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Abstract

Optical flow cannot be computed locally, since only one independent
measurement is available from the image sequence at a point, while the
now velocity has two components. A second constraint is needed. A
method for finding the optical flow pattern is presented which assumes
that the apparent velocity of the brightness pattern varies smoothly al-
most C\ er where in the image. An iterative implementation is shown
which successfully computes the optical flow for a number of synthetic
image sequences. The algorithm is robust in that it can handle image
sequences that are quantized rather coarsely in space and time. It is

also ii sensitive to quantization of brightness levels and additive noise.
1..xamples are included where the assumption of smoothness is violated
at singular points or along lines in the image.

I. Introduction

Optical flow is the distribution of apparent velocities of movement
of brightness patterns in an image. Optical flow can arise from
relative motion of objects and the viewer [8, 9]. Consequently, optical
flow' can give important information about the spatial arrangement of
the objects viewed and the rate of change of this arrangement [10].
Discontinuities in the optical flow can help in segmenting images into
regions that correspond to different objects 1291. Attempts have been
inade to perform such segmentation using differences between succes-
sive image francs 117. 18, 19, 22, 3, 27]. Several papers address the
problem of recovering the motions of objects relative to the viewer
(ion) the optical flow- [12, 20, 21, 23, 31]. Sonic recent papers provide
a clear exposition of this enterprise [32, 33]. The mathematics can
he made rather ditheriit, by the way, by chosing an inconvenient coor-
dinate system. In some cases information about the shape of an object
may also be recovered [4, 20, 211.

These papers begin by assuming that the optical flow has already
been determined. Although some reference has been made to schemes
for computing the flow from successive views of a scene [7, 121, the

specifics of a scheine for determining the flow from the image have
not been described. Related work has been done in an attempt to
formulate a model for the short range motion detection processes in
human vision [2, 24]. The pixel recursive equations of Netravali and
Robbins [34 designed for coding motion in television signals, bear
some similarity to the iterative equations developed in this paper.

A recent review [28] of computational techniques for the analysis of
image sequences contains over 150 references.

The optical flow cannot be computed at a point in the image in-
dependently of neighboring points without introducing additional con-
straints, because the velocity field at each image point has two com-
ponents while the change in image brightness at a point in the image
plane due to motion yields only one constraint. Consider, for example,
a patch of a pattern where brightness' varies as a function of one image
coordinate but not the other. Movement of the pattern in one direc-
tion alters the brightness at a particular point, but motion in the other
direction yields no change. Thus components of movement in the latter
direction cannot be determined locally.

2. Relationship to Object Motion

The relationship between the optical flow in the image plane
and the velocities of objects in the three dimensional world is not
necessarily obvious. We perceive motion when a changing picture is
projected onto a stationary screen, for example. Conversely, a moving
object may give rise to a constant brightness pattern. Consider, for ex-
ample, a uniform sphere which exhibits shading because its surface ele-
ments are oriented in many different directions. Yet, when it is rotated,
the optical flow is zero at all points in the image, since the shading
does not move with the surface. Also, specular reflections move with
a velocity characteristic of the virtual image, not the surface in which
light is reflected.

For convenience, we tackle a particularly simple world where the
apparent velocity of brightness patterns can be directly identified with
the movement of surfaces in the scene.

3. The Restricted Problem Domrain

'l'o avoid variations in brightness due to shading effects we initially
assume that the surface being imaged is flat. We further assume that
the incident illumination is uniform across the surface. The brightness

I In this paper, the term brightness means image irradiance. The brightness pattern
is the distribution of irradiance in the image.
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at a point in the image is then proportional to the reflectance of the sur-
face at the corresponding point on the object. Also, we assume at first
that reflectance varies smoothly and has no spatial discontinuities. This
latter condition assures its that the image brightness is differentiable.
We exclude situations where objects occlude one another, in part, be-
cause discontinuities in reflectance are found at object boundaries. In
two of the experiments discussed later, some of the problems occa-
sioned by occluding edges are exposed.

