wire pix_alloc = pix_ok_toalloc & pix_allocreq; // signals the start of a pixel alloc operation
wire pix_dealloc = pix_dealloc_req; // signals the start of a pixel dealloc operation (always

OK to dealloc?)
wire pix_head_wraps = (new_pix_head >= pix_max_q); // new pix_head wraps
wire pix_tail_wraps = (new_pix_tail >= pix_max_q); // new pix_tail wraps

wire vtx_ok_to_alloc = (vtx_alloc_space <= vtx_free); // OK to allocate vertex space
wire vtx_alloc = vtx_ok_to_alloc & vtx_alloc_req; // signals the start of a vertex alloc operation
wire vtx_dealloc = vtx_dealloc_req; /f signals the start of a vertex dealloc operation
wire vtx_head_wraps = (new_vtx_head <= vtx_max_q); // new vtx_head wraps
wire vtx_tail_wraps = (new_vtx_tail <= vtx_max_q); // new vtx_tail wraps

case (ra_current_state)
IDLE:

begin
// - look for any of the four requests
// - if the request is accepted
ff - go to the corresponding acknowledge state
ff - update the baseptr register on alloc requests

if (pixalloc)
begin

ra_next_state = P_ALLOC_ACK;
next_pix_alloc_ack = HI;

if (pix_head_wraps)

LG Ex. 1002, pg 229

LG Ex. 1002, pg 230

begin
next_pix_wrapped = HI;
next_pix_head = new_pix_head - pix_max_q;

end
else

begin
next_pix_head = new_pix_head;

end

next_baseptr = pixheadq; // for pixels, the space starts with the current head pointer
end

else if (vtx_allac)
begin

ra_next_state = V_ALLOC_ACK;
next_vtx_alloc_ack = HI;

if (vtx_head_wraps)
begin

next_vtx_wrapped = HI;
next_vtx_head = newvtx_head + »vtx_max_q; {/ ~vtx_max = 127 - vtx_max
//next_base_ptr = new_vtx_head + ~vtx_max + 1; // for verts, the space starts with

the new head pointer
end

else

begin
next_vtx_head = new_vtx_head;
//next_base_ptr = new_vtx_head + 1; // for verts, the space starts with the new head

pointer
end

next_baseptr = next_vtxhead + 1; // for verts, the space starts with the new head
pointer

// (coding trick - commented out lines above explain)

end

Sq_alu_instr_seq.v
FULLELELLETLALLA LAT LATTATALLLATAATLAEATTTT
// sq_alu_instr_seq.v
/f
// - receives instruction from alu instr queue (AIQ)
// - reads constants (but data goes directly to ais_output mux)
// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:0] aig_export_info; // {exp_id, pulse_sx}
input [@:9@] aiq_last_in_group; // last instruction flag
input [@:0] aiqlast_inshader; // last instruction flag
input [@:9@] aiq_thread_type; // @: pixel, 1: vertex (shows we operate on either pixel or vertex)
input [2:0] aiqcontext_id; // context_id (from ctl packet)
input [5:0] aiq_thread_id; // clause number

// - recall that a @ here means src is a constant (while 1 means src is a gpr)...

wire ca_fetch = ~aiq_instr[95];
wire cb_fetch = ~aiq_instr[94];
wire cc_fetch = ~aiq_instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
Tf before entering the AIQ

wire [8:90] ca_addr = {aiq_instr[63], aiq_instr[87:80]};
wire [8:0] cb_addr = {aiq_instr[62], aiqinstr[79:72]};
wire [8:@] cc_addr = {aiq_instr[61], aiq_instr[71:64]};

[| ~---- 2227-22222 nnen
/f -- Input Staging Register --

LG Ex. 1002, pg 230

LG Ex. 1002, pg 231

j=
// - need to send the vector type and the thread_id back to the thread buffers when
ff the all the instructions we wanted to run for this thread are done (this will
/f cause the thread to became valid again)
/f - register this info in from the AIQ on an AIQ pop in order to hold it until the
Tf AIS is done

executed

case (ais_current_state)
AISO:

// - wait until this machine is started by the AIQ read SM
// - write OSR data into thread buff on new thread (when there was a previous thread...)
ff - aisdone does updates the threadbuff and clears the alu_instr_pending status bit
/f - don't assert ais_done yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)
begin

ais_instr_stall = HI;

if (ais_start)
begin

//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q) ais_done = HI;

ais_instr_start = HI;
ais_instr_stall = LO;
ais_next_state = AIS1;

end
end

AIS1: begin ais_next_state = AIS2; end

AIS2: begin ais_next_state = AIS3; end

AIS3: begin aisnextstate = AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //

AIS4: begin ais_next_state = AIS5; end

AIS5: begin ais_next_state = AIS6; end

AIS6:

begin
// - the pred set data is loaded now from the previous instr, so assert done now
/f/ - also write new predicate data into predicate register (in aisoutput)

if (isr_new_thread_q & osr_pred_set_flag_q) ais_done = HI;

ld_osr = HI;
ais_next_state = AIS7;

end

AIS7:

// - pop the thread off the reservation station buffer when the last instr of the shader is

// - send freedone when pulsesx is set, or this is the last instruction of a pixel shader
(since this

end

/f is when the pixel export is done)

begin
if (isr_last_in_group_q & ~isr_last_in_shader_q) ais_done = HI;

if (isr_pulse_sx_q) ais_free_done = HI; // pixel last logic put into pulse_sx generation

if (isr_last_in_shader_q }) aispop = HI;

aisnext_state = AIS@;
end

endcase

LG Ex. 1002, pg 231

LG Ex. 1002, pg 232

// - end ais state machine

The ais machineis the “alu instruction sequencer”it executes instructions on either vertices or pixels depending on type. The file
sq_instruction_store.v contains the memory withall the instructions to be performed on either PS or VS:

Sq_instruction_storev

// Access to the is (instruction store) is divided into 4 phases:
// ®: texture instruction read
/f 1: alu instruction read
// The alu phase alternates between phases for alu@ and alu.
/f 2: CP write (or read for debug)
// 3: control flow instruction read
/f The control flow phase is shared for accesses by alu@, alul and tex
/f controlled by is_sub_phase.

// address mux
always @(/*AUTOSENSE*/addr or data_cnt or i_alu@_addr

or i_alu@_cf_addr or i_alut_addr or i_alui_cf_addr
or i_is_phase or i_is_sub_phase or i_tex_addr
or i_tex_cf_addr or q_rbi_addr_in)

begin
// default values
d_addr = addr;
d_we = 1°b@;
case (i_is_phase)

TEX_PHASE :
begin

d_addr = i_tex_addr;
end

ALU_PHASE :
begin

d_addr = i_is_sub_phase[@] ? i_alui_addr :
d_we = &data_cnt; // data_cnt == 3

end

CP_PHASE :
begin

d_addr
end

CF_PHASE :
begin

case (i_is_sub_phase)
2"bee :

d_addr = i_alu@_cf_addr;
2'b1e@ ;

d_addr
default :

d_addr = i_tex_cf_addr;
endcase // case(i_is_sub_phase)

end

endcase // case(i_is_phase)

i_alul_cf_addr;

end // always @ (...

Claim 2:

i_alu@_addr;

= q_rbi_addr_in[11:0]; // top bits are zeros by now

LG Ex. 1002, pg 232

LG Ex. 1002, pg 233

sp_macc_gpr.v
// Filename
/f Description
/f
/f Author

: macc_reg.v
: This module represents the MACC (Multiply and Accumulate) unit plus
: the corrensponding GPR (register file) module.
: Andi Skende

rfsd2_128x128cm1sw8_core ugpr_mem(.QB(reg_data),
-ADRA_buf (gpr_wr_addr),
-DA_buf(input_gpr),
-WEMA_buf(subword_write_mask),
-WEA_buf(gpr_wr_ena),
-MEAbuf(gpr_wr_ena),
-CLKA(sclk),
. BISTEA(1"b@),
-ADRB_but(sq_sp_gpr_rd_addr),
.OEB_buf(1"b1),
-MEB_buf(sq_sp_mem_rd_ena),
-CLKB(sclk),
.BISTEB(1'b@),
.AWTB(1"b@)’

This is the instantiation of the GPR memory, 128x128.

Sp_vector.v(shows the instanciation of 4 multiply accumulate modules and 1 scalar module):

| [vena nn nnn n ene nee nen nee enn nee ne ncn nee ee nn nee nnnene nee en nennneneneens

//Scalar Unit instantiation
ee

sp_scalar_lut uscalar(
-1AGME_OPCODE(scalar_opcode),
-i1AG_ME_INA(scalar_input_alpha),
-i1AGME_INB(scalar_inputred),
.iAG_ME_IN_C(32"b@),
-1AG_ME_ABSA(scalar_input_abs),
-1AG_ME_ABSB(scalar_input_abs),
-1AG_ME_ABS_C(scalar_input_abs),
.1AG_ME_A_NEGATE(scalar_input_negate),
-1AG_ME_B_NEGATE(scalar_input_negate * scalar_opcode_sub),
.1AG_ME_C_NEGATE(scalar_input_negate),
-OME_RESULT(scalar_result),
-sclk(sclk)
E

//replicating the scalar_result (32 bits) to all of the four channels of the write back path into GPRs
//masking is done at the GPRs input
assign scalar_result_bus = { scalar_result, scalar_result, scalar_result, scalar_result};

//Instantiation of all four MACC units that create a Vector Unit
[frm rr rrr rrr rrr rrr rrrcnrrrr cn cc ncn nnn cnn concen nrc ncn n sre nen concen nrc cscs ccc ses cee

sp_macc_gpr usp_macc_gprdé(.ovector_output(VectorResult@),
.oscalar_input_alpha(scalar_input@_alpha),
.oscalar_input_red(scalar_input@_red),
.oscalar_input_negate(scalar_input@_negate),
.oscalar_input_abs(scalar_input®_abs),
.oscalar_opcode(scalar_opcode@),
-oregdata(RepData@), .oexport_dst(sq_spexpdst),

-sqsp_instruct(sq_spinstruct),.sq_sp instruct _start(sq_ sp instruct start),.sq_spstall(sq_spstall),
.Sq_Sp_gpr_rd_addr(sq_sp_gpr_rd_addr),

LG Ex. 1002, pg 233

LG Ex. 1002, pg 234

-Sq_Sp_gpr_wr_addr(sq_sp_wr_addr),.sq_sp_wr_ena(sq_sp_wr_ena@), .sq_sp_mem_rd_ena(sq_sp_mem_rd_ena), .sq_sp_
mem_wr_ena(sq_sp_mem_wr_ena@),

-Sq_Sp_gpr_cmask(sq_sp_channel_mask),.sq_sp_pred_override(sq_sp_pred_override),

-Sq_Sp_gpr_phase_mux(sq_sp_gpr_phase_mux), .ilnterpolated(InputData@), .sq_sp_constant(sq_sp_constant),
.iscalar_data(scalar_result_bus), .tp_sp_data(tp_sp_data),
.tp_sp_gpr_dst(tp_sp_gpr_dst),

.tpspgpr_cmask(tp_spgpr_cmask),.tpspdatavalid(tpspdatavalid[9]),
»sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpri(.ovector_output(VectorResult1),
.oscalar_input_alpha(scalar_input1_alpha),
.oscalar_input_red(scalar_input1_red),
.oscalar_input_negate(scalar_input1_negate),
.oscalar_input_abs(scalar_input1_abs),
.oscalar_opcode(scalar_opcodel),

-oreg_data(RegDatal), .sq_sp_instruct(q@_instruct), .sq_sp_instruct_start(q@_instruct_start),.sq_sp_stall(q@
_instruct_stall),

.sq_sp_gpr_rd_addr(q@_gpr_rd_addr),

-8q_Sp_gpr_wr_addr(q@_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enal),.sq_sp_mem_rd_ena(q@_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_enal),

.Sq_sp_gpr_cmask(q@_gpr_cmask), .sq_sp_pred_override(q@_pred_override),

-Sq_Sp_gpr_phase_mux(q@_gpr_phase_mux), .ilnterpolated(InputData1), .sq_sp_constant(q@_sq_constant),
.iscalar_data(scalar_result_bus),.tp_spdata(tp_sp_data),
.tp_spgpr_dst(q@tpgpr_dst),

.tp_sp_gpr_cmask(q@_tp_gpr_cmask),.tp_sp_data_valid(tp_sp_data_valid[1]),
.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr2(.ovector_output(VectorResult2),
-oscalar_input_alpha(scalar_input2_alpha),
.oscalar_input_red(scalar_input2_red),
.oscalar_input_negate(scalar_input2_negate),
.oscalar_input_abs(scalar_input2_abs),
.oscalar_opcode(scalar_opcode2),

-oregdata(RegData2),.sq_sp_instruct(ql_instruct),.sq_sp instruct start(ql_ instruct _start),.sqspstall(ql
_instruct_stall),

.Sq_sp_gpr_rd_addr(ql_gpr_rd_addr),

.Sq_sSp_gpr_wr_addr(ql_gpr_wr_addr), .sq_sp_wr_ena(sq_sp_wr_ena2),.sq_sp_mem_rd_ena(ql_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena2),

.Sq_Sp_gpr_cmask(ql_gpr_cmask), .sq_sp_pred_override(ql_pred_override),

.Sq_Sp_gpr_phase_mux(ql_gpr_phase_mux), .ilnterpolated(InputData2), .sq_sp_constant(ql_sq_constant),
.iscalar_data(scalar_resultbus),.tpspdata(tpspdata),
.tp_sp_gpr_dst(ql_tp_gpr_dst),

.tpspgpr_cmask(ql_tpgpr_cmask),.tpspdatavalid(tp_spdatavalid[2]),
.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr3(.ovector_output (VectorResult3),
.oscalar_input_alpha(scalar_input3_alpha),
.oscalar_input_red(scalar_input3_red),
.oscalar_input_negate(scalar_input3_negate),
.oscalar_input_abs(scalar_input3_abs),
.oscalar_opcode(scalar_opcode3),

.oreg_data(RegData3),.sq_sp_instruct(q2_instruct), .sq_sp_instruct_start(q2_instruct_start), .sq_sp_stall(q2
_instruct_stall),

.Ssq_sp_gpr_rd_addr(q2_gpr_rd_addr),

-Sq_Sp_gpr_wr_addr(q2_gpr_wr_addr), .sq_sp_wr_ena(sq_sp_wr_ena3),.sq_sp_mem_rd_ena(q2_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena3),

.Sq_sp_gpr_cmask(q2_gpr_cmask), .sq_sp_pred_override(q2_pred_override),

LG Ex. 1002, pg 234

LG Ex. 1002, pg 235

-Sq_Sp_gpr_phase_mux(q2_gpr_phase_mux), .iInterpolated(InputData3), .sq_sp_constant(q2_sq_constant),
.iscalar_data(scalar_result_bus), .tp_sp_data(tp_sp_data),.sclk(sclk),
.tp_sp_gpr_dst(q2_tp_gpr_dst),

.tp_sp_gpr_cmask(q2_tp_gpr_cmask),.tp_sp_data_valid(tp_sp_data_valid[3]),
.srst(srst));

[fu vone nnn ne nen ne nnn nnnnnne nnn neneeeeee

//Muxing the gpr vector results into one final vector result conrolled by the phase_mux signal or a
registered version of it

J [anon nee ne nen ne nenneennne neeeenee enone

Sq.v
| [vor renee none nnn cn neennnnen cen ene neers
// SQ-SP GPR control Interface
|[vena nn en enonenentnennen cen ene nee e ences
output [6:8] SQSP_gpr_wr_addr;
output [@:@] u@_SQSP_gpr_wr_en@;
output [@:@] u@_SQSP_gpr_wr_enl;
output [@:@] u@SQSP_gpr_wr_en2;
output [@:@] u@_SQSP_gpr_wr_en3;
output [@:@] ulSQSP_gprwrene;
output [@:@] u1_SQSP_gpr_wr_entl;
output [@:@] u1_SQSP_gpr_wr_en2;
output [@:@] u1_SQSP_gpr_wr_en3;
output [@:@] u2_SQSP_gpr_wr_en@;
output [@:@] u2_SQSP_gpr_wr_enl;
output [@:@] u2_SQSP_gpr_wr_en2;
output [@:@] u2_SQSP_gpr_wr_en3;
output [@:@] u3_SQSP_gpr_wr_ené@;
output [@:@] u3_SQSP_gpr_wr_enl;
output [@:@] u3_SQSP_gpr_wr_en2;
output [@:@] u3_SQSP_gpr_wr_en3;
output [6:@] SQSP_gpr_rd_addr;
output [@:@] SQSP_gpr_rd_en;
output [1:8] SQSP_gpr_phase_mux;
output [3:@] SQSP_channel_mask;

output [1:@] SQ_SP_gpr_input_mux;
output [° AUTOCOUNTSIZE - 1 :@] SQSPautocount;

[[warn nn enone nen nen nnn nnnnn cen ene nee enenn
// SQ-SP : Instruction interface
| [vono nn ne ene nen n neenenerence cnn neeneces
output [@:@] SQSP_instruct_start;
output [@:8] SQSP_stall;
output [23:@] SQ_SP_instruct;
output [127:0] SQSPconst;

output [@:@] SQSPexporting;
output [8:8] SQSP_exp_id;

output [7:@] u@SQSX_kill_mask; // valid bits/kill mask
output [7:@] ul_SQSX_kill_mask;

output [3:@] u@_SQSP_pred_override;
output [3:@] ulSQSPpredoverride;
output [3:@] u2_SQSP_pred_override;
output [3:@] u3_SQSPpredoverride;

LG Ex. 1002, pg 235

LG Ex. 1002, pg 236

Sq_export_alloc.v
always @(alloc_cmd)

begin
casez (alloccmd)

/f - vtx pos alloc
7'b1_@1_0001 :
7'b1_@10010 :

sx_exp_cmd = 5'b1@@0_1;
sx_exp_cmd = 5'b1@_@1_1;

// - vtx pass thru
7"b1_11@1@0 :
7'b1_111080 :
7"b1_1111@@ :

sx_expcmd = 5'b11@@1;
sx_exp_cmd = 5'b11_@1_1;
sx_exp_cmd = 5'b11_101;

// - pix without z
7'bQ_10@010 :
7'b@_109100 :
7'b@_100110 :
7'b@_101080 :

// - pix with
7*b@_100011 :
7'b@_10_01@1 :
7'b@10@111 :
7'b@_101001 :

Zz

sx_exp_cmd = 5'b@@@@_1;
sx_exp_cmd = 5'b@@_@1_1;
sx_exp_cmd = 5'b@@101;
sx_exp_cmd = 5'b@@_11_1;

sx_expcmd = 5'b@1@@1;
sx_exp_cmd = 5'b@1_@1_1;
sx_exp_cmd = 5'b@1101;
sx_exp_cmd = 5'b@1_111;

// - pix pass thru
7'b@_119140 :
7'bO_11_1000 :
7'b@_111160 :

default: sx_exp_
endcase

end

sx_exp_cmd = 5'b11_@@1;
sx_exp_cmd = 5'b11_@1_1;
sx_exp_cmd = 5'b11_10@1;

cmd = 5'Dxxxx@;

Showsthe SQ able to execute any types of export commands(position, pass-thru (appearance), pix (color).

