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Ideally one would desire an indefinitely large memory
capacity such that anyparticular ... word would be im-
mediately available. ...We are... forced to recognize the
possibility of constructing a hierarchy of memories, each of
which has greater capacity thanthe preceding but which is
less quickly accessible.

 
A. W.Burks, H. H. Goldstine, and J. von Neumann,
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8 Memory-Hierarchy
Design

| 8.1 | Introduction: Principle of Locality
Computer pioneers correctly predicted that programmers would want unlimited

| amounts of fast memory. As the 90/10 rule in the first chapter predicts, most
programsfortunately do not access all code or data uniformly (see Section 1.3,
pages 8-12). The 90/10 rule can be restated as the principle of locality. This
hypothesis, which holds that all programs favor a portion of their address space
at any instant of time, has two dimensions:

| a Temporal locality (locality in ime)—If an item is referenced. it will tend to
| be referenced again soon.

a Spatial locality (locality in space)—Ifan item is referenced, nearby items will
tend to be referenced soon.

A memory hierarchy is a natural reaction to locality and technology. The
principle of locality and the guideline that smaller hardware is faster yield the
conceptofahierarchybasedon different speeds and sizes. Since slower memory
is cheaper,amemoryhierarchyisorganizedintoseveral levels—each smaller,
faster, and more expensive per byte than the level below.The levels of the
hierarchy subset one another; all data in one level is also found in the level
below, and al! data in that lower level is found in the one below it, and so on

until we reach the bottom ofthe hierarchy.
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This chapter includes a half-dozen examples that demonstrate how taking
advantage of the principle of locality can improve performance. All these
strategies map addresses from a larger memory to a smaller but faster memory.
As part of address mapping, the memory hierarchy is usually given the
responsibility of address checking; protection schemes used for doing this are
covered in this chapter. Later we will explore advanced memory hierarchy topics
and trace a memory access through three levels of memory on the VAX-11/780.

General Principles of Memory Hierarchy

Before proceeding with examples of the memory hierarchy, let’s define some
general terms applicable to all memory hierarchies. A memory hierarchy
normally consists of many levels, but it is managed between two adjacentlevels
at a time. The upper level—the onecloser to the processor—is smaller and faster
than the /ower level (see Figure 8.1). The minimum unit of information that can
be either present or not present in the two-level hierarchy is called a block. The
size of a block maybeeitherfixed or variable.If it is fixed, the memory size is a
multiple of that block size. Most of this chapter will be concerned with fixed
block sizes, although a variable block design is discussed in Section 8.6.

Success or failure of an access to the upper level is designated as a hit or a
miss: A hit is a memory access found in the upper level, while a miss meansit is
not found in that level. Hit rate, or hit ratio—like a batting average—is the
fraction of memory accesses found in the upper level. This is sometimes repre-
sented as a percentage. Miss rate (1.0 — hit rate) is the fraction of memory
accesses not found in the upperlevel.

 Processor !

Blocks  
FIGURE 8.1 Every pair of levels in the memory hierarchy can be thoughtof as
having an upperand lowerlevel. Within each level the unit of information that is present
or not is called a block.
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Since performance is the major reason for having a memory hierarchy, the
speed of hits and misses is important. Hit time is the time to access the upper
level of the memory hierarchy, which includes the time to determine whether the
accessis a hit or a miss.Misspenaltyisthetimeto replace a block in the upper
levelwiththe corresponding blockfromthelowerlev§l, plus the time to deliver
this block to the requesting device (normally the CPU). The miss penalty is
further divided into two components: accesstime—thetime to accessthefirst
word of a block on a miss; and transfer time—the additional time to transfer the

remaining wordsin the block. Access time is related to the latency of the lower-
level memory, while transfer time is related to the bandwidth between the lower-
level and upper-level memories. (Sometimes access latency is used to mean
accesstime.)

The memory address is dividedinto pieces that access each part of the

hierarchy. The block-frame addr.ess isthe higher-order piece of theeoftheaddressthat
identifies ablockatthat levelof the”hierarchy (see Figure 8.2).The block-offset
address is the lower-order piece of the address and identifies an item within a
block. The size of the block-offset address is log, (size of block), the size of the
block-frame address is then the size of the full address at this level less the size

of the block-offset address.

 

 

Block-frame address Block-offset address  
01011010001000001001010 111901110]
 

FIGURE 8.2 Example of the frame addressandoffset address portions of a 32-bit
lower-level memory address.In this case the block size is 512, making the size of the
offset address 9 bits and the size of the block-frame address 23bits.

Evaluating Performance of a Memory Hierarchy

Because instruction count is independent of the hardware, it is tempting to
evaluate CPU performance using that number. As we saw in Chapters 2 and 4,
however, such indirect performance measures have waylaid many a computer
designer. The corresponding temptation for evaluating memory-hierarchy
performance is to concentrate on miss rate, for it, too, is independentof the
speed of the hardware. As we shall see, miss rate can be just as misleading as
instruction count. A better measure_ofmemory-hierarchy performanceis thene

average time cess memory:

Average memory-access time = Hit time + Miss rate * Miss penalty

The components of average access time can be measured either in absolute
time—say, 10 nanoseconds on a hit—orin the numberof clock cycles that the
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406 8.2 General Principles of Memory Hierarchy

CPU waits for the memory—such as a miss penalty of 12 clock cycles.
Rememberthat average memory-access time is still an indirect measure of
performance; so whileit is a better measure than missrate, it 1s not a substitute
for execution time.

The relationship of block size to miss penalty and miss rate is shown
abstractly in Figure 8.3. These representations assumethat the size of the upper-
level memory does not change. The access-time portion of the miss penalty is
not affected by block size, but the transfer time does increase with block size. If
access time is large, initially there will be little additional miss penalty relative
to access time as block size increases. However, increasing block size means
fewer blocks in the upper-level memory. Increasing block size lowers the miss
rate until the reduced misses of larger blocks (spatial locality) are outweighed
by the increased misses as the numberof blocks shrinks (temporallocality).  

  
 

Miss Transfer Miss
penalty time rate

Block size Blocksize 
 
FIGURE 8.3 Block size versus miss penalty and miss rate. The transfer-time portion of
the miss penalty obviously grows with increasing block size. For a fixed-size upper-level
memory, miss rates fall with increasing block size until] so much of the block is not used that
it displaces useful information in the upperlevel, and miss rates begin to rise. The point on
the curve on the right where miss rates begin to rise with incréasing blocksizeis
sometimescalled the pollution point.

 

Averageaccess
time

Block size
 
FIGURE 8.4 Therelationship between average memory-accesstime and blocksize.
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The goal of a memory hierarchy is to reduce execution time, not misses.
Hence, computer designersTavorablocksizewiththelowestaverageaccess
time rather than the lowest miss rate. This is related to the product of miss rate
and miss penalty, as Figure 8.4 showsabstractly. Of course, overall CPU
performanceis the ultimate performance test, so care must be taken whenre-
ducing average memory-access timeto be sure that changes to clock cycle time
and CPI improve overall performanceas well as average memory-accesstime.

Implications of a Memory Hierarchy to the CPU

Processors designed without a memory hierarchy are simpler because memory
accesses always take the same amountof time. Misses in a memory hierarchy
mean that the CPU must be able to handle‘variablememory-access times.If the

misspenalty 1s on the orderoftens of clock cycles,the processor normally waits

 

thousandsofprocessor clock cycles,iit is too wasteful to let the CPUsit idle; in
this case, the CPU is interrupted and used for another process during the miss
handling. Thus, avoiding the overhead of a long miss penalty means any
memory access can result in a CPU interrupt. This also means the CPU mustbe
able to recover any memory address that can cause such an interrupt, so that the
system can know whatto transfer to satisfy the miss (see Section 5.6). When the
memorytransfer is complete, the original process is restored, and the instruction
that missedis retried.

The processor must also have some mechanism to determine whether or not
information is in the top level of the memory hierarchy. This check happens on
every memory access andaffects hit time; maintaining acceptable performance
usually requires the check to be implemented in hardware. The final implication
of a memory hierarchy is that the computer must have a mechanism to transfer
blocks between upper- and lower-level memory. If the block transfer is tens of
clock cycles, it is controlled by hardware; if it is thousands of clock cycles, it
éanbe controlled by software.

Four Questions for Classifying Memory Hierarchies

The fundamental principles that drive all memory hierarchies allow us to use
termsthat transcend the levels we are talking about. These sameprinciples allow
us to pose four questions about any level ofthe hierarchy:

Q1: Where can a block be placedin the upper level? (Block placement)

Q2: Howis a block foundif it is in the upper level? (Block identification)

Q3: Which block should be replaced on a miss? (Block replacement)

Q4: What happens on a write? (Write strategy)

These questions will help us gain an understanding of the different tradeoffs
demanded bythe relationships of memories at different levels of a hierarchy.
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408 8.3 Caches

8.3 Caches

Cache:a safe place for hiding or storing things. :
Webster’ s New World Dictionary of the American Language,

Second College Edition (1976)

Cacheis the namefirst chosen to represent the level of the memory hierarchy 7
between the CPU and main memory,and that is the dominant use of the term.
While the concept of caches is younger than the IBM 360 architecture, caches
appear today in every class of computer and in some computers more than once.
In fact, the word has become so popular that it has replaced “buffer” in many
computer-science circles.

The general terms defined in the prior section can be used for caches,
although the word /ine is often used instead of block. Figure 8.5 shows the
typical range of memory-hierarchy parameters for caches.
 

 

 

 

 

 

 

 
 

Block(line) size 4 — 128 bytes *

Hit time 1 —4 clock cycles (normally 1)

Miss penalty 8 — 32 clock cycles

(Access time) (6— 10 clock cycles) =

(Transfer time) (2 — 22 clock cycles) L
Missrate 1% — 20%

Cachesize 1 KB - 256 KB

 
 

FIGURE 8.5 Typical values of key memory-hierarchy parameters for caches in 1990
workstations and minicomputers. q

Now let’s examine caches in more detail by answering the four memory-
hierarchy questions.

Wangarte

   
ieee

Q1: Where Can a Block Be Placed in 4 Cache?

Restrictions on where a block is placed create three categories of cache
organization:

s If each block has only one place it can appearin the cache, the cacheis said

to be direct mapped. The mappingis usually (block-frame address) modulo | ‘
(numberof blocks in cache). i E

a Ifa block can be placed anywherein the cache, the cacheis said to be fully
associative,
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Memory-Hierarchy Design 409

a Ifa block can be placedinarestricted set of places in the cache, the cache is
said to be ser associative. A set is a group of two or more blocksin the cache.
A blockis first mapped onto a set, and then the block can be placed anywhere
within the set. The set is usually chosen by bit selection; that is, (block-frame
address) modulo (numberofsets in cache). If there are n blocks in a set, the

cache placementis called n-way set associative.

The range of caches from direct mapped to fully associative is really a
continuum oflevels of set associativity: Direct mapped is simply one-way set
associative and a fully associative cache with m blocks could be called m-way
set associative. Figure 8.6 shows where block 12 can be placed in a cache
according to the block-placementpolicy.

Fully associative: Direct mapped: Set associative:
block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywhere in set 0

(12 mod 8) (12 mod 4)

01234567 Block 01234567 01234567

no. . |
Set Set Set Set

0 1 2 3

 
Block-frame address 

 
Block

no. 0123456789

 
FIGURE 8.6 The cachehas8 blocks, while memory has 32 blocks. Theset-
associative organization has 4 sets with 2 blocks perset, called two-way set associative.
(Real caches contain hundreds of blocks and real memories contain hundredsof thousands
of blocks.) Assumethatthere is nothing in the cache and that the block-frame address in
question identifies lower-level block 12. The three options for caches are shownleft to right.
In fully associative, block 12 from the lower level can go into any of the 8 blocks of the
cache. With direct mapped, block 12 can only be placed into block 4 (12 modulo 8). Set
associative, which has someofbothfeatures, allows the block to be placed anywherein set
0 (12 modulo 4). With two blocks perset, this means block 12 can be placedeither in block
0 or block 1 of the cache.

SAMSUNG EXHIBIT 1009

Page 12 of 171



SAMSUNG EXHIBIT 1009 
Page 13 of 171

410 8.3 Caches 

       
Q2: HowIs a Block FoundIf It Is in the Cache?

Cachesinclude an address tag on each block that gives the block-frame address.
The tag of every cache block that might contain the desired information is
checked to see if it matches the block-frame address from the CPU. Figure 8.7
gives an example. Because speedis of the essence,all possible tags are searched
in parallel; serial search would makesetassociativity counterproductive.
 

Fully associative Direct mapped Set associative
01234567 Block 01234567 Block 01234567

uy
mn PT

FIGURE8.7 In fully associative placement, the block for biock-frame address 12 can
appearin any of the 8 blocks; thus,all 8 tags must be searched. The desired data is
found in cache block 6 in this example.In direct-mapped placementthere is only one cache
block where memory block 12 can be found.In set-associative placement, with 4 sets,
memory block 12 must be in set 0 (12 mod 4); thus, the tags of cache blocks 0 and 1 are
checked.In this case the data is found in cache block 1. Speed of cache accessdictates
that searching must be performedin parallel for fully associative and set-associative
mappings.

Search
 

There must be a way to know that a cache block does not have valid
information. The most common procedure is to add a valid bit to the tag to say

whetheror not this entry contains apalid address. If the bit is not set, there
cannot be a match onthis address.

A common omission in finding the cost of caches is to forget the cost of the
tag memory. One tag is required for each block. An advantage of increasing
block sizes is that the tag overhead per cache entry becomes a smaller fraction of
thetotalcostofthecache.—FSC~™ _

~~Beforeproceedingtothe next question, let’s explore the relationship of a
CPU address to the cache. Figure 8.8 shows how anaddressis divided into three
fields to find data in a set-associative cache: the block-offset field used to select
the desired data from the block, the index field used to select the set, and the fag

field used for the comparison. While the comparison could be made on more of
the address than the tag, there is no need:
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s Checking the index would be redundant, since it was used to select the set to

be checked (an address stored in set 0, for example, must have 0 in the index
field or it couldn’t be stored in set 0).

u The offset is unnecessary in the comparison becauseall block offsets match
and the entire block is present or not.

If the total size is kept the same, increasing associativity increases the number of
blocks perset, thereby decreasing the size of the index and increasing the size of
the tag. That is, the tag/index boundary in Figure 8.8 movesto the right with
increasing associativity.
 

 

 
FIGURE 8.8 The 3 portions of an addressin a set-associative or direct-mapped cache.
The tag is used to checkall the blocks in the set and the index is used to select the set. The
block offset is the address of the desired data within the block.

Q3: Which Biock Should Be Replaced on a Cache Miss?

If the choice were between a block that has valid data and a block that doesn’t,

then it would be easy to select which block to replace. Alas, the high hit rate of
caches meansthat the overwhelming decision is between blocks that have valid
data.

A benefit of direct-mapped placement is that hardware decisions are
simplified. In fact, so simple that there is no choice: Only one block is checked
for a hit, and only that block can be replaced. With fully associative or set-
associative placement, there are several blocks to choose from on a miss. There
are two primary strategies employed for selecting which block to replace:

a Random—Tospread allocation uniformly, candidate blocks are randomly
selected. Some systems use a schemefor spreading data across a set of blocks
in a pseudorandomized manner to get reproducible behavior, which is
particularly useful during hardware debugging.

a Least-recently used (LRU)—To reduce the chance of throwing out informa-
tion that will be needed soon, accesses to blocks are recorded. The block

replaced is the one that has been unusedfor the longest time. This makes use
of a corollary of temporal locality: If recently used blocks are likely to be
used again, then the best candidate for disposal is the least recently used.
Figure 8.9 (page 412) shows which block is the least-recently used for a
sequence of block-frame addressesin a fully associative memory hierarchy.
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A virtue of random is that it is simple to build in hardware. As the numberof
blocks to keep track of increases, LRU becomes increasingly expensive andis
frequently only approximated. Figure 8.10 shows the difference in miss rates
between LRU and random replacement. Replacement policy plays a greater role
in smaller caches than in larger caches where there are more choices of whatto
replace.
 

- _.. ee _ -

Block-frame addresses 1 3 2 l 0 | 0 i) fan — Wo | o         LRU block number|0) 0/0 0) 3) 3/3|1|0 02 | 

FIGURE 8.9 Least-recently used blocks for a sequence of block-frame addressesin
a fully associative memory hierarchy. This assumesthat there are 4 blocks andthat in
the beginning the LRU block is number 0. The LRU block numberis shown below each
new block reference. Anotherpolicy, First-in-first-out (FIFO), simply discards the block that
was used N unique accessesbefore, independentof its reference pattern in the last N — 1
references. Random replacement generally outperforms FIFO andit is easier to implement.

—_————sv

Associativity: 2-way 4-way 8-way |Size LRU Random LRU Random LRU Random

16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
— . _ - sj
 

64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%  
 

FIGURE 8.10 Miss rates comparing least-recently used versus random replacement
for several sizes and associativities. This data was collected for a block size of 16 bytes

using one of the VAX traces containing user and operating system code (SAVE). This
traceis included in the software supplementfor course use. Thereislittle difference
between LRU and random for larger size cachesin this trace.

   
Q4: What Happens on a Write?

Reads dominate cache accesses. Ail instruction accesses are reads, and most
instructions don’t write to memory. Figure 4.34 (page 181) suggests a mix of 9%
stores and 17% loads for four DLX programs, making writes less than 10%of
the memory traffic. Making the commoncase fast means optimizing caches for
reads, but Amdahl’s Law reminds us that high-performance designs cannot |
neglect the speed of writes.

Fortunately, the commoncaseis also the easy case to make fast. The block
can beread at the sametimethat the tag is read and compared, so the block read
begins as soon as the block-frame address is available. If the read is a hit, the “
block is passed on to the CPU immediately.If it is a miss, there is no benefit—
but also no harm.

-

256 KB 115% 1.17% 1.13% 1.13% 1.12% 1.12%
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Suchis not the case for writes. The processor specifies the size of the write,
usually between | and 8 bytes; only that portion of a block can be changed.In
general this means a read-modify-write sequence of operations on the block:
read the original block, modify one portion, and write the new block value.
Moreover, modifying a block cannot begin until the tag is checkedto seeif it is
a hit. Because tag checking cannotoccurin parallel, then, writes normally take
longer than reads.

Thus,it is the write policies that distinguish many cache designs. There are
two basic options when writing to the cache:

a Write through (or store through)—The information is written to both the
blockin the cache andto the block in the lower-level memory.

a Write back (also called copy back or store in)—The information is written
only to the block in the cache. The modified cache block is written to main
memory only whenitis replaced.

Write-back cache blocksare called clean or dirty, depending on whether the
information in the cache differs from that in lower-level memory. To reduce the
frequency of writing back blocks on replacement, a feature called the dirty bit is
commonly used. This status bit indicates whether or not the block was modified
while in the cache.If it wasn’t, the block is not written, since the lower level has
the same information as the cache.

Both write back and write through have their advantages. With write back,
writes occur at theSpeed_ofthecachememory, andmultiple writes within a
blockrequire only one write to the lower-level memory. Since every write
doesn’t go to memory, write back uses less memory bandwidth, making write
back attractive in multiprocessors. With write through, read misses don’t result
in writes to the lower level, and write through is easier to implement than write
back. Write through also has the advantage that main memory has the most
current copy of the data. This is important in multiprocessors and for I/O, which
weshall examine in Section 8.8. Hence, multiprocessors want write back to
reduce the memory traffic per processor and write through to keep the cache and
memory consistent.

When the CPU must wait for writes to complete during write throughs, the
CPUis said to write stall. A common optimization to reduce write stalls is a
write buffer, which allows the processor to continue while the memory is
updated. As weshall see in Section 8.8, write stalls can occur even with write

uffers.

There are two options on a write miss:

a Write allocate (also called fetch on write)—Theblockis loaded, followed by
the write-hit actions above. This is similar to a read miss.

a No write allocate (also called write around)—The block is modified in the
lowerlevel and not loaded into the cache.
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While either write-miss policy could be used with write through or write back,
generally write-back caches use write allocate (hoping that subsequent writes to
that block will be captured by the cache) and write-through caches often use no
write allocate (since subsequent writes to that block will still have to go to
memory).

An Example Cache: The VAX-11/780 Cache

To give substance to these ideas, Figure 8.11 shows the organization of the
cache on the VAX-11/780. The cache contains 8192 bytes of data in 8-byte
blocks with two-way-set-associative placement, random replacement, write
through with a one-word write buffer, and no write allocate on a write miss.

Let’s trace a cache hit through the steps of a hit as labeled in Figure 8.11.
(The five steps are shown as circled numbers.) The address coming into the
cacheis divided into two fields: the 29-bit block-frame address and 3-bit block

offset. The block-frame addressis further divided into an address tag and cache

index. Step | showsthis division.
The cache index selects the set to be tested to see if the block is in the cache.

(A set is one block from each bank in Figure 8.11.) The size of the index
depends on cachesize, block size, and set associativity. In this case, a 9-bit
index results:

Blocks _ Cache size _ 8192 = _99

Bank — Blocksize * Set associativity 8 * 27 sl2=2
 

In a two-way-set-associative cache, the index is sent to both banks. This is
step 2.

After reading an address tag from each bank, the tag portion of the block-
frame address is compared to the tags. This is step 3 in the figure. To be sure the
tag contains valid information, the valid bit must beset, or the results of the
comparison are ignored.

Assuming one of the tags does match, a 2:1 multiplexer (step 4) is set to
select the block from the matching set. Why can’t both tags match?It is the job
of the replacement algorithm to makésure that an address appears in only one
block. To reduce the hit time, the data is read at the same time as the address

tags; thus, by the time the block multiplexer is ready, the data is also ready.
This step is needed in set-associative caches, but it can be omitted from

direct-mapped caches since there is no selection to be made. The multiplexer
used in this step can be on the critical timing path, endangering the clock cycle
time of the CPU. (The example on pages 418-419 and the fallacy on page 481
explore the trade-off of lower miss rates and higher clock cycle time.)

In the final step the word is sent to the CPU. Allfive steps occur within a
single CPU clock cycle.

Whathappenson a miss? Thecachesendsa stall signal to the CPUtelling it
to wait, and two words (eight bytes) are read from memory. That takes 6 clock
cycles on the VAX-11/780 (ignoring bus interference). When the data arrives,
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the cache must pick a block to replace: the VAX-11/780 selects one of the two
blocks at random. Replacing a block means updating the data, the addresstag,
and the valid bit. Once this is done, the cache goes through a regular hit cycle
and returns the data to the CPU.

Writes are more complicated in the VAX-11/780, as they are in any cache.If
the word to be written is in the cache, the first four steps are the same. The next
step is to write the data in the block, then write the changed-data portion into the
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<20> <9> <3> bataDatata

(tag[ince]_] nou  
Valid Tag
<i> <20> 
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Bank 0 |—.

ez |@blocks}

 

 

    
  
   
 
    

 
Bank1 LM|
(512
blocks)      

FIGURE 8.11 The organization of the VAX-11/780 cache. The 8-KB cacheis two-way
set associative with 8-byte blocks. It has 512 sets with two blocks perset, the setis
selected by the 9-bit index. The five steps of a read hit, shownascircled numbersin order
of occurrence, label this organization. The line from memoryto the cache is used on a miss
to load the cache. Multiplexing as found in step 4 is not neededin a direct-mapped cache.
Note that the offset is connectedto chip select of the data SRAMsto allow the proper
words to be sent to the 2:1 multiplexer.
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cache. The VAX-11/780 uses no write allocate. Consequently, on a write miss
the CPU writes “around” the cache to lower-level memory and doesnotaffect
the cache.

Since this is a write-through cache, the process isn’t yet over. The word is
also sent to a one-word write buffer. If the write buffer is empty, the word and
full address are written in the buffer, and weare finished. The CPU continues

working while the write buffer writes the word to memory. If the buffer is full,
the cache (and CPU) mustwait until the buffer is empty.

Cache Performance

CPU time can be divided into the clock cycles the CPU spends executing the
program and the clock cycles the CPU spends waiting for the memory system.
Thus,

CPU time = (CPU-execution clock cycles + Memory-stall clock cycles ) * Clock cycle time

To simplify evaluation of cache alternatives, sometimes designers assume
that all memorystalls are due to the cache. This is true for many machines; on ; —_—_
machines where this is not true, the cache still dominates stalls that are not

exclusively due to the cache. We use this simplifying assumptionhere, butit is
important to account for all memory stalls when calculating final performance!

The formula above raises the question whether the clock cycles for a cache
access should be considered part of CPU-execution clock cycles or part of mem-
ory-stall clock cycles. While either convention is defensible, the most widely
acceptedis to include hit clock cycles in CPU-execution clock cycles. F

Memory-stall clock cycles can then be defined in terms of the number of
memory accesses per program, miss penalty (in clock cycles), and miss rate for
reads and writes:

                    
Reads

Memory-stall clock cycles = Program * Read miss rate * Read miss penalty

Writes . . . . ;
Do... * Write miss rate * Write miss penalty |
Program 7

 
Wesimplify the complete formula by combining the reads and writes together:

Memory accessess
Memory-stall clock cycles = Program * Miss rate * Miss penalty

Factoring instruction count (IC) from execution time and memory stall
cycles, we now get a CPU-time formula that includes memory accesses per
instruction, miss rate, and miss penalty: rry

CPU time =IC * (cprMemoryaccesses. ; * Miss rate * Miss penalt )* Clock cycle timeExecution Instruction P y y
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Memory-Hierarchy Design 417

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memoryreference:

Misses __ Memory accessesi . * Miss rate
Instruction Instruction

The advantage of this measure is that it is independent of the hardware
implementation. For example, the VAX-11/780 instruction unit can make
repeated references to a single byte (see Section 8.7), which can artificially
reduce the miss rate if measured as misses per memory reference rather than per
instruction executed. The drawback is that this measure is architecture
dependent, thus it is most popular with architects working with a single
computer family. They then use this version of the CPU-time formula:

_ Misses _ gj alty ) yele tiInstruction * Miss penalty) * Clock cycle time
We can now explore the consequences of caches on performance.

Let’s use the VAX-11/780 asa first example. The cache miss penalty is 6 clock
cycles, and all instructions normally take 8.5 clock cycles (ignoring memory
stalls). Assume the miss rate is 11%. and there is an average of 3.0 memory
references per instruction. What is the impact on performance when behavior of
the cache is included?

. ae SCPU time = IC * (cri, at Memory-stallclockcy‘ cies) Clock cyclexecution Instruction

time

The performance,including cache misses,is
CPU time = IC * (8.5 + 3.0 * 11% * 6) * Clock cycle timewith cache

= Instruction count * 10.5 * Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU timeincreases with CPI from 8.5 to 10.5. Hence,the impact of
the memory hierarchyis to stretch the CPU time by 24%.

Let’s now calculate the impact on performance when behavior of the cache is
included on a machine with a lower CPI. Assume that the cache miss penalty is
10 clock cycles and, on average, instructions take 1.5 clock cycles; the miss rate
is 11%, and there is an average of 1.4 memory references per instruction.

Memory-stallclockcycleCPU time =IC * (cri, + : ‘) * Clock cycle timexecution Instruction
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Answer

Making the same assumptionsasin the previous example on cachehits, the per-
formance, including cache misses,is

CPUtime
with cache =IC * (1.5 + 1.4*11%*10) * Clock cycle time

= Instruction count*3.0*Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU time increases with CPI from 1.5 to 3.0. Including cache
behavior doubles execution time.

Asthese examplesillustrate, cache-behavior penalties range from significant
to enormous. Furthermore, cache misses have a double-barreled impact on a
CPU with a low CPI andafast clock:

1. The lower the CPI, the more pronounced the impactis.

2. Independent of the CPU, main memories have similar memory-accesstimes,
since they are built from the same memory chips. When calculating CPI, the
cache miss penalty is measured in CPU clock cycles needed for a miss.
Therefore, a higher CPU clock rate leads to a larger miss penalty, even if
main memories are the same speed.

The importanceof the cache for CPUs with low CPI andhighclockrates is thus
greater; and, consequently, greater is the danger of neglecting cache behaviorin
assessing performance of such machines.

While minimizing average memory-access time is a reasonable goal and we
will use it in much of this chapter, keep in mind that the final goalis to reduce
CPU execution time.

Whatis the impact of two different cache organizations on the performanceofa
CPU? Assumethat the CPIis normally 1.5 with a clock cycle time of 20 ns, that
there are 1.3 memoryreferences perinstruction, andthat the size of both caches
is 64 KB. One cache is direct mapped andthe other is two-way set associative.
Since the speed of the CPUis tied directly to the speed of the caches, assumethe
CPUclock cycle time must be stretched 8.5% to accommodate the selection
multiplexer of the set-associative cache (step 4 in Figure 8.11 on page 415.) To
the first approximation, the cache miss penalty is 200 ns for either cache
organization. (In practice it must be rounded up or downto aninteger number of
clock cycles.) First, calculate the average memory-accesstime, and then CPU
performance.

Figure 8.12 on page 421 showsthat the miss rate of a direct-mapped 64-KB
cache is 3.9% and the miss rate for a two-way~set-associative cache of the same
size is 3.0%. Average memory-accesstimeis

Average memory-accesstime = Hit time + Miss rate * Miss penalty
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Thus, the time for each organization is

Average memory-access time] way = 20 + .039*200 = 27.8 ns

Average memory-access time2.way = 20*1.085 + .030*200 = 27.7 ns

The average memory-access time is better for the two-way—set-associative
cache.

CPU performanceis

. Misses . .
CPU time =IC * (CPlexecution + Instruction * Miss penalty) * Clock cycle time

= IC * (CPlxecution * Clock cycle time +
Memory accesses . . .
MEMOTYACCESSES Miss rate * Miss penalty * Clock cycle time)Instruction

Substituting 200ns for (Miss penalty * Clock cycle time), the performance of
each cache organization 1s

CPUtime) way = IC#(1.5*20 + 1.3*0.039*200) = 40.1#IC

CPU timezway = IC*(1.5*20%*1.085 + 1.3*0.030*200) = 40.4% IC

and relative performanceis

CPU timez-way _ 40.4 * Instruction count
CPU timey.yay 40.1 * Instruction count

 

In contrast to the results of average access-time comparison, the direct-mapped
cacheleads to slightly better performance. Since CPU time is our bottom-line
evaluation (and direct mapped is simpler to build), the preferred cache is direct
mappedin this example. (See the fallacy on page 481 for more on this kind of
trade-off.)

The Three Sources of Cache Misses: Compulsory,

Capacity, and Conflicts

An intuitive model of cache behavior attributes all misses to one of three
sources:

=» Compulsory—thefirst access to a block is not in the cache, so the block
must be brought into the cache. Theseare also called cold start missesorfirst
reference misses.

s Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses will occur due to blocks being discarded and
later retrieved.
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=» Conflict—If the block-placementstrategy is set associative ordirect mapped,
conflict misses (in addition to compulsory and Capacity misses) will occur
becausea block can be discardedand laterretrieved if too many blocks map
to its set. These are also called collision misses.

Figure 8.12 shows the relative frequency of cache misses, broken down by
the “three Cs.” To show the benefit of associativity, conflict misses are divided
into misses caused by each decrease in associativity. The categories are labeled
n-way, meaning the misses caused by going to the lowerlevel of associativity
from the next one above. Here are the four categories:

8-way: from fully associative (no conflicts) to 8-way associative

4-way: from 8-wayassociative to 4-wayassociative

2-way: from 4-wayassociative to 2-way associative

|-way: from 2-wayassociative to 1-way associative (direct mapped)

Figure 8.13 (page 422) presents the same data graphically. The top graph shows
absolute miss rates; the bottom graphplots percentage of al] the misses by cache
size.

Having identified the three Cs, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoidsall
conflict misses. Associativity is expensive in hardware, however, and may slow
access time (see the example above or the second fallacy in Section 8.10),
leading to lower overall performance. Thereislittle to be done about capacity
except to buy larger memory chips. If the upper-level memory is much smaller
than what is needed for a program, and a significant percentage of the timeis
spent moving data between twolevels in the hierarchy, the memoryhierarchy is
said to thrash. Because so many replacements are required, thrashing meansthe
machine runs close to the speed of the lower-level memory, or maybe even
slower due to the miss overhead. Making blocks larger reduces the number of
compulsory misses, but it can increase conflict misses.

The three C’s give insight into the cause of misses, butthis simple model has
its limits. For example, increasing caghe size reduces conflict misses as well as
capacity misses, since a larger cache spreads out references. Thus, a miss might
move froin one category to the other as parameters change. Three C’s ignore
replacementpolicy, sinceit is difficult to model and since, in general,it is of less
significance. In specific circumstances the replacementpolicy can actually lead
to anomalousbehavior, such as poorer missrates for larger associativity, which
is directly contradictory to the three C’s model.
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Cachesize Degree Total Miss-rate components(relative percent)

associative miss (Sum = 100% of total miss rate)
rate Compulsory Capacity Conflict

1KB 1-way 0.191 0.009 5% 0.141 13% 0.042 22%

1KB 2-way 0.161 0.009 6% 0.141 87% 0.012 71%

1KB 4-way 0.152 0.009 6% 0.141 92% 0.003 2%

1KB 8-way 0.149 0.009 6% 0.141 94% 0.000 0%

2 KB l-way 0.148 0.009 6% 0.103 70% 0.036 24%

2 KB 2-way 0.122 0.009 1% 0.103 84% 0.010 8%

2 KB 4-way 0.115 0.009 8% 0.103 90% 0.003 2%

2 KB 8-way 0.113 0.009 8% 0.103 91% 0.001 1%

4KB l-way 0.109 0.009 8% 0.073 67% 0.027 25%

4KB 2-way 0.095 0.009 9% 0.073 171% 0.013 14%

4KB 4-way 0.087 0.009 10% 0.073 84% 0.005 6%

4KB 8-way 0.084 0.009 11% 0.073 87% 0.002 3%

8 KB l-way 0.087 0.009 10% 0.052 60% 0.026 30%

8 KB 2-way 0.069 0.009 13% 0.052 715% 0.008 12%

8 KB 4-way 0.065 0.009 14% 0.052 80% 0.004 6%

8 KB 8-way 0.063 0.009 14% 0.052 83% 0.002 3%

16 KB l-way 0.066 0.009 14% 0.038 57% 0.019 29%

16 KB 2-way 0.054 0.009 17% 0.038 10% 0.007 13%

16 KB 4-way 0.049 0.009 18% 0.038 76% 0.003 6%

16 KB 8-way 0.048 0.009 19% 0.038 18% 0.001 3%

32 KB l-way 0.050 0.009 18% 0.028 55% 0.013 27%

32 KB 2-way 0.041 0.009 22% 0.028 68% 0.004 11%

32 KB 4-way 0.038 0.009 23% 0.028 713% 0.001 4%

32 KB 8-way 0.038 0.009 24% 0.028 74% 0.001 2%

64 KB l-way 0.039 0.009 23% 0.019 50% 0.011 27%

64 KB 2-way 0.030 0.009 30% 0.019 65% 0.002 5%

64 KB 4-way 0.028 0.009 32% 0.019 68% 0.000 0%

64 KB 8-way 0.028 0.009 32% 0.019 68% 0.000 0%

128 KB l-way 0.026 0.009 34% 0.004 16% 0.013 50%

128 KB 2-way 0.020 0.009 46% 0.004 21% 0.006 33%

128 KB 4-way 0.016 0.009 55% 0.004 25% 0.003 20%

128 KB 8-way 0.015 0.009 59% 0.004 27% 0.002 14% 

FIGURE 8.12 Total miss rate for each size cache and percentage of each according to the “three Cs.” Compul-
sory misses are independentof cachesize, while capacity misses decrease as capacity increases.Hill [1987] measured
this trace using 32-byte blocks and LRU replacement.It was generated on a VAX-11 running Ultrix by mixing three

J systems’ traces, using a multiprogramming workload and three user traces. Thetotal length was just over a million
/ i addresses; the largest piece of data referenced during the trace was 221 KB. Figure 8.13 (page 422) shows the same

pot information graphically. Note that the 2:1 cache rule of thumb(inside front cover) is supported bythestatistics in this
Si table: a direct-mapped cacheof size N has about the same miss rate as a 2-way-—set-associative cacheofsize N/2.
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FIGURE 8.13 Total miss rate (top) and distribution of miss rate (bottom) for each
size cache accordingto three Csfor the data in Figure 8.12 (page 421). The top
diagram is the actual miss rates, while the bottom diagram is scaled to the direct-mapped
missratio.  
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Choices for Block Sizes in Caches

Figures 8.3 and 8.4 (page 406) showedthe abstract tradeoff of block size versus
miss rate and memory-access time. Figures 8.!4 and 8.15 (page 424) show the
specific numbers for a set of programs and cache sizes. Larger block sizes
reduce compulsory misses, as the principle of spatial locality suggests. At the
same time. larger blocks also reduce the number of blocks in the cache,
increasing conflict misses.
 

40%

35%

30%

25%
Miss
rate 20%

15%

10%

5%

0%
 
 

Block size (bytes)

 
 
FIGURE 8.14 Missrate versus block size. Note that for a 1-KB cache, 256-byte

blocks have a higher missrate than either 16- or 64-byte blocks. (The smallest blockis
4 bytes.) In this particular example, the cache would have to be 256 KB in orderfor
increasing block size to always result in decreased misses. This data wascollected for a
direct-mapped cache using oneof the VAX traces containing user and operating system
code, which is distributed with this book (SAVEO).

Instruction-Only or Data-Only Caches Versus
Unified Caches

Unlike other levels of the memory hierarchy, caches are sometimesdivided into
instruction-only and data-only caches. Caches that can contain either instructions
or data are unified caches, or mixed caches. The CPU knows whetherit is issuing
an instruction address or a data address, so there can be separate ports for both,

thereby doubling the bandwidth between the cache and the CPU. (Section 6.4in
Chapter 6 shows the advantages of dual memory ports for pipelined execution.)
Separate caches also offers the opportunity of optimizing each cache separately:
different capacities, block sizes, and associativities may lead to better
performance. Splitting thus affects the cost and performance far beyond whatis
indicated by the change in miss rates. We limit our discussion to that point now
simply to show how missrates for instructions differ from miss rates for data.
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FIGURE 8.15 Average accesstime versusblock size using the missrates in Figure
8.14. This assumes an 8—clock-cycle latency and that the memory and buscantransfer 4
bytes per clock cycle. On a missall the blocks are loaded into the cache before the requested
word is sent to the CPU. The lowest average memory-accesstimeis eitherfor 16-byte or 64-
byte blocks, and 256-byte blocks are better than 4-byte blocksonly for the largest cache.

