
EYE-TRACKING FOR DETECT
Martin Eriksson

Nikolaos P. Papanikolopoulos

ON OF DRIVER FATIGUE

Artificial Intelligence, Robotics, and Vision Laboratory

Department of Computer Science, University of Minnesota,

Minneapolis, MN 55455

E-mail: {eriksson, npapas}@cs.umn.edu

Keywords: driver fatigue, eye-tracking, template matching.

Abstract
In this paper, we describe a system that locates
and tracks the eyes of a driver. The purpose of
such a system is to perform detection of driver
fatigue. By mounting a small camera inside the
car, we can monitor the face of the driver and
look for eye-movements which indicate that the
driver is no longer in condition to drive. In such
a case, a warning signal should be issued. This
paper describes how to find and track the eyes.
We also describe a method that can determine if
the eyes are open or closed. The primary
criterion for the successful implementation of
this system is that it must be highly non-
intrusive. The system should start when the
ignition is turned on without having the driver
initiate the system. Nor should the driver be
responsible for providing any feedback to the
system. The system must also operate regardless
of the texture and the color of the face. It must
also be able to handle diverse conditions, such as
changes in light, shadows, reflections, etc.

INTRODUCTION
Driver fatigue is an important factor in a large
number of accidents. Lowering the number of
fatigue-related accidents would not only save
society a significant amount financially, but also
reduce personal suffering. We believe that by
monitoring the eyes, the symptoms of driver
fatigue in our proposed system can be detected
early enough to avoid several of these accidents.
Detection of fatigue involves a sequence of
images of a face, and observation of eye-
movements and blink patterns.
The analysis of face images is a popular research
area with applications such as face recognition,
virtual tools and handicap aids [9,14], human

identification and database retrieval [3] , There
are also many real-time systems, being
developed in order to track face features
[15,13,17]. These kinds of real-time systems
generally consist of three components:

a) Localization of the eyes (in the first frame),
b) Tracking the eyes in the subsequent frames,
c) Detection of failure in tracking.

Localization of the eyes involves looking at the
entire image of the face and determining the
eye-envelopes (the areas around the eyes).
During tracking in subsequent frames, the
search-space is reduced to the area
corresponding to the eye-envelopes in the
current frame. This tracking can be done at
relatively low computational effort, since the
search-space is significantly reduced. In order to
detect failure in the tracking, general constraints
such as distance between the eyes and horizontal
alignment of the two eyes can be used.
This paper is organized as follows: In the next
section, we describe some of the previous work
in this area. Afterwards, we describe the
experimental setup, and how the system
operates. Then, we proceed to the description of
the algorithm for the detection of fatigue.
Finally, we present results and future work.

PREVIOUS W
Many methods have been proposed for
localizing facial features in images
[2,4,5,6,8,10,11,12,19]. These methods can
roughly be divided into two categories:
Template-based matching and Feature-based
matching. These techniques are compared by
Poggio and Brunelli [11. One popular template-
matching technique for extraction of face
features is to use deformnhle templates [5,16],
which are similar to the active snakes introduced
by Kass [7], in the sense that they apply energy

314
0-7803~4269-0/97/~10.00 0 1998 IEEE

Page 1 of 6 SAMSUNG EXHIBIT 1008
Samsung v. Image Processing Techs.

f

Find authenticated court documents without watermarks at docketalarm.com.

mailto:npapas}@cs.umn.edu
https://www.docketalarm.com/

minimization based on the computation of
image-forces. In feature-based matching, the
system uses knowledge about some geometrical
constraints. For example, a face has two eyes,
one mouth and one nose in specific relative
locations.

One interesting application for face recognition
was developed by Stringa [12]. He used the
observation that the eyes are regions of rapidly
changing intensity. We use a similar approach
on a reduced version of the image. Another
approach, developed by Steifelhagen et al. [131
uses connected regions in order to extract the
dark disks corresponding to the pupils. Rather
than looking for the pupils, we used the fact that
the entire eye-regions are darker than their
surroundings, again allowing us to use the
reduced image in order to extract these rough
regions at a reduced computational cost. The
systems described in [15] and [13] use color
information in order to extract the head from
the background. In order to avoid dependence
on a fairly colorless background, we decided to
again use the reduced image and localize the
symmetry axis [18]. Since the driver will be
looking almost straight ahead, there will be a
well defined vertical symmetry line between the
eyes.