An example of a shared resource is the instruction store, accesses to it are controlled by:
sq_ctlflow_seq.v
module sq_ctl_flow_seq
¢

cfs_type_strap,

is_phase,
is_subphase,
cfs_phase,
cfc_phase,

// local registers
/f - per chip
inst_base_vtx,
inst_base_pix,

/{ - per context
vs_program_base_set,
ps_program_base_set,

vs_export_count_set,
vs_export_mode_set,
ps_export_mode_set,

/f

if
//
if
/f

/f
/f

if
//

/f
/f
/f

// thread arbiter input
arbrts,
arbstate,
arb_status,
arbthreadtype,
cfs_rtr_q,

/f
/f
/f
//
//

@@:alu@, ?1:tex, 1@:alu1

Q0:CF, @1:Tex, 10:ALU, 11:CP
0@:alu@, O1:tex, 10:alu1, 11:tex
Q@:alug@, Q@1:tex, 10:alu1, 11:tex
@:alu, 1:tex,

vertex base

pixel base

connected to SQVSPROGRAM.BASE (12 bits)
connected to SQPSPROGRAM.BASE (12 bits)

connected to SQ_PROGRAM_CNTL.VS_EXPORT_COUNT (4 bits)
connected to SQ_PROGRAM_CNTL.VS_EXPORT_MODE (3 bits)
connected to SQPROGRAM_CNTL.PS_EXPORT_MODE (3 bits)

vertex or pixel
CFS can take a new packet

LG Ex. 1002, pg 236

LG Ex. 1002, pg 237

Sq_alu_ins
FISELTT TL
// sq_al
ff
// - rec
/f - rea
// - sen

input [1
input
input
input
input
input

/f/ - rec

wire
wire
wire

/f -
//

wire
wire
wire

ji anne

// -

/f -

ir_seq.v
TELLELLLLLLTLLLLLLLLLLLLLALLTAALET
u_instr_seq.v

eives instruction from alu instr queue (AIQ)
ds constants (but data goes directly to ais_output mux)
ds instruction to SP over 4 cycles (starting on the correct phase)

:@] aiq_export_info; // {exp_id, pulse_sx}
[@:@] aiq_last_in_group; // last instruction flag
[@:@] aiq_last_in_shader; // last instruction flag
[@:@] aiq_thread_type; // @: pixel, 1: vertex (shows we operate on either pixel or vertex)
[2:8] aigq_context_id; // context_id (from ctl packet)
[5:8] aiq_thread_id; // clause number

all that a @ here means src is a constant (while 1 means src is a gpr)..

ca_fetch = ~aiq_instr[95];
cb_fetch = ~aiq_instr[94];
cc_fetch = ~aiq_instr[93];

instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
before entering the AIQ

[8:@] ca_addr = {aiq_instr[63], aiq_instr[87:80]};
[8:@] cb_addr = {aiq_instr[62], aiq_instr[79:72]};
[8:@] cc_addr = {aiq_instr[61], aiq_instr[71:64]};

need to send the vector type and the thread_id back to the thread buffers when
the all the instructions we wanted to run for this thread are done (this will
cause the thread to became valid again)
register this info in from the AIQ on an AIQ pop in order to hold it until the
AIS is done

case (ais_current_state)
AISO:

// - wait until this machine is started by the AIQ read SM
//f - write OSR data into thread buff on new thread (when there was a previous thread...)
ff - aisdone does updates the threadbuff and clears the alu_instr_pending status bit
/f - don’t assert ais_done yet if the previous instr was a pred set (wait for the pred set
/f data to arrive from the SP)
begin

ais_instr_stall = HI;

if (ais_start)
begin

//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q) ais_done = HI;

ais_instr_start = HI;
ais_instr_stall = LO;
ais_next_state = AIS1;

end
end

AIS1: begin ais_next_state = AIS2; end

AIS2: begin ais_next_state = AIS3; end

AIS3: begin aisnext_state = AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //

AIS4: begin ais_next_state = AIS5; end

LG Ex. 1002, pg 237

LG Ex. 1002, pg 238

AIS5: begin ais_next_state = AIS6; end

AIS6:

begin
// - the pred set data is loaded now from the previous instr, so assert done now
/f - also write new predicate data into predicate register (in aisoutput)

if (isr_new_thread_q & osr_pred_set_flag_q) ais_done = HI;

ld_osr = HT;
ais_next_state = AIS7;

end

AIS7:

//{ - pop the thread off the reservation station buffer when the last instr of the shader is
executed

//{ - send free_done when pulse_sx is set, or this is the last instruction of a pixel shader
(since this

/f is when the pixel export is done)

begin
if (isr_last_in_group_q & ~isr_last_in_shader_q) ais_done = HI;

if (isr_pulse_sx_q) ais_free_done = HI; /f pixel last logic put into pulse_sx generation

if (isr_last_in_shader_q } ais_pop = HI;

ais_next_state = AIS®@;
end

endcase
end

// - end ais state machine

sq_thread_arb.v
// - vertex request priority encoder

reg [@:@] vtx_winnervld;
reg [3:@] vtx_winner;

always @(vtx_req_q)
begin

casez (vtx_req_q)
16'beeeeeeee_eeee_eeee@: begin vtx_winner_v
16'b1000_e000A000_O280: begin vtx_winner_v
16'b?10@_@e00_298009000: begin vtx_winner_v
16'b??1@e008Q000B80: begin vtx_winner_v
16'b???1_@e08_BE00BGAG8: begin vtx_winner_v
16'b????100@96006000: begin vtxwinner_v
16'b????_?10@96008800: begin vtx_winner_v
16'b??????1@@6006200: begin vtx_winner_v
16'b????_???1_@@0@e800: begin vtx_winner_v

= LO; vtx_winner = 4'hf; end
3 vtx_winner = 4'hf; end
3 vtx_winner = 4"he; end
3 vtx_winner = 4'hd; end
3 vtx_winner = 4'hc; end
5 vtx_winner = 4"hb; end
3 vtx_winner = 4'ha; end
> vtx_winner = 4°h9; end
3 vtx_winner = 4°h8; end qaagaagaaaagaaagaaagaaaaaagagaa Il xrrIrTTrTITrTTrTITTITITITtTITtTITITtITt.T .16'b????_????_1600@800: begin vtx_winner_v ; vtx_winner = 4°h7; end

16'b?P?P?_ PPP??10@Q@@@0: begin vtx_winner_vld = HI; vtx_winner = 4'h6; end
16'b????_????_??100@@0: begin vtx_winner_vld = 3 vtx_winner = 4°h5; end
16'b??P?_ PP??PP?1O@@@: begin vtx_winner_vld = HI; vtx_winner = 4'h4; end
16'b????_????_????_1000: begin vtx_winner_vld = 3 vtx_winner = 4°h3; end
16'D?2?P?_ PPP?PP??? ?1@@: begin vtx_winner_vld = HI; vtx_winner = 4'h2; end
16"b????_????_ PP??? _??18: begin vtx_winner_vld = 3 vtx_winner = 4'h1; end
16"b????PPP?PPP?P??1: begin vtxwinnervld = 5 vtx_winner = 4'h@; end
default: begin vtx_winner_v 3 vtx_winner = 4'bxxxx; end

endcase
end

// - pixel request priority encoder

10

LG Ex. 1002, pg 238

LG Ex. 1002, pg 239

reg [
reg [

alway
beg

end

/f -
/f -
// -
/f
//

/f -
ff -

order
if

a thread
ff

//ass
/fass

/fwir

wire
wire

assig
assig

wire
wire

wire

/f --
ff --
/f --
// -
/f -
/f -
/f -
/f -

@:@] pix_winner_vld;
3:@] pix_winner;

Ss @(pix_req_q)
in

casez (pix_req_q)
//16'beeee_BaeQBAGOBe0@: begin pix_winner_vld
16'b198@_e8ee_eee8GAGE:
16'b?18@eeeeBe2eae:
6'b??1@eeee@eeeBREE:

16'b???1_@0@@9000e200:
16'b????_10089@@0A200:
16'b????_?100_@8ege200:
16'b????_??1@e@e@eRee:
16'b????_???1_@@@Qe200:
16'b????_????1000@a@0:
16'b????_????_?108_@ag0:
16'b?P?Pp? PPP? P?P16 BEGO:
16'b????_????_???1_@@@0:
16'b????_????_2?2??1000:
16'b????_????_????210:
16'b????_????_?P???_ 2710:
16'b????PPP?PPP?PPPL:
/fdefault:
default:

endcase

begin d =
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin

pix_winner_v
pixwinner_v
pix_winner_v
pix_winner_v
pix_winner_v
pix_winner_v
pix_winner_v
pix_winner_v
pix_winner_v
pix_winner_v
pix_winner_v
pix_winner_v
pixwinner_v
pix_winner_v

begin pix_winner_v
begin pix_winner_v

begin pix_winner_
begin pix_winner_v

paar a

 aQeaanangnaagaagaagaaagaadad I

if cfsl is enabled, alternate btwn rts@ and rts1l
if cfs1 is disabled, mask rts1 and always use rts@
what is the algorithm here?
to cfs@ if both are available)
- so getting rid of forced toggle btwn cfs@ and cfsi1 - remember to to comment out cfs_turn

there is only one winner max per cycle,

l_rrrrrarTrrTrTrTrrirTrTirTrTizTrTieTrTagTriagsiill
LO;

LO; pix_winne
3 pix_winner
3 pix_winner =
3 pix_winner =
3 pix_winner =
3 pix_winner
3 pix_winner
3 pix_winner =

1ouot

3 pix_winner =
3 pix_winner =
3 pix_winner
3 pix_winner
3 pix_winner
> pix_winner =
3 pix_winner
3 pix_winner
3 pix_winner
X; pix_winne

IRARAARARRRRRARAAT
r

3

wewe

wewe
weweGIAnaeweoooaea

"h
"h
"h
"h
"h
"h
"h
"h
"h
"h
"h4

“h3:
"h2;
"hi;
"ha;
4:

4'hf; end
"h end

end
end
end
end
end
end
end
end
end
end
end
end
end
end
end

bxxxx end
pix_winner = 4'bxxxx; end

really want to send the thread to the CFS that's available (default

so only one of the two RTSs is active in one cycle
it doesn't matter which ALU pipe is used to process a thread, as long as threads are processed in

of being selected by the arbiter (i.e. there should be no way for a thread in one ALU pipe to pass

in the other

ign arb_rts@ =
ign arb_rts1 = arb_rts &

e [@:@] cfs_rtr =

[@:@] send_to_cfs@ =
[@:@] sendtocfs1 =

n arb_rts@ =
n arb_rts1 =

arb_

[@:]
[@:8]

arb_xfcd =
arb_xfc1 =

[@:@] arb_xfe =

Arb Output Mux --

choose between tex state/status and pix state/status depending on overall winner
has no lod
has no lod

vtx tex
vtx alu

pix tex
pix alu has no lod

cfs_turn & cfsil_enable;

cfs_rtr@ | cfs_rtri;

cfs_rtre;
«cfsrtr@ & cfsrtr1 & cfsi_enable;

rts & send_tocfs@;
arb_rts & send_to_cfs1;

arb_rts@ & cfs_rtra;
arb_rts1 & cfs_rtr1;

arb_xfc@ | arb_xfcl;

1]

arb_rts & (~cfs_turn | ~cfs1_enable);

ALU pipe when they are from the same context)

does have LOD (PIX_CTL_PKT_WIDTH and CTL_PKT_WIDTH have lod)

LG Ex. 1002, pg 239

LG Ex. 1002, pg 240

always @(type_winner_q or vtx_state or pix_state)
begin

/farb_state = {STATE_WIDTH{LO}};
case (type_winner_q)

HI: arb_state = vtx_state; // these are unequal - msb's get @'s by above assignment
LO: arb_state = pix_state;
//default: arb_state = {STATE_WIDTH{X}};

endcase
end

always @(type_winner_q or vtx_status or pix_status)
begin

/farb_status = {STATUS_WIDTH{LO}};
case (type_winner_q)

HI: arb_status = vtx_status;
LO: arb_status = pix_status;
//default: arb_status = {STATUS_WIDTH{X}};

endcase
end

sq_shader_seq.v

/f shader_seq.v
i
//- instantiates 16 reservation stations
if
// issues:
if-
if
ALLL

module sq_shader_seq
(

shader_seq_type, ‘1a strap thattells this moduleif it's a vertex or pixel shader seq

// control packet input
input_cp, /f control packet data from the input SM
input_rts, /{ rts from the input SM
input_rtr, // rtr from texture RSO

// texture clause arbiter interface

tex_req, // 8 texture RS requests
tex_cp, // vector of 8 control packets
tex_rtr, /18 RTSs (notfulls) to the ALU arbiters
tca_winner_ack, 'f 8 ack bits from arb - only the winnerbit is set
tca_empty_ack, 'f 8 ack bits from arb - each empty requesting clause is ack'd to moveit to next

RS

TP_SQ_data_rdy, /! data ready indicator from TPC - increment the alu RS counter
TP_SQ_type, // the vector type: pixel=0, vertex=1
TP_SQ_clause_num, // the alu RS number whosecount should be incremented

// alu clause arbiter interface

alu_req, i
alu_cp, HM
alu_rtr, HM
aca_winner_ack, i
aca_empty_ack, N

12

LG Ex. 1002, pg 240

LG Ex. 1002, pg 241

aisO_data_rdy, // done indicator from AISO - increment the tex RS counter
aisO_vector_type, // the vector type: pixel=0, vertex=1
aisO_clause_num, // the tex RS number whose count should be incremented

ais1_data_rdy, // done indicator from AlS1 - increment the tex RS counter
ais1_vector_type, // the vector type: pixel=0, vertex=1
ais1_clause_num, // the tex RS number whose count should be incremented

Hf exit SM interface

state_change,// a pulse high indicates that the state exiting the SS has changed
old_state, // the state that has finished (because a new state has emerged)
dealloc_req, // request to deallocate GPRs
dealloc_ack, // the dealloc request has been acknowleged

clk,
reset

// -- parameters --

parameter CP_WIDTH = 8;
parameter STATE_WIDTH=3;

parameter FIFO_WIDTH = CP_WIDTH;
parameter FIFO_DEPTH = 4;
parameter FIFO_ADDR_BITS = 2;

parameter LO = 1'b0;
parameter HI = 1'b1;
parameter X = 1'bx;

]| wnnnnnnnnnnnnnernnnnnnnnannnnnnnneneeeneennenneneneennnes
// -- ios --
]f wennnnnnnnnnnnnnnnnnnnnnnnnnneen

input shader_seq_type;

input [CP_WIDTH-1:0] input_cp;
input input_rts;
output input_rtr;

output[8:0] tex_req;
output [8*CP_WIDTH-1:0] tex_cp;
output[8:1] tex_rtr;

input [7:0] tca_winner_ack;
input [7:0] tca_empty_ack;

input [0:0] TP_SQ_data_rdy;
input [0:0] TP_SQ_type;
input [2:0] TP_SQ_clause_num;

output [7:0] alu_req;

13

LG Ex. 1002, pg 241

LG Ex. 1002, pg 242

output [8*CP_WIDTH-
output[7:0]

1:0] alu_cp;
alu_rtr;

input [7:0] aca_winner_ack;
input [7:0] aca_empty_ack;

input aisO_data_rdy;
input aisO_vector_type;
input [2:0] aisOQ_clause_num;

input ais1_data_rdy;
input ais1_vector_type;
input [2:0] ais1_clause_num;

output state_change;
output[2:0] old_state;
output dealloc_req;
input dealloc_ack;

input clk;
input reset;

// - output register declarations

reg [8:0] tex_req;
Hreg [7:0] alu_req;

Uf womenmannnnnnnnnnnnnnnnnnnnnnnnnnnnme

/#/ -- internal signals --
I] ~-----nannnnanannnnannnnnnnnnnnnnnnnnnnnnn

wire [CP_WIDTH-1:0] tex_ctl_pkt0;
wire [CP_WIDTH-1:0] tex_ctl_pkt1;
wire [CP_WIDTH-1:0] tex_ctl_pkt2;
wire [CP_WIDTH-1:0] tex_ctl_pkt3;
wire [CP_WIDTH-1:0] tex_ctl_pkt4;
wire [CP_WIDTH-1:0] tex_ctl_pkt5;
wire [CP_WIDTH-1:0] tex_ctl_pkt6;
wire [CP_WIDTH-1:0] tex_ctl_pkt7;
wire [CP_WIDTH-1:0] alu_ctl_pkt0;
wire [CP_WIDTH-1:0] alu_ctl_pkt1;
wire [CP_WIDTH-1:0] alu_ctl_pkt2;
wire [CP_WIDTH-1:0] alu_ctl_pkt3;
wire [CP_WIDTH-1:0] alu_ctl_pkt4;
wire [CP_WIDTH-1:0] alu_ctl_pkt5;
wire [CP_WIDTH-1:0] alu_ctl_pkt6;
wire [CP_WIDTH-1:0] alu_ctl_pkt7;

// group all the control packets togetherinto one big vector for output to the arbiter

wire [8*CP_WIDTH-1:0] tex_cp = {tex_ctl_pkt7, tex_ctl_pkt6, tex_ctl_pkt5, tex_ctl_pkt4,
tex_ctl_pkt3, tex_ctl_pkt2, tex_ctl_pkt1, tex_ctl_pkt0};

wire [8*CP_WIDTH-1:0] alu_cp = {alu_ctl_pkt7, alu_ctl_pkt6, alu_ctl_pkt5, alu_ctl_pkt4,

14

LG Ex. 1002, pg 242

LG Ex. 1002, pg 243

alu_ctl_pkt3, alu_ctl_pkt2, alu_ctl_pkt1, alu_ctl_pkt0};

reg [0:0] tpc_data_rdy;
reg [0:0] tpc_type;
reg [2:0] tpc_clause_num;

[] nomnennnnennnnnnmnnnnnnmanana—anmnnnnnanenasennannnmnanmnannnassnaasamneamanananmns

/f -- combinationallogic --
Uf meennnnnnnnnnnnnnn

// - select the RS counter to increment based on clause number sent by TPC/AIS
// - counts represent the numberof valid entries in a RS FIFO; becausectl packets are
// moved into the next RS before the vector they represent has actually finished, the
// count is used to gate the requests to the next arbiter until the clause is actually
Hf done

// - this is a decoder enabled by data_rdy

reg [7:0] tpc_cnt_inc;
reg [7:0] aisO_cnt_inc;
reg [7:0] ais1_cnt_inc;

always @(tpc_data_rdy or tpc_clause_num or tpc_type or shader_seq_type)
begin

tpc_cnt_inc = 8'h00;
if (tpc_data_rdy & (tpc_type == shader_seq_type))
tpc_cnt_inc[tpc_clause_num] = 1'b1;

end

always @(aisO_data_rdy or aisO_clause_num or aisO_vector_type or shader_seq_type)
begin

aisO_cnt_inc = 8'h00;
if (aisO_data_rdy & (aisO_vector_type == shader_seq_type))

aisOQ_cnt_inc[aisO_clause_num] = 1'b1;
end

always @(ais1_data_rdy or ais1_clause_num or ais1_vector_type or shader_seq_type)
begin

ais 1_cnt_inc = 8'h00;
if (ais1_data_rdy & (ais1_vector_type == shader_seq_type))
ais 1_cnt_inc[ais1_clause_num] = 1'b1;

end

wire [7:0] ais_cnt_ine = aisQ_cnt_inc | ais1_cnt_inc;

// - create the RS request by masking the RS FIFO rts when the associated RS countis zero
// - this is done becausea control packet is moved to the next RS before the RS can actually tell
// the arbiter aboutit

// - in both cases, in order to facilitate the advancement of empty clauses, the packet is moved
//_ tothe next RS when thearbiter selectsit

// - inthe case of alu RSs, the TPC mustindicate that the texture data has been loaded into the

// GPRsbefore incrementing the count
// -in the case of tex RSs, the AIS will increment the count when it's done

/Wwire [FIFO_ADDR_BITS-1:0] tex_count[0:8]; // tex_count[8] is for the exit RS

15

LG Ex. 1002, pg 243

LG Ex. 1002, pg 244

/hwire [FIEFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]
wire [FIFO_ADDR_BITS-1:0]

wire [8:0]
wire [7:0]

alu_count[0:7];
tex_count0;
tex_count1;
tex_count2;
tex_count3;
tex_count4;
tex_countd;
tex_count6;
tex_count7;
tex_count8;
alu_count0;
alu_count1;
alu_count2;
alu_count3;
alu_count4;
alu_countd;
alu_count6;
alu_count7;

tex_rts;
alu_rts;

// tex_rts[8] is for the exit RS

// - this could be donein the reservation station...