Figure 8.16 shows that instruction-only caches have lower miss rates than
data-only caches. Separating instructions and data removes misses due to
conflicts between instruction blocks and data blocks, but the split also fixes the
cache space devoted to each type. A fair comparison of separate instruction and
data caches to unified caches requires the total cache size to be the same.
Therefore, a separate 1-KB instruction cache and 1-KB data cache should be
compared to a unified 2-KB cache. Calculating the average miss rate with
separate instruction-only and data-only caches necessitates knowing the
percentage of memory references to each cache.

 

 

 

 

 

 

 

 

 

 

 
Size Instruction only Data only Unified

0.25 KB 22.2% 26.8% 28.6%

0.50 KB 17.9% 20.9% 23.9%
1 KB 14.3% 16.0% 19.0%
2KB 11.6% 11.8% 14.9% |
4KB_ 8.6% 8.7% 11.2% |
8 KB 5.8% 6.8% 8.3%

16 KB 3.6% 5.3% 5.9%
__32KB 2.2% 4.0% 43%

64 KB 1.4% 2.8% 2.9%
128KB 1.0% 2.1% 19%
256 KB 0.9% 1.9% 1.6% 

FIGURE8.16 Miss rates for instruction-only, data-only, and unified cachesof different
sizes. The data are for a 2-way—associative cache using LRU replacementwith 16-byte
blocks for an averageof user/system traces on the VAX-11 and system traces on the IBM
370 [Hill 1987]. The percentageofinstruction references in these traces is about 53%.
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Which has the lower miss rate: a 16-KB instruction cache with a 16-KB data

cache or a 32-KB unified cache? Assume 53% ofthe references are instructions.
 

  
 
  
 
 

  
 

 Example

Answer  Asstated in the legend of Figure 8.16, 53% of the memory accesses are
instruction references. Thus, the overall miss rate for the split caches is

53% * 3.6% + 47% * 5.3% =4.4%

A 32-KBunified cache has a slightly lower miss rate of 4.3%.

8.4 Main Memory

... the one single development that put computers on theirfeet was the invention
of a reliable form ofmemory, namely, the core memory. ... Its cost was
reasonable, it was reliable and, because it was reliable, it could in due course

be madelarge.

Maurice Wilkes, Memoirs of a Computer Pioneer (1985, p. 209)

Providedthere is only one level of cache, main memoryis the next level down in
the hierarchy. Main memorysatisfies the demands of caches and vector units,
and serves as the I/O interface as it is the destination of input as well as the
source for output. Unlike caches, performance measures of main memory
emphasize both latency and bandwidth. Generally, main memory latency (which
affects the cache miss penalty) is the primary concern of the cache, while main-
memory bandwidth is the primary concern of I/O and vector units. As cache
blocks grow from 4-8 bytes to 64-256 bytes, main memory bandwidth becomes
important to caches as well. The relationship of main memory and I/O is
discussed in Chapter9.

Memorylatencyis traditionally quoted using two measures—access time and
cycle time. Access time is the time between whena read is requested and when
the desired word arrives, while cycle time is the minimum time between requests
to memory. In the 1970s, as DRAMsgrew in capacity the cost of a package with
all the necessary address lines became an issue. The solution was to multiplex
the addresslines, thereby cutting the numberof address pinsin half. The top half
of the address comesfirst, during the row-access strobe, or RAS. This is fol-
lowed by the second half of the address during the column-access strobe, or
CAS. These names come from the internal chip organization, for the memory is
organized as a rectangular matrix addressed by rows and columns.

Anadditional requirement of DRAMsderives from the property signified by
its first letter, D, for dynamic. Every DRAM must have every row accessed
within a certain time window,such as 2 milliseconds, or the information in the

DRAMcan be lost. This requirement means that the memory system is
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8.4 Main Memory

occasionally unavailable because it is sending a signal telling every chip to
refresh. The cost ofa refresh is typically a full memory access (RAS and CAS)
for each row of the DRAM.Since the memory matrix ina DRAMislikely to be
Square, the numberofsteps in a refresh is usually the square root of the DRAM
capacity.

In contrast to DRAMs are SRAMs—thefirst letter standing for “static.” The
dynamic natureofthe circuits for DRAM require data to be written back after
being read, hence the difference between the access time andthe cycle time and
also the need to refresh. SRAMs use more circuits per bit to prevent the
information from being disturbed when read. Thus, unlike DRAMs, there is no
difference between access time and cycle time and there is no need to refresh
SRAM.In DRAMdesigns the emphasis is on capacity, while SRAM designs are
concerned with both capacity and speed. (Because ofthis concern, SRAM
address lines are not multiplexed.) For memories designed in comparable
technologies, the capacity of DRAMsis roughly 16 times that of SRAMs, and
the cycle time of SRAMsis 8 to 16 times faster than DRAMs.

The main memory ofvirtually every computer sold in the last decade is
composed of semiconductor DRAMs (and virtually all caches use SRAM).
Amdahl suggested a rule of thumbthat memory capacity should growlinearly
with CPUspeedto keep a balanced system (see Section 1.4), and CPU designers
rely on DRAMsto supply that demand: they expect a four-fold improvementin
capacity every three years. Unfortunately, the performance of DRAMsis
growing at a much slowerrate. Figure 8.17 shows a performance improvement
in row-accesstime of about 22% per generation, or 7% per year. As noted in
Chapter 1, CPU performance improved 18% to 35% per year prior to 1985, and
since that time has jumped to 50% to 100% per year. Figure 8.18 plots these
optimistic and pessimistic CPU performance projections against the steady 7%
performance improvement in DRAM speeds.

 

 

 

 
 

| Row access (RAS) Column

Yearof Chipsize Slowest Fastest access Cycle
introduction DRAM DRAM (CAS) time

1980 64 Kbit 180 ns 150 ns 75 ns 250ns_ |

1983 256 Kbit 150 ns 120 ns 50 ns 220ns |
. . . 5 ~T

1986 1 Mbit 120 ns 100 ns 25 ns 190 ns |
1989 4 Mbit 100 ns 80 ns 20 ns 165 ns

. __. . ee
1992? 16 Mbit =85 ns =65 ns =15ns =140 ns 

FIGURE8.17 Timesof fast and slow DRAMswith each generation. The improvement
by a factor of two in column access accompaniedthe switch from NMOS DRAMs to CMOS
DRAMs.With three years per generation, the performance improvement of row accesstime
is about 7%per year. Data in the last row represent predicted performancefor 16-Mbit
DRAMs, whichare notyetavailable.
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FIGURE 8.18 Starting with 1980 performance as a baseline, the performanceof
DRAMsand CPUsareplotted over time. The ORAM baseline is 64 KB in 1980, with
three years to the next generation. The slow CPUline assumes a 19% improvementper
yearuntil 1985 and a 50% improvementthereafter. The fast CPU line assumes a 26%
performance improvement between 1980 and 1985 and 100%per year thereafter. Note
that the vertical axis must be on a logarithmic scale to record the size of the CPU-DRAM
performance gap.

The CPU-DRAMperformance gap is clearly a problem on the horizon—
Amdahl’s Law warns us what will happen if we ignore one portion of the
computation while trying to speed upthe rest. Section 8.8 will describe what can
be done with cache organization to reduce this performance gap, but simply
making caches larger cannot eliminate it. Innovative organizations of main
memory are needed as well. In the rest of this section we will examine tech-
niques for organizing memory to improve performance, including techniques
especially for DRAMs.

Organizations for Improving Main Memory
Performance

While it is generally easier to improve memory bandwidth with new organ-
izations thanit is to reduce latency, a bandwidth improvement does allow cache-
block size to increase without a corresponding increase in the miss penalty.

Let’s illustrate these organizations with the case of satisfying a cache miss.
Assume the performance of the basic memory organization is

1 clock cycle to send the address

6 clock cycles for the access time per word

| clock cycle to send a word of data
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8.4 Main Memory  

Givena cache block of four words, the miss penalty is 32 clock cycles, with a
memory bandwidth of one-half byte per clock cycle.

Figure 8.19 shows some of the options to faster memory systems. The
simplest approach to increasing memory bandwidth, then, is to make the
memory wider.

 

 

 
 

(a) One-word-wide (b) Wide memory organization (c) Interleaved
memory organization memory organization

CPU

Cache

 

 
 

Memory||Memory
bank 0 bank 1 Memory||Memory

bank 2 bank 3 Memory

 
 
    

FIGURE 8.19 Three examples of bus width, memory width, and memory interleaving
to achieve higher memory bandwidth. (a) is the simplest design, with everything the
width of one word; (b) shows a wider memory, bus, and cache; while (c) shows a narrow
bus and cachewith an interleaved memory.

”
Wider Main Memory

Caches are often organized with a width of one word because most CPU
accesses are that size. Main memory, in turn, is one word wide to match the
width of the cache. Doubling or quadrupling the width of the memory will
therefore double or quadruple the memory bandwidth. With a main memory
width of two wordsthe miss penalty in our example would drop from 4*8 or 32
clock cycles to 2*8 or 16 clock cycles. At four words wide the miss penalty is
just 1*8 clock cycles. The bandwidth is then one byte per clock cycle at two
words wide and twobytes per clock cycle when the memoryis four words wide.

Thereis cost in the wider bus. The CPUwill still access the cache a word at a
time, so there now needsto be a multiplexer between the cache and the CPU—
and that multiplexer may be on thecritical timing path. (If the cache is faster
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than the bus, however, the multiplexer can be placed between the cache and the
bus.) Another drawbackis that since main memoryis traditionally expansible by
the customer, the minimum increment ts doubled or quadrupled. Finally,
memories with error correction have difficulties with writes to a portion of the
protected block (e.g., a write of a byte); the rest of the data must be read so that
the new error correction code can be calculated and stored when the datais

written. If the error correction is done overthe full width, the wider memory will
increase the frequency of such “read-modify-write” sequences because more
writes become partial block writes. Many designs of wider memory have
separate error correction every 32 bits since most writes are that size. One
example of wider main memory was a computer whose cache, bus, and memory
were all 512 bits wide.

Interleaved Memory

Memory chips can be organized in banks to read or write multiple words at a
time rather than a single word. The banks are one word wideso that the width of
the bus and the cache need not change, but sending addresses to several banks
permits them all to read simultaneously. For example, sending an address to four
banks (with access times shown on page 427) yields a miss penalty of 1+6+4*1
or 11 clock cycles, giving a bandwidth of about 1.5 bytes per clock cycle. Banks
are also valuable on writes. While back-to-back writes would normally have to
wait for earlier writes to finish, banks allow one clock cycle for each write,
provided the writes are not destined to the same bank.

The mapping of addresses to banks affects the behavior of the memory
system. The example above assumes the addresses of the four banks are
interleaved at the word level—bank 0 has all words whose address modulo 4 is

0, bank | has all words whose address modulo 4 is |, and so on. This mapping is
referred to as the interleaving factor; interleaved memory normally means banks
of memory that are word interleaved. This optimizes sequential memory
accesses. A cache-read miss is an ideal match to word-interleaved memory,as
the words in a block are read sequentially. Write-back caches make writes as
well as reads sequential, getting even more efficiency from interleaved memory.

What can interleaving and a wide memory buy? Consider the following
description of a machine and its cache performance:

Block size = 1 word

Memory bus width = | word

Missrate = 15%

Memory accessesper instruction = 1.2
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Cache miss penalty = 8 cycles (as above)

Average cyclesper instruction (ignoring cache misses) = 2

If we changethe block size to two words, the missrate falls to 10%, and a four-
word block has a miss rate of 5%. Whatis the improvement in performance of
interleaving two ways and four ways versus doubling the width of memory and
the bus, assuming the access times on page 427.

       
Answer The CPIfor the base machineusing one-word blocksis

2 + (1.2*15%*8) = 3.44

Since the clock cycle time and instruction count won’t change in this example,
we can calculate performance improvement by just comparing CPI.

Increasing the block size to two words gives the following options:

           
32-bit bus and memory, no interleaving = 2 + (1.2*10%*2#8) = 3.92

32-bit bus and memory, interleaving = 2+ (1.2*10%*(146+2)) = 3.08
64-bit bus and memory, no interleaving = 2 + (1.2*10%*1*8) = 2.96

Thus, doubling the block size slows down the straightforward implementation
(3.92 versus 3.44), while interleaving or wider memory is 12% or 16% faster,
respectively. If we increase the block size to four, the following is obtained:

  
32-bit bus and memory, no interleaving =2 + (1.2*5%#4%8) = 3.92

32-bit bus and memory, interleaving = 2+ (1.2*5%*(1+64+4)) = 2.66

64-bit bus and memory, no interleaving =2 + (1.2*5%*2*8) = 2.96

    
Again, the larger block hurts performance for the simple case, although the
interleaved 32-bit memory is now fastest—29% versus 16% for the wider
memory and bus. 7

    
accesses. A further reasonis to allow multiple independent accesses. Multiple
memory controllers allow banks (or sets of word-interleaved banks) to operate
independently. For example, an input device may use one controller and its
memory, the cache may use another, and a vector unit may use a third. To
reduce the chances of conflicts many banks are needed; the NEC SX/3, for :
instance, has up to 128 banks.

As capacity per memory chip increases, there are fewer chips in the same-
sized memory system, making multiple banks much more expensive. For exam- | =:
ple, a 16-MB main memory takes 512 memory chips of 256 K (262,144) x |! '
bits, easily organized into 16 banks of 32 memory chips. Butit takes only 32 4-
M (4,194,304) x 1-bit memory chips for 16 MB, making one bankthe limit. This ‘
is the main disadvantage of interleaved memory banks. Even though the #

           
The original motivation for memory banks was interleaving sequential |

|                 
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Amdahl/Case rule of thumb for balanced computer Systems recommends
increasing memory capacity with increasing CPU performance, the 60% growth
in DRAMcapacity exceededthe rate of increase in CPU performancein the past
(page 17 of Chapter 1). If the rate of increase of CPU speeds seen in the late
1980s can be maintained (Figure 8.18, page 427) and these systems follow the
Amdahl/Case rule of thumb, then the numberof chips may notbe reduced.

A second disadvantage of interleaving is again the difficulty of main memory
expansion. Since memory-control hardware will likely need equal-sized banks,
doubling the main memory will probably be the minimum increment.

DRAM-Specific interleaving for Improving Main
Memory Performance

DRAMaccess times are divided into Tow access and column access. DRAMs
buffer a row ofbits inside the DRAMforthe columnaccess. This row is usually
the square root of the DRAM size—1024 bits for 1 Mbit, 2048 for 4 Mbits, and
so on. All DRAMs come with optional timing signals that allow repeated
accesses to the buffer without a row-access time. There are three versions for
this optimization:

= Nibble mode—The DRAM can supply three extra bits from sequential
locations for every row access.

= Page mode—Thebuffer acts like a SRAM;by changing column address,
random bits can be accessed in the buffer until the next row accessor refresh
time.

« Static column—Verysimilar to page mode, exceptthat it’s not necessary to
hit the column-access strobe line every time the column address changes; this
option has been nicknamed SCRAM,forstatic column DRAM.

Starting with the 1-Mbit DRAMs, mostdies can perform any of the three
options, with the optimization selected at the time the die is packaged by
choosing which padsto wire up. These operations changethe definition of cycle
time for DRAMs. Figure 8.20 (page 432) showsthetraditional cycle time plus
the fastest speed between accesses in the optimized mode.

The advantage of these optimizationsis that they use the circuitry already on
the DRAMs, addinglittle cost to the system while achieving almost a fourfold
improvement in bandwidth. For example, nibble mode was designed to take
advantage of the same program behavioras interleaved memory. The chip reads
four bits at a time internally, supplying four bits externally in the time of four
optimized cycles. Unless the bus transfer timeis faster than the optimized cycle
time, the cost of four-way interleaved memory is only more complicated timing
control. Page mode andstatic column could also be used to get even higher
interleaving with slightly more complex control. DRAMsalso tend to have weak
tristate buffers, implying traditional interleaving with more memory chips must
include buffer chips for each memory bank.
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Chip Row access Column Cycle Optimized
size Slowest Fastest access time time nibble,

DRAM DRAM page, static
column

64 Kbits 180 ns 150 ns 75 ns 250 ns 150 ns

256 Kbits 150 ns 120 ns 50 ns 220 ns 100 ns

I Mbits 120 ns 100 ns 25 ns 190 ns 50 ns

4 Mbits 100 ns 80 ns 20 ns 165 ns 40 ns

16 Mbits =85 ns ~65 ns =[5 ns =140 ns =30 ns

FIGURE 8.20 DRAM cycle time for the optimized accesses. This is Figure 8.17 (page
426) with a column added to show the optimized cycle time for the three modes.Starting
with the 1-Mbit DRAM, optimized cycle time is about four times faster than unoptimized

 
cycle time.It is so muchfaster that page mode was renamed fast page mode. The
optimized cycle time is the same no matter which of the 3 optimized modesis selected.

     
Thus, the authors expect that most main memory systems in the future will

use such techniques to reduce the CPU-DRAM performance gap. Unlike
traditional interleaved memories, there are no disadvantages using these DRAM
modes as DRAMsscale upward in capacity, nor is there the problem of the
minimum expansion increment in main memory.

One possibility that recently arrived is DRAMsthat do not multiplex the
address lines. At the cost of a larger package, a full random accessfalls between
a row-access time and a column-access time in Figure 8.20. If unencoded
DRAMscanstay close to the price per bit of the high volume encoded DRAMs,
the computer architect will have another option in his bag of tricks for memory
design.

    
8.5 Virtual Memory ;

... a System has been devised to make the core drum combination appearto the
programmeras a single level store, the requisite transfers taking place
automatically,

                                       
   

 
 
 
 
 

 
 
 

Kilburn etal. [1962]

At any instant in time computers are running multiple processes, each with its
own address space. (Processes are described in the next section.) It would be too

expensive to dedicate a full-address-space worth of memory for each process. ~
especially since many processes use only a small part of their address space.
Hence, there must be a means of sharing a smaller amount of physical memory
between many processes. One way to do this, virtual memory, divides physical
memory into blocks and allocates them to different processes. Inherent in such
an approach must be a protection schemethat restricts a process to the blocks
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belonging just to that process. Most forms of virtual memory also reduce the
time to start a program,since notall code and data need be in physical memory
before a program can begin.

While virtual memory is essential for current computers, sharing is not the
reason virtual memory wasinvented. In former days if a program becametoo
large for physical memory, it was up to the programmer to make it fit.
Programmers divided programsinto pieces and then identified the pieces that
were mutually exclusive. These overlays were loaded or unloaded under user

program control during execution, with the programmer ensuring that the
program nevertried to access more physical main memory in the machine. As
one can well imagine, this responsibility eroded programmer productivity.
Virtual memory, invented to relieve programmers ofthis burden, automatically
managed the twolevels of the memory hierarchy represented by main memory
and secondary storage.

In addition to sharing protected memory space and automatically managing
the memoryhierarchy, virtual memory also simplifies loading the program for
execution. Called relocation, this procedure allows the same program to run in
any location in physical memory. (Prior to the popularity of virtual memory,
machines would include a relocation register just for that purpose.) An
alternative to a hardware solution would be software that changed all addresses
in a program each timeit was run.

Several general memory-hierarchy terms from Section 8.3 apply to virtual
memory, while some other terms are different. Page or segment is used for
block, and page fault, or address fault, is used for miss. With virtual memory,
the CPU produces virtual addresses that are translated by a combination of
hardware and software to physical addresses, which can be used to access main
memory. This process is called memory mapping or address translation. Today,
the two memoryhierarchy levels controlled by virtual memory are DRAMsand
magnetic disks. Figure 8.21 shows a typical range of memory hierarchy
parameters for virtual memory.
 

 

 

 

 

[ Block (page) size 512 — 8192 bytes
Hit time 1-10 clock cycles -
Miss penalty 7 100,000 — 600,000 clock cycles
(Access time) (100,000—500,000 clock cycles)

(Transfer time) (10,000-100,000clock cycles)

Miss rate 0.00001 %—0.00 1 %

Main memory size 4 MB— 2048 MB
  
 

FIGURE8.21 Typical ranges of parameters for virtual memory. Thesefigures,
contrasted with the values for caches in Figure 8.5 (page 408), represent increasesof 10 to
100,000 times.
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There are further differences between caches and virtual memory beyond

those quantitative ones seen by comparing Figure 8.21 (page 433) to Figure 8.5
(page 408):

s Replacement on cache misses is primarily controlled by hardware, while
virtual memory replacementis primarily controlled by the operating system;
the longer miss penalty means the operating system can afford to get involved
and spend more time deciding whatto replace.

a Thesize of the processor address determines the size of virtual memory, but
the cache size is normally independentof the processor address.

   
« In addition to acting as the lower-level memory for main memory in the

hierarchy, secondary storage is also used for the file system that is not
normally part of the address space; most of secondary storage is in fact taken
up by the file system.

Virtual memory encompassesseveral related techniques. Virtual memory
systems can be categorized into two classes: those with fixed-size blocks, called
pages, and those with variable size blocks, called segments. Pages are typically
fixed at 512 to 8192 bytes, while segment size varies. The largest segment
supported on any machine ranges from 2!6 bytes up to 23? bytes; the smallest
segmentis one byte.

The decision to use paged virtual memory versus segmented virtual memory
affects the CPU. Paged addressing has a single, fixed-size address divided into
page numberand offset within a page, analogous to cache addressing. A single
address does not work for segmented addresses; the variable size of segments
requires one word for a segment number and one word for an offset within a
segment, for a total of two words. An unsegmented address space is simpler for
the compiler.

The pros and cons of these two approaches have been well documented in
operating systems textbooks; these are summarized in Figure 8.22. Because of
the replacement problem (the third line of the figure), few machines today use
pure segmentation. Some machines?use a hybrid approach, called paged
segments, in which a segment is an integral number of pages. This simplifies
replacement because memory need not be contiguous, and the full segments
need not be in main memory.

Weare now ready to answer the four memory-hierarchy questionsfor virtual
memory.

     
Q1: Where Can a Block Be Placed in Main Memory?

The miss penalty for virtual memory involves access to a rotating magnetic
storage device and is therefore quite high. Given the choice of lower miss rates
or a simpler placement algorithm, operating systems designers always pick
lower miss rates because of the horrendous cost of a miss. Thus, operating
systems allow blocks to be placed anywhere in main memory. According to the
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terminology in Figure 8.6 (page 409), this strategy would be labeled fully
associative.

Q2: How Is a Block FoundIf It Is in Main Memory?

Both paging and segmentation rely on a data structure that is indexed by the
page or segment number. This data structure contains the physical address of the
block. For paging, the offset is simply concatenated to this physical page address
(see Figure 8.23, page 436). For segmentation, the offset is added to the
segment’s physical address to obtain thefinal virtual address.

 

 

 

 

Page Segment

Words per One Two (segmentandoffset)
address

Programmer Invisible to application Maybevisible to application
visible? programmer programmer

Replacing a Trivial (all blocks are the|Hard (must find contiguous,
block same size) variable-size, unused portion of

main memory)

Memory use Internal fragmentation External fragmentation (unused
inefficiency (unused portion of page)_—_pieces of main memory)

Efficient disk Yes (adjust page size to Not always (small segments may
traffic balance access time and transfer just a few bytes)

transfer time)

  
 

FIGURE 8.22 Paging versus segmentation. Both can waste memory, depending on the
block size and how well the segmentsfit together in main memory. Programming
languageswith unrestricted pointers require both the segment and the address to be
passed. A hybrid approach, called paged segments, shoots for the best of both worlds:
segments are composedof pages,so replacing a block is easy, yet a segment may be
treated as a logicalunit.

This data structure containing the physical page addresses usually takes the
form of a page table. Indexed bythe virtual page number,the size of the table is
the numberof pagesin the virtual-address space. Given a 28-bit virtual address,
4 KB pages, and 4 bytes per page-table entry, the size of the page table would be
256 KB. To reduce the size of this data structure, some machines apply a
hashing function to the virtual address so that the data structure need only be the
size of the number of physical pages in main memory; this number would be
much smaller than the numberof virtual pages. Such a structure is called an
inverted page table. Using the example above, a 64-MB physical memory would
only need 64 KB (4*64 MB/4 KB)for an inverted pagetable.

To reduce addresstranslation time, computers use a cache dedicated to these
address translations, called a translation-lookaside buffer, or simply translation
buffer. They are described in more detail shortly.
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Physical address

           
i FIGURE 8.23 The mappingof a virtual address to a physical address via a page

im |) table.

l Q3: Which Block Should Be Replaced on a Virtual Memory Miss?
As mentioned above, the overriding operating system guideline is minimizing
page faults. Consistent with this, almost all operating systems try to replace the
least-recently used (LRU) block, because that is the one least likely to be
needed. To help the operating system estimate LRU, many machinesprovide a

| use bit or reference bit, which is set whenever a page is accessed. The operating
system periodically clears the use bits, and later records them so it can determine
which pages were touched during a particular time period. By keeping track in
this way, the operating system can select a page that is amongtheleast-recently
referenced.

Q4: What Happens on a Write?

                                                 
i The level below main memory contains rotating magnetic disks that take

| hundreds of thousands of clock cycles to access. Because of the great
Hy! discrepancy in access time, no one has yet built a virtual memory operating

HI system that can write through main memorystraight to disk on every store by “
| the CPU. (This remark should not be interpreted as an opportunity to become |

famousby beingthe first to build one!) Thus, the write strategy is always write

back. Since the cost of an unnecessary access to the next-lowerlevel is so high, | ‘
virtual memory systemsincludea dirty bit so that the only blocks written to disk
are those that have been altered since they were loaded from the disk.
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Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the pageis
a question of balancing forcesthat favor a larger page size versus those favoring
a smaller size. The following favor a larger size:

u The size of the page table is inversely proportional to the page size; memory
(or other resources used for the memory map) can therefore be saved by
making the pages bigger.

« Transferring larger pages to or from secondary storage, possibly over a
network, is more efficient than transferring smaller pages.

(The larger page size may also help in address translation of cache addresses;
see Section 8.8.)

The main motivation for a smaller page size is conserving storage. A small
page size will result in less wasted storage when a contiguous region of virtual
memory is not equal in size to a multiple of the page size. The term for this
unused memory in a pageis internal fragmentation. Assuming that each process
has three primary segments (text, heap, and stack), the average wasted storage
per process will be 1.5 times the page size. This is negligible for machines with
megabytes of memory and pagesizes in the range of 2 KB to 8 KB. Of course,
whenthe page sizes become very large (more than 32 KB), lots of storage (both
main and secondary) may be wasted, as well as I/O bandwidth. A final concern
iS process start-up time; many processes are small, so larger page sizes would
lengthen the time to invoke a process.

Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory and often
paged themselves. This means that every memory access takes at least twice as
long, with one memory access to obtain the physical address and a second access
to get the data. This cost is far too dear.

One remedy is to rememberthelast translation, so that the mapping process
is skipped if the current address refers to the same page as the last one. A more
general solution is to again rely on the principle of locality; if the references
have locality, then the address translations for the references must also have
locality. By keeping these address translations in a special cache, a memory
access rarely requires a second accessto translate the data. This special address
translation cache is referred to as a translation-lookaside buffer or TLB, also
called a “translation buffer,” or TB. A TLB entry is like a cache entry where the
tag holds portions of the virtual address and the data portion holds a physical
page-frame number, protection field, use bit, and dirty bit. To change the
physical page-frame numberor protection of an entry in the page table the
operating system must makesure the old entry is not in the TLB; otherwise, the
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system won't behave properly. Note that this dirty bit means the corresponding
page is dirty, not that the address translation in the TLB is dirty nor that a
particular block in the data cache1s dirty. Figure 8.24 showstypical parameters

 

 

     
 

 

 

for TLBs.

| Block size - 4- 8bytes (I page-table entry) |
Hit time _ - 1 clock cycle OO |

) Miss penalty - : ; —_ 10— 30 clock cycles 7 —_ _ |
Miss rate ; / - 0.1% — 2% - |
TLB size - _ 32 ~8192 bytes a |

 
 

FIGURE 8.24 Typical values of key memory-hierarchy parameters for TLBs. TLBs
are simply cachesforthe virtual-to-physical address translations found in the page tables.

Onearchitectural challenge stems from the difficulty of combining caches
with virtual memory. The virtual address must first go through the TLB before
the physical address can access the cache, meaning that the cache hit time must
be stretched to allow for address translation (or the pipeline could be stretched as
in Chapter 6). One way to reduce hit time is to access the cache with the page
offset, the portion of the virtual address that does not need to be translated.
While the cache address tags are being read, the virtual portion of the address
(the page-frame address) is sent to the TLB to be translated. The address
comparison is then between the physical address from the TLB and the cache
tag. Since the TLB is usually smaller and faster than the cache-address-tag
memory, simultaneous TLB reading need not slow down cache hit times. The
drawback with this schemeis that a direct-mapped cache can be no bigger than a
page. Anotheroption, virtually addressed caches, is discussed in Section 8.8.

  
                           

8.6 Protection and Examples of Virtual Memory
The invention of multiprogramming led to new demands for protection and
sharing between programs. These are closely tied to virtual memory in re
computers today, and so we coverthe topic here along with two examples of
virtual memory.

Multiprogramming lead to the concept of a process. Metaphorically, a
process is a program’s breathing air and living space; that is, a running program
plus any state needed to continue running the program. Timesharing means
sharing the CPU and memory with several users at the same time to give the
appearance that every user has his own machine. Thus, at any instant it must be
possible to switch from one process to another, This is called a process switch or
context switch. Figure 8.25 showsthe frequency of these switches on the VAX
8700. ;
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19,353  

 

| Instructions between process switches
! - - - - — SS — — |

i Clock cycles between process switches 170,113 |
Time between process switches 7.7 ms 
|

FIGURE8.25 Frequencyof process switches on VAX 8700 for timesharing
workload. Most switching occurs on interrupts caused by I/O events or by the interval timer
(see Figure 5.10, page 216). Since neither the latency of the I/O device nor the timeris af-
tected by the speed of the CPU clock, faster machines generally execute more clock cycles
and instructions between process switches.

A process must operate correctly whetherit executes continuously from start
to finish or is interrupted repeatedly and switched with other processes. The
responsibility for maintaining correct process behavioris shared by the computer
designer, who must ensure that the CPU portion of the process state can be
saved and restored, and the operating system designer, who must guaranteethat
processes do not interfere with each others’ computations. The safest wayto
protect the state of one process from another would be to copy the current
information to disk. But a process switch would then take seconds—far too long
for a timesharing environment. The problem is solved by operating systems
partitioning main memory so that several different processes have their state in
memory at the same time. This means that the operating system designer needs
help from the computer designer to provide protection so that one process cannot
modify another. Besides protection, the computers also provide for sharing of
code and data between processes, to allow communication between processes or
to save memory by reducing the numberofcopies ofidentical information.

Protecting Processes

The simplest protection mechanism is a pair of registers that checks every
address to be sure that it falls between the two limits traditionally called base
and bound. An addressisvalid if

Base < Address < Bound

In some systems the address is considered an unsigned number that is always
addedto the base, so the valid test is just

(Base + Address) < Bound

For user processes to be protected from each other, they can’t change the base
and bounds registers, yet the operating system must be able to change the
registers so that it can switch processes. Hence, the computer designer has three
more responsibilities in helping the operating system designer protect processes
from each other:
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1. Provide at least two modesindicating whether the running processis a user
process or an operating system process, sometimes called a kernel process, a
supervisor process or an executive process.

2. Provide a portion of the CPU state that a user process can use but not write.
This includes the base/boundregisters, a user/supervisor mode bit(s), and the
interrupt enable/disable bit. Users are prevented from writing this state because
the operating system cannot control user processesif users can change the
address-range checks, disable interrupts, or give themselves supervisor
privileges.

         
3. Provide mechanisms whereby the CPU can gofrom user mode to supervisor
mode and vice versa. The first direction is typically accomplished by a system
call, implemented as a special instruction that transfers control to a dedicated
location in supervisor code space. The PC from the point of the system call is
saved,and the CPUis placed in supervisor mode. Thereturn to user modeislike
a subroutine return that restores the previous user/supervisor mode.

     
Base and bound constitute the minimum protection system. Virtual memory

it provides an alternative to this simple model. As we have seen, the CPU address
q must go through a mapping from virtual to physical address. This provides theopportunity for the hardware to check further for errors in the program or to

protect processes from each other. The simplest way of doing this is to add
access permission flags to each page or segment. For example, since few
programs today intentionally modify their own code, an operating system can
detect accidental writes to code by offering read-only protection to pages. This
can be extended by adding a user/kernel bit to prevent a user program from
trying to access pages that belong to the kernel. As long as the CPU provides a
read/write signal and a user/kernelsignal, it is easy for the address translation
hardwareto detect stray memory accesses before they can do damage. As seen
in Section 5.6 of Chapter 5, such reckless behavior interrupts the CPU. Obvious-
ly, user programscannotbe allowed to modify the page table.

Protection can be escalated, depending on the apprehension of the computer
designer or the purchaser. Rings addedto the CPU-protection structure expand
memory-access protection from twolevels (user and kernel) to many more. Like
a military classification system of top secret, secret, classified, and unclassified.
concentric rings of security levels allow the most trusted to access anything. the ;
second most trusted to access everything except the innermostlevel, and so on ;
downto “civilian” programs which are the least trusted and, hence. have the
mostlimited range of accesses. There may also berestrictions on the entrance
point between thelevels. The 80286 protection structure, which uses rings. Is
described later in this section. It is not clear today whether rings are an ww
improvement on the simple system of user and kernel modes.

As the designer’s apprehension escalates to trepidation, these simple rings
may not suffice. The fact that a program in the inner sanctum can access
anything calls for a new classification system. Instead of a military model. the
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analogy ofthis next model is to keys and locks: A program can’t unlock access
to the data unless it has the key. For these keys. or capabilities, to be useful, the
hardware and operating system must be able to explicitly pass them from one
program to another without allowing a programitself to forge them. Such
checking requires a great deal of hardware support.

A PagedVirtual Memory Example:
VAX-11 Memory Managementand the VAX-11/780 TLB

The VAX architecture uses a combination of segmentation and paging. This
combination provides protection while minimizing page-table size. The address
space is first divided into two segments: process (bit 31 = 0) and system (bit
31=1). Every process has its own private space and shares system space with
every other process. The process address space is further subdivided into two
regionscalled PO and PI, using bit 30 to distinguish them. Area PO (bit 30 = 0)
grows from address 0 upward while PI (bit 30 = 1) grows downward to 0.
Figure 8.26 showsthe layout of PO and PI. The two segments can grow until
one exceeds its 2°9 address-space size and its virtual memory is exhausted.
Many systems today use some such combination of preaivided segments and
paging. The approach provides many advantages: Segmentation divides system
and process address space and conserves page-table space, while paging
provides virtual memory, relocation, and protection.
 

PO PA
process process

address space address space 
FIGURE 8.26 The organization of PO and P1 in the VAX.This is the process half of the
address space, selected with a 0 in bit 31 of a virtual address. Bit 30 of the address divides
PO and P1. Operating systemsput the text and heap areas into PO anda downward
growing stackinto P1.

To conserve page-table space, each of the three regions—PO process, P|
process, and system—is provided with a pair of base-bound registers that
indicate the start and limit of the page table for each region. The alternative
would be to have a single page table that covers the full address space.
independentof the program's actual size. The small size of the VAX pages—
512 bytes, yielding large page tables—makes such conservation especially
important.

Figure 8.27 (page 442) shows the mapping of a VAX address. The two most-
significant bits of an address select which segmentor base-bound-register pair
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to use in selecting a page table and checking the reference. A one in thefirst bit
selects the system page table, whose base and length are found respectively in
the system baseregister and in the system length register. A zero in the first bit
of an address(asin the figure) selects page table PO or P1, found by the PO or P1
base registers and checked by the PO or P1 limit (bound) registers. The PO and
P1 page tables are in the system-space virtual memory, while the system page
table is in physical memory.

This offers an interesting way to conserve physical memory. Since the PO and
P| page tables are also in virtual memory, this means the page tables can be
paged. Just as some code and data can remain on disk during program execution,
the page-table translation entries for that code and data can remain on disk until
they are used. This is especially important for programs whose memory size
varies dynamically during execution, as page tables can be increased as PO or P1
space grows.In the worst case, then, a process page fault can result in a second
page fault bringing in the missing piece of the process page table needed to
complete the address translation. What prevents all pages tables from being

        
 

Virtual address

fof 21—-page number 9—pageoffset

System/user PO/P1 :
bit selector PX page-table base

PX -table limi
x page table

Page index
exceeds page-

    
table size

Page-table entry

                                                             
Physical address

Main memory

   
FIGURE 8.27 The mapping of a VAX virtual address. PX refers to either PO or P1.
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migrated to secondary storage? Some system page tables are loaded into
physical memory when the operating system is booted and are prevented from
migrating to disk. Thus, eventually a series of faults must cross an address stored
in the system pagetable that is “frozen” into main memory.

While this explains translation of legal addresses, what prevents the user from
creating illegal address translations and getting into mischief? The page tables
themselves are protected from being written to by user programs. Thus, the user
can try any virtual address, but by controlling the page-table entries the
operating system controls what physical memory is accessed. Sharing of
memory between processes is accomplished by having a page-table entry in each
address space point to the same physical-memory page.

A page-table entry (PTE) on the VAX is straightforward. Other than the
physical page-frame numberthese are the only architecture-definedfields:

M—the modify bit indicating the pageis dirty

V—the valid bit indicating this PTE hasa valid address

PROT—fourprotection bits

Note that there is no reference or use bit. Hence, a page-replacement
algorithm such as LRU mustrely on the modify bit or some software technique
to measure usage. Rather than simply a kernel/user protection structure, the
VAX usesa four-level structure consisting of kernel, executive, supervisor, and
user. The four protection bits in the PTE contain 16 encodings of selected
combinations of no access, read-only access, and read-write access, with the four
security levels. For example, 1001 means read-write access for kernel and
executive-level processes, read access for supervisor-level processes, and no
access for user-level processes. To further isolate these four levels, cach hasits
ownstack and its own copy of the stack pointer (R15).

