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GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

RELATED APPLICATIONS

[0001] This application is a continuation of co-pending US Application Serial No.

12/791,597, filed June 1, 2010, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., owned by

instant assignee and is incorporated herein by reference, which is a continuation of co—pending

US. Application Serial No. 11/842,256, filed August 21, 2007, entitled “GRAPHICS

PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER”, having as inventors

Steven Morein et al., owned by instant as signee and is incorporated herein by reference, which is

a continuation of US. Application Serial N o. 11/117,863, filed April 29, 2005, which has issued

into US. Patent No. 7,327,369, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., and owned by

instant assignee and is incorporated herein by reference which is a continuation of US.

Application Serial No. 10/718,318, filed on November 20, 2003, which has issued into US.

Patent No. 6,897,871, entitled “GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A

UNIFIED SHADER”, having as inventors Steven Morein et al., and owned by instant assignee

and is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to graphics processors and, more

particularly, to a graphics processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0003] In computer graphics applications, complex shapes and structures are formed

through the sampling, interconnection and rendering of more simple objects, referred to as

CHICAGO/#2201074. 1
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primitives. An example of such a primitive is a triangle, or other suitable polygon. These

primitives, in turn, are formed by the interconnection of individual pixels. Color and texture are

then applied to the individual pixels that comprise the shape based on their location within the

primitive and the primitives orientation with respect to the generated shape; thereby generating

the object that is rendered to a corresponding display for subsequent viewing.

[0004] The interconnection of primitives and the application of color and textures to

generated shapes are generally performed by a graphics processor. Conventional graphics

processors include a series of shaders that specify how and with what corresponding attributes, a

final image is drawn on a screen, or suitable display device. As illustrated in FIG. 1, a

conventional shader 10 can be represented as a processing block 12 that accepts a plurality of

bits of input data, such as, for example, object shape data (14) in object space (x,y,z); material

properties of the object, such as color (16); texture information (18); luminance information (20);

and viewing angle information ('22) and provides output data (28) representing the object with

texture and other appearance properties applied thereto (x’, y’, z”).

[0005] In exemplary fashion, as illustrated in FIGS. 2A-2B, the shader accepts the vertex

coordinate data representing cube 30 (FIG. 2A) as inputs and provides data representing, for

example, a perspectively corrected view of the cube 30’ (FIG. 2B) as an output. The corrected

view may be provided, for example, by applying an appropriate transformation matrix to the data

representing the initial cube 30. More specifically, the representation illustrated in FIG. ZB is

provided by a vertex shader that accepts as inputs the data representing, for example, vertices

VX, VY and Vz, among others of cube 30 and providing angularly oriented vertices Vx’,VY' and

Vyg, including any appearance attributes of corresponding cube 30’.

CHICAGO/#2201074. l
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[0006] In addition to the vertex shader discussed above, a shader processing block that

operates on the pixel level, referred to as a pixel shader is also used when generating an object

for display. Generally, the pixel shader provides the color value associated with each pixel of a

rendered object. Conventionally, both the vertex shader and pixel shader are separate

components that are configured to perform only a single transformation or operation. Thus, in

order to perform a position and a texture transformation of an input, at least two shading

operations and hence, at least two shaders, need to be employed. Conventional graphics

processors require the use of both a vertex shader and a pixel shader in order to generate an

object. Because both types of shaders are required, known graphics processors are relatively

large in size, with most of the real estate being taken up by the vertex and pixel shaders.

[0007] In addition to the real estate penalty associated with conventional graphics

processors, there is also a corresponding performance penalty associated therewith. In

conventional graphics processors, the vertex shader and the pixel shader are juxtaposed in a

sequential, pipelined fashion, with the vertex shader being positioned before and operating on

vertex data before the pixel shader can operate on individual pixel data.

[0008] Thus, there is a need for an improved graphics processor employing a shader that

is both space efficient and computationally effective.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention and the associated advantages and features thereof, will

become better understood and appreciated upon review of the following detailed description of

the invention, taken in conjunction with the following drawings, where like numerals represent

like elements, in which:

[0010] FIG. 1 is a schematic block diagram of a conventional shader;

CHICAGO/#2201074. l
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[0011] FIGS. 2A-2B are graphical representations of the operations performed by the

shader illustrated in FIG. 1;

[0012] FIG. 3 is a schematic block diagram of a conventional graphics processor

architecture;

[0013] FIG. 4A is a schematic block diagram of a graphics processor architecture

according to the present invention;

[0014] FIG. 4B is a schematic block diagram of an optional input component to the

graphics processor according to an alternate embodiment of the present invention; and

[0015] FIG. 5 is an exploded schematic block diagram of the unified shader employed in

the graphics processor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0016] Briefly stated, the present invention is directed to a graphics processor that

employs a unified shader that is capable of performing both the vertex operations and the pixel

operations in a space saving and computationally efficient manner. In an exemplary

embodiment, a graphics processor according to the present invention includes an arbiter circuit

for selecting one of a plurality of inputs for processing in response to a control signal; and a

shader, coupled to the arbiter, operative to process the selected one of the plurality of inputs, the

shader including means for performing vertex operations and pixel operations, and wherein the

shader performs one of the vertex operations or pixel operations based on the selected one of the

plurality of inputs.

[0017] The shader includes a general purpose register block for storing at least the

plurality of selected inputs, a sequencer for storing logical and arithmetic instructions that are

used to perform vertex and pixel manipulation operations and a processor capable of executing

CHICAGO/#2201074. l
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both floating point arithmetic and logical operations on the selected inputs according to the

instructions maintained in the sequencer. The shader of the present invention is referred to as a

“unified” shader because it is configured to perform both vertex and pixel operations. By

employing the unified shader of the present invention, the associated graphics processor is more

space efficient than conventional graphics processors because the unified shader takes up less

real estate than the conventional multi—shader processor architecture.

[0018] In addition, according to the present invention, the unified shader is more

computationally efficient because it allows the shader to be flexibly allocated to pixels or

vertices based on workload.

[0019] Referring now to FIG. 3, illustrated therein is a graphics processor incorporating a

conventional pipeline architecture. As shown, the graphics processor 40 includes a vertex fetch

block 42 which receives vertex information relating to a primitive to be rendered from an off-

chip memory 55 on line 41. The fetched vertex data is then transmitted to a vertex cache 44 for

storage on line 43. Upon request, the vertex data maintained in the vertex cache 44 is

transmitted to a vertex shader 46 on line 45. As discussed above, an example of the information

that is requested by and transmitted to the vertex shader 46 includes the object shape, material

properties (e. g. color), texture information, and viewing angle. Generally, the vertex shader 46 is

a programmable mechanism which applies a transformation position matrix to the input position

information (obtained from the vertex cache 44), thereby providing data representing a

perspectiver corrected image of the object to be rendered, along with any texture or color

coordinates thereof.

[0020] After performing the transformation operation, the data representing the

transformed vertices are then provided to a vertex store 48 on line 47. The vertex store 48 then

CHICAGO/#2201074. l
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transmits the modified vertex information contained therein to a primitive assembly block 50 on

line 49. The primitive assembly block 50 assembles, or converts, the input vertex information

into a plurality of primitives to be subsequently processed. Suitable methods of assembling the

input vertex information into primitives is known in the art and will not be discussed in greater

detail here. The assembled primitives are then transmitted to a rasterization engine 52, which

converts the previously assembled primitives into pixel data through a process referred to as

walking. The resulting pixel data is then transmitted to a pixel shader 54 on line 53.

[0021] The pixel shader 54 generates the color and additional appearance attributes that

are to be applied to a given pixel. and applies the appearance attributes to the respective pixels.

In addition, the pixel shader 54 is capable of fetching texture data from a texture map 57 as

indexed by the pixel data from the rasterization engine 52 by transmitting such information on

line 55 to the texture map. The requested texture data is then transmitted back from the texture

map 57 on line 57’ and stored in a texture cache 56 before being routed to the pixel shader on

line 58. Once the texture data has been received, the pixel shader 54 then peifonns specified

logical or arithmetic operations on the received texture data to generate the pixel color or other

appearance attribute of interest. The generated pixel appearance attribute is then combined with

a base color, as provided by the rasterization engine on line 53, to thereby provide a pixel color

to the pixel corresponding at the position of interest. The pixel appearance attribute present on

line 59 is then transmitted to post raster processing blocks (not shown).

[0022] As described above, the conventional graphics processor 40 requires the use of

two separate shaders: a vertex shader 46 and a pixel shader 54. A drawback associated with such

an architecture is that the overall footprint of the graphics processor is relatively large as the two
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shaders take up a large amount of real estate. Another drawback associated with conventional

graphics processor architectures is that can exhibit poor computational efficiency.

[0023] Referring now to FIG. 4A, in an exemplary embodiment, the graphics processor

60 of the present invention includes a multiplexer 66 having vertex (e.g. indices) data provided at

a first input thereto and interpolated pixel parameter (e. g. position) data and attribute data from a

rasterization engine 74 provided at a second input. A control signal generated by an arbiter 64 is

transmitted to the multiplexer 66 on line 63. The arbiter 64 determines which of the two inputs

to the multiplexer 66 is transmitted to a unified shader 62 for further processing. The arbitration

scheme employed by the arbiter 64 is as follows: the vertex data on the first input of the

multiplexer 66 is transmitted to the unified shader 62 on line 65 if there is enough resources

available in the unified shader to operate on the vertex data; otherwise, the interpolated pixel

parameter data present on the second input will be passed to the unified shader 62 for further

processing.

[0024] Referring briefly to FIG. 5, the unified shader 62 will now be described. As

illustrated, the unified shader 62 includes a general purpose register block 92, a plurality of

source re isters: includin source re ister A 93, source reoister B 95, and source re ister C 97, a0

processor (eg. CPU) 96 and a sequencer 99. The general purpose register block 92 includes

sixty four registers, or available entries, for storing the information transmitted from the

multiplexer 66 on line 65 or any other information to be maintained within the unified shader.

The data present in the general purpose register block 92 is transmitted to the plurality of source

registers via line 109.

[0025] The processor 96 may be comprised of a dedicated piece of hardware or can be

configured as part of a general purpose computing device (i.e. personal computer). In an
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exemplary embodiment, the processor 96 is adapted to perform 32-bit floating point arithmetic

operations as well as a complete series of logical operations on corresponding operands. As

shown, the processor is logically partitioned into two sections. Section 96 is configured to

execute, for example, the 32-bit floating point arithmetic operations of the unified shader. The

second section, 96A, is configured to perform scaler operations (e.g. log, exponent, reciprocal

square root) of the unified shader.

[0026] The sequencer 99 includes constants block 91 and an instruction store 98. The

constants block 9] contains, for example, the several transformation matrices used in connection

with vertex manipulation operations. The instruction store 98 contains the necessary instructions

that are executed by the processor 96 in order to perform the respective arithmetic and logic

operations on the data maintained in the general purpose register block 92 as provided by the

source registers 93-95. The instruction store 98 further includes memory fetch instructions that,

when executed, causes the unified shader 62 to fetch texture and other types of data, from

memory 82 (FIG. 4A). In operation, the sequencer 99 determines whether the next instruction to

be executed (from the instruction store 98) is an arithmetic or logical instruction or a memory

(e.g. texture fetch) instruction. If the next instruction is a memory instruction or request, the

sequencer 99 sends the request to a fetch block (not shown) which retrieves the required

information from memory 82 (FIG. 4A). The retrieved information is then transmitted to the

sequencer 99, through the vertex texture cache 68 (FIG. 4A) as described in greater detail below.

[0027] If the next instruction to be executed is an arithmetic or logical instruction, the

sequencer 99 causes the appropriate operands to be transferred from the general purpose register

block 92 into the appropriate source registers (93, 95, 97) for execution, and an appropriate

signal is sent to the processor 96 on line 101 indicating what operation or series of operations are
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to be executed on the several operands present in the source registers. At this point, the

processor 96 executes the instructions on the operands present in the source registers and

provides the result on line 85. The information present on line 85 may be transmitted back to the

general purpose register block 92 for storage, or transmitted to succeeding components of the

graphics processor 60.

[0028] As discussed above, the instruction store 98 maintains both vertex manipulation

instructions and pixel manipulation instructions. Therefore, the unified shader 99 of the present

invention is able to perform both vertex and pixel operations, as well as execute memory fetch

operations. As such, the unified shader 62 of the present invention is able to perform both the

vertex shading and pixel shading operations on data in the context of a graphics controller based

on information passed from the multiplexer. By being adapted to perform memory fetches, the

unified shader of the present invention is able to perform additional processes that conventional

vertex shaders cannot perform; while at the same time, perform pixel operations.

[0029] The unified shader 62 has ability to simultaneously perform vertex manipulation

operations and pixel manipulation operations at various degrees of completion by being able to

freely switch between such programs or instructions, maintained in the instruction store 98, very

quickly. In application, vertex data to be processed is transmitted into the general purpose

register block 92 from multiplexer 66. The instruction store 98 then passes the corresponding

control signals to the processor 96 on line 101 to perform such vertex operations. However, if

the general purpose register block 92 does not have enough available space therein to store the

incoming vertex data, such information will not be transmitted as the arbitration scheme of the

arbiter 64 is not satisfied. In this manner, any pixel calculation operations that are to be, or are

currently being, performed by the processor 96 are continued, based on the instructions
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maintained in the instruction store 98, until enough registers within the general purpose register

block 92 become available. Thus, through the sharing of resources within the unified shader 62,

processing of image data is enhanced as there is no down time associated with the processor 96.

[0030] Referring back to FIG. 4A, the graphics processor 60 further includes a cache

block 70, including a parameter cache 70A and a position cache 70B which accepts the pixel

based output of the unified shader 62 on line 85 and stores the respective pixel parameter and

position information in the corresponding cache. The pixel information present in the cache

block 70 is then transmitted to the primitive assembly block 72 on line 7]. The primitive

assembly block 72 is responsible for assembling the information transmitted thereto from the

cache block 70 into a series of triangles, or other suitable primitives, for further processing. The

assembled primitives are then transmitted on line 73 to rasterization engine block 74, where the

transmitted primitives are then converted into individual pixel data information through a

walking process, or any other suitable pixel generation process. The resulting pixel data from

the rasterization engine block 74 is the interpolated pixel parameter data that is transmitted to the

second input of the multiplexer 66 on line 75.

[0031] In those situations when vertex data is transmitted to the unified shader 62

through the multiplexer 66, the resulting vertex data generated by the processor 96, is transmitted

to a render back end block 76 which converts the resulting vertex data into at least one of several

formats suitable for later display on display device 84. For example, if a stained glass

appearance effect is to be applied to an image. the information corresponding to such appearance

effect is associated with the appropriate position data by the render back end 76. The

information from the render back end 76 is then transmitted to memory 82 and a display
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controller line 80 via memory controller 78. Such appropriately formatted information is then

transmitted on line 83 for presentation on display device 84.

[0032] Referring now to FIG. 4B, shown therein is a vertex block 61 which is used to

provide the vertex information at the first input of the multiplexer 66 according to an alternate

embodiment of the present invention. The vertex block 61 includes a vertex fetch block 61A

which is responsible for retrieving vertex information from memory 82, if requested, and

transmitting that vertex information into the vertex cache 61B. The information stored in the

vertex cache 613 comprises the vertex information that is coupled to the first input of

multiplexer 66.

[0033] As discussed above, the graphics processor 60 of the present invention

incorporates a unified shader 62 which is capable of performing both vertex manipulation

operations and pixel manipulation operations based on the instructions stored in the instruction

store 98. In this fashion, the graphics processor 60 of the present invention takes up less real

estate than conventional graphics processors as separate vertex shaders and pixel shaders are no

longer required. In addition, as the unified shader 62 is capable of alternating between

performing vertex manipulation operations and pixel manipulation operations, graphics

processing efficiency is enhanced as one type of data operations is not dependent upon another

type of data operations. Therefore, any performance penalties experienced as a result of

dependent operations in conventional graphics processors are overcome.

[0034] The above detailed description of the present invention and the examples

described therein have been presented for the purposes of illustration and description. It is

therefore contemplated that the present invention cover any and all modifications, variations and
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equivalents that fall within the spirit and scope of the basic underlying principles disclosed and

claimed herein.
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CLAIMS

What is claimed is:

A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.

A unified shader comprising:
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a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

5. A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instiuctions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.
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6. The shader of claim 5, wherein the sequencer further includes circuitry operative

to fetch data from a memory.

7. The shader of claim 5, further including a selection circuit operative to provide

information to the store in response to a control signal.

The shader of claim 5, wherein the processor unit executes instructions that

generate a pixel color in response to the selected one of the plurality of inputs.

The shader of claim 5, wherein the processor unit executes vertex calculations

while the pixel calculations are still in progress.

10. The shader of claim 5, wherein the processor unit generates vertex position and

appearance data in response to a selected one of the plurality of inputs.

ll. The shader of claim 7, wherein the control signal is provided by an arbiter.

A graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculations are still in progress.

13. The graphics processor of claim 12 wherein the unified shader comprises a

sequencer coupled to the processor unit, the sequencer maintaining instructions operative to
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cause the processor unit to execute vertex calculation and pixel calculation operations on

selected data maintained in a store depending upon an amount of space available in the store.

14. The graphics processor of claim 12 comprising a vertex block operative to fetch

veitex information from memory.

15. A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. The shader of claim 15 comprising an instruction store and wherein the processor

unit performs the vertex manipulation operations and pixel manipulation operations at various

degrees of completion based on switching between instructions in the instruction store.
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GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

[0035] A graphics processing architecture employing a single shader is disclosed. The

architecture includes a circuit operative to select one of a plurality of inputs in response to a

control signal; and a shader, coupled to the arbiter, operative to process the selected one of the

plurality of inputs, the shader including means for performing vertex operations and pixel

operations, and wherein the shader performs one of the vertex operations or pixel operations

based on the selected one of the plurality of inputs. The shader includes a register block which is

used to store the plurality of selected inputs, a sequencer which maintains vertex manipulation

and pixel manipulations instructions and a processor capable of executing both floating point

arithmetic and logical operations on the selected inputs in response to the instructions maintained

in the sequencer.
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Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Colorand texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re—
spect to the generated shape; thereby generating the
objectthat is rendered to a corresponding displayforsub—
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation ofcolor and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de—
vice. As illustrated in FIG. ’I, a conventional shader ’10
can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties ofthe object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an—
gle information (22) and provides output data (28) rep—
resenting the object with texture and other appearance
properties applied thereto (x’, y’, z’).
[0004] In exemplaryfashion, as illustrated in FIGS. 2A—
ZB, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view ofthe cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap—
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 28 is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices Vx, Vy and V2, among others of cube 30 and
providing angularly oriented vertices va,Vyv and VZI, in-
cluding any appearance attributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shader provides the colorvalue associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

are configured to perform only a single transformation or
operation. Thus, in orderto perform a position and a tex—
ture transformation of an input, at least two shading op—
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there—
with. In conventional graphics processors, the vertex
shader and the pixel shader arejuxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shaderthat is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu—
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in—
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se—
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencerforstoring logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se—
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader ofthe present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi—shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
cause it allows the shaderto be flexibly allocated to pixels
or vertices based on workload.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad—
vantages and features thereof, will become better under—
stood and appreciated upon review of the following de—
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1 isa schematic block diagram ofa conventional
shader;

FIGS. 2A—2B aregraphical representations ofthe op—
erations performed by the shader illustrated in FIG.
1:

FIG. 3 is a schematic block diagram ofa conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in—
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodiment ofthe present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor—
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi—
tive to be rendered from an off-chip memory 55 on line
41 . The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example ofthe information that is requested byand trans—
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim—
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel colorto the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit—
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu—
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo—
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input ofthe mul—
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in—
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader
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62wi|l now be describedAsillustrated,the unified shader
62 includes a general purpose register block 92, a plu—
rality of source registers: including source registerA 93,
source register B 95, and source register C 97, a proc—
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

present in the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded—
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e, personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bitfloating point arithmetic op-
erations as well as a complete series oflogical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con—
figured to execute, for example, the 32—bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc—
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in—
structions that, when executed, causes the unified shad—
er 62 to fetch texture and other types ofdata, from mem—
ory 82 (FIG. 4A). In operation, the sequencer 99 deter—
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex—
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] Ifthe next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97)forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

line 85 may be transmitted back to the general purpose
register block 92 forstorage, ortransmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 ofthe present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context ofa graph—
ics controller based on information passed from the mul—
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the same time, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane—
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple—
tion by being able tofreelyswitch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver—
tex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 708 which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix—
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsibleforassembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
forfurther processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc—
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input ofthe multiplexer 66 on line 75.
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[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one ofsev—
eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76 is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 48, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment ofthe present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsiblefor retrieving vertex information from mem—
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera—
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented forthe purposes ofillustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

A graphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the ar-
biter circuit, operative to process the selected one
of the plurality of inputs, the shader including means
for performing vertex operations and pixel opera-

tions, and performing one of the vertex operations
or pixel operations based on the selected one of the
plurality of inputs, wherein the shader provides a ap—
pearance attribute.

The graphics processor of claim 1, further including
a vertex storage block for maintaining vertex infor-
mation.

The graphics processor of claim 2, wherein the ver-
tex storage blockfurther includes a parameter cache
operative to maintain appearance attribute data for
a corresponding vertex and a position cache opera—
tive to maintain position datafora corresponding ver-
tex.

The graphics processor of claim 1, wherein the ap-
pearance attribute is color, and the color is associ—
ated with a corresponding pixel when the selected
one of the plurality inputs is pixel data.

The graphics processor of claim 1, wherein the ap-
pearance attribute is position, and the position at-
tribute is associated with a corresponding vertex
when the selected one of the plurality of inputs is
vertex data.

The graphics processor of claim 5, wherein the ap—
pearance attribute is color, and the color attribute is
associated with a corresponding pixel when the se-
lected one of the plurality of inputs is pixel data.

The graphics processor of claim 5, wherein the ap-
pearance attribute is one ofthe following: color, light—
ing, texture, normal and position data.

The graphics processor of claim 1, wherein the ap-
pearance value is depth.

The graphics processor of claim 1, further including
a selection circuit, wherein the selection circuit is a
multiplexer, and the control signal is provided by an
arbiter, wherein the arbiter is coupled to the multi—
plexer.

. The graphics processor of claim 1 , wherein the shad-
er provides vertex position data and further including
a primitive assembly block, coupled to the shader,
operative to generate primitives in response to the
vertex position data. 
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Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re—
spect to the generated shape; thereby generating the
object thatis rendered to a corresponding display forsub—
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapes are gen—
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10
can be represented as a processing block 12that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor—
mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep—
resenting the object with texture and other appearance
properties applied thereto (x', y’, z’).
[0004] In exemplaryfashion, as illustrated in FIGS. 2A—
ZB, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view ofthe cube 30' (FIG. ZB) as an output. The corrected
view may be provided, for example, by applying an ap—
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,
vertices Vx, VY and V2, among others of cube 30 and
providing angularly oriented vertices VX,VY and V2, in—
cluding any appearance attributes ofcorresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shader provides the colorvalue associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex—
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there—
with. In conventional graphics processors, the vertex
shader and the pixel shaderarejuxtaposed in a sequen—
tial, pipelined fashion, with the vertex shader being po—
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader that is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in-
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se—
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader ofthe present invention, the asso—
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi-shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be—
cause it allows the shader to be flexibly allocated to pixels
or vertices based on workload.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under—
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre—
sent like elements, in which:

FIG. 1 is a schematic blockdiagram ofa conventional
shader;

FIGS. 2A—ZB are graphical representations ofthe op—
erations performed by the shader illustrated in FIG.
1;

FIG. 3 is a schematic blockdiagram ofa conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in—
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord—
ing to an alternate embodiment ofthe present inven—
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces—
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor—
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi—
tive to be rendered from an off-chip memory 55 on line
41 . The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example ofthe informationthat is requested by and trans—
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro—
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre—
senting a perspectiver corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con—

tained therein to a primitive assembly block 50 on line

49. The primitive assembly block 50 assembles, or con—
verts, the input vertex information into a plurality of prim—
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre—
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the
pixel shader 54 then performs specified logical or arith—
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com—
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit—
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu—
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in—
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo—
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans—
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process—
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; othenrvise, the in—
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader
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62 will now be described. As illustrated, the unified shader
62 includes a general purpose register block 92, a plu—
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc—
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
fromthe multiplexer 66 on line 65 or any otherinformation
to be maintained within the unified shader. The data

present in the general purpose register block 92 is trans—
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded—
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32—bit floating point arithmetic op—
erations as well as a complete series of logical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con—
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con—

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc—
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93—95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad—
er 62 to fetch texture and other types of data, from mem—
ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97) forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro—
vides the result on line 85. The information present on

line 85 may be transmitted back to the general purpose
register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a graph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad—
ers cannot perform; while at the same time, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane—
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration scheme ofthe arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 708 which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsiblefor assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
forfurther processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input ofthe multiplexer 66 on line 75.
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[0024] In those situations when vertex data is trans—
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, ifa stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. the infor—
mation from the render back end 76 is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 43, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment ofthe present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertexinformation from mem—
ory 82, if requested, and transmitting that vertex informa—
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera—
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposes ofillustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva—
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

A graphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; a shader, coupled to the arbiter
circuit, operative to process the selected one of the
plurality of inputs, the shader including means for
performing vertex operations and pixel operations,

and performing one of the vertex operations or pixel
operations based on the selected one of the plurality
ofinputs, wherein the shader provides a appearance
attribute; a vertex storage block for maintaining ver—
tex information; wherein the vertex storage block fur—
ther includes a parameter cache operative to main-
tain appearance attribute data for a corresponding
vertex and a position cache operative to maintain
position data for a corresponding vertex; and where-
in the appearance attribute is color, and the color is
associated with a corresponding pixel when the se-
lected one of the plurality inputs is pixel data.

The graphics processor of claim 1 wherein the ap-
pearance attribute is position, and the position at—
tribute is associated with a corresponding vertex
when the selected one of the plurality of inputs is
vertex data.
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Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Colorand texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re—
spect to the generated shape; thereby generating the
objectthat is rendered to a corresponding displayforsub—
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation ofcolor and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de—
vice. As illustrated in FIG. ’I, a conventional shader ’10
can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties ofthe object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an—
gle information (22) and provides output data (28) rep—
resenting the object with texture and other appearance
properties applied thereto (x’, y’, z’).
[0004] In exemplaryfashion, as illustrated in FIGS. 2A—
ZB, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view ofthe cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap—
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 28 is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices VX, VY and VZ, among others of cube 30 and
providing angularly oriented vertices va, VY' and VZI, in-
cluding any appearance attributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shader provides the colorvalue associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

are configured to perform only a single transformation or
operation. Thus, in orderto perform a position and a tex—
ture transformation of an input, at least two shading op—
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there—
with. In conventional graphics processors, the vertex
shader and the pixel shader arejuxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shaderthat is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu—
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in—
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se—
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencerforstoring logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se—
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader ofthe present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi—shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
cause it allows the shaderto be flexibly allocated to pixels
or vertices based on workload.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad—
vantages and features thereof, will become better under—
stood and appreciated upon review of the following de—
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1 isa schematic block diagram ofa conventional
shader;

FIGS. 2A—2B aregraphical representations ofthe op—
erations performed by the shader illustrated in FIG.
1:

FIG. 3 is a schematic block diagram ofa conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in—
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodiment ofthe present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor—
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi—
tive to be rendered from an off-chip memory 55 on line
41 . The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example ofthe information that is requested byand trans—
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim—
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel colorto the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit—
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu—
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo—
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input ofthe mul—
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in—
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader
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62wi|l now be describedAsillustrated,the unified shader
62 includes a general purpose register block 92, a plu—
rality of source registers: including source registerA 93,
source register B 95, and source register C 97, a proc—
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

present in the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded—
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bitfloating point arithmetic op-
erations as well as a complete series oflogical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con—
figured to execute, for example, the 32—bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc—
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in—
structions that, when executed, causes the unified shad—
er 62 to fetch texture and other types ofdata, from mem—
ory 82 (FIG. 4A). In operation, the sequencer 99 deter—
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex—
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] Ifthe next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97)forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

line 85 may be transmitted back to the general purpose
register block 92 forstorage, ortransmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 ofthe present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context ofa graph—
ics controller based on information passed from the mul—
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the same time, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane—
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple—
tion by being able tofreelyswitch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver—
tex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 708 which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix—
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsibleforassembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
forfurther processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc—
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input ofthe multiplexer 66 on line 75.
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[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one ofsev—
eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76 is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 48, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment ofthe present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsiblefor retrieving vertex information from mem—
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera—
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented forthe purposes ofillustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. A method comprising:

performing vertex manipulation operations and
pixel manipulation operations by transmitting
vertex data to a general purpose register block,
and performing vertex operations on the vertex

data by a processor unless the general purpose
register block does not have enough available
space therein to store incoming vertex data; and
continuing pixel calculation operations that are
to be or are currently being performed by the
processor based on instructions maintained in
an instruction store until enough registers within
the general purpose register block become
available.

2. A unified shader, comprising:

a general purpose register blockfor maintaining
data;
a processor unit operative to:

perform vertex manipulation operations and
pixel manipulation operations by transmit—
ting vertex data to a general purpose regis—
ter block, and perform vertex operations on
the vertex data unless the general purpose
register block does not have enough avail-
able space therein to store incoming vertex
data and continue pixel calculation opera-
tions that are to be or are currently being
performed based on instructions main-
tained in an instruction store until enough
registerswithinthegeneralpurpose register
block become available. 
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Application/Control Number: 13/109,738

Art Unit: 2628

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex

operations on the vertex data by a processor unless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to

operate on surface, primitive, vertex, fragment, pixel, sample or any other data. For

simplicity, the remainder of this description will use the term 'samples‘ to refer to

graphics data such as surfaces, primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".
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7:36-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel

manipulation operations by transmitting vertex data to a general purpose register block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purpose register block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which case the thread associated with the vertex data and

vertex operations must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction store

until enough registers within the general purpose register block become available (
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7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.

Instruction cache 410 determines if the program instructions corresponding to the

program counters and sample type included in the thread state data for each thread

entry are available in Instruction Cache 410 The program instructions corresponding

to the program counters from the one or more thread entries are output by Instruction

Cache 410 to Instruction Scheduler 430 Each clock cycle, Instruction Scheduler

430 evaluates whether any instruction within the IWU [instruction window unit] 435 can

be executed based on the availability of computation resources in an Execution Unit

470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing

pixel calculation operations that are to be or are currently being performed by the

processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available, as the Execution Unit 470

may be carrying out calculations for one or more high priority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or more pixel threads to finish such that when the pixel

threads finish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amount of resources to

the queued up vertex thread).
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RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread”);

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer, coupled to the general purpose register block and the processor

unit, the sequencer maintaining instructions operative to cause the processor unit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purpose register block (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the IWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations"); and

wherein the processor unit executes instructions that generate a pixel color in

response to the selected one of the plurality of inputs and generates vertex position and

appearance data in response to a selected one of the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations and output

the processed sample to a destination specified by the instruction. The destination may

be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device
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coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260 Each Execution Pipeline 240 signals to

Pixel Input Buffer 240 when a sample can be accepted programmable computation

units (PCUs) within an Execution Pipeline 240 perform operations such as

tessellation, perspective correction, texture mapping, shading, blending, and the like.

Processed samples are output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

Thus, the Execution Unit 470 is considered a processor unit that executes

instructions that generate a pixel color in response to the selected one of the plurality of

inputs and generates vertex position and appearance data in response to a selected

one of the plurality of inputs (also see 4:22-5:35».

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processor unit operative to perform vertex calculation operations and pixel calculation

operations); and 
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shared resources, operativer coupled to the processor unit (FIG. 4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources become available and then use the shared resources to perform

vertex calculation operations (7:37-43, all types of processing threads can use the

Register File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor unit will

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out vertex threads, which may happen as a result of a completion of most

of the pixel threads or a shift in priority such that the vertex threads now have the

highest priority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:
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a processor unit operative to perform vertex calculation operations and pixel

calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operativer coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform vertex calculation operations until enough

shared resources become available and then use the shared resources to perform pixel

calculation operations (7:37-43, all types of processing threads can use the Register

File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor unit will

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out pixel threads, which may happen as a result of a completion of most

of the vertex threads or a shift in priority such that the pixel threads now have the

highest priority, and then use the Register File 350 to perform pixel calculation

operations.
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RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer coupled to the processor unit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amount of space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the lWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amount of space available in the Register File 350).
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RE claim 6, Lindholm describes the shader of claim 5, wherein the sequencer

further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350").

RE claim 7, Lindholm describes the shader of claim 5, further including a

selection circuit operative to provide information to the store in response to a control

signal (

6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in response to a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the processor unit

executes instructions that generate a pixel color in response to the selected one of the

plurality of inputs (

5:11-35 “Pier Input Buffer 215 outputs the samples to each Execution Pipeline

240 Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample

can be accepted programmable computation units (PCUs) within an Execution

Pipeline 240 perform operations such as tessellation, perspective correction, texture

mapping, shading, blending, and the like. Processed samples are output from each

Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shader of claim 5, wherein the processor unit

executes vertex calculations while the pixel calculations are still in progress (
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6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 10, Lindholm describes the shader of claim 5, wherein the processor

unit generates vertex position and appearance data in response to a selected one of the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device

coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the control

signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic In an

alternate embodiment, Thread Control Unit 420 is configured to assign threads to

source samples or allocate locations in Register File 350 using thread allocation

priorities based on an amount of sample data in Pixel Input Buffer 215 and another

amount of sample data in Vertex Input Buffer 220 In a further alternate embodiment,

Thread Control Unit 420 is configured to assign threads to source samples or allocate

locations in Register File 350 using thread allocation priorities based on graphics

primitive size”.
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Thus, while an arbiter isn't explicitly described, the Examiner considers it inherent

that some portion of the system acts as an arbiter, and therefore can be considered an

arbiter, as some portion of the system assigns priorities to thread and sample types

according to the current processing circumstances, in order to more efficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations

while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 13, Lindholm describes the graphics processor of claim 12 wherein the

unified shader comprises a sequencer coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amount of space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processor of claim 12 comprising

a vertex block operative to fetch vertex information from memory (see the rejection of

claim 6).
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RE claim 15, Lindholm describes a unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload (

7:6—36 “Thread Control Unit 420 is configured to assign threads to source

samples or allocate locations in Register File 350 using thread allocation priorities

based on an amount of sample data in Pixel Input Buffer 215 and another amount of

sample data in Vertex Input Buffer 220 In a further alternate embodiment, Thread

Control Unit 420 is configured to assign threads to source samples or allocate locations

in Register File 350 using thread allocation priorities based on graphics primitive size

(number of pixels or fragments included in a primitive)".

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching between instructions in the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations... Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

between instructions in the instruction store).

 



LG Ex. 1002, pg 115

Application/Control Number: 13/109,738

Art Unit: 2628

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBU RN whose telephone number is

(571)272-5551. The examiner can normally be reached on 9:30 AM. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Ulka Chauhan can be reached on 571-272—7782. The fax phone number for

the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272—1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
7/12/11 
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PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stephen Morein et al. Examiner: Daniel C. Washburn

Serial No.: 13/109,738 Art Unit: 2628

Filing Date: May 17, 2011 Docket No.: 00100360001
Confirmation No.2 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

Mail Stop Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

 

RESPONSE

Dear Sir:

In response to the office action mailed July 21, 2011, Applicants petition for a three

month extension of time and respond as follows:

Listing of the Claims begins on page 2 of this paper.

Remarks begin on page 6 of this paper.
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LG Ex. 1002, pg 123

Listing of the Claims:

1. (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. (original) A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.

(original) A unified shader comprising:

BDDBOl 908464lvl
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a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

(original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.

BDDBOl 908464lvl
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6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in response to a control signal.

(original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in response to the selected one of the plurality of inputs.

9. (original) The shader of claim 5, wherein the processor unit executes vertex

calculations while the pixel calculations are still in progress.

10. (original) The shader of claim 5, wherein the processor unit generates vcrtcx

position and appearance data in response to a selected one of the plurality of inputs.

11. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. (original) A graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculations are still in progress.

BDDBOl 908464lvl
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13. (original) The graphics processor of claim 12 wherein the unified shader

comprises a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.

14. (original) The graphics processor of claim 12 comprising a vertex block operative

to fetch vertex information from memory.

15. (original) A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching between instructions in the instruction store.