Halways @(tex_rts or tex_count)
Hf for (i=0; i<9; i=i+1) begin
4~~tex_req[i] = tex_rts[i] & |(tex_countfi]);
/ end

Halways @(alu_rts or alu_count)
Hf for (i=0; i<8; i=i+1) begin
#~~alu_req[i] = alu_rts[i] & |(alu_countfi]);
Hi end

assign tex_req[0] = tex_rts[0] & |tex_count0;
assign tex_req[1] = tex_rts[1] & |tex_count1;
assign tex_req[2] = tex_rts[2] & |tex_count2;
assign tex_req[3] = tex_rts[3] & |tex_count3;
assign tex_req[4] = tex_rts[4] & |tex_count4;
assign tex_req[5] = tex_rts[5] & |tex_countd;
assign tex_req[6] = tex_rts[6] & |tex_counté;
assign tex_req[7] = tex_rts[7] & |tex_count7;
assign tex_req[8] = tex_rts[8] & |tex_count8;
assign alu_req[0] = alu_rts[0] & Jalu_count0;
assign alu_req[1] = alu_rts[1] & Jalu_count1;
assign alu_req[2] = alu_rts[2] & |alu_count2;
assign alu_req[3] = alu_rts[3] & Jalu_count3;
assign alu_req[4] = alu_rts[4] & Jalu_count4;
assign alu_req[5] = alu_rts[5] & jalu_count5;
assign alu_req[6] = alu_rts[6] & Jalu_count6;
assign alu_req[7] = alu_rts[7] & |alu_count7;

#/ - the acknowledge to a RSis the ORof the winner and empty ack vectors
// - the ack advancesthe ctl packet to the next RS
// - want to advance wheneither the clause was picked bythe arbiter or when
i the clause is empty (no instructions)

16

LG Ex. 1002, pg 244

LG Ex. 1002, pg 245

wire [7:0] tca_ack = tca_winner_ack| tca_empty_ack;

/Wwire [7:0] aca_winner_ack = acaOQ_winner_ack| aca1_winner_ack;
/Iwire [7:0] aca_empty_ack = acaQ_empty_ack | aca1_empty_ack;
wire [7:0] aca_ack = aca_winner_ack | aca_empty_ack;

I] ~---n-nnnnnnnnnannannnnnnnnnnnnnnnnnnn

// -- registers --
Uf wnn

// - block input registers for signals from TPC

always @(posedgeclk)
begin

tpc_data_rdy <=TP_SQ_data_rdy;
toc_type <= TP_SQ_type;
toc_clause_num <= TP_SQ_clause_num;

end

|| -----------------------------—-----—-----=======
// -- state machines--
Uf womennnnnnnnnnnnanannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Uf womennnnnnnnnnnnanannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
// -- module instatiations --
|f wnmnnnnnnnnnnnnmannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

// 16 reservation stations: 8 texture, 8 alu
//- the RSs are connected tex to alu to tex etc., with an exit RS connected after alu rs7 (like tex rs8)
// - the write rts/rtr for tex rsO is from the input sm
// - the read rts's are qualified with the RS count and sentto the arbiter
// - the arbiter sends an ack whichrtr's the sender andrts's the receiver (i.e. next RS)
// - the next RS rtr goes back to the arbiter and must be high to enable a grant

wire tex_rsQ_cnt_inc = input_rts & input_rtr;

res_station // tex rsO
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs0

(.write_rts(input_rts), .write_rtr(input_rtr), .write_data(input_cp),
read_rts (tex_rts[0]), .read_rtr (tca_ack[0]), .read_data (tex_ctl_pkt0),
.empty_inc(LO), .count_inc(tex_rsOQ_cnt_inc), .count(tex_count0),
clk(clk), .reset(reset)

);
res_station // alu rsO
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rsO

(.write_rts(tca_ack[0]), .write_rtr(alu_rtr[0]), .write_data(tex_ctl_pkt0),
read_rts (alu_rts[0]), .fead_rtr(aca_ack[0]), .read_data (alu_ctl_pkt0),
-empty_inc(tca_empty_ack[0]), .count_inc(tpc_cnt_inc[0]), .count(alu_count0),
.clk(clk), .reset(reset)

);
res_station // tex rs1

17

LG Ex. 1002, pg 245

LG Ex. 1002, pg 246

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs1

(.write_rts(aca_ack[0]), -write_rtr(tex_rtr[1]),|.write_data(alu_ctl_pkt0),
.read_rts (tex_rts[1]), -read_rtr (tca_ack[1]), .read_data (tex_ctl_pkt1),
-empty_inc(aca_empty_ack[0]), .count_inc(ais_cnt_inc[0]), .count(tex_count1),
.clk(clk), .reset(reset)

);
res_station // alu rs1
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs1

(.write_rts(tca_ack[1]), .write_rtr(alu_rtr[1]), .write_data(tex_ctl_pkt1),
tead_rts (alu_rts[1]), .read_rtr(aca_ack[1]), .read_data (alu_ctl_pkt1),
.empty_inc(tca_empty_ack[1]), .count_inc(tpc_cnt_inc[1]), .count(alu_countt1),
.clk(clk), .reset(reset)

res_station // tex rs2
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs2

(.write_rts(aca_ack[1]), .write_rtr(tex_rtr[2]), .write_data(alu_ctl_pkt1),
.read_rts (tex_rts[2]), .read_rtr(tca_ack[2]), .read_data (tex_ctl_pkt2),
.empty_inc(aca_empty_ack[1]), .count_inc(ais_cnt_inc[1]), .count(tex_count2),
.clk(clk), .reset(reset)

);
res_station // alu rs2
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs2

(.write_rts(tca_ack[2]), .write_rtr(alu_rtr[2]), .write_data(tex_ctl_pkt2),
.read_rts (alu_rts[2]), .read_rtr(aca_ack[2]), .read_data (alu_ctl_pkt2),
.empty_inc(tca_empty_ack[2]), .count_inc(tpc_cnt_inc[2]), .count(alu_count2),
.clk(clk), .reset(reset)

res_station // tex rs3
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs3

(.write_rts(aca_ack[2]), .write_rtr(tex_rtr[3]), .write_data(alu_ctl_pkt2),
.read_rts (tex_rts[3]), .read_rtr(tca_ack[3]), .read_data (tex_ctl_pkt3),
.empty_inc(aca_empty_ack[2]), .count_inc(ais_cnt_inc[2]), .count(tex_count3),
.clk(clk), .reset(reset)

res_station // alu rs3
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs3

(-write_rts(tca_ack[3]), .write_rtr(alu_rtr[3]), .write_data(tex_ctl_pkt3),
.tead_rts (alu_rts[3]), .read_rtr(aca_ack[3]), .read_data (alu_ctl_pkt3),
-empty_inc(tca_empty_ack[3]), .count_inc(tpc_cnt_inc[3]), .count(alu_count3),
.clk(clk), .reset(reset)

res_station // tex rs4
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs4

(.write_rts(aca_ack[3]), .write_rtr(tex_rtr[4]), .write_data(alu_ctl_pkt3),
.tead_rts (tex_rts[4]), .read_rtr(tca_ack[4]), .read_data (tex_ctl_pkt4),
-empty_inc(aca_empty_ack[3]), .count_inc(ais_cnt_inc[3]), .count(tex_count4),
.clk(clk), .reset(reset)
)

res_Station // alu rs4

18

LG Ex. 1002, pg 246

LG Ex. 1002, pg 247

#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs4

(.write_rts(tca_ack[4]), .write_rtr(alu_rtr[4]), .write_data(tex_ctl_pkt4),
.read_rts (alu_rts[4]), .read_rtr(aca_ack[4]), .read_data (alu_ctl_pkt4),
-empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[4]), .count(alu_count4),
.clk(clk), .reset(reset)

);
res_station // tex rs5
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs5

(.write_rts(aca_ack[4]), .write_rtr(tex_rtr[5]), .write_data(alu_ctl_pkt4),
.read_rts (tex_rts[5]), .read_rtr(tca_ack[5]), .read_data (tex_ctl_pkt5),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[4]), .count(tex_countd),
.clk(clk), .reset(reset)

res_station // alu rs5
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs5

(.write_rts(tca_ack[5]), .write_rtr(alu_rtr[5]), .write_data(tex_ctl_pkt5),
.read_rts (alu_rts[5]), .read_rtr(aca_ack[5]), .read_data (alu_ctl_pktd),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[5]), .count(alu_counts),
.clk(clk), .reset(reset)

);
res_station // tex rs6
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs6

(.write_rts(aca_ack[5]), .write_rtr(tex_rtr[6]), .write_data(alu_ctl_pkt5),
.read_rts (tex_rts[6]), .read_rtr(tca_ack[6]), .read_data (tex_ctl_pkt6),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[5]), .count(tex_count6),
.clk(clk), .reset(reset)

res_station // alu rs6
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs6

(.write_rts(tca_ack[6]), .write_rtr(alu_rtr[6]), .write_data(tex_ctl_pkt6),
.read_rts (alu_rts[6]), .read_rtr(aca_ack[6]), .read_data (alu_ctl_pkt6),
.empty_inc(tca_empty_ack[6]), .count_inc(tpc_cnt_inc[6]), .count(alu_counté6),
.clk(clk), .reset(reset)

res_station // tex rs7
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs7

(.write_rts(aca_ack[6]), .write_rtr(tex_rtr[7]), .write_data(alu_ctl_pkt6),
.read_rts (tex_rts[7]), .read_rtr(tca_ack[7]), .read_data (tex_ctl_pkt7),
.empty_inc(aca_empty_ack[6]), .count_inc(ais_cnt_inc[6]), .count(tex_count?7),
clk(clk), .reset(reset)

);
res_station // alu rs7
#(.DATA_BITS(FIFO_WIDTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs7

(.write_rts(tca_ack[7]), .write_rtr(alu_rtr[7]), .write_data(tex_ctl_pkt7),
.read_rts (alu_rts[7]), .read_rtr(aca_ack[7]), .read_data (alu_ctl_pkt7),
-empty_inc(tca_empty_ack[7]), .count_inc(tpc_cnt_inc[7]), .count(alu_count7),
.clk(clk), .reset(reset)

);

19

LG Ex. 1002, pg 247

LG Ex. 1002, pg 248

wire [2:0] new_state;

// exit RS

res_station
#(.DATA_BITS(STATE_WIDTH), INUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs8

(.write_rts(aca_ack[7]), .write_rtr(tex_rtr[8]), .write_data(alu_ctl_pkt7[STATE_WIDTH-1:0)]),
.read_rts (tex_rts[8]), .read_rtr(exit_sm_rtr), .read_data (new_state),
.empty_inc(aca_empty_ack[7]), .count_inc(ais_cnt_inc[7]), .count(tex_counts),
.clk(clk), .reset(reset)

);

|| ------------------------
// -- exit state machine --
|| ------------------------

exit_sm
u_exit_sm
(

-new_state_rts(tex_req[8]),
-new_state_rtr(exit_sm_rtr),
-new_state(new_state),

.State_diff(state_change),

.old_state_q(old_state),

.dealloc_req(dealloc_req),
-dealloc_ack(dealloc_ack),

.clk(clk),

.reset(reset)
);

endmodule

20

LG Ex. 1002, pg 248

LG Ex. 1002, pg 249

Electronic Patent Application Fee Transmittal

Filing Date: 17-May-2011

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Filer: Christopher J. Reckamp/Christine Wright

Filed as Large Entity

Utility under 35 USC 111(a)Filing Fees

Sub-Totalin

USD($)Description Fee Code Quantity

Basic Filing:

Claims:

Miscellaneous-Filing:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Extension - 3 months with $0 paid 1253 1270 1270

LG Ex. 1002, pg 249

LG Ex. 1002, pg 250

Sub-Totalin

USD($)Description Fee Code Quantity

Miscellaneous:

LG Ex. 1002, pg 250

LG Ex. 1002, pg 251

Electronic Acknowledgement Receipt

11860180

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

reChristopher Reckemp/Christine Neigh
Filer Authorized By: Christopher J, Reckamp

Attorney Docket Number: 00100,36.0001

Filing Date: 17-MAY-2011

Time Stamp: 12:01:42

Application Type: Utility under 35 USC 111(a)

Paymentinformation:

Submitted with Payment

Payment Type Deposit Account

Payment was successfully received in RAM $1270

Deposit Account 020390

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpaymentas follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

LG Ex. 1002, pg 251

LG Ex. 1002, pg 252

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

Document DocumentDescription File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

120979

5ea6280325d222b0f8f3ef2ecd 1 absfSfdB5
6460

Multipart Description/PDFfiles in .zip description

360001_Response.pdf

DocumentDescription

Amendment/Req. Reconsideration-After Non-Final Reject

Claims

Applicant Arguments/Remarks Made in an Amendment

Warnings:

124271

Miscellaneous Incoming Letter 360001_Declaration.pdf bbbébcUbb6e0428a86¥fcb8a54¥J285 /d 38d
43dd7

Information:

738779

Miscellaneous Incoming Letter 360001_ExhibitA.pdf Th5bd3d447e9h644e4h83f4Be(s4eaeh5t3
<50d

Information:

260167

Miscellaneous Incoming Letter 360001_ExhibitB.pdf 23.58 1deb4a1ade2018254c5 4b [3cadd0c]

Information:

Fee Worksheet (SB06) fee-info.pdf 156554244122c7c58b7a8c2f3 1 ad Sfe86e79}
a08a

Warnings:

Information:

LG Ex. 1002, pg 252

LG Ex. 1002, pg 253

This Acknowledgement Receipt evidences receipt on the noted date by the USPTOof the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new applicationis being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

NationalStage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptance of the application asa
nationalstage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary componentsfor
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
andofthe InternationalFiling Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shown on this AcknowledgementReceiptwill establish the international filing date of
the application.

LG Ex. 1002, pg 253

LG Ex. 1002, pg 254

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O, Box 1450
Alexandria, Virginia 22313-1450
www .uspto. gov

 APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEYDOCKET NO. CONFIRMATION NO.

13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020

29153 7590 03/15/2012

ADVANCED MICRO DEVICES, INC.
C/O T'aegre Baker Daniels LLP WASHBURN,DANIEL C
311 S. WACKER DRIVE

CHICAGO,IL 60606 ART UNIT PAPER NUMBER

NOTIVICATION DATE DELIVERY MODE

tyaie) «

03/15/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date” to the
following e-mail address(es):

inteas @faegrebd.com
cynthia.payson @faegredb-.com

PTOL-90A (Rev. 04/07)

LG Ex. 1002, pg 254

LG Ex. 1002, pg 255

Application No. Applicant(s)

13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
DANIEL WASHBURN 2628

-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY (80) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensionsoftime may be available under the provisions of 37 CFR 1.138(a). In no event, however, may a reply betimely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period tor reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 18 January 2012.
2a) This action is FINAL. 2b) This action is non-final.
3)L An election was made bythe applicant in responseto a restriction requirementset forth during the interview on

___; the restriction requirement and election have been incorporatedinto this action.

4)L] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

5) Claim(s) 1-76 is/are pending in the application.
5a) Of the above claim(s) is/are withdrawn from consideration.

6)L] Claim(s) is/are allowed.
7) Claim(s) 7-76 is/are rejected.

) (

) (

) £16

8)L] Claim(s) __ is/are objectedto.
9)L] Claim(s)___ are subject to restriction and/or election requirement.

Application Papers

10)X] The specification is objected to by the Examiner.
11)L] The drawing(s) filed on ___ is/are: a)[_] accepted or b)_] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacementdrawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

12)(] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

13)L] Acknowledgmentis madeof a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)LJ All b)L] Some * c)L] Noneof:
1. Certified copies of the priority documents have been received.
2.L] Certified copies of the priority documents have been received in Application No.|
3.L] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action fora list of the certified copies not received.

Attachment(s)

1) T Notice of References Cited (PTO-892) 4) CT Interview Summary (PTO-413)
2) CJ Notice of Draftsperson’s Patent Drawing Review (PTO-948) Paper No(s)/Mail Date. ___
3) EX] Information Disclosure Statement(s) (PTO/SB/08) 5) L] Noticeof Informal Patent Application

Paper No(s)/Mail Date 6) oO Other:
U.S. Patent and Trademark Office

PTOL-326 (Rev. 03-11) Office Action Summary Part of Paper No./Mail Date 20120311

LG Ex. 1002, pg 255

LG Ex. 1002, pg 256

Application/Control Number: 13/109,738 Page 2
Art Unit: 2628

DETAILED ACTION

Specification

Applicant is reminded of the proper language and format for an abstract of the
disclosure.

The abstract should bein narrative form and generally limited to a single
paragraph on a separate sheetwithin the range of 50 to 150 words. It is important that
the abstract not exceed 150 wordsin length since the space provided for the abstract
on the computer tape usedbytheprinteris limited. The form and legal phraseology
often used in patent claims, such as “means”and "said," should be avoided. The
abstract should describe the disclosure sufficiently to assist readers in deciding whether
there is a need for consulting the full patent text for details.

The language should be clear and concise and should not repeat information
given in the title. It should avoid using phrases which can be implied, such as, "The
disclosure concerns,” "The disclosure defined by this invention,” "The disclosure
describes,”etc.

Declaration filed under 37 CFR 1.131

The declaration filed 1/18/12 under 37 CFR 1.131 has been considered butis

ineffective to overcomethe prior art reference Lindholm (US 7,038,685, “the Lindholm

reference’).

The declaration does not meet the requirements of 37 CFR 1.131 section (a).

37 CFR 1.131 section (a) states (in relevant part):

“(a) When any claim of an application or a patent under reexamination is
rejected, the inventor of the subject matter of the rejected claim, the ownerof the patent
under reexamination,or the party qualified under §§ 1.42, 1.43, or 1.47, may submit an
appropriate oath or declaration to establish invention of the subject matter of the
rejected claim prior to the effective date of the reference or activity on which the
rejection is based. The effective date of a U.S. patent, U.S. patent application
publication, or international application publication under PCTArticle 21 (2) is the earlier
of its publication date or date thatit is effective as a reference under 35 U.S.C. 102(e).
Prior invention may not be established underthis section in any country other
than the United States, a NAFTA country, or a WTO membercountry. Prior
invention may not be established underthis section before December8, 1993,in

LG Ex. 1002, pg 256

LG Ex. 1002, pg 257

Application/Control Number: 13/109,738 Page 3
Art Unit: 2628

a NAFTAcountry other than the United States, or before January 1, 1996, ina
WTO membercountry other than a NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by ATI
Technologies Inc. and/or oneofits wholly owned subsidiaries ("ATI") as indicated by
attached Exhibits A and B ... Prior to June 30, 2003 we created a graphics processing
system that operated as claimed using a computer system that successfully executed
the Model Code. Prior to June 30, 2003 we also created a graphics processing system
as claimed in the form of a computer system that used an RTL simulator to successfully
validate the operation of an integrated circuit version of the claimed graphics processing
system and method.”

As quoted from Applicants’ declaration, section 2 describes conception and

reduction to practice of the claimed invention prior to June 30, 2003. Section 2 further

describes that the conception and reduction to practice of the claimed invention was

carried out while the inventors were employed by ATI Technologies Inc. and/or one of

its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify whether or

not the conception and reduction to practice was carried out in the United States, a

NAFTA country, or a WTO membercountry. As quoted from 37 CFR 1.131 section (a),

“[p]rior invention may not be established underthis section in any country other than the

United States, a NAFTA country, ora WTO memory country”. Thus, the declaration is

ineffective to overcome the Lindholm reference due tothis first deficiency.

Further, the declaration does not meet the requirements of 37 CFR 1.131 section

(b).

37 CFR 1.131 section (b) states:

“(6) The showing of facts shall be such, in character and weight, as to
establish reduction to practice prior to the effective date of the reference, or conception

LG Ex. 1002, pg 257

LG Ex. 1002, pg 258

Application/Control Number: 13/109,738 Page 4
Art Unit: 2628

of the invention prior to the effective date of the reference coupled with due diligence
from prior to said date to a subsequentreduction to practice or to the filing of the
application. Original exhibits of drawings or records, or photocopies thereof, must
accompanyand form part of the affidavit or declaration or their absence must be
satisfactorily explained.”

MPEP 715.07 [R-3] "Facts and Documentary Evidence", section I. "General

Requirements", offers further guidance regarding the requirements of 37 CFR 1.131

section (b).

MPEP 715.07, section I., describes (in relevant part):

“The essential thing to be shown under 37 GFR 1.1371is priority of invention and
this may be donebyanysatisfactory evidence of the fact. FACTS, not conclusions,
must be alleged. Evidencein the form of exhibits may accompanytheaffidavit or
declaration. Each exhibit relied upon should bespecifically referred to in the affidavit or
declaration, in terms of whatit is relied upon to show ... when reviewing a 37 CFR
1.131 affidavit or declaration, the examiner must considerall of the evidence presented
in its entirety, including the affidavits or declarations and all accompanying exhibits,
records and “notes.” An accompanying exhibit need not support all claimed limitations,
provided that any missing limitation is supported by the declaration itself. Ex parte
Ovshinsky, 10 USPQ2d 1075 (Bd. Pat. App. & Inter. 1989).

Theaffidavit or declaration and exhibits must clearly explain whichfacts or
data applicant is relying on to show completion of his or her invention prior to the
particular date. Vague and general statements in broad terms about whatthe
exhibits describe along with a general assertion that the exhibits describe a
reduction to practice “amounts essentially to mere pleading, unsupported by
proof or a showing of facts” and, thus, does not satisfy the requirements of 37
CFR 1.131(b). In re Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant
must give a clear explanation of the exhibits pointing out exactly what facts are
established and relied on by applicant. 505 F.2d at 718-19, 184 USPQat 33. See
also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964)(Affidavit “asserts that
facts exist but does nottell what they are or when they occurred.”).” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“Prior to June 30, 2003 we created a graphics processing system that operated
as claimed using a computer system that successfully executed the Model Code.Prior
to June 30, 2003 we also created a graphics processing system as claimedin the form
of a computer system that used an RTLsimulator to successfully validate the operation

LG Ex. 1002, pg 258

LG Ex. 1002, pg 259

Application/Control Number: 13/109,738 Page 5
Art Unit: 2628

of an integrated circuit version of the claimed graphics processing system and method
At least the following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software
instructions written in the well-known C++ language. When executed by the
computer system, the Model Code caused the computer system to operate as
claimed in at least claims 1-5, 12 and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the
claimed subject matterfor its intended purpose through emulation thereof.

c. As shown in Exhibit B, the Chip Design Code comprises various
instructions written in a well-known hardware description language. The Chip
Design Code was used by an RTLsimulator system to validate the operation of
an integrated circuit version of the claimed graphics processing system and
method asclaimedin at least claims 1-5, 12 and 15. As further known by
practitioners in the field of integrated circuit design, such instructions are used to
generate gatelevel detail for silicon fabrication.

d. On information andbelief, the computer system operating the Model
Code and the RTL simulator system operating the Chip Design Code represents
the claimed structure and operation embodiedin an integrated graphics
processing circuit chip referred to as the ATI XENOSchip produced by ATI on or
about October, 2004 that wasincorporated in the XBOX 360 product.