In the simple situation described, the motion of the brightness
patterns in the image is determined directly by the motions of cor-
responding points on the surface of the object. Computing the
velocities of points on the object is a matter of simple geometry once
the optical flow is known.

4. Constraints

We will derive an equation that relates the change in image
brightness at a point to the motion of the brightness pattern. I_et the
image brightness at the point (x, y) in the image plane at time t be
denoted by E(x, y, t). Nov,' consider what happens when the pattern
movess.'l'hr brightness of a particular point in the pattern is constant, so
that

dE
0

dt
Using the chain rule for differentiation we see that,

dx aF,dy aE
a.rdt aydtat -

(See Appendix A for a more detailed derivation.) If we let

dx dy
u

dt
and 'e = dt'

then it is easy tu see that we have a single linear equation in the two
unknowns +t and y,

E,-u- f- E,v+Et =0,

where we have also introduced the additional abbreviations E1., E and
Et for the partial derivatives of image brightness with respect to x, y
and t, respectively. The constraint on the local flow velocity expressed
by this equation is illustrated in Figure 1. Writing the equation in still
another way,

(Ei, E5) ' (u, v) = -Et.

Thus the component of the movement in the direction of the bright-
ness gradient (E,,, E,t) equals

`E2
V x y

We cannot, however determine the component of the movement in the
direction of the iso- brightness contours, at right angles to the bright-
ness gradient. As a consequence, the flow velocity (u, v) cannot be
computed locally without introducing additional constraints.

5. The Smoothness Constraint

If every point of the brightness pattern can move independently,
there is little hope of recovering the velocities. More commonly we
view opaque objects of finite size undergoing rigid motion or defor-
mation. In this case neighboring points on the objects have similar
velocities and the velocity field of the brightness patterns in the image
varies smoothly almost everywhere. Discontinuities in flow can be ex-
pected where one object occludes another. An algorithm based on a
smoothness constraint is likely to have difficulties with occluding edges
as a result.

One way to express the additional constraint is to minimize the
square of the magnitude of the gradient of the optical flow velocity:

2 2

(ax) + (ay) and
Y 2

(ax ) (y)

Another measure of the smoothness of the optical flow field is the sum
of the squales of the Laplacians of the two velocity components. The
Laplacians of u and v are defined as

á-'u r31u
V2u (9,2 J- anda z

á2v a2vv2v=
Óz2 + ay2

In simple situations, both Laplacians arc zero. If the viewer translates
parallel to a Ilat object, rotates about a line perpendicular to the surface
or travels orthogonally to the surface, then the second partial deriva-
tives of both u and y vanish (assuming perspective projection in the
image formation.)

In this paper, we will use the square of the magnitide of the
gradient as our smoothness measure. Note that our approach is in
contrast with that of [7], who propose an algorithm that incorporates
additional assumptions such as constant flow velocities v ithin discrete
regions of the image. Their method, based on cluster analysis, cannot
deal with rotating objects, since these give rise to a continuum of flow
velocities.

6. Quantization and Noise

Images may be sampled at intervals on a fixed grid of points.
While tesselations other than the obvious one have certain'advantages
[11, 25], for connenicnee we will assume that the image is sampled on a
square grid at regular intervals. let the measured brightness be E1,1,k
at the intersection of the i-tlt row and j -th column in the k -th image
frame. Ideally, each measurement should be an average over the area
of a picture cell and over the length of the time interval. In the experi-
ments cited here we have taken samples at discrete points in space and
time instead.