BDDBOl 908464lvl
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REMARKS

Applicants respectfully traverse and request reconsideration.

Claims 1—16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

US. Patent No. 7,038,685 (Lindholm). Applicants respectfully submit herewith Declarations

under 37 C.F.R. § 1.131 for inventors Laurent Lefebvre, Andrew E. Gruber, Stephen L. Morein

and Andi P. Skende establishing conception and reduction to practice of the currently claimed

subject matter prior to the June 30, 2003 priority date of Lindholm. It is believed that Lindholm

does not claim thc samc patcntablc invention as defined by 37 CPR. § 41.203(a) and that the

present rejection is not based on a statutory bar, i.e., Lindholm qualifies as prior art only under

35 U.S.C. § 102(e). Accordingly, the attached Declarations are relied on to establish prior

reduction to practice of the claimed subject matter, particularly with regard to independent

claims l—5, 12 and 15.

Regarding the reduction to practice evidenced by the attached Declarations, Applicants

first note that, properly presented, a Rule 131 declaration may demonstrate prior invention if it

provides a “showing of facts . . . as to establish reduction to practice prior to the effective date of

the reference.” 37 CPR. § l.l3l(b). As set forth in M.P.E.P. § 715.07(l), evidence in support

of asserted facts demonstrating prior invention may be provided in the form of “an

accompanying model.” With regard to an apparatus and/or process implemented by an

integrated circuit or the like, Applicants respectfully submit that a simulation of such an

apparatus and/or circuit may effectively serve as a “model” demonstrating successful reduction

to practice. Specifically, Applicants respectfully submit that evidence of (i) a successful

computer-based simulation of a physical embodiment and/or (ii) a description of a physical

embodiment capable of translation to implement the actual physical embodiment, coupled with

BDDB01 9084641v1
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successfully testing of the resulting physical embodiment is sufficient to demonstrate an actual

reduction to practice for the purposes of Rule 131 declaration. (See McDonnell Douglas Corp. v.

US, 670 F. 2d 156, 161 (Ct. C1. 1982) (where court concludes that “physical tests proved that

the computer approved device . . . failed in actual practice . . . to perform in the manner

intended” and that subsequent successful physical testing was the first reduction to practice, a

necessary implication is that a valid reduction to practice would result if actual physical testing

demonstrates that prior computer simulation was adequate); Mosaid T6611. Inc, v. Samsung E[66.

Ca, 362 F.Supp.2d 526, 547 (D.N.J. 2005) (noting that the McDonnell case suggested “that a

computer simulation may be a valid reduction to practice, but not if subsequent, actual physical

testing proves that it is inadequate,” and that “there are areas of science where a successfully run

simulation represents the end of the inventive process and the construction of the physical

embodiment is but a matter of mere routine and mechanical application [such that] a simulation

should be a valid reduction to practice.”))

With regard to the instant application, as shown in the attached Declarations, Applicants

have provided evidence that both a simulation and hardware design description (expressed in a

hardware design language capable of conversion to a physical embodiment) subsequently lead to

a successfully tested physical embodiment of (and, therefore, actual reduction to practice of) the

subject matter recited in the independent claims. More particularly, the attached Declarations

demonstrate invention of the recited subject matter in claims 1—5, 12 and 15 prior to the effective

filing date of the Lindholm reference.

Thus, in light of the Declarations, Applicants respectfully submit that Lindholm is not

available as prior art against, and therefore obviates the sole basis for rejecting, the above claims,

which claims are therefore in suitable condition for allowance. Applicants further note that

BDDBOl 908464lvl
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claims 6—11, 13, 14 and 16 are dependent upon, and therefore incorporate the limitations of,

respective ones of claims 5, 12 and 15. As such, claims 6-11, 13, 14 and 16 are also allowable

for the same reasons presented above relative to their respective independent claims.

Applicant respectfully submits that the claims are now believed to be in condition for

allowance and that a timely Notice of Allowance be issued in this case. If the Examiner believes

that personal communication will expedite prosecution of this application, the Examiner is

invited to telephone the undersigned at (312) 356-5094.

Respectfully submitted,

Dated: January 18, 2012 By: /Christopher J. Reckamp/

Christopher J. Reckamp

Reg. No. 34,414

 

Faegre Baker Daniels LLP
31 1 S. Wacker Drive

Chicago, IL 60606

PHONE: (312) 356—5094

FAX: (312) 212—6501
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PATENT

ATTORNEY DOCKET NO. 00100360001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Stephen Morein et al.

Serial No. 13/109,738 Art Unit:2628

Filed: May 17’ 2011 Examiner: Daniel C. Washburn

For: GRAPHICS PROCESSING

ARCHITECTURE EMPLOYING A

UNIFIED SHADER

Confirmation No. 2020

DECLARATION UNDER 37 C.F.R. § 1.131

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 223 l 4~1450

Sir:

We, Stephen L Morein a citizen of the U.S. residing at 367 Santana Heights, Unit 3027,

San Jose California 95128; Laurent Lefebvre, a citizen of Canada residing at 1055 Garden

Avenue, Mascouche, Quebec, CANADA, J7L-0A1; Andrew E. Gruber a citizen of the U.S.

residing at 251 Pleasant Street, Arlington, Massachusetts 02476; and Andi Petrit Skende a citizen

of the U.S. residing at 35 Sunrise Avenue, Worcester, Massachusetts 01606, do hereby declare
that:

1. We are joint inventors of the subject matter described and claimed in U.S. Patent

Application No. 13/109,738 (hereinafter “the Invention”), filed in the United States of America
on May 17, 2011, entitled “Graphics Processing Architecture Employing a Unified Shader”,
which application is a continuation of and claims priority to U.S. Patent Application No.
12/791,597 filed June 1, 2010, which application is a continuation of and claims priority to U.S.

Patent Application No. 11/842,256 filed August 21, 2007, which application is a continuation of
and claims priority to U.S. Patent Application No. 11/117,863 filed April 29, 2005 (now U.S.
Patent No. 7,327,369), which application is a continuation of and claims priority to U.S. Patent

Application No. 10/718,318 filed November 20, 2003 (hereinafter “the ‘318 application”; now
U.S. Patent No. 6,897,871).

2. We conceived the Invention prior to June 30, 2003 while employed by ATI

Technologies Inc. and/or one of its wholly owned subsidiaries (“ATI”) as indicated by attached
Exhibits A and B. Exhibit A is a copy of emulation code files entitled RegFfilecpp,
Instruction_store.cpp, Arbitercpp, Gpr_ma.nager.cpp, sq_alu.cpp and scLblock_model.cpp that,
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based on information and belief, we invented and assisted in coding prior to June 30, 2003 the

(“Model Code”). Exhibit B is a copy of hardware register transfer level (RTL) files (“the Chip

Design Code”) entitled sq_gpr_alloc.v, Sq_alu_instr_seq.v, sq_instruction_store_v,

sp_mace_gpr.v, spflvectory, sq.v, sq_export_alloc.v, sq_ctl_flow_seq.v, sq_alu_instr_seq.v,

sq_thread_arb.v and sq_shader_seq.v, that, based on information and belief, we assisted in

creating prior to June 30, 2003. Prior to June 30, 2003 we created a graphics processing system
that operated as claimed using a computer system that successfully executed the Model Code.

Prior to June 30, 2003 we also created a graphics processing system as claimed in the form of a

computer system that used an RTL simulator to successfully validate the operation of an

integrated circuit version of the claimed graphics processing system and method At least the

following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software instructions

written in the well-known C++ language. When executed by the computer system , the

Model Code caused the computer system to operate as claimed in at least claims 1—5= 12
and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the claimed
subject matter for its intended purpose through emulation thereof.

e. As shown in Exhibit B, the Chip Design Code comprises various instructions

written in a well—known hardware description language. The Chip Design Code was used

by an RTL simulator system to validate the operation of an integrated circuit version of
the claimed graphics processing system and method as claimed in at least claims 1-5, 12
and 15. As further known by practitioners in the field of integrated circuit design, such

instructions are used to generate gate level detail for silicon fabrication.

d. On information and belief, the computer system operating the Model Code and

the RTL simulator system operating the Chip Design Code represents the claimed
structure and operation embodied in an integrated graphics processing circuit chip
referred to as the ATI XENOS chip produced by ATI on or about October, 2004 that was

incorporated in the XBOX 360 product. '

Accordingly, the contents of Exhibits A and B establish the possession by us of the whole
Invention, falling within the scope of Currently pending claims, such as but not limited to at least
claims 1-5, 12 and 15.
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3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or impriso nt, or both,
under § 1001 of Title 18 of the United States Code and that such willful fa] statements may
jeopardize the validity of the application or any patent issued therefrom.

Laurent Lefebvre

Andrew E. Gruber

Andi Petrit Skende

CHICAGOJ#2239588.1
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3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be

true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Stephen L. Morein

(4,4, 4/
Laurent Lefebvre

Andrew E. Gruber

Andi Petrit Skende
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3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Stephen L. Morein

Laurent Lefebvre

Andi Petrit Skende

CHICAGO/#2239583]
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3. Each of us hereby declare that all statements made herein are of thy own
knowledge, are true and that all statements made on infozmation and belief are believéd to be
true; and each of us finther declare that these statements were made with the knowleélge that
willful false statements and the like 30 made are punishable by fine 0r imprisonment, hr both,
under § 1001 of Title 18 of the United States Code and that such willful false statemel'lts may
jeopardize the validity of the applicatmn or any patent issued therefiOm.

Stephen L. Morein

Laurent Lefebvre

Andrew E. Gruber

Dated: bemmbw‘ 11. 2,0“ #Afl—h{£3 A
Andi etrit Skende I

CHICAGO/#2523 9583. 1
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EXHIBIT A — MODEL CODE

Reg_flle. cpp

#include ”reg_file.h”

RegFile::RegFile()
{

for (int i=e;i<128;i++)
for (int j=03j<16;j++)

for (int k=0;k<4;k++)
regValues[i].Val[j].field[k].c1amp(9);

}

void RegFile::GetConstValues(const RegVect* &Values,int Addr)
{

}

void RegFile::GetValues(RegVect* &Values,int Addr)
{

}

Values = &(PegValues[Addr].Val[9]);

Values = &(PegValues[Addr].Val[9]);

Instruction store:

lnstructi0n_store.cpp
#include ”instruction_store.h"

IStore::IStore()
{

for (int i=6;i<4096;i++)
{

instructions[i].bytee=9x99;
instructions[i].byte1=9x99;
instructions[i].byte2=9x99;
instructions[i].byte3=0x00;
instructions[i].byte4=0x00;
instructions[i].byte5=9x99;
instructions[i].byte6=9x99;
instructions[i].byte7=9x99;
instructions[i].byte8=0x00;
instructions[i].byte9=0x00;
instructions[i].byte19=9x90;
instructions[i].byte11=9x99;

}

void IStore::GetInst(InstPuction &inst,int
{

}
inst = instructions[addr];
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void IStore::GetInst(ALU_InstPuction &aluInst; int addr)
{

aluInst.SrcASel = ((instructions[addr].bytell & 6x86) >> 7);
aluInst.SchSel = ((instructions[addr].bytell & 6x46) >> 6);
aluInst.SPcCSel = ((instructions[addr].bytell & 9x26) >> 5);
aluInst.VectorOpcode = ((instructions[addr].byte11 & leF));
aluInst.SourceARegPointer = ((instructions[addr].bytele ));
aluInst.SourceBRegPointeP = ((instructions[addr].byte9 ));
aluInst.SourceCRegPointer = ((instructions[addr].byte8 ));
aluInst.Constan@RelAbs = ((instructions[addr].byte7 & 6x86) >> 7);
aluInst.Constan1RelAbs = ((instructions[addr].byte7 & 9x48) >> 6);
aluInst.RelativeAddPRegSel = ((instructions[addr].byte7 & 6x20) >> 5);
aluInst.PPedicateSelect = ((instructions[addr].byte7 & 6x18) >> 3);
aluInst.SourceANegate = ((instructions[addr].byte7 & 6X64) >> 2);
aluInst.SouPceBNegate = ((instructions[addr].byte7 & 6x62) >> 1);
aluInst.SourceCNegate = ((instructions[addr].byte7 & 8x81) );
aluInst.SourceASwizzle = ((instructions[addr].byte6) );
aluInst.SourceBSwizzle = ((instructions[addr].byteS) );
aluInst.SourceCSwizzle = ((instructions[addr].byte4) );
aluInst.ScalaPOpcode = ((instructions[addr].byte3 & exfc) >> 2);
aluInst.ScalarClamp = ((instructions[addr].byte3 & 6x62) >> 1);
aluInst.Vect0PClamp = ((instructions[addr].byte3 & 6x01) );
aluInst.ScalarWPiteMask = ((instructions[addr].byte2 & exte) >> 4);
aluInst.VectorWriteMask = ((instructions[addr].byte2 & exet) );
aluInst.ScalarResultPointer = ((instructions[addr].bytel ) );
aluInst.VectorResultPointer = ((instructions[addr].bytee ) );

}

void IStore::GetInst(TInstrPacked &texInst, int addr)
{

}
texInst.unpack((const uint8*)(&instructions[addr]));

void IStore::GetInst(CF_InstPuction &chnst; int addr, bool left)
{

// read from bytes 11 thru 6
if (left)
{

CFInst.opCode = ((instructions[addr].byte11 & exFG) >> 4);
ctInst.addrMode = ((instructions[addr].byte11 & 9x98) >> 3);
ctInst.bufterSel = ((instructions[addr].byte11 & 6x66) >> 1);
ctInst.condition = ((instructions[addr].bytell & 0X94) >> 2);
ctInst.boolAddr = ((instructions[addr].bytell & 9x93) << 6) |

((instructions[addr].bytele & ach) >> 2);
ctInst.direction = ((instructions[addr].bytele & 0x02) >> 1);
ctInst.instTypeSer = ((instructions[addr].bytele & 0x63) << 16) |

((instructions[addr].byte9) << 8) |
((instructions[addr].byte8));

.predBreak = ((instructions[addr].byte8 & 9x26) >> 5);

.loopId = ((instructions[addr].byte8 & 0x1F));

.count = ((instructions[addr].byte7 & GXFG) >> 4);

.force = ((instructions[addr].byte7 & 9x29) >> 5);

.chddress = ((instructions[addr].byte7 & leF) << 8) |
((instructions[addr].byte6));

.address = ((instructions[addr].byte7 & GXGF) << 8) |
((instructions[addr].byte6));

.allocSize = ((instructions[addr].byte6 & @XGF));
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// read from bytes 5 thru 9
else

{
ctInst.opCode = ((instructions[addr].byte5 & GXFG) >> 4);
ctInst.addrMode = ((instructions[addr].byte5 & 0x08) >> 3);
cFInst.bufferSel = ((instructions[addr].byte5 & 9x96) >> 1);
ctInst.condition = ((instructions[addr].byte5 & 9x94) >> 2);
cFInst.boolAddr = ((instructions[addr].byte5 & 0x03) << 6) |

((instructions[addr].byte4 & GXFC) >> 2);
ctInst.direction = ((instructions[addr].byte4 & 9x92) >> 1);
cFInst.instTypeSer = ((instructions[addr].byte4 & 9x93) << 16) |

((instructions[addr].byte3) << 8) |
((instructions[addr].byte2));

.predBreak = ((instructions[addr].byte2 & 0X29) >> 5);

.loopId = ((instructions[addr].byte2 & 9x1F));

.count = ((instructions[addr].bytel & exFe) >> 4);

.force = ((instructions[addr].bytel & 0x20) >> 5);

.chddress = ((instructions[addr].bytel & exlF) << 8) |
((instructions[addr].byte0));

.address = ((instructions[addr].bytel & GXGF) << 8) |
((instructions[addr].byte9));

.allocSize = ((instructions[addr].byteG & 6x0F));

}

void IStore::SetInst(const Instruction &inst;int addr)
{

}
instructions[addr]=inst;

Performing operations on pixels or vorticcs:

Arbiter.cpp
boolean Arbiter::chooseAluStation(int &lineNumber, Shader_Type &sType,

bool otherAluRunning,const CFMachine& otherCFMachine,bool &pred0n)
{

int i;
int verteXPick = -1;
int pixelPick = —1;
bool pcSpace;
int lineCheck;
predOn = true;

// do pixels First
lineCheck = pixelHead;
for (i=e;i<pixeleCount;i++)
{

it (pixelStation[lineCheck].status.valid != 0 &&
pixelStation[lineCheck].status.ressourceNeeded == ALU

&& lpixelStation[lineCheck].status.event)
{

// no allocation needed

if (pixelStation[lineCheck].status.allocation == SQ_N0_ALLOC)
{

}
// we need to make sure there is space in the appropriate buffer

pixelPick = lineCheck;
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else if (pixelStation[lineCheck].status.allocation == SQ_MEMORY &&
(pixelStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ->GetExportBuFFer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

}
else if (pixelStation[lineCheck].status.allocation ==

SQ_PARAMETER_PIXEL &&

pixelPick = lineCheck;

pixelStation[lineCheck].status.allocationSi2e <= sq->pSX_SQ-
>GetExportBuffer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

}
// make sure the status says we can pick this pixel
if (pixelPick != -1)
{

pixelPick = lineCheck;

// check for serial with texture pending
if (pixelStation[pixelPick].status.serial &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;

// it last or alloc is set we can only pick the two oldests
threads also for color exports

else it ((pixelStation[pixelPick].status.last
|| pixelStation[pixelPick].status.allocation ==

SQ_PARAMETER_PIXEL )&&
l(pixelPick==pixelHead || pixelPick==((pixelHead-

1)%MAX_PIX_RESERVATION_SIZE)))
pixelPick = —1;

// cannot pick last if texture reads are outstanding
else it (pixelStation[pixelPick].status.last &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = —1;

// can only pick the second to old if the first is already
running and last is set

else it (pixelStation[pixelPick].status.last && pixelHead l=
pixelPick)

{
if (pixelStation[pixelPick].status.First ||

lpixelStation[pixelHead].status.last
|| pixelStation[pixelHead].status.valid)
pixelPick = -1;

else

{
predOn = false;
break;

}
}// endif pixels

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE5
}// end for loop

lineCheck = vertexHead;
for (i=e;i<vertestCount;i++)
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{
it (vertexStation[lineCheck].status.valid != a &&

vertexStation[lineCheck].status.ressourceNeeded == ALU
&&!vertexStation[lineCheck].status.event)

{
// no allocation needed

if (vertexStation[lineCheck].status.allocation == SQ_N0_ALLOC)
{

}
// we need to make sure there is space in the appropriate buffer
else

{

vertexPick = lineCheck;

if (verteXStation[lineCheck].status.allocation == SQ_MEMORY)
{

if

(((vertexStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ-
>GetExportBuffer()/4)

&& sq—>pSX_SQ—>GetValid() && pendingAllocs <2)
{

}
vertexPick = lineCheck;

}
else it (verteXStation[lineCheck].status.allocation ==

SQ_PARAMETER_PIXEL)
{

// determine if there is space in the PCs for an
eventual PC export

pcSpace =
checkPC((vertexStation[lineCheck].status.allocationSize+1)*4);

if (pcSpace)
{

// make sure every older threads have their
position allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.pcAllocated == false)
{

alloc_done = false;
break;

}
alloc_line

(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;
}
if (alloc_done)
{

}
vertexPick lineCheck;

}
}
else it (vertexStation[lineCheck].status.allocation ==

SQ_POSITION
&& (sq->pSX_SQ->GetPositi0nReady() >=

vertexStation[lineCheck].status.allocationSize )
&& sq->pSX_SQ->GetValid()
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&& pendingAllocs <2)

// make sure every older threads have their position
allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.posAllocated == false)
{

alloc_done = false;
break;

}
alloc_line

(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;
}
if (alloc_done)
{

}
vertexPick lineCheck;

}
}
// make sure the status says we can pick this vertex
if (vertexPick != -1)
{

// check for serial with texture pending
if (vertexStation[vertexPick].status.serial &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// if last is set we can only pick the two oldests threads
else if (vertexStation[vertexPick].status.last &&

l(vertexPick==vertexHead || vertexPick==((vertexHead—
1)%MAX_VTX_RESERVATION_SIZE)))

vertexPick = -1;
// cannot pick last if texture reads are outstanding
else if (vertexStation[vertexPick].status.last &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// can only pick the second to old if the first is already
running

else if ((vertexStation[vertexPick].status.last) && vertexHead
!= vertexPick)

{
if (vertexStation[vertexPick].status.first ||

lvertexStation[vertexHead].status.last
|| vertexStation[vertexHead].status.valid)
vertexPick = —1;

else

{
predOn = false;
break;

}
}// endif vertex
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lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}// end for loop

// right now vertices have priority over pixels always,
// will have to change this when the registers are there.
if (vertexPick != -1)
{

lineNumber = vertexPick;
sType = VERTEX;

// HERE WE MUST DO THE ALLOCATION

// also send a pulse to the SX if we need a buffer (position or multipass)

if (vertexStation[vertexPick].status.allocation l= SQ_NO_ALLOC)
{

// parameter cache allocation
if (vertexStation[vertexPick].status.allocation ==

{
SQ_PARAMETER_PIXEL)

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].data.pcBasePtr = sq->chead;
vertexStation[vertexPick].data.exportId = 0;

if (sq-
>chead+(vertexStation[vertexPick].status.allocationSize)*4 < 128)

{
sq->chead = sq-

>chead+(vertexStation[vertexPick].status.allocationSize)*4;
}
else

{
sq—>chead =

(vertexStation[vertexPick].status.allocationSize)*4—(128—sq—>chead);
sq->checkHigh = lsq->checkHigh;

}
sq-

>pcAllocated.push((vertexStation[vertexPick].status.allocationSize)*4);
}
// position
else if (vertexStation[vertexPick].status.allocati0n == SQ_POSITION)
{

// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.posAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq—>pSQ_SX—>SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq—>pSQ_SX—>SetSQ_SX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exportId = exportId;
exportId = lexportId;
uinteger<2> temp;
temp = 2;
sq—>pSQ_SX—>SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);

7
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temp = vertexStation[vertexPick].status.allocationSize—l;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);

}
// multipass
else

{
// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq—>pSQ_SX—>SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exp0rtId = exportId;
exportId = lexportId;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = vertexStation[vertexPick].status.allocationSize;
sq—>pSQ_SX—>SetSQ_SX_exp_number(temp);

}

// dump the interface
if (sq->m_dumpSQ > 0)
{

sq->pSQ_SX->GetNewAll(&(sq->m_squDump->_data));
it (sq->m_squDump->_data.Valid)
{

}
sq—>m_squDump—>Dump();

}

// clear the allocation fields

vertexStation[vertexPick].status.allocationSize = e;
vertexStation[vertexPick].status.allocation = SQ_NO_ALLOC;

}
return true;

}
it (pixelPick l= —1)
{

lineNumber = pixelPick;
sType = PIXEL;

if (pixelStation[pixelPick].status.allocation l= SQ_NO_ALLOC)
{

// starting a new allocation
pendingAllocs ++;

if (pixelStation[pixelPick].status.allocation == SQ_PARAMETER_PIXEL)
{

sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
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sq—>pSQ_SX—>SetSQ_SX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exportId = exportId;
exportId = !exportId;
uinteger<2> temp;

sq->setContextNumber(st);
uint8 mode = sq->SQ_PROGRAM_CNTL.getPS_EXPORT_MODE();
// exporting 2
if (mode &0x@1)

temp = 1;
// not exporting Z
else

temp = 0;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq—>pSQ_SX—>SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize-temp-l;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);

}
// multipass
else

{
sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exp0rtId = exportId;
pixelStation[pixelPick].status.pulseSx = true;
exportId = lexportId;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq—>pSQ_SX—>SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);
pixelStation[pixelPick].status.pulseSx = true;

}

// dump the interface
if (sq->m_dumpSQ > e)
{

sq->pSQ_SX->GetNewAll(&(sq->m_squDump->_data));
if (sq—>m_squDump—>_data.Valid)
{

}
sq->m_squDump->Dump();

}

// clear the allocation Fields

pixelStation[pixelPick].status.allocationSize = 9;
pixelStati0n[pixelPick].status.allocation = SQ_NO_ALLOC;

}
return true;

}

return false;
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Checking for GPR space:

(3pr3nanagencpp

#include gpr_manager.h"
#include ”user_block_model.h"

GPR_manager::GPR_manager(cUSER_BLOCK_SQ *pSQ)
{

// set the pointer to the SQ
Sq = PSQ3

// set the limits (READ REGISTERS)
pixLimit = sq->SQ_GPR_MANAGEMENT.REG_SIZE_PIX;
vertLimit = 128—sq—>SQ_GPR_MANAGEMENT.REG_SIZE_VTX;

baseCountPix a;
freeCountPix 0;
pixTestHigh = true;

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;

}

boolean GPR_manager::testAllocate(int number_gpr,int &base_addr,Shader_Type stype)
{

bool wrap = false;
int testBaseCount;

if (stype == PIXEL)
{

testBaseCount = baseCountPix;
base_addr= baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

if (freeCountPi ==baseCountPix && pixTestHigh &&
freeCountPix l: -1)

{

}
return false;

return true;
}

if (testBaseCount + number_gpr < pixLimit)
testBaseCount = testBaseCount + number_gpr;

else

{
testBaseCount = number_gpr-(pixLimit-testBaseCount);
// we wrapped change the test type
pixTestHigh = lpixTestHigh;
wrap = true;

}
if (pixTestHigh)
{
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if (wrap)
pixTestHigh = lpixTestHigh;

if (testBaseCount >= freeCountPix && freeCountPix != -1)
{

// allocation succesfull

return False;

// not enough space in GPRs
return true;

if (wrap)
pixTestHigh = inxTestHigh;

if (testBaseCount <= treeCountPix && freeCountPix != -1)
{

// allocation succesfull

return false;

return true;

}
}
// vertices
else

{
testBaseCount = baseCountVert;
base_addr= baseCountVert;

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

if (freeCountVert==baseCountVert && vertTestHigh &&
FreeCountVert l: -1)

{

}
return false;

return true;
}

if (testBaseCount — number_gpr >= vertLimit)
testBaseCount = testBaseCount — number_gpr;

else

{
testBaseCount = 128-(number_gpr-(testBaseCount-vertLimit));
// we wrapped change the test type
vertTestHigh = lvertTestHigh;
wrap = true;

}
if (vertTestHigh)
{

if (wrap)
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vertTestHigh = lvertTestHigh;
if (testBaseCount <= freeCountVert && freeCountVert l=
{

// allocation succesfull

return false;

return true;

if (wrap)
vertTestHigh = lvertTestHigh;

if (testBaseCount >= freeCountVert && freeCountVert != -1)
{

// allocation succesfull

return false;

return true;

}

void GPR_manager::allocate(int number_gpr,int &base_addr,
Shader_Type stype)

{
if (stype == PIXEL)
{

base_addr = baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

}
freeCountPix = -1;

if (baseCountPix + number_gpr < pixLimit)
baseCountPix = base_addr + number_gpr;

else

{
baseCountPix number_gpr-(pixLimit-base_addr);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;

}
}
// vertices
else

{
base_addr = baseCountVert;

// special case for MAX GPRs
if (number_gpr == —(vertLimit—128))
{

12
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freeCountVert = —1;
}

if (baseCountVert - number_gpr >= vertLimit)
baseCountVert = base_addr — number_gpr;

else

{
baseCountVert = 128-(number_gpr-(base_addr-vertLimit));
// we wrapped change the test type
vertTestHigh = lvertTestHigh;

}

void GPR_manager::deAllocate(int number_gpr,Shader_Type stype)
{

switch (stype)
{
case PIXEL:

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

baseCountPix e;
freeCountPix = e;
pixTestHigh = true;
break;

}
if (freeCountPix + number_gpr < piXLimit)

freeCountPix += number_gpr;
else

{
freeCountPix number_gpr-(pixLimit-freeCountPix);
// we wrapped change the test type
pixTestHigh = lpixTestHigh;

}
break;

case VERTEX:

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;
break;

}
if (freeCountVert - number_gpr > vertLimit)

freeCountVert —= number_gpr;
else

{
freeCountVert = 128-(number_gpr-(freeCountVert-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;

}
break;
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White data to the GPRs:

Sq_block_model.cpp
// write to the SP dummy interface
RegVect* values;

regFi1e[j]->GetValues(values,addhess);

intePpData.Addness[i]=i+base_ptn;
interpData.NumPahams = intenp_panams;

for (int k=9;k<16;k++)
{

intehpData.IntenpData[i][k][j].field[9]=values[k].field[e];

interpData.IntenpData[i][k][j].fie1d[1]=values[k].field[1];

intehpData.IntenpData[i][k][j].field[2]=values[k].field[2];

interpData.IntenpData[i][k][j].fie1d[3]=values[k].field[3];
}
// increment the GPR address

if (address+1 < gph_manager->pixLimit)
{

address ++;

=6;

sq_a1u. opp

#include "user_b|ock_model.h"
#include "sq_aluh"
#include "sq_sph"
#include <iostream>

#include "Scalar_HW/mathen.h"

using namespace std;

//--------------------------------------------------------------------------------

SQ_ALU::SQ_ALU()
{

Coissuedlnstruction = true;

mathScalar = new MathEn();

};

SQ_ALU::~SQ_ALU()
{

};

delete mathScalar;

//----- This function represents the entry point to the ALU from the Sequencer------------------

14
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void SQ_ALU::Execute(RegFile* Reg, OutBuffer &ExportBuffer ,const CStore & Constants,uint32
SrcAAddr, uint32 SchAddr, uint32 SrcCAddr,uint32 DestAddr, uint32 ScalarDestAddr, Alulnstruction
Instruction,

unsigned int valids[], uint32 VectorlndeX,SQ_SP* pSQ_SP,
Shader_Type currentAIuType,bool pred[],cUSER_BLOCK_SQ*

pSQJnt idAlu)
{

int i;

sq = pSQ;
// fill the dummy interface
SQ_SP_data SPData;
static Constant constant[4];
static int PMasks[4][4] = {0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0};
static int CMask[4] = {0,0,0;0};
static int RAddr[4] = {0,0,0,0};
static int WAddr[4] = {0,0,0,0};
static bool REn[4] = {false,fa|se,fa|se,fa|se};
static bool WEn[4] = {false,fa|se,false,fa|se};

SPData.Phase = Vectorlndex;

for (i=0;i<4;i++)
{

SPData.ConstantValue[i]=constant[\/ector|ndex].field[0];
SPData.ExportVa|id[i]=valids[i];
SPData.ExportWValid[i]=2;
SPData.Va|ids[i] = PMasks[Vectorlndex][i];

}

SPData.ExportCount=Vectorlndex;
SPData.ExportLast=0;
SPData.CMask = CMask[Vectorlndex];
SPDataRdAddr = RAddr[Vector|ndex];
SPData.WrAddr = WAddr[VectorlndeX];
SPDataRdEnable = REn[\/ectorlndex];
SPData.WrEnable = WEn[VectorlndeX];
SPDatalndeant = 0;

SPData.SType = currentAIuType;

if (SPData.Phase == )
SPData.|nstStart = true;

else

SPData.|nstStart = false;

switch(Vector|ndex)
{
case 0:

SPData.|nstruction = |nstruction.SrcASe| + (Instruction.SourceANegate << 2) +
(Instruction.SourceASwizzle << 4) +
((Instruction.VectorResultPointer&OX3F)<<12);

break;
case 1:

SPData.|nstruction = |nstruction.SchSe| + (Instruction.SourceBNegate << 2) +
(Instruction.SourceBSwizzle << 4) +
((Instruction.ScalarResultPointer&Ox3F)<<12);

break;
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case 2:

SPData.lnstruction = lnstruction.SrcCSel + (Instruction.SourceCNegate << 2) +
(Instruction.SourceCSwizzle << 4);

break;
case 3:

SPData.lnstruction = lnstruction.VectorOpcode + (Instruction.ScalarOpcode << 5)+
(|nstruction.VectorCIamp << 11) +

(Instruction.ScalarClamp << 12)+
(Instruction.VectorWriteMask << 13) +

(Instruction.ScalarWriteMask << 17);
break;

}

// do all the static stuff for next turn

if (Instruction.SrcASel)
Constants.GetConstValue(constant[Vector|ndex],SrcAAddr);

else if (Instruction.SchSel)
ConstantsGetConstValue(constant[Vector|ndex],SchAddr);

else if (Instruction.SrcCSel)
ConstantsGetConstValue(constant[Vectorlndex],SrcCAddr);

for (i=0;i<4;i++)
PMasks[\/ector|ndex][i] = valids[i];

switch(Vector|ndex)
{
case 0: // interpolator and SRC A

CMask[VectorlndeX] = 127-SrcAAddr;
RAddr[Vector|ndex] = SrcAAddr;
WAddr[VectorlndeX] = 126-SrcAAddr;
REn[Vector|ndex] = true;
WEn[Vectorlndex] = false;
break;

case 1: //TX and SRC B

CMask[\/ectorlndex] = 125-SchAddr;
RAddr[Vector|ndex] = SchAddr;
WAddr[Vectorlndex] = 124-SchAddr;
REn[Vector|ndex] = true;
WEn[Vectorlndex] = false;
break;

case 2: // Vector and SRC C

CMask[Vectorlndex] = lnstruction.VectorWriteMask;
RAddr[Vector|ndex] = SrcCAddr;
REn[Vector|ndex] = false; // no tree operands for now
// if exporting

if (((lnstruction.VectorResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[VectorlndeX] = lnstruction.VectorResultPointer & 0x3F;
WEn[Vectorlndex] = false;

}
else {
WAddr[Vectorlndex] = DestAddr;
WEn[Vectorlndex] = true;

}
break;

case 3: // Scalar and TX

CMask[VectorlndeX] = |nstruction.ScalarWriteMask;

16
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RAddr[VectorlndeX] = 123-ScalarDestAddr;
REn[Vector|ndex] = false;
// if exporting

if (((lnstruction.ScalarResultPointer & 0x80) != O) && (lnstruction.PredicateSelect < 2)) {
WAddr[Vectorlndex] = |nstruction.ScalarResuItPointer & 0X3F;
WEn[Vector|ndeX] = false;

}

else {
WAddr[Vectorlndex] = ScalarDestAddr;
WEn[Vector|ndex] = true;

}*/ // No scalar ops for now...
break;

}

pSQ_SP->SetAII(&SPData);
pSQ_SP->SetValid(true);

/+

// Real Emulator code

CurrentRegFile = Reg;
OutputBuffer = &ExportBuffer;
CurrentAlulnstruction 2 Instruction;
AluPhase = Vectorlndex;

AluType = currentAIuType;
Predicates = &(pred[0]);
validBits= &(valids[0]);
Aluld = idAIu;

ExecuteAIu|nstruction(SrcAAddr,SchAddr,SrcCAddr,DestAddr,Sca|arDestAddr,Vector|ndex,Con
stants);

//-------------------------------------------------------------------------------

void SQ_ALU::ExecuteAlulnstruction(uint32 SrcAPtr, uint32 SchPtr, uint32 SrcCPtr, uint32 DstPtr,uint32
ScalarDestPtr,uint32 Vectorlndex,const CStore & Constants)
{

VectorData SrcA, Sch, SrcC, VectorResult;
mfloat<8,23,128> ScalarResult;

VectorData TempSrc;

bool error = false;

const RegVect* InputVectorA;
const RegVect* InputVectorB;
const RegVect* InputVectorC;

Constant ConstantA;
Constant ConstantB;
Constant ConstantC;

RegisterFi|eRead(SrcAPtr,SchPtr,SrcCPtr,|nputVectorA,lnputVectorB,lnputVectorC);

//Going through all the 128bit vectors (16 of them)
//They all have the same relative location inside their respective GPR files.
for(uint8 vector_id = O; vector_id <16 ; vector_id ++)

17
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SrcAReg.red =|nputVectorA[vector_id].field[0];
SrcAReg.green =lnputVectorA[vector_id].field[1];
SrcAReg.blue =InputVectorA[vector_id].field[2];
SrcARegalpha =lnputVectorA[vector_id].field[3];

SchReg.red =|nputVectorB[vector_id].field[O];
SchReggreen =lnputVectorB[vector_id].field[1];
SchReg.blue =lnputVectorB[vector_id].field[2];
SchReg.alpha =|nputVectorB[vector_id].field[3];

SrcCReg.red =|nputVectorC[vector_id].field[0];
SrcCReg.green =|nputVectorC[vector_id].field[1];
SrcCReg.blue =|nputVectorC[vector_id].field[2];
SrcCReg.alpha =|nputVectorC[vector_id].field[3];