Accordingly, the contents of Exhibits A and B establish the possession byus of
the whole Invention, failing within the scope of currently pending claims, such as but not
limited to at least claims 1-5, 12 and 15.”

As quoted from Applicants’ declaration, section 2 describes that Exhibit A is

Model Cadethat, when executed by the computer system, caused the computer system

to operate as claimed in at least claims 1-5, 12, and 15 of the Invention. Further,

section 2 describes that Exhibit B is Chip Design Code that was used by an RTL

simulator system to validate operation of an integrated circuit version of the claimed

graphics processing system and method as claimed in at least claims 1-5, 12, and 15.

However, section 2, and the declaration as a whole,fails to clearly explain which

facts or data applicant is relying on to show completion of his or her invention prior to

LG Ex. 1002, pg 259

LG Ex. 1002, pg 260

Application/Control Number: 13/109,738 Page 6
Art Unit: 2628

the June 30, 2003. The portions of Applicants' declaration quoted above are considered

nothing more than vague and general statements in broad terms about what the exhibits

describe along with general assertions that the exhibits describe a reduction to practice,

which does not satisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration is ineffective to overcome the Lindholm reference due to this second

deficiency.

Regarding claim 1, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed method steps of “performing vertex

manipulation operations and pixel manipulation operations...and continuing pixel

calculation operations that are to be or are currently being performed by the

processor..."

Regarding claim 2, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader, comprising: a general purpose

register block...a processor unit; and a sequencer, coupled to the general purpose

register block and the processorunit...”

Regarding claims 3 and 4, the Examineris unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit...and shared resources...the processor unit operative to use the shared

resources...”

Regarding claim 5, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader comprising: a processorunit; a

sequencer coupled to the processorunit...”

LG Ex. 1002, pg 260

LG Ex. 1002, pg 261

Application/Control Number: 13/109,738 Page 7
Art Unit: 2628

Regarding claim 12, the Examineris unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “graphics processor comprising: a

unified shader comprising a processorunit...”

Regarding claim 15, the Examineris unable to determine whichportions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit flexibly controlled...”

Thus, for at least the reasons given above,the declaration filed 1/18/12 under 37

CFR 1.131 is ineffective to overcome the Lindholm reference.

Asan additional note, the Examiner would like to point out that US Pat

7,015,913, to Lindholm etal., filed June 27", 2003, appears,after brief review,to

include a disclosure that is similar to US Pat 7,038,685 to Lindholm, which is used in the

rejections that follow (see FIG. 2 of each patent). The Examiner has not given Lindholm

et al. (US 7,015,913) a thorough review as to whetherornotit teaches one or moreof

Applicants’ claims, but it may be worth Applicants’ time to review Lindholm et al. (US

7,015,913) and adjust the declaration such that conception and reduction to practice of

the claimed invention is declared to have occurred prior to June 27", 2003(if such a

statementis true), in order to avoid a future rejection based on the teachings ofprior art

reference Lindholm etal. (US 7,015,913).

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section madein this Office action:

A person shall be entitled to a patent unless —

LG Ex. 1002, pg 261

LG Ex. 1002, pg 262

Application/Control Number: 13/109,738 Page 8
Art Unit: 2628

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by anotherfiled in the United States before the invention by the
applicant for patent, except that an international application filed underthe treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an applicationfiled in the United States
only if the international application designated the United States and was published under Article 21 (2)
of suchtreaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purposeregister block, and performing vertex

operations on the vertex data by a processorunless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmedto
operate on surface,primitive, vertex, fragment, pixel, sample or any other data. For
simplicity, the remainderof this description will use the term 'samples'to refer to
graphics data such as surfaces,primitives, vertices, pixels, fragments,or thelike."

6:38-59: “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types mayincludepixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesorallocate locations in Register File 350 using thread
allocation priorities”.

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated
storage resources suchaslocations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

LG Ex. 1002, pg 262

LG Ex. 1002, pg 263

Application/Control Number: 13/109,738 Page 9
Art Unit: 2628

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resourcesare not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources become available. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedatato at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations andpixel

manipulation operations by transmitting vertex data to a general purpose register block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purposeregister block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which casethe thread associated with the vertex data and

vertex operations must wait until enough space becomesavailable); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor basedoninstructions maintained in an instruction store

until enough registers within the general purpose register block becomeavailable(

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesorallocate locations in Register File 350 using thread
allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.
Instruction cache 410 determinesif the program instructions corresponding to the
program counters and sample type included in the thread state data for each thread
entry are available in Instruction Cache 410 ... The program instructions corresponding
to the program counters from the one or morethread entries are output by Instruction

LG Ex. 1002, pg 263

LG Ex. 1002, pg 264

Application/Control Number: 13/109,738 Page 10
Art Unit: 2628

Cache 410 to ... Instruction Scheduler 430 ... Each clock cycle, Instruction Scheduler
430 evaluates whether any instruction within the IWU [instruction window unit] 435 can
be executed based on the availability of computation resources in an Execution Unit
470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedata to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing

pixel calculation operations that are to be or are currently being performedby the

processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available, as the Execution Unit 470

may be carrying out calculations for one or more high priority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or more pixel threadsto finish such that when the pixel

threadsfinish the system will deallocate the resources assigned to the completed pixel

threadsin the Register File 350 and will allocate the requested amount of resources to

the queued up vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the threadis allocated
storage resources suchas locations in a Register File 350 to retain intermediate data
generated during execution of program instructions associated with the thread.”);

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375’);

LG Ex. 1002, pg 264

LG Ex. 1002, pg 265

Application/Control Number: 13/109,738 Page 11
Art Unit: 2628

a sequencer, coupled to the general purposeregister block and the processor

unit, the sequencer maintaining instructions operative to cause the processorunit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purposeregister block(

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."); and

wherein the processorunit executes instructions that generate a pixel color in

responseto the selected oneof the plurality of inouts and generates vertex position and

appearance data in response to a selected oneof the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations ... and output
the processed sample to a destination specified by the instruction. The destination may
be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 mayreceive first samples, such as higher-
order surface data, and tessellate thefirst samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 outout processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260 ... Each Execution Pipeline 240 signals to
Pixel Input Buffer 240 when a sample can be accepted ... programmable computation
units (PCUs) within an Execution Pipeline 240 ... perform operations such as
tessellation, perspective correction, texture mapping, shading, blending, and thelike.
Processed samplesare output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

LG Ex. 1002, pg 265

LG Ex. 1002, pg 266

Application/Control Number: 13/109,738 Page 12
Art Unit: 2628

Thus, the Execution Unit 470 is considered a processorunit that executes

instructions that generate a pixel color in responseto the selected oneofthe plurality of

inputs and generates vertex position and appearance data in response to a selected

one of the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, where the at least two thread types mayinclude pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processorunit operative to perform vertex calculation operations and pixel calculation

operations); and

shared resources, operatively coupled to the processor unit (FIG.4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processorunit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources become available and then use the shared resourcesto perform

LG Ex. 1002, pg 266

LG Ex. 1002, pg 267

Application/Control Number: 13/109,738 Page 13
Art Unit: 2628

vertex calculation operations (7:37-43, all types of processing threads can use the

Register File 350, where thread types include vertex and pixel threads (see 6:43-44),.

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesor allocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resourcesare not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedatato at
least one PCU 375."

Thus, whenpixel threads havepriority over vertex threads the processorunit will

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources becomeavailable in the Register File 350 to

begin carrying out vertex threads, which may happen as a result of a completion of most

of the pixel threadsora shift in priority such that the vertex threads now havethe

highestpriority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and pixel

calculation operations (see the corresponding sectionin the rejection of claim 3); and

shared resources, operatively coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

the processor unit operative to use the shared resourcesfor either vertex data or

pixel information and operative to perform vertex calculation operations until enough

LG Ex. 1002, pg 267

LG Ex. 1002, pg 268

Application/Control Number: 13/109,738 Page 14
Art Unit: 2628

shared resources becomeavailable and then use the shared resourcesto perform pixel

calculation operations (7:37-43,all types of processing threads can use the Register

File 350, where thread types include vertex and pixel threads (see 6:48-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesorallocate locations in Register File 350 using thread
allocation priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resources are not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedatato at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processorunit will

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out pixel threads, which may happenas a result of a completion of most

of the vertex threadsora shift in priority such that the pixel threads now have the

highest priority, and then use the Register File 350 to perform pixel calculation

operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencercoupled to the processorunit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amountof space available in the store(

LG Ex. 1002, pg 268

LG Ex. 1002, pg 269

Application/Control Number: 13/109,738 Page 15
Art Unit: 2628

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any
instruction within the IWU 435 can be executed based on the availability of computation
resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to
assign threads to source samplesorallocate locations in Register File 350 using thread
allocation priorities”.

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread are
available. The storage resources may be in graphics memory. When storage
resourcesare not available in step 877, Thread Control Unit 320 or 420 does not
proceed to step 880 until a storage resources becomeavailable. In step 880 Thread
Control Unit 320 dispatches the thread assigned to the sample and sourcedatato at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amountof space available in the Register File 350).

RE claim 6, Lindholm describes the shaderof claim 5, wherein the sequencer

further includescircuitry operative to fetch data from a memory(

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shaderof claim 5, further including a

selection circuit operative to provide information to the store in response to a control

signal(

LG Ex. 1002, pg 269

LG Ex. 1002, pg 270

Application/Control Number: 13/109,738 Page 16
Art Unit: 2628

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on thepriority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in responseto a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shaderof claim 5, wherein the processorunit

executes instructions that generate a pixel color in responseto the selected one of the

plurality of inputs (

5:11-35 “Pixel Inout Buffer 215 outputs the samples to each Execution Pipeline
240 ... Each Execution Pipeline 240 signals to Pixel Inout Buffer 240 when a sample
can be accepted... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations such as tessellation, perspective correction, texture
mapping, shading, blending, and the like. Processed samples are output from each
Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shaderof claim 5, wherein the processorunit

executes vertex calculations while the pixel calculations arestill in progress(

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wherethe at least two thread types mayinclude pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsofdifferent types.”).

LG Ex. 1002, pg 270

LG Ex. 1002, pg 271

Application/Control Number: 13/109,738 Page 17
Art Unit: 2628

RE claim 10, Lindholm describes the shader of claim 5, wherein the processor

unit generates vertex position and appearancedata in responseto a selected oneof the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 mayreceive first samples, such as higher-
order surface data, and tessellate the first samples to generate second samples, such
as vertices. Execution Pipelines 240 may be configured to transform the second
samples from an object-based coordinate representation (object space) to an
alternatively based coordinate system such as world space or normalized device
coordinates ... Execution Pipelines 240 outout processed samples, such as vertices,
that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the control

signal is provided by an arbiter(

6:60-7:36 “Thread allocation priority, as described further herein, is used to
assign a thread to a source sample. A thread allocation priority is specified for each
sample type and Thread Control Unit 420 is configured to assign threads to samples or
allocate locations in a Register File 350 based on the priority assigned to each sample
type. The thread allocation priority may be fixed, programmable, or dynamic ... In an
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samplesor allocate locations in Register File 350 using thread allocation
priorities based on an amountof sample data in Pixel Input Buffer 215 and another
amountof sample data in Vertex Input Buffer 220 ... In a further alternate embodiment,
Thread Control Unit 420 is configured to assign threads to source samples orallocate
locations in Register File 350 using thread allocation priorities based on graphics
primitive size”.

Thus, while an arbiter isn't explicitly described, the Examiner considersit inherent

that someportion of the system acts as an arbiter, and therefore can be considered an

arbiter, as someportion of the system assignspriorities to thread and sample types

according to the current processing circumstances, in order to moreefficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:

LG Ex. 1002, pg 271

LG Ex. 1002, pg 272

Application/Control Number: 13/109,738 Page 18
Art Unit: 2628

a unified shader comprising a processorunit that executes vertex calculations

while the pixel calculations arestill in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In one
embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least
two thread types, wherethe at least two thread types mayincludepixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesofdifferent types, and, likewise, execute
threadsofdifferent types.”).

RE claim 13, Lindholm describes the graphics processorof claim 12 wherein the

unified shader comprises a sequencercoupled to the processorunit, the sequencer

maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amountof space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processorof claim 12 comprising

a vertex block operative to fetch vertex information from memory (see the rejection of

claim 6).

RE claim 15, Lindholm describes a unified shader comprising:

a processorunit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source
samples or allocate locations in Register File 350 using thread allocation priorities
based on an amountof sample data in Pixel Input Buffer 215 and another amountof
sample data in Vertex Input Buffer 220 ... In a further alternate embodiment, Thread
Control Unit 420 is configured to assign threads to source samplesorallocate locations

LG Ex. 1002, pg 272

LG Ex. 1002, pg 273

Application/Control Number: 13/109,738 Page 19
Art Unit: 2628

in Register File 350 using thread allocation priorities based on graphics primitive size
(numberof pixels or fragments included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations ... Execution
Unit 470 can simultaneously process samplesof different types, and, likewise, execute
threadsofdifferent types.”).

RE claim 16, Lindholm describes the shaderof claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching betweeninstructionsin the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered aninstruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input
Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and
outputs the instruction and source data to Execution Unit 470 including at least one
PCU 375 ... Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations... Execution
Unit 470 can simultaneously process samples of different types, and, likewise, execute
threadsofdifferent types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

betweeninstructions in the instruction store).

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time

policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the eventafirst replyis filed within

TWO MONTHSof the mailing date ofthis final action and the advisory action is not

LG Ex. 1002, pg 273

LG Ex. 1002, pg 274

Application/Control Number: 13/109,738 Page 20
Art Unit: 2628

mailed until after the end of the THREE-MONTHshortened statutory period, then the

shortened statutory period will expire on the date the advisory action is mailed, and any

extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

the advisory action. In no event, however, will the statutory period for reply expire later

than SIX MONTHSfrom the mailing date of this final action.

Anyinquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBURNwhosetelephone numberis

(571)272-5551. The examiner can normally be reached on 9:30 A.M. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Ulka Chauhan can be reached on 571-272-7782. The fax phone numberfor

the organization wherethis application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on accessto the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA)or 571-272-1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
3/11/12

LG Ex. 1002, pg 274

LG Ex. 1002, pg 275

Application/Control No. Applicant(s)/Patent Under
Reexamination

Search Notes 13109738 MOREIN ETAL.

Examiner Art Unit

DANIEL WASHBURN 2628

SEARCHED

Subclass Examiner
72/11
3/11/12

SEARCH NOTES

Search Notes Date eer
Searched EAST (all databases) see search history printout 7/12/11

updated search in EAST(all databases) see search history printout 3/11/12

INTERFERENCE SEARCH

Subclass

/DANIEL WASHBURN/

Primary Examiner.Art Unit 2628
U.S. Patent and Trademark Office Part of Paper No. : 20120311

LG Ex. 1002, pg 275

LG Ex. 1002, pg 276

Bachpigate: 07/14/2011 13109738 - GAldn2628
eye . . : Approved for use through 07/31/2012. OMB 0651-0631

Doc description: Information Disclosure Statement(IDS) Filed U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Underthe Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit contains a valid OMB control number.

Application Number 13109738

Filing Date 2011-05-17

INFORMATION DISCLOSURE First Named Inventor|Stephen Morein
STATEMENT BY APPLICANT —_ [228
(Not for submission under 37 CFR 1.99)

Examiner Name na

Attorney Docket Number | 90100.36.0001

U.S.PATENTS Remove

Examiner) Cite Kind Nameof Patentee or Applicant Pages,Columns,Lines where
ae iy Patent Number Issue Date . Relevant Passagesor RelevantInitial No Code1 of cited Document :

Figures Appear

1 5550962 1996-08-27 Nakamuraetal.

2 5818469 1998-10-06 Lawlessetal.

3 6118452 2000-09-12 Gannett

4 6353439 2002-03-05 Lindholm et al.

5 6384824 2002-05-07 Morganet al.

6 6417858 2002-07-09 Boschet al.

7 6573893 2003-06-03 Naqvi et al.

8 6650327 2002-11-18 Airey et al.

EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W//

LG Ex. 1002, pg 276

LG Ex. 1002, pg 277

Receipt date: 07/14/2011

INFORMATION DISCLOSURE

STATEMENTBY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738 13109738 - GAU: 2628

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

Art Unit | 2628
Examiner Name na

Attorney Docket Number | 90100.36.0001

EFS Web2.1.17

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH.

9 6650330 2003-11-18 Lindholm et al.

10 6704018 2004-03-09 Mori etal.

11 6724394 2004-04-20 Zatz et al.

12 6731289 2004-05-04 Peercyetal.

13 6809732 2004-10-26 Zatz et al.

14 6864893 2005-03-08 Zatz

15 6897871 2005-05-24 Morein et al.

16 6980209 2005-12-27 Donham etal.

WF 7015913 2006-03-21 Lindholm etal.

18 7038685 2006-05-02 Lindholm

19 7327369 2008-02-05 Morein et al.

(DWE

LG Ex. 1002, pg 277

LG Ex. 1002, pg 278

Receipt date: 07/14/2011

INFORMATION DISCLOSURE

STATEMENTBY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738 13109738 - GAU: 2628

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

 Art Unit | 2628
Examiner Name na

Attorney Docket Number | 90100.36.0001

If you wish te add additional U.S. Paten

20 5485559 1996-01-16 Sakaibaraetal.

21 7239322 B2 2007-07-03 Lefebvreetal.

22 7746348 B2 2010-06-29 Lefebvreetal.

23 7742053 B2 2010-06-22 Lefebvreetal.

t citation information please click the Add button.

Add

U.S.PATENT APPLICATION PUBLICATIONS Remove

Examiner
Initial* Cite No

EFS Web2.1.17

Publication
Number

20030076320

20030164830

20040041814

20040164987

20050068325

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH.

Kind|Publication
Cede} Date of cited Document

Al 2003-04-24 Collodi

Al 2003-09-04 Kent

Al 2004-03-04 Wyatt et al.

Al 2004-08-26 Aronsonet al.

Al 2005-03-31 Lefebvre et al.

 Nameof Patentee or Applicant

Pages,Ccolumns,Lines where
Relevant Passages or Relevant
Figures Appear

(DWE

LG Ex. 1002, pg 278

LG Ex. 1002, pg 279

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENTBY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

Examiner Name na

Attorney Docket Number | 90100.36.0001

6 20100231592 Al 2010-09-16 Morein etal.

7 20030030643 Al 2003-02-13 Taylor etal.

8 20070222785 Al 2007-09-27 Lefebvre et al.

9 20070222787 Al 2007-09-27 Lefebvre et al.

10 20050200629 Al 2005-09-15 Morein etal.

11 20070222786 Al 2007-09-27 Lefebvre et al.

12 20070285427 Al 2007-12-13 Morein et al.

13 20100156915 Al 2010-06-24 Lefebvre et al.

If you wish to add additional U.S. Published Application citation information please click the Add button. Add

FOREIGN PATENT DOCUMENTS Remove

Nameof Patentee or Pages,Columns,Lines
Examiner] Cite|Foreign Document Kind|Publication Applicantof cited where Relevant
Initial* Number? Code+ Date PP Passages or RelevantDocument .

Figures Appear

_ — woe

EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W//

LG Ex. 1002, pg 279

LG Ex. 1002, pg 280

Receipt date: 07/14/2011

INFORMATION DISCLOSURE

STATEMENTBY APPLICANT

(Not for submission under 37 CFR 1.99)

Application Number 13109738 13109738 - GAU: 2628

Filing Date 2011-05-17

First Named Inventor|Stephen Morein

Art Unit | 2628 Examiner Name na
Attorney Docket Number | 00100.36.0001

2309460 2011-04-13|Morein et al.

2296116 2011-03-16 Morein et al.
If you wish to add additional Foreign Patent Documentcitation information please click the Add button Add

NON-PATENT LITERATURE DOCUMENTS Remove

Examiner) Cite Include nameof the author (in CAPITAL LETTERS},title of the article (when appropriate), title of the item

ag (book, magazine, journal, serial, symposium, catalog, etc}, date, pages(s), volume-issue number(s}, TSInitials No : : .
publisher, city and/or country where published.

1 European Patent Office Examination Report; EP Application No. 04798938.9; dated November9, 2006; pages 1-3. E]

2 PURCELL, TIMOTHYJ.et al.; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH "02; San Antonio, TX; Ol
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703-712.

3 MARK, WILLIAM R.et al; CG: A system for programming graphics hardwarein a C-like language; SIGGRAPH "03: Ol
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896-907.

4 BRETERNITZ, JR., MAURICIOet al.; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline Ol
Programs on a General-Purpose CPU; IEEE; 2003; pgs. 1-11.

5 International Search Report and Written Opinion; International Application No. PCT/IB2004/003821- dated March 22, Ol2005.