The first implementation of this architecture was the VAX-11/780, which
employs a TLB to reduce address-translation time. Figure 8.28 shows the key
parameters of this TLB.
 

 

 

 

 

 

 

 

Blocksize 1 PTE (4 bytes)

Hit time 1 clock cycle

Misspenalty (average) 22 clock cycles

Missrate 1% —2%

Cachesize 128 PTEs (512 bytes)

Block selection Random

Write strategy (Not applicable)

Block placement 2-way set associative

  
 

FIGURE 8.28 Memoryhierarchy parameters of the VAX-11/780 TLB.
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Figure 8.29 shows the VAX-11/780 TLB organization, with each step of a
translation labeled. The TLB uses two-way-~set-associative placement: thus, the
translation begins (steps | and 2) by sending a portion ofthe virtual address
(“index”) to both sets to select the two tagsthat are to be compared. Of course,
the tag must be marked valid to allow a match. At the sametime, the type of
memory access is checked for a violation (also in step 2) against protection
information in the TLB.

For reasons similar to those in the cache case, there is no needto include the
9 bits of the VAX pageoffset in the TLB; noris there reason to include the 6
address bits to index the TLB. The remaining bits are used in the comparison
(step 3). The matching address tag sends the corresponding physical address
through the multiplexer (step 4). The page offset is then combined with the
physical page frame to form a full physical address(step 5).
 

 

 
 
 

System Page-frame Page
process address offset

 
  

<I> <i7>  <5>  <9>

Tag [index]—]

 
 
  

<21>
Physical address

<1>x<toct> <17>

 

 
 

Bank 0
(64
blocks)  
 
  
 

(low-order 9 bits
<9> of address)

  
 

30-bit
physical
address

 
 
 

 
  

(high-order21 bits
of address)

 
 

  
(64
blocks}

 
 

FIGURE 8.29 Operation of the VAX-11/780 TLB during address translation. The five
steps of a TLB hit are shownascircled numbers.

There is one unusual feature of the VAX-11/780 TLB: The TLBis further

subdivided to make sure the process portion of the address occupies no more
than 50% of the TLB entries. The top 32 entries of each bank are reserved for
system space, and the bottom 32 are reserved for process space. The most
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significant bit of the address is used to select the appropriate half of the TLB
(step 1). Since the system portion of the address space is the sameforall pro-
Cesses, a process switch invalidates only the lower 32 eniries of each bank for
the VAX-11/780 TLB. This restriction had two goals. Thefirst was to reduce the
process-switch time by reducing the number of TLB entries that had to be inval-
idated; the second was to improve performance by preventing the system or user
process from throwing out the other’s translations when process switches were
frequent. Splitting the TLB will usually lead to higher overall TLB miss rate, but
mayreduce the peak TLB missratein heavily process-switching environments.

A SegmentedVirtual Memory Example: Protection
in the Intel 80286/80386

The second system is the most dangerous system a man ever designs... . The
general tendency is to over-design the second system, using all the ideas and
frills that were cautiously sidetracked on the first one.

F. P. Brooks, Jr., The Mythical Man-Month (1975)

The original 8086 used segments for addressing, yet it provided nothing for
virtual memory or for protection. Segments had base registers but no bound
registers and no access checks; and before a segment register could be loaded
the corresponding segmenthadto bein physical memory. Intel’s dedication to
virtual memory and protection is evident in subsequent models, with a few fields
extended to support larger addresses.

Like the VAX,the 80286has fourlevels of protection. The innermostlevel
(0) corresponds to VAX kernel mode, and the outermostlevel(3) correspondsto
VAXuser mode. The 80286 also followsthe VAX by having separate stacks for
each level to avoid security breaches between the levels. There are also data
structures analogous to VAX pagetables that contain the physical addresses for
segments, as well as a list of checks to be madeontranslated addresses,

TheIntel designers did not stop there. The 80286 divides the address space,
allowing both the operating system and the user accessto the full space. The
80286 user can call an operating system routine in this space and even pass pa-
rametersto it retaining full protection. This is nota trivial action, since the stack
for the operating system is different from the user’s stack. Moreover, the 80286
allowsthe operating system to maintain the protection level of the called routine
for the parameters that are passed to it. This potential loophole in protection is
prevented by not allowing the user to ask the Operating system to access
something indirectly that he would not have been able to access himself. Such
security loopholesare called Trojan horses.

The 80286 designers were guided by the principle of trusting the operating
system as little as possible, while Supporting sharing and protection. As an
example of the use of such protected sharing, suppose a payroll program writes
checksand also updatesthe year-to-date information on total salary and benefits
payments. Thus, we wantto give the program the ability to read the salary and
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year-to-date information and modify the year-to-date information but not the
salary. We shall see the mechanism to support such features shortly. In the rest
of this section we will look at the big picture of the 80286 protection and exam-
ine its motivation. Readers interested in the detailed picture can findit in a com-
prehensive book by Crawford and Gelsinger [1987].

Adding Bounds Checking and Memory Mapping
The first step in enhancing the 80286 was getting the segmented addressing to
check boundsas well as supply a base. Rather than a base address, as in the
8086, segment registers in the 80286 contain an index to a virtual memory data
structure called a descriptor table. Descriptor tables play the role of page tables
in the VAX. On the 80286 the equivalent of a page-table entry is a segment
descriptor. It contains fields found in PTEs:

A present bit—equivalent to the PTE valid bit, used to indicate this is a valid
translation

A base field—equivalentto a page-frame address, containing the physical
addressof the first byte of the segment

An access bit—like the reference bit or use bit in some architectures thatis
helpful for replacement algorithms

Anattributes field—iike the protection field in the VAX PTE,whichspeci-
fies the valid operations and protection levels for operations that use this
segment

Thereis alsoa /imit field, not found in paged systems, which establishes the
upper bound ofvalid offsets for this segment. Figure 8.30 shows examples of
80286 segment descriptors.

Adding Sharing and Protection

The Intel designers’ next step was to provide for protected sharing. Like the
VAX,half of the address space is shdred by all processes and half is unique to
each process,called global address space and local address space, respectively.
Each half is given a descriptor table with the appropriate name. A descriptor
pointing to a shared segmentis placed in the global-descriptor table, while a
descriptor for a private segmentis placed in the local-descriptortable.

A program loads an 80286 segment register with an index to the table and a
bit saying which table it desires. The operation is checked according to the
attributes in the descriptor, the physical address being formed by adding the off-
set in the CPU to the base in the descriptor, provided the offset is less than the
limit field. Unlike the encoding of operations and levels in the VAX PTE, every
segment descriptor has a separate two-bit field to give the legal access level of
this segment. A violation occurs only if the program tries to use a segment with
a lowerprotectionlevel in the segmentdescriptor.
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We can now show howto invoke the payroll program to update the year-to-
date information without allowing it to update salaries. The program could be
given a descriptorto the informationthat has the writable field clear, meaningit
can read but not write the data. A trusted programcan then be supplied thatwill
only write the year-to-date information and is given a descriptor with the
writable field set (Figure 8.30). The payroll program invokes the trusted code
using a code-segment descriptor with the conforming field set (Figure 8.30).
This means the called program takes on the privilege level of the code being
called rather than the privilege level of the caller. Hence, the payroll program
can read the salaries and call a trusted program to update the year-to-datetotals,
yet the payroll program cannot modify the salaries. If a Trojan horse exists in
this system, to be effective it must be located in the trusted code whose only job
is to update the year-to-date information. The argumentfor this style of protec-
tion is that limiting the scope of the vulnerability enhances security.
 

 
 
 

 
 

 

8 bits 24 bits 16 bits 

 
 
 

Attributes Limit 

Code segment

  
 

  Accessed

Accessed

Present Conforming Readable

Writable

  
 
 

Data segment
 

 

 

  
 

 

  Present Expand down

8 bits 8 bits 16 bits 16 bits 

    
Word Destination selector Destination offsetcount

Attributes

 
 
 

Call gate 

 
Present

  
FIGURE8.30 The 80286 segmentdescriptorsareall 48 bits long and are distin-
guishedbybits in the attributes field. Base, limit, present, readable, and writable areall
self-explanatory. DPL means descriptor privilege levelthis is checked against the code
privilege level to see if the accesswill be allowed. Conforming says the code takes on the
privilege level of the code being called rather than the privilege levelof the caller; it is used
for library routines. The expand-downfield flips the checkto let the base field be the high-
water mark andthelimit field be the low-water mark. As one might expect, this is used for
stack segments that grow down. Word count controls the number of words copied from the
current stack to the new stack on a call gate. The other twofields of the call-gate descriptor,
destination selector and destination offset, select the descriptorof the destination of thecall
and the offset into it. There are many more than these three segment descriptors in the
80286. The principal changein the 80386 wasto lengthen the base byeight bits and the
limit by four bits.

SAMSUNG EXHIBIT 1009

Page 50 of 171 

 
 

 
 

SS



SAMSUNG EXHIBIT 1009 
Page 51 of 171

                
                                                                                    

8.6 Protection and Examplesof Virtual Memory
 

Adding Safe Calls from User to OS Gates and
Inheriting Protection Level for Parameters

Allowing the user to jump into the operating system is a bold step. How, then,
can a hardware designerincrease the chancesofa safe system withouttrusting
the operating system or any other piece of code? The 80286 approach is to
restrict where the user can enter a piece of code, to safely place parameters on
the proper stack, and to makesure the user parameters don’t get the protection
level of the called code.

To restrict entry into others’ code, the 80286 provides a special segment
descriptor, or call gate, identified by a bit in the attributes field. Unlike other
descriptors, call gates are full physical addresses of an object in memory; the
offset supplied by the CPUis ignored. As stated above, their purposeis to pre-
ventthe user from randomly jumping anywhereinto a protected or more- privi-
leged code segment. In our programming example, this means the only place the
payroll program can invoke thetrusted code is at the proper boundary. This is
needed to make conforming segments work as intended.

What happensif caller and callee are “mutually suspicious,” so that neither
trusts each other? The solution is found in the word-countfield in the bottom
descriptor in Figure 8.30 (page 447). Whena call instruction invokes a call-gate
descriptor, the descriptor will copy the number of words specified in the
descriptor from the local stack onto the stack corresponding to the level of this
segment. This allows the user to pass parameters by first pushing them onto the
local stack. The hardware then safely transfers them onto the correct stack, A
return from a call gate will pop the parameters off both stacks and copy any
return valuesto the properstack.

This still leaves open the potential loophole of having the operating system
use the user’s address, passed as parameters, with the operating system’s secu-
rity level, instead of with the user’s level. The 80286 solves this problem by
dedicating two bits in every CPU segmentregister to the requested protection
level. Whenan operating system routine is invoked, it can execute an instruction
that sets this two-bitfield in all addrgss parameters with the protection level of
the user that called the routine. Thus, when these address parameters are loaded
into the segmentregisters, they will set the requested protection level to the
proper value. The 80286 hardware then uses the requested protection level to
prevent any foolishness: No segment can be accessed from the system routine
using those parameters if it has a more-privileged protection level than
requested,

Summary: Protection on the VAX Versus the 80286

If the 80286 protection model looks harder to build than the VAX model, that’s
becauseit is. This effort must be especially frustrating for the 80286 engineers,
since most customers just use the 80286 as a fast 8086 and don’t exploit the
elaborate protection mechanism. Also, the fact that the protection model is a
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8.7

mismatch for the simple paging protection of UNIX meansit will be used only
by someone writing an operating system specially for this computer. OS/2 from
Microsoft is the best candidate, but only time will tell whether the performance
cost of such protection is justified for a personal-computer operating system.
Two questions remain: Will the considerable protection-engineering effort,
which must be borne by each generation of the 80x86 family, be put to good use,
and will it prove any safer in practice than a paging system?

More Optimizations Based on
Program Behavior

Making the frequent case fast is the inspiration for almost all inventions aimedat
improving performance. In this section are two more examples of hardware
optimized to program behavior. The first fetches instructions before they are
needed, and the second avoids saving registers to memory on procedurecalls.

Instruction-Prefetch Buffers

Many machinesuse an instruction-prefetch buffer to take advantage of the nor-
mal sequential execution of instructions. Typically, an instruction buffer con-
tains two to eight sequential instructions; as each instruction is consumed by the
CPU, a subsequentinstruction word is prefetched. Prefetching only makes sense
if the memory system can deliver instructions much faster than the CPU can
consume them; otherwise the buffer cannot get ahead of the CPU. This can be
accomplished by having a wider path that fetches more than one instruction at a
time, or by simply having a faster memory system than the CPU. The drawback
to instruction buffers is that they increase memorytraffic by requesting words of
instructions that may never be needed by the CPU, asis the case when a branch
is taken. Instruction-prefetch buffers are also useful for aligning variable-sized
instructions.

The 8-byte instruction-prefetch buffer (IB) of the VAX-11/780, shown in
Figure 8.31 (page 450), will serve as an example. The opcode of the current
instruction is in the high-order byte of the IB; as pieces of the instruction are
consumed, the whole buffer is shifted to the left by the appropriate amount. The
feft-most byte can correspond to any byte address, while the rest of the bytes in
the IB must be sequential. The Vs in the figure represent a valid bit per byte of
the instruction buffer and indicate the sequential bytes that contain valid instruc-
tions.

The IB tries to stay ahead of the PC. Wheneverat least one byte is free in the
IB, a read is requested for an aligned 32-bit word that contains that byte; only
32-bit words are prefetched from the memory. When the 32-bit prefetched word
arrives, the IB loads as much ofit as it has space for. A 32-bit instruction word
therefore takes between one and four fetches from memory, depending on luck.
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When the PC changes due to a branch or interrupt, the IB may have
prefetched one or two unneededinstructions. The PC change causesall the valid
bits to be turned off, and the IB is reloaded. Section 8.9 examines the perfor-
manceimpactofthe IB.  

PC IB address

 
FIGURE 8.31 The VAX-11/780 instruction-prefetch buffer. Every byte hasa valid bit to
determine the number of consecutive bytes that have valid instructions. The instruction
decoder can read the top four bytes of the buffer in a single clock cycle.

Registers and Register Windows

Figures 3.28 and 3.29 (pages 117-118) in Chapter 3 show that saving registers
on procedure calls and restoring them on returns can account for 5% to 40% of
the data memory references. As an alternative, several banks of registers can be
used, with a new oneallocated on each call. Although this could limit the depth
of procedure calls, the limitation is avoided by operating the banksasacircular
buffer, providing unlimited depth. This technique has been termed register
windows.

Figure 8.32 showsthe essence of the idea. On the x axis is time, measured in
procedure calls or returns; on the y axis is the depth or nesting of procedure
calls. Each call moves downthe y axis, and each return moves up. The boxes
show memory being accessed to save someof the buffer, either when it is full
and is followed by a call (window overflow) or whenit is empty and is followed
by a return (windowunderflow). The figure shows eight window overflows and
two window underflows during this section of program execution. Overthe life
of the program the numberof overflows and undertlows will equalize.

One might well ask whatthe trade-off is between buffer size and overflows or
underflows. Figure 8.33 showsthe shape ofthe curve for several programs writ-
ten in several programming languages. The knee ofthe curve seemsto be six to
eight banks. While this holds for most programs, the optimization is based on
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{ Time(in units of procedure cail/returns)
Return

call

|
Nesting
depth 

FIGURE 8.32 Changein procedure nesting depth overtime. The boxes show proce-
dure calls and returns inside the buffer before a window overflow or underflow. The pro-
gram starts with three calls, a return, a call, a return, three calls, and then a window
overflow.
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FIGURE 8.33 Numberof banks or windows of registers versus overflow rate for
several programsin C, LISP, and Smalltalk. The programs measuredfor C include a C
compiler, a Pascalinterpreter, troff, a sort program, and a few UNIXutilities [Halbert and
Kessler 1980].The LISP measurements include a circuit simulator, a theorem prover, and
several small LISP benchmarks[Tayloretal. 1986]. The Smalltalk programs come from the
Smalltalk macro benchmarks [McCall 1983] which include a compiler, browser, and decom-
piler [Blakken 1983 and Ungar 1987].

program-specific patterns of calls and returns that might be quite different in
some other programs. The worst case for register windows would be hundreds of
calls followed by hundredsof returns. This would make Figure 8.32 looklike
seismograph output during an earthquake, and the performance impact would be
just as devastating!
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FIGURE 8.34 Parameters can be passedin registers if there are common registers
between two banks or windows. This scheme dividesregisters into globals, which don’t
change on a procedure call, and locals, which do change. By having an overlap between
locals for adjacent procedure calls and renumberingthe registers on a call, the outgoing
parameters of the caller become the incoming parametersof the callee. For example, a
value placedin register 15 before a call is in register 31 after the call.

The difficulty of passing parameters in registers presents a drawback: If each
procedure has its own uniqueset of tpgisters, then nothing is common. This can
be overcomeby overlapping the register banks or windowssuch thatthere is a
commonarea in which to pass parameters. Figure 8.34 shows one such design.
Six registers overlap each window, with R15 to R10 of the caller’s registers
becoming R31 to R26after the call. Ten registers are not included in the win-
dows, so there are 16 (32 ~ 10 — 6) registers per window even though each
procedure sees 32 registers at a time.

From Figure 8.33 we can estimate the percentage of calls that overflow the
windowsorreturns that underflow them, but to understand the impact on per-
formance we must knowthecost an overflow or underflow. With an overlapping
register design, like the one on SPARC,the costis saving 16 registers on an
overflow (or restoring 16 registers on an underflow) plus the cost of interrupt.
Onthe Sun 4 today it takes about 60 clock cycles for an overflow or underflow.
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The Pros and Consof Register Windows

Depending on the application, programming language, and user practices, the
compiler can close the gap between machines with and without register win-
dows. Most machines, for example, have separate floating-point registers, which
means that floating-point-intensive programswill be unaffected by register win-
dows. Also, many data references are to objects that cannotbe allocated in regis-
ters, like arrays or structures (see Figures 3.28 and 3.29 on pages 117-118 of
Chapter3).

An optimization called interprocedural register allocation allows moreintel-

ligentallocation of registers across procedure boundaries. Unfortunately, inter-
procedural register allocation works best when procedures are compiled or
linked at the same time. Long compilation and link time do not match the em-
phasis on a rapid debug-edit-compile cycle in current dynamic languageslike
LISP and Smalltalk. Interprocedural register allocation is not generally appli-
cable to object-oriented languages like Objective C and Smalltalk because in the
dynamic equivalent of a procedure call the compiler doesn’t know which proce-
dure will be invoked on such calls. Register windowsalso simplify some com-
piler decisions, since there is no extra cost in using a register that will not be
saved or restored separately.

 

 

 

 

 

 

 
  

GCC TeX

Percentage of DLX instructionscall or return 1.8% 3.6%

| Registers stored percall 2.3 3.2

Loads DLX ; 3,928,710 2,811,545
Loads SPARC - 3,313,317 2,736,979
Ratio loads DLX / SPARC 1.20 1.03
Stores DLX , 2,037,226 1,974,078
Stores SPARC . 1,246,538 ——‘1,401,186
Ratiostores DLX / SPARC 1.60 141 

FIGURE 8.35 Benefits of register windows on loads and stores for non—floating-
point programs.Thefirst row shows the percentage of DLX instructions executed that are
calls or returns. The second row shows the average numberof register saves and restores
percali on the DLX architecture with optimization level 02. The following rows show the
total numberof loads andstores for each optimization and for the SPARC architecture,
which hasregister windows. The data below includes the loads and stores due to window
overflow and window underflow. GCC executes about 20% more loads and 60% more

stores on DLX than on a machine with register windows, while TeX executes about 3%
more loads and 41% more stores. These savings correspond to about 7%of the instruction
count for GCC and 5%for TeX. Howthis translates into memory-system performance
dependsonthe details of the rest of the memory hierarchy. Interprocedural register alloca-
tion closes this gap. For example, using O3 optimization on TeX reduces the numberof
DLX loads by 5%to 2,671,631 and the numberof stores by 10% to 1,791,831. Note that
the inputs for these programs were not the same as those used in Chapters 2 or4. (Spice
wasnotincluded becauseregister windowsoffer no benefit for floating-point programs.)
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i The danger of register windowsis that the larger numberofregisters could
ee ia slow downthe clock rate. So far, this has not been the case for commercial

| machines. The SPARC architecture (with register windows) and the MIPS
R2000 architecture (without) are contemporary machines built in several tech-

: 4 " nologies. The SPARC clock rate has not been slower than MIPS for implementa-
tions in similar technologies, probably because cache-access times dominate
register-access times in implementations to date of either architecture. A second
concern is the impact of register windows on process-switch time. Sun Micro-
systems has found that UNIX operating system vagaries dominate process-

oe | il switch time, and less than 20% of the process-switch time is spent on saving or
restoring registers. Figure 8.35 (page 453) compares some measures of the
benefits of register windows on our benchmark programs.

    
8.8 Advanced Topics—Improving Cache-Memory

Performance

  
‘I This section covers advanced topics in cache memories, going through new

t ideas at a much quicker pace than previous sections. The central points ofthis
chapterare notlost if this section is skipped; in fact, the Putting It All Together
section that follows is independentofthis material.

The increasing gap between CPU and main memoryspeedshasattracted the
| | attention of many architects. After making some easy decisions in the beginning.

the architect faces a threefold dilemma when attempting to further reduce aver-
it age access time:

              
= Increasing block size doesn’t improve average access time; the lower miss

rate doesn’t offset the higher miss penalty.

       
" = Making the cache bigger would makeit slower, jeopardizing the CPU clock

eat rate.

pit a Making the cache more associative would also make it slower, again jeopar-
dizing the CPU clockrate.

       
Moreover, the miss rate calculated from user programspaints too rosya picture.
Figure 8.36 showsthe real cache miss rate for a running program, including the
Operating system code invoked by the programs. This reveals the average access
time to be worse than expected.

| This section covers a plethora of techniques for improving cache perfor-
mance: subblock placement, write buffers, out-of-order fetching, virtually

| addressed caches, two-level caches, and issues relating to cache coherency. The N
Wa cache-coherency sections include an example of the stale-data problem,a survey

of coherency alternatives, an example cache protocol, a synchronization
algorithm used in cache coherent multiprocessors. a timeline showing multi-
processor synchronization, and comments about the impact of memory consis-
tency on parallel processors.
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4k 8K 16K 32K 64K 128K 256K 512K 1024K

Cachesize 

a System miss rate O System-userconflict (J User miss ratemiss rate

  
FIGURE 8.36 The missrate of a program, including the operating system codeit
invokes, versus cachesize. The top category is what would be measured from a user
trace; the bottom categoryis the miss rate for the operating system code, and the middle
category is the miss rate due to conflicts between the user code and system code. Agarwal
[1987] collected these statistics for the Ultrix operating system running on a VAX, assuming
direct-mapped cacheswith a block size of 16 bytes.

Reducing Hit Times—Making Writes Faster

As mentioned before, writes usually take more than one clock cycle because the
tag must be checked before writing the data. There are two ways to do faster
writes.
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The first, used on the VAX 8800, pipelines the writes for a write-through

cache. Tags and data are split so that they can be addressed independently. As
usual, the cache compares the tag with the current write address. The difference
is that the memory access during this comparison uses the address and data from
the previous write. Therefore, writes can be performed back to back at one per
clock cycle because the CPU does not haveto wait for the write to the cache if
the first stage is a hit. The 8800 pipeline does not affect read hits—the second
Stage of the write occurs duringthefirst stage of the next write or during a cache
miss.

Another way of reducing writes to one clock cycle involves caches that must
be direct mapped, using a technique known as subblock placement, Like the
VAX-11/780 instruction buffer, there is a valid bit on units smaller than the full
block, called subblocks. The valid bits specify some parts of the block as valid
and someparts as invalid. A match of the tag doesn’t mean the wordis necessar-
ily in the cache,as the valid bits for that word mustalso beon. Figure 8.37 gives
an example. Note that for caches with subblock placementa block can no longer
be defined as the minimum unit transferred between cache and memory. For
such caches a blockis defined as the unit of information associated with an
addresstag.

 

 

 

 

 

Subbiocks

7

 
FIGURE 8.37 In this examplethere are four subblocks per block.In the first block
(top) all the valid bits are on, equivalentto the valid bit being on for a block in a normal
cache. In the last block (bottom), the oppositeis true; no valid bits are on. In the second
block, locations 300 and 301 are valid andwill be hits, while locations 302 and 303 will be
misses. For the third block, locations 201 and 203 are hits. if, instead of this organization,
there were 16 blocksthe size of the subblock, 16 tags would be neededinstead of 4.

Subblock placement was invented to reduce the long miss penalty of large
blocks (since only a part of a large block need be read) and to reduce the tag
storage for small caches. It can also help write hits by always writing the word
(no matter what happens with the tag match), turning the valid bit on, and then
sending the word to memory. Let’s look at the casesto see whythis trick works:
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  Example

Answer

a Tag matchand valid bit already set. Writing the block was the proper action,
and nothing waslostby setting the valid bit on again.

« Tag match and valid bit not set. The tag match meansthat this is the proper
block; writing the data into the block makes it appropriate to turn the valid bit
on.

a Tag mismatch. This is a miss and will modify the data portion of the block.
However, as this is a write-through cache, no harm was done; memorystill
has an up-to-date copy of the old value. Only the tag to the address of the
write need be changed becausethe valid bit has already beenset. If the block
size is one word and the store instruction is writing one word, then the write
is complete. When the block is larger than a word orif the instruction is a
byte or halfword store, then either the rest of the valid bits are turned off

(allocating the subblock without fetching the rest of the block) or memoryis
requested to send the missing part of the block (write allocate).

Thistrick isn’t possible with a write-back cache because the only valid copy of
the data maybein the block, and it could be overwritten before checkingthetag.

Reducing Miss Penalty—Making Write Misses
Faster

Nowthat we have seen how to makewrite hits faster, let’s look at write misses.

With a write-through cache the most important improvementis a write buffer
(page 416) of the propersize (see the fallacy on page 482 in Section 8.10). Write
buffers, however, do complicate things in that they might have the updated value
of a location needed on a read miss.

Lookat this code sequence:

SW 512(R0O),R3 ; M[512] —R3 (cache index 0)

LW R1,1024(RO) ; R1©&M[1024] (cache index 0)

LW R2,512 (RO) ; R2<—M[512] (cache index 0) 
Assumea direct-mapped cache that maps 512 and 1024 to the same block, and a
four-word write buffer. Will R3 always equal R2?

Let’s follow the cache to see the danger. The data in R3 is placed into the write
buffer after the store. The following load uses the same cache index andis there-
fore a miss. Wethen try to load the data from location 512 into register R2; this
also results in a miss. If the write buffer hasn’t completed writing to location 512
in memory, the read of location 512 will put the old, wrong value into the cache
block, and then into R2. Without proper precautions, R3 would not be equal to
R2!
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The simplest way out of this dilemmais for the read miss to wait until the
write bufter is empty. However, a write buffer of a few words in a write-through
cache will almost always have data in the buffer on a miss, thereby increasing
the read miss penalty. The designers of the MIPS M/1000 estimated that waiting
for a four-word buffer to empty would have increased the average read miss
penalty by 50%. The alternative is to check the contents of the write buffer on a
read miss, and if there are no conflicts and the memory system is available, let
the read miss continue.

The cost of writes in a write-back cache can also be reduced. By just adding a
full block buffer to store a dirty block, the read can happenfirst. After the new
data is loaded into the block, the CPU continues execution. The buffer then
writes in parallel with the CPU. Similar to the situation above, if a read miss
occurs the CPUcanstall until the buffer is empty.

                 
Reducing Miss Penalty—Making Read Misses
Faster

          
Making writes faster is helpful, but it is reads that dominate cache accesses. The
strategy to making read missesfaster is to be impatient: Don’t wait for the full
block to be loaded before sending the requested word to the CPU. Here are two
specific strategies:

                              
« Early restart—Assoon as the requested word of the block arrives, sendit to

the CPU andlet the CPU continue execution.

= Out-of-order fetch—Requestthe missed wordfirst from memoryand sendit |
to the CPU as soonasit arrives; let the CPU continue execution whilefilling
the rest of the words in the block. Out-of-order fetch is also called wrapped |
fetch.

   
Alas, these read tricks are not as important as they sound. Spatial locality—the
reason for big blocksin the first plage—dictates that the next cache requestis
likely to be to the same block. Also, andling another request while tryingtofill
the rest of a block quickly gets complicated.

A more subtle reason why out-of-order fetch will not be as rewarding as one
might think is that notall the wordsof a block have an equallikelihood of being
accessed first. With a 16-word block in an instruction cache, for example, the
average block entry point is 2.8 words from the left-most byte. If entries were
evenly distributed, the average would be 8 words. The high-order word is the
most likely one, due to sequential accesses from prior blocks on instruction
fetches and sequentially stepping througharrays for data caches.

For pipelined machinesthat allow out-of-order completion using a scoreboard \
or Tomasulo-style control (Section 6.7 of Chapter 6), the CPU need notstall on
a cache miss, offering another way to reduce memorystalls. Spatial locality sug-
gests this optimization (called a lock-up free cache) may be limited in practice,
since again the next referenceis likely to be to the same block.
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Making Cache Hits Faster—Virtually Addressed Caches

Miss penalty is an important part of average access time, but hit time affects
both the average access time and the clock rate of the CPU. Helping the hit time
may therefore help everything. A solution mentionedearlier is to use the physi-
cal part of the address to index the cache while sending the virtual address
through the TLB. Thelimitation is that a direct-mapped cache can be no bigger
than the page size. To allow large cache sizes with the 4-KB pagesin the Sys-
tem/370, IBM uses highassociativity so that they canstill access the cache with
a physical index. The IBM 3033, for example, is 16-wayset associative, even
though studies show there is little benefit to miss rates above 4-way set
associativity.
 

an-—-=
onrmD

 
 

4A%l 14.3%]. [4.3% 14.3%

0.3% 0.3%[20.3% 0.3%
0.4% 0.3%jug 0.3%|upaed 0.3%

128K 256K 512K=1024K

  
 16K 32K 64K

Cachesize
 

HE uniprocess [J pins [1] Purge

 
 
FIGURE 8.38 Miss rate versus cachesize of a program measured three ways:
without process switches (uniprocess), with process switches using a process-
identifier tag (PIDs), and with process switches but without PIDs (purge). PIDs
increase the uniprocessabsolute miss rate by 0.3 to 0.6 and save 0.6 to 4.3 over purging.
Agarwal [1987] collected thesestatistics for the Ultrix operating system running on a VAX,
assuming direct-mapped cacheswith a block size of 16 bytes.
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One schemefor fast cache hits without this size restriction is go to a more
heavily pipelined memory access where the TLB is just onestep ofthe pipeline.
The TLBis a distinct unit that is smaller than the cache, and thuseasily
pipelined. This scheme doesn’t change memory latency, but relies on theeffi-
ciency of the CPU pipeline to achieve higher memory bandwidth.

Anotheralternative is to match on virtual addresses directly. Such caches are
termedvirtual caches. This eliminates the TLB translation time from a cache hit.
Why doesn’t everyone build virtually addressed caches? One reason is that
every time a process is switched, the virtual addresses refer to different physical
addresses, requiring the cache to be flushed. Figure 8.38 (page 459) showsthe
impact on missrates of this flushing. Onesolution is to increase the width of the
cache-address tag with a process-identifier tag (PID). If the operating system
assigns these tags to processes, it only need flush the cache when a PID is
recycled (the PID providesprotection). Figure 8.38 showsthat improvement.

Another reason whyvirtual caches are not more universally adopted has to do
with operating systems and user programs that use two different virtual
addresses for the same physical address. These duplicate addresses, called
Synonyms or aliases, could result in two copies of the same data in a virtual
cache; if one is modified, the other will have the wrong value. With a physical
cache this wouldn't happen,since the accesses would first be translated to the
same physical cache block. There are hardware schemes, called anti-aliasing,
that can guarantee every cache block a unique physical address, but software can
makethis much easier by forcing aliases to share some addressbits. The version
of UNIX from Sun Microsystems,for example, requiresall aliases to be identi-
cal in the last 18 bits of their addresses. Thus, a direct-mapped cachethatis 2!'8
(256K) bytes or smaller can never have duplicate physical addresses for blocks.
This requirementalso simplifies anti-aliasing hardware for larger cachesor for
set-associative caches. (Of course, the best software solution from the hardware
designers perspective is to do away with aliases!)

The final area of concern with virtual addresses is T/O. I/O typically uses
physical addresses and thus would reqpire mappingto virtual addressesto inter-
act with a virtual cache. (The impact of I/O on caches is further discussed
below.)

                                                    
Reducing Miss Penalty—Two-Level Caches

Let’s return our attention to miss penalty. CPUsare getting faster and main
memoriesare getting larger, but slowerrelative to the faster CPUs. The question
facing the architect is: Should I make the cache faster to keep pace with the
speed of CPUs, or makethe cache larger to overcome the widening gap between
the CPU and main memory? One answeris: Both. By adding another level of
cache between the original cache and memory, the first-level cache can be small
enough to match the clock cycle time of the CPU while the second-level cache
can be large enoughto capture many accesses that would go to main memory.
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Definitions for a second level of cache are not always straightforward. Let’s
start with the definition of average memory-access time for a two-level cache.
Using the subscripts L1 and L2 to refer respectively to a first-level and a second-
level cache, the original formulais

Average memory-access time = Hit time,,; + Miss rate,,, * Miss penalty;|

and

Miss penalty, ; = Hit time;2 + Miss ratey2 * Miss penalty,»
so

Average memory-access time = Hit time, + Miss rate, ; *

(Hit timey_2 + Miss rate* Miss penalty)

In this formula, the success of the second-level miss rate is measured ontheleft-

overs from the first-level cache. To avoid ambiguity, these terms are adopted
here for a two-level cache system:

# Local miss rate—The numberof misses in the cache divided by the total
number of memory accessesto this cache; this is miss rateabove.

a Global miss rate—The number of misses in the cache divided by the total
number of memory accesses generated by the CPU; using the terms above,
this is miss ratey_; * miss rate.

Suppose that in 1000 memory references there are 40 misses in the first-level
cache and 20 missesin the second-level cache. What are the various miss rates?

The miss rate for the first-level cache is 40/1000 or 4%. The local miss rate for

the second-level cache is 20/40 or 50%. The global miss rate of the second-level
cache is 20/1000 or 2%.

Figure 8.39 (page 462) and Figure 8.40 (page 463) show how miss rates and
relative execution time change with the size of a second-level cache. Figure 8.41
(page 463) showstypical parameters of second-level caches.

With these definitions in place, we can consider the parameters of second-
level caches. The foremost difference between the two levels is that the speed of
the first-level cache affects the clock rate of the CPU, while the speed of the
second-level cache only affects the miss penalty of the first-level cache. Thus,
we can consider many alternatives in the second-level cache that would beill
chosen for thefirst-level cache. There is but one consideration for the design of
the second-level cache: Will it lower the average memory-access—time portion
of the CPI?
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FIGURE 8.39 Miss rates versus cache size. The top graph showsthe results plotted
onalinear scale as we have done with earlier figures, while the bottom graph shows
the results plotted on a log scale. As miss rates shrink the log scale makesthe differ-
enceseasierto follow. The missrate of a single-level cache versus sizeis plotted
against the local miss rate and global miss rate of a second-level cache using a 32-KB
first-level cache. Second-level caches smaller than the 32-KBfirst level have high miss
rates (at least for similar biock sizes), as this figureillustrates. After 256 KB the single
cache and global miss rates are virtually identical. Przybyiski [1990] collected these
data using traces available with this book: four traces from the VAX system and user
programsand four user programs from the MIPS R2000 that were randomly interleaved
to duplicate the effect of process switches.
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FIGURE 8.40 Relative execution time by second-level—cache size. Przybylski [1990]
collected these data using a 32-KB, first-level, write-back cache, varying the size of the
second-level cache. The two bars are for different clock cycles for a level two cachehit.
The reference execution time of 1.00 is for a 4096-KB, second-level cache with a one—
clock-cycle latency on a second-level hit. He used four traces from the VAX system and
user programs(available with this book) and four user programs from the MIPS R2000 that
were randomlyinterleaved to duplicate the effect of process switches.

 

 

 

 

 

 

   
Block (line) size 32 — 256 bytes

Hit time - 4 - 10 clock cycles -
Miss penalty 30 — 80 clock cycles

(Access time) (14-18 clock cycles)

(Transfer time) (16 — 64 clock cycles)
Local miss rate 15% — 30%

Cachesize 256 KB —-4 MB 

FIGURE 8.41 Typical values of key memory-hierarchy parameters for second-level
caches.
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The initial choice for second-level caches is size. Since everything in the
first-level cacheis likely to be in the second-level cache, the second-level cache
should be bigger. If second-level caches are just alittle bigger, the local miss
rate will be high. This observation inspires design of huge second-level caches—
the size of main memory in recent computers! If the second-level cache is much
larger than the first-level cache, then the global miss rate is about the same as a
single-level cache of the same size (see Figure 8.39, page 462). Large size
means that the second-level cache may have practically no capacity misses,
leaving compulsory and a few conflict misses for our attention. One questionis
whetherset associativity makes more sense for second-level caches.