// set the constants

int cAddr =0;

// relative addressing of the constant store via address register
if (CurrentAlulnstruction.SrcASel == 0 && CurrentAlulnstruction.ConstanORelAbs ==

CurrentAluInstruction.RelativeAddrRegSel == )

cAddr = SrCAPtr + ConstantOffsets[AluPhase*16+vector_id];
if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getSlZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id %4))&OXO1)
error = true;

if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getSlZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}

Constants.GetConstValue(ConstantA, cAddr);
}
else

Constants.GetConstValue(ConstantA,SrcAPtr);

// relative addressing of the constant store via address register
if (((CurrentAIu|nstruction.SrcASel == 1 &&

CurrentAlulnstruction.SchSel == 0 && CurrentAlulnstruction.ConstanORelAbs

(CurrentAlulnstruction.SrCASel == 0 &&

18
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CurrentAlu|nstruction.SchSel == 0 && CurrentAluInstruction.Constan1RelAbs

CurrentAIuInstruction.RelativeAddrRegSel == )

cAddr = SchPtr + ConstantOffsets[AIuPhase*16+vector_id];

if (AluType == VERTEX)
{

if ((cAddr — sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getS|ZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id %4))&Ox01)
error = true;

if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getS|ZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id %4))&0x01)
error = true;

}

Constants.GetConstVaIue(ConstantB, cAddr);
}
else

Constants.GetConstValue(ConstantB, SchPtr);

// relative addressing of the constant store via address register
if (((CurrentAlu|nstruction.SrcASeI == 1 &&

CurrentAlu|nstruction.SchSe| == 1 &&
CurrentAlu|nstruction.SrcCSe| == 0 && CurrentAIuInstruction.ConstanORelAbs

((CurrentAlulnstruction.SrCASeI == 0 ||
CurrentAlu|nstruction.SchSe| == ) && CurrentAIuInstruction.SrcCSel ==
&& CurrentAIu|nstruction.Constan1RelAbs == )) &&
CurrentAlu|nstruction.ReIativeAddrRegSeI == 1)

cAddr = SrcCPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getS|ZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;
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if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getS|ZE())

{
cAddr = 0;

if (((valid Bits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}

Constants.GetConstValue(ConstantC, cAddr);
}
else

Constants.GetConstValue(ConstantC, SrcCPtr);

// there was an addressing error
if (error)
{

if (sq->SQ DEBUG MISC 0.getDB PROB ON())
{

 

if (sq->SQ_DEBUG_M|SC_0.getDB_PROB_COUNT() == )
{

sq->SQ_DEBUG_M|SC_O.setDB_PROB_COUNT(1);
sq->SQ_DEBUG_M|SC_0.setDB_PROB_ADDR(O);

}
else

sq->SQ_DEBUG_M|SC_0.setDB_PROB_COUNT(sq-
>SQ DEBUG MISC 0.getDB PROB COUNT()+1);

}
}

 

//muxing&swizz|ing&modification of input arguments
//-----------------------------------------------

uint32 SrcASeI,SrCBSeI,SrCCSeI;
SrcASel = CurrentAIu|nstruction.SrcASel;
SrCBSeI = CurrentAIu|nstruction.SchSel;
SrcCSel = CurrentAIulnstruction.SrcCSel;

uint8 SrcASeIReIAbs, SchSeIRelAbs,SrcCSelRelAbs;

SrcASelRelAbs = ((CurrentAIuInstruction.SourceARegPointer)>>6) & 0X01;
SchSelRelAbs = ((CurrentAIu|nstruction.SourceBRegPointer)>>6) & 0x01;
SrCCSeIReIAbs = ((CurrentAIulnstruction.SourceCRegPointer)>>6) & 0x01;

switch(SrcASel)
{
case NON_CONSTANT:

switch(SrcASelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcA.a|pha = SrcAReg.alpha;
SrcA.red = SrcAReg.red;
SrcA.green = SrcAReg.green;
SrcA.blue = SrcAReg.blue;
break;

 



LG Ex. 1002, pg 156

break;

}
break;

case CONSTANT:

SrcA.red = ConstantA.field[O];
SrcA.green = ConstantA.field[1];
SrcA.blue = ConstantA.field[2];
SrcA.aIpha = ConstantA.field[3];
break;

switch(SchSel)
{
case NON_CONSTANT:

switch(SchSelRe|Abs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

Schalpha = SchRegalpha;
Sch.red = SchReg.red;
Sch.green = SchReg.green;
Schblue = SchRegblue;
break;

default:

break;
}
break;

case CONSTANT:

Sch.red = ConstantB.field[O];
SrCB.green = ConstantB.field[1];
Sch.blue = ConstantB.field[Z];
Sch.a|pha = ConstantB.field[3];
break;

}

switch(SrcCSe|)
{
case NON_CONSTANT:

switch(SrcCSe|RelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcC.aIpha = SrcCReg.a|pha;
SrcC.red = SrcCReg.red;
SrcC.green = SrcCReg.green;
SrcC.b|ue = SrcCRegblue;
break;

default:

break;

}break;
case CONSTANT:

SrcC.red = ConstantC.fieId[O];
SrcC.green = ConstantC.fieId[1];
SrcC.b|ue = ConstantC.fieId[2];
SrcC.aIpha = ConstantC.fieId[3];

21
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break;

}

//swizz|ing of arguments
uint8 SrcASwizzIeAlpha = CurrentAlu|nstruction.SourceASwizzle >> 6;
uint8 SrcASwizzleBlue = (CurrentAIu|nstruction.SourceASwizzle >> 4)&Ox3;
uint8 SrcASwizzleGreen = (CurrentAlu|nstruction.SourceASwizzle >>2)&0X3;
uint8 SrcASwizzleRed = (CurrentAIuInstruction.SourceASwizzle)&0x3;

TempSrcalpha = SrcA.aIpha;
TempSrc.red = SrcA.red;
TempSrc.green =SrcA.green;
TempSrc.b|ue= SrcA.que;

switch(SrcASwizzleAlpha)
{
case 0:break;
case 1:

SrcA.aIpha = TempSrc.red;
break;

case 2:

SrcA.aIpha = TempSrc.green;
break;

case 3:

SrcA.aIpha = TempSrc.b|ue;
break;

}

switch(SrcASwizz|eRed)
{
case 0:break;
case 1:

SrcA.red = TempSrc.green;
break;

case 2:

SrcA.red = TempSrc.b|ue;
break;

case 3:

SrcA.red = TempSrc.aIpha;
break;

}

switch(SrcASwizzleGreen)
{
case 0:break;
case 1:

SrcA.green = TempSrc.b|ue;
break;

case 2:

SrcA.green = TempSrcalpha;
break;

case 3:

SrcA.green = TempSrc.red;
break;
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switch(SrcASwizzleBlue)
{
case 0:break;
case 1:

SrcAblue = TempSrc.alpha;
break;

case 2:

SrcA.blue = TempSrc.red;
break;

case 3:

SrcAblue = TempSrc.green;
break;

}
//----------------------------------------------

TempSrc.alpha = Sch.aIpha;
TempSrc.red = Sch.red;
TempSrc.green =Sch.green;
TempSrc.b|ue= Sch.que;

uint8 SchSwizzleAlpha = (CurrentAIu|nstruction.SourceBSwizzle >> 6)&0x3;
uint8 SchSwizzIeBlue = (CurrentAIu|nstruction.SourceBSwizzle >> 4)&0x3;
uint8 SchSwizzleGreen = (CurrentAlu|nstruction.SourceBSwizzle >>2)&0x3;
uint8 SchSwizzleRed = (CurrentAlulnstruction.SourceBSwizzle)&0X3;

switch(SchSwizzleAIpha)
{
case 0:break;
case 1:

Sch.a|pha = TempSrc.red;
break;

case 2:

SrCB.aIpha = TempSrc.green;
break;

case 3:

SrCB.aIpha = TempSrc.b|ue;
break;

}

switch(SchSwizzleRed)
{
case 0:break;
case 1:

Sch.red = TempSrc.green;
break;

case 2:

Sch.red = TempSrc.b|ue;
break;

case 3:

Sch.red = TempSrc.alpha;
break;

}

switch(SchSwizzleGreen)
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{
case 0:break;
case 1:

Sch.green = TempSrcblue;
break;

case 2:

Sch.green = TempSrc.alpha;
break;

case 3:

Sch.green = TempSrc.red;
break;

switch(SchSwizzleBlue)
{
case 0:break;
case 1:

Sch.blue = TempSrc.a|pha;
break;

case 2:

Sch.que = TempSrc.red;
break;

case 3:

Sch.que = TempSrc.green;
break;

}

//-------------------------------------------------------—

TempSrcalpha = SrcC.a|pha;
TempSrc.red = SrcC.red;
TempSrc.green =SrcC.green;
TempSrcblue: Srchlue;

uint8 SrcCSwizzleAlpha = CurrentAlu|nstruction.SourceCSwizzle >> 6;
uint8 SrcCSwizzleBlue = (CurrentAIu|nstruction.SourceCSwizz|e >> 4)&0x3;
uint8 SrcCSwizzleGreen = (CurrentAlu|nstruction.SourceCSwizzle >>2 )&Ox3;
uint8 SrcCSwizzleRed = (CurrentAIuInstruction.SourceCSwizzle)&Ox3;

switch(SrcCSwizzleAlpha)
{
case 0:break;
case 1:

SrcC.a|pha = TempSrc.red;
break;

case 2:

SrcC.a|pha = TempSrc.green;
break;

case 3:

SrcC.a|pha = TempSrcblue;
break;

switch(SrcCSwizzleRed)
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{
case O:break;
case 1:

SrcC.red = TempSrc.green;
break;

case 2:

SrcC.red = TempSrcblue;
break;

case 3:

SrcC.red = TempSrc.alpha;
break;

}

switch(SrCCSwizzleGreen)
{
case O:break;
case 1:

SrcC.green = TempSrcblue;
break;

case 2:

SrcC.green = TempSrc.alpha;
break;

case 3:

SrcC.green = TempSrc.red;
break;

switch(SrcCSwizzleBlue)
{
case O:break;
case 1:

SrcC.b|ue = TempSrc.alpha;
break;

case 2:

SrcC.b|ue = TempSrc.red;
break;

case 3:

SrcC.b|ue = TempSrc.green;
break;

}

// ABS MODIFIER

uint8 SrcAAbs = (CurrentAlu|nstruction.SourceARegPointer>>7)&0x01;
uint8 SchAbs = (CurrentAlu|nstruction.SourceBRegPointer>>7)&0x01;
uint8 SrcCAbs = (CurrentAIu|nstruction.SourceCRegPointer>>7)&0x01;
uint8 CstOAbs = (CurrentAluInstruction.VectorResuItPointer>>7)&0X01;

if (SrcASel == NON_CONSTANT)
{

switch (SrcAAbs){
case NO_ABS_MOD:

break;

case ABS_MOD:
SrcA.red.abs();
SrcA.green.abs();
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SrcA.b|ue.abs();
SrcA.a|pha.abs();
break;

default:

break;

};

switch (CstOAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcA.red.abs();
SrcA.green.abs();
SrcA.blue.abs();
SrcA.a|pha.abs();
break;

break;

}

if (SchSel == NON_CONSTANT)
{

switch (SchAbs){
case NO_ABS_MOD:

break;

case ABS_MOD:
Sch.red.abs();
Sch.green.abs();
Sch.b|ue.abs();
Sch.a|pha.abs();
break;

break;

};
}
else if (SchSeI == CONSTANT)
{

switch (CstOAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

Sch.red.abs();
Sch.green.abs();
Sch.blue.abs();
Sch.a|pha.abs();
break;

break;

}

if (SrcCSel == NON_CONSTANT)
{
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switch (SrcCAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC.blue.abs();
SrcC.aIpha.abs();

PreviousScalar[Alu|d][Vector|ndex][vector_id].alpha.abs();
PreviousScalar[Alu |d][Vector|ndex][vector_id].red.abs();
PreviousScalar[Alu |d][Vector|ndex][vector_id] .green.abs();
PreviousScalar[Alu|d][\/ector|ndex][vector_id].blue.abs();
break;

break;

};
}
else if (SrcCSeI == CONSTANT)
{

switch (CstOAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC.que.abs();
SrcC.alpha.abs();

PreviousScalar[Alu|d][\/ector| ndex][vector_id].alpha.abs();
PreviousScalar[Alu|d][\/ector| ndex][vector_id].red.abs();
PreviousScalar[Alu|d][\/ector| ndex][vector_id].green.abs();
PreviousScalar[Alu|d][Vector|ndex][vector_id].blue.abs();
break;

break;

}

//---------------------------------------------

//negate input modifiers
uint8 SrcANegate= CurrentAIuInstruction.SourceANegate;
uint8 SchNegate= CurrentAIuInstruction.SourceBNegate;
uint8 SrcCNegate= CurrentAIuInstruction.SourceCNegate;

switch(SrcANegate){
case NIL:break;
case NEGATE:

SrcA.a|pha.neg();
SrcA.red.neg();
SrcA.green.neg();
SrcA.que.neg();
break;

break;
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switch(SrCBNegate){
case NIL:break;
case NEGATE:

Sch.alpha.neg();
Sch.red.neg();
Sch.green.neg();
Sch.blue.neg();
break;

break;

}

switch(SrcCNegate){
case NIL:break;
case NEGATE:

SrcC.alpha.neg();
SrcC.red.neg();
SrcC.green.neg();
SrcC.blue.neg();

PreviousScalar[Alu|d][Vectorlndex][vector_id].alpha.neg();
PreviousScalar[Aluld][\/ectorlndex][vector_id].red.neg();
PreviousScalar[Alu|d][Vect0rlndex][vector_id].green.neg();
PreviousScalar[Alu|d][\/ectorlndex][vector_id].blue.neg();
break;

break;

}

//---------------------------------------------------------

//Execute ALU opcode
ExecuteAlqucode(SrcA,Sch,SrcC,VectorResult,ScalarResult,vect0r_id);

// Clamp results if told to
VectorResult.red = Clamp(VectorResult.red,true);
VectorResult.green = Clamp(VectorResult.green,true);
VectorResult.blue = Clamp(VectorResult.blue,true);
VectorResult.alpha = Clamp(Vect0rResult.alpha,true);

ScalarResult = Clamp(ScalarResult,false);

//Save Previous Vector and Scalar

PreviousVect0r[Aluld][Vectorlndex][vector_id].alpha = VectorResult.alpha;
PreviousVector[Aluld][Vector|ndex][vector_id].red = VectorResult.red;
PreviousVector[Aluld][Vectorlndex][vector_id].green = VectorResult.green;
PreviousVector[Aluld][Vectorlndex][vector_id].blue = VectorResultblue;

PreviousScalar[Aluld][\/ectorlndex][vector_id].alpha = ScalarResult;
PreviousScalar[Aluld][\/ectorlndex][vector_id].red = ScalarResult;
PreviousScalar[Aluld][\/ectorlndex][vector_id].green = ScalarResult;
PreviousScalar[Aluld][\/ectorlndex][vector_id].blue = ScalarResult;

//------------------------------------------------------
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//Accumulate the result into an array of 16x128
VectorVector.Val[vector_id].field[0] =VectorResult.red;
VectorVector.Val[vector_id].field[1] =VectorResult.green;
VectorVector.Val[vector_id].field[2] =VectorResult.blue;
VectorVector.Val[vector_id].field[3] =VectorResult.alpha ;

ScalarVector.Val[vector_id].field[0] =ScalarResult;
ScalarVector.Val[vector_id].field[1] =ScalarResult;
ScalarVector.Val[vector_id].field[2] =ScalarResult;
ScalarVector.Val[vector_id].field[3] =ScalarResult;

//-------------------------------------------------------

//Exporting the results
bool Export = (CurrentAlulnstruction.ScalarResultPointer>>7)&Ox1;

if(Export)
{

// fog exports
if (((CurrentAlulnstruction.VectorResultPointer&0x3F) >= 16) &&

((CurrentAlulnstruction.VectorResultPointer&0x3F) < 20) &&
(Cu rrentAlu|nstruction.VectorWriteMask&OxO1) &&

(CurrentAlulnstruction.ScalarWriteMask&0x01))
{

unsigned int inVect;
unsigned int inFog;
unsigned int blended;

// RED

float value = VectorResult.red.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
value = ScalarResult.getReal();
inFog = *(reinterpret_cast<unsigned int*>(&value));
inFog = inFog >> 8;

blended = (inVect) | (inFog&Ox3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended red
OutputBuffer->values[vector_id].field[0] = value;

// GREEN

value = VectorResultgreen.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>6)&Ox3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended green
OutputBuffer->values[vector_id].field[1] = value;

// BLUE

value = VectorResult.blue.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>12)&Ox3F);
value = *(reinterpret_cast<float*>(&blended));
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// export blended blue
OutputBuffer->values[vector_id].fie|d[2] = value;

// ALPHA

value = VectorResultalpha.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>18)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended alpha
OutputBuffer->values[vector_id].field[3] = value;

// RED COMPONENT

if (CurrentAIu|nstruction.VectorWriteMask&OxO1 &&
Cu rrentAlu Instruction.ScalarWriteMask&OxO1 )

OutputBuffer->values[vector_id].field[0] = 1.0;
else if (CurrentAIu|nstruction.VectorWriteMask&OxO1)

OutputBuffer->va|ues[vector_id].field[0] = VectorResult.red;
else if (CurrentAIu|nstruction.ScalarWriteMask&0x01)

OutputBuffer->va|ues[vector_id].field[0] = ScalarResult;
// GREEN COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>1)&OXO1 &&
(CurrentAlulnstruction.ScalarWriteMask>>1)&0x01)

OutputBuffer->va|ues[vector_id].field[1] = 1.0;
else if ((CurrentAIuInstruction.VectorWriteMask>>1)&0X01)

OutputBuffer->va|ues[vector_id].field[1] = VectorResult.green;
else if ((CurrentAluInstruction.ScalarWriteMask>>1)&OXO1)

OutputBuffer->va|ues[vector_id].field[1] = ScalarResult;
// BLUE COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>2)&0X01 &&
(CurrentAlulnstruction.ScalarWriteMask>>2)&OxO1)

OutputBuffer->va|ues[vector_id].field[2] = 1.0;
else if ((CurrentAIulnstruction.VectorWriteMask>>2)&OxO1)

OutputBuffer->va|ues[vector_id].field[2] = VectorResultblue;
else if ((CurrentAlu|nstruction.ScalarWriteMask>>2)&0X01)

OutputBuffer->va|ues[vector_id].field[2] = ScalarResult;
// ALPHA COMPONENT

if ((CurrentAIu|nstruction.VectorWriteMask>>3)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>3)&OxO1)

OutputBuffer->va|ues[vector_id].field[3] = 1.0;
else if ((CurrentAIu|nstruction.VectorWriteMask>>3)&0x01)

OutputBuffer->va|ues[vector_id].field[3] = VectorResultalpha;
else if ((CurrentAlulnstruction.ScalarWriteMask>>3)&0x01)

OutputBuffer->va|ues[vector_id].field[3] = ScalarResult;
}

// predicate the exports here
int predValid;
int predicat;
intj;
for (int i=0;i<4;i++)
{
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predValid = validBits[i];
predicat = 0;

if (CurrentAlu|nstruction.PredicateSelect == )
{

for (j=0;j<4;j++)
predicat += (!(Predicates[i*4+j]))<<j;

predValid &= predicat;
}
else if (CurrentAlu|nstruction.PredicateSelect == )
{

for (j=0;j<4;j++)
predicat += Predicates[i*4+j]<<j;

predValid &= predicat;
}

OutputBuffer->va|ids[i]=predVa|id;
}
OutputBuffer->valid = true;

}
}

//write the result into register files
RegisterFileWrite(CurrentAIuInstruction.VectorWriteMask,CurrentAIuInstruction.ScalarWriteMask,

ScalarDestPtrDstPtr);
}

//-----------------------------------------------------------------------------------------------------------

void SQ_ALU::ExecuteAIqucode(VectorData SrcA, VectorData Sch, VectorData SrcC, VectorData &
VectorResult,mfloat<8,23,128> & ScalarResult, int i)
{

mfloat<8,23,128> red;

mfloat<8,23,128> green;
mfloat<8,23,128> blue;
mfloat<8,23,128> alpha;

mfloat<8,23,128> one;

one.putReal((float)1.0);
mfloat<8,23,128> zero;

zero.putReaI((float)0.0);
mfloat<8,23,128> two;

two.putReal((float)2.0);

Coissuedlnstruction = true;

//Executing Vector Opcode
switch(CurrentAlu|nstruction.VectorOpcode)
{
case ADDv:

{
if(sq->isHardwareAccurate())
{

VectorResuIt.alpha = multiply_add(SrcA.alpha,one,SrCB.alpha);
VectorResuIt.red = multip|y_add(SrcA.red,one,Sch.red);
VectorResuIt.green = multiply_add(SrcA.green,one,Sch.green);
VectorResuIt.que = multip|y_add(SrCA.blue,one,Sch.blue);
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VectorResult.alpha.add(SrcA.a|pha,Sch.aIpha);
VectorResult.red.add(SrcA.red,Sch.red);
VectorResult.green.add(SrcA.green,Sch.green);
VectorResult.blue.add(SrcA.blue,Sch.blue);

}
break;

}
case MAXv:

VectorResult.alpha.max(SrcA.alpha,Sch.alpha);
VectorResult.red.max(SrCA.red,SrCB.red);
VectorResult.green.max(SrcA.green,Sch.green);
VectorResult.blue.max(SrcA.blue,Sch.que);
break;

case MINv:

VectorResult.alpha.min(SrcA.a|pha,Sch.alpha);
VectorResult.red.min(SrcA.red,Sch.red);
VectorResult.green.min(SrcA.green,Sch.green);
VectorResult.blue.min(SrcA.b|ue,Sch.blue);
break;

case MULv:

if(sq->isHardwareAccurate())
{

VectorResult.alpha = multiply_add(SrcA.a|pha, Sch.a|pha,zero);
VectorResult.red = multip|y_add(SrcA.red, Sch.red,zero);
VectorResult.green = multiply_add(SrcA.green, Sch.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, Sch.blue,zero);

}
else

{
VectorResult.alpha.mul(SrcA.a|pha,Sch.alpha);
VectorResult.red.mul(SrcA.red,Sch.red);
VectorResult.green.mu|(SrcA.green,Sch.green);
VectorResult.blue.mul(SrcA.blue,Schblue);

}
break;

case SETEV:

VectorResult.alpha = (SrcA.aIpha == Sch.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red == Sch.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green == Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue == Sch.b|ue) ? 1.0:0.0;
break;

case SETGTV:

VectorResult.alpha = (SrcA.aIpha > Sch.a|pha) ? 1.0:0.0;
VectorResult.red = (SrcA.red > Schred) ? 1.0:0.0;
VectorResult.green = (SrcA.green > Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue > Schblue) ? 1.0:0.0;
break;

case SETGTEV:

VectorResult.alpha = (SrcA.aIpha >= Sch.aIpha) ? 1.0:0.0;
VectorResultred = (SrcAred >= Sch.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green >= Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue >= Schblue) ? 1.0:0.0;
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break;
case SETNEv:

VectorResult.alpha = (SrcA.alpha != Sch.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red != Sch.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green !2 Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue != Schblue) ? 1.0:0.0;
break;

case FRACV:

VectorResult.alpha.sub(SrcA.alpha,(float)((int)SrcA.alpha.getReal()));
VectorResult.red.sub(SrcA.red,(float)((int)SrcA.red.getReal()));
VectorResult.green.sub(SrCA.green,(float)((int)SrcA.green.getReal()));
VectorResult.blue.sub(SrcA.blue,(float)((int)SrcA.blue.getReal()));
break;

case TRUNCV:

VectorResult.alpha = (float)((int)SrcAalpha.getReal());
VectorResult.red = (float)((int)SrcA.red.getReal());
VectorResult.green = (float)((int)SrcA.green.getReal());
VectorResult.blue = (float)((int)SrcA.blue.getReal());
break;

case FLOORV:

if (SrcA.alpha.getReal() >= 0)
VectorResult.alpha = (float)((int)SrcA.alpha.getReal());

else

VectorResult.alpha = (float)((int)SrcA.a|pha.getReal())-1.0f;
if (SrcA.red.getReal() >= 0)

VectorResult.red = (float)((int)SrcA.red.getReal());
else

VectorResult.red = (float)((int)SrcA.red.getReal())-1.0f;
if (SrcA.green.getReal() >= 0)

VectorResult.green = (float)((int)SrcA.green.getReal());
else

VectorResult.green = (float)((int)SrcA.green.getReal())-1.0f;
if (SrcA.b|ue.getReal() >= 0)

VectorResult.blue = (float)((int)SrcA.blue.getReal());
else

VectorResult.blue = (float)((int)SrcA.blue.getReal())-1.0f;
break;

case MULADDV:

if(sq->isHardwareAccurate())
{

VectorResult.alpha = multiply_add(SrcA.alpha, Sch.alpha,SrcC.alpha);
VectorResult.red = multiply_add(SrcA.red, Sch.red,SrCC.red);
VectorResult.green = multiply_add(SrcA.green, Sch.green,SrcC.green);
VectorResult.blue = multiply_add(SrcA.blue, Sch.blue,SrcC.blue);

VectorResult.alpha.mad(SrcA.alpha,Sch.alpha,SrcC.alpha);
VectorResult.red.mad(SrcA.red,Sch.red,SrCC.red);
VectorResult.green . mad(SrcA.green,Sch .green,SrcC.green);
VectorResult.blue.mad(SrcA.blue,Sch.blue,SrcC.blue);

}
Coissuedlnstruction = false;
break;

case DOT4v:

if(sq->isHardwareAccurate())
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VectorResult.alpha = multiply_add(SrcA.alpha, Sch.a|pha,zero);
VectorResult.red = multiply_add(SrcAred, SrCB.red,zero);
VectorResult.green = multiply_add(SrcA.green, Sch.green,zero);
VectorResult.blue = multiply_add(SrcA.b|ue, Sch.blue,zer0);

VectorResult.alpha = multiply_add(one,VectorResult.a|pha,Vect0rResult.red);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,Vect0rResult.green);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,Vect0rResult.blue);
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

alpha.mul(SrcA.alpha, Sch.a|pha);
red.mu|(SrCA.red, Sch.red);
green.mul(SrcA.green, Schgreen);
blue.mul(SrcA.blue, Sch.b|ue);

VectorResult.alpha.add(a|pha,red);
VectorResult.alpha +=green;
VectorResult.alpha +=b|ue;
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

}
break;

case DOT3V:

if(sq->isHardwareAccurateO)
{

VectorResult.red = multiply_add(SrcA.red, Sch.red,zero);
VectorResult.green = multiply_add(SrcA.green, Sch.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrCB.blue,zero);

VectorResult.red = mu|tip|y_add(one,VectorResult.red,VectorResu|t.green);
VectorResult.red = mu|tip|y_add(one,VectorResult.red,VectorResu|t.blue);
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

VectorResult.alpha = VectorResult.red;

red.mul(SrcA.red,Sch.red);
green.mu|(SrCA.green, Sch.green);
blue.mul(SrcA.blue,Sch.b|ue);
VectorResult.red.add(red,green);
VectorResult.red += blue;
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

}
break;

case CNDEv:

VectorResult.alpha = (SrcA.alpha == 0.0) ? Sch.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red 22 0.0) ? SrCB.red:SrcC.red;
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VectorResult.green = (SrcA.green == 0.0) ? Sch.green:SrcC.green;
VectorResult.b|ue = (SrcA.b|ue == 0.0) ? Sch.que:SrcC.blue;
break;

case CNDGTv:

VectorResult.alpha = (SrcA.aIpha > 0.0) ? Sch.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red > 0.0) ? SrCB.red:SrcC.red;
VectorResult.green = (SrcA.green > 0.0) ? Sch.green:SrcC.green;
VectorResult.b|ue = (SrcA.b|ue > 0.0) ? Sch.que:SrcC.blue;
break;

case CNDGTEV:

VectorResult.alpha = (SrcA.aIpha >= 0.0) ? Sch.alpha:SrCC.alpha;
VectorResult.red = (SrcA.red >= 0.0) ? Sch.red:SrcC.red;
VectorResult.green = (SrcA.green >= 0.0) ? Sch.green:SrcC.green;
VectorResult.b|ue = (SrcA.b|ue >= 0.0) ? Sch.b|ue:SrcC.blue;
break;

case CUBEV:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.b|ue)
{

VectorResult.red = SrcA.red;

if (SrcA.red >= 0)

VectorResult.green =0;
VectorResult.alpha = -SrcA.blue;
VectorResult.b|ue = -SrcA.green;

VectorResult.green =1;
VectorResult.alpha = SrcA.b|ue;
VectorResult.b|ue = -SrcA.green;

}
else if (SrcA.green > SrcA.b|ue)
{

VectorResult.red = SrcA.green;
if (SrcA.green >= 0)

VectorResult.green =2;
VectorResult.alpha = SrcA.red;
VectorResult.b|ue = SrcA.b|ue;

VectorResult.green =3;
VectorResult.alpha = SrcA.red;
VectorResult.b|ue = -SrcA.blue;

VectorResult.red = SrcA.b|ue;

if (SrcA.b|ue >= 0)
{

VectorResult.green =4;
VectorResult.alpha = SrcA.red;
VectorResult.b|ue = -SrcA.green;
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VectorResult.green =5;
VectorResult.alpha = -SrcA.red;
VectorResult.blue = -SrcA.green;

}
}
if(sq->isHardwareAccurateO)

VectorResult.red = mu|tiply_add(VectorResult.red,two,zero);
}

{

}
break;

case MAX4v:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.que && SrcA.red > SrcA.alpha)
VectorResult.alpha = SrcA.red;

else if (SrcA.green > SrcA.blue && SrcA.green > SrcA.alpha)
VectorResult.alpha = SrcA.green;

else if (SrcAblue > SrcA.alpha)
VectorResult.alpha = SrcA.blue;

VectorResult.red.mul(2,VectorResult.red);

else

VectorResult.alpha = SrcA.alpha;

VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;
break;

case DOT2ADDV:

if(sq->isHardwareAccurate())
{

VectorResult.red = multiply_add(SrcA.red, Sch.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrCB.green,zer0);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,Vect0rResu|t.red,SrcC.red);
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

VectorResult.red.mul(SrcA.red,Sch.red);
VectorResult.green.mul(SrcA.green,Sch.green);
VectorResult.red.add(VectorResult.red,VectorResultgreen);
VectorResult.red.add(VectorResult.red,SrcC.red);

VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

}
break;

case PRED_SETE_PUSHV:
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// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) == )
{

if (Sch.alpha.getReal() == 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;

case PRED_SETGT_PUSHV:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1)== )
{

if (Sch.aIpha.getReal() > 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;

case PRED_SETGTE_PUSHV:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&OXO1) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) == )
{

if (Sch.aIpha.getReal() >= 0.0f && SrcA.red.getRealO == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;

case PRED_SETNE_PUSHV:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAIu|nstruction.PredicateSelect»1) == )
{

if (Sch.aIpha.getReal() != 0.0f && SrcA.red.getRealO == 0.0f)
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Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;
case KILLEv:

// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) == )
{

if (SrcA.aIpha.getReal() == Sch.aIpha.getReal() && SrcA.red.getReal() ==
Sch.red.getReal() &&

SrcA.green.getReal() == Sch.green.getReal() && SrcA.b|ue.getReal()
== Sch.b|ue.getReal())

{

}
validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLGTV:

// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect»1) == )
{

if (SrcA.aIpha.getReal() > Sch.alpha.getReal() && SrcA.red.getReal() >
Sch.red.getReal() &&

SrcA.green.getReal() > Sch.green.getReal() && SrcA.b|ue.getReal() >
Sch.blue.getReal())

validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLGTEV:

// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) == )
{

if (SrcA.aIpha.getReal() >= Sch.alpha.getReal() && SrcA.red.getReal() >=
Sch.red.getReal() &&

SrcA.green.getReal() >= Sch.green.getRea|() && SrcA.b|ue.getReal()
>= Sch.blue.getReal())

{

}
validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLNEv:

// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&OxO1) == Predicates[i] ||
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(CurrentAlulnstruction.PredicateSelect>>1) == )
{

Sch.red.getReal() &&
if (SrcA.alpha.getReal() != Sch.alpha.getReal() && SrcA.red.getReal() !=

SrcA.green.getReal() !2 Sch.green.getReal() && SrcA.b|ue.getReal() !2
Sch.blue.getReal())

validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case MOVAV:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect»1) == )
{

}
VectorResult.red = SrcA.red;

VectorResultgreen = SrcA.green;
VectorResultblue = SrcA.b|ue;

VectorResult.alpha = SrcA.a|pha;
break;

case DSTv:

VectorResult.red = 1.0f;

if(sq->isHardwareAccurate())
VectorResultgreen = multiply_add(SrcA.green, Sch.green,zero);

ConstantOffsets[i+AluPhase*16] = floor(SrcA.alpha.getReal()+0.5);

else

VectorResult.green.mul(SrcA.green,Sch.green);
VectorResult.blue = SrcA.b|ue;

VectorResult.alpha = Sch.alpha;
break;

default:

std::cerr << "Unsuported Vector Opcode in SP: " << CurrentAlulnstruction.VectorOpcode
<< std::endl;

}

//Executing Scalar Opcode
//Note: There is a coissue only when vector opcode uses two sources or less

nanCheck nanValue;
Vector4 result,in;

if(Coissuedlnstruction)
{

switch(CurrentAlulnstruction.ScalarOpcode)
{
case ADDS:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,one,SrcC.red);

else

ScalarResult.add(SrcC.alpha,SrcC.red);
break;

case ADD_PREVs:
if(sq->isHardwareAccurate())
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ScalarResult =

multiply_add(SrcC.alpha,one,PreviousScalar[Aluld][AluPhase][i].red);
else

ScalarResult.add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

case MULs:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,SrcC.red,zero);

else

ScalarResult.mul(SrcC.alpha,SrcC.red);
break;

case MUL_PREVs:
if(sq->isHardwareAccurate())

ScalarResult =

multiply_add(SrcC.alpha,PreviousScalar[AIuld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][A|uPhase][i].red);
break;

case MUL_PREV25:
nanValuef = PreviousScalar[Aluld][AluPhase][i].red.getReal();
if (nanValue.u == OXFF7FFFFF || nanValue.u == 0XFF800000 ||

SrcC.red.getReal() <= 0)
{

nanValue.u = OXFF7FFFFF;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
ScalarResult =

multip|y_add(SrcC.a|pha,PreviousScalar[AIuld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][A|uPhase][i].red);
}
break;

case Mle:

ScalarResultmin(SrcC.alpha,SrcC.red);
break;

case MAXs:

ScalarResult.max(SrcC.alpha,SrcC.red);
break;

case SETEs:

ScalarResult = (SrcC.alpha == 0.0) ? 1.0:0.0;
break;

case SETNEs:

ScalarResult = (SrcC.alpha !2 0.0) ? 1.0:0.0;
break;

case SETGTs:

ScalarResult = (SrcC.alpha > 0.0) ? 1.0:0.0;
break;

case SETGTEs:

ScalarResult= (SrcC.alpha >= 0.0) ? 1.0:0.0;
break;

case FRACs:

ScalarResult.sub(SrcC.alpha,(float)((int)SrcC.alpha.getReal()));
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break;
case TRUNCs:

ScalarResult= (float)((int)SrcC.alpha.getReal());
break;

case FLOORS:

if (SrcC.a|pha.getReal() > O)
ScalarResult = (float)((int)SrcC.alpha.getRealO);

else

ScalarResult = (float)((int)SrcC.alpha.getReaI())-1.0f;
break;

case EXP_IEEE:
nanValue.f = SrcC.alpha.getReaI();
// 0

if (SrCC.alpha.getReaI() == 0.0f)
{

}
// NAN

else if (nanValue.f !2 nanValue.f)
{

}
// + INF

else if (nanValue.u == 0X7F800000)
{

}
//- INF

else if (nanValue.u == OXFF8000OO)
{

}
// + MAX_F LT
else if (nanValue.u == OX7F7FFFFF)
{

ScalarResult = 1.0f;

ScalarResult = nanValue.f;

ScalarResult = nanValue.f;

ScalarResult = 0.0f;

nanValue.u = 0X7F800000;
ScalarResult = nanVaIue.f;