6 EP Supplemental Search Report; EP Application No. 10075688.1; dated February 25, 2011. E]

7 EP Supplemental Search Report; EP Application No. 10075686.5; dated February 25, 2011. [|

EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W./

LG Ex. 1002, pg 280

LG Ex. 1002, pg 281

Receipt date: 07/14/2011 Application Number 13109738 13109738 - GAU: 2628
Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENTBY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor|Stephen Morein

Art Unit | 2628

Examiner Name na

Attorney Docket Number | 00100.36.0001

8 EP Supplemental Search Report; EP Application No. 10075687.3; dated February 25, 2011. |

9 EP Supplemental Search Report; EP Application No. 10075685.7; dated February 25, 2011. |

10 ELDRIDGE, MATTHEWet al.; Pomegranate: A Fully Scalable Graphics Architecture; Computer Graphics, SIGGRAPH Ol2000 Conference Proceedings; July 23, 2000.

11 OWENS, JOHN D.et al.; Polygon Rendering on a Stream Architecture; Proceedings 2000 SIGGRAPH/Eurographics Ol
Workshop on Graphics Hardware; August 271, 2000.

12 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008. |

13 Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009. |

14 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010 |

If you wish to add additional non-patentliterature documentcitation information please click the Add buttan Add

EXAMINER SIGNATURE

Examiner Signature {Daniel Washburn/ Date Considered O3/4 1/2012

*EXAMINER:Initial if reference considered, whethercr notcitation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents,the indication of the year of the reign of the Emperor must precede the serial numberof the patent document.
4 Kind of documentby the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark hereif]
English language translation is attached.

EFS Web 2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /D.W//

LG Ex. 1002, pg 281

LG Ex. 1002, pg 282

EASTSearch History

EAST Search History

EAST Search History (Prior Art)

dlindholm.in. and nvidia.as.

jlindholm.in. and nvidia.as. and shader

jlindholm.in. and nvidia.as. and shader and |
vertex and pixel

ylindholm.in. and nvidia.as. and shader and { i 2012/03/11:
vertex and pixel and sequencer 5 | i 14:05 :

Ylindholm.in. and nvidia.as. and shader and
vertex and pixel and sequenc$3 :

pixel adj inout adj buffer and vertex adj
dinput adj buffer and vertex adj output adj «
ibuffer and pixel adj output adj butter ‘

"pixel adj input adj buffer and vertex adj

file:///Cl/Users/dwashburn 1/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[3/1 1/2012 2:55:30 PM]

LG Ex. 1002, pg 282

LG Ex. 1002, pg 283

EASTSearch History

‘input adj buffer and vertex adj output adj TUSPAT; | 14:29
jouffer and pixel adj output adj buffer and #USOCR; : ;
yraster adj unit uFPRS;

110/609967 ‘2012/03/09
; 20:08 :

1(" 20030030643" | "20030076320"|
"20030164830" | "20040041814"|
4"20040164987" | "20050068325"|
4"20050200629" | "20070222785"|
"20070222786" | "20070222787"|
"20070285427" | "20100156915"| ‘
420100231592" | "5485559" | "5550962" |
1"5818469" | "6118452" | "6353439" |
4"6384824" | "6417858" | "6573893" |
4"6650327" | "6650330" | "6704018" |
1"6724394" | "6731289" | "6809732"|
1"6864893" | "6897871" | "6980209"|
"7015913"|"7038685"|"7239322" |
"7327369"|"7742053"

EAST Search History (Interference)

< This search history is empty>

3/11/2012 2:55:21 PM

C:\ Users\ dwashburn1\ Documents\ EAST\ Workspaces\ Morein et al. 11117863.wsp

file:///Cl/Users/dwashburn 1/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[3/1 1/2012 2:55:30 PM]

LG Ex. 1002, pg 283

LG Ex. 1002, pg 284

Application/Control No. Applicant(s)/Patent Under

Reexamination

Index of Claims 13109738 MOREIN ETAL.

 Art Unit Examiner

DANIEL WASHBURN 2628

(J Claims renumbered in the same order as presented by applicant LJ CPA O T.D. CO] sR«.1.47

CLAIM DATE

A
2 -

= a

 ae
3 v v

4 Vv v

5 v v

er
A
as —

9 v v

10 v v

14 v v

ae
as
Av v

v v

= a

U.S. Patent and Trademark Office Part of Paper No. : 20120311

LG Ex. 1002, pg 284

LG Ex. 1002, pg 285

PTO/SB/30 (07-09)
Approvedfor use through 07/31/2012. OMB 0651-0031

US. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Application Number 19409, 748

Filing Date vay 47.201

Stephen Morein
Continued Examination (RCE)

Transmittal First Named Inventor
Addressto: Art Unit 928
Mail Stop RCE
Commissioner for Patents Daniel C. Washburn
P.O. Box 1450

Alexandria, VA 22313-1450 Attorney Docket Number |90100.38.9001

This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application.
Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to anyutility or plant application filed prior to June 8,
1995, or to any design application. See Instruction Sheet for RCEs (not to be submitted to the USPTO) on page 2.

Submission required under 37 CFR 1.114 Note: If the RCE is proper, any previously filed unentered amendments and
amendments enclosed with the RCE will be entered in the order in which they werefiled unless applicant instructs otherwise.If
applicant does not wish to have any previouslyfiled unentered amendment(s) entered, applicant must request non-entry of such
amendmenit(s).

Previously submitted. If a final Office action is outstanding, any amendmentsfiled after the final Office actian may be
a. considered as a submission evenif this box is not checked.

C] Consider the arguments in the Appeal Brief or Reply Brief previously filed on
li.[| Other

b. Enclosed

I, Amendment/Reply iii. [| Information Disclosure Statement (IDS)
[_] Affidavit(sy Declaration(s) iv. Other Replacement Abstract

ii.

Miscellaneous

Suspension of action on the above-identified application is requested under 37 CFR 1.103(c) for a
period of months. (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required)
Other

The RCE fee under 37 GFR 1.17(e) is required by 37 CFR 1.114 whenthe RCE isfiled.
The Director is hereby authorized to charge the following fees, any underpaymentoffees, or credit any overpayments, to
Deposit Account No. 02-0330

RCEfee required under 37 CFR 1.17(e)

Extension of time fee (37 CFR 1.136 and 1.17)

[| Other
b. [| Checkin the amountof $ enclosed

C.[] Paymentby credit card (Form PTO-2038 enclosed)
WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit
card information and authorization on PTO-2038.

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

Signature iChrisiopher J. Reckamp/ September 17, 2612

Name(PrintType)|ShristapherJ. Reckamp Registration No.
CERTIFICATE OF MAILING OR TRANSMISSION

| hereby certify that this correspondenceis being deposited with the United States Postal Service with sufficient postage asfirst class mail in an envelope
addressed to: Mail Stop RCE, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the U.S. Patent and Trademark
Office on the date shown below.

Name emp)|i]
This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public whichis to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete,
including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on
the amountof time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SE ND FEES OR COMPLETED FORMS TO ‘THIS
ADDRESS. SEND TO: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

LG Ex. 1002, pg 285

LG Ex. 1002, pg 286

Electronic Patent Application Fee Transmittal

Filing Date: 17-May-2011

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Filer: Christopher J. Reckamp/Lisa Schodrowski

Filed as Large Entity

Utility under 35 USC 111(a)Filing Fees

Sub-Totalin

USD($)Description Fee Code Quantity

Basic Filing:

Claims:

Miscellaneous-Filing:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Extension - 3 months with $0 paid 1253 1270 1270

LG Ex. 1002, pg 286

LG Ex. 1002, pg 287

Sub-Totalin

Description Fee Code Quantity Amount USD(S)

Miscellaneous:

Request for continued examination

Total in USD ($)

LG Ex. 1002, pg 287

LG Ex. 1002, pg 288

Electronic Acknowledgement Receipt

13761569

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

reChristopher Reckemp/iiss Schosrowsi
Filer Authorized By: Christopher J, Reckamp

Attorney Docket Number: 00100,36.0001

Filing Date: 17-MAY-2011

Time Stamp: 11:54:06

Application Type: Utility under 35 USC 111(a)

Paymentinformation:

Submitted with Payment

Payment Type Deposit Account

Payment was successfully received in RAM $2200

Deposit Account 020390

Document DocumentDescription File Size(Bytes)/ Multi Pages
Number P Message Digest|Part/.zip| (if appl.)

LG Ex. 1002, pg 288

LG Ex. 1002, pg 289

Extension of Time 36001-Extension-Time.pdf 79ce6d6cd l4bdf5f5 e6 18650762che8d 115)
al840

Multipart Description/PDFfiles in .zip description

DocumentDescription

Amendment Submitted/Entered with Filing of CPA/RCE

Specification

Claims

Amendment Submitted/Entered with Filing of CPA/RCE

Abstract

Warnings:
Information:

. , 48665
Request for Continued Examination

(RCE) 2b5a0b84836700326a0625c81c8130d639}
efc6ob

Warnings:

Information:

Fee Worksheet (SB06) fee-info.pdf (:31d73(740d011 ecad2.a9095838aa7 [6d88)
adad

Warnings:
Information:

Total Files Size (in bytes) 203319

LG Ex. 1002, pg 289

LG Ex. 1002, pg 290

This Acknowledgement Receipt evidences receipt on the noted date by the USPTOof the indicated documents,
characterized by the applicant, and including page counts, where applicable.It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new applicationis being filed and the application includes the necessary componentsfora filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shownonthis
AcknowledgementReceiptwill establish thefiling date of the application.

NationalStage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903indicating acceptance of the application asa
nationalstage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary componentsfor
an internationalfiling date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
andofthe InternationalFiling Date (Form PCT/RO/105)will be issued in due course, subject to prescriptions concerning
nationalsecurity, and the date shown on this AcknowledgementReceiptwill establish the international filing date of
the application.

LG Ex. 1002, pg 290

LG Ex. 1002, pg 291

PTO/SB/Z2 (09-1 1}

Appreoved for use through 07/34/2042. OMB 0651-0034Trademark Office; U.S. DEPARMENT OF COMMERCE
information uriessit displays a valid OMB control number.

U.S, Patent anc

Under the paperwark Reduction Act of 1995, no persons are required to respond to a collectionc

Docket Number (Optional)

PETITION FOR EXTENSION OF TIME UNDER 37 CFR 1.736(a) | 00100 36.0001

[Filed May 17, 2074

For GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

| Examiner Daniel C. Washbum '

This is @ request under the provisions of 37 CFR 1.136(@} ta extend the period for filing a realyin the above identified
i application.

The requested extension and fee are as follows (check time period cesired and enter the appropriate fee below):

Eee Small Entity Fee

One month (7 CFR 1.17(axty 75

Two months (37 CFR 1.71 7{a\2 $58C p2BE

Three months (37 CFR 1.17(a\(3)) $635 gl270.00\

Four months CER 1.17(a4)}

Five months (37 CFR 1.17(a\(5})

Applicant claims amall entity status. See 37 CFR 1.27.

A check in the amount of the fee is enclosed.

Payment by credit card. Form PTO-2038 is attached.

The Director has already been authorized to charge fees in this application fo a Deposit Account.

The Director is hereby authorized to charge any fees which may be required, or credit any overpayment, to
Depasit Account Number 02-0390
WARNING: Information on this form may become public. Credit card information should not be included on this form.
Provide credit card information and authorization on PTO-2036.

iam the it applicantinventor.

assignee of record of the entire inferest. See 37 CFR 3.71.
Statement under 37 CFR 3.73(b) is enclosed (Form PTO/SB/968).

attomeyor agent of record. Registration Number =

Cy] attorney aor agent under 37 CFR 1.34.Registration number Y acting under 37 CFR 1.34

Christopher J. Reckamp/ September 17, 2

Signature Dat

Ghristopher J. Reckamp 312 356 5094

Typed or printed narne Telephone Number

NOTE: Signatures of al! the inventors or assignees of record of the entire interest or their representative(s} are required. Submit muttipie forms # more than one §
signatureis required, see beiow. :

Total of eee forms are submitted.

Hectorof information is required by 37 CFR 1.136(a). The information is required to obtain 0or retain a bes governed by 35 U.S.C. 122 and 37 i
¢, preparing, and submitting the completed application form to

comments on the amour ne you require to cumplete this formand/or suggestionsfor reducing this burden, should be sent to the Thi
U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES
FORMSTO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

if you needassistance in comoleling the form, call 1-800-PTO-G799 and select option2.

newt ey the puelle whichisto file {and by thets i ninutes te
Any

information Officer,
OR COMPLETED

 | cane

LG Ex. 1002, pg 291

LG Ex. 1002, pg 292

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stephen Moreinet al. Examiner: Daniel C. Washburn
Serial No:: 13/109,738 Art Unit: 2628
Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

PRELIMINARY AMENDMENT

DearSir:

In response to the final office action mailed March 15, 2012, Applicants submit a Request

for Continued Examination,petition for a three month extension of time and submit the

following preliminary amendment:

Amendments to the Abstract begin on page 2 of this paper and include a replacement Abstract

and a clean copy showing the amended Abstract.

Amendments to the Claims begins on page 3 ofthis paper.

Remarksbegin on page 7 of this paper.

BDDBO01 9460871v1

LG Ex. 1002, pg 292

LG Ex. 1002, pg 293

Amendments to the Specification

Please replace the Abstract with the following amended Abstract:

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example pexforms vertex manipulation

operations and pixel manipulation operations by transmitting vertex data to 6 poneral

purposeregisterblock, andperformingvertex operationsonthevertexdata bya

rocessar unless the ceneral surpase register block docs not have enough available

therein io store incoming vertex data: and continues pixel calculation oncrations that are

te be ar are currently beme performed by the processor based on instructions maintained

1p ati ir istructionstoreuntilenoughregisters withinthegeneralpurposeregisi

become avaliable. In one example, a general purpose register block maintains data. A

taghilains uistructions operative to eguse ihe processor unit to execute verte caloulation

BDDBO01 9460871v1 2

LG Ex. 1002, pg 293

LG Ex. 1002, pg 294

BDDBO01 9460871v1 3

LG Ex. 1002, pg 294

LG Ex. 1002, pg 295

Amendments to the Claims:

Rewrite the claims as set forth below. This listing of claims replaces all prior versions and
listings of claims in the application:

Listing of the Claims:

1, (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. (original) A unified shader, comprising:

a gencral purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purposeregister block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one ofthe plurality of inputs.

BDDBO01 9460871v1 4

LG Ex. 1002, pg 295

LG Ex. 1002, pg 296

3. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

becomeavailable and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation opcrations until cnough shared resources

becomeavailable and then use the shared resources to perform pixel calculation operations.

5. (original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amountof space available in

the store.

BDDBO01 9460871v1 5

LG Ex. 1002, pg 296

LG Ex. 1002, pg 297

6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in responseto a controlsignal.

8. (original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in responseto the selected one ofthe plurality of inputs.

9. (canceled)

10.—(original) The shader of claim 5, wherein the processor unit generates vertex

position and appearance data in response to a selected one of the plurality of inputs.

11. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. — 14. (canceled)

15. (original) A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

BDDBO01 9460871v1 6

LG Ex. 1002, pg 297

LG Ex. 1002, pg 298

16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching betweeninstructions in the instruction store.

BDDBO01 9460871v1 7

LG Ex. 1002, pg 298

LG Ex. 1002, pg 299

REMARKS

Applicants respectfully traverse and request reconsideration.

Applicants’ attorney wishes to thank the Examiner for the courtesies extended during the

telephone conference of September 17, 2012.

Applicants cancel claims 9 and 12-14 without prejudice. Applicants have also amended

the Abstract.

Claims 1-16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

U.S. Patent No. 7,038,685 (Lindholm). Applicants respectfully request reconsideration and

respectfully submit that the declaration is proper and that the declaration is more than "vague

gencral statements in broad terms...". To the contrary, the statements and Exhibits sct for facts

sufficient to showa conception and reduction to practice sufficient to showpriority of invention.

To the extent additional information would be helpful, Applicants respectfully submit by way of

example that:

As to claim 1 for example, Exhibit B Chip Design Code — sqgpralloc.v and

Sq_aluinstr_seq.v — are believed to illustrate, inter alia, loading either pixel or vertices in the

GPRif there is space for them (e.g., transmission to general purpose register (gpr) blocks unless

the gpr block does not have space); performing pixel and vertex manipulations; the ais machine

is the “alu instruction sequencer" and it executes instructions on either vertices or pixels

depending on type. the file sq_instruction_store.v contains the memory with the instructions to

be performed on either pixels (PS) or vertices (VS).

As to claims 2-5 for example, Exhibit B Chip Design Code — spmacc_gpr.v,

SP_vector.v, Sq.v , Sq_export_alloc.v, sq_ctl_flow_seq.v, Sq_aluinstr_seq.v - are believed to

illustrate, inter alia, the general purpose register and processor (e.g., multiply and accumulate

BDDBO01 9460871v1 8

LG Ex. 1002, pg 299

LG Ex. 1002, pg 300

(MAC or MACC)logic) and a sequencer coupled to the general purpose register and processor

unit and operation of the sequencer and processorunit.

Applicant respectfully submits that the claims are now believed to be in condition for

allowance andthat a timely Notice of Allowance be issued in this case. If the Examiner bclicves

that personal communication will expedite prosecution of this application, the Examiner is

invited to telephone the undersignedat (312) 356-5094.

Respectfully submitted,

Dated: September 17, 2012 By:___/Christopher J. Reckamp/
Christopher J. Reckamp
Reg. No. 34,414

Faegre Baker Daniels LLP
3118. Wacker Drive

Chicago, IL 60606
PHONE: (312) 356-5094
FAX: (312) 212-6501

BDDBO01 9460871v1 9

LG Ex. 1002, pg 300

LG Ex. 1002, pg 301

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one cxample performs vertex manipulation

operations and pixel manipulation operatians by transmitting vertex data to a general purpose

register block, and performing vertex operations on the vertex data by a processor unless the

general purpose register block does not have enough available space therein to store incoming

vertes data; and continues pixel calculation operations that are to be or are currently bemg

performed by the processor based on instructions maintained in an instruction store until cnough

registers within the general purpose register block become availabic. In one example, a general

purpose register block maintains data. A sequencer, coupled to the general purpose register block

and to a processor anil, mamtains metruchons operative to cause the processor unit ta exeonte

vertex caloulation and pixel calculation operations on selected data maintained in the general

purpose register block: and the processor unit executes instructions that generate a pixel colorin

response to the selected one of the plurality of inpute and gencrates vertex position and

appearance data in response to a selected one of the plurality of inputs.

17

LG Ex. 1002, pg 301

LG Ex. 1002, pg 302

REPLACEMENT SHEET

Application No. 13/109,738

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

operations and pixcl manipulation operations by transrattting vertex data to a general purpose

register block, and performing vertex operations on the vertex data by a processor unless the

ecneral purpasc register block docs not have cnough availabic space therein to store iIncaming

vertex data; and continues nixel calculation operations that are to be or are currenily being

performed by the processor based on instructions raaintamedin an instruction store until enough

regisiers within the general purpose register block becorne available, In one example, a genera!

purpose register block maintains data. A sequencer, coupled to the general purpose register block

and {to a processor unit, taaimiains instructions operative to cause the processor umf to execute

vertex calculation and pixcl calculation operations on sclected data maintained in the goncral

purpose register block; and the processor unit executes instructions that generate 6 pixel color in

resporise to the selected one of the pluraltty of inputs and penerates vertex position and

appearance dais in response ta a selected one ofihe plurality efinputs.

17

LG Ex. 1002, pg 302

LG Ex. 1002, pg 303

PTO/SB/06 (07-06)
Approved for use through 1/31/2007. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unlessit displays a valid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD[|“*relication or Docket Number Filing Date
Substitute for Form PTO-875 13/109,738 05/17/2011 [] To be Mailed

APPLICATION AS FILED — PART|

(Column 1) (Column 2)
FOR

CL] Basic FEE‘37 CFR 1.16(a), (6), or (ci

(_] SEARCH FEE37 CFR 1.16(/k), (i), or (m

C] EXAMINATION FEE(37 CFR 1.16(0), (p), or (q))
TOTAL CLAIMS
(37 CFR 1.16(i))
INDEPENDENT CLAIMS
(37 CFR 1.16(h)

If the specification and drawings exceed 100
sheets of paper, the application size fee due
is $250 ($125 for small entity) for each
additional 50 sheets or fraction thereof. See
35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).

[J MULTIPLE DEPENDENT CLAIM PRESENT(37 CFR 1.16(j))

(APPLICATION SIZE FEE
(37 CFR 1.16(s))

* If the difference in column 1 is less than zero, enter “0”in column 2.

APPLICATION AS AMENDED -— PARTII

(Column 1)
CLAIMS
REMAINING
AFTER
AMENDMENT.