In addition to being quantized in space and time, the measure-
ments will in practice be quantized in brightness as well. Further, noise
will be apparent in measurements obtained in any real system.
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7. Estimating the Partial Derivatives

We must estimate the derivatives of brightness from the discrete

set of image brightness measurements available. It is important that

the estimates of Er, Ey, and E be consistent. That is, they should all

refer to the same point in the image at the same time. While there
are many f'o17nulas for approximate differentiation 15. l3] we will use

a set which gives us an estimate of Er, Ey, Ei at a point in the center

of a cube formed by eight measurements. The relationship in space
and time between these measurements is shown in Figure 2. Each of

the estimates is the average of four first differences taken over adjacent

measurements in the cube.

Ez
14{Ei,3+l,k -- Eiit - Ei+t,J+r,k

-FEi,7+i,k+i - Ei,7,k+t +Ei+1,J+1,k+1 -Ei-I-1,J,k+1}
1

Ey 4{Ei+t,í,k -Ei,J,k -i. Ei+i,J+i,k -Ei,J+t,k
+Ei+1,7,k+I --Ei,9,k+t +Ei+1,J+1,k-i-1 -Ei,7+1,k+1}

1
Et Ei,i,k+u - Ei,J,k + Ei+r,J,k+i - Ei+1,J,k

Ei,j+1,k +Ei+1,1+i,k+1

Here the unit of length is the grid spacing interval in each image frame

and the unit of time is the image frame sampling period. We avoid es-

timation formulae with larger support, since these typically are equiv-
alent to formulae of small support applied to smoothed images [16].

8. Estimating the Laplacian of the Flow Velocities

As will be shown in the next section, we will also need to ap-
proximate the l.aplacians of u and v. One convenient approximation
takes the following form

V212 2t i ik and V2v .r.;. ic(Zi,J,k -

where the local averages it and v are defined as follows

úi,J,k =
6

{ui-tJ,k + Ui, J+t ,k + ui-1-1,J,k

+ 12 {7le- I.J-t,k1+

i,Jk = {7Ji-tJk T tii,7+1 ,k + tii.+t,J k + vi,7-1 ,k}

12
{vi-1,J-1,k + tii-t,J+t,k + vi+1,J+1,k + i-}-1,j-1,k)

The proportionality factor is equals 3 if the average is computed as
shown and we again assume that the unit of length equals the grid
spacing interval. Figure 3 illustrates the assignment of weights to neigh-

bodng points. The approximation for the Laplacian using the center
cell and all eight neighbors is more stable than the usual one based on

the center cell and its four horizontal and vertical neighbors only.

9. Minimization

The problem then is to minimize the sum of the errors in the
equation for the rate of change of image brightness,

gb°Ezu+Evv+Et,

and the measure of the departure from smoothness in the velocity flow,

g! - (2 h12 + + ar2

What should be the relative weight of these two factors? In practice
the image brightness measurements will be corrupted by quantization

error and noise so that we cannot expect gb to be identically zero. This

quantity will tend to have an error magnitude thát is proportional to

the noise in the measurement. This fact guides us in choosing a suitable

weighting factor. denoted by a2, as will be seen later.

I_et the total error to be minimized be

6 -u a2g + gb dx d y.

The minimization is to be accomplished by finding suitable values for

the optical flow velocity (u, y). Using the calculus of variations [6, pp.

191 -921, we obtain

EÌu + EEvv = a2 V 2u - ErEt
ErEqu +Eiv = a2O2v -EyE1.

Using the approximation to the Laplacian introduced in the previous
section,

(a2 + E2)u -f- E.,Eyv = (a2ú - E%Et)

E1Equ + (a2 + Ey2)v = (a2i - EyEt).

The determinant of the coefficient matrix equals a2

Solving for u and y we find that
(a2 Ei + Eÿ)

(a2 E; -}- E2y)u = + (a2 EL)ü EEyv EEt
(a2 + Ei + Ey)v = - E.Eyü -{- (a2 EyEt.

l0. Difference of Flow at a Point from Local Average

"These equations can be written in the alternate form

(a2 +E; +E,)(u -ft) =- EX[EÜ -[-E +E1)

(02 + E + Eÿ)(v - v) = - Ey[EÜ + Evv + Ed.