Given the data below, what is the impact of second-level—cache associativity on
the miss penalty?

s Two-way set associativity increases hit time by 10% of a CPU clock cycle

e Hit timey2 for direct mapped = 4 clock cycles

a Local miss rate,» for direct mapped = 25%

a Local miss rate. for two-way set associative = 20%

a Miss penalty, = 30 clock cycles

For a direct-mapped, second-level cache,the first-level-cache miss penalty is

Miss penalty, ; = 4 + 25%*30 = 11.5 clock cycles

Adding the cost of associativity increases the hit cost only 0.1 clock cycles, mak-
ing the new first-level-cache miss penalty

Miss penalty; ; = 4.1 + 20%*30 = 10.1 clock cycles

In reality, second-level caches dre almost always synchronized with the first-
level cache and CPU. Accordingly, the second-level hit time must be an integral
numberof clock cycles. If we are lucky, we can shave the second-levelhit time
to four cycles; if not, we can round up to five cycles. Either choice is an im-
provementoverthe direct-mapped, second-level cache:

Miss penalty, | = 4 + 20%*30 = 10.0 clock cycles

Miss penalty, ; = 5 + 20%*30 = 11.0 clock cycles
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FIGURE 8.42 Relative execution time by block size for a two-level cache. Przyby!ski
[1990] collected these data using a 512-KB second-level cache. He usedfour traces trom
the VAX system and user programs(available with this book) and four user programs from
the MIPS R2000that were randomly interleaved to duplicate the effect of process switches.

Higherassociativity is worth considering because it has small impact on the
second-level hit time and because so much of the average access time is due to
misses. However, for these very large caches the benefits of associatis ity dimin-
ish because larger size has eliminated many conflict misses.

As long as spattal locality holds there may be a benefit in increasing block
size. Increasing block size can increase conflict misses with small caches since

there may not be enough places to put data, therefore increasing Miss rate.
Because this is not an issue in large. second-level caches, and because memory-
access time is relatively longer, larger block sizes are popular. Figure 8.42
showsthe variation in execution time as the second-level block size changes.

One final consideration concerns whetherall data in the first-level cache is
always in the second-level cache. If so, the second-level cache is said to have the

multilevel inclusion property. Inclusion is desirable because consistency
between I/O and caches (or between caches in a multiprocessor) can be deter-
mined just by checking the second-level cache.

The drawback to this natural inclusion is that the lower average memory-
access times can suggest smaller blocks for the smaller first-level cache and
larger blocks for the larger second-level cache. Inclusion canstill be maintained
in this case with a little extra work on a second-level miss: The second-level
cache must invalidateall first-level blocks that map onto the second-level block
to be replaced, causing aslightly higher first-level miss rate.
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Reducing Miss Rate by Reducing Cache Flushes—i/O

Althoughthereis little more that can improve CPU execution time, there are
issues in cache design to improve system
put/output. Because of caches, data can be fo
long as the CPUis the sole device chan

stands between the CPU and memory, there is little danger in the CPU seeing
the old or stale copy. I/O meansthe opportunity exists for other devices to cause
copies to be inconsistent or for other devices to read the stale copies. Figure 8.43
illustrates the problem. This is generally referred to as the cache-coherency

performance,particularly for in-
und in memoryorin the cache. As

ging or reading the data and the cache
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The question is this: Where does the 1/0 occur in the computer—between the
I/O device and the cache or between the I/O device and main memory?If input
puts data into the cache and output reads data from the cache, both V/O and the
CPU see the same data, and the problem is solved. The difficulty in this
approachis that it interferes with the CPU. 1/O competing with the CPU for
cache access will cause the CPU tostall for 1/0. Input will also interfere with the
cache by displacing some information with the new data that is unlikely to be
accessed by the CPU soon. For example. on a page fault the CPU may need to
access a few wordsin a page, but a programis not likely to access every word of
the pageifit were loaded into the cache.

The goal for the I/O system in a computer with a cacheis to prevent thestale-
data problem while interfering with the CPUaslittle as possible. Many systems,
therefore, prefer that I/O occur directly to main memory, acting as an I/O buffer.
If a write-through cache is used, then memory has an up-to-date copy of the
information, and there is no stale-data issue for output. (This is the reason many
machinesuse write through.) Input requires some extra work. The software solu-
tion is to guarantee that no blocks ofthe 1/O buffer designated for input are in
the cache. In one approach,a buffer page is marked as noncacheable: the operat-
ing system always inputs to such a page. In another approach, the operating sys-
tem flushes the buffer addresses from the cache after the input occurs. A hard-
ware solution is to check the I/O addresses on inputto see if they are in the
cache. If so, the cache entries are invalidated to avoid stale data. All these
approachescan also be used for output with write-back caches. More aboutthis
is foundin the next chapter.

Reducing Bus Traffic—Multiprocessor Cache
Coherency

The cache-coherency problem applies to multiprocessors as well as I/O. Unlike
I/O, where multiple data copies is a rare event—oneto be avoided whenever
possible—a program running on multiple processors will want to have copies of
the same data in several caches. Performance ofa multiprocessor program
depends on the performanceofthe system when sharing data. The protocols to
maintain coherency for multiple processors are called cache-coherency proto-
cols. There are twoclasses of protocols followed to maintain cache coherency:

«= Directory based—The information about one block of physical memoryis
keptin just one location.

==Snooping—Everycachethathas a copy of the data from a block of physical
memory also has a copy ofthe information aboutit. These caches are usu-
ally ona shared-memorybus,andall cache controllers monitor or snoop on
the bus to determine whetherornot they have a copy ofthe shared block.
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In directory-based protocols there is logically a single directory that keeps the
state of every block in main memory. Information in the directory can include
which cacheshave copies of the block, whetherit is dirty, and so on. Of course
directory entries can be distributed so that different requests can go to different
memories, thereby reducing contention. However,they retain the characteristic
that the sharing status of a block is alwaysin a single known location.

Snooping protocols became popular with multiprocessors using microproces-
sors and caches on a shared memory because they can use a preexisting physical
connection: the bus to memory. Snooping has an edge overdirectory protocols
in that the coherency information is proportional to the numberof blocks in a
cache rather than the numberof blocks in main memory. Directories, on the
other hand, do not require a single bus going to all caches and, hence, may scale
to more processors.

The coherency problemis for a processorto have exclusive access to write an
object and to have the mostrecent copy when reading an object. Thus, both
directory-based and snooping protocols must locate all the cachesthat share the
object to be written. The consequence of a write to shared data is either to
invalidate all other copiesorto broadcast the write to the shared copies. Because
of write-back caches, coherency protocols must also help read misses determine
whohas the mostup-to-date value.

For the remainderof this section we concentrate on snooping caches; the
same ideas apply to directory-based caches except the state of the caches is
trackeddifferently, and caches are involved only if the directory says they have
a copy of a block whosestatus must change.

Sharing information is added to the status bits already in a cache block for
snoopingprotocols, and that informationis used in monitoring bus activities. On
a read missall caches check to see if they have a copy ofthe requested block and
take the appropriate action, such as supplying the data to the cache that missed.
Similarly, on a write all caches check to see if they have a copy and then act,
perhapsinvalidating their copyor changingtheir copyto the new value.

Since every bustransaction checks cache-address tags, one might assumethat
it interferes with the CPU.It would, were it not for duplicating the address-tag
Portion ofthe cache (not the whole cache)to get an extra read port for snooping.
This way, snooping interferes withthe CPU’s access to the cache only when
there is a coherency problem (although on a miss with snooping the CPU must
arbitrate with the busto changethe snooptags as well as the normal tags). When
a coherency operation occurs in the cache the CPUwill likely stall, since the
cacheis unavailable. In multilevel caches,if the coherency check can be limited
to the lower cache because of multilevel inclusion, duplicating the address tags
will probably not be necessary.

Snooping protocols are of two types, depending on what happensonawrite: \

                                                                                       
= Write invalidate—The writing processor causesall copies in other caches to ~

be invalidated before changingits local copy;it is then free to update the data
until another processor asks for it. The writing processor issues an invalida-
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tion signal over the bus, and all caches check to see if they have a copy;if so,
they must invalidate the block containing the word. Thus, this scheme allows
multiple readers but only a single writer.

s Write broadcast—Ratherthan invalidate every block that is shared, the writ-
ing processor broadcasts the new data over the bus; all copies are then
updated with the new value. This scheme continuously broadcasts writes to
shared data while write invalidate deletes all other copies so that there is only
one local copy for subsequent writes. Write-broadcast protocols usually allow
blocks to be tagged as shared (broadcast) or private (local). One way to think
of this protocol is it acts like a write-through cache for shared data
(broadcasting to other caches) and a write-back cache for private data (the
modified data leaves the cache only on a miss).

Most cache-based multiprocessors use write back caches because it reduces
bus traffic and thereby allows more processors on a single bus. Write-back
caches use either invalidation or broadcast, and numerous variations exist for

both alternatives (see the next section). So far, there is no consensus on whichis

the superior scheme. Some programs have less coherency overhead with write
invalidate, and some with write broadcast. A later section shows how

synchronization can be implemented in coherency-based multiprocessors; the
accesses for synchronization seem to favor write broadcast.

One early insight has been that block size plays an important role in cache
coherency. Take, for example, the case of snooping on a second-level cache with
a block size of eight words, and a single wordis alternatively written and read
by two processors. Whether write invalidation or write broadcastis used,the
protocol that only broadcasts or sends a word has an advantage over a scheme
that transfers the full block. Another concern oflarge blocksis called false shar-
ing: two different shared variables are located in the same cache block, causing
the block to be exchanged between processors even though the processors are
accessing different variables. Compiler research is working to reduce cache miss
rates by allocating data with high processor locality to the same blocks. Success
in this field could increase the desirability of large blocks for multiprocessors.

Measurementsto date indicate that shared data has lowerspatial and temporal

locality than observed for other types of data, independent of the coherency
policy.

An Example Protocol

To illustrate the complexities of a cache-coherency protocol, Figure 8.44 (page
470) shows a finite-state transition diagram for a write-invalidation protocol
based on write- back policy. The three states of the protocol are duplicated to
representtransitions based on CPU actions, as opposed to transitions based on
bus operations. This is done only for purposesofthis figure; there is only one
finite-state machine per cache, with stimuli coming either from the attached
CPUor from the bus.
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FIGURE 8.44 A write-invalidate, cache-coherencyprotocol. The upperpart of the
diagram showsstate transitions based on actions of the CPU associated with this cache;
the lower part showstransitions based on operations on the bus. There is only one state
machine in a cache,although there are two represented hereto clarify when a transition
occurs. The black arrows and states would be in a normal cache, with the gray arrows
added to get cache coherency. In contrast to what is shown here, some protocols call
writes to clean data a “write miss,” so that there is no separate signal for invalidation.
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| Transitions happen on read misses, write misses, or write hits; read hits do
not change cache state. When the CPUhas a read miss, it will change the state of
that block to Read only and write back the old block ifit was in the Read/Write
state (dirty). All the caches snoop on the read miss to see if this block is in their
cache. If one has a copy andit 1s in the Read/Write state, then the block is writ-
ten to memoryandthat block is changed to the invalid state. (An optimization
not shownin the figure would be to changethestate of that block to Read only.)
When a CPU writes into a block, that block goes to the Read/Write state. If the
write was a hit. an invalidate signal goes out over the bus. Because caches

monitor the bus, all check to see if they have a copyofthat block: if they do,
they invalidate it. If the write was a miss, all caches with copies go to the invalid
State.

As you might imagine, there are manyvariations on cache coherency that are
much more complicated than this simple model. The variations include whether
or not the other caches try to supply the block if they have a copy. whether or
not the block must be invalidated on a read miss, as well as write invalidate ver-

sus write broadcast as discussed above. Figure 8.45 summarizes several snoop-
ing cache-coherency protocols.

eeeeeeerrr

 
  

 

 

  

Name Category Memory-write policy Unique feature

Write Once Write invalidate Write back after first write

SynapseN+1 Write invalidate Write back Explicit memory ownership : : j
| Berkeley Write invalidate : Write back a i Owned sharedstate _ - 4

Illinois Write invalidate Writeback 7 Clean private state; can supply data from |
any cache with a clean copy

Firefly Write broadcast Write back for private, Memory updated on broadcast |
; Write throughfor shared
 

Dragon Write broadcast Write back forprivate. Memorynot updated on broadcast |Write through for shared

 
FIGURE 8.45 Six snooping protocols summarized. Archibald and Baer [1986] use these namesto describe the six

' protocols, and Eggers [1989] summarizesthe similarities and differences as shown above. Figure 8.44 (page 470) is
simpler than any of these protocols.

Synchronization Using Coherency

 
One ofthe major requirements of a shared-memory multiprocessoris being able
to coordinate processes that are working on a commontask. Typically, a pro-
grammerwill use /ock variables to synchronize the processes.

Thedifficulty for the architect of a multiprocessor is to provide a mechanism
to decide which processor gets the lock and to provide the operation that locks a
variable. Arbitration is easy for shared-bus multiprocessors, since the bus is the
only path to memory: The processorthat gets the bus locks out all other proces-

| sors from memory. If the CPU and bus provide an atomic swap operation, pro-
grammers can create locks with the proper semantics. The adjective atomicis
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key, for it means that a processor can both read a location andset it to the
locked value in the same bus operation, preventing any other processor from
reading or writing memory.

Figure 8.46 showsa typical procedure for locking a variable using an atomic
swapinstruction. Assume that 0 means unlocked and | means locked. A proces-
sor first reads the lock variable to test its state. A processor keeps reading and
testing until the value indicates that the lock is unlocked. The processor then
races against all other processes that were similarly “spin waiting” to see who

—
 

 Load lock
variable  

  

 
 

Unlocked?
(= 0?) 

 Try to lock variable using swap:
Readlock variable and then set

variable to locked value (1)

  
 

 
 

 

Succeed?
(= 0?)

 
  
 

Entercritical
section

 
 

Bxit criticalsection

Unlock:
Set lock variable to 0   

 
 
FIGURE8.46 Steps to acquire a lock to synchronize processes and then to release
the lock on exit from the key section of code.
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Step Processor PO Processor P1 Processor P2 Busactivity

I Has lock Spins, testing if lock = 0 Spins, testing if lock = 0 None

2 Set lock to 0 and Write invalidate of lock

—Osentoverbus a - ee variable from PO
3 Cache miss Cache miss Bus decides to service P2

a ee cache miss
4 (Waits while bus busy) Lock = 0 Cache miss for P2 satisfied

5 Lock = 0 Swap: read lock and set Cache miss for PI satisfied
- to |

6 Swap: read lock andset Value from swap =Oand—Write invalidate oflock
to | ] sent over bus variable from P2

7 Value from swap=1 and—Enter critical section Write invalidate of lock
1 sent over bus variable from Pt

8 Spins, testing if lock = 0 None

 
 

FIGURE 8.47 Cache-coherency steps and bus traffic for three processors, PO, P1, and P2. This figure assumes
write-invalidate coherency. PO starts with the lock (step 1). PO exits and unlocks the lock (step 2). P1 and P2 race to see
which reads the unlocked value during the swap (steps 3-5). P2 wins and enters the critical section (steps 6 and 7), while
P1 spins and waits (steps 7 and 8).

 

can lock the variable first. All processes use a swapinstruction that reads the old
value and stores a | into the lock variable. The single winner will see the O, and
the losers will see a 1 that was placed there by the winner. (The losers will con-
tinue to set the variable to the locked value, but that doesn’t matter.) The win-

ning processor executes the code after the lock and then stores a 0 into the lock
variable whenit exits, starting the race all over again. Testing the old value and
then setting to a new value is why the atomic swapinstructionis called test and
set in some instructionsets.

Let’s examine how the “spin lock” scheme of Figure 8.46 works with bus-
based cache coherency. One advantage of this algorithm is that it allows proces-
sors to spin wait on a local copy of the lock in their caches. This reduces the
amount of bus traffic versus lock algorithms that loop trying to perform a test
and set. (Figure 8.47 shows the bus and cache operations for multiple processes
trying to lock a variable.) Once the processor with the lock stores a 0 into the
lock, all other caches see that store and invalidate their copy of the lock variable.
They then get the new value for the lock of 0. (With write-broadcast cache
coherency as on page 469, the caches would update their copy rather than first
invalidate and then load from memory.) This new valuestarts the race to see
who can set the lock first. The winner gets the bus and stores a | into the lock;
the other caches replace their copy of the lock variable containing 0 with a 1.
They read that the variable is already locked and must return to testing and
spinning. This schemehasdifficulty scaling up to many processors because of
the communication traffic generated whenthe lock is released.
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Models of Memory Consistency

When weintroduce cache coherency to maintain the consistency of multiple
copies of an object, we raise a new question: How consistent must the values
seen by two processors be kept? The problem is best understood with an exam-
ple: Here are two code segments from processes P! and P2 shownside by side:

Pl: A = 0; P2: B = 0;

A = 1; B= 1;

Ll: if (B == 0) wee L2: if (A == 0)

          
Assumethe processes are running on different processors, and that locations A
and B are originally cached by both processors with the initial value of 0. If
memory is always consistent, it will be impossible for both if statements
(labeled L1 and L2) to evaluate their conditions as true (either A=1 or B=1). But
suppose write invalidates have a delay, and the processoris allowed to continue
during this delay, then it is possible that both P1 and P2 have not seen the inval-
idations for B and A (respectively) before they attempt to read the values. The
question that is raised by this example is: How consistent a picture of memory
must different processors see?

One approach, called sequential consistency, requires that the result of any
executionis the sameas if the accesses of each processor were kept in order and
the accesses amongdifferent processors were arbitrarily interleaved. In this case,
the apparent anomaly in the above example cannotoccur. Implementing sequen-
tial consistency usually requires a processor to delay any memoryaccessuntil all |the invalidations caused by all previous writes are completed. Although this
model] presents a simple programming paradigm, it reduces potential perfor-
mance, especially in a machine with a large number of processors, or long inter-
connectdelays.

Alternative models provide a weaker model of memory consistency. For
example, the programmer maybe required to use synchronization instructions to
order memory accesses to the same variable. Now, instead of delaying all ac-
cesses until invalidations complete, only synchronization accesses need to be
delayed.

Whether programmers expect séquential consistency or some weaker form of
consistencyis still an open issue in 1990. The example above would work
“correctly” with sequential consistency, but not with a weaker model. For weak
consistency to produce the sameresults as sequential consistency, the program
would haveto be modified to include synchronization operations that order the
accessesto variables A and B. It is natural to expect synchronization if you want
processesto see the latest data independent of execution rates. Some machines |
choose to implement sequential consistency as the programming model, while |
others opt for a weaker consistency. In the future, as attempts are made to build =~
larger multiprocessors, the issue of memory consistency will become
increasingly performancecritical. i
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Putting It All Together: The VAX-11/780
Memory Hierarchy

The challenge for the memory-hierarchy designeris in choosing parameters that
work well together, not in inventing new techniques or simulating a cache in a
well-understood configuration. A full example using the VAX-11/780 memory
hierarchy is presented here in detail to illuminate the interactions. Although
VAX-11/780is not a very recent machine, measurements and design documen-
tation are available on all aspects of its memory hierarchy. Figure 8.48 gives the
overall picture.

Let’s start with an instruction fetch just after a branch, when the instruction
prefetch buffer is empty. The virtual address in the PC is first sent to the TLB.
The most significant bit and the lowerfive bits of the page-frame address index
an entry in each bank of the TLB. Including the most-significant bit. used to dis-
tinguish system space from process space, guarantees that half of each bank
contains system translations and half contains process translations. The
addresses in the tags are comparedto see if the entry is a match to the page ad-
dress requested by the TLB. If the valid bit ofthe entry is not set then there is no
match no matter what the tag comparison says, and a missis indicated.

If there is a match, the physical address is formed by concatenating the phys-
ical page-frame address of the TLB page-table entry with the page-offset portion
of the address. To save time, the portion of the TLB containing the PTE is read
at the sametime as the tags, and a 2:1 multiplexer controlled by the tag-match-
ing logic picks the proper PTE. While the address is being formed, the protection
bits of the PTE are checked. Since this is an instruction fetch, there is no prob-
lem as long as the page can be read by a processat this level. If there are no
protection violations, this physical address is sent to the cache.

At the same time the physical address is sent to the cache, two registers in the
CPU instruction-prefetch buffer get the new values. The virtual-instruction-
buffer address register (VIBA)is given the virtual page frame of the PC, and the
physical-instruction-buffer address register (PIBA) is given the corresponding
physical address. This trick, which wasoriginally used in the first machine with
virtual memory, avoids the instruction-prefetch buffer’s accessing the TLB as
long as the instructions are from the same page. The PIBAis actually given the
PC address plus4, so that it can begin prefetching the next instruction. It contin-
ues trying to prefetch ahead of the PC until a jump (a frequent occurrencein the
VAX)or until the PIBA tries to cross a page boundary; in either case the VIBA
and PIBAare no longerused for translating instruction addresses.

Meanwhile, the cache has just received the physical address of the instruc-
tion. With 8-byte blocks, a two-way-—set-associative cache, and 512 blocks per
set, nine bits ofthe address are needed to index both banks simultaneously. The
partial addresses in the tags are compared with the corresponding bits of the
physical PC address to see if there is a match. Of course, there are valid bits in
each tag that must be turned on, or there can be no match.
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FIGURE 8.48 The overall picture of the VAX-11/780 memoryhierarchy.Individual
components can be seenin greaterdetail in Figures 8.11 (page 415), 8.29 (page 444), and
8.31 (page 450).
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If there is a match, the lowerbits of the physical PC address select the word
from the cache block to be sent to the instruction-prefetch unit. Once again,
reading data and tags together obviates any additional timedelay.

Whenthe wordarrives at the prefetch unit, it is placed in the high-order four
bytes of the buffer, and those bytes are marked valid. The PIBA immediately
begins accessing the cache with the PC addressplus 4 to prefetch the next word.
As mentioned above, as long as the page-frame address in the PC matches the
VIBA,the PIBA bypasses the TLB and goesdirectly to the cache.

Let’s assumethis instruction writes a register into memory. Thefirst step will
be to send the effective memory address to the TLB for translation. Since this is
a write, the modify bit of the matching PTE must also be turned on; this results
in a microcode-level trap of the instruction storing the register if the modify bit
isn’t set already, taking another clock cycle to write the new value in the TLB.
The physical address is then sent to the cache. We then go through the same pro-
cess as before (excluding the read), except that this time it takes an extra clock
cycle to modify the portion ofthe block selected by the write and to write it back
into the cache.

In a write-through cache the data must be written to main memory. To avoid
the seven-cycle delay of main memory on every write, the VAX-11/780 uses a
one-word write buffer. If the buffer is empty, the word is written and the CPU is
given the signal to continue.Ifit is full, the CPU stalls until the buffer is empty.

How well does the 780 work? The bottom line in this evaluation is the per-

centage of time lost while the CPU is waiting for the memoryhierarchy. In one
timesharing workload the average numberof clock cycles per 780 instruction is
10.6 clock cycles. The breakdownby category is

Compute: 7.3 clock cycles

Read: 0.8 clock cycles

Readstall: 1.0 clock cycles

Write: 0.4 clock cycles

Writestall: 0.4 clock cycles

Instruction-prefetch—bufferstall: 0.7 clock cycles

About 20% of the time the VAX-11/780 stalls while waiting for memory. When

the base CPI is 8.5 (compute + read + write), 2.1 clock cycles for the memory
hierarchy (read stall + write stall + prefetch stall) may be satisfactory, but it
would devastate the performance of a machine with a CPI ofI to 2.

Let’s analyze each unit of the 780 memory hierarchy. An instruction-
prefetch—buffer stall means that the buffer is empty, waiting for the cache to
supply instructions because of a cache miss, a branch, too many data accesses
(they have priority), not enough bytes to decode the instruction, or some com-
bination of the above. The PIBA loadings due to branches versus page crossings
vary with the benchmark, but branching is the cause 64% to 91% of the time
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(median = 76%). The prefetch unit references the cache 2.2 times on average per
VAXinstruction. The average instructionsize is 3.8 bytes, making the effective
size of the average prefetch Just 1.7 bytes,

 

Figure 3.33 in Chapter 3 (page 123) shows that the VAX executes many fewer
bytes of instructions than DLX. This ignores the instruction-prefetch buffer.
How muchshould weincrease the instruction bytes fetched from the cache to
include the effect of prefetching?

Example

  
Answer We can answerthis in a couple of ways. Every prefetch access to the cache

actually returns 4 bytes, and the average VAX instructionsize is 3.8 bytes; the
increase could therefore be

2.2 *4

3.8

 
= 2.32

     
since the prefetch unit references the cache 2.2 times per instruction. This sug-
gests that the bytes fetched from the cache should be increased by 132%.
Because the same code may be fetched multiple times by the prefetcher, how-
ever, the bandwidth between the cache and memory may not change since the
prefetcher cannot cause cache misses.

The question can also be answeredin terms of the numberof bytes discarded
because of a taken branch. About 25% of instructions change the PC on the
VAX,and there could be from zero to eight bytes in the prefetch unit when a
branchis taken. Assumingan optimistic two bytes, we get a 13% increase:

3.8 + (25% #2) _
38 = 1.13

Assumingsix bytes, we get a 39% increase:

3.8=- 139
While the variable size of VAX instructions does improve the bytes fetched

in comparison to DLX,a fairer evaluation of the VAX would increasethe bytes
fetched from the cache by at least 13% to 39%.

                                                                                                                         
With the instruction-prefetch buffer performing manytranslations via the

PIBA and VIBA, how should TLB misses be measured? The TLB instruction
and data-stream missrates provide onedefinition:

TLBinstruction-stream miss rate = Misses caused by IB" * "~~ Reloadings of PIBA
~

Misses

TLB data-stream miss rate = Requests for 32-bit words of data
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The data-stream definition means references to data objects larger than four
bytes count as multiple accesses, as do accesses to unaligned data. Figure 8.49
shows the TLB missrates.

 

 

TLB missrates Instruction stream Data stream Total

Process 0.7 % 0.6 % 0.7 %

System 15.4 % 5.4 % 7.2%

Total 3.5 % 1.6 % 1.9% 
 

 
FIGURE 8.49 Miss rates for the VAX-11/780 TLB, ignoring the impactof instructions
nottranslated by the TLB. This data was measuredona different timesharing workload
than earlier VAX measurements [Clark and Emer 1985].

Overall references to the TLB afterfiltering by the PIBA are divided into
20% user instruction stream, 62% user data stream, 3% system instruction
stream, and 15% system data stream. To accountforthefiltering of addresses by
the PIBA optimization, TLB misses can also be countedasa rate per instruction
executed, as in Figure 8.50.
a———— —————————,

 

 

TLB misses per 100 Instruction stream Data stream Total
instructions

Process 0.18 0.50 0.68

System 0.62 1.03 1.65

Total 0.80 1.53 2.33
  
 

FIGURE 8.50 Misses per hundred instructions for the VAX-11/780 TLB. Unlike Figure
8.49, this overall TLB evaluation accounts for the effect of the PIBA.

The VAX TLBspends on average 21.6 clock cycles on a miss (including 3.5
clock cycles for cache misses for some page-table entries), adding a total of 0.7
clock cycles per instruction for TLB misses to the average instruction. Thus,
about a third of the memory-system stalls are due to TLB misses.

The same study by Emer and Clark [1984] showeda significant variation on
cache missrates:

a Data-stream, cache miss rates varied over the day from 12% to 25%, with a
mean of 17%.

a Instruction-buffer—stream, cache miss rates varied from 4% to 13%, with a
mean of 8%.

« The distribution of accesses to the cache from the CPU was instruction-

prefetch—buffer—stream reads, 68%, data-stream reads, 20%, and data-stream
writes, 12%. Calculated per instruction, there are about 2.2 references from
the instruction-prefetch buffer, 0.8 data reads per instruction, and 0.4 data
writes per instruction.
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8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy

According to the VAX-11/780 Architecture Handbook, for the workload mea-
sured in 1978 the TLB miss rate was about 3%. What do the measurements say
for the timesharing workload measured in 1984?

Assuming just one memory reference to get the average VAX instruction of 3.8
bytes, the miss rate is 1%:

2.3 TLB misses
 100 instructions 2.3 -001

1+0.8+0.4 references ~ 100%#2.2~
Instruction

Including the VIBA-PIBA, Figure 8.49 on page 479 showsa 1.9% miss rate.

According to the VAX-1 1/780 Architecture Handbook, for the workload mea-
sured in 1978 the cache miss rate was about 5%. What do the measurements say
for the timesharing workload measuredin 1984?

The cache miss rate varies. The mean missrate is

68%*8% + 20%*17% + 12%*17% = 11%

In the best case, the answeris

68% *4% + 20% *12% + 12% *12% = 71%

In the worst case, |
68%*13% + 20% *25% + 12% *25% = 17%

Fallacies and Pitfalls

As the most naturally quantitative of the computer architecture disciplines,
memory hierarchy would seem to beless vulnerable to fallacies and pitfalls. Yet
the authors were limited here not by lack of warnings, but by space.

Pitfall: Too small an address Space.

Just five years after DEC and Carnegie-Melion University collaborated to design
the new PDP-11 computer family, it was apparentthat their creation had a fatal |
flaw. An architecture announced by IBM six years before thePDP-11 is still |thriving, with minor modifications, 25 years later. And the DEC VAX,criticized
for including unnecessary functions, has sold 100,000 units since the PDP-1! 1
went outof production. Why?
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The fatal flaw of the PDP-11 wasthe size of its addresses as compared to the

IBM 360 and the VAX. Address size limits the program length, since the size of
a program and the amount of data needed by the program must be less than
gaddress size The reason the addresssize is so hard to changeis that it determines
the minimumwidth of anything that can contain an address: PC, register, mem-
ory word, and effective-address arithmetic. If there is no plan to expand the
address from thestart, then the chances ofsuccessfully changing address size are
so slim that it normally meansthe end of that computer family. Bell and Strecker
[1976] putit like this:

There is only one mistake that can be made in computerdesignthatis difficult to
recover from—not having enough address bits for memory addressing and
memory management. The PDP-11 followed the unbroken tradition ofnearly
every known computer. [p. 2]

A partial list of successful machines that eventually starved to death for lack of
addressbits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel

80186, Intel 80286, AMI 6502, Zilog Z80, CRAY-1, and CRAY X-MP.

Fallacy: Given the hardware resources, the computer designer who selects a
set-associative cache over a direct-mapped cache of the same size will get a
faster computer.

The question here is whether the extra logic of the set-associative cache affects
the hit time, and therefore possibly the CPU clock rate. (See Figure 8.11.) If it
does affect hit time, then the question is whether the advantage in lower miss
rate offsets the slower hit time. In the mid-1980s many recognized this danger
and selected direct-mapped placement; for example, the MIPS M/500, Sun
3/260, and VAX 8800. Hill [1988] makes an eloquent case for direct-mapped
caches, including lower costs, faster hit times, and therefore smaller average
access times for large, direct-mapped caches. Direct-mapped caches also allow
the data read to be sent to the CPU and used even before hit/miss is determined,

particularly useful with a pipelined CPU. Hill found about a 10% difference in
hit times for TTL or ECL board-level caches and 2% difference for custom

CMOScaches, with an absolute change in the miss rates of less than 1% for
large caches. Since a direct-mapped cache hit can be accessedfaster andhit time
typically sets the clock cycle time of the processor, a CPU with a direct-mapped
cache can be as fast as or faster than a CPU with a two-way-set-associative

cacheof the samesize. Przybylski, Horowitz, and Hennessy [1988] show several
examples of such tradeoffs.

Fallacy: A memory system can be designed using traces from a different
architecture.

Figure 8.51 (page 482) showsinstruction and data cache miss rates for the same
programs on twodifferent architectures. This data is from the first portion of
execution of Spice on DLX and the VAX. Theshift from data accesses in the
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VAX toinstruction accesses on DLX seen in Figure 3.33 (page 123) of Chapter
3 is reflected here: 61% of the VAX references and 52% of the misses are to
data. Note that while DLX has only three-quarters of the absolute number of

 

 

 

 

 

       
 

 
 

            
 

 

                           
 

  
 

data misses,its data missrate is three times higher.

il a |
VAX DLX

Instruction references 576,169 918,537 |
Instruction misses 2033 3188
Instruction miss rate 0.4% 0.3%
Datareferences 923,831 264,453
Data misses . 2,200 1,595
Data missrate 0.2% 0.6%
Total references 1,500,000 1,182,990
Percentageof instructionsoftotal 38% 78%
references

Total misses . 4,233 4,782 |
Percentageof instruction misses of 48% 67%total misses

Average miss rate 0.3% 0.4%

FIGURE 8.51 Miss rates for VAX and DLX for an initial phase of Spice. The simulation
assumes separate instruction and data caches. Each cacheis direct mapped, uses 16-byte

 
blocks, and contains 64 KB. Both use write through with write allocate. (Note that unlike
Chapter2, this data wascollected using the F77 compiler and wasfor a portion of the
Spice program).

Pitfall: Basing the size of the write buffer on the speed of memory and the
average mixofwrites.

This seemslike a reasonable approach: |

 
. . Memory referencesWrite-buffer size =~“OFYteterences

Clock cycle Write percentage * Clock cycles to write memory
 

If there is one memoryreference per clock cycle, 10% of the memoryreferences
are writes, and writing a word of memory takes 10 cycles, then a one-word
buffer is added (1*10%*10=1), Calculating for the VAX-11/780 using data from |

 

               
the last section, ~

3.4 memory references * 0.4 writes x 8 clock cycles _ 0.22 |10.6 clock cycles 3.4 memory references Write —
 

 

 
 

Thus, a one-word buffer seems sufficient.
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Thepitfall is that when writes come close together, the CPU must stall until
the prior write is completed. The single-word write buffer of the VAX-11/780 is
the major reasonforits write stalling (about 20%ofall stalls). The proper ques-
tion to ask is how large a buffer is needed to keep CPU write stalls to a small
amount. The impact of write-buffer size can be established by simulation or
estimated with a queuing model.

Pitfall: Extending an address space by adding segments on top of a flat
address space.

During the 1970s, many programsgrew tothe point they couldn't addressall of
the code and data with just a 16-bit address. Machines were then revised to offer
32-bit addresses, either through a flat 32-bit address space or by adding 16 bits
of segmentto the existing 16-bit address. From the point of view of marketing,
adding segmentssolves the addressing problem. Unfortunately, there is trouble
any time a programming language wants an addressthat is larger than one seg-
ment, such as indices for large arrays, unrestricted pointers, or reference
parameters. Moreover, adding segments can turn every address into two
words—one for the segment number and one for the segment offset—causing
problemsin the use ofaddresses in registers. In the 1990s, 32-bit addresses will
be exhausted, andit will be interesting to see if history will repeat itself on the
consequencesof goingto larger flat addresses versus adding segments.

Fallacy: Cachesare asfast as registers.

This fallacy is important, becauseif caches were asfast as registers, there would
be no needfor registers. Without registers there would be no need for a register
allocator, and so compilers could be simpler. The fallacy is difficult to prove
quantitatively, yet example after example can be cited. Lampson [1982] summa-
rized this experience:

A register bank is faster than a cache, both becauseit is smaller, and because
the address mechanismis much simpler. Designers ofhigh performance
machineshavetypically foundit is possible to read oneregister and write
another in a single cvcle, while two cycles [latency] are neededfor a cache
access. ... Also, since there are not too manyregistersit is feasible to duplicate
ortriplicate them, so that several registers can bereadout simultaneously.
Ip. 74]

As mentioned in Chapter3, the short addresses ofregisters allow more compact
instruction encoding. It seems to the authors that the deterministic access of
multiported register banks will always offer lower latency or higher bandwidth,
or both, when compared to the nondeterministic access of caches.
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FIGURE 8.52 Summaryof the memory-hierarchy examplesin this chapter.

 
484 8.11 Concluding Remarks

sg. 1 1 Concluding Remarks

The difficulty of building a memory system to keep pace with faster CPUsis
underscored by the fact that the raw material for main memory is the same as
that found in the cheapest computer.It is the principle of locality that saves us
here—its soundness is demonstrated at all levels of the memory hierarchy in
current computers, from disks to instruction buffers.

Register Instruction- TLB First-level Second-level Virtual
windows prefetch cache cache memorybuffer

Block size 64 bytes I byte 4-8 4-128 bytes 32-256 512 — 8192
(1 PTE) bytes bytes

Hit time Iclock cycle Iclockcycle Iclockcycle 1 — 4 clock 4-10 clock 1 — 10 clock
cycles cycles cycles

; Miss penalty 32-64clock 2-6clock 10-30 clock 8-32 clock 30-80 clock 100,000 —
cycles cycles cycles cycles cycles 600,000

clock cycles

Missrate 1% — 3% 10% ~ 25% 0.1% ~ 2% 1% — 20% 15% — 30% 0.00001 % — |(local) 0.001%
Size 512 bytes 6 — 12 bytes 32 - 8192 | KB- 256 KB — 4 MB -

(8 — 1024 256 KB 4 MB 2048 MB
PTEs)

Backing First-level First-level First-level Second-level —Static- Disks
store cache cache cache cache column

DRAM

Q!I: block Circular N.A. Set asso- Direct Set asso- Fully
placement buffer (Queue) ciative mapped Ciative associative
Q2: block 2 registers: Valid bits + Tag/ Tag/ Tag/ Table
identification highandlow 1 register block block block
Q3: block re-—First in— N.A. Random N.A.(Direct Random LRU
placement first out (Queue) y’mapped)
Q4: write Write back Flush on Flush on Write Write Write back
strategy write to in- write to page—_through or through or

struction table write back write back
buffer

Cif possible) ;

—~

Misses in every level can be categorized by three causes—compulsory,
capacity, and conflict—anddifferent techniques work for each case. Figure 8.52
summarizesthe attributes of the memory-hierarchy examples described in this
chapter.
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 There tends to be a knee in the curve of memory-hierarchy cost/performance:

Abovethat knee is wasted performance and below that knee is wasted hardware.
Architects find that knee by simulation and quantitative analysis.

Historical Perspective and References

While the pioneers of computing knew ofthe need for a memory hierarchy and
coined the term, the automatic managementof twolevels wasfirst proposed by
Kilburn, et al. [1962] and demonstrated with the Atlas computer at the Univer-

sity of Manchester. This was the year before the IBM 360 was announced.
While IBM plannedforits introduction with the next generation (System/370),
the operating system wasn’t up to the challenge in 1970. Virtual memory was
announced for the 370 family in 1972, and it was for this machine that the term

| “translation-lookaside buffer” was coined (see Case and Padegs [1978]). The
only computers today without virtual memory are a few supercomputers and
personal computers.