}
// - MAX_F LT
else if (nanValue.u == 0XFF7FFFFF)
{

}

{

ScalarResult = 0.0f;

if(sq->isHardwareAccurate())
{

in.X = SrCC.alpha.getReal();
mathScalar->ExpBaseZFullDX4(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = pow(2,SrcC.a|pha.getReal());
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break;
case LOG_CLAMP:

nanValue.f = SrcC.alpha.getReal();
// 0

if (SrcC.alpha.getReal() == 0.0f)
{

nanValue.u = OXFF7FFFFF;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
//+ INF

else if (nanValue.u == OX7F800000)
{

}
// - INF

else if (nanValue.u == OXFF800000)
{

ScalarResult = nanValue.f;

ScalarResult = nanValue.f;

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
// neg
else if (nanValue.f < 0)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar—>LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = log(SrCC.alpha.getReal())/log(2);

}
break;

case LOG_IEEE:
nanValue.f = SrcC.alpha.getReal();
// 0

if (SrCC.alpha.getReal() == 0.0f)
{

nanValue.u = OXFF800000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{
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ScalarResult = nanValue.f;

}
// + INF

else if (nanValueu == 0X7F8000OO)
{

}
//- INF

else if (nanValueu == OXFFSOOOOO)
{

ScalarResult = nanValue.f;

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

}
// neg
else if (nanValue.f < O)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())

in.x = SrcC.a|pha.getReal();
mathScalar—>LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = Iog(SrcC.alpha.getReal())/Iog(2);

}
break;

case RECIP_CLAMP:
nanValue.f = SrcC.a|pha.getReal();
// + 0

if (nanValueu == OXOOOOOOOO)
{

nanValue.u = OXTFTFFFFF;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValueu == 0x80000000)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
//+ INF

else if (nanValue.u == 0X7F800000)
{

ScalarResult = nanValue.f;

nanValueu = OX8000OOOO;
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ScalarResult = nanValue.f;

}
// - INF

else if (nanValue.u == OXFFBOOOOO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.X);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrcC.a|pha);
break;

case REC|P_FF:
nanValue.f = SrcC.a|pha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValueu = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == OX80000000)
{

nanValueu = 0x80000000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f !2 nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F800000)
{

ScalarResult = nanValue.f;

nanValueu = 0x80000000;
ScalarResult = nanValue.f;

}
//- INF

else if (nanValue.u == OXFF8000OO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurateO)
{

in.x = SrCC.a|pha.getReal();
mathScalar->RecipFF(&result.x,&in.x);
ScalarResult = result.x;

44

 



LG Ex. 1002, pg 180

else

ScalarResult.div(1.0,SrcC.alpha);
}
break;

case REC|P_|EEE:
nanValue.f = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0xFF800000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F8000OO)
{

ScalarResult = nanValue.f;

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
// - INF

else if (nanValue.u == OXFF8000OO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.X);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrCC.alpha);
}
break;

case RECIPSQ_CLAMP:
nanValue.f = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = OX7F7FFFFF;
ScalarResult = nanValue.f;
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else if (nanValueu == 0x80000000)
{

nanValueu = 0XFF7FFFFF;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
//+ INF

else if (nanValueu == 0X7F800000)
{

ScalarResult = nanValue.f;

nanValueu = 0x00000000;
ScalarResult = nanValue.f;

}
// - INF

else if (nanValueu == OXFF800000)
{

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

}
// -

else if (nanValue.f < 0.0f)
{

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

}
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->ReciqurtFF(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
break;

case RECIPSQ_FF:
nanValue.f = SrCC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValueu = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == 0x80000000)
{

nanValueu = OXBOOOOOOO;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}

ScalarResult = nanValue.f;
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// + INF

else if (nanValue.u == 0X7F800000)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
//- INF

else if (nanValue.u == OXFFBOOOOO)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
//-

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReaI();
mathScalar->ReciqurtFF(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReaI());
}
break;

case RECIPSQ_IEEE:
nanValuef = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = OX7F8000OO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == OX80000000)
{

nanValue.u = 0xFF800000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F800000)
{

ScalarResult = nanValue.f;

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - INF
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else if (nanValueu == 0XFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
// -

else if (nanValue.f < 0.0f)
{

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->ReciqurtFF(&result.x,&in.X);
ScalarResult = resultx;

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;

case MOVAs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == )
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal()+O.5);

ScalarResult = SrcCalpha;
break;

case MOVA_FLOORs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) == )
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal());

ScalarResult = SrcC.alpha;
break;

case SUBS:

if(sq->isHardwareAccurate())
{

green = -1.0f;
ScalarResult = multiply_add(SrcC.red,green,SrcC.a|pha);

}
else

ScalarResult.sub(SrcC.a|pha,SrcC.red);
break;

case SUB_PREVs:
if(sq->isHardwareAccurate())
{

green 2 -1.0f;
ScalarResult =

multiply_add(PreviousScalar[Aluld][AluPhase][i].red,green,SrcC.alpha);
}
else

ScalarResult.sub(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;
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case PRED_SETEs:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIu|nstruction.PredicateSelect>>1) == )
{

if (SrcC.a|pha.getReal() == 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SETGTs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) == )
{

if (SrcC.a|pha.getReal() > 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SETGTEs:

// Check for predication
if ((CurrentAIulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect>>1) == )
{

if (SrcC.alpha.getReal() >= 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SETNEs:

// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAIu|nstruction.PredicateSelect>>1) == )
{
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if (SrcC.alpha.getReal() != 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SET_INVs:

// check for predication
if ((CurrentAluInstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == )
{

if (SrcC.red.getReal() == 1.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
if (SrcC.red.getReal() == 0.0f)

ScalarResult = 1.0f;
else

ScalarResult = SrcC.red.getReal();

}
break;

case PRED_SET_POPs:
// Check for predication
if ((CurrentAlulnstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == )
{

if (SrcC.red.getReal()-1.0f <= 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = SrcC.red.getRea|()—1.0f;

break;
case PRED_SET_CLRs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) == )
{

Predicates[i] = false;
// set to max float
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nanValueu = 0x7F7FFFFF;
ScalarResult = nanValue.f;

}
break;

case PRED_SET_RESTORES:
// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) == )
{

if (SrcC.red.getReal() == 0.0f)
{

Predicates[i] = true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = SrcC.red.getReal();

break;
case KILLEs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect>>1) == )
{

if (SrcC.a|pha.getReal() == 0.0f)
{

}
validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLGTs:

// Check for predication
if ((CurrentAIulnstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) == )
{

if (SrcC.aIpha.getReal() > 0.0f)
{

}
valid Bits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLGTEs:

// Check for predication
if ((CurrentAIulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect>>1) == 0)
{

if (SrcC.aIpha.getReal() >= 0.0f)
{

}
valid Bits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLNEs:

// check for predication

 



LG Ex. 1002, pg 187

if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||
(CurrentAlu|nstruction.PredicateSelect>>1) == )

{
if (SrcC.alpha.getReal() != 0.0f)
{

}
validBits[i/4] = valid Bits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KlLLONEs:

// check for predication
if ((CurrentAluInstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) == )
{

if (SrcC.alpha.getReal() == 1.0f)
{

}
validBits[i/4] = validBits[i/4]&(0xEF>>(4-(i%4)));

}
break;

case SQRT_IEEE:
nanValue.f = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == OX80000000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F800000)
{

ScalarResult = nanValue.f;

nanValue.u = 0X7F8000OO;
ScalarResult = nanValue.f;

}
// - INF

else if (nanValue.u == OXFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
// -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;
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}
else

ScalarResult = pow(2,0.5*log(SrcC.alpha.getReal())/log(2));
break;

default:

std::cerr << "Scalar Opcode Not supported: " <<
((int)CurrentAIulnstruction.ScalarOpcode) << std::endl;

break;

}
}

}
//-----------------------------------------------------------------------------------------

void SQ_ALU::RegisterFileRead(uint32 SrcAPtr,uint32 SchPtr,uint32 SrcCPtr,const RegVect*
&|nputVectorA,

const RegVect* &lnputVectorB,const RegVect*
&|nputVectorC)
{

CurrentRegFile->GetConstValues(|nputVectorA,SrcAPtr);
CurrentRegFile->GetConstValues(|nputVectorB,SchPtr);
CurrentRegFile->GetConstValues(|nputVectorC,SrcCPtr);

}
//----------------------------------------------------------------------------------------------

void SQ_ALU:: RegisterFileWrite(uint8 VectorWriteMask, uint8 ScalarWriteMask,uint32 ScalarAddr,
uint32 VectorAddr)

{

//grabing a pointer to the GPR entry in location VectorAddr
RegVect* CurrentRegEntry;
CurrentRegFile->GetValues(CurrentRegEntry, VectorAddr);

// if not exporting
if (!((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))
{

if (VectorWriteMask != OX0)
{

for (int vector_id = O; vector_id < 16 ; vector_id ++){
for( int channel = 0; channel < 4 ; channel ++){

if (VectorWriteMask&(1<<channel))
if ((CurrentAlulnstruction.PredicateSelect&OxO1 ==

Predicates[vector_id] ||
(CurrentAlu|nstruction.PredicateSelect»1) ==

0)
CurrentRegEntry[vector_id].field[channel] =

VectorVector.Val[vector_id] .field[channel];
}

}

}

//grabing a pointer to the GPR entry in location ScalarAddr
CurrentRegFile->GetValues(CurrentRegEntry, ScalarAddr);
// if not exporting
if (!((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))
{

if (ScalarWriteMask != OX0)
{
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for (int vector_id = O; vector_id < 16 ; vector_id ++){
for( int channel 2 0; channel < 4 ; channel ++){
if (ScalarWriteMask&(1<<channel))

if ((CurrentAIu|nstruction.PredicateSelect&0x01) ==
Predicates[vector_id] ||

(Cu rrentAIu|nstruction.PredicateSelect>>1) ==
0)

CurrentRegEntry[vector_id].field[channe|] =
ScalarVector.Val[vector_id].field[channel];

}
}

}

//----------------------------------------------------------------------------------------------------

mfloat<8,23,128> SQ_ALU::Clamp(mf|oat<8,23,128> result, bool vector)
{

mfloat<8,23,128> one;

one.putReal((float)1.0);
mfloat<8,23,128> zero;

zero.putReal((float)0.0);
mfloat<8,23,128> result_clamped ;

if(vector){
result_clamped = ((result > one) & CurrentAlulnstruction.VectorClamp) ? one: result;
result_clamped 2 ((result < zero) & CurrentAlu|nstruction.VectorC|amp) ? zero :

result_clamped;
}
else{

result_clamped = ((result > one) & CurrentAlu|nstruction.ScalarClamp) ? one : result;
result_clamped 2 ((result < zero) & CurrentAIulnstruction.ScalarClamp) ? zero :

result_clamped;
}
return (result_clamped);

Sq_block_model.cpp

#include <chip/aricode/arichipiinterface.h>

#includc <gfx/sq/uscr_block_m0dcl.h>

#include <gfx/sx/user_block_model.h>

#include <gfx/sq/sq_dumps.h>

#include <sys/rom/user_block_m0del.h>

#include <reg/crayola_offset.h>
#include <nurnbers/numbers.h>

#include <teX/tc0nst.h>

#include <core/registry.h>
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#include <iostream>

#include <queu e>

#include "reg_file.h"

#include "sq_a1u.h"

#include "constantistoreh"

#include "interpolatorsh"

#include "instruction_store.h"
#include "arbiterh"

#include "alu_types.h"

//#define DEBUG_SEQ

using namespace std;

//___________________________________________________________________________ __

cUSER_BLOCK_SQ: :cUSER_BLOCK_SQ (cAR_CHIP_INTERFACE*

pchip, uint32 b10ck_id,

cMODEL_BLOCK_PARAMETERS& blockParameters) :

cAR_BLOCK_SQ (pchip, block_id, blockParameters), interpolators(parameters)

{

int i,j ;

stdzzcout << "block SQ constructor" << std::endl;

#ifndcf MSDOS

m_durnpSQ = Core::Registry::read("HKEY_LOCAL_MACHINE\\SOFTWARE\\ATI

Techno10gies\\Debug\\Sunmp", 0);
#else

m_durnpSQ : (uint32)(getenv(”Sunmp”));
#endif // End MSDOS

pSC_SQ=N ULL;

pSCisP:NULL;

pSQ_SC=NULL;

pVGT_S Q_Vetts=NULL;

pVGT_SQ_Verts_ready:NULL;

pSQisPiInterp=NULLg

pSQ_SX=NULL;

pSP_SX=NULL;

pSQ_TP=NULL;

pSX_SQ=NULL;

pSQ_SP:NULL;

pTP_S Q=NULL;

pSQ_CP_PIX =NULL;

pSQ_CP_VTX : NULL;

pSQiRB : NULL;
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regFile[0]:NULL;

regFile[ 1 ]:NULL;

regFile[2]=NULL;

regFile[3]=NULL;

arbiter=NULL;

gprfimanager=NULLg

rn_qupDurnp :NULL;

rn_sprDurnp =NULL;

rn_sqSXDurnp = NULL;

idleO : idlelj : 0;

if(rn_dumpSQ>0) {

n1_qupDun1p : new eSqu_Dun1p("sq_tp.dmp");

mispSXDump = new CSpSXiDumpC'spisx.dmp");

rn_squDump = new eSqSX_Dump("sq_sx.dmp");

rn_schDurnp = new cSqSe_Durnp("sq_se.drnp");

m_squInterpDump = new eSquInterp_Dump("sq_sp_interp.dmp");

peFile : f0pen("sq_sx_pe.dmp","wb");

auto_eount_pix = 0;

auto_eount_vtx : 0;

// set up the register files

for (i=0;i<4;i++)

regFile[i]= new RegFileO;

// clean the output buffer

outBuffer.valid = false;

for (i=0;i< l 6;i++)I
1

outBuffer.values[i] .field[0]:0.0;

outBuffer.values[i].field[1]=0.0;

outBuffer.values[i] .field[2]=0.0;

outBuffer.values[i] .field[3 ]:0.0;

}

// ORDER IS RGBA A in [3] B in [2] G in [l] and R in [0] OR

// ORDER IS XYZW W in [3] Z in [2] Y in [l] and X in [0]

// init the parameter store to all Os

for 0:0;j<16;j++)r
1

for (i=0;i<128;i++)

{

pararneterS[i].Val[i].field[0] : 0.0;
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parameters[i].Val[j].field[1] : 0.0;

parameters[i].Val[i].field[2] : 0.0;

parameters[i].Val[j].ficld[3] = 0.0;

}

// clean the pixel input buffer

for (i=0;j<4;j++)r
1

interpfi].new_vect0r : false;

interp[j].pcidealloc : 0;

interp[j].state_id = 0;

}

// clear the vertex shader ready counts

for (i=0;i<8;i++)(
1

}

for (i=0;i<64;i++)

for (i=0;j<2;j++)

{

verteXReady[i]=0;

stagingRegisters[i][j].field[0] : 0.0f;

staginchgistcrs[i][j].ficld[1] = 0.0f;

stagingRegisters[i][j].field[2] = 0.0f;

stagingRegisters[i][j].field[3] = 0.0f;

}

for (i=0;i<3;i++)

for (j=0;j<16;j++)

{

RTPararneters[i][j].field[0] : 0.0f;

RTPararneters[i][j].field[1] = 0.0f;

RTParameters[i][j].field[2] = 0.0f;

RTParameters[i][j].field[3] : 0.0f;

}

// set the parameter cache head to 0

chead = 0;

// set the parameter cache head to 127

chree : 127;

// set the test type

checkHigh = true;

// create the ALU arbiter
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arbiter : new Arbiter(this,n1_dun1pSQ);

// create the GPR manager

gpr_rnanager = new GPR_manager(this);

currentiwriteistate = 0;1
I

void cUSER_BLOCK_SQ: :Reset()

{

int i,j;

for (i=0;i<4;i++)

delete regFile[i];

delete arbiter;

delete gpr_rnanager;

regFile[0]=NULL;

regFile[l]=NULL;

regFile[2]:NULL;

regFile[3]=NULL;

arbiter=NULL;

gpr_n1anager:NULL;

idleO = idle1_7 = 0;

auto_count_pix = O;

autoicountivtx = 0;

// set up the register files

for (i=0;i<4;i++)

regFile[i]: new RegFileO;

// clean the output buffer

outBuffer.valid = false;

for (i=0;l< l 6;i++)l
1

outBuffer.values[i] .field[0]=0.0;

outBuffer.values[i].field[1]=0.0;

outBuffer.values[i] .field[2]=0.0;

0utBuffer.values[i] .field[3]:0.0;1
J'

// ORDER IS RGBA A in [3] B in [2] Gin [l] and R in [0] OR

// ORDER IS XYZW W in [3] Z in [2] Yin [l] and X in [0]

// init the parameter store to all Os
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for 0:0;j<16;j++)

{

for (i=0;i<128;i++)

{

parameters[i].Val[j].field[0] = 0.0;

parametersfi].Vale].field[1] = 0.0;

parameters[i].Val[j].field[2] : 0.0;

parameters[i].Val[j].field[3] = 0.0;

}

// clean the pixel input buffer

for (i=0;j<4;j++)I
1

interpfi].newivector = false;

interp[j].pc_dcalloc = 0;

interpfi].state_id = 0;

}

// clear the vertex shader ready counts

for (i=0;i<8;i++)I
1

‘r

for (i=0;i<64;i++)

for (i=0;j<2;j++)

{

verteXReady[i]:0;

stagingRegisters[i][j].field[0] : 0.0f;

stagingRegisters[i][j].field[1] = 0.0f;

stagingRegisters[i][j].field[2] = 0.0f;

stagingRegisters[i][j].field[3] : 0.0f;

}

for (i=0;i<3;i++)

for 0:0;j<16;j++)

{

RTPararnctcrs[i][j].ficld[0] = 0.0f;

RTPararneters[i][j].field[1] = 0.0f;

RTParameters[i][j].field[2] = 0.0f;

RTParametersfi][j].field[3] : 0.0f;

}

// set the parameter cache head to 0

chead : 0;

// set the parameter cache head to 127
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chree : 127;

// set the test type

chcckHigh = true;

// create the ALU arbiter

arbiter = new Arbiter(this,midumpSQ);

// create the GPR manager

gpr_rnanager = new GPR_rnanager(this);

currentiwriteistate : 0;

}

cUSER_BLOCK_SQ: :~cUSER_BLOCK_SQ(V0id)

{

int i;

for (i=0;i<4;i++)

delete regFile[i];

if(rn_durnpSQ>0) {

delete(rn_qupDurnp);

delete(rn_sprDuInp);

delete(n1_squDurnp);

delete(1nischDu1np);

dclctc(m_squIntcrpDurnp);

fprintf(chile,"END\n");

fclose(chile);

delete arbiter;

delete gpr_rnanager;

}

”**********************************************************************
*******

// Main function for block

H**********************************************************************
*******

void cUSER_BLOCK_SQ: :Main()

{

Fetch();

ProcessO;

Output();

}
fl**********************************************************************

*******

// Fetch function for block
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*>l<**>l<*>l<

void cUSER_BLOCK_SQ: :Fctch(void)

{

static sq_indx_count = O;

// grab the output of the PA and copy it localy

pSC_SQ->GetAll(&sc_sq_data);

pSC_SP->GetAll(&sc_sp_data);

// grab the output of the VGT and copy it localy

pVGT_S Q_Verts->GetAll(&vgt_sq_verts_data);

if(! pVGT_SQ_verts_ready—>GetReady())

vgtisqivertsidataVGTiSQisend = false;
#if 0

if ( vgt_sq_verts_data.VGT_SQ_send && vgt_sq_verts_data.VGT_SQ_indx_valid) {

sq_indx_count++;

}

if ( vgt_sq_verts_data.VGT_SQ_send &&

vgt_sq_verts_data.VGT_SQ_end_of_vtx_vect) {

printf("sq_block_rnodel: eov -- received %d real indices frorn

VGT\n",sq_indX_count);

fflush(stdout);

sq_indx_count = 0;

}
#endif

// ok for more new stuff

pVGT_SQ_verts_ready->SetReady(true);

// invalid ate the TP interface

pSQ_TP->SetValid(false);

// invalidate SX interfaces

pSQisX—>SetValid(false);

pSQ_SX->SctSQ_SX_cxp_valid(falsc);

pSQ_SX->SetSQ_SX_free_done(false);

pSP_SX->SetValid(false);

// invalidate SP interface

pSQ_SP->SetValid(false);

// invalidate CP interfaces

pSQiCPiVTX->SetValid(false);
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pSQ_CP_PIX->SetValid(false);

// invalidate SP interface

pSQ_SP_Interp->SetValid(false);

// invalidate SC interface

pSQ_SC->SetSQ_SC_dec_entr_ent(false);

pSQ_SC->SetSQ_SC_free_buf(false);

// TEXTURE PlPE INTERFACE READ

static int phase : 0;

// grab the return from the texture pipe if valid

if (pTP_SQ->GetValid())I
1

TXColor returnColor;

uinteger<7> registcrAddress;

RegVect* txAddr;

int valid;

registerAddress : pTP_SQ->GetTP_SP_gpr_dst();

regFile [phase] ->GetValues(tXAddr,registerAddress);

// Here we write the data to the GPRs. We only write data that has a
// write mask activated

for (int i=0;i<16;i++)

{

returnColor = pTP_SQ->GetTP_SP_data(i);

valid = pTPiSQ—>GetTPiSPipiximask(i/4).getValue();

if ((valid>>(i%4))&0x01)

{

if (pTP_SQ->GetTP_SP_crnask(0))

txAddr[i].field[0]=returnC0l0r.x;

if (pTPiSQ—>GetTPiSPiernask(1))

txAddr[i].field[1]=returnColor.y;

if (pTP_SQ->GetTP_SP_ernask(2))

tXAddr[i].fleld[2]=returnColor.Z;

if (pTPiSQ—>GetTPiSPiemask(3))

tXAddr[i].field[3]=returnColor.w;

}

// increment the phase

phase ++;

if (phase I: 4)

{
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phase :0;

// all texture instrucions of the clause have returned we can place
// the vector back in the next RS

if (pTP_SQ->GetTP_SQ_data_rdy())

{

// set the ready flag in the RS

if (pTP_SQ->GetTP_SQ_type() :: VERTEX)

{

arbiter->vertexStation[pTP_SQ-

>GetTP_SQ_thread_id()].status.texReadsOutstanding : false;

}
else

{

arbiter—>pixelStation[pTP_SQ-

>GetTPiSQithreadiid()].status.texReadsOutstanding = false;

}

}

”**********************************************************************
*******

// Process pixels function for block
H**********************************************************************

*******

void cUSER_BLOCK_SQ: :ProcessPixels(V0id)

{

int i,j;

int deallocating : 0;

int ready = 0;

static bool first_transfert : true;

static int bufiread = 0;

static int lincSQ[4] = {0,0,0,0};

static int lineSP[4] = {0,0,0,0};

static int SQ_buf_id = 0;

static int QWrote : 0;

bool pulsed = false;

Pixlnputs pix;

// first deal with these one clock transfers
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if (sc_sq_data.SC_SQ_event && sc_sq_data.SC_SQ_vahd)

{

// filter out all events but fot the PS_DEALLOC and PS_TS_DEALLOC

if (sc_sq_data.SC_SQ_event_id == PS_DEALLOC ||

se_sq_data.SC_SQ_event_id == PS_DONE_TS

|| scisqidata.SCiSQieventiid == RSTiPIXiCNT){
1

pixevent = se_sq_data.SC_SQ_event_id;

pixstate = sc_sq_data.SC_SQ_state_id;

eventF1F0])ush(pix);

if (pixstate :: 0)

idlCO ++;
else

idlel_7 ++;

}

pSQ_SC->SetSQ_SC_dee_cntr_ent(true);

pulsed = true;

}

// new vector and dealloe tokens (without any other data)

else if (first_transfert && se_sq_data.SC_SQ_quad_mask[0] ::

&& se_sq_data.SC_SQ_quad_rnask[l] == 0 &&

sc_sq_data.SC_SQ_quad_mask[2] == 0 &&

sc_sq_data.SC_SQ_quad_rnask[3] :: 0 && sc_sq_data.SC_SQ_vahd)

{

if (sc_sq_data.SC_SQ_pe_dealloe > 0)

{

pixevent = 200+sc_sq_data.SC_SQ_pc_dealloc;

pixstate = scisqidataSCiSQistateiid;

eventFIFO.push(pix);

pSQ_SC->SetSQ_SC_dec_entr_cnt(true);

pulsed = true;

if (pixstate :: 0)

idleO ++;
else

idlel_7 ++;

}

if (scisqidataSCiSQinewivector)

{

pSQ_SC->SetSQ_SC_dec_entr_cnt(true);

pixevent = 300;

pixstate : sc_sq_data.SC_SQ_state_id;

eventFIFO.push(pix);

pulsed = true;

if (pix.state == 0)

idleO ++;
else
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idlel_7 ++;

}

}

// accumulate the control data if something sent by the SC

else if (sc_sq_data.SC_SQ_valid)l
1

if (first_transfert)

{

if (sc_sq_data.SC_SQ_state_id == 0)

idleO +2 4;
else

idlel_7 += 4;

}

first_transfert : false;

// get the first pixcl group signal and save it

if (sc_sq_data.SC_SQ_new_vector != 0)

{

interp[SQ_buf_id].new_vector : sc_sq_data.SC_SQ_new_vector;

pulsed : true;

pSQ_SC->SetSQ_SC_dec_cntr_cnt(true);

}

if (sc_sq_data.SC_SQ_pc_dealloc > 0)

{

}

intcrp[SQ_buf_id].pc_dcalloc += sc_sq_data.SC_SQ_pc_dcalloc;

// load the control data in the control buffers

for (i:0;i<4;i++)

{

if (sc_sq_data.SC_SQ_quad_n1ask[i])

{

// get the associated state and save it

interp[SQ_buf_id].state_id = sc_sq_data.SC_SQ_state_id;

interp[SQ_buf_id].nolncrement

scisqidata.SCiSQinoiincipixicnt;

intcrp[SQ_buf_id].ptr0[lincSQ[i]%4][i]

sc_sq_data.SC_SQ_pc_ptr0;

interp [SQ_buf_id] .ptrl [lineSQ [i] %4] [i]

sc_sq_data.SC_SQ_pc_ptrl;

interp[SQ_buf_id].ptr2[lineSQ[i]%4][i]

sc_sq_data.SC_SQ_pc_ptr2;

interp [SQ_buf_id] .provok[lineSQ [i]%4] [i]

sc_sq_data.SC_SQ_provol<_vtx;
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interp [SQ_buf_id] .pix_mask[lineSQ [i]%4] [i]

scischata.SCiSQJ)iximask[i];

intcrp [SQ_buf_id] .lod_corrcct[lincSQ [i]%4] [i]

sc_sq_data.SC_SQ_lod_c01rect[i].getValueO;

// get the primitive type

interp [SQ_buf_id] .prim_type[lineSQ [i]%4] [i]

sc_sq_data.SC_SQ_prim_type;

lineSQ[i] : (iineSQ[i]+1)%4;

QWrote ++;

}

// manage completion of a pixel vector

if (QWrotc == 16)

{

QWrote = 0;

// a valid non event vector is 100

pixevent = 100;

eventFIFO.push(piX);

first_transfert : true;

sctContcxtNurnbcr(intcrp [ SQ_buf_id] .statc_id.gctValucO);

// increment by one more buffer is sending two buffers down

if (SQ_CONTEXT_MISC.getSC_SAMPLE_CNTL()

CENTROIDSiANDiCENTER S) {

SQ_buf_id : (SQ_buf_id+1)%4;

}

SQ_buf_id = (SQ_buf_id+1)%4;

}

// if the event fifo contains something, try to put it in the RS

if (ieventFIFOemptyO)1’
1

pix = eventFIFO.front();

if (pixevent < 100)

{

if (pixevent :: RST_PIX_CNT)

{

if (pixstate == 0)

idleO ——;
else
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ldlel_7 -';

autoicountjix : 0;

cvcntFIFO.p0p();

}
else if (! arbiter-

>AddVect0r(pix .event,PIXEL,piX .state,interp[buf;read] .piXimask,true,interp[bufiread] .lodicorr

ect))

{

}

}

else if (pixevent == 100 && lpulsed)

{

}

else if (pix.cvcnt >= 200 && pixcvcnt < 300)

{

eventFIFO.p0p0;

ready: 1 ;

deallocating = pixevent - 200;

eventF1FO.p0p();

if (pixstate :: 0)

idleO --;
else

idlel_7 -—;

}
// new vector

else if (pixevent == 300)

{

if (vertexReady[piX .state]>0)!'
1

verteXReady[piX.state]--;

eventFIFO.pop();

if (pixstate :: 0)

idleO --;
else

idlel_7 --;

}

// accumulate data interface

if (sc_sp_data. SC_SP_valid)r
1

for (i=0;i<4;i++)

{

if (sc_sp_data.SC_SP_Valid[i])

{

 



LG Ex. 1002, pg 203

// ij data

if (scispidataSCiSPitypem :: CENTROID)

{

for G=0;j<4;j++)

{

interp[1ineSP[i]/4].I[lineSP[i]%4][i*4--j]

sc_sp_data.SC_SP_ij_data[i].I[j];  
interp[1ineSP[i]/4] .J[lineSP[i]%4] [1*4fij]

sc_sp_data.SC_SP_ij_data[i] .J[j];

}

}

else if (sc_sp_data.SC_SP_type[i] == CENTER)

{

for 0:0;j<4;j++)

{

interp[(lineSP[i]/4W1)%4].I[lineSP[i]%4][i*4"j] = sc_sp_data.SC_SP_ij_data[i] .I[j];

  
interp[(lineSP[i]/4--1)%4].J[lineSP[i]%4][i*4--j] : sc_sp_data.SC_SP_ij_data[i]JD];

}

}

// xy data

else if (sc_sp_data.SC_SP_type[i] :: XY_FACENESS)

{

interp[lincSP[i]/4].X[lineSP[i]%4][i]

(sc_sp_data.SC_SP_ij_data[i].I[0] >> 12) & Oxfff;

interp[lineSP[i]/4].Y[lineSP[i]%4][i]

(scispidata.SCiSPiijidata[i].I[0] & Oxfff);

interp[lineSP[i]/4].face[1ineSP[i]%4][i]

(sc_sp_data.SC_SP_ij_data[i].I[0] >> 24) & 0x1;

}

// change line in the SP

if (sc sp data.SC SP last quad data[i])

{

 

// if sending more than one buffer

if((lineSP[i]+1)%4 == 0)

{

setContextNumber(interp[1ineSP[i]/4] .state_id.getValue());
if

(SQ_CONTEXT_MISC.getSC_SAMPLE_CNTL() :: CENTROIDS_AND_CENTERS)

lineSP[i] = (1ineSP[i]+4)%16;

}

lineSP[i] : (lineSP[i]+1)%16;
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}

// if 1] buffer filled, interpolate the results
// also allocate the GPRs.

if (ready > 0)r
1

// set the state to the current state

setContextN umber(interp [buf_read] .state_id.getValueO);

int base_ptr;

int numReg;

numReg : SQ_PROGRAM_CNTL.getPS_NUM_REG()+ 1;

boolean GPRif‘ull = true;

boolean station_full =truc;

int address;

// if the data is ready in the PC

if (! interp [buf_read] .new_vector

vertexReady[interp[buf_read].state_id]>0 ||

interp[buf_read].prim_type[0][0] >= 4) // Real Time

{

// check for space in both GPRs and reservation station 0

GPR_full = gpr_managcr->tcstAllocatc(nuchg,basc_ptr,PIXEL);

if (lGPR_full)

{

stationifull = arbiter—>AddVector(baseiptr,PlXEL,

interp[buf_read] . state_id,interp [buf_read] .pix_mask, false,

interp[buf_read] . lod_correct);

}

// if we have place for everything AND there is valid data
// in the PCs if this is the first vector...

if (!GPR_full && !station_full)

{

// Structurc for thc SQ->SP dummy intcrfacc

SQ_SP_interp_data interpData;

// clear the firstVector flag and decrement the count if

// the pixel group was accepted

if (interp[buf_read] .new_vector)

{

interp[buf_read] .new_vector : false;

vertexReady[interp [bufiread] .stateiid] -—;
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}

gpr_rnanager->allocatc(nurchg,basc_ptr,PIXEL);

// loop for the four lines

for (i=0;j<4;j++)

{

address : base_ptr;

int IJlineIndex;

// loop for the number of parameters to interpolate

int interp_pararns;

if (SQiPROGRAMiCNTL.getPARAMiGENO

&& SQ_PROGRAM_CNTL.getGEN_1NDEX_PIX())

interp_params =

SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+3;
else if

(SQ_PROGRAM_CNTL.gctPARAM_GEN() ||

SQ_PROGRAM_CNTL.getGEN_INDEX_PIX())

interp_params

SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()--2;
else

interp_params

SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()--1 ;
 

if (inteeraararns > 16)

interp_params = 16;

for (i=0;i<interp_params;i++)

{
int shade

SQ_INTERPOLATOR_CNTL.getPARAM_SHADE();

bool flat = !((shade >> (interp_pararns-

1))&0x01);

// deal with the center/centroid stuff here

IJlineIndex = j;

uint ijBuffer;

ijBuffer = bufiread;
if

(SQ_INTERPOLATOR_CNTL.getSAMPLING_PATTERN() != 0)

{

int samplingPattern

SQ_INTERPOLATOR_CNTL.getSAMPLING_PATTERN();

if ((sarnplingPattern >> i)&0x01)

ijBuffer = (buf_read+l)%4;
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interpolators .Interpolate(regFi1e[j ] ,address,interp [ij Buffer] .I[IJ1ineIndex] ,

intcrp [ijBuffer] .J[IJlincIndcx],

interp[buf_read] . ptrO [j ] ,interp[buf_read] .ptr 1 [j ] ,

interp[buf_read] .ptr2[j ] ,i,interp[buf_read] .prim_type[j] ,this,

interp[buf_read] .X[j ] ,interp [buf_read] .Y [j] ,interp [buf_read] . face [j] ,flat,interp [buf_read] .p

r0vokfi ] , !interp [buf_read] .nolncrement);

// write to the SP dummy interface

RegVect"< values;

regFileU]—>GetVa1ues(values,address);

interpData.Address[i]=i+base_ptr;

interpDataNumParams = interp_params;

for (int k:0;k<16;k++)

{

interpData.InterpData[i] [k] [j] .field[0]=values[k] .field[0];

intcrpData.IntcrpData[i] [k] [j] .ficld[ 1 ]=valucs[k] .fic1d[ 1 ];

interpData.InterpData[i] [k] [j ] .field[2]=values[k] .field[2];

interpData.InterpData[i] [k] [j] .field[3]:Values[k] .field[3];

}
// increment the GPR address

if (address+1 < gpr_manager—>pixLimit)

{

address ++;

address = 0;

_ }
}

pSQ_SP_Interp->SetAll(&interpData);

pSQ_SP_Interp->SetValid(true);

// dump the SQ->SP interpolator dummy interface

if(midumpSQ>0) {
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if (pSQ_SP_Interp->GetNewValid())

{

pSQ_SP_Intcrp-

>GetNewAll(&(m_squInterpDump->_data));

m_squInterpDump->Dump();

}l
I

// signify to the SC that we freed a buffer

pSQ_SC—>SetSQ_SC_free_buf(true);
// And a control line

pSQ_SC->SetSQ_SC_dec_cntr_cnt(true);

// pop the event queue to signify that we consumed a buffer

eventFlFOpopO;

// set the deallocation flags

if (interp[buf_read].pc_dealloc >0)

{

deallocating : interp[buf_read] .pc_dealloc;

interp[buf_read].pc_dealloc = 0;

}

// swap buffers

buf_rcad = (buf_rcad+1)%4;

// increment one more ifmultiple buffers for current state

if (SQ_CONTEXT_MISC.getSC_SAMPLE_CNTL( ==

CENTROIDSiANDiCENTERS)

buf_read : (buf_read+l)%4;

} // endif GPR and RS ready

} // endif data ready

} // endif ready process pixel

// dump the SQ->SC interface

if(m_dumpSQ>0) {

if (pSQiSC—>GetNewValid())

{

pSQ_SC->GetNewAll(&(m_schDump->_data))g

m_schDump->Dump();

}1
J'

//PC Deallocation

static int deallocation : 0;

int dealloc;
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While (deallocating > 0)

{

// new dcalocation schcmc (groups of 16)

if (pcAllocated.empty())

{

stdzzcerr << "Error in SQ, trying to dealocate empty parameter

stores" << std::endl;

