
LG Ex. 1002, pg 1

LG Ex. 1002
LG v. ATI

IPR2017-01225

PTO/SB/122 (11-08)
Approved for use through 11/30/2011, OMB 0651-0035

US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

CHANGED.
CORRESPONDENCEADDRESS

p'O' BOX 1450 Examiner Name
Alexandria, VA 22313—1450

Attorney Docket Number 00100360001

Please change the Correspondence Address for the above-identified patent application to:

The address associated withCustomer Number: 29153

OR

Firm or
Individual Name

Address

Telephone

This form cannot be used to change the data associated with a Customer Number. To change the
data associated with an existing Customer Number use “Request for Customer Number Data Change" (PTO/SB/124).

I am the:

Applicantjlnventor

Assignee of record of the entire interest.
Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96).

Attorney or agent of record. Registration Number 34414

Registered practitioner named in the application transmittal letter in an application without an
executed oath or declaration. See 37 CFR 1.33(a)(1). Registration Number

Slgnature /Christopher J. Reckamp/
Typed or Printe .
Name ainstopher J. Reckamp

Date May 17, 2011 Telephoneaizsowsss

NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required, Submit multiple
forms if more than one sinature is reuired, see below'.

'Total of 1 forms are submitted.

This collection of information is required by 37 CFR 1.33. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete.
including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on
the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, US. Patent and
Trademark Office. US. Department of Commerce. PO. Box 1450, Alexandria. VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS, SEND To: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Ifyou need assistance in completing the form, call 1 -800~PTO-9199 and select option 2.

LG Ex. 1002

LG v. ATI

|PR2017-01225

LG Ex. 1002, pg 2

PTOISBI14 (11-08)
Approved for use through 09130/2010. OMB 0651-0032

US Patent and Trademark Office; US DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

. .
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER
The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the
bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76.
This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the
document may be printed and included in a paper filed application.

Secrecy Order 37 CFR 5.2

D Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to
37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

A o licant Information:

A licant1

Applicant Authority @Inventor OLegal Representative under 35 U.S.C. 117 OParty of Interest under 35 U.S.C. 118
Prefix Given Name Middle Name Family Name Suffix

Stephen L. Morein

Residence Information (Select One) @ US Residency 0 Non US Residency 0 Active US Military Service

Cambridge StatelProvince MA Country of Residence i US

Mailing Address of Applicant:

Address 1 10 Magazine

Address 2 Apt. 801

A -Iicant 2

Applicant Authority @Inventor OLegal Representative under 35 U.S.C. 117 OParty of Interest under 35 U.S.C. 118

Laurent Lefebvre

Residence Information (Select One) 0 US Residency 6) Non US Residency 0 Active US Military Service

Lachgnaie Country Of Residencei

 Citizenship under 37 CFR 1.41(b) i

Mailing Address of Applicant:

Postal Code J6W 6A5

A - licant 3

Applicant Authority ©lnventor OLegal Representative under 35 U.S.C. 117 OParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name

Andrew E. Gruber

Residence Information (Select One) @ US Residency 0 Non US Residency 0 Active US Military Service

Arlington StatelProvince Country of Residence i

EFS Web 2.2.2

LG Ex. 1002, pg 3

PTOISBI14 (11-08)
Approved for use through 09130/2010. OMB 0651-0032

US Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 00100360001

Application Data Sheet 37 CFR 1.76 _ _
Application Number

Title Of Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Mailing Address of Applicant:

Address 1 215 Pleasant Street

Address 2

Arlington StatelProvince MA

A Iicant4

Applicant Authority @Inventor OLegal Representative under 35 U_S_C_ 117 OParty of Interest under 35 U_S_C_ 118

Andi Skende

Residence Information (Select One) @ US Residency 0 Non US Residency 0 Active US Military Service

Shrewsbury StatelProvince Country of Residence i

Citizenship under 37 CFR 1.41(b) i US

Mailing Address of Applicant:

Address 1 49 Sheridan Drive, #11

Shrewsbury StatelProvince MA

Postal Code I 01545 Countryi I US

All Inventors Must Be Listed — Additional Inventor Information blocks may be
generated within this form by selecting the Add button.

Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below.
For further information see 37 CFR 1.33(a).

D An Address is being provided for the correspondence Information of this application.

Customer Number 29153

Email Address creckamp@vedderprice.com I Add Email

Application Information:

Title of the Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Attorney Docket Number 00100360001 Small Entity Status Claimed |:

Application Type Nonprovisional

Subject Matter Utility

Suggested Class (if any)

Suggested Technology Center (if any)

Total Number of Drawing Sheets (if any) Suggested Figure for Publication (if any)

EFS Web 2.2.2

LG Ex. 1002, pg 4

PTOISBI14 (11-08)
Approved for use through 09130/2010. OMB 0651-0032

US Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995. no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 00100360001
Application Data Sheet 37 CFR 1.76 _ _

Application Number

Title of Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Publication Information:

D Request Early Publication (Fee required at time of Request 37 CFR 1 .219)

Request Not to Publish. I hereby request that the attached application not be published under 35 US.

Cl C. 122(b) and certify that the invention disclosed in the attached application has not and will not be the subject of
an application filed in another country, or under a multilateral international agreement, that requires publication at

eighteen months after filing.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing
this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32).
Enter either Customer Number or complete the Representative Name section below. If both sections
are completed the Customer Number will be used for the Representative Information during processing.

 Please Select One: @ Customer Number I 0 US Patent Practitioner 0 Limited Recognition (37 CFR 11.9)
Customer Number 29153

Domestic Benefithational Stage Information:

This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, or 365(0) or indicate National Stage
entry from a PCT application. Providing this information in the application data sheet constitutes the specific reference required by
35 U.S.C. 119(e) or 120, and 37 CFR 1.78(a)(2) or CFR 1.78(a)(4), and need not otherwise be made part of the specification.

Prior Application Status Pending

Application Number Continuity Type Prior Application Number Filing Date (YYYY-MM-DD)

Continuation of 12791597 2010—06—01

Additional Domestic Benefit/National Stage Data may be generated within this form

by selecting the Add button.
Add

Foreign Priority Information:

This section allows for the applicant to claim benefit of foreign priority and to identify any prior foreign application for which priority is
not claimed. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119(b)
and 37 CFR 1.55(a).

Application Number Country i Parent Filing Date (YYYY-MM-DD) Priority Claimed

0 Yes O No

Add

Additional Foreign Priority Data may be generated within this form by selecting the
Add button.

Assignee Information:
Providing this information in the application data sheet does not substitute for compliance with any requirement of part 3 of Title 37
of the CFR to have an assignment recorded in the Office.

Assi - nee 1

EFS Web 2.2.2

LG Ex. 1002, pg 5

PTOISBI14 (11-08)
Approved for use through 09130/2010. OMB 0651-0032

US Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 00100360001
Application Data Sheet 37 CFR 1.76

Application Number

Title Of Invention GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

If the Assignee is an Organization check here.

Organization Name ATI Technologies ULC

Mailing Address Information:

Address 1 1 Commerce Valley Drive East

Address 2

City Markham StateIProvince

Phone Number 905—882—2600
Email Address

Additional Assignee Data may be generated within this form by selecting the Add
button.

Signature:

A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37

CFR 1.4(d) for the form of the signature.

Signature lChristopherJ.Reckamp/ Date (YYYY-MM-DD) 2011—05—17

First Name Christopher Last Name Reckamp Registration Number

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which
is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This
collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data
sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount oftime you require to
complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, US. Patent and
Trademark Office, U.S. Department of Commerce, PO. Box 1450, Alexandria, VA 22313—1450. DO NOT SEND FEES OR
COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

EFS Web 2.2.2

LG Ex. 1002, pg 6

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to
a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection
of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is
used by the U.S. Patent and Trademark Office is to process andlor examine your submission related to a patent application or patent. If you do not
furnish the requested information, the US Patent and Trademark Office may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552)
and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine
whether the Freedom of Information Act requires disclosure of these records.

A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or
administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.

A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an
individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of
the record.

A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in
order to perform a contract. Recipients of information shall be required to comply with the requirements ofthe Privacy Act of 1974, as
amended, pursuant to 5 U.S.C. 552a(m).

A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed,
as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security
review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or hislher designee,
during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records
management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the
GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such
disclosure shall not be used to make determinations about individuals.

A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuan
to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were
terminated and which application is referenced by either a published application, an application open to public inspections or an issued
patent.

A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the
USPTO becomes aware of a violation or potential violation of law or regulation.

EFS Web 2.2.2

LG Ex. 1002, pg 7

Electronic Patent Application Fee Transmittal

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen L. Morein

Filer: ChristopherJ. Reckamp/Christine Wright

Attorney Docket Number: 00100360001

Utility under 35 USC 11 1 (a) Filing Fees

Sub-Total in

USD($)

Independent Claims in excess of3 1201 4 220 880

Miscellaneous-Filing:

Description Fee Code Quantity

LG Ex. 1002, pg 8

Sub-Total in

Description Quantity USD($)

Patent-Appeals—and-lnterference:

Post-AlIowance-and-Post-lssuance:

Extension-of—Time:

Miscellaneous:

Total in USD ($)

LG Ex. 1002, pg 9

Electronic Acknowledgement Receipt

10111290

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen L. Morein

Customer Number: 29153

—ChrIStopherJ. ReCkamp/ChrIStlne
Filer Authorized By: ChristopherJ. Reckamp

Attorney Docket Number: 00100360001

Time Stamp: 17:29:16

Application Type: Utility under 35 USC 111(a)

Payment information:

Submitted with Payment yes

PaymentType Deposit Account

Payment was successfully received in RAM $1970

Deposit Account 220259

The Director ofthe USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

LG Ex. 1002, pg 10

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

Document File Size(Bytes)/ Multi Pages
Message Digest Part l.zip (ifappl.)Number Document Description

76796

5.12195CBSOdic96b37393d43d086ca74d1
533a1

Multipart Description/PDF files in .zip description

360001_Application.pdf

Document Description

Specification

Warnings:

Information:

100418
Drawings-only black and white line

drawings 360001_Drawrngs.pdf lefiabcgce4894ugaee510509j 'l 651 Sa/b/d
B1f2

Information:

1711262

Oath or Declaration filed 360001_Declaration.pdf 16(1034719fh41Pa904d604c9§77dfifid 3017
96b4e

Information:

Change of Address 360001_Change.pdf dLL3lel05193121879d529ddb5b35dbt‘d6
39549

Information:

1032318

Application Data Sheet 3600017ADS.pdf 0457161(63792567d97d4613dade7a99db
6d9934

Warnings:

Information:

36605

(9542301783d22714df47c76295cf00c937*37e<
Fee Worksheet (PTO-875) fee-infopdf

Warnings:

LG Ex. 1002, pg 11

Information:

Total Files Size (in bytes) 3009427

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

lfa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this

Acknowledgement Receipt will establish the filing date ofthe application.

National Stage of an International Application under 35 U.S.C. 371
Ifa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
lfa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning

national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

LG Ex. 1002, pg 12

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

RELATED APPLICATIONS

[0001] This application is a continuation of co-pending US Application Serial No.

12/791,597, filed June 1, 2010, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., owned by

instant assignee and is incorporated herein by reference, which is a continuation of co—pending

US. Application Serial No. 11/842,256, filed August 21, 2007, entitled “GRAPHICS

PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER”, having as inventors

Steven Morein et al., owned by instant as signee and is incorporated herein by reference, which is

a continuation of US. Application Serial N o. 11/117,863, filed April 29, 2005, which has issued

into US. Patent No. 7,327,369, entitled “GRAPHICS PROCESSING ARCHITECTURE

EMPLOYING A UNIFIED SHADER”, having as inventors Steven Morein et al., and owned by

instant assignee and is incorporated herein by reference which is a continuation of US.

Application Serial No. 10/718,318, filed on November 20, 2003, which has issued into US.

Patent No. 6,897,871, entitled “GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A

UNIFIED SHADER”, having as inventors Steven Morein et al., and owned by instant assignee

and is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to graphics processors and, more

particularly, to a graphics processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0003] In computer graphics applications, complex shapes and structures are formed

through the sampling, interconnection and rendering of more simple objects, referred to as

CHICAGO/#2201074. 1

LG Ex. 1002, pg 13

primitives. An example of such a primitive is a triangle, or other suitable polygon. These

primitives, in turn, are formed by the interconnection of individual pixels. Color and texture are

then applied to the individual pixels that comprise the shape based on their location within the

primitive and the primitives orientation with respect to the generated shape; thereby generating

the object that is rendered to a corresponding display for subsequent viewing.

[0004] The interconnection of primitives and the application of color and textures to

generated shapes are generally performed by a graphics processor. Conventional graphics

processors include a series of shaders that specify how and with what corresponding attributes, a

final image is drawn on a screen, or suitable display device. As illustrated in FIG. 1, a

conventional shader 10 can be represented as a processing block 12 that accepts a plurality of

bits of input data, such as, for example, object shape data (14) in object space (x,y,z); material

properties of the object, such as color (16); texture information (18); luminance information (20);

and viewing angle information ('22) and provides output data (28) representing the object with

texture and other appearance properties applied thereto (x’, y’, z”).

[0005] In exemplary fashion, as illustrated in FIGS. 2A-2B, the shader accepts the vertex

coordinate data representing cube 30 (FIG. 2A) as inputs and provides data representing, for

example, a perspectively corrected view of the cube 30’ (FIG. 2B) as an output. The corrected

view may be provided, for example, by applying an appropriate transformation matrix to the data

representing the initial cube 30. More specifically, the representation illustrated in FIG. ZB is

provided by a vertex shader that accepts as inputs the data representing, for example, vertices

VX, VY and Vz, among others of cube 30 and providing angularly oriented vertices Vx’,VY' and

Vyg, including any appearance attributes of corresponding cube 30’.

CHICAGO/#2201074. l

LG Ex. 1002, pg 14

[0006] In addition to the vertex shader discussed above, a shader processing block that

operates on the pixel level, referred to as a pixel shader is also used when generating an object

for display. Generally, the pixel shader provides the color value associated with each pixel of a

rendered object. Conventionally, both the vertex shader and pixel shader are separate

components that are configured to perform only a single transformation or operation. Thus, in

order to perform a position and a texture transformation of an input, at least two shading

operations and hence, at least two shaders, need to be employed. Conventional graphics

processors require the use of both a vertex shader and a pixel shader in order to generate an

object. Because both types of shaders are required, known graphics processors are relatively

large in size, with most of the real estate being taken up by the vertex and pixel shaders.

[0007] In addition to the real estate penalty associated with conventional graphics

processors, there is also a corresponding performance penalty associated therewith. In

conventional graphics processors, the vertex shader and the pixel shader are juxtaposed in a

sequential, pipelined fashion, with the vertex shader being positioned before and operating on

vertex data before the pixel shader can operate on individual pixel data.

[0008] Thus, there is a need for an improved graphics processor employing a shader that

is both space efficient and computationally effective.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention and the associated advantages and features thereof, will

become better understood and appreciated upon review of the following detailed description of

the invention, taken in conjunction with the following drawings, where like numerals represent

like elements, in which:

[0010] FIG. 1 is a schematic block diagram of a conventional shader;

CHICAGO/#2201074. l

LG Ex. 1002, pg 15

[0011] FIGS. 2A-2B are graphical representations of the operations performed by the

shader illustrated in FIG. 1;

[0012] FIG. 3 is a schematic block diagram of a conventional graphics processor

architecture;

[0013] FIG. 4A is a schematic block diagram of a graphics processor architecture

according to the present invention;

[0014] FIG. 4B is a schematic block diagram of an optional input component to the

graphics processor according to an alternate embodiment of the present invention; and

[0015] FIG. 5 is an exploded schematic block diagram of the unified shader employed in

the graphics processor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0016] Briefly stated, the present invention is directed to a graphics processor that

employs a unified shader that is capable of performing both the vertex operations and the pixel

operations in a space saving and computationally efficient manner. In an exemplary

embodiment, a graphics processor according to the present invention includes an arbiter circuit

for selecting one of a plurality of inputs for processing in response to a control signal; and a

shader, coupled to the arbiter, operative to process the selected one of the plurality of inputs, the

shader including means for performing vertex operations and pixel operations, and wherein the

shader performs one of the vertex operations or pixel operations based on the selected one of the

plurality of inputs.

[0017] The shader includes a general purpose register block for storing at least the

plurality of selected inputs, a sequencer for storing logical and arithmetic instructions that are

used to perform vertex and pixel manipulation operations and a processor capable of executing

CHICAGO/#2201074. l

LG Ex. 1002, pg 16

both floating point arithmetic and logical operations on the selected inputs according to the

instructions maintained in the sequencer. The shader of the present invention is referred to as a

“unified” shader because it is configured to perform both vertex and pixel operations. By

employing the unified shader of the present invention, the associated graphics processor is more

space efficient than conventional graphics processors because the unified shader takes up less

real estate than the conventional multi—shader processor architecture.

[0018] In addition, according to the present invention, the unified shader is more

computationally efficient because it allows the shader to be flexibly allocated to pixels or

vertices based on workload.

[0019] Referring now to FIG. 3, illustrated therein is a graphics processor incorporating a

conventional pipeline architecture. As shown, the graphics processor 40 includes a vertex fetch

block 42 which receives vertex information relating to a primitive to be rendered from an off-

chip memory 55 on line 41. The fetched vertex data is then transmitted to a vertex cache 44 for

storage on line 43. Upon request, the vertex data maintained in the vertex cache 44 is

transmitted to a vertex shader 46 on line 45. As discussed above, an example of the information

that is requested by and transmitted to the vertex shader 46 includes the object shape, material

properties (e. g. color), texture information, and viewing angle. Generally, the vertex shader 46 is

a programmable mechanism which applies a transformation position matrix to the input position

information (obtained from the vertex cache 44), thereby providing data representing a

perspectiver corrected image of the object to be rendered, along with any texture or color

coordinates thereof.

[0020] After performing the transformation operation, the data representing the

transformed vertices are then provided to a vertex store 48 on line 47. The vertex store 48 then

CHICAGO/#2201074. l

LG Ex. 1002, pg 17

transmits the modified vertex information contained therein to a primitive assembly block 50 on

line 49. The primitive assembly block 50 assembles, or converts, the input vertex information

into a plurality of primitives to be subsequently processed. Suitable methods of assembling the

input vertex information into primitives is known in the art and will not be discussed in greater

detail here. The assembled primitives are then transmitted to a rasterization engine 52, which

converts the previously assembled primitives into pixel data through a process referred to as

walking. The resulting pixel data is then transmitted to a pixel shader 54 on line 53.

[0021] The pixel shader 54 generates the color and additional appearance attributes that

are to be applied to a given pixel. and applies the appearance attributes to the respective pixels.

In addition, the pixel shader 54 is capable of fetching texture data from a texture map 57 as

indexed by the pixel data from the rasterization engine 52 by transmitting such information on

line 55 to the texture map. The requested texture data is then transmitted back from the texture

map 57 on line 57’ and stored in a texture cache 56 before being routed to the pixel shader on

line 58. Once the texture data has been received, the pixel shader 54 then peifonns specified

logical or arithmetic operations on the received texture data to generate the pixel color or other

appearance attribute of interest. The generated pixel appearance attribute is then combined with

a base color, as provided by the rasterization engine on line 53, to thereby provide a pixel color

to the pixel corresponding at the position of interest. The pixel appearance attribute present on

line 59 is then transmitted to post raster processing blocks (not shown).

[0022] As described above, the conventional graphics processor 40 requires the use of

two separate shaders: a vertex shader 46 and a pixel shader 54. A drawback associated with such

an architecture is that the overall footprint of the graphics processor is relatively large as the two

CHICAGO/#2201074. l

LG Ex. 1002, pg 18

shaders take up a large amount of real estate. Another drawback associated with conventional

graphics processor architectures is that can exhibit poor computational efficiency.

[0023] Referring now to FIG. 4A, in an exemplary embodiment, the graphics processor

60 of the present invention includes a multiplexer 66 having vertex (e.g. indices) data provided at

a first input thereto and interpolated pixel parameter (e. g. position) data and attribute data from a

rasterization engine 74 provided at a second input. A control signal generated by an arbiter 64 is

transmitted to the multiplexer 66 on line 63. The arbiter 64 determines which of the two inputs

to the multiplexer 66 is transmitted to a unified shader 62 for further processing. The arbitration

scheme employed by the arbiter 64 is as follows: the vertex data on the first input of the

multiplexer 66 is transmitted to the unified shader 62 on line 65 if there is enough resources

available in the unified shader to operate on the vertex data; otherwise, the interpolated pixel

parameter data present on the second input will be passed to the unified shader 62 for further

processing.

[0024] Referring briefly to FIG. 5, the unified shader 62 will now be described. As

illustrated, the unified shader 62 includes a general purpose register block 92, a plurality of

source re isters: includin source re ister A 93, source reoister B 95, and source re ister C 97, a0

processor (eg. CPU) 96 and a sequencer 99. The general purpose register block 92 includes

sixty four registers, or available entries, for storing the information transmitted from the

multiplexer 66 on line 65 or any other information to be maintained within the unified shader.

The data present in the general purpose register block 92 is transmitted to the plurality of source

registers via line 109.

[0025] The processor 96 may be comprised of a dedicated piece of hardware or can be

configured as part of a general purpose computing device (i.e. personal computer). In an

CHICAGO/#2201074. l

LG Ex. 1002, pg 19

exemplary embodiment, the processor 96 is adapted to perform 32-bit floating point arithmetic

operations as well as a complete series of logical operations on corresponding operands. As

shown, the processor is logically partitioned into two sections. Section 96 is configured to

execute, for example, the 32-bit floating point arithmetic operations of the unified shader. The

second section, 96A, is configured to perform scaler operations (e.g. log, exponent, reciprocal

square root) of the unified shader.

[0026] The sequencer 99 includes constants block 91 and an instruction store 98. The

constants block 9] contains, for example, the several transformation matrices used in connection

with vertex manipulation operations. The instruction store 98 contains the necessary instructions

that are executed by the processor 96 in order to perform the respective arithmetic and logic

operations on the data maintained in the general purpose register block 92 as provided by the

source registers 93-95. The instruction store 98 further includes memory fetch instructions that,

when executed, causes the unified shader 62 to fetch texture and other types of data, from

memory 82 (FIG. 4A). In operation, the sequencer 99 determines whether the next instruction to

be executed (from the instruction store 98) is an arithmetic or logical instruction or a memory

(e.g. texture fetch) instruction. If the next instruction is a memory instruction or request, the

sequencer 99 sends the request to a fetch block (not shown) which retrieves the required

information from memory 82 (FIG. 4A). The retrieved information is then transmitted to the

sequencer 99, through the vertex texture cache 68 (FIG. 4A) as described in greater detail below.

[0027] If the next instruction to be executed is an arithmetic or logical instruction, the

sequencer 99 causes the appropriate operands to be transferred from the general purpose register

block 92 into the appropriate source registers (93, 95, 97) for execution, and an appropriate

signal is sent to the processor 96 on line 101 indicating what operation or series of operations are

CHICAGO/#2201074. l

LG Ex. 1002, pg 20

to be executed on the several operands present in the source registers. At this point, the

processor 96 executes the instructions on the operands present in the source registers and

provides the result on line 85. The information present on line 85 may be transmitted back to the

general purpose register block 92 for storage, or transmitted to succeeding components of the

graphics processor 60.

[0028] As discussed above, the instruction store 98 maintains both vertex manipulation

instructions and pixel manipulation instructions. Therefore, the unified shader 99 of the present

invention is able to perform both vertex and pixel operations, as well as execute memory fetch

operations. As such, the unified shader 62 of the present invention is able to perform both the

vertex shading and pixel shading operations on data in the context of a graphics controller based

on information passed from the multiplexer. By being adapted to perform memory fetches, the

unified shader of the present invention is able to perform additional processes that conventional

vertex shaders cannot perform; while at the same time, perform pixel operations.

[0029] The unified shader 62 has ability to simultaneously perform vertex manipulation

operations and pixel manipulation operations at various degrees of completion by being able to

freely switch between such programs or instructions, maintained in the instruction store 98, very

quickly. In application, vertex data to be processed is transmitted into the general purpose

register block 92 from multiplexer 66. The instruction store 98 then passes the corresponding

control signals to the processor 96 on line 101 to perform such vertex operations. However, if

the general purpose register block 92 does not have enough available space therein to store the

incoming vertex data, such information will not be transmitted as the arbitration scheme of the

arbiter 64 is not satisfied. In this manner, any pixel calculation operations that are to be, or are

currently being, performed by the processor 96 are continued, based on the instructions

CHICAGO/#2201074. l

LG Ex. 1002, pg 21

maintained in the instruction store 98, until enough registers within the general purpose register

block 92 become available. Thus, through the sharing of resources within the unified shader 62,

processing of image data is enhanced as there is no down time associated with the processor 96.

[0030] Referring back to FIG. 4A, the graphics processor 60 further includes a cache

block 70, including a parameter cache 70A and a position cache 70B which accepts the pixel

based output of the unified shader 62 on line 85 and stores the respective pixel parameter and

position information in the corresponding cache. The pixel information present in the cache

block 70 is then transmitted to the primitive assembly block 72 on line 7]. The primitive

assembly block 72 is responsible for assembling the information transmitted thereto from the

cache block 70 into a series of triangles, or other suitable primitives, for further processing. The

assembled primitives are then transmitted on line 73 to rasterization engine block 74, where the

transmitted primitives are then converted into individual pixel data information through a

walking process, or any other suitable pixel generation process. The resulting pixel data from

the rasterization engine block 74 is the interpolated pixel parameter data that is transmitted to the

second input of the multiplexer 66 on line 75.

[0031] In those situations when vertex data is transmitted to the unified shader 62

through the multiplexer 66, the resulting vertex data generated by the processor 96, is transmitted

to a render back end block 76 which converts the resulting vertex data into at least one of several

formats suitable for later display on display device 84. For example, if a stained glass

appearance effect is to be applied to an image. the information corresponding to such appearance

effect is associated with the appropriate position data by the render back end 76. The

information from the render back end 76 is then transmitted to memory 82 and a display

CHICAGO/#2201074. l

LG Ex. 1002, pg 22

controller line 80 via memory controller 78. Such appropriately formatted information is then

transmitted on line 83 for presentation on display device 84.

[0032] Referring now to FIG. 4B, shown therein is a vertex block 61 which is used to

provide the vertex information at the first input of the multiplexer 66 according to an alternate

embodiment of the present invention. The vertex block 61 includes a vertex fetch block 61A

which is responsible for retrieving vertex information from memory 82, if requested, and

transmitting that vertex information into the vertex cache 61B. The information stored in the

vertex cache 613 comprises the vertex information that is coupled to the first input of

multiplexer 66.

[0033] As discussed above, the graphics processor 60 of the present invention

incorporates a unified shader 62 which is capable of performing both vertex manipulation

operations and pixel manipulation operations based on the instructions stored in the instruction

store 98. In this fashion, the graphics processor 60 of the present invention takes up less real

estate than conventional graphics processors as separate vertex shaders and pixel shaders are no

longer required. In addition, as the unified shader 62 is capable of alternating between

performing vertex manipulation operations and pixel manipulation operations, graphics

processing efficiency is enhanced as one type of data operations is not dependent upon another

type of data operations. Therefore, any performance penalties experienced as a result of

dependent operations in conventional graphics processors are overcome.

[0034] The above detailed description of the present invention and the examples

described therein have been presented for the purposes of illustration and description. It is

therefore contemplated that the present invention cover any and all modifications, variations and

CHICAGO/#2201074. l

LG Ex. 1002, pg 23

equivalents that fall within the spirit and scope of the basic underlying principles disclosed and

claimed herein.

CHICAGO/#2201074. l

LG Ex. 1002, pg 24

CLAIMS

What is claimed is:

A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.

A unified shader comprising:

CHICAGO/#2201074. l

LG Ex. 1002, pg 25

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

5. A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instiuctions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.

CHICAGO/#2201074. l

LG Ex. 1002, pg 26

6. The shader of claim 5, wherein the sequencer further includes circuitry operative

to fetch data from a memory.

7. The shader of claim 5, further including a selection circuit operative to provide

information to the store in response to a control signal.

The shader of claim 5, wherein the processor unit executes instructions that

generate a pixel color in response to the selected one of the plurality of inputs.

The shader of claim 5, wherein the processor unit executes vertex calculations

while the pixel calculations are still in progress.

10. The shader of claim 5, wherein the processor unit generates vertex position and

appearance data in response to a selected one of the plurality of inputs.

ll. The shader of claim 7, wherein the control signal is provided by an arbiter.

A graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculations are still in progress.

13. The graphics processor of claim 12 wherein the unified shader comprises a

sequencer coupled to the processor unit, the sequencer maintaining instructions operative to

CHICAGO/#2201074. l

LG Ex. 1002, pg 27

cause the processor unit to execute vertex calculation and pixel calculation operations on

selected data maintained in a store depending upon an amount of space available in the store.

14. The graphics processor of claim 12 comprising a vertex block operative to fetch

veitex information from memory.

15. A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. The shader of claim 15 comprising an instruction store and wherein the processor

unit performs the vertex manipulation operations and pixel manipulation operations at various

degrees of completion based on switching between instructions in the instruction store.

CHICAGO/#2201074. l

LG Ex. 1002, pg 28

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

[0035] A graphics processing architecture employing a single shader is disclosed. The

architecture includes a circuit operative to select one of a plurality of inputs in response to a

control signal; and a shader, coupled to the arbiter, operative to process the selected one of the

plurality of inputs, the shader including means for performing vertex operations and pixel

operations, and wherein the shader performs one of the vertex operations or pixel operations

based on the selected one of the plurality of inputs. The shader includes a register block which is

used to store the plurality of selected inputs, a sequencer which maintains vertex manipulation

and pixel manipulations instructions and a processor capable of executing both floating point

arithmetic and logical operations on the selected inputs in response to the instructions maintained

in the sequencer.

CHICAGO/#2201074. l

LG Ex. 1002, pg 29

£5.moan:F.9".me<Iw

mJOZ<OZ:SE>moz<z__>5._<F<DmmDHXMH$0400mm<ImHOmfimO

LG Ex. 1002, pg 30

(PRIOR ART)

LG Ex. 1002, pg 31

TEXTURE

MEMORY MAP

41 43
44

VERTEX FETCH V-CACHE

42 45

VERTEX VERTEX 48
SHADER STORE

46
47 49

PRIMITIVE 50

ASSEMBLY

51

RASTERIZATION 52

ENGINE

53

TO 55

57 PIXEL

SHADER

TEXTURE 54

CACHE 58

5

FIG. 3 POST RASTER

(PRIOR ART) PROCESSING

LG Ex. 1002, pg 32

INDICES

63

TO MEMORY

UNIFIED

SHADER TEXTURE MEMORY

VERTEX 69 DATA
CACHE

PARAMETER

CACHE
REN DER

BAC K

END POSITION

CACHE

71

PRIMITIVE

MEMORY ASSEMBLY
CONTROLLER

73

RASTERIZATION

DISPLAY ENG'NE
CONTROLLER

84 82

DISPLAY MEMORY

FIG. 4A

LG Ex. 1002, pg 33

INMCES

VERTEX VERTEX

FETCH CACHE

FROM MUX MEMORY
FETCH

67

CONSTANTS

9

SOURCEB SOURCEC

96A
J

=
(SCALER)

LG Ex. 1002, pg 34

DECLARATEGN . Aimmey flockgtfismher {Effifififiifimi
FQR E‘EELETY 9R DESIGN - First amesfi Envmiénr: Margin et ai.

EXTENT AYPIJCATIQN COMPLEEE‘ ff” KM?

{3% 1.63} ' Agpfiwfign Ntznfger: Unknown
. =5 Sabmified with Initiaifiimz R B‘a‘ie:

ubmifisri sitar initial Fih'ng Surabarge Swag: An Unit: Unknown

{5}} {figure-i: . N21335:

A321?)

35.: '

' £333, £33: 311:3 ask: mvezz’ssr {if 0513' 031:: We is Eater; bsiew} a: an angina; Inst and 553.:
imam 3. {if 931m} ass Eistesi bsiow} €113 subj eat which is claimad and far which a yaéani‘ is ught ml
the iuvsxziizm entitiwz A GRAPE-EICS PRGCESSING ARCHE’YECTSRE EMPLG’flNG A
43343153“ - ‘- '
¥ _

\

{he specificatim sf whw
attacks? 1:373:23. _

flied an - ' Safes Apniicaéion ' (31” as PCL'
a. WM.~..N_.A...

hazma'iianaiywpfisafim:L a?» _____u _ antiwafiaxmxfied an {MMKDD’YYYR
“ I .Mmm“mu

applicabie) .

I ircreby stair: that i have: awed and unfiersiané the mutants of film abms identified sgjacificafimg
Gig-Ems, as r 3.11de any ammfimmt swcificaiiy referred to above.‘ _ ,
3 acknowiadgs {Sui}? is $353656 infsm: {is}; which matefiai to patenta‘simy EES "n 3? CFR $2.55.

I hershy chains foreig: pm :3! bzsnsf‘t: under 3:”; if: 9(a)~{d} fir 3658;} 51 any threign appEicmiofis) fora: immisr’a Cerfifi
365(a) offing! PC"? inssmahauai app Lien flflsignswd .3: East am: cc:me (2:233: than £212 United 3 ' «as ofAmati ca, E5336 beiuw and Rave

«. flier? §ss§vw¢ by chscimg {3‘1 . 13.x, .y fgmign zgpiicafian fm pain-at :3: iavcamr’s certificafc: or of ahy PCT {gamma aypiica‘dm
I a I of am‘iicafim (m whisk ti ‘ w _ M‘ MM”

Friar Forgigsi ~ g Formgn himg Date ; ' ‘ Cay}; Atmflmé?

i1

i2

féggjfiggfigigfiggzbeffi‘ . {Inmaer “@mmm‘g} fiaimefi‘. i ‘ -
“unfiwwvwfwwwvw.V-n—nn‘mvm-«m «Ir—«Wm
1W“ NWMKwWHWMW...“--4 “v w. . ‘ ' 3 l - ' . . .

L? Aad cnal fmexgfi 55 semen numbers are “Stab cm a swgpfsmmtal mum]; usam meet PTO/38:62}? mix-meg aerate.

2€3g §5

, c3
a”,

E i arch}! skin: :32: bum/£19 ms’sn 35 USC, 319(3): (51', 33y mfimé 8:3th pmvi ’ 2'} mficmicfis} fistec‘ below.5.“............_‘..._.__........,.....WM‘.

: A Numbergs} v 4ng “(Emilg mm gwmnmwwgm-mm

m... “4.”.-.__.._..__._._..M‘

WMW..Mi

r»: .V. .. i‘ T‘— .,.‘ .m
~ ' Acamsnai pmvmanafi apphmm m nszad an a supplementaj 73:15 xy data sheet PTGKSLWZD magma mm . -
1...;

E hereby 5:93:32 2125 Emmi! sméas -. '. . 0 cf any i}; fist! States appficaiionfi)‘ m 365{c) of any PC? inasmafimfi agrpiimiim desfignsfing the:
United Staiss af .Aarmca, Eism 4 ‘ -‘ -‘ as 33m: whim»: matter as" each of the ciaims 0f {sis app - ’ é. mesa: the: prior
limited Jth m PCTM ‘mafisna? 333p ' L' :3 me manner mav§1§eé by the first pamgmph cf 33 _L. I: 1 .1 K scsmawlcdgs: 5m: éutgv' 1-1: fiisciesc'
infunnafion which is mat-ed to. pamnmbflity as drained in 37 CFR 155 which bmama a\>&§ahle be

fnc man's:va er PCT-i L fling date ofthis appficatim.

. Parent Fiiizkgflgte ' . Ease}; i’aienthmbe"
Mammsmmmw - 33: aggmimhia} -

iE

I§§§~E§fl§é§§§afim {31' PC?
Ehrem Nazism:

E

Ei
.w.um_..wfiLMfiMWW ...4....____..... www..__~..

xii-3m} apyficaiic-n numbersam .‘istcd'on a suppismzmm prmfiz'r data skeet P3 Oa’SB/GZB attachw hereto.

 .;......Y..........; E
3IEl

LG Ex. 1002, pg 35

A3 a namcd inventm, I hereby appoint the folicwing regisisred pmcfiti-amds) t9 pmsecut: this t0
Kama-193363 a}? Emss'mss in the Eaten and “Fascism-513$: Cfficc connectcd fixer-:With:

iNama Re; ‘firatim: Namber éNamg “Tn Registrgjgggfiumhes‘
Ramp 3 34,414: 3 fuzz-sic 3.313.333.1119 1" 622

W. U........U..._L.lk..Rasher: Base: g 38,681__.__...-“.m_.fl.flm.gmw _._...V.~VMMI»_.MMWM_____

§ “rem A. § 51323.

' 2; ' 1 3 E_..: * ' .,..__.....L._.., Wm “WWW... m

‘ Add? ma} registered in): cr{s}- “maid 0;: mpgicmsnial ; :gisfmsé Pramitimmr Informa‘dea shaet 3"?0/339‘26 - harem“.

I3Kim
Msqu~i

. Bimini a3} aozrssgmndam‘: to: Vfiiéer, ifi‘iee, Kafifamn 8: Karmmha‘zz
' 222 N. LaSEfie Street, Suite 269% _

Chicaga, Einois 566%}
. Teiephene; 3E2~6§i9£§€§8

. Facsimile: 312«§99=5895

I lem‘uy {EL-dam 313 statements made hack: of mm Emcwieége ate true r3251 a1} smiamnms made an {dammit-73 Brzfizf are
focfimaa‘ as ma; and $36.: sham statements were 5:15:32: wig}: the imawiadg: that wiléixfi false stem-mange; and the film 59 made are
puniirmhie by fine Y3? imprisonmng 5:: bath, under 18 U.S.C‘ 1691 ami that 53923 Wfiifixi faise statemzn q may jmparéiz-z the: vaiiéiiy 0f the

_ amfimfim at any yam: "11235 $27303.

"Name m!" 3:} er Figsi invenmr: :3 9‘; nafifion has been for this: usmgneé ifivauts:
umvw~‘.mWw_flnww.__wmww WW...“

Family Name (2:

me‘..-

% Simian - 'J . ' LEfifijggmfiWWMmeW...ka
Envezxttsrk , g . ‘
Siwlat‘ifi'fi . j“mmWW“4A»“WWW“wumwmm=x.......~hmm 4

‘ 3 Cifizcnship: U2;? a .r > W- ‘ ‘

L§£§§§P§SEWWWW ' ‘W ;~;;LW‘~..-‘._-._WA._.....LM~.m‘m..wumwm_;.m§ v
§lfns€ GifineA mass = ' “MW” “mm W“?

{32’in Cm1bn§ge i Sham fig” ' 33:02:39 é Comn‘yflifi ‘M_._‘._._V_. .___v V ‘ M. y. u‘mme “.WW~«.«_.L*A~_MMW*MW~WWK.WM_

Name B§ Addifiomfi Isis»: Envenmr: a“ ‘ 2 "flan Ems hesnjiiggiééfiégmsimed invents):
Gives: and mifle. Hf 3131:.“ W F3313} Marge or wmm

: ’autcn‘g“ m : . ' “WWW.W. -m. m! .._. “a?

é - v“nature . _ ___ - ._........,..

L‘gggiéengg (3135": Siam: 525-. i Cmntg‘ 9J4 EEIR‘ZSRSE ’

L.

.
_._L __........_....-

Pest {kffice Afidresg 3i {3&3 PfiégyaWG 1 “Wm -m.‘:wV~~-M~~ -w—mww -—-—--—-—————-~-».__~.._—_M-.~—r

“c: mnmgszavsggawmJngcgmgégmmWwW
U

-m.

A 7; efifiun h3g§£§n flied fa: unsimfigg invents:
Pamfiv or Sung-atria1

g

§ (imam: 2...”.....,i

L...»
=

. __ ..._...._.._..n ‘
Name @Adfiifimai 3835f Inventor: ‘ C 759? this

{Sivan (firs? and mitidi: fir” 312V ‘3 § , . um: mifiumame
3in 3mm: '

Envemer’s . > iEates
" § ‘“ ’ icgifiaémij

.9

Si namggmw Ww‘mw
Ifigsmeme :‘ Shrewsmry gmmm W»; C 2mg:

Past $553533 Aflfireg .49 Sheridan dee,#il

LG Ex. 1002, pg 36

PATENT APPLICATION FEE DETERMINATION RECORD Application OI DOCKGI Number
Substitute for Form PTO-875 13/109,738

APPLICATION AS FILED - PART I OTHER THAN

(Column 1) (Column 2 SMALL ENTITY OR SMALL ENTITYI

NUMBER FILED NUMBER EXTRA RATE($) FEE($) RATE($) FEE($)BASIC FEE

I37CFR1-1SIEMDIWICII _
N/ASEARCH FEE

(37 CFR 1.16(k), (i), or (m))
EXAMINATION FEE
(37 CFR1.16(o). (p) or (:0)
TOTAL CLAIMS
(37 CFR l 16(i))
INDEPENDENT CLAIMS .

(WW-16w»
If the specification and drawings exceed 100

APPLICATION SIZE sheets of paper, the application size fee due is
FEE $270 ($135 for small entity) for each additional
(37 CFR 116(5)) 50 sheets or fraction thereof. See 35 U.S.C.

41(a)(1)(G) and 37 CFR1.16(s).

MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR1.16(j))

‘ If the difference In column 1 is less than zero, enter "0" in column 2.

APPLICATION AS AMENDED - PART II

OTHER THAN

(Column 3) SMALL ENTITY SMALL ENTITY
CLAIMS HIGHEST

REMAINING NUMBER PRESENT ADDITIONAL ADDITIONAL
AFTER PREVIOUSLY EXTRA FEE($) FEE($)AMENDMENT PAID FOR

Total
(37 CFR I |5(i|)

Independent(37 CFR 1 16(h)l

Application Size Fee (37 CFR 1 16(3))

<
I—
Z
LIJ
E
D
Z
LIJ
2
<1:

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR1.16(j))

TOTAL
ADD‘L FEE

(Column 2) (Column 3)
CLAIMS HIGHEST

REMAINING NUMBER ADDITIONAL ADDITIONAL
AFTER PREVIOUSLY ‘ FEE($) FEE($)AMENDMENT PAID FOR

Independent
(37 CFR 1 16(h)l

Application Size Fee (37 CFR1.16(s))AMENDMENTB
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR1.16(j))

ADD‘L FEE
* Ifthe entry in column 1 is less than the entry in column 2, write "0” in column 3.

** lfthe "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20”.
"‘ Ifthe "Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter

The "Highest Number Previously Paid For" (Total or Independent) is the highest found In the appropriate box in column 1.

LG Ex. 1002, pg 37

UVTTET‘I STATES DEPARTMENT OF COM'MFIRCFI
United States Patent and Trademark Office
Addl'ESS. COMMISSTOVFIR FOR PATENTSP O Box 1 4 50

Alexandria, Yngnia 22313-1450wwwuspto .gov

ATTYDOCKETNO TOT CLAIMS IND CLAIMS

16 713/109,738 05/17/2011 2628 1970 00100360001
CONFIRMATION NO. 2020

29153 FILING RECEIPT

ADVANCED MICRO DEVICES, INC.

C/O VEDDER PRICE P.C. ||||||||I|||I|||I|||I|||IflIII| |||||||I|||I|||I||||||ll||| ||IllllI|I||||||||||||||||||||
222 N.LASALLE STREET 0000000479 362

CHICAGO, IL 60601

Date Mailed: 06/01/2011

Receipt is acknowledged of this non—provisional patent application. The application will be taken up for examination
in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the

application must include the following identification information: the US. APPLICATION NUMBER, FILING DATE,
NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection.
Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please
submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the
changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit

any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply
to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Stephen Morein, Cambridge, MA;

Laurent Lefebvre, Lachgnaie, CANADA;
Andy Gruber, Arlington, MA;
Andi Skende, Shrewsbury, MA;

Assignment For Published Patent Application
ATI TECHNOLOGIES ULC, Markham, CANADA

Power of Attorney:
Robert Beiser--28687 Timothy Bechen--48126
Angelo Bufalino--29622 Brent Boyd-51020

Joseph Krause--32578
Christopher Reckamp--34414
Michael Turgeon--39404

Domestic Priority data as claimed by applicant
This application is a CON of 12/791,597 06/01/2010
which is a CON of 11/842,256 08/21/2007 ABN
which is a CON of 11/117,863 04/29/2005 PAT 7,327,369

which is a CON of 10/718,318 11/20/2003 PAT 6,897,871

Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the
USPTO. Please see http://www.uspto.gov for more information.)

If Required, Foreign Filing License Granted: 05/27/2011

page 1 of 3

LG Ex. 1002, pg 38

The country code and number of your priority application, to be used for filing abroad under the Paris Convention,

is US 13/109,738

Projected Publication Date: 09/08/2011

Non-Publication Request: No

Early Publication Request: No
Title

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Preliminary Class

345

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a US. patent extend only throughout the territory of the United States and have no
effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent
in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international
application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same
effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing
of patent applications on the same invention in member countries, but does not result in a grant of "an international

patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent
protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an

application for patent in that country in accordance with its particular laws. Since the laws of many countries differ
in various respects from the patent law of the United States, applicants are advised to seek guidance from specific
foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must
issue a license before applicants can apply for a patent in a foreign country. The filing of a US. patent application
serves as a request for a foreign filing license. The application's filing receipt contains further information and
guidance as to the status of applicants license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the
section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign
patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it
can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish

to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative,
this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific

countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may
call the US. Government hotline at 1-866-999-HALT (1-866-999-4158).

page 2 of 3

LG Ex. 1002, pg 39

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 & 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where
the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier

license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The
date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under
37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless

it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This
license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter

as imposed by any Government contract or the provisions of existing laws relating to espionage and the national
security or the export of technical data. Licensees should apprise themselves of current regulations especially with

respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of
State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and

Security, Department of Commerce (15 CFR parts 730—774); the Office of Foreign AssetsControl, Department of
Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING
LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12,
if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed
from the filing date of this application and the licensee has not received any indication of a secrecy order under 35
U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

page 3 of 3

LG Ex. 1002, pg 40

Doc code: IDS

Doc description: Information Disclosure Statement (IDS) Filed

PTO/SBIOBa (01—10)
Approved for use through 071311'2012. OMB 0651-0031

US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

13109738Application Number

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR1.99)

First Named Inventor Stephen Morein

Art Unit

Examiner Name

Attorney Docket Number 00100360001

U.S.PATENTS

Examiner
Initial"

Name of Patentee or Applicant
Issue Date of cited Document

Patent Number

Remove

Pages,Cqumns,Lines where

Relevant Passages or Relevant
Figures Appear

5550962 1996-08-27 Nakamura et al.

5818469 1998—10—06 Lawless et al.

6118452 2000-09-12

6353439 2002—03—05 Lindholm et al.

6384824 2002-05-07 Morgan et al.

6417858 2002—07—09 Bosch et al.

6573893 2003-06-03 Naqvi et al.

6650327 2002-11-18 Airey et al.

EFS Web 2.1.17

LG Ex. 1002, pg 41

Application Number 13109738

Filing Date 2011-05-17
INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR1.99)

First Named Inventor Stephen Morein

Art Unit

Examiner Name I na

Attorney Docket Number 00100360001

6650330 2003—11—18 Lindholm et al.

6704018 2004-03-09 Mori et al.

6724394 2004—04—20

6731289 2004-05-04 Peercy et al.

6809732 2004-10-26

6864893 2005—03—08

6897871 2005-05-24 Morein et al.

6980209 2005—12—27 Donham et al.

7015913 2006-03-21 Lindholm et al.

7038685 2006—05—02 Lindholm

7327369 2008-02-05 Morein et al.

EFS Web 2.1.17

LG Ex. 1002, pg 42

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR1.99)

5485559

Application Number 13109738

Filing Date 2011-05-17

First Named Inventor Stephen Morein

Art Unit

Examiner Name I na

Attorney Docket Number 00100360001

1996—01—16 Sakaibara et al.

7239322

7746348

2007-07-03 Lefebvre et al.

2010—06—29 Lefebvre et al.

7742053

If you wish to add additional US. Patent citatio

2010-06-22 Lefebvre et al.

n information please click the Add button.
Add

U.S.PATENT APPLICATION PUBLICATIONS Remove

Examiner
Initial"

Publication
Number

20030076320

Kind
Code1

Publication
Date

Name of Patentee or Applicant
of cited Document

2003—04—24

Pages,Columns,Lines where
Relevant Passages or Relevant

Figures Appear

20030164830

20040041814

20040164987

2003-09-04

2004-03-04 Wyatt et al.

2004—08—26 Aronson et al.

EFS Web 2.1.17

20050068325

2005-03-31 Lefebvre et al.

LG Ex. 1002, pg 43

Application Number 13109738

Filing Date 2011-05-17
INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR1.99)

First Named Inventor Stephen Morein

Art Unit

Examiner Name I na

Attorney Docket Number 00100360001

20100231592 2010—09—16 Morein et al.

20030030643 2003-02-13 Taylor et al.

20070222785 2007—09—27 Lefebvre et al.

20070222787 2007-09-27 Lefebvre et al.

20050200629 2005-09-15 Morein et al.

20070222786 2007—09—27 Lefebvre et al.

20070285427 2007-12-13 Morein et al.

20100156915 2010—06—24 Lefebvre et al.

If you wish to add additional U.S. Published Application citation information please click the Add button. Add

FOREIGN PATENT DOCUMENTS Remove

Name of Patentee or PageS’C0|umns'Lines
Examiner Cite Foreign Document Kind Publication where Relevant

Code4 Date Spphcant Of cued Passages or Relevantocument .
Figures Appear

2299408 2011-03-23 Morein et al.

EFS Web 2.1.17

LG Ex. 1002, pg 44

Application Number 13109738

Filing Date 2011-05-17
INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR1.99)

First Named Inventor Stephen Morein

Art Unit

Examiner Name I na

Attorney Docket Number 00100360001

2309460 2011—04—13 Morein et al.

2296116 2011-03-16 Morein et al.

If you wish to add additional Foreign Patent Document citation information please click the Add button Add

NON-PATENT LITERATURE DOCUMENTS Remove

Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item

(book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s),
publisher, city and/or country where published.

Examiner
|nitials*

European Patent Office Examination Report; EP Application No. 047989383; dated November 9, 2006; pages 1—3.

PU RCELL, TIMOTHY J. et al.; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH '02; San Antonio, TX;
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703-712.

MARK, WILLIAM R. et al.; CG: A system for programming graphics hardware in a C—like language; SIGGRAPH '03;
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896-907.

BRETERNITZ, JR., MAURICIO et al.; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline
Programs on a General—Purpose CPU; IEEE; 2003; pgs. 1—11.

International Search Report and Written Opinion; International Application No. PCT/l32004l003821; dated March 22,
2005.

EP Supplemental Search Report; EP Application No. 100756881; dated February 25, 2011.

EP Supplemental Search Report; EP Application No. 100756865; dated February 25, 2011.

EFS Web 2.1.17

LG Ex. 1002, pg 45

Application Number 13109738

Filing Date 2011-05-17

First Named Inventor Stephen Morein

Art Unit

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR1.99)

Examiner Name I na
Attorney Docket Number 00100360001

EP Supplemental Search Report; EP Application No. 100756873; dated February 25, 2011.

EP Supplemental Search Report; EP Application No. 100756857; dated February 25, 2011.

ELDRIDGE, MATTHEW et al.; Pomegranate: A Fully Scalable Graphics Architecture; Computer Graphics, SIGGRAPH
2000 Conference Proceedings; July 23, 2000.

OWENS, JOHN D. et al.; Polygon Rendering on a Stream Architecture; Proceedings 2000 SlGGRAPH/Eurographics
Workshop on Graphics Hardware; August 21, 2000.

 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008.

Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009.

 Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010

If you wish to add additional non-patent literature document citation information please click the Add button Add

EXAMINER SIGNATURE

Examiner Signature Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a

citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
4 Kind ofdocument by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here if
English language translation is attached.

EFS Web 2.1.17

LG Ex. 1002, pg 46

Application Number 13109738

Filing Date 2011-05-17
INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR1.99)

First Named Inventor Stephen Morein

Art Unit

Examiner Name I na
Attorney Docket Number 00100360001

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication

D from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the
information disclosure statement. See 37 CFR 1.97(e)(1).

That no item of information contained in the information disclosure statement was cited in a communication from a

foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification
after making reasonable inquiry, no item of information contained in the information disclosure statement was known to

any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure
statement. See 37 CFR 1.97(e)(2).

Fee set forth in 37 CFR 1.17 (p) has been submitted herewith.

None
X See attached certification statement.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the
form of the signature.

Signature [Christopher J. Reckampl Date (YYYY-MM—DD) 2011—07—14

Name/Print Christopher J. Reckamp Registration Number
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the
public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR

1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed
application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you

require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S.
Patent and Trademark Office, US. Department of Commerce, PO. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND
FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria,
VA 22313-1450.

EFS Web 2.1.17

LG Ex. 1002, pg 47

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the
attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised

that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited
is voluntary; and (3) the principal purpose for which the information is used by the US. Patent and Trademark Office is to

process and/or examine your submission related to a patent application or patent. If you do not furnish the requested
information, the US. Patent and Trademark Office may not be able to process andlor examine your submission, which may

result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act

(5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the
Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.

A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a

court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement
negotiations.

A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a
request involving an individual, to whom the record pertains, when the individual has requested assistance from the
Member with respect to the subject matter of the record.

A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for
the information in order to perform a contract. Recipients of information shall be required to comply with the

requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).

A record related to an International Application filed under the Patent Cooperation Treaty in this system of records
may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant

to the Patent Cooperation Treaty.

A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of
National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or
his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to

recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and
2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this

purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make
determinations about individuals.

A record from this system of records may be disclosed, as a routine use, to the public after either publication of

the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record
may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in

an application which became abandoned or in which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspections or an issued patent.

A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law

enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

EFS Web 2.1.17

LG Ex. 1002, pg 48

EP2299408A2

EuropilschesPatenlamt

EP 2 299 408 A2

Eu rope: nPatent Office
Office européen

des brevets

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
23.03.2011 Bulletin 2011/12

(51) Int Cl.:
606T 15/00 (201101) 606T 15/30 (2011.01)

(21) Application number: 100756873

(22) Date offiling: 19.11.2004

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

Designated Extension States:
AL HR LT MK YU

Lefebvre, Laurent
Lachenaie

Quebec J6W 6A5 (CA)
Gruber, Andy
Arlington, MA 02476 (US)
Skende, Andi

(30) Priority: 20.11.2003 us 718318 Shrewsbury, MA 01545 (US)

Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre
London

WCZE 9RA (GB)

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
04798938.!) I 1 706 847

(71) Applicant: ATI Technologies Inc.
Markham,
Ontario L3T 7X6 (CA) Remarks:

This application was filed on 01-10-2010 as a
divisional application to the application mentioned
under INID code 62.

(72) Inventors:
0 Morein, Steven

Cambridge, MA 02139 (US)

(54) A graphics processing architecture employing a unified shader

rality ofinputs, the shaderincluding meansfor performing
vertex operations and pixel operations, and performing
one of the vertex operations or pixel operations based
on the selected one ofthe plurality of inputs, wherein the
shader provides a appearance attribute.

(57) Agraphics processor, comprising: an arbiter cir-
cuit for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the arbiter
circuit, operative to process the selected one of the plu-

OBJECT

SHAD ER

VIEWING
ANGLE

FIG. 1

(PRIOR ART)

Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 49

EP 2 299 408 A2 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Colorand texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re—
spect to the generated shape; thereby generating the
objectthat is rendered to a corresponding displayforsub—
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation ofcolor and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de—
vice. As illustrated in FIG. ’I, a conventional shader ’10
can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties ofthe object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an—
gle information (22) and provides output data (28) rep—
resenting the object with texture and other appearance
properties applied thereto (x’, y’, z’).
[0004] In exemplaryfashion, as illustrated in FIGS. 2A—
ZB, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view ofthe cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap—
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 28 is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices Vx, Vy and V2, among others of cube 30 and
providing angularly oriented vertices va,Vyv and VZI, in-
cluding any appearance attributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shader provides the colorvalue associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

are configured to perform only a single transformation or
operation. Thus, in orderto perform a position and a tex—
ture transformation of an input, at least two shading op—
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there—
with. In conventional graphics processors, the vertex
shader and the pixel shader arejuxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shaderthat is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu—
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in—
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se—
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencerforstoring logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se—
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader ofthe present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi—shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
cause it allows the shaderto be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 50

3 EP 2 299 408 A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad—
vantages and features thereof, will become better under—
stood and appreciated upon review of the following de—
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1 isa schematic block diagram ofa conventional
shader;

FIGS. 2A—2B aregraphical representations ofthe op—
erations performed by the shader illustrated in FIG.
1:

FIG. 3 is a schematic block diagram ofa conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in—
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodiment ofthe present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor—
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi—
tive to be rendered from an off-chip memory 55 on line
41 . The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example ofthe information that is requested byand trans—
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim—
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel colorto the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit—
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu—
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo—
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input ofthe mul—
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in—
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 51

5 EP 2 299 408 A2 6

62wi|l now be describedAsillustrated,the unified shader
62 includes a general purpose register block 92, a plu—
rality of source registers: including source registerA 93,
source register B 95, and source register C 97, a proc—
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

present in the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded—
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e, personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bitfloating point arithmetic op-
erations as well as a complete series oflogical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con—
figured to execute, for example, the 32—bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc—
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in—
structions that, when executed, causes the unified shad—
er 62 to fetch texture and other types ofdata, from mem—
ory 82 (FIG. 4A). In operation, the sequencer 99 deter—
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex—
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] Ifthe next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97)forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

line 85 may be transmitted back to the general purpose
register block 92 forstorage, ortransmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 ofthe present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context ofa graph—
ics controller based on information passed from the mul—
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the same time, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane—
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple—
tion by being able tofreelyswitch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver—
tex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 708 which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix—
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsibleforassembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
forfurther processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc—
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input ofthe multiplexer 66 on line 75.