Both the Atlas and the IBM 360 provided protection on pages, and over time
machines evolved more elaborate mechanisms. The most elaborate mechanism

was capabilities, which reachedits highest interest in the late 1970s and early
1980s [Fabry 1974 and Wulf, Levin, and Harbison 1981]. Wilkes [1982], one of
the early workers on capabilities, had this to say about capabilities:

Anyone whohas been concerned with an implementation of the type just
described [capability system], or hastried to explain oneto others, is likely to
feel that complexity has got out ofhand. It is particularly disappointing that the
attractive idea of capabilities being tickets that can be freely handedaroundhas
becomelost ....

Comparedwith a conventional computer system, there will inevitably be a cost
to be met in providing a systemin which the domains ofprotection are small and
frequently changed. This cost will manifestitself in termsofadditional hard-
ware, decreased runtime speed, and increased memory occupancy. It is at
present an open question whether, by adoption of the capability approach, the
cost can be reducedto reasonable proportions.

Todaythereis little interest in capabilities either from the operating systems or
the computer architecture communities, although there is growing interest in
protection and security.

Bel! and Strecker [1976] reflected on the PDP-11 and identified a small
address space as the only architectural mistake that is difficult to recover from.
Atthe time of the creation of PDP-11, core memories were increasing at a very

slow rate, and the competition from 100 other minicomputer companies meant
that DEC might not have a cost-competitive product if every address had to go
through the 16-bit datapath twice. Hence, the decision to add just 4 more address
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bits than the predecessor of the PDP-11. The architects of the IBM 360 were
aware of the importance ofaddress size and planned for the architecture to
extend to 32 bits of address. Only 24 bits were used in the IBM 360, however,
because the low-end 360 models would have been even slower with the larger
addresses, Unfortunately, the architects didn’t reveal their plans to the software
people, and the expansioneffort was foiled by programmers whostored extra
information in the upper eight “unused”addressbits.

A few yearsafter the Atlas paper, Wilkes published the first paperdescribing
the concept of a cache [1965]:

The useis discussed ofa fast core memoryof, say, 32,000 words as slave to a
slower core memory of, say, one million wordsin such a waythatin practical
casestheeffective access timeis nearer that ofthe fast memorythan that ofthe
slow memory. [p. 270]

This two-page paper describes a direct-mapped cache. While this is the first
publication on caches, thefirst implementation was probably a direct-mapped
instruction cache built at the University of Cambridge. It was based on tunnel!
diode memory, the fastest form of memory available at the time. Wilkes states
that G. Scarott suggested the idea ofa cache memory.

Subsequent to that publication, IBM started a project that led to the first
commercial machine with a cache, the IBM 360/85 [Liptay 1968]. Gibson
[1967] describes how to measure program behavior as memorytraffic as well as
miss rate and shows howthe miss rate varies between programs. Using a sample
of 20 programs(each with 3,000,000 references!), Gibson also relied on average
memory-access time to compare systems with and without caches. This was over
20 years ago, andyet many used missrates until recently.

Conti, Gibson, and Pitkowsky [1968] describe the resulting performance of
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 programsin
the paper, even thoughthe 360/85 has a slower clock cycle time (80 ns versus 60
ns), smaller memory interleaving (4 versus 16), and a slower main memory
(1.04 [sec versus 0.75 lsec). This is the first paper to use the term “cache.”
Strecker [1976] published the first comparative cache-design paper examining
caches for the PDP-11. Smith [1982} later published a thorough survey paper.
using the terms “spatial locality” apd “temporal locality”; this paper has served
as a reference for many computer designers. While most studies have relied on
simulations, Clark [1983] used a hardware monitor to record cache misses of the
VAX-11/780 over several days. Section 8.9 reports these findings, along with
the work Clark did with Emer on TLBs [1984, 1985]. A similar study wasper-
formed on the VAX 8800 [Clark et al. 1988]. Agarwal, Sites, and Horowitz
[1986] changed the microcode of a VAX to maketraces of system and user
code. These traces are used in this book (and are available through the
publisher). Hill [1987] proposed the three Cs used in Section 8.4 to explain
cache misses. Caches remain an active area of research, as Siith [1986] has
recorded in his extensive bibliography.
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Many of the ideas in the advanced cache section have only been tried
recently. The inclusion of caches on microprocessors such as the Motorola
68020gave rise to two-level cache machines: the Sun 3/260 in 1986 was perhaps
the first. In 1988, the Silicon Graphics 4D/240 had twolevels of caches for data
and instructions, with the second level added primarily for cache coherency to
allow four-way multiprocessing. The MIPS RC 6280 is probably the first
machine to go to two-level caches for the reasons given on page 465 [Roberts,
Taylor, and Layman 1990]. Goodman and Chiang [1984] were the first to
publish an investigation of static-column DRAM in a memory hierarchy, while
Kelly [1988] refined the idea by using virtual addresses. Goodman [1987]
showed that aliases can be handled at cache-miss time, and Wang, Baer, and
Levy [1989] show that the extra control for this does not look too bad for two
levels of cache.

In comparison to the other ideas in the advanced section, cache-coherency
research is much older. Tang [1976] published the first cache-coherency proto-
col using directories, and this approach was implemented in the IBM 3081.
Censier and Feautrier [1978] describe a technique with status tags in memory.
The first machine to use snooping caches was the Synapse N+1 {Frank 1984];
the first publication on snooping caches was by Goodman[1983]. Archibald and
Baer [1986] survey the wide variety of schemes for cache coherency. References
on the protocols mentioned in their paper and in Figure 8.45 are Frank [1984]
for Synapse; Goodman {1983] for Write Once: Katz et al. [1985] for Berkeley;
McCreight [1984] for Dragon; Papamarcos and Patel [1984] for Illinois; and
Thacker and Stewart [1987] for Firefly. Baer and Wang [1988] discuss
multilevel inclusion. Eggers’s [1989] nomenclature for categorizing snooping
caches is adopted in this text. Chapter 10, Section 10.7 mentions the use of
prefetching to improve cache performance, and Kroft [1981] describes the
design of a cache that allows the cache to service subsequent requests while the
requesteddata is prefetched. Przybylski [1990] and the dissertations by Agarwal
{1987}, Eggers [1989], and Hill [1987] investigate many aspects of the advanced
cache topics in more depth.

Papers on anotheruse oflocality, register windowsor stack caches, are by
Patterson and Sequin [1981], Ditzel and McClellan [1982], and Lampson
[1982]. Sites wrote an earlier paper [1979] suggesting one way to use the
expanding resources of VLSI wasto get higher performance by using a lot of
registers, and these schemesare one interpretation of that recommendation.
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EXERCISES

8.1 [15/15/12/12] <2.2,8.4> Let's try to show how you can make unfair benchmarks.
Here are two machines with the same processor and main memory but different cache
organizations. Assume the miss time is 10 times a cache-hit time for both machines.
Assume writing a 32-bit word takes 5 times as long as a cachehit (for the write-through
cache), and that writing a whole 16-byte block takes 10 times as long as a cache-readhit.
(for the write-back cache). The caches are unified; that is, they contain both instructions
and data. ‘
Cache A: 64 sets, 2 elements per set, each block is 16 bytes, and it uses write through.

          
Cache B: 128 sets, 1 element per set, each blockis 16 bytes, and it uses write back.

 
a. [15] Describe a program that makes machine A run as muchfaster as possible than |

machine B. (Besureto state any furtfier assumptions you need,if any.)
b. [15] Describe a program that makes machine B run as much faster as possible than

machine A. (Be sure to state any further assumptions you need, if any})

    
¢. [12] Approximately how muchfaster is the program in Part a on machine A than

machine B?

      
d. [12] Approximately how muchfaster is the program in Part b on machine B than

machine A? 
8.2 [20] <2.2,6.4,8.4> To simplify pipelined execution, some machines insert NOP
instructions rather than interlock the pipeline (see pages 273-275in Chapter6). Ignoring \
cache misses, assumethat the Spice code takes 2,000,000 clocks in either case (since the
version without NOPSstill interlocks, which takes an extra clock each time.) Figure 8.53
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shows data collected for a portion of Spice execution with a 64-KB, direct-mapped,
instruction-only cache with one-wordblocks.

 

 

esTTooo

| With NOPS Without NOPS Ratio with/without
| Total references 1,500,000 1,180,000 1.27
| Cache misses 34,153 24,908 1.37
| Miss rate 2.28 2100 1,09 
FIGURE 8.53 Spice miss rates with and without NOPs.

The conclusion of a study based on Figure 8.53 wasthat a 9%. increase in the miss rate of
the program with NOPSwill have a small but measurable impact on performance. What
is the actual impact on performance assuming a 10-clock miss penalty?

8.3 [15/15] <8.4> You purchased an Acme computer with the following features:

1. 90% of all memory accesses are found in the cache:

2. Bach cacheblock is two words, and the whole block is read on any miss:

3. The processor sends references to its cache at the rate of 107 words per second;
4, 25%of the references of(3) are writes:

5. Assumethat the bus can support 10’ words per second, reads or writes;

6. The bus reads or writes a single word at a time (the bus cannol read or write two
wordsat once),

7. Assumeat any one time, 30% ofthe blocks in the cache have been modified;
8. The cache uses write allocate on a write miss.

You are considering adding a peripheralto the bus, and you want to know how much of
the bus bandwidthis already used. Calculate the percentage ofbus bandwidth used on the
average in the two cases below. The percentage is called the traffic ratio in the literature.
Be sure to state your assumptions.

a. [15] The cache is write through.

b. [15] The cacheis write back.

8.4 [20] <8.4> One drawback tothe write-back schemeis that writes will probably take
two cycles. During the first cycle, we detect whether a hit will occur, and during the
second (assuming a hit) we actually write the data. Let’s assumethat 50% of the blocks
are dirty for a write-back cache. Using statistics for loads and stores from DLX in Figure
C.4 in Appendix C, estimate the performance of a write-through cache with a one-cycle
write versus a write-back cache with a two-cycle write for each of the programs. Forthis
question, assume that the write buffer for write through will never stall the CPU (no
penalty). Assume a cache hit takes 1 clock cycle. the cache miss penalty is 10 clock
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cycles, and a block write from the cache to main memory takes 10 clock cycles. Finally,
assumethe instruction-cache missrate is 2% and the data-cache miss rate is 4%,

8.5 [15/20/10] <8.4> To save developmenttime, the Sun 3/280 and the Sun 4/280 used
identical memory systems, even though the CPUs were quite different. Assume the same
Case exists for a new machine, one board using a VAX CPU and the other a DLX CPU.
For now assume the miss-rate information in Figure 8.12 and 8.16 (pages 421 and 424)
apply to both architectures. Use the average column in Figure C.4 in Appendix C as
needed for DLX instruction mix, and the caption of Figure 8.16 (page 424) for VAX
instruction/data mix. Assume the following:

  
Miss penaltyis 12 clock cycles. |
A perfect write buffer that never stalls the CPU.

The base CPI assuming a perfect memory system its 6.0 for the VAX and1.5 for DLX.

        
A unified cache adds | extra clock cycle to each load and store of DLX (sincethereis
a single memory port) but not for the VAX,

         
Youare considering three options:

  
I. A 4-way-—set-associative unified cache of 64 KB.

2. Two 2-way-set-associative caches of 32 KB each, one for instructions and one fordata.

   
a. [15] Whatis the average memory-access time in clock cycles for each organization? |

         
b. [20] Whatis the CPI for each machine and cache organization?
c. [10] What cache organization gives the best average performancefor the two CPUs?

                            
8.6 [25/15] <2.3,8.4.8.8> Some microprocessors have custom single-chip caches as |
companions to the CPU. For example, thé Motorola 88100 CPU can have up to 8 ofthe |88200 cache chips. These chips tend to be more expensive than off-the-shelf static RAM
chips. The MIPS R3000 includes a comparator on the CPU chip so that cache tags and |
data can be built from off-the-shelf static RAMs. |

                                                                                                                                                                                            
a. [25] Using the Program that analyzes cache miss rates how many 16K-by-4 cache

with a 4-word write buffer. The Motorola 88200 is 4-way set associative with 16 KB
per chip and a 16-byte block using LRU replacement,

b. [15] Hereis the data on the price of each chip (quantity | as of 8/1/89):
Motorola 88100: $697

]Motorola 88200: $875
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MIPS R3000 (25 MHz): $300

MIPS R3010 FPU (25 MHz): $350

16K by 4 SRAM(for 25 MHz R3000): $21

Which system will be cheaper and by how much?

8.7 [15/25/15/15} <2.3,8.4> The Intel i860 has its caches on chip and its die size is
1.2 cm*1.2 cm. It has a 2-way-—set-associative, 4-KB instruction cache and a 2-way-set-
associative, 8-KB data cache using write through or write back. Both caches use 32-byte
blocks. There are no write buffers or process identifiers to reduce cache flushing. The
1860 also includes a 64-entry, 4-way—set-associative TLB to mapits 4-KB pages. Address
translation occurs before the caches are accessed. The Cypress 7C601 CPU chip size is
0.8 cm by 0.7 cm and has no on-board cache—a cache controller chip (7C604) and two
16K * 16 cache chips (7C157) are offered to form a 64-KB unified cache. The controller
includes a TLB with 64 entries managed fully associatively with 4096 process identifiers
to reduce flushing. It supports 32-byte blocks with direct-mapped placement, and either
write through or write back. There is a one-block write buffer for write back and a four-

word write buffer for write through. The chip sizes are 1.0 cm by 0.9 cm for the 7C604
and 0.8 cm by 0.7 cm.for the 7C157.

a. [15] Using the cost model of Chapter 2, whatis the cost of the Cypress chip set
versus the Intel chip? (Use Figure 2.11 on page 62 to determinechip costs by finding
the closest die size in that table to the Intel and Cypressdie area.)

b. [25] Use the DLX cache traces and cache simulator to determine the average
memory-access time for each cache organization. Assume a miss takes 6 clocks

latency plus | clock for each 32-bit word. Assumeboth systemsrun at the same clock
rate and use write allocate.

c. [15] What is the comparative cost/performanceofthese chips using average memory-
access time as the measure?

d. [15] What is the percent increase in cost of a color workstation that uses the more

expensive chips?

8.8 [25/10/15] <8.4> The CRAY X-MP instruction buffers can be thought of as an
instruction-only cache. Thetotal size is 1 KB, broken into 4 blocks of 256 bytes per
block. The cacheis fully associative and uses a first-in/first-out replacementpolicy. The
access time on a miss is 10 clock cycles, with the transfer time of 64 bytes every clock
cycle. The X-MPtakes | clock cycle on a hit. Use the cache simulator and the DLX
traces to determine:

a. [25] Instruction miss rate

b. [10] Average instruction memory-access time measured in clock cycles

c. [15] What does the CPI of the CRAY X-MP have to be for the portion due to
instruction cache misses to be 10% orless?
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8.10 [25] <8.4> One approach to reducing missesis to Prefetch the next block. A simplebuteffective Strategy is when block ; is referenced to makesure block +1 is in the cache,

                                                
8.11 [20/25] <8.4> Smith and Goodman [1983] found that fora small-instruction—only
cache, a cache using direct mapping could consistently outperform one using fully |associative with LRU replacement.

                                
a. [20] Explain why this would be Possible. (Hint: you can’t explain this with the 3C

model becauseit ignores replacement policy.)

            
b. [25] Use the cache simulator to see if their results hold for the traces.

       
Set-associative mapping the miss rate for 2-KB cacheis -010, a 4-KB cacheis .013, and

             
a. Nocache and no write buffer,

     
b. A 64-KB, direct-mapped, write-though cache with four-wordblocks.  

        
c. A 64-KB, direct-mapped, write-back cache with four-word blocks.

                                   
d. A 64-KB, direct-mapped, write-though cache with four-word blocks but the

“interleaving” comes from a page-mode DRAM.

€. A 64-KB, direct-mapped, write-back cache with four-word blocks but the
“interleaving” comes from a page mode DRAM,

8.14 [20] <8.6> If the base CPI with a perfect memory system is 1.5, whatis the CPI forthese cache Organizations? Use Figure 8.12 (page 421):

     
a. Direct-mapped, 16-KB unified cache using write back,
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b. Two-way-set-associative, 16-KB unified cache using write back.
c. Direct-mapped, 32-KB unified cache using write back.

Assume the memory latency is 6 clocks, the transferrate is 4 bytes per clock cycle and
that 50% of the transfers are dirty. There are 16 bytes per block and 20% of the
instructions are data-transfer instructions. The caches fetch wordsofthe block in address
order and the CPUsstall until all words of the blockarrive. There is no write buffer. Add
to the assumptions above a TLB that takes 20 clock cycles on a TLB miss. A TLB does
not slow downa cachehit. For the TLB, make the simplifying assumption that 1% ofall
references aren't found in TLB, either when addresses come directly from the CPU or
when addresses come from cache misses. Whatis the impact on performance of the TLB
if the cache above is physicalor virtual?

8.15 [30] <3.8,8.9> The example in Section 8.9 {page 478) refines the instructions
fetched into the CPU from the cache due to the instruction-prefetch buffer. How doesthis
increase of 13% to 39% in instruction words fetched affect the difference in the
instruction words fetched from DLX versus VAX? The extra instruction fetches of the
VAX hurt only when they bring something into the cachethat is not used beforeit is
displaced, while DLX would seem to needalarger cacheforits larger program. Write a
simulator emulating the instruction-prefetch buffer to measure the increase in cache
misses using the VAX address traces and see if prefetching is a significant increase incache misses.

8.16 [25-40] <8.7> Study the impact of adding register windows to DLX. This study can
range from simply estimating the register-traffic savings to modifying the DLX compiler
and simulator to measure costs and benefits directly.

8.17 [10] <8.8> Data General described the design of a three-level cache for an ECL
implementation of the 88000 architecture. Whatis the formula for average access time for
a three-level cache?

8.18 [20] <8.8> What is the performanceloss for a four-way multiprocessor with I/O
devices? Suppose 1% ofall data references to the cache cause invalidation to the other
data caches and that all CPUsstall four clocks on an invalidation. Assume a 64-KB,
direct-mapped cachefor data and a 64-KB, direct-mapped cache for instructions with a
block size of 32 bytes yields a 1% miss rate for instructions and a 2% miss rate for data,
with 20% ofall CPU memory references being for data. The CPI of the CPU is 1.5 with a
perfect memorysystem andit takes 10 clocks on a cache miss whetherthe datais dirty orclean.

8.19 [25] <8.8> Use the traces to calculate the effectiveness of early restart and out-of-
order fetch. What is the distribution of first accesses to a block as block size increases
from 2 words to 64 words by factors of twofor:

a. A 64-KB, instruction-only cache?

b. A 64-KB, data-only cache?
c. A 128-KBunified cache?

Assume direct-mapped placement.
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8.20 [30] <8.8> Use the cache simulator and traces with a program you write yourself to
compare the effectiveness schemesfor fast writes:

a. 1-word buffer and the CPU stalls on a data-read cache miss with a write-through
cache.

b. 4-word buffer and the CPU stalls on a data-read cache miss with a write-through
cache.

  
c. 4-word buffer and the CPUstalls on a data-read cache miss only if there is a potential

conflict in the addresses with a write-through cache.

d. A write-back cache that writes dirty data first and then loads the missed block.

e. A write-back cache with a one-block write buffer that loads the miss data first and

then stalls the CPU on a clean missif the write buffer is not empty.

f. A write-back cache with a one-block write buffer that loads the miss data first and

then stalls the CPU on a clean miss only if the write buffer is not empty andthere is

a potential conflict in the addresses.

       
Assume a 64-KB, direct-mapped cache for data and a 64-KB, direct-mapped cache for
instructions with a block size of 32 bytes. The CPI of the CPU is 1.5 with a perfect
memory system andit takes 14 clocks on a cache miss and 7 clocks to write a single word
to memory.

8.21 [30] <8.8> Use the cache simulator and traces with a program you write yourself to
create a two-level cache simulator. Use this program to see at what cache size is the
global miss rate of a second-level cache approximately the sameas a single-level cache of
the samecapacity.

 
8.22 [Discussion] <8.6> Some people have argued that with increasing capacity of
memory storage per chip, virtual memory is an idea whose time has passed, and they
expect to see it dropped from future computers. Find reasons for and against this
argument.

    
8.23 [Discussion] <8.6> So far, few computer systems take advantage of the extra

security available with gates and rings found in a machinelike the Intel 80286. Construct
some scenario whereby the computer industry would switch over to this model of
protection.

| \
8.24 [Discussion] <8.4> Recent research has tried to use compilers to improve cache |
performance (see McFarling [1989] and Samples and Hilfinger| 1988]): |
a. Whichof the 3C’s are compilers trying to improve and which are they not? Why?

b. Which mappingis best for compiler improvement? Why?

8.25 [Discussion] <8.3> Many times a new technology has been invented that is expected
to make a major change to the memory hierarchy. For the sake of this question, let's
suppose that biological computer technology becomes a reality. Suppose biological  
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memory technology has an unusual characteristic: It is as fast as the fastest
semiconductor DRAMs, andit can be randomly accessed; but it only costs as much as
magnetic-disk memory. It has the further advantage of not being any slower no matter
howbig it is. The only drawback is that you can only Write it Once, but you can Readit
Many times. Thus it is called a “WORM” memory. Because of the way it ts
manufactured, the WORM- memory module can be easily replaced. See if you can come
up with several new ideas to take advantage of WORMs tobuild better computers using

   
  
  
  
  
  

  
“bio-technology.”
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1/0 certainly has been laggingin the last decade.

SeymourCray, Public Lecture (1976)

Also, I/O needsa lot of work.
David Kuck, Keynote Address,

15th Annual Symposium on Computer Architecture (1988)      
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9.1 | Introduction 
Input/output has been the orphan of computer architecture. Historically
neglected by CPU enthusiasts, the prejudice againstI/Ois institutionalized in the
most widely used performance measure, CPU time (page 35). Whether a
computer has the best or the worst I/O system in the world cannot be measured
by CPU time, which by definition ignores I/O. The second class citizenship of
I/O is even apparentin the label “peripheral” applied to I/O devices.

This attitude is contradicted by common sense. A computer without I/O
devices is like a car without wheels—you can’t get very far without them. And
while CPU timeis interesting, response time—the time between when the user
types a command and whenshegets results—is surely a better measure of
performance. The customer whopaysfor a computer cares about response time,
even if the CPU designer doesn’t. Finally, as rapid improvements in CPU perfor-
mance compresstraditional classes of computers together, it is I/O that serves to
distinguish them:

« The difference between a mainframe computer and a minicomputeris that a
mainframe can support many more terminals and disks.

« The difference between a minicomputer and a workstation is that a
workstation has a screen, a keyboard, and a mouse.
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« The difference between a file server and a workstationis that a file server has
disks and tape units but no screen, keyboard, or mouse.

« The difference between a workstation and a personal computer is that
workstationsare always connected together on a network.

Tt may cometo pass that computers from high-end workstations to low-end
supercomputers will use the same “super-microprocessors.” Differences in cost
and performance would be determined only by the memory and I/O systems
(and the numberof processors).

1/O’s revenge is at hand. Suppose we have a difference between CPU time
and response time of 10%, and we speed up the CPU bya factor of 10, while
neglecting I/O. Amdahl’s Lawtells us that we will get a speedup of only 5
times, with half the potential of the CPU wasted. Similarly, making the CPU 100
times faster without improving the I/O would obtain a speedup of only 10 times,
squandering 90% of the potential. If, as predicted in Chapter 1, performance of
CPUs improvesat 50% to 100% per year, and I/O does not improve, every task
will become I/O bound. There would be no reason to buy faster CPUs—and no
jobs for CPU designers.

While this single chapter cannot fully vindicate I/O, it mayat least atone for
someofthe sins of the past and restore some balance.

Are CPUs EverIdle?

Somesuggestthat the prejudice is well founded. I/O speed doesn’t matter, they
argue, since there is always another process to run while one process waits for a
peripheral.

There are several points to make in reply. First, this is an argument that
performance is measured as throughput—moretasks per hour—rather than as
response time. Plainly, if users didn’t care about response time, interactive
software never would have been invented, and there would be no workstations
today. (The next section gives experimental evidence on the importance of
response time.) It may also be expensive to rely on processes while waiting for
W/O, since main memory must be larger or else the pagingtraffic from process
switching would actually increase 1/O. Furthermore, with desktop computing
there is only one person per CPU,and thus fewer processes thap in timesharing;many times the only waiting process is the human being! And some
applications, such as transaction processing (Section 9.3), place strict limits on
response timeas part of the performance analysis.

Butlet’s accept the argumentatface value and explore it further. Supposethe
difference between response time and CPU time today is 10%, and a CPU thatis
ten times faster can be achieved without changing I/O performance. A process
will then spend 50% ofits time waiting for I/O, and two processes will have to
be perfectly aligned to avoid CPUstalls while waiting for I/O. Any further CPU
improvementwill only increase CPUidle time.
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9.2

Thus, I/O throughput can limit system throughput, just as I/O response time
limits system responsetime. Let’s see how to predict performancefor the whole
system.

Predicting System Performance

System performanceis limited by the slowest part of the path between CPU and
I/O devices. The performanceof a system can belimited by the speed ofany of
these pieces of the path, shown in Figure 9.1:
« The CPU

a The cache memory

» The main memory

a The memory-I/O bus

« The I/O controller or I/O channel

= The I/O device

a The speed ofthe I/O software

« Theefficiency of the software’s use of the I/O device

Processor

 

 
 

 

Interrupts  

Memory-1/O bus  
 

 
 

 
 
 
 
 

 
||

vO vO vo
. controller controller controllerMain

memory

  NetworkGraphics
output

FIGURE 9.1 Typical collection of I/O devices ona computer.
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If the system is not balanced, the high performance of some components may be
lost due to the low performance ofone link in the chain. The art of I/O design is
to configure a system such that the speeds ofall components are matched.

In earlier chapters we have assumedthat the fastest CPU is the single object
of our desire, but CPU performanceis not the same as system performance. For
example, suppose we have two workloads, A and B. Both workloads take 10
seconds to run. Workload A doessolittle I/O that it is not worth mentioning.
Workload B keeps I/O devices busy four seconds, and this time is completely
overlapped with CPU activities. Suppose the CPU is replaced by a newer model
with five times the performance. Intuitively, we realize that workload A takes
two seconds—fully five times faster—but workload B is I/O bound and cannot
take less than four seconds. Figure 9.2 illustrates our intuition.

    
Old CPU, VO timeworkload A CPU time

Old CPU, VO timeworkload B CPU time

NewCPU, //O time
workload A CPU time

New CPU, /O time
workload B CPUtime

Time (secs)

 
FIGURE 9.2 The overlapped execution of the two workloads with the original CPU
and then a CPUwith five times the performance. We can seethat the elapsed time for
workload A is indeed 1/5 of the time with the new CPU, butit is limited to four secondsin

workioad B because I/O speedis not improved.

 
7

Determining the performance of such cases requires a new formula. The

elapsed execution time of a workload can be brokeninto three pieces

   
Timeworkload = Timecpy + Timeyo — Timeoverlap

where Timecpy meansthe time the CPU is busy, Timej/o means the time the
I/O system is busy, and Timeoyerjap Means the time both the CPU and the 1/0
system are busy. Using workload B with the old CPU in Figure 9.2 as an
example, the times in secondsare:

 
10 for Timeyorkload:

 
10 for Timecpy,
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4 for Timeyg, and  
4 for Timeoyerjap:

Assuming we speed up only the CPU, one way to calculate the time to
execute the workloadts:

Timecpu
Timeyorkload = Ty+ Timer— ;

i! Timeoverlap_
Speedupcpy Speedupcpu

Since the CPU time is shrunk, it stands to reason that the overlap time is also
shrunk. The system speedup when we want to improve I/O is equivalent:

Timeyjo_ . TimeoverlapTime = Time + -
IM€workload CPU Speedupyo Speedupyo

Let’s try an example before explaining a limitation of these formulas.

One workload takes 50 seconds to run, with the CPU being busy 30 seconds and
the I/O being busy 30 seconds. How muchtime will the workload take if we
replace the CPU with onethat has four times the performance?

The total elapsed time is 50 seconds, yet the sum of CPU time and I/O timeis 60
seconds. Thus the overlap time must be 10 seconds. Plugging into the formula:

Timecpu_|7. Timeoveriap_30 1
Timeworkload = Speedupcpy + Timeyo — Speedupcpy > 4 43 4

This example uncovers a complication with this formula: How much of the
time that the workload is busy on the faster CPU is overlapped with I/O? Figure
9.3 (page 504) shows three options. Depending on the resulting overlap after
speedup,the time for the workload varies from 30to 37.5 seconds.

In reality we can't know whichis correct without measuring the workload on
the faster CPU to see what overlap occurs. The formulas above assume option
(c) in Figure 9.3; the overlap scales by the same speedupas the CPU, so wewill
call it Timegealeg (rather than Timeworkload): Maximum overlap assumesthat as
muchofthe overlap as possible is maintained, but that the new overlap cannot
be larger than the original overlap or the CPU time after speedup. Minimum
overlap assumes that as much ofthe overlap as possible is eliminated, but that
the overlap time will not shrink by more than the time removed from the CPU or
I/O time. If we introduce the abbreviations Newcpy = Timecpy / Speedupcpy

and Newyo = Timeyjo / Speedupyjo. the time of the workload for maximum
overlap (Timepest) and minimum overlap (Timeworst) can be written as:

Timepest = Newcpyu + Timeyo — Minimum (Timeoverlap»Newcpu)

Timeyorst = Newcpu + Timeyo ~ Maximum(0,Timegyertap— (Timecpyu-Newcpu))
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(a) Before (50 secs) {b) After: “Maximum overlap” (30 secs)
Time overiap Time overiap

tine CTT twee ETT]
CTT) Time cpy [o]rimegey

(c) After: "Scaled overlap” (35 secs) (d) After: “Minimum overlap” (37.5 secs)

 
Time overlap

(T]Timecpy [| Timecpy

     
 
FIGURE 9.3 The original overlap in the example above (a) and three interpretations
of overlap after speedup. Each block represents 10 seconds, except that the block for the
new CPU timeis 7.5 seconds. The overlapped portions of Timecpy and Time} are

A shaded.(b) shows the new Tim@cpy overlapping completely with I/O, giving a time of the
workload of 30 seconds. (c) shows the overlap of the Timegpy is scaled with Speedupcpy,
giving a total of 35 seconds, with 2.5 seconds of overlapped execution. (d} shows no
overlap with I/O, so the total is 37.5 seconds.

       
Calculate the three time predictions for workload B in Figure 9.2 

Timepos = + 4— Minimum (O.4)=244-224 
Timescaed="5 ¢4~ $= 244-08 =5.2 
Timeworst = ° + 4— Maximum (0,4-( 10) =2+4-0=6-

Q

Sometimes changes will be madeto both the CPUandthe I/O system. The
formulas become:

  
Timeovtrtap
peedupcpy,Speedupyo)

 
Timescaled = Newcpy + Newyo — Maximum(S

Timepes, = Newcpy + Newyo Minimum(Timeoyertap,Newcpy,Newyo)

    
Timeyorst = Newcpy + Newjjo ~ Max (0,Timeoyerlap-Max (Timecpu—Newcpy,Timeyg—Newo))
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The formula for scaled overlap says that the overlap period is reduced by the
larger of the two speedups. The formula for maximum overlap (Timepest) says
that as muchoverlap aspossible is retained, but the new overlap cannotbe larger
than the original overlap or the CPU or I/O time after speedup. Finally, the
formula for minimumoverlap (Timeyorst) says that the overlap is reduced by
the larger of the time removed from the CPU time and the time removed from

the I/O time (but that the overlap time cannot beless than 0). Figure 9.4 shows
the three examples of speedup where both the I/O and CPU are improved.
 

(a) Before (50 secs) (b) After: "Maximum overiap” (15 secs)
TIME overiap Time overlap

CLvy [J] rine oy

(c) After: “Scaled overlap” (20 secs) (cd) After: “No overlap” (22.5 secs)

TIM overlap

time. [TT] TimeT|
(| Time py [| Time cpy 

 
 

FIGURE9.4 Time for workload in Figure 9.3(a) with Speedupepy = 4 and
Speedupyo = 2.

Let's look at a detailed example showing speedup of both the CPU and I/O.

Suppose a workload on the current systems takes 64 seconds. The CPU is busy
the whoie time, and the channels connecting the I/O devices to the CPU are busy
36 seconds. The computer manageris considering two upgrade options: either a
single CPU that has twice the performance, or two CPUs that have twice the
throughput and twice as many channels. The time of the actual I/O devicesis so
small it can be ignored. For the dual CPU option assume that the workload can
be evenly spread between the CPUs and channels. What is the performance
improvement for each option?

Since there is no change to the J/O system with the single faster CPU, time for
the workload assuming scaled overlap is then simply

 
; Timecpu . TimeoverlapTimegcaled = C27; + Timeyo — :

sealed~Speedupcpu V0 Speedupcpu
3

=) 436-7) = 32+ 36-18 =50
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For the dual CPU with more channels,

Timescaled =

_Timecpu , Timeyg Timegyertapa
Speedupcpy Speedupyo Maximum(Speedupcpy, Speedupyo)

- 4,36 36_ = 324+18-18 = 322 * 2 ~ Maximum(2. 2)

Assuming scaled overlap, the dual CPU is more than 50% faster. Using best-
case scaling, the dual CPU is 13% faster, while worst-case scaling suggestsit is
39% faster.

As these examples demonstrate, we need improvementin I/O performanceto
match the improvement in CPU performanceif we are to achieve faster com-
puter systems. We can now examine metrics ofI/O devices to understand how to
improve their performance and thus the whole system.

I/O Performance Measures

1/0 performance has measures that have no counterparts in CPU design. One of
these is diversity: Which I/O devices can connect to the computer system?
Anotheris capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of perfor-
mance, response time and throughput also apply to I/O. C/O throughputis
sometimescalled “I/O bandwidth” and response time is sometimescalled “la-
tency.”) The next two figures offer insight into how response time and
throughputtrade off against each other. Figure 9.5 shows the simple producer-
server model. The producercreatestasks to be performedand places themin the
queue; the server takes tasks from the queue and performs them.
 

Producer 
FIGURE 9.5 Thetraditional producer-server modelof response time and throughput.
Responsetime begins whena task is placed in the queue and ends whenitis completed by
the server. Throughputis the numberoftasks completed by the serverin unit time.
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Responsetime is defined as the time a task takes from the momentit is placed
in the queue until the server finishes the task. Throughputis simply the average
numberof tasks completed by the server overatime period. To get the highest
possible throughput, the server should neverbe idle, and thus the queue should
never be empty. Response time. on the other hand, counts time spent in the
queueand is therefore minimized by the queue being empty.

Another measure of I/O performanceis the interference of I/O with CPU
execution. Transferring data may interfere with the execution of anotherprocess.
There is also overhead due to handling 1/O interrupts. Our concern here is how

many more clock cycles a process will take because of I/O for another process.

Throughput Versus Response Time

Figure 9.6 shows throughput versus response time(or latency), for a typical I/O
system. The knee ofthe curve is the area wherea little more throughputresults
in much longer responsetime or, conversely,a little shorter response time results
in much lower throughput.
 

300 1

Response time
(latency} qinms

  
 

100 4

4

ot >t “y T TT 1 sh
0% 20% 40% 60% 80% 100%

Percent of maximum throughput (bandwidth)

 
 

FIGURE 9.6 Throughputversus responsetime. Latencyis normally reported as
responsetime. Note that absolute minimum responsetime achieves only 11%of the
throughput while the responsetime for 100%throughput takes seventimes the minimum
response time. Chen [1989] collected these data for an array of magnetic disks.
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9.3 I/O Performance Measures

Life would be simpler if improving performance always meant improvements
in both response time and throughput. Adding more servers, as in Figure 9.7,
increases throughput: By spreading data across two disks instead of one, tasks
may be serviced in parallel. Alas, this does not help response time, unless the
workload is held constant and the time in the queues is reduced because of more
resources.

Queue S

Queue (~)
FIGURE 9.7 The single-producer, single-server model of Figure 9.5 is extended with
anotherserver and queue.This increases I/O system throughput and takeslesstime to
service producer tasks. Increasing the numberof servers is a commontechnique in I/O
systems. There is a potential imbalance problem with two queues; unless datais placed
pertectly in the queues, sometimesoneserverwill be idle with an empty queue while the
otherserveris busy with many tasksin its queue.

 

Producer 
 

How doesthe architect balance these conflicting demands? If the computeris
interacting with human beings, Figure 9.8 suggests an answer. This figure
presents the results of two studies ofinteractive environments, one keyboard

oriented and one graphical. An inferaction or transaction with a computeris
divided into three parts:

|. Entry time: The time for the user to enter the command. In the graphics
system in Figure 9.8 it took 0.25 seconds on average to enter the command
versus 4.0 secondsfor the conventional system.

2. System response time: The time between when the user enters the command
and the complete responseis displayed.

3. Think time: The time from the reception of the response until the user begins
to enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction time; transactions
per hour measures the work completed per hour by the user.
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Workload

Conventional interactive workload
(1.0 sec. system responsetime)  

~———_
-34%total
(-70%think)

  Conventional interactive workload
(0.3 sec. system responsetime)  

  

 
 
 
 
 

High-function graphics workload
(1.0 sec. system responsetime)

 
=<High-function graphics workload

 (0.3 sec. system responsetime) ~70%total(-81% think)
0 ——7———T ~— ]

 

 

 
5 10

Time (seconds)
 

 

 Hi Entry time CJ System responsetime a Think time

FIGURE 9.8 A user transaction with an interactive computerdivided into entry time,
system responsetime, and user think time for a conventional system and graphics
system. The entry times are the same independent of system responsetime. The entry
time was 4 secondsfor the conventional system and 0.25 secondsfor the graphics system.
(From Brady [1986}.)

The results in Figure 9.8 show that reduction in response time actually
decreases transaction time by more than just the response time reduction:
Cutting system response time by 0.7 seconds saves 4.9 seconds (34%) from the
conventionaltransaction and 2.0 seconds (70%) from the graphics transaction.
This implausible result is explained by human nature; people needless time to
think when givena faster response.