(Column 2)
HIGHEST
NUMBER
PREVIOUSLY
PAID FOR

C Application Size Fee (37 CFR 1.16(s))

(Column 3)

PRESENT
09/17/2012 Len

Independent(37 CFR 1.16(h)) AMENDMENT
O FIRST PRESENTATION OF MULTIPLE DEPENDENTCLAIM (37 CFR 1.16(j))

CLAIMS
REMAINING

AFTER
AMENDMENT

HIGHEST
NUMBER

PREVIOUSLY

SMALL ENTITY []
RATE ($) FEE (§)

N/A

N/A

N/A

SMALL ENTITY

ADDITIONAL
FEE ($)

ADDITIONAL

RATE ($ FEE ($)

OTHER THAN

OR SMALL ENTITY

RATE($) FEE ($)

N/A

N/A

N/A

OTHER THAN
OR SMALL ENTITY

ADDITIONAL

RATE($) FEE ($)

$60=

x $250=

ADDITIONAL
FEE ($)

AMENDMENT
* If the entry in column 1 is less than the entry in column 2, write “O” in column 3.
** If the “Highest Number Previously Paid For” IN THIS SPACEis less than 20, enter “20”.
*** If the “Highest Number Previously Paid For’ IN THIS SPACEisless than 3, enter “3”.
The “Highest Number Previously Paid For’ (Total or Independent) is the highest numberfound in the appropriate box in column 1.

Legal Instrument Examiner:
/LAWANDA MILTON/

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTOto
process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering,
preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amountof time you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S.
Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissionerfor Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

LG Ex. 1002, pg 303

LG Ex. 1002, pg 304

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O, Box 1450
Alexandria, Virginia 22313-1450
www .uspto. gov

 APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEYDOCKET NO. CONFIRMATION NO.

13/109,738 05/17/2011 Stephen Morein 00100.36.0001 2020

29153 7590 12/06/2012

ADVANCED MICRO DEVICES. INC.
C/O Faegre Baker Daniels LLP CHEN, FRANK S
311 S. WACKER DRIVE

CHICAGO,IL 60606 ART UNIT PAPER NUMBER

NOTIVICATION DATE DELIVERY MODE

tyHR <1 ae]

12/06/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date” to the
following e-mail address(es):

inteas @faegrebd.com
cynthia.payson @faegredb-.com
michelle.davis @ faegrebd.com

PTOL-90A (Rev. 04/07)

LG Ex. 1002, pg 304

LG Ex. 1002, pg 305

Application No. Applicant(s)

13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
FRANK CHEN 2677

-- The MAILING DATEof this communication appears on the cover sheetwith the correspondence address--

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS,

WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply betimely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Anyreply received by the Office later than three months after the mailing date of this communication, evenif timely filed, may reduce any
eamed patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s)filed on 17 September 2012.
2a)L] This action is FINAL. 2b)—X] This action is non-final.
3)L An election was madebythe applicant in response to a restriction requirementset forth during the interview on

, the restriction requirement and election have been incorporated into this action.

4)L] Sincethis application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

5)X] Claim(s) 1-8,10,11,15 and 16 is/are pendingin the application.

5a) Of the above claim(s) is/are withdrawn from consideration.

6)L] Claim(s)__ is/are allowed.
7) Claim(s) 1-8,10,11,15 and 16 is/are rejected.
8)L] Claim(s)___ is/are objected to.
9) Claims) are subjectto restriction and/or election requirement.

* If any claims have been determined allowable, you may beeligible to benefit from the Patent Prosecution Highway
program at a participating intellectual property office for the corresponding application. For more information, please see
hito/Awww.uspto cov/patents/init_ events/noh/index.jsp or send an inquiry to PPHfeedback@uspto.caov.

Application Papers

10) The specification is objected to by the Examiner.
11)[] The drawing(s)filed on is/are: a)[_] accepted or b)[_] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacementdrawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

Priority under 35 U.S.C. § 119

12) Acknowledgmentis madeof a claim for foreign priority under 35 U.S.C. § 119(a)-(d)or(f).

a)LJ All b)L] Some * c)L] Noneof:
1.0] Certified copies of the priority documents have been received.
2.0] Certified copies of the priority documents have been received in Application No.
3.L] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action fora list of the certified copies not received.

Attachment(s)

1) 4 Notice of References Cited (PTO-892) 3) | Interview Summary (PTO-413)
Paper No(s)/Mail Date.

2) | Information Disclosure Statement(s) (PTO/SB/08) 4) | Other:
Paper No(s}/Mail Date

U.S. Patent and Trademark Office

PTOL-326 (Rev. 09-12) Office Action Summary Part of Paper No./Mail Date 20121129

LG Ex. 1002, pg 305

LG Ex. 1002, pg 306

Application/Control Number: 13/109, 738 Page 2
Art Unit: 2677

DETAILED ACTION

Claim Status

1. Claims 1-8,10-11, and 15-16 are currently pending in this application.

2. Claims 9 and 12-14 have been canceled.

Specification

3. Applicant is reminded of the proper language and format for an abstractof
the disclosure.

The abstract should be in narrative form and generally limited to a
single paragraph on a separate sheet within the range of 50 to 150 words.
The form and legal phraseology often used in patent claims, such as "means"
and "said," should be avoided. The abstract should describe the disclosure
sufficiently to assist readers in deciding whetherthere is a need for consulting the
full patent text for details.

The language should be clear and concise and should not repeat
information givenin the title. It should avoid using phrases which can be implied,
such as, "The disclosure concerns," "The disclosure defined by this invention,"
"The disclosure describes," etc.

4. The abstract of the disclosure is objected to because it exceeds 150

words. Correction is required. See MPEP § 608.01 (b).

Declaration filed under 37 CFR 1.131

The declaration filed 1/18/12 under 37 CFR 1.131 and the Applicants

Argument/Remarks Madein an Amendmentfiled 9/17/2012 have been

considered butis ineffective to overcome theprior art reference Lindholm (US

7,038,685, “the Lindholm reference”).

The declaration does not meet the requirements of 37 CFR 1.131 section

(a).

37 CFR 1.131 section (a) states (in relevant part):

LG Ex. 1002, pg 306

LG Ex. 1002, pg 307

Application/Control Number: 13/109, 738 Page 3
Art Unit: 2677

“(a) Whenanyclaim of an application or a patent under reexamination
is rejected, the inventor of the subject matter of the rejected claim, the ownerof
the patent
under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may
submit an appropriate oath or declaration to establish invention of the subject
matter of the rejected claim prior to the effective date of the reference or activity
on whichtherejection is based. The effective date of a U.S. patent, U.S. patent
application publication, or international application publication under PCT Article
21(2) is the earlier of its publication date or date thatit is effective as a reference
under 35 U.S.C. 102(e). Prior invention may not be established underthis
section in any country other than the United States, a NAFTA country,ora
WTO membercountry. Prior invention may not be established underthis
section before December8, 1993, in a NAFTA country other than the United
States, or before January 1, 1996, in a WTO membercountry other than a
NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by
ATI Technologies Inc. and/or oneof its wholly owned subsidiaries ("AT") as
indicated by attached Exhibits A andB... Prior to June 30, 2003 we created a
graphics processing system that operated as claimed using a computer system
that successfully executed the Model Code. Prior to June 30, 2003 we also
created a graphics processing system asclaimed in the form of a computer
system that used an RTL simulator to successfully validate the operation of an
integrated circuit version of the claimed graphics processing system and
method.”

As quoted from Applicants’ declaration, section 2 describes conception

and reduction to practice of the claimed invention prior to June 30, 2003. Section

2 further describes that the conception and reduction to practice of the claimed

invention was carried out while the inventors were employed by AT|

Technologies Inc. and/or oneofits wholly owned subsidiaries.

However, section 2, and the declaration as a whole,fails to specify

whetheror not the conception and reduction to practice was carried out in the

United States, a NAFTA country, ora WTO membercountry. As quoted from 37

CFR 1.131 section (a), “[p]rior invention may not be established underthis

LG Ex. 1002, pg 307

LG Ex. 1002, pg 308

Application/Control Number: 13/109, 738 Page 4
Art Unit: 2677

section in any country other than the United States, a NAFTA country, or a WTO

memory country”. Thus, the declaration is ineffective to overcome the Lindholm

reference dueto thisfirst deficiency.

Moreover, the applicants in their Remarksfiled on 9/17/2012 do not

appearto address this issue. In the Remarks, the applicants attempt to further

correlate the claim limitations to the submitted reduction to practice evidence

(Exhibit B Chip Design Code) of the Declaration Under 37 CFR 1.131 filed on

1/18/2012 but do not appear to show that reduction to practice was carried out in

the United States, a NAFTA country, or a WTO membercountry. Therefore, the

declaration continues to not meet the requirements of 37 CFR 1.131 section (a).

Further, the declaration does not meet the requirements of 37 CFR 1.131

section (b).

37 CFR 1.131 section (b) states:

“(b) ©The showing of facts shall be such, in character and weight, as to
establish reduction to practice prior to the effective date of the reference, or
conception of the invention prior to the effective date of the reference coupled
with due diligence from prior to said date to a subsequent reduction to practice or
to the filing of the application. Criginal exhibits of drawings or records, or
photocopies thereof, must accompany and form part of the affidavit or declaration
or their absence mustbe satisfactorily explained.”

MPEP 715.07 [R-3] "Facts and Documentary Evidence", section |.

"General Requirements", offers further guidance regarding the requirements of

37 CFR 1.131 section (b).

MPEP715.07, section I|., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.1371is priority of
invention and this may be doneby anysatisfactory evidenceof the fact. FACTS,
not conclusions, must be alleged. Evidencein the form of exhibits may

LG Ex. 1002, pg 308

LG Ex. 1002, pg 309

Application/Control Number: 13/109, 738 Page 5
Art Unit: 2677

accompanytheaffidavit or declaration. Each exhibit relied upon should be
specifically referred to in the affidavit or declaration, in terms of whatit is relied
upon to show ... when reviewing a 37 CFR 1.131 affidavit or declaration, the
examiner must considerall of the evidence presentedin its entirety, including the
affidavits or declarations and all accompanying exhibits, records and “notes.” An
accompanying exhibit need not supportall claimed limitations, provided that any
missing limitation is supported by the declaration itself. Ex parte Ovshinsky, 10
USPQ2d 1075 (Bd. Pat. App. & Inter. 1989).

Theaffidavit or declaration and exhibits must clearly explain which
facts or data applicant is relying on to show completion of his or her
invention prior to the particular date. Vague and general statements in
broad terms about whatthe exhibits describe along with a general
assertion that the exhibits describe a reduction to practice ‘amounts
essentially to mere pleading, unsupported by proof or a showing offacts”
and, thus, does not satisfy the requirements of 37 CFR 1.131(b). In re
Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant must give a
clear explanation of the exhibits pointing out exactly what facts are
established andrelied on by applicant. 505 F.2d at 718-19, 184 USPQ at33.
See also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964)(Affidavit
“asserts that facts exist but does nottell what they are or when they occurred.”).”
(emphasis added)

Applicants' Remarksfiled on 09/17/2012 contains the following in the

second to last paragraph whichrecites:

“As to claims 2-5 for example, Exhibit B Chip Design Code-
p_macc_gpr.v, SP_vector.v, Sq.v, Sq_export_alloc.v, sq ctl flow_seq.v,
Sq_alu_instr_seq.v - are believedto illustrate, inter alia, the general purpose
register and processor (é.g., multiply and accumulate (MAC or MACC)logic) and
a sequencercoupled to the general purpose register and processor unit and
operation of the sequencer and processorunit.”

However, this paragraph as a whole is considered nothing more than

vague and general statements in broad terms about what the exhibits describe

along with general assertions that the exhibits describe a reduction to practice,

which doesnotsatisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration in view of the Remarkis ineffective to overcome the Lindholm

reference dueto this second deficiency.

LG Ex. 1002, pg 309

LG Ex. 1002, pg 310

Application/Control Number: 13/109, 738 Page 6
Art Unit: 2677

Regarding claim 1, the Examineris able to determine which sections of

Exhibit B Chip Design Code correspondsto which limitations of Claim 1 after

reviewing the Remarksfiled on 9/17/2012 . However, the Examineris unable to

do so for Claims 2-5 as they are not satisfactorily explained in the Remarks.

Therefore, the most recent declaration filed 1/18/12 under 37 CFR 1.131

and Remarksfiled on 9/17/2012 are together ineffective to overcome the

Lindholm reference. As an additional note, the Examiner would like to point out

that US Pat 7,015,913, to Lindholm etal., filed June 27'", 2003, appears, after

brief review, to include a disclosure that is similar to US Pat 7,038,685 to

Lindholm, which is used in the rejections that follow (see FIG. 2 of each patent).

The Examiner has notgiven Lindholm et al. (US 7,015,913) a thorough review as

to whetheror notit teaches one or more of Applicants’ claims, but it may be

worth Applicants’ time to review Lindholm et al. (US 7,015,913) and adjust the

declaration such that conception and reduction to practice of the claimed

invention is declared to have occurred prior to June 27", 2003 (if such a

statementis true), in order to avoid a future rejection based on the teachingsof

prior art reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 112

5. The following is a quotation of 35 U.S.C. 112(b):

(B) CONCLUSION.—Thespecification shall conclude with one or more claims
particularly pointing out and distinctly claiming the subject matter which the
inventoror a joint inventor regards as the invention.

Thefollowing is a quotation of 35 U.S.C. 112 (pre-AlA), second paragraph:

LG Ex. 1002, pg 310

LG Ex. 1002, pg 311

Application/Control Number: 13/109, 738 Page 7
Art Unit: 2677

The specification shall conclude with one or more claims particularly pointing out
and distinctly claiming the subject matter which the applicant regards as his
invention.

6. Claim 2 recites the limitation “the selected one of the plurality of inputs” in

“in responseto the selected one ofthe plurality of inputs.” There is insufficient

antecedentbasis forthis limitation in the claim. Proper amendmentis requested.

7. Claim 8 recites the limitation "the selected one of the plurality of inputs"in

“in response to the selected oneofthe plurality of inputs.” There is insufficient

antecedentbasis for this limitation in Claim 8 or Claim 5. Proper amendmentis

requested.

Claim Rejections - 35 USC § 102

8. The following is a quotation of the appropriate paragraphsof 35

U.S.C. 102 that form the basis for the rejections underthis section madein this

Office action:

A personshall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section
122(b), by another filed in the United States before the invention by the applicant for patent or
(2) a patent granted on an application for patent by anotherfiled in the United States before
the invention by the applicant for patent, except that an international application filed under
the treaty defined in section 351(a) shall have the effects for purposesof this subsection of an
application filed in the United States onlyif the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

Claims 1-8, 10-11, and 15-16 are rejected under 35 U.S.C. 102(e) as

being anticipated by Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation

operations by transmitting vertex data to a general purposeregister block, and

performing vertex operations on the vertex data by a processor unless the

LG Ex. 1002, pg 311

LG Ex. 1002, pg 312

Application/Control Number: 13/109, 738 Page 8
Art Unit: 2677

general purposeregister block does not have enough available space therein to

store incoming vertex data(

3:59-65: “Programmable Graphics Processing Pipeline 150 is
programmed to operate on surface, primitive, vertex, fragment, pixel, sample or
any other data. For simplicity, the remainderof this description will use the term
‘samples’ to refer to graphics data such as surfaces, primitives, vertices, pixels,
fragments,or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In
one embodiment TSR [Thread Storage Resource] 325 stores thread data for
eachof at least two thread types, wheretheat least two thread types may
include pixel, primitive and vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is
configured to assign threads to source samplesor allocate locations in Register
File 350 using thread allocation priorities".

7:36-43: “Once a thread is assigned to a source sample, the thread is
allocated storage resources suchas locations in a Register File 350 to retain
intermediate data generated during execution of program instructions associated
with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375to
perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may bein graphics memory. When
storage resourcesare not available in step 877, Thread Control Unit 320 or 420
does not proceed to step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedatato at least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and

pixel manipulation operations by transmitting vertex data to a general purpose

register block (sample data, such as vertex or pixel data, is transmitted to

LG Ex. 1002, pg 312

LG Ex. 1002, pg 313

Application/Control Number: 13/109, 738 Page 9
Art Unit: 2677

Register File 350) and performing vertex operations on the vertex data by a

processor unlessthe general purposeregister block does not have enough

available space therein to store incoming vertex data (the multi-threaded

processing unit 400 carries out vertex operations on vertex data unless the

Register File 350 doesn’t have enough room to store the incoming vertex data, in

which case the thread associated with the vertex data and vertex operations

must wait until enough space becomesavailable); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintainedin an instruction

store until enough registers within the general purpose register block become

available (

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is
configured to assign threads to source samplesorallocate locations in Register
File 350 using thread allocation priorities based on an amountof sample data in
Pixel Inout Buffer 215 and another amountof sample data in Vertex Input Buffer
220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries

based on thread execution priorities and outputs selected thread entries to
Instruction Cache 410. Instruction cache 410 determinesif the program
instructions corresponding to the program counters and sample typeincludedin
the thread state data for each thread entry are available in Instruction Cache 410
... The program instructions corresponding to the program counters from the one
or more thread entries are output by Instruction Cache 410 to ... Instruction
Scheduler 430 ... Each clock cycle, Instruction Scheduler 430 evaluates whether
any instruction within the IWU [instruction window unit] 435 can be executed
based on the availability of computation resources in an Execution Unit 470 and
source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may bein graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420

LG Ex. 1002, pg 313

LG Ex. 1002, pg 314

Application/Control Number: 13/109, 738 Page 10
Art Unit: 2677

does not proceedto step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedatato at least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction

store until enough registers within the general purpose register block become

available, as the Execution Unit 470 may be carrying out calculations for one or

morehigh priority pixel threads based on instructions stored in Instruction Cache

410 and/or IWU 435while a low priority vertex thread is waiting for the one or

more pixel threadsto finish such that whenthepixel threadsfinish the system will

deallocate the resources assigned to the completed pixel threads in the Register

File 350 and will allocate the requested amountof resources to the queued up

vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purposeregister block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample,the thread is
allocated storage resources such aslocations in a Register File 350 to retain
intermediate data generated during execution of program instructions associated
with the thread.”);

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer, coupled to the general purpose register block and the

processorunit, the sequencer maintaining instructions operative to cause the

processorunit to execute vertex calculation and pixel calculation operations on

selected data maintained in the general purposeregister block(

LG Ex. 1002, pg 314

LG Ex. 1002, pg 315

Application/Control Number: 13/109, 738 Page 11
Art Unit: 2677

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether
any instruction within the IWU 435 can be executed based on theavailability of
computation resources in an Execution Unit 470 and source data stored in
Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375 to
perform operations."); and

wherein the processor unit executes instructions that generate a pixel

color in responseto the selected oneofthe plurality of inputs and generates

vertex position and appearance data in response to a selected oneof the

plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375to perform operations ... and
output the processed sample to a destination specified by the instruction. The
destination may be Vertex Output Buffer 260, Pixel Output Buffer 270, or
Register File 350.”

4:42-5:35 “Execution Pipelines 240 mayreceivefirst samples, such as
higher-order surface data, and tessellate the first samples to generate second
samples, such as vertices. Execution Pipelines 240 may be configured to
transform the second samples from an object-based coordinate representation
(object space) to an alternatively based coordinate system such as world space
or normalized device coordinates ... Execution Pipelines 240 output processed
samples, such as vertices, that are stored in a Vertex Output Buffer 260 ... Each
Execution Pipeline 240 signals to Pixel Inout Buffer 240 when a sample can be
accepted... programmable computation units (PCUs) within an Execution
Pipeline 240 ... perform operations suchas tessellation, perspective correction,
texture mapping, shading, blending, and the like. Processed samples are output
from each Execution Pipeline 240 to a Pixel Output Buffer 270."

Thus, the Execution Unit 470 is considered a processorunit that executes

instructions that generate a pixel color in responseto the selected one of the

LG Ex. 1002, pg 315

LG Ex. 1002, pg 316

Application/Control Number: 13/109, 738 Page 12
Art Unit: 2677

plurality of inputs and generates vertex position and appearancedata in

responseto a selected oneof the plurality of inputs (also see 4:22-5:35)).

RE claim 3, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and

pixel calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG.4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 ... In
one embodiment TSR [Thread Storage Resource] 325 stores thread data for
eachof at least two thread types, wheretheat least two thread types may
include pixel, primitive and vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375to
perform operations.”

Thus, the Execution Unit 470 and internal PCU 375are collectively

considered a processorunit operative to perform vertex calculation operations

and pixel calculation operations); and

shared resources, operatively coupled to the processorunit (FIG. 4

illustrates Register File 350 coupled to Execution Unit 470, and 7:37-43

describes that the Register File 350 is shared among threads);

the processor unit operative to use the shared resourcesfor either vertex

data or pixel information and operative to perform pixel calculation operations

until enough shared resources becomeavailable and then use the shared

resources to perform vertex calculation operations (7:37-43,all types of

LG Ex. 1002, pg 316

LG Ex. 1002, pg 317

Application/Control Number: 13/109, 738 Page 13
Art Unit: 2677

processing threads can use the Register File 350, where thread typesinclude

vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured
to assign threads to source samplesorallocate locations in Register File 350
using thread allocation priorities based on an amount of sample data in Pixel
Input Buffer 215 and another amountof sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may be in graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420
does not proceedto step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedatato at least one PCU 375."