LG Ex. 1002, pg 52

7 EP 2 299 408 A2 3

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one ofsev—
eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76 is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 48, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment ofthe present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsiblefor retrieving vertex information from mem—
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera—
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented forthe purposes ofillustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

A graphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; and a shader, coupled to the ar-
biter circuit, operative to process the selected one
of the plurality of inputs, the shader including means
for performing vertex operations and pixel opera-

tions, and performing one of the vertex operations
or pixel operations based on the selected one of the
plurality of inputs, wherein the shader provides a ap—
pearance attribute.

The graphics processor of claim 1, further including
a vertex storage block for maintaining vertex infor-
mation.

The graphics processor of claim 2, wherein the ver-
tex storage blockfurther includes a parameter cache
operative to maintain appearance attribute data for
a corresponding vertex and a position cache opera—
tive to maintain position datafora corresponding ver-
tex.

The graphics processor of claim 1, wherein the ap-
pearance attribute is color, and the color is associ—
ated with a corresponding pixel when the selected
one of the plurality inputs is pixel data.

The graphics processor of claim 1, wherein the ap-
pearance attribute is position, and the position at-
tribute is associated with a corresponding vertex
when the selected one of the plurality of inputs is
vertex data.

The graphics processor of claim 5, wherein the ap—
pearance attribute is color, and the color attribute is
associated with a corresponding pixel when the se-
lected one of the plurality of inputs is pixel data.

The graphics processor of claim 5, wherein the ap-
pearance attribute is one ofthe following: color, light—
ing, texture, normal and position data.

The graphics processor of claim 1, wherein the ap-
pearance value is depth.

The graphics processor of claim 1, further including
a selection circuit, wherein the selection circuit is a
multiplexer, and the control signal is provided by an
arbiter, wherein the arbiter is coupled to the multi—
plexer.

. The graphics processor of claim 1 , wherein the shad-
er provides vertex position data and further including
a primitive assembly block, coupled to the shader,
operative to generate primitives in response to the
vertex position data.

LG Ex. 1002, pg 53

52«2%:F.9".mmo<Iw

2A8049922PE

homamo

LG Ex. 1002, pg 54

EP 2 299 408 A2

LG Ex. 1002, pg 55

EP 2 299 408 A2

55

MEMORY _--._-__.---_I
41 43 44

VERTEX FETCH V-CACHE

. _ 42 45

VERTEX VERTEX 4‘3
SHADER STORE

46
47 49

PRIMITIVE 0
ASSEMBLY

51

"RASTERIZATION 52 '-
ENGINE ~

53

PIXEL
SHADER

5

FROM TEXTURE
57 CACHE 58

5

FIG. 3 POST RASTER

(PRIOR ART) PROCESSING

LG Ex. 1002, pg 56

EP 2 299 408 A2

INDICES

w
63

UNIFIED

SHADER MEMORYDATA

RENDER
BACK
END

MEMORY
CONTROLLER

DISPLAY

CONTROLLER

84

DISPLAY

LG Ex. 1002, pg 57

EP 2 299 408 A2

INDmES

MEMORY
FETCH

67

LG Ex. 1002, pg 58

EP2309460A1

EurnpilszhesPatentamt
Eu rnpeanPatent Office
Office a u ropéendes brevets

(43) Date of publication:
13.04.2011 Bulletin 2011I15

(21) Application number: 10075688.1

(22) Date of filing: 19.11.2004

(11) EP 2 309 460 A1

(12) EUROPEAN PATENT APPLICATION

(51) Int CL:
606T 15/00 (mm-“U cos-r 15/ga(2011.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

Designated Extension States:
AL HR LT MK YU

Priority: 20.11.2003 US 718318

Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
047989383 I 1 706 847

(71) Applicant: ATI Technologies ULC
Markham, Ontario L3T 7X6 (CA)

(72) Inventors:
- Morein, Steven

Cambridge, Massachusetts 02139 (US)

- Lefebvre, Laurent

Lachenale J6W BA5 (CA)
- Gruber, Andy

Arlington, Massachusetts 02476 (US)
- Skende, Andi

Shrewsbury, Massachusetts 01545 (US)

(74) Representative: Waldren, Robin Michael
Marks & Clerk LLP

90 Long Acre
London

wc2E 9RA (GB)

Remarks:

This application was filed on 01-10-2010 as a
divisional application to the application mentioned
under INID code 62.

(54) A graphics processing architecture employing a unified shader

(57) Agraphics processor, comprising: an arbiter cir-
cuit for selecting one of a plurality of inputs in response
to a control signal; a shader, coupled to the arbiter circuit,
operative to process the selected one of the plurality of
inputs, the shader including means for performing vertex
operations and pixel operations, and performing one of
the vertex operations or pixel operations based on the
selected one of the plurality ofinputs, wherein the shader

OBJECT

provides a appearance attribute; a vertex storage block
for maintaining vertex information; wherein the vertex
storage block further includes a parameter cache oper—
ative to maintain appearance attribute data for a corre-
sponding vertex and a position cache operative to main—
tain position data for a corresponding vertex; and wherein
the appearance attribute is color, and the color is asso-
ciated with a corresponding pixel when the selected one
of the plurality inputs is pixel data.

.19

SHADER

FIG. 1

(PRIOR ART)

Printed by Jouve. 75001 PARIS (FR)

LG Ex. 1002, pg 59

EP 2 309 460 A1 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Color and texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re—
spect to the generated shape; thereby generating the
object thatis rendered to a corresponding display forsub—
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation of color and textures to generated shapes are gen—
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de-
vice. As illustrated in FIG. 1, a conventional shader 10
can be represented as a processing block 12that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties of the object, such as color (16); texture infor—
mation (18); luminance information (20); and viewing an-
gle information (22) and provides output data (28) rep—
resenting the object with texture and other appearance
properties applied thereto (x', y’, z’).
[0004] In exemplaryfashion, as illustrated in FIGS. 2A—
ZB, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view ofthe cube 30' (FIG. ZB) as an output. The corrected
view may be provided, for example, by applying an ap—
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 2B is provided by a vertex shader that
accepts as inputs the data representing, for example,
vertices Vx, VY and V2, among others of cube 30 and
providing angularly oriented vertices VX,VY and V2, in—
cluding any appearance attributes ofcorresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shader provides the colorvalue associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

are configured to perform only a single transformation or
operation. Thus, in order to perform a position and a tex—
ture transformation of an input, at least two shading op-
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there—
with. In conventional graphics processors, the vertex
shader and the pixel shaderarejuxtaposed in a sequen—
tial, pipelined fashion, with the vertex shader being po—
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shader that is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu-
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in-
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se-
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencer for storing logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se—
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader ofthe present invention, the asso—
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi-shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be—
cause it allows the shader to be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 60

3 EP 2 309 460 A1 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad-
vantages and features thereof, will become better under—
stood and appreciated upon review of the following de-
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre—
sent like elements, in which:

FIG. 1 is a schematic blockdiagram ofa conventional
shader;

FIGS. 2A—ZB are graphical representations ofthe op—
erations performed by the shader illustrated in FIG.
1;

FIG. 3 is a schematic blockdiagram ofa conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in—
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord—
ing to an alternate embodiment ofthe present inven—
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces—
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor—
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi—
tive to be rendered from an off-chip memory 55 on line
41 . The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example ofthe informationthat is requested by and trans—
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro—
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre—
senting a perspectiver corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con—

tained therein to a primitive assembly block 50 on line

49. The primitive assembly block 50 assembles, or con—
verts, the input vertex information into a plurality of prim—
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre—
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the
pixel shader 54 then performs specified logical or arith—
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com—
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel color to the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit—
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu—
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in—
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo—
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans—
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process—
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input of the mul-
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; othenrvise, the in—
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 61

5 EP 2 309 460 A1 6

62 will now be described. As illustrated, the unified shader
62 includes a general purpose register block 92, a plu—
rality of source registers: including source register A 93,
source register B 95, and source register C 97, a proc—
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
fromthe multiplexer 66 on line 65 or any otherinformation
to be maintained within the unified shader. The data

present in the general purpose register block 92 is trans—
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded—
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32—bit floating point arithmetic op—
erations as well as a complete series of logical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con—
figured to execute, for example, the 32-bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con—

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc—
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93—95. The
instruction store 98 further includes memory fetch in-
structions that, when executed, causes the unified shad—
er 62 to fetch texture and other types of data, from mem—
ory 82 (FIG. 4A). In operation, the sequencer 99 deter-
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex-
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] If the next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97) forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro—
vides the result on line 85. The information present on

line 85 may be transmitted back to the general purpose
register block 92 for storage, or transmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 of the present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context of a graph-
ics controller based on information passed from the mul-
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad—
ers cannot perform; while at the same time, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane—
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple-
tion by being able to freely switch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver-
tex data, such information will not be transmitted as the
arbitration scheme ofthe arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 708 which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix-
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsiblefor assembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
forfurther processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc-
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input ofthe multiplexer 66 on line 75.

LG Ex. 1002, pg 62

7 EP 2 309 460 A1 8

[0024] In those situations when vertex data is trans—
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one of sev-
eral formats suitable for later display on display device
84. For example, ifa stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. the infor—
mation from the render back end 76 is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 43, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment ofthe present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsible for retrieving vertexinformation from mem—
ory 82, if requested, and transmitting that vertex informa—
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera—
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented for the purposes ofillustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva—
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

A graphics processor, comprising: an arbiter circuit
for selecting one of a plurality of inputs in response
to a control signal; a shader, coupled to the arbiter
circuit, operative to process the selected one of the
plurality of inputs, the shader including means for
performing vertex operations and pixel operations,

and performing one of the vertex operations or pixel
operations based on the selected one of the plurality
ofinputs, wherein the shader provides a appearance
attribute; a vertex storage block for maintaining ver—
tex information; wherein the vertex storage block fur—
ther includes a parameter cache operative to main-
tain appearance attribute data for a corresponding
vertex and a position cache operative to maintain
position data for a corresponding vertex; and where-
in the appearance attribute is color, and the color is
associated with a corresponding pixel when the se-
lected one of the plurality inputs is pixel data.

The graphics processor of claim 1 wherein the ap-
pearance attribute is position, and the position at—
tribute is associated with a corresponding vertex
when the selected one of the plurality of inputs is
vertex data.

LG Ex. 1002, pg 63

1A0649032PE

Chgmoan:r.9”.mmo<zw

m.__wz<Oz_>>m=>moz<z=23<._.<owmsbmc.mOJOomm<zmhow80

LG Ex. 1002, pg 64

EP 2 309 460 A1

LG Ex. 1002, pg 65

EP 2 309 460 A1

55

MEMORY

41 43 44

VERTEX FETCH V—CACHE

. _42 45

VERTEX VERTEX 48
SHADER STORE

4s
47 49

PRIMITIVE 50
ASSEMBLY

51

"RASTERIZATION 2 “
ENGINE ‘-

53

FIG_ 3 POST EASTER

(PRIOR ART) PROCESSING

LG Ex. 1002, pg 66

EP 2 309 460 A1

INDICES

6

UNIFIED
SHADER MEMORY

DATA ,

MEMORY
CONTROU.ER

DISPLAY
CONTROLLER

a4 ' 82

DISPLAY - MEMORY

FIG. 4A

LG Ex. 1002, pg 67

EP 2 309 460 A1

INDICES 61

___..--..........J
n*—_--_---.-.----_.‘_ — —-__-_-_-I

61A

MEMORY

FROM MUX _ FETCH
67

LG Ex. 1002, pg 68

EP 2 309 460 A1

EurcpilsthesIatentamt
European

gm“. EUROPEAN SEARCH REPORT“Janitor” EP 10 e7 5688

Application Number

DOCUMENTS CONSIDERED TO BE RELEVANT

A US 2003/164830 A1 (KENT OSMAN) 1,2 INV.
4 September 2003 (2003-09-04) 006T15/00
* abstract; figures 1A,1B,1C,1D * 006T15/80
* paragraphs [0006], [0007], [0012] *
* paragraphs [0079], [0091] - [0095],
[0102], [0154] - [0156], [0170] *

US 6 417 858 Bl (BOSCH DEREK ET AL)
9 July 2002 (2002-07-09)
* abstract; figures 2,3,4,5 *
* column 3, lines 22-32 *
* column 8, line 47 - line 61 *
* column 9, line 10 - line 21; claim 24 *

US 6 353 439 Bl (LINDHOLM JOHN ERIK ET AL)
5 March 2002 (2002—03—05)
* column 8, lines 22-53; figures
13,23,4,4B *

BRETERNITZ M ET AL: "Compilation,
architectural support,and evaluation of 1ECHMCALHHDS
SIMD graphics pipeline programs on a SEARCHED "Pa
general—purpose CPU", 006T
27 September 2003 (2003-09-27), PARALLEL
ARCHITECTURES AND COMPILATION TECHNIQUES ,
2003. PACT 2003. PROCEEDINGS. 12TH
INTERNATIONAL CONFERENCE ON 27 SEPT. - 1

OCT. 2003, PISCATAWAY, NJ, USA,IEEE,
PAGE(S) 135-145, XP010662182,
ISBN: 0—7695—2021—9

* page 1 — page 3; figures 1,2 *

-l _ -

The present search report has been drawn up for all claims
Place ol search Dale ol completion cl the search Examiner

CATEGORY OF CITED DOCUMENTS T : theory or plinciple underlying the invention
E: earlier patent document, but published an, or

X: particularly relevant if taken alone after the filing date
Y: particularly relevant if combined with another D : document cited in the application

document ofthe same category L : do merit cited for other rees
A: technological background
0 : non-written disclosure 5:: member of the same palenP : intermediate document document

EPDFORM150300.82(PO4COi)N

LG Ex. 1002, pg 69

EP 2 309 460 A1

EuropiisshesPatantaml
E uropea R

22.23:; EUROPEAN SEARCH REPORTdatum." EP 10 07 5688

Applicmion Number

DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
of relevant assa es to claim

OWENS J D ET AL: "POLYGON RENDERING ON A 1,2
STREAM ARCHITECTURE",
PROCEEDINGS 2000 SIGGRAPH/EUROGRAPHICS
WORKSHOP ON GRAPHICS HARDWARE. INTERLAKEN,
SWITZERLAND, AUG. 21 - 22, 2000; [SIGGRAPH
/ EUROGRAPHICS WORKSHOP ON GRAPHICS
HARDWARE], NEW YORK, NY : ACM, US,
21 August 2000 (2000-08-21), pages 23-32,
XP000964471,
DOI: DOI:10.1145/346876.346883
ISBN: 978—1—58113—257—1

* abstract; figures 1,3 *
* Sections 2, 2.1, 2.2, 3. *

MARK W R ET AL: "Cg: a system for 1,2
programming graphics hardware in a C-Iike
language",
ACM TRANSACTIONS ON GRAPHICS ACM USA,
vol. 22, no. 3, Juiy 2003 (2003-07), pages
896-907, XP002624786,
ISSN: 0730-0301 TECHNICALFIELDS

* abstract; figure 2 * SEARCHED “Pal
* page 899, column 1. lines 17—50 *

APPLICATION (IPC)

N Plane oI search Dale ol oomplellon of Ihe search Examiner

25 February 2011 Main] , Wolfgang
CATEGORY OF CITED DOCUMENTS T : theoryor principle underlying the invention

E : earlier patent document, but published on, or
X : particularly relevant iltaken alone after the filing date
Y : particularly relevant if combined with another D : document cited in the application

document of the same category L : doou ment ciled for other reasons
A : technological background
0 : non-written disclosure 8: : men-her of the same patent family, oorreepondingP : intermediate daoumenl documentEPOFORM150303.82(P040031)

LG Ex. 1002, pg 70

EP 2 309 460 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 10 07 5688

This annex lists the patent family members relating to the patent documents ted in the above—mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given forthe purpose of information.

25-02-2011

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2003164830 A1 04-09-2003 NONE

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

LG Ex. 1002, pg 71

EuropilschesPatenlamt
Eu rope: nPatent Office

3:337:74?" (11) EP 2 296 11 6 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: (51) Int Cl.:
16.03.2011 Bulletin 2011/11 606T 15/00 (201101)

(21) Application number: 100756865

(22) Date offiling: 19.11.2004

(84) Designated Contracting States: Lefebvre, Laurent
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Lachenaie, Quebec J6W 6A5 (CA)
HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR Gruber, Andy
Designated Extension States: Arlington, Massachusetts 02476 (US)
AL HR LT MK YU Skende, Andi

Shrewsbury, Massachusetts 01545 (US)
(30) Priority: 20.11.2003 US 718318

Representative: Waldren, Robin Michael
(62) Document number(s) of the earlier application(s) in Marks & Clerk LLP

accordance with Art. 76 EPC: 90 Long Acre
047989389 I 1 706 847 London

WC2E 9RA (GB)

(71) Applicant: ATI Technologies Inc.
Markham, Remarks:
Ontario L3T 7X6 (CA) This application was filed on 01-10-2010 as a

divisional application to the application mentioned
(72) Inventors: under INID code 62.

0 Morein, Steven
Cambridge, Massachusetts 02139 (US)

(54) A graphics processing architecture employing a unified shader

(57) A method comprising:
performing vertex manipulation operations and pixel ma- INDICES
nipulation operations bytransmitting vertex data to a gen-

eral purpose register block, and performing vertex oper-
ations on the vertex data by a processor unless the gen—
eral purpose register block does not have enough avail—

able space therein to store incoming vertex data; and gmgég
continuing pixel calculation operations that are to be or
are currently being performed by the processor based
on instructions maintained in an instruction store until

enough registers within the general purpose register
block become available.

5 54 ' 82EP2296116A2
Printed by Jouve, 75001 PARIS (FR)

LG Ex. 1002, pg 72

EP2296116A2 2

Description

FIELD OF THE INVENTION

[0001] The present invention generally relates to
graphics processors and, more particularly, to a graphics
processor architecture employing a single shader.

BACKGROUND OF THE INVENTION

[0002] In computer graphics applications, complex
shapes and structures are formed through the sampling,
interconnection and rendering of more simple objects,
referred to as primitives. An example of such a primitive
is a triangle, or other suitable polygon. These primitives,
in turn, are formed by the interconnection of individual
pixels. Colorand texture are then applied to the individual
pixels that comprise the shape based on their location
within the primitive and the primitives orientation with re—
spect to the generated shape; thereby generating the
objectthat is rendered to a corresponding displayforsub—
sequent viewing.
[0003] The interconnection of primitives and the appli-
cation ofcolor and textures to generated shapes are gen-
erally performed by a graphics processor. Conventional
graphics processors include a series of shaders that
specify how and with what corresponding attributes, a
final image is drawn on a screen, or suitable display de—
vice. As illustrated in FIG. ’I, a conventional shader ’10
can be represented as a processing block 12 that accepts
a plurality of bits of input data, such as, for example,
object shape data (14) in object space (x,y,z); material
properties ofthe object, such as color (16); texture infor-
mation (18); luminance information (20); and viewing an—
gle information (22) and provides output data (28) rep—
resenting the object with texture and other appearance
properties applied thereto (x’, y’, z’).
[0004] In exemplaryfashion, as illustrated in FIGS. 2A—
ZB, the shader accepts the vertex coordinate data rep-
resenting cube 30 (FIG. 2A) as inputs and provides data
representing, for example, a perspectively corrected
view ofthe cube 30’ (FIG. 2B) as an output. The corrected
view may be provided, for example, by applying an ap—
propriate transformation matrix to the data representing
the initial cube 30. More specifically, the representation
illustrated in FIG. 28 is provided by a vertex shader that
accepts as inputs the data representing, for example,

vertices VX, VY and VZ, among others of cube 30 and
providing angularly oriented vertices va, VY' and VZI, in-
cluding any appearance attributes of corresponding cube
30’.

[0005] In addition to the vertex shader discussed
above, a shader processing block that operates on the
pixel level, referred to as a pixel shader is also used when
generating an object for display. Generally, the pixel
shader provides the colorvalue associated with each pix-
el of a rendered object. Conventionally, both the vertex
shader and pixel shader are separate components that

are configured to perform only a single transformation or
operation. Thus, in orderto perform a position and a tex—
ture transformation of an input, at least two shading op—
erations and hence, at least two shaders, need to be
employed. Conventional graphics processors require the
use of both a vertex shader and a pixel shader in order
to generate an object. Because both types of shaders
are required, known graphics processors are relatively
large in size, with most of the real estate being taken up
by the vertex and pixel shaders.
[0006] In addition to the real estate penalty associated
with conventional graphics processors, there is also a
corresponding performance penalty associated there—
with. In conventional graphics processors, the vertex
shader and the pixel shader arejuxtaposed in a sequen-
tial, pipelined fashion, with the vertex shader being po-
sitioned before and operating on vertex data before the
pixel shader can operate on individual pixel data.
[0007] Thus, there is a need for an improved graphics
processor employing a shaderthat is both space efficient
and computationally effective.

SUMMARY OF THE INVENTION

[0008] Briefly stated, the present invention is directed
to a graphics processor that employs a unified shader
that is capable of performing both the vertex operations
and the pixel operations in a space saving and compu—
tationally efficient manner. In an exemplary embodiment,
a graphics processor according to the present invention
includes an arbiter circuit for selecting one of a plurality
of inputs for processing in response to a control signal;
and a shader, coupled to the arbiter, operative to process
the selected one of the plurality of inputs, the shader in—
cluding means for performing vertex operations and pixel
operations, and wherein the shader performs one of the
vertex operations or pixel operations based on the se—
lected one of the plurality of inputs.
[0009] The shader includes a general purpose register
block for storing at least the plurality of selected inputs,
a sequencerforstoring logical and arithmetic instructions
that are used to perform vertex and pixel manipulation
operations and a processor capable of executing both
floating point arithmetic and logical operations on the se—
lected inputs according to the instructions maintained in
the sequencer. The shader of the present invention is
referred to as a "unified" shader because it is configured
to perform both vertex and pixel operations. By employ-
ing the unified shader ofthe present invention, the asso-
ciated graphics processor is more space efficient than
conventional graphics processors because the unified
shader takes up less real estate than the conventional
multi—shader processor architecture.
[0010] In addition, according to the present invention,
the unified shader is more computationally efficient be-
cause it allows the shaderto be flexibly allocated to pixels
or vertices based on workload.

LG Ex. 1002, pg 73

3 EP2296116A2 4

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention and the associated ad—
vantages and features thereof, will become better under—
stood and appreciated upon review of the following de—
tailed description of the invention, taken in conjunction
with the following drawings, where like numerals repre-
sent like elements, in which:

FIG. 1 isa schematic block diagram ofa conventional
shader;

FIGS. 2A—2B aregraphical representations ofthe op—
erations performed by the shader illustrated in FIG.
1:

FIG. 3 is a schematic block diagram ofa conventional
graphics processor architecture;

FIG. 4A is a schematic block diagram of a graphics
processor architecture according to the present in—
vention;

FIG. 4B is a schematic block diagram of an optional
input component to the graphics processor accord-
ing to an alternate embodiment ofthe present inven-
tion; and

FIG. 5 is an exploded schematic block diagram of
the unified shader employed in the graphics proces-
sor illustrated in FIG. 4A.

DETAILED DESCRIPTION OF THE INVENTION

[0012] FIG. 3, illustrates a graphics processor incor—
porating a conventional pipeline architecture. As shown,
the graphics processor 40 includes a vertex fetch block
42 which receives vertex information relating to a primi—
tive to be rendered from an off-chip memory 55 on line
41 . The fetched vertex data is then transmitted to a vertex

cache 44 for storage on line 43. Upon request, the vertex
data maintained in the vertex cache 44 is transmitted to

a vertex shader 46 on line 45. As discussed above, an
example ofthe information that is requested byand trans—
mitted to the vertex shader 46 includes the object shape,
material properties (e.g. color), texture information, and
viewing angle. Generally, the vertex shader 46 is a pro-
grammable mechanism which applies a transformation
position matrix to the input position information (obtained
from the vertex cache 44), thereby providing data repre-
senting a perspectively corrected image of the object to
be rendered, along with any texture or color coordinates
thereof.

[0013] After performing the transformation operation,
the data representing the transformed vertices are then
provided to a vertex store 48 on line 47. The vertex store
48 then transmits the modified vertex information con-

tained therein to a primitive assembly block 50 on line

49. The primitive assembly block 50 assembles, or con-
verts, the input vertex information into a plurality of prim—
itives to be subsequently processed. Suitable methods
of assembling the input vertex information into primitives
is known in the art and will not be discussed in greater
detail here. The assembled primitives are then transmit-
ted to a rasterization engine 52, which converts the pre-
viously assembled primitives into pixel data through a
process referred to as walking. The resulting pixel data
is then transmitted to a pixel shader 54 on line 53.
[0014] The pixel shader 54 generates the color and
additional appearance attributes that are to be applied
to a given pixel, and applies the appearance attributes
to the respective pixels. In addition, the pixel shader 54
is capable of fetching texture data from a texture map 57
as indexed by the pixel data from the rasterization engine
52 by transmitting such information on line 55 to the tex-
ture map. The requested texture data is then transmitted
back from the texture map 57 on line 57’ and stored in a
texture cache 56 before being routed to the pixel shader
on line 58. Once the texture data has been received, the

pixel shader 54 then performs specified logical or arith-
metic operations on the received texture data to generate
the pixel color or other appearance attribute of interest.
The generated pixel appearance attribute is then com-
bined with a base color, as provided by the rasterization
engine on line 53, to thereby provide a pixel colorto the
pixel corresponding at the position of interest. The pixel
appearance attribute present on line 59 is then transmit—
ted to post raster processing blocks (not shown).
[0015] As described above, the conventional graphics
processor 40 requires the use of two separate shaders:
a vertex shader 46 and a pixel shader 54. A drawback
associated with such an architecture is that the overall

footprint of the graphics processor is relatively large as
the two shaders take up a large amount of real estate.
Anotherdrawback associated with conventional graphics
processor architectures is that can exhibit poor compu—
tational efficiency.
[0016] Referring now to FIG. 4A, in an exemplary em-
bodiment, the graphics processor 60 of the present in-
vention includes a multiplexer 66 having vertex (e.g. in-
dices) data provided at a first input thereto and interpo—
lated pixel parameter (e.g. position) data and attribute
data from a rasterization engine 74 provided at a second
input. A control signal generated by an arbiter 64 is trans-
mitted to the multiplexer 66 on line 63. The arbiter 64
determines which of the two inputs to the multiplexer 66
is transmitted to a unified shader 62 for further process-
ing. The arbitration scheme employed by the arbiter 64
is as follows: the vertex data on the first input ofthe mul—
tiplexer 66 is transmitted to the unified shader 62 on line
65 if there is enough resources available in the unified
shader to operate on the vertex data; otherwise, the in—
terpolated pixel parameter data present on the second
input will be passed to the unified shader 62 for further
processing.
[0017] Referring briefly to FIG. 5, the unified shader

LG Ex. 1002, pg 74

5 EP2296116A2 6

62wi|l now be describedAsillustrated,the unified shader
62 includes a general purpose register block 92, a plu—
rality of source registers: including source registerA 93,
source register B 95, and source register C 97, a proc—
essor (e.g. CPU) 96 and a sequencer 99. The general
purpose register block 92 includes sixty four registers, or
available entries, for storing the information transmitted
from the multiplexer 66 on line 65 or any other information
to be maintained within the unified shader. The data

present in the general purpose register block 92 is trans-
mitted to the plurality of source registers via line 109.
[0018] The processor 96 may be comprised of a ded—
icated piece of hardware or can be configured as part of
a general purpose computing device (i.e. personal com-
puter). In an exemplary embodiment, the processor 96
is adapted to perform 32-bitfloating point arithmetic op-
erations as well as a complete series oflogical operations
on corresponding operands. As shown, the processor is
logically partitioned into two sections. Section 96 is con—
figured to execute, for example, the 32—bit floating point
arithmetic operations of the unified shader. The second
section, 96A, is configured to perform scaler operations
(e.g. log, exponent, reciprocal square root) of the unified
shader.

[0019] The sequencer 99 includes constants block 91
and an instruction store 98. The constants block 91 con-

tains, for example, the several transformation matrices
used in connection with vertex manipulation operations.
The instruction store 98 contains the necessary instruc—
tions that are executed by the processor 96 in order to
perform the respective arithmetic and logic operations
on the data maintained in the general purpose register
block 92 as provided by the source registers 93-95. The
instruction store 98 further includes memory fetch in—
structions that, when executed, causes the unified shad—
er 62 to fetch texture and other types ofdata, from mem—
ory 82 (FIG. 4A). In operation, the sequencer 99 deter—
mines whether the next instruction to be executed (from
the instruction store 98) is an arithmetic or logical instruc-
tion or a memory (e.g. texture fetch) instruction. If the
next instruction is a memory instruction or request, the
sequencer 99 sends the request to a fetch block (not
shown) which retrieves the required information from
memory 82 (FIG. 4A). The retrieved information is then
transmitted to the sequencer 99, through the vertex tex—
ture cache 68 (FIG. 4A) as described in greater detail
below.

[0020] Ifthe next instruction to be executed is an arith-
metic or logical instruction, the sequencer 99 causes the
appropriate operands to be transferred from the general
purpose register block 92 into the appropriate source reg-
isters (93, 95, 97)forexecution, and an appropriate signal
is sent to the processor 96 on line 101 indicating what
operation or series of operations are to be executed on
the several operands present in the source registers. At
this point, the processor 96 executes the instructions on
the operands present in the source registers and pro-
vides the result on line 85. The information present on

line 85 may be transmitted back to the general purpose
register block 92 forstorage, ortransmitted to succeeding
components of the graphics processor 60.
[0021] As discussed above, the instruction store 98
maintains both vertex manipulation instructions and pixel
manipulation instructions. Therefore, the unified shader
99 ofthe present invention is able to perform both vertex
and pixel operations, as well as execute memory fetch
operations. As such, the unified shader 62 of the present
invention is able to perform both the vertex shading and
pixel shading operations on data in the context ofa graph—
ics controller based on information passed from the mul—
tiplexer. By being adapted to perform memory fetches,
the unified shader of the present invention is able to per-
form additional processes that conventional vertex shad-
ers cannot perform; while at the same time, perform pixel
operations.
[0022] The unified shader 62 has ability to simultane—
ously perform vertex manipulation operations and pixel
manipulation operations at various degrees of comple—
tion by being able tofreelyswitch between such programs
or instructions, maintained in the instruction store 98,
very quickly. In application, vertex data to be processed
is transmitted into the general purpose register block 92
from multiplexer 66. The instruction store 98 then passes
the corresponding control signals to the processor 96 on
line 101 to perform such vertex operations. However, if
the general purpose register block 92 does not have
enough available space therein to store the incoming ver—
tex data, such information will not be transmitted as the
arbitration scheme of the arbiter 64 is not satisfied. In this

manner, any pixel calculation operations that are to be,
or are currently being, performed by the processor 96
are continued, based on the instructions maintained in
the instruction store 98, until enough registers within the
general purpose register block 92 become available.
Thus, through the sharing of resources within the unified
shader 62, processing of image data is enhanced as
there is no down time associated with the processor 96.
[0023] Referring back to FIG. 4A, the graphics proc-
essor 60 further includes a cache block 70, including a
parameter cache 70A and a position cache 708 which
accepts the pixel based output of the unified shader 62
on line 85 and stores the respective pixel parameter and
position information in the corresponding cache. The pix—
el information present in the cache block 70 is then trans-
mitted to the primitive assembly block 72 on line 71. The
primitive assembly block 72 is responsibleforassembling
the information transmitted thereto from the cache block

70 into a series of triangles, or other suitable primitives,
forfurther processing. The assembled primitives are then
transmitted on line 73 to rasterization engine block 74,
where the transmitted primitives are then converted into
individual pixel data information through a walking proc—
ess, or any other suitable pixel generation process. The
resulting pixel data from the rasterization engine block
74 is the interpolated pixel parameter data that is trans-
mitted to the second input ofthe multiplexer 66 on line 75.

LG Ex. 1002, pg 75

7 EP2296116A2 8

[0024] In those situations when vertex data is trans-
mitted to the unified shader 62 through the multiplexer
66, the resulting vertex data generated by the processor
96, is transmitted to a render back end block 76 which
converts the resulting vertex data into at least one ofsev—
eral formats suitable for later display on display device
84. For example, if a stained glass appearance effect is
to be applied to an image, the information corresponding
to such appearance effect is associated with the appro-
priate position data by the render back end 76. The in-
formation from the render back end 76 is then transmitted

to memory 82 and a display controller line 80 via memory
controller 78. Such appropriately formatted information
is then transmitted on line 83 for presentation on display
device 84.

[0025] Referring now to FIG. 48, shown therein is a
vertex block 61 which is used to provide the vertex infor-
mation at the first input of the multiplexer 66 according
to an alternate embodiment ofthe present invention. The
vertex block 61 includes a vertex fetch block 61A which

is responsiblefor retrieving vertex information from mem—
ory 82, if requested, and transmitting that vertex informa-
tion into the vertex cache 61 B. The information stored

in the vertex cache 61 B comprises the vertex information
that is coupled to the first input of multiplexer 66.
[0026] As discussed above, the graphics processor 60
of the present invention incorporates a unified shader 62
which is capable of performing both vertex manipulation
operations and pixel manipulation operations based on
the instructions stored in the instruction store 98. In this

fashion, the graphics processor 60 of the present inven-
tion takes up less real estate than conventional graphics
processors as separate vertex shaders and pixel shaders
are no longer required. In addition, as the unified shader
62 is capable of alternating between performing vertex
manipulation operations and pixel manipulation opera—
tions, graphics processing efficiency is enhanced as one
type of data operations is not dependent upon another
type ofdata operations. Therefore, any performance pen-
alties experienced as a result of dependent operations
in conventional graphics processors are overcome.
[0027] The above detailed description of the present
invention and the examples described therein have been
presented forthe purposes ofillustration and description.
It is therefore contemplated that the present invention
cover any and all modifications, variations and equiva-
lents that fall within the scope of the basic underlying
principles disclosed and claimed herein.

Claims

1. A method comprising:

performing vertex manipulation operations and
pixel manipulation operations by transmitting
vertex data to a general purpose register block,
and performing vertex operations on the vertex

data by a processor unless the general purpose
register block does not have enough available
space therein to store incoming vertex data; and
continuing pixel calculation operations that are
to be or are currently being performed by the
processor based on instructions maintained in
an instruction store until enough registers within
the general purpose register block become
available.

2. A unified shader, comprising:

a general purpose register blockfor maintaining
data;
a processor unit operative to:

perform vertex manipulation operations and
pixel manipulation operations by transmit—
ting vertex data to a general purpose regis—
ter block, and perform vertex operations on
the vertex data unless the general purpose
register block does not have enough avail-
able space therein to store incoming vertex
data and continue pixel calculation opera-
tions that are to be or are currently being
performed based on instructions main-
tained in an instruction store until enough
registerswithinthegeneralpurpose register
block become available.

LG Ex. 1002, pg 76

52«9%:F.9".mmo<xm

2A6116922PE

Hum30

LG Ex. 1002, pg 77

EP 2 296 116 A2

FIG. 2A

(PRIOR ART)

(PRIOR ART)

LG Ex. 1002, pg 78

EP 2 296 116 A2

55

MEMORY

41 . 3
44

_ _ 42 45

VERTEX VERTEX 48
SHADER STORE

46
47 49

PRIMITIVE 50
ASSEMBLY

51

'RASTERIZATION 52 '
ENGINE '

FIG. 3 POST RASTER

PROCESSING

LG Ex. 1002, pg 79

EP 2 296 116 A2

INDICES

63

UNIFIED

SHADER MEMORY
DATA

'RENDER
BACK
END

MEMORY

CONTROLLER

DISPLAY

CONTROLLER

84 I 82

DISPLAY r MEMORY

FIG. 4A

LG Ex. 1002, pg 80

EP 2 296 116 A2

INDmES

VERTEX
CACHE'-----..-ooo-.-ug

MEMORY
FETCH

67

‘CONSTANTS

94

97

SOURCEB SOURCEC

-_ 96A

CPU

LG Ex. 1002, pg 81

PAYENT QQQPERQYEGN TREAT?

@QT

iN‘B’ERNfiTEONM. SEARCH REP’GRT

{1*8‘3‘ Aflifiifi $8 3516 mm 43 am: ail-i}-

; Annamaarsor we saierenm ' gsg Fug-{353 ” Farm mfsaw ' '
3H” 4 ? 3 6 : AQT‘ififi was! 33. where mm 5 saw-2v.

‘ sntemafima! macaw“

315T: Tammmm: ES 1
“wwwmmmmHHWWWWWWWW

This; imsamaficmg . pm: has been bymis ihiematamaé saarcksirg Authwi‘t; am: is uanymfim its $35 amséczssit
awarding it: mama 1; . app is beingtsanmzifim to inmatmn“! Swims,

i‘niemafiwai hare“: Repor? magists of a 30:53 as N, g ,, Sheets.

X $3 ‘s 96d} ammnganied by a copy as team {wk}: m documssi! was} am this repose.

3: 883m :3? 9M W!

a‘ w (my $9 $338 Mush-wag m inmmafiami seam}: was med mat an the mm at the 1mm wmmsm m thessi- fsiaé‘ smiasa smfirwise mam uncle: this

“Em ink-“mammals wares was cam mi as ma. "mm: a! a t-amafim a: fire internafisnaé wasnafim Mnmm to‘Chis {R139 2:335:33}

Wm“: Emma is any saucieaffide andiot ma mm matinee 533:1ch in M internatmai appiksafism sass am: No. i.

Gfifisam siaims Wan! bums unseamhsfim (Sea 80x 1‘; '2,

narm»u.,.."y’auunluuulwwwszrmflr.wtmyfiep§irrrrrrlm/rvi/IdWLIIHJIKKI‘LIJJFIIJIJ
fig af mvmim is Ear-kw; {52:55 Sex iii}.

was mng 3:1 We,

“(i-5% exam is wng 35 whining»: by {ha gamma.
the tax? teas; asmfisfiefi by m mmfiw m read ates wiiaws:

With segwfi m 42393 gamma

am is awer as wmmd :5; ma appflcmt.

2m has been Estabfis‘afifits} awarding to Ruia again}, by ms: Anthem? as; it amast in Bax m, “(he gamma:
may, mm: monih 3:6 data at musing c? mas inwnatiansj aeporL wmn mmments (a ems fiafiaez‘éiy,

With ragga: :2» ms: ss‘rawmgag

a“ m: 1:4 afimwimgs is be! gamma M133 ma 23mm: Figurs egg-7 W
' S”: gamma by ma gamma

:3 sexism w :m Assihsnwv became; me 3mm: {aim in suggas: a figum.
as mam: fig this Amherst; because his 3335:? bests: maractafixea the: :Sm‘snfimJ

:3. em a. ‘iigumzs is :5 m Wham with the mm:

iNI’INNWWI}.7r.I.I.7rINrlmuI4lIIllIWWWNNrN"IMMMVI(WI}rIJI’IIrrllrllJllNIllllMI-IWII
$03731 $333M: :3 {:3 :% Mam; Lamar; 2cm}

LG Ex. 1002, pg 82

WTERN§fi0NfiLSEfiRGRREPGRT ‘ mew-1313mm; éwlimfim‘. Na

FCTE‘EBEflAXfifiESfl

amansriais NEE? mama§§&933,§§

Awmmwg mtsmzanma‘ 3:239:21 mammasz WC: 0? in mm manna; amrmm and $90
a Hewsmmaas

Minimum wommmim mama gdaa‘caifimfim swiem mm mmsmm symis}
ZFE ? $fi~?

seammc mike: Wm murmur“ mmenmmn N the; mum: that we}: an; miwsd us she has

am;sz (Sam my: 3‘ rmfiafi Swing the Saws-imam 58am: {Ba-m a? rim 53542; $555, Wham mm“: mamas mm: used;

fiFfiflinfiern§§g EfiSF£C

Remark; in {mm Nu.
m

‘63fi15383fi £1 {KENY fiSfiAfi} §~E3
, E§Qber 23§3 {ESQ3—G§»Gé}

agha *aayggg ‘fi§§1§ - ‘38959‘
‘ Efiéi » ‘fiifiéi, ‘Gi?fi§

358 SE {BfiSCB SEREX E? AL}
982 {EQGZ~§?~99}

Efiné é? m Eiag 81

Eine 18 » 133$ 21; cfiaim 2%;

2??

«34:51:»: wm;m mwmM$153’

y
2

s)
3‘p
a

E 8 353 #3? 83 {LififififiLfi BERN EREK ET at}
fiarcn Eéfifi {Zfiflfiwfisufifik

' ‘mfl 35, Effie lfi h line'éfi; §§gure$

“gm”

i X ; Firms: we £33m: $4} me mxfic‘wmm as be: (I.
~ * Swazi-12' messamss s3: {:1 dzanmrsis:

w mama {aiming} m: spawn! mus $3? the as! “Wei? is r3158
madam: Ea fie cf misintfia: semi“

’5‘ mafia? dummies mumms an as anemia immfiwm{Ring {8339

’8 Wm: wags: may 23m»- mta an 95M? $13321ng
MM: 3:: saw m am‘bflsh m wbfim‘tmlmm at mine?maihm 0: mm: mafia! mama {as swtsmi;

'0‘ rkwamm Mama} 3:: an em! dismal», fixhwicm a?02m

‘8“ éxumaai 96:2: :2 Sim waammw mwtum butLazar than she mam um mm

mm a! the: am 9mm <3? 1% Wemai' seats}

3 fiarch Efifig

Namm masm swam a: miss '
{Eumman 333m: mm“ 9.3. Essa Paswmn '3.
m; n sz‘ Efimfi

335%; gamma, f1 as! am 5&3.€+S$~N§ Mausam

Fm PCTz‘JSA-Ri-z‘» Emmamu {JAWrgi 2cm;

“3‘ Sam Magma: wde aria: m Manama} $3393 #33::0‘? We and ms ifi mam whiz the mascafim but
am 90 amasszm Kim gamma w my anamng 9mmmm

“>9 Mimi as gamma: mievamus; 3:38 (gamed irweezibn
canard be wasiéam mime! «mm-55‘ mwnsfiered 5::
31mm: an mmnfim fiey When m Mama 58 38km: aim-3:

W“ mutants! 0! Wmmanta; 292a sigixm mamas
mm m mamto mwm m immam siap- wags she
autumn: is mums with mm 92' mcm: 33:3} may»
1%, gum Wham Ming swims in a 53mm:
'1 . R 8.

‘2? mums: masher o: m same. pawn: mm
~ {Ma u: mafimg a: {he suemmmaé ware}; mwfi

EEXSBXfiflfig

Aummm,cm:

LG Ex. 1002, pg 83

v.a“0n.Ea“MWa”JApa3Lmum“mwv:“Hmm
a‘

anvsmm.\\.\$.L~»§¥§¥?‘ kwtwissm- nmsscams Na

FEWESESMMSEM

‘§R&&wfim§»mm{Siss'si'scen of M325 wmxm, mam wmgx‘e, it'mm wages '

cfifinnflmflian} Nfiuflfiflm SNEADEREI} "K3 SE RELEVANT

PARALLEL

“Csmgfiatfian,
arehitectura? sap§art33nfi 9¥a§uatian af
8

.fifiPILAFESN TECHNIQUES,
26:33. 9313'? 2:333. fiasmms, 12m
§§?€R§%

,s
Q;

QYQQAY, R&* B$fi§i£fi”,
‘§{$} §3§w34" , XF$1§6§EEBE

|"“F‘
“§

a“MG

3358 éfifi

EGfiAL CGfi?EREN€E GR 2? SEPI. “'3
‘3S3, ?ES

r ex
. s:

“t”‘

graph§c3 p$peiifie pragrams an a

SéfitémDEY 2§§3 {2333mfigm23},

lRNETE fl

g

géfievaE—purpfise C?§“

Efi

§R£H§3€C

we§«?}l§§x§§l§§hfl~

3n.

~51umn, paragraph é ~

a
Re

rfight~hand saiumfig paragraah &

Eaftwhané3,
3.

§§§l§l~1§t§§..V:.:...:.{a}:......i.wagitsig‘.13i«l‘xliliiinbii:lE.anixltixsskéigis§x§x§§i§i§§¥iflliltgtxl§t2k33923:s‘fi‘xaix§§x\Rxxxs§§i§51~iq-Ewani\\i§.~:\§§§\§§§§§§§~l§\$
a...»

mIn
re(ans:st «1 mm}{Jammy m

LG Ex. 1002, pg 84

WYERRKHGNALSEARCEREPGRT rwmm~Wme~““~—~w--*§ Smammimx: kwfiam N0«

é F5?£§52ga&fsa3321\ ~
'inz’orméisaa on warm: :amliy inextsz

.. “.7m,HWW,

Pam: dwameai ‘ Pu bfiicaimn Pafam farms}: Fummm
\ died fir: march reg-cm c3333 ‘ mamberiss; dag
WWNQ.WRWWWW»WLW _~‘

8S 2§%3§§€&3§ RE $§~39w£§§3 NQHE

NONE$5 5% 338 Si §§~G?*28§2-m,-w»\~4:\>-hv-:>x\ 9,“!- m«~\<mw‘->fl~rim4~s\vkviv‘\- p,mwfiwawNfiwW*w-—mmwwfimmm mnmmmmwwmmmm“... _—-.u-..—-pr«

GS §3§3$3§ 31 85~93*Z§$2 $3
AU
C&
E?
3?
$8
SS
83
35
Ag
fig
5?
3?
NE
BS
B3
US
US
33
SS
33
SS
Qfi
US
US
95

5393433 51
29$8S§1 a
23§33Y1 §1
32§3§3§ £1

ZQQSSifiafii ¥
Qlfiifiég é}

ZQESEEZZéfi A}
ESflEG§35§§ A}

58$483§ 83
Efifififi§§ E
23§233§ $1
12333?1 A}

EGQSfiREfiSS ?
fiifiifl?3 A:

2G623§825§ R1
EGQE§SG?§0 $3
2Q§31122§§ R1
23333§385$ A}
ZGQLESQEGS R3

§¢§2595 3}
5342888 El

£381§fi5239 R3
2§§2365519 £1
ESSEIGBSSQ Al
39$2§2?553 A3
23$2$é?8&5 RE

aéwfiz»§9s1
:2~%§_3§91
angswzaaz
gsfi32~3§§2
GFwfifi—EQSS
s?~a§~2aa:
E§~0fi~2fi33
3S»§&w§fifii
ééwfiiwafiflfi
iawas~ze§1
S?~Qéw238£
EEMQ§*ESQZ
$$~35w2§§3
fi?~3§*2881
E§~EE~ESGE
§5~szwzaag
i§~S5~E§§3
aawa5~as§3
§§~§§wfiafi3
1?~g§~3$§2
2§w§1~39§2

23mgs—2gaz
§3~fi3~§§GE
s§»65~29a3
§E~33~2§52
EE~G§~E§GENW wk. ~~ .. .~~‘_...~..~. memuwwwn—H- mwnm“wm—nm....-m_“_.____.._n_w_.y«-—n-v“~mwwwnunmmwmw

..Wmummmwu
Rm: m1 1185.230 inst!“ timS-‘y may; Minna»; Lhasa;

LG Ex. 1002, pg 85

WAYEN? CfiQFERfiafiQN Yfifiififiy

F8351 2m:
WTERfiANQNfii. QEfififlHmG fits‘YHfiéT-Efi‘f{—‘\»\‘V\Wm “WWMVHM‘“ “mnmwmmunm‘.,_.._.....‘

‘ Ta: $38“?

WR§WEN SPENEQN if}? KHE
ENTE’RNAHONAL SEARGRSNS $334085?

{PQY Ruiz; fimg’é}

fem: PC?

fxppiscant‘é 0r 5%;maiegég
§ 38% Mrs"; petrigmm

i‘fi‘figgggggggmsgggg.""“""""""““
pcmmammmm

" , s»: my‘daw mmmm

$3.21 am 2%.}? .2593mmmwa,
Emmafifl Fate-"2°. mmsflmfim‘s {WC} ar 2m: “Minna-15 rimss‘ficafiafi AFC:

‘ 335?? MKS

: Aéfiméét
ATE TECHfiGLQQEES‘ §N

epéssém mataims indicazéenx whaling is} me mziamg items:

80x ‘ Easis 3? 3523 513%an
53c»: Na. ‘ Pr‘mséiy

Sm Ms. ‘u‘ vafisiamizshmwt 9‘5 np'srsim with mng in email; {fivem‘im 2:299; inflsflfiat wpiicabfiééy
8% ND, i ' Lack (x‘ unis}: a? irevamisn

Na. Reassnaé siaiemesi um‘er 43bgsqiia3fi§ with, regard ts sweaty, invam‘ivsa map or findszstriai
aghgéicabfiityg citation-5 and expiarsatims gumsiing such smiamam

Sm N23. '5 Safiaifi asmmems cflafi

Bax N53, 3 Cefigé’rs gee-maria in me iniemammai appiiisatkm

3&1M
f“!5.3

a

"‘1 «Iif
23
,w

aux Nam ‘E ; Certain amawatjarss m the intarnaiimnanamfimm

WEN-SEQ gmm:

$2“ a demam‘ fa; iaiematéanai mammary examimafian is made, this cpfi‘sbn Wis; muaiéy be cmkiered $9 he as
wréttass npifii‘m a? tha- ‘Eniarmtffinai Fmiiminary Examinhg Authafity {“E PEN}, Howaves. mks dues mi; appiy where
the: appélit; m :hasxa‘es an @35an miner than Wig (me ts; be the Wax and 2m: chaser: §PE3§ has mtéfad the
imamatlxmai Emma: 15mg: saita‘gh} that armies: againvism as? {his §ntamafima§ Searchim Ruihwity3%! ram his 3:: massifiereté.

if §h§s @3in Es: $3.23 ‘Qmfidafi atmve‘ cansifiamd {a he a writian espin‘wn {if the EFEsX, ma 3391mm is Emma" is
55L:me m fixes- @325: & 93$er {9313533 iogetfsm, Wham amrwriaie, with amenémenéea tame expismm sf three
mamas ham «1m; data :3? sawing} d Sam". 5mm.5mm a? mafia we expésati‘an a3 22 mani‘hs {mm m prmriiy (Side,whishews‘ swims 33:53:

F9: iurthm umhns. 3&8 Sam: PSTASAJ‘EEQ.

Fm am; fiéigfis, sage smtes m Fats?! 9GH5AQ‘2Q.

Ewamm Faisntflfifics

gssm $133Mmi. («£9 £3 23% a {3 Tx: 523%8 emu: s: :
Fax «£53 3% 23398 ~ #455 Taiagbfime Na. «‘43 89 £3§$£$5§

Rum {PG‘i‘BEAQfiS’} {Dover Shem} {Way 28842}

LG Ex. 1002, pg 86

WREWEN Qmwfii‘é {3? ENE Miemaififinaé aisgficamrs his).
EETERRR‘E’EGt‘éfiL SEfifiCHiNQ ABYHQQSTV FfiTfiEEflSéflQfifiZ?myn»~mn_

Mm

8m: No. S fiasés 9f the upmian w w

. WM: mm to ma ianguag-e‘ {his mam has been estabiiafieai at: W: aegis a}? s‘memaiémaV: am§miicm ész
we {anguagsa Lia“: mam i: was §§§E€i unéass mhsmésa intimates mixer We; flew}.
(“I

5...; This Opinisn mm esiabfiahed an me basés a! a Eramiaiign i‘mm fine srigina: iamguage Ema ma Eaia‘awkag
iangyage ‘ which the {finguage m‘ a tmnsiafim §umsshed far {he gamma :3 s’nifimatianai 593%
{81336: and 333m};

‘ _ With mgare: m aay‘nucmméda mam amino acid sequame {iiscfi‘flsaa in the mtemamnai awiéaatéon and
awessaw {a We maimefi inwsz {he's aginim has beret: asmhiéshefi an Ems basis #3:“:

a. $99 maiasiai:

a

tah¥e§3§ Maxim m the} sequmca éési‘zng

$3. Emma: cf mafim’at

L“: in wréimu fame:

m mmgzuée: madame farm

c. time 02‘ €§§§mg§umi§hin§r

V? summed m the mmmationm appficafiua as fled.

fifiaafi €£“Si§'¥fif with me intematésnaf 3333;593:3523 in mmpuxer reafianie ifim‘

fumisihfifi amsaquefifiy in ms Aumméty fit}: the Ramses sf seamh,

. B m mam, me case mm were mag me versian 6; mpg a? a Sequance $92ng anfim make :29?me mwam
has was: iim as Sm‘fiisfiam refiuitex: siatemems that the inmrmatm is: $329. suizsagugm fir acidiimnaa’
35pm is éiixemm: m mat ifi the apmmfitm as mm m was net 9:: martinis; ma apgéicafiésn as flies}. as
apfii‘fififiaig, was; fumiahaa

4i. mmfimai mmments:

Farm :Gméswgm' wan-day 231M}

LG Ex. 1002, pg 87

WWTTEN {E‘PEMQN $3: THE Mamaflzmai ammfiim Na.
JiNTERNAfiQNiji. fififiRCHINfi’ AUTEQRWY §3C3§82€3€34§39382§wwwwnmxmnwmmm “miinw

wax-a

Bax 9m. fiaasnned stammmt under Rum 4353,1{am} with regard m nave??sz ééwsmfiiw flap m
inaustfiai appimabiiim afiaflaw 353:: expiarzafims supzpomfig sum swims:
Statemzsm

waveity {$83} Yes; mam
N9: mam

énveniive SEE'E){533} ’Y’es: Géaims
Ne: C§aims

maiusmai amiaammsgzm ‘ : Ciaéms
Na: @3383

. mafiom 3nd gsmmmims

£88 sagaiaie Sh98§

Form Fit-“S‘SZSfiffi? {Jammy 29841}

LG Ex. 1002, pg 88

Wfififififl §§§N19N {3F "E’HE mtematianaé appilmiisn Na.
ENTgflfififififigi. $E§RCH3NG

QWEQE§?¥ {SEFRRA‘E’E SHEETS”; mmazgsmmmaz;

Re {ism v.

17m} faimw‘mg {jacum‘emg me {8153er 2:3 in this mmmunicaiim:

E): ; 1&8 2653f? $21,838 A? {KENT DSMRN} 4 September 2MB {2533~{}%3~N}
53: usng :13? E’ 8538 {BGSCH DEREK 223' AL} ‘3 Jufiy 35532 {zmzamw}
{3-3: US~E§§~S 1353 43$ {UNDHGLM JGHN EWK ET AL} 5 March m2 {fififiasfifirfifi}
m : BRETERNETE 5;? ET AL: "Campiiafien. arshiteatmaé wgpmgand avamaiém :3?

SM?) gragshiss gipefim pragtams cm a generafi-ngmm CPL” 2'? Saptemmr
52333 {2&9399‘23; PARALLEL ARGHWESTUREE‘: ANS mwmmm

‘E’ECHNEQUES, 2139.3. mm 2933‘ PRQCEEEENGS. 12TH WE‘ERNEWJGNAL

fifiwFEfifi-‘NGE SN 22? SEPT. — 2 GET. 29%, PEBwKAWAYF m, USMEEEX
PAGES} $354415 , KPQSGESE‘iB'E fSBN: G«‘Ffi§§€£}2€«§

ficcumem 3‘3? ‘ whim E5 mnsiciered t0 repreaem the mas: reievam state sf $573 an fer

the sumem—mafie: a? ciaim a discieses @3123 references 2n parentheses agmymg $53
3:25: G‘swmm} a gramim QFGCGSSGE’ camgn‘sing a shade: {’Smding 8:133“, sea
paragraph 3'9} mmemm m a “Pine? Limit“ try a grivate data 9am. R “Vafiex Shading

gen‘m‘ms me varies: aperafians an We vertin miede in Mame suffered 3mm:
huffem mum? mm Eashien’.

an mane? {3:2 the “Gama: unit“, see paragraph: 1E2} semis {mg {25? a géurafi’zy 9%

Few? :‘iSSg‘Efi? gfiefismfie 13:33:33 awe; ‘t It {Emifemsary 290$}

LG Ex. 1002, pg 89

wamm fiWMfiN {3F THE Entgrxiaiianaé aggfiésafiw Na.
WVERNfiTiGNAL $EJ§§3QH§NQ

amt-13mm gswmma 332m 7 Fmssgggummfissm

Rum PCT€§SA2233 {Segaraza Sim?) {55mm 212 {EMwauary 2am;

LG Ex. 1002, pg 90

WRWEN fifiifiiflfi {3? THE awfiamm Na
NTfififié’fiififlfit SEQfiEflENG

fiWH$$§E§§$EFAEfi€E SHEET} m PQTflBEQETWGflSSEi

g;

f

{3

r

@029

"4’{ii:3:

"wawnfluuflmwm
Fan-m mmma? (swarms Skeet} {Sheet 3} {SPQ—January 2984}

LG Ex. 1002, pg 91

wamm {EMEEQN SF WE Mtemafgma ammaiim N9.
ENTESNJRWQNJ‘XL SEfiREHENG

gmmam {SEFARM‘E SHEET} '7 7 pmsgagmmggggg

«I2
E:

K

9:

5‘

TH

.04-w-‘om

mmmzy

Ram Pam-sway {fifigzma‘le 5mm; {Sam 4‘} {EP‘QJmmw 2994}

LG Ex. 1002, pg 92

WREWEK {fififiim‘é 3F ‘fi‘ffi émematécnai angriécatm
émERNQTmNAi SEARQHMG

fiififfigfij§¥ 3E?§R§3°E SHEET Pfi7§5§8§3§8¢§ffi63821

Fem“: PCTHEA’EE? (Sammy: 319$} {5:35:31 5} {Em-Jarme 2W}

LG Ex. 1002, pg 93

WRiWEfi {E‘Wi‘éiflfi 8? THE imzémagiaflaé wméaratim Na
fimfifififi'fififififi SEARCfiENG I

£33368“? SEPRRRTE $HEET PCTfiBEflQfiffiSSBQ?

"5"if":“V”
E

E3

33,

s.

g.

«gs:

n.

g

{3

i

“mam
7.35:-

«rzmw:331:3-"-'4'
Van-rs FCWSME magma 8mm:- {Sham $3 {EFCmmm 2mg}

LG Ex. 1002, pg 94

WRWER {SPENGN {3F "§°§'§E immatmai amicamn Ni}.
§WE§3N§$§3Q§€§§L SE§RCEP§§NG

gagxfiamw gsammw 5mm “7 $CT§EB€€§ME§Q§§§3

Ram ihig, She subjeatmattef s3? indepandem ciaim 1 diffars that ihe amaze:

gzzermrmg 22:32:93 vertex aperaiians and fixes: spara’zims {pefimming me :35 fits vertex

agemfims Q? @er agemfiam based an a seiected énput}, thus mfisfimfing a “gamed
shade?" the seam {sf the afigiicafiofi anfi pmvifiing an; amearame afirébu‘ia.