Whether these results are explained as a better match to the humanattention
span orgetting people “on a roll,” several studies report this behavior. In fact, as
computer responses drop below a second, productivity seems to make a more
than linear jump. Figure 9.9 (page 510) compares transactions per hour(the
inverse of transaction time) of a novice, an average engineer, and an expert
performing physical design tasks at graphics displays. System response time
magnified talent: a novice with subsecond response time was as productive as an
experienced professional with slower response, and the experienced engineer in
turn could outperform the expert with a similar advantage in response time. In
all cases the number of transactions per hour jumps more than linearly with
subsecond responsetime.

Since humans maybeable to get much more work done per day with better
response time,it is possible to attach an economic benefit to the customer of
lowering response time into the subsecond range [IBM 1982], thereby helping
the architect decide how to tip the balance between response time and
throughput.
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FIGURE 9.9 Transactions per hour versus computerresponsetimefor a novice,
experienced engineer, and expert doing physical design on a graphics system.
Transactions per houris a measure of productivity. (From IBM [1982].

Examplesof Measurementsof I/O Performance—
Magnetic Disks

        
Benchmarksare needed to evaluate I/O performance, just as they are needed to
evaluate CPU performance. We begin with benchmarks for magnetic disks.
Three traditional applications of disks are with large-scale scientific problems,
transaction processing,andfile systems.

                                    
Supercomputer I/O Benchmarks ~

    
SupercomputerI/O is dominated by accesses to large files on magnetic disks.
For example, Bucher and Hayes [1980] benchmarked Supercomputer I/O using
8-MBsequentialfile transfers. Many supercomputerinstallations Tun batch jobs,
each of which maylast for hours. In these situations, I/O consists of one large
read followed by writes to snapshotthe state of the computation should the
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throughput: number of bytes per second that can be transferred between
Supercomputer main memory and disks during large transfers.

Transaction Processing I/O Benchmarks

In contrast, transaction processing (TP) is chiefly concerned with //O rate: the
numberof disk accesses per second,as opposed to data rate, measured as bytes
of data per second. TP generally involves changes to a large body of shared
information from many terminals, with the TP system guaranteeing proper be-
havior on a failure. If, for example, a bank’s computer fails when a customer
withdraws money, the TP system would guarantee that the accountis debited if
the customerreceived the money andthat the accountis unchangedif the money
was notreceived. Airline reservations systems as well as banks are traditional
customers for TP.

Two dozen members of the TP community conspired to form a benchmark
for the industry and, to avoid the wrath oftheir legal departments, published the
report anonymously [1985]. This benchmark, called DebitCredit, simulates bank
tellers and has as its bottom line the number of debit/credit transactions per
second (TPS); in 1990, the TPS for high-end machines is about 300. The
DebitCredit performs the operation of a customer depositing or withdrawing
money. The performance measurement is the peak TPS, with 95% of the
transactions having less than a one-second response time. The DebitCredit
computes the cost per TPS, based onthe five-year cost of the computer-system
hardware andsoftware. Disk I/O for DebitCredit is random reads and writes of
100-byte records along with occasional sequential writes.

Depending on how cleverly the transaction-processing system is designed,
each transaction results in between two and ten disk I/Os and takes between
5,000 and 20,000 CPUinstructions per disk I/O. The variation largely depends
on the efficiency of the transaction processing software, although in part it
depends on the extent to which disk accesses can be avoided by keeping
information in main memory. The benchmark requires that for TPS to increase,
the numberoftellers and the size of the account file mustalso increase. Figure
9.10 showsthis unusualrelationship in which more TPS requires more users.

 

 

   
| TPS Number of ATMs Account-file size

10 1,000 0.1 GB

| 100 10,000 ‘10GB
1,000 100,000 — 10.0GB

| 10,000 1,000,000 100.0 GB | 
FIGURE 9.10 Relationship among TPS, tellers, and account-file size. The DebitCredit
benchmark requires that the computer system handle moretellers and larger accountfiles
before it can claim a higher transaction-per-second milestone. The benchmark is supposed
to include “terminal handling” overhead, but this metric is sometimes ignored.
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This is to ensure that the benchmark really measures disk I/O; otherwise a large
main memory dedicated to a database cache with a small number of accounts
would unfairly yield a very high TPS. (Another perspective is the number of
accounts must grow since a person is notlikely to use the bank more frequently
just because the bank has a faster computer! )

 
File System I/O Benchmarks

 
File systems. for which disks are mainly used in timesharing systems, have a
different access pattern. Ousterhout etal. [1985] measured a UNIXfile system
and found that 80% of accessesto files of less than 10 KB and 90% of all file

accesses were sequential. The distribution by type of file access was 67% reads,
27% writes, and 6% read-write accesses. In 1988, Howardet al. [1988] proposed
a file-system benchmark that is becoming popular. Their paper describes five
phasesof the benchmark,using 70files with a total size of 200 KB:

  
MakeDir—Constructs a target subtree thatis identical in structure to the source
subtree.

 
Copy—Copieseveryfile from the source subtree to the target subtree.

ScanDir—Recursivelytraverses the target subtree and examinesthe status of
everyfile in it. It does not actuallyread the contentsofanyfile.

ReadAll—Scanseverybyte ofevery file in the target subtree once.

Make—Compiles and linksall the files in the target subtree. {p. 55}

Thefile-system measurements of Howardetal. [1988], like those of Ousterhout
et al. [1985], found the ratio of disk reads to writes to be about 2:1. This
benchmark reflects that measure.

9.4 Types of I/O Devices

Now that we have covered measuréments ofI/O performance, let's describe the
devices themselves. While the computing model has changed little since 1950.
I/O devices have become rich and diverse. Three characteristics are useful in
organizing this disparate conglomeration: ~

« Behavior—input (read once), output (write only, cannot be read), or storage
(can be reread and usually rewritten)

s Partner—either a human or a machineis at the other end of the I/O device,

either feeding data on input or reading data on output

 
« Data rate—the peak rate at which data can betransferred between the I/O

device and the main memory or CPU
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Using these characteristics, a keyboard is
a peak datarate of about 10 bytes per second. Fig
devices connected to computers.

The advantage of designing 1/O devices for humansis that t

 
an input device used by a human with

ure 9.11 shows someof the Vo

he performance

targetis fixed. Figure 9.12 shows the I/O performanceof people.

 

 

 

 

 

 

 

 

 
 
 
 
 

 
Device Behavior Partner Data rate |

(KB/sec)

| Keyboard Input Human 0.01
Mouse Input Human «C02

; Voice input - Input — Human a 0.02
Scanner : Input Human a 390,00|

|Voice output : Output ~ Human a a0.60|
| Line printer Output Human : 1.00
| Laser printer Output Human : - 100.00
| Graphics display - Output : “Human _ 7 30,000.00 /
| (CPU to frame buffer) Output Human _ 200.00

Network-terminal - Input or output Machine : ; 7 0.05
Network-LAN- - Input or output : Machine 7 200.00 —
Optical disk Storage Machine ~ 500.00
Magnetic tape Storage : Machine —_ ~~ 2,000.00

/Magnetic disk Storage Machine 2,000.00

 
  
 

FIGURE 9.11 Examplesof /O devices categorized by behavior, partner, and data
rate. This is the raw data rate of the device rather than the rate an application would see.
Storage devices can be further distinguished by whether they support sequential access
(e.g., tapes) or random access(e.g., disks). Note that networks can act either as input or
output devices but, unlike storage, cannot reread the same information.

 
 
 
  
tencyms)| Human organ V/O rate (KB/sec) VO latency (ms) |

Ear 8.000-60.000 10
| Eye—reading text 0.030-0.375 10

Eye—pattern recognition 125.000 10
Hand—typing 0.010-0.020 - 100

| Voice ; 9003-0015 100
 

 

FIGURE 9.12 Peak I/O rates for people. Input via seeing patterns is our highest I/O rate;
hence the popularity of graphic output devices. Maberly [1966] says the average reading
speedis 28 bytes per second and the maximum is 375 bytes per second. The telephone
company sets a 170-ms limit to the time between when an operator pushesa button to
accepta call until a voice path must be established. The phone company transmits voice at
8 KBper second. (None of these parameters are expected to change, unless anabolic
steroids becomea breakfast supplement!)
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on the three devices with the highest data rates: magnetic disks, graphicsdisplays, and local area networks. These are also the devices that have thehighest leverage on user Productivity. In this chapter weare not talking aboutfloppy disks, but the original “hard” disks. These Magnetic disks are what IBMcalls DASDs, for Direct-Access Storage Devices,
Magnetic Disks

! think Silicon Valley was misnamed. Ifyou look back at the dollars shipped inProductsin the last decadethere has been more revenuefrom Magnetic disksthan fromsilicon. Theyought to renamethe place Iron Oxide Valley.

= A level of the memory hierarchy below main memory used for virtualmemory during program execution (see Section 8.5 in Chapter8)
 
 
 

 

 
 

Keyboard
Mouse

Voice input
Network-termina|

Voice Output
Line printer

Laser printer
Device Scanner

Network-LAN

Display (frame buffer)
Optical disk

Magnetic tape
Magnetic disk

 
 
   

  
   

      
 
    
 

 
1000

Data rate (KB/s) 
 

9MSUNG EXHIBIT 100a Page 117 of 171



SAMSUNG EXHIBIT 1009 
Page 118 of 171

 
Input/Output 515

As descriptions of magnetic disks can be found in countless books, we will
only list the key characteristics with the terms illustrated in Figure 9.14. A mag-
netic disk consists of a collection ofplatters (1 to 20), rotating on a spindle at
about 3600 revolutions per minute (RPM). These platters are metal disks
covered with magnetic recording material on both sides. Disk diameters vary by
a factor of five, from 14 to 2.5 inches. Traditionally, the widest disks have the
highest performance, and the smallest disks have the lowest cost per disk drive.
 

 
 

 

Platters

Platter

Sectors 
FIGURE9.14 Disks are organized into platters, tracks, and sectors. Both sides of a
platter are coated so that information can be stored on both surfaces.

Each disk surface is divided into concentric circles, designated tracks. There
are typically 500 to 2000 tracks per surface. Each track in turn is divided into
sectors that contain the information; each track might have 32 sectors. The
sector is the smallest unit that can be read or written. The sequence recorded on
the magnetic media is a sector number, a gap. the information for that sector
including error correction code, a gap, the sector numberof the next sector. and
so on. Traditionally all tracks have the same numberofsectors; the outer tracks,
which are longer, record information at a lower density than the inner tracks.
Recording more sectors on the outer tracks than on the inner tracks, called
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constantbit density, is becoming more widespread with the advent of intelligent
interface standards such as SCSI (see Section 9.5). IBM mainframe disks allow
usersto select the size of the sectors, while almostall other systemsfix the sizeof the sector.

To read and write information into a sector, a movable arm containing a
readiwrite head is located over each Surface. Bits are recorded using a run-
length limited code, which improves the recording density of the magnetic
media. The arms for each surface are connected together and move in
conjunction, so that every arm is over the same track of every surface. The term
cylinderis used to refer to all the tracks under the armsat a given point on allsurfaces.

To read or write a sector, the disk controller sends a command to movethe
arm over the proper track. This operation is called a seek, and the time to move
the arm to the desired track is called seek time. Average seek timeis the subject
of considerable misunderstanding. Disk manufacturers report minimum seek
time, maximum seek time, and average seek timein the manuals. Thefirst two
are Casy to measure, but average was Open to wide interpretation. The industry

advertised to be 12 ms to 20 ms, but depending on the application and operating
system the actual average seek time may be only 25% to 33% of the advertised
number,dueto locality of disk references. Section 9.10 has a detailed example.

The time for the requested sector to rotate under the head is the rotation
latency or rotational delay. Most disks rotate at 3600 RPM,and an average
latency to the desired information is halfway around the disk; the average
rotation time for mostdisks is therefore

Lo, 0.5

Averagerotation time = 3600RPM= 0.0083 sec = 8.3 ms
The next componentof a disk access, transfer time, is the time to transfer a

block ofbits, typically a sector, under the read-write head. This is a function of
the block size, rotation speed, reCording density of a track, and speed of the
electronics connecting disk to computer. Transfer rates in 1990 are typically ! to4 MBpersecond.

In addition to the disk drive, there is usually also a device called a disk
controller. Between the disk controller and main memory is a hierarchy of
controllers and data paths, whose complexity varies with the cost of the
computer (see Section 9.9). Since the transfer time is often a small portion of a
full disk access, the controller in higher performance systems disconnects the
data paths from the disks while they are seeking so that other disks can transfer
their data to memory.

Thus, the final componentofdisk-access timeis controller time, which is the
overhead the controller imposesin performing an I/O access. When referring to
performanceof a disk in a computer system, the time spent waiting for a disk to
becomefree (queueing delay) is added to this time.
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Whatis the average time to read or write a 512-byte sector for a typical disk
today? The advertised average seek time is 20 ms, the transferrate is IMB/sec,
and the controller overhead is 2 ms. Assume the disk is idle so that there is no
queuing delay.

Average disk access is equal to average seek time + averagerotational delay +
transfer time + controller overhead. Using the calculated, average seek time, the
answeris

0.5 KB

20 ms + 8.3 ms + 1.0 MB/sec +2ms= 20+ 8.3405 +2 =30.8 ms

Assuming the measured, average seek time is 25% of the calculated number, the
answeris

5 ms + 8.3 ms + 0.5 ms + 2 ms = 15.8 ms

Figure 9.15 showscharacteristics of magnetic disks for four manufacturers.
Large-diameter drives have many more megabytes to amortize the cost of
electronics, so the traditional wisdom was that they had the lowest cost per
megabyte. But this advantage is offset for the small drives by the much higher
sales volume, which lowers manufacturing costs: 1990 OEM prices are $2 to $3
eee

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Characteristics IBM 3380 Fujitsu Imprimis Conner

M2361A Wren IV CP3100

Disk diameter (inches) 14 10.5 5.25 3.5

Formatted data capacity (MB) 7500 600 344 100

MTTF(hours) 52,000 20,000 40,000 30,000
Numberof arms/box 4 1 ] 1

Maximum I/Os/second/arm 50 40 35 30

Typical I/Os/second/arm 30 24 28 20

Maximum I/Os/second/box 200 40 35 30

Typical I/Os/second/box 120 24 28 20

Transfer rate (MB/sec) 3 2.5 1.5 1

Power/box (W) 1,650 640 35 10

MB/W 11 0.9 9.8 10.0

Volume(cu. ft.) 24 3.4 0.1 03

MBicu.ft. 310 180 3440 3330

FIGURE 9.15 Characteristics of magnetic disks from four manufacturers. Compar-
ison of IBM 3380 disk model AK4 for mainframe computers, Fujitsu M2361A “Super Eagle"
disk for minicomputers, Imprimis Wren IV disk for workstations, and Conner Peripherals
CP3100 disk for personal computers. Maximum /Os/second signifies maximum numberof
average seeks and averagerotates for a single sector access. (Table from Katz, Patterson,
and Gibson [1990].)
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per megabyte, almost independent of width.
7 advantages in powerand volume. The price of

. 1990 is 10 to 30 times cheaper than the pric
system,

The small drives also have
a megabyte of disk storage in

€ of a megabyte of DRAMin a   
The Future of Magnetic Disks

     
Areal density = Tracks on a disk surface * Bits on a trackInch Inch

 
Sar—197 1/10MAD = 19% 1971)

     
million bits per Square inch

            
Thus, storage density im

Proves byafactor of 10 every decade, doubling densityevery three years,

Cost per megabyte has dropped consistently at 20% to 25% per year, with
    

    
 
 
 
 
 
 

 

 
 
 

     
 

  
 

 
     
 

smaller drives playing the largerrole in this improvement, Becauseit is easier to
10° SRAM

(chip) DRAM
1980 (board)

E] 1980
104

1985 1985 DRAM
(chip)

10° 41999 1990 M1980
Cost Ey ¢

($/MB) 1985

10° . DiskAccess Time Gap
1990 c 1980

10! 1985nN

1990
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FIGURE 9.16 Cost ver
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spin the smaller mass, smaller diameter disks save power as well as volume.
Smaller drives also have fewer cylinders so the seek distances are shorter. In
1990, 5.25-inch or 3.5-inch drives are probably the leading technology, while
the future may see even smaller drives. We can expect significant savingsin
volume and power, butlittle in speed. Increasing density (bits per inch on a
track) has improvedtransfer times, and there has been some small improvement
in seek speed. Rotation speeds have beensteady at 3600 RPM for a decade, but
some manufacturers plan to go to 5400 RPM in the early 1990s.

As mentioned earlier, magnetic disks have been challenged many times for
Supremacy of secondary storage. One reason has been the fabled Access Time
Gapas shownin Figure 9.16. Manya scientist has tried to invent a technology
to fill that gap. Let’s look at some of the recent attempts.

Using DRAMsas Disks

A current challenger to disks for dominance of secondary storageis solid state
disks (SSDs), built from DRAMs with a battery to make the system nonvolatile;
and expanded storage (ES), a large memory that allows only block transfers to
or from main memory. ESacts like a software-controlled cache (the CPU stalls
during the block transfer) while SSD involves the operating system justlike a
transfer from magnetic disks. The advantages of SSD and ESaretrivial seek
times, higher potential transfer rate, and possibly higher reliability. Unlike just a
larger main memory, SSDs and ESs are autonomous: They require special
commandsto access their storage, and thus are “safe” from some software errors
that write over main memory. The block-access nature of SSD and ES allows
error correction to be spread over more words, which means lower cost or
greater error recovery. For example, IBM’s ES uses the greater error recovery to
allow it to be constructed from less reliable (and less expensive) DRAMs
without sacrificing product availability. SSDs, unlike main memory and ES,
may be shared by multiple CPUs because they function as separate units.
Placing DRAMsin an I/O device rather than memoryis also one way to get
around the address-space limits of the current 32-bit computers. The
disadvantage of SSD and ESis cost, whichis at least ten times per megabyte the
cost of magnetic disks.

Optical Disks

Another challenger to magnetic disks is optical compact disks or CDs. The
CD/ROMis removable and inexpensive to manufacture, but it is a read-only
media. The newer CD/writable is also removable, but has a high cost per
megabyte and low performance. A common misperception about write-once
optical disks is that once they are written, the information cannot be destroyed;
in fact, write once means onereliable write and then a “fuzzy”bitwise ORingof
the previous and new data.
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So far, magnetic disk challengers have never had a product to market at the
right time. By the time a new product ships, disks have made advances as pre-
dicted by MAD formula, and costs have dropped accordingly. Optical disks,
however, may have the potential to compete with new tape technologies for
archivalstorage.

Disk Arrays

Oneother future candidate for optimizing storage Is not a new technology, but a
new organization of disk storage—arrays of small and inexpensive disks. The
argumentfor arrays is that since price per megabyte is independent ofdisk size.
potential throughput can be increased by having many disk drives and, hence,
many disk arms. Simply spreading data over multiple disks automatically forces
accesses to several disks. (While arrays improve throughput, latency is not
necessarily improved.) The drawback to arrays is that with more devices.
reliability drops: N devices generally have 1/N the reliability of a single device.

Reliability and Availability

This brings us to two terms thatare often confused—reliability and availability.
The term reliability is commonly used incorrectly to mean availability: if
something breaks, but the user can still use the system, it seems as if the system
still “works,” and henceit seems morereliable. Here is the properdistinction:

Reliability—is anything broken?

Availability—is the system still available to the user?

Adding hardware can therefore improve availability (for example, ECC on
memory), but it cannot improve reliability (the DRAM is still broken).
Reliability can only be improved by bettering environmental conditions, by
building from morereliable components, or by building with fewer components.
Anotherterm, data integrity, refers to always reporting when information is lost
when a failure occurs; this is very important to some applications,

So, while a disk array can never be more #eliable than a smaller number of
larger disks when each disk has the samefailure rate, availability can be
improved by adding redundant disks. That is. if a single disk fails, the lost
information can be reconstructed from redundant information. The only danger
is in getting anotherdisk failure betweenthe time a disk fails and the timeit is
replaced (termed meantime to repair or MTTR). Since the meantime to failure
(MTTF) of disks is three to five years, and the MTTR is measured in hours.
redundancy can maketheavailability of 100 disks much higher than that of a
single disk.

Since disk failures are self-identifying, information can be reconstructed from
just parity: The good disks plus the parity disk can be used to calculate the
information that is on the failed disk. Hence, the cost of higher availability is
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1/N, where N its the numberof disks protected by parity. Just as direct-mapped
associative placement in caches can be considered a special case ofset-
associative placement (see Section 8.4), the mirroring or shadowing of disks can
be considered the special case of one data disk and one parity disk (N=1). Parity
can be accomplished by duplicating the data, so mirrored disks have the
advantage of simplifying parity calculation. Duplicating data also means that the
controller can improve read performance by reading from the disk of the pair
that has the shortest seek distance, although this optimization is at the cost of
write performance because the arms ofthe pair of disks are no longer always
over the same track. Of course, the redundancy of N = 1 has the highest
overhead for increasing disk availability.

The higher throughput, measured either as megabytes per second or as I/Os
per second, and the ability to recover from failures make disk arrays attractive.
When combined with the advantages of smaller volume and lower power of
small-diameter drives, redundant arrays of small or inexpensive drives may play
a larger role in future disk systems. The current drawback is the added
complexity of a controller for disk arrays.

Graphics Displays

Through computer displays | have landed an airplane onthe deck ofa moving
carrier, observed a nuclearparticle hit a potential well, flown in a rocket at
nearly the speed oflight and watched a computer reveal its innermost workings.

Ivan Sutherland (the “father” of computer graphics), quoted in
“Computer Software for Graphics.” Scientific American (1984)

While magnetic disks may dominate throughput and cost of I/O devices, the
most fascinating I/O device is the graphics display. Based on television
technology, a raster cathode ray tube (CRT) display scans an image out oneline
at a time, 30 to 60 times per second. At this refresh rate the human eye doesn’t
notice a “flicker” on the screen. The image is composed of a matrix ofpicture
elements, or pixels, which can be represented as a matrix ofbits, called a bir
map. Depending onsize of screen and resolution. the display matrix consists of
340*512 to 1560*1280 pixels. For black and white displays, often 0 is black and
| is white. For displays that support over 100 different shades of black and
white, sometimes called gray-scale displays, 8 bits per pixel are required. A
color display might use 8 bits for each of the three primary colors (red, blue. and
green), for 24 bits per pixel.

The hardware support for graphics consists mainly of a raster refresh buffer.
or frame buffer, to store the bit map. The image to be represented on screen is
stored into the frame buffer, and the bit pattern per pixel is read out to the
graphics display at the refresh rate. Figure 9.17 (page 522) shows a frame buffer
with four bits per pixel and Figure 9.18 (page 522) shows how the buffer is
connected to the bus.
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Frame buffer
Raster scan
CRT display

 
 

 

 
FIGURE 9.17 Each coordinatein the frame buffer on the left determines the shade of
the corresponding coordinate for the raster scan CRT display on the right. Pixel
(Xq,¥o) contains the bit pattern 0011, whichis a lighter shade of gray on the screen than the
bit pattern 1101 in pixel (x,,y;).

 

CRT
display

 
  
FIGURE 9.18 The frame buffer is connected to both the I/O bus and the display.
Becauseof the high data rate from the buffer tojthe display, the frame bufferis frequently
dual ported.

The goal of the bit mapis to faithfully represent whatis on the screen. As the
computer switches from one imageto another, the screen may look “splotchy”
during the change. Here are two waysof dealing with this:

= Change the frame buffer only during the “vertical blanking interval.” This is
the time the gun in the raster CRT display takes to go back to the upper-left-
hand cornerbefore starting to paint the pixels of the next image. This takes |
to 2 ms of every 16 ms at the 60-Hz refresh rate each time the screen is
painted.
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a If the vertical blanking interval is not long enough, the frame buffer can be
double buffered, so that one is read while the otheris being written. This way,
images in sequence (as in animation) are drawn in alternate frame buffers.
Double buffering, of course, doubles the cost of the memory in the frame
buffer.

From the point of view of the CPU, graphicsis logically output only. But the
framebuffer is capable of being read as well as written, permitting operations to
be performed directly on the screen images. These operations are called bit bits,
for bit block transfer. Bit blts are commonly used for operations such as moving
a window or changing the shape of the cursor. A current debate in graphics
architecture is whether reading the frame buffer is limited to the operating
system or should user programsbe able to readit as well.

Cost of Computer Graphics

The CRT monitoritself is based on television technology andis sensitive to
consumer demand. Today prices vary from $100 for a black-and-white monitor
to $15,000 for a large studio color monitor, not including memory. The amount
of memory in a frame buffer depends directly on the size of the screen and the
bits per pixel:

340*512*1 bits = 21.5 KB

1280*1024*24 bits = 3840 KB

(By the way, this bottom dimension is the proposed size for high-definition
television.) Note that the memory cost is doubled if double buffering is used.

To reduce costs of a color frame buffer, many systems use a two-level
representation that takes advantage of the fact that few pictures need the full
pallet of possible colors (see Figure 9.19 on page 524).

The intermediate level contains the full color width of, say, 24 bits and a
large collection of the possible colors that can appear on the screen—256
different colors, for example. While this collection is large, it is still much
smaller than 224, This intermediary table has been variously named a color map,
color table, or video look-up table. Each pixel need have only enough bits to
indicate a color in the color map. As a simple example, Figure 9.19 uses a 4-
word color map, which meansthe frame buffer needs only 2 bits per pixel. The
savingsfora full-sized color display with a 256-color mapis

1280*1024*24 — (1280*1024*8 + 256*24)

= 3,840 KB — (1280 KB + .75 KB) = 2560 KB

This amountsto a threefold reduction in memorysize. In 1990 a 256- by 24-bit
color map and an analog interface to a color CRTfit in a single chip.
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Framebuffer
Raster scan
CRTdisplay

  
FIGURE 9.19 An example of a color mapto reducethe costof the frame buffer.
Suppose only nine bits per color are needed, Rather thanstore the full nine bits per pixel in
the frame buffer, just enoughbits per pixel are stored to index the table containing the
unique coiorsin a picture. Only the color maphastheninebits for the colors in the display.
Near photographic color pictures can be produced with about 125 colors using the right
shadesof the color spectrum; but at least 24 bits are needed to getthe right shades! The
color mapis loaded bythe application program, offering each picture its own palette ofcolors to chose from.

Performance Demandsof Graphics Displays

The performance of graphics is determined by the frequency an application
needs new images and by the quality of those images. The amount of
information transferred from memory to the frame buffer depends on complexity
of image, with a full color display requiring almost four megabytes. The transfer
rate depends on the speed with which the image should be changedas well as
the amount of information. Animation requires at least 15 changes per second
for movementto appear smooth on a&creen. For interactive graphics, the time to
update the frame buffer measuresthe effectivenessof the application; for peopleto feel comfortable the total reaction.time mustbeless than a second (see Figure
9.9, page 510). With a drawing system, the portion ofthe screen oneis working
on must change almost immediately, as human visual perception is on the order
of 0.02 seconds. Figure 9.20 shows some sample graphics tasks and their
performance requirements. Note that the frame buffer must have enough
bandwidth to refresh the display and to allow the CPU to change the image
being refreshed.

The high data rate—and the large market of graphics displays—has made a
dual-ported DRAM chip popular. This chip has a serial I/O port and / ternal
shift register that is connectedto the display in a graphics application in addition
to the traditional randomly addressed data port. This chip is so widely used in
frame buffersthatit is called a video DRAM.
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Graphics tasks Bandwidth requirements

Text editor—Scrolling text in window means moving 0.8 MB/sec
all bits in half the frame buffer about 10 times per
second. ;

VLSI design-—-Movinga portion of the design means 6.3 MB/sec
movingall bits in half of a color frame buffer in less
than 0.1 second. 

 
Television commercial—Showing movie-quality - 90.0 MB/sec
images means changing 24 times per second.
Visualization of scientific data—About the same as a 90.0 MB/sec

 
television commercial. 

 
FIGURE 9.20 Graphics tasks and their performance requirements. VLSI design uses
8 bits of color while the television commercial and visualization use 24 bits. Bandwidth is
measured at the frame buffer.

Future Directions in Graphics Displays

It is safe to predict that people will want better pictures in the future. They will
want, for example, more lines on a screen and more bits per inch on a line to
make sharper images, more bits per color to make more colorful images, and
more bandwidth to allow animation.

To simplify the display of three-dimensional images, a z dimension per pixel
can be added to the x and y coordinates. It says where the pixel is located from
the viewer along azaxis(e.g., into the CRT). A 3D imagestarts with z set to the
furthest possible location from the viewer and the color set to the background
color. To get a proper 3D perspective, the z coordinate stored with the pixel in
the frame buffer is checked before placing a colorin a pixel. If the new coloris
closer, the old color is replaced and the z coordinate is updated, if it is further
away, the new coloris discarded. This scheme is called a z buffer approach to
hidden surface elimination.It addsatleast 8 bits per pixel, plus the performance
cost of reading and comparing before writing a pixel. The Silicon Graphics 4D
series of graphics workstations uses 16 bits for the z dimension in its pixels,
meaning objects are assigned a 16-bit number to show how close they are to the
viewer.

The increasing number of bits per DRAM chip reduces the number of chips
needed in the frame buffer, as well as the number of chips that can
simultaneously transfer bits to the screen. This is why video DRAMSare so
popular. As capacity increases, the serial ports of video DRAMswill have to
become faster and wider to match the demandsof future graphics systems.
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Networks

Thereis an old network saying: Bandwidth problems can be cured with money.
Latency problems are harder because the speedof light is fixed—you can’t bribe
God.

 
David Clark, M.LT.

Networksare the backboneofcurrent computer systems; a new machine without
an optional network interface would be ridiculed. By connecting computers
electronically, networked computers havethese advantages:

   
=» Communication—Information is exchanged between computers at high

speeds.

= Resource sharing—Rather than each machine having its own I/O devices,
devices can be shared by computers on the network.

             
« Nonlocal access—By connecting I/O devices over long distances, users need

not be near the computerthey are using.

Figure 9.21 showsthe characteristics of networks. These characteristics are
illustrated below with three examples.
 

 

 

  
Distance 0.01 to 10,000 kilometers
Speed 0.001 MB/sec to 100 MB/sec
Topology Bus, ring, star, tree

Shared lines None(point-to-point) or shared (multidrop)  
 

FIGURE9.21 Range of network characteristics.

 
The RS232 standard provides a 0.3- to 19.2-Kbits-per-second terminal |

network. A central computer connegts to many terminals over slow but cheap
dedicated wires. These point-to-pgint connections form a star from the central
computer, with each terminal ranging from 10 to 100 metersin distance from the |
computer. |The local area network, or LAN,is what is commonly meant today when
people mention a network, and Ethernet is what most people mean when they
mention a LAN.(Ethernet has in fact become such a commonterm thatit is
often used as a generic term for LAN.) The Ethernet is essentially a 10,000
Kbits-per-second bus that has no central control. Messagesorpacketsare sent
over the Ethernet in blocks that vary from 128 bytes to 1530 bytes andtake 0.1
ms and 1.5 msto send,respectively. Since there is no central control, all nodes
“listen” to see if there is a message for that node. Without a central arbiter to
decide who gets the bus, a computerfirst listens to make sure it doesn’t send a
message while another message is on the network.If the network is idle the node
tries to send. Of course, some other node may decide to send at the sameinstant.
Luckily, the computer can detect any resulting collisions by listening to whatis
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sent. (Mixed messages will sound like garbage.) To avoid repeated head-on
collisions, each node whose packet was trashed backs off a random time before
resending. If Ethernets do not have high utilization, this simple approach to
arbitration works well. Many LANs become overloaded through poor capacity
planning, and response time and throughput can degrade rapidly at higher
utilization.

The success of LANshas led to multiples of them at a single site. Connecting
computers to separate Ethernets becomes necessary at a certain point because
there is a limit to the number of nodes that can be active on a busif effective

communication speeds are to be achieved; one limit is 1024 nodes per Ethernet.
There is also a physical limit to the distance of an Ethernet, usually about 1
kilometer. To allow Ethernets to work together, two kinds of devices have been
created:

a A bridge connects two Ethernets. There are still two independent busesthat
can simultaneously send messages, but the bridge acts as a filter, allowing
only those messages from nodes on one bus to nodes on the other busto cross
overthe bridge.

= A gateway typically connects several Ethernets. It receives a message, looks
up the destination address in a table, and then routes the message over the
appropriate network to the proper node. This routing table can be changed
during execution to reflect the state of the networks. Someuse the term router
instead of gatewaysinceit is closer to the function performed.

When Ethernets are connected together with gateways they form an /nternet.
Long-haul networks cover distances of 10 to 10,000 kilometers. The first and

most famous long-haul network was the ARPANET(namedafter its funding
agency, the Advanced Research Projects Agency of the U.S. government). It
transferred at 50 Kbits per second and used point-to-point dedicated lines leased
from telephone companies. The host computer talked to an interface message
processor (IMP), which communicated over the telephone lines. The IMP took
information and brokeit into 1-Kbit packets. At each hop the packet was stored
and then forwarded to the proper IMP according to the address in the packet.
The destination IMP reassembled the packets into a message and then gaveit to
the host. Fragmentation and reassembly, as it was called, was done to reduce the
latency due to the store andforward delay. Most networks today use this packet
switched approach, where packets are individually routed from source to
destination. Figure 9.22 (page 528) summarizes the performance, distance, and
costs of these various networks.

While these networks have been presented here as alternatives, a computer
system is really a hierarchy of networks, as Figure 9.23 (page 528) shows. To
deal with this hierarchy of networks connecting machines that communicate
differently, there must be a standard software interface to handle messages.
These are called protocols, and are typically layered to interface with different
levels of software in computer systems. The overhead of these protocols can eat
up a significant portion of the network bandwidth.
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Just as with disks in Figure 9.6 (page 507), there is a tradeoff of latency and
throughput in networks. Small messages give the lowest latency in most
networks, but they also result in lower network bandwidth; similarly, a network
can achieve higher bandwidth at the cost of longer latency. 

 

   
Network Performance Distance Cable Connect to Connector to

(Kbits / sec) (km) cost network cost computer cost

RS232 19 0.1 $0.25 $1-$5 $5

/foot /connector /serial port chip

| Ethernet 10,000 1 $1-$5 $100 $50 /Ethernet

/foot /transceiver interface chip

ARPANET 50 10,000 $10,000 $50,000— $5,000-$ 10,000
/month $100,000/IMP_ /IMP connection 

FIGURE 9.22 The performance, maximum distance, and costs of three example
networks.An Internet is simply multiple Ethernets and a bridge, which costs about $2,000
to $5,000, or a gateway, which costs about $20,000 to $50,000.
 

Computer

Computer

Computer

vompuse 
FIGURE 9.23 A computer system today participates in a hierarchy of networks.
Ideally, the user is not aware of what network is being used in performing tasks. The
gateway routes packets to a particular network, a network routes packets to a particular
host computer, and the host computer routes packets to a particular process.

Buses—Connecting I/O Devices to
CPU/Memory

In a computer system, the various subsystems must have interfaces to one
another; for instance, the memory and CPU need to communicate, as well as the
CPU and I/O devices. This is commonly done with a bus. The bus serves as a
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shared communication link between the subsystems. The two major advantages
of the bus organization are low cost and versatility. By defining a single
interconnection scheme, new devices can easily be added, and peripherals may
even be ported between computer systems that use a common bus. Thecostis
low, since a single set of wires is shared multiple ways.

The major disadvantage of a bus is that it creates a communication bot-
tleneck, possibly limiting the maximum I/O throughput. When I/O must pass
through a central bus this bandwidth limitation is as real as—and sometimes
more severe than—memory bandwidth. In commercial systems, where I/O is
very frequent, and in supercomputers, where the necessary I/O rates are very
high because the CPU performanceis high, designing a bus system capable of
meeting the demandsofthe processor is a major challenge.

Onereason bus designis so difficult is that the maximum busspeedis largely
limited by physical factors: the length of the bus and the numberof devices (and,
hence, bus loading). These physical limits prevent arbitrary bus speedup. The
desire for high I/O rates (low latency) and high I/O throughput can also lead to
conflicting design requirements.

Busesare traditionally classified as CPU-memory buses or I/O buses. I/O
buses may be lengthy, may have many types of devices connected to them, have
a wide range in the data bandwidth ofthe devices connected to them (see Figure
9.1 on page 501), and normally follow a bus standard. CPU—memory buses, on
the other hand, are short, generally high speed, and matched to the memory
system to maximize memory—CPUbandwidth. During the design phase, the de-
signer of a CPU—memory bus knowsall the types of devices that must connect
together, while the I/O bus designer must accept devices varying in latency and
bandwidth capabilities. To lower costs, some computers have a single bus for
both memoryand I/O devices.

Let's consider a typical bus transaction. A bus transaction includes two parts:
sending the address and receiving or sending the data. Bus transactions are
usually defined by what they do to memory: A read transaction transfers data
from memory(to either the CPU or an I/O device), and a write transaction writes
data to the memory.In a read transaction, the addressis first sent down the bus
to the memory, together with the appropriate control signals indicating a read.
The memory responds by returning the data on the bus with the appropriate
control signals. A write transaction requires that the CPU or I/O device send
both address and data and requires no return of data. Usually the CPU must wait
between sending the address and receiving the data on a read, but the CPU often
does not wait on writes.

The design of a bus presents several options, as Figure 9.24 (page 530)
shows. Like the rest of the computer system, decisions will depend on cost and
performance goals. The first three options in the figure are clear choices—
separate address and data lines, wider data lines, and multiple-wordtransfers all
give higher performance at more cost.

The next item in the table concerns the number of bus masters. These are

devices that can initiate a read or write transaction; the CPU, for instance,is al-
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ways a bus master. A bus has multiple masters whenthere are multiple CPUsor
whenI/O devices caninitiate a bus transaction. If there are multiple masters, an
arbitration scheme is required among the masters to decide who gets the bus
next. Arbitration is often a fixed priority, as is the case with daisy-chained
devices or an approximately fair scheme that randomly chooses which master
gets the bus.