This shows that the value of the flow velocity (u, y) which minimizes
the error g2 lies in the direction towards the constraint line along a
line that intersects the constraint line at right angles. This relationship

is illustrated geometrically in Figure 4. The distance from the local
average is proportional to the error in the basic formula for rate of
change of brightness when ft, v are substituted for u and v. Finally
we can see that a2 plays a significant role only for areas where the
brightness gradient is small, preventing haphazard adjustments to the

estimated flow velocity occasioned by noise in the estimated deriva-
tives. This parameter should be roughly equal to the expected noise in

the estimate of E! +E t.
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I l. Constrained l\ linimization

When we allow a2 to tend to zero we obtain the solution to a
constrained minimization problem. Applying the method of Lagrange
multipliers [35, 36] to the problem of minimizing b' while maintaining
gb = 0 leads to

EEO2u = ErV2v, Emu -[- Eyv -{- Et = O.

Approximating the Laplacian by the difference of the velocity at a
point and the average of its neighbors then gives us

(E,. -}- E211)(u - it) =- - E.[E,.it { Eyv + 1%t]

(E. .2 + Ey)(v - v) = Ei[I= - Eyv + Et].

Referring again to Figure 4, we note that the point computed here lies
at the intersection of' the constraint line and the line at right angles
through the point (v, v). We v\ ill not use these equations since we do
expect errors in the estimation of the partial derivatives.

12. Iterative Solution

We now have a pair of equations for each point in the image. It
would be very costly to solve these equations simultaneously by one
of the standard methods, such as Gauss -Jordan elimination [13, 14].
The corresponding matrix is sparse and very large since the number
of rows and columns equals twice the number of picture cells in the
image. Iterative methods, such as the Gauss -Seidel method [13, 15],
suggest themselves. We can compute a new set of velocity estimates

v +t) from the estimated derivatives and the average of the
previous velocity estimates (0, v") by

0 +1 -E.[Er f +Eye (- Et] /(a2 +Ez +Ey)
v,+1 =v" - Ey[Erun +Evo + Et] /(a2 + Es + ED.

(It is interesting to note that the new estimates at a particular point do
not depend directly on the previous estimates at the same point.)

The natural boundary condition for the variational problem turns
out to be a zero normal derivative. At the edge of the image, some of
the points needed to compute the local average of velocity lie outside
the image. Here we simply copy velocities from adjacent points further
in.

13. Filling In Uniform Regions

In parts of the image where the brightness gradient is zero, the
velocity estimates will simply be averages of the neighboring velocity
estimates. There is no local information to constrain the apparent
velocity of motion of the brightness pattern in these areas. Eventually
the values around such a region will propagate inwards. If the velocities
on the border of the region are all equal to the same value, then points
in the region will be assigned that value too, after a sufficient number
of iterations. Velocity information is thus filled in from the boundary of
a region of constant brightness.

If the values on the border are not all the same, it is a little more
difficult to predict what will happen. In all cases, the values filled in
will correspond to the solution of the Laplace equation for the given
boundary condition [l, 26, 34].

The progress of this filling-in phenomena is similar to the propaga-
tion effects in the solution of the heat equation for it uniform flat plate,
where the time rate of change of temperature is proportional to the
I_aplacian.'Ibis gives us a means of understanding the iterative method
ill physical terms and of estimating the number of steps required. "l'he
number of iterations should be larger than the number of pictures cells
across the largest region that must be filled in. If the size of such
regions is not known in advance one may use the cross-section of the
whole image as a conservative estimate.

14. Tightness of Constraint

When brightness in a region is a linear function of the image coor-
dinates we can only obtain the component of optical flow in the direc-
tion of the gradient. The component at right angles is filled in from the
boundary of' the region as described before. In general the solution is
most accurately determined in regions where the brightness gradient is
not too small and varies in direction from point to point. Information
which constrains both components of the optical flow velocity is then
available in a relatively small neighborhood. Too violent fluctuations
in brightness on the other hand are not desirable since the estimates
of the derivatives will be corrupted as the result of undersampling and
aliasing.