Tm sub§ea~z~matter :3? mm ‘i is thamfme navei {Arficie 33:13} 96?}

fimzzmen: $32, which is mnsides‘ed it} repmsen‘: the: Swat :eéevgm state a}? {my afi far

83% subgeszimaiier a)? céa‘s‘m 1&2, (fimfasas {$39 referemes En garentheses agpfiying its
this fififiisfléfii}:

3’32 fiisnmses a 58- Lag-2mm “main 3%] manger" 515} canimSiin infitmmiafig is: Mtg: aiéa\ Q g

m fihgfia: unit {38:23}.

52 Siimifim sysmm '38 fiiacfiasefi in {335

’Smm 2N5, fine subjeatsmafiaf a? éndependem cEaim fiiffefs $193: We gaquemer is in
a unified 5312339: 35“. we 5mm of we apgiicatim.

PSTfiSW" 7 {Eapwa‘és swag; {Shem {Eméanuwy 2934}

LG Ex. 1002, pg 95

WWWEN fifiéfiiflfi Q? YHE imenmmnai awiécaim his.
$N?§RE’€3¥§'§{3E§M. Sfififififiiflfi

fifiTfiQRfi‘f SEPARWE SfiEET‘ 7 N N P8373332i3$éf€3€33§gi

.1 The sawed-mafia? m’ ciaém is: as {'heremre navei ggfiicie 31%{2} F‘CX‘T}

we gmmgm m be wivefl my ibe prssm: invenfiim may be regarded as is design a
shaiées‘ aim it} simufianasusiy perform vefifix manépuiatimfi am? gier mafiipuiafians

mamas“ Sage-es 43f campiefim and ‘m freeiy and gummy swimh "fieMeen m

pragram insimciicfis far {fieficmfing} such aperafims.

The mimics: {a wig gm'mmm gramsefi in cfaims ‘i am: 14 the prawn? wag-tame: is
emsfifiamd as inmivmg an inventive step {Adicée 33m} Fm?) message me avaéiiabie

mam 5:“; 32333485 away fmm a unified shada perfmméng vefiex aparatims and gsixeé

ageraficns {pemrming ma :3? the vertex sperafims a: mxe§ magmas: bassed an a

swarm Emmi} as ciaimm in: giaims 3' and m, Sines the grim art uses the vertex;

Sharia: am the pier shafier if? difierent phases (2%“ a graphiss agemfim wgmthmg

{sea :gmgz‘s §e§§~§wand coiumn, paragrapi': ii: u tigmmand cm-umn, Qamwagah 3} and

magma mam Ea difiersm entifies {see 9:: gage 2 righbhancfi c<>§umfl fiasi; garagraph ~
mega ie migsmfi, firsi-pamgrapm.

Aimwgfi mam ‘i am 14 have Ewen drafiaefi as separam indemndem s§a§ms, may
appfiaf if; semis effersflveiy is mg same subjecbmafier {unifies Shfifi’fir} 3mg ta {iifier
E‘mm each emer méy wéih rag-art} it: the definfifim a? {fig su‘bfiacbmafie; f9: whim

pmmcfian is seeing): We ainremenfianad cia’éms magma 3mg canaiaamss am" as

da was: meet ma yequérszments 0f Afiisig 6 PCT.

Fen». NEWER??? E‘Sepamg Shee‘l} {Shem a} §€P€3~Janmrym;

LG Ex. 1002, pg 96

Electronic Acknowledgement Receipt

10516788

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

—ChrIStopherJ. ReCkamp/ChrIStlne
Filer Authorized By: ChristopherJ. Reckamp

Attorney Docket Number: 00100360001

Filing Date: 17-MAY-2011

Time Stamp: 10:53:09

Application Type: Utility under 35 USC 111(a)

Payment information:

Document Document Descri tion FileSize(Bytes)/ Multi Pages
Number p Message Digest Part /.zip (ifappl.)

Transmittal Letter 360001_IDSCoverSheet.pdf 9d l 6005ch79bb43c005776d9<540cb522
21b70f

Information:

LG Ex. 1002, pg 97

. . 614273
Information Disclosure Statement (IDS)

Form (5308) 360001_IDS.pdf 63418hh639a689161739301apgrfinanfirW
3388c

Information:

246983

Foreign Reference EP2299408A2.pdf 09f] tat-5961M08d8098b8de90753cm71 578
2874

Information:

328840

Foreign Reference EP2309460A1.pdf 652151662ba7749073d04783ad6f3179399
1 i3ab

Warnings:

Information:

251856

3837df67ni513987c35c300cd59d833d5cc5
767E

Warnings:

Information:

Non Patent Literature NPL1.pdf

Foreign Reference EP2296116A2.pdf

48:81a430e79648900c23d28I2748cc808I3
(064

Information:

1165150

Non Patent Literature NPL2.pdf a439767027a73f7b84b 1b5895994d405 IS I
1179911

862733

Non Patent Literature NPL3.pdf d8b6f<637196aC63024fdcad91205f2d4fa3
8663

Information:

1641023

Non Patent Literature NPL4.pdf 9a70a0366ccb I 4a76cb08fa9239cid5d4ba

Warnings:

Information:

795051

L no
9e7a348ae054c8lD318a669211fb838479f<

[6&2
Non Patent Literature NPL5.pdf

Warnings:

Information:

LG Ex. 1002, pg 98

128778

Non Patent Literature NPL6.pdf $977407f307afifr737397i=97 SI 9hrIrPI4a43
e48e

Information:

Non Patent Literature NPL7.pdf L80bd23171009ea917b5di1b38bb401073d
433411

Information:

125523

Non Patent Literature NPL8.pdf 3015062950315b0fc5eee6fl358c9ef3457ce
dceS

Warnings:

Information:

94932

Non Patent Literature NPL9.pdf

Warnings:

Information:

1320776

Non Patent Literature NPL10.pdf 08d008e350c1d0391f8d16e3605(db10b73
ca4ea

Information:

Non Patent Literature NPL12.pdf 934bb419db4be§f3 326134011223 ifef(I la} I
0043

Non Patent Literature NPL13.pdf b97d9c1be4736<1e004665027321i369d44
eblle

Information:

791431

Non Patent Literature NPL14.pdf e7424e47e<bdf946ad92946192171b43afa3
Ih34h

Warnings:

Information:

1258222

i no
9b87dd5c1e49d6956277a8777615f14b72a

dbbe4
Non Patent Literature NPL11.pdf

Warnings:

Information:

LG Ex. 1002, pg 99

Total Files Size (in bytes) 9950261

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,

characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

lfa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this

Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

Ifa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a

national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
lfa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning

national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

LG Ex. 1002, pg 100

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Steven Morein et al. Examiner: na

Serial No.: 13/109,738 Art Unit: na

Filing Date: May 17, 2011 Docket No.: 00100360001
Confirmation No.: 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

INFORMATION DISCLOSURE STATEMENT

IN ACCORDANCE WITH 37 CFR 1.97 b AND 1.98

Pursuant to 37 CFR §§ 1.97(b)(3) and 1.98, Applicants respectfully submit Form

PTO/SB/OSA. The submission of the listed document is not an admission that the information is

prior art, analogous or otherwise material. It is respectfully requested that the listed document be

considered and made of record in the present application.

Respectfully submitted,

Date: July 14. 2011 By: /Christopher J. Reckamp/
Christopher J. Reckamp

Registration No. 34,414
Vedder Price PC.

222 N. LaSalle Street

Chicago, IL 60601

(312) 609—7500

FAX: (312) 609—5005

CHICAGO/#2205021 .l

LG Ex. 1002, pg 101

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O Box 1450
Alexandna, Virgmia 22313-1450
www.uspto gov

 APPLICATION NO. FILING DATE FIRST NAM <) INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

13/109,738 05/17/20] I Stephen Morein 0010036000] 2020

29153 7590 07/21/2011

ADVANCED MICRO DEVICES, INC.
C/O VEDDER PRICE P.C. WASHBURN. DAN
222 N .LASALLE STREET

ART UNIT PAPER NUMBER2648

EXAMINER

MAIL DATE DELIVERY MODE

07/21/201 1 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-9OA (Rev. 04/07)

LG Ex. 1002, pg 102

Application No. Applicant(s)

13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit

 DANIEL WASHBURN 2628

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --
Period tor Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR1.136(a). In no event, however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for repiy is specified above, the maximum statutory period wili apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Faiiure to repiy within the set or extended period for replywili, by statute, cause the application to become ABANDONED (35 U.S.C.§133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR1.704(b).

Status

DIX Responsive to communication(s) filed on 17May2011.

2a)l:l This action is FINAL. 2b)IZ This action is non-final.

3)|:| Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Exparte Quay/e, 1935 CD. 11, 453 QC. 213.

Disposition of Claims

4)IZ Claim(s)1-_16is/are pending in the application.

4a) Of the above claim(s)_ is/are withdrawn from consideration.
is/are allowed.

1-_16 is/are rejected.

is/are objected to.

are subject to restriction and/or election requirement.

Application Papers

9)|:I The specification is objected to by the Examiner.

10)Xl The drawing(s)1iled on 17Maz 2011 is/are: a)lZ accepted or b)|:l objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121 (d).

11)|:| The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)|:I Acknowledgment is made of a claim for foreign priority under 35 U.S.C.§119()-(d) or (f).

a)|:| All b)I:| Some * c)I:| None of:

Certified copies of the priority documents have been received.

Certified copies of the priority documents have been received in Application No._

Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) E Notice of References Cited (PTO-892) 4) D Interview Summary (PTO-413)
2) I] Notice of Draftsperson‘s Patent Drawing Review (PTO—948) Paper N0(S)/Ma” Date-_
3) I] Information Disclosure Statement(s) (PTO/SB/OS) 5) I:I NOIICE‘ 0f Informal Patent Application

Paper No(s)/Mai| Date . 6) CI Other: .
U.S. Patent and Trademark Office

PTOL-326 (Rev. 08-06) Office Action Summary Part of Paper No./Mai| Date 20110712

LG Ex. 1002, pg 103

Application/Control Number: 13/109,738

Art Unit: 2628

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex

operations on the vertex data by a processor unless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to

operate on surface, primitive, vertex, fragment, pixel, sample or any other data. For

simplicity, the remainder of this description will use the term 'samples‘ to refer to

graphics data such as surfaces, primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".

LG Ex. 1002, pg 104

Application/Control Number: 13/109,738

Art Unit: 2628

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel

manipulation operations by transmitting vertex data to a general purpose register block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purpose register block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which case the thread associated with the vertex data and

vertex operations must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction store

until enough registers within the general purpose register block become available (

LG Ex. 1002, pg 105

Application/Control Number: 13/109,738 Page 4

Art Unit: 2628

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.

Instruction cache 410 determines if the program instructions corresponding to the

program counters and sample type included in the thread state data for each thread

entry are available in Instruction Cache 410 The program instructions corresponding

to the program counters from the one or more thread entries are output by Instruction

Cache 410 to Instruction Scheduler 430 Each clock cycle, Instruction Scheduler

430 evaluates whether any instruction within the IWU [instruction window unit] 435 can

be executed based on the availability of computation resources in an Execution Unit

470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing

pixel calculation operations that are to be or are currently being performed by the

processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available, as the Execution Unit 470

may be carrying out calculations for one or more high priority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or more pixel threads to finish such that when the pixel

threads finish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amount of resources to

the queued up vertex thread).

LG Ex. 1002, pg 106

Application/Control Number: 13/109,738

Art Unit: 2628

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread”);

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer, coupled to the general purpose register block and the processor

unit, the sequencer maintaining instructions operative to cause the processor unit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purpose register block (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the IWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations"); and

wherein the processor unit executes instructions that generate a pixel color in

response to the selected one of the plurality of inputs and generates vertex position and

appearance data in response to a selected one of the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations and output

the processed sample to a destination specified by the instruction. The destination may

be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device

LG Ex. 1002, pg 107

Application/Control Number: 13/109,738 Page 6

Art Unit: 2628

coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260 Each Execution Pipeline 240 signals to

Pixel Input Buffer 240 when a sample can be accepted programmable computation

units (PCUs) within an Execution Pipeline 240 perform operations such as

tessellation, perspective correction, texture mapping, shading, blending, and the like.

Processed samples are output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

Thus, the Execution Unit 470 is considered a processor unit that executes

instructions that generate a pixel color in response to the selected one of the plurality of

inputs and generates vertex position and appearance data in response to a selected

one of the plurality of inputs (also see 4:22-5:35».

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processor unit operative to perform vertex calculation operations and pixel calculation

operations); and

LG Ex. 1002, pg 108

Application/Control Number: 13/109,738 Page 7

Art Unit: 2628

shared resources, operativer coupled to the processor unit (FIG. 4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources become available and then use the shared resources to perform

vertex calculation operations (7:37-43, all types of processing threads can use the

Register File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor unit will

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out vertex threads, which may happen as a result of a completion of most

of the pixel threads or a shift in priority such that the vertex threads now have the

highest priority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

LG Ex. 1002, pg 109

Application/Control Number: 13/109,738 Page 8

Art Unit: 2628

a processor unit operative to perform vertex calculation operations and pixel

calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operativer coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform vertex calculation operations until enough

shared resources become available and then use the shared resources to perform pixel

calculation operations (7:37-43, all types of processing threads can use the Register

File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor unit will

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out pixel threads, which may happen as a result of a completion of most

of the vertex threads or a shift in priority such that the pixel threads now have the

highest priority, and then use the Register File 350 to perform pixel calculation

operations.

LG Ex. 1002, pg 110

Application/Control Number: 13/109,738

Art Unit: 2628

RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer coupled to the processor unit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amount of space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the lWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amount of space available in the Register File 350).

LG Ex. 1002, pg 111

Application/Control Number: 13/109,738 Page 10

Art Unit: 2628

RE claim 6, Lindholm describes the shader of claim 5, wherein the sequencer

further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350").

RE claim 7, Lindholm describes the shader of claim 5, further including a

selection circuit operative to provide information to the store in response to a control

signal (

6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in response to a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the processor unit

executes instructions that generate a pixel color in response to the selected one of the

plurality of inputs (

5:11-35 “Pier Input Buffer 215 outputs the samples to each Execution Pipeline

240 Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample

can be accepted programmable computation units (PCUs) within an Execution

Pipeline 240 perform operations such as tessellation, perspective correction, texture

mapping, shading, blending, and the like. Processed samples are output from each

Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shader of claim 5, wherein the processor unit

executes vertex calculations while the pixel calculations are still in progress (

LG Ex. 1002, pg 112

Application/Control Number: 13/109,738

Art Unit: 2628

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 10, Lindholm describes the shader of claim 5, wherein the processor

unit generates vertex position and appearance data in response to a selected one of the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device

coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the control

signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic In an

alternate embodiment, Thread Control Unit 420 is configured to assign threads to

source samples or allocate locations in Register File 350 using thread allocation

priorities based on an amount of sample data in Pixel Input Buffer 215 and another

amount of sample data in Vertex Input Buffer 220 In a further alternate embodiment,

Thread Control Unit 420 is configured to assign threads to source samples or allocate

locations in Register File 350 using thread allocation priorities based on graphics

primitive size”.

LG Ex. 1002, pg 113

Application/Control Number: 13/109,738 Page 12

Art Unit: 2628

Thus, while an arbiter isn't explicitly described, the Examiner considers it inherent

that some portion of the system acts as an arbiter, and therefore can be considered an

arbiter, as some portion of the system assigns priorities to thread and sample types

according to the current processing circumstances, in order to more efficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations

while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 13, Lindholm describes the graphics processor of claim 12 wherein the

unified shader comprises a sequencer coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amount of space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processor of claim 12 comprising

a vertex block operative to fetch vertex information from memory (see the rejection of

claim 6).

LG Ex. 1002, pg 114

Application/Control Number: 13/109,738

Art Unit: 2628

RE claim 15, Lindholm describes a unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload (

7:6—36 “Thread Control Unit 420 is configured to assign threads to source

samples or allocate locations in Register File 350 using thread allocation priorities

based on an amount of sample data in Pixel Input Buffer 215 and another amount of

sample data in Vertex Input Buffer 220 In a further alternate embodiment, Thread

Control Unit 420 is configured to assign threads to source samples or allocate locations

in Register File 350 using thread allocation priorities based on graphics primitive size

(number of pixels or fragments included in a primitive)".

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching between instructions in the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations... Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

between instructions in the instruction store).

LG Ex. 1002, pg 115

Application/Control Number: 13/109,738

Art Unit: 2628

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBU RN whose telephone number is

(571)272-5551. The examiner can normally be reached on 9:30 AM. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Ulka Chauhan can be reached on 571-272—7782. The fax phone number for

the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272—1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
7/12/11

LG Ex. 1002, pg 116

Application/Control No.

13/ 1 09,738

Notice of References Cited

Applicant(s)/Patent Under
Reexamination
MOREIN ET AL.

Examiner

DANIEL WASHBURN

U.S. PATENT DOCUMENTS

Country Code-Number-Kind Code

A 05-2006 Lindholm, John Erik

FOREIGN PATENT DOCUMENTS

Document Number Date

Country Code-Num ber-Ki nd Code MM-YYYY Country

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05la).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
U 8 Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited

Art Unit

2628 Page 1 of1

345/501

_——
_——
_——
_——
_——

_——
_——
_——
_——
_——
_——
_——

Classification

Part of Paper No. 20110712

LG Ex. 1002, pg 117

Application/Control No. Applicant(s)/Patent Under
Reexamination

Iridex Of Claims 13109738 MOREIN ET AL.

Examiner Art Unit

DANIEL WASHBURN 2628

El Claims renumbered in the same order as presented by applicant El CPA El T.D. El R.1.47

CLAIM DATE

«xxx_. N

363 \\II_L 01

_. O)

U.S. Patent and Trademark Office Part of Paper No. : 20110712

LG Ex. 1002, pg 118

Application/Control No. Applicant(s)/Patent Under
Reexamination

SearCh NOIeS 13109738 MOREIN ET AL.

Examiner Art Unit

DANIEL WASHBURN 2628

SEARCHED

Subclass Examiner

7/12/11

SEARCH NOTES

Search Notes mm
Searched EAST (all databases) see search history printout 7/12/11
Also see search histories for apps 12fl91,597 and 11/842,256 7/12/11 DW
conducted inventor name search 7/12/11 DW

INTERFERENCE SEARCH

mm
————

/DAN|EL WASHBURN/

Primary ExaminerArt Unit 2628

U.S. Patent and Trademark Office Part of Paper No. :

LG Ex. 1002, pg 119

Page 1 of1

' UNITED STATES PATENT AND TRADEMARK OTETCE
LNITED STATES DEPARTMENT OF COIVIMEKCE
United States Patent and Trademark Office
{de1655: COMMISSIONER FOR PATENTS

P.O. BOA 1450
AICAHJldIIEL Vilginia. 22313-1450
www uspro gov

BIB DATA SHEET

CONFIRMATION NO. 2020

SERIAL NUMBER FILINSIAQFI‘E 371 (C) GROUP ART UNIT ATTORNECY) DOCKET
13/109,738 05/17/2011 00100.360001

RULE

APPLICANTS

Stephen Morein, Cambridge, MA;
Laurent Lefebvre, Lachgnaie, CANADA;
Andy Gruber, Arlington, MA;
Andi Skende, Shrewsbury, MA;

*4: ***~k*****~k*~k*~k~k*~k***~k*~k**

ThIS application IS a CON Of 12/791,597 06/01/2010 ABN
which iS a CON Of11/842,256 08/21/2007 ABN
which IS a CON Of 11/117,863 04/29/2005 PAT 7,327,369
which IS a CON Of10/718,31811/20/2003 PAT 6,897,871

** *******~k'k**********k*k**~k

** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **
05/27/2011

Foreign Priority claimed 3 Yes BN0 STATE OR SHEETS TOTAL INDEPENDENT
35 USC 119(a—d) condltions met :I Yes BNO D Met after COUNTRY DRAWINGS CLAIMS CLAIMSAllowance
Verified and /DAN|EL C

WASHBURN/ MA 5 16 7
Acknowledged Examiner's Signature Initials

ADDRESS

ADVANCED MICRO DEVICES, INC.
C/O VEDDER PRICE PC.
222 N.LASALLE STREET

CHICAGO, IL 60601
UNITED STATES

TITLE

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

II All Fees

31.16 Fees (Filing) |

FEES: Authority has been given in PaperFILING FEE - -

RECEIVED No. to charge/credit DEPOSIT ACCOUNT 3 1-17 Fees (Process'ng Ext- Of I'me)
for following: :l 1.18 Fees (Issue)

:l Other

II Credit

BIB (Rev. 05/07).

LG Ex. 1002, pg 120

EAST Search History

EAST Search History

EAST Search History (Prior Art)

§Search Query § efault gPlurals §Time Stamp
§Operator ‘ ‘

("7038685").PN. §USPGPUB; $2011/o7/12
\ §USPAT; USOCR §13:27

§1217 §345/5o1.ocls. §USrPGPUB; $2011/o7/12
S §USPAT; USOCR; 33:29

§FPRs; EPO;
DERWENT;

§IBMJDB 3 3

S\~\x\~\\\
E ..an...u..an...u..an...u..an...u......,..........,........1.

EAST Search History (I nterference)

<This search history is empty>

7/12/ 2011 1:53:40 PM

C:\ Documents and Settings\ dwashburn1\ My Documents\ EAST\ Workspaoes\ Morein

eta|.11117863.wsp

file:///Ci/Documents%20and%ZOSettings/dwashburn1/My%20D0‘..3 109738/EASTSearchHist0ry.131097387AccessibleVersion.htm7/12/201 1 1:53 :57 PM

LG Ex. 1002, pg 121

UNITED STATES PATENT AND TRADEMARK OFFICE UVTTET‘I STATES DEPARTVIF‘N'I‘ 0F COM'MFIRCFI
United States Patent and Trademark Office
Addiess. COMMTSSTOVFR FOR PATENTSP 0 BOX 1 4 50

Alexandtia, Yngnia 22313-1450www.uspto .gov

APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAVED APPLICANT ATTY. DOCKET NOJTITLE

13/109,738 05/17/2011 Stephen Morcin 00100.3().0001
CON FIRMATION NO. 2020

29153 PUBLICATION NOTICE

ADVANCED MICRO DEVICES, INC.

C/O VEDDER PRICE P.C. I|||I|||||||||||||||||"11111111111|||I|||||||||III| I|I|||II|||||III|||||||I|||
222 N.LASALLE STREET 00000049722760
CHICAGO, IL 60601

Title:GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

Publication No.US-201 1-0216077-A1
Publication Date:09/08/2011

NOTICE OF PUBLICATION OF APPLICATION

The above—identified application will be electronically published as a patent application publication pursuant to 37
CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO‘s publically available Searchable Databases via the
Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to
applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth

in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO‘s Office of
Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382,
by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of
Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the

dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent
Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and
Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to

publication, such status information is confidential and may only be obtained by applicant using the private side of
PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent
Electronic Business Center at 1-866-217—9197.

Office of Data Managmcnt, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

page 1 of 1

LG Ex. 1002, pg 122

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stephen Morein et al. Examiner: Daniel C. Washburn

Serial No.: 13/109,738 Art Unit: 2628

Filing Date: May 17, 2011 Docket No.: 00100360001
Confirmation No.2 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

Mail Stop Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

RESPONSE

Dear Sir:

In response to the office action mailed July 21, 2011, Applicants petition for a three

month extension of time and respond as follows:

Listing of the Claims begins on page 2 of this paper.

Remarks begin on page 6 of this paper.

BDDBOI 9084641V1

LG Ex. 1002, pg 123

Listing of the Claims:

1. (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. (original) A unified shader, comprising:

a general purpose register block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.

(original) A unified shader comprising:

BDDBOl 908464lvl

LG Ex. 1002, pg 124

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

(original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.

BDDBOl 908464lvl

LG Ex. 1002, pg 125

6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in response to a control signal.

(original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in response to the selected one of the plurality of inputs.

9. (original) The shader of claim 5, wherein the processor unit executes vertex

calculations while the pixel calculations are still in progress.

10. (original) The shader of claim 5, wherein the processor unit generates vcrtcx

position and appearance data in response to a selected one of the plurality of inputs.

11. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. (original) A graphics processor comprising:

a unified shader comprising a processor unit that executes vertex calculations while the

pixel calculations are still in progress.

BDDBOl 908464lvl

LG Ex. 1002, pg 126

13. (original) The graphics processor of claim 12 wherein the unified shader

comprises a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pixel calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.

14. (original) The graphics processor of claim 12 comprising a vertex block operative

to fetch vertex information from memory.

15. (original) A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching between instructions in the instruction store.

BDDBOl 908464lvl

LG Ex. 1002, pg 127

REMARKS

Applicants respectfully traverse and request reconsideration.

Claims 1—16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

US. Patent No. 7,038,685 (Lindholm). Applicants respectfully submit herewith Declarations

under 37 C.F.R. § 1.131 for inventors Laurent Lefebvre, Andrew E. Gruber, Stephen L. Morein

and Andi P. Skende establishing conception and reduction to practice of the currently claimed

subject matter prior to the June 30, 2003 priority date of Lindholm. It is believed that Lindholm

does not claim thc samc patcntablc invention as defined by 37 CPR. § 41.203(a) and that the

present rejection is not based on a statutory bar, i.e., Lindholm qualifies as prior art only under

35 U.S.C. § 102(e). Accordingly, the attached Declarations are relied on to establish prior

reduction to practice of the claimed subject matter, particularly with regard to independent

claims l—5, 12 and 15.

Regarding the reduction to practice evidenced by the attached Declarations, Applicants

first note that, properly presented, a Rule 131 declaration may demonstrate prior invention if it

provides a “showing of facts . . . as to establish reduction to practice prior to the effective date of

the reference.” 37 CPR. § l.l3l(b). As set forth in M.P.E.P. § 715.07(l), evidence in support

of asserted facts demonstrating prior invention may be provided in the form of “an

accompanying model.” With regard to an apparatus and/or process implemented by an

integrated circuit or the like, Applicants respectfully submit that a simulation of such an

apparatus and/or circuit may effectively serve as a “model” demonstrating successful reduction

to practice. Specifically, Applicants respectfully submit that evidence of (i) a successful

computer-based simulation of a physical embodiment and/or (ii) a description of a physical

embodiment capable of translation to implement the actual physical embodiment, coupled with

BDDB01 9084641v1

LG Ex. 1002, pg 128

successfully testing of the resulting physical embodiment is sufficient to demonstrate an actual

reduction to practice for the purposes of Rule 131 declaration. (See McDonnell Douglas Corp. v.

US, 670 F. 2d 156, 161 (Ct. C1. 1982) (where court concludes that “physical tests proved that

the computer approved device . . . failed in actual practice . . . to perform in the manner

intended” and that subsequent successful physical testing was the first reduction to practice, a

necessary implication is that a valid reduction to practice would result if actual physical testing

demonstrates that prior computer simulation was adequate); Mosaid T6611. Inc, v. Samsung E[66.

Ca, 362 F.Supp.2d 526, 547 (D.N.J. 2005) (noting that the McDonnell case suggested “that a

computer simulation may be a valid reduction to practice, but not if subsequent, actual physical

testing proves that it is inadequate,” and that “there are areas of science where a successfully run

simulation represents the end of the inventive process and the construction of the physical

embodiment is but a matter of mere routine and mechanical application [such that] a simulation

should be a valid reduction to practice.”))

With regard to the instant application, as shown in the attached Declarations, Applicants

have provided evidence that both a simulation and hardware design description (expressed in a

hardware design language capable of conversion to a physical embodiment) subsequently lead to

a successfully tested physical embodiment of (and, therefore, actual reduction to practice of) the

subject matter recited in the independent claims. More particularly, the attached Declarations

demonstrate invention of the recited subject matter in claims 1—5, 12 and 15 prior to the effective

filing date of the Lindholm reference.

Thus, in light of the Declarations, Applicants respectfully submit that Lindholm is not

available as prior art against, and therefore obviates the sole basis for rejecting, the above claims,

which claims are therefore in suitable condition for allowance. Applicants further note that

BDDBOl 908464lvl

LG Ex. 1002, pg 129

claims 6—11, 13, 14 and 16 are dependent upon, and therefore incorporate the limitations of,

respective ones of claims 5, 12 and 15. As such, claims 6-11, 13, 14 and 16 are also allowable

for the same reasons presented above relative to their respective independent claims.

Applicant respectfully submits that the claims are now believed to be in condition for

allowance and that a timely Notice of Allowance be issued in this case. If the Examiner believes

that personal communication will expedite prosecution of this application, the Examiner is

invited to telephone the undersigned at (312) 356-5094.

Respectfully submitted,

Dated: January 18, 2012 By: /Christopher J. Reckamp/

Christopher J. Reckamp

Reg. No. 34,414

Faegre Baker Daniels LLP
31 1 S. Wacker Drive

Chicago, IL 60606

PHONE: (312) 356—5094

FAX: (312) 212—6501

BDDBOl 9084641v1

LG Ex. 1002, pg 130

PATENT

ATTORNEY DOCKET NO. 00100360001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Stephen Morein et al.

Serial No. 13/109,738 Art Unit:2628

Filed: May 17’ 2011 Examiner: Daniel C. Washburn

For: GRAPHICS PROCESSING

ARCHITECTURE EMPLOYING A

UNIFIED SHADER

Confirmation No. 2020

DECLARATION UNDER 37 C.F.R. § 1.131

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 223 l 4~1450

Sir:

We, Stephen L Morein a citizen of the U.S. residing at 367 Santana Heights, Unit 3027,

San Jose California 95128; Laurent Lefebvre, a citizen of Canada residing at 1055 Garden

Avenue, Mascouche, Quebec, CANADA, J7L-0A1; Andrew E. Gruber a citizen of the U.S.

residing at 251 Pleasant Street, Arlington, Massachusetts 02476; and Andi Petrit Skende a citizen

of the U.S. residing at 35 Sunrise Avenue, Worcester, Massachusetts 01606, do hereby declare
that:

1. We are joint inventors of the subject matter described and claimed in U.S. Patent

Application No. 13/109,738 (hereinafter “the Invention”), filed in the United States of America
on May 17, 2011, entitled “Graphics Processing Architecture Employing a Unified Shader”,
which application is a continuation of and claims priority to U.S. Patent Application No.
12/791,597 filed June 1, 2010, which application is a continuation of and claims priority to U.S.

Patent Application No. 11/842,256 filed August 21, 2007, which application is a continuation of
and claims priority to U.S. Patent Application No. 11/117,863 filed April 29, 2005 (now U.S.
Patent No. 7,327,369), which application is a continuation of and claims priority to U.S. Patent

Application No. 10/718,318 filed November 20, 2003 (hereinafter “the ‘318 application”; now
U.S. Patent No. 6,897,871).

2. We conceived the Invention prior to June 30, 2003 while employed by ATI

Technologies Inc. and/or one of its wholly owned subsidiaries (“ATI”) as indicated by attached
Exhibits A and B. Exhibit A is a copy of emulation code files entitled RegFfilecpp,
Instruction_store.cpp, Arbitercpp, Gpr_ma.nager.cpp, sq_alu.cpp and scLblock_model.cpp that,

CHICAGO/#2239588!

LG Ex. 1002, pg 131

based on information and belief, we invented and assisted in coding prior to June 30, 2003 the

(“Model Code”). Exhibit B is a copy of hardware register transfer level (RTL) files (“the Chip

Design Code”) entitled sq_gpr_alloc.v, Sq_alu_instr_seq.v, sq_instruction_store_v,

sp_mace_gpr.v, spflvectory, sq.v, sq_export_alloc.v, sq_ctl_flow_seq.v, sq_alu_instr_seq.v,

sq_thread_arb.v and sq_shader_seq.v, that, based on information and belief, we assisted in

creating prior to June 30, 2003. Prior to June 30, 2003 we created a graphics processing system
that operated as claimed using a computer system that successfully executed the Model Code.

Prior to June 30, 2003 we also created a graphics processing system as claimed in the form of a

computer system that used an RTL simulator to successfully validate the operation of an

integrated circuit version of the claimed graphics processing system and method At least the

following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software instructions

written in the well-known C++ language. When executed by the computer system , the

Model Code caused the computer system to operate as claimed in at least claims 1—5= 12
and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the claimed
subject matter for its intended purpose through emulation thereof.

e. As shown in Exhibit B, the Chip Design Code comprises various instructions

written in a well—known hardware description language. The Chip Design Code was used

by an RTL simulator system to validate the operation of an integrated circuit version of
the claimed graphics processing system and method as claimed in at least claims 1-5, 12
and 15. As further known by practitioners in the field of integrated circuit design, such

instructions are used to generate gate level detail for silicon fabrication.

d. On information and belief, the computer system operating the Model Code and

the RTL simulator system operating the Chip Design Code represents the claimed
structure and operation embodied in an integrated graphics processing circuit chip
referred to as the ATI XENOS chip produced by ATI on or about October, 2004 that was

incorporated in the XBOX 360 product. '

Accordingly, the contents of Exhibits A and B establish the possession by us of the whole
Invention, falling within the scope of Currently pending claims, such as but not limited to at least
claims 1-5, 12 and 15.

CHICAGOM2239588J

LG Ex. 1002, pg 132

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or impriso nt, or both,
under § 1001 of Title 18 of the United States Code and that such willful fa] statements may
jeopardize the validity of the application or any patent issued therefrom.

Laurent Lefebvre

Andrew E. Gruber

Andi Petrit Skende

CHICAGOJ#2239588.1

LG Ex. 1002, pg 133

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be

true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Stephen L. Morein

(4,4, 4/
Laurent Lefebvre

Andrew E. Gruber

Andi Petrit Skende

CH1CAGOHZ239588J

LG Ex. 1002, pg 134

3. Each of us hereby declare that all statements made herein are of my own
knowledge, are true and that all statements made on information and belief are believed to be
true; and each of us further declare that these statements were made with the knowledge that
willful false statements and the like so made are punishable by fine or imprisonment, or both,
under § 1001 of Title 18 of the United States Code and that such willful false statements may
jeopardize the validity of the application or any patent issued therefrom.

Stephen L. Morein

Laurent Lefebvre

Andi Petrit Skende

CHICAGO/#2239583]

LG Ex. 1002, pg 135

3. Each of us hereby declare that all statements made herein are of thy own
knowledge, are true and that all statements made on infozmation and belief are believéd to be
true; and each of us finther declare that these statements were made with the knowleélge that
willful false statements and the like 30 made are punishable by fine 0r imprisonment, hr both,
under § 1001 of Title 18 of the United States Code and that such willful false statemel'lts may
jeopardize the validity of the applicatmn or any patent issued therefiOm.

Stephen L. Morein

Laurent Lefebvre

Andrew E. Gruber

Dated: bemmbw‘ 11. 2,0“ #Afl—h{£3 A
Andi etrit Skende I

CHICAGO/#2523 9583. 1

LG Ex. 1002, pg 136

EXHIBIT A — MODEL CODE

Reg_flle. cpp

#include ”reg_file.h”

RegFile::RegFile()
{

for (int i=e;i<128;i++)
for (int j=03j<16;j++)

for (int k=0;k<4;k++)
regValues[i].Val[j].field[k].c1amp(9);

}

void RegFile::GetConstValues(const RegVect* &Values,int Addr)
{

}

void RegFile::GetValues(RegVect* &Values,int Addr)
{

}

Values = &(PegValues[Addr].Val[9]);

Values = &(PegValues[Addr].Val[9]);

Instruction store:

lnstructi0n_store.cpp
#include ”instruction_store.h"

IStore::IStore()
{

for (int i=6;i<4096;i++)
{

instructions[i].bytee=9x99;
instructions[i].byte1=9x99;
instructions[i].byte2=9x99;
instructions[i].byte3=0x00;
instructions[i].byte4=0x00;
instructions[i].byte5=9x99;
instructions[i].byte6=9x99;
instructions[i].byte7=9x99;
instructions[i].byte8=0x00;
instructions[i].byte9=0x00;
instructions[i].byte19=9x90;
instructions[i].byte11=9x99;

}

void IStore::GetInst(InstPuction &inst,int
{

}
inst = instructions[addr];

LG Ex. 1002, pg 137

void IStore::GetInst(ALU_InstPuction &aluInst; int addr)
{

aluInst.SrcASel = ((instructions[addr].bytell & 6x86) >> 7);
aluInst.SchSel = ((instructions[addr].bytell & 6x46) >> 6);
aluInst.SPcCSel = ((instructions[addr].bytell & 9x26) >> 5);
aluInst.VectorOpcode = ((instructions[addr].byte11 & leF));
aluInst.SourceARegPointer = ((instructions[addr].bytele));
aluInst.SourceBRegPointeP = ((instructions[addr].byte9));
aluInst.SourceCRegPointer = ((instructions[addr].byte8));
aluInst.Constan@RelAbs = ((instructions[addr].byte7 & 6x86) >> 7);
aluInst.Constan1RelAbs = ((instructions[addr].byte7 & 9x48) >> 6);
aluInst.RelativeAddPRegSel = ((instructions[addr].byte7 & 6x20) >> 5);
aluInst.PPedicateSelect = ((instructions[addr].byte7 & 6x18) >> 3);
aluInst.SourceANegate = ((instructions[addr].byte7 & 6X64) >> 2);
aluInst.SouPceBNegate = ((instructions[addr].byte7 & 6x62) >> 1);
aluInst.SourceCNegate = ((instructions[addr].byte7 & 8x81));
aluInst.SourceASwizzle = ((instructions[addr].byte6));
aluInst.SourceBSwizzle = ((instructions[addr].byteS));
aluInst.SourceCSwizzle = ((instructions[addr].byte4));
aluInst.ScalaPOpcode = ((instructions[addr].byte3 & exfc) >> 2);
aluInst.ScalarClamp = ((instructions[addr].byte3 & 6x62) >> 1);
aluInst.Vect0PClamp = ((instructions[addr].byte3 & 6x01));
aluInst.ScalarWPiteMask = ((instructions[addr].byte2 & exte) >> 4);
aluInst.VectorWriteMask = ((instructions[addr].byte2 & exet));
aluInst.ScalarResultPointer = ((instructions[addr].bytel));
aluInst.VectorResultPointer = ((instructions[addr].bytee));

}

void IStore::GetInst(TInstrPacked &texInst, int addr)
{

}
texInst.unpack((const uint8*)(&instructions[addr]));

void IStore::GetInst(CF_InstPuction &chnst; int addr, bool left)
{

// read from bytes 11 thru 6
if (left)
{

CFInst.opCode = ((instructions[addr].byte11 & exFG) >> 4);
ctInst.addrMode = ((instructions[addr].byte11 & 9x98) >> 3);
ctInst.bufterSel = ((instructions[addr].byte11 & 6x66) >> 1);
ctInst.condition = ((instructions[addr].bytell & 0X94) >> 2);
ctInst.boolAddr = ((instructions[addr].bytell & 9x93) << 6) |

((instructions[addr].bytele & ach) >> 2);
ctInst.direction = ((instructions[addr].bytele & 0x02) >> 1);
ctInst.instTypeSer = ((instructions[addr].bytele & 0x63) << 16) |

((instructions[addr].byte9) << 8) |
((instructions[addr].byte8));

.predBreak = ((instructions[addr].byte8 & 9x26) >> 5);

.loopId = ((instructions[addr].byte8 & 0x1F));

.count = ((instructions[addr].byte7 & GXFG) >> 4);

.force = ((instructions[addr].byte7 & 9x29) >> 5);

.chddress = ((instructions[addr].byte7 & leF) << 8) |
((instructions[addr].byte6));

.address = ((instructions[addr].byte7 & GXGF) << 8) |
((instructions[addr].byte6));

.allocSize = ((instructions[addr].byte6 & @XGF));

LG Ex. 1002, pg 138

// read from bytes 5 thru 9
else

{
ctInst.opCode = ((instructions[addr].byte5 & GXFG) >> 4);
ctInst.addrMode = ((instructions[addr].byte5 & 0x08) >> 3);
cFInst.bufferSel = ((instructions[addr].byte5 & 9x96) >> 1);
ctInst.condition = ((instructions[addr].byte5 & 9x94) >> 2);
cFInst.boolAddr = ((instructions[addr].byte5 & 0x03) << 6) |

((instructions[addr].byte4 & GXFC) >> 2);
ctInst.direction = ((instructions[addr].byte4 & 9x92) >> 1);
cFInst.instTypeSer = ((instructions[addr].byte4 & 9x93) << 16) |

((instructions[addr].byte3) << 8) |
((instructions[addr].byte2));

.predBreak = ((instructions[addr].byte2 & 0X29) >> 5);

.loopId = ((instructions[addr].byte2 & 9x1F));

.count = ((instructions[addr].bytel & exFe) >> 4);

.force = ((instructions[addr].bytel & 0x20) >> 5);

.chddress = ((instructions[addr].bytel & exlF) << 8) |
((instructions[addr].byte0));

.address = ((instructions[addr].bytel & GXGF) << 8) |
((instructions[addr].byte9));

.allocSize = ((instructions[addr].byteG & 6x0F));

}

void IStore::SetInst(const Instruction &inst;int addr)
{

}
instructions[addr]=inst;

Performing operations on pixels or vorticcs:

Arbiter.cpp
boolean Arbiter::chooseAluStation(int &lineNumber, Shader_Type &sType,

bool otherAluRunning,const CFMachine& otherCFMachine,bool &pred0n)
{

int i;
int verteXPick = -1;
int pixelPick = —1;
bool pcSpace;
int lineCheck;
predOn = true;

// do pixels First
lineCheck = pixelHead;
for (i=e;i<pixeleCount;i++)
{

it (pixelStation[lineCheck].status.valid != 0 &&
pixelStation[lineCheck].status.ressourceNeeded == ALU

&& lpixelStation[lineCheck].status.event)
{

// no allocation needed

if (pixelStation[lineCheck].status.allocation == SQ_N0_ALLOC)
{

}
// we need to make sure there is space in the appropriate buffer

pixelPick = lineCheck;

LG Ex. 1002, pg 139

else if (pixelStation[lineCheck].status.allocation == SQ_MEMORY &&
(pixelStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ->GetExportBuFFer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

}
else if (pixelStation[lineCheck].status.allocation ==

SQ_PARAMETER_PIXEL &&

pixelPick = lineCheck;

pixelStation[lineCheck].status.allocationSi2e <= sq->pSX_SQ-
>GetExportBuffer()/4

&& pendingAllocs < 2 && sq->pSX_SQ->GetValid())
{

}
// make sure the status says we can pick this pixel
if (pixelPick != -1)
{

pixelPick = lineCheck;

// check for serial with texture pending
if (pixelStation[pixelPick].status.serial &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = -1;

// it last or alloc is set we can only pick the two oldests
threads also for color exports

else it ((pixelStation[pixelPick].status.last
|| pixelStation[pixelPick].status.allocation ==

SQ_PARAMETER_PIXEL)&&
l(pixelPick==pixelHead || pixelPick==((pixelHead-

1)%MAX_PIX_RESERVATION_SIZE)))
pixelPick = —1;

// cannot pick last if texture reads are outstanding
else it (pixelStation[pixelPick].status.last &&

pixelStation[pixelPick].status.texReadsOutstanding)
pixelPick = —1;

// can only pick the second to old if the first is already
running and last is set

else it (pixelStation[pixelPick].status.last && pixelHead l=
pixelPick)

{
if (pixelStation[pixelPick].status.First ||

lpixelStation[pixelHead].status.last
|| pixelStation[pixelHead].status.valid)
pixelPick = -1;

else

{
predOn = false;
break;

}
}// endif pixels

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE5
}// end for loop

lineCheck = vertexHead;
for (i=e;i<vertestCount;i++)

LG Ex. 1002, pg 140

{
it (vertexStation[lineCheck].status.valid != a &&

vertexStation[lineCheck].status.ressourceNeeded == ALU
&&!vertexStation[lineCheck].status.event)

{
// no allocation needed

if (vertexStation[lineCheck].status.allocation == SQ_N0_ALLOC)
{

}
// we need to make sure there is space in the appropriate buffer
else

{

vertexPick = lineCheck;

if (verteXStation[lineCheck].status.allocation == SQ_MEMORY)
{

if

(((vertexStation[lineCheck].status.allocationSize+1)*4 <= sq->pSX_SQ-
>GetExportBuffer()/4)

&& sq—>pSX_SQ—>GetValid() && pendingAllocs <2)
{

}
vertexPick = lineCheck;

}
else it (verteXStation[lineCheck].status.allocation ==

SQ_PARAMETER_PIXEL)
{

// determine if there is space in the PCs for an
eventual PC export

pcSpace =
checkPC((vertexStation[lineCheck].status.allocationSize+1)*4);

if (pcSpace)
{

// make sure every older threads have their
position allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.pcAllocated == false)
{

alloc_done = false;
break;

}
alloc_line

(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;
}
if (alloc_done)
{

}
vertexPick lineCheck;

}
}
else it (vertexStation[lineCheck].status.allocation ==

SQ_POSITION
&& (sq->pSX_SQ->GetPositi0nReady() >=

vertexStation[lineCheck].status.allocationSize)
&& sq->pSX_SQ->GetValid()

LG Ex. 1002, pg 141

&& pendingAllocs <2)

// make sure every older threads have their position
allocated

bool alloc_done = true;
int alloc_line = vertexHead;
while (lineCheck != alloc_line)
{

if

(vertexStation[alloc_line].status.posAllocated == false)
{

alloc_done = false;
break;

}
alloc_line

(alloc_line+1)%MAX_VTX_RESERVATION_SIZE;
}
if (alloc_done)
{

}
vertexPick lineCheck;

}
}
// make sure the status says we can pick this vertex
if (vertexPick != -1)
{

// check for serial with texture pending
if (vertexStation[vertexPick].status.serial &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// if last is set we can only pick the two oldests threads
else if (vertexStation[vertexPick].status.last &&

l(vertexPick==vertexHead || vertexPick==((vertexHead—
1)%MAX_VTX_RESERVATION_SIZE)))

vertexPick = -1;
// cannot pick last if texture reads are outstanding
else if (vertexStation[vertexPick].status.last &&

vertexStation[vertexPick].status.texReadsOutstanding)
vertexPick = -1;

// can only pick the second to old if the first is already
running

else if ((vertexStation[vertexPick].status.last) && vertexHead
!= vertexPick)

{
if (vertexStation[vertexPick].status.first ||

lvertexStation[vertexHead].status.last
|| vertexStation[vertexHead].status.valid)
vertexPick = —1;

else

{
predOn = false;
break;

}
}// endif vertex

LG Ex. 1002, pg 142

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}// end for loop

// right now vertices have priority over pixels always,
// will have to change this when the registers are there.
if (vertexPick != -1)
{

lineNumber = vertexPick;
sType = VERTEX;

// HERE WE MUST DO THE ALLOCATION

// also send a pulse to the SX if we need a buffer (position or multipass)

if (vertexStation[vertexPick].status.allocation l= SQ_NO_ALLOC)
{

// parameter cache allocation
if (vertexStation[vertexPick].status.allocation ==

{
SQ_PARAMETER_PIXEL)

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].data.pcBasePtr = sq->chead;
vertexStation[vertexPick].data.exportId = 0;

if (sq-
>chead+(vertexStation[vertexPick].status.allocationSize)*4 < 128)

{
sq->chead = sq-

>chead+(vertexStation[vertexPick].status.allocationSize)*4;
}
else

{
sq—>chead =

(vertexStation[vertexPick].status.allocationSize)*4—(128—sq—>chead);
sq->checkHigh = lsq->checkHigh;

}
sq-

>pcAllocated.push((vertexStation[vertexPick].status.allocationSize)*4);
}
// position
else if (vertexStation[vertexPick].status.allocati0n == SQ_POSITION)
{

// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.posAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq—>pSQ_SX—>SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq—>pSQ_SX—>SetSQ_SX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exportId = exportId;
exportId = lexportId;
uinteger<2> temp;
temp = 2;
sq—>pSQ_SX—>SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);

7

LG Ex. 1002, pg 143

temp = vertexStation[vertexPick].status.allocationSize—l;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);

}
// multipass
else

{
// starting a new allocation
pendingAllocs ++;

vertexStation[vertexPick].status.pcAllocated = true;
vertexStation[vertexPick].status.pulseSx = true;
sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = vertexStation[vertexPick].data.state;
sq—>pSQ_SX—>SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
vertexStation[vertexPick].data.exp0rtId = exportId;
exportId = lexportId;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq->pSQ_SX->SetSQ_SX_exp_valid(true);
temp = vertexStation[vertexPick].status.allocationSize;
sq—>pSQ_SX—>SetSQ_SX_exp_number(temp);

}

// dump the interface
if (sq->m_dumpSQ > 0)
{

sq->pSQ_SX->GetNewAll(&(sq->m_squDump->_data));
it (sq->m_squDump->_data.Valid)
{

}
sq—>m_squDump—>Dump();

}

// clear the allocation fields

vertexStation[vertexPick].status.allocationSize = e;
vertexStation[vertexPick].status.allocation = SQ_NO_ALLOC;

}
return true;

}
it (pixelPick l= —1)
{

lineNumber = pixelPick;
sType = PIXEL;

if (pixelStation[pixelPick].status.allocation l= SQ_NO_ALLOC)
{

// starting a new allocation
pendingAllocs ++;

if (pixelStation[pixelPick].status.allocation == SQ_PARAMETER_PIXEL)
{

sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);

LG Ex. 1002, pg 144

sq—>pSQ_SX—>SetSQ_SX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exportId = exportId;
exportId = !exportId;
uinteger<2> temp;

sq->setContextNumber(st);
uint8 mode = sq->SQ_PROGRAM_CNTL.getPS_EXPORT_MODE();
// exporting 2
if (mode &0x@1)

temp = 1;
// not exporting Z
else

temp = 0;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq—>pSQ_SX—>SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize-temp-l;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);

}
// multipass
else

{
sq->pSQ_SX->SetValid(true);
uinteger<3> st;
st = pixelStation[pixelPick].data.state;
sq->pSQ_SX->SetSQ_SX_exp_state(st);
sq->pSQ_SX->SetSQ_SX_exp_alu_id(exportId);
pixelStation[pixelPick].data.exp0rtId = exportId;
pixelStation[pixelPick].status.pulseSx = true;
exportId = lexportId;
uinteger<2> temp;
temp = 3;
sq->pSQ_SX->SetSQ_SX_exp_type(temp);
sq—>pSQ_SX—>SetSQ_SX_exp_valid(true);
temp = pixelStation[pixelPick].status.allocationSize;
sq->pSQ_SX->SetSQ_SX_exp_number(temp);
pixelStation[pixelPick].status.pulseSx = true;

}

// dump the interface
if (sq->m_dumpSQ > e)
{

sq->pSQ_SX->GetNewAll(&(sq->m_squDump->_data));
if (sq—>m_squDump—>_data.Valid)
{

}
sq->m_squDump->Dump();

}

// clear the allocation Fields

pixelStation[pixelPick].status.allocationSize = 9;
pixelStati0n[pixelPick].status.allocation = SQ_NO_ALLOC;

}
return true;

}

return false;

LG Ex. 1002, pg 145

Checking for GPR space:

(3pr3nanagencpp

#include gpr_manager.h"
#include ”user_block_model.h"

GPR_manager::GPR_manager(cUSER_BLOCK_SQ *pSQ)
{

// set the pointer to the SQ
Sq = PSQ3

// set the limits (READ REGISTERS)
pixLimit = sq->SQ_GPR_MANAGEMENT.REG_SIZE_PIX;
vertLimit = 128—sq—>SQ_GPR_MANAGEMENT.REG_SIZE_VTX;

baseCountPix a;
freeCountPix 0;
pixTestHigh = true;

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;

}

boolean GPR_manager::testAllocate(int number_gpr,int &base_addr,Shader_Type stype)
{

bool wrap = false;
int testBaseCount;

if (stype == PIXEL)
{

testBaseCount = baseCountPix;
base_addr= baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

if (freeCountPi ==baseCountPix && pixTestHigh &&
freeCountPix l: -1)

{

}
return false;

return true;
}

if (testBaseCount + number_gpr < pixLimit)
testBaseCount = testBaseCount + number_gpr;

else

{
testBaseCount = number_gpr-(pixLimit-testBaseCount);
// we wrapped change the test type
pixTestHigh = lpixTestHigh;
wrap = true;

}
if (pixTestHigh)
{

LG Ex. 1002, pg 146

if (wrap)
pixTestHigh = lpixTestHigh;

if (testBaseCount >= freeCountPix && freeCountPix != -1)
{

// allocation succesfull

return False;

// not enough space in GPRs
return true;

if (wrap)
pixTestHigh = inxTestHigh;

if (testBaseCount <= treeCountPix && freeCountPix != -1)
{

// allocation succesfull

return false;

return true;

}
}
// vertices
else

{
testBaseCount = baseCountVert;
base_addr= baseCountVert;

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

if (freeCountVert==baseCountVert && vertTestHigh &&
FreeCountVert l: -1)

{

}
return false;

return true;
}

if (testBaseCount — number_gpr >= vertLimit)
testBaseCount = testBaseCount — number_gpr;

else

{
testBaseCount = 128-(number_gpr-(testBaseCount-vertLimit));
// we wrapped change the test type
vertTestHigh = lvertTestHigh;
wrap = true;

}
if (vertTestHigh)
{

if (wrap)

LG Ex. 1002, pg 147

vertTestHigh = lvertTestHigh;
if (testBaseCount <= freeCountVert && freeCountVert l=
{

// allocation succesfull

return false;

return true;

if (wrap)
vertTestHigh = lvertTestHigh;

if (testBaseCount >= freeCountVert && freeCountVert != -1)
{

// allocation succesfull

return false;

return true;

}

void GPR_manager::allocate(int number_gpr,int &base_addr,
Shader_Type stype)

{
if (stype == PIXEL)
{

base_addr = baseCountPix;

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

}
freeCountPix = -1;

if (baseCountPix + number_gpr < pixLimit)
baseCountPix = base_addr + number_gpr;

else

{
baseCountPix number_gpr-(pixLimit-base_addr);
// we wrapped change the test type
pixTestHigh = !pixTestHigh;

}
}
// vertices
else

{
base_addr = baseCountVert;

// special case for MAX GPRs
if (number_gpr == —(vertLimit—128))
{

12

LG Ex. 1002, pg 148

freeCountVert = —1;
}

if (baseCountVert - number_gpr >= vertLimit)
baseCountVert = base_addr — number_gpr;

else

{
baseCountVert = 128-(number_gpr-(base_addr-vertLimit));
// we wrapped change the test type
vertTestHigh = lvertTestHigh;

}

void GPR_manager::deAllocate(int number_gpr,Shader_Type stype)
{

switch (stype)
{
case PIXEL:

// special case for MAX GPRs
if (number_gpr == pixLimit)
{

baseCountPix e;
freeCountPix = e;
pixTestHigh = true;
break;

}
if (freeCountPix + number_gpr < piXLimit)

freeCountPix += number_gpr;
else

{
freeCountPix number_gpr-(pixLimit-freeCountPix);
// we wrapped change the test type
pixTestHigh = lpixTestHigh;

}
break;

case VERTEX:

// special case for MAX GPRs
if (number_gpr == -(vertLimit-128))
{

baseCountVert = 127;
freeCountVert = 127;
vertTestHigh = true;
break;

}
if (freeCountVert - number_gpr > vertLimit)

freeCountVert —= number_gpr;
else

{
freeCountVert = 128-(number_gpr-(freeCountVert-vertLimit));
// we wrapped change the test type
vertTestHigh = !vertTestHigh;

}
break;

LG Ex. 1002, pg 149

White data to the GPRs:

Sq_block_model.cpp
// write to the SP dummy interface
RegVect* values;

regFi1e[j]->GetValues(values,addhess);

intePpData.Addness[i]=i+base_ptn;
interpData.NumPahams = intenp_panams;

for (int k=9;k<16;k++)
{

intehpData.IntenpData[i][k][j].field[9]=values[k].field[e];

interpData.IntenpData[i][k][j].fie1d[1]=values[k].field[1];

intehpData.IntenpData[i][k][j].field[2]=values[k].field[2];

interpData.IntenpData[i][k][j].fie1d[3]=values[k].field[3];
}
// increment the GPR address

if (address+1 < gph_manager->pixLimit)
{

address ++;

=6;

sq_a1u. opp

#include "user_b|ock_model.h"
#include "sq_aluh"
#include "sq_sph"
#include <iostream>

#include "Scalar_HW/mathen.h"

using namespace std;

//--

SQ_ALU::SQ_ALU()
{

Coissuedlnstruction = true;

mathScalar = new MathEn();

};

SQ_ALU::~SQ_ALU()
{

};

delete mathScalar;

//----- This function represents the entry point to the ALU from the Sequencer------------------

14

LG Ex. 1002, pg 150

void SQ_ALU::Execute(RegFile* Reg, OutBuffer &ExportBuffer ,const CStore & Constants,uint32
SrcAAddr, uint32 SchAddr, uint32 SrcCAddr,uint32 DestAddr, uint32 ScalarDestAddr, Alulnstruction
Instruction,

unsigned int valids[], uint32 VectorlndeX,SQ_SP* pSQ_SP,
Shader_Type currentAIuType,bool pred[],cUSER_BLOCK_SQ*

pSQJnt idAlu)
{

int i;

sq = pSQ;
// fill the dummy interface
SQ_SP_data SPData;
static Constant constant[4];
static int PMasks[4][4] = {0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0};
static int CMask[4] = {0,0,0;0};
static int RAddr[4] = {0,0,0,0};
static int WAddr[4] = {0,0,0,0};
static bool REn[4] = {false,fa|se,fa|se,fa|se};
static bool WEn[4] = {false,fa|se,false,fa|se};

SPData.Phase = Vectorlndex;

for (i=0;i<4;i++)
{

SPData.ConstantValue[i]=constant[\/ector|ndex].field[0];
SPData.ExportVa|id[i]=valids[i];
SPData.ExportWValid[i]=2;
SPData.Va|ids[i] = PMasks[Vectorlndex][i];