With multiple masters a bus can offer higher bandwidth by going to packets,
as opposed to holding the bus for the full transaction. This technique is
designated split transactions. (Some systemscall this ability connect/disconnect
or a pipelined bus.) The read transaction is broken into a read-requesttransaction
that contains the address, and a memory-reply transaction that contains the data.
Each transaction must now be tagged so that the CPU and memorycantell what
is what. Split transactions make the bus available for other masters while the
memory reads the words from the requested address. It also normally meansthat
the CPU mustarbitrate for the bus to send the data and the memory must
arbitrate for the bus to return the data. Thus, a split-transaction bus has higher
bandwidth, but it usually has higher latency than a busthat is held during the
complete transaction.

The final item, clocking, concerns whether a bus is synchronous or
asynchronous.If a bus is synchronousit includesa clock in the control lines and

a fixed protocol for address and datarelative to the clock. Sincelittle or no logic
is needed to decide what to do next, these buses can be both fast and inexpen-
sive. However, they have two major disadvantages. Everything on the bus must
run at the same clock rate, and because of clock-skew problems, synchronous
buses cannot be long. CPU-—memorybusesare typically synchronous.

An asynchronous bus, on the other hand, is not clocked. Instead, self-timed,
handshaking protocols are usedbetween bus sender and receiver. This scheme

makesit much easier to accommodatea wide variety of devices and to lengthen
the bus without worrying about clock skew or synchronization problems.If a
synchronous bus can be used,it if usually faster than an asynchronous bus
because of the overhead of synchronizing the bus for each transaction. The
choice of synchronous versus asynchronous bus has implications not only for
data bandwidth but also for an I/O system’s capacity in terms of physical

SSS

 

 

 

 

                      
 
  

Option High performance Lowcost

Bus width Separate address and data lines Multiplex address and data lines
Data width Wideris faster (e.g., 32 bits) Narroweris cheaper(e.g., 8 bits)
Transfer size Multiple words has less bus overhead Single-word transfer is simpler
Bus masters Multiple (requires arbitration) Single master(no arbitration)
Split Yes—-separate Request and Reply packets gets No—continuousconnectionis cheaper and
transaction? higher bandwidth (needs multiple masters) has lowerlatency
Clocking Synchronous Asynchronous 

FIGURE 9.24 The main options for a bus. The advantage of separate address and data busesis primarily on writes.
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distance and numberof devices that can be connected to the bus; asynchronous
buses scale better with technological changes. I/O buses are typically asynch-
tonous. Figure 9.25 suggests the relationship of when to use one overthe other.

Bus Standards

The numberand variety of I/O devices are not fixed on most computer systems,
permitting customers to tailor computers to their needs. As the interface to
which devices are connected, the I/O bus can also be considered an expansion
bus for adding I/O devices over time. Standards that let the computer designer
and I/O-device designer work independently, therefore, play a large role in
determining the choice of buses. As long as both the computer-system designer
and the I/O-device designer meet the requirements, any I/O device can connect
to any computer. In fact, an I/O bus standard is the documentthat defines how to
connect them.

Machines sometimes grow to be so popular that their I/O buses become de
facto standards; examples are the PDP-11 Unibus and the IBM PC-AT Bus.
Once many I/O devices have been built for the popular machine, other computer
designers will build their I/O interface so that those devices can plug into their
machines as well. Sometimes standards also come from an explicit standards
effort on the part of I/O device makers. The intelligent peripheral interface (IPI
 

Clock skew
(function of
bus length) Asynchronousbetter

Synchronousbetter

 

Similar Varied
Mixture of I/O
device speeds

 
FIGURE 9.25 Preferred bus type as a function of length/clock skew andvariation in
V/O device speed. Synchronousis best whenthe distance is short and the I/O devices on
the busall transfer at similar speeds.
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9.5 Buses—Connecting I/O Devices to CPU/Memory

and Ethernet are examples of standards from cooperation of manufacturers. If
standardsare successful, they are eventually blessed by a sanctioning bodylike
ANSIor IEEE. Occasionally, a bus standard comes top-downdirectly from a
standards committee—the FutureBusis one example.

Figure 9.26 summarizes characteristics of several bus standards. Note that the
bandwidth entries in the figure are notlisted as single numbers for the CPU—
memory buses (VME, FutureBus, and Multibus If). Because of the bus
overhead, the size of the transfer affects bandwidth significantly. Since the bus
usually transfers to or from memory, the speed of the memory also affects the
bandwidth. For example, with infinite transfer size and infinitely fast (O ns)
memory, FutureBus is 240% faster than VME,but FutureBus is only about 20%
faster than VMEforsingle-word transfers from a 150-ns memory.

 

 

 

 
 

VMEbus FutureBus Multibus Il IPI SCSI

Bus width (signals) 128 96 96 16 8
Address/data multiplexed? Not multi- Multiplexed Multiplexed N/A N/A

plexed

Data width (primary) 16 to 32 bits 32bits 32 bits 16 bits 8 bits |
Transfer size Single or Single or Single or Single or Single or

multiple multiple multiple multiple multiple
Number of bus masters Multiple Multiple Multiple Single Multiple
Split transaction? No Optional Optional - Optional Optional 
 

 

Clocking Asynchronous Asynchronous Synchronous Asynchronous Either
Bandwidth, 0-ns access memory, 25.0 MB/sec 37.0 MB/sec 20.0 MB/sec 25.0 MB/sec 5.0 MB/sec or
single word 1.5 MB/sec
Bandwidth, 150-ns access 12.9 MB/sec 15.5 MB/sec 10.0 MB/sec 25.0 MB/sec 5.0 MB/sec or
memory, single word 1.5 MB/sec Bandwidth, 0-ns access memory, 27.9 MB/sec 95.2 MB/sec 40.0 MB/sec 25.0 MB/sec 5.0 MB/sec or

 

 

 

 

 multiple words (infinite block c 1.5 MB/sec
length)
Bandwidth, 150-ns access 13.6 MB/sec 20.8 MB/sec —‘:13.3 MB/sec 25.0 MB/sec 5.0 MB/sec or
memory, multiple words(infinite 1.5 MB/sec
block length)
Maximum numberof devices 21 20 21 8 7
Maximum bus length 0.5 meter 0.5 meter 0.5 meter 50 meters 25 meters
Standard IEEE 1014 IEEE 896.1 ANSIMEEE ANSI X3.129 ANSI X3.131

1296

 
 

FIGURE 9.26 Information on five bus standards.Thefirst three were defined originally as CPU-memory buses and
the last two as I/O buses. For the CPU-memory buses the bandwidth calculations assumeafully loaded bus and are
given for both single-word transfers and block transfers of unlimited length; measurements are shownboth ignoring mem-
ory latency and assuming 150-ns access time. Bandwidth assumesthe averagedistance of a transfer is one-third of the
backplanelength. (Data in thefirst three columnsis from Borrill [1986].) The bandwidth for the I/O busesis given astheir
maximum data-transfer rate. The SCSI standard offers either asynchronous or synchronous VO; the asynchronous
version transfers at 1.5 MB/sec and the synchronousat 5 MB/sec.
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 Interfacing to the CPU

Having described I/O devices and looked at some ofthe issues of the connecting
bus. we are ready to discuss the CPU end of the interface. The first question is
how the physical connection of the I/O bus should be made. The two choices are
connecting it to memoryorto the cache. In the following section we will discuss
the pros and cons of connecting an I/O busdirectly to the cache; in this section
we examine the more usual case in whichthe 1/O bus is connected to the main
memory bus. Figure 9.27 shows a typical organization. In low-cost systems, the
1/O bus is the memory bus; this means an I/O command on the bus could
interfere with a CPU instruction fetch, for example.

Once the physical interface is chosen, the question becomes how does the
CPU address an I/O device that it needs to send or receive data. The most
commonpractice is called memory-mapped I/O. In this scheme, portions of the
address space are assignedto I/O devices. Reads and writes to those addresses
may cause data to be transferred; some portion ofthe I/O space may also be set
aside for device control, so commandsto the device are just accesses to those
memory-mapped addresses. The alternative practice is to use dedicated I/O
opcodesin the CPU. In this case, the CPU sends a signal that this addressis for
1/O devices. Examples of computers with I/O instructions are the Intel 80x86
and the IBM 370 computers. No matter which addressing scheme is selected,
each 1/O device has registers to provide status and control information. Either
 
 

CPU-memory bus

Bus
adapter

VO bus 1
vo vo ie)

controller controller

Graphics
output

 
  

 

 

 
 

 

 

 

 
controller  

 
  

Network  
 

O devices and an I/O busto the CPU-memoryFIGURE9.27 A typical interface ofI/
bus.
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throughloads and stores in memory-mappedI/O or through special instructions,
the CPUsetsflags to determine the operation the I/O device will perform.

I/O is rarely a single operation. For example, the DEC LP11 line printer has
two I/O device registers: one for status information and one for data to be
printed. The status register contains a done bit, set by the printer when it has
printed a character, and an errorbit, indicating that the printer is jammedorout
of paper. Each byte of data to be printed is put into the data register; the CPU
must then wait until the printer sets the done bit before it can place another
character in the buffer.

This simple interface, in which the CPU periodically checks status bits to see
if it is time for the next I/O operation,is called polling. As one might expect, the
fact that CPUsare so muchfaster than I/O devices means polling may waste a
lot of CPU time. This was recognized long ago, leading to the invention of
interrupts to notify the CPU whenit is time to do something for the I/O device.
Interrupt-driven 1/O, used by most systems for at least some devices, allows the
CPU to work on some other process while waiting on the I/O device. For
example, the LP11 has a mode thatallows it to interrupt the CPU wheneverthe
done bit or errorbit is set. In general-purpose applications, interrupt driven I/O
is the key to multitasking operating systems and good response times.

The drawbackto interrupts is the operating system overhead on each event. In
real-time applications with hundredsof I/O events per second,this overhead can
be intolerable. One hybrid solution for real-time systems is to use a clock to
periodically interrupt the CPU,at which time the CPU polis all I/O devices.

Delegating I/O Responsibility from the CPU

Interrupt-driven I/O relieves the CPU from waiting for every I/O event, but there
are still many CPU cycles spentin transferring data. Transferring a disk block of
2048 words, for instance, would require at least 2048 loads and 2048 stores, as
well as the overhead for the interrupt. Since I/O events so often involve block
transfers, direct memory access (DMA)hardware is added to many computer
systems to allow transfers of numbers of words without intervention by the
CPU.

DMAisa specialized processorthat transfers data between memory and an
I/O device, while the CPU goes on with other tasks. Thus,it is external to the
CPU and must act as a master on the bus. The CPUfirst sets up the DMA
registers, which contain a memory address and number of bytes to be
transferred. Once the DMAtransferis complete, the controller interrupts the
CPU. There may be multiple DMA devicesin a computer system; for example,
DMAisfrequently part of the controller for an I/O device.

Increasing the intelligence of the DMAdevice can further unburden the CPU.
Devices called 1/O processors, (or I/O controllers, or channel controllers)
operate from either fixed programs or from programs downloaded by the
operating system. The operating system typically sets up a queue of 7/O control
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blocks that contain information such as data location (source and destination)

and data size. The I/O processor then takes items from the queue, doing
everything requested and sending a single interrupt when the task specified in
the I/O control blocks is complete. Whereas the LP11 line printer would cause
4800 interrupts to print a 60-line by 80-character page, an I/O processor could
save 4799 of those interrupts.

I/O processors can be compared to multiprocessors in that they facilitate
several processes executing simultaneously in the computer system. I/O
processors are less general than CPUs, however, since they have dedicated tasks,
and thus parallelism is also much more limited. Also, an I/O processor doesn’t
normally change information, as a CPU does, but just moves information from
one place to another.

Interfacing to an Operating System

In a manneranalogous to the way compilers use an instruction set (see Section
3.7 of Chapter 3), operating systems control what I/O techniques implemented
by the hardware will actually be used. For example, many I/O controllers used in
early UNIX systems were 16-bit microprocessors. To avoid problems with 16-
bit addresses in controllers, UNIX was changed to limit the maximum I/O
transfer to 63 KBorless; at the time of this book’s publication, that limitis still
in effect. Thus, a new I/O controller designed to efficiently transfer 1-MB files
would never see more than 63 KBat a time under UNIX, no matter how large
the files.

Caches Cause Problems for Operating Systems—
Stale Data

The prevalence of caches in computer systems has addedto the responsibilities
of the operating system. Caches implythe possibility of two copies of the data—
one each for cache and main memory—while virtual memorycanresult in three
copies—for cache, memory anddisk. This brings up the possibility of stale data:
the CPU or I/O system could modify one copy without updating the other copies
(see Section 8.8 in Chapter 8). Either the operating system or the hardware must
make sure that the CPU reads the most recently input data and that I/O outputs
the correct data, in the presence of caches and virtual memory. Whether the
stale-data problem arises depends in part on where the I/O is connected to the
computer. If it is connected to the CPU cache, as shownin Figure 9.28 (page
536), there is no stale-data problem;all 1/O devices and the CPU see the most
accurate version in the cache, and existing mechanisms in the memory hierarchy
ensure that other copies of the data will be updated. The side effect is lost CPU
performance, since I/O will replace blocks in the cache with data that are
unlikely to be needed by the process running in the CPU at the time of the
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transfer. In other words, all I/O data goes through the cache butlittle of it is
referenced. This arrangementalso requires arbitration between CPU and 1/0 to

- decide whoaccessesthe cache.If I/O is connected to memory, as in Figure 9.27
(page 533), then it doesn’t interfere with CPU,provided the CPU has a cache.In
this situation, however,the stale-data problem occurs. Alternatively, I/O can just
invalidate data—eitherall data that might match (no tag check) oronly data that
matches.

There are two parts to the stale-data problem:

1. The I/O system seesstale data on output because memoryis not up to date,
2 The CPUseesstale data in the cache on input after the I/O system has

updated memory.

 
The first dilemma is how to output correct data if there is a cache and 1/O is
connected to memory. A write-through cache solves this by ensuring that
memory will have the same data as the cache. A write-back cache requires the
operating system to flush output addresses to make sure they are not in the
cache. This takes time, even if the data is not in the cache, since address checks
are sequential. Alternatively, the hardware can check cachetags during output to
see if they are in a write-back cache, and only interact with the cache if the
outputtries to read data thatis in the cache.

The second problem is ensuring that the cache won’t havestale data after
input. The operating system can guarantee that the input data area can’t possibly
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FIGURE9.28 Example of /O0 connected directly to the cache.
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be in the cache. If it can’t guarantee this, the operating system flushes input
addresses to make sure they are not in the cache. Again, this takes time, whether
or not the input addresses are in the cache. As before, extra hardware can be
added to check tags during an input and invalidate the data if there is a conflict.
These problemsare basically the same as cache coherency in a multiprocessor,
discussed in Section 8.8 of Chapter 8; I/O can be thought of as a second
dedicated processorin a multiprocessor.

DMAand Virtual Memory

Given the use of virtual memory, there is the matter of whether DMA should
transfer using virtual addresses or physical addresses. Here are some problems
with DMAusing physically mapped I/O:

« Transferring a buffer that is larger than one page will cause problems, since
the pages in the buffer will not usually be mapped to sequential pages in
physical memory.

=» Suppose DMAis ongoing between memory and a frame buffer, and the
operating system removes some of the pages from memory (or relocates
them). The DMA would then be transferring data to or from the wrong page
of memory.

One answer to these questions is virtual DMA. It allows the DMA to use
virtual addresses that are mapped to physical addresses during the DMA. Thus, a
buffer must be sequential in virtual memory but the pages can be scattered in
physical memory. The operating system could update the address tables of a
DMAif a process is moved using virtual DMA,or the operating system could
“lock” the pages in memory until the DMA is complete. Figure 9.29 (page 538)
showsaddress-translation registers added to the DMAdevice.

Caches Helping Operating Systems—
File or Disk Caches

While the invention of caches made the life of the operating systems designer
more difficult, operating systems designers’ concern for performance led them
to cache-like optimizations, using main memory as a “cache” for disktraffic to
improve I/O performance. The impact of using main memory as a buffer or
cache for file or disk accesses is demonstrated in Figure 9.30 (page 538).It
showsthe change in disk I/Os for a cacheless system measured as missrate (see
Section 8.2 in Chapter 8). File caches or disk caches change the numberof disk
I/Os and the mix of reads and writes; depending on cachesize and write policy,
between 50% to 70% ofall disk accesses could become writes with such caches.

Without file or disk caches, between 15% and 33% of all accesses are writes,

depending on the environment.
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FIGURE 9.29 Virtual DMA requires a register for each pageto betransferred in the
DMAcontroller, showingtheprotection bits and the physical page correspondingtoeach virtual page.
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FIGURE9.30 The effectiveness of a file cache or disk cache on reducing disk I/Os
versus cachesize. Ousterhoutetal. [1985] collected the VAX UNIX data on VAX-11/785s
with 8 MB to 16 MBof main memory, running 4.2 BSD UNIX using a 16-KB blocksize.
Smith [1985] collected the IBM SVS and IBM MVStraces on IBM 370/168 using a one-
track block size (which varied from 7294 bytes to 19254 bytes, depending on the disk). The
difference betweena file cache and a disk cacheis thatthefile cache useslogical block
numberswhile a disk cache uses addresses that have been Mappedto the physical sector
and track on a disk. This difference is similar to the difference between a virtually
addressed and a physically addressed cache (see Section 8.8 in Chapter8).

              
SAMSUNG EXHIBIT 1009

Page 141 of 171

 



SAMSUNG EXHIBIT 1009 
Page 142 of 171

 
Input/Output 539 

9.8 Designing an I/O System

Theart ofI/O is finding a design that meets goals for cost and variety of devices
while avoiding bottlenecks to I/O performance. This means that components
must be balanced between main memory and the I/O device because perfor-
mance—and hence effective cost/performance—can only be as good as the
weakest link in the I/O chain. The architect must also plan for expansion so that
customers can tailor the I/O to their applications. This expansibility, both in
numbers and types of I/O devices, has its costs in longer backplanes, larger
powersupplies to support I/O devices, and larger cabinets.

In designing an I/O system, analyze performance, cost, and capacity using
varying I/O connection schemes and different numbers of I/O devices of each
type. Here is a series of six steps to follow in designing an I/O system. The
answers in each step may be dictated by market requirements or simply by
cost/performancegoals.

1. List the different types of I/O devices to be connected to the machine, or a
list of standard buses that the machine will support.

2. List the physical requirements for each I/O device. This includes volume,
power, connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any
controller needed forthis device.

4. Record the CPU resource demandsof each I/O device. This should include:

Clock cycles for instructions usedto initiate an I/O, to support operation
of an I/O device (such as handling interrupts), and complete I/O

CPUclockstalls due to waiting for I/O to finish using the memory,bus, or
cache

CPU clock cycles to recover from an I/O activity, such as a cache flush

5. List the memory and I/O bus resource demands of each I/O device. Even
when the CPUis not using memory, the bandwidth of main memory and the
I/O busare limited.

6. The final step is establishing performance of the different ways to organize
these I/O devices. Performance can only be properly evaluated with
simulation, though it may be estimated using queuing theory.

You then select the best organization, given your performance and cost goals.
Cost and performance goals affect the selection of the I/O scheme and

physical design. Performance can be measured either as megabytes per second
or I/Os per second, depending on the needs of the application. For high per-
formance,the only limits should be speed of I/O devices, numberofI/O devices,
and speed of memory and CPU.Forlow cost, the only expenses should be those
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Example

Answer

for the I/O devices themselves and for cabling to the CPU. Cost/performance
design, of course,tries for the best of both worlds.

To maketheseideasclearer, let’s go throughseveral examples.

First, let’s look at the impact on the CPU of reading a disk pagedirectly into the
cache. Make the following assumptions:

Each page is 8 KB and the cache-blocksizeis 16 bytes.
The addresses correspondingto the new pageare not in the cache.
The CPU will not access any ofthe data in the new page.
90% ofthe blocks that were displaced from the cache will be read in again,
and each will cause a miss.

The cache uses write back, and 50% ofthe blocksare dirty on average.
The I/O system buffers a full cache block before writing to the cache(this is
called a speed-matching buffer, matching transfer bandwidth of the 1/0
system and memory).

The accesses and missesare spread uniformlyto all cacheblocks.

Thereis no other interference between the CPUand I/O forthe cacheslots,
There are 15,000 misses every one million clock cycles when thereis no 1/0.
The miss penalty is 15 clock cycles, plus 15 more cycles to write the block if
it was dirty.

Assuming one page is brought in every one million clock cycles, what is the
impact on performance?

Each pagefills 8192/16 or 512 blocks. I/O transfers do not cause cache misses
on their own because entire caché blocks are transferred. However, they do
displace blocksalready in the cache. If half of the displaced blocks are dirty it
takes 256*15 clock cycles to write them back to memory. There are also misses
from 90% of the blocks displacedin the cache because they are referencedlater,
adding another 90%*512, or 461 misses. Since this data was placed into the
cache from the I/O system,all these blocks are dirty and will need to be written
back when replaced. Thus,the total is 256« 15 + 461*30 more clock cycles than
the original 1,000,000 + 15,000*15. This turns into a 1% decrease in
performance:

256*15 + 461*30 _ 17670 _ 0.014
1000000+15000*15 ~ 1225000 ~~”

Now let’s look at the cost/performance of different I/O organizations. A
simple wayto perform this analysis is to look at maximum throughput assuming
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that resources can be used at 100% of their maximum rate without side effects
from interference. A later example takes a more realistic view.

Given the following performanceandcost information:

a 50-MIPS CPU costing $50,000

an 8-byte-wide memory with a 200-nscycle time

80 MB/sec I/O bus with room for 20 SCSI buses and controllers

SCSI busesthat can transfer 4 MB/sec and supportup to 7 disks per bus
(these are also called SCSI strings)

a $2500 SCSI controller that adds 2 milliseconds (ms) of overhead to perform
a disk I/O

an operating system that uses 10,000 CPUinstructions for a disk /O

a choiceof a large disk containing 4 GBor a small disk containing 1 GB,
each costing $3 per MB

both disks rotate at 3600 RPM,have a 12-ms average seek time, and can
transfer 2MB/sec

the storage capacity must be 100 GB, and

the average I/O size is 8 KB

Evaluate the cost per I/O per second (IOPS) of using small or large drives.
Assume that every disk I/O requires an average seek and average rotational
delay. Use the optimistic assumption thatall devices can be used at 100% of
capacity and that the workload is evenly divided betweenall disks.

I/O performanceis limited by the weakestlink in the chain, so we evaluate the
maximum performance of each link in the I/O chain for each organization to
determine the maximum performanceofthat organization.

Let’s start by calculating the maximum number of IOPS for the CPU, main
memory, and I/O bus. The CPU I/O performance is determined by the speed of
the CPU and the numberofinstructions to perform a disk I/O:

. 50 MIPS _
Maximum OPS for CPU = 10000instructions per I/O — 5000

The maximum performance of the memory system is determined by the memory
cycle time, the width of the memory, and the size of the I/O transfers:

(1/200 ns)#*8 _ 5000Maximum TOPSfor main memory = 948 per 1/0 ~
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The I/O bus maximum performanceis limited by the bus bandwidth and the sizeof the I/O:

80 MB/secMaximum IOPSforthe I/O bus = KB per I/O
 

= 10000

Thus, no matter which disk is selected, the CPU and main memory limits the
maximum performanceto no more than 5000 JOPS.

Nowits time to look at the performanceofthe next link in the /O chain, the
SCSI controllers. The time to transfer 8 KB over the SCSIbus is

  
8 KB

SCSI bustransfer time =4MB/sec =2ms

      
Adding the 2-ms SCSI controller overhead means 4 ms per I/O, making themaximumratepercontroller

Maximum IOPS per SCSI controller = im = 250 IOPS
 
 

All the organizationswill use several controllers, so 250 IOPS is not the limit forthe whole system,

The final link in the chain is the disks themselves, The time for an averagedisk I/O is

0.5 SKB = 12+8.3+4 = 243 ms
B/secYO time = 12 ms +sonRpt a4

so the disk performanceis

. . . 1Maximum IOPS (using average seeks) per disk = 24.3 ms ~ 41 IOPS
The numberof disks in each organization dependsonthe size of each disk: 100
GB canbeeither 25 4-GB disks or 100 1-GB disks. The maximum number ofI/Osfor all the disksis:

                    
Maximum IOPS for 25 4-GB disks = 25 * 4] = 1025

Maximum IOPSfor 100 1-GB disks = 100 x 41 =4100

Thus,provided there are enough SCSIstrings, the disks becomethe new limit to
maximum performance: 1025 IOPS for the 4-GB disks and 4100 for the 1-GBdisks.

While we have determined the performance ofeachlink of the I/O chain, we |
still have to determine how many SCSI buses and controllers to use and how
many disks to connect to each controller, as this may further limit maximum
performance. The I/O busis limited to 20 SCSI controllers and the SCSI
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standard limits disks to 7 per SCSIstring. The minimum numberofcontrollersis
for the 4-GB disks

Minimum number of SCSI strings for 25 4-GB disks = 2 or 4
and for 1-GB disks

a . . 100
Minimum numberof SCSIstrings for 100 1-GB disks = 7 or 15

Wecan calculate the maximum IOPSfor each configuration:

Maximum IOPSfor 4 SCSI strings = 4 * 250 = 1000 IOPS

Maximum IOPSfor 15 SCSIstrings = 15 * 250 = 3750 IOPS

The maximum performanceof this numberof controllers is slightly lower
than the disk I/O throughput,so let’s also calculate the number of controllers so
they don’t becomeabottleneck. One way is to find the numberof disks they can
support perstring:

. . . 250
Numberof disks per SCSIstring at full bandwidth = 417 6.1 or 6

and then calculate the numberofstrings:

Numberof SCSI strings for full bandwidth 4-GB disks = 2 =4.1or5

Numberof SCSIstrings for full bandwidth 1-GB disks = we = 16.7 or 17

This establishes the performanceof four organizations: 25 4-GB disks with 4
or 5 SCSIstrings and 100 1-GB disks with 15 to 17 SCSI strings. The maximum
performance of each option is limited by the bottleneck (in boldface):

4-GB disks, 4 strings = Min(5000,5000,10000,1025,1000) = 1000 TOPS

4-GB disks, 5 strings = Min(5000,5000,10000,1025,1250) = 1025 IOPS

1-GB disks, 15 strings = Min(5000,5000,10000,4100,3750) = 3750 IOPS

1-GB disks, 17 strings = Min(5000,5000,10000,4100,4250) = 4100 JOPS

Wecan now calculate the cost for each organization:

3
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4-GBdisks, 4 Strings = $50,000 + 4%$2,500 +25 x (4096*$3) = $367,200
4-GBdisks, 5 Strings = $50,000 + 5*$2,500 + 25 x (4096*$3) = $369,700
1-GB disks, 15 strings = $50,000 + 15*$2,500 + 100 « (1024*$3) = $394,700
1-GB disks, 17 strings = $50,000 + 17*$2,500 + 100 « (1024*$3) = $399,700

  
Finally, the cost per IOPSfor eachof the four configurations is $367, $361,$105, and $97, respectively, Calculating maximum number of average I/Os per

                   
This above example assumed that resources can be used 100%. It isinstructive to see what is the bottleneck in each organization,

 

For the organizations in the last example, calculate the percentageofutilizationof each resourcein the computer system,
Example

Answer Figure 9.31 gives the answer.

 
   

   
 

  

 
            

 

 
 
 
 
 

Resource 4-GB disks, 4-GBdisks, 1-GB disks, 1-GB disks,
4 strings 5 strings 15 strings 17 strings

CPU 20% 21% 75% 82%
Memory 20% 21% 75% 82% |
1/0 bus 10% 10% 38% 41% |SCSI buses 100% 82% 100% 96%

| Disks 98% 100% 91% 100%  
 
FIGURE 9.31 The Percentageofutilization of ach resource given the fourOrganizationsin the Previous example. Either the SCSI busesor the disks are thebottleneck. |

  
In reality buses cannot deliver close to 100% of bandwidth without severeincrease in latency and reduction in throughput dueto contention. A variety ofrules of thumb have been evolved to guide I/O designs:
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No I/O busshould be utilized more than 75% to 80%;

Nodisk string should be utilized more than 40%;

No disk arm should be seeking more than 60% ofthe time.

Recalculate performance in the example above using these rules of thumb, and
show the utilization of each component. Are there other organizations that
follow these guidelines and improve performance?

Figure 9.31 shows that the I/O busis far below the suggested guidelines, so we
concentrate on the utilization of seek and SCSIbus. Theutilization of seek time

per disk is

Time of average seek 12ms__ 12= = = O;
Time between I/Os 1 24 50%
 

which is below the rule of thumb. The biggest impact is on the SCSI bus:

 

Suggested IOPS per SCSI string = 4 Ly 40% = 100 IOPS.ms

With this data we can recalculate IOPS for each organization:

4-GB disks, 4 strings = Min(5000,5000,7500,1025,400) = 400 IOPS

4-GBdisks, 5 strings == Min(5000,5000,7500,1025,500) = 500 1OPS

1-GB disks, 15 strings = Min(5000,5000,7500,4100,1500) = 1500 IOPS

1-GB disks, 17 strings = Min(5000,5000,7500,4100,1700) = 1700 IOPS

Under these assumptions, the small disks have about 3.0 to 4.2 times the
performanceof the large disks.

Clearly, the string bandwidth is the bottleneck now. The numberof disks per
string that would not exceed the guideline is

. 10
Numberof disks per SCSIstring at full bandwidth = rt =2.40r2

and the ideal numberofstringsis

Numberof SCSIstrings for full bandwidth 4-GB disks = > = 12.5 or 13

Numberof SCSIstrings for full bandwidth 1-GB disks = ” = 50
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This suggestion is fine for 4-GB disks, but the VO busis limited to 20 SCSIcontrollers and strings so that becomesthe limit for 1-GB disks:
4-GBdisks, 13 Strings = Min(5000,5000,7500,1025,1300) = 1025 IOPS
!-GB disks, 20 Strings = Min(5000,5000,7500,4 100,200) = 2000 IOPS

Wecan now calculate the cost for each Organization:
4-GB disks, 13 strings = $50,000 + 13*$2,500 + 25 « (4096*$3) = $389,700
!-GB disks, 20 strings = $50,000 + 20*$2,500 + 100 « (1024#$3) — $407,200

In this case the small disks cost 5% more yet have about twice the performanceof the large disks. The utilization of each resource is shown in Figure 9.32. Ifshows that following the rule of thumb of 40% string utilization sets theperformance limit in all but one case.

Resource 4-GB 4-GB 1-GB 1-GB 4-GB 1-GBdisks, 4 disks, 5 disks, 15 disks, 17 disks, 13 disks, 20    
 

        

  
 

| Strings Strings Strings strings Strings strings; CPU 8% 10% 30% 34% 21% 40%Memory 8% 10% 30% 34% 21% 40%| 1/O bus 5% 1% 20% 23% 14%27%| SCSI buses 40% 40% 40% 40% 32% 40% 

Disks 39% 49% 37% ane, 100% gqge . ee eeSeekutilization 19% 24% 18% 20% 49% 24%Ah A4%|IOPS 400 500 1500 1700 1025 2000ee

(ETON10252000

 

  
FIGURE 9.32 The percentage of utilization of each resource given the sixOrganizationsin this example, whick tries to limit utilization of key resourcesto therules of thumb given above.

Putting It All Together:
The IBM 3990 Storage Subsystem
If computer architects were polled to select the leading Companyin I/O design,IBM would win hands down. A 800d deal of IBM’s mainframe business jscommercial applications, known to be 1/O intensive. While there are graphic \devices and networks that can be connected to an IBM Mainframe, IBM’sreputation comes from disk performance.It js On this aspectthat We concentratein this section.

\
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The IBM 360/370 I/O architecture has evolved over a period of 25 years.
Initially, the I/O system was general Purpose, and no special attention was paid
to any particular device. As it became clearthat magnetic disks were the chief
consumers of I/O, the IBM 360 wastailored to support fast disk I/O. IBM’s
dominantphilosophyis to chooselatency over throughput wheneverit makes a
difference. IBM almost never uses a large buffer outside the CPU;their goalis
to set up a clear path from main memoryto the I/O device so that when a device
is ready, nothing can get in the way. Perhaps IBM followed a corollary to the
quote on page 526: you can buy bandwidth, but you need to design forlatency.
Asa secondary philosophy, the CPU is unburdened as much as possible to allow
the CPU to continue with computation while others perform the desired I/O
activities.

The example for this section is the high-end IBM 3090 CPU and the 3990
Storage Subsystem. The IBM 3090, models 3090/100 to 3090/600, can contain
one to six CPUs. This 18.5-ns-clock-cycle machine has a 16-way interleaved
memory that can transfer eight bytes every clock cycle on each of two
(3090/100) or four (3090/600) buses. Each 3090 processor has a 64-KB, 4-way-
set-associative, write-back cache, and the cache supports pipelined access taking
two cycles. Each CPU is rated about 30 IBM MIPS(see page 78), giving at
most 180 MIPSto the IBM 3090/600. Surveys of IBM mainframeinstallations
suggest a rule of thumb of about 4 GB ofdisk storage per MIPS of CPU power
(see Section 9.12).

It is only fair warning to say that IBM terminology may notbe self-evident,
although the ideas are notdifficult. Rememberthatthis I/O architecture has
evolved since 1964. While there may well be ideas that IBM wouldn't include if
they were to start anew, they are able to make this scheme work, and makeit
workwell.

The 3990 I/O Subsystem Data-Transfer Hierarchy
and Control Hierarchy

The I/O subsystem is divided into two hierarchies:

1. Control—This hierarchy of controllers negotiates a path through a maze of
possible connections between the memory and the I/O device and controls
the timing ofthetransfer.

2. Data—This hierarchy of connections is the path over which data flows
between memoryandthe 1/O device.

After going overeachof the hierarchies, we trace a disk read to help understand
the function of each component.

For simplicity, we begin by discussing the data-transfer hierarchy, shown in
Figure 9.33 (page 548). This figure showsonesection of the hierarchy that con-
tains up to 64 large IBM disks; using 64 ofthe recently announced IBM 3390
disks, this piece could connect to over onetrillion bytes of storage! Yet this
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piece represents only one-sixth ofthe Capacity of the IBM 3090/600 CPU. This
ability to expand from a small 1/O system to hundredsofdisks and terabytes of
storage is what gives IBM mainframestheir reputation in the I/O world.

The best-known memberofthe data hierarchy is the channel. The channelis
s nothing more than 50 wires that connect two levels on the I/O hierarchy

together. Only 18 of the 50 wires are used for transferring data (8 data plus |
parity in each direction), while the rest are for control information. For years the
maximum data rate was 3 MB per second, butit recently was raised to 4.5 MB
per second. Up to 48 channels can be connectedto a 3090/100 CPU,and up to

Main memory
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Main memory
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Speed-matchingbufters
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controller  
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FIGURE 9.33 The data-transfer hierarchy in the IBM 3990 1/0 Subsystem. Note thatall the channels are connected
to all the storage directors. The disks at the bottom represent the quad-ported IBM 3380 disk drives, with the maximum of
64 disks. The collection of disks on the samepath to the head-of-string controlleris called a string .
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96 channels to a 3090/600. Because they are “multiprogrammed,” channels can
actually service several disks. For historical reasons, IBM calls this block
multiplexing.

Channels are connected to the 3090 main memory via two speed-matching
buffers, which funnelall the channels into a single port to main memory. Such
buffers simply match the bandwidth of the I/O device to the bandwidth of the
memory system. There are two 8-byte buffers per channel.

The next level down the data hierarchy is the storage director. This is an
intermediary device that allows the many channels to talk to manydifferent 1/O
devices. Four to sixteen channels go to the storage director depending on the
model, and two orfour paths come out the bottom to the disks. These are called
two-path strings or four-path strings in IBM parlance. Thus, each storage
director can talk to any of the disks using one ofthe strings. At the top of each
string is the head of string, and all communication between disks and control
units must pass throughit.

At the bottom of the datapath hierarchy are the disk devices themselves. To
increase availability, disk devices like the IBM 3380 provide four paths to
connect to the storage director; if one path fails, the device can still be
connected.

The redundant paths from main memory to the I/O device not only improve
availability, but also can improve performance. Since the IBM philosophy is to
avoid large buffers, the path from the I/O device to main memory must remain
connected until the transfer is complete. If there were a single hierarchical path
from devices to the speed-matching buffer, only one I/O device in a subtree
could transfer at a time. Instead, the multiple paths allow multiple devices to
transfer simultaneously throughthe storage director and into memory.

The task of setting up the datapath connectionis that of the control hierarchy.
Figure 9.34 shows both the control and data hierarchies of the 3990 I/O
subsystem. The new device is the 1/O processor. The 3090 channelcontroller
and I/O processorare load/store machines similar to DLX, except that there is no
memory hierarchy. In the next subsection we see how the two hierarchies work
together to read a disk sector.

Tracing a Disk Readin the IBM 3990 I/O
Subsystem

The 12 steps below trace a sector read from an IBM 3380disk. Each of the 12
steps is labeled on a drawing of the full hierarchy in Figure 9.34 (page 550).
1. The user sets up a data structure in memory containing the operations that
should occur during this 1/O event. This data structure is termed an //O control
block, or IOCB, which also points to a list of channel control words (CCWs).
This list is called a channel program. Normally, the operating system provides
the channel program, but some users write their own. The operating system
checks the IOCB for protection violations before the 1/O can continue.
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2. The CPU executes a START SUBCHANNEL, instrucis defined in the channel
look like Figure 9.35,

————$—$_____>Main memory
B bank 0

e
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FIGURE 9.34 The co

ntrol and data hierarchies in the IBM 3990 0 SubsystemSector from disk. The
only new box over Figure 9.33 ( labeledwith the 12 steps to read aPage 548)is the /O Processor.
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Location CCW Comment

CCW1: Define Transfers a 16-byte parameterto the storage director. The
Extent channelseesthis as a write data transfer.

CCW2: Locate Transfers a 16-byte parameterto the storage director as
Record above. The parameter identifies the operation (read in this

case) plus seek, sector number, and record ID. The channel
again sees this as a write data transfer. 

CCW3: Read Data Transfers the desired disk data to the channel and then to

the main memory.

  
 

FIGURE 9.35 A channel program to perform a disk read, consisting of three channel
command words (CCWs). The operating system checksfor virtual memory access
violations of CCWsby simulating them to checkfor violations. These instructions are linked
so that only one START SUBCHANNELinstruction is needed.