Thus, whenpixel threads have priority over vertex threads the processor

unit will allocate the pixel data to the Register File 350 and will perform pixel

calculation operations until enough shared resources becomeavailable in the

Register File 350 to begin carrying out vertex threads, which may happen as a

result of a completion of mostof the pixel threads ora shift in priority such that

the vertex threads now havethehighestpriority, and then use the Register File

350 to perform vertex calculation operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processorunit operative to perform vertex calculation operations and

pixel calculation operations (see the corresponding section in the rejection of

claim 3); and

shared resources, operatively coupled to the processorunit (see the

corresponding section in the rejection of claim 3);

LG Ex. 1002, pg 317

LG Ex. 1002, pg 318

Application/Control Number: 13/109, 738 Page 14
Art Unit: 2677

the processor unit operative to use the shared resourcesfor either vertex

data or pixel information and operative to perform vertex calculation operations

until enough shared resources becomeavailable and then use the shared

resources to perform pixel calculation operations (7:37-48,all types of processing

threads can use the Register File 350, where thread types include vertex and

pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured
to assign threads to source samples or allocate locations in Register File 350
using thread allocation priorities based on an amountof sample data in Pixel
Input Buffer 215 and another amountof sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determinesif storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may bein graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420
does not proceed to step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedatato at least one PCU 375."

Thus, when vertex threads havepriority over pixel threads the processor

unit will allocate the vertex data to the Register File 350 and will perform vertex

calculation operations until enough shared resources becomeavailable in the

Register File 350 to begin carrying out pixel threads, which may happen as a

result of a completion of most of the vertex threads ora shift in priority such that

the pixel threads now havethehighest priority, and then use the Register File

350 to perform pixel calculation operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processorunit (FIG. 4 “Execution Unit 470” and “PCU 375”);

LG Ex. 1002, pg 318

LG Ex. 1002, pg 319

Application/Control Number: 13/109, 738 Page 15
Art Unit: 2677

a sequencercoupled to the processorunit, the sequencer maintaining

instructions operative to cause the processorunit to execute vertex calculation

and pixel calculation operations on selected data maintained in a store

depending upon an amountof space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether
any instruction within the IWU 435 can be executed based on the availability of
computation resources in an Execution Unit 470 and source data stored in
Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375 to
perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured
to assign threads to source samplesorallocate locations in Register File 350
using thread allocation priorities”.

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage
resourcesfor storing intermediate data generated during execution of the thread
are available. The storage resources may be in graphics memory. When
storage resources are not available in step 877, Thread Control Unit 320 or 420
does not proceed to step 880 until a storage resources becomeavailable. In
step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and sourcedata to at least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencercoupled to the Execution Unit 470, the sequencer

maintaining instructions operative to cause the Execution Unit 470 to execute

vertex calculation and pixel calculation operations on selected data maintained in

a Register File 350 depending upon an amount of space available in the Register

File 350).

LG Ex. 1002, pg 319

LG Ex. 1002, pg 320

Application/Control Number: 13/109, 738 Page 16
Art Unit: 2677

RE claim 6, Lindholm describes the shaderof claim 5, wherein the

sequencerfurther includes circuitry operative to fetch data from a memory(

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shaderof claim 5, further including a

selection circuit operative to provide information to the store in responseto a

control signal (

6:60-7:36 “Thread allocation priority, as described further herein, is used
to assign a thread to a source sample. A thread allocation priority is specified for
each sample type and Thread Control Unit 420 is configured to assign threads to
samples or allocate locations in a Register File 350 based on thepriority
assigned to each sample type. The thread allocation priority may befixed,
programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to

provide information to the store (Register File 350) in response to a control

signal, where the control signal is the thread allocation priority associated with

eachthread or thread type).

RE claim 8, Lindholm describes the shaderof claim 5, wherein the

processorunit executes instructions that generate a pixel color in responseto the

selected oneofthe plurality of inputs(

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution
Pipeline 240 ... Each Execution Pipeline 240 signals to Pixel Input Buffer 240
when a sample can be accepted ... programmable computation units (PCUs)
within an Execution Pipeline 240 ... perform operations such as tessellation,
perspective correction, texture mapping, shading, blending, and the like.
Processed samples are output from each Execution Pipeline 240 to a Pixel
Output Buffer 270.").

LG Ex. 1002, pg 320

LG Ex. 1002, pg 321

Application/Control Number: 13/109, 738 Page 17
Art Unit: 2677

RE claim 10, Lindholm describes the shader of claim 5, wherein the

processor unit generates vertex position and appearance data in response to a

selected oneof the plurality of inputs (

4:42-5:35 “Execution Pipelines 240 mayreceive first samples, such as
higher-order surface data, and tessellate the first samples to generate second
samples, such as vertices. Execution Pipelines 240 may be configured to
transform the second samples from an object-based coordinate representation
(object space) to an alternatively based coordinate system such as world space
or normalized device coordinates ... Execution Pipelines 240 output processed
samples, such asvertices, that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shaderof claim 7, wherein the

control signal is provided by an arbiter(

6:60-7:36 “Thread allocation priority, as described further herein, is used
to assign a thread to a source sample. A thread allocation priority is specified for
each sample type and Thread Control Unit 420 is configured to assign threads to
samples or allocate locations in a Register File 350 based on thepriority
assigned to each sample type. The thread allocation priority may befixed,
programmable,or dynamic ... In an alternate embodiment, Thread Control Unit
420 is configured to assign threads to source samplesorallocate locations in
Register File 350 using thread allocation priorities based on an amountof sample
data in Pixel Input Buffer 215 and another amountof sample data in Vertex Input
Buffer 220 ... In a further alternate embodiment, Thread Control Unit 420 is
configured to assign threads to source samplesorallocate locations in Register
File 350 using thread allocation priorities based on graphics primitive size”.

Thus, while an arbiter isn't explicitly described, the Examiner considersit

inherent that someportion of the system acts as an arbiter, and therefore can be

considered anarbiter, as some portion of the system assignspriorities to thread

and sample types according to the current processing circumstances,in orderto

more efficiently process the data).

RE claim 15, Lindholm describes a unified shader comprising:

LG Ex. 1002, pg 321

LG Ex. 1002, pg 322

Application/Control Number: 13/109, 738 Page 18
Art Unit: 2677

a processorunit flexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source
samples or allocate locations in Register File 350 using thread allocation
priorities based on an amountof sample data in Pixel Input Buffer 215 and
another amount of sample data in Vertex Input Buffer 220 ... In a further
alternate embodiment, Thread Control Unit 420 is configured to assign threads to
source samplesorallocate locations in Register File 350 using thread allocation
priorities based on graphics primitive size (numberof pixels or fragments
included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to
simultaneously process samples using PCUs 375 to perform operations...
Execution Unit 470 can simultaneously process samplesof different types, and,
likewise, execute threadsof different types.”).

RE claim 16, Lindholm describes the shaderof claim 15 comprising an

instruction store and wherein the processorunit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion

based on switching betweeninstructionsin the instruction store (FIG. 4 and 8:15-

46 describes Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel
Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an
instruction and outputs the instruction and source data to Execution Unit 470
including at least one PCU 375 ... Execution Unit 470 is configured by the
program instruction to simultaneously process samples using PCUs 375to
perform operations... Execution Unit 470 can simultaneously process samplesof
different types, and, likewise, execute threads ofdifferent types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on

switching betweeninstructionsin the instruction store).

LG Ex. 1002, pg 322

LG Ex. 1002, pg 323

Application/Control Number: 13/109, 738 Page 19
Art Unit: 2677

9. Additionally, Claims 1-8, 10-11, and 15-16 are further rejected under 35

U.S.C. 103 as being unpatentable over Shen et al (U.S. Patent No. 7,646817B1)

in view of Parikh et al. (U.S. Patent No. 6,697,074 B2).

10 Regarding Claim 1, Shen discloses A method comprising:

performing vertex manipulation operations and pixel manipulation

operations (Col. 6, lines 39-45 reciting “At block 326, video decoding

application 216 may optionally be configured to direct GPU 208 to perform

special effects processing on the reconstructed image. For example, GPU 208

may be directed to perform vertex-based or pixel-based special effects

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-basedorpixel-

based special effects processing which correspondsto performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.) and performing vertex operations on the vertex data by a processor

and (Col. 4, lines 8-12 reciting “Exemplary GPU 208includes a programmable

vertex shader 212 for performing graphics operations on a per-vertex basis, and

a programmable pixel shader 214 for performing graphics operations on a per-

pixel basis.” The programmable vertex shader performs graphics operations on

vertex data sent toit, thus the programmable vertex shader 212 processes vertex

LG Ex. 1002, pg 323

LG Ex. 1002, pg 324

Application/Control Number: 13/109, 738 Page 20
Art Unit: 2677

data and the vertex shader 212 is included within the GPU 208, which

correspondsto a processor.)

continuing pixel calculation operations that are to be or are currently

being performed bythe processor (Col. 6, lines 16 reciting “At block 322,

video decoding application 216 directs the pixel shader component 214 of GPU

208 to perform color space conversion processing on the reconstructed image.

Color space conversion processing is performed pixel-by-pixel to convert an

image from a color spacein which it was created (e.g., YUV) to a color space

supported by display device 204 (e.g., RGB).” The color space conversion

correspondsto pixel calculation operations that are to be performed by the

processor becausepixel shaderis acting on pixel calculations that occur after

vertex calculation operations and is performed by the pixel shader componentof

the GPU 208.) based on instructions maintained in an instruction store until

enoughregisters within the general purpose register block become

available. (Col. 4, lines 30-32 reciting “Accelerated video decoding may be

described in the general context of computer-executable instructions, such as

application modules, being executed by a computer.” Accelerated video

decoding whichincludes per-pixel operations is described in computer-

executable instructions. Theseinstructions which are in the form of computer-

executable instructions are used for execution. The computer-readable memory

medium correspondsto the instruction store that stores the computer-executable

instructions.)

LG Ex. 1002, pg 324

LG Ex. 1002, pg 325

Application/Control Number: 13/109, 738 Page 21
Art Unit: 2677

While Shen does not explicitly disclose by transmitting vertex data to a

general purpose register block, and unless the general purposeregister

block does not have enough available space therein to store incoming

vertex data; Parikh doesdisclose by transmitting vertex data to a general

purposeregister block, (Col. 14, lines 2-6 reciting “Main processor 110 can

also load a numberof graphics values (e.g., transformation matrices,pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may beboth written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are general purposeregisters for storing at least pixel and vertex data

and additional data formats.)

unless the general purpose register block does not have enough

available space therein to store incoming vertex data; (Col. 14, lines 2-6

reciting “Main processor 110 can also load a numberof graphics values (e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” The numberof registers available in

the graphics processorwill be finite and they mayall be filled with only pixel

format (pixel data). Therefore,if all the registers areall filled with non-vertex

data, the processor may not read and processvertex format (vertex data).)

lt would have been obviousfor one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawn to

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

LG Ex. 1002, pg 325

LG Ex. 1002, pg 326

Application/Control Number: 13/109, 738 Page 22
Art Unit: 2677

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthat it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may bestored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin orderto store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

11. Regarding Claim 2, Shen discloses a processorunit; (Col. 4, lines 8-12

reciting “Exemplary GPU 208 includes a programmable vertex shader 212 for

performing graphics operations on a per-vertex basis, and a programmable pixel

shader 214 for performing graphics operations on a per-pixel basis.” The GPU

208, which corresponds to a processor.)

a sequencer, coupled to the processorunit, the sequencer

maintaining instructions operative to cause the processorunit to execute

vertex calculation and pixel calculation operations on selected data

maintained in the general purposeregister block; and (Col. 4, lines 29-44

reciting “Accelerated video decoding may be described in the general context of

LG Ex. 1002, pg 326

LG Ex. 1002, pg 327

Application/Control Number: 13/109, 738 Page 23
Art Unit: 2677

computer-executable instructions, such as application modules, being executed

by a computer. Generally, application modules include routines, programs,

objects, components, data structures, etc. that perform particular tasks or

implementparticular abstract data types. Video decoding application 216 may be

implemented using any number of programming techniques and may be

implemented in local computing environmentsorin distributed computing

environments where tasks are performed by remote processing devicesthat are

linked through various communications networks based on any numberof

communication protocols. In such a distributed computing environment,

application modules may be located in both local and remote computer storage

media including memory storage devices.” The memory storage devices

correspondsto the sequencer becauseit stores the computer-executable

instructions, such as application modules, which are in asequence. The

application modules may be located in local computer storage media and such

local storage medium is coupled to the processorsinceit is accessible by the

processor.)

wherein the processorunit executesinstructions that generate a

pixel color in responseto the selected oneof the plurality of inputs and

generates vertex position and appearance data in responseto a selected

one ofthe plurality of inputs. (Co/. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208to

perform special effects processing on the reconstructed image. For example,

GPU 208 may be directed to perform vertex-based or pixel-based special effects

LG Ex. 1002, pg 327

LG Ex. 1002, pg 328

Application/Control Number: 13/109, 738 Page 24
Art Unit: 2677

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-basedorpixel-

based special effects processing which correspondsto receiving a select input to

perform. The special effects processing suchasinversetelecine and scalling or

fading corresponds to generating pixel color.)

While Shen doesnot explicitly disclose A unified shader, comprising: a

general purposeregister block for maintaining data; and general purpose

register block and the Parikh does disclose A unified shader, comprising: a

general purposeregister block for maintaining data; (Co/. 14, lines 2-6

reciting “Main processor 110 can also load a numberof graphics values (e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” Thus, pixel and vertex data may be

both written to registers that are within the graphics processor. Therefore, the

registers within the graphics processors are general purposeregisters that can

store at least pixel and vertex data and additional formats of data.)

general purposeregister block and the (Col. 14, lines 2-6 reciting “Main

processor 110 can also load a numberof graphics values (e.g., transformation

matrices, pixel formats, vertex formats, etc. by writing to registers within the

graphics and audio processors.” Thus, pixel and vertex data may be both written

to registers that are within the graphics processor. Therefore, the registers within

the graphics processors are general purposeregisters that can store at least

pixel and vertex data and additional formats of data.)

LG Ex. 1002, pg 328

LG Ex. 1002, pg 329

Application/Control Number: 13/109, 738 Page 25
Art Unit: 2677

lt would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawnto

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthatit is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. Oneof ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin orderto store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

12. Regarding Claim 3, Shen discloses A unified shader comprising:

a processorunit operative to perform vertex calculation operations

and pixel calculation operations; and (Col. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For

example, GPU 208 maybe directed to perform vertex-basedor pixel-based

LG Ex. 1002, pg 329

LG Ex. 1002, pg 330

Application/Control Number: 13/109, 738 Page 26
Art Unit: 2677

special effects processing such as de-interlacing, inverse telecine, scaling, fading

in or out, and image sharpening or blurring.” The GPU can perform vertex-based

or pixel-based special effects processing which correspondsto performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and." Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.)

While Shen does not disclose shared resources, operatively coupled to

the processorunit; Parikh does disclose shared resources, operatively

coupled to the processorunit; (Co/. 14, lines 2-6 reciting “Main processor 110

can also load a numberof graphics values (e.g., transformation matrices, pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may be both written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are shared resources that may be usedto store at least pixel formats,

vertex formats, and additional data formats.)

the processorunit operative to use the shared resourcesfor either

vertex data or pixel information and operative to perform pixel calculation

operations until enough shared resources becomeavailable and then use

the shared resources to perform vertex calculation operations. (Col. 714,

lines 2-6 reciting “Main processor 110 can also load a numberof graphics values

(e.g., transformation matrices, pixel formats, vertex formats, etc. by writing to

LG Ex. 1002, pg 330

LG Ex. 1002, pg 331

Application/Control Number: 13/109, 738 Page 27
Art Unit: 2677

registers within the graphics and audio processors.” The registers available in

the graphics processorwill be finite and they mayall be filled with pixel format

(pixel data). Therefore, if there is no empty registers left and the registers are all

filled with non-vertex data, the processor may not read and process vertex format

(vertex data).)

lt would have been obviousfor one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawnto

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthatit is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin orderto store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

LG Ex. 1002, pg 331

LG Ex. 1002, pg 332

Application/Control Number: 13/109, 738 Page 28
Art Unit: 2677

13. Regarding Claim 4, Shen discloses A unified shader comprising: a

processorunit operative to perform vertex calculation operations and pixel

calculation operations; and (Col. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208 to

perform special effects processing on the reconstructed image. For example,

GPU 208 maybedirected to perform vertex-based or pixel-based special effects

processing such as de-interlacing, inverse telecine. scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-basedorpixel-

based special effects processing which correspondsto performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.)

Parikh discloses shared resources, operatively coupled to the

processorunit; (Col. 14, lines 2-6 reciting “Main processor 110 can also load a

numberof graphics values(e.g., transformation matrices, pixel formats, vertex

formats, etc. by writing to registers within the graphics and audio processors.”

The registers available in the graphics processorwill be finite and they mayall be

filled with pixel format (pixel data). Therefore,if there is no empty registersleft

and the registers areall filled with non-vertex data, the processor may not read

and process vertex format (vertex data).)

LG Ex. 1002, pg 332

LG Ex. 1002, pg 333

Application/Control Number: 13/109, 738 Page 29
Art Unit: 2677

the processorunit operative to use the shared resourcesfor either

vertex data or pixel information and operative to perform vertex calculation

operations until enough shared resources becomeavailable and then use

the shared resources to perform pixel calculation operations. (Col. 6, lines

39-45 reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may bedirected to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine. scaling, fading in or out, and image sharpening or blurring.” The GPU

can perform vertex-based or pixel-based special effects processing which

correspondsto performing vertex manipulation operation and pixel manipulation

operations. Here the “or” can be interpreted to include the meaning of “and”

since “or” includes the meaning of “and.” Nothing in the specification of Shen

indicates an exclusive "or" meaning. In fact the GPU of Shen is shownto

perform operations on per-pixel and per-vertex.)

lt would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawnto

analogousart. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

LG Ex. 1002, pg 333

LG Ex. 1002, pg 334

Application/Control Number: 13/109, 738 Page 30
Art Unit: 2677

values and attributes. Parikh further teachesthat it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. Oneof ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin orderto store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to oneof ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

14. Regarding Claim 5, Shen further discloses A unified shader comprising:

a processorunit; (Col. 4, lines 8-12 reciting “Exemplary GPU 208 includes a

programmable vertex shader 212 for performing graphics operations on a per-

vertex basis, and a programmable pixel shader 214 for performing graphics

operations on a per-pixel basis.” The GPU 208, which corresponds to a

processor.)

a sequencercoupled to the processorunit, the sequencer

maintaining instructions operative to cause the processorunit to execute

vertex calculation and pixel calculation operations on selected data

maintained in a store depending upon an amountof space available in the

store. (Col. 4, lines 29-44 reciting “Accelerated video decoding may be described

in the general context of computer-executable instructions, such as application

modules, being executed by a computer. Generally, application modules include

routines, programs, objects, components,data structures, etc. that perform

LG Ex. 1002, pg 334

LG Ex. 1002, pg 335

Application/Control Number: 13/109, 738 Page 31
Art Unit: 2677

particular tasks or implementparticular abstract data types. Video decoding

application 216 may be implemented using any number of programming

techniques and may be implemented in local computing environmentsorin

distributed computing environments where tasks are performed by remote

processing devicesthat are linked through various communications networks

based on any numberof communication protocols. In such a distributed

computing environment, application modules may be located in both local and

remote computer storage media including memory storage devices.” The

memory storage devices corresponds to the sequencer becauseit stores the

computer-executable instructions, such as application modules, which are in a

sequence. The application modules may be located in local computer storage

media and suchlocal storage medium is coupled to the processorsinceit is

accessible by the processor.)

lt would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen becauseboth are drawnto

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teachesthatit is possible to store vertex

format and pixel format and other graphics information into registers of the

LG Ex. 1002, pg 335

LG Ex. 1002, pg 336

Application/Control Number: 13/109, 738 Page 32
Art Unit: 2677

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. Oneof ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shenin orderto store the vertex data

generated in Shen to moreefficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combinethe teachings of Parikh with the teachings of Shen.

15. Regarding Claim 6, Shen further discloses The shaderof claim 5,

wherein the sequencerfurther includes circuitry operative to fetch data

from a memory.(Col. 4, lines 29-44 reciting “Accelerated video decoding may

be described in the general context of computer-executable instructions, such as

application modules, being executed by a computer. Generally, application

modulesinclude routines, programs, objects, components, data structures,etc.

that perform particular tasks or implementparticular abstract data types. Video

decoding application 216 may be implemented using any numberof

programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The communications network based on communication protocols

LG Ex. 1002, pg 336

LG Ex. 1002, pg 337

Application/Control Number: 13/109, 738 Page 33
Art Unit: 2677

correspondsto circuitry operative to fetch the instructions from the remote

computer storage media.)