}

SPData.ExportCount=Vectorlndex;
SPData.ExportLast=0;
SPData.CMask = CMask[Vectorlndex];
SPDataRdAddr = RAddr[Vector|ndex];
SPData.WrAddr = WAddr[VectorlndeX];
SPDataRdEnable = REn[\/ectorlndex];
SPData.WrEnable = WEn[VectorlndeX];
SPDatalndeant = 0;

SPData.SType = currentAIuType;

if (SPData.Phase ==)
SPData.|nstStart = true;

else

SPData.|nstStart = false;

switch(Vector|ndex)
{
case 0:

SPData.|nstruction = |nstruction.SrcASe| + (Instruction.SourceANegate << 2) +
(Instruction.SourceASwizzle << 4) +
((Instruction.VectorResultPointer&OX3F)<<12);

break;
case 1:

SPData.|nstruction = |nstruction.SchSe| + (Instruction.SourceBNegate << 2) +
(Instruction.SourceBSwizzle << 4) +
((Instruction.ScalarResultPointer&Ox3F)<<12);

break;

LG Ex. 1002, pg 151

case 2:

SPData.lnstruction = lnstruction.SrcCSel + (Instruction.SourceCNegate << 2) +
(Instruction.SourceCSwizzle << 4);

break;
case 3:

SPData.lnstruction = lnstruction.VectorOpcode + (Instruction.ScalarOpcode << 5)+
(|nstruction.VectorCIamp << 11) +

(Instruction.ScalarClamp << 12)+
(Instruction.VectorWriteMask << 13) +

(Instruction.ScalarWriteMask << 17);
break;

}

// do all the static stuff for next turn

if (Instruction.SrcASel)
Constants.GetConstValue(constant[Vector|ndex],SrcAAddr);

else if (Instruction.SchSel)
ConstantsGetConstValue(constant[Vector|ndex],SchAddr);

else if (Instruction.SrcCSel)
ConstantsGetConstValue(constant[Vectorlndex],SrcCAddr);

for (i=0;i<4;i++)
PMasks[\/ector|ndex][i] = valids[i];

switch(Vector|ndex)
{
case 0: // interpolator and SRC A

CMask[VectorlndeX] = 127-SrcAAddr;
RAddr[Vector|ndex] = SrcAAddr;
WAddr[VectorlndeX] = 126-SrcAAddr;
REn[Vector|ndex] = true;
WEn[Vectorlndex] = false;
break;

case 1: //TX and SRC B

CMask[\/ectorlndex] = 125-SchAddr;
RAddr[Vector|ndex] = SchAddr;
WAddr[Vectorlndex] = 124-SchAddr;
REn[Vector|ndex] = true;
WEn[Vectorlndex] = false;
break;

case 2: // Vector and SRC C

CMask[Vectorlndex] = lnstruction.VectorWriteMask;
RAddr[Vector|ndex] = SrcCAddr;
REn[Vector|ndex] = false; // no tree operands for now
// if exporting

if (((lnstruction.VectorResultPointer & 0x80) != 0) && (Instruction.PredicateSelect < 2)) {
WAddr[VectorlndeX] = lnstruction.VectorResultPointer & 0x3F;
WEn[Vectorlndex] = false;

}
else {
WAddr[Vectorlndex] = DestAddr;
WEn[Vectorlndex] = true;

}
break;

case 3: // Scalar and TX

CMask[VectorlndeX] = |nstruction.ScalarWriteMask;

16

LG Ex. 1002, pg 152

RAddr[VectorlndeX] = 123-ScalarDestAddr;
REn[Vector|ndex] = false;
// if exporting

if (((lnstruction.ScalarResultPointer & 0x80) != O) && (lnstruction.PredicateSelect < 2)) {
WAddr[Vectorlndex] = |nstruction.ScalarResuItPointer & 0X3F;
WEn[Vector|ndeX] = false;

}

else {
WAddr[Vectorlndex] = ScalarDestAddr;
WEn[Vector|ndex] = true;

}*/ // No scalar ops for now...
break;

}

pSQ_SP->SetAII(&SPData);
pSQ_SP->SetValid(true);

/+

// Real Emulator code

CurrentRegFile = Reg;
OutputBuffer = &ExportBuffer;
CurrentAlulnstruction 2 Instruction;
AluPhase = Vectorlndex;

AluType = currentAIuType;
Predicates = &(pred[0]);
validBits= &(valids[0]);
Aluld = idAIu;

ExecuteAIu|nstruction(SrcAAddr,SchAddr,SrcCAddr,DestAddr,Sca|arDestAddr,Vector|ndex,Con
stants);

//---

void SQ_ALU::ExecuteAlulnstruction(uint32 SrcAPtr, uint32 SchPtr, uint32 SrcCPtr, uint32 DstPtr,uint32
ScalarDestPtr,uint32 Vectorlndex,const CStore & Constants)
{

VectorData SrcA, Sch, SrcC, VectorResult;
mfloat<8,23,128> ScalarResult;

VectorData TempSrc;

bool error = false;

const RegVect* InputVectorA;
const RegVect* InputVectorB;
const RegVect* InputVectorC;

Constant ConstantA;
Constant ConstantB;
Constant ConstantC;

RegisterFi|eRead(SrcAPtr,SchPtr,SrcCPtr,|nputVectorA,lnputVectorB,lnputVectorC);

//Going through all the 128bit vectors (16 of them)
//They all have the same relative location inside their respective GPR files.
for(uint8 vector_id = O; vector_id <16 ; vector_id ++)

17

LG Ex. 1002, pg 153

SrcAReg.red =|nputVectorA[vector_id].field[0];
SrcAReg.green =lnputVectorA[vector_id].field[1];
SrcAReg.blue =InputVectorA[vector_id].field[2];
SrcARegalpha =lnputVectorA[vector_id].field[3];

SchReg.red =|nputVectorB[vector_id].field[O];
SchReggreen =lnputVectorB[vector_id].field[1];
SchReg.blue =lnputVectorB[vector_id].field[2];
SchReg.alpha =|nputVectorB[vector_id].field[3];

SrcCReg.red =|nputVectorC[vector_id].field[0];
SrcCReg.green =|nputVectorC[vector_id].field[1];
SrcCReg.blue =|nputVectorC[vector_id].field[2];
SrcCReg.alpha =|nputVectorC[vector_id].field[3];

// set the constants

int cAddr =0;

// relative addressing of the constant store via address register
if (CurrentAlulnstruction.SrcASel == 0 && CurrentAlulnstruction.ConstanORelAbs ==

CurrentAluInstruction.RelativeAddrRegSel ==)

cAddr = SrCAPtr + ConstantOffsets[AluPhase*16+vector_id];
if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getSlZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id %4))&OXO1)
error = true;

if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getSlZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}

Constants.GetConstValue(ConstantA, cAddr);
}
else

Constants.GetConstValue(ConstantA,SrcAPtr);

// relative addressing of the constant store via address register
if (((CurrentAIu|nstruction.SrcASel == 1 &&

CurrentAlulnstruction.SchSel == 0 && CurrentAlulnstruction.ConstanORelAbs

(CurrentAlulnstruction.SrCASel == 0 &&

18

LG Ex. 1002, pg 154

CurrentAlu|nstruction.SchSel == 0 && CurrentAluInstruction.Constan1RelAbs

CurrentAIuInstruction.RelativeAddrRegSel ==)

cAddr = SchPtr + ConstantOffsets[AIuPhase*16+vector_id];

if (AluType == VERTEX)
{

if ((cAddr — sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getS|ZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id %4))&Ox01)
error = true;

if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getS|ZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id %4))&0x01)
error = true;

}

Constants.GetConstVaIue(ConstantB, cAddr);
}
else

Constants.GetConstValue(ConstantB, SchPtr);

// relative addressing of the constant store via address register
if (((CurrentAlu|nstruction.SrcASeI == 1 &&

CurrentAlu|nstruction.SchSe| == 1 &&
CurrentAlu|nstruction.SrcCSe| == 0 && CurrentAIuInstruction.ConstanORelAbs

((CurrentAlulnstruction.SrCASeI == 0 ||
CurrentAlu|nstruction.SchSe| ==) && CurrentAIuInstruction.SrcCSel ==
&& CurrentAIu|nstruction.Constan1RelAbs ==)) &&
CurrentAlu|nstruction.ReIativeAddrRegSeI == 1)

cAddr = SrcCPtr + ConstantOffsets[AluPhase*16+vector_id];

if (AluType == VERTEX)
{

if ((cAddr - sq->SQ_VS_CONST.getBASE())
> sq->SQ_VS_CONST.getS|ZE())

{
cAddr = 0;

if (((validBits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

LG Ex. 1002, pg 155

if ((cAddr - sq->SQ_PS_CONST.getBASE())
> sq->SQ_PS_CONST.getS|ZE())

{
cAddr = 0;

if (((valid Bits[vector_id/4])>>(vector_id%4))&0x01)
error = true;

}

Constants.GetConstValue(ConstantC, cAddr);
}
else

Constants.GetConstValue(ConstantC, SrcCPtr);

// there was an addressing error
if (error)
{

if (sq->SQ DEBUG MISC 0.getDB PROB ON())
{

if (sq->SQ_DEBUG_M|SC_0.getDB_PROB_COUNT() ==)
{

sq->SQ_DEBUG_M|SC_O.setDB_PROB_COUNT(1);
sq->SQ_DEBUG_M|SC_0.setDB_PROB_ADDR(O);

}
else

sq->SQ_DEBUG_M|SC_0.setDB_PROB_COUNT(sq-
>SQ DEBUG MISC 0.getDB PROB COUNT()+1);

}
}

//muxing&swizz|ing&modification of input arguments
//---

uint32 SrcASeI,SrCBSeI,SrCCSeI;
SrcASel = CurrentAIu|nstruction.SrcASel;
SrCBSeI = CurrentAIu|nstruction.SchSel;
SrcCSel = CurrentAIulnstruction.SrcCSel;

uint8 SrcASeIReIAbs, SchSeIRelAbs,SrcCSelRelAbs;

SrcASelRelAbs = ((CurrentAIuInstruction.SourceARegPointer)>>6) & 0X01;
SchSelRelAbs = ((CurrentAIu|nstruction.SourceBRegPointer)>>6) & 0x01;
SrCCSeIReIAbs = ((CurrentAIulnstruction.SourceCRegPointer)>>6) & 0x01;

switch(SrcASel)
{
case NON_CONSTANT:

switch(SrcASelRelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcA.a|pha = SrcAReg.alpha;
SrcA.red = SrcAReg.red;
SrcA.green = SrcAReg.green;
SrcA.blue = SrcAReg.blue;
break;

LG Ex. 1002, pg 156

break;

}
break;

case CONSTANT:

SrcA.red = ConstantA.field[O];
SrcA.green = ConstantA.field[1];
SrcA.blue = ConstantA.field[2];
SrcA.aIpha = ConstantA.field[3];
break;

switch(SchSel)
{
case NON_CONSTANT:

switch(SchSelRe|Abs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

Schalpha = SchRegalpha;
Sch.red = SchReg.red;
Sch.green = SchReg.green;
Schblue = SchRegblue;
break;

default:

break;
}
break;

case CONSTANT:

Sch.red = ConstantB.field[O];
SrCB.green = ConstantB.field[1];
Sch.blue = ConstantB.field[Z];
Sch.a|pha = ConstantB.field[3];
break;

}

switch(SrcCSe|)
{
case NON_CONSTANT:

switch(SrcCSe|RelAbs)
{
case ABSOLUTE_REG:
case RELATIVE_REG:

SrcC.aIpha = SrcCReg.a|pha;
SrcC.red = SrcCReg.red;
SrcC.green = SrcCReg.green;
SrcC.b|ue = SrcCRegblue;
break;

default:

break;

}break;
case CONSTANT:

SrcC.red = ConstantC.fieId[O];
SrcC.green = ConstantC.fieId[1];
SrcC.b|ue = ConstantC.fieId[2];
SrcC.aIpha = ConstantC.fieId[3];

21

LG Ex. 1002, pg 157

break;

}

//swizz|ing of arguments
uint8 SrcASwizzIeAlpha = CurrentAlu|nstruction.SourceASwizzle >> 6;
uint8 SrcASwizzleBlue = (CurrentAIu|nstruction.SourceASwizzle >> 4)&Ox3;
uint8 SrcASwizzleGreen = (CurrentAlu|nstruction.SourceASwizzle >>2)&0X3;
uint8 SrcASwizzleRed = (CurrentAIuInstruction.SourceASwizzle)&0x3;

TempSrcalpha = SrcA.aIpha;
TempSrc.red = SrcA.red;
TempSrc.green =SrcA.green;
TempSrc.b|ue= SrcA.que;

switch(SrcASwizzleAlpha)
{
case 0:break;
case 1:

SrcA.aIpha = TempSrc.red;
break;

case 2:

SrcA.aIpha = TempSrc.green;
break;

case 3:

SrcA.aIpha = TempSrc.b|ue;
break;

}

switch(SrcASwizz|eRed)
{
case 0:break;
case 1:

SrcA.red = TempSrc.green;
break;

case 2:

SrcA.red = TempSrc.b|ue;
break;

case 3:

SrcA.red = TempSrc.aIpha;
break;

}

switch(SrcASwizzleGreen)
{
case 0:break;
case 1:

SrcA.green = TempSrc.b|ue;
break;

case 2:

SrcA.green = TempSrcalpha;
break;

case 3:

SrcA.green = TempSrc.red;
break;

LG Ex. 1002, pg 158

switch(SrcASwizzleBlue)
{
case 0:break;
case 1:

SrcAblue = TempSrc.alpha;
break;

case 2:

SrcA.blue = TempSrc.red;
break;

case 3:

SrcAblue = TempSrc.green;
break;

}
//--

TempSrc.alpha = Sch.aIpha;
TempSrc.red = Sch.red;
TempSrc.green =Sch.green;
TempSrc.b|ue= Sch.que;

uint8 SchSwizzleAlpha = (CurrentAIu|nstruction.SourceBSwizzle >> 6)&0x3;
uint8 SchSwizzIeBlue = (CurrentAIu|nstruction.SourceBSwizzle >> 4)&0x3;
uint8 SchSwizzleGreen = (CurrentAlu|nstruction.SourceBSwizzle >>2)&0x3;
uint8 SchSwizzleRed = (CurrentAlulnstruction.SourceBSwizzle)&0X3;

switch(SchSwizzleAIpha)
{
case 0:break;
case 1:

Sch.a|pha = TempSrc.red;
break;

case 2:

SrCB.aIpha = TempSrc.green;
break;

case 3:

SrCB.aIpha = TempSrc.b|ue;
break;

}

switch(SchSwizzleRed)
{
case 0:break;
case 1:

Sch.red = TempSrc.green;
break;

case 2:

Sch.red = TempSrc.b|ue;
break;

case 3:

Sch.red = TempSrc.alpha;
break;

}

switch(SchSwizzleGreen)

LG Ex. 1002, pg 159

{
case 0:break;
case 1:

Sch.green = TempSrcblue;
break;

case 2:

Sch.green = TempSrc.alpha;
break;

case 3:

Sch.green = TempSrc.red;
break;

switch(SchSwizzleBlue)
{
case 0:break;
case 1:

Sch.blue = TempSrc.a|pha;
break;

case 2:

Sch.que = TempSrc.red;
break;

case 3:

Sch.que = TempSrc.green;
break;

}

//---—

TempSrcalpha = SrcC.a|pha;
TempSrc.red = SrcC.red;
TempSrc.green =SrcC.green;
TempSrcblue: Srchlue;

uint8 SrcCSwizzleAlpha = CurrentAlu|nstruction.SourceCSwizzle >> 6;
uint8 SrcCSwizzleBlue = (CurrentAIu|nstruction.SourceCSwizz|e >> 4)&0x3;
uint8 SrcCSwizzleGreen = (CurrentAlu|nstruction.SourceCSwizzle >>2)&Ox3;
uint8 SrcCSwizzleRed = (CurrentAIuInstruction.SourceCSwizzle)&Ox3;

switch(SrcCSwizzleAlpha)
{
case 0:break;
case 1:

SrcC.a|pha = TempSrc.red;
break;

case 2:

SrcC.a|pha = TempSrc.green;
break;

case 3:

SrcC.a|pha = TempSrcblue;
break;

switch(SrcCSwizzleRed)

LG Ex. 1002, pg 160

{
case O:break;
case 1:

SrcC.red = TempSrc.green;
break;

case 2:

SrcC.red = TempSrcblue;
break;

case 3:

SrcC.red = TempSrc.alpha;
break;

}

switch(SrCCSwizzleGreen)
{
case O:break;
case 1:

SrcC.green = TempSrcblue;
break;

case 2:

SrcC.green = TempSrc.alpha;
break;

case 3:

SrcC.green = TempSrc.red;
break;

switch(SrcCSwizzleBlue)
{
case O:break;
case 1:

SrcC.b|ue = TempSrc.alpha;
break;

case 2:

SrcC.b|ue = TempSrc.red;
break;

case 3:

SrcC.b|ue = TempSrc.green;
break;

}

// ABS MODIFIER

uint8 SrcAAbs = (CurrentAlu|nstruction.SourceARegPointer>>7)&0x01;
uint8 SchAbs = (CurrentAlu|nstruction.SourceBRegPointer>>7)&0x01;
uint8 SrcCAbs = (CurrentAIu|nstruction.SourceCRegPointer>>7)&0x01;
uint8 CstOAbs = (CurrentAluInstruction.VectorResuItPointer>>7)&0X01;

if (SrcASel == NON_CONSTANT)
{

switch (SrcAAbs){
case NO_ABS_MOD:

break;

case ABS_MOD:
SrcA.red.abs();
SrcA.green.abs();

LG Ex. 1002, pg 161

SrcA.b|ue.abs();
SrcA.a|pha.abs();
break;

default:

break;

};

switch (CstOAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcA.red.abs();
SrcA.green.abs();
SrcA.blue.abs();
SrcA.a|pha.abs();
break;

break;

}

if (SchSel == NON_CONSTANT)
{

switch (SchAbs){
case NO_ABS_MOD:

break;

case ABS_MOD:
Sch.red.abs();
Sch.green.abs();
Sch.b|ue.abs();
Sch.a|pha.abs();
break;

break;

};
}
else if (SchSeI == CONSTANT)
{

switch (CstOAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

Sch.red.abs();
Sch.green.abs();
Sch.blue.abs();
Sch.a|pha.abs();
break;

break;

}

if (SrcCSel == NON_CONSTANT)
{

LG Ex. 1002, pg 162

switch (SrcCAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC.blue.abs();
SrcC.aIpha.abs();

PreviousScalar[Alu|d][Vector|ndex][vector_id].alpha.abs();
PreviousScalar[Alu |d][Vector|ndex][vector_id].red.abs();
PreviousScalar[Alu |d][Vector|ndex][vector_id] .green.abs();
PreviousScalar[Alu|d][\/ector|ndex][vector_id].blue.abs();
break;

break;

};
}
else if (SrcCSeI == CONSTANT)
{

switch (CstOAbs){
case NO_ABS_MOD:

break;
case ABS_MOD:

SrcC.red.abs();
SrcC.green.abs();
SrcC.que.abs();
SrcC.alpha.abs();

PreviousScalar[Alu|d][\/ector| ndex][vector_id].alpha.abs();
PreviousScalar[Alu|d][\/ector| ndex][vector_id].red.abs();
PreviousScalar[Alu|d][\/ector| ndex][vector_id].green.abs();
PreviousScalar[Alu|d][Vector|ndex][vector_id].blue.abs();
break;

break;

}

//---

//negate input modifiers
uint8 SrcANegate= CurrentAIuInstruction.SourceANegate;
uint8 SchNegate= CurrentAIuInstruction.SourceBNegate;
uint8 SrcCNegate= CurrentAIuInstruction.SourceCNegate;

switch(SrcANegate){
case NIL:break;
case NEGATE:

SrcA.a|pha.neg();
SrcA.red.neg();
SrcA.green.neg();
SrcA.que.neg();
break;

break;

LG Ex. 1002, pg 163

switch(SrCBNegate){
case NIL:break;
case NEGATE:

Sch.alpha.neg();
Sch.red.neg();
Sch.green.neg();
Sch.blue.neg();
break;

break;

}

switch(SrcCNegate){
case NIL:break;
case NEGATE:

SrcC.alpha.neg();
SrcC.red.neg();
SrcC.green.neg();
SrcC.blue.neg();

PreviousScalar[Alu|d][Vectorlndex][vector_id].alpha.neg();
PreviousScalar[Aluld][\/ectorlndex][vector_id].red.neg();
PreviousScalar[Alu|d][Vect0rlndex][vector_id].green.neg();
PreviousScalar[Alu|d][\/ectorlndex][vector_id].blue.neg();
break;

break;

}

//---

//Execute ALU opcode
ExecuteAlqucode(SrcA,Sch,SrcC,VectorResult,ScalarResult,vect0r_id);

// Clamp results if told to
VectorResult.red = Clamp(VectorResult.red,true);
VectorResult.green = Clamp(VectorResult.green,true);
VectorResult.blue = Clamp(VectorResult.blue,true);
VectorResult.alpha = Clamp(Vect0rResult.alpha,true);

ScalarResult = Clamp(ScalarResult,false);

//Save Previous Vector and Scalar

PreviousVect0r[Aluld][Vectorlndex][vector_id].alpha = VectorResult.alpha;
PreviousVector[Aluld][Vector|ndex][vector_id].red = VectorResult.red;
PreviousVector[Aluld][Vectorlndex][vector_id].green = VectorResult.green;
PreviousVector[Aluld][Vectorlndex][vector_id].blue = VectorResultblue;

PreviousScalar[Aluld][\/ectorlndex][vector_id].alpha = ScalarResult;
PreviousScalar[Aluld][\/ectorlndex][vector_id].red = ScalarResult;
PreviousScalar[Aluld][\/ectorlndex][vector_id].green = ScalarResult;
PreviousScalar[Aluld][\/ectorlndex][vector_id].blue = ScalarResult;

//--

28

LG Ex. 1002, pg 164

//Accumulate the result into an array of 16x128
VectorVector.Val[vector_id].field[0] =VectorResult.red;
VectorVector.Val[vector_id].field[1] =VectorResult.green;
VectorVector.Val[vector_id].field[2] =VectorResult.blue;
VectorVector.Val[vector_id].field[3] =VectorResult.alpha ;

ScalarVector.Val[vector_id].field[0] =ScalarResult;
ScalarVector.Val[vector_id].field[1] =ScalarResult;
ScalarVector.Val[vector_id].field[2] =ScalarResult;
ScalarVector.Val[vector_id].field[3] =ScalarResult;

//---

//Exporting the results
bool Export = (CurrentAlulnstruction.ScalarResultPointer>>7)&Ox1;

if(Export)
{

// fog exports
if (((CurrentAlulnstruction.VectorResultPointer&0x3F) >= 16) &&

((CurrentAlulnstruction.VectorResultPointer&0x3F) < 20) &&
(Cu rrentAlu|nstruction.VectorWriteMask&OxO1) &&

(CurrentAlulnstruction.ScalarWriteMask&0x01))
{

unsigned int inVect;
unsigned int inFog;
unsigned int blended;

// RED

float value = VectorResult.red.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
value = ScalarResult.getReal();
inFog = *(reinterpret_cast<unsigned int*>(&value));
inFog = inFog >> 8;

blended = (inVect) | (inFog&Ox3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended red
OutputBuffer->values[vector_id].field[0] = value;

// GREEN

value = VectorResultgreen.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>6)&Ox3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended green
OutputBuffer->values[vector_id].field[1] = value;

// BLUE

value = VectorResult.blue.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>12)&Ox3F);
value = *(reinterpret_cast<float*>(&blended));

29

LG Ex. 1002, pg 165

// export blended blue
OutputBuffer->values[vector_id].fie|d[2] = value;

// ALPHA

value = VectorResultalpha.getReal();
inVect = *(reinterpret_cast<unsigned int*>(&value));
blended = (inVect) | ((inFog>>18)&0x3F);
value = *(reinterpret_cast<float*>(&blended));

// export blended alpha
OutputBuffer->values[vector_id].field[3] = value;

// RED COMPONENT

if (CurrentAIu|nstruction.VectorWriteMask&OxO1 &&
Cu rrentAlu Instruction.ScalarWriteMask&OxO1)

OutputBuffer->values[vector_id].field[0] = 1.0;
else if (CurrentAIu|nstruction.VectorWriteMask&OxO1)

OutputBuffer->va|ues[vector_id].field[0] = VectorResult.red;
else if (CurrentAIu|nstruction.ScalarWriteMask&0x01)

OutputBuffer->va|ues[vector_id].field[0] = ScalarResult;
// GREEN COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>1)&OXO1 &&
(CurrentAlulnstruction.ScalarWriteMask>>1)&0x01)

OutputBuffer->va|ues[vector_id].field[1] = 1.0;
else if ((CurrentAIuInstruction.VectorWriteMask>>1)&0X01)

OutputBuffer->va|ues[vector_id].field[1] = VectorResult.green;
else if ((CurrentAluInstruction.ScalarWriteMask>>1)&OXO1)

OutputBuffer->va|ues[vector_id].field[1] = ScalarResult;
// BLUE COMPONENT

if ((CurrentAlulnstruction.VectorWriteMask>>2)&0X01 &&
(CurrentAlulnstruction.ScalarWriteMask>>2)&OxO1)

OutputBuffer->va|ues[vector_id].field[2] = 1.0;
else if ((CurrentAIulnstruction.VectorWriteMask>>2)&OxO1)

OutputBuffer->va|ues[vector_id].field[2] = VectorResultblue;
else if ((CurrentAlu|nstruction.ScalarWriteMask>>2)&0X01)

OutputBuffer->va|ues[vector_id].field[2] = ScalarResult;
// ALPHA COMPONENT

if ((CurrentAIu|nstruction.VectorWriteMask>>3)&0x01 &&
(CurrentAlulnstruction.ScalarWriteMask>>3)&OxO1)

OutputBuffer->va|ues[vector_id].field[3] = 1.0;
else if ((CurrentAIu|nstruction.VectorWriteMask>>3)&0x01)

OutputBuffer->va|ues[vector_id].field[3] = VectorResultalpha;
else if ((CurrentAlulnstruction.ScalarWriteMask>>3)&0x01)

OutputBuffer->va|ues[vector_id].field[3] = ScalarResult;
}

// predicate the exports here
int predValid;
int predicat;
intj;
for (int i=0;i<4;i++)
{

LG Ex. 1002, pg 166

predValid = validBits[i];
predicat = 0;

if (CurrentAlu|nstruction.PredicateSelect ==)
{

for (j=0;j<4;j++)
predicat += (!(Predicates[i*4+j]))<<j;

predValid &= predicat;
}
else if (CurrentAlu|nstruction.PredicateSelect ==)
{

for (j=0;j<4;j++)
predicat += Predicates[i*4+j]<<j;

predValid &= predicat;
}

OutputBuffer->va|ids[i]=predVa|id;
}
OutputBuffer->valid = true;

}
}

//write the result into register files
RegisterFileWrite(CurrentAIuInstruction.VectorWriteMask,CurrentAIuInstruction.ScalarWriteMask,

ScalarDestPtrDstPtr);
}

//---

void SQ_ALU::ExecuteAIqucode(VectorData SrcA, VectorData Sch, VectorData SrcC, VectorData &
VectorResult,mfloat<8,23,128> & ScalarResult, int i)
{

mfloat<8,23,128> red;

mfloat<8,23,128> green;
mfloat<8,23,128> blue;
mfloat<8,23,128> alpha;

mfloat<8,23,128> one;

one.putReal((float)1.0);
mfloat<8,23,128> zero;

zero.putReaI((float)0.0);
mfloat<8,23,128> two;

two.putReal((float)2.0);

Coissuedlnstruction = true;

//Executing Vector Opcode
switch(CurrentAlu|nstruction.VectorOpcode)
{
case ADDv:

{
if(sq->isHardwareAccurate())
{

VectorResuIt.alpha = multiply_add(SrcA.alpha,one,SrCB.alpha);
VectorResuIt.red = multip|y_add(SrcA.red,one,Sch.red);
VectorResuIt.green = multiply_add(SrcA.green,one,Sch.green);
VectorResuIt.que = multip|y_add(SrCA.blue,one,Sch.blue);

31

LG Ex. 1002, pg 167

VectorResult.alpha.add(SrcA.a|pha,Sch.aIpha);
VectorResult.red.add(SrcA.red,Sch.red);
VectorResult.green.add(SrcA.green,Sch.green);
VectorResult.blue.add(SrcA.blue,Sch.blue);

}
break;

}
case MAXv:

VectorResult.alpha.max(SrcA.alpha,Sch.alpha);
VectorResult.red.max(SrCA.red,SrCB.red);
VectorResult.green.max(SrcA.green,Sch.green);
VectorResult.blue.max(SrcA.blue,Sch.que);
break;

case MINv:

VectorResult.alpha.min(SrcA.a|pha,Sch.alpha);
VectorResult.red.min(SrcA.red,Sch.red);
VectorResult.green.min(SrcA.green,Sch.green);
VectorResult.blue.min(SrcA.b|ue,Sch.blue);
break;

case MULv:

if(sq->isHardwareAccurate())
{

VectorResult.alpha = multiply_add(SrcA.a|pha, Sch.a|pha,zero);
VectorResult.red = multip|y_add(SrcA.red, Sch.red,zero);
VectorResult.green = multiply_add(SrcA.green, Sch.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, Sch.blue,zero);

}
else

{
VectorResult.alpha.mul(SrcA.a|pha,Sch.alpha);
VectorResult.red.mul(SrcA.red,Sch.red);
VectorResult.green.mu|(SrcA.green,Sch.green);
VectorResult.blue.mul(SrcA.blue,Schblue);

}
break;

case SETEV:

VectorResult.alpha = (SrcA.aIpha == Sch.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red == Sch.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green == Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue == Sch.b|ue) ? 1.0:0.0;
break;

case SETGTV:

VectorResult.alpha = (SrcA.aIpha > Sch.a|pha) ? 1.0:0.0;
VectorResult.red = (SrcA.red > Schred) ? 1.0:0.0;
VectorResult.green = (SrcA.green > Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue > Schblue) ? 1.0:0.0;
break;

case SETGTEV:

VectorResult.alpha = (SrcA.aIpha >= Sch.aIpha) ? 1.0:0.0;
VectorResultred = (SrcAred >= Sch.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green >= Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue >= Schblue) ? 1.0:0.0;

32

LG Ex. 1002, pg 168

break;
case SETNEv:

VectorResult.alpha = (SrcA.alpha != Sch.alpha) ? 1.0:0.0;
VectorResult.red = (SrcA.red != Sch.red) ? 1.0:0.0;
VectorResult.green = (SrcA.green !2 Sch.green) ? 1.0:0.0;
VectorResult.blue = (SrcA.b|ue != Schblue) ? 1.0:0.0;
break;

case FRACV:

VectorResult.alpha.sub(SrcA.alpha,(float)((int)SrcA.alpha.getReal()));
VectorResult.red.sub(SrcA.red,(float)((int)SrcA.red.getReal()));
VectorResult.green.sub(SrCA.green,(float)((int)SrcA.green.getReal()));
VectorResult.blue.sub(SrcA.blue,(float)((int)SrcA.blue.getReal()));
break;

case TRUNCV:

VectorResult.alpha = (float)((int)SrcAalpha.getReal());
VectorResult.red = (float)((int)SrcA.red.getReal());
VectorResult.green = (float)((int)SrcA.green.getReal());
VectorResult.blue = (float)((int)SrcA.blue.getReal());
break;

case FLOORV:

if (SrcA.alpha.getReal() >= 0)
VectorResult.alpha = (float)((int)SrcA.alpha.getReal());

else

VectorResult.alpha = (float)((int)SrcA.a|pha.getReal())-1.0f;
if (SrcA.red.getReal() >= 0)

VectorResult.red = (float)((int)SrcA.red.getReal());
else

VectorResult.red = (float)((int)SrcA.red.getReal())-1.0f;
if (SrcA.green.getReal() >= 0)

VectorResult.green = (float)((int)SrcA.green.getReal());
else

VectorResult.green = (float)((int)SrcA.green.getReal())-1.0f;
if (SrcA.b|ue.getReal() >= 0)

VectorResult.blue = (float)((int)SrcA.blue.getReal());
else

VectorResult.blue = (float)((int)SrcA.blue.getReal())-1.0f;
break;

case MULADDV:

if(sq->isHardwareAccurate())
{

VectorResult.alpha = multiply_add(SrcA.alpha, Sch.alpha,SrcC.alpha);
VectorResult.red = multiply_add(SrcA.red, Sch.red,SrCC.red);
VectorResult.green = multiply_add(SrcA.green, Sch.green,SrcC.green);
VectorResult.blue = multiply_add(SrcA.blue, Sch.blue,SrcC.blue);

VectorResult.alpha.mad(SrcA.alpha,Sch.alpha,SrcC.alpha);
VectorResult.red.mad(SrcA.red,Sch.red,SrCC.red);
VectorResult.green . mad(SrcA.green,Sch .green,SrcC.green);
VectorResult.blue.mad(SrcA.blue,Sch.blue,SrcC.blue);

}
Coissuedlnstruction = false;
break;

case DOT4v:

if(sq->isHardwareAccurate())

LG Ex. 1002, pg 169

VectorResult.alpha = multiply_add(SrcA.alpha, Sch.a|pha,zero);
VectorResult.red = multiply_add(SrcAred, SrCB.red,zero);
VectorResult.green = multiply_add(SrcA.green, Sch.green,zero);
VectorResult.blue = multiply_add(SrcA.b|ue, Sch.blue,zer0);

VectorResult.alpha = multiply_add(one,VectorResult.a|pha,Vect0rResult.red);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,Vect0rResult.green);
VectorResult.alpha = multiply_add(one,VectorResult.alpha,Vect0rResult.blue);
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

alpha.mul(SrcA.alpha, Sch.a|pha);
red.mu|(SrCA.red, Sch.red);
green.mul(SrcA.green, Schgreen);
blue.mul(SrcA.blue, Sch.b|ue);

VectorResult.alpha.add(a|pha,red);
VectorResult.alpha +=green;
VectorResult.alpha +=b|ue;
VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;

}
break;

case DOT3V:

if(sq->isHardwareAccurateO)
{

VectorResult.red = multiply_add(SrcA.red, Sch.red,zero);
VectorResult.green = multiply_add(SrcA.green, Sch.green,zero);
VectorResult.blue = multiply_add(SrcA.blue, SrCB.blue,zero);

VectorResult.red = mu|tip|y_add(one,VectorResult.red,VectorResu|t.green);
VectorResult.red = mu|tip|y_add(one,VectorResult.red,VectorResu|t.blue);
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

VectorResult.alpha = VectorResult.red;

red.mul(SrcA.red,Sch.red);
green.mu|(SrCA.green, Sch.green);
blue.mul(SrcA.blue,Sch.b|ue);
VectorResult.red.add(red,green);
VectorResult.red += blue;
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

}
break;

case CNDEv:

VectorResult.alpha = (SrcA.alpha == 0.0) ? Sch.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red 22 0.0) ? SrCB.red:SrcC.red;

34

LG Ex. 1002, pg 170

VectorResult.green = (SrcA.green == 0.0) ? Sch.green:SrcC.green;
VectorResult.b|ue = (SrcA.b|ue == 0.0) ? Sch.que:SrcC.blue;
break;

case CNDGTv:

VectorResult.alpha = (SrcA.aIpha > 0.0) ? Sch.alpha:SrcC.alpha;
VectorResult.red = (SrcA.red > 0.0) ? SrCB.red:SrcC.red;
VectorResult.green = (SrcA.green > 0.0) ? Sch.green:SrcC.green;
VectorResult.b|ue = (SrcA.b|ue > 0.0) ? Sch.que:SrcC.blue;
break;

case CNDGTEV:

VectorResult.alpha = (SrcA.aIpha >= 0.0) ? Sch.alpha:SrCC.alpha;
VectorResult.red = (SrcA.red >= 0.0) ? Sch.red:SrcC.red;
VectorResult.green = (SrcA.green >= 0.0) ? Sch.green:SrcC.green;
VectorResult.b|ue = (SrcA.b|ue >= 0.0) ? Sch.b|ue:SrcC.blue;
break;

case CUBEV:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.b|ue)
{

VectorResult.red = SrcA.red;

if (SrcA.red >= 0)

VectorResult.green =0;
VectorResult.alpha = -SrcA.blue;
VectorResult.b|ue = -SrcA.green;

VectorResult.green =1;
VectorResult.alpha = SrcA.b|ue;
VectorResult.b|ue = -SrcA.green;

}
else if (SrcA.green > SrcA.b|ue)
{

VectorResult.red = SrcA.green;
if (SrcA.green >= 0)

VectorResult.green =2;
VectorResult.alpha = SrcA.red;
VectorResult.b|ue = SrcA.b|ue;

VectorResult.green =3;
VectorResult.alpha = SrcA.red;
VectorResult.b|ue = -SrcA.blue;

VectorResult.red = SrcA.b|ue;

if (SrcA.b|ue >= 0)
{

VectorResult.green =4;
VectorResult.alpha = SrcA.red;
VectorResult.b|ue = -SrcA.green;

35

LG Ex. 1002, pg 171

VectorResult.green =5;
VectorResult.alpha = -SrcA.red;
VectorResult.blue = -SrcA.green;

}
}
if(sq->isHardwareAccurateO)

VectorResult.red = mu|tiply_add(VectorResult.red,two,zero);
}

{

}
break;

case MAX4v:

if (SrcA.red > SrcA.green && SrcA.red > SrcA.que && SrcA.red > SrcA.alpha)
VectorResult.alpha = SrcA.red;

else if (SrcA.green > SrcA.blue && SrcA.green > SrcA.alpha)
VectorResult.alpha = SrcA.green;

else if (SrcAblue > SrcA.alpha)
VectorResult.alpha = SrcA.blue;

VectorResult.red.mul(2,VectorResult.red);

else

VectorResult.alpha = SrcA.alpha;

VectorResult.red = VectorResult.alpha;
VectorResult.green = VectorResult.alpha;
VectorResult.blue = VectorResult.alpha;
break;

case DOT2ADDV:

if(sq->isHardwareAccurate())
{

VectorResult.red = multiply_add(SrcA.red, Sch.red,zero);
VectorResult.green = multiply_add(SrcA.green, SrCB.green,zer0);

VectorResult.red = multiply_add(one,VectorResult.red,VectorResult.green);
VectorResult.red = multiply_add(one,Vect0rResu|t.red,SrcC.red);
VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

VectorResult.red.mul(SrcA.red,Sch.red);
VectorResult.green.mul(SrcA.green,Sch.green);
VectorResult.red.add(VectorResult.red,VectorResultgreen);
VectorResult.red.add(VectorResult.red,SrcC.red);

VectorResult.alpha = VectorResult.red;
VectorResult.green = VectorResult.red;
VectorResult.blue = VectorResult.red;

}
break;

case PRED_SETE_PUSHV:

LG Ex. 1002, pg 172

// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) ==)
{

if (Sch.alpha.getReal() == 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;

case PRED_SETGT_PUSHV:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1)==)
{

if (Sch.aIpha.getReal() > 0.0f && SrcA.red.getReal() == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;

case PRED_SETGTE_PUSHV:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&OXO1) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) ==)
{

if (Sch.aIpha.getReal() >= 0.0f && SrcA.red.getRealO == 0.0f)
{

Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;

case PRED_SETNE_PUSHV:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAIu|nstruction.PredicateSelect»1) ==)
{

if (Sch.aIpha.getReal() != 0.0f && SrcA.red.getRealO == 0.0f)

37

LG Ex. 1002, pg 173

Predicates[i] = true;
VectorResult.red = 0.0f;

Predicates[i] = false;
VectorResult.red = SrcA.red.getReal()+1.0f;

break;
case KILLEv:

// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) ==)
{

if (SrcA.aIpha.getReal() == Sch.aIpha.getReal() && SrcA.red.getReal() ==
Sch.red.getReal() &&

SrcA.green.getReal() == Sch.green.getReal() && SrcA.b|ue.getReal()
== Sch.b|ue.getReal())

{

}
validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLGTV:

// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect»1) ==)
{

if (SrcA.aIpha.getReal() > Sch.alpha.getReal() && SrcA.red.getReal() >
Sch.red.getReal() &&

SrcA.green.getReal() > Sch.green.getReal() && SrcA.b|ue.getReal() >
Sch.blue.getReal())

validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLGTEV:

// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) ==)
{

if (SrcA.aIpha.getReal() >= Sch.alpha.getReal() && SrcA.red.getReal() >=
Sch.red.getReal() &&

SrcA.green.getReal() >= Sch.green.getRea|() && SrcA.b|ue.getReal()
>= Sch.blue.getReal())

{

}
validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLNEv:

// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&OxO1) == Predicates[i] ||

38

LG Ex. 1002, pg 174

(CurrentAlulnstruction.PredicateSelect>>1) ==)
{

Sch.red.getReal() &&
if (SrcA.alpha.getReal() != Sch.alpha.getReal() && SrcA.red.getReal() !=

SrcA.green.getReal() !2 Sch.green.getReal() && SrcA.b|ue.getReal() !2
Sch.blue.getReal())

validBits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case MOVAV:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect»1) ==)
{

}
VectorResult.red = SrcA.red;

VectorResultgreen = SrcA.green;
VectorResultblue = SrcA.b|ue;

VectorResult.alpha = SrcA.a|pha;
break;

case DSTv:

VectorResult.red = 1.0f;

if(sq->isHardwareAccurate())
VectorResultgreen = multiply_add(SrcA.green, Sch.green,zero);

ConstantOffsets[i+AluPhase*16] = floor(SrcA.alpha.getReal()+0.5);

else

VectorResult.green.mul(SrcA.green,Sch.green);
VectorResult.blue = SrcA.b|ue;

VectorResult.alpha = Sch.alpha;
break;

default:

std::cerr << "Unsuported Vector Opcode in SP: " << CurrentAlulnstruction.VectorOpcode
<< std::endl;

}

//Executing Scalar Opcode
//Note: There is a coissue only when vector opcode uses two sources or less

nanCheck nanValue;
Vector4 result,in;

if(Coissuedlnstruction)
{

switch(CurrentAlulnstruction.ScalarOpcode)
{
case ADDS:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,one,SrcC.red);

else

ScalarResult.add(SrcC.alpha,SrcC.red);
break;

case ADD_PREVs:
if(sq->isHardwareAccurate())

39

LG Ex. 1002, pg 175

ScalarResult =

multiply_add(SrcC.alpha,one,PreviousScalar[Aluld][AluPhase][i].red);
else

ScalarResult.add(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

case MULs:

if(sq->isHardwareAccurate())
ScalarResult = multiply_add(SrcC.alpha,SrcC.red,zero);

else

ScalarResult.mul(SrcC.alpha,SrcC.red);
break;

case MUL_PREVs:
if(sq->isHardwareAccurate())

ScalarResult =

multiply_add(SrcC.alpha,PreviousScalar[AIuld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][A|uPhase][i].red);
break;

case MUL_PREV25:
nanValuef = PreviousScalar[Aluld][AluPhase][i].red.getReal();
if (nanValue.u == OXFF7FFFFF || nanValue.u == 0XFF800000 ||

SrcC.red.getReal() <= 0)
{

nanValue.u = OXFF7FFFFF;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
ScalarResult =

multip|y_add(SrcC.a|pha,PreviousScalar[AIuld][AluPhase][i].red,zero);
else

ScalarResult.mul(SrcC.alpha,PreviousScalar[Aluld][A|uPhase][i].red);
}
break;

case Mle:

ScalarResultmin(SrcC.alpha,SrcC.red);
break;

case MAXs:

ScalarResult.max(SrcC.alpha,SrcC.red);
break;

case SETEs:

ScalarResult = (SrcC.alpha == 0.0) ? 1.0:0.0;
break;

case SETNEs:

ScalarResult = (SrcC.alpha !2 0.0) ? 1.0:0.0;
break;

case SETGTs:

ScalarResult = (SrcC.alpha > 0.0) ? 1.0:0.0;
break;

case SETGTEs:

ScalarResult= (SrcC.alpha >= 0.0) ? 1.0:0.0;
break;

case FRACs:

ScalarResult.sub(SrcC.alpha,(float)((int)SrcC.alpha.getReal()));

40

LG Ex. 1002, pg 176

break;
case TRUNCs:

ScalarResult= (float)((int)SrcC.alpha.getReal());
break;

case FLOORS:

if (SrcC.a|pha.getReal() > O)
ScalarResult = (float)((int)SrcC.alpha.getRealO);

else

ScalarResult = (float)((int)SrcC.alpha.getReaI())-1.0f;
break;

case EXP_IEEE:
nanValue.f = SrcC.alpha.getReaI();
// 0

if (SrCC.alpha.getReaI() == 0.0f)
{

}
// NAN

else if (nanValue.f !2 nanValue.f)
{

}
// + INF

else if (nanValue.u == 0X7F800000)
{

}
//- INF

else if (nanValue.u == OXFF8000OO)
{

}
// + MAX_F LT
else if (nanValue.u == OX7F7FFFFF)
{

ScalarResult = 1.0f;

ScalarResult = nanValue.f;

ScalarResult = nanValue.f;

ScalarResult = 0.0f;

nanValue.u = 0X7F800000;
ScalarResult = nanVaIue.f;

}
// - MAX_F LT
else if (nanValue.u == 0XFF7FFFFF)
{

}

{

ScalarResult = 0.0f;

if(sq->isHardwareAccurate())
{

in.X = SrCC.alpha.getReal();
mathScalar->ExpBaseZFullDX4(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = pow(2,SrcC.a|pha.getReal());

LG Ex. 1002, pg 177

break;
case LOG_CLAMP:

nanValue.f = SrcC.alpha.getReal();
// 0

if (SrcC.alpha.getReal() == 0.0f)
{

nanValue.u = OXFF7FFFFF;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
//+ INF

else if (nanValue.u == OX7F800000)
{

}
// - INF

else if (nanValue.u == OXFF800000)
{

ScalarResult = nanValue.f;

ScalarResult = nanValue.f;

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
// neg
else if (nanValue.f < 0)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())

in.x = SrcC.alpha.getReal();
mathScalar—>LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = log(SrCC.alpha.getReal())/log(2);

}
break;

case LOG_IEEE:
nanValue.f = SrcC.alpha.getReal();
// 0

if (SrCC.alpha.getReal() == 0.0f)
{

nanValue.u = OXFF800000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

42

LG Ex. 1002, pg 178

ScalarResult = nanValue.f;

}
// + INF

else if (nanValueu == 0X7F8000OO)
{

}
//- INF

else if (nanValueu == OXFFSOOOOO)
{

ScalarResult = nanValue.f;

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

}
// neg
else if (nanValue.f < O)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())

in.x = SrcC.a|pha.getReal();
mathScalar—>LogBase2FullDX4(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = Iog(SrcC.alpha.getReal())/Iog(2);

}
break;

case RECIP_CLAMP:
nanValue.f = SrcC.a|pha.getReal();
// + 0

if (nanValueu == OXOOOOOOOO)
{

nanValue.u = OXTFTFFFFF;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValueu == 0x80000000)
{

nanValue.u = OxFF7FFFFF;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
//+ INF

else if (nanValue.u == 0X7F800000)
{

ScalarResult = nanValue.f;

nanValueu = OX8000OOOO;

43

LG Ex. 1002, pg 179

ScalarResult = nanValue.f;

}
// - INF

else if (nanValue.u == OXFFBOOOOO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.X);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrcC.a|pha);
break;

case REC|P_FF:
nanValue.f = SrcC.a|pha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValueu = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == OX80000000)
{

nanValueu = 0x80000000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f !2 nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F800000)
{

ScalarResult = nanValue.f;

nanValueu = 0x80000000;
ScalarResult = nanValue.f;

}
//- INF

else if (nanValue.u == OXFF8000OO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurateO)
{

in.x = SrCC.a|pha.getReal();
mathScalar->RecipFF(&result.x,&in.x);
ScalarResult = result.x;

44

LG Ex. 1002, pg 180

else

ScalarResult.div(1.0,SrcC.alpha);
}
break;

case REC|P_|EEE:
nanValue.f = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = 0x7F800000;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == 0x80000000)
{

nanValue.u = 0xFF800000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F8000OO)
{

ScalarResult = nanValue.f;

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
// - INF

else if (nanValue.u == OXFF8000OO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->RecipFF(&result.x,&in.X);
ScalarResult = result.x;

}
else

ScalarResult.div(1.0,SrCC.alpha);
}
break;

case RECIPSQ_CLAMP:
nanValue.f = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = OX7F7FFFFF;
ScalarResult = nanValue.f;

LG Ex. 1002, pg 181

else if (nanValueu == 0x80000000)
{

nanValueu = 0XFF7FFFFF;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
//+ INF

else if (nanValueu == 0X7F800000)
{

ScalarResult = nanValue.f;

nanValueu = 0x00000000;
ScalarResult = nanValue.f;

}
// - INF

else if (nanValueu == OXFF800000)
{

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

}
// -

else if (nanValue.f < 0.0f)
{

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

}
if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->ReciqurtFF(&result.x,&in.x);
ScalarResult = result.x;

}
else

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
break;

case RECIPSQ_FF:
nanValue.f = SrCC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValueu = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == 0x80000000)
{

nanValueu = OXBOOOOOOO;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}

ScalarResult = nanValue.f;

46

LG Ex. 1002, pg 182

// + INF

else if (nanValue.u == 0X7F800000)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
//- INF

else if (nanValue.u == OXFFBOOOOO)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
//-

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReaI();
mathScalar->ReciqurtFF(&result.x,&in.x);
ScalarResult = result.x;

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReaI());
}
break;

case RECIPSQ_IEEE:
nanValuef = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = OX7F8000OO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == OX80000000)
{

nanValue.u = 0xFF800000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F800000)
{

ScalarResult = nanValue.f;

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - INF

LG Ex. 1002, pg 183

else if (nanValueu == 0XFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
// -

else if (nanValue.f < 0.0f)
{

nanValueu = R400_NAN;
ScalarResult = nanValue.f;

if(sq->isHardwareAccurate())
{

in.x = SrcC.alpha.getReal();
mathScalar->ReciqurtFF(&result.x,&in.X);
ScalarResult = resultx;

ScalarResult = sqrt(ScalarResult.div(1.0,SrcC.alpha).getReal());
}
break;

case MOVAs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) ==)
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal()+O.5);

ScalarResult = SrcCalpha;
break;

case MOVA_FLOORs:
// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) ==)
ConstantOffsets[i+AluPhase*16] = floor(SrcC.alpha.getReal());

ScalarResult = SrcC.alpha;
break;

case SUBS:

if(sq->isHardwareAccurate())
{

green = -1.0f;
ScalarResult = multiply_add(SrcC.red,green,SrcC.a|pha);

}
else

ScalarResult.sub(SrcC.a|pha,SrcC.red);
break;

case SUB_PREVs:
if(sq->isHardwareAccurate())
{

green 2 -1.0f;
ScalarResult =

multiply_add(PreviousScalar[Aluld][AluPhase][i].red,green,SrcC.alpha);
}
else

ScalarResult.sub(SrcC.alpha,PreviousScalar[Aluld][AluPhase][i].red);
break;

48

LG Ex. 1002, pg 184

case PRED_SETEs:
// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAIu|nstruction.PredicateSelect>>1) ==)
{

if (SrcC.a|pha.getReal() == 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SETGTs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) ==)
{

if (SrcC.a|pha.getReal() > 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SETGTEs:

// Check for predication
if ((CurrentAIulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect>>1) ==)
{

if (SrcC.alpha.getReal() >= 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SETNEs:

// check for predication
if ((CurrentAIu|nstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAIu|nstruction.PredicateSelect>>1) ==)
{

49

LG Ex. 1002, pg 185

if (SrcC.alpha.getReal() != 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = 1.0f;

break;
case PRED_SET_INVs:

// check for predication
if ((CurrentAluInstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) ==)
{

if (SrcC.red.getReal() == 1.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
if (SrcC.red.getReal() == 0.0f)

ScalarResult = 1.0f;
else

ScalarResult = SrcC.red.getReal();

}
break;

case PRED_SET_POPs:
// Check for predication
if ((CurrentAlulnstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) ==)
{

if (SrcC.red.getReal()-1.0f <= 0.0f)
{

Predicates[i]: true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = SrcC.red.getRea|()—1.0f;

break;
case PRED_SET_CLRs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAIulnstruction.PredicateSelect>>1) ==)
{

Predicates[i] = false;
// set to max float

50

LG Ex. 1002, pg 186

nanValueu = 0x7F7FFFFF;
ScalarResult = nanValue.f;

}
break;

case PRED_SET_RESTORES:
// check for predication
if ((CurrentAlu|nstruction.PredicateSelect&0X01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) ==)
{

if (SrcC.red.getReal() == 0.0f)
{

Predicates[i] = true;
ScalarResult = 0.0f;

Predicates[i] = false;
ScalarResult = SrcC.red.getReal();

break;
case KILLEs:

// check for predication
if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect>>1) ==)
{

if (SrcC.a|pha.getReal() == 0.0f)
{

}
validBits[i/4] = validBits[i/4]&(OxEF>>(4-(i%4)));

}
break;

case KILLGTs:

// Check for predication
if ((CurrentAIulnstruction.PredicateSelect&OxO1) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect»1) ==)
{

if (SrcC.aIpha.getReal() > 0.0f)
{

}
valid Bits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLGTEs:

// Check for predication
if ((CurrentAIulnstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlu|nstruction.PredicateSelect>>1) == 0)
{

if (SrcC.aIpha.getReal() >= 0.0f)
{

}
valid Bits[i/4] = validBits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KILLNEs:

// check for predication

LG Ex. 1002, pg 187

if ((CurrentAlulnstruction.PredicateSelect&0x01) == Predicates[i] ||
(CurrentAlu|nstruction.PredicateSelect>>1) ==)

{
if (SrcC.alpha.getReal() != 0.0f)
{

}
validBits[i/4] = valid Bits[i/4]&(OXEF>>(4-(i%4)));

}
break;

case KlLLONEs:

// check for predication
if ((CurrentAluInstruction.PredicateSelect&0x01) == Predicates[i] ||

(CurrentAlulnstruction.PredicateSelect>>1) ==)
{

if (SrcC.alpha.getReal() == 1.0f)
{

}
validBits[i/4] = validBits[i/4]&(0xEF>>(4-(i%4)));

}
break;

case SQRT_IEEE:
nanValue.f = SrcC.alpha.getReal();
// + 0

if (nanValue.u == OXOOOOOOOO)
{

nanValue.u = OXOOOOOOOO;
ScalarResult = nanValue.f;

}
// - 0

else if (nanValue.u == OX80000000)
{

nanValue.u = 0x80000000;
ScalarResult = nanValue.f;

}
// NAN

else if (nanValue.f != nanValue.f)
{

}
// + INF

else if (nanValue.u == OX7F800000)
{

ScalarResult = nanValue.f;

nanValue.u = 0X7F8000OO;
ScalarResult = nanValue.f;

}
// - INF

else if (nanValue.u == OXFF800000)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

}
// -

else if (nanValue.f < 0.0f)
{

nanValue.u = R400_NAN;
ScalarResult = nanValue.f;

52

LG Ex. 1002, pg 188

}
else

ScalarResult = pow(2,0.5*log(SrcC.alpha.getReal())/log(2));
break;

default:

std::cerr << "Scalar Opcode Not supported: " <<
((int)CurrentAIulnstruction.ScalarOpcode) << std::endl;

break;

}
}

}
//---

void SQ_ALU::RegisterFileRead(uint32 SrcAPtr,uint32 SchPtr,uint32 SrcCPtr,const RegVect*
&|nputVectorA,

const RegVect* &lnputVectorB,const RegVect*
&|nputVectorC)
{

CurrentRegFile->GetConstValues(|nputVectorA,SrcAPtr);
CurrentRegFile->GetConstValues(|nputVectorB,SchPtr);
CurrentRegFile->GetConstValues(|nputVectorC,SrcCPtr);

}
//--

void SQ_ALU:: RegisterFileWrite(uint8 VectorWriteMask, uint8 ScalarWriteMask,uint32 ScalarAddr,
uint32 VectorAddr)

{

//grabing a pointer to the GPR entry in location VectorAddr
RegVect* CurrentRegEntry;
CurrentRegFile->GetValues(CurrentRegEntry, VectorAddr);

// if not exporting
if (!((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))
{

if (VectorWriteMask != OX0)
{

for (int vector_id = O; vector_id < 16 ; vector_id ++){
for(int channel = 0; channel < 4 ; channel ++){

if (VectorWriteMask&(1<<channel))
if ((CurrentAlulnstruction.PredicateSelect&OxO1 ==

Predicates[vector_id] ||
(CurrentAlu|nstruction.PredicateSelect»1) ==

0)
CurrentRegEntry[vector_id].field[channel] =

VectorVector.Val[vector_id] .field[channel];
}

}

}

//grabing a pointer to the GPR entry in location ScalarAddr
CurrentRegFile->GetValues(CurrentRegEntry, ScalarAddr);
// if not exporting
if (!((CurrentAlulnstruction.ScalarResultPointer>>7)&0x1))
{

if (ScalarWriteMask != OX0)
{

LG Ex. 1002, pg 189

for (int vector_id = O; vector_id < 16 ; vector_id ++){
for(int channel 2 0; channel < 4 ; channel ++){
if (ScalarWriteMask&(1<<channel))

if ((CurrentAIu|nstruction.PredicateSelect&0x01) ==
Predicates[vector_id] ||

(Cu rrentAIu|nstruction.PredicateSelect>>1) ==
0)

CurrentRegEntry[vector_id].field[channe|] =
ScalarVector.Val[vector_id].field[channel];

}
}

}

//--

mfloat<8,23,128> SQ_ALU::Clamp(mf|oat<8,23,128> result, bool vector)
{

mfloat<8,23,128> one;

one.putReal((float)1.0);
mfloat<8,23,128> zero;

zero.putReal((float)0.0);
mfloat<8,23,128> result_clamped ;

if(vector){
result_clamped = ((result > one) & CurrentAlulnstruction.VectorClamp) ? one: result;
result_clamped 2 ((result < zero) & CurrentAlu|nstruction.VectorC|amp) ? zero :

result_clamped;
}
else{

result_clamped = ((result > one) & CurrentAlu|nstruction.ScalarClamp) ? one : result;
result_clamped 2 ((result < zero) & CurrentAIulnstruction.ScalarClamp) ? zero :

result_clamped;
}
return (result_clamped);