15. Choice of Iterative Scheme

As a practical matter one has a choice of how to interlace the itera-
tions with the time steps. On the one hand, one could iterate until the

solution has stabilized before advancing to the next image frame. On
the other hand, given a good initial guess one may need only one itera-
tion per time -step. A good initial guess for the optical flow velocities is
usually available from the previous time -step.

The advantages of the latter approach include an ability to deal
with more images per unit time and better estimates of optical flow
velocities in certain regions. Areas in which the brightness gradient
is small lead to uncertain, noisy estimates obtained partly by filling
in from the surround. "These estimates are improved by considering
further images. The noise in measurements of the images will be inde-
pendent and tend to cancel out. Perhaps more importantly, different
parts of the pattern will duft by a giccn point in the image. The direc-
tion of the brightness gradient will vary with time, providing informa-
tion about both components of the optical flow velocity.

A practical implementation would must likely employ oihe itera-
tion per time step for these reasons. We illustrate both approaches in
the experiments.
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11. Const ruined Minimization

When we allow a2 to tend to zero we obtain the solution to a 
constrained minimization problem. Applying the method of Lagrange 
multipliers [35, 36] to the problem of minimizing Sj! while maintaining 
6(, = 0 leads to

EyV^u ^ g,V\ g,u + gyv + E"( = 0.

Approximating the Laplacian by me difference of the velocity at a 
point and the average of its neighbors then gives us

Referring again to Figure 4, we note that the point computed here lies 
at the intersection of the constraint line and the line at right angles 
through the point (u, i>). We will not use these equations since we do 
expect errors in the estimation of the partial derivatives.

12. Iterative Solution

We now have a pair of equations for each point in the image. It 
would be very costly to solve these equations simultaneously by one 
of the standard methods, such as Gauss-Jordan elimination [13, 14]. 
The corresponding matrix is sparse and very large since the number 
of rows and columns equals twice the number of picture cells in the 
image. Iterative methods, such as the Gauss-Scidcl method [13, 15], 
suggest themselves. We can compute a new set of velocity estimates 
(u""^,u"+') from the estimated derivatives and the average of the 
previous velocity estimates (t*", u") by

(It is interesting to note that the new estimates at a particular point do 
not depend directly on the previous estimates at the same point.)

The natural boundary condition for the variational problem turns 
out to be a zero normal derivative. At the edge of the image, some of 
the points needed to compute the local average of velocity lie outside 
the image. Here we simply copy velocities from adjacent points further 
in.

13. Filling In Uniform Regions

In parts of the image where the brightness gradient is zero, the 
velocity estimates will simply be averages of the neighboring velocity 
estimates. There is no local information to constrain the apparent 
velocity of motion of the brightness pattern in these areas. Eventually 
the values around such a region will propagate inwards. If the velocities 
on the border of the region arc all equal to the same value, then points 
in the region will be assigned that value too, after a sufTicicnt number 
of iterations. Velocity information is thus filled in from the boundary of 
a region of constant brightness.

If the values on the border are not all the same, it is a little more 
difficult to predict what will happen. In all cases, the values filled in 
will correspond to the solution of the Laplace equation for the given 
boundary condition [1,26, 34].

The progress of this Olling-in phenomena is similar to the propaga­ 
tion effects in the solution of the heat equation for a uniform flat plate, 
where the time rate of change of temperature is proportional to the 
Laplucian. This gives us a means of understanding the iterative method 
in physical terms and of estimating the number of steps required. The 
number of iterations should be larger than the number of pictures cells 
across the largest region that must be filled in. If the size of such 
regions is not known in advance one may use the cross-section of the 
whole image as a conservative estimate.