16. Regarding Claim 7, Shen further discloses The shaderof claim 5,

further including a selection circuit operative to provide information to the

store in responseto a controlsignal. (Co/. 4, lines 29-44 reciting “Accelerated

video decoding may be described in the general context of computer-executable

instructions, such as application modules, being executed by a computer.

Generally, application modules include routines, programs, objects, components,

data structures,etc. that perform particular tasks or implement particular abstract

data types. Video decoding application 216 may be implemented using any

number of programming techniques and may be implementedin local computing

environmentsorin distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The communications networks also correspondsto selective circuit

that provides information to the memory storage devices.)

17. Regarding Claim 8, Shen further discloses The shaderof claim 5,

further including a selection circuit operative to provide information to the

store in response to a control signal. (Co/. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For

LG Ex. 1002, pg 337

LG Ex. 1002, pg 338

Application/Control Number: 13/109, 738 Page 34
Art Unit: 2677

example, GPU 208 maybe directed to perform vertex-basedor pixel-based

special effects processing such as de-interlacing, inverse telecine, scaling,fading

in or out, and image sharpening or blurring.” Fading in or out corresponds to

pixel color in response to the GPU 208receiving directions (plurality of inputs)

from the video decoding application 216.)

18. Regarding Claim 10, Shen further discloses The shaderof claim 5,

wherein the processor unit generates vertex position and appearance data

in responseto a selected oneof the plurality of inputs. (Col. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may bedirected to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine. scaling, fading in or out, and image sharpeningor blurring.” Both

scaling and inverse telecine correspondsto vertex position (scaling) and

appearancedata (reversetelecine).)

19. Regarding Claim 11, Shen further discloses The shaderof claim 5,

wherein the processorunit generates vertex position and appearance data

in response to a selected oneof the plurality of inputs. (Co/. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 maybe directed to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpeningorblurring.” De-

LG Ex. 1002, pg 338

LG Ex. 1002, pg 339

Application/Control Number: 13/109, 738 Page 35
Art Unit: 2677

interlacing, inverse telecine, and scaling all correspond to vertex position

(scaling) and appearancedata (reversetelecine).)

20. Regarding Claim 15, Shen discloses A unified shader comprising: a

processorunit flexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel

workload. (Col. 6, lines 39-45 reciting “At block 326, video decoding application

216 mayoptionally be configured to direct GPU 208 to perform special effects

processing on the reconstructed image. For example, GPU 208 maybe directed

to perform vertex-basedor pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. The GPU correspondsto a processorunit flexibly controlled, and the

reconstructed image correspondsto the workload since the reconstructed image

will have varying numbersof vertex and pixel data to process.)

21. Regarding Claim 16, Shen further discloses The shaderof claim 15

comprising an instruction store and wherein the processorunit performs

the vertex manipulation operations and pixel manipulation operationsat

various degrees of completion based on switching betweeninstructions in

the instruction store. (Col. 4, lines 29-44 reciting “Accelerated video decoding

may be described in the general context of computer-executable instructions.

such as application modules, being executed by a computer. Generally,

application modules include routines, programs, objects, components, data

structures, etc. that perform particular tasks or implement particular abstract data

types. Video decoding application 216 may be implemented using any numberof

LG Ex. 1002, pg 339

LG Ex. 1002, pg 340

Application/Control Number: 13/109, 738 Page 36
Art Unit: 2677

programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The local and remote computer storage media including memory

storage devices correspondsto the instruction store. Computer executable

instructions correspondsto the vertex and pixel manipulation operations whichis

completed at various degrees according to the structure of the application

module (stored instructions) on the storage device (instruction store).)

CONTACT

22. Any inquiry concerning this communication or earlier communications from

the examiner should be directed to FRANK CHEN whosetelephone numberis

(571)270-7993. The examiner can normally be reached on 8 - 5, Monday-

Friday.

If attempts to reach the examinerby telephone are unsuccessful, the

examiner's supervisor, Kee Tung can be reached on (571)272-7794. The fax

phone numberfor the organization wherethis application or proceedingis

assigned is 571-273-8300.

Information regarding the status of an application may be obtained from

the Patent Application Information Retrieval (PAIR) system. Status information

for published applications may be obtained from either Private PAIR or Public

LG Ex. 1002, pg 340

LG Ex. 1002, pg 341

Application/Control Number: 13/109, 738 Page 37
Art Unit: 2677

PAIR. Status information for unpublished applications is available through

Private PAIR only. For more information about the PAIR system, see hittp://pair-

direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197(toll-

free). If you would like assistance from a USPTO Customer Service

Representative or access to the automated information system, call 800-786-

9199 (IN USA OR CANADA)or 571-272-1000.

/FRANK CHEN/

Examiner, Art Unit 2677

/KEE M TUNG/

Supervisory Patent Examiner, Art Unit 2677

LG Ex. 1002, pg 341

LG Ex. 1002, pg 342

Application/Control No. Applicant(s)/Patent Under
Reexamination

13/109,738 MOREIN ET AL.
Notice of References Cited

Examiner Art Unit

FRANK CHEN 2677

U.S. PATENT DOCUMENTS

* Document Number Date vg
Country Cade-Number-Kind Code MM-YYYY Classification

* S-6,697,074 B2 02-2004 Parikh etal. 345/522

aT US-7,646,817 B2 01-2010|Shenetal. 375/240.25
Petus

Page 1 of 1

*A copyofthis reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYYformat are publication dates. Classifications may be US or foreign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20121129

LG Ex. 1002, pg 342

LG Ex. 1002, pg 343

Application/Control No. Applicant(s)/Patent Under

Reexamination

Index of Claims 13109738 MOREIN ET AL.

 Examiner Art Unit

FRANK GHEN

 Hy;:|SHY;:|

vo v

v v

v v

15 v v v

16 v v v

U.S. Patent and Trademark Office Part of Paper No. : 20121129

LG Ex. 1002, pg 343

LG Ex. 1002, pg 344

EASTSearch History

EAST Search History

EAST Search History (Prior Art)

Hits {Search Query (Plurals‘Time

single WITH shader WITH pixel: US-PGPUB; USPAT;
{WITHvertex #EPO; JPO; DERWENT;

unified ADJ shader$2 4US-PGPUB; USPAT;
EPO; JPO; DERWENT;

i unified ADJ shader$2

i pixel WITH vertex WITH US-PGPUB; USPAT;
combination WITH shader USOGCR; FPRS; EPO;

combination WITH shader

‘combination ADJ shader

single WITH shader

single NEAR shader

‘single ADJ shader US-PGPUB; USPAT;
: 4USOCR; FPRS; EPO;

%JPO; DERWENT;

single WITH shader WITH pixel:
i WITH vertex :

§single NEAR shader WITHpixel:
qWITH vertex 4USOCR; FPRS; EPO;

file:///Cl/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 344

LG Ex. 1002, pg 345

EASTSearch History

‘isingle NEAR shader

1JPO; DERWENT;
11BM_TDB

i combin3 WITH pixel WITH
vertex WITH shader

integrated WITH pixel WITH
vertex WITH shader

isimultaneou$4 WITHpixel
iWITH vertex WITH sahder

simultaneou$4 WITHpixel
uWITH vertex WITH shader

‘concurrent WITH pixel WITH
vertex WITH shader

coexist WITH pixel WITH
vertex WITH shader

contemporaneous WITHpixel
¥WITH vertex WITH shader

‘contemporary WITHpixel
uWITH vertex WITH shader

dsynchron$4 WITHpixel WITH
vertex WITH shader

ycombined WITH pixel WITH
‘vertex WITH shader

icumulat$4 WITH pixel WITH
vertex WITH shader

iicomposite WITH pixel WITH
vertex WITH shader

together WITHpixel WITH
vertex WITH shader

file:///Cl/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 345

LG Ex. 1002, pg 346

EASTSearch History

4826 144 dincorporat$5 WITHpixel WITH qUS-PGPUB; USPAT;
fo NUSOCR; FPRS; EPO;

sJPO; DERWENT;
41BM_TDB

US-PGPUB; USPAT;

vertex WITH shader

integration WITH pixel WITH
vertex WITH shader

2012/11/29:
22:38

naan sannst hasan conse ae esses gas sans cos p aes nea ae paseo ssassgas pasesas spas sasssan se besos seesgasapasanagas vasasasspassasasassssssasasansd bsasesanspassesesassansaad basssansasssssssanedbossssassnsssassesaessaasd

iconsolida$5 WITH pixel WITH :
vertex WITH shader

nN9ESEEEEEEEEEEEEEE Befetbeet

iicooperat$5 WITH pixel WITH
vertex WITH shader

jundivided WITH pixel WITH
vertex WITH shader

Yone WITH pixel WITH vertex
{WITH shader

meneba cnneeldiasnLnnenennneenennnanne! ducannannennnenenennannnnn! bsnerenennnennennned heswcannennnnnnenenennnnnne!

Hone WITH only WITHpixel
uWITH vertex WITH shader

single WITH pixel WITH vertex
WITH shader

Lindholm AND programmable
¥WITH graphics WITH
processor

1294 processor WITH vertex WITH
{pixel WITH shad$4

4US-PGPUB; USPAT;
3USOCR; FPRS; EPO;
uJPO; DERWENT;
41BM_TDB

US-PGPUB; USPAT;

JUS-PGPUB; USPAT;
|USOCR; FPRS; EPO;

US-PGPUB; USPAT;

4HUSOGR; FPRS; EPO;
SPO; DERWENT;

{US-PGPUB; USPAT:

USOCR; FPRS; EPO;
yJPO; DERWENT;

10:04

file:///Cl/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 346

LG Ex. 1002, pg 347

EASTSearch History

 LosslessTOaenpe Kotex WITHpixel WITH
ushad$4

igao 4104 graphics WITHprocessor WI Th US-PGPUB; USPAT; #OR ON 2012/1 1/30!
\ 4 vertex WITH pixel WITH 4}USOCR; FPRS; EPO; ; i §10:54 :

shader

 graphics WITH processor WITH!
vertex WITH pixel WITH
processing

iigraphics WITH processor WI TH: US-PGPUB; USPAT;
vertex WITH pixel WITH USOCR; FPRS; EPO;
uprocessing WITHregister SPO; DERWENT;

graphics WITHprocessor WI TH US-PGPUB; USPAT;
vertex WITH pixel WITH 4HUSOCR; FPRS; EPO;
operations i

graphics WITH processor WI TH: US-PGPUB; USPAT;
ivertex WITH manipulation USOCR; FPRS; EPO;
WI TH pixel WITH calculation uJPO; DERWENT;

iorocessor WITH vertex WITH !4US-PGPUB; USPAT;

manipulation WITH pixel WITH:pk. FPRS; EPO;

yprocessor WITH vertex WITH US-PGPUB: USPAT;
pixel WITHcalculation yUSOCR; FPRS; EPO;

US-PGPUB; USPAT;

HUSOCR; FPRS; EPO; ‘dual WITH pixel WITHvertex

S50 ul116|4GPU WITH vertex WITH pixel {US-PGPUB; USPAT;
\ i uWITH (operations OR '3USOCR; FPRS; EPO;

ymanipulation OR calculation) JPO; DERWENT;

vertex WITH data WITH 1US-PGPUB; USPAT;

igeneral WITH purpose WITH 4USOCR; FPRS; EPO;
register i .

vertex WITH data WITH

general WITH purpose WITH
register WITH vertex

41US-PGPUB; USPAT;
'USOCR; FPRS; EPO;
sUPO; DERWENT;
41BM_TDB

u((general$1purpose WITH
register) OR GPR) WITH
vertex

=1818general WITH purpose WITH US-PGPUB; USPAT; jo [ON 2012/11/30:
file:///Cl/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 347

LG Ex. 1002, pg 348

EASTSearch History

‘igeneral WITH purpose WITH
register SAME vertex

vertex WITH data WITHstore
{WITH register

vertex NEAR data WITHstore
uWITHregister

‘vertex NEAR data WITH stor$3

vertex WITH pixel WITH
register

register WITH vertex USOGR; FPRS; EPO;
JPO; DERWENT;

(US-PGPUB; USPAT:
|USOCR; FPRS; EPO;
UPO; DERWENT:
41BM_TDB

{US-PGPUB; USPAT;
YUSOCR; FPRS; EPO;

|JPO; DERWENT;

4US-PGPUB; USPAT;
USOCR; FPRS; EPO;
uJPO; DERWENT;
41 BM_TDB

US-PGPUB; USPAT;
uUSOCR; FPRS; EPO;
1JPO; DERWENT;
41 BM_TDB

(US-PGPUB; USPAT;

JUSOCR; FPRS; EPO;
\JPO; DERWENT:
41BM_TDB

{US-PGPUB; USPAT;

USOCR; FPRS; EPO;
(JPO; DERWENT;

EAST Search History (Interference)

< This search history is empty>

12/1/2012 2:40:15 PM

C:\ Users\ fchen\ Documents\ EAST\ Workspaces\ 1310973820110216077Morein_et_al.wsp

|US-PGPUB; USPAT;
JUSOCR; FPRS; EPO;
JPO; DERWENT;

file:///Cl/Users/fchen/Documents/e-Red%20Folder/13109738/EASTSearchHistory.13109738_AccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 348

LG Ex. 1002, pg 349

Application/Control No. Applicant(s)/Patent Under
Reexamination

Search Notes 13109738 MOREIN ET AL.

Examiner Art Unit

FRANK CHEN 2677

SEARCHED

Subclass Examiner
7/12/11

3/11/12

SEARCH NOTES

Search Notes Date seSearched EAST(all databases) see search history printout 7/12/11
Also see searchhistories for apps 12/791 ,597 and 11/842,256 7/12/11
conducted inventor name search 7/12/11 Diaupdated search in EAST(all databases) see search history printout 3/11/12 ——
updated search in EAST(all databases) see search history printout 11/80/2012 FC

INTERFERENCE SEARCH

/FRANK CHEN/
Examiner.Art Unit 2677

U.S. Patent and Trademark Office Part of Paper No. : 20121129

LG Ex. 1002, pg 349

LG Ex. 1002, pg 350

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

Applicants:|Stephen Moreinetal. Examiner: Frank S$. Chen
Serial No.: 13/109,738 Art Unit: 2677
Filing Date: May 17, 2011 Docket No.: 00100.36.0001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

AMENDMENT AND RESPONSE

DearSir:

In response to the office action mailed December 6, 2012, Applicants petition for a three

month extension of time and respond as follows:

Amendments to the Abstract begin on page 2 of this paper and include a replacement Abstract
and a clean copy showing the amended Abstract.

Amendments to the Claims begins on page 3 ofthis paper.

Remarksbegin on page 7 ofthis paper.

DMS_US52220360v1

LG Ex. 1002, pg 350

LG Ex. 1002, pg 351

Amendments to the Specification

Please replace the Abstract with the following amended Abstract:

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

operations and pixe! manipulation operations by transmitting vertex data to a general purpose

register block, and performing vertex operations on the vertex data by a processar unless the

general purpose register block does not have enough available space therein to store incoming

 vertex data; and contirues pixel calculation operations that are to be ar are currently bemeg

performed by the processor based om instructions maintaimed in an mstruction store until enough

registers within the general purpese register block becorne avatlablo. brencexumple-a-generat

ter-blockpurposeregisterblockmaimtains-date-A-caqusneercoupledto-the-ceneralpumase

1

and-ic-e-proceaser-unil,-mainiainsinstructionscperaitveo-cause-the-

DMS_US52220360v1 2

LG Ex. 1002, pg 351

LG Ex. 1002, pg 352

LG Ex. 1002, pg 353

LG Ex. 1002, pg 354

LG Ex. 1002, pg 355

LG Ex. 1002, pg 356

LG Ex. 1002, pg 357

LG Ex. 1002, pg 358

LG Ex. 1002, pg 359

LG Ex. 1002, pg 360

LG Ex. 1002, pg 361

LG Ex. 1002, pg 362

LG Ex. 1002, pg 363

LG Ex. 1002, pg 364

LG Ex. 1002, pg 365

LG Ex. 1002, pg 366

LG Ex. 1002, pg 367

LG Ex. 1002, pg 368

LG Ex. 1002, pg 369

LG Ex. 1002, pg 370

LG Ex. 1002, pg 371

LG Ex. 1002, pg 372

LG Ex. 1002, pg 373

LG Ex. 1002, pg 374

LG Ex. 1002, pg 375

LG Ex. 1002, pg 376

LG Ex. 1002, pg 377

LG Ex. 1002, pg 378

LG Ex. 1002, pg 379

LG Ex. 1002, pg 380

LG Ex. 1002, pg 381

LG Ex. 1002, pg 382

LG Ex. 1002, pg 383

LG Ex. 1002, pg 384

LG Ex. 1002, pg 385

LG Ex. 1002, pg 386

LG Ex. 1002, pg 387

LG Ex. 1002, pg 388

LG Ex. 1002, pg 389

LG Ex. 1002, pg 390

LG Ex. 1002, pg 391

LG Ex. 1002, pg 392

LG Ex. 1002, pg 393

LG Ex. 1002, pg 394

LG Ex. 1002, pg 395

LG Ex. 1002, pg 396

LG Ex. 1002, pg 397

LG Ex. 1002, pg 398

LG Ex. 1002, pg 399

LG Ex. 1002, pg 400

LG Ex. 1002, pg 401

LG Ex. 1002, pg 402

LG Ex. 1002, pg 403

LG Ex. 1002, pg 404

LG Ex. 1002, pg 405

LG Ex. 1002, pg 406

LG Ex. 1002, pg 407

LG Ex. 1002, pg 408

LG Ex. 1002, pg 409

LG Ex. 1002, pg 410

LG Ex. 1002, pg 411

LG Ex. 1002, pg 412

LG Ex. 1002, pg 413

LG Ex. 1002, pg 414

LG Ex. 1002, pg 415

LG Ex. 1002, pg 416

LG Ex. 1002, pg 417

LG Ex. 1002, pg 418

LG Ex. 1002, pg 419

LG Ex. 1002, pg 420

LG Ex. 1002, pg 421

LG Ex. 1002, pg 422

LG Ex. 1002, pg 423

LG Ex. 1002, pg 424

LG Ex. 1002, pg 425

LG Ex. 1002, pg 426

LG Ex. 1002, pg 427

LG Ex. 1002, pg 428

LG Ex. 1002, pg 429

LG Ex. 1002, pg 430

LG Ex. 1002, pg 431

LG Ex. 1002, pg 432

LG Ex. 1002, pg 433

LG Ex. 1002, pg 434

LG Ex. 1002, pg 435

LG Ex. 1002, pg 436

LG Ex. 1002, pg 437

LG Ex. 1002, pg 438

LG Ex. 1002, pg 439

LG Ex. 1002, pg 440

LG Ex. 1002, pg 441

LG Ex. 1002, pg 442

LG Ex. 1002, pg 443

LG Ex. 1002, pg 444

LG Ex. 1002, pg 445

LG Ex. 1002, pg 446

LG Ex. 1002, pg 447

LG Ex. 1002, pg 448

LG Ex. 1002, pg 449

LG Ex. 1002, pg 450

LG Ex. 1002, pg 451

LG Ex. 1002, pg 452

LG Ex. 1002, pg 453

LG Ex. 1002, pg 454

LG Ex. 1002, pg 455

LG Ex. 1002, pg 456

LG Ex. 1002, pg 457

LG Ex. 1002, pg 458

LG Ex. 1002, pg 459

LG Ex. 1002, pg 460

LG Ex. 1002, pg 461

LG Ex. 1002, pg 462

LG Ex. 1002, pg 463

LG Ex. 1002, pg 464

LG Ex. 1002, pg 465

LG Ex. 1002, pg 466

LG Ex. 1002, pg 467

LG Ex. 1002, pg 468

LG Ex. 1002, pg 469

LG Ex. 1002, pg 470

LG Ex. 1002, pg 471

LG Ex. 1002, pg 472

LG Ex. 1002, pg 473

LG Ex. 1002, pg 474

LG Ex. 1002, pg 475

LG Ex. 1002, pg 476

LG Ex. 1002, pg 477

LG Ex. 1002, pg 478

LG Ex. 1002, pg 479

LG Ex. 1002, pg 480

LG Ex. 1002, pg 481

LG Ex. 1002, pg 482

LG Ex. 1002, pg 483

LG Ex. 1002, pg 484

LG Ex. 1002, pg 485

LG Ex. 1002, pg 486

LG Ex. 1002, pg 487

LG Ex. 1002, pg 488

LG Ex. 1002, pg 489

LG Ex. 1002, pg 490

LG Ex. 1002, pg 491

LG Ex. 1002, pg 492

LG Ex. 1002, pg 493

LG Ex. 1002, pg 494

LG Ex. 1002, pg 495

LG Ex. 1002, pg 496

LG Ex. 1002, pg 497

LG Ex. 1002, pg 498

LG Ex. 1002, pg 499

LG Ex. 1002, pg 500

LG Ex. 1002, pg 501

LG Ex. 1002, pg 502

LG Ex. 1002, pg 503

LG Ex. 1002, pg 504