Sq_block_model.cpp

#include <chip/aricode/arichipiinterface.h>

#includc <gfx/sq/uscr_block_m0dcl.h>

#include <gfx/sx/user_block_model.h>

#include <gfx/sq/sq_dumps.h>

#include <sys/rom/user_block_m0del.h>

#include <reg/crayola_offset.h>
#include <nurnbers/numbers.h>

#include <teX/tc0nst.h>

#include <core/registry.h>

LG Ex. 1002, pg 190

#include <iostream>

#include <queu e>

#include "reg_file.h"

#include "sq_a1u.h"

#include "constantistoreh"

#include "interpolatorsh"

#include "instruction_store.h"
#include "arbiterh"

#include "alu_types.h"

//#define DEBUG_SEQ

using namespace std;

//___ __

cUSER_BLOCK_SQ: :cUSER_BLOCK_SQ (cAR_CHIP_INTERFACE*

pchip, uint32 b10ck_id,

cMODEL_BLOCK_PARAMETERS& blockParameters) :

cAR_BLOCK_SQ (pchip, block_id, blockParameters), interpolators(parameters)

{

int i,j ;

stdzzcout << "block SQ constructor" << std::endl;

#ifndcf MSDOS

m_durnpSQ = Core::Registry::read("HKEY_LOCAL_MACHINE\\SOFTWARE\\ATI

Techno10gies\\Debug\\Sunmp", 0);
#else

m_durnpSQ : (uint32)(getenv(”Sunmp”));
#endif // End MSDOS

pSC_SQ=N ULL;

pSCisP:NULL;

pSQ_SC=NULL;

pVGT_S Q_Vetts=NULL;

pVGT_SQ_Verts_ready:NULL;

pSQisPiInterp=NULLg

pSQ_SX=NULL;

pSP_SX=NULL;

pSQ_TP=NULL;

pSX_SQ=NULL;

pSQ_SP:NULL;

pTP_S Q=NULL;

pSQ_CP_PIX =NULL;

pSQ_CP_VTX : NULL;

pSQiRB : NULL;

LG Ex. 1002, pg 191

regFile[0]:NULL;

regFile[1]:NULL;

regFile[2]=NULL;

regFile[3]=NULL;

arbiter=NULL;

gprfimanager=NULLg

rn_qupDurnp :NULL;

rn_sprDurnp =NULL;

rn_sqSXDurnp = NULL;

idleO : idlelj : 0;

if(rn_dumpSQ>0) {

n1_qupDun1p : new eSqu_Dun1p("sq_tp.dmp");

mispSXDump = new CSpSXiDumpC'spisx.dmp");

rn_squDump = new eSqSX_Dump("sq_sx.dmp");

rn_schDurnp = new cSqSe_Durnp("sq_se.drnp");

m_squInterpDump = new eSquInterp_Dump("sq_sp_interp.dmp");

peFile : f0pen("sq_sx_pe.dmp","wb");

auto_eount_pix = 0;

auto_eount_vtx : 0;

// set up the register files

for (i=0;i<4;i++)

regFile[i]= new RegFileO;

// clean the output buffer

outBuffer.valid = false;

for (i=0;i< l 6;i++)I
1

outBuffer.values[i] .field[0]:0.0;

outBuffer.values[i].field[1]=0.0;

outBuffer.values[i] .field[2]=0.0;

outBuffer.values[i] .field[3]:0.0;

}

// ORDER IS RGBA A in [3] B in [2] G in [l] and R in [0] OR

// ORDER IS XYZW W in [3] Z in [2] Y in [l] and X in [0]

// init the parameter store to all Os

for 0:0;j<16;j++)r
1

for (i=0;i<128;i++)

{

pararneterS[i].Val[i].field[0] : 0.0;

56

LG Ex. 1002, pg 192

parameters[i].Val[j].field[1] : 0.0;

parameters[i].Val[i].field[2] : 0.0;

parameters[i].Val[j].ficld[3] = 0.0;

}

// clean the pixel input buffer

for (i=0;j<4;j++)r
1

interpfi].new_vect0r : false;

interp[j].pcidealloc : 0;

interp[j].state_id = 0;

}

// clear the vertex shader ready counts

for (i=0;i<8;i++)(
1

}

for (i=0;i<64;i++)

for (i=0;j<2;j++)

{

verteXReady[i]=0;

stagingRegisters[i][j].field[0] : 0.0f;

staginchgistcrs[i][j].ficld[1] = 0.0f;

stagingRegisters[i][j].field[2] = 0.0f;

stagingRegisters[i][j].field[3] = 0.0f;

}

for (i=0;i<3;i++)

for (j=0;j<16;j++)

{

RTPararneters[i][j].field[0] : 0.0f;

RTPararneters[i][j].field[1] = 0.0f;

RTParameters[i][j].field[2] = 0.0f;

RTParameters[i][j].field[3] : 0.0f;

}

// set the parameter cache head to 0

chead = 0;

// set the parameter cache head to 127

chree : 127;

// set the test type

checkHigh = true;

// create the ALU arbiter

LG Ex. 1002, pg 193

arbiter : new Arbiter(this,n1_dun1pSQ);

// create the GPR manager

gpr_rnanager = new GPR_manager(this);

currentiwriteistate = 0;1
I

void cUSER_BLOCK_SQ: :Reset()

{

int i,j;

for (i=0;i<4;i++)

delete regFile[i];

delete arbiter;

delete gpr_rnanager;

regFile[0]=NULL;

regFile[l]=NULL;

regFile[2]:NULL;

regFile[3]=NULL;

arbiter=NULL;

gpr_n1anager:NULL;

idleO = idle1_7 = 0;

auto_count_pix = O;

autoicountivtx = 0;

// set up the register files

for (i=0;i<4;i++)

regFile[i]: new RegFileO;

// clean the output buffer

outBuffer.valid = false;

for (i=0;l< l 6;i++)l
1

outBuffer.values[i] .field[0]=0.0;

outBuffer.values[i].field[1]=0.0;

outBuffer.values[i] .field[2]=0.0;

0utBuffer.values[i] .field[3]:0.0;1
J'

// ORDER IS RGBA A in [3] B in [2] Gin [l] and R in [0] OR

// ORDER IS XYZW W in [3] Z in [2] Yin [l] and X in [0]

// init the parameter store to all Os

58

LG Ex. 1002, pg 194

for 0:0;j<16;j++)

{

for (i=0;i<128;i++)

{

parameters[i].Val[j].field[0] = 0.0;

parametersfi].Vale].field[1] = 0.0;

parameters[i].Val[j].field[2] : 0.0;

parameters[i].Val[j].field[3] = 0.0;

}

// clean the pixel input buffer

for (i=0;j<4;j++)I
1

interpfi].newivector = false;

interp[j].pc_dcalloc = 0;

interpfi].state_id = 0;

}

// clear the vertex shader ready counts

for (i=0;i<8;i++)I
1

‘r

for (i=0;i<64;i++)

for (i=0;j<2;j++)

{

verteXReady[i]:0;

stagingRegisters[i][j].field[0] : 0.0f;

stagingRegisters[i][j].field[1] = 0.0f;

stagingRegisters[i][j].field[2] = 0.0f;

stagingRegisters[i][j].field[3] : 0.0f;

}

for (i=0;i<3;i++)

for 0:0;j<16;j++)

{

RTPararnctcrs[i][j].ficld[0] = 0.0f;

RTPararneters[i][j].field[1] = 0.0f;

RTParameters[i][j].field[2] = 0.0f;

RTParametersfi][j].field[3] : 0.0f;

}

// set the parameter cache head to 0

chead : 0;

// set the parameter cache head to 127

59

LG Ex. 1002, pg 195

chree : 127;

// set the test type

chcckHigh = true;

// create the ALU arbiter

arbiter = new Arbiter(this,midumpSQ);

// create the GPR manager

gpr_rnanager = new GPR_rnanager(this);

currentiwriteistate : 0;

}

cUSER_BLOCK_SQ: :~cUSER_BLOCK_SQ(V0id)

{

int i;

for (i=0;i<4;i++)

delete regFile[i];

if(rn_durnpSQ>0) {

delete(rn_qupDurnp);

delete(rn_sprDuInp);

delete(n1_squDurnp);

delete(1nischDu1np);

dclctc(m_squIntcrpDurnp);

fprintf(chile,"END\n");

fclose(chile);

delete arbiter;

delete gpr_rnanager;

}

”**

// Main function for block

H**

void cUSER_BLOCK_SQ: :Main()

{

Fetch();

ProcessO;

Output();

}
fl**

// Fetch function for block

LG Ex. 1002, pg 196

*>l<**>l<*>l<

void cUSER_BLOCK_SQ: :Fctch(void)

{

static sq_indx_count = O;

// grab the output of the PA and copy it localy

pSC_SQ->GetAll(&sc_sq_data);

pSC_SP->GetAll(&sc_sp_data);

// grab the output of the VGT and copy it localy

pVGT_S Q_Verts->GetAll(&vgt_sq_verts_data);

if(! pVGT_SQ_verts_ready—>GetReady())

vgtisqivertsidataVGTiSQisend = false;
#if 0

if (vgt_sq_verts_data.VGT_SQ_send && vgt_sq_verts_data.VGT_SQ_indx_valid) {

sq_indx_count++;

}

if (vgt_sq_verts_data.VGT_SQ_send &&

vgt_sq_verts_data.VGT_SQ_end_of_vtx_vect) {

printf("sq_block_rnodel: eov -- received %d real indices frorn

VGT\n",sq_indX_count);

fflush(stdout);

sq_indx_count = 0;

}
#endif

// ok for more new stuff

pVGT_SQ_verts_ready->SetReady(true);

// invalid ate the TP interface

pSQ_TP->SetValid(false);

// invalidate SX interfaces

pSQisX—>SetValid(false);

pSQ_SX->SctSQ_SX_cxp_valid(falsc);

pSQ_SX->SetSQ_SX_free_done(false);

pSP_SX->SetValid(false);

// invalidate SP interface

pSQ_SP->SetValid(false);

// invalidate CP interfaces

pSQiCPiVTX->SetValid(false);

61

LG Ex. 1002, pg 197

pSQ_CP_PIX->SetValid(false);

// invalidate SP interface

pSQ_SP_Interp->SetValid(false);

// invalidate SC interface

pSQ_SC->SetSQ_SC_dec_entr_ent(false);

pSQ_SC->SetSQ_SC_free_buf(false);

// TEXTURE PlPE INTERFACE READ

static int phase : 0;

// grab the return from the texture pipe if valid

if (pTP_SQ->GetValid())I
1

TXColor returnColor;

uinteger<7> registcrAddress;

RegVect* txAddr;

int valid;

registerAddress : pTP_SQ->GetTP_SP_gpr_dst();

regFile [phase] ->GetValues(tXAddr,registerAddress);

// Here we write the data to the GPRs. We only write data that has a
// write mask activated

for (int i=0;i<16;i++)

{

returnColor = pTP_SQ->GetTP_SP_data(i);

valid = pTPiSQ—>GetTPiSPipiximask(i/4).getValue();

if ((valid>>(i%4))&0x01)

{

if (pTP_SQ->GetTP_SP_crnask(0))

txAddr[i].field[0]=returnC0l0r.x;

if (pTPiSQ—>GetTPiSPiernask(1))

txAddr[i].field[1]=returnColor.y;

if (pTP_SQ->GetTP_SP_ernask(2))

tXAddr[i].fleld[2]=returnColor.Z;

if (pTPiSQ—>GetTPiSPiemask(3))

tXAddr[i].field[3]=returnColor.w;

}

// increment the phase

phase ++;

if (phase I: 4)

{

LG Ex. 1002, pg 198

phase :0;

// all texture instrucions of the clause have returned we can place
// the vector back in the next RS

if (pTP_SQ->GetTP_SQ_data_rdy())

{

// set the ready flag in the RS

if (pTP_SQ->GetTP_SQ_type() :: VERTEX)

{

arbiter->vertexStation[pTP_SQ-

>GetTP_SQ_thread_id()].status.texReadsOutstanding : false;

}
else

{

arbiter—>pixelStation[pTP_SQ-

>GetTPiSQithreadiid()].status.texReadsOutstanding = false;

}

}

”**

// Process pixels function for block
H**

void cUSER_BLOCK_SQ: :ProcessPixels(V0id)

{

int i,j;

int deallocating : 0;

int ready = 0;

static bool first_transfert : true;

static int bufiread = 0;

static int lincSQ[4] = {0,0,0,0};

static int lineSP[4] = {0,0,0,0};

static int SQ_buf_id = 0;

static int QWrote : 0;

bool pulsed = false;

Pixlnputs pix;

// first deal with these one clock transfers

63

LG Ex. 1002, pg 199

if (sc_sq_data.SC_SQ_event && sc_sq_data.SC_SQ_vahd)

{

// filter out all events but fot the PS_DEALLOC and PS_TS_DEALLOC

if (sc_sq_data.SC_SQ_event_id == PS_DEALLOC ||

se_sq_data.SC_SQ_event_id == PS_DONE_TS

|| scisqidata.SCiSQieventiid == RSTiPIXiCNT){
1

pixevent = se_sq_data.SC_SQ_event_id;

pixstate = sc_sq_data.SC_SQ_state_id;

eventF1F0])ush(pix);

if (pixstate :: 0)

idlCO ++;
else

idlel_7 ++;

}

pSQ_SC->SetSQ_SC_dee_cntr_ent(true);

pulsed = true;

}

// new vector and dealloe tokens (without any other data)

else if (first_transfert && se_sq_data.SC_SQ_quad_mask[0] ::

&& se_sq_data.SC_SQ_quad_rnask[l] == 0 &&

sc_sq_data.SC_SQ_quad_mask[2] == 0 &&

sc_sq_data.SC_SQ_quad_rnask[3] :: 0 && sc_sq_data.SC_SQ_vahd)

{

if (sc_sq_data.SC_SQ_pe_dealloe > 0)

{

pixevent = 200+sc_sq_data.SC_SQ_pc_dealloc;

pixstate = scisqidataSCiSQistateiid;

eventFIFO.push(pix);

pSQ_SC->SetSQ_SC_dec_entr_cnt(true);

pulsed = true;

if (pixstate :: 0)

idleO ++;
else

idlel_7 ++;

}

if (scisqidataSCiSQinewivector)

{

pSQ_SC->SetSQ_SC_dec_entr_cnt(true);

pixevent = 300;

pixstate : sc_sq_data.SC_SQ_state_id;

eventFIFO.push(pix);

pulsed = true;

if (pix.state == 0)

idleO ++;
else

LG Ex. 1002, pg 200

idlel_7 ++;

}

}

// accumulate the control data if something sent by the SC

else if (sc_sq_data.SC_SQ_valid)l
1

if (first_transfert)

{

if (sc_sq_data.SC_SQ_state_id == 0)

idleO +2 4;
else

idlel_7 += 4;

}

first_transfert : false;

// get the first pixcl group signal and save it

if (sc_sq_data.SC_SQ_new_vector != 0)

{

interp[SQ_buf_id].new_vector : sc_sq_data.SC_SQ_new_vector;

pulsed : true;

pSQ_SC->SetSQ_SC_dec_cntr_cnt(true);

}

if (sc_sq_data.SC_SQ_pc_dealloc > 0)

{

}

intcrp[SQ_buf_id].pc_dcalloc += sc_sq_data.SC_SQ_pc_dcalloc;

// load the control data in the control buffers

for (i:0;i<4;i++)

{

if (sc_sq_data.SC_SQ_quad_n1ask[i])

{

// get the associated state and save it

interp[SQ_buf_id].state_id = sc_sq_data.SC_SQ_state_id;

interp[SQ_buf_id].nolncrement

scisqidata.SCiSQinoiincipixicnt;

intcrp[SQ_buf_id].ptr0[lincSQ[i]%4][i]

sc_sq_data.SC_SQ_pc_ptr0;

interp [SQ_buf_id] .ptrl [lineSQ [i] %4] [i]

sc_sq_data.SC_SQ_pc_ptrl;

interp[SQ_buf_id].ptr2[lineSQ[i]%4][i]

sc_sq_data.SC_SQ_pc_ptr2;

interp [SQ_buf_id] .provok[lineSQ [i]%4] [i]

sc_sq_data.SC_SQ_provol<_vtx;

LG Ex. 1002, pg 201

interp [SQ_buf_id] .pix_mask[lineSQ [i]%4] [i]

scischata.SCiSQJ)iximask[i];

intcrp [SQ_buf_id] .lod_corrcct[lincSQ [i]%4] [i]

sc_sq_data.SC_SQ_lod_c01rect[i].getValueO;

// get the primitive type

interp [SQ_buf_id] .prim_type[lineSQ [i]%4] [i]

sc_sq_data.SC_SQ_prim_type;

lineSQ[i] : (iineSQ[i]+1)%4;

QWrote ++;

}

// manage completion of a pixel vector

if (QWrotc == 16)

{

QWrote = 0;

// a valid non event vector is 100

pixevent = 100;

eventFIFO.push(piX);

first_transfert : true;

sctContcxtNurnbcr(intcrp [SQ_buf_id] .statc_id.gctValucO);

// increment by one more buffer is sending two buffers down

if (SQ_CONTEXT_MISC.getSC_SAMPLE_CNTL()

CENTROIDSiANDiCENTER S) {

SQ_buf_id : (SQ_buf_id+1)%4;

}

SQ_buf_id = (SQ_buf_id+1)%4;

}

// if the event fifo contains something, try to put it in the RS

if (ieventFIFOemptyO)1’
1

pix = eventFIFO.front();

if (pixevent < 100)

{

if (pixevent :: RST_PIX_CNT)

{

if (pixstate == 0)

idleO ——;
else

LG Ex. 1002, pg 202

ldlel_7 -';

autoicountjix : 0;

cvcntFIFO.p0p();

}
else if (! arbiter-

>AddVect0r(pix .event,PIXEL,piX .state,interp[buf;read] .piXimask,true,interp[bufiread] .lodicorr

ect))

{

}

}

else if (pixevent == 100 && lpulsed)

{

}

else if (pix.cvcnt >= 200 && pixcvcnt < 300)

{

eventFIFO.p0p0;

ready: 1 ;

deallocating = pixevent - 200;

eventF1FO.p0p();

if (pixstate :: 0)

idleO --;
else

idlel_7 -—;

}
// new vector

else if (pixevent == 300)

{

if (vertexReady[piX .state]>0)!'
1

verteXReady[piX.state]--;

eventFIFO.pop();

if (pixstate :: 0)

idleO --;
else

idlel_7 --;

}

// accumulate data interface

if (sc_sp_data. SC_SP_valid)r
1

for (i=0;i<4;i++)

{

if (sc_sp_data.SC_SP_Valid[i])

{

LG Ex. 1002, pg 203

// ij data

if (scispidataSCiSPitypem :: CENTROID)

{

for G=0;j<4;j++)

{

interp[1ineSP[i]/4].I[lineSP[i]%4][i*4--j]

sc_sp_data.SC_SP_ij_data[i].I[j];
interp[1ineSP[i]/4] .J[lineSP[i]%4] [1*4fij]

sc_sp_data.SC_SP_ij_data[i] .J[j];

}

}

else if (sc_sp_data.SC_SP_type[i] == CENTER)

{

for 0:0;j<4;j++)

{

interp[(lineSP[i]/4W1)%4].I[lineSP[i]%4][i*4"j] = sc_sp_data.SC_SP_ij_data[i] .I[j];

interp[(lineSP[i]/4--1)%4].J[lineSP[i]%4][i*4--j] : sc_sp_data.SC_SP_ij_data[i]JD];

}

}

// xy data

else if (sc_sp_data.SC_SP_type[i] :: XY_FACENESS)

{

interp[lincSP[i]/4].X[lineSP[i]%4][i]

(sc_sp_data.SC_SP_ij_data[i].I[0] >> 12) & Oxfff;

interp[lineSP[i]/4].Y[lineSP[i]%4][i]

(scispidata.SCiSPiijidata[i].I[0] & Oxfff);

interp[lineSP[i]/4].face[1ineSP[i]%4][i]

(sc_sp_data.SC_SP_ij_data[i].I[0] >> 24) & 0x1;

}

// change line in the SP

if (sc sp data.SC SP last quad data[i])

{

// if sending more than one buffer

if((lineSP[i]+1)%4 == 0)

{

setContextNumber(interp[1ineSP[i]/4] .state_id.getValue());
if

(SQ_CONTEXT_MISC.getSC_SAMPLE_CNTL() :: CENTROIDS_AND_CENTERS)

lineSP[i] = (1ineSP[i]+4)%16;

}

lineSP[i] : (lineSP[i]+1)%16;

LG Ex. 1002, pg 204

}

// if 1] buffer filled, interpolate the results
// also allocate the GPRs.

if (ready > 0)r
1

// set the state to the current state

setContextN umber(interp [buf_read] .state_id.getValueO);

int base_ptr;

int numReg;

numReg : SQ_PROGRAM_CNTL.getPS_NUM_REG()+ 1;

boolean GPRif‘ull = true;

boolean station_full =truc;

int address;

// if the data is ready in the PC

if (! interp [buf_read] .new_vector

vertexReady[interp[buf_read].state_id]>0 ||

interp[buf_read].prim_type[0][0] >= 4) // Real Time

{

// check for space in both GPRs and reservation station 0

GPR_full = gpr_managcr->tcstAllocatc(nuchg,basc_ptr,PIXEL);

if (lGPR_full)

{

stationifull = arbiter—>AddVector(baseiptr,PlXEL,

interp[buf_read] . state_id,interp [buf_read] .pix_mask, false,

interp[buf_read] . lod_correct);

}

// if we have place for everything AND there is valid data
// in the PCs if this is the first vector...

if (!GPR_full && !station_full)

{

// Structurc for thc SQ->SP dummy intcrfacc

SQ_SP_interp_data interpData;

// clear the firstVector flag and decrement the count if

// the pixel group was accepted

if (interp[buf_read] .new_vector)

{

interp[buf_read] .new_vector : false;

vertexReady[interp [bufiread] .stateiid] -—;

69

LG Ex. 1002, pg 205

}

gpr_rnanager->allocatc(nurchg,basc_ptr,PIXEL);

// loop for the four lines

for (i=0;j<4;j++)

{

address : base_ptr;

int IJlineIndex;

// loop for the number of parameters to interpolate

int interp_pararns;

if (SQiPROGRAMiCNTL.getPARAMiGENO

&& SQ_PROGRAM_CNTL.getGEN_1NDEX_PIX())

interp_params =

SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+3;
else if

(SQ_PROGRAM_CNTL.gctPARAM_GEN() ||

SQ_PROGRAM_CNTL.getGEN_INDEX_PIX())

interp_params

SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()--2;
else

interp_params

SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()--1 ;

if (inteeraararns > 16)

interp_params = 16;

for (i=0;i<interp_params;i++)

{
int shade

SQ_INTERPOLATOR_CNTL.getPARAM_SHADE();

bool flat = !((shade >> (interp_pararns-

1))&0x01);

// deal with the center/centroid stuff here

IJlineIndex = j;

uint ijBuffer;

ijBuffer = bufiread;
if

(SQ_INTERPOLATOR_CNTL.getSAMPLING_PATTERN() != 0)

{

int samplingPattern

SQ_INTERPOLATOR_CNTL.getSAMPLING_PATTERN();

if ((sarnplingPattern >> i)&0x01)

ijBuffer = (buf_read+l)%4;

LG Ex. 1002, pg 206

interpolators .Interpolate(regFi1e[j] ,address,interp [ij Buffer] .I[IJ1ineIndex] ,

intcrp [ijBuffer] .J[IJlincIndcx],

interp[buf_read] . ptrO [j] ,interp[buf_read] .ptr 1 [j] ,

interp[buf_read] .ptr2[j] ,i,interp[buf_read] .prim_type[j] ,this,

interp[buf_read] .X[j] ,interp [buf_read] .Y [j] ,interp [buf_read] . face [j] ,flat,interp [buf_read] .p

r0vokfi] , !interp [buf_read] .nolncrement);

// write to the SP dummy interface

RegVect"< values;

regFileU]—>GetVa1ues(values,address);

interpData.Address[i]=i+base_ptr;

interpDataNumParams = interp_params;

for (int k:0;k<16;k++)

{

interpData.InterpData[i] [k] [j] .field[0]=values[k] .field[0];

intcrpData.IntcrpData[i] [k] [j] .ficld[1]=valucs[k] .fic1d[1];

interpData.InterpData[i] [k] [j] .field[2]=values[k] .field[2];

interpData.InterpData[i] [k] [j] .field[3]:Values[k] .field[3];

}
// increment the GPR address

if (address+1 < gpr_manager—>pixLimit)

{

address ++;

address = 0;

_ }
}

pSQ_SP_Interp->SetAll(&interpData);

pSQ_SP_Interp->SetValid(true);

// dump the SQ->SP interpolator dummy interface

if(midumpSQ>0) {

71

LG Ex. 1002, pg 207

if (pSQ_SP_Interp->GetNewValid())

{

pSQ_SP_Intcrp-

>GetNewAll(&(m_squInterpDump->_data));

m_squInterpDump->Dump();

}l
I

// signify to the SC that we freed a buffer

pSQ_SC—>SetSQ_SC_free_buf(true);
// And a control line

pSQ_SC->SetSQ_SC_dec_cntr_cnt(true);

// pop the event queue to signify that we consumed a buffer

eventFlFOpopO;

// set the deallocation flags

if (interp[buf_read].pc_dealloc >0)

{

deallocating : interp[buf_read] .pc_dealloc;

interp[buf_read].pc_dealloc = 0;

}

// swap buffers

buf_rcad = (buf_rcad+1)%4;

// increment one more ifmultiple buffers for current state

if (SQ_CONTEXT_MISC.getSC_SAMPLE_CNTL(==

CENTROIDSiANDiCENTERS)

buf_read : (buf_read+l)%4;

} // endif GPR and RS ready

} // endif data ready

} // endif ready process pixel

// dump the SQ->SC interface

if(m_dumpSQ>0) {

if (pSQiSC—>GetNewValid())

{

pSQ_SC->GetNewAll(&(m_schDump->_data))g

m_schDump->Dump();

}1
J'

//PC Deallocation

static int deallocation : 0;

int dealloc;

LG Ex. 1002, pg 208

While (deallocating > 0)

{

// new dcalocation schcmc (groups of 16)

if (pcAllocated.empty())

{

stdzzcerr << "Error in SQ, trying to dealocate empty parameter

stores" << std::endl;

}

dealloc = pcAllocated.front()/4;

deallocation ++;

if (deallocation == 4)

{

pcAllocatedpopO;

deallocation = 0;

}

if (chree + dealloc < 128)

chree +2 dealloc;
else

{

chree = dealloc-(l28-chree);

checkHigh : !checkHigh;

}

dcallocating --;

} // end while PC dealloc

}

void cUSER_BLOCK_SQ: :ProcessVerts(void)

{

static int stageCount = 0;

// current staging register layer

static int layer =0;

static bool doubleSent : false;

static uintcgcr<4> valids[4][4];

static bool ready = false;

// used to keep the state around ifwe need to stall

static uinteger<3> VState;

// compute the number of valid pipes

LG Ex. 1002, pg 209

int dis : pChip—>pROM—

>ROM7BAD7PIPEiDISABLEiREGISTERDISABLEiSPiVTX;

if (vgt_sq_verts_data.VGT_SQ_send && lready &&

!vgt_sq_verts_data.VGT_SQ_event)!
I

vState : vgt_sq_verts_data.VGT_SQ_state;

RegVect value;

value.field[0]: vgt_sq_vefis_data.VGT_SQ_Vsisr_data[0];

valuefield [l]: vgtischertsidataVGTiSinsisridata[l];

value.field[2]= vgt_sq_verts_data.VGT_SQ_vsisr_data[2];

stagingRegisters[stageCount][layer] : value;

if (stageCount == 0 && layer == 0)

{

if (vState == 0)

idleO +2 4;
else

idlel_7 += 4;

}

if ((stageCount%4) :: 0 && layer::0)

valids[stagcC0unt/ l 6] [(stagcCount/4)%4] =0;

// only validate ifVsierata is valid

if (VgtisqivertsidataVGTiSQiindxivalid){
1

if (layer == 0)

valids[stageCount/ l 6] [(stageCount/4)%4]

l<<(stageC0unt%4);

stageCount++;

if (stageCount%4 == 0)

{

if (((stageCount :: 16 || stageCount :: 32 || stageCount ::

48) && dis&0xOl) ||

((stagcCount == 4 || stageCount == 20 H stagcCount

== 36 || stageCount == 52) && dis&0x02) H

((stageCount == 8 || stageCount == 24 H stageCount

:: 40 || stageCount :: 56) && dis&0x04) H

((stageCount :: 12 || stageCount :: 28 ||

stageCount == 44 || stageCount == 60) && dis&0x08))

{

}

stageCount +2 4;

LG Ex. 1002, pg 210

}

// reset the layer to 0

layer = 0;

if (vgt_sq_verts_data.VGT_SQ_end_of_vtx_vect)

{

for (int i=stageC0unt;i<64;i++)

{

if ((i%4) :: 0)

valids[i/16][(i/4)%4] =0;

}

if (!vgt_sq_wrts_data.VGT_SQ_Vsisr_continued)

ready = true;

}

if (vgt_sq_wrts_data.VGT_SQ_Vsisr_continued)

{

layer : 1;

if ((stageCount-4)%4 == 0 && (stageCount-4) >0)

{

if (((stageCount :: 16 H stageCount :: 32 H stageCount ::

48) && dis&0x01) ||

((stagcCount == 4 H stagcCount == 20 H stagcCount

== 36 H stageCount == 52) && dis&0x02) H

((stageCount == 8 H stageCount == 24 H stageCount

== 40 H stageCount == 56) && dis&0x04) H

((stageCount :: 12 H stageCount :: 28 H

stageCount == 44 H stageCount == 60) && dis&0x08))

{

}

stageCount —: 4;

}

stageCount --;

doubleSent : true;

}

// regular end of vector (not early terminated)

if (stageCount == 64)

ready 2 true;

}

// event processing

static int eventld;

LG Ex. 1002, pg 211

static bool sentEvt : false;

float templd ;

static int evState;

if (vgt_sq_verts_data.VGT_SQ_send && vgt_sq_verts_data.VGT_SQ_event &&

lsentEvt) l
1

tempId : vgt_sq_verts_data.VGT_SQ_vsisr_data[0].getRealO;

eventId = reinterpret_cast<uint32&>(ten1pld);

eventId = eventld & OXIF;

// filter out all events but fot the VS_DEALLOC and VS_TS_DEALLOC

if (eventId :: VSiDEALLOC H eventId :: VSiDONEiTS // ep events

| | eventId == CONTEXT_DONE | | eventId ==

CACHE_FLUSH_TS

|| eventld CACHE_FLUSH || eventld

CACHEiFLUSHiANDjNViTSiEVENT

|| eventId == CACHE_FLUSH_AND_INV_EVENT) // Rb events

{

sentEvt = true;

evState : vgt_sq_ve1ts_data.VGT_SQ_state;

if (evState :: 0)

idlCO ++;
else

idlel_7 ++;

}

else if (eventI == RST_VTX_CNT)

aut0_count_vtx = 0;

}

if (sentEvt)(
1

if (! arbiter-

>AddVeetor(eventld,VERTEX,evState,valids ,true,interp [0] .lod_eorreet))

{

}

else // we are full stop sending data

{

sentEvt = false;

vgt_sq_verts_data.VGT_SQ_send = false;

pVGT_SQ_verts_ready->SetReady(false);

}

if (ready)I
1

// set the state to the current vector

setContextNutnber(vState.getValue());

76

LG Ex. 1002, pg 212

// copy everything to GPRs

int basc_ptr;

int numReg;

numReg = SQ_PROGRAM_CNTL.getVS_NUM_REG()+lg

boolean GPRj'ull=true;

boolean station_full:true;

// check for space in both GPRs and reservation station 0

GPR_full : gpr_rnanager—>testAllocate(nurnReg,base_ptr,VERTEX);

if (YGPRifull)

{

station_full = arbiter->AddVector(base_ptr,VERTEX,

VState,Valids,false,interp[0] .lod_correct);

}

if (!GPR_full && !station_full)

{

gpr_manager—>allocate(numReg,base_ptr,VERTEX);
// allocation succesfull write the data

int i,j;

RegVect* vtAddr;

RegVect* vtAddrl;

RegVect* vtAuto;

int address;

for (1' =0;j<4;j++)

{

// counting GPRs in reverse order for vertices

address = base_ptr;

regFile[j]->GetValues(vtAddr,address);

if (address > gpr_rnanager—>vertLin1it)

address --;
else

address = 127;

regFileLj]->GetValues(vtAddrl ,address);

if (address > gprfimanager—>vertLimit)

address --;
else

address = 127;

regFile[j]—>GetValues(vtAuto,address);

for (i:0;i<16;i++)

{

vtAddr[i]=stagingRegisters[j * 16+i] [0];

if (doubleSent)

{

LG Ex. 1002, pg 213

vtAddrl [i]=stagingRegisters[j * 16+i][1];

}

// auto generated index
if

(SQ_PROGRAM_CNTL.getGEN_INDEX_VTX())

{

vtAuto[i].field[0]:auto_count_vtx;

auto_count_vtx ++;

}

// clear the buffers

stageCount : (dis&0x01)*4;

layer = 0;

doubleScnt = false;

ready = false;

}
else // we are full

{

vgt_sq_wrts_data.VGT_SQ_send = false;

pVGT_SQ_Verts_ready—>SetReady(false);

}

#**

// Process function for block

fl**

void eUSERiBLOCKiSQ: Process(void)

{

ProcessVertsO;

ProcessPixelsO;

// execute the arbiter

arbiter->Execute();

}

#**

// Output fianction for block
fl**

LG Ex. 1002, pg 214

void cUSER_BLOCK_SQ: :Output(void)

{ . -
1nt 1;

static int current_eXport = 0;

static int export_count = 0;

static int currentPtr[4];

if (outBuffer.valid))’
1

outBuffer.valid : false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentEXportDest < 16))

{

int pcPointer;

// new export block reset the counts

currentPtr[0] = currentAluPC;

currentPtr[1]

(currentA1uPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1))%128;

currentPtr[2]

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*2)%128;

currentPtr[3]

(currentA1uPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)* 3)%128;

// set pcPointer to the correct value

pcPointcr = (currentPtr[currcnt_cxport]

currentExportDest)% 12 8 ;

// copy data to the PCs

int valid;

for (i=0;i<16;i++)

{

valid : outBuffer.valids[i/4] .getValueO;

if ((valid >> 1%4) &0X01)

{

if (export_mask & 0X01)

parameters [pcPointer] .Val[i] .fleld[0]

outBuffervalues [i] .11 el d[0];

if (cxport_mask & 0x02)

parameters [pcPointer] .Val [i] .field[1]

outBuffer.va1ues [i] .fie1d[1];

if (export_mask & 0x04)

parameters[pcPointer].Val[i].field[2]

outBuffer.va1ues [i] .field[2];

if (export_mask & 0X08)

parameters [pcPointer] .Val[i] .fleld[3]

outBuffer.va1ues [1] .field [3];

LG Ex. 1002, pg 215

}

// dump the values to a file

if(m_dumpSQ>O) {

dumchValues(eXporTimask, pcPointer, outBuffer);1
I

current_export++;

if (current_expon :: 4)

{

}

}// end parameter cache export

// other exports
else

{

current_export=0;

pSP_SX->SetValid(true);

for (i=0;i<l 6;i++)!'
1

pSP_SX-

>SetSP_SX_color(outBuffer.Values[i].field[0],i*4);

pSP_SX-

>SetSPiSXicolor(outBuffer.values[i] . field[1] ,i*4-- l);

pSP_SX-

>SetSP_SX_color(outBuffer.Values[i].field[2],i*4~2);

pSP_SX-

>SetSPiSXicolor(outBuffer.values[i] . fie] d[3] ,i *4--3);

pSP_SX->SetSP_SX_eXp_pvalid(outBuffer.valids[i/4],i/4);

}

uinteger<6> dest;

dost : currentExpofiDest;

pSP_SX->SetSP_SX_dest(dest);

pSP_SX->SetSP_SX_alu_id(currentExportAlu);

uinteger<2> exp_count;

expicount = expofiicount;

pSP_SX->SctSP_SX_cxport_count(cxp_count);

export_count = (export_count+l)%4;

pSP_SX—>SetType(outputType);

if(m_dumpSQ>0) {

pSP_SX->GetNeWAll(&(m_spSXDump->_data));

m_sprDump—>Dump();

}

LG Ex. 1002, pg 216

} // end other exports

}

bool cUSER_BLOCK_SQ::handleRegisterAccess(ACCESS access, uint32 spaceOffset,

uint32 byteEnable, uint3 2& data)I
1

bool handled = false;

static int count = 0;

TConstPacked tstate;

Loop loop;

uint32 chool;

uint32 ngDecode;

if(access == WRITEiACCESS)

{

// Remove GFX decode from spaceOffset

if (spaceOffset >= 0X8000 && spaceOffset < OXlOOOO)

{

ngDecode : (spaceOffset >> 12) & 0x7;

spaceOffset = spaceOffset & ~(0X7 << 12);I
I

// grab the CPisTATEiCOPY

if (spaccOffsct == (mmGFX_COPY_STATE<<2))

{

int previous_write_state = data & 0X7;

currentiwriteistate = ngDecode;

// clear the vertex ready counts for the new state to come (may

have been screwed up

// by the mem exports.

verteXReady[currentiwriteistate]:0;

// copy the constant tables

int i;

for (i=0;i<5 l 2;i++)

{

constantStore[previous_write_state] .GetConstValue(cst,i);

constantstore[current_write_state] .WriteValue(cst,i);

}

for (1:0;i<32;i++)

{

texturestateStore[previous_write_state] .GetConstTState(tstate,i);

textureStateStore[currentiwriteistate] .WriteTState(tstate,i);

81

LG Ex. 1002, pg 217

}

for (i:0;i<8;i++)

{
chool

controlFlowStore[previous_write_state] .GetConstBooleans(i);

controlFlowStore[current_write_state] .WriteBooleans(chool,i);

}

for (i=0;i<32;i++)

{

controlFlowStore[previous_write_state] .GetConstLoop(loop ,i);

controlFlowStore[current_write_state] .WriteLoop(loop ,i);

}

}

else if ((spaccOffsct >= (rnrnSQ_INSTRUCTION_ALU_0<<2)) && (spaccOffsct <

((rnrnSQ_INSTRUCTION_ALU_0 + 4096*3)<<2)))

{

int address ((spaceOffset>>2)

(mmSQ_INSTRUCTION_ALU_0)) /3;

Packet pckt;

pckt = reinterpret_cast<Packet&>(data);

switch (count){
case 0:

inst.bytcO = pckt.bytcO;

instbytel = pckt.bytel;

inst.byte2 = pckt.byt62;

instbyte3 = pckt.byte3;

break;

inst.byte4 = pckt.byte0;

instbyteS : pcktbytel;

inst.byte6 : pckt.byte2;

inst.byte7 = pckt.byte3;

break;

instbyte8 = pcktbyteO;

inst.bytc9 = pckt.bytcl;

inst.byte10 = pckt.byte2;

instbytell = pckt.byte3;

break;

};
count ++;

// write the instruction to instruction memory

if (count :: 3)

LG Ex. 1002, pg 218

count: 0;

instructionStorc. SctInst(inst,addrcss);

}

handled = true;I
1

else if ((spaceOffset >= (rnrnSQ_CONSTANT_RT_0<<2)) && (spaceOffset <

((rnrnSQ_CONSTANT_RT_0 + 256*4)<<2)))

{

int address : ((spaceOffset>>2) - (mmSQiCONSTANTiRTiOD /4;

cst.field[count].putField(data);
count ++;

if (count I: 4)

{

count = 0;

constantStore[0] .WriteValue(cst,address);

}

handled : true;1
J

else if ((spaceOffset >= (mmSQ_CONSTANT_O<<2)) && (spaceOffset <

((mmSQ_CONSTANT_0 + 512*4)<<2)))

{

int address = ((spaccOffsct>>2) - (rnrnSQ_CONSTANT_0)) /4;

cst.field[count].putField(data);
count ++;

if (count == 4)f
1

count = 0;

constantStore [current_write_state] . WriteValue(cst,address);

}

handled = true;1
I

else if ((spaceOffset >= (rnmSQiFETCl-l70<<2)) && (spaceOffset <

((rnmSQ_FETCH_0 + 32*6)<<2)))

{

int address = ((spaceOffset>>2) - (mmSQ_FETCH_0)) / 6;

tStateData[count] : data;

count ++;

if (count == 6)

{

count I 0;

tstate.unpack(tStateData);

83

LG Ex. 1002, pg 219

texturestateStore[currentiwriteistate] .WriteTState(tstate,address);

}

handled = true;1
I

else if ((spaceOffset >= (mmSQiFETCI-LRT70<<2)) && (spaceOffset <

((rnmSQ_FETCH_RT_0 + 32*6)<<2)))

{

int address = ((spaceOffset>>2) - (rnmSQ_FETCH_RT_0)) / 6;

tStateData[count] : data;

count ++;

if (count == 6)

{

count I 0;

TConstPacked tstate;

tstatc.unpack(tStathata);

textureStateStore [0] .WriteTState(tstate,address);

}

handled : true;I
I

else if ((spaceOffset >= (rnmSQ_CF_BOOLEANS<<2)) && (spaceOffset

< ((rnmSQ_CF_BOOLEANS + 8)<<2)))

{

int address : ((spaceOffset>>2) — (mmSQiCFiBOOLEANSfl;

controlFlowStore[current_write_state] .WriteBooleans(data,address);

handled = true;I
J

else if ((spaceOffset >= (mmSQ_CF_LOOP<<2)) && (spaceOffset <

((mmSQ_CF_LOOP + 32)<<2)))

{

int address : ((spaceOffset>>2) — (mmSQiCFiLOOPD;

Loop loop;

loop.count : data & OXFF;

loopstart= (data >> 8) & OXFF;

loopsth = (data >> 16) & OXFF;

controlFlowStore[current_write_state] .WriteLoop(loop,address);

handled : true;1
I

else if ((spaceOffset >= (mmSQ_CF_RT_BOOLEANS<<2)) &&

(spaceOffset < ((rnrnSQ_CF_RT_BOOLEANS + 8)<<2)))

{

int address : ((spaceOffset>>2) — (mmSQiCFiRTiBOOLEANSD;

84

LG Ex. 1002, pg 220

controlFlowStore[0] .WriteBooleans(data,address) ;

handled = true;1
1

else if ((spaceOffset >= (InmSQ_CF_RT_LOOP<<2)) && (spaceOffset <

((mmSQiCFiRTiLOOP + 32)<<2)))f
1

int address = ((spaceOffset>>2) - (mmSQ_CF_RT_LOOP));

Loop loop;

loopeount : data & OXFF;

loop.start= (data >> 8) & OXFF;

loop.step = (data >> 16) & OXFF;

controlFlowStore[0] .WriteLoop(loop,address);

handled = true;1
I

else if ((spaceOffset >= (InmSQ_RT_V0_PARAM0_R<<2)) &&

(spaceOffset < ((rnrnSQ_RT_VO_PARAMO_R + 16*3 *4)<<2)))r
1

int address = ((spaceOffset>>2) - (mmSQ_RT_V0_PARAMO_R));

RTPararneters[address/(1 6*4)] [address/4] .field[address%4]:Zreinterpret_cast<float&>(d

handled = true;

}

return handled;

}

void cUSER_BLOCK_SQ: :setParameter(float param, int index, int memN urn, int field)

{

parameters [index] .Val[n1eniNun1] .field[field]=parani;

}

bool cUSERiBLOCKiSszldleO

{

bool idle=true;

if (idleO > 0 || idlel_7 >0)

idle : false;

#ifdef DEBUG_SEQ

static bool preV_idle : true;

if (idle !: previidle)

LG Ex. 1002, pg 221

if (idle)

std: :ccrr << "Sequencer Idlc" << std: :cndl;
else

std: :cerr << "Sequencer Active" << std: :endl;

previidle = idle;

}
#endif

return idle;

}

bool cUSER_BLOCK_SQ: :Idle0()

{

if (idleO >0)

rcturn falsc;
else

return true;

}

bool cUSER_BLOCK_SQ::Idlel_7()

{

if (idle1_7 >0)

return false;
else

return true;

}

void cUSER_BLOCK_SQ::durincValues(int expmask,int pcPointer,const OutBuffer&

values)

{

static bool first 2 true;

int i ;

if (first)I
1

first = false;

fprintf(chilc,"--PC Pointer (PC) (7 bits)\n");

fprintf(chile,"--Channel Mask (MSK) (4 bits)\n");

fprintf(chile,"--Data Mask (VAL) (l6 bits)\n");

fprintf(chile,"—-Colors (COL) (32 bits)\n");

fprintf(chile,"--P M V C C C

LG Ex. 1002, pg 222

C C C

C C C

fprintf(chilc,"--C S A
10

1

3

4

5

6 \n");

fprintf(chile,"—- K L
9 0

0

1

2

3

8

9

0

1

2

3 \nu);

}

fprintf(chi16," %02x %x%x%x%x",

pcPointer,expmask,outBuff6r.Valids[0] .getValueO,

outBuffer.va1ids[1] . getVa1u6(),outBuff6r.valids[2] . getVa1u6(),outBuffer.Valids[3] .getVal

1160);

for (i=0;i<16;i++)I
1

fprintf(ch116,"% 010.56 % 010.56 % 010.56 % 010.56 ",

0utBuffer.values[i] .fi 61d[0].g6tR6a1(),

outBuffer.va1u65[i].fi61d[1].g6tR6a1(),

outBuffer.va1ues[i] .fi61d[2] . g6tR6a1(),

outBuffer.va1ues[i] .fi61d[3].g6tR6a1());

}

fprintf(chi16,"\n");

float var[4];

fprintflchile," ");

for (i=0;i<16;i++)I
1

for (int w:0;w<4;w++)

var[w] : outBuffer.va1ues[i] .fi61d[w] . g6tR6a1();

fprintf(chile,"%08X %08X %08X %08X ",

(reinterpr6t_cast<unsign6d int>(&Var[0])),

(reinterpreticast<unsign6d int>(&var[1])),

87

LG Ex. 1002, pg 223

(reinterpret_cast<unsigned int>(&var[2])),

(reinterpreticast<unsigned int>(&var[3]))

);

fprintf(chile,"\n");1
I

Sqiblockimodel .cpp
//***

// Output function for block
//***

void cUSER_BLOCK_SQ::Output(void)
{

int i;
static int current_export = 0;
static int export_count = 9;
static int currentPtr[4];

if (outBuffer.valid)
{

outBuffer.valid = false;
// VERTEX PARAMETER CACHE EXPORT

if ((outputType == VERTEX) && (currentExportDest < 16))
{

int pcPointer;
// new export block reset the counts
currentPtr[e] = currentAluPC;
currentPtr[1] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1))%128;
currentPtr[2] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*2)%128;
currentPtr[3] =

(currentAluPC+(SQ_PROGRAM_CNTL.getVS_EXPORT_COUNT()+1)*3)%128;

// set pcPointer to the correct value
pcPointer = (currentPtr[current_export] + currentExportDest)%128;

// copy data to the PCs
int valid;
for (i=9;i<16;i++)
{

valid = outBuffer.valids[i/4].getValue();
if ((valid >> i%4) &0x01)
{

if (export_mask & 9x91)
parameters[pcPointer].Val[i].field[9]

outBuffer.values[i].field[0];
if (export_mask & 0x02)

parameters[pcPointer].Val[i].field[1]
outBufFer.values[i].field[1];

if (export_mask & 9x94)
parameters[pcPointer].Val[i].field[2]

outBuffer.values[i].field[2];
if (export_mask & 9x68)

88

LG Ex. 1002, pg 224

parameters[pcPointer].Val[i].Field[3] =
outBuffer.values[i].field[3];

}
}

// dump the values to a File
if(m_dumpSQ>9) {

dumchValues(export_mask, pcPointer, outBuffer);
}

curreht_export++;
if (curreht_export == 4)
{

}
}// end parameter cache export
// other exports
else

{

current_export=@;

pSP_SX—>SetValid(true);
for (i=9;i<16;i++)
{

pSP_SX->SetSP_SX_color(outBuffer.values[i].field[e],i*4);
pSP_SX—>SetSP_SX_color(outBuffer.values[i].field[1],i*4+1);
pSP_SX->SetSP_SX_color(outBufFer.values[i].field[2],i*4+2);
pSP_SX->SetSP_SX_color(outBuffer.values[i].field[3],i*4+3);
pSP_SX->SetSP_SX_exp_pvalid(outBuffer.valids[i/4],i/4);

}
uinteger<6> dest;
dest = currentExportDest;

pSP_SX->SetSP_SX_dest(dest)3
pSP_SX—>SetSP_SX_alu_id(currentExportAlu);
uihteger<2> exp_count;
exp_count = export_count;
pSP_SX->SetSP_SX_export_count(exp_count);
export_count = (export_count+1)%4;

pSP_SX->SetType(outputType);

if(m_dumpSQ>e) {
pSP_SX->GetNewAll(&(m_spSXDump->_data));
m_sprDump—>Dump();

}
} // end other exports

Regarding fetching data from memory, The texture fetcher allows fetching from memory. The

arbitercpp file picks the programs that need to fetch data in this function:
boolean Arbiter::chooseTexStation(int &lineNumber,Shader_Type &sType)
{

int i;
int vertexPick = -1;
int pixelPick = -1;
int lineCheck;

// do pixels First

LG Ex. 1002, pg 225

lineCheck = pixelHead;
for (i=e;i<pixeleCount;i++)
{

if (pixelStation[lineCheck].status.valid &&
pixelStation[lineCheck].status.ressourceNeeded == TEXTURE

&& lpixelStation[lineCheck].status.event)
{

}
// enforce restrictions based on the status

if (pixelPick != -1)
{

pixelPick=lineCheck;

// no texture ops while texture reads are outstanding
if (pixelStation[pixelPick].status.texReadsOutstanding)

pixelPick = —1;
else

break;

}

lineCheck = (lineCheck+1)%MAX_PIX_RESERVATION_SIZE;
}

lineCheck = vertexHead;
for (i=6;i<vertestCount;i++)
{

if (vertexStation[lineCheck].status.valid &&
vertexStation[lineCheck].status.ressourceNeeded == TEXTURE

&& lvertexStation[lineCheck].status.event)
{

}
vertexPick=lineCheck;

// enforce restrictions based on the status

if (vertexPick l: —1)
{

// no texture ops while texture reads are outstanding
if (vertexStation[vertexPick].status.texReadsOutstanding)

vertexPick = —1;
else

break;
}

lineCheck = (lineCheck+1)%MAX_VTX_RESERVATION_SIZE;
}

if (vertexPick 1= -1)
{

lineNumber = vertexPick;
sType = VERTEX;
return true;

}
if (pixelPick l= —1)
{

lineNumber = pixelPick;
sType = PIXEL;
return true;

LG Ex. 1002, pg 226

return false;

Then fills in a request in this function:
void Arbiter::fillTextureIntertace(int textureInstAddr,int texturePhase,boolean last)
{

const RegVect* txAddr;
TXAddr address;
uinteger<7> registerAddress;
uinteger<7> writeAddress;
uint8 maxSize;
int basePtr = textureCFMachine.stationData->data.gprBase;

sq—>pSQ_TP—>SetValid(true)5

// Get the instruction

TInstrPacked inst;

// set the state to the current running ALU
sq->setContextNumber(textureCFMachine.stationData->data.state);

sq->instructionStore.GetInst(inst,textureInstAddr);
switch (textureCFMachine.sType)
{
case PIXEL:

maxSize = sq->gpr_manager->pixLimit;
// compute the addresses (read address)
it ((inst.getSRC_GPR() + basePtr) < maxSize)

registerAddress = inst.getSRC_GPR() + basePtr;
else

registerAddress inst.getSRC_GPR()-(maxSize-basePtr);
// write address

it ((inst.getDST_GPR() + basePtr) < maxSize)
writeAddress = inst.getDST_GPR() + basePtr;

else

writeAddress = inst.getDST_GPR()-(maxSize-basePtr);
break;

case VERTEX:

maxSize = sq->gpr_manager->vertLimit;
// compute the addresses (read address)
it ((basePtr - inst.getSRC_GPR()) >= maxSize)

registerAddress = basePtr - inst.getSRC_GPR();
else

registerAddress = 128-(inst.getSRC_GPR()-(basePtr-maxSize));
// write address

it ((basePtr - inst.getDST_GPR()) >= maxSize)
writeAddress = basePtr — inst.getDST_GPR();

else

writeAddress 128-(inst.getDST_GPR()-(basePtr-maxSize));
break;

};
sq—>regFile[texturePhase]—>GetConstValues(txAddr,registerAddress);
int i;
for(i=e;i<16;i++)
{
//Do the swizzle tor the TP

LG Ex. 1002, pg 227

inst.doSrcSwizzle(txAddr[i].Field[9], txAddr[i].field[1], txAddr[i].Field[2],
txAddr[i].field[3],

address.x, address.y, address.z);
sq->pSQ_TP->SetSP_TP_fetch_addr(address,i);

}
for (i=e;i<4;i++)
{

uinteger<4> valids;
valids = textureCFMachine.stationData->data.valids[texturePhase][i];
// modify the mask to turn on any pixels that are off if not fetch valid

it (linst.getFETCH_VALID_ONLY())
{

if (valids.getValue() != 0)
valids = GXGF;

}

// now modify the mask based on the predicate vector
if (inst.getPRED_SELECT())
{

bool pred = (inst.getPRED_CONDITION() == 1);
if (pred l= textureCFMachine.stationData-

>data.predicates[texturePhase*16+i*4])
{

// kill the pixel
valids = valids.getValue() & QXE;

}
if (pred != textureCFMachine.stationData—

>data.predicates[texturePhase*16+i*4+1])
{

// kill the pixel
valids = valids.getValue() & exD;

}
if (pred l= textureCFMachine.stationData-

>data.predicates[texturePhase*16+i*4+2])
{

// kill the pixel
valids = valids.getValue() & OxB;

}
if (pred != textureCFMachine.stationData—

.predicates[texturePhase*16+i*4+3])
{

// kill the pixel
valids = valids.getValue() & 9x7;

}
}
sq->pSQ_TP->SetSQ_TP_pix_mask(valids,i);

// send the LCD correction bits

uinteger<9> LODCorrect;
LODCorrect = textureCFMachine.stationData-

>data.L0dCorrect[teXturePhase][i];
sq—>pSQ_TP—>SetSQ_TP_lod_correct(LODCorrect,i);

}

92

LG Ex. 1002, pg 228

sq—>pSQ_TP—>SetSQ_"P_write_gpr_index(writeAddress);
sq->pSQ_TP->SetSQ_"P_last(last);
uinteger<6> line;
line = textureCFMachine.lineNumber;
sq—>pSQ_TP—>SetSQ_‘P_thread_id(line);
sq->pSQ_TP->SetSQ_"P_type(textureCFMachine.sType);
TConstPacked tpConst;
sq->texture$tate$tore[textuPeCFMachine.stationData-

>data.state].GetConstTState(tpConst,inst.getCONST_INDEX());
sq—>pSQ_TP—>SetSQ_TP_const(tpConst)3
sq->pSQ_TP->SetSQ_TP_instr(inst);
uinteger<3> cthd;
cthd = textuPeCFMachine.stationData->data.state;
sq->pSQ_TP->SetSQ_TP_ctx_id(cthd)5

if(sq->m_dumpSQ>e) {
sq->pSQ_TP->GetNewAll(&(sq->m_qupDump->_data));
sq->m_qupDump->Dump();

LG Ex. 1002, pg 229

EXHIBIT B — CHIP DESIGN CODE

sq_gpr_alloc.V
/*

~vtx_max =

wire pix_ok_to_alloc =

OK

hers‘s a description of the basic operation:

<- tail
<- head

<- tail

\IOWLn-PUJNI—‘Q \IO‘Ln-PUJNI—‘Q \lOfiU’I-PWNI—‘Q
J J ____ J

initially, head = tail - 0, and max is set to be one more than the maximum allowable location
req 1 allocates one location, head is incremented to 1
req 2 allocates three locations, head is incremented to 4
another request for 3 spaces would not be granted since there are now only two free locations
when the space taken by req 1 is dealloc'd, increment tail to 1 (frees up one location)
now req 3 allocates three locations, head is incremented to 7, which is greater than max, so it is
wrapped around by subtracting max (7 - 6 = 1)

*/

— keep track of the free space —

wire [PTR_wIDTH-1:B] pix_free;
wire [PTR_WIDTH-1:0] vtx_free;

// number of free pixel locations
//

assign pix_free = pix_wrapped_q ? pix_tail_q — pix_head_q :
assign vtx_tree = vtx_wrapped_q ? vtx_head_q - vtx_tail_q :

127 — vtx_max

pix_max_q — pix_head_q + pix_tail_q;
~vtx_max_q - vtx_tail_q + vtx_head_q; //

(pix_alloc_space <= pix_free); // 0K to allocate pixel space
wire pixialloc = pixiokitoialloc & pixiallocireq; // signals the start of a pixel alloc operation
wire pix_dealloc = pix_dealloc_req; // signals the start of a pixel dealloc operation (always
to dealloc?)
wire pix_head_wraps
wire pix_tail_wraps

(new_pix_head >2 pix_max_q);
(new_pix_tail >= pix_max_q);

// new pix_head wraps
// new pix_tail wraps

wire vtx_ok_to_alloc = (vtx_alloc_space <= vtx_free); // 0K to allocate vertex space
wire vtx_alloc = vtx_ok_to_alloc & vtx_alloc_req; // signals the start of a vertex alloc operation
wire vtx_dealloc = vtx_dealloc_req; // signals the start of a vertex dealloc operation
wire vtx_head_wraps = (new_vtx_head <= vtx_max_q); // new vtx_head wraps
wire vtx_tail_wraps = (new_vtx_tail <= vtx_max_q); // new vtx_tail wraps

case (ra_current_state)
IDLE:

begin
// - look for any of the four requests
// - if the request is accepted
//
//

— go to the corresponding acknowledge state
- update the baseiptr register on alloc requests

if (pixialloc)
begin

ra_next_state = P_ALLOC_ACK;
next_pix_alloc_ack : HI;

if (pix_head_wraps)

LG Ex. 1002, pg 230

begin
next_pix_wrapped : HI;
next_pix_head = new_pix_head - pix_max_q;

end
else

begin
next_pix_head = new_pix_head;

end

nextibaseiptr = pixiheadiq; // for pixels, the space starts with the current head pointer
end

else if (vtx_alloc)
begin

ra_next_state = V_ALLOC_ACK;
next_vtx_alloc_ack = HI;

if (vtx_head_wraps)
begin

next_vtx_wrapped = HI;
nextivtxihead = newivtxihead + ~vtx7max7q; // ~vtx7max = 127 - vtximax
//next_base_ptr : new_vtx_head + ~vtx_max + 1; // for vertsJ the space starts with

the new head pointer
end

else

begin
next_vtx_head = new_vtx_head;
//next_base_ptr = new_vtx_head + 1; // for vertsJ the space starts with the new head

pointer
end

nextibaseiptr = nextivtxihead + 1; // for vertsJ the space starts with the new head
pointer

// (coding trick - commented out lines above explain)

ScLaluiinstriseqN
//H//
// sq_alu_instr_seq.v
//
// - receives instruction from alu instr queue (AIQ)
// - reads constants (but data goes directly to ais_output mux)
// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:9] aiq_export_info; // {exp_idJ pulse_sx}
input [9:9] aiq_last_in_group; // last instruction flag
input [9:9] aiqilastiinishader; // last instruction flag
input [9:9] aiq_thread_type; // 9: pixel, 1: vertex (shows we operate on either pixel or vertex)
input [2:9] aiqicontextiid; // contextiid (from ctl packet)
input [5:9] aiq_thread_id; // clause number

- recall that 9 here means src is a constant (while 1 means src is a gpr)...

wire ca_fetch ~aiq_instr[95];
wire cb_+etch ~aiq_instr[94];
wire cc_fetch ~aiq_instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
// before entering the AIQ

wire [8:9] ca_addr — {aiq_instr[63], aiq_instr[87:89]};
wire [8:9] cbiaddr {aiqiinstr[62]J aiqiinstr[79:72]};

[8:9] cc_addr {aiq_instr[61]J aiq_instr[71:64]};

// -- Input Staging Register --

LG Ex. 1002, pg 231

// -------------------------- --
// - need to send the vector type and the thread_id back to the thread buffers when
// the all the instructions we wanted to run for this thread are done (this will
// cause the thread to become valid again)
// - register this info in from the AIQ on an AIQ pop in order to hold it until the
// AIS is done

case (ais_current_state)
AISB:

// - wait until this machine is started by the AIQ read SM
// — write OSR data into thread buff on new thread (when there was a previous thread...)
// - aisidone does updates the threadibuft and clears the aluiinstripending status bit
// - don't assert ais_done yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)
begin

ais_instr_stall = HI;

if (ais_start)
begin

//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q) ais_done = HI;

ais_instr_start = HI;
aisiinstristall = L0;
ais_next_state : AISl;

end
end

AISl: begin ais_next_state AISZ; end

AISZ: begin ais_next_state AIS3; end

AIS3: begin aisinextistate AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use info saved in ISR ** //

AIS4: begin ais_next_state AISS; end

AISS: begin ais_next_state AIS6; end

A156:

begin
// — the pred set data is loaded now from the previous instr, so assert done now
// - also write new predicate data into predicate register (in aisioutput)

if (isr_new_thread_q & osr_pred_set_+lag_q) ais_done = HI;

ld_osr = HI;
ais_next_state = AIS7;

end

A157:

// - pop the thread off the reservation station buffer when the last instr of the shader is
executed

// - send treeidone when pulseisx is setJ or this is the last instruction of a pixel shader
(since this

// is when the pixel export is done)

begin
if (isr_last_in_group_q & ~isr_last_in_shader_q) ais_done = HI;

it (isr_pulse_sx_q) ais_free_done HI; // pixel last logic put into pulse_sx generation

it (isrilastiinishaderiq) aisipop HI;

aisinextistate = AISO;
end

endcase
end

LG Ex. 1002, pg 232

// - end ais state machine

The ais machine is the “alu instruction sequencer” it executes instructions on either vertices or pixels depending on type. The file
sq;instruction75tore.v contains the memory with all the instructions to be performed on either PS or VS:

Sginstructionistoreiv

// Access to the is (instruction store) is divided into 4 phases:
// B: texture instruction read
// 1: alu instruction read
// The alu phase alternates between phases for alue and alul.
// 2: CP write (or read for debug)
// 3: control flow instruction read
// The control flow phase is shared for accesses by alue, alul and tex
// controlled by isisubiphase.