14. Tightness of Constraint

When brightness in a region is a linear function of the image coor­ 
dinates we can only obtain the component of optical flow in the direc­ 
tion of the gradient. 'Hie component at right angles is filled in from the 
boundary of the region as described before. In general the solution is 
most accurately determined in regions where the brightness gradient is 
not too small and varies in direction from point to point. Information 
which constrains both components of the optical flow velocity is then 
available in a relatively small neighborhood. Too violent fluctuations 
in brightness on the other hand are not desirable since the estimates 
of the derivatives will be corrupted as the result of undcrsampling and 
aliasing.

IS. Choice of Iterative Scheme

As a practical matter one has a choice of how to interlace the itera­ 
tions with the time steps. On the one hand, one could iterate until the 
solution has stabilized before advancing to die next image frame. On 
the other hand, given a good initial guess one may need only one itera­ 
tion per time-step. A good initial guess for the optical flow velocities is 
usually available from the previous time-step.

'ITic advantages of the latter approach include an ability to deal 
with more images per unit time and better estimates of optical flow 
velocities in certain regions. Areas in which the brightness gradient 
is small lead to uncertain, noisy estimates obtained partly by filling 
in from the surround. These estimates arc improved by considering 
further images. The noise in measurements of the images will be inde­ 
pendent and tend to cancel out. Perhaps more importantly, different 
parts of the pattern will drift by a given point in the image. The direc­ 
tion of the brightness gradient will vary with time, providing informa­ 
tion about both components of the optical Row velocity.

A practical implementation would most likely employ one itera­ 
tion per time step for these reasons. We illustrate both approaches in 
the experiments.
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16. Experiments

The iterative scheme has been implemented and applied to image
sequences corresponding to a number of simple flow patterns. The
results shown here are for a relatively low resolution image of 32 by
32 picture cells. The brightness measurements were intentionally cor-
rupted by approximately 1% noise and then quantized into 256 levels
to simulate a real imaging situation. The underlying surface reflectance

pattern was a linear combination of spatially orthogonal sinusoids.
Their wavelength was chosen to give reasonably strong brightness
gradients without leading to undersampling problems. Discontinuities
were avoided to ensure that the required derivatives exist everywhere.

Shown in Figure 5, for example, arc four frames of a sequence
of images depicting a sphere rotating about an axis inclined towards
the viewer. A smoothly varying reflectance pattern is painted. on the
surface of the sphere. The sphere is illuminated uniformly from all
directions so that there is no shading. We chose to work with synthetic
image sequences so that we can compare the results of the optical flow
computation with the exact values calculated using the uansfrn'mation
equations relating image coordinates to coordinates on the underlying
surface reflectance pattern.

17. Results

The first flow to he investigated was a simple linear translation of
the entire brightness pattern. The resulting computed flow is shown
as a needle diagram in Figure 6 for 1, 4, 16, and 64 iterations. The
estimated flow velocities are depicted as short lines, showing the ap-
parent displacement during one time step. In this example a single time
step was taken so that the computations arc based on just two images.
Initially the estimates of flow velocity are zero. Consequently the
first iteration shows vectors in the direction of the brightness gradient.
Later, the estimates approach the correct salues in all parts of the
image. Few changes occur after 32 iterations when the velocity vectors
have errors of about 10 %. The estimates tend to be too small, rather
than too large, perhaps because of a tendency to underestimate the
derivatives. 'Mc worst errors occur, as one might expect, where the
brightness gradient is small.

In the second experiment one iteration was used.per time step on
the same linear translation image sequence. The resulting computed
flow is shown in Figure 7 for 1, 4, 16, and 64 time steps. The estimates
approach the correct values more rapidly and do not have a tendency
to be too small, as in the previous experiment. Few changes occur
after 16 iterations when the velocity vectors have errors of about 7 %.
The worst errors occur, as one might expect, where the noise in recent
measurements of brightness was worst. While individual estimates of
velocity may not be very accurate, the average over the whole image
was within 1% of the correct value.