3. The I/O processor uses the control wires of one of the channels to tell the
storage director which disk is to be accessed and the disk address to be read. The
channelis then released.

4. The storage director sends a SEEK commandto the head-of-string controller
and the head-of-string controller connects to the desired disk, telling it to seek to
the appropriate track, and then disconnects. The disconnect occurs between
CCW2and CCW3in Figure 9.35.

Upon completion of these first four steps of the read, the arm on the disk
seeks the correct track on the correct IBM 3380 disk drive. Other I/O operations
can use the control and data hierarchy while this disk is seeking and the data is
rotating under the read head. The I/O processor thus acts like a multipro-
grammed system, working on other requests while waiting for an I/O event to
complete.

Aninteresting question arises: When there are multiple uses for a single disk,
what prevents another seek from screwing up the works before the original
request can continue with the I/O event in progress? The answeris the disk
appears busy to the programs in the 3090 between the time a START
SUBCHANNEL instruction starts a channel program (step 2) and the end of that
channel program. An attempt to execute another START SUBCHANNEL

instruction would receive busy status from the channelor from the disk device.
After both the seek completes and the disk rotates to the desired pointrelative

to the read head, the disk reconnects to a channel. To determinethe rotational

position of the 3380 disk, IBM providesrotational positional sensing (RPS), a
feature that gives early warning whenthe data will rotate under the read head.
IBM essentially extends the seek time to include some of the rotation time,
thereby tying up the datapath aslittle as possible. Then the I/O can continue:

5. When the disk completes the seek and rotates to the correct position, it
contacts the head-of-string controller.
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6. The head-of-string controller looks for a free storage director to send thesignal that the disk is on the right track.

7. The storage director looks for a free channelso thatit can use the control
wires totell the I/O processorthat the disk is on the right track.

\ 8. The I/O processor simultaneously contacts the storage director and YO
device (the IBM 3380 disk) to give the OK to transfer data, and tells the channel
controller where to put the information in main memory when it arrives at thechannel.

There is now a direct path between the I/O device and memory and thetransfer can begin:

                      
9. When the disk is ready to transfer, it sends the data at 3 megabytes persecond overa bit-serial line to the storage director.

10. The storage director collects 16 bytes in one of two buffers and sends theinformation on to the channelcontroller.

11. The channel controller has a pair of 16-byte buffers per storage director and
sends 16 bytes over a 3-MB or 4.5-MBper second, 8-bit-wide datapath to thespeed-matching buffers.

12. The speed-matching buffers take the information coming in from all
channels. There are two 8-byte buffers per channel that send 8 bytes at a time to
the appropriate locations in main memory.

Since nothing is free in computer design, one might expect there to be a cost
in anticipating the rotational delay using RPS, Sometimesa free path cannot be
established in the time available due to other YO activity, resulting in an RPS
miss. An RPS miss means the 3990 WO Subsystem musteither:

          
= Wait another full rotation— 16,7 ms—before the data is back under the head,or

”

« Break down thehierarchical datapath andstart all over again!
Lots of RPS misses can ruin response times,

As mentioned above, the IBM I/O system evolved over many years, and
Figure 9.36 showsthe changein responsetime for a few of those changes. The
first improvement concerns the path for data after reconnection. Before the
System/370-XA, the data path through the channels and Storage director (steps 5
through 12) had to be the Same as the path taken to request the seek (steps |through 4). The 370-XA allowsthe path after reconnection to be different, and
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microcode control of the 3380D madeslight improvements in seek time plus
removed a restriction that disk arms that were on the same internal path were

prevented from operating at the same time. IBM calls this option Device Level
Select (DLS). This change reduced internal path delays to 0. This had little
impact since there was not much time waiting on internal delays because
customers intentionally placed data on disks trying to avoid internal path delays.
This second change reduced response time another 9%. The final change was
addition of a 32-MB write-through disk cache to a 3380D,called the IBM 3880-
23. The disk cache reduced averagerotational latency, seek time, and queueing
delays, giving another 41% reductionin response time.

One indication of the effectiveness of DPR is the number of disk devices

connected to a string. Studies of IBM systems using DPR, which average 16
disk devices per string versus 12 without DPR, suggest dynamic reconnect
allows a higher I/O rate with comparable response time [Henly and McNutt
1989].

Summary of the IBM 3990 I/O Subsystem

Goals for I/O systemsconsist of supporting the following:

s Low cost

a A variety of types of I/O devices
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FIGURE 9.36 Changesin responsetime with improvements in 3380D brokeninto six
categories [Friesenborg and Wicks 1985]. Queueing delay refers to the time whenthe
program waits for another program to finish with the disk. Channel-path delayis the time
the operation waits due to the channel path and storage director being busy with another

\ task. Internal-path delayis similar to channel-path delay exceptit refers to internal paths in
the 3380D. Direct meansthe time the channel path is busy with the operation. Seek time
and rotational latency are the standard definitions. Robinson and Blount [1986] report in the
study of the 3880-23 that the read hit rate for the 32-MB write-through cache in some large
systems averages about 90%, with reads accounting for 92%of the disk accesses.
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a A large numberof I/O devices at a time

« High performance

a Low latency

Substantial expendability and lower latency are hard to get at the same time.
IBM channel-based systems achieve the third and fourth goals by utilizing
hierarchical data paths to connect a large numberof devices, The many devices
and parallel paths allow simultaneous transfers and, thus, high throughput. By
avoiding large buffers and providing enough extra paths to minimize delay from
congestion, channels offer low-latency I/O as well. To maximize use ofthe
hierarchy, IBM usesrotational positional sensing to extend the time that other
tasks can use the hierarchy during an I/O operation.

Therefore, a key to performance of the IBM I/O subsystem is the number of
rotational positional misses and congestion on the channel paths. A rule of
thumbis that the single-path channels should be no more than 30% utilized and
the quad-path channels should be no more than 60% utilized, or too many
rotational positional misses will result. This I/O architecture dominates the
industry, yet it would be interesting to see what, if anything, IBM would do
differently if given a cleanslate.

Fallacies and Pitfalls

Fallacy: /O plays a small role in supercomputer design

The goal ofthe Illiac IV was to be the world’s fastest computer. It may not have
achieved that goal, but it showed I/O as the Achilles’ Heel of high-performance
machines. In some tasks, more time wasspent in loading data than in computing.
Amdahl’s Law demonstrated the importance of high performancein all the parts
of a high-speed computer. (In fact, Amdahl made his commentin reaction to
claims for performance through parallelism made on behalf ofthe Iliac IV.) The
Iliac 1V had a very fast transfer rate (60 MB/sec), but very small. fixed-head
disks (12-MBcapacity). Since they were not large enough, more storage was
provided on a separate computer. This led to two ways of measuring I/O
overhead:

Warmstart—Assumingthe datais on the fast, small disks, I/O overhead1s
the time to load the [liac IV memory from those disks.

Cold start—Assumingthe data is in on the other computer, I/O overhead
must include the timetofirst transfer the data to the Hliac IV fast disks.

Figure 9.37 showsten applications written for the Iliac TV in 1979. Assuming
warm starts, the supercomputer was busy 78% ofthe time and waiting for I/O
22%of the time: assuming cold starts, it was busy 59%ofthe time and waiting
for I/O 41% of the time.
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FIGURE 9.37 Feierback and Stevenson[1979] summarized the importantIliac IV
applications and the percentage of time spent computing versus waiting for /O. Thearithmetic means of the 10 programs are 78% computing for warm start and 59%
computing for cold start.

 

 
Pitfall: Moving functions from the CPUto the I/O processor to improve

performance.

There are many examples of this pitfall, although VO processors can enhance
performance. A problem inherent with a family of computers is that the mi-
eration of an VO feature usually changes the instruction set architecture oF
system architecture ina programmer- visible way. causing all future machinestohave to live with a decision that made sense in the past. If CPUs are improved in
cost/performance more rapidly than the 1/O processor (and this will likely be the
case) then moving the function may result in a Slower machine in the next CPU.  
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The mosttelling example comes from the IBM 360. It was decided that the
performance of the ISAM system, an early database system, would improveif
some of the record searching occurred in the disk controller itself, A key field
wasassociated with each record, and the device searched each key as the disk
rotated until it found a match. It would then transfer the desired record. For the
disk to find the key, there had to be an extra gap in the track. This scheme is
applicable to searches through indices as well as data.

The speed a track can be searched is limited by the speed ofthe disk and of
the numberof keys that can be packed ona track. On an IBM 3330 disk the key
is typically 10 characters, but the total gap betweenrecordsis equivalent to 191
charactersif there were a key. (The gapis only 135 charactersif there is no key,
since there is no need for an extra gap for the key.) If we assumethe data is also
10 characters and the track has nothing else on it, then a 13165-byte track can
contain

13165

191410410 = 07 key-data records

This performanceis

1e.T-ms(revolution) ~ .25 ms/key search
In place of this scheme, we could putseveral key-data pairs in a single block and
have smaller inter-record gaps. Assumingthere are 15 key-data pairs per block
and thetrack has nothingelse onit, then

13165 13165
135+15*(10+10)  135+300

 

= 30 blocks of key-data pairs

The revised performanceis then

16.7 ms (1 revolution)
30" 15 = .04 ms/key search

Yet as CPUsgotfaster, the CPU time for a search wastrivial. While the strategy
made early machines faster, programsthat use the search-key operation in the
I/O processorrun six times slower on today’s machines!

Fallacy: Comparing the price of media versus the price of the packaged
system.

This happens most frequently when new memorytechnologiesare compared to
magnetic disks. For example, comparing the DRAM-chipprice to magnetic-disk
packagedprice in Figure 9.16 (page 518) suggests the difference is less than a
factor of 10, but its much greater when the price of packaging DRAM is
included. A common mistake with removable media is to compare the media
cost not including the drive to read the media. For example, optical media costs

SAMSUNG EXHIBIT 1009

Page 159 of 171

 



SAMSUNG EXHIBIT 1009 
Page 160 of 171

 

 
Input/Output 557

only $1 per MB in 1990,but including the cost of the optical drive may bring the
price closer to $6 per MB.

Fallacy: The time of an average seek of a disk in a computer system is the
time for a seek ofone-third the numberofcylinders.

This fallacy comes from confusing the way manufacturers market disks with the
expected performanceandwith the false assumptionthatseek times are linear in
distance. The 1/3 distance rule of thumb comes from calculating the distance of
a seek from one random location to another random location, not including the
current cylinder and assumingthere are a large number of cylinders. In the past,
manufacturers listed the seek of this distance to offer a consistent basis for
comparison. (As mentioned on page 516, today they calculate the “average” by
timing all seeks and dividing by the number.) Assuming(incorrectly) that seek
timeis linear in distance, and using the manufacturers reported minimum and
“average” seek times, a commontechniqueto predict seek timeis:

__Distance__, (Time Timeminieurn)
Distanceayerage average minimumTimeseek = TiMe€minimum +

The fallacy concerning seek time is twofold. First, seek time is not linear
with distance; the arm must accelerate to overcome inertia, reach its maximum
traveling speed, decelerate as it reaches the requested position, and then wait to
allow the arm to stop vibrating (settle time). Moreover, in recent disks
sometimes the arm must pause to control vibrations. Figure 9.38 (page 558)
plots time versus seek distance for an example disk. It also showsthe error in
the simple seek-time formula above. For short seeks, the acceleration phase
plays a larger role than the maximum traveling speed, and this phaseis typically
modeled as the square root of the distance. Figure 9.39 (page 558) shows
accurate formulas used to model the seek time versusdistance for two disks.

The second problem is the average in the product specification would only be
true if there was nolocality to disk activity. Fortunately, there is both temporal
and spatial locality (page 403 in Chapter 8): disk blocks get used more than once
and disk blocks near the current cylinder are morelikely to be used than those
farther away. For example, Figure 9.40 (page 559) shows sample measurements
of seek distances for two workloads: a UNIX timesharing workload and a
business-processing workload. Notice the high percentage of disk accesses to the
samecylinder, labeled distance 0 in the graphs, in both workloads.

Thus, this fallacy couldn't be more misleading. The Exercises debunkthis
fallacy in more detail.
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FIGURE 9.38 Seek time versus seek distancefor the first 200 cylinders. The
Imprimis Sabre 97209 contains 1.2 GB using 1635 cylinders and has the IPI-2 interface
[Imprimis 1989]. This is an 8-inch disk. Note that longer seeks can take less time than
shorter seeks. For example, a 40-cylinder seek takes almost 10 ms, while a 50-cylinderseek takes less than 9 ms.

IBM 3380D IBM 3380J
Range for formula Formulas Range for formula Formulas

2 < 2 <
I 5 i.Dist l 50 Dist:0 1.9 +VDistance _ Stance 2.48 +VDistancea 
  
   50

51 1008.1 +.0.044 * (Distance-50) 51 130 7.28 + 0.0320 * (Distances)
101 500 10.3 + 0.025 * (Distance-100) 131 500 10.08 + 0.0166 * (Distance-130)
501 884 20.4 + 0.017 * (Distance-500) 501 884 16.00 + 0.0114 * (Distance-500) 

FIGURE9.39 Formulas for seek time in ms for two IBM disks. Thisquen [1988] measured these disks and preposedthese formulas to model them. The two columnson the left show the range of seek distances in cylinders to which eachformula applies. Each disk has 885cylinders, so the Maximum seekis 884.
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FIGURE 9.40 Sample measurements of seek distancesfor two systems.The left measurements were taken on a
UNIX timesharing system. The right measurements were taken from a business processing application in which the disk
seekactivity was scheduled. Seekdistance of 0 means the access was made to the samecylinder. Therest of the
numbers show the collective percentage for distances up between numbers on the y axis. For example, 11% for the bar
labeled 16 in the business graph meansthat the percentage of seeks between 1 and 16 cylinders was 11%. The UNIX
measurements stopped at 200 cylinders, but this captured 85% of the accesses. The total was 1000 cylinders. The
business measurements tracked all 816 cylinders of the disks. The only seek distances with 1% or greater of the seeks
that are not in the graph are 224 with 4% and 304, 336, 512, and 624 each having 1%. This total is 94%, with the
difference being small but nonzero distancesin other categories. The measurements are courtesy of Dave Andersonof
Imprimis.

9.1 1 | Concluding Remarks
I/O systemsare judged by the variety of I/O devices, the maximum number of
I/O devices, cost, and performance, measured both in latency and in throughput.
These common goals lead to widely varying schemes, with some relying
extensively on buffering and some avoiding buffering at all costs. If one is
clearly better than the other, it is not obvious today. Perhaps this situation is like
the instruction set debates of the 1980s, and the strengths and weaknesses of the
alternatives will become apparent in the 1990s.

According to Amdahl’s Law, ignorance of I/O will lead to wasted
performance as CPUsget faster. Disk performance is growing at 4% to 6% per
year, while CPUs are growing at a muchfaster rate. The future demands for I/O
includebetter algorithms, better organizations, and more cachingin a struggle to
keep pace.
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9. 1 2 Historical Perspective and References
The forerunner of today’s workstations was the Alto developed at Xerox Palo
Alto Research Center in 1974 [Thackeret al. 1982]. This machine reversed
traditional wisdom, makinginstruction set interpretation take back seat to the
display: the display used half the memory bandwidth ofthe Alto. In addition to
the bit-mapped display, this historic machine had the first Ethernet [Metcalfe
and Boggs 1976] and thefirst laser printer. It also had a mouse, invented earlier
by Doug Engelbart of SRI, and a removable cartridge disk. The 16-bit CPU
implemented an instruction set similar to the Data General Nova andoffered
writable control store (see Chapter 5, Section 5.8). In fact, a single micropro-
grammable engine drove the graphics display, mouse, disks, network, and, when
there wasnothingelse to do, interpreted the instructionset.

The attraction of a personal computeris that you don’t have to share it with
anyone. This means response time is predictable, unlike timesharing systems.
Early experiments in the importance of fast response time were performed by
Doherty and Kelisky [1979]. They showed that if computer-system response
time increased a secondthat user think time did also. Thadhani [1981] showed a
jump in productivity as computer response times dropped to a second and
another jump as they dropped to a half-second. His results inspired a flock of
Studies, and they supported his observations [IBM 1982]. In fact, some studies
werestarted to disprovehis results! Brady [1986] proposed differentiating entry
time from think time (since entry time was becomingsignificant when the two
were lumpedtogether) and provided a cognitive modelto explain the more than
linear relationship between computer response time and userthink time.

The ubiquitous microprocessor has inspired not only personal computers in
the 1970s, but the current trend to moving controller functions into I/O devices
in the late 1980s and 1990s. For example, microcoded routines in a central CPU
madesense for the Alto in 1975, byt technological changes soon made separate
microprogrammable controller I/O devices economical. These were then
replaced by the application-specific integrated circuits. I/O devices continued
this trend by moving controllers into the devices themselves. These are called
intelligent devices, and some bus standards (e.g., IPI] and SCSI) have been
created just for these devices. Intelligent devices can relax the timing constraints
by handling manyofthe low-level tasks and queuing the results. For example.
many SCSI-compatible disk drives include a track buffer on the disk itself.
supporting read ahead and connect/disconnect. Thus, on a SCS] string some
disks can be seeking and others loading their track buffer while one is {transferring data from its buffer over the SCSI bus.

Speaking of buses, the first multivendor bus may have been the PDP-1 |]
Unibus in 1970. DEC encouraged other companiesto build devices that would
plug into their bus, and many companies did. A more recent example is SCSI.
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whichstands for small computersystems interface. This bus, originally called
SASI, was invented by Shugart and was later standardized by the IEEE.
Sometimes buses are developed in academia; the NuBus was developed by Steve
Ward andhis colleagues at MIT and used by several companies. Alas, this open-
door policy on busesis in contrast to companies with proprietary buses using
patented interfaces, thereby preventing competition from plug-compatible
vendors. This practice also raises costs and lowers availability of I/O devices
that plug into proprietary buses, since such devices must have an interface
designedjust for that bus. Levy [1978] has a nice survey on issues in buses.

We must also give a few references to specific I/O devices. Readers
interested in the ARPANETshould see Kahn [1972]. As mentioned in one of
the section quotes, the father of computer graphics is Ivan Sutherland, who
received the ACM Turing Award in 1988. Sutherland’s Sketchpad system
[1963] set the standard for today’s interfaces and displays. See Foley and Van
Dam [1982] and Newman and Sproull [1979] for more on computer graphics.
Scranton, Thompson, and Hunter [1983] were among the first to report the
myths concerning seek times and distancesfor magnetic disks.

Comments onthe future of disks can be found in several sources. Goldstein
[1987] projects the capacity and I/O rates for IBM mainframe installations in
1995, suggesting that the ratio is no less than 3.7 GB per IBM mainframe MIPS
today, and thatwill grow to 4.5 GB per MIPS in 1995, Frank [1987] speculated
on the physical recording density, proposing the MAD formula on disk growth
that we used in Section 9.4. Katz, Patterson, and Gibson [1990] survey current
high-performance disks and I/O systems and speculate about future systems. The
possibility of achieving higher-performance I/O systems using collections of
disks is found in papers by Kim [1986], Salem and Garcia-Molina [1986], and
Patterson, Gibson, and Katz [1987].

Looking backward rather than forward, the first machine to extend interrupts
from detecting arithmetic abnormalities to detecting asynchronous I/O eventsis
credited as the NBS DYSEAC in 1954 [Leiner and Alexander 1954]. The
following yearthe first machine with DMA was operational, the IBM SAGE.
Just as today’s DMA, the SAGE had address counters that performed block
transfers in parallel with CPU operations. Thefirst I/O channel may have been
on the IBM 709 in 1957 [Bashe et al. 1981 and 1986]. Smotherman [1989]
explores the history of I/O in more depth.

References

ANONET AL.[1985]. “A measure of transaction processing power,” Tandem Tech. Rep. TR 85.2.
Also appeared in Datamation, April 1, 1985.

BASHE,C. J., W. BUCHHOLZ, G .V. HAWKINS,J .L. INGRAM, AND N. ROCHESTER [1981]. “The
architecture of IBM’s early computers,” /BM J. of Research and Development 25:5 (September)363-375.

SAMSUNG EXHIBIT 1009

Page 164 of 171



SAMSUNG EXHIBIT 1009 
Page 165 of 171

       
  

9.12 Historical Perspective and References

BASHE, C. J... L. R. JOHNSON,J. H, PALMER, AND E. W. PUGH [1986]. /BM's Early Computers,
MIT Press, Cambridge, Mass.

BORRILL,P. L. [1986]. “32-bit buses—An objective comparison.” Proc. Buscon 1986 Wesr, San Jose,Calif., 138-145,

BRADY,J. T. [1986]. "A theory ofproductivity in the creative Process,” IEEE CG&A (May) 25-34,
BUCHER. I. V. AND A. H. HAYES [1980]. “I/O Performance measurement on Cray-1 and CDC 7000

computers.” Proc. Computer Performance Evaluation Users Group, 16th Meeting. NBS 500-65,245-254.

CHEN. P. [1989]. An Evaluation of Redundant Arrays ofInexpensive Disks Using an Amdahl 5890,
M.S. Thesis. Computer Science Division. Tech. Rep. UCB/CSD 89/506.

DOHERTY,W. J. AND R. P. KELISKY [1979]. “Managing VM/CMS systems for user effectiveness,”
IBM Systems J. 18:1, 143-166,

FEIERBACK, G AND D. STEVENSON [1979]. “The Iliae-FV,”in InfotechState of the Art Report on
Supercomptucrs, Maidenhead, England. This data also appears in D. P. Siewiorek, C. G. Bell, and
A. Newell, Computer Structures: Principles and Examples (1982), McGraw-Hill, New York, 268—269.

FOLEY, J.D. AND A. VAN DAM [1982]. Fundamentals ofInteractive Computer Graphics, Addison-
Wesley, Reading, Mass.

FRANK, P. D. [1987]. “Advances in Head Technology,” presentation at Challenges in Winchester
Technology (December 15), Santa Clara Univ.

FRIESENBORG, S. E. AND R.J. WICKS [1985]. “DASD expectations: The 3380, 3380-23, and
MVS/XA,”Tech. Bulletin GG22-9363-02 (July 10), Washington Systems Center.

GOLDSTEIN,S. [1987]. “Storage performance—an eight year outlook.” Tech, Rep. TR 03.308-1
(October), Santa Teresa Laboratory, IBM, SanJose, Calif,

HENLY, M. AND B. MCNUTT [1989]. “DASD lO characteristics: A comparison of MVS to VM,”
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif.

HOWARD,J. H. ETAL. [1988]. “Scale and performance in a distributed file system,” ACM Trans. on
ComputerSystems 6:1, 51-81.

IBM [1982]. The Economic Value of Rapid Response Time, GE20-0752-0 White Plains, N.Y., 11—82.

IMPRIMIS [1989]. “Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2
GB.” Document No. 64402302 (May). -

KAHN, R. E. [1972]. “Resource-sharing éomputer communication networks.” Proc. IEEE 60:11
(November) 1397-1407,

KATZ, R.H., D. A. PATTERSON, AND G. A. GIBSON [1990]. “Disk system architectures for high
performance computing,” Proc. /EEE 78:2 (February).

KIM, M. Y. [1986]. “Synchronized disk interleaving.” /EEE Trans. on Computers C-35:11(November).

LEINER, A. L. [1954]. “System specifications for the DYSEAC,” J. ACM 1:2 (April) 57-81,
LEINER, A. L. AND S.N. ALEXANDER [1954]. “System organization of the DYSEAC.” IRETrans

ofElectronic Computers EC-3:1 (March) 1-10

LEVY, J. V. [1978]. “Buses: The skeleton of computerstructures,”in Computer Engineering: A DEC
View of Hardware Systems Design, C. G. Bell. J. C. Mudge. and J. E. McNamara,eds.. DigitalPress, Bedford, Mass.

MABERLY,N.C, [1966]. Mastering Speed Reading, New American Library, Inc., New York.
METCALFE, R. M. AND D. R. BOGGS [1976]. “Ethernet: Distributed packet switching for local

computer networks,” Comm, ACM 19:7 (July) 395404.
{

SAMSUNG EXHIBIT 1009

Page 165 of 17 



SAMSUNG EXHIBIT 1009 
Page 166 of 171

 
Input/Output 563

NEWMAN, W.N. ANDR. F. SPROULL [1979]. Principles of Interactive Computer Graphics, 2nd
ed., McGraw-Hill, New York.

OUSTERHOUT,J. K. ET AL. [1985]. “A trace-driven analysis of the UNIX 4.2 BSD file system.”
Proc. Tenth ACM Symposium on Operating Systems Principles, Orcas Island, Wash., 15-24.

PATTERSON, D. A., G. A. GIBSON, AND R. H. KATZ [1987]. "A case for redundant arrays of

inexpensive disks (RAID),” Tech. Rep. UCB/CSD 87/391. Univ, of Calif. Also appeared in ACM
SIGMOD Conf. Proc., Chicago,Mlinois, June 1~3, 1988, 109-116.

ROBINSON, B. AND L. BLOUNT [1986]. “The VM/HPO 3880-23 performanceresults,” IBM Tech.
Bulletin, GG66-0247-00(April), Washington Systems Center, Gathersburg, Md.

SALEM, K. AND H. GARCIA-MOLINA [1986]. “Disk striping.” /EEF 1/986 Int'l Conf. on Data
Engineering.

SCRANTON, R. A., D. A. THOMPSON, AND D. W. HUNTER [1983]. “The access time myth.” Tech.

Rep. RC 10197 (45223) (September 21), IBM, Yorktown Heights, N.Y.
SMITH, A. J. [1985]. “Disk cache—missratio analysis and design considerations,” ACM Trans. on

Computer Systems 3:3 (August) 161-203.

SMOTHERMAN. M. [1989]. “A sequencing-based taxonomyof1/O systems and reviewofhistorical
machines,” Computer Architecture News 17:5 (September) 5-15.

SUTHERLAND,I. E. [1963]. “Sketchpad: A man-machine graphical communication system,” Spring
Joint Computer Conf. 329.

THACKER,C. P.. E. M. MCCREIGHT, B. W. LAMPSON, R. F, SPROULL, AND D. R. BOGGS| 1982).
“Alto: A personal computer,” in Computer Structures: Principles and Examples, D. P. Siewiorek,
C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549-572.

THADHANI, A. J. [1981]. “Interactive user productivity,” /BM Systems J. 20:4. 407-423.

THISQUEN, J. [1988]. “Seek time measurements,” Amdahl Peripheral Products Division Tech. Rep.
(May).

EXERCISES

9.1 <9.10> [10/25/10] Using the formulas in Figure 9.39 (page 558):

a. [10] Calculate the seek time for moving the arm one-third of the cylinders for both
disks.

b. [25] Write a program to calculate the “average” seck time by estimating the time for
all possible seeks using these formulas and then dividing by the number of seeks.

c. [10] How close does (a) approximate (b)?

9.2 <9.10> [15/20] Using the formulas in Figure 9.39 (page 558) and the statistics in
Figure 9.40 (page 559), calculate the average seek distance and the average seek time on
the IBM 3380J. Use the midpoint of a range as the seek distance. For example, use 98 as
the seek distance for the entry representing 91-105 in Figure 9.40. For the business
workload, just ignore the missing 5% of the seeks. For the UNIX workload, assume the
missing 15% of the seeks have an average distance of 300 cylinders.

a. [15] If you were misled by the fallacy, you might calculate the average distance as
884/3. What is the measured distance for each workload?

SAMSUNG EXHIBIT 1009

Page 166 of 171

 



SAMSUNG EXHIBIT 1009 
Page 167 of 171

 
 

Exercises

  b. [20] The time to seek 884/3 cylinders on the IBM 3380] is about 12.8 ms. Whatis
the average seek time for each workload on the IBM 3380] using the measurements?  

  

 9.3 <1.4,8.4,9.45 (20/10/Discussion] Assume the improvements in density of DRAMs
and magnetic disks continue as predicted in Figure 1.5 (page 17). Assuming that the
improvementin cost per megabyte tracks the density improvements and that 1990 is the
start of the 4-megabit DRAM generation, when will the cost per megabyte of DRAM
equal the cost per megabyte of magnetic disk given:

 
     

            
 

 = The cost difference in 1990 is that DRAM is 10 times more expensive.

 
 

 = The cost difference in 1990 is that DRAM is 30 times more expensive.
  a.

 

                       
[20] Which generation of DRAM chip—measuredin bits per chip—will reach equity
for each cost difference assumption? Whatyear will that occur?  

  

 b. [10] What will be the difference in cost in the previous generation?  
 [Discussion] Do youthink the cost difference in the previous generation is sufficient

to prevent disks being replaced by DRAMs?  
 

 
 
 

 
 

 
 
 
 
 

 
 
 

 
 
 
 

9.4 <9.2> [12/12/12] Assume a workload takes 100 secondstotal, with the CPU taking
70 seconds and I/O taking 50 seconds.

a. [12] Assumethat the floating-point unit is responsible for 25 seconds of the CPU
time. You are considering a floating-point accelerator that goes five times faster.
Whatis the time of the workload for maximum overlap, scaled overlap, and no
overlap?  b. [12] Assumethat seek and rotational delay of magnetic disks are responsible for 10
seconds ofthe I/O time. You are considering replacing the magnetic disks with solid
state disks that will remove all the seek and rotational delay. Whatis the time of the
workload for maximum overlap, scaled overlap, and no overlap?

c.
[12] Whatis the time of the workload for scaled overlap if you make both changes?a”

9,5-9.9 Transaction-processing performance. The /O bus and memory system of a
computerare capable of sustaining 100 MB/sec without interfering with the performance |
of an 80-MIPS CPU (costing $50,000). Here are the assumptions about the software:
= Each transaction requires 2 disk reads plus 2 disk writes.

= The operating system uses 15,000 instructions for each disk read or write.

==The database software executes 40,000 instructions to process a transaction.
= Thetransfersize is 100 bytes.

You havea choiceof twodifferent types of disks: |

# A 2.5-inch disk that stores 100 MB and costs $500.

  
 

a A 3.5-inch disk that stores 250 MB and costs $1250.

 Either disk in the system can Support on average 30 disk reads or writes per second.
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Answerthe questions below using the TP-1 benchmarkin Section 9.3. Assumethat
the requests are spread evenly to all the disks, that there is no waiting time due to busy
disks, and that the accountfile must be large enough to handle 1000 TPS according to the
benchmark groundrules.

9.5 <9.3,9.4> [20] How many TP-1 transactions per second are possible with each disk
organization, assuming that each uses the minimum numberofdisks to hold the account
file?

9.6 <9.3,9.4> [15] What is the system cost per transaction per second of each alternative
for TP-1?

9.7 <9.3,9.4> [15] How fast a CPU makes the 100 MB/sec I/O busa bottleneck for TP-

1? (Assumethat you can continue to add disks.)

9.8 <9.3,9.4> [15] As manager of MTP (Mega TP), you are deciding whether to spend
your development money building a faster CPU or improve the performance of the
software. The database group says they can reducea transaction to | disk read and | disk
write and cut the database instructions per transaction to 30,000. The hardware group can
build a faster CPU that sells for the same amount of the slower CPU with the same

development budget. (Assume you can add as many disks as needed to get higher
performance.) How muchfaster does the CPU have to be to match the performance gain
of the software improvement?

9.9 <9,3,9.4> [15/15] The MTP I/O group waslistening at the door during the software
presentation. They argue that advancing technologywill allow CPUsto get faster without
significant investment, but that the cost of the system will be dominated by disks if they
don’t develop new faster 2.5-inch disks. Assume the next CPU is 100% faster at the same
cost and that the new disks have the same capacity as the old ones.

a. [15] Given the new CPU andthe old software, what will be the cost of a system with
enough old 2.5-inch disks so that they do not limit the TPS of the system ?

b. [15] Now assume you have as many new disks as you had old 2.5 inch disks in the
original design. How fast must the new disks be (I/Os per second) to achieve the
same TPSrate with the new CPUasthe system in part a? What will the system cost?

9.10 <9.4> [20/20/20] Assume that we have the following two magnetic-disk
configurations: a single disk and an array of four disks. Each disk has 20 surfaces, 885
tracks per surface with 16 sectors/track, each sector holds 1K bytes, andit revolvesat
3600 RPM. Using the seek-time formula, for the IBM 3380D in Figure 9.39 (page 558).
The time to switch between surfaces is the same as to move the arm onetrack. In the disk

array all the spindles are synchronized—sector 0 in every disk rotates under the head at
the exact same time—and the armsonall four disks are always over the same track. The

data is “striped” across all 4 disks, so four consecutive sectors on a single disk system
will be spread one sector per disk in the array. The delay of the disk controller is 2 ms per
transaction, either for a single disk or for the array. Assume the performance of the I/O
system is limited only by the disks and that there is a path to each disk in the array.
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Comparethe performancein both I/Osper second and megabytes per second of these two
disk organizations assuming the following request patterns:

a. [20] Random reads of 4 KB of sequential sectors. Assume the 4 KB are aligned
under the same arm on each disk in the array.

b. [20] Reads of 4 KB of sequential sectors where the average seek distanceis 10 tracks.
Assume the 4 KB arealigned under the same arm on each disk in the array.

c. [20] Random reads of 1 MB of sequential sectors. (If it matters, assume the disk
controller allows the sectorsto arrive in any order.)

9.11 [20] <9.4> Assumethat we have one disk defined as in Exercise 9.9. Assumethat
we read the next sector after any read andthat al/ read requests are one sector in length.
Westore the extra sectors that were read ahead in a disk cache. Assume that the
probability of receiving a request for the sector we read ahead at some time in the future
(before it must be discarded because the disk-cache buffer fills) is 0.1. Assume that we
muststill pay the controller overhead on a disk-cache read hit, and the transfer time for
the disk cache is 250 ns per word. Is the read-ahead strategy faster? (Hint: Solve the
problem in the steady state by assuming that the disk cache contains the appropriate
information and a request has just missed.)

9.12-9.14 Assumethe following information about our DLX machine:

Loads 2 cycles

Stores 2 cycles

All other instructions are 1 cycle. Use the summary instruction mix information in Figure
C.4 in Appendix C on DLX for GCC.

Hereare the cachestatistics for a write-through cache:

# Each cache blockis four words, and the whole block is read on any miss.
= Cache miss takes 13 cycles.

= Write through takes 6 cycles to complete, and there is no write buffer.

Here are the cachestatistics for a write-back cache:

= Each cache block is four words, and the whole blockis read on any miss.

a Cache miss takes 13 cycles for a clean block and 21 cycles for a dirty block.
= Assumethat on a miss, 30% of the timethe block is dirty.
Assumethat the bus

# is only busy during transfers,

# transfers on average 1 word / clock cycle, and

= =mustread or write a single word at a time(it is not faster to read or write two at
once).
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9.12 [20/10/20/20] <9.4,9.5,9.6> Assume that DMA I/O can take place simultaneously
with CPU cachehits. Also assumethat the operating system can guarantee thatthere will
be nostale-data problem in the cache due to I/O. Thesector size is 1 KB.

a. [20] Assumethe cache miss rate is 5%. On the average, what percentage ofthe busis
used for each cache write policy? This measured is called the traffic ratio in cache
studies.

b. [10] If the bus can be loaded up to 80% of capacity without suffering severe
performance penalties, how much memory bandwidthis available for I/O for each
cache write policy? The cache miss rateis still 5%.

c. [20] Assumethat a disk sector read takes 1000 clock cycles to initiate a read, 100,000
clock cycles to find the data on the disk, and 1000 clock cycles for the DMAto
transfer the data to memory. How manydisk reads can occur per million instructions
executed for each write policy? How does this change if the cache missrate is cut in
half?

d. [20] Now you can have any number of disks. Assuming ideal scheduling of disk
accesses, what is the maximum numberof sector reads that can occur per million
instructions executed?

9.13 [20/20] <9.4,9.5> Most machines today have a separate frame buffer to update the
screen to avoid slowing down the memory system. An interesting issue is the percentage
of the memory bandwidth that would be used if there were no frame buffer. Assume that
all accesses to the memory arethe size of a full cache block and theyall take the time of a
cache miss. Therefresh rate is 60 Hz. Using the information in Section 9.4, calculate the
memorytraffic for the following graphics devices:

1. A 340 by 540 black-and-whitedisplay.

2. A 1280 by 1024 color display with 24 bits of color.

3. A 1280 by 1024 color display using a 256-word color map.

Assumethe clock rate of the CPU is 60 MHz.

a. [20] What percentage of the memory/bus bandwidth do each of the three displays
consume?

b. [20] Suppose instead of the bus and main memory being 32 bits wide that both are
512 bits wide. How long should a memory access take now using the wider bus?
What percentage of memory bandwidth is now used by each display?

9.14 [20] <9.4,9.9> The IBM 3990 I/O Subsystem storage director can havea large cache
for reads and writes. Assumethe cache costs the same as four 3380D disks. Whathit rate

must the cache achieve to get the same performance as four more 3380D disks? (See
Figure 9.15 (page 517) for 3380 performance.) Assumethe cache could support 5000 1/Os
per second if everything hit the cache.

9.15 [50] <9.3, 9.4> Take your favorite computer and write three programsthat achieve
the following:

t. Maximum bandwidth to and from disks
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2, Maximumbandwidth to a frame buffer

3. Maximum bandwidth to and fromthe local area network

Whatis the percentage of the bandwidth that you achieve compared to what the 1/O
device manufacturer claims? Also record CPU utilization in each case for the programs
running separately. Next run all three together and sce what percentage of maximum
bandwidth you achieve for three [/O devices as well as the CPU utilization. Try to

determine why onegets a larger percentage than the others.  
9.16 [40] <9.2> The system speedup formulas are limited to one or twotypes ofdevices.
Derive simple to use formulas for unlimited numbers of devices, using as many different
assumptions on overlap that you can handle.

9.17 [Discussion] <9,.2> What are arguments for predicting system performance using
maximum overlap, scaled overlap, and nonoverlap? Construct scenarios where each one
seems most likely and other scenarios where each interpretation is nonsensical.

9.18 [Discussion] <9.11> What are the advantages and disadvantages of a minimal buffer
1/O system like that used by IBM versus a maximal buffer I/O system on I/O system

cost/performance?                  
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