// address mux
always @(/*AUTOSENSE*/addr or data_cnt or i_alue_addr

or i_alue_cf_addr or i_alu1_addr or i_alu1_cf_addr
or i_is_phase or i_is_sub_phase or i_tex_addr
or i_tex_cf_addr or q_rbi_addr_in)

begin
// default values
d_addr = addr;
diwe = l'be;
case (i_is_phase)

TEX_PHASE :
begin

d_addr i_tex_addr;
end

ALU_PHASE :
begin

d_addr i_is_sub_phase[e] P i_alu1_addr : i_alue_addr;
diwe &data7cnt; // dataicnt == 3

end

CP_PHASE :
begin

d_addr = q_rbi_addr_in[11:9]; // top bits are zeros by now
end

CF_PHASE :
begin

case (i_is_sub_phase)
2'b08 :

d_addr i_alu9_cf_addr;
2'b18 :

d_addr i_alu1_cf_addr;
default :

d_addr i_tex_cf_addr;
endcase // case(i_is_sub_phase)

end

endcase // case(i_is_phase)

end // always @ (...

Claim 2:

LG Ex. 1002, pg 233

spimaccigprw'
// Filename : macc_reg.v
// Description : This module represents the MACC (Multiply and Accumulate) unit plus
// : the corrensponding GPR (register file) module.
// Author : Andi Skende

rfsd2_128x128cmlsw8_core ugpr_mem(.QB(reg_data),
.ADRA_buf(gpr_wr_addr)J
.DA_buf(input_gpr),
.WEMA_bu‘F(subword_write_mask)J
.WEA_buf(gpr_wr_ena),
.MEAibuf(gpr7wr7ena)J
.CLKA(sclk),
.BISTEA(l'b0),
.ADRB_bu-F(sq_sp_gpr_rd_addr)J
.0EB_buf(1'b1)J
.MEB_buf(sq_sp_mem_rd_ena)J
.CLKB(sclk),
.BISTEB(l'b0),
.AWTB(1'bB)
);

This is the instantiation of the GPR memory, 128x128.

Spivectorx (shows the instanciation of 4 multiply accumulate modules and l scalar module):

// -- --

//Scalar Unit instantiation

sp_scalar_lut uscalar(
.iAGiMEioPCODE(scalariopcode)J
.iAG_ME_IN_A(scalar_input_alpha),
.iAGiMEilNiB(scalariinputired),
.iAG_ME_IN_C(32'bB),
.iAG_ME_ABS_A(scalar_input_abs)J
.iAG_ME_ABS_B(scalar_input_abs)J
.iAG_ME_ABS_C(scalar_input_abs),
.iAG_ME_A_NEGATE(scalar_input_negate)J
.iAG_ME_B_NEGATE(scalar_input_negate A scalar_opcode_sub),
.iAG_ME_C_NEGATE(scalar_input_negate)J
.oME_RESULT(scalar_result),
.sclk(sclk)
),

//replicating the scalar_result (32 bits) to all of the four channels of the write back path into GPRs
//masking is done at the GPRs input
assign scalar_result_bus = { scalar_result, scalar_result, scalar_result, scalar_result};

//Instantiation of all four MACC units that create a Vector Unit

sp_macc_gpr usp_macc_gpr8(.ovector_output(VectorResultB),
.oscalar_input_alpha(scalar_input0_alpha),
.oscalar_input_red(scalar_input0_red)J
.oscalar_input_negate(scalar_inputB_negate),
.oscalar_input_abs(scalar_input9_abs)J
.oscalar_opcode(scalar_opcodee),
.oregidata(RegData0),.oexportidst(sqispiexpidst)J

.sqispiinstruct(sqispiinstruct),.sq sp instruct start(sq sp instruct start),.sqispistall(sqispistall)J
.sq_sp_gpr_rd_addr(sq_sp_gpr_rd_addr)J

LG Ex. 1002, pg 234

.sq_sp_gpr_wr_addr(sq_sp_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enaB)J.sq_sp_mem_rd_ena(sq_sp_mem_rd_ena)J.sq_sp_
mem_wr_ena(sq_sp_mem_wr_enaB)J

.sq_sp_gpr_cmask(sq_sp_channel_mask),.sq_sp_pred_override(sq_sp_pred_override),

.sq_sp_gpr_phase_mux(sq_sp_gpr_phase_mux),.iInterpolated(InputDataB),.sq_sp_constant(sq_sp_constant),
.iscalar_data(scalar_resu1t_bus),.tp_sp_data(tp_sp_data)J
.tp_sp_gpr_dst(tp_sp_gpr_dst),

.tpispigpricmask(tpispigpricmask),.tpispidataivalid(tpispidataivalid[8]),
.sc1k(sc1k), .srst(srst));

sp_macc_gpr usp_macc_gpr1(.ovect0r_0utput(VectorResultl)J
.oscalar_input_alpha(scalar_input1_alpha),
.oscalar_input_red(scalar_input1_red)J
.oscalar_input_negate(scalar_input1_negate),
.oscalar_input_abs(scalar_input1_abs)J
.oscalar_opcode(scalar_opcode1),

.oreg_data(RegData1),.sq_sp_instruct(qe_instruct),.sq sp instruct start(qe instruct start),.sq_sp_sta11(q8
instructistall),

.sq_sp_gpr_rd_addr(qe_gpr_rd_addr)J

.sq_sp_gpr_wr_addr(q6_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enal),.sq_sp_mem_rd_ena(q6_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_enal),

.sq_sp_gpr_cmask(qe_gpr_cmask)J.sq_sp_pred_0verride(q0_pred_override)J

.sq_sp_gpr_phase_mux(qe_gpr_phase_mux),.iInterpolated(InputDatal),.sq_sp_constant(q@_sq_constant),
.iscalar_data(scalar_resu1t_bus),.tp_sp_data(tp_sp_data),
.tpispigpridst(qBitpigpridst),

.tp_sp_gpr_cmask(q9_tp_gpr_cmask)J.tp_sp_data_va1id(tp_sp_data_valid[1]),
.sclk(sclk), .srst(srst));

sp_macc_gpr usp_macc_gpr2(.ovector_output(VectorResult2)J
.oscalar_input_alpha(scalar_input2_alpha),
.oscalar_input_red(scalar_input2_red),
.oscalar_input_negate(scalar_input2_negate)J
.oscalar_input_abs(scalar_input2_abs),
.oscalar_opcode(scalar_opcode2)J

.oregidata(RegDataZ),.sqispiinstruct(qliinstruct),.sq sp instruct start(ql instruct start),.sqispistall(q1
_instruct_stall),

.sq_sp_gpr_rd_addr(q1_gpr_rd_addr),

.sq_sp_gpr_wr_addr(q1_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_enaZ)J.sq_sp_mem_rd_ena(q1_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_enaz)J

.sq_sp_gpr_cmask(ql_gpr_cmask),.sq_sp_pred_override(q1_pred_override),

.sq_sp_gpr_phase_mux(q1_gpr_phase_mux),.iInterpolated(InputDataZ),.sq_sp_constant(ql_sq_constant),
.iscalaridata(scalariresultibus),.tpispidata(tpispidata),
.tp_sp_gpr_dst(q1_tp_gpr_dst),

.tpispigpricmask(q17tpigpr7cmask)J.tpispidataivalid(tpisp7data7valid[2]),
.sc1k(sc1k), .srst(srst));

sp_macc_gpr usp_macc_gpr3(.ovect0r_0utput(VectorResultB),
.oscalar_input_alpha(scalar_input3_alpha),
.oscalar_input_red(scalar_input3_red)J
.oscalar_input_negate(scalar_input3_negate),
.oscalar_input_abs(scalar_input3_abs)J
.oscalar_opcode(scalar_opcode3),

.oreg_data(RegData3),.sq_sp_instruct(q2_instruct),.sq sp instruct start(q2 instruct start),.sq_sp_sta11(q2
iinstructistall),

.sq_sp_gpr_rd_addr(q2_gpr_rd_addr)J

.sq_sp_gpr_wr_addr(q2_gpr_wr_addr),.sq_sp_wr_ena(sq_sp_wr_ena3),.sq_sp_mem_rd_ena(q2_gpr_mre),.sq_sp_mem_w
r_ena(sq_sp_mem_wr_ena3)J

.sq_sp_gpr_cmask(q2_gpr_cmask),.sq_sp_pred_override(q2_pred_override)J

LG Ex. 1002, pg 235

.sq_sp_gpr_phase_mux(q2_gpr_phase_mux),.ilnterpolated(InputData3)J.sq_sp_constant(q2_sq_constant)J
.iscalar_data(scalar_result_bus),.tp_sp_data(tp_sp_data),.sclk(sclk),
.tp_sp_gpr_dst(q2_tp_gpr_dst)J

.tp_sp_gpr_cmask(q2_tp_gpr_cmask),.tp_sp_data_valid(tp_sp_data_valid[3]),
.srst(srst));

//Muxing the gpr vector results into one final vector result conrolled by the phase_mux signal or a
registered version of it

qu
// --- --
// SQ-SP GPR control Interface
// --- --
output [6:0] SQ_SP_gpr_wr_addr;
output [0:0] u0_SQ_SP_gpr_wr_en0;
output [0:0] u0_SQ_SP_gpr_wr_en1;
output [0:0] u075Q75P7gpriwrien2;
output [0:0] u0_SQ_SP_gpr_wr_en3;
output [0:0] ulisqisPigpriwrien0;
output [0:0] ul_SQ_SP_gpr_wr_en1;
output [0:0] u1_SQ_SP_gpr_wr_en2;
output [0:0] ul_SQ_SP_gpr_wr_en3;
output [0:0] u2_SQ_SP_gpr_wr_en0;
output [0:0] u2_SQ_SP_gpr_wr_en1;
output [0:0] u2_SQ_SP_gpr_wr_en2;
output [0:0] u2_SQ_SP_gpr_wr_en3;
output [0:0] u3_SQ_SP_gpr_wr_en0;
output [0:0] u375Q75P7gpriwrien1;
output [0:0] u3_SQ_SP_gpr_wr_en2;
output [0:0] u375Q75P7gpriwrien3;
output [6:0] SQ_SP_gpr_rd_addr;
output [0:0] SQ_SP_gpr_rd_en;
output [1:0] SQ_SP_gpr_phase_mux;
wtwt[3m]SQ§Rfihmnd;mflg

output [1:0] SQ_SP_gpr_input_mux;
output [‘AUT07COUNTileE - 1 :0] SQisPiautoicount;

// --- --
// SQ-SP : Instruction interface
// --- --
output [0:0] SQ_SP_instruct_start;
output [0:0] SQ_SP_stall;
output [23:0] SQ_SP_instruct;
output [127 0] SQisPiconst;

wtwt[0m]SQ§{emoMiw;
output [0:0] SQ_SP_exp_id;

output [7:0] u0_SQ_SX_kill_mask; // valid bits/kill mask
output [7:0] u1_SQ_SX_kill_mask;

output [3:0] u0_SQ_SP_pred_override;
output [3:0] ulisqisPipredioverride;
output [3:0] u2_SQ_SP_pred_override;
output [3:0] u375Q75P7predioverride;

LG Ex. 1002, pg 236

Sq¥exportialloev
always @(alloc_cmd)

begin
casez (alloc_cmd)

// - vtx pos alloc
7'b1_91_9961 : sx_exp_cmd
7'b1_01_0010 : sx_exp_cmd

// — vtx pass thru
7'b171170100 : sxiexpicmd 5‘b1170071;
7'b1_11_1969 : sx_exp_cmd 5‘b11_el_1;
7'b171171100 : sxiexpicmd 5‘b1171071;

// - pix without 2
7'b8_18_6816 : sx_exp_cmd 5‘b66_66_1;
7'b0_10_0190 : sx_exp_cmd 5‘b60_61_1;
7'b9_19_6119 : sx_exp_cmd 5‘b69_16_1;
7'b0_10_1060 : sx_exp_cmd 5‘b60_11_1;

// — pix with z
7'b871870811 : sxiexpicmd 5‘b0170071;
7'b9_19_9191 : sx_exp_cmd S‘bel_el_1;
7'b871870111 : sxiexpicmd S‘belileil;
7'b9_19_1961 : sx_exp_cmd 5‘b61_11_1;

// - pix pass thru
7'b0_11_0190 : sx_exp_cmd 5'b11_oe_1;
7'b9_11_1969 : sx_exp_cmd 5‘b11_61_1;
7'b0_11_1160 : sx_exp_cmd 5‘b11_10_1;

default: sx_exp_cmd = S‘bxxxxe;
endcase

end

Shows the SQ able to execute any types of export commands (position. pass—thru (appearance). pix (color).

An example of a shared resource is the instruction store, accesses to it are controlled by:
sq¥ctliflowiseqy
module sq_ctl_flouLseq
(

cfs_type_strap, Be aluBJ ?1:texJ lazalul

isiphaseJ BO:CFJ OlzTexJ 10:ALUJ 11:CP
is_subphase, Bazalue, BlztexJ lB:alulJ 11:tex
cfs_phase, BezaluB, Blztex, 18:alu1, 11:tex
cfc_phaseJ BzaluJ lztexJ

// local registers
// — per chip
inst_base_vtx, // vertex base
inst_base_pix, // pixel base

// — per context
vsiprogramibaseiset, // connected to SinsiPROGRAM.BASE (12 bits)
ps_program_base_set, // connected to SQ_PS_PROGRAM BASE (12 bits)

vs_export_count_set, // connected to SQ_PROGRAM_CNTL.VS_EXPORT_COUNT (4 bits)
vs_export_mode_set, // connected to SQ_PROGRAM_CNTL.VS_EXPORT_MODE (3 bits)
ps_export_mode_setJ // connected to SQ_PROGRAM_CNTL.PS_EXPORT_MODE (3 bits)

// thread arbiter input
arb_rts, //
arbistateJ //
arb_status, //
arbithreaditype, // vertex or pixel
c-Fs_rtr_qJ // CFS can take a new packet

LG Ex. 1002, pg 237

SLaIuiimlrissq.v
//
// sq_alu_instr_seq.v
//
// - receives instruction from alu instr queue (AIQ)
// — reads constants (but data goes directly to ais_output mux)
// - sends instruction to SP over 4 cycles (starting on the correct phase)

input [1:8] aiq_export_info; // {exp_idJ pulse_sx}
input [6:8] aiq_last_in_gr0up; // last instruction flag
input [6:0] aiq_last_in_shader; // last instruction flag
input [6:9] aiq_thread_type; // 0: pixelJ l: vertex (shows we operate on either pixel or vertex)
input [2:0] aiq_context_id; // context_id (from ctl packet)
input [5:9] aiq_thread_id; // clause number

- recall that 6 here means src is a constant (while 1 means src is a gpr)m

wire caitetch ~aiq7instr[95];
wire cb_+etch ~aiq_instr[94];
wire ccitetch ~aiq7instr[93];

// - instruction bits 63:61 are used as the const addr msb (these bits are decoded and replaced
// before entering the AIQ

wire : {aiq_instr[63], aiq_instr[87:88]};
wire : {aiq_instr[62], aiq_instr[79:72]};

{aiq_instr[61], aiq_instr[71:64]};

- need to send the vector type and the thread_id back to the thread buffers when
the all the instructions we wanted to run for this thread are done (this will
cause the thread to become valid again)

- register this info in from the AIQ on an AIQ pop in order to hold it until the
A15 is done

case (ais_current_state)
AISB:

// - wait until this machine is started by the AIQ read SM
// — write OSR data into thread buff on new thread (when there was a previous thread)
// - aisidone does updates the threadibuft and clears the aluiinstripending status bit
// - don’t assert ais_done yet if the previous instr was a pred set (wait for the pred set
// data to arrive from the SP)
begin

ais_instr_stall = HI;

if (ais_start)
begin

//if (aiq_new_thread & osr_valid_q & ~osr_pred_set_flag_q) ais_done = HI;

ais_instr_start = HI;
aisiinstristall = L0;
ais_next_state : AISl;

end
end

AISl: begin ais_next_state A152; end

AISZ: begin ais_next_state A153; end

AIS3: begin aisinextistate AIS4; end

// ** the AIQ was just popped by the ACS SM, so now must use into saved in ISR ** //

AIS4: begin ais_next_state = AISS; end

LG Ex. 1002, pg 238

AISS: begin ais_next_state : A156; end

A156:

begin
// - the pred set data is loaded now from the previous instrJ so assert done now
// — also write new predicate data into predicate register (in ais_output)

if (isr_new_thread_q & osr_pred_set_+lag_q) ais_done = HI;

1d_osr : HI;
ais_next_state = AIS7;

end

AIS7:

// — pop the thread off the reservation station buffer when the last instr of the shader is
executed

// — send +ree_done when pulse_sx is set, or this is the last instruction of a pixel shader
(since this

// is when the pixel export is done)

begin
if (isr_last_in_group_q & ~isr_1ast_in_shader_q) ais_done = HI;

if (isr_pulse_sx_q) ais_free_done HI; // pixel last logic put into pulse_sx generation

if (isr_last_in_shader_q) ais_pop HI;

ais_next_state = AISB;
end

endcase
end

// - end ais state machine

sqgfihreadgpxb.v
// - vertex request priority encoder

reg [0:0] vtxiwinnerivld;
reg [3:6] vtx_winner;

always @(vtx_req_q)
begin

casez (vtx_req_q)
16'b0060_6006_0600_0060: vtx_winner_v
16'b1969_6996_9699_99692 vtx_winner_v
16'b?160_6006_0600_0060: vtx_winner_v
16'b??1e_eeoe_oeeo_eoee: vtx_winner_v
16'b???1_9089_8908_0860: vtx_winner_v
16'b????710807800870800: vtxiwinneriv
16'b????_?199_9999_9999: vtx_winner_v
16'b????7??107800870800: vtxiwinneriv
16'b????_???1_9669_6966: vtx_winner_v
16'b????_????_1eea_eaee: vtx_winner_v
16'b????_????_?168_66662 vtx_winner_v
16'b????_????_??10_0@ee: vtx_winner_v
16'b????_????_???1_9969: vtx_winner_v
16'b????_????_????_l@ee: vtx_winner_v
16'b????_????_????_?1e@: vtx_winner_v
16'b????_????_????_??10: vtx_winner_v
16'b???? ???? ???? ???1: vtx winner v

default: vtx_winner_v
endcase

'_O ' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtxiwinner
' vtx_winner
' vtxiwinner
' vtx_winner
' vtx_winner
' vtx_winner
' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtx_winner
' vtx_winner
‘ vtxiwinner

vtx_winner ' end

 QQQQQQQQQQQQQQCLQQQ. XIIIIIIIIIIIIIIII
end

// — pixel request priority encoder

LG Ex. 1002, pg 239

reg [6:6] pix_winner_vld;
reg [3:6] pix_winner;

always @(pix_req_q)
begin

casez (pix_req_q)
//16‘b6666_6666_6666_6666: begin pix_winner_vld
16'b1666_6666_6666_6666: begin pix_winner_v d
16'b?166766667666676666: begin pixiwinneriv
16'b??16_6666_6666_6666: begin pix_winner_v
16'b???1_6666_6666_6666: begin pix_winner_v
16'b????_1666_6666_6666: begin pix_winner_v
16'b????_?166_6666_6666: begin pix_winner_v
16'b????_??16_6666_6666: begin pix_winner_v
16'b????_???1_6666_6666: begin pix_winner_v
16'b????_????_1666_6666: begin pix_winner_v
16'b????_????_?166_6666: begin pix_winner_v
16'b????7????7??1676666: begin pixiwinneriv
16'b????_????_???1_6666: begin pix_winner_v
16'b????7????7????71666: begin pixiwinneriv
16'b????_????_????_?166: begin pix_winner_v
16'b????_????_????_??16: begin pix_winner_v
16'b????_????_????_???1: begin pix_winner_v
//de+ault: begin pix_winner
default: begin pix_winner_v

endcase
end

LO; pix_winne
' pix_winner
' pixiwinner
' pix_winner *
' pix_winner -
' pix_winner
' pix_winner
‘ pix_winner
' pix_winner
‘ pix_winner
' pix_winner
' pixiwinner
' pix_winner
' pixiwinner =
' pix_winner
' pix_winner
' pix_winner : , end
X; pix_winner bxxxx; end

LO; pix_winner = 4‘bxxxx; end

'ht; end
' end

end
end
end
end
end
end
end
end
end
end
end
end
end
end

+

..‘...‘...y
u.v.U101”meD'f")QFD
e.‘..‘.‘..‘..

®|-|I\JUJ-I> .u-v-
IIIIIIIIIIIIIIIIIIII npphpeheeepppebphn #:333333333333333hQ<QQQQQQQQQQQQQQQ

// if cfsl is enabled, alternate btwn rts6 and rtsl
// if cfsl is disabled, mask rtsl and always use rts6
// what is the algorithm here? really want to send the thread to the CFS that‘s available (default
// to c+s6 if both are available)
// - so getting rid of forced toggle btwn cfs6 and cfsl - remember to to comment out cfs_turn

// there is only one winner max per cycle, so only one of the two RTSs is active in one cycle
// it doesn't matter which ALU pipe is used to process a thread, as long as threads are processed in

order

// of being selected by the arbiter (i.e. there should be no way for a thread in one ALU pipe to pass
a thread

// in the other ALU pipe when they are from the same context)

//assign arb_rts6 arb_rts & (~cfs_turn | ~cfsl_enable);
//assign arb_rtsl - arb_rts & c+s_turn & cfsl_enable;

//wire [6:6] c+s_rtr = cfs_rtr6 | c+s_rtrl;

wire [6:6] send_to_c+s6 cfs_rtr6;
wire [6:6] senditoictsl ~cfsirtr6 & cfsirtrl & ctslienable;

assign arbirts6 arbirts & senditoicts6;
assign arb_rtsl arb_rts & send_to_c+sl;

wire [6:6] arb_xfc6 arb_rts6 & cfs_rtr6;
wire [6:6] arb_xfcl arb_rtsl & cfs_rtr1;

wire [6:6] arb_xfc = arb_xfc6 | arb_xfcl;

// ------------------ --
// — Arb Output Mux ——
//
// choose between tex state/status and pix state/status depending on overall winner
// vtx tex has no lod
// vtx alu has no lod
// pix tex does have LOD (PIX_CTL_PKT_NIDTH and CTL_PKT_NIDTH have led)
// pix alu has no lod

LG Ex. 1002, pg 240

always @(type_winnen_q on vtx_state on pix_state)
begin

//anb_state = {STATE_WIDTH{LO}};
case (type_winner_q)

HI: anb_state = vtx_state; // these are unequal - msb's get 0's by above assignment
LO: arb_state = pix_state;
//defau1t: anb_state = {STATE_NIDTH{X}};

endcase
end

always @(type_winnen_q or vtx_status on pix_status)
begin

//anb_status : {STATUS_NIDTH{LO}};
case (type_winnen_q)

HI: arb_status = vtx_status;
L0: anb_status = pix_status;
//defau1t: anb_status = {STATUS_NIDTH{X}};

endcase
end

sq¥shaderiseqw

// shader_seq.v
//
// - instantiates 16 reservation stations
//
// issues:
// -
//
//

module sq_shader_seq
(

shader_seq_type, // a strap that tells this module if it's a vertex or pixel shader seq

// control packet input
input_cp, // control packet data from the input SM
input_rts, // rts from the input SM
input_rtr, // rtr from texture RSO

// texture clause arbiter interface

tex_req, // 8 texture RS requests
tex_cp, // vector of 8 control packets
tex_rtr, // 8 RTSs (not fulls) to the ALU arbiters
tca_winner_ack, // 8 ack bits from arb - only the winner bit is set
tca_empty_ack, // 8 ack bits from arb - each empty requesting clause is ack‘d to move it to next

RS

TP_SQ_data_rdy, // data ready indicator from TPC - increment the alu RS counter
TP_SQ_type, // the vector type: pixel=0, vertex=1
TP_SQ_clause_num, // the alu RS number whose count should be incremented

// alu clause arbiter interface

alu_req, //
alu_cp, //
alu_rtr, //
aca_winner_ack, //
aca_empty_ack, //

LG Ex. 1002, pg 241

aisO_data_rdy, // done indicator from AISO - increment the tex RS counter
aisO_vector_type, // the vector type: pixel=0, vertex=1
aisO_clause_num, // the tex RS number whose count should be incremented

ais1_data_rdy, // done indicator from AIS1 - increment the tex RS counter
aisl_vector_type, // the vector type: pixel=0, vertex=1
aisi_clause_num, // the tex RS number whose count should be incremented

// exit SM interface

state_change,// a pulse high indicates that the state exiting the 88 has changed
old_state, // the state that has finished (because a new state has emerged)
dealloc_req, // request to deallocate GPRs
dealloc_ack, // the dealloc request has been acknowleged

clk,
reset

// -- parameters --

parameter CP_W|DTH = 8;
parameter STATE_W|DTH = 3;

parameter FIFO_WIDTH = CP_W|DTH;
parameter FIFO_DEPTH = 4;
parameter FIFO_ADDR_B|TS = 2;

parameter L0 = 1'b0;
parameter HI = 1'b1;
parameter X = 1'bx;

// --
// -- ios --
// ---

input shader_seq_type;

input [CP_W|DTH-1:0] input_cp;
input input_rts;
output input_rtr;

output [8:0] tex_req;
output [8*CP_W|DTH-1:O] tex_cp;
output [8:1] tex_rtr;

input [7:0] tca_winner_ack;
in put [7 : O] tca_em pty_ack;

input [0:0] TP_SQ_data_rdy;
input [0:0] TP_SQ_type;
input [2:0] TP_SQ_c|ause_num;

output [7:0] alUJeCI;

LG Ex. 1002, pg 242

output [8*CP_W|DTH-
output [7:0]

input [7:0]
input [7:0]

input
input
input [2:0]

input
input
input [2:0]

output
output [2:0]
output
input

input
input

1:0] alu_cp;
alu_rtr;

aca_winner_ack;
aca_empty_ack;

aisO_data_rdy;
aisO_vector_type;

aisO_clause_num;

aisi_data_rdy;
ais1_vector_type;

ais1_clause_num;

state_change;
old_state;
dealloc_req;

dealloc_ack;

clk'i

reset;

// - output register declarations

//reg [8:0]
//reg [7:0]

// ---------------------------

// -- internal signals --
// ---------------------------

wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:0]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:O]
wire [CP_W|DTH-1:0]

tex_req;
alu_req;

tex_ctl_pktO;
tex_ctl_pkt1 ;
tex_ctl_pkt2;
tex_ctl_pkt3;
tex_ctl_pkt4;
tex_ctl_pkt5;
tex_ctl_pkt6;
tex_ctl_pkt7;
alu_ctl_pkt0;
alu_ctl_pkt1;
alu_ctl_pkt2;
alu_ctl_pkt3;
alu_ctl_pkt4;
alu_ctl_pkt5;
alu_ctl_pkt6;
alu_ctl_pkt7;

// group all the control packets together into one big vector for output to the arbiter

wire [8*CP_W|DTH-1:O] tex_cp = {tex_ctl_pkt7, tex_ctl_pkt6, tex_ctl_pkt5, tex_ctl_pkt4,
tex_ctl_pkt3, tex ctl_pkt2, tex ctl_pkt1, tex_ctl_pktO};

wire [8*CP_W|DTH-1:O] alu_cp = {alu_ctl_pkt7, alu_ctl_pkt6, alu_ctl_pkt5, alu_ctl_pkt4,

14

LG Ex. 1002, pg 243

alu_ctl_pkt3, a|u_ct|_pkt2, alu_ctl_pkt1, alu_ctl_pkt0};

reg [0:0] tpc_data_rdy;
reg [0:0] tpc_type;
reg [2:0] tpc_clause_num;

// ---

// -- combinational logic --
// ---

// - select the RS counter to increment based on clause number sent by TPC/AIS
// - counts represent the number of valid entries in a RS FIFO; because ctl packets are
// moved into the next RS before the vector they represent has actually finished, the
// count is used to gate the requests to the next arbiter until the clause is actually
// done

// - this is a decoder enabled by data_rdy

reg [7:0] tpc_cnt_inc;
reg [7:0] aisO_cnt_inc;
reg [7:0] ais1_cnt_inc;

always @(tpc_data_rdy or tpc_clause_num or tpc_type or shader_seq_type)
begin

tpc_cnt_inc = 8'h00;
if (tpc_data_rdy & (tpc_type == shader_seq_type))
tpc_cnt_inc[tpc_clause_num] = 1'b1;

end

always @(ais0_data_rdy or aisO_clause_num or aisO_vector_type or shader_seq_type)
begin

aisO_cnt_inc = 8'h00;
if (aisO_data_rdy & (aisO_vector_type == shader_seq_type))
aisO_cnt_inc[aisO_c|ause_num] = 1‘b1;

end

always @(ais1_data_rdy or ais1_clause_num or ais1_vector_type or shader_seq_type)
begin

ais1_cnt_inc = 8'h00;
if (ais1_data_rdy & (ais1_vector_type == shader_seq_type))
ais1_cnt_inc[ais1_c|ause_num] = 1‘b1;

end

wire [7:0] ais_cnt_inc = aisO_cnt_inc | ais1_cnt_inc;

// - create the RS request by masking the RS FIFO rts when the associated RS count is zero
// - this is done because a control packet is moved to the next RS before the RS can actually tell
// the arbiter about it

// - in both cases, in order to facilitate the advancement of empty clauses, the packet is moved
// to the next RS when the arbiter selects it

// - in the case of alu RSs, the TPC must indicate that the texture data has been loaded into the

// GPRs before incrementing the count
// - in the case of tex RSs, the AIS will increment the count when it‘s done

//wire [FIFO_ADDR_BITS—1:0] tex_count [0:8]; // tex_count[8] is for the exit RS

15

LG Ex. 1002, pg 244

//wire [FIFO_ADDR_B|TS—1:0] alu_count [0:7];
wire [FIFO_ADDR_B|TS—1:O] tex_countO;
wire [FIFO_ADDR_BITS-1:0] tex_count1;
wire [FIFO_ADDR_B|TS—1:O] tex_countZ;
wire [FIFO_ADDR_B|TS—1:O] tex_count3;
wire [FIFO_ADDR_BITS-1:0] tex_count4;
wire [FIFO_ADDR_BITS-1:O] tex_count5;
wire [FIFO_ADDR_B|TS—1:O] tex_count6;
wire [FIFO_ADDR_B|TS—1:O] tex_count7;
wire [FIFO_ADDR_BITS-1:O] tex_count8;
wire [FIFO_ADDR_B|TS—1:O] alu_countO;
wire [FIFO_ADDR_B|TS—1:O] alu_count1;
wire [FIFO_ADDR_BITS-1:O] alu_count2;
wire [FIFO_ADDR_B|TS—1:O] alu_count3;
wire [FIFO_ADDR_BITS-1:O] alu_count4;
wire [FIFO_ADDR_BITS-1:O] alu_count5;
wire [FIFO_ADDR_B|TS—1:O] alu_count6;
wire [FIFO_ADDR_BITS-1:O] alu_count7;

wire [8:0] tex_rts; // tex_rts[8] is for the exit RS
wire [7:0] alu_rts;

// - this could be done in the reservation station...

llalways @(tex_rts or tex_count)
// for (i=0; i<9; i=i+1) begin
// tex_req[i] = tex_rts[i] & |(tex_count[i]);
fl end

//a|ways @(alu_rts or alu_count)
// for (i=0; i<8; i=i+1) begin
// alu_req[i] = alu_rts[i] & |(a|u_count[i]);
fl end

assign tex_req[0] = tex_rts[O] & |tex_count0;
assign tex_req[1] = tex_rts[1] & |tex_count1;
assign tex_req[2] = tex_rts[2] & |tex_count2;
assign tex_req[3] = tex_rts[3] & |tex_count3;
assign tex_req[4] = tex_rts[4] & |tex_count4;
assign tex_req[5] = tex_rts[5] & |tex_count5;
assign tex_req[6] = tex_rts[6] & |tex_count6;
assign tex_req[7] = tex_rts[7] & |tex_count7;
assign tex_req[8] = tex_rts[8] & |tex_count8;
assign alu_req[O] = alu_rts[O] & |a|u_count0;
assign alu_req[1] = alu_rts[1] & |a|u_count1;
assign alu_req[2] = alu_rts[2] & |a|u_count2;
assign alu_req[3] = alu_rts[3] & |a|u_count3;
assign alu_req[4] = alu_rts[4] & |a|u_count4;
assign alu_req[5] = alu_rts[5] & |a|u_count5;
assign alu_req[6] = alu_rts[6] & |a|u_count6;
assign alu_req[7] = alu_rts[7] & |a|u_count7;

// - the acknowledge to a R8 is the OR of the winner and empty ack vectors
// - the ack advances the CH packet to the next RS
// - want to advance when either the clause was picked by the arbiter or when
// the clause is empty (no instructions)

LG Ex. 1002, pg 245

wire [7:0] tca_ack = tca_winner_ack | tca_empty_ack;

//wire [7:0] aca_winner_ack = aca0_winner_ack | aca1_winner_ack;
//wire [7:0] aca_empty_ack = acaO_empty_ack | aca1_empty_ack;
wire [7:0] aca_ack = aca_winner_ack | aca_empty_ack;

// ---

// -- registers --
// --

// - block input registers for signals from TPC

always @(posedge clk)
begin

tpc_data_rdy <= TP_SQ_data_rdy;
tpc_type <= TP_SQ_type;
tpc_clause_num <= TP_SQ_cIause_num;

end

// ---
// -- state machines --
// ---

// ---
// -- module instatiations --
// ---

// 16 reservation stations: 8 texture, 8 alu

// - the R83 are connected tex to alu to tex etc., with an exit RS connected after alu rs7 (like tex rs8)
// - the write rts/rtr for tex rsO is from the input sm
// - the read rts‘s are qualified with the RS count and sent to the arbiter
// - the arbiter sends an ack which rtr's the sender and rts‘s the receiver (i.e. next RS)
// - the next RS rtr goes back to the arbiter and must be high to enable a grant

wire tex_rsO_cnt_inc = input_rts & input_rtr;

res_station // tex rsO
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_B|TS(F|FO_ADDR_BITS))
u_tex_rsO

(.write_rts(input_rts), .write_rtr(input_rtr), .write_data(input_cp),
.read_rts (tex_rts[0]), .read_rtr (tca_ack[0]). .read_data (tex_ctl_pkt0),
.empty_inc(LO), .count_inc(tex_rsO_cnt_inc), .count(tex_count0),
.clk(clk), .reset(reset)

);
res_station // alu rsO
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_alu_rsO

(.write_rts(tca_ack[0]), .write_rtr(alu_rtr[0]), .write_data(tex_ctl_pkt0),
.read_rts (alu_rts[0]), .read_rtr (aca_ack[0]), .read_data (alu_ctl_pkt0),
.empty_inc(tca_empty_ack[0]), .count_inc(tpc_cnt_inc[0]), .count(alu_count0),
.clk(clk), .reset(reset)

);
res_station // tex rs1

LG Ex. 1002, pg 246

#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rs1

(.write_rts(aca_ack[0]), .write_rtr(tex_rtr[fl), .write_data(alu_ctl_pkt0),
.read_rts (tex_rts[1]), .read_rtr (tca_ack[1]), .read_data (tex_ct|_pkt1),
.empty_inc(aca_empty_ack[0]), .count_inc(ais_cnt_inc[0]), .count(tex_count1),
.clk(clk), .reset(reset)

);
res_station // alu rs1
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_a|u_rs1

(.write_rts(tca_ack[1 1), .write_rtr(alu_rtr[1]). .write_data(tex_ctl_pkt1),
.read_rts (alu_rts[1]), .read_rtr(aca_ack[1]), .read_data (alu_ct|_pkt1),
.empty_inc(tca_empty_ack[1]), .count_inc(tpc_cnt_inc[1]), .count(a|u_count1),
.c|k(c|k), .reset(reset)

);
res_station // tex r32
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_B|TS))
u_tex_rsZ

(.write_rts(aca_ack[1]), .write_rtr(tex_rtr[2]), .write_data(a|u_ctl_pkt1),
.read_rts (tex_rts[2]), .read_rtr(tca_ack[2]), .read_data (tex_ctl_pkt2),
.empty_inc(aca_empty_ack[1]), .count_inc(ais_cnt_inc[1]), .count(tex_count2),
.c|k(c|k), .reset(reset)

);
res_station // alu r32
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_a|u_r52

(.write_rts(tca_ack[2]), .write_rtr(alu_rtr[2]), .write_data(tex_ctl_pkt2),
.read_rts (alu_rts[2]). .read_rtr(aca_ack[2]), .read_data (a|u_ct|_pkt2),
.empty_inc(tca_empty_ack[2]), .count_inc(tpc_cnt_inc[2]), .count(a|u_count2),
.clk(clk), .reset(reset)

);
res_station // tex r33
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rsS

(.write_rts(aca_ack[2]), .write_rtr(tex_rtr[3]), .write_data(a|u_ctl_pkt2),
.read_rts (tex_rts[3]), .read_rtr(tca_ack[3])y .read_data (tex_ct|_pkt3),
.empty_inc(aca_empty_ack[2]), .count_inc(ais_cnt_inc[2]), .count(tex_count3),
.c|k(c|k), .reset(reset)

);
res_station // alu r33
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_a|u_rs3

(.write_rts(tca_ack[3]), .write_rtr(alu_rtr[3]), .write_data(tex_ctl_pkt3),
.read_rts (alu_rts[3]), .read_rtr(aca_ack[3]), .read_data (alu_ctl_pkt3),
.empty_inc(tca_empty_ack[3]), .count_inc(tpc_cnt_inc[3]), .count(a|u_count3),
.clk(clk), .reset(reset)

);
res_station // tex rs4
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rs4

(.write_rts(aca_ack[3]), .write_rtr(tex_rtr[4]), .write_data(a|u_ctl_pkt3),
.read_rts (tex_rts[4]), .read_rtr(tca_ack[4]), .read_data (tex_ctl_pkt4),
.empty_inc(aca_empty_ack[3]), .count_inc(ais_cnt_inc[3]), .count(tex_count4),
.c|k(c|k), .reset(reset)

);
res_station // alu rs4

LG Ex. 1002, pg 247

#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_alu_rs4

(.write_rts(tca_ack[4]), .write_rtr(alu_rtr[4]), .write_data(tex_ctl_pkt4),
.read_rts (alu_rts[4]), .read_rtr(aca_ack[4]), .read_data (a|u_ct|_pkt4),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[4]), .count(a|u_count4),
.clk(clk), .reset(reset)

);
res_station // tex rs5
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_BITS))
u_tex_rs5

(.write_rts(aca_ack[4]), .write_rtr(tex_rtr[5]), .write_data(a|u_ct|_pkt4),
.read_rts (tex_rts[5]), .read_rtr(tca_ack[5]), .read_data (tex_ct|_pkt5),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[4]), .count(tex_count5),
.c|k(c|k), .reset(reset)

);
res_station // alu rs5
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(F|FO_ADDR_B|TS))
u_alu_r35

(.write_rts(tca_ack[5]). .write_rtr(alu_rtr[5]), .write_data(tex_ctl_pkt5),
.read_rts (alu_rts[5]), .read_rtr(aca_ack[5]), .read_data (a|u_ct|_pkt5),
.empty_inc(tca_empty_ack[4]), .count_inc(tpc_cnt_inc[5]), .count(alu_count5),
.c|k(c|k), .reset(reset)

);
res_station // tex r36
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rsG

(.write_rts(aca_ack[5]), .write_rtr(tex_rtr[6]), .write_data(a|u_ctl_pkt5),
.read_rts (tex_rts[6]). .read_rtr(tca_ack[6])y .read_data (tex_ct|_pkt6),
.empty_inc(aca_empty_ack[5]), .count_inc(ais_cnt_inc[5]), .count(tex_counts),
.clk(clk), .reset(reset)

);
res_station // alu r36
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_B|TS(F|FO_ADDR_BITS))
u_alu_r56

(.write_rts(tca_ack[6]), .write_rtr(a|u_rtr[6]), .write_data(tex_ctl_pkt6),
.read_rts (alu_rts[6]), .read_rtr(aca_ack[6])y .read_data (a|u_ct|_pkt6),
.empty_inc(tca_empty_ack[6]), .count_inc(tpc_cnt_inc[6]), .count(alu_count6),
.c|k(c|k), .reset(reset)

);
res_station // tex rs7
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(FIFO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_tex_rs7

(.write_rts(aca_ack[6]), .write_rtr(tex_rtr[7]), .write_data(alu_ctl_pkt6),
.read_rts (tex_rts[7]), .read_rtr(tca_ack[7]). .read_data (tex_ctl_pkt7),
.empty_inc(aca_empty_ack[6]), .count_inc(ais_cnt_inc[6]), .count(tex_count7),
.clk(clk), .reset(reset)

);
res_station // alu rs7
#(.DATA_B|TS(F|FO_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_BITS(FIFO_ADDR_BITS))
u_alu_rs7

(.write_rts(tca_ack[7]), .write_rtr(a|u_rtr[7]), .write_data(tex_ctl_pkt7),
.read_rts (alu_rts[7]), .read_rtr(aca_ack[7]), .read_data (a|u_ct|_pkt7),
.empty_inc(tca_empty_ack[7]), .count_inc(tpc_cnt_inc[7]), .count(alu_count7),
.c|k(c|k), .reset(reset)

),

LG Ex. 1002, pg 248

wire [2:0] new_state;

// exit RS

res_station
#(.DATA_B|TS(STATE_W|DTH), .NUM_WORDS(F|FO_DEPTH), .ADDR_B|TS(F|FO_ADDR_BITS))

u tex r58

(.write_rts(aca_ack[7]), .write_rtr(tex_rtr[8]), .write_data(a|u_ctl_pkt7[STATE_W|DTH-1:O]),
.read_rts (tex_rts[8]), .read_rtr(exit_sm_rtr), .read_data (new_state),
.empty_inc(aca_empty_ack[7]), .count_inc(ais_cnt_inc[7]), .count(tex_count8),
.clk(clk), .reset(reset)

).

// ------------------------
// -- exit state machine --
// ------------------------

exit_sm
u_exit_sm
(

.new_state_rts(tex_req [8]),

.new_state_rtr(exit_s m_rtr),

.new_state(new_state),

.state_d iff(state_change),

.o|d_state_q(old_state),

.dealloc_req(dealloc_req),

.deal|oc_ack(dealloc_ack),

.clk(clk),

.reset(reset)
);

endmodule

LG Ex. 1002, pg 249

Electronic Patent Application Fee Transmittal

Filing Date: 17-May-2011

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Filer: ChristopherJ. Reckamp/Christine Wright

Attorney Docket Number: 00100360001

Utility under 35 USC 11 1 (a) Filing Fees

Sub-Total in

USD($)

Basic Filing:

Claims:

Description Fee Code Quantity

Miscellaneous-Filing:

Patent-AppeaIs—and-Interference:

Post-Allowance-and-Post-lssuance:

Extension-of—Time:

Extension - 3 months with $0 paid 1253 1 1270 1270

LG Ex. 1002, pg 250

Sub-Total in

Description Quantity USD($)

Miscellaneous:

Total in USD (5) 1270

LG Ex. 1002, pg 251

Electronic Acknowledgement Receipt

11860180

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

—ChrIStopherJ. ReCkamp/ChrIStlne
Filer Authorized By: ChristopherJ. Reckamp

Attorney Docket Number: 00100360001

Filing Date: 17-MAY-2011

Time Stamp: 12:01 :42

Application Type: Utility under 35 USC 111(a)

Payment information:

Submitted with Payment yes

PaymentType Deposit Account

Payment was successfully received in RAM $1270

Deposit Account 020390

The Director ofthe USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

LG Ex. 1002, pg 252

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

Document File Size(Bytes)/ Multi Pages
Message Digest Part l.zip (ifappl.)Number Document Description

120979

5ca628c325d222b0f813cf29cd1abSISdeS
6460

Multipart Description/PDF files in .zip description

360001 _Response.pdf

Document Description

Amendment/Req. Reconsideration-After Non-Final Reject

Applicant Arguments/Remarks Made in an Amendment

Warnings:

124271

Miscellaneous Incoming Letter 360001_Declaration.pdf bbbbchbbeU4l83869fcb83549/285 ldj8d
4301017

Information:

738779

Miscellaneous Incoming Letter 360001_ExhibitA.pdf IhShd 3d447e9h644P4h83f489f84FaPth3‘
c50d

Information:

260167

Miscellaneous Incoming Letter 360001_EXhibitB.pdf 23L581 Lleb4d1 dU82018254L3d4IJ13Ld4d0L
51931

Information:

Fee Worksheet (SBOG) fee-infopdf 156554244122c7c58b7a8clf31ad51e86679
a08a

Warnings:

Information:

LG Ex. 1002, pg 253

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,

characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

lfa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

lfa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DOIEOI903 indicating acceptance of the application as a

national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
Ifa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number

and ofthe International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

LG Ex. 1002, pg 254

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O Box 1450
Alexandria, Virginia 22313-1450
www.uspto gov

 APPLICATION NO. FILING DATE FIRST NAM r) INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

13/109,738 05/17/20] I Stephen Morein 0010036000] 2020

29153 7590 03/15/2012

ADVANCED MICRO DEVICES, INC.
C/O Faegre Baker Daniels LLP WASHBURN. DAN
311 S. WACKER DRIVE

CHICAGO, IL 60606

EXAMINER

ART UNIT PAPER NUMBER

2648

NOTIFICATION DATE DELIVERY MODE

03/15/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the

following e-mail address('es):

inteas @faegrebd.c0m
cynthia.payson @ faegredb—com

PTOL-90A (Rev. 04/07)

LG Ex. 1002, pg 255

Application No. Applicant(s)

13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit DANIEL WASHBURN 2628

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR1.136(a). In no event, however, may a reply be timer filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for repiy is specified above, the maximum statutory period wili apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Faiiure to repiy within the set or extended period for replywili, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received bythe Office later than three months afterthe mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR1.704(b).

Status

DIX Responsive to communication(s) filed on 18 January 2012.

This action is FINAL. 2b)l:l This action is non-final.

An election was made by the applicant in response to a restriction requirement set forth during the interview on

_; the restriction requirement and election have been incorporated into this action.

Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quay/e, 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

5)IZ Claim(s)1—_16is/are pending in the application.

5a) Of the above Claim(s)_ is/are withdrawn from consideration.

_ is/are allowed.

1—_16is/are rejected.

is/are objected to.

are subject to restriction and/or election requirement.

Application Papers

10)X| The specification is objected to by the Examiner.

11)|:| The drawing(s) filed on_ is/are: a)I:l accepted or b)|:I objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

12)|:l The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

13)I:I Acknowledgment is made of a claim for foreign priority under 35 U.S.C. §119()-(d) or (f).

a)I:| All b)|:l Some * c)I:I None of:

Certified copies of the priority documents have been received.

Certified copies of the priority documents have been received in Application No. _

Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) D Notice of References Cited (PTO-892) 4) D Interview Summary (PTO-413)
2) I] Notice of Draftsperson‘s Patent Drawing Review (PTO—948) Paper N0(S)/Ma” Date-_
3) X Information Disclosure Statement(s) (PTO/SB/OS) 5) I:I NOIICE‘ 0f Informal Patent Application

Paper No(s)/Mai| Date . 6) CI Other: .
U.S. Patent and Trademark Office

PTOL-326 (Rev. 03-11) Office Action Summary Part of Paper No./Mai| Date 20120311

LG Ex. 1002, pg 256

Application/Control Number: 13/109,738

Art Unit: 2628

DETAILED ACTION

Specification

Applicant is reminded of the proper language and format for an abstract of the
disclosure.

The abstract should be in narrative form and generally limited to a single

paragraph on a separate sheet within the range of 50 to 150 words. It is important that

the abstract not exceed 150 words in length since the space provided for the abstract

on the computer tape used by the printer is limited. The form and legal phraseology

often used in patent claims, such as "means" and "said," should be avoided. The

abstract should describe the disclosure sufficiently to assist readers in deciding whether

there is a need for consulting the full patent text for details.

The language should be clear and concise and should not repeat information

given in the title. It should avoid using phrases which can be implied, such as, "The

disclosure concerns," "The disclosure defined by this invention," "The disclosure
describes," etc.

Declaration filed under 37 CFR 1. 131

The declaration filed 1/18/12 under 37 CFR 1.131 has been considered but is

ineffective to overcome the prior art reference Lindholm (US 7,038,685, “the Lindholm

reference”).

The declaration does not meet the requirements of 37 CFR 1.131 section ().

37 CFR 1.131 section (a) states (in relevant part):

“(a) When any claim of an application or a patent under reexamination is

rejected, the inventor of the subject matter of the rejected claim, the owner of the patent

under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may submit an

appropriate oath or declaration to establish invention of the subject matter of the

rejected claim prior to the effective date of the reference or activity on which the

rejection is based. The effective date of a US. patent, US. patent application

publication, or international application publication under PCT Article 21 (2) is the earlier

of its publication date or date that it is effective as a reference under 35 U.S.C. 102().

Prior invention may not be established under this section in any country other

than the United States, a NAFTA country, or a WTO member country. Prior

invention may not be established under this section before December 8, 1993, in

LG Ex. 1002, pg 257

Application/Control Number: 13/109,738 Page 3

Art Unit: 2628

a NAFTA country other than the United States, or before January 1, 1996, in a

WTO member country other than a NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by ATI

Technologies Inc. and/or one of its wholly owned subsidiaries ("ATI") as indicated by

attached Exhibits A and B Prior to June 30, 2003 we created a graphics processing

system that operated as claimed using a computer system that successfully executed

the Model Code. Prior to June 30, 2003 we also created a graphics processing system

as claimed in the form of a computer system that used an RTL simulator to successfully

validate the operation of an integrated circuit version of the claimed graphics processing

system and method.”

As quoted from Applicants' declaration, section 2 describes conception and

reduction to practice of the claimed invention prior to June 30, 2003. Section 2 further

describes that the conception and reduction to practice of the claimed invention was

carried out while the inventors were employed by ATI Technologies Inc. and/or one of

its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify whether or

not the conception and reduction to practice was carried out in the United States, a

NAFTA country, or a WTO member country. As quoted from 37 CFR 1.131 section (),

“[p]rior invention may not be established under this section in any country other than the

United States, a NAFTA country, or a WTO memory country”. Thus, the declaration is

ineffective to overcome the Lindholm reference due to this first deficiency.

Further, the declaration does not meet the requirements of 37 CFR 1.131 section

(b)-

37 CFR 1.131 section (b) states:

“(b) The showing of facts shall be such, in character and weight, as to

establish reduction to practice prior to the effective date of the reference, or conception

LG Ex. 1002, pg 258

Application/Control Number: 13/109,738 Page 4

Art Unit: 2628

of the invention prior to the effective date of the reference coupled with due diligence

from prior to said date to a subsequent reduction to practice or to the filing of the

application. Original exhibits of drawings or records, or photocopies thereof, must

accompany and form part of the affidavit or declaration or their absence must be

satisfactorily explained.”

MPEP 715.07 [Ft-3] "Facts and Documentary Evidence", section |. "General

Requirements", offers further guidance regarding the requirements of 37 CFR 1.131

section (b).

MPEP 715.07, section l., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.131 is priority of invention and

this may be done by any satisfactory evidence of the fact. FACTS, not conclusions,

must be alleged. Evidence in the form of exhibits may accompany the affidavit or

declaration. Each exhibit relied upon should be specifically referred to in the affidavit or

declaration, in terms of what it is relied upon to show when reviewing a 37 CFR

1.131 affidavit or declaration, the examiner must consider all of the evidence presented

in its entirety, including the affidavits or declarations and all accompanying exhibits,

records and “notes.” An accompanying exhibit need not support all claimed limitations,

provided that any missing limitation is supported by the declaration itself. Ex parte

Ovshinsky, 10 USPQ2d 1075 (Bd. Pat. App. & Inter. 1989).

The affidavit or declaration and exhibits must clearly explain which facts or

data applicant is relying on to show completion of his or her invention prior to the

particular date. Vague and general statements in broad terms about what the

exhibits describe along with a general assertion that the exhibits describe a

reduction to practice “amounts essentially to mere pleading, unsupported by

proof or a showing of facts” and, thus, does not satisfy the requirements of 37

CFR1.131(b). In re Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant

must give a clear explanation of the exhibits pointing out exactly what facts are

established and relied on by applicant. 505 F.2d at 718-19, 184 USPQ at 33. See

also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964) (Affidavit “asserts that

facts exist but does not tell what they are or when they occurred.”).” (emphasis added)

Section 2 of Applicants' declaration describes (in relevant part):

“Prior to June 30, 2003 we created a graphics processing system that operated

as claimed using a computer system that successfully executed the Model Code. Prior

to June 30, 2003 we also created a graphics processing system as claimed in the form

of a computer system that used an RTL simulator to successfully validate the operation

LG Ex. 1002, pg 259

Application/Control Number: 13/109,738 Page 5

Art Unit: 2628

of an integrated circuit version of the claimed graphics processing system and method

At least the following language and citations adequately support the above:

a. As shown in Exhibit A, the Model Code comprises various software

instructions written in the well-known C++ language. When executed by the

computer system, the Model Code caused the computer system to operate as

claimed in at least claims 1-5, 12 and 15 of the Invention.

b. Using the Model Code, we successfully verified the operation of the

claimed subject matter for its intended purpose through emulation thereof.

0. As shown in Exhibit B, the Chip Design Code comprises various

instructions written in a well-known hardware description language. The Chip

Design Code was used by an RTL simulator system to validate the operation of

an integrated circuit version of the claimed graphics processing system and

method as claimed in at least claims 1-5, 12 and 15. As further known by

practitioners in the field of integrated circuit design, such instructions are used to

generate gate level detail for silicon fabrication.

d. On information and belief, the computer system operating the Model

Code and the RTL simulator system operating the Chip Design Code represents

the claimed structure and operation embodied in an integrated graphics

processing circuit chip referred to as the ATI XENOS chip produced by ATI on or

about October, 2004 that was incorporated in the XBOX 360 product.