Next, the method was applied to simple rotation and simple con-
traction of the brightness pattern. The results after 32 time steps are
shown in Figure 8. Note that the magnitude of the velocity is propor-
tional to the distance from the origin of the flow in both of these cases.
(ßy origin we mean the point in the image where the velocity is zero.)

In the examples so far the Laplacian of both flow velocity corn -
ponents is zero everywhere. We also studied more difficult cases where

this was not the case. In particular, if we let the magnitude of the

velocity vary as the inverse of the distance from the origin we generate
flow around a line vortex and two dimensional flow into a sink. The
computed flow patterns are shown in Figure 9. In these examples, the
computation involved many iterations based on a single time step. The
worst errors occur near the singularity at the origin of the flow pattern,
where velocities are found which are much larger than one picture cell
per time step.

Finally we considered rigid body motions. Shown in Figure 10
are the flows computed for a cylinder rotating about its axis and for
a rotating sphere. In both cases the Laplacian of the flow is not zero
and in fact the Laplacian of one of the velocity components becomes
infinite on the occluding bound. Since the velocities themselves remain
finite, reasonable solutions are still obtained. 'Hie correct floe patterns
are shown in Figure I1. Comparing the computed and exact values
shows that the worst errors occur on the occluding boundary. These
boundaries constitute a one dimensional subset of the plane and so one
can expect that the relative number of points at which the estimated
flow is seriously in error will decrease as the resolution of the image is
made finer.

In Appendix Il it is shown that there is a direct relationship be-
tween the Iaplacian of the flow velocity components taci the Laplacian
of the surface height. 'I his can be used to sec how our smoothness
constraint will fare for different objects. For example, a rotating
polyhedron will give rise to a flow which has zero Laplacian except on
the image lines which are the projections of the edges of the body.

18. Summary

A method has been developed for computing optical flow from
a sequence of images. It is based on the observation that the flow
velocity has two components and that the basic equation for the rate of
change of image brightness provides only one constraint. Smoothness
Of the flow was introduced as a second constraint. An iterative method
for solving the resulting equation was then developed. A simple im-
plementation provided visual confirmation of convergence of the solu-
tion ill the form of needle diagrams. Examples of several different types
of optical flow patterns were studied. 'these included cases where the
Laplacian of the flow was zero as well as cases where it became infinite
at singular points or along bounding curves.

The computed optical flow is somewhat inaccurate since it is based

on noisy, quantized measurements. Proposed methods for obtaining
infbtmation about the shapes of objects using derivatives (divergence
and curl) of the optical flow field may turn out to he impractical since
the inaccuracies will he amplified.
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16. Experiments

The iterative scheme has been implemented and applied to image 
sequences corresponding to a number of simple How patterns. 'ITie 
results shown here are for a relatively low resolution image of 32 by 
32 picture cells. The brightness measurements were intentionally cor­ 
rupted by approximately 1% noise and then quantized into 256 levels 
to simulate a real imaging situation. The underlying surface reflectance 
pattern was a linear combination of spatially orthogonal sinusoids. 
Their wavelength was chosen to give reasonably strong brightness 
gradients without leading to undersampling problems. Discontinuities 
were avoided to ensure that the required derivatives exist everywhere.

Shown in Figure 5, fbr example, arc four frames of a sequence 
of images depicting a sphere rotating about an axis inclined towards 
the viewer. A smoothly varying reflectance pattern is painted on the 
surface of the sphere. The sphere is illuminated uniformly from all 
directions so that there is no shading. We chose to work with synthetic 
image sequences so that we can compare the results of the optical How 
computation with the exact values calculated using the transformation 
equations relating image coordinates to coordinates on the underlying 
surface reflectance pattern.