}

dealloc = pcAllocated.front()/4;

deallocation ++;

if (deallocation == 4)

{

pcAllocatedpopO;

deallocation = 0;

}

if (chree + dealloc < 128)

chree +2 dealloc;
else

{

chree = dealloc-(l28-chree);

checkHigh : !checkHigh;

}

dcallocating --;

} // end while PC dealloc

}

void cUSER_BLOCK_SQ: :ProcessVerts(void)

{

static int stageCount = 0;

// current staging register layer

static int layer =0;

static bool doubleSent : false;

static uintcgcr<4> valids[4][4];

static bool ready = false;

// used to keep the state around ifwe need to stall

static uinteger<3> VState;

// compute the number of valid pipes
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int dis : pChip—>pROM—

>ROM7BAD7PIPEiDISABLEiREGISTERDISABLEiSPiVTX;

if (vgt_sq_verts_data.VGT_SQ_send && lready &&

!vgt_sq_verts_data.VGT_SQ_event)!
I

vState : vgt_sq_verts_data.VGT_SQ_state;

RegVect value;

value.field[0]: vgt_sq_vefis_data.VGT_SQ_Vsisr_data[0];

valuefield [ l ]: vgtischertsidataVGTiSinsisridata[ l ];

value.field[2]= vgt_sq_verts_data.VGT_SQ_vsisr_data[2];

stagingRegisters[stageCount][layer] : value;

if (stageCount == 0 && layer == 0)

{

if (vState == 0)

idleO +2 4;
else

idlel_7 += 4;

}

if ((stageCount%4) :: 0 && layer::0)

valids[stagcC0unt/ l 6] [(stagcCount/4)%4] =0;

// only validate ifVsierata is valid

if (VgtisqivertsidataVGTiSQiindxivalid){
1

if (layer == 0)

valids[stageCount/ l 6] [(stageCount/4)%4]

l<<(stageC0unt%4);

stageCount++;

if (stageCount%4 == 0)

{

if (((stageCount :: 16 || stageCount :: 32 || stageCount ::

48) && dis&0xOl) ||

((stagcCount == 4 || stageCount == 20 H stagcCount

== 36 || stageCount == 52) && dis&0x02) H

((stageCount == 8 || stageCount == 24 H stageCount

:: 40 || stageCount :: 56) && dis&0x04) H

((stageCount :: 12 || stageCount :: 28 ||

stageCount == 44 || stageCount == 60) && dis&0x08))

{

}

stageCount +2 4;
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}

// reset the layer to 0

layer = 0;

if (vgt_sq_verts_data.VGT_SQ_end_of_vtx_vect)

{

for (int i=stageC0unt;i<64;i++)

{

if ((i%4) :: 0)

valids[i/16][(i/4)%4] =0;

}

if (!vgt_sq_wrts_data.VGT_SQ_Vsisr_continued)

ready = true;

}

if (vgt_sq_wrts_data.VGT_SQ_Vsisr_continued)

{

layer : 1;

if ((stageCount-4)%4 == 0 && (stageCount-4) >0)

{

if (((stageCount :: 16 H stageCount :: 32 H stageCount ::

48) && dis&0x01) ||

((stagcCount == 4 H stagcCount == 20 H stagcCount

== 36 H stageCount == 52) && dis&0x02) H

((stageCount == 8 H stageCount == 24 H stageCount

== 40 H stageCount == 56) && dis&0x04) H

((stageCount :: 12 H stageCount :: 28 H

stageCount == 44 H stageCount == 60) && dis&0x08))

{

}

stageCount —: 4;

}

stageCount --;

doubleSent : true;

}

// regular end of vector (not early terminated)

if (stageCount == 64)

ready 2 true;

}

// event processing

static int eventld;
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static bool sentEvt : false;

float templd ;

static int evState;

if (vgt_sq_verts_data.VGT_SQ_send && vgt_sq_verts_data.VGT_SQ_event &&

lsentEvt) l
1

tempId : vgt_sq_verts_data.VGT_SQ_vsisr_data[0].getRealO;

eventId = reinterpret_cast<uint32&>(ten1pld);

eventId = eventld & OXIF;

// filter out all events but fot the VS_DEALLOC and VS_TS_DEALLOC

if (eventId :: VSiDEALLOC H eventId :: VSiDONEiTS // ep events

| | eventId == CONTEXT_DONE | | eventId ==

CACHE_FLUSH_TS

|| eventld CACHE_FLUSH || eventld

CACHEiFLUSHiANDjNViTSiEVENT

|| eventId == CACHE_FLUSH_AND_INV_EVENT) // Rb events

{

sentEvt = true;

evState : vgt_sq_ve1ts_data.VGT_SQ_state;

if (evState :: 0)

idlCO ++;
else

idlel_7 ++;

}

else if (eventI == RST_VTX_CNT)

aut0_count_vtx = 0;

}

if (sentEvt)(
1

if (! arbiter-

>AddVeetor(eventld,VERTEX,evState,valids ,true,interp [0] .lod_eorreet))

{

}

else // we are full stop sending data

{

sentEvt = false;

vgt_sq_verts_data.VGT_SQ_send = false;

pVGT_SQ_verts_ready->SetReady(false);

}

if (ready)I
1

// set the state to the current vector

setContextNutnber(vState.getValue());

76
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// copy everything to GPRs

int basc_ptr;

int numReg;

numReg = SQ_PROGRAM_CNTL.getVS_NUM_REG()+lg

boolean GPRj'ull=true;

boolean station_full:true;

// check for space in both GPRs and reservation station 0

GPR_full : gpr_rnanager—>testAllocate(nurnReg,base_ptr,VERTEX);

if (YGPRifull)

{

station_full = arbiter->AddVector(base_ptr,VERTEX,

VState,Valids,false,interp[0] .lod_correct);

}

if (!GPR_full && !station_full)

{

gpr_manager—>allocate(numReg,base_ptr,VERTEX);
// allocation succesfull write the data

int i,j;

RegVect* vtAddr;

RegVect* vtAddrl;

RegVect* vtAuto;

int address;

for (1' =0;j<4;j++)

{

// counting GPRs in reverse order for vertices

address = base_ptr;

regFile[j]->GetValues(vtAddr,address);

if (address > gpr_rnanager—>vertLin1it)

address --;
else

address = 127;

regFileLj]->GetValues(vtAddrl ,address);

if (address > gprfimanager—>vertLimit)

address --;
else

address = 127;

regFile[j]—>GetValues(vtAuto,address);

for (i:0;i<16;i++)

{

vtAddr[i]=stagingRegisters[j * 16+i] [0];

if (doubleSent)

{
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vtAddrl [i]=stagingRegisters[j * 16+i][1];

}

// auto generated index
if

(SQ_PROGRAM_CNTL.getGEN_INDEX_VTX())

{

vtAuto[i].field[0]:auto_count_vtx;

auto_count_vtx ++;

}

// clear the buffers

stageCount : (dis&0x01)*4;

layer = 0;

doubleScnt = false;

ready = false;

}
else // we are full

{

vgt_sq_wrts_data.VGT_SQ_send = false;

pVGT_SQ_Verts_ready—>SetReady(false);

}

#**********************************************************************
*******

// Process function for block

fl**********************************************************************
*******

void eUSERiBLOCKiSQ: Process(void)

{

ProcessVertsO;

ProcessPixelsO;

// execute the arbiter

arbiter->Execute();

}

#**********************************************************************
*******

// Output fianction for block
fl**********************************************************************

*******
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void cUSER_BLOCK_SQ: :Output(void)

{ . -
1nt 1;

static int current_eXport = 0;

static int export_count = 0;

static int currentPtr[4];

if (outBuffer.valid))’
1

outBuffer.valid : false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentEXportDest < 16))

{

int pcPointer;

// new export block reset the counts

currentPtr[0] = currentAluPC;

currentPtr[1]

(currentA1uPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1))%128;

currentPtr[2]

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*2)%128;

currentPtr[3]

(currentA1uPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)* 3)%128;

// set pcPointer to the correct value

pcPointcr = (currentPtr[currcnt_cxport]

currentExportDest)% 12 8 ;

// copy data to the PCs

int valid;

for (i=0;i<16;i++)

{

valid : outBuffer.valids[i/4] .getValueO;

if ((valid >> 1%4) &0X01)

{

if (export_mask & 0X01)

parameters [pcPointer] .Val[i] .fleld[0]

outBuffervalues [i] .11 el d[0];

if (cxport_mask & 0x02)

parameters [pcPointer] .Val [i] .field[ 1 ]

outBuffer.va1ues [i] .fie1d[1 ];

if (export_mask & 0x04)

parameters[pcPointer].Val[i].field[2]

outBuffer.va1ues [i] .field[2];

if (export_mask & 0X08)

parameters [pcPointer] .Val[i] .fleld[3]

outBuffer.va1ues [1] .field [3 ];
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}

// dump the values to a file

if(m_dumpSQ>O) {

dumchValues(eXporTimask, pcPointer, outBuffer);1
I

current_export++;

if (current_expon :: 4)

{

}

}// end parameter cache export

// other exports
else

{

current_export=0;

pSP_SX->SetValid(true);

for (i=0;i<l 6;i++)!'
1

pSP_SX-

>SetSP_SX_color(outBuffer.Values[i].field[0],i*4);

pSP_SX-

>SetSPiSXicolor(outBuffer.values[i] . field[ 1 ] ,i*4-- l );

pSP_SX-

>SetSP_SX_color(outBuffer.Values[i].field[2],i*4~2);

pSP_SX-

>SetSPiSXicolor(outBuffer.values[i ] . fie] d[3 ] ,i *4--3);

 
pSP_SX->SetSP_SX_eXp_pvalid(outBuffer.valids[i/4],i/4);

}

uinteger<6> dest;

dost : currentExpofiDest;

pSP_SX->SetSP_SX_dest(dest);

pSP_SX->SetSP_SX_alu_id(currentExportAlu);

uinteger<2> exp_count;

expicount = expofiicount;

pSP_SX->SctSP_SX_cxport_count(cxp_count);

export_count = (export_count+l)%4;

pSP_SX—>SetType(outputType);

if(m_dumpSQ>0) {

pSP_SX->GetNeWAll(&(m_spSXDump->_data));

m_sprDump—>Dump();

}
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} // end other exports

}

bool cUSER_BLOCK_SQ::handleRegisterAccess(ACCESS access, uint32 spaceOffset,

uint32 byteEnable, uint3 2& data)I
1

bool handled = false;

static int count = 0;

TConstPacked tstate;

Loop loop;

uint32 chool;

uint32 ngDecode;

if(access == WRITEiACCESS)

{

// Remove GFX decode from spaceOffset

if (spaceOffset >= 0X8000 && spaceOffset < OXlOOOO)

{

ngDecode : (spaceOffset >> 12) & 0x7;

spaceOffset = spaceOffset & ~(0X7 << 12);I
I

// grab the CPisTATEiCOPY

if (spaccOffsct == (mmGFX_COPY_STATE<<2))

{

int previous_write_state = data & 0X7;

currentiwriteistate = ngDecode;

// clear the vertex ready counts for the new state to come (may

have been screwed up

// by the mem exports.

verteXReady[currentiwriteistate]:0;

// copy the constant tables

int i;

for (i=0;i<5 l 2;i++)

{

constantStore[previous_write_state] .GetConstValue(cst,i);

constantstore[current_write_state] .WriteValue(cst,i);

}

for (1:0;i<32;i++)

{

texturestateStore[previous_write_state] .GetConstTState(tstate,i);

textureStateStore[currentiwriteistate] .WriteTState(tstate,i);

81
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}

for (i:0;i<8;i++)

{
chool

controlFlowStore[previous_write_state] .GetConstBooleans(i);

controlFlowStore[current_write_state] .WriteBooleans(chool,i);

}

for (i=0;i<32;i++)

{

controlFlowStore[previous_write_state] .GetConstLoop(loop ,i);

controlFlowStore[current_write_state] .WriteLoop(loop ,i);

}

}

else if ((spaccOffsct >= (rnrnSQ_INSTRUCTION_ALU_0<<2)) && (spaccOffsct <

((rnrnSQ_INSTRUCTION_ALU_0 + 4096*3)<<2)))

{

int address ((spaceOffset>>2)

(mmSQ_INSTRUCTION_ALU_0)) /3;

Packet pckt;

pckt = reinterpret_cast<Packet&>(data);

switch (count){
case 0:

inst.bytcO = pckt.bytcO;

instbytel = pckt.bytel;

inst.byte2 = pckt.byt62;

instbyte3 = pckt.byte3;

break;

inst.byte4 = pckt.byte0;

instbyteS : pcktbytel;

inst.byte6 : pckt.byte2;

inst.byte7 = pckt.byte3;

break;

instbyte8 = pcktbyteO;

inst.bytc9 = pckt.bytcl;

inst.byte10 = pckt.byte2;

instbytell = pckt.byte3;

break;

};
count ++;

// write the instruction to instruction memory

if (count :: 3)
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count: 0;

instructionStorc. SctInst(inst,addrcss);

}

handled = true;I
1

else if ((spaceOffset >= (rnrnSQ_CONSTANT_RT_0<<2)) && (spaceOffset <

((rnrnSQ_CONSTANT_RT_0 + 256*4)<<2)))

{

int address : ((spaceOffset>>2) - (mmSQiCONSTANTiRTiOD /4;

cst.field[count].putField(data);
count ++;

if (count I: 4)

{

count = 0;

constantStore[0] .WriteValue(cst,address);

}

handled : true;1
J

else if ((spaceOffset >= (mmSQ_CONSTANT_O<<2)) && (spaceOffset <

((mmSQ_CONSTANT_0 + 512*4)<<2)))

{

int address = ((spaccOffsct>>2) - (rnrnSQ_CONSTANT_0)) /4;

cst.field[count].putField(data);
count ++;

if (count == 4)f
1

count = 0;

constantStore [current_write_state] . WriteValue(cst,address);

}

handled = true;1
I

else if ((spaceOffset >= (rnmSQiFETCl-l70<<2)) && (spaceOffset <

((rnmSQ_FETCH_0 + 32*6)<<2)))

{

int address = ((spaceOffset>>2) - (mmSQ_FETCH_0)) / 6;

tStateData[count] : data;

count ++;

if (count == 6)

{

count I 0;

tstate.unpack(tStateData);

83
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texturestateStore[currentiwriteistate] .WriteTState(tstate,address);

}

handled = true;1
I

else if ((spaceOffset >= (mmSQiFETCI-LRT70<<2)) && (spaceOffset <

((rnmSQ_FETCH_RT_0 + 32*6)<<2)))

{

int address = ((spaceOffset>>2) - (rnmSQ_FETCH_RT_0)) / 6;

tStateData[count] : data;

count ++;

if (count == 6)

{

count I 0;

TConstPacked tstate;

tstatc.unpack(tStathata);

textureStateStore [0] .WriteTState(tstate,address);

}

handled : true;I
I

else if ((spaceOffset >= (rnmSQ_CF_BOOLEANS<<2)) && (spaceOffset

< ((rnmSQ_CF_BOOLEANS + 8)<<2)))

{

int address : ((spaceOffset>>2) — (mmSQiCFiBOOLEANSfl;

controlFlowStore[current_write_state] .WriteBooleans(data,address);

handled = true;I
J

else if ((spaceOffset >= (mmSQ_CF_LOOP<<2)) && (spaceOffset <

((mmSQ_CF_LOOP + 32)<<2)))

{

int address : ((spaceOffset>>2) — (mmSQiCFiLOOPD;

Loop loop;

loop.count : data & OXFF;

loopstart= (data >> 8) & OXFF;

loopsth = (data >> 16) & OXFF;

controlFlowStore[current_write_state] .WriteLoop(loop,address);

handled : true;1
I

else if ((spaceOffset >= (mmSQ_CF_RT_BOOLEANS<<2)) &&

(spaceOffset < ((rnrnSQ_CF_RT_BOOLEANS + 8)<<2)))

{

int address : ((spaceOffset>>2) — (mmSQiCFiRTiBOOLEANSD;

84
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controlFlowStore[0] .WriteBooleans(data,address) ;

handled = true;1
1

else if ((spaceOffset >= (InmSQ_CF_RT_LOOP<<2)) && (spaceOffset <

((mmSQiCFiRTiLOOP + 32)<<2)))f
1

int address = ((spaceOffset>>2) - (mmSQ_CF_RT_LOOP));

Loop loop;

loopeount : data & OXFF;

loop.start= (data >> 8) & OXFF;

loop.step = (data >> 16) & OXFF;

controlFlowStore[0] .WriteLoop(loop,address);

handled = true;1
I

else if ((spaceOffset >= (InmSQ_RT_V0_PARAM0_R<<2)) &&

(spaceOffset < ((rnrnSQ_RT_VO_PARAMO_R + 16*3 *4)<<2)))r
1

int address = ((spaceOffset>>2) - (mmSQ_RT_V0_PARAMO_R));

RTPararneters[address/(1 6*4)] [address/4] .field[address%4]:Zreinterpret_cast<float&>(d

handled = true;

}

return handled;

}

void cUSER_BLOCK_SQ: :setParameter(float param, int index, int memN urn, int field)

{

parameters [index] .Val[n1eniNun1] .field[field]=parani;

}

bool cUSERiBLOCKiSszldleO

{

bool idle=true;

if (idleO > 0 || idlel_7 >0)

idle : false;

#ifdef DEBUG_SEQ

static bool preV_idle : true;

if (idle !: previidle)
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if (idle)

std: :ccrr << "Sequencer Idlc" << std: :cndl;
else

std: :cerr << "Sequencer Active" << std: :endl;

previidle = idle;

}
#endif

return idle;

}

bool cUSER_BLOCK_SQ: :Idle0()

{

if (idleO >0)

rcturn falsc;
else

return true;

}

bool cUSER_BLOCK_SQ::Idlel_7()

{

if (idle1_7 >0)

return false;
else

return true;

}

void cUSER_BLOCK_SQ::durincValues(int expmask,int pcPointer,const OutBuffer&

values)

{

static bool first 2 true;

int i ;

if (first)I
1

first = false;

fprintf(chilc,"--PC Pointer (PC) ( 7 bits)\n");

fprintf(chile,"--Channel Mask (MSK) (4 bits)\n");

fprintf(chile,"--Data Mask (VAL) ( l6 bits)\n");

fprintf(chile,"—-Colors (COL) ( 32 bits)\n");

fprintf(chile,"--P M V C C C
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C C C

C C C

fprintf(chilc,"--C S A
10

1

3

4

5

6 \n");

fprintf(chile,"—- K L
9 0

0

1

2

3

8

9

0

1

2

3 \nu);

}

fprintf(chi16," %02x %x%x%x%x",

pcPointer,expmask,outBuff6r.Valids[0] .getValueO,

outBuffer.va1ids[ 1 ] . getVa1u6(),outBuff6r.valids[2] . getVa1u6(),outBuffer.Valids[3] .getVal

1160);

for (i=0;i<16;i++)I
1

fprintf(ch116,"% 010.56 % 010.56 % 010.56 % 010.56 ",

0utBuffer.values[i] .fi 61d[0].g6tR6a1(),

outBuffer.va1u65[i].fi61d[1].g6tR6a1(),

outBuffer.va1ues[i] .fi61d[2] . g6tR6a1(),

outBuffer.va1ues[i] .fi61d[3].g6tR6a1());

}

fprintf(chi16,"\n");

float var[4];

fprintflchile," ");

for (i=0;i<16;i++)I
1

for (int w:0;w<4;w++)

var[w] : outBuffer.va1ues[i] .fi61d[w] . g6tR6a1();

fprintf(chile,"%08X %08X %08X %08X ",

*(reinterpr6t_cast<unsign6d int*>(&Var[0])),

*(reinterpreticast<unsign6d int*>(&var[1])),
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*(reinterpret_cast<unsigned int*>(&var[2])),

*(reinterpreticast<unsigned int*>(&var[3]))

);

fprintf(chile,"\n");1
I

Sqiblockimodel .cpp
//*****************************************************************************

// Output function for block
//*****************************************************************************

void cUSER_BLOCK_SQ::Output(void)
{

int i;
static int current_export = 0;
static int export_count = 9;
static int currentPtr[4];

if (outBuffer.valid)
{

outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentExportDest < 16))
{

int pcPointer;
// new export block reset the counts
currentPtr[e] = currentAluPC;
currentPtr[1] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1))%128;
currentPtr[2] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*2)%128;
currentPtr[3] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*3)%128;

// set pcPointer to the correct value
pcPointer = (currentPtr[current_export] + currentExportDest)%128;

// copy data to the PCs
int valid;
for (i=9;i<16;i++)
{

valid = outBuffer.valids[i/4].getValue();
if ((valid >> i%4) &0x01)
{

if (export_mask & 9x91)
parameters[pcPointer].Val[i].field[9]

outBuffer.values[i].field[0];
if (export_mask & 0x02)

parameters[pcPointer].Val[i].field[1]
outBufFer.values[i].field[1];

if (export_mask & 9x94)
parameters[pcPointer].Val[i].field[2]

outBuffer.values[i].field[2];
if (export_mask & 9x68)
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parameters[pcPointer].Val[i].Field[3] =
outBuffer.values[i].field[3];

}
}

// dump the values to a File
if(m_dumpSQ>9) {

dumchValues(export_mask, pcPointer, outBuffer);
}

curreht_export++;
if (curreht_export == 4)
{

}
}// end parameter cache export
// other exports
else

{

current_export=@;

pSP_SX—>SetValid(true);
for (i=9;i<16;i++)
{

pSP_SX->SetSP_SX_color(outBuffer.values[i].field[e],i*4);
pSP_SX—>SetSP_SX_color(outBuffer.values[i].field[1],i*4+1);
pSP_SX->SetSP_SX_color(outBufFer.values[i].field[2],i*4+2);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[3],i*4+3);
pSP_SX->SetSP_SX_exp_pvalid(outBuffer.valids[i/4],i/4);

}
uinteger<6> dest;
dest = currentExportDest;

pSP_SX->SetSP_SX_dest(dest)3
pSP_SX—>SetSP_SX_alu_id(currentExportAlu);
uihteger<2> exp_count;
exp_count = export_count;
pSP_SX->SetSP_SX_export_count(exp_count);
export_count = (export_count+1)%4;

pSP_SX->SetType(outputType);

if(m_dumpSQ>e) {
pSP_SX->GetNewAll(&(m_spSXDump->_data));
m_sprDump—>Dump();

}
} // end other exports

Regarding fetching data from memory, The texture fetcher allows fetching from memory. The

arbitercpp file picks the programs that need to fetch data in this function:
boolean Arbiter::chooseTexStation(int &lineNumber,Shader_Type &sType)
{

int i;
int vertexPick = -1;
int pixelPick = -1;
int lineCheck;

// do pixels First
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lineCheck = pixelHead;
for (i=e;i<pixeleCount;i++)
{

if (pixelStation[lineCheck].status.valid &&
pixelStation[lineCheck].status.ressourceNeeded == TEXTURE

&& lpixelStation[lineCheck].status.event)
{

}
// enforce restrictions based on the status

if (pixelPick != -1)
{

pixelPick=lineCheck;

// no texture ops while texture reads are outstanding
if (pixelStation[pixelPick].status.texReadsOutstanding)

pixelPick = —1;
else

break;

}

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}

lineCheck = vertexHead;
for (i=6;i<vertestCount;i++)
{

if (vertexStation[lineCheck].status.valid &&
vertexStation[lineCheck].status.ressourceNeeded == TEXTURE

&& lvertexStation[lineCheck].status.event)
{

}
vertexPick=lineCheck;

// enforce restrictions based on the status

if (vertexPick l: —1)
{

// no texture ops while texture reads are outstanding
if (vertexStation[vertexPick].status.texReadsOutstanding)

vertexPick = —1;
else

break;
}

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}

if (vertexPick 1= -1)
{

lineNumber = vertexPick;
sType = VERTEX;
return true;

}
if (pixelPick l= —1)
{

lineNumber = pixelPick;
sType = PIXEL;
return true;
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return false;

Then fills in a request in this function:
void Arbiter::fillTextureIntertace(int textureInstAddr,int texturePhase,boolean last)
{

const RegVect* txAddr;
TXAddr address;
uinteger<7> registerAddress;
uinteger<7> writeAddress;
uint8 maxSize;
int basePtr = textureCFMachine.stationData->data.gprBase;

sq—>pSQ_TP—>SetValid(true)5

// Get the instruction

TInstrPacked inst;

// set the state to the current running ALU
sq->setContextNumber(textureCFMachine.stationData->data.state);

sq->instructionStore.GetInst(inst,textureInstAddr);
switch (textureCFMachine.sType)
{
case PIXEL:

maxSize = sq->gpr_manager->pixLimit;
// compute the addresses (read address)
it ((inst.getSRC_GPR() + basePtr) < maxSize)

registerAddress = inst.getSRC_GPR() + basePtr;
else

registerAddress inst.getSRC_GPR()-(maxSize-basePtr);
// write address

it ((inst.getDST_GPR() + basePtr) < maxSize)
writeAddress = inst.getDST_GPR() + basePtr;

else

writeAddress = inst.getDST_GPR()-(maxSize-basePtr);
break;

case VERTEX:

maxSize = sq->gpr_manager->vertLimit;
// compute the addresses (read address)
it (( basePtr - inst.getSRC_GPR()) >= maxSize)

registerAddress = basePtr - inst.getSRC_GPR();
else

registerAddress = 128-(inst.getSRC_GPR()-(basePtr-maxSize));
// write address

it (( basePtr - inst.getDST_GPR()) >= maxSize)
writeAddress = basePtr — inst.getDST_GPR();

else

writeAddress 128-(inst.getDST_GPR()-(basePtr-maxSize));
break;

};
sq—>regFile[texturePhase]—>GetConstValues(txAddr,registerAddress);
int i;
for(i=e;i<16;i++)
{
//Do the swizzle tor the TP
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inst.doSrcSwizzle( txAddr[i].Field[9], txAddr[i].field[1], txAddr[i].Field[2],
txAddr[i].field[3],

address.x, address.y, address.z );
sq->pSQ_TP->SetSP_TP_fetch_addr(address,i);

}
for (i=e;i<4;i++)
{

uinteger<4> valids;
valids = textureCFMachine.stationData->data.valids[texturePhase][i];
// modify the mask to turn on any pixels that are off if not fetch valid

it (linst.getFETCH_VALID_ONLY())
{

if (valids.getValue() != 0)
valids = GXGF;

}

// now modify the mask based on the predicate vector
if (inst.getPRED_SELECT())
{

bool pred = (inst.getPRED_CONDITION() == 1);
if (pred l= textureCFMachine.stationData-

>data.predicates[texturePhase*16+i*4])
{

// kill the pixel
valids = valids.getValue() & QXE;

}
if (pred != textureCFMachine.stationData—

>data.predicates[texturePhase*16+i*4+1])
{

// kill the pixel
valids = valids.getValue() & exD;

}
if (pred l= textureCFMachine.stationData-

>data.predicates[texturePhase*16+i*4+2])
{

// kill the pixel
valids = valids.getValue() & OxB;

}
if (pred != textureCFMachine.stationData—

.predicates[texturePhase*16+i*4+3])
{

// kill the pixel
valids = valids.getValue() & 9x7;

}
}
sq->pSQ_TP->SetSQ_TP_pix_mask(valids,i);

// send the LCD correction bits

uinteger<9> LODCorrect;
LODCorrect = textureCFMachine.stationData-

>data.L0dCorrect[teXturePhase][i];
sq—>pSQ_TP—>SetSQ_TP_lod_correct(LODCorrect,i);

}

92
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sq—>pSQ_TP—>SetSQ_"P_write_gpr_index(writeAddress);
sq->pSQ_TP->SetSQ_"P_last(last);
uinteger<6> line;
line = textureCFMachine.lineNumber;
sq—>pSQ_TP—>SetSQ_‘P_thread_id(line);
sq->pSQ_TP->SetSQ_"P_type(textureCFMachine.sType);
TConstPacked tpConst;
sq->texture$tate$tore[textuPeCFMachine.stationData-

>data.state].GetConstTState(tpConst,inst.getCONST_INDEX());
sq—>pSQ_TP—>SetSQ_TP_const(tpConst)3
sq->pSQ_TP->SetSQ_TP_instr(inst);
uinteger<3> cthd;
cthd = textuPeCFMachine.stationData->data.state;
sq->pSQ_TP->SetSQ_TP_ctx_id(cthd)5

 

 

if(sq->m_dumpSQ>e) {
sq->pSQ_TP->GetNewAll(&(sq->m_qupDump->_data));
sq->m_qupDump->Dump(); 
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EXHIBIT B — CHIP DESIGN CODE

sq_gpr_alloc.V
/*

~vtx_max =

wire pix_ok_to_alloc =

OK

hers‘s a description of the basic operation:

<- tail
<- head

<- tail

\IOWLn-PUJNI—‘Q \IO‘Ln-PUJNI—‘Q \lOfiU’I-PWNI—‘Q
J J ____ J

initially, head = tail - 0, and max is set to be one more than the maximum allowable location
req 1 allocates one location, head is incremented to 1
req 2 allocates three locations, head is incremented to 4
another request for 3 spaces would not be granted since there are now only two free locations
when the space taken by req 1 is dealloc'd, increment tail to 1 (frees up one location)
now req 3 allocates three locations, head is incremented to 7, which is greater than max, so it is
wrapped around by subtracting max (7 - 6 = 1)

*/

— keep track of the free space —

wire [PTR_wIDTH-1:B] pix_free;
wire [PTR_WIDTH-1:0] vtx_free;

// number of free pixel locations
//

assign pix_free = pix_wrapped_q ? pix_tail_q — pix_head_q :
assign vtx_tree = vtx_wrapped_q ? vtx_head_q - vtx_tail_q :

127 — vtx_max

pix_max_q — pix_head_q + pix_tail_q;
~vtx_max_q - vtx_tail_q + vtx_head_q; //

(pix_alloc_space <= pix_free); // 0K to allocate pixel space
wire pixialloc = pixiokitoialloc & pixiallocireq; // signals the start of a pixel alloc operation
wire pix_dealloc = pix_dealloc_req; // signals the start of a pixel dealloc operation (always
to dealloc?)
wire pix_head_wraps
wire pix_tail_wraps

(new_pix_head >2 pix_max_q);
(new_pix_tail >= pix_max_q);

// new pix_head wraps
// new pix_tail wraps

wire vtx_ok_to_alloc = (vtx_alloc_space <= vtx_free); // 0K to allocate vertex space
wire vtx_alloc = vtx_ok_to_alloc & vtx_alloc_req; // signals the start of a vertex alloc operation
wire vtx_dealloc = vtx_dealloc_req; // signals the start of a vertex dealloc operation
wire vtx_head_wraps = (new_vtx_head <= vtx_max_q); // new vtx_head wraps
wire vtx_tail_wraps = (new_vtx_tail <= vtx_max_q); // new vtx_tail wraps

case ( ra_current_state )
IDLE:

begin
// - look for any of the four requests
// - if the request is accepted
//
//

— go to the corresponding acknowledge state
- update the baseiptr register on alloc requests

if ( pixialloc )
begin

ra_next_state = P_ALLOC_ACK;
next_pix_alloc_ack : HI;

if ( pix_head_wraps )
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begin
next_pix_wrapped : HI;
next_pix_head = new_pix_head - pix_max_q;

end
else

begin
next_pix_head = new_pix_head;

end

nextibaseiptr = pixiheadiq; // for pixels, the space starts with the current head pointer
end

else if ( vtx_alloc )
begin

ra_next_state = V_ALLOC_ACK;
next_vtx_alloc_ack = HI;

if ( vtx_head_wraps )
begin

next_vtx_wrapped = HI;
nextivtxihead = newivtxihead + ~vtx7max7q; // ~vtx7max = 127 - vtximax
//next_base_ptr : new_vtx_head + ~vtx_max + 1; // for vertsJ the space starts with

the new head pointer
end

else

begin
next_vtx_head = new_vtx_head;
//next_base_ptr = new_vtx_head + 1; // for vertsJ the space starts with the new head

pointer
end

nextibaseiptr = nextivtxihead + 1; // for vertsJ the space starts with the new head
pointer

// (coding trick - commented out lines above explain)

ScLaluiinstriseqN
//H////////////////////////////////////////////////////////////////////////////////
// sq_alu_instr_seq.v
//
// - receives instruction from alu instr queue (AIQ)
// - reads constants (but data goes directly to ais_output mux)
// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:9] aiq_export_info; // {exp_idJ pulse_sx}
input [9:9] aiq_last_in_group; // last instruction flag
input [9:9] aiqilastiinishader; // last instruction flag
input [9:9] aiq_thread_type; // 9: pixel, 1: vertex (shows we operate on either pixel or vertex)
input [2:9] aiqicontextiid; // contextiid (from ctl packet)
input [5:9] aiq_thread_id; // clause number

- recall that 9 here means src is a constant (while 1 means src is a gpr)...

wire ca_fetch ~aiq_instr[95];
wire cb_+etch ~aiq_instr[94];
wire cc_fetch ~aiq_instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
// before entering the AIQ

wire [8:9] ca_addr — {aiq_instr[63], aiq_instr[87:89]};
wire [8:9] cbiaddr {aiqiinstr[62]J aiqiinstr[79:72]};

[8:9] cc_addr {aiq_instr[61]J aiq_instr[71:64]};

// -- Input Staging Register --
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// -------------------------- --
// - need to send the vector type and the thread_id back to the thread buffers when
// the all the instructions we wanted to run for this thread are done (this will
// cause the thread to become valid again)
// - register this info in from the AIQ on an AIQ pop in order to hold it until the
// AIS is done

case (ais_current_state)
AISB:

// - wait until this machine is started by the AIQ read SM
// — write OSR data into thread buff on new thread (when there was a previous thread...)
// - aisidone does updates the threadibuft and clears the aluiinstripending status bit
// - don't assert ais_done yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)
begin

ais_instr_stall = HI;

if ( ais_start )
begin

//if ( aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q ) ais_done = HI;

ais_instr_start = HI;
aisiinstristall = L0;
ais_next_state : AISl;

end
end

AISl: begin ais_next_state AISZ; end

AISZ: begin ais_next_state AIS3; end

AIS3: begin aisinextistate AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //

AIS4: begin ais_next_state AISS; end

AISS: begin ais_next_state AIS6; end

A156:

begin
// — the pred set data is loaded now from the previous instr, so assert done now
// - also write new predicate data into predicate register (in aisioutput )

if ( isr_new_thread_q & osr_pred_set_+lag_q ) ais_done = HI;

ld_osr = HI;
ais_next_state = AIS7;

end

A157:

// - pop the thread off the reservation station buffer when the last instr of the shader is
executed

// - send treeidone when pulseisx is setJ or this is the last instruction of a pixel shader
(since this

// is when the pixel export is done)

begin
if ( isr_last_in_group_q & ~isr_last_in_shader_q ) ais_done = HI;

it ( isr_pulse_sx_q ) ais_free_done HI; // pixel last logic put into pulse_sx generation

it ( isrilastiinishaderiq ) aisipop HI;

aisinextistate = AISO;
end

endcase
end
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// - end ais state machine

The ais machine is the “alu instruction sequencer” it executes instructions on either vertices or pixels depending on type. The file
sq;instruction75tore.v contains the memory with all the instructions to be performed on either PS or VS:

Sginstructionistoreiv

// Access to the is (instruction store) is divided into 4 phases:
// B: texture instruction read
// 1: alu instruction read
// The alu phase alternates between phases for alue and alul.
// 2: CP write (or read for debug)
// 3: control flow instruction read
// The control flow phase is shared for accesses by alue, alul and tex
// controlled by isisubiphase.

// address mux
always @(/*AUTOSENSE*/addr or data_cnt or i_alue_addr

or i_alue_cf_addr or i_alu1_addr or i_alu1_cf_addr
or i_is_phase or i_is_sub_phase or i_tex_addr
or i_tex_cf_addr or q_rbi_addr_in)

begin
// default values
d_addr = addr;
diwe = l'be;
case (i_is_phase)

TEX_PHASE :
begin

d_addr i_tex_addr;
end

ALU_PHASE :
begin

d_addr i_is_sub_phase[e] P i_alu1_addr : i_alue_addr;
diwe &data7cnt; // dataicnt == 3

end

CP_PHASE :
begin

d_addr = q_rbi_addr_in[11:9]; // top bits are zeros by now
end

CF_PHASE :
begin

case (i_is_sub_phase)
2'b08 :

d_addr i_alu9_cf_addr;
2'b18 :

d_addr i_alu1_cf_addr;
default :

d_addr i_tex_cf_addr;
endcase // case(i_is_sub_phase)

end

endcase // case(i_is_phase)

end // always @ (...