Accordingly, the contents of Exhibits A and B establish the possession by us of

the whole Invention, failing within the scope of currently pending claims, such as but not
limited to at least claims 1-5, 12 and 15.”

As quoted from Applicants‘ declaration, section 2 describes that Exhibit A is

Model Code that, when executed by the computer system, caused the computer system

to operate as claimed in at least claims 1-5, 12, and 15 of the Invention. Further,

section 2 describes that Exhibit B is Chip Design Code that was used by an RTL

simulator system to validate operation of an integrated circuit version of the claimed

graphics processing system and method as claimed in at least claims 1-5, 12, and 15.

However, section 2, and the declaration as a whole, fails to clearly explain which

facts or data applicant is relying on to show completion of his or her invention prior to

LG Ex. 1002, pg 260

Application/Control Number: 13/109,738 Page 6

Art Unit: 2628

the June 30, 2003. The portions of Applicants‘ declaration quoted above are considered

nothing more than vague and general statements in broad terms about what the exhibits

describe along with general assertions that the exhibits describe a reduction to practice,

which does not satisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration is ineffective to overcome the Lindholm reference due to this second

deficiency.

Regarding claim 1, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed method steps of “performing vertex

manipulation operations and pixel manipulation operations...and continuing pixel

calculation operations that are to be or are currently being performed by the

processor..."

Regarding claim 2, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader, comprising: a general purpose

register block...a processor unit; and a sequencer, coupled to the general purpose

register block and the processor unit...”

Regarding claims 3 and 4, the Examiner is unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit...and shared resources...the processor unit operative to use the shared

resources. .

Regarding claim 5, the Examiner is unable to determine which portions of Exhibit

A and/or Exhibit B describe the claimed “unified shader comprising: a processor unit; a

sequencer coupled to the processor unit...”

LG Ex. 1002, pg 261

Application/Control Number: 13/109,738 Page 7

Art Unit: 2628

Regarding claim 12, the Examiner is unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “graphics processor comprising: a

unified shader comprising a processor unit...”

Regarding claim 15, the Examiner is unable to determine which portions of

Exhibit A and/or Exhibit B describe the claimed “unified shader comprising: a processor

unit flexibly controlled. .

Thus, for at least the reasons given above, the declaration filed 1/18/12 under 37

CFR 1.131 is ineffective to overcome the Lindholm reference.

As an additional note, the Examiner would like to point out that US Pat

7,015,913, to Lindholm et al., filed June 27th, 2003, appears, after brief review, to

include a disclosure that is similar to US Pat 7,038,685 to Lindholm, which is used in the

rejections that follow (see FIG. 2 of each patent). The Examiner has not given Lindholm

et al. (US 7,015,913) a thorough review as to whether or not it teaches one or more of

Applicants’ claims, but it may be worth Applicants’ time to review Lindholm et al. (US

7,015,913) and adjust the declaration such that conception and reduction to practice of

the claimed invention is declared to have occurred prior to June 27th, 2003 (if such a

statement is true), in order to avoid a future rejection based on the teachings of prior art

reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

LG Ex. 1002, pg 262

Application/Control Number: 13/109,738 Page 8

Art Unit: 2628

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent
granted on an application for patent by another filed in the United States before the invention by the
applicant for patent, except that an international application filed under the treaty defined in section
351 (a) shall have the effects for purposes of this subsection of an application filed in the United States
only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

Claims 1-16 are rejected under 35 U.S.C. 102(e) as being anticipated by

Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex

operations on the vertex data by a processor unless the general purpose register block

does not have enough available space therein to store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is programmed to

operate on surface, primitive, vertex, fragment, pixel, sample or any other data. For

simplicity, the remainder of this description will use the term 'samples‘ to refer to

graphics data such as surfaces, primitives, vertices, pixels, fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex."

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".

7:36-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

LG Ex. 1002, pg 263

Application/Control Number: 13/109,738

Art Unit: 2628

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and pixel

manipulation operations by transmitting vertex data to a general purpose register block

(sample data, such as vertex or pixel data, is transmitted to Register File 350) and

performing vertex operations on the vertex data by a processor unless the general

purpose register block does not have enough available space therein to store incoming

vertex data (the multi-threaded processing unit 400 carries out vertex operations on

vertex data unless the Register File 350 doesn’t have enough room to store the

incoming vertex data, in which case the thread associated with the vertex data and

vertex operations must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction store

until enough registers within the general purpose register block become available (

7:6-21: “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries based on

thread execution priorities and outputs selected thread entries to Instruction Cache 410.

Instruction cache 410 determines if the program instructions corresponding to the

program counters and sample type included in the thread state data for each thread

entry are available in Instruction Cache 410 The program instructions corresponding

to the program counters from the one or more thread entries are output by Instruction

LG Ex. 1002, pg 264

Application/Control Number: 13/109,738 Page 10

Art Unit: 2628

Cache 410 to Instruction Scheduler 430 Each clock cycle, Instruction Scheduler

430 evaluates whether any instruction within the IWU [instruction window unit] 435 can

be executed based on the availability of computation resources in an Execution Unit

470 and source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including continuing

pixel calculation operations that are to be or are currently being performed by the

processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available, as the Execution Unit 470

may be carrying out calculations for one or more high priority pixel threads based on

instructions stored in Instruction Cache 410 and/or IWU 435 while a low priority vertex

thread is waiting for the one or more pixel threads to finish such that when the pixel

threads finish the system will deallocate the resources assigned to the completed pixel

threads in the Register File 350 and will allocate the requested amount of resources to

the queued up vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is allocated

storage resources such as locations in a Register File 350 to retain intermediate data

generated during execution of program instructions associated with the thread”);

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

LG Ex. 1002, pg 265

Application/Control Number: 13/109,738 Page 11

Art Unit: 2628

a sequencer, coupled to the general purpose register block and the processor

unit, the sequencer maintaining instructions operative to cause the processor unit to

execute vertex calculation and pixel calculation operations on selected data maintained

in the general purpose register block (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the IWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations"); and

wherein the processor unit executes instructions that generate a pixel color in

response to the selected one of the plurality of inputs and generates vertex position and

appearance data in response to a selected one of the plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations and output

the processed sample to a destination specified by the instruction. The destination may

be Vertex Output Buffer 260, Pixel Output Buffer 270, or Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device

coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260 Each Execution Pipeline 240 signals to

Pixel Input Buffer 240 when a sample can be accepted programmable computation

units (PCUs) within an Execution Pipeline 240 perform operations such as

tessellation, perspective correction, texture mapping, shading, blending, and the like.

Processed samples are output from each Execution Pipeline 240 to a Pixel Output
Buffer 270."

LG Ex. 1002, pg 266

Application/Control Number: 13/109,738 Page 12

Art Unit: 2628

Thus, the Execution Unit 470 is considered a processor unit that executes

instructions that generate a pixel color in response to the selected one of the plurality of

inputs and generates vertex position and appearance data in response to a selected

one of the plurality of inputs (also see 4:22-5:35».

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel

calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively considered a

processor unit operative to perform vertex calculation operations and pixel calculation

operations); and

shared resources, operatively coupled to the processor unit (FIG. 4 illustrates

Register File 350 coupled to Execution Unit 470, and 7:37-43 describes that the

Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform pixel calculation operations until enough

shared resources become available and then use the shared resources to perform

LG Ex. 1002, pg 267

Application/Control Number: 13/109,738 Page 13

Art Unit: 2628

vertex calculation operations (7:37-43, all types of processing threads can use the

Register File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor unit will

allocate the pixel data to the Register File 350 and will perform pixel calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out vertex threads, which may happen as a result of a completion of most

of the pixel threads or a shift in priority such that the vertex threads now have the

highest priority, and then use the Register File 350 to perform vertex calculation

operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel

calculation operations (see the corresponding section in the rejection of claim 3); and

shared resources, operativer coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

the processor unit operative to use the shared resources for either vertex data or

pixel information and operative to perform vertex calculation operations until enough

LG Ex. 1002, pg 268

Application/Control Number: 13/109,738 Page 14

Art Unit: 2628

shared resources become available and then use the shared resources to perform pixel

calculation operations (7:37-43, all types of processing threads can use the Register

File 350, where thread types include vertex and pixel threads (see 6:43-44).

7:6—36 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220."

15:7—13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor unit will

allocate the vertex data to the Register File 350 and will perform vertex calculation

operations until enough shared resources become available in the Register File 350 to

begin carrying out pixel threads, which may happen as a result of a completion of most

of the vertex threads or a shift in priority such that the pixel threads now have the

highest priority, and then use the Register File 350 to perform pixel calculation

operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

a sequencer coupled to the processor unit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation and pixel

calculation operations on selected data maintained in a store depending upon an

amount of space available in the store (

LG Ex. 1002, pg 269

Application/Control Number: 13/109,738 Page 15

Art Unit: 2628

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether any

instruction within the IWU 435 can be executed based on the availability of computation

resources in an Execution Unit 470 and source data stored in Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured to

assign threads to source samples or allocate locations in Register File 350 using thread

allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread are

available. The storage resources may be in graphics memory. When storage

resources are not available in step 877, Thread Control Unit 320 or 420 does not

proceed to step 880 until a storage resources become available. In step 880 Thread

Control Unit 320 dispatches the thread assigned to the sample and source data to at
least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer maintaining

instructions operative to cause the Execution Unit 470 to execute vertex calculation and

pixel calculation operations on selected data maintained in a Register File 350

depending upon an amount of space available in the Register File 350).

RE claim 6, Lindholm describes the shader of claim 5, wherein the sequencer

further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shader of claim 5, further including a

selection circuit operative to provide information to the store in response to a control

signal (

LG Ex. 1002, pg 270

Application/Control Number: 13/109,738 Page 16

Art Unit: 2628

6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to provide

information to the store (Register File 350) in response to a control signal, where the

control signal is the thread allocation priority associated with each thread or thread

type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the processor unit

executes instructions that generate a pixel color in response to the selected one of the

plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution Pipeline

240 Each Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample

can be accepted programmable computation units (PCUs) within an Execution

Pipeline 240 perform operations such as tessellation, perspective correction, texture

mapping, shading, blending, and the like. Processed samples are output from each

Execution Pipeline 240 to a Pixel Output Buffer 270.").

RE claim 9, Lindholm describes the shader of claim 5, wherein the processor unit

executes vertex calculations while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types.”).

LG Ex. 1002, pg 271

Application/Control Number: 13/109,738 Page 17

Art Unit: 2628

RE claim 10, Lindholm describes the shader of claim 5, wherein the processor

unit generates vertex position and appearance data in response to a selected one of the

plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as higher-

order surface data, and tessellate the first samples to generate second samples, such

as vertices. Execution Pipelines 240 may be configured to transform the second

samples from an object-based coordinate representation (object space) to an

alternatively based coordinate system such as world space or normalized device

coordinates Execution Pipelines 240 output processed samples, such as vertices,

that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the control

signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used to

assign a thread to a source sample. A thread allocation priority is specified for each

sample type and Thread Control Unit 420 is configured to assign threads to samples or

allocate locations in a Register File 350 based on the priority assigned to each sample

type. The thread allocation priority may be fixed, programmable, or dynamic In an

alternate embodiment, Thread Control Unit 420 is configured to assign threads to

source samples or allocate locations in Register File 350 using thread allocation

priorities based on an amount of sample data in Pixel Input Buffer 215 and another

amount of sample data in Vertex Input Buffer 220 In a further alternate embodiment,

Thread Control Unit 420 is configured to assign threads to source samples or allocate

locations in Register File 350 using thread allocation priorities based on graphics

primitive size".

Thus, while an arbiter isn't explicitly described, the Examiner considers it inherent

that some portion of the system acts as an arbiter, and therefore can be considered an

arbiter, as some portion of the system assigns priorities to thread and sample types

according to the current processing circumstances, in order to more efficiently process

the data).

RE claim 12, Lindholm describes a graphics processor comprising:

LG Ex. 1002, pg 272

Application/Control Number: 13/109,738 Page 18

Art Unit: 2628

a unified shader comprising a processor unit that executes vertex calculations

while the pixel calculations are still in progress (

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In one

embodiment TSR [Thread Storage Resource] 325 stores thread data for each of at least

two thread types, where the at least two thread types may include pixel, primitive and
vertex.”

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 13, Lindholm describes the graphics processor of claim 12 wherein the

unified shader comprises a sequencer coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in a store

depending upon an amount of space available in the store (see the corresponding

section in the rejection of claim 5).

RE claim 14, Lindholm describes the graphics processor of claim 12 comprising

a vertex block operative to fetch vertex information from memory (see the rejection of

claim 6).

RE claim 15, Lindholm describes a unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and

pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source

samples or allocate locations in Register File 350 using thread allocation priorities

based on an amount of sample data in Pixel Input Buffer 215 and another amount of

sample data in Vertex Input Buffer 220 In a further alternate embodiment, Thread

Control Unit 420 is configured to assign threads to source samples or allocate locations

LG Ex. 1002, pg 273

Application/Control Number: 13/109,738 Page 19

Art Unit: 2628

in Register File 350 using thread allocation priorities based on graphics primitive size

(number of pixels or fragments included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion based on

switching between instructions in the instruction store (FIG. 4 and 8:15-46 describes

Instruction Cache 410, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel Input

Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an instruction and

outputs the instruction and source data to Execution Unit 470 including at least one

PCU 375 Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations... Execution

Unit 470 can simultaneously process samples of different types, and, likewise, execute

threads of different types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on switching

between instructions in the instruction store).

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time

policy as set forth in 37 CFR1.136().

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the event a first reply is filed within

TWO MONTHS of the mailing date of this final action and the advisory action is not

LG Ex. 1002, pg 274

Application/Control Number: 13/109,738 Page 20

Art Unit: 2628

mailed until after the end of the THREE-MONTH shortened statutory period, then the

shortened statutory period will expire on the date the advisory action is mailed, and any

extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

the advisory action. In no event, however, will the statutory period for reply expire later

than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to DANIEL WASHBU RN whose telephone number is

(571)272-5551. The examiner can normally be reached on 9:30 AM. to 6 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Ulka Chauhan can be reached on 571 -272—7782. The fax phone number for

the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a

USPTO Customer Service Representative or access to the automated information

system, call 800-786-9199 (IN USA OR CANADA) or 571-272—1000.

/DANIEL WASHBURN/

Primary Examiner, Art Unit 2628
3/11/12

LG Ex. 1002, pg 275

Application/Control No. Applicant(s)/Patent Under
Reexamination

SearCh NOIeS 13109738 MOREIN ET AL.

Examiner Art Unit

DANIEL WASHBURN 2628

SEARCHED

Subclass Examiner

7/12/11
3/11/12

SEARCH NOTES

Search Notes Date Examiner

Searched EAST (all databases) see search history printout 7/12/11 DW

Also see search histories for apps 12fl91,597 and 11/842,256 7/12/11
conducted inventor name search 7/12/11 —

DW

updated search in EAST (all databases) see search history printout 3/11/12 DW

INTERFERENCE SEARCH

Subclass

/DAN|EL WASHBURN/

Primary ExaminerArt Unit 2628

US. Paieni and Trademark Office Part of Paper No. : 20120311

LG Ex. 1002, pg 276

seesaw: 07/14/2011 :31 @738 ~ emulates. . _ . . 1 Approved for use through 071312012. OMB 0651-0031
Doc description. Information Disclosure Statement (IDS) Filed US Patent and Trademark Office; US DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Application Number 13109738

Filing Date 2011—05—17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor Stephen Morein

An Unit | 2628

Examiner Name na

Attorney Docket Number I 00100360001

U .S.PATENTS Remove

Pages,Columns,Lines where
Relevant Passages or Relevant

Figures Appear

Examiner Kind Name of Patentee or Applicant
Initial* Patent Number Code1 Issue Date of cited Document

5550962 1996—08—27 Nakamura et al.

5818469 1998-10-06 Lawless et al.

61 18452 2000-09-12

6353439 2002-03-05 Lindholm et al.

6384824 2002-05-07 Morgan et al.

6417858 2002-07-09 Bosch et al.

6573893 2003-06-03 Naqvi et al.

6650327 2002—11—18 Airey et al.

EFSWeb2.1.17 ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /'[3.W./

LG Ex. 1002, pg 277

Receipt date: 97/14/201 "1 Application Number 13109738 131053738 ~ QAU: 2628

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor Stephen Morein

Art Unit I 2628

 Examiner Name na

Attorney Docket Number I 00100360001

6650330 2003-11-18 Lindholm et al.

6704018 2004-03-09 Mori et al.

6724394 2004-04-20

6731289 2004-05-04 Peercy et al.

6809732 2004-10-26

6864893 2005—03—08

6897871 2005-05-24 Morein el al.

6980209 2005—12—27 Donham et al.

7015913 2006-03-21 Lindholm et al.

7038685 2006—05—02 Lindholm

7327369 2008-02-05 Morein et al.

EFSWeb2.1.17 ALL REFERENCES CONSEERED EXCEPT WHERE UNED THROUGH. /'[3.W./

LG Ex. 1002, pg 278

Receipt date: 97/14/201 "l Application Number 13109738 331053738 ~ QAU: 2628

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor Stephen Morein

Art Unit I 2628

Examiner Name na

Attorney Docket Number I 00100360001

5485559 1996-01-16 Sakaibara el al.

7239322 2007-07-03 Lefebvre et al.

7746348 2010-06-29 Lefebvre et a l.

7742053 2010-06-22 Lefebvre et a l.

If you wish to add additional US. Patent citation information please click the Add button. Add

U.S.PATENT APPLICATION PUBLICATIONS Remove

Pages,Cqumns,Lines where
Relevant Passages or Relevant

Figures Appear

Examiner Publication Kind Publication Name of Patentee or Applicant
|nitia|* Number Code1 Date of cited Document

20030076320 2003-04-24

20030164830 2003—09—04

20040041814 2004—03-04 Wyatt et al.

20040164987 2004—08—26 Aronson et al.

20050068325 2005-03-31 Lefebvre et al.

EFSWeb2.1.17 ALL REFERENCES CONSlDERED EXCEPT WHERE LlNED THROUGH. /'[3.W./

LG Ex. 1002, pg 279

Receipt date: 97/14/201 "l Application Number 13109738 131053738 ~ QAU: 2628

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor Stephen Morein

Art Unit I 2628

Examiner Name na

Attorney Docket Number I 00100360001

20100231592 2010—09-16 Morein et al.

20030030643 2003-02-13 Taylor et al.

20070222785 2007-09-27 Lefebvre et al.

20070222787 2007-09-27 Lefebvre et al.

20050200629 2005-09-15 Morein et al.

20070222786 2007—09—27 Lefebvre et al.

20070285427 2007-12-13 Morein et al.

20100156915 2010—06—24 Lefebvre et al.

If you wish to add additional U.S. Published Application citation information please click the Add button. Add

FOREIGN PATENT DOCUMENTS Remove

Name of Patentee or Pages,Cqumns,Lines
Examiner Cite Foreign Document Country Kind Publication . . where Relevant

. . . Applicant of Cited
Code2 I Code4 Date Document Passages or Relevant

Figures Appear

I2299408 2011-03-23-
EFSWeb2.1.17 ALL REFERENCES CONSlDERED EXCEPT WHERE LlNED THROUGH. /'[3.W./

LG Ex. 1002, pg 280

Receipt date: 97/14/201 "l Application Number 13109738 331053738 ~ QAU: 2628

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor Stephen Morein

Art Unit I 2628

 Examiner Name na

Attorney Docket Number I 00100360001

2309460 2011-04-13 Morein et al.

2296116 2011-03-16 Morein et al.

If you wish to add additional Foreign Patent Document citation information please click the Add button Add

NON-PATENT LITERATURE DOCUMENTS Remove

Include name of the author (in CAPITAL LETTERS}, title of the article (when appropriate), title of the item
(book, magazine, journal, serial, symposium. catalog, etc}, date, pages(s), volume-issue number(s),

publisher, city and/or country where published.

Examiner

lnitials”

European Patent Office Examination Report; EP Application No. 047989389; dated November 9, 2006; pages 1-3.

PU RCELL, TIMOTHY J. et al.; Ray Tracing on Programmable Graphics Hardware; SIGGRAPH '02; San Antonio, TX;
ACM Transactions on Graphics; July 2002; vol. 21, no. 3; pgs. 703—712.

MARK, WILLIAM R. et al.; CG: A system for programming graphics hardware in a C-like language; SIGGRAPH '03;
San Diego, CA; ACM Transactions on Graphics; July 2002; vol. 22, no. 3; pgs. 896—907.

BRETERNITZ, JR., MAURICIO et al.; Compilation, Architectural Support, and Evaluation of SIMD Graphics Pipeline
Programs on a General—Purpose CPU; IEEE; 2003; pgs. 1—1 1.

International Search Report and Written Opinion; International Application No. PCTHBZOO4I003821; dated March 22,
2005.

EP Supplemental Search Report; EP Application No. 100756881; dated February 25, 2011.

EP Supplemental Search Report; EP Application No. 100756865; dated February 25, 2011.

EFSWeb2.1.17 ALI. REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH.

LG Ex. 1002, pg 281

Receipt date: 97/14/203 "l Application Number 13109738 331053738 ~ QAU: 2628

Filing Date 2011-05-17

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)

First Named Inventor Stephen Morein

Art Unit I 2628

Examiner Name na

Attorney Docket Number |00100.36.0001

EP Supplemental Search Report; EP Application No. 100756873; dated February 25, 2011.

EP Supplemental Search Report; EP Application No. 100756857; dated February 25, 2011.

ELDRIDGE, MA'I'I'HEW et al.; Pomegranate: A Fully Scalable Graphics Architecture; Computer Graphics, SIGGRAPH
2000 Conference Proceedings; July 23, 2000.

OWENS, JOHN D. et al.; Polygon Rendering on a Stream Architecture; Proceedings 2000 SIGGRAPHIEurographics
Workshop on Graphics Hardware; August 21, 2000.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2008.

Chinese Office Action; Chinese Application No. 2004800405708; dated November, 2009.

Chinese Office Action; Chinese Application No. 2004800405708; dated September, 2010

If you wish to add additional non-patent literature document citation information please click the Add button Add

EXAMINER SIGNATURE

Examiner Signature [Dania Washbum/ Date Considered 03/1 1/2012

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
4 Kind ofdocument by the appropriate symbols as indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here if
English Ianuage translation is attached.

EFSWeb2.1.17 ALI. REFERENCES CONSIDERED EXCEPT WHERE LtNED THROUGH. /'[3.W./

LG Ex. 1002, pg 282

EAST Search Histoty

EAST Search History

EAST Search History (Prior Art)

its Search Query §Default §Plurals§Time 5
........................9999x953flame.........

SE 297 §345/501.ccls. jUS—PGPUBfi 32012/03/11é
USPAT; 14:01
jUSOCR;
jFPRS;
EEPO; JPO;
EDERWENTfi
uBMJDB

§|indholm.in. and nvidia.as. EUSPGPUBfi 32012/03/113
3 §USPAT; §14:03 a

EUSOCR;
jFPRS;
§EPO; JPO;
jDERWENTfi
jIBM_TDB

Elindholmjn. and nvidia.as. and shader jUS—PGPUBj i2012/03/11é
§USPAT; :14:03 5
:USOCR;
§FPRS;
EEPO; JPO;
§DERWENT;§
§|BM_TDB

§|indho|m.in. and nvidia.as. and shader and jUS—PGPUBfi $2012/03/11E
§vertex and pixel USPAT; 14:03
: gUSOCR; s

§FPRS;
§EPO; JPO;
§DERWENT;g

3lindholmm. and nvndia.as. and shader and 32012/03/113
§vertex and pixel and sequencer ' 14:05 5

Elindholmjn. and nvidia.as. and shader and jUS—PGPUBfi $2012/03/11E
§vertex and pixel and sequenc$3 USPAT; 14:05 5

mecca; s a
EFPRS;
EEPO; JPO;
§DERWENT;§

| BM_TDB _________ _________________________

§pixel adj input adj buffer and vertex adj EUS—PGPUBj §2012/03/11§
ginput adj buffer and vertex adj output adj jUSPAT; 14:29
ibuffer and pixel adj output adj buffer jUSOCR; 5 3

gFPRS;
jEPO; JPO;
EDERWENTj
jiBix/LTDB

§pixel adj input adj buffer and vertex adj EUS-PGPUB;

file:///CI/Users/dwashburn1/Documents/e—Red%20F01der/1310973 SIEASTSearchHistory.131097387AccessibleVersion.htm[3/11/2012 2:55:30 PM]

LG Ex. 1002, pg 283

EAST Search Histoty

§input adj buffer and vertex adj output adj §USPAT;
§buffer and pixel adj output adj buffer and §USOCR;
Sraster adj unit jFPRS;
5 tEPo; JPo;

jDERWENTfi

10/609967 2012/03/09;
3 s - s s 320:08 :

DERWENT;
IBM_TDB

§("20030030643"j"20030076320"j \‘ § § i2012/03/1fi
§”20030164830"|"20040041814"| E; g g 312:37 i
§”20040164987"|"20050068325"| E g a g
§”20050200629"|"20070222785"|
§”20070222786"|"20070222787"|
§”20070285427"|"20100156915"| j
§”20100231592"|"5485559"|”5550962"|
§”5818469"|"6118452"|”6353439"|
§”6384824"|"6417858"|”6573893"|
§”6650327"| "6650330"| "6704018"|
§”6724394"|"6731289"|”6809732"|
§”6864893"|"6897871"|”6980209"|
§”7015913" "7038685" "7239322"|
§”7327369" "7742053" "7746348U.PN.

EAST Search History (I nterference)

<This search history is empty>

3/ 11/2012 2:55:21 PM

C:\ Users\ dwashburn1\ Documents\ EAST\ Workspaces\ Morein et al. 11117863.wsp

file:///CI/Users/dwashburn1/Documents/e—Red%20F01der/1310973 SIEASTSearchHistory.131097387AccessibleVersion.htm[3/11/2012 2:55:30 PM]

LG Ex. 1002, pg 284

Application/Control No. Applicant(s)/Patent Under
Reexamination

Iridex Of Claims 13109738 MOREIN ET AL.

Examiner Art Unit

DANIEL WASHBURN 2628

El Claims renumbered in the same order as presented by applicant El CPA El T.D. El R.1.47

CLAIM DATE

—
II

III<\<\& III\\\

«xxx _. N

_. 0)

I

\XII \\IH_L 01

_. O)

U.S. Patent and Trademark Office Part of Paper No. : 20120311

LG Ex. 1002, pg 285

PTO/SB/30 (07-09)
Approved for use through 07/31/2012. OMB 0651—0031

US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Underthe Paerwork Reduction Act of 1995 no ersons are reuired to resond to a collection of information unless it contains a valid OMB control number.

RegueSt Application Number “3"1'33738or _ —, e ..
Date F»’iay1:,£0:1

Continued Examination (RCE)
Transmittal First Named Inventor

Address to: Art unit 2628
Mail Stop RCE

Commissioner for Patents Daniel C. WashburnPO. Box 1450

Alexandria, VA 22313—1450 Attorney Docket Number 00100350001

Stephen Morein

This is a Request for Continued Examination (RCE) under 37 CFR 1.114 of the above-identified application.
Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8,
1995, or to any design application. See Instruction Sheet for RCEs (not to be submitted to the USPTO) on page 2.

Submission re uired under 37 CFR 1.11‘ Note: If the RCE is proper, any previously filed unentered amendments and
amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs othenivise. If
applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such
amendment(s).

Previously submitted. If a final Office action is outstanding, any amendments filed after the final Office action may be
a' considered as a submission even if this box is not checked.

|:| Consider the arguments in the Appeal Brief or Reply Brief previously filed on

II. D Other

b. Enclosed

l. Amendment/Reply iii. D Information Disclosure Statement(lDS)

“I D Affidavit(s)/Declaration(s) iv. Other Repmceménmfisimd
2. Miscellaneous

Suspension of action on the above—identified application is requested under 37 CFR 1.103(c) for a
period of months. (Period of suspension shall not exceed 3 months; Fee under 37 CFR 1.17(i) required)
Other

The RCE fee under 37 CFR 1.17(e) is required by 37 CFR 1.114 when the RCE is filed.
The Director is hereby authorized to charge the following fees, any underpayment of fees, or credit any overpayments, to
Deposit Account No. 02-03190

RCE fee required under 37 CFR 1.17(e)

ii. Extension of time fee (37 CFR 1.136 and 1.17)

ml D Other

b. D Check in the amount of $ enclosed

c. I: Payment by credit card (Form PTO-2038 enclosed)
WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit
card information and authorization on PTO-2038.

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

Signature iChrisiopher J. Reckampi September 17, 2.31

Name (Print/Type) Christopher J} Reckamp Registration No.
CERTIFICA TE OF MAILING OR TRANSMISSION

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope
addressed to: Mail Stop RCE, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450 or facsimile transmitted to the US. Patent and Trademark
Office on the date shown below.

—
Namerrinwwe——
This collection of information is required by 37 CFR 1.114. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete,
including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on
the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer. U.S. Patent and
Trademark Office, U.S. Depa rtment of Commerce. PO. Box 1450. Ale xandria, VA 22313-1450. DO NOT SE ND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

LG Ex. 1002, pg 286

Electronic Patent Application Fee Transmittal

Filing Date: 17-May-2011

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Filer: ChristopherJ. Reckamp/Lisa Schodrowski

Attorney Docket Number: 00100360001

Utility under 35 USC 11 1 (a) Filing Fees

Sub-Total in

USD($)

Basic Filing:

Claims:

Description Fee Code Quantity

Miscellaneous-Filing:

Patent-AppeaIs—and-Interference:

Post-Allowance-and-Post-lssuance:

Extension-of—Time:

Extension - 3 months with $0 paid 1253 1 1270 1270

LG Ex. 1002, pg 287

Sub-Total in

Description Quantity USD($)

Miscellaneous:

Request for continued examination

Total in USD (5)

LG Ex. 1002, pg 288

Electronic Acknowledgement Receipt

13761569

Confirmation Number:

Title of Invention: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

First Named Inventor/Applicant Name: Stephen Morein

Customer Number: 29153

—ChrIStopherJ. ReCkamp/Llsa SChOdrOWSkI
Filer Authorized By: ChristopherJ. Reckamp

Attorney Docket Number: 00100360001

Filing Date: 17-MAY-2011

Time Stamp: 11:54:06

Application Type: Utility under 35 USC 111(a)

Payment information:

Submitted with Payment

PaymentType Deposit Account

Payment was successfully received in RAM $2200

RAM confirmation Number

Deposit Account 020390

Authorized User

Document Document Descri tion FileSize(Bytes)/ Multi Pages
Number p Message Digest Part /.zip (ifappl.)

LG Ex. 1002, pg 289

Extension ofTime 36001—Extension—Time.pdf 79(Pfidfi(dI4hdf¥§efil$fi§d7fi7(he8dl15
31840

88229b33dLb3LiL0e42ld2497Lbi0d02Ld9d
51d(

Document Description

Amendment Submitted/Entered with Filing of CPA/RCE

Specification

Claims

Amendment Submitted/Entered with Filing of CPA/RCE

Abstract

Warnings:
Information:

_ _ . 48665
Request for Continued Examination

(RCE) ZbSn0b84S36700326a0625c81c8130d639
eicfifib

Warnings:

This is not a USPTO supplied RCE 5330 form.

Information:

Fee Worksheet (SBOG) fee-info.pdf lL3ld73i740d0il udd2d9095838dd7ifid88
adaA

Warnings:
Information:

Total Files Size (in bytes) 203319

LG Ex. 1002, pg 290

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,

characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

lfa new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)—(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

lfa timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DOIEOI903 indicating acceptance of the application as a

national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
Ifa new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number

and ofthe International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

LG Ex. 1002, pg 291

PTO/SB/ZZ 1},
Approved for use through 07/312!“ ‘3’ OMB 0551—0031

LLS. Patent " edemark Cfii ' S. DEPARMEN OF COMMERCE
Under the paperwork Reduction Act of 19%, no persons are required to respond to a coitection : information uniess it. 9 plays a valid OMB mniroi number.

Docket Number (Opiionaii

PETETEQN FQR EXTENSEQN 0F TEME UNEER 37 CFR1.136{3} 013100 RR 00m

Fiied i‘viay 2011

SiNG ARCHiTECTURE EMPLOYENG A UNEFEED SHADER

3 Examiner Daniei C. Washburn

This is a request under the provisions of 37 CPR 1.1 33(3) to extend the period for iiiing a reply in the above identified
’ appiioatinn.

, The requested extension and fee are as ioiiows (check time period desired and enter the appropriate fee beiow):

fie; Smaii Entity Fee

[:1 Cine month (3‘? CFR ‘i.1?(a)(1)) $150 75'

E] Two months {37 CFR ‘i.17(a)(2>) ' .' $280 $

Three menti'is (3? are i.i?(a),(3)) . ~

{:5 Four months (3?" CFR ‘i.‘i7(a)(4))

3:] Five months (37 CFR1.17(a)(5))

Appiicant ciaims Sinai! entity status. See 37 CPR 1.27.

A check the amount of the fee is encioeed.

Payment by credit card. Form PTO-2038 is attached.

The Director has aiready been authorized to charge fees in this application to 2: Deposit Account.

The Director is hereby authorized to charge any fees which may be required, or credit any overpayment, to
Deposit Account Number 0243393

WARNENG: lnfurmation on this farm may become pubiic. Credit card infurmatiun shouid not be inciuderfi on this form.
Provide credit card informaticn and authorization on PTO—21238.

i ern the m appiicantlinventor,

assignee of record of the entire interest. See 3? CFR 3.71.
Statement under 37 CFR 3.7303) is enclosed (Form PTO/SB/QL‘).

attorney or agent of record. Registration Number

m attorney agent under 3? CFR 1.34.Registration number if acting. under 37 CFR 1.34

r’Christopher J. Reckantpi September 17, 2012

Signature Dat

Christopher J. Reokamp 312 356 5094~1—
Typed er printed name :eiephone Number

NOTE: Signatures 0f alt thr- iiwontoi‘s or assignees of record inht‘: entire interest '3? their ropresentativeis) are required. Submit muitipie forms 'f more than one i
signature is required, he. ow. '

forms are submitted.
Th' " informatior '9 required 37 CFR 1.136(3). The information is remained to obtain or retain a benefit by the public which isto tile (and by the
US ' an 31;) n " . it s governed by 35 USE. 122 and 3.7 ." . iinutee to
complete, inc . t c. preparing, and subm ng the completed application torth ' g .' ’id L , an the ol 0359 Any
comments on he . . .-.. u. neg/mi renuireiocompietethis iorrnandlore , restinns ormducinqthis h . den, mouth: heuenttothe F ' . i rmation Off er,

Patent and Trademark Office, US. Department oi (.ummerce, PO. Box 14-50. Alexandria. VA 240 23-1450. DO NOT SEND FElzs uh COMPLETED
OT MS T0 THE-S ADDRESS. SEND TO: Commissioner for Patents», PA). Box 1459. Alexandria, VA 223134 459.

if you need assistance in completing the form, call 1»800—PTO»9 2'99 and select option 2.

LG Ex. 1002, pg 292

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stephen Morein et al. Examiner: Daniel C. Washbum

Serial No.: 13/109,738 Art Unit: 2628

Filing Date: May 17, 2011 Docket No.: 00100360001
Confirmation No.2 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

PRELIMINARY AMENDMENT

Dear Sir:

In response to the final office action mailed March 15, 2012, Applicants submit a Request

for Continued Examination, petition for a three month extension of time and submit the

following preliminary amendment:

Amendments to the Abstract begin on page 2 of this paper and include a replacement Abstract

and a clean copy showing the amended Abstract.

Amendments to the Claims begins on page 3 of this paper.

Remarks begin on page 7 ofthis paper.

BDDB019460871V1

LG Ex. 1002, pg 293

Amendments to the Specification

Please replace the Abstract with the following amended Abstract:

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SI-IADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

0 peratiens and itiXCl manipulation o eratiens lav transmittinw vertex data to ‘Ienerai

€3fl§il§§§f§§£fl3133.31%” Y

recesser uniess the reneral or ose re ester block does not have eneu 7%; available 9.

therein to store incoming vertex data; and continues pixel calculation operations that are

to be or are em‘reotl 'heinsz Vertbrmed lw the WOQQSROE” based on instructions maintained

in em inQtr{£91191}.game:"amti_§:;:e.ugh_mgi§_te

become available. in one exarmle a -

maintains instructions o erative to cause the 7

and.pizza}notlazulatimlnar r230 :4._ea__§§iti§_t§2E_giatamaimtamed;in_tileggegtateatime.

re tigtter block: and the emceesor unitexecutes instructions that emerate a ixei col._ "

BDDB019460871V1

LG Ex. 1002, pg 294

BDDB019460871V1

LG Ex. 1002, pg 295

Amendments to the Claims:

Rewrite the claims as set forth below. This listing of claims replaces all prior versions and

listings of claims in the application:

Listing of the Claims:

1. (original) A method comprising:

performing vertex manipulation operations and pixel manipulation operations by

transmitting vertex data to a general purpose register block, and performing vertex operations on

the vertex data by a processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data; and

continuing pixel calculation operations that are to be or are currently being performed by

the processor based on instructions maintained in an instruction store until enough registers

within the general purpose register block become available.

2. (original) A unified shader, comprising:

a general purpose rcgistcr block for maintaining data;

a processor unit;

a sequencer, coupled to the general purpose register block and the processor unit, the

sequencer maintaining instructions operative to cause the processor unit to execute vertex

calculation and pixel calculation operations on selected data maintained in the general purpose

register block; and

wherein the processor unit executes instructions that generate a pixel color in response to

the selected one of the plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs.

BDDB01946087lvl

LG Ex. 1002, pg 296

(original) A unified shader comprising:

a processor unit Operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform pixel calculation operations until enough shared resources

become available and then use the shared resources to perform vertex calculation operations.

4. (original) A unified shader comprising:

a processor unit operative to perform vertex calculation operations and pixel calculation

operations; and

shared resources, operatively coupled to the processor unit;

the processor unit operative to use the shared resources for either vertex data or pixel

information and operative to perform vertex calculation operations until enough shared resources

become available and then use the shared resources to perform pixel calculation operations.

(original) A unified shader comprising:

a processor unit;

a sequencer coupled to the processor unit, the sequencer maintaining instructions

operative to cause the processor unit to execute vertex calculation and pier calculation

operations on selected data maintained in a store depending upon an amount of space available in

the store.

BDDB01946087lVl

LG Ex. 1002, pg 297

6. (original) The shader of claim 5, wherein the sequencer further includes circuitry

operative to fetch data from a memory.

7. (original) The shader of claim 5, further including a selection circuit operative to

provide information to the store in response to a control signal.

8. (original) The shader of claim 5, wherein the processor unit executes instructions

that generate a pixel color in response to the selected one of the plurality of inputs.

(canceled)

10. (original) The shader of claim 5, wherein the processor unit generates vertex

position and appearance data in response to a selected one of the plurality of inputs.

ll. (original) The shader of claim 7, wherein the control signal is provided by an

arbiter.

12. i 14. (canceled)

15. (original) A unified shader comprising:

a processor unit flexibly controlled to perform vertex manipulation operations and pixel

manipulation operations based on vertex or pixel workload.

BDDB019460871V1

LG Ex. 1002, pg 298

16. (original) The shader of claim 15 comprising an instruction store and wherein the

processor unit performs the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching between instructions in the instruction store.

BDDB019460871V1

LG Ex. 1002, pg 299

REMARKS

Applicants respectfully traverse and request reconsideration.

Applicants’ attorney wishes to thank the Examiner for the courtesies extended during the

telephone conference of September 17, 2012.

Applicants cancel claims 9 and l2—l4 without prejudice. Applicants have also amended

the Abstract.

Claims 1—16 stand rejected under 35 U.S.C. § 102(e) as allegedly being anticipated by

US. Patent No. 7,038,685 (Lindholm). Applicants respectfully request reconsideration and

respectfiilly submit that the declaration is proper and that the declaration is more than "vague

general statements in broad terms... . To the contrary, the statements and Exhibits set for facts

sufficient to show a conception and reduction to practice sufficient to show priority of invention.

To the extent additional information would be helpful, Applicants respectfully submit by way of

example that:

As to claim l for example, Exhibit B Chip Design Code i sqigpriallocv and

Sq_alu_instr_seq.v — are believed to illustrate, inter alia, loading either pixel or vertices in the

GPR if there is space for them (e.g., transmission to general purpose register (gpr) blocks unless

the gpr block does not have space); performing pixel and vertex manipulations; the ais machine

is the "alu instruction sequencer" and it executes instructions on either vertices or pixels

depending on type. the file sq_instruetion_store.v contains the memory with the instructions to

be performed on either pixels (PS) or vertices (VS).

As to claims 2-5 for example, Exhibit B Chip Design Code — sp_mace_gpr.v,

SP_vector.v, Sq.v , Sq_export_alloc.v, sq_ctl_flow_seq.v, Sq_alu_instr_seq.v - are believed to

illustrate, inter alia, the general purpose register and processor (e.g., multiply and accumulate

BDDB01946087lvl

LG Ex. 1002, pg 300

(MAC or MACC) logic) and a sequencer coupled to the general purpose register and processor

unit and operation of the sequencer and processor unit.

Applicant respectfully submits that the claims are now believed to be in condition for

allowance and that a timely Notice of Allowance be issued in this case. If the Examiner believes

that personal communication Will expedite prosecution of this application, the Examiner is

invited to telephone the undersigned at (312) 356-5094.

Respectfillly submitted,

Dated: September 171 2012 By: /Christopher J. Reckamp/

Christopher J. Reekamp

Reg. No. 34,414

Faegre Baker Daniels LLP
31 l S. Wacker Drive

Chicago, IL 60606

PHONE: (312) 356-5094

FAX: (312) 212-6501

BDDB019460871V1

LG Ex. 1002, pg 301

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example per'lfertns vertex manipulation

eperatiens; and pixel manipulatien operations; by transmitting vertex data to a general purpese

regiater black, and pertbn‘tiing vertex eperatiens en the vertex data by a preeeaser unless the

general purpose register black ale-es not have enengh available space therein te stare inceming

vertex data; and continues pixel ealenlatiert eperatiens that are to be er are currently being

perferntect by tlte precessnr based on instructiens maintained in an instructien stare until eneuglt

register: within the. general purpose register block became available. In ene example a general

purpose register lileelt maintains data, A seqiteneer, eenpted tn the general putpese register black

and t0 a preeeaaer unit, maintains instructinns Operative te cause the preeeaaer unit tit e. eettte

vertex ealettiatirm and pixel calculation eperatiena an selected data maintained in the general

purpose register black; and the preeesset unit executes instructions that generate pixel eater in

respense t0 the selected one el’tlrie {iatut'ality el’inputa and, generates vertex pesitien and

appearance in response to a selected one of the plurality of inputs.

LG Ex. 1002, pg 302

REPLACEMENT SHEET

Application No. 13/109,73 8

GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED SHADER

ABSTRACT

A graphics processing architecture in one example performs vertex manipulation

operations and pixel manipulation operations by transmitting vertex data to a gene “at purpose

register 'bleelt. anal performing vertex operations on the vertex data by a processor unless the

general purpose register block does not have enough available space. the fin to store incoming

vertex data: and continues pixel calculation operations that are to be or are currently being

periernieil by the processor based on instruetions maintained, in an instruetion store until enough

registers within the general purpose register block become available, in one example, a. general

purpose register bloel; maintains data. A sequenceri coupletl to the general purpose register lt'iO-‘Sli

and to a 1310065391“unit} maltnains instructions operative to cause the pnntessor unit to execute

vertex calculation and pixel calculation operations or: selected tiara maintained in the general

purpose register laloelr; and the processor unit er eeutes instruetions that generate pixel color in

response to the selected, one of the plurality of inputs and generates vertex position and

appearance data in response to a selected one of tlre plurality ol’ inputs.

LG Ex. 1002, pg 303

APPLICATION AS FILED — PART I

(Column 1)
FOR

[I BASIC FEE3TCFR118a, b,or c)

[I SEARCH FEE37 CFR 1.16'k , (I , or (m

D EXAMINATION FEE(37 CFR1.16(), (p), or (q))
TOTAL CLAIMS
1'37 CFR 1.16 i)
INDEPENDENT CLAIMS
1'37 CFR1.16(h)

NUMBER FILED
(Column 2)

NUMBER EXTRA

N/A N/A

N/A N/A

N/A N/A

minus 20 =

minus 3 =

If the specification and drawings exceed 100

DAPPLICATION SIZE FEE
(37 CFR1.16(s))

sheets of paper, the application size fee due
is $250 ($125 for small entity) for each
additional 50 sheets or fraction thereof. See
35 U.S.C. 41 a 1 G and 37 CFR 1.16 s.

D MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR1.16(j))
* If the difference in column 1 is less than zero, enter “0" in column 2.

APPLICATION AS AMENDED — PART II

(Column 1)
CLAIMS
REMAINING
AFTER09/17/2012
AMENDMENT

Total (37 CFR ,
12

(a7 CFR1.16(h))

(Column 2)
HIGHEST
NUMBER
PREVIOUSLY
PAID FOR

(Column 3)

PRESENT
EXTRA

MInus

MInus

ApplIcation or Docket Number

PTO/SB/OB (07-06)
Approved for use through 1/31/2007. OMB 055170032

US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
Under the Paerwork Reduction Act of 1995, no ersons are reuired to resond to a collection of information unless it dis la s avalid OMB control number.

PATENT APPLICATION FEE DETERMINATION RECORD
Substitute for Form PTO-875 13/109,738

SMALL ENTITY |:| OR
RATE ($) FEE (35)

N/A

N/A

N/A

X$ XS

X as
II X (I)

SMALL ENTITY OR

ADDITIONAL
FEE (515)

X e9

X 6;)
ll ><

FIling Date
05/17/201 1

RATE (35)

N/A

N/A

N/A

D To be Mailed

OTHER THAN

SMALL ENTITY

FEE (35)

OTHER THAN
SMALL ENTITY

ADDITIONAL
FEE (35)

I: ApplIcation Size Fee (37 CFR1.16(s))
AM_NDM_N|

CLAIMS

D FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR 116(1))

REMAINING
AFTER-AMENDMENT

Total (37 CFR *1.16 I
Independent *37 CFR 1 15 h

I] Application Size Fee (37 CFR1.16(s))

HIGHEST
NUMBER

PREVIOUSLY
PAID FOR

m

PRESENT
EXTRA

ADDITIONAL
FEE (35)

ADDITIONAL

RATE (3;) FEE (as)

Minus

Minus X 99 II

D FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM (37 CFR1.16(j))
AMENDMENT
* If the entry in column 1 is less than the entry in column 2, write “0" in column 3.
** lfthe “Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter “20".
*** If the “Highest Number Previously Paid Fm” IN THIS SPACE is less than 3, enter “3'.
The “Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.

Legal Instrument Examiner:
/LAWANDA MILTON/

ThIs collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit bythe public thch Is to file (and bythe USPTO to
process) an application. ConfidentIaiity Is governed by 35 U.S.C. 122 and 37 CFR 114. This collection is estimated to take 12 mInutes to complete, IncludIng gathering,
preparing, and submitting the completed applIcatIon form to the USPTO. TIme will vary dependIng upon the individual case. Any comments on the amount of tIme you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief information Officer, US. Patent and Trademark Office, US.
Department of Commerce, PO. Box 1450, AlexandrIa, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner ior Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

LG Ex. 1002, pg 304

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O Box 1450
Alexandria, Virginia 22313-1450
www.uspto gov

 APPLICATION NO. FILING DATE FIRST NAM r) INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

13/109,738 05/17/201 1 Stephen Morein 00100360001 2020

29153 7590 12/06/2012

ADVANCED MICRO DEVICES, INC.
C/O Faegre Baker Daniels LLP CHEN, FRANK s
311 S. WACKER DRIVE

ART UNIT PAPER NUMBER

EXAMINER

NOTIFICATION DATE DELIVERY MODE

12/06/2012 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the

following e-mail address('es):

inteas @faegrebd.c0m
cynthia.payson @ faegredb—com
michelle.daVis @ faegrebdcom

PTOL-90A (Rev. 04/07)

LG Ex. 1002, pg 305

Application No. Applicant(s)

13/109,738 MOREIN ET AL.

Office Action Summary Examiner Art Unit
FRANK CHEN 2677

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) OR THIRTY (30) DAYS,
WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR1.136(j. In no event, however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office laterthan three months after the mailing date ofthis communication, even iftimely filed, may reduce any
earned patent term adjustment. See 37 CFR1.704(b).

Status

DIX Responsive to communication(s) filed on 17Sthember 2012.

This action is FINAL. 2b)IZ This action is non—final.

An election was made by the applicant in response to a restriction requirement set forth during the interview on

_; the restriction requirement and election have been incorporated into this action.

Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Exparte Quay/e, 1935 CD. 11, 453 O.G. 213.

Disposition of Claims

SHE Claim(s) 1—8 10 11 15 and 16is/are pending in the application.

5a) Of the above Claim(s)_ is/are withdrawn from consideration.

_ is/are allowed.

1—8 10 11 15 and 16is/are rejected.

is/are objected to.

_ are subject to restriction and/or election requirement.

* If any claims have been determined allowable, you may be eligible to benefit from the Patent Prosecution Highway
program at a participating intellectual property office for the corresponding application. For more information, please see

://www.us toqov/ atentsi’init events/cch/index.‘s orsend an inquiry to PPeredback usntot av.

Application Papers

10)|:| The specification is objected to by the Examiner.

11)|:| The drawing(s) filed on_ is/are: a)|:| accepted or b)|:l objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

Priority under 35 U.S.C. § 119

12)I:I Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119()-(d) or (f).

b)I:l Some * c)|:| None of:

Certified copies of the priority documents have been received.

Certified copies of the priority documents have been received in Application No._

Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attach ment(s)

1) E Notice of References Cited (PTO-892) 3) I] Interview Summary (PTO-413)
Paper No(s)/Mai| Date. .

2) El Information Disclosure Statement(s) (PTO/SB/08) 4) El Other: .
Paper No(s)/Mai| Date .

U.S. Patent and Trademark Office

PTOL-326 (Rev. 09-12) Office Action Summary Part of Paper No./Mai| Date 20121129

LG Ex. 1002, pg 306

Application/Control Number: 13/109,738

Art Unit: 2677

DETAILED ACTION

Claim Status

Claims 1-8,10-11, and 15-16 are currently pending in this application.

Claims 9 and 12-14 have been canceled.

Specification

3. Applicant is reminded of the proper language and format for an abstract of
the disclosure.

The abstract should be in narrative form and generally limited to a

single paragraph on a separate sheet within the range of 50 to 150 words.

The form and legal phraseology often used in patent claims, such as "means"
and "said," should be avoided. The abstract should describe the disclosure

sufficiently to assist readers in deciding whether there is a need for consulting the

full patent text for details.

The language should be clear and concise and should not repeat

information given in the title. It should avoid using phrases which can be implied,

such as, "The disclosure concerns," "The disclosure defined by this invention,"
"The disclosure describes," etc.

4. The abstract of the disclosure is objected to because it exceeds 150

words. Correction is required. See MPEP § 608.01 (b).

Declaration filed under 37 CFR 1.131

The declaration filed 1/18/12 under 37 CFR 1.131 and the Applicants

Argument/Remarks Made in an Amendment filed 9/17/2012 have been

considered but is ineffective to overcome the prior art reference Lindholm (US

7,038,685, “the Lindholm reference”).

The declaration does not meet the requirements of 37 CFR 1.131 section

(a)-

37 CFR 1.131 section (a) states (in relevant part):

LG Ex. 1002, pg 307

Application/Control Number: 13/109,738

Art Unit: 2677

“(a) When any claim of an application or a patent under reexamination

is rejected, the inventor of the subject matter of the rejected claim, the owner of

the patent

under reexamination, or the party qualified under §§ 1.42, 1.43, or 1.47, may

submit an appropriate oath or declaration to establish invention of the subject

matter of the rejected claim prior to the effective date of the reference or activity

on which the rejection is based. The effective date of a U.S. patent, US. patent

application publication, or international application publication under PCT Article

21 (2) is the earlier of its publication date or date that it is effective as a reference

under 35 U.S.C. 102(e). Prior invention may not be established under this

section in any country other than the United States, a NAFTA country, or a

WTO member country. Prior invention may not be established under this

section before December 8, 1993, in a NAFTA country other than the United

States, or before January 1, 1996, in a WTO member country other than a

NAFTA country.” (emphasis added)

Section 2 of Applicants’ declaration describes (in relevant part):

“2. We conceived the Invention prior to June 30, 2003 while employed by

ATI Technologies Inc. and/or one of its wholly owned subsidiaries ("ATI") as

indicated by attached Exhibits A and B Prior to June 30, 2003 we created a

graphics processing system that operated as claimed using a computer system

that successfully executed the Model Code. Prior to June 30, 2003 we also

created a graphics processing system as claimed in the form of a computer

system that used an RTL simulator to successfully validate the operation of an

integrated circuit version of the claimed graphics processing system and
method.”

As quoted from Applicants‘ declaration, section 2 describes conception

and reduction to practice of the claimed invention prior to June 30, 2003. Section

2 further describes that the conception and reduction to practice of the claimed

invention was carried out while the inventors were employed by ATI

Technologies Inc. and/or one of its wholly owned subsidiaries.

However, section 2, and the declaration as a whole, fails to specify

whether or not the conception and reduction to practice was carried out in the

United States, a NAFTA country, or a WTO member country. As quoted from 37

CFR 1.131 section (a), “[p]rior invention may not be established under this

LG Ex. 1002, pg 308

Application/Control Number: 13/109,738

Art Unit: 2677

section in any country other than the United States, a NAFTA country, or a WTO

memory country”. Thus, the declaration is ineffective to overcome the Lindholm

reference due to this first deficiency.

Moreover, the applicants in their Remarks filed on 9/17/2012 do not

appear to address this issue. In the Remarks, the applicants attempt to further

correlate the claim limitations to the submitted reduction to practice evidence

(Exhibit B Chip Design Code) of the Declaration Under 37 CFR 1.131 filed on

1/18/2012 but do not appear to show that reduction to practice was carried out in

the United States, a NAFTA country, or a WTO member country. Therefore, the

declaration continues to not meet the requirements of 37 CFR 1.131 section ().

Further, the declaration does not meet the requirements of 37 CFR 1.131

section (b).

37 CFR 1.131 section (b) states:

“(b) The showing of facts shall be such, in character and weight, as to

establish reduction to practice prior to the effective date of the reference, or

conception of the invention prior to the effective date of the reference coupled

with due diligence from prior to said date to a subsequent reduction to practice or

to the filing of the application. Original exhibits of drawings or records, or

photocopies thereof, must accompany and form part of the affidavit or declaration

or their absence must be satisfactorily explained.”

MPEP 715.07 [Ft-3] "Facts and Documentary Evidence", section |.

"General Requirements", offers further guidance regarding the requirements of

37 CFR1.131 section (b).

MPEP 715.07, section l., describes (in relevant part):

“The essential thing to be shown under 37 CFR 1.131 is priority of

invention and this may be done by any satisfactory evidence of the fact. FACTS,

not conclusions, must be alleged. Evidence in the form of exhibits may

LG Ex. 1002, pg 309

Application/Control Number: 13/109,738

Art Unit: 2677

accompany the affidavit or declaration. Each exhibit relied upon should be

specifically referred to in the affidavit or declaration, in terms of what it is relied

upon to show when reviewing a 37 CFR 1.131 affidavit or declaration, the

examiner must consider all of the evidence presented in its entirety, including the

affidavits or declarations and all accompanying exhibits, records and “notes.” An

accompanying exhibit need not support all claimed limitations, provided that any

missing limitation is supported by the declaration itself. Ex parte Ovshinsky, 10

USPQ2d 1075 (Ed. Pat. App. & Inter. 1989).

The affidavit or declaration and exhibits must clearly explain which

facts or data applicant is relying on to show completion of his or her

invention prior to the particular date. Vague and general statements in

broad terms about what the exhibits describe along with a general

assertion that the exhibits describe a reduction to practice “amounts

essentially to mere pleading, unsupported by proof or a showing of facts”

and, thus, does not satisfy the requirements of 37 CFR 1.131(b). In re

Borkowski, 505 F.2d 713, 184 USPQ 29 (CCPA 1974). Applicant must give a

clear explanation of the exhibits pointing out exactly what facts are

established and relied on by applicant. 505 F.2d at 718-19, 184 USPQ at 33.

See also In re Harry, 333 F.2d 920, 142 USPQ 164 (CCPA 1964) (Affidavit

“asserts that facts exist but does not tell what they are or when they occurred.”).”

(emphasis added)

Applicants' Remarks filed on 09/17/2012 contains the following in the

second to last paragraph which recites:

“As to claims 2-5 for example, Exhibit B Chip Design Code -

p_macc_ pr.v, SP_vector.v, Sq.v, Sq_export_alloc.v, sq ctl flow_seq.v,

Sq_alu_instr_seq.v - are believed to illustrate, inter alia, the general purpose

register and processor (9.9., multiply and accumulate (MAC or MACC) logic) and

a sequencer coupled to the general purpose register and processor unit and

operation of the sequencer and processor unit.”

However, this paragraph as a whole is considered nothing more than

vague and general statements in broad terms about what the exhibits describe

along with general assertions that the exhibits describe a reduction to practice,

which does not satisfy the requirements of 37 CFR 1.131 section (b). Thus, the

declaration in view of the Remark is ineffective to overcome the Lindholm

reference due to this second deficiency.

LG Ex. 1002, pg 310

Application/Control Number: 13/109,738

Art Unit: 2677

Regarding claim 1, the Examiner is able to determine which sections of

Exhibit B Chip Design Code corresponds to which limitations of Claim 1 after

reviewing the Remarks filed on 9/17/2012 . However, the Examiner is unable to

do so for Claims 2-5 as they are not satisfactorily explained in the Remarks.

Therefore, the most recent declaration filed 1/18/12 under 37 CFR 1.131

and Remarks filed on 9/17/2012 are together ineffective to overcome the

Lindholm reference. As an additional note, the Examiner would like to point out

that US Pat 7,015,913, to Lindholm et al., filed June 27th, 2003, appears, after

brief review, to include a disclosure that is similar to US Pat 7,038,685 to

Lindholm, which is used in the rejections that follow (see FIG. 2 of each patent).