17. Results

The first Row to be investigated was a simple linear translation of 
the entire brightness pattern. The resulting computed How is shown 
as a needle diagram in Figure 6 for 1, 4, 16, and 64 iterations. The 
estimated Row velocities arc depicted as short lines, showing the ap­ 
parent displacement during one time step. In this example a single time 
step was taken so that the computations arc based on just two images. 
Initially the estimates of flow velocity arc y.cro. Consequently the 
first iteration shows vectors in the direction of the brightness gradient. 
Later, the estimates approach the correct values in all parts of the 
image. Few changes occur after 32 iterations when the velocity vectors 
have errors of about 10%. The estimates tend to be too small, rather 
than too large, perhaps because of a tendency to underestimate the 
derivatives. 'Hie worst errors occur, as one might expect, where the 
brightness gradient is small.

In the second experiment one iteration was used .per time step on 
the same linear translation image sequence. The resulting computed 
How is shown in Figure 7 fbr 1, 4, 16, and 64 time steps. The estimates 
approach the correct values more rapidly and do not have a tendency 
to be too small, as in the previous experiment. Few changes occur 
after 16 iterations when the velocity vectors have errors of about 7%. 
The worst errors occur, as one might expect, where the noise in recent 
measurements of brightness was worst. While individual estimates of 
velocity may not be very accurate, the average over the whole image 
was within 1% of the correct value.

Next, the method was applied to simple rotation and simple con­ 
traction of the brightness pattern. The results after 32 time steps are 
shown in Figure 8. Note that the magnitude of the velocity is propor­ 
tional to the distance from the origin of the How in both of these cases. 
(By origin we mean the point in the image where the velocity is zero.)

In the examples so far the I^placian of both How velocity com­ 
ponents is zero everywhere. We also studied more difficult cases where 
this was not the case. In particular, if we let the magnitude of the 
velocity vary as the inverse of the distance from the origin we generate 
How around a line vortex and two dimensional How into a sink. The 
computed How patterns arc shown in Figure 9. In these examples, the 
computation involved many iterations based on a single time step. The 
worst errors occur near the singularity at the origin of the How pattern, 
where velocities are fbund which are much larger than one picture cell 
per time step.

Finally we considered rigid body motions. Shown in Figure 10 
arc the Hows computed for a cylinder rotating about its axis and fbr 
a rotating sphere. In both cases the l.aplacian of the How is not /cm 
and in fact the l.aplacian of one of the velocity components becomes 
infinite on the occluding bound. Since the velocities themselves remain 
Hnitc, reasonable solutions are still obtained. The correct Ho* patterns 
arc shown in Figure 11. Comparing the computed and exact values 
shows that the worst errors occur on the occluding boundary. These 
boundaries constitute a one dimensional subset of the plane and so one 
can expect that the relative number of points at which the estimated 
How is seriously in error will decrease as the resolution of the image is 
made finer.

In Appendix H it is shown that there is a direct relationship be­ 
tween the Laplacian of the How velocity components and the l.aplacian 
of the surface height. I his am be used to see how our smoothness 
constraint will fare for different objects. For example, a rotating 
polyhedron will give rise to a How which has zero l.aplacian except on 
the image lines which are the projections of the edges of the body.

18. Summary

A method has been developed for computing optical How from 
a sequence of images. It is based on the observation that the How 
velocity has two components and that the basic equation for the rate of 
change of image brightness provides only one constraint. Smoothness 
of the How was introduced as a second constraint. An iterative method 
fbr solving the resulting equation was then developed. A simple im­ 
plementation provided visual conHrmation of convergence of the solu­ 
tion in the form of needle diagrams. Fxamplcs of several diHcrcnt types 
of optical How patterns were studied. These included cases where the 
Laplacian of the How was zero as well as cases where it became inHnite 
at singular points or along bounding curves.

'Hie computed optical (low is somewhat inaccurate since it is based 
on noisy, quanti/cd measurements. Proposed methods fbr obtaining 
information about the shapes of objects using deri\ati\cs (divergence 
and curl) of the optical How field may turn out to be impractical since 
the inaccuracies will be amplified.
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