Claim 2:
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spimaccigprw'
// Filename : macc_reg.v
// Description : This module represents the MACC (Multiply and Accumulate) unit plus
// : the corrensponding GPR (register file) module.
// Author : Andi Skende

rfsd2_128x128cmlsw8_core ugpr_mem(.QB(reg_data),
.ADRA_buf(gpr_wr_addr)J
.DA_buf(input_gpr),
.WEMA_bu‘F(subword_write_mask)J
.WEA_buf(gpr_wr_ena),
.MEAibuf(gpr7wr7ena)J
.CLKA(sclk),
.BISTEA(l'b0),
.ADRB_bu-F(sq_sp_gpr_rd_addr)J
.0EB_buf(1'b1)J
.MEB_buf(sq_sp_mem_rd_ena)J
.CLKB(sclk),
.BISTEB(l'b0),
.AWTB(1'bB)
);

This is the instantiation of the GPR memory, 128x128.

Spivectorx (shows the instanciation of 4 multiply accumulate modules and l scalar module):

// ------------------------------------------------------------------------------------------------------ --

//Scalar Unit instantiation

sp_scalar_lut uscalar(
.iAGiMEioPCODE(scalariopcode)J
.iAG_ME_IN_A(scalar_input_alpha),
.iAGiMEilNiB(scalariinputired),
.iAG_ME_IN_C(32'bB),
.iAG_ME_ABS_A(scalar_input_abs)J
.iAG_ME_ABS_B(scalar_input_abs)J
.iAG_ME_ABS_C(scalar_input_abs),
.iAG_ME_A_NEGATE(scalar_input_negate)J
.iAG_ME_B_NEGATE(scalar_input_negate A scalar_opcode_sub),
.iAG_ME_C_NEGATE(scalar_input_negate)J
.oME_RESULT(scalar_result),
.sclk(sclk)
),

//replicating the scalar_result (32 bits) to all of the four channels of the write back path into GPRs
//masking is done at the GPRs input
assign scalar_result_bus = { scalar_result, scalar_result, scalar_result, scalar_result};

//Instantiation of all four MACC units that create a Vector Unit

sp_macc_gpr usp_macc_gpr8(.ovector_output(VectorResultB),
.oscalar_input_alpha(scalar_input0_alpha),
.oscalar_input_red(scalar_input0_red)J
.oscalar_input_negate(scalar_inputB_negate),
.oscalar_input_abs(scalar_input9_abs)J
.oscalar_opcode(scalar_opcodee),
.oregidata(RegData0),.oexportidst(sqispiexpidst)J

.sqispiinstruct(sqispiinstruct),.sq sp instruct start(sq sp instruct start),.sqispistall(sqispistall)J
.sq_sp_gpr_rd_addr(sq_sp_gpr_rd_addr)J
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.sq_sp_gpr_wr_addr(sq_sp_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enaB)J.sq_sp_mem_rd_ena(sq_sp_mem_rd_ena)J.sq_sp_
mem_wr_ena(sq_sp_mem_wr_enaB)J

.sq_sp_gpr_cmask(sq_sp_channel_mask),.sq_sp_pred_override(sq_sp_pred_override),

.sq_sp_gpr_phase_mux(sq_sp_gpr_phase_mux),.iInterpolated(InputDataB),.sq_sp_constant(sq_sp_constant),
.iscalar_data(scalar_resu1t_bus),.tp_sp_data(tp_sp_data)J
.tp_sp_gpr_dst(tp_sp_gpr_dst),

.tpispigpricmask(tpispigpricmask),.tpispidataivalid(tpispidataivalid[8]),
.sc1k(sc1k), .srst(srst));

sp_macc_gpr usp_macc_gpr1(.ovect0r_0utput(VectorResultl)J
.oscalar_input_alpha(scalar_input1_alpha),
.oscalar_input_red(scalar_input1_red)J
.oscalar_input_negate(scalar_input1_negate),
.oscalar_input_abs(scalar_input1_abs)J
.oscalar_opcode(scalar_opcode1),

.oreg_data(RegData1),.sq_sp_instruct(qe_instruct),.sq sp instruct start(qe instruct start),.sq_sp_sta11(q8
instructistall),

 

.sq_sp_gpr_rd_addr(qe_gpr_rd_addr)J

.sq_sp_gpr_wr_addr(q6_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enal),.sq_sp_mem_rd_ena(q6_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_enal),

.sq_sp_gpr_cmask(qe_gpr_cmask)J.sq_sp_pred_0verride(q0_pred_override)J

.sq_sp_gpr_phase_mux(qe_gpr_phase_mux),.iInterpolated(InputDatal),.sq_sp_constant(q@_sq_constant),
.iscalar_data(scalar_resu1t_bus),.tp_sp_data(tp_sp_data),
.tpispigpridst(qBitpigpridst),

.tp_sp_gpr_cmask(q9_tp_gpr_cmask)J.tp_sp_data_va1id(tp_sp_data_valid[1]),
.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr2(.ovector_output(VectorResult2)J
.oscalar_input_alpha(scalar_input2_alpha),
.oscalar_input_red(scalar_input2_red),
.oscalar_input_negate(scalar_input2_negate)J
.oscalar_input_abs(scalar_input2_abs),
.oscalar_opcode(scalar_opcode2)J

.oregidata(RegDataZ),.sqispiinstruct(qliinstruct),.sq sp instruct start(ql instruct start),.sqispistall(q1
_instruct_stall),

 

.sq_sp_gpr_rd_addr(q1_gpr_rd_addr),

.sq_sp_gpr_wr_addr(q1_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enaZ)J.sq_sp_mem_rd_ena(q1_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_enaz)J

.sq_sp_gpr_cmask(ql_gpr_cmask),.sq_sp_pred_override(q1_pred_override),

.sq_sp_gpr_phase_mux(q1_gpr_phase_mux),.iInterpolated(InputDataZ),.sq_sp_constant(ql_sq_constant),
.iscalaridata(scalariresultibus),.tpispidata(tpispidata),
.tp_sp_gpr_dst(q1_tp_gpr_dst),

.tpispigpricmask(q17tpigpr7cmask)J.tpispidataivalid(tpisp7data7valid[2]),
.sc1k(sc1k), .srst(srst));

sp_macc_gpr usp_macc_gpr3(.ovect0r_0utput(VectorResultB),
.oscalar_input_alpha(scalar_input3_alpha),
.oscalar_input_red(scalar_input3_red)J
.oscalar_input_negate(scalar_input3_negate),
.oscalar_input_abs(scalar_input3_abs)J
.oscalar_opcode(scalar_opcode3),

.oreg_data(RegData3),.sq_sp_instruct(q2_instruct),.sq sp instruct start(q2 instruct start),.sq_sp_sta11(q2
iinstructistall),

 

.sq_sp_gpr_rd_addr(q2_gpr_rd_addr)J

.sq_sp_gpr_wr_addr(q2_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_ena3),.sq_sp_mem_rd_ena(q2_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena3)J

.sq_sp_gpr_cmask(q2_gpr_cmask),.sq_sp_pred_override(q2_pred_override)J
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.sq_sp_gpr_phase_mux(q2_gpr_phase_mux),.ilnterpolated(InputData3)J.sq_sp_constant(q2_sq_constant)J
.iscalar_data(scalar_result_bus),.tp_sp_data(tp_sp_data),.sclk(sclk),
.tp_sp_gpr_dst(q2_tp_gpr_dst)J

.tp_sp_gpr_cmask(q2_tp_gpr_cmask),.tp_sp_data_valid(tp_sp_data_valid[3]),
.srst(srst));

//Muxing the gpr vector results into one final vector result conrolled by the phase_mux signal or a
registered version of it

qu
// --------------------------------------------------------- --
// SQ-SP GPR control Interface
// --------------------------------------------------------- --
output [6:0] SQ_SP_gpr_wr_addr;
output [0:0] u0_SQ_SP_gpr_wr_en0;
output [0:0] u0_SQ_SP_gpr_wr_en1;
output [0:0] u075Q75P7gpriwrien2;
output [0:0] u0_SQ_SP_gpr_wr_en3;
output [0:0] ulisqisPigpriwrien0;
output [0:0] ul_SQ_SP_gpr_wr_en1;
output [0:0] u1_SQ_SP_gpr_wr_en2;
output [0:0] ul_SQ_SP_gpr_wr_en3;
output [0:0] u2_SQ_SP_gpr_wr_en0;
output [0:0] u2_SQ_SP_gpr_wr_en1;
output [0:0] u2_SQ_SP_gpr_wr_en2;
output [0:0] u2_SQ_SP_gpr_wr_en3;
output [0:0] u3_SQ_SP_gpr_wr_en0;
output [0:0] u375Q75P7gpriwrien1;
output [0:0] u3_SQ_SP_gpr_wr_en2;
output [0:0] u375Q75P7gpriwrien3;
output [6:0] SQ_SP_gpr_rd_addr;
output [0:0] SQ_SP_gpr_rd_en;
output [1:0] SQ_SP_gpr_phase_mux;
wtwt[3m]SQ§Rfihmnd;mflg

output [1:0] SQ_SP_gpr_input_mux;
output [‘AUT07COUNTileE - 1 :0] SQisPiautoicount;

// ------------------------------------------------------------- --
// SQ-SP : Instruction interface
// ------------------------------------------------------------- --
output [0:0] SQ_SP_instruct_start;
output [0:0] SQ_SP_stall;
output [23:0] SQ_SP_instruct;
output [127 0] SQisPiconst;

wtwt[0m]SQ§{emoMiw;
output [0:0] SQ_SP_exp_id;

output [7:0] u0_SQ_SX_kill_mask; // valid bits/kill mask
output [7:0] u1_SQ_SX_kill_mask;

output [3:0] u0_SQ_SP_pred_override;
output [3:0] ulisqisPipredioverride;
output [3:0] u2_SQ_SP_pred_override;
output [3:0] u375Q75P7predioverride;
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Sq¥exportialloev
always @( alloc_cmd )

begin
casez ( alloc_cmd )

// - vtx pos alloc
7'b1_91_9961 : sx_exp_cmd
7'b1_01_0010 : sx_exp_cmd

// — vtx pass thru
7'b171170100 : sxiexpicmd 5‘b1170071;
7'b1_11_1969 : sx_exp_cmd 5‘b11_el_1;
7'b171171100 : sxiexpicmd 5‘b1171071;

// - pix without 2
7'b8_18_6816 : sx_exp_cmd 5‘b66_66_1;
7'b0_10_0190 : sx_exp_cmd 5‘b60_61_1;
7'b9_19_6119 : sx_exp_cmd 5‘b69_16_1;
7'b0_10_1060 : sx_exp_cmd 5‘b60_11_1;

// — pix with z
7'b871870811 : sxiexpicmd 5‘b0170071;
7'b9_19_9191 : sx_exp_cmd S‘bel_el_1;
7'b871870111 : sxiexpicmd S‘belileil;
7'b9_19_1961 : sx_exp_cmd 5‘b61_11_1;

// - pix pass thru
7'b0_11_0190 : sx_exp_cmd 5'b11_oe_1;
7'b9_11_1969 : sx_exp_cmd 5‘b11_61_1;
7'b0_11_1160 : sx_exp_cmd 5‘b11_10_1;

default: sx_exp_cmd = S‘bxxxxe;
endcase

end

Shows the SQ able to execute any types of export commands (position. pass—thru (appearance). pix (color).

An example of a shared resource is the instruction store, accesses to it are controlled by:
sq¥ctliflowiseqy
module sq_ctl_flouLseq
(

cfs_type_strap, Be aluBJ ?1:texJ lazalul

isiphaseJ BO:CFJ OlzTexJ 10:ALUJ 11:CP
is_subphase, Bazalue, BlztexJ lB:alulJ 11:tex
cfs_phase, BezaluB, Blztex, 18:alu1, 11:tex
cfc_phaseJ BzaluJ lztexJ

// local registers
// — per chip
inst_base_vtx, // vertex base
inst_base_pix, // pixel base

// — per context
vsiprogramibaseiset, // connected to SinsiPROGRAM.BASE (12 bits)
ps_program_base_set, // connected to SQ_PS_PROGRAM BASE (12 bits)

vs_export_count_set, // connected to SQ_PROGRAM_CNTL.VS_EXPORT_COUNT (4 bits)
vs_export_mode_set, // connected to SQ_PROGRAM_CNTL.VS_EXPORT_MODE (3 bits)
ps_export_mode_setJ // connected to SQ_PROGRAM_CNTL.PS_EXPORT_MODE (3 bits)

// thread arbiter input
arb_rts, //
arbistateJ //
arb_status, //
arbithreaditype, // vertex or pixel
c-Fs_rtr_qJ // CFS can take a new packet
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SLaIuiimlrissq.v
////////////////////////////////////////////////////////////////////////////////////
// sq_alu_instr_seq.v
//
// - receives instruction from alu instr queue (AIQ)
// — reads constants (but data goes directly to ais_output mux)
// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:8] aiq_export_info; // {exp_idJ pulse_sx}
input [6:8] aiq_last_in_gr0up; // last instruction flag
input [6:0] aiq_last_in_shader; // last instruction flag
input [6:9] aiq_thread_type; // 0: pixelJ l: vertex (shows we operate on either pixel or vertex)
input [2:0] aiq_context_id; // context_id (from ctl packet)
input [5:9] aiq_thread_id; // clause number

- recall that 6 here means src is a constant (while 1 means src is a gpr)m

wire caitetch ~aiq7instr[95];
wire cb_+etch ~aiq_instr[94];
wire ccitetch ~aiq7instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
// before entering the AIQ

wire : {aiq_instr[63], aiq_instr[87:88]};
wire : {aiq_instr[62], aiq_instr[79:72]};

{aiq_instr[61], aiq_instr[71:64]};

- need to send the vector type and the thread_id back to the thread buffers when
the all the instructions we wanted to run for this thread are done (this will
cause the thread to become valid again)

- register this info in from the AIQ on an AIQ pop in order to hold it until the
A15 is done

case (ais_current_state)
AISB:

// - wait until this machine is started by the AIQ read SM
// — write OSR data into thread buff on new thread (when there was a previous thread )
// - aisidone does updates the threadibuft and clears the aluiinstripending status bit
// - don’t assert ais_done yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)
begin

ais_instr_stall = HI;

if ( ais_start )
begin

//if ( aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q ) ais_done = HI;

ais_instr_start = HI;
aisiinstristall = L0;
ais_next_state : AISl;

end
end

AISl: begin ais_next_state A152; end

AISZ: begin ais_next_state A153; end

AIS3: begin aisinextistate AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use into saved in ISR ** //

AIS4: begin ais_next_state = AISS; end
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AISS: begin ais_next_state : A156; end

A156:

begin
// - the pred set data is loaded now from the previous instrJ so assert done now
// — also write new predicate data into predicate register (in ais_output )

if ( isr_new_thread_q & osr_pred_set_+lag_q ) ais_done = HI;

1d_osr : HI;
ais_next_state = AIS7;

end

AIS7:

// — pop the thread off the reservation station buffer when the last instr of the shader is
executed

// — send +ree_done when pulse_sx is set, or this is the last instruction of a pixel shader
(since this

// is when the pixel export is done)

begin
if ( isr_last_in_group_q & ~isr_1ast_in_shader_q ) ais_done = HI;

if ( isr_pulse_sx_q ) ais_free_done HI; // pixel last logic put into pulse_sx generation

if ( isr_last_in_shader_q ) ais_pop HI;

ais_next_state = AISB;
end

endcase
end

// - end ais state machine

sqgfihreadgpxb.v
// - vertex request priority encoder

reg [0:0] vtxiwinnerivld;
reg [3:6] vtx_winner;

always @(vtx_req_q)
begin

casez (vtx_req_q)
16'b0060_6006_0600_0060: vtx_winner_v
16'b1969_6996_9699_99692 vtx_winner_v
16'b?160_6006_0600_0060: vtx_winner_v
16'b??1e_eeoe_oeeo_eoee: vtx_winner_v
16'b???1_9089_8908_0860: vtx_winner_v
16'b????710807800870800: vtxiwinneriv
16'b????_?199_9999_9999: vtx_winner_v
16'b????7??107800870800: vtxiwinneriv
16'b????_???1_9669_6966: vtx_winner_v
16'b????_????_1eea_eaee: vtx_winner_v
16'b????_????_?168_66662 vtx_winner_v
16'b????_????_??10_0@ee: vtx_winner_v
16'b????_????_???1_9969: vtx_winner_v
16'b????_????_????_l@ee: vtx_winner_v
16'b????_????_????_?1e@: vtx_winner_v
16'b????_????_????_??10: vtx_winner_v
16'b???? ???? ???? ???1: vtx winner v

default: vtx_winner_v
endcase

'_O ' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtxiwinner
' vtx_winner
' vtxiwinner
' vtx_winner
' vtx_winner
' vtx_winner
' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtxiwinner

vtx_winner ' end

  QQQQQQQQQQQQQQCLQQQ. XIIIIIIIIIIIIIIII
end

// — pixel request priority encoder
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reg [6:6] pix_winner_vld;
reg [3:6] pix_winner;

always @(pix_req_q)
begin

casez (pix_req_q)
//16‘b6666_6666_6666_6666: begin pix_winner_vld
16'b1666_6666_6666_6666: begin pix_winner_v d
16'b?166766667666676666: begin pixiwinneriv
16'b??16_6666_6666_6666: begin pix_winner_v
16'b???1_6666_6666_6666: begin pix_winner_v
16'b????_1666_6666_6666: begin pix_winner_v
16'b????_?166_6666_6666: begin pix_winner_v
16'b????_??16_6666_6666: begin pix_winner_v
16'b????_???1_6666_6666: begin pix_winner_v
16'b????_????_1666_6666: begin pix_winner_v
16'b????_????_?166_6666: begin pix_winner_v
16'b????7????7??1676666: begin pixiwinneriv
16'b????_????_???1_6666: begin pix_winner_v
16'b????7????7????71666: begin pixiwinneriv
16'b????_????_????_?166: begin pix_winner_v
16'b????_????_????_??16: begin pix_winner_v
16'b????_????_????_???1: begin pix_winner_v
//de+ault: begin pix_winner
default: begin pix_winner_v

endcase
end

LO; pix_winne
' pix_winner
' pixiwinner
' pix_winner *
' pix_winner -
' pix_winner
' pix_winner
‘ pix_winner
' pix_winner
‘ pix_winner
' pix_winner
' pixiwinner
' pix_winner
' pixiwinner =
' pix_winner
' pix_winner
' pix_winner : , end
X; pix_winner bxxxx; end

LO; pix_winner = 4‘bxxxx; end

'ht; end
' end

end
end
end
end
end
end
end
end
end
end
end
end
end
end

+

..‘...‘...y
u.v.U101”meD'f")QFD
e.‘..‘.‘..‘.. 

®|-|I\JUJ-I> .u-v-
IIIIIIIIIIIIIIIIIIII npphpeheeepppebphn #:333333333333333hQ<QQQQQQQQQQQQQQQ 

// if cfsl is enabled, alternate btwn rts6 and rtsl
// if cfsl is disabled, mask rtsl and always use rts6
// what is the algorithm here? really want to send the thread to the CFS that‘s available (default
// to c+s6 if both are available)
// - so getting rid of forced toggle btwn cfs6 and cfsl - remember to to comment out cfs_turn

// there is only one winner max per cycle, so only one of the two RTSs is active in one cycle
// it doesn't matter which ALU pipe is used to process a thread, as long as threads are processed in

order

// of being selected by the arbiter (i.e. there should be no way for a thread in one ALU pipe to pass
a thread

// in the other ALU pipe when they are from the same context)

//assign arb_rts6 arb_rts & (~cfs_turn | ~cfsl_enable);
//assign arb_rtsl - arb_rts & c+s_turn & cfsl_enable;

//wire [6:6] c+s_rtr = cfs_rtr6 | c+s_rtrl;

wire [6:6] send_to_c+s6 cfs_rtr6;
wire [6:6] senditoictsl ~cfsirtr6 & cfsirtrl & ctslienable;

assign arbirts6 arbirts & senditoicts6;
assign arb_rtsl arb_rts & send_to_c+sl;

wire [6:6] arb_xfc6 arb_rts6 & cfs_rtr6;
wire [6:6] arb_xfcl arb_rtsl & cfs_rtr1;

wire [6:6] arb_xfc = arb_xfc6 | arb_xfcl;

// ------------------ --
// — Arb Output Mux ——
//
// choose between tex state/status and pix state/status depending on overall winner
// vtx tex has no lod
// vtx alu has no lod
// pix tex does have LOD (PIX_CTL_PKT_NIDTH and CTL_PKT_NIDTH have led)
// pix alu has no lod
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always @(type_winnen_q on vtx_state on pix_state)
begin

//anb_state = {STATE_WIDTH{LO}};
case (type_winner_q)

HI: anb_state = vtx_state; // these are unequal - msb's get 0's by above assignment
LO: arb_state = pix_state;
//defau1t: anb_state = {STATE_NIDTH{X}};

endcase
end

always @(type_winnen_q or vtx_status on pix_status)
begin

//anb_status : {STATUS_NIDTH{LO}};
case (type_winnen_q)

HI: arb_status = vtx_status;
L0: anb_status = pix_status;
//defau1t: anb_status = {STATUS_NIDTH{X}};

endcase
end

sq¥shaderiseqw

// shader_seq.v
//
// - instantiates 16 reservation stations
//
// issues:
// -
//
////////////////////////////////////////////////////////////////////////////////////

module sq_shader_seq
(

shader_seq_type, // a strap that tells this module if it's a vertex or pixel shader seq

// control packet input
input_cp, // control packet data from the input SM
input_rts, // rts from the input SM
input_rtr, // rtr from texture RSO

// texture clause arbiter interface

tex_req, // 8 texture RS requests
tex_cp, // vector of 8 control packets
tex_rtr, // 8 RTSs (not fulls) to the ALU arbiters
tca_winner_ack, // 8 ack bits from arb - only the winner bit is set
tca_empty_ack, // 8 ack bits from arb - each empty requesting clause is ack‘d to move it to next

RS

TP_SQ_data_rdy, // data ready indicator from TPC - increment the alu RS counter
TP_SQ_type, // the vector type: pixel=0, vertex=1
TP_SQ_clause_num, // the alu RS number whose count should be incremented

// alu clause arbiter interface

alu_req, //
alu_cp, //
alu_rtr, //
aca_winner_ack, //
aca_empty_ack, //
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aisO_data_rdy, // done indicator from AISO - increment the tex RS counter
aisO_vector_type, // the vector type: pixel=0, vertex=1
aisO_clause_num, // the tex RS number whose count should be incremented

ais1_data_rdy, // done indicator from AIS1 - increment the tex RS counter
aisl_vector_type, // the vector type: pixel=0, vertex=1
aisi_clause_num, // the tex RS number whose count should be incremented

// exit SM interface

state_change,// a pulse high indicates that the state exiting the 88 has changed
old_state, // the state that has finished (because a new state has emerged)
dealloc_req, // request to deallocate GPRs
dealloc_ack, // the dealloc request has been acknowleged

clk,
reset

// -- parameters --

parameter CP_W|DTH = 8;
parameter STATE_W|DTH = 3;

parameter FIFO_WIDTH = CP_W|DTH;
parameter FIFO_DEPTH = 4;
parameter FIFO_ADDR_B|TS = 2;

parameter L0 = 1'b0;
parameter HI = 1'b1;
parameter X = 1'bx;

// ----------------------------------------------------------------------------------
// -- ios --
// -----------------------------------------------------------------------------------

input shader_seq_type;

input [CP_W|DTH-1:0] input_cp;
input input_rts;
output input_rtr;

output [8:0] tex_req;
output [8*CP_W|DTH-1:O] tex_cp;
output [8:1] tex_rtr;

input [7:0] tca_winner_ack;
in put [7 : O] tca_em pty_ack;

input [0:0] TP_SQ_data_rdy;
input [0:0] TP_SQ_type;
input [2:0] TP_SQ_c|ause_num;

output [7:0] alUJeCI;
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output [8*CP_W|DTH-
output [7:0]

input [7:0]
input [7:0]

input
input
input [2:0]

input
input
input [2:0]

output
output [2:0]
output
input

input
input

1:0] alu_cp;
alu_rtr;

aca_winner_ack;
aca_empty_ack;

aisO_data_rdy;
aisO_vector_type;

aisO_clause_num;

aisi_data_rdy;
ais1_vector_type;

ais1_clause_num;

state_change;
old_state;
dealloc_req;

dealloc_ack;

clk'i

reset;

// - output register declarations

//reg [8:0]
//reg [7:0]

// ---------------------------

// -- internal signals --
// ---------------------------

wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:0]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:0]

tex_req;
alu_req;

tex_ctl_pktO;
tex_ctl_pkt1 ;
tex_ctl_pkt2;
tex_ctl_pkt3;
tex_ctl_pkt4;
tex_ctl_pkt5;
tex_ctl_pkt6;
tex_ctl_pkt7;
alu_ctl_pkt0;
alu_ctl_pkt1;
alu_ctl_pkt2;
alu_ctl_pkt3;
alu_ctl_pkt4;
alu_ctl_pkt5;
alu_ctl_pkt6;
alu_ctl_pkt7;

// group all the control packets together into one big vector for output to the arbiter

wire [8*CP_W|DTH-1:O] tex_cp = {tex_ctl_pkt7, tex_ctl_pkt6, tex_ctl_pkt5, tex_ctl_pkt4,
tex_ctl_pkt3, tex ctl_pkt2, tex ctl_pkt1, tex_ctl_pktO};

wire [8*CP_W|DTH-1:O] alu_cp = {alu_ctl_pkt7, alu_ctl_pkt6, alu_ctl_pkt5, alu_ctl_pkt4,

14
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alu_ctl_pkt3, a|u_ct|_pkt2, alu_ctl_pkt1, alu_ctl_pkt0};

reg [0:0] tpc_data_rdy;
reg [0:0] tpc_type;
reg [2:0] tpc_clause_num;

// -------------------------------------------------------------------------------------

// -- combinational logic --
// -----------------------------------------------------------------------------------

// - select the RS counter to increment based on clause number sent by TPC/AIS
// - counts represent the number of valid entries in a RS FIFO; because ctl packets are
// moved into the next RS before the vector they represent has actually finished, the
// count is used to gate the requests to the next arbiter until the clause is actually
// done

// - this is a decoder enabled by data_rdy

reg [7:0] tpc_cnt_inc;
reg [7:0] aisO_cnt_inc;
reg [7:0] ais1_cnt_inc;

always @(tpc_data_rdy or tpc_clause_num or tpc_type or shader_seq_type)
begin

tpc_cnt_inc = 8'h00;
if (tpc_data_rdy & (tpc_type == shader_seq_type))
tpc_cnt_inc[tpc_clause_num] = 1'b1;

end

always @(ais0_data_rdy or aisO_clause_num or aisO_vector_type or shader_seq_type)
begin

aisO_cnt_inc = 8'h00;
if (aisO_data_rdy & (aisO_vector_type == shader_seq_type))
aisO_cnt_inc[aisO_c|ause_num] = 1‘b1;

end

always @(ais1_data_rdy or ais1_clause_num or ais1_vector_type or shader_seq_type)
begin

ais1_cnt_inc = 8'h00;
if (ais1_data_rdy & (ais1_vector_type == shader_seq_type))
ais1_cnt_inc[ais1_c|ause_num] = 1‘b1;

end

wire [7:0] ais_cnt_inc = aisO_cnt_inc | ais1_cnt_inc;

// - create the RS request by masking the RS FIFO rts when the associated RS count is zero
// - this is done because a control packet is moved to the next RS before the RS can actually tell
// the arbiter about it

// - in both cases, in order to facilitate the advancement of empty clauses, the packet is moved
// to the next RS when the arbiter selects it

// - in the case of alu RSs, the TPC must indicate that the texture data has been loaded into the

// GPRs before incrementing the count
// - in the case of tex RSs, the AIS will increment the count when it‘s done

//wire [FIFO_ADDR_BITS—1:0] tex_count [0:8]; // tex_count[8] is for the exit RS

15
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//wire [FIFO_ADDR_B|TS—1:0] alu_count [0:7];
wire [FIFO_ADDR_B|TS—1:O] tex_countO;
wire [FIFO_ADDR_BITS-1:0] tex_count1;
wire [FIFO_ADDR_B|TS—1:O] tex_countZ;
wire [FIFO_ADDR_B|TS—1:O] tex_count3;
wire [FIFO_ADDR_BITS-1:0] tex_count4;
wire [FIFO_ADDR_BITS-1:O] tex_count5;
wire [FIFO_ADDR_B|TS—1:O] tex_count6;
wire [FIFO_ADDR_B|TS—1:O] tex_count7;
wire [FIFO_ADDR_BITS-1:O] tex_count8;
wire [FIFO_ADDR_B|TS—1:O] alu_countO;
wire [FIFO_ADDR_B|TS—1:O] alu_count1;
wire [FIFO_ADDR_BITS-1:O] alu_count2;
wire [FIFO_ADDR_B|TS—1:O] alu_count3;
wire [FIFO_ADDR_BITS-1:O] alu_count4;
wire [FIFO_ADDR_BITS-1:O] alu_count5;
wire [FIFO_ADDR_B|TS—1:O] alu_count6;
wire [FIFO_ADDR_BITS-1:O] alu_count7;

wire [8:0] tex_rts; // tex_rts[8] is for the exit RS
wire [7:0] alu_rts;

// - this could be done in the reservation station...

llalways @(tex_rts or tex_count)
// for (i=0; i<9; i=i+1) begin
// tex_req[i] = tex_rts[i] & |(tex_count[i]);
fl end

//a|ways @(alu_rts or alu_count)
// for (i=0; i<8; i=i+1) begin
// alu_req[i] = alu_rts[i] & |(a|u_count[i]);
fl end

assign tex_req[0] = tex_rts[O] & |tex_count0;
assign tex_req[1] = tex_rts[1] & |tex_count1;
assign tex_req[2] = tex_rts[2] & |tex_count2;
assign tex_req[3] = tex_rts[3] & |tex_count3;
assign tex_req[4] = tex_rts[4] & |tex_count4;
assign tex_req[5] = tex_rts[5] & |tex_count5;
assign tex_req[6] = tex_rts[6] & |tex_count6;
assign tex_req[7] = tex_rts[7] & |tex_count7;
assign tex_req[8] = tex_rts[8] & |tex_count8;
assign alu_req[O] = alu_rts[O] & |a|u_count0;
assign alu_req[1] = alu_rts[1] & |a|u_count1;
assign alu_req[2] = alu_rts[2] & |a|u_count2;
assign alu_req[3] = alu_rts[3] & |a|u_count3;
assign alu_req[4] = alu_rts[4] & |a|u_count4;
assign alu_req[5] = alu_rts[5] & |a|u_count5;
assign alu_req[6] = alu_rts[6] & |a|u_count6;
assign alu_req[7] = alu_rts[7] & |a|u_count7;

// - the acknowledge to a R8 is the OR of the winner and empty ack vectors
// - the ack advances the CH packet to the next RS
// - want to advance when either the clause was picked by the arbiter or when
// the clause is empty (no instructions)
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wire [7:0] tca_ack = tca_winner_ack | tca_empty_ack;

//wire [7:0] aca_winner_ack = aca0_winner_ack | aca1_winner_ack;
//wire [7:0] aca_empty_ack = acaO_empty_ack | aca1_empty_ack;
wire [7:0] aca_ack = aca_winner_ack | aca_empty_ack;

// -------------------------------------------------------------------------------------

// -- registers --
// ----------------------------------------------------------------------------------

// - block input registers for signals from TPC

always @(posedge clk)
begin

tpc_data_rdy <= TP_SQ_data_rdy;
tpc_type <= TP_SQ_type;
tpc_clause_num <= TP_SQ_cIause_num;

end

// -------------------------------------------------------------------------------------
// -- state machines --
// -------------------------------------------------------------------------------------

// -------------------------------------------------------------------------------------
// -- module instatiations --
// -------------------------------------------------------------------------------------

// 16 reservation stations: 8 texture, 8 alu

// - the R83 are connected tex to alu to tex etc., with an exit RS connected after alu rs7 (like tex rs8)
// - the write rts/rtr for tex rsO is from the input sm
// - the read rts‘s are qualified with the RS count and sent to the arbiter
// - the arbiter sends an ack which rtr's the sender and rts‘s the receiver (i.e. next RS)
// - the next RS rtr goes back to the arbiter and must be high to enable a grant

wire tex_rsO_cnt_inc = input_rts & input_rtr;

res_station // tex rsO
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_B|TS(F|FO_ADDR_BITS))
u_tex_rsO

(.write_rts(input_rts), .write_rtr(input_rtr), .write_data(input_cp),
.read_rts (tex_rts[0]), .read_rtr (tca_ack[0]). .read_data (tex_ctl_pkt0),
.empty_inc(LO), .count_inc(tex_rsO_cnt_inc), .count(tex_count0),
.clk(clk), .reset(reset)

);
res_station // alu rsO
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_alu_rsO

(.write_rts(tca_ack[0]), .write_rtr(alu_rtr[0]), .write_data(tex_ctl_pkt0),
.read_rts (alu_rts[0]), .read_rtr (aca_ack[0]), .read_data (alu_ctl_pkt0),
.empty_inc(tca_empty_ack[0]), .count_inc(tpc_cnt_inc[0]), .count(alu_count0),
.clk(clk), .reset(reset)

);
res_station // tex rs1
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#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rs1

(.write_rts(aca_ack[0]), .write_rtr(tex_rtr[fl), .write_data(alu_ctl_pkt0),
.read_rts (tex_rts[1]), .read_rtr (tca_ack[1]), .read_data (tex_ct|_pkt1),
.empty_inc(aca_empty_ack[0]), .count_inc(ais_cnt_inc[0]), .count(tex_count1),
.clk(clk), .reset(reset)

);
res_station // alu rs1
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_a|u_rs1

(.write_rts(tca_ack[1 1), .write_rtr(alu_rtr[1]). .write_data(tex_ctl_pkt1),
.read_rts (alu_rts[1]), .read_rtr(aca_ack[1]), .read_data (alu_ct|_pkt1),
.empty_inc(tca_empty_ack[1]), .count_inc(tpc_cnt_inc[1]), .count(a|u_count1),
.c|k(c|k), .reset(reset)

);
res_station // tex r32
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_B|TS))
u_tex_rsZ

(.write_rts(aca_ack[1]), .write_rtr(tex_rtr[2]), .write_data(a|u_ctl_pkt1),
.read_rts (tex_rts[2]), .read_rtr(tca_ack[2]), .read_data (tex_ctl_pkt2),
.empty_inc(aca_empty_ack[1]), .count_inc(ais_cnt_inc[1]), .count(tex_count2),
.c|k(c|k), .reset(reset)

);
res_station // alu r32
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_a|u_r52

(.write_rts(tca_ack[2]), .write_rtr(alu_rtr[2]), .write_data(tex_ctl_pkt2),
.read_rts (alu_rts[2]). .read_rtr(aca_ack[2]), .read_data (a|u_ct|_pkt2),
.empty_inc(tca_empty_ack[2]), .count_inc(tpc_cnt_inc[2]), .count(a|u_count2),
.clk(clk), .reset(reset)

);
res_station // tex r33
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rsS

(.write_rts(aca_ack[2]), .write_rtr(tex_rtr[3]), .write_data(a|u_ctl_pkt2),
.read_rts (tex_rts[3]), .read_rtr(tca_ack[3])y .read_data (tex_ct|_pkt3),
.empty_inc(aca_empty_ack[2]), .count_inc(ais_cnt_inc[2]), .count(tex_count3),
.c|k(c|k), .reset(reset)

);
res_station // alu r33
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_a|u_rs3

(.write_rts(tca_ack[3]), .write_rtr(alu_rtr[3]), .write_data(tex_ctl_pkt3),
.read_rts (alu_rts[3]), .read_rtr(aca_ack[3]), .read_data (alu_ctl_pkt3),
.empty_inc(tca_empty_ack[3]), .count_inc(tpc_cnt_inc[3]), .count(a|u_count3),
.clk(clk), .reset(reset)

);
res_station // tex rs4
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rs4

(.write_rts(aca_ack[3]), .write_rtr(tex_rtr[4]), .write_data(a|u_ctl_pkt3),
.read_rts (tex_rts[4]), .read_rtr(tca_ack[4]), .read_data (tex_ctl_pkt4),
.empty_inc(aca_empty_ack[3]), .count_inc(ais_cnt_inc[3]), .count(tex_count4),
.c|k(c|k), .reset(reset)

);
res_station // alu rs4

 



LG Ex. 1002, pg 247

#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_alu_rs4

(.write_rts(tca_ack[4]), .write_rtr(alu_rtr[4]), .write_data(tex_ctl_pkt4),
.read_rts (alu_rts[4]), .read_rtr(aca_ack[4]), .read_data (a|u_ct|_pkt4),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[4]), .count(a|u_count4),
.clk(clk), .reset(reset)

);
res_station // tex rs5
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rs5

(.write_rts(aca_ack[4]), .write_rtr(tex_rtr[5]), .write_data(a|u_ct|_pkt4),
.read_rts (tex_rts[5]), .read_rtr(tca_ack[5]), .read_data (tex_ct|_pkt5),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[4]), .count(tex_count5),
.c|k(c|k), .reset(reset)

);
res_station // alu rs5
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_B|TS))
u_alu_r35

(.write_rts(tca_ack[5]). .write_rtr(alu_rtr[5]), .write_data(tex_ctl_pkt5),
.read_rts (alu_rts[5]), .read_rtr(aca_ack[5]), .read_data (a|u_ct|_pkt5),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[5]), .count(alu_count5),
.c|k(c|k), .reset(reset)

);
res_station // tex r36
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rsG

(.write_rts(aca_ack[5]), .write_rtr(tex_rtr[6]), .write_data(a|u_ctl_pkt5),
.read_rts (tex_rts[6]). .read_rtr(tca_ack[6])y .read_data (tex_ct|_pkt6),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[5]), .count(tex_counts),
.clk(clk), .reset(reset)

);
res_station // alu r36
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_B|TS(F|FO_ADDR_BITS))
u_alu_r56

(.write_rts(tca_ack[6]), .write_rtr(a|u_rtr[6]), .write_data(tex_ctl_pkt6),
.read_rts (alu_rts[6]), .read_rtr(aca_ack[6])y .read_data (a|u_ct|_pkt6),
.empty_inc(tca_empty_ack[6]), .count_inc(tpc_cnt_inc[6]), .count(alu_count6),
.c|k(c|k), .reset(reset)

);
res_station // tex rs7
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs7

(.write_rts(aca_ack[6]), .write_rtr(tex_rtr[7]), .write_data(alu_ctl_pkt6),
.read_rts (tex_rts[7]), .read_rtr(tca_ack[7]). .read_data (tex_ctl_pkt7),
.empty_inc(aca_empty_ack[6]), .count_inc(ais_cnt_inc[6]), .count(tex_count7),
.clk(clk), .reset(reset)

);
res_station // alu rs7
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs7

(.write_rts(tca_ack[7]), .write_rtr(a|u_rtr[7]), .write_data(tex_ctl_pkt7),
.read_rts (alu_rts[7]), .read_rtr(aca_ack[7]), .read_data (a|u_ct|_pkt7),
.empty_inc(tca_empty_ack[7]), .count_inc(tpc_cnt_inc[7]), .count(alu_count7),
.c|k(c|k), .reset(reset)

),
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wire [2:0] new_state;

// exit RS

res_station
#(.DATA_B|TS(STATE_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_B|TS(F|FO_ADDR_BITS))

u tex r58

(.write_rts(aca_ack[7]), .write_rtr(tex_rtr[8]), .write_data(a|u_ctl_pkt7[STATE_W|DTH-1:O]),
.read_rts (tex_rts[8]), .read_rtr(exit_sm_rtr), .read_data (new_state),
.empty_inc(aca_empty_ack[7]), .count_inc(ais_cnt_inc[7]), .count(tex_count8),
.clk(clk), .reset(reset)

).