The Examiner has not given Lindholm et al. (US 7,015,913) a thorough review as

to whether or not it teaches one or more of Applicants’ claims, but it may be

worth Applicants’ time to review Lindholm et al. (US 7,015,913) and adjust the

declaration such that conception and reduction to practice of the claimed

invention is declared to have occurred prior to June 27th, 2003 (if such a

statement is true), in order to avoid a future rejection based on the teachings of

prior art reference Lindholm et al. (US 7,015,913).

Claim Rejections - 35 USC § 112

5. The following is a quotation of 35 U.S.C. 112(b):

(B) CONCLUSION—The specification shall conclude with one or more claims

particularly pointing out and distinctly claiming the subject matter which the

inventor or a joint inventor regards as the invention.

The following is a quotation of 35 U.S.C. 112 (pre-AIA), second paragraph:

LG Ex. 1002, pg 311

Application/Control Number: 13/109,738

Art Unit: 2677

The specification shall conclude with one or more claims particularly pointing out

and distinctly claiming the subject matter which the applicant regards as his
invenfion.

6. Claim 2 recites the limitation "the selected one of the plurality of inputs" in

“in response to the selected one of the plurality of inputs.” There is insufficient

antecedent basis for this limitation in the claim. Proper amendment is requested.

7. Claim 8 recites the limitation "the selected one of the plurality of inputs" in

“in response to the selected one of the plurality of inputs.” There is insufficient

antecedent basis for this limitation in Claim 8 or Claim 5. Proper amendment is

requested.

Claim Rejections - 35 USC § 102

8. The following is a quotation of the appropriate paragraphs of 35

U.S.C. 102 that form the basis for the rejections under this section made in this

Office action:

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section
122(b), by another filed in the United States before the invention by the applicant for patent or
(2) a patent granted on an application for patent by another filed in the United States before
the invention by the applicant for patent, except that an international application filed under
the treaty defined in section 351 (a) shall have the effects for purposes of this subsection of an
application filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English language.

Claims 1-8, 10-11, and 15-16 are rejected under 35 U.S.C. 102(e) as

being anticipated by Lindholm (US 7,038,685).

RE claim 1, Lindholm describes a method comprising:

performing vertex manipulation operations and pixel manipulation

operations by transmitting vertex data to a general purpose register block, and

performing vertex operations on the vertex data by a processor unless the

LG Ex. 1002, pg 312

Application/Control Number: 13/109,738

Art Unit: 2677

general purpose register block does not have enough available space therein to

store incoming vertex data (

3:59-65: “Programmable Graphics Processing Pipeline 150 is

programmed to operate on surface, primitive, vertex, fragment, pixel, sample or

any other data. For simplicity, the remainder of this description will use the term

'samples‘ to refer to graphics data such as surfaces, primitives, vertices, pixels,

fragments, or the like."

6:38-59: “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In

one embodiment TSR [Thread Storage Resource] 325 stores thread data for

each of at least two thread types, where the at least two thread types may

include pixel, primitive and vertex.”

7:6-10: “In an alternate embodiment, Thread Control Unit 420 is

configured to assign threads to source samples or allocate locations in Register

File 350 using thread allocation priorities".

7:36-43: “Once a thread is assigned to a source sample, the thread is

allocated storage resources such as locations in a Register File 350 to retain

intermediate data generated during execution of program instructions associated
with the thread."

9:33-56: "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, Lindholm describes performing vertex manipulation operations and

pixel manipulation operations by transmitting vertex data to a general purpose

register block (sample data, such as vertex or pixel data, is transmitted to

LG Ex. 1002, pg 313

Application/Control Number: 13/109,738

Art Unit: 2677

Register File 350) and performing vertex operations on the vertex data by a

processor unless the general purpose register block does not have enough

available space therein to store incoming vertex data (the multi-threaded

processing unit 400 carries out vertex operations on vertex data unless the

Register File 350 doesn’t have enough room to store the incoming vertex data, in

which case the thread associated with the vertex data and vertex operations

must wait until enough space becomes available); and

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction

store until enough registers within the general purpose register block become

available (

7:6-21 : “In an alternate embodiment, Thread Control Unit 420 is

configured to assign threads to source samples or allocate locations in Register

File 350 using thread allocation priorities based on an amount of sample data in

Pixel Input Buffer 215 and another amount of sample data in Vertex Input Buffer
220."

8:15-58: "Thread Selection Unit 415 reads one or more thread entries

based on thread execution priorities and outputs selected thread entries to

Instruction Cache 410. Instruction cache 410 determines if the program

instructions corresponding to the program counters and sample type included in

the thread state data for each thread entry are available in Instruction Cache 410

The program instructions corresponding to the program counters from the one

or more thread entries are output by Instruction Cache 410 to Instruction

Scheduler 430 Each clock cycle, Instruction Scheduler 430 evaluates whether

any instruction within the IWU [instruction window unit] 435 can be executed

based on the availability of computation resources in an Execution Unit 470 and

source data stored in Register File 350. An instruction specifies the location of
source data needed to execute the instruction."

15:7-13: “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

LG Ex. 1002, pg 314

Application/Control Number: 13/109,738

Art Unit: 2677

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, Lindholm is considered to describe an embodiment including

continuing pixel calculation operations that are to be or are currently being

performed by the processor based on instructions maintained in an instruction

store until enough registers within the general purpose register block become

available, as the Execution Unit 470 may be carrying out calculations for one or

more high priority pixel threads based on instructions stored in Instruction Cache

410 and/or IWU 435 while a low priority vertex thread is waiting for the one or

more pixel threads to finish such that when the pixel threads finish the system will

deallocate the resources assigned to the completed pixel threads in the Register

File 350 and will allocate the requested amount of resources to the queued up

vertex thread).

RE claim 2, Lindholm describes a unified shader, comprising:

a general purpose register block for maintaining data (

7:37-43: “Once a thread is assigned to a source sample, the thread is

allocated storage resources such as locations in a Register File 350 to retain

intermediate data generated during execution of program instructions associated

with the thread”);

a processor unit (FIG. 4 “Execution Unit 470" and “PCU 375”);

a sequencer, coupled to the general purpose register block and the

processor unit, the sequencer maintaining instructions operative to cause the

processor unit to execute vertex calculation and pixel calculation operations on

selected data maintained in the general purpose register block (

LG Ex. 1002, pg 315

Application/Control Number: 13/109,738 Page 11

Art Unit: 2677

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether

any instruction within the IWU 435 can be executed based on the availability of

computation resources in an Execution Unit 470 and source data stored in

Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations"); and

wherein the processor unit executes instructions that generate a pixel

color in response to the selected one of the plurality of inputs and generates

vertex position and appearance data in response to a selected one of the

plurality of inputs (

9:39-46 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations and

output the processed sample to a destination specified by the instruction. The

destination may be Vertex Output Buffer 260, Pixel Output Buffer 270, or

Register File 350.”

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as

higher-order surface data, and tessellate the first samples to generate second

samples, such as vertices. Execution Pipelines 240 may be configured to

transform the second samples from an object-based coordinate representation

(object space) to an alternatively based coordinate system such as world space

or normalized device coordinates Execution Pipelines 240 output processed

samples, such as vertices, that are stored in a Vertex Output Buffer 260 Each

Execution Pipeline 240 signals to Pixel Input Buffer 240 when a sample can be

accepted programmable computation units (PCUs) within an Execution

Pipeline 240 perform operations such as tessellation, perspective correction,

texture mapping, shading, blending, and the like. Processed samples are output

from each Execution Pipeline 240 to a Pixel Output Buffer 270."

Thus, the Execution Unit 470 is considered a processor unit that executes

instructions that generate a pixel color in response to the selected one of the

LG Ex. 1002, pg 316

Application/Control Number: 13/109,738

Art Unit: 2677

plurality of inputs and generates vertex position and appearance data in

response to a selected one of the plurality of inputs (also see 4:22-5:35».

RE claim 3, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and

pixel calculation operations (FIG. 4 “Execution Unit 470” and “PCU 375”.

6:38-59 “FIG. 4 is an illustration of an alternate embodiment of Execution

Pipeline 240 containing at least one Multi-Threaded Processing Unit 400 In

one embodiment TSR [Thread Storage Resource] 325 stores thread data for

each of at least two thread types, where the at least two thread types may

include pixel, primitive and vertex.”

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations."

Thus, the Execution Unit 470 and internal PCU 375 are collectively

considered a processor unit operative to perform vertex calculation operations

and pixel calculation operations); and

shared resources, operativer coupled to the processor unit (FIG. 4

illustrates Register File 350 coupled to Execution Unit 470, and 7:37-43

describes that the Register File 350 is shared among threads);

the processor unit operative to use the shared resources for either vertex

data or pixel information and operative to perform pixel calculation operations

until enough shared resources become available and then use the shared

resources to perform vertex calculation operations (7:37-43, all types of

LG Ex. 1002, pg 317

Application/Control Number: 13/109,738

Art Unit: 2677

processing threads can use the Register File 350, where thread types include

vertex and pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured

to assign threads to source samples or allocate locations in Register File 350

using thread allocation priorities based on an amount of sample data in Pixel

Input Buffer 215 and another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, when pixel threads have priority over vertex threads the processor

unit will allocate the pixel data to the Register File 350 and will perform pixel

calculation operations until enough shared resources become available in the

Register File 350 to begin carrying out vertex threads, which may happen as a

result of a completion of most of the pixel threads or a shift in priority such that

the vertex threads now have the highest priority, and then use the Register File

350 to perform vertex calculation operations.

RE claim 4, Lindholm describes a unified shader comprising:

a processor unit operative to perform vertex calculation operations and

pixel calculation operations (see the corresponding section in the rejection of

claim 3); and

shared resources, operativer coupled to the processor unit (see the

corresponding section in the rejection of claim 3);

LG Ex. 1002, pg 318

Application/Control Number: 13/109,738 Page 14

Art Unit: 2677

the processor unit operative to use the shared resources for either vertex

data or pixel information and operative to perform vertex calculation operations

until enough shared resources become available and then use the shared

resources to perform pixel calculation operations (7:37-43, all types of processing

threads can use the Register File 350, where thread types include vertex and

pixel threads (see 6:43-44).

7:6-36 “In an alternate embodiment, Thread Control Unit 420 is configured

to assign threads to source samples or allocate locations in Register File 350

using thread allocation priorities based on an amount of sample data in Pixel

Input Buffer 215 and another amount of sample data in Vertex Input Buffer 220."

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, when vertex threads have priority over pixel threads the processor

unit will allocate the vertex data to the Register File 350 and will perform vertex

calculation operations until enough shared resources become available in the

Register File 350 to begin carrying out pixel threads, which may happen as a

result of a completion of most of the vertex threads or a shift in priority such that

the pixel threads now have the highest priority, and then use the Register File

350 to perform pixel calculation operations.

RE claim 5, Lindholm describes a unified shader comprising:

a processor unit (FIG. 4 “Execution Unit 470” and “PCU 375”);

LG Ex. 1002, pg 319

Application/Control Number: 13/109,738

Art Unit: 2677

a sequencer coupled to the processor unit, the sequencer maintaining

instructions operative to cause the processor unit to execute vertex calculation

and pixel calculation operations on selected data maintained in a store

depending upon an amount of space available in the store (

8:33-9:32 “Each clock cycle, Instruction Scheduler 430 evaluates whether

any instruction within the IWU 435 can be executed based on the availability of

computation resources in an Execution Unit 470 and source data stored in

Register File 350."

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations."

7:6-10 “In an alternate embodiment, Thread Control Unit 420 is configured

to assign threads to source samples or allocate locations in Register File 350

using thread allocation priorities".

15:7-13 “In step 877 Thread Control Unit 320 or 420 determines if storage

resources for storing intermediate data generated during execution of the thread

are available. The storage resources may be in graphics memory. When

storage resources are not available in step 877, Thread Control Unit 320 or 420

does not proceed to step 880 until a storage resources become available. In

step 880 Thread Control Unit 320 dispatches the thread assigned to the sample
and source data to at least one PCU 375."

Thus, the Scheduler 430 and Instruction Dispatcher 440 are collectively

considered a sequencer coupled to the Execution Unit 470, the sequencer

maintaining instructions operative to cause the Execution Unit 470 to execute

vertex calculation and pixel calculation operations on selected data maintained in

a Register File 350 depending upon an amount of space available in the Register

File 350).

LG Ex. 1002, pg 320

Application/Control Number: 13/109,738

Art Unit: 2677

RE claim 6, Lindholm describes the shader of claim 5, wherein the

sequencer further includes circuitry operative to fetch data from a memory (

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350”).

RE claim 7, Lindholm describes the shader of claim 5, further including a

selection circuit operative to provide information to the store in response to a

control signal (

6:60-7:36 “Thread allocation priority, as described further herein, is used

to assign a thread to a source sample. A thread allocation priority is specified for

each sample type and Thread Control Unit 420 is configured to assign threads to

samples or allocate locations in a Register File 350 based on the priority

assigned to each sample type. The thread allocation priority may be fixed,

programmable, or dynamic.”

The Thread Control Unit 420 is considered a selection circuit operative to

provide information to the store (Register File 350) in response to a control

signal, where the control signal is the thread allocation priority associated with

each thread or thread type).

RE claim 8, Lindholm describes the shader of claim 5, wherein the

processor unit executes instructions that generate a pixel color in response to the

selected one of the plurality of inputs (

5:11-35 “Pixel Input Buffer 215 outputs the samples to each Execution

Pipeline 240 Each Execution Pipeline 240 signals to Pixel Input Buffer 240

when a sample can be accepted programmable computation units (PCUs)

within an Execution Pipeline 240 perform operations such as tessellation,

perspective correction, texture mapping, shading, blending, and the like.

Processed samples are output from each Execution Pipeline 240 to a Pixel

Output Buffer 270.").

LG Ex. 1002, pg 321

Application/Control Number: 13/109,738

Art Unit: 2677

RE claim 10, Lindholm describes the shader of claim 5, wherein the

processor unit generates vertex position and appearance data in response to a

selected one of the plurality of inputs (

4:42-5:35 “Execution Pipelines 240 may receive first samples, such as

higher-order surface data, and tessellate the first samples to generate second

samples, such as vertices. Execution Pipelines 240 may be configured to

transform the second samples from an object-based coordinate representation

(object space) to an alternatively based coordinate system such as world space

or normalized device coordinates Execution Pipelines 240 output processed

samples, such as vertices, that are stored in a Vertex Output Buffer 260”).

RE claim 11, Lindholm describes the shader of claim 7, wherein the

control signal is provided by an arbiter (

6:60-7:36 “Thread allocation priority, as described further herein, is used

to assign a thread to a source sample. A thread allocation priority is specified for

each sample type and Thread Control Unit 420 is configured to assign threads to

samples or allocate locations in a Register File 350 based on the priority

assigned to each sample type. The thread allocation priority may be fixed,

programmable, or dynamic In an alternate embodiment, Thread Control Unit

420 is configured to assign threads to source samples or allocate locations in

Register File 350 using thread allocation priorities based on an amount of sample

data in Pixel Input Buffer 215 and another amount of sample data in Vertex Input

Buffer 220 In a further alternate embodiment, Thread Control Unit 420 is

configured to assign threads to source samples or allocate locations in Register

File 350 using thread allocation priorities based on graphics primitive size".

Thus, while an arbiter isn't explicitly described, the Examiner considers it

inherent that some portion of the system acts as an arbiter, and therefore can be

considered an arbiter, as some portion of the system assigns priorities to thread

and sample types according to the current processing circumstances, in order to

more efficiently process the data).

RE claim 15, Lindholm describes a unified shader comprising:

LG Ex. 1002, pg 322

Application/Control Number: 13/109,738

Art Unit: 2677

a processor unit flexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel workload (

7:6-36 “Thread Control Unit 420 is configured to assign threads to source

samples or allocate locations in Register File 350 using thread allocation

priorities based on an amount of sample data in Pixel Input Buffer 215 and

another amount of sample data in Vertex Input Buffer 220 In a further

alternate embodiment, Thread Control Unit 420 is configured to assign threads to

source samples or allocate locations in Register File 350 using thread allocation

priorities based on graphics primitive size (number of pixels or fragments

included in a primitive)”.

9:39-49 “Execution Unit 470 is configured by the program instruction to

simultaneously process samples using PCUs 375 to perform operations

Execution Unit 470 can simultaneously process samples of different types, and,

likewise, execute threads of different types”).

RE claim 16, Lindholm describes the shader of claim 15 comprising an

instruction store and wherein the processor unit performs the vertex manipulation

operations and pixel manipulation operations at various degrees of completion

based on switching between instructions in the instruction store (FIG. 4 and 8:15-

46 describes Instruction Cache 41 O, which is considered an instruction store.

9:33-56 "Instruction Dispatcher 440 gathers the source data from Pixel

Input Buffer 215, Vertex Input Buffer 220 or Register File 350 specified in an

instruction and outputs the instruction and source data to Execution Unit 470

including at least one PCU 375 Execution Unit 470 is configured by the

program instruction to simultaneously process samples using PCUs 375 to

perform operations... Execution Unit 470 can simultaneously process samples of

different types, and, likewise, execute threads ofdifferent types.”

Thus, the Execution Unit 470 performs the vertex manipulation operations and

pixel manipulation operations at various degrees of completion based on

switching between instructions in the instruction store).

LG Ex. 1002, pg 323

Application/Control Number: 13/109,738

Art Unit: 2677

9. Additionally, Claims 1-8, 10-11, and 15-16 are further rejected under 35

U.S.C. 103 as being unpatentable overm et al (U.S. Patent No. 7,646817B1)

in view of Parikh et al. (U.S. Patent No. 6,697,074 B2).

10 Regarding Claim 1, Shen discloses A method comprising:

performing vertex manipulation operations and pixel manipulation

operations (Col. 6, lines 39-45 reciting “At block 326, video decoding

application 216 may optionally be configured to direct GPU 208 to perform

special effects processing on the reconstructed image. For example, GPU 208

may be directed to perform vertex-based or pixel-based special effects

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-based or pixel-

based special effects processing which corresponds to performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.) and performing vertex operations on the vertex data by a processor

and (Col. 4, lines 8- 12 reciting “Exemplary GPU 208 includes a programmable

vertex shader 212 for performing graphics operations on a per-vertex basis, and

a programmable pixel shader 214 for performing graphics operations on a per-

pixel basis.” The programmable vertex shader performs graphics operations on

vertex data sent to it, thus the programmable vertex shader 212 processes vertex

LG Ex. 1002, pg 324

Application/Control Number: 13/109,738

Art Unit: 2677

data and the vertex shader 212 is included within the GPU 208, which

corresponds to a processor.)

continuing pixel calculation operations that are to be or are currently

being performed by the processor (Col. 6, lines 16 reciting “At block 322,

video decoding application 216 directs the pixel shader component 214 of GPU

208 to perform color space conversion processing on the reconstructed image.

Color space conversion processing is performed pixel-by-pixel to convert an

image from a color space in which it was created (e.g., YUV) to a color space

supported by display device 204 (e.g., RGB).” The color space conversion

corresponds to pixel calculation operations that are to be performed by the

processor because pixel shader is acting on pixel calculations that occur after

vertex calculation operations and is performed by the pixel shader component of

the GPU 208.) based on instructions maintained in an instruction store until

enough registers within the general purpose register block become

available. (Col. 4, lines 30-32 reciting “Accelerated video decoding may be

described in the general context of computer-executable instructions, such as

application modules, being executed by a computer.” Accelerated video

decoding which includes per-pixel operations is described in computer-

executable instructions. These instructions which are in the form of computer-

executable instructions are used for execution. The computer-readable memory

medium corresponds to the instruction store that stores the computer-executable

instructions.)

LG Ex. 1002, pg 325

Application/Control Number: 13/109,738 Page 21

Art Unit: 2677

While Shen does not explicitly disclose by transmitting vertex data to a

general purpose register block, and unless the general purpose register

block does not have enough available space therein to store incoming

vertex data; Parikh does disclose by transmitting vertex data to a general

purpose register block, (Col. 14, lines 2-6 reciting “Main processor 110 can

also load a number of graphics values (e.g., transformation matrices, pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may be both written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are general purpose registers for storing at least pixel and vertex data

and additional data formats.)

unless the general purpose register block does not have enough

available space therein to store incoming vertex data; (Col. 14, lines 2—6

reciting “Main processor 110 can also load a number of graphics values (e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” The number of registers available in

the graphics processor will be finite and they may all be filled with only pixel

format (pixel data). Therefore, if all the registers are all filled with non-vertex

data, the processor may not read and process vertex format (vertex data).)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

LG Ex. 1002, pg 326

Application/Control Number: 13/109,738 Page 22

Art Unit: 2677

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

11. Regarding Claim 2, Shen discloses a processor unit; (Col. 4, lines 8-12

reciting “Exemplary GPU 208 includes a programmable vertex shader 212 for

performing graphics operations on a per-vertex basis, and a programmable pixel

shader 214 for performing graphics operations on a per-pixel basis.” The GPU

208, which corresponds to a processor.)

a sequencer, coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute

vertex calculation and pixel calculation operations on selected data

maintained in the general purpose register block; and (Col. 4, lines 29-44

reciting “Accelerated video decoding may be described in the general context of

LG Ex. 1002, pg 327

Application/Control Number: 13/109,738 Page 23

Art Unit: 2677

computer-executable instructions, such as application modules, being executed

by a computer. Generally, application modules include routines, programs,

objects, components, data structures, etc. that perform particular tasks or

implement particular abstract data types. Video decoding application 216 may be

implemented using any number of programming techniques and may be

implemented in local computing environments or in distributed computing

environments where tasks are performed by remote processing devices that are

linked through various communications networks based on any number of

communication protocols. In such a distributed computing environment,

application modules may be located in both local and remote computer storage

media including memory storage devices.” The memory storage devices

corresponds to the sequencer because it stores the computer-executable

instructions, such as application modules, which are in a sequence. The

application modules may be located in local computer storage media and such

local storage medium is coupled to the processor since it is accessible by the

processor.)

wherein the processor unit executes instructions that generate a

pixel color in response to the selected one of the plurality of inputs and

generates vertex position and appearance data in response to a selected

one of the plurality of inputs. (Col. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208 to

perform special effects processing on the reconstructed image. For example,

GPU 208 may be directed to perform vertex-based or pixel-based special effects

LG Ex. 1002, pg 328

Application/Control Number: 13/109,738 Page 24

Art Unit: 2677

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring.” The GPU can perform vertex-based or pixel-

based special effects processing which corresponds to receiving a select input to

perform. The special effects processing such as inverse telecine and scalling or

fading corresponds to generating pixel color.)

While Shen does not explicitly disclose A unified shader, comprising: a

general purpose register block for maintaining data; and general purpose

register block and the Parikh does disclose A unified shader, comprising: a

general purpose register block for maintaining data; (00/. 14, lines 2—6

reciting “Main processor 110 can also load a number of graphics values (e.g.,

transformation matrices, pixel formats, vertex formats, etc. by writing to registers

within the graphics and audio processors.” Thus, pixel and vertex data may be

both written to registers that are within the graphics processor. Therefore, the

registers within the graphics processors are general purpose registers that can

store at least pixel and vertex data and additional formats of data.)

general purpose register block and the (Col. 14, lines 2-6 reciting “Main

processor 110 can also load a number of graphics values (e.g., transformation

matrices, pixel formats, vertex formats, etc. by writing to registers within the

graphics and audio processors.” Thus, pixel and vertex data may be both written

to registers that are within the graphics processor. Therefore, the registers within

the graphics processors are general purpose registers that can store at least

pixel and vertex data and additional formats of data.)

LG Ex. 1002, pg 329

Application/Control Number: 13/109,738

Art Unit: 2677

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

12. Regarding Claim 3, Shen discloses A unified shader comprising:

a processor unit operative to perform vertex calculation operations

and pixel calculation operations; and (Col. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For

example, GPU 208 may be directed to perform vertex-based or pixel-based

LG Ex. 1002, pg 330

Application/Control Number: 13/109,738 Page 26

Art Unit: 2677

special effects processing such as de-interlacing, inverse telecine, scaling, fading

in or out, and image sharpening or blurring.” The GPU can perform vertex-based

or pixel-based special effects processing which corresponds to performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.)

While Shen does not disclose shared resources, operativer coupled to

the processor unit; Parikh does disclose shared resources, operatively

coupled to the processor unit; (Col. 14, lines 2—6 reciting “Main processor 110

can also load a number of graphics values (e.g., transformation matrices, pixel

formats, vertex formats, etc. by writing to registers within the graphics and audio

processors.” Thus, pixel and vertex data may be both written to registers that are

within the graphics processor. Therefore, the registers within the graphics

processors are shared resources that may be used to store at least pixel formats,

vertex formats, and additional data formats.)

the processor unit operative to use the shared resources for either

vertex data or pixel information and operative to perform pixel calculation

operations until enough shared resources become available and then use

the shared resources to perform vertex calculation operations. (Col. 14,

lines 2—6 reciting “Main processor 110 can also load a number of graphics values

(e.g., transformation matrices, pixel formats, vertex formats, etc. by writing to

LG Ex. 1002, pg 331

Application/Control Number: 13/109,738

Art Unit: 2677

registers within the graphics and audio processors." The registers available in

the graphics processor will be finite and they may all be filled with pixel format

(pixel data). Therefore, if there is no empty registers left and the registers are all

filled with non-vertex data, the processor may not read and process vertex format

(vertex data).)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

LG Ex. 1002, pg 332

Application/Control Number: 13/109,738

Art Unit: 2677

13. Regarding Claim 4, Shen discloses A unified shader comprising: a

processor unit operative to perform vertex calculation operations and pixel

calculation operations; and (Col. 6, lines 39-45 reciting “At block 326, video

decoding application 216 may optionally be configured to direct GPU 208 to

perform special effects processing on the reconstructed image. For example,

GPU 208 may be directed to perform vertex-based or pixel-based special effects

processing such as de-interlacing, inverse telecine, scaling, fading in or out, and

image sharpening or blurring." The GPU can perform vertex-based or pixel-

based special effects processing which corresponds to performing vertex

manipulation operation and pixel manipulation operations. Here the “or” can be

interpreted to include the meaning of “and” since “or” includes the meaning of

“and.” Nothing in the specification of Shen indicates an exclusive "or" meaning.

In fact the GPU of Shen is shown to perform operations on per-pixel and per-

vertex.)

Parikh discloses shared resources, operatively coupled to the

processor unit; (Col. 14, lines 2—6 reciting “Main processor 110 can also load a

number of graphics values (e.g., transformation matrices, pixel formats, vertex

formats, etc. by writing to registers within the graphics and audio processors.”

The registers available in the graphics processor will be finite and they may all be

filled with pixel format (pixel data). Therefore, if there is no empty registers left

and the registers are all filled with non-vertex data, the processor may not read

and process vertex format (vertex data).)

LG Ex. 1002, pg 333

Application/Control Number: 13/109,738

Art Unit: 2677

the processor unit operative to use the shared resources for either

vertex data or pixel information and operative to perform vertex calculation

operations until enough shared resources become available and then use

the shared resources to perform pixel calculation operations. (Col. 6, lines

39-45 reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may be directed to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening or blurring.” The GPU

can perform vertex-based or pixel-based special effects processing which

corresponds to performing vertex manipulation operation and pixel manipulation

operations. Here the “or” can be interpreted to include the meaning of “and”

since “or” includes the meaning of “and.” Nothing in the specification of Shen

indicates an exclusive "or" meaning. In fact the GPU of Shen is shown to

perform operations on per-pixel and per-vertex.)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

LG Ex. 1002, pg 334

Application/Control Number: 13/109,738

Art Unit: 2677

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

14. Regarding Claim 5, Shen further discloses A unified shader comprising:

a processor unit; (Col. 4, lines 8- 12 reciting “Exemplary GPU 208 includes a

programmable vertex shader 212 for performing graphics operations on a per-

vertex basis, and a programmable pixel shader 214 for performing graphics

operations on a per-pixel basis.” The GPU 208, which corresponds to a

processor.)

a sequencer coupled to the processor unit, the sequencer

maintaining instructions operative to cause the processor unit to execute

vertex calculation and pixel calculation operations on selected data

maintained in a store depending upon an amount of space available in the

store. (Col. 4, lines 29-44 reciting “Accelerated video decoding may be described

in the general context of computer-executable instructions, such as application

modules, being executed by a computer. Generally, application modules include

routines, programs, objects, components, data structures, etc. that perform

LG Ex. 1002, pg 335

Application/Control Number: 13/109,738

Art Unit: 2677

particular tasks or implement particular abstract data types. Video decoding

application 216 may be implemented using any number of programming

techniques and may be implemented in local computing environments or in

distributed computing environments where tasks are performed by remote

processing devices that are linked through various communications networks

based on any number of communication protocols. In such a distributed

computing environment, application modules may be located in both local and

remote computer storage media including memory storage devices.” The

memory storage devices corresponds to the sequencer because it stores the

computer-executable instructions, such as application modules, which are in a

sequence. The application modules may be located in local computer storage

media and such local storage medium is coupled to the processor since it is

accessible by the processor.)

It would have been obvious for one of ordinary skill in the art to combine

the teachings of Parikh with the teachings of Shen because both are drawn to

analogous art. Shen discloses accelerated decoding of video bitstreams using a

graphics processing unit (GPU). The GPU generates vertex data which are

processed for vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

blurring. Parikh is drawn to a unique vertex representation allowing the graphics

pipeline to retain vertex state information and to mix indexed and direct vertex

values and attributes. Parikh further teaches that it is possible to store vertex

format and pixel format and other graphics information into registers of the

LG Ex. 1002, pg 336

Application/Control Number: 13/109,738 Page 32

Art Unit: 2677

graphics processor. Thus, the GPU of Shen may be modified with the registers

taught in Parikh so that the generated vertex values may be stored in the GPU

for later access. One of ordinary skill in the art would be motivated to combine

the registers of Parikh with the GPU of Shen in order to store the vertex data

generated in Shen to more efficiently construct polygons and other graphical

objects. Therefore, it would be obvious to one of ordinary skill in the art to

combine the teachings of Parikh with the teachings of Shen.

15. Regarding Claim 6, Shen further discloses The shader of claim 5,

wherein the sequencer further includes circuitry operative to fetch data

from a memory. (00/. 4, lines 29-44 reciting “Accelerated video decoding may

be described in the general context of computer-executable instructions, such as

application modules, being executed by a computer. Generally, application

modules include routines, programs, objects, components, data structures, etc.

that perform particular tasks or implement particular abstract data types. Video

decoding application 216 may be implemented using any number of

programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.” The communications network based on communication protocols

LG Ex. 1002, pg 337

Application/Control Number: 13/109,738

Art Unit: 2677

corresponds to circuitry operative to fetch the instructions from the remote

computer storage media.)

16. Regarding Claim 7, Shen further discloses The shader of claim 5,

further including a selection circuit operative to provide information to the

store in response to a control signal. (Col. 4, lines 29-44 reciting “Accelerated

video decoding may be described in the general context of computer-executable

instructions, such as application modules, being executed by a computer.

Generally, application modules include routines, programs, objects, components,

data structures, etc. that perform particular tasks or implement particular abstract

data types. Video decoding application 216 may be implemented using any

number of programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage

devices.’ The communications networks also corresponds to selective circuit

that provides information to the memory storage devices.)

17. Regarding Claim 8, Shen further discloses The shader of claim 5,

further including a selection circuit operative to provide information to the

store in response to a control signal. (Col. 6, lines 39-45 reciting “At block

326, video decoding application 216 may optionally be configured to direct GPU

208 to perform special effects processing on the reconstructed image. For

LG Ex. 1002, pg 338

Application/Control Number: 13/109,738

Art Unit: 2677

example, GPU 208 may be directed to perform vertex-based or pixel-based

special effects processing such as de-interlacing, inverse telecine, scaling,m1

in or out, and image sharpening or blurring.” Fading in or out corresponds to

pixel color in response to the GPU 208 receiving directions (plurality of inputs)

from the video decoding application 216.)

18. Regarding Claim 10, Shen further discloses The shader of claim 5,

wherein the processor unit generates vertex position and appearance data

in response to a selected one of the plurality of inputs. (Col. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may be directed to perform vertex-

based or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening or blurring.” Both

scaling and inverse telecine corresponds to vertex position (scaling) and

appearance data (reverse telecine).)

19. Regarding Claim 11, Shen further discloses The shader of claim 5,

wherein the processor unit generates vertex position and appearance data

in response to a selected one of the plurality of inputs. (Col. 6, lines 39-45

reciting “At block 326, video decoding application 216 may optionally be

configured to direct GPU 208 to perform special effects processing on the

reconstructed image. For example, GPU 208 may be directed to perform vertex-

m or pixel-based special effects processing such as de-interlacing, inverse

telecine, scaling, fading in or out, and image sharpening or blurring.” De-

LG Ex. 1002, pg 339

Application/Control Number: 13/109,738

Art Unit: 2677

interlacing, inverse telecine, and scaling all correspond to vertex position

(scaling) and appearance data (reverse telecine).)

20. Regarding Claim 15, Shen discloses A unified shader comprising: a

processor unit flexibly controlled to perform vertex manipulation

operations and pixel manipulation operations based on vertex or pixel

workload. (Col. 6, lines 39-45 reciting “At block 326, video decoding application

216 may optionally be configured to direct GPU 208 to perform special effects

processing on the reconstructed image. For example, GPU 208 may be directed

to perform vertex-based or pixel-based special effects processing such as de-

interlacing, inverse telecine, scaling, fading in or out, and image sharpening or

Mg. The GPU corresponds to a processor unit flexibly controlled, and the

reconstructed image corresponds to the workload since the reconstructed image

will have varying numbers of vertex and pixel data to process.)

21. Regarding Claim 16, Shen further discloses The shader of claim 15

comprising an instruction store and wherein the processor unit performs

the vertex manipulation operations and pixel manipulation operations at

various degrees of completion based on switching between instructions in

the instruction store. (Col. 4, lines 29-44 reciting “Accelerated video decoding

may be described in the general context of computer-executable instructions,

such as application modules, being executed by a computer. Generally,

application modules include routines, programs, objects, components, data

structures, etc. that perform particular tasks or implement particular abstract data

types. Video decoding application 216 may be implemented using any number of

LG Ex. 1002, pg 340

Application/Control Number: 13/109,738

Art Unit: 2677

programming techniques and may be implemented in local computing

environments or in distributed computing environments where tasks are

performed by remote processing devices that are linked through various

communications networks based on any number of communication protocols. In

such a distributed computing environment, application modules may be located

in both local and remote computer storage media including memory storage
1

devices.’ The local and remote computer storage media including memory

storage devices corresponds to the instruction store. Computer executable

instructions corresponds to the vertex and pixel manipulation operations which is

completed at various degrees according to the structure of the application

module (stored instructions) on the storage device (instruction store).)

CONTACT

22. Any inquiry concerning this communication or earlier communications from

the examiner should be directed to FRANK CHEN whose telephone number is

(571)270-7993. The examiner can normally be reached on 8 - 5, Monday -

Friday.

If attempts to reach the examiner by telephone are unsuccessful, the

examiner’s supervisor, Kee Tung can be reached on (571)272-7794. The fax

phone number for the organization where this application or proceeding is

assigned is 571 -273-8300.

Information regarding the status of an application may be obtained from

the Patent Application Information Retrieval (PAIR) system. Status information

for published applications may be obtained from either Private PAIR or Public

LG Ex. 1002, pg 341

Application/Control Number: 13/109,738

Art Unit: 2677

PAIR. Status information for unpublished applications is available through

Private PAIR only. For more information about the PAIR system, see http://pair-

direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-

free). If you would like assistance from a USPTO Customer Service

Representative or access to the automated information system, call 800-786-

9199 (IN USA OR CANADA) or 571-272-1000.

/FRANK CH EN/

Examiner, Art Unit 2677

/KEE M TUNG/

Supervisory Patent Examiner, Art Unit 2677

LG Ex. 1002, pg 342

Application/Control No. Applicant(s)/Patent Under
Reexamination

13/109738 MOREIN ET AL.

Examiner Art Unit

FRANK CHEN 2677

U.S. PATENT DOCUMENTS

* Document Number Date . . .
Country Code-Number-Kind Code MM-YYYY CIaSSIf'caflon

* A S-6,697,074 82 02-2004 Parikh et al. 345/522

fl LS-7,646,817 82 01-2010 Shen et al. 375/240.25
I
III
I
I
I
IL

Notice of References Cited

Page 1 of 1

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
U 8 Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20121129

LG Ex. 1002, pg 343

Application/Control No. Applicant(s)/Patent Under
Reexamination

Index Of Claims 13109738 MOREIN ET AL.

Examiner Art Unit

FRANK CHEN

 III<\<\\H \<\I

 xxxx xxxx
H

xx xx

U.S. Patent and Trademark Office Part of Paper No. : 20121129

LG Ex. 1002, pg 344

EAST Search Hist01y

EAST Search History

EAST Search History (Prior Art)

§Re HIts§Search Query §Default §Plurals§Time 5
k99919195.}$19.11}?.........

EUS—PGPUB; USPAT; 32012/12/01;
EUSOCR; FPRS; EPO; 114:23
gJPO; DERWENT;
§|BM_TDB

§US—PGPUB; USPAT; i2012/12/01g
USOCR; FPRS; EPO; 14:23 a

§JPO; DERWENT;
§|BM_TDB

32012/11/295
gEPo; JPO; DERWENT; 314:43 i
§|BM_TDB s s

US-PGPUB; USPAT; 2012/11/295
gEPO; JPO; DERWENT; E1728 5
§|BM_TDB 5 3

EUS-PGF’UB; USPAT; 32012/11/293
USOCR; FPRS; EPO; 17:28 a

gJPO; DERWENT; :

pixel WITH vertex WITH US—PGPUB; USPAT; $2012/‘l 1/29;
gcombination WITH shader USOCR; FPRS; EPO; 17:43
5 EJPO; DERWENT; s

|BM_TDB

US-PGPUB; USPAT; 2012/11/29?
USOCR; FPRS; EPO; 17:52

§JPO; DERWENT;

EUS-PGPUB; USPAT; i2012/11/29§
EUSOCR; FPRS; EPO; $1752 5
§JPO; DERWENT;
§|BM_TDB

US—PGPUB; USPAT; 2012/11/29§
§USOCR; FPRS; EPO; 32047 i

DERWENT;
EIBM_TDB

US-PGPUB; USPAT; 2012/11/29§
EUSOCR; FPRS; EPO; §20:47
EJPO; DERWENT;
§|BM_TDB

US-PGPUB; USPAT; 2012/11/29§
iUSOCR; FPRS; EPO; §20:48
§JPO; DERWENT;

....... ' B'VLTDB

$810 4108 32012/11/2eg
: 1: gWITH vertex EUSOCR; FPRS; EPO; 320548 5

s gJPo; DERWENT; i

5Single NEAR shader WITH pixe E —PGPUB, USPAT;

§W|TH vertex USOCR; FPRS; EPO;

file:///CI/Users/fchen/Documents/e—Red%2OF01der/1310973 SIEASTSearchHistory.1310973SiAccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 345

EAST Search Histoty

gsingle NEAR shader

combins WITH pixel WITH

vertex WITH shader

integrated WITH pixel WITH
vertex WITH shader

gsimultaneou$4 WITH pixel
WITH vertex WITH sander

ésimultaneou$4 WITH pixel
WI TH vertex WITH shader

§Concurrent WITH pixel WITH

vertex WITH shader

§Coexist WITH pixel WITH
vertex WITH shader

5 contemporaneous WITH pixel
WITH vertex WITH shader

contemporary WITH pixel
WITH vertex WITH shader

synchron$4 WITH pixel WITH
vertex WITH shader

300mbined WITH pixel WITH

gvertex WITH shader

Ecumulat$4 WITH pixel WITH
§vertex WITH shader

§composite WITH pixel WITH
gvertex WITH shader

gtogether WITH pixel WITH
gvertex WITH shader

JPO; DERWENT;

§US—PGPUB; USPAT;
EUSOCR; FPRS; EPO;
§JPO; DERWENT;
§IBM_TDB

USPGPUB; USPAT;
USOCR; FPRS; EPO;

§JPO; DERWENT;
I BM_TDB

USPGPUB; USPAT;
usoon; FPRS; EPO;

gJPo; DERWENT;

US—PGPUB; USPAT;
§USOCR; FPRS; EPO;
§JPO; DERWENT;

I BIvLTDB

iUS—PGPUB; USPAT;
EUSOCR; FPRS; EPO;
gJPo; DERWENT;

USPGPUB; USPAT;
EUSOCR; FPRS; EPO;
IJPO; DERWENT;

I BM_TDB

§US—PGPUB; USPAT;
§USOCR; FPRS; EPO;
EJF’O; DERWENT;

5 PGPUB; USPAT;

EUSOCR; FPRS; EPO;
EJPO; DERWENT;
§IBIvLTDB

EUS-PGPUB; USPAT;
EUSOCR; FPRS; EPO;
gJPO; DERWENT;
§IBM_TDB

USPGPUB; USPAT;
IUSOCR; FPRS; EPO;
EJPO; DERWENT;

gUS—PGPUB; USPAT;
§USOCR; FPRS; EPO;
EJF’O; DERWENT;

I BM_TDB

gUS—PGPUB; USPAT;
EUSOCR; FPRS; EPO;
EJF’O; DERWENT;

US—PGPUB; USPAT;
éUSOCR; FPRS; EPO;
EJPO; DERWENT;
§IBM_TDB

EUSPGPUB; USPAT;
gusocn; FPRS; EPO;
§JPO; DERWENT;

§2012/II/29§
320:50

§2012/11/29§
32206 i

32012/11/293
$2220 a

32012/11/2eé
322:24

§2012/11/29§
322:24

§2012/11/29§
322:25

32012/11/295
322:25

§2012/11/29§
322:29

§2012/11/29§
322:32

zdl‘él‘l'vzé;
22:33

§2012/11/29§
32235 5

§2012/II/29§
322:35 :

§2012/11/29§
322:35 :

I BM_TDB

file:///CI/Users/fchen/Documents/e—Red%20F01der/1310973 SIEASTSearchHistory. 1 3 10973SiAccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 346

EAST Search HistOIy

S26 §i44 Incorporat$5 WITH pixel WITH USPGPUB; USPAT; 32012/1 1/29?
§vertex WITH shader EUSOCR; FPRS; EPO;

§JPO; DERWENT;
EIBM_TDB

Integration WITH pixel WITH USPGPUB; USPAT; 32012/11/295
§vertex WITH shader USOCR; FPRS; EPO; 122143
a pm; DERWENT; i 3

goonsolida$5 WITH pixel WITH §US-PGPUB; USPAT; 32012/11/2eé
§vertex WITH ehader USOCR; FPRS; EPO; 322:44
3 EJPO; DERWENT;

ngIvLTDB

§cooperat$5 WITH pixel WITH EUS—PGPUB; USPAT; §2012/11/29§
§vertex WITH shader USOCR; FPRS; EPO; 322:44
5 pm; DERWENT; i

undivided WITH pixel WITH 5 PGPUB; USPAT;
ivertex WITH shader USOCR; FPRS; EPO;

gJPO; DERWENT;

gone WITH pixel WITH vertex US—PGPUB; USPAT; :2012/11/295
§WI TH shader §USOCR; FPRS; EPO; 322:44

DERWENT;
|BM_TDB

one WITH only WITH pier US—PGPUB; USPAT; i2012/11/293
§WITH vertex WITH shader USOCR; FPRS; EPO; 322:44
5 gJPo; DERWENT;

gSIngle WITH pier WITH vertex 5 US—PGPUB; USPAT; 5 5 t2012/11/29E
§WITH shader EUSOCR; FPRS; EPO; 322:45
5 EJPO; DERWENT;

IBM_TDB

EUSPGPUB; USPAT; §2012/11/30§
§USOCR; FPRS; EPO; 309:03
gJPO; DERWENT; l
§IBM_TDB

§USrPGPUB; USPAT; i2012/11/3og
§USOCR; FPRS; EPO;
ngo; DERWENT;
EIBM_TDB : t 1 :

EUS-PGPUB; USPAT; i2012/ii/30;
gUSOCR; FPRS; EPO; 310:04
gJPo; DERWENT;

SUSPGF’UB; USPAT; i2012/ii/30g
gUSOCR; FPRS; EPO; 310:04 :

DERWENT;
§IBM_TDB

§Lirldholm AND programmable EUSPGPUB; USPAT; 32012/11/SOE
§WITH graphics WITH USOCR; FPRS; EPO; 10:04
iprocessor EJPO; DERWENT; s

§IBM_TDB

297 Egraphics WITH processor WI THE US—PGPUB; USPAT; $2012/‘l 1/303
ti §vertex WITH pixel USOCR; FPRS; EPO; 10:09

gJPo; DERWENT;
IBM_TDB

H294 §processor WITH vertex WITH éUS—PGPUB; USPAT; 32012/11/3og
it §pixe| WITH shad$4 §USOCR; FPRS; EPO; §10:48 5

§JPO; DERWENT; a

fi1e:///CI/Users/fchen/Documents/e—Red%2OF01der/1310973 SIEASTSearchHistory. 1 3 10973SiAccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 347

EAST Search Histoty

§vertex WITH pixel WITH USOCR; FPRS; EPO;

shad$4 JPO; DERWENT;
I BM_TDB

§2012/11/30§
310:54

a ggeneral WITH purpose WITH US—PGPUB; USPAT;

Egraphics WITH processor WITH§ US—PGPUB; USPAT;
ivertex WITH pixel WITH USOCR; FPRS; EPO;
shader JF’O; DERWENT;

3graphics WITH processor WIT =
ivertex WITH pixel WITH

‘ Bertie;‘‘‘‘s33:
:usooR; FPRS; EPO;

processing JPO; DERWENT;

§vertex WITH pixel WITH
processing WITH register

§vertex WITH pixel WITH

USOCR; FPRS; EPO;
§JPO; DERWENT;

I BM_TDB

USOCR; FPRS; EPO;

operations JPO; DERWENT;

évertex WITH manipulation USOCR; FPRS; EPO;
§WI TH pixel WITH calculation DERWENT;

JPO; DERWENT;
I BIvLTDB

EusooR; FPRS; EPO;
gJPo; DERWENT;

§graphics WITH processor Wl USPGPUB; USPAT;
§dual WITH pixel WITH vertex iUSOCR; FPRS; EPO;

JPO; DERWENT;
I BM_TDB

GPU WITH vertex WITH pixel US- PGPUB; USPAT;
WITH (operations OR USOCR; FPRS; EPO;

gmanipulation OR calculation) DERWENT;

vertex WITH data WITH

I BM_TDB

us PGPUB; USPAT;

§general WITH purpose WITH EUSOCR; FPRS; EPO;
gregister §JPO; DERWENT;

vertex WITH data WITH

ggeneral WITH register

I BIvLTDB

EUS—PGPUB; USPAT;
gUSOCR; FPRS; EPO;
EJPO; DERWENT;

§general WITH purpose WITH USPGPUB; USPAT;
register WITH vertex

((Qeneral$1purpose WITH
register) OR GPR) WITH

EUSOCR; FPRS; EPO;
iJPO; DERWENT;

§|BM_TDB

usPePUB; USPAT;
gusoon; FPRS; EPO;

vertex JPO; DERWENT;
rm... I BM_TDB

32012/11/sog
§10:54

$2012/11/303
312:01 :

32012/11/30é
§12:29

§2012/11/30§
§18:23

32012/11/sog
§13:23 5

32012/11/303
:1323 i

$2012/11/303
§13:27 a

:2012/11/soé
§13:28

32012/11/303
315:10

$2012/11/303
315:11 i

32012/11/303
§15:12 a

32012/11/soé
$1515

file:///Cl/Users/fchen/Documents/e—Red%2OF01der/1310973 SIEASTSearchHistory. 1 3 10973SiAccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 348

EAST Search Histoty

§register WITH vertex §UsooR; FPRs; EPO;
gJPo; DERWENT;
EIBM_TDB

Egeneral WITH purpose WITH US—PGPUB; USPAT; i2012/11/30é
§register SAME vertex EUSOCR; FPRS; EPO; 15519

DERWENT;
I BMiTDB

E 32012/11/303
usooR; FPRs; EPO; 15:56 5

gJPo; DERWENT; 5 3

§vertex NEAR data WITH store USPGPUB; USPAT; $2012/11/30E
;WITH register iusooR; FPRs; EPO; $1559
5 EJPO; DERWENT;

§IBM_TDB

§vettex NEAR data WITH stor$3 USPGPUB; USPAT; :2012/11/soé
§WI TH register USOCR; FPRS; EPO; 16:22

§JPO; DERWENT; I
IBM_TDB

Evertex NEAR data WITH USPGPUB; USPAT; 3209/11/30?
§transmit WITH register §USOCR; FPRS; EPO; H6543

§JPO; DERWENT;
HBIVIJDB

§vertex NEAR data WITH US—PGPUB; USPAT; $2012/11/305
Stransmit$5 WITH register USOCR; FPRS; EF’O; 16543
a gJPo; DERWENT; 5

gvertex WITH pixel WITH USPGPUB; USPAT; 32012/11/303
§register gUSOCR; FPRS; EPO; §21:28 =
= gJPo; DERWENT; = = i

........IENJPE...............................

EAST Search History (I nterference)

<This search history is empty>

12/ 1/ 2012 2:40:15 PM

C:\ Users\fchen\Documents\ EAST\Workspaces\13109738_20110216077_Morein_et_al.wsp

file:///CI/Users/fchen/Documents/e—Red%20Folder/1310973 SIEASTSearchHistory.1310973SiAccessibleVersion.htm[12/1/2012 2:40:22 PM]

LG Ex. 1002, pg 349

Application/Control No. Applicant(s)/Patent Under
Reexamination

SearCh Notes 13109738 MOREIN ET AL.

Examiner Art Unit

FRANK CHEN 2677

SEARCHED

Subclass Examiner

7/12/11
3/11/12

SEARCH NOTES

Search Notes Date Examiner

Searched EAST (all databases) see search history printout 7/12/11 D W

Also see search histories for apps 12/791,597 and 11/842,256 7/12/11
conducted inventor name search 7/12/11
updated search in EAST (all databases) see search history printout 3/11/12 DW

updated search in EAST (all databases) see search history printout 11/30/2012 FC

INTERFERENCE SEARCH

/FRANK CHEN/
Examiner.Ar1 Unit 2677

US. Patent and Trademark Office Part of Paper No. : 20121129

LG Ex. 1002, pg 350

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Stephen Morein et al. Examiner: Frank S. Chen

Serial No.: 13/109,738 Art Unit: 2677

Filing Date: May 17, 2011 Docket No.: 00100360001
Confirmation No.2 2020

Title: GRAPHICS PROCESSING ARCHITECTURE EMPLOYING A UNIFIED

SHADER

AMENDMENT AND RESPONSE

Dear Sir:

In response to the office action mailed December 6, 2012, Applicants petition for a three

month extension of time and respond as follows:

Amendments to the Abstract begin on page 2 of this paper and include a replacement Abstract

and a clean copy showing the amended Abstract.

Amendments to the Claims begins on page 3 of this paper.

Remarks begin on page 7 of this paper.

DMSiUS 52220360V1

LG Ex. 1002, pg 351

Amendments to the Specification

Please replace the Abstract With the following amended Abstract:

ABSTRACT

A graphics processing architecture in one example perferms menipttletien

(.E’pmi'ffiiOQS and pixel nzenipulatizgn eperetioee by transrttittitt vertex. data :0 a, general purpose

register bk.le mid petterteieg vertex aperttietts en the vertex data by 2.: pt‘eeesser unless the

gener‘et g; erpese register bled: does not have etteugh aw {able speee therein t0 Store teeetttin

vertex date; and eentimtes sleelatten eperetions that are tn Gi‘ currentlyg

pertbn‘ned by the y: at; d 011 irtstruetietis maintained in an instructiet} Stem until enough

registers within the general pzttpese tegt blttek beemme aveiiel‘aie £51:i~~etie~eeee§tiftteg~~egettetet-

fetfimee-tegéetee‘eleek‘eteetéeteé;-<31ete;-+139eeeeeeeeyeeepieeutethe‘geeetelueeweee : arteelseele

arse-te—epeaeeseet-e—ei-tg-triei-i.tatee-éeeteeetiet}5-eeeiietheatre»eeesent-heueiie {tee-eei-t-te-efieeeé’e

teeeewe‘{eeteefieleeted»‘eeeeti‘étte‘etetetéty‘et?meetseem}-‘geatestatee-eea=teepeeitfiatttmé

ttepeeyeeee-eiete-tea-eeetwese-te-e-ee—leetee-ee met-t ae--pl—e:=a-§é—t—3~z- '-

DMSiUS 52220360Vl

LG Ex. 1002, pg 352

LG Ex. 1002, pg 353

LG Ex. 1002, pg 354

LG Ex. 1002, pg 355

LG Ex. 1002, pg 356

LG Ex. 1002, pg 357

LG Ex. 1002, pg 358

LG Ex. 1002, pg 359

LG Ex. 1002, pg 360

LG Ex. 1002, pg 361

LG Ex. 1002, pg 362

LG Ex. 1002, pg 363

LG Ex. 1002, pg 364

LG Ex. 1002, pg 365

LG Ex. 1002, pg 366

LG Ex. 1002, pg 367

LG Ex. 1002, pg 368

LG Ex. 1002, pg 369

LG Ex. 1002, pg 370

LG Ex. 1002, pg 371

LG Ex. 1002, pg 372

LG Ex. 1002, pg 373

LG Ex. 1002, pg 374

LG Ex. 1002, pg 375

LG Ex. 1002, pg 376

LG Ex. 1002, pg 377

LG Ex. 1002, pg 378

LG Ex. 1002, pg 379

LG Ex. 1002, pg 380

LG Ex. 1002, pg 381

LG Ex. 1002, pg 382

LG Ex. 1002, pg 383

LG Ex. 1002, pg 384

LG Ex. 1002, pg 385

LG Ex. 1002, pg 386

LG Ex. 1002, pg 387

LG Ex. 1002, pg 388

LG Ex. 1002, pg 389

LG Ex. 1002, pg 390

LG Ex. 1002, pg 391

LG Ex. 1002, pg 392

LG Ex. 1002, pg 393

LG Ex. 1002, pg 394

LG Ex. 1002, pg 395

LG Ex. 1002, pg 396

LG Ex. 1002, pg 397

LG Ex. 1002, pg 398

LG Ex. 1002, pg 399

LG Ex. 1002, pg 400

LG Ex. 1002, pg 401

LG Ex. 1002, pg 402

LG Ex. 1002, pg 403

LG Ex. 1002, pg 404

LG Ex. 1002, pg 405

LG Ex. 1002, pg 406

LG Ex. 1002, pg 407

LG Ex. 1002, pg 408

LG Ex. 1002, pg 409

LG Ex. 1002, pg 410

LG Ex. 1002, pg 411

LG Ex. 1002, pg 412

LG Ex. 1002, pg 413

LG Ex. 1002, pg 414

LG Ex. 1002, pg 415

LG Ex. 1002, pg 416

LG Ex. 1002, pg 417

LG Ex. 1002, pg 418

LG Ex. 1002, pg 419

LG Ex. 1002, pg 420

LG Ex. 1002, pg 421

LG Ex. 1002, pg 422

LG Ex. 1002, pg 423

LG Ex. 1002, pg 424

LG Ex. 1002, pg 425

LG Ex. 1002, pg 426

LG Ex. 1002, pg 427

LG Ex. 1002, pg 428

LG Ex. 1002, pg 429

LG Ex. 1002, pg 430

LG Ex. 1002, pg 431

LG Ex. 1002, pg 432

LG Ex. 1002, pg 433

LG Ex. 1002, pg 434

LG Ex. 1002, pg 435

LG Ex. 1002, pg 436

LG Ex. 1002, pg 437

LG Ex. 1002, pg 438

LG Ex. 1002, pg 439

LG Ex. 1002, pg 440

LG Ex. 1002, pg 441

LG Ex. 1002, pg 442

LG Ex. 1002, pg 443

LG Ex. 1002, pg 444

LG Ex. 1002, pg 445

LG Ex. 1002, pg 446

LG Ex. 1002, pg 447

LG Ex. 1002, pg 448

LG Ex. 1002, pg 449

LG Ex. 1002, pg 450

LG Ex. 1002, pg 451

LG Ex. 1002, pg 452

LG Ex. 1002, pg 453

LG Ex. 1002, pg 454

LG Ex. 1002, pg 455

LG Ex. 1002, pg 456

LG Ex. 1002, pg 457

LG Ex. 1002, pg 458

LG Ex. 1002, pg 459

LG Ex. 1002, pg 460

LG Ex. 1002, pg 461

LG Ex. 1002, pg 462

LG Ex. 1002, pg 463

LG Ex. 1002, pg 464

LG Ex. 1002, pg 465

LG Ex. 1002, pg 466

LG Ex. 1002, pg 467

LG Ex. 1002, pg 468

LG Ex. 1002, pg 469

LG Ex. 1002, pg 470

LG Ex. 1002, pg 471

LG Ex. 1002, pg 472

LG Ex. 1002, pg 473

LG Ex. 1002, pg 474

LG Ex. 1002, pg 475

LG Ex. 1002, pg 476

LG Ex. 1002, pg 477

LG Ex. 1002, pg 478

LG Ex. 1002, pg 479

LG Ex. 1002, pg 480

LG Ex. 1002, pg 481

LG Ex. 1002, pg 482

LG Ex. 1002, pg 483

LG Ex. 1002, pg 484

LG Ex. 1002, pg 485

LG Ex. 1002, pg 486

LG Ex. 1002, pg 487

LG Ex. 1002, pg 488

LG Ex. 1002, pg 489

LG Ex. 1002, pg 490

LG Ex. 1002, pg 491

LG Ex. 1002, pg 492

LG Ex. 1002, pg 493

LG Ex. 1002, pg 494

LG Ex. 1002, pg 495

LG Ex. 1002, pg 496

LG Ex. 1002, pg 497

LG Ex. 1002, pg 498

LG Ex. 1002, pg 499

LG Ex. 1002, pg 500

LG Ex. 1002, pg 501

LG Ex. 1002, pg 502

LG Ex. 1002, pg 503

LG Ex. 1002, pg 504