// ------------------------
// -- exit state machine --
// ------------------------

exit_sm
u_exit_sm
(

.new_state_rts(tex_req [8] ),

.new_state_rtr(exit_s m_rtr),

.new_state(new_state),

.state_d iff(state_change),

.o|d_state_q(old_state),

.dealloc_req(dealloc_req),

.deal|oc_ack(dealloc_ack),

.clk(clk),

.reset(reset)
);

endmodule 
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-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --
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Any reply received bythe Office later than three months afterthe mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR1.704(b).

Status

DIX Responsive to communication(s) filed on 18 January 2012.

This action is FINAL. 2b)l:l This action is non-final.

An election was made by the applicant in response to a restriction requirement set forth during the interview on

_; the restriction requirement and election have been incorporated into this action.

Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quay/e, 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

5)IZ Claim(s)1—_16is/are pending in the application.

5a) Of the above Claim(s)_ is/are withdrawn from consideration.

_ is/are allowed.

1—_16is/are rejected.

is/are objected to.

are subject to restriction and/or election requirement.

Application Papers

10)X| The specification is objected to by the Examiner.

11)|:| The drawing(s) filed on_ is/are: a)I:l accepted or b)|:I objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

12)|:l The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

13)I:I Acknowledgment is made of a claim for foreign priority under 35 U.S.C. §119( )-(d) or (f).

a)I:| All b)|:l Some * c)I:I None of:

Certified copies of the priority documents have been received.

Certified copies of the priority documents have been received in Application No. _

Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.
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1) D Notice of References Cited (PTO-892) 4) D Interview Summary (PTO-413)
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3) X Information Disclosure Statement(s) (PTO/SB/OS) 5) I:I NOIICE‘ 0f Informal Patent Application
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U.S. Patent and Trademark Office

PTOL-326 (Rev. 03-11) Office Action Summary Part of Paper No./Mai| Date 20120311
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Application/Control Number: 13/109,738

Art Unit: 2628

DETAILED ACTION

Specification

Applicant is reminded of the proper language and format for an abstract of the
disclosure.

The abstract should be in narrative form and generally limited to a single

paragraph on a separate sheet within the range of 50 to 150 words. It is important that

the abstract not exceed 150 words in length since the space provided for the abstract

on the computer tape used by the printer is limited. The form and legal phraseology

often used in patent claims, such as "means" and "said," should be avoided. The

abstract should describe the disclosure sufficiently to assist readers in deciding whether

there is a need for consulting the full patent text for details.

The language should be clear and concise and should not repeat information

given in the title. It should avoid using phrases which can be implied, such as, "The

disclosure concerns," "The disclosure defined by this invention," "The disclosure
describes," etc.

Declaration filed under 37 CFR 1. 131

The declaration filed 1/18/12 under 37 CFR 1.131 has been considered but is

ineffective to overcome the prior art reference Lindholm (US 7,038,685, “the Lindholm

reference”).

The declaration does not meet the requirements of 37 CFR 1.131 section ( ).

37 CFR 1.131 section (a) states (in relevant part):

“(a) When any claim of an application or a patent under reexamination is

rejected, the inventor of the subject matter of the rejected claim, the owner of the patent

under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may submit an

appropriate oath or declaration to establish invention of the subject matter of the

rejected claim prior to the effective date of the reference or activity on which the

rejection is based. The effective date of a US. patent, US. patent application

publication, or international application publication under PCT Article 21 (2) is the earlier

of its publication date or date that it is effective as a reference under 35 U.S.C. 102( ).

Prior invention may not be established under this section in any country other

than the United States, a NAFTA country, or a WTO member country. Prior

invention may not be established under this section before December 8, 1993, in
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Art Unit: 2628

a NAFTA country other than the United States, or before January 1, 1996, in a

WTO member country other than a NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by ATI

Technologies Inc. and/or one of its wholly owned subsidiaries ("ATI") as indicated by

attached Exhibits A and B Prior to June 30, 2003 we created a graphics processing

system that operated as claimed using a computer system that successfully executed

the Model Code. Prior to June 30, 2003 we also created a graphics processing system

as claimed in the form of a computer system that used an RTL simulator to successfully

validate the operation of an integrated circuit version of the claimed graphics processing

system and method.”

As quoted from Applicants' declaration, section 2 describes conception and

reduction to practice of the claimed invention prior to June 30, 2003. Section 2 further

describes that the conception and reduction to practice of the claimed invention was

carried out while the inventors were employed by ATI Technologies Inc. and/or one of

its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify whether or

not the conception and reduction to practice was carried out in the United States, a

NAFTA country, or a WTO member country. As quoted from 37 CFR 1.131 section ( ),

“[p]rior invention may not be established under this section in any country other than the

United States, a NAFTA country, or a WTO memory country”. Thus, the declaration is

ineffective to overcome the Lindholm reference due to this first deficiency.

Further, the declaration does not meet the requirements of 37 CFR 1.131 section

(b)-

37 CFR 1.131 section (b) states:

“(b) The showing of facts shall be such, in character and weight, as to

establish reduction to practice prior to the effective date of the reference, or conception
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of the invention prior to the effective date of the reference coupled with due diligence

from prior to said date to a subsequent reduction to practice or to the filing of the

application. Original exhibits of drawings or records, or photocopies thereof, must

accompany and form part of the affidavit or declaration or their absence must be

satisfactorily explained.”

MPEP 715.07 [Ft-3] "Facts and Documentary Evidence", section |. "General

Requirements", offers further guidance regarding the requirements of 37 CFR 1.131

section (b).

MPEP 715.07, section l., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.131 is priority of invention and

this may be done by any satisfactory evidence of the fact. FACTS, not conclusions,

must be alleged. Evidence in the form of exhibits may accompany the affidavit or

declaration. Each exhibit relied upon should be specifically referred to in the affidavit or

declaration, in terms of what it is relied upon to show when reviewing a 37 CFR

1.131 affidavit or declaration, the examiner must consider all of the evidence presented

in its entirety, including the affidavits or declarations and all accompanying exhibits,

records and “notes.” An accompanying exhibit need not support all claimed limitations,

provided that any missing limitation is supported by the declaration itself. Ex parte

Ovshinsky, 10 USPQ2d 1075 (Bd. Pat. App. & Inter. 1989).

The affidavit or declaration and exhibits must clearly explain which facts or

data applicant is relying on to show completion of his or her invention prior to the

particular date. Vague and general statements in broad terms about what the

exhibits describe along with a general assertion that the exhibits describe a

reduction to practice “amounts essentially to mere pleading, unsupported by

proof or a showing of facts” and, thus, does not satisfy the requirements of 37

CFR1.131(b). In re Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant

must give a clear explanation of the exhibits pointing out exactly what facts are

established and relied on by applicant. 505 F.2d at 718-19, 184 USPQ at 33. See

also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964) (Affidavit “asserts that

facts exist but does not tell what they are or when they occurred.”).” (emphasis added)

Section 2 of Applicants' declaration describes (in relevant part):

“Prior to June 30, 2003 we created a graphics processing system that operated

as claimed using a computer system that successfully executed the Model Code. Prior

to June 30, 2003 we also created a graphics processing system as claimed in the form

of a computer system that used an RTL simulator to successfully validate the operation
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of an integrated circuit version of the claimed graphics processing system and method

At least the following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software

instructions written in the well-known C++ language. When executed by the

computer system, the Model Code caused the computer system to operate as

claimed in at least claims 1-5, 12 and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the

claimed subject matter for its intended purpose through emulation thereof.

0. As shown in Exhibit B, the Chip Design Code comprises various

instructions written in a well-known hardware description language. The Chip

Design Code was used by an RTL simulator system to validate the operation of

an integrated circuit version of the claimed graphics processing system and

method as claimed in at least claims 1-5, 12 and 15. As further known by

practitioners in the field of integrated circuit design, such instructions are used to

generate gate level detail for silicon fabrication.

d. On information and belief, the computer system operating the Model

Code and the RTL simulator system operating the Chip Design Code represents

the claimed structure and operation embodied in an integrated graphics

processing circuit chip referred to as the ATI XENOS chip produced by ATI on or

about October, 2004 that was incorporated in the XBOX 360 product.

Accordingly, the contents of Exhibits A and B establish the possession by us of

the whole Invention, failing within the scope of currently pending claims, such as but not
limited to at least claims 1-5, 12 and 15.”

As quoted from Applicants‘ declaration, section 2 describes that Exhibit A is

Model Code that, when executed by the computer system, caused the computer system

to operate as claimed in at least claims 1-5, 12, and 15 of the Invention. Further,

section 2 describes that Exhibit B is Chip Design Code that was used by an RTL

simulator system to validate operation of an integrated circuit version of the claimed

graphics processing system and method as claimed in at least claims 1-5, 12, and 15.

However, section 2, and the declaration as a whole, fails to clearly explain which

facts or data applicant is relying on to show completion of his or her invention prior to
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the June 30, 2003. The portions of Applicants‘ declaration quoted above are considered

nothing more than vague and general statements in broad terms about what the exhibits

describe along with general assertions that the exhibits describe a reduction to practice,

which does not satisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration is ineffective to overcome the Lindholm reference due to this second

deficiency.

Regarding claim 1, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed method steps of “performing vertex

manipulation operations and pixel manipulation operations...and continuing pixel

calculation operations that are to be or are currently being performed by the

processor..."

Regarding claim 2, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader, comprising: a general purpose

register block...a processor unit; and a sequencer, coupled to the general purpose

register block and the processor unit...”

Regarding claims 3 and 4, the Examiner is unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit...and shared resources...the processor unit operative to use the shared

resources. .

Regarding claim 5, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader comprising: a processor unit; a

sequencer coupled to the processor unit...”
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Regarding claim 12, the Examiner is unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “graphics processor comprising: a

unified shader comprising a processor unit...”

Regarding claim 15, the Examiner is unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit flexibly controlled. .

Thus, for at least the reasons given above, the declaration filed 1/18/12 under 37

CFR 1.131 is ineffective to overcome the Lindholm reference.

As an additional note, the Examiner would like to point out that US Pat

7,015,913, to Lindholm et al., filed June 27th, 2003, appears, after brief review, to

include a disclosure that is similar to US Pat 7,038,685 to Lindholm, which is used in the

rejections that follow (see FIG. 2 of each patent). The Examiner has not given Lindholm

et al. (US 7,015,913) a thorough review as to whether or not it teaches one or more of

Applicants’ claims, but it may be worth Applicants’ time to review Lindholm et al. (US

7,015,913) and adjust the declaration such that conception and reduction to practice of

the claimed invention is declared to have occurred prior to June 27th, 2003 (if such a

statement is true), in order to avoid a future rejection based on the teachings of prior art

reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —
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(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex

operations on the vertex data by a processor unless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to

operate on surface, primitive, vertex, fragment, pixel, sample or any other data. For

simplicity, the remainder of this description will use the term 'samples‘ to refer to

graphics data such as surfaces, primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex."

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."
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15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel

manipulation operations by transmitting vertex data to a general purpose register block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purpose register block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which case the thread associated with the vertex data and

vertex operations must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction store

until enough registers within the general purpose register block become available (

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.

Instruction cache 410 determines if the program instructions corresponding to the

program counters and sample type included in the thread state data for each thread

entry are available in Instruction Cache 410 The program instructions corresponding

to the program counters from the one or more thread entries are output by Instruction
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Cache 410 to Instruction Scheduler 430 Each clock cycle, Instruction Scheduler

430 evaluates whether any instruction within the IWU [instruction window unit] 435 can

be executed based on the availability of computation resources in an Execution Unit

470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing

pixel calculation operations that are to be or are currently being performed by the

processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available, as the Execution Unit 470

may be carrying out calculations for one or more high priority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or more pixel threads to finish such that when the pixel

threads finish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amount of resources to

the queued up vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread”);

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);
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a sequencer, coupled to the general purpose register block and the processor

unit, the sequencer maintaining instructions operative to cause the processor unit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purpose register block (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the IWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations"); and

wherein the processor unit executes instructions that generate a pixel color in

response to the selected one of the plurality of inputs and generates vertex position and

appearance data in response to a selected one of the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations and output

the processed sample to a destination specified by the instruction. The destination may

be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device

coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260 Each Execution Pipeline 240 signals to

Pixel Input Buffer 240 when a sample can be accepted programmable computation

units (PCUs) within an Execution Pipeline 240 perform operations such as

tessellation, perspective correction, texture mapping, shading, blending, and the like.

Processed samples are output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."
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Thus, the Execution Unit 470 is considered a processor unit that executes

instructions that generate a pixel color in response to the selected one of the plurality of

inputs and generates vertex position and appearance data in response to a selected

one of the plurality of inputs (also see 4:22-5:35».

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processor unit operative to perform vertex calculation operations and pixel calculation

operations); and

shared resources, operatively coupled to the processor unit (FIG. 4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources become available and then use the shared resources to perform
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vertex calculation operations (7:37-43, all types of processing threads can use the

Register File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor unit will

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out vertex threads, which may happen as a result of a completion of most

of the pixel threads or a shift in priority such that the vertex threads now have the

highest priority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel

calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operativer coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform vertex calculation operations until enough
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shared resources become available and then use the shared resources to perform pixel

calculation operations (7:37-43, all types of processing threads can use the Register

File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6—36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7—13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor unit will

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out pixel threads, which may happen as a result of a completion of most

of the vertex threads or a shift in priority such that the pixel threads now have the

highest priority, and then use the Register File 350 to perform pixel calculation

operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer coupled to the processor unit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amount of space available in the store (
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8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the IWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amount of space available in the Register File 350).

RE claim 6, Lindholm describes the shader of claim 5, wherein the sequencer

further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shader of claim 5, further including a

selection circuit operative to provide information to the store in response to a control

signal (
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6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in response to a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the processor unit

executes instructions that generate a pixel color in response to the selected one of the

plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution Pipeline

240 Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample

can be accepted programmable computation units (PCUs) within an Execution

Pipeline 240 perform operations such as tessellation, perspective correction, texture

mapping, shading, blending, and the like. Processed samples are output from each

Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shader of claim 5, wherein the processor unit

executes vertex calculations while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types.”).
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RE claim 10, Lindholm describes the shader of claim 5, wherein the processor

unit generates vertex position and appearance data in response to a selected one of the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device

coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the control

signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic In an

alternate embodiment, Thread Control Unit 420 is configured to assign threads to

source samples or allocate locations in Register File 350 using thread allocation

priorities based on an amount of sample data in Pixel Input Buffer 215 and another

amount of sample data in Vertex Input Buffer 220 In a further alternate embodiment,

Thread Control Unit 420 is configured to assign threads to source samples or allocate

locations in Register File 350 using thread allocation priorities based on graphics

primitive size".

Thus, while an arbiter isn't explicitly described, the Examiner considers it inherent

that some portion of the system acts as an arbiter, and therefore can be considered an

arbiter, as some portion of the system assigns priorities to thread and sample types

according to the current processing circumstances, in order to more efficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:
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a unified shader comprising a processor unit that executes vertex calculations

while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 13, Lindholm describes the graphics processor of claim 12 wherein the

unified shader comprises a sequencer coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amount of space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processor of claim 12 comprising

a vertex block operative to fetch vertex information from memory (see the rejection of

claim 6).

RE claim 15, Lindholm describes a unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source

samples or allocate locations in Register File 350 using thread allocation priorities

based on an amount of sample data in Pixel Input Buffer 215 and another amount of

sample data in Vertex Input Buffer 220 In a further alternate embodiment, Thread

Control Unit 420 is configured to assign threads to source samples or allocate locations
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in Register File 350 using thread allocation priorities based on graphics primitive size

(number of pixels or fragments included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching between instructions in the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations... Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

between instructions in the instruction store).

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time

policy as set forth in 37 CFR1.136( ).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the event a first reply is filed within

TWO MONTHS of the mailing date of this final action and the advisory action is not
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mailed until after the end of the THREE-MONTH shortened statutory period, then the

shortened statutory period will expire on the date the advisory action is mailed, and any

extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

the advisory action. In no event, however, will the statutory period for reply expire later

than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBU RN whose telephone number is

(571)272-5551. The examiner can normally be reached on 9:30 AM. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Ulka Chauhan can be reached on 571 -272—7782. The fax phone number for

the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272—1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
3/11/12
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(Not for submission under 37 CFR 1.99)
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An Unit | 2628
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Initial* Patent Number Code1 Issue Date of cited Document
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(Not for submission under 37 CFR 1.99)
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Receipt date: 97/14/201 "l Application Number 13109738 331053738 ~ QAU: 2628
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EFSWeb2.1.17 ALL REFERENCES CONSlDERED EXCEPT WHERE LlNED THROUGH. /'[3.W./

 



LG Ex. 1002, pg 279

 

Receipt date: 97/14/201 "l Application Number 13109738 131053738 ~ QAU: 2628

Filing Date 2011-05-17
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(Not for submission under 37 CFR 1.99)
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Attorney Docket Number I 00100360001
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20070285427 2007-12-13 Morein et al.

20100156915 2010—06—24 Lefebvre et al.
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Receipt date: 97/14/201 "l Application Number 13109738 331053738 ~ QAU: 2628

Filing Date 2011-05-17
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(Not for submission under 37 CFR 1.99)
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MARK, WILLIAM R. et al.; CG: A system for programming graphics hardware in a C-like language; SIGGRAPH '03;
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896—907.
 

BRETERNITZ, JR., MAURICIO et al.; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline
Programs on a General—Purpose CPU; IEEE; 2003; pgs. 1—1 1.
 

International Search Report and Written Opinion; International Application No. PCTHBZOO4I003821; dated March 22,
2005.

 

EP Supplemental Search Report; EP Application No. 100756881; dated February 25, 2011.

 

EP Supplemental Search Report; EP Application No. 100756865; dated February 25, 2011.  
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Filing Date 2011-05-17
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Workshop on Graphics Hardware; August 21, 2000.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008.

Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010

   
If you wish to add additional non-patent literature document citation information please click the Add button Add
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*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
4 Kind ofdocument by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here if
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PTO/SB/30 (07-09)
Approved for use through 07/31/2012. OMB 0651—0031

US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Underthe Paerwork Reduction Act of 1995 no ersons are reuired to resond to a collection of information unless it contains a valid OMB control number.

RegueSt Application Number “3"1'33738or _ —, e ..
Date F»’iay1:,£0:1

Continued Examination (RCE)
Transmittal First Named Inventor

Address to: Art unit 2628
Mail Stop RCE

Commissioner for Patents Daniel C. WashburnPO. Box 1450

Alexandria, VA 22313—1450 Attorney Docket Number 00100350001

Stephen Morein 

This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application.
Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8,
1995, or to any design application. See Instruction Sheet for RCEs (not to be submitted to the USPTO) on page 2.

Submission re uired under 37 CFR 1.11‘ Note: If the RCE is proper, any previously filed unentered amendments and
amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs othenivise. If
applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such
amendment(s).

Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be
a' considered as a submission even if this box is not checked.

|:| Consider the arguments in the Appeal Brief or Reply Brief previously filed on

II. D Other

b. Enclosed

l. Amendment/Reply iii. D Information Disclosure Statement(lDS)

“I D Affidavit(s)/Declaration(s) iv. Other Repmceménmfisimd
2. Miscellaneous

 

 

Suspension of action on the above—identified application is requested under 37 CFR 1.103(c) for a
period of months. (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required)
Other 

The RCE fee under 37 CFR 1.17(e) is required by 37 CFR 1.114 when the RCE is filed.
The Director is hereby authorized to charge the following fees, any underpayment of fees, or credit any overpayments, to
Deposit Account No. 02-03190

RCE fee required under 37 CFR 1.17(e)

ii. Extension of time fee (37 CFR 1.136 and 1.17)

ml D Other

b. D Check in the amount of $ enclosed

 

c. I: Payment by credit card (Form PTO-2038 enclosed)
WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit
card information and authorization on PTO-2038.

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

Signature iChrisiopher J. Reckampi September 17, 2.31

Name (Print/Type) Christopher J} Reckamp Registration No.
CERTIFICA TE OF MAILING OR TRANSMISSION

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope
addressed to: Mail Stop RCE, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the US. Patent and Trademark
Office on the date shown below.

—
Namerrinwwe——
This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete,
including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on
the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer. U.S. Patent and
Trademark Office, U.S. Depa rtment of Commerce. PO. Box 1450. Ale xandria, VA 22313-1450. DO NOT SE ND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
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Electronic Patent Application Fee Transmittal

Filing Date: 17-May-2011

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein 

Filer: ChristopherJ. Reckamp/Lisa Schodrowski

Attorney Docket Number: 00100360001

Utility under 35 USC 11 1 (a) Filing Fees

Sub-Total in

USD($)

Basic Filing:

Claims:

Description Fee Code Quantity

 

Miscellaneous-Filing:

Patent-AppeaIs—and-Interference: 

Post-Allowance-and-Post-lssuance:

Extension-of—Time:

Extension - 3 months with $0 paid 1253 1 1270 1270 
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Request for continued examination
  
 

Total in USD (5)
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Electronic Acknowledgement Receipt 

13761569

Confirmation Number:
 

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

 

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

—ChrIStopherJ. ReCkamp/Llsa SChOdrOWSkI
Filer Authorized By: ChristopherJ. Reckamp 

Attorney Docket Number: 00100360001

Filing Date: 17-MAY-2011

Time Stamp: 11:54:06 

Application Type: Utility under 35 USC 111(a) 

Payment information:

Submitted with Payment

PaymentType Deposit Account 

Payment was successfully received in RAM $2200

RAM confirmation Number

Deposit Account 020390

Authorized User

Document Document Descri tion FileSize(Bytes)/ Multi Pages
Number p Message Digest Part /.zip (ifappl.)
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Extension ofTime 36001—Extension—Time.pdf 79(Pfidfi(dI4hdf¥§efil$fi§d7fi7(he8dl15
31840

88229b33dLb3LiL0e42ld2497Lbi0d02Ld9d
51d(

Document Description

Amendment Submitted/Entered with Filing of CPA/RCE

Specification

Claims

Amendment Submitted/Entered with Filing of CPA/RCE

Abstract

 
Warnings: 
Information:

_ _ . 48665
Request for Continued Examination

(RCE) ZbSn0b84S36700326a0625c81c8130d639
eicfifib
 

Warnings:

This is not a USPTO supplied RCE 5330 form.

Information:
 

Fee Worksheet (SBOG) fee-info.pdf lL3ld73i740d0il udd2d9095838dd7ifid88
adaA

Warnings: 
Information:
 

Total Files Size (in bytes) 203319 
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This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,

characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

lfa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

lfa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DOIEOI903 indicating acceptance of the application as a

national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
Ifa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number

and ofthe International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application. 
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PTO/SB/ZZ 1},
Approved for use through 07/312!“ ‘3’ OMB 0551—0031

LLS. Patent " edemark Cfii ' S. DEPARMEN OF COMMERCE
Under the paperwork Reduction Act of 19%, no persons are required to respond to a coitection : information uniess it. 9 plays a valid OMB mniroi number.

Docket Number (Opiionaii

PETETEQN FQR EXTENSEQN 0F TEME UNEER 37 CFR1.136{3} 013100 RR 00m

Fiied i‘viay 2011

SiNG ARCHiTECTURE EMPLOYENG A UNEFEED SHADER

3 Examiner Daniei C. Washburn

This is a request under the provisions of 37 CPR 1.1 33(3) to extend the period for iiiing a reply in the above identified
’ appiioatinn.

, The requested extension and fee are as ioiiows (check time period desired and enter the appropriate fee beiow):

fie; Smaii Entity Fee

[:1 Cine month (3‘? CFR ‘i.1?(a)(1)) $150 75'

E] Two months {37 CFR ‘i.17(a)(2>) ' .' $280 $

Three menti'is (3? are i.i?(a),(3)) . ~

{:5 Four months (3?" CFR ‘i.‘i7(a)(4))

3:] Five months (37 CFR1.17(a)(5))

Appiicant ciaims Sinai! entity status. See 37 CPR 1.27.

A check the amount of the fee is encioeed.

Payment by credit card. Form PTO-2038 is attached.

The Director has aiready been authorized to charge fees in this application to 2: Deposit Account.

The Director is hereby authorized to charge any fees which may be required, or credit any overpayment, to
Deposit Account Number 0243393

WARNENG: lnfurmation on this farm may become pubiic. Credit card infurmatiun shouid not be inciuderfi on this form.
Provide credit card informaticn and authorization on PTO—21238.

i ern the m appiicantlinventor,

assignee of record of the entire interest. See 3? CFR 3.71.
Statement under 37 CFR 3.7303) is enclosed (Form PTO/SB/QL‘).

attorney or agent of record. Registration Number

m attorney agent under 3? CFR 1.34.Registration number if acting. under 37 CFR 1.34

r’Christopher J. Reckantpi September 17, 2012

Signature Dat

Christopher J. Reokamp 312 356 5094~1—
Typed er printed name :eiephone Number

NOTE: Signatures 0f alt thr- iiwontoi‘s or assignees of record inht‘: entire interest '3? their ropresentativeis) are required. Submit muitipie forms 'f more than one i
signature is required, he. ow. '

forms are submitted.
Th' " informatior '9 required 37 CFR 1.136(3). The information is remained to obtain or retain a benefit by the public which isto tile (and by the
US ' an 31;) n " . it s governed by 35 USE. 122 and 3.7 ." . iinutee to
complete, inc . t c. preparing, and subm ng the completed application torth ' g .' ’id L , an the ol 0359 Any
comments on he . . .-.. u. neg/mi renuireiocompietethis iorrnandlore , restinns ormducinqthis h . den, mouth: heuenttothe F ' . i rmation Off er,

Patent and Trademark Office, US. Department oi (.ummerce, PO. Box 14-50. Alexandria. VA 240 23-1450. DO NOT SEND FElzs uh COMPLETED
OT MS T0 THE-S ADDRESS. SEND TO: Commissioner for Patents», PA). Box 1459. Alexandria, VA 223134 459.

if you need assistance in completing the form, call 1»800—PTO»9 2'99 and select option 2.
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PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stephen Morein et al. Examiner: Daniel C. Washbum

Serial No.: 13/109,738 Art Unit: 2628

Filing Date: May 17, 2011 Docket No.: 00100360001
Confirmation No.2 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER 

PRELIMINARY AMENDMENT

Dear Sir:

In response to the final office action mailed March 15, 2012, Applicants submit a Request

for Continued Examination, petition for a three month extension of time and submit the

following preliminary amendment:

Amendments to the Abstract begin on page 2 of this paper and include a replacement Abstract

and a clean copy showing the amended Abstract.

Amendments to the Claims begins on page 3 of this paper.

Remarks begin on page 7 ofthis paper.

BDDB019460871V1
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Amendments to the Specification

Please replace the Abstract with the following amended Abstract:

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SI-IADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation
 

0 peratiens and itiXCl manipulation o eratiens lav transmittinw vertex data to ‘Ienerai

€3fl§il§§§f§§£fl3133.31%” Y

recesser uniess the reneral or ose re ester block does not have eneu 7%; available 9.

therein to store incoming vertex data; and continues pixel calculation operations that are
 

to be or are em‘reotl 'heinsz Vertbrmed lw the WOQQSROE” based on instructions maintained

in em inQtr{£91191}.game:"amti_§:;:e.ugh_mgi§_te

become available. in one exarmle a -

maintains instructions o erative to cause the 7

and.pizza}notlazulatimlnar r230 :4._ea__§§iti§_t§2E_giatamaimtamed;in_tileggegtateatime.
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Amendments to the Claims:

Rewrite the claims as set forth below. This listing of claims replaces all prior versions and

listings of claims in the application:

Listing of the Claims:

1. (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. (original) A unified shader, comprising:

a general purpose rcgistcr block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.
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(original) A unified shader comprising:

a processor unit Operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

(original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pier calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.
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6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in response to a control signal.

8. (original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in response to the selected one of the plurality of inputs.

(canceled)

10. (original) The shader of claim 5, wherein the processor unit generates vertex

position and appearance data in response to a selected one of the plurality of inputs.

ll. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. i 14. (canceled)

15. (original) A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.
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16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching between instructions in the instruction store.

BDDB019460871V1

 



LG Ex. 1002, pg 299

REMARKS

Applicants respectfully traverse and request reconsideration.

Applicants’ attorney wishes to thank the Examiner for the courtesies extended during the

telephone conference of September 17, 2012.

Applicants cancel claims 9 and l2—l4 without prejudice. Applicants have also amended

the Abstract.

Claims 1—16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

US. Patent No. 7,038,685 (Lindholm). Applicants respectfully request reconsideration and

respectfiilly submit that the declaration is proper and that the declaration is more than "vague

general statements in broad terms... . To the contrary, the statements and Exhibits set for facts

sufficient to show a conception and reduction to practice sufficient to show priority of invention.

To the extent additional information would be helpful, Applicants respectfully submit by way of

example that:

As to claim l for example, Exhibit B Chip Design Code i sqigpriallocv and

Sq_alu_instr_seq.v — are believed to illustrate, inter alia, loading either pixel or vertices in the

GPR if there is space for them (e.g., transmission to general purpose register (gpr) blocks unless

the gpr block does not have space); performing pixel and vertex manipulations; the ais machine

is the "alu instruction sequencer" and it executes instructions on either vertices or pixels

depending on type. the file sq_instruetion_store.v contains the memory with the instructions to

be performed on either pixels (PS) or vertices (VS).

As to claims 2-5 for example, Exhibit B Chip Design Code — sp_mace_gpr.v,

SP_vector.v, Sq.v , Sq_export_alloc.v, sq_ctl_flow_seq.v, Sq_alu_instr_seq.v - are believed to

illustrate, inter alia, the general purpose register and processor (e.g., multiply and accumulate
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(MAC or MACC) logic) and a sequencer coupled to the general purpose register and processor

unit and operation of the sequencer and processor unit.

Applicant respectfully submits that the claims are now believed to be in condition for

allowance and that a timely Notice of Allowance be issued in this case. If the Examiner believes

that personal communication Will expedite prosecution of this application, the Examiner is

invited to telephone the undersigned at (312) 356-5094.

Respectfillly submitted,

Dated: September 171 2012 By: /Christopher J. Reckamp/

Christopher J. Reekamp

Reg. No. 34,414

Faegre Baker Daniels LLP
31 l S. Wacker Drive

Chicago, IL 60606

PHONE: (312) 356-5094

FAX: (312) 212-6501
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GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example per'lfertns vertex manipulation

eperatiens; and pixel manipulatien operations; by transmitting vertex data to a general purpese

regiater black, and pertbn‘tiing vertex eperatiens en the vertex data by a preeeaser unless the

general purpose register black ale-es not have enengh available space therein te stare inceming

vertex data; and continues pixel ealenlatiert eperatiens that are to be er are currently being

perferntect by tlte precessnr based on instructiens maintained in an instructien stare until eneuglt

register: within the. general purpose register block became available. In ene example a general

purpose register lileelt maintains data, A seqiteneer, eenpted tn the general putpese register black

and t0 a preeeaaer unit, maintains instructinns Operative te cause the preeeaaer unit tit e. eettte

vertex ealettiatirm and pixel calculation eperatiena an selected data maintained in the general

purpose register black; and the preeesset unit executes instructions that generate pixel eater in

respense t0 the selected one el’tlrie {iatut'ality el’inputa and, generates vertex pesitien and

appearance in response to a selected one of the plurality of inputs. 
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REPLACEMENT SHEET

Application No. 13/109,73 8

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

operations and pixel manipulation operations by transmitting vertex data to a gene “at purpose

register 'bleelt. anal performing vertex operations on the vertex data by a processor unless the

general purpose register block does not have enough available space. the fin to store incoming

vertex data: and continues pixel calculation operations that are to be or are currently being

periernieil by the processor based on instruetions maintained, in an instruetion store until enough

registers within the general purpose register block become available, in one example, a. general

purpose register bloel; maintains data. A sequenceri coupletl to the general purpose register lt'iO-‘Sli

and to a 1310065391“unit} maltnains instructions operative to cause the pnntessor unit to execute

vertex calculation and pixel calculation operations or: selected tiara maintained in the general

purpose register laloelr; and the processor unit er eeutes instruetions that generate pixel color in

response to the selected, one of the plurality of inputs and generates vertex position and

appearance data in response to a selected one of tlre plurality ol’ inputs. 
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APPLICATION AS FILED — PART I

(Column 1)
FOR

[I BASIC FEE3TCFR118a, b,or c)

[I SEARCH FEE37 CFR 1.16'k , (I , or (m

D EXAMINATION FEE(37 CFR1.16( ), (p), or (q))
TOTAL CLAIMS
1'37 CFR 1.16 i )
INDEPENDENT CLAIMS
1'37 CFR1.16(h)
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N/A N/A

minus 20 =

minus 3 =

If the specification and drawings exceed 100

DAPPLICATION SIZE FEE
(37 CFR1.16(s))

sheets of paper, the application size fee due
is $250 ($125 for small entity) for each
additional 50 sheets or fraction thereof. See
35 U.S.C. 41 a 1 G and 37 CFR 1.16 s.

D MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR1.16(j))
* If the difference in column 1 is less than zero, enter “0" in column 2.

APPLICATION AS AMENDED — PART II

(Column 1)
CLAIMS
REMAINING
AFTER09/17/2012
AMENDMENT

Total (37 CFR ,
12

(a7 CFR1.16(h))

 

   

(Column 2)
HIGHEST
NUMBER
PREVIOUSLY
PAID FOR

(Column 3)

PRESENT
EXTRA

MInus

MInus

ApplIcation or Docket Number

PTO/SB/OB (07-06)
Approved for use through 1/31/2007. OMB 055170032

US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paerwork Reduction Act of 1995, no ersons are reuired to resond to a collection of information unless it dis la s avalid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD
Substitute for Form PTO-875 13/109,738
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N/A

N/A
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ADDITIONAL
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FIling Date
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REMAINING
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FEE (35)
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Minus
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D FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR1.16(j))
AMENDMENT
* If the entry in column 1 is less than the entry in column 2, write “0" in column 3.
** lfthe “Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter “20".
*** If the “Highest Number Previously Paid Fm” IN THIS SPACE is less than 3, enter “3'.
The “Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.

Legal Instrument Examiner:
/LAWANDA MILTON/

ThIs collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit bythe public thch Is to file (and bythe USPTO to
process) an application. ConfidentIaiity Is governed by 35 U.S.C. 122 and 37 CFR 114. This collection is estimated to take 12 mInutes to complete, IncludIng gathering,
preparing, and submitting the completed applIcatIon form to the USPTO. TIme will vary dependIng upon the individual case. Any comments on the amount of tIme you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, US. Patent and Trademark Office, US.
Department of Commerce, PO. Box 1450, AlexandrIa, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner ior Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
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UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O Box 1450
Alexandria, Virginia 22313-1450
www.uspto gov

 
  APPLICATION NO. FILING DATE FIRST NAM r ) INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

13/109,738 05/17/201 1 Stephen Morein 00100360001 2020

 

29153 7590 12/06/2012

ADVANCED MICRO DEVICES, INC.
C/O Faegre Baker Daniels LLP CHEN, FRANK s
311 S. WACKER DRIVE

ART UNIT PAPER NUMBER

EXAMINER

NOTIFICATION DATE DELIVERY MODE

12/06/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the

following e-mail address('es):

inteas @faegrebd.c0m
cynthia.payson @ faegredb—com
michelle.daVis @ faegrebdcom
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Application No. Applicant(s)

13/109,738 MOREIN ET AL.
 

Office Action Summary Examiner Art Unit 
FRANK CHEN 2677

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR1.136( j. In no event, however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office laterthan three months after the mailing date ofthis communication, even iftimely filed, may reduce any
earned patent term adjustment. See 37 CFR1.704(b).

Status

DIX Responsive to communication(s) filed on 17Sthember 2012.

This action is FINAL. 2b)IZ This action is non—final.

An election was made by the applicant in response to a restriction requirement set forth during the interview on

_; the restriction requirement and election have been incorporated into this action.

Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Exparte Quay/e, 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

SHE Claim(s) 1—8 10 11 15 and 16is/are pending in the application.

5a) Of the above Claim(s)_ is/are withdrawn from consideration.

_ is/are allowed.

1—8 10 11 15 and 16is/are rejected.

is/are objected to.

_ are subject to restriction and/or election requirement.

* If any claims have been determined allowable, you may be eligible to benefit from the Patent Prosecution Highway
program at a participating intellectual property office for the corresponding application. For more information, please see

://www.us toqov/ atentsi’init events/cch/index.‘s orsend an inquiry to PPeredback usntot av.

Application Papers

10)|:| The specification is objected to by the Examiner.

11)|:| The drawing(s) filed on_ is/are: a)|:| accepted or b)|:l objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

Priority under 35 U.S.C. § 119

12)I:I Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119( )-(d) or (f).

b)I:l Some * c)|:| None of:

Certified copies of the priority documents have been received.

Certified copies of the priority documents have been received in Application No._

Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attach ment(s)

1) E Notice of References Cited (PTO-892) 3) I] Interview Summary (PTO-413)
Paper No(s)/Mai| Date. .

2) El Information Disclosure Statement(s) (PTO/SB/08) 4) El Other: .
Paper No(s)/Mai| Date .

U.S. Patent and Trademark Office

PTOL-326 (Rev. 09-12) Office Action Summary Part of Paper No./Mai| Date 20121129
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Application/Control Number: 13/109,738

Art Unit: 2677

DETAILED ACTION

Claim Status

Claims 1-8,10-11, and 15-16 are currently pending in this application.

Claims 9 and 12-14 have been canceled.

Specification

3. Applicant is reminded of the proper language and format for an abstract of
the disclosure.

The abstract should be in narrative form and generally limited to a

single paragraph on a separate sheet within the range of 50 to 150 words.

The form and legal phraseology often used in patent claims, such as "means"
and "said," should be avoided. The abstract should describe the disclosure

sufficiently to assist readers in deciding whether there is a need for consulting the

full patent text for details.

The language should be clear and concise and should not repeat

information given in the title. It should avoid using phrases which can be implied,

such as, "The disclosure concerns," "The disclosure defined by this invention,"
"The disclosure describes," etc.

4. The abstract of the disclosure is objected to because it exceeds 150

words. Correction is required. See MPEP § 608.01 (b).

Declaration filed under 37 CFR 1.131

The declaration filed 1/18/12 under 37 CFR 1.131 and the Applicants

Argument/Remarks Made in an Amendment filed 9/17/2012 have been

considered but is ineffective to overcome the prior art reference Lindholm (US

7,038,685, “the Lindholm reference”).

The declaration does not meet the requirements of 37 CFR 1.131 section

(a)-

37 CFR 1.131 section (a) states (in relevant part):
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Application/Control Number: 13/109,738

Art Unit: 2677

“(a) When any claim of an application or a patent under reexamination

is rejected, the inventor of the subject matter of the rejected claim, the owner of

the patent

under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may

submit an appropriate oath or declaration to establish invention of the subject

matter of the rejected claim prior to the effective date of the reference or activity

on which the rejection is based. The effective date of a U.S. patent, US. patent

application publication, or international application publication under PCT Article

21 (2) is the earlier of its publication date or date that it is effective as a reference

under 35 U.S.C. 102(e). Prior invention may not be established under this

section in any country other than the United States, a NAFTA country, or a

WTO member country. Prior invention may not be established under this

section before December 8, 1993, in a NAFTA country other than the United

States, or before January 1, 1996, in a WTO member country other than a

NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by

ATI Technologies Inc. and/or one of its wholly owned subsidiaries ("ATI") as

indicated by attached Exhibits A and B Prior to June 30, 2003 we created a

graphics processing system that operated as claimed using a computer system

that successfully executed the Model Code. Prior to June 30, 2003 we also

created a graphics processing system as claimed in the form of a computer

system that used an RTL simulator to successfully validate the operation of an

integrated circuit version of the claimed graphics processing system and
method.”

As quoted from Applicants‘ declaration, section 2 describes conception

and reduction to practice of the claimed invention prior to June 30, 2003. Section

2 further describes that the conception and reduction to practice of the claimed

invention was carried out while the inventors were employed by ATI

Technologies Inc. and/or one of its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify

whether or not the conception and reduction to practice was carried out in the

United States, a NAFTA country, or a WTO member country. As quoted from 37

CFR 1.131 section (a), “[p]rior invention may not be established under this
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section in any country other than the United States, a NAFTA country, or a WTO

memory country”. Thus, the declaration is ineffective to overcome the Lindholm

reference due to this first deficiency.

Moreover, the applicants in their Remarks filed on 9/17/2012 do not

appear to address this issue. In the Remarks, the applicants attempt to further

correlate the claim limitations to the submitted reduction to practice evidence

(Exhibit B Chip Design Code) of the Declaration Under 37 CFR 1.131 filed on

1/18/2012 but do not appear to show that reduction to practice was carried out in

the United States, a NAFTA country, or a WTO member country. Therefore, the

declaration continues to not meet the requirements of 37 CFR 1.131 section ( ).

Further, the declaration does not meet the requirements of 37 CFR 1.131

section (b).

37 CFR 1.131 section (b) states:

“(b) The showing of facts shall be such, in character and weight, as to

establish reduction to practice prior to the effective date of the reference, or

conception of the invention prior to the effective date of the reference coupled

with due diligence from prior to said date to a subsequent reduction to practice or

to the filing of the application. Original exhibits of drawings or records, or

photocopies thereof, must accompany and form part of the affidavit or declaration

or their absence must be satisfactorily explained.”

MPEP 715.07 [Ft-3] "Facts and Documentary Evidence", section |.

"General Requirements", offers further guidance regarding the requirements of

37 CFR1.131 section (b).

MPEP 715.07, section l., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.131 is priority of

invention and this may be done by any satisfactory evidence of the fact. FACTS,

not conclusions, must be alleged. Evidence in the form of exhibits may
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accompany the affidavit or declaration. Each exhibit relied upon should be

specifically referred to in the affidavit or declaration, in terms of what it is relied

upon to show when reviewing a 37 CFR 1.131 affidavit or declaration, the

examiner must consider all of the evidence presented in its entirety, including the

affidavits or declarations and all accompanying exhibits, records and “notes.” An

accompanying exhibit need not support all claimed limitations, provided that any

missing limitation is supported by the declaration itself. Ex parte Ovshinsky, 10

USPQ2d 1075 (Ed. Pat. App. & Inter. 1989).

The affidavit or declaration and exhibits must clearly explain which

facts or data applicant is relying on to show completion of his or her

invention prior to the particular date. Vague and general statements in

broad terms about what the exhibits describe along with a general

assertion that the exhibits describe a reduction to practice “amounts

essentially to mere pleading, unsupported by proof or a showing of facts”

and, thus, does not satisfy the requirements of 37 CFR 1.131(b). In re

Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant must give a

clear explanation of the exhibits pointing out exactly what facts are

established and relied on by applicant. 505 F.2d at 718-19, 184 USPQ at 33.

See also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964) (Affidavit

“asserts that facts exist but does not tell what they are or when they occurred.”).”

(emphasis added)

Applicants' Remarks filed on 09/17/2012 contains the following in the

second to last paragraph which recites:

“As to claims 2-5 for example, Exhibit B Chip Design Code -

p_macc_ pr.v, SP_vector.v, Sq.v, Sq_export_alloc.v, sq ctl flow_seq.v,

Sq_alu_instr_seq.v - are believed to illustrate, inter alia, the general purpose

register and processor (9.9., multiply and accumulate (MAC or MACC) logic) and

a sequencer coupled to the general purpose register and processor unit and

operation of the sequencer and processor unit.”

However, this paragraph as a whole is considered nothing more than

vague and general statements in broad terms about what the exhibits describe

along with general assertions that the exhibits describe a reduction to practice,

which does not satisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration in view of the Remark is ineffective to overcome the Lindholm

reference due to this second deficiency.
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Regarding claim 1, the Examiner is able to determine which sections of

Exhibit B Chip Design Code corresponds to which limitations of Claim 1 after

reviewing the Remarks filed on 9/17/2012 . However, the Examiner is unable to

do so for Claims 2-5 as they are not satisfactorily explained in the Remarks.

Therefore, the most recent declaration filed 1/18/12 under 37 CFR 1.131

and Remarks filed on 9/17/2012 are together ineffective to overcome the

Lindholm reference. As an additional note, the Examiner would like to point out

that US Pat 7,015,913, to Lindholm et al., filed June 27th, 2003, appears, after

brief review, to include a disclosure that is similar to US Pat 7,038,685 to

Lindholm, which is used in the rejections that follow (see FIG. 2 of each patent).

The Examiner has not given Lindholm et al. (US 7,015,913) a thorough review as

to whether or not it teaches one or more of Applicants’ claims, but it may be

worth Applicants’ time to review Lindholm et al. (US 7,015,913) and adjust the

declaration such that conception and reduction to practice of the claimed

invention is declared to have occurred prior to June 27th, 2003 (if such a

statement is true), in order to avoid a future rejection based on the teachings of

prior art reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 112

5. The following is a quotation of 35 U.S.C. 112(b):

(B) CONCLUSION—The specification shall conclude with one or more claims

particularly pointing out and distinctly claiming the subject matter which the

inventor or a joint inventor regards as the invention.

The following is a quotation of 35 U.S.C. 112 (pre-AIA), second paragraph:
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The specification shall conclude with one or more claims particularly pointing out

and distinctly claiming the subject matter which the applicant regards as his
invenfion.

6. Claim 2 recites the limitation "the selected one of the plurality of inputs" in

“in response to the selected one of the plurality of inputs.” There is insufficient

antecedent basis for this limitation in the claim. Proper amendment is requested.

7. Claim 8 recites the limitation "the selected one of the plurality of inputs" in

“in response to the selected one of the plurality of inputs.” There is insufficient

antecedent basis for this limitation in Claim 8 or Claim 5. Proper amendment is

requested.

Claim Rejections - 35 USC § 102

8. The following is a quotation of the appropriate paragraphs of 35

U.S.C. 102 that form the basis for the rejections under this section made in this

Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section
122(b), by another filed in the United States before the invention by the applicant for patent or
(2) a patent granted on an application for patent by another filed in the United States before
the invention by the applicant for patent, except that an international application filed under
the treaty defined in section 351 (a) shall have the effects for purposes of this subsection of an
application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

Claims 1-8, 10-11, and 15-16 are rejected under 35 U.S.C. 102(e) as

being anticipated by Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation

operations by transmitting vertex data to a general purpose register block, and

performing vertex operations on the vertex data by a processor unless the
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general purpose register block does not have enough available space therein to

store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is

programmed to operate on surface, primitive, vertex, fragment, pixel, sample or

any other data. For simplicity, the remainder of this description will use the term

'samples‘ to refer to graphics data such as surfaces, primitives, vertices, pixels,

fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In

one embodiment TSR [Thread Storage Resource] 325 stores thread data for

each of at least two thread types, where the at least two thread types may

include pixel, primitive and vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is

configured to assign threads to source samples or allocate locations in Register

File 350 using thread allocation priorities".

7:36-43: “Once a thread is assigned to a source sample, the thread is

allocated storage resources such as locations in a Register File 350 to retain

intermediate data generated during execution of program instructions associated
with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and

pixel manipulation operations by transmitting vertex data to a general purpose

register block (sample data, such as vertex or pixel data, is transmitted to
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Register File 350) and performing vertex operations on the vertex data by a

processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data (the multi-threaded

processing unit 400 carries out vertex operations on vertex data unless the

Register File 350 doesn’t have enough room to store the incoming vertex data, in

which case the thread associated with the vertex data and vertex operations

must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction

store until enough registers within the general purpose register block become

available (

7:6-21 : “In an alternate embodiment, Thread Control Unit 420 is

configured to assign threads to source samples or allocate locations in Register

File 350 using thread allocation priorities based on an amount of sample data in

Pixel Input Buffer 215 and another amount of sample data in Vertex Input Buffer
220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries

based on thread execution priorities and outputs selected thread entries to

Instruction Cache 410. Instruction cache 410 determines if the program

instructions corresponding to the program counters and sample type included in

the thread state data for each thread entry are available in Instruction Cache 410

The program instructions corresponding to the program counters from the one

or more thread entries are output by Instruction Cache 410 to Instruction

Scheduler 430 Each clock cycle, Instruction Scheduler 430 evaluates whether

any instruction within the IWU [instruction window unit] 435 can be executed

based on the availability of computation resources in an Execution Unit 470 and

source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420
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does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction

store until enough registers within the general purpose register block become

available, as the Execution Unit 470 may be carrying out calculations for one or

more high priority pixel threads based on instructions stored in Instruction Cache

410 and/or IWU 435 while a low priority vertex thread is waiting for the one or

more pixel threads to finish such that when the pixel threads finish the system will

deallocate the resources assigned to the completed pixel threads in the Register

File 350 and will allocate the requested amount of resources to the queued up

vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is

allocated storage resources such as locations in a Register File 350 to retain

intermediate data generated during execution of program instructions associated

with the thread”);

a processor unit (FIG. 4 “Execution Unit 470" and “PCU 375”);

a sequencer, coupled to the general purpose register block and the

processor unit, the sequencer maintaining instructions operative to cause the

processor unit to execute vertex calculation and pixel calculation operations on

selected data maintained in the general purpose register block (
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8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether

any instruction within the IWU 435 can be executed based on the availability of

computation resources in an Execution Unit 470 and source data stored in

Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations"); and

wherein the processor unit executes instructions that generate a pixel

color in response to the selected one of the plurality of inputs and generates

vertex position and appearance data in response to a selected one of the

plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations and

output the processed sample to a destination specified by the instruction. The

destination may be Vertex Output Buffer 260, Pixel Output Buffer 270, or

Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as

higher-order surface data, and tessellate the first samples to generate second

samples, such as vertices. Execution Pipelines 240 may be configured to

transform the second samples from an object-based coordinate representation

(object space) to an alternatively based coordinate system such as world space

or normalized device coordinates Execution Pipelines 240 output processed

samples, such as vertices, that are stored in a Vertex Output Buffer 260 Each

Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample can be

accepted programmable computation units (PCUs) within an Execution

Pipeline 240 perform operations such as tessellation, perspective correction,

texture mapping, shading, blending, and the like. Processed samples are output

from each Execution Pipeline 240 to a Pixel Output Buffer 270."

Thus, the Execution Unit 470 is considered a processor unit that executes

instructions that generate a pixel color in response to the selected one of the
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plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs (also see 4:22-5:35».

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and

pixel calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In

one embodiment TSR [Thread Storage Resource] 325 stores thread data for

each of at least two thread types, where the at least two thread types may

include pixel, primitive and vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively

considered a processor unit operative to perform vertex calculation operations

and pixel calculation operations); and

shared resources, operativer coupled to the processor unit (FIG. 4

illustrates Register File 350 coupled to Execution Unit 470, and 7:37-43

describes that the Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex

data or pixel information and operative to perform pixel calculation operations

until enough shared resources become available and then use the shared

resources to perform vertex calculation operations (7:37-43, all types of
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processing threads can use the Register File 350, where thread types include

vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured

to assign threads to source samples or allocate locations in Register File 350

using thread allocation priorities based on an amount of sample data in Pixel

Input Buffer 215 and another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor

unit will allocate the pixel data to the Register File 350 and will perform pixel

calculation operations until enough shared resources become available in the

Register File 350 to begin carrying out vertex threads, which may happen as a

result of a completion of most of the pixel threads or a shift in priority such that

the vertex threads now have the highest priority, and then use the Register File

350 to perform vertex calculation operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and

pixel calculation operations (see the corresponding section in the rejection of

claim 3); and

shared resources, operativer coupled to the processor unit (see the

corresponding section in the rejection of claim 3);
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the processor unit operative to use the shared resources for either vertex

data or pixel information and operative to perform vertex calculation operations

until enough shared resources become available and then use the shared

resources to perform pixel calculation operations (7:37-43, all types of processing

threads can use the Register File 350, where thread types include vertex and

pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured

to assign threads to source samples or allocate locations in Register File 350

using thread allocation priorities based on an amount of sample data in Pixel

Input Buffer 215 and another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor

unit will allocate the vertex data to the Register File 350 and will perform vertex

calculation operations until enough shared resources become available in the

Register File 350 to begin carrying out pixel threads, which may happen as a

result of a completion of most of the vertex threads or a shift in priority such that

the pixel threads now have the highest priority, and then use the Register File

350 to perform pixel calculation operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);
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a sequencer coupled to the processor unit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation

and pixel calculation operations on selected data maintained in a store

depending upon an amount of space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether

any instruction within the IWU 435 can be executed based on the availability of

computation resources in an Execution Unit 470 and source data stored in

Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured

to assign threads to source samples or allocate locations in Register File 350

using thread allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer

maintaining instructions operative to cause the Execution Unit 470 to execute

vertex calculation and pixel calculation operations on selected data maintained in

a Register File 350 depending upon an amount of space available in the Register

File 350).
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RE claim 6, Lindholm describes the shader of claim 5, wherein the

sequencer further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shader of claim 5, further including a

selection circuit operative to provide information to the store in response to a

control signal (

6:60-7:36 “Thread allocation priority, as described further herein, is used

to assign a thread to a source sample. A thread allocation priority is specified for

each sample type and Thread Control Unit 420 is configured to assign threads to

samples or allocate locations in a Register File 350 based on the priority

assigned to each sample type. The thread allocation priority may be fixed,

programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to

provide information to the store (Register File 350) in response to a control

signal, where the control signal is the thread allocation priority associated with

each thread or thread type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the

processor unit executes instructions that generate a pixel color in response to the

selected one of the plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution

Pipeline 240 Each Execution Pipeline 240 signals to Pixel Input Buffer 240

when a sample can be accepted programmable computation units (PCUs)

within an Execution Pipeline 240 perform operations such as tessellation,

perspective correction, texture mapping, shading, blending, and the like.

Processed samples are output from each Execution Pipeline 240 to a Pixel

Output Buffer 270.").
 



LG Ex. 1002, pg 321

Application/Control Number: 13/109,738

Art Unit: 2677

RE claim 10, Lindholm describes the shader of claim 5, wherein the

processor unit generates vertex position and appearance data in response to a

selected one of the plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as

higher-order surface data, and tessellate the first samples to generate second

samples, such as vertices. Execution Pipelines 240 may be configured to

transform the second samples from an object-based coordinate representation

(object space) to an alternatively based coordinate system such as world space

or normalized device coordinates Execution Pipelines 240 output processed

samples, such as vertices, that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the

control signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used

to assign a thread to a source sample. A thread allocation priority is specified for

each sample type and Thread Control Unit 420 is configured to assign threads to

samples or allocate locations in a Register File 350 based on the priority

assigned to each sample type. The thread allocation priority may be fixed,

programmable, or dynamic In an alternate embodiment, Thread Control Unit

420 is configured to assign threads to source samples or allocate locations in

Register File 350 using thread allocation priorities based on an amount of sample

data in Pixel Input Buffer 215 and another amount of sample data in Vertex Input

Buffer 220 In a further alternate embodiment, Thread Control Unit 420 is

configured to assign threads to source samples or allocate locations in Register

File 350 using thread allocation priorities based on graphics primitive size".

Thus, while an arbiter isn't explicitly described, the Examiner considers it

inherent that some portion of the system acts as an arbiter, and therefore can be

considered an arbiter, as some portion of the system assigns priorities to thread

and sample types according to the current processing circumstances, in order to

more efficiently process the data).

RE claim 15, Lindholm describes a unified shader comprising:
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a processor unit flexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source

samples or allocate locations in Register File 350 using thread allocation

priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220 In a further

alternate embodiment, Thread Control Unit 420 is configured to assign threads to

source samples or allocate locations in Register File 350 using thread allocation

priorities based on graphics primitive size (number of pixels or fragments

included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations

Execution Unit 470 can simultaneously process samples of different types, and,

likewise, execute threads of different types”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion

based on switching between instructions in the instruction store (FIG. 4 and 8:15-

46 describes Instruction Cache 41 O, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations... Execution Unit 470 can simultaneously process samples of

different types, and, likewise, execute threads ofdifferent types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on

switching between instructions in the instruction store).
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9. Additionally, Claims 1-8, 10-11, and 15-16 are further rejected under 35

U.S.C. 103 as being unpatentable overm et al (U.S. Patent No. 7,646817B1)

in view of Parikh et al. (U.S. Patent No. 6,697,074 B2).

10 Regarding Claim 1, Shen discloses A method comprising:

performing vertex manipulation operations and pixel manipulation

operations (Col. 6, lines 39-45 reciting “At block 326, video decoding

application 216 may optionally be configured to direct GPU 208 to perform

special effects processing on the reconstructed image. For example, GPU 208

may be directed to perform vertex-based or pixel-based special effects

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-based or pixel-

based special effects processing which corresponds to performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.) and performing vertex operations on the vertex data by a processor

and (Col. 4, lines 8- 12 reciting “Exemplary GPU 208 includes a programmable

vertex shader 212 for performing graphics operations on a per-vertex basis, and

a programmable pixel shader 214 for performing graphics operations on a per-

pixel basis.” The programmable vertex shader performs graphics operations on

vertex data sent to it, thus the programmable vertex shader 212 processes vertex
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data and the vertex shader 212 is included within the GPU 208, which

corresponds to a processor.)

continuing pixel calculation operations that are to be or are currently

being performed by the processor (Col. 6, lines 16 reciting “At block 322,

video decoding application 216 directs the pixel shader component 214 of GPU

208 to perform color space conversion processing on the reconstructed image.

Color space conversion processing is performed pixel-by-pixel to convert an

image from a color space in which it was created (e.g., YUV) to a color space

supported by display device 204 (e.g., RGB).” The color space conversion

corresponds to pixel calculation operations that are to be performed by the

processor because pixel shader is acting on pixel calculations that occur after

vertex calculation operations and is performed by the pixel shader component of

the GPU 208.) based on instructions maintained in an instruction store until

enough registers within the general purpose register block become

available. (Col. 4, lines 30-32 reciting “Accelerated video decoding may be

described in the general context of computer-executable instructions, such as

application modules, being executed by a computer.” Accelerated video

decoding which includes per-pixel operations is described in computer-

executable instructions. These instructions which are in the form of computer-

executable instructions are used for execution. The computer-readable memory

medium corresponds to the instruction store that stores the computer-executable

instructions.)
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While Shen does not explicitly disclose by transmitting vertex data to a

general purpose register block, and unless the general purpose register

block does not have enough available space therein to store incoming

vertex data; Parikh does disclose by transmitting vertex data to a general

purpose register block, (Col. 14, lines 2-6 reciting “Main processor 110 can

also load a number of graphics values (e.g., transformation matrices, pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may be both written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are general purpose registers for storing at least pixel and vertex data

and additional data formats.)

unless the general purpose register block does not have enough

available space therein to store incoming vertex data; (Col. 14, lines 2—6

reciting “Main processor 110 can also load a number of graphics values (e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” The number of registers available in

the graphics processor will be finite and they may all be filled with only pixel

format (pixel data). Therefore, if all the registers are all filled with non-vertex

data, the processor may not read and process vertex format (vertex data).)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

 



LG Ex. 1002, pg 326

Application/Control Number: 13/109,738 Page 22

Art Unit: 2677

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

11. Regarding Claim 2, Shen discloses a processor unit; (Col. 4, lines 8-12

reciting “Exemplary GPU 208 includes a programmable vertex shader 212 for

performing graphics operations on a per-vertex basis, and a programmable pixel

shader 214 for performing graphics operations on a per-pixel basis.” The GPU

208, which corresponds to a processor.)

a sequencer, coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute

vertex calculation and pixel calculation operations on selected data

maintained in the general purpose register block; and (Col. 4, lines 29-44

reciting “Accelerated video decoding may be described in the general context of
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computer-executable instructions, such as application modules, being executed

by a computer. Generally, application modules include routines, programs,

objects, components, data structures, etc. that perform particular tasks or

implement particular abstract data types. Video decoding application 216 may be

implemented using any number of programming techniques and may be

implemented in local computing environments or in distributed computing

environments where tasks are performed by remote processing devices that are

linked through various communications networks based on any number of

communication protocols. In such a distributed computing environment,

application modules may be located in both local and remote computer storage

media including memory storage devices.” The memory storage devices

corresponds to the sequencer because it stores the computer-executable

instructions, such as application modules, which are in a sequence. The

application modules may be located in local computer storage media and such

local storage medium is coupled to the processor since it is accessible by the

processor.)

wherein the processor unit executes instructions that generate a

pixel color in response to the selected one of the plurality of inputs and

generates vertex position and appearance data in response to a selected

one of the plurality of inputs. (Col. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208 to

perform special effects processing on the reconstructed image. For example,

GPU 208 may be directed to perform vertex-based or pixel-based special effects
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processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-based or pixel-

based special effects processing which corresponds to receiving a select input to

perform. The special effects processing such as inverse telecine and scalling or

fading corresponds to generating pixel color.)

While Shen does not explicitly disclose A unified shader, comprising: a

general purpose register block for maintaining data; and general purpose

register block and the Parikh does disclose A unified shader, comprising: a

general purpose register block for maintaining data; (00/. 14, lines 2—6

reciting “Main processor 110 can also load a number of graphics values (e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” Thus, pixel and vertex data may be

both written to registers that are within the graphics processor. Therefore, the

registers within the graphics processors are general purpose registers that can

store at least pixel and vertex data and additional formats of data.)

general purpose register block and the (Col. 14, lines 2-6 reciting “Main

processor 110 can also load a number of graphics values (e.g., transformation

matrices, pixel formats, vertex formats, etc. by writing to registers within the

graphics and audio processors.” Thus, pixel and vertex data may be both written

to registers that are within the graphics processor. Therefore, the registers within

the graphics processors are general purpose registers that can store at least

pixel and vertex data and additional formats of data.)
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It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

12. Regarding Claim 3, Shen discloses A unified shader comprising:

a processor unit operative to perform vertex calculation operations

and pixel calculation operations; and (Col. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For

example, GPU 208 may be directed to perform vertex-based or pixel-based
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special effects processing such as de-interlacing, inverse telecine, scaling, fading

in or out, and image sharpening or blurring.” The GPU can perform vertex-based

or pixel-based special effects processing which corresponds to performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.)

While Shen does not disclose shared resources, operativer coupled to

the processor unit; Parikh does disclose shared resources, operatively

coupled to the processor unit; (Col. 14, lines 2—6 reciting “Main processor 110

can also load a number of graphics values (e.g., transformation matrices, pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may be both written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are shared resources that may be used to store at least pixel formats,

vertex formats, and additional data formats.)

the processor unit operative to use the shared resources for either

vertex data or pixel information and operative to perform pixel calculation

operations until enough shared resources become available and then use

the shared resources to perform vertex calculation operations. (Col. 14,

lines 2—6 reciting “Main processor 110 can also load a number of graphics values

(e.g., transformation matrices, pixel formats, vertex formats, etc. by writing to
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registers within the graphics and audio processors." The registers available in

the graphics processor will be finite and they may all be filled with pixel format

(pixel data). Therefore, if there is no empty registers left and the registers are all

filled with non-vertex data, the processor may not read and process vertex format

(vertex data).)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.
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13. Regarding Claim 4, Shen discloses A unified shader comprising: a

processor unit operative to perform vertex calculation operations and pixel

calculation operations; and (Col. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208 to

perform special effects processing on the reconstructed image. For example,

GPU 208 may be directed to perform vertex-based or pixel-based special effects

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring." The GPU can perform vertex-based or pixel-

based special effects processing which corresponds to performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.)

Parikh discloses shared resources, operatively coupled to the

processor unit; (Col. 14, lines 2—6 reciting “Main processor 110 can also load a

number of graphics values (e.g., transformation matrices, pixel formats, vertex

formats, etc. by writing to registers within the graphics and audio processors.”

The registers available in the graphics processor will be finite and they may all be

filled with pixel format (pixel data). Therefore, if there is no empty registers left

and the registers are all filled with non-vertex data, the processor may not read

and process vertex format (vertex data).)
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the processor unit operative to use the shared resources for either

vertex data or pixel information and operative to perform vertex calculation

operations until enough shared resources become available and then use

the shared resources to perform pixel calculation operations. (Col. 6, lines

39-45 reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may be directed to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening or blurring.” The GPU

can perform vertex-based or pixel-based special effects processing which

corresponds to performing vertex manipulation operation and pixel manipulation

operations. Here the “or” can be interpreted to include the meaning of “and”

since “or” includes the meaning of “and.” Nothing in the specification of Shen

indicates an exclusive "or" meaning. In fact the GPU of Shen is shown to

perform operations on per-pixel and per-vertex.)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex
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values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

14. Regarding Claim 5, Shen further discloses A unified shader comprising:

a processor unit; (Col. 4, lines 8- 12 reciting “Exemplary GPU 208 includes a

programmable vertex shader 212 for performing graphics operations on a per-

vertex basis, and a programmable pixel shader 214 for performing graphics

operations on a per-pixel basis.” The GPU 208, which corresponds to a

processor.)

a sequencer coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute

vertex calculation and pixel calculation operations on selected data

maintained in a store depending upon an amount of space available in the

store. (Col. 4, lines 29-44 reciting “Accelerated video decoding may be described

in the general context of computer-executable instructions, such as application

modules, being executed by a computer. Generally, application modules include

routines, programs, objects, components, data structures, etc. that perform
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particular tasks or implement particular abstract data types. Video decoding

application 216 may be implemented using any number of programming

techniques and may be implemented in local computing environments or in

distributed computing environments where tasks are performed by remote

processing devices that are linked through various communications networks

based on any number of communication protocols. In such a distributed

computing environment, application modules may be located in both local and

remote computer storage media including memory storage devices.” The

memory storage devices corresponds to the sequencer because it stores the

computer-executable instructions, such as application modules, which are in a

sequence. The application modules may be located in local computer storage

media and such local storage medium is coupled to the processor since it is

accessible by the processor.)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the
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graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

15. Regarding Claim 6, Shen further discloses The shader of claim 5,

wherein the sequencer further includes circuitry operative to fetch data

from a memory. (00/. 4, lines 29-44 reciting “Accelerated video decoding may

be described in the general context of computer-executable instructions, such as

application modules, being executed by a computer. Generally, application

modules include routines, programs, objects, components, data structures, etc.

that perform particular tasks or implement particular abstract data types. Video

decoding application 216 may be implemented using any number of

programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The communications network based on communication protocols
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corresponds to circuitry operative to fetch the instructions from the remote

computer storage media.)

16. Regarding Claim 7, Shen further discloses The shader of claim 5,

further including a selection circuit operative to provide information to the

store in response to a control signal. (Col. 4, lines 29-44 reciting “Accelerated

video decoding may be described in the general context of computer-executable

instructions, such as application modules, being executed by a computer.

Generally, application modules include routines, programs, objects, components,

data structures, etc. that perform particular tasks or implement particular abstract

data types. Video decoding application 216 may be implemented using any

number of programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.’ The communications networks also corresponds to selective circuit

that provides information to the memory storage devices.)

17. Regarding Claim 8, Shen further discloses The shader of claim 5,

further including a selection circuit operative to provide information to the

store in response to a control signal. (Col. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For
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example, GPU 208 may be directed to perform vertex-based or pixel-based

special effects processing such as de-interlacing, inverse telecine, scaling,m1

in or out, and image sharpening or blurring.” Fading in or out corresponds to

pixel color in response to the GPU 208 receiving directions (plurality of inputs)

from the video decoding application 216.)

18. Regarding Claim 10, Shen further discloses The shader of claim 5,

wherein the processor unit generates vertex position and appearance data

in response to a selected one of the plurality of inputs. (Col. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may be directed to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening or blurring.” Both

scaling and inverse telecine corresponds to vertex position (scaling) and

appearance data (reverse telecine).)

19. Regarding Claim 11, Shen further discloses The shader of claim 5,

wherein the processor unit generates vertex position and appearance data

in response to a selected one of the plurality of inputs. (Col. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may be directed to perform vertex-

m or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening or blurring.” De-
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interlacing, inverse telecine, and scaling all correspond to vertex position

(scaling) and appearance data (reverse telecine).)

20. Regarding Claim 15, Shen discloses A unified shader comprising: a

processor unit flexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel

workload. (Col. 6, lines 39-45 reciting “At block 326, video decoding application

216 may optionally be configured to direct GPU 208 to perform special effects

processing on the reconstructed image. For example, GPU 208 may be directed

to perform vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

Mg. The GPU corresponds to a processor unit flexibly controlled, and the

reconstructed image corresponds to the workload since the reconstructed image

will have varying numbers of vertex and pixel data to process.)

21. Regarding Claim 16, Shen further discloses The shader of claim 15

comprising an instruction store and wherein the processor unit performs

the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching between instructions in

the instruction store. (Col. 4, lines 29-44 reciting “Accelerated video decoding

may be described in the general context of computer-executable instructions,

such as application modules, being executed by a computer. Generally,

application modules include routines, programs, objects, components, data

structures, etc. that perform particular tasks or implement particular abstract data

types. Video decoding application 216 may be implemented using any number of
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programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage
1

devices.’ The local and remote computer storage media including memory

storage devices corresponds to the instruction store. Computer executable

instructions corresponds to the vertex and pixel manipulation operations which is

completed at various degrees according to the structure of the application

module (stored instructions) on the storage device (instruction store).)
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