Many different templates have been described
for finding the shape of an eye. Xie et al. [161
developed a deformable template consisting of
10 cost equations, based on image intensity,
image gradient and internal forces of the
template. Since we are greatly concerned about
computational speed, we decided to use only the
two cost equations dealing with image intensity.
Once the eyes are found, the search-space in the
subsequent frames is limited to the area
surrounding the found eye-regions. In the
system by Stiefelhagen et al., the darkest pixel
(which is likely to be a pixel inside the pupil) is
used for tracking, allowing high computational
speed. Another approach [5] is to perform edge-
detection on the region of interest and then track
the region with a high concentration of edges.

When the system starts, frames are continuously
fed from the camera to the computer. We use the
initial frame in order to localize the eye-
positions. Once the eyes are localized, we start
the tracking process by using information in
previous frames in order to achieve localization
in subsequent frames. During tracking, error-
detection is performed in order to recover from
possible tracking failure. When a tracking failure
is detected, the eyes are relocalized. During

THE SYSTEM

tracking, we also perform the detection of
fatigue. At this point, we count consecutive
frames during which the eyes are closed. If this
number gets too large, we issue a warning signal.

Experimental setup
The final system will consist of a camera
pointing at the driver. The camera is to be
mounted on the dashboard inside the vehicle.
For the system we are developing, the camera is
stationary and will not adjust its position or
zoom during operation. For experimentation, we
are using a JVC color video camera, sending the
frames to a Silicon Graphics Indigo. The
grabbed frames are represented in RGB-space
with 8-bit pixels (256 colors). We do not use any
specialized hardware for image processing.

We localize the eyes in a top-down manner,
reducing the search-space at each step. The steps
are:
1 . Localization of the face.
2. Computation of the vertical location of the

eyes.
3. Computation of the exact location of the

eyes.
4. Estimation of the position of the iris.

Localization of the eyes

Localization of the face. Since the face of a
driver is symmetric, we use a symmetry-based
approach, similar to [181. We found that in order
for this method to work, it is enough to use a
subsampled, gray-scale version of the image. A
symmetry-value is then computed for every

Figure 1. The symmetry histogram.

315
SAMSUNG EXHIBIT 1008

Page 2 of 6
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 2. The original image, the edges and the histogram of projected edges.

pixel-column in the reduced image. If the image
is represented as I (x , y) t hen the symmetry-
value for a pixel-column i s given by

,"=I , = I

S(x) is computed for x E [k,xsize - k] where k
is the maximum distance from the pixel-column
that symmetry is measured, and xsize is the
width of the image. The x corresponding to the
lowest value of S (x) is the center of the face. The
result from this process is shown in Figure 1 .
The search-space is now limited to the area
around this line, which reduces the probability
of having distracting features in the background.
Computation of the vertical location of
the eyes. As suggested by Stringa [12], we use
the observation that eye-regions correspond to
regions of high spatial frequency. Again we are
working with the reduced image. We create the
gradient-map, G(x,y), by applying an edge
detection algorithm on the reduced image. Any
edge-detection method could be used. We
choose to use a very simple and fast method
called pixel-differentiation, that assigns G(x,y) =
I(x,y) - l(x-1,y). We selected this method since i t
does not involve any convolution. G(x,y) will
now reveal areas of high spatial frequency. By
projecting G(x,y) onto its vertical axis, we get a
histogram H (y) :

H (y) = E G (i , y) .
r = l

Since both eyes are likely to be positioned at the
same row, H (y) will have a strong peak on that
row. However, in order to reduce the risk of
error, we consider the best three peaks in H (y)
for further search rather than just the maximum.
This process is illustrated in Figure 2.

Find the exact location of the eyes. In
order to find the eye-regions given the
proceeding processing, we rely on the fact that
the eyes correspond to intensity-valleys in the
image. Given that, we can threshold the image
and then extract the connected regions. We used
a raster-scan algorithm on the reduced image in
order to extract these regions. In general, our
raster-scan algorithm found 4-5 regions. In
order to resolve which of these regions
correspond to the eyes, we use the information
in H(y) . We try to find a peak corresponding to
a row in the image with two connected regions
on. l h e three best peaks in H (y) are considered.
We also use general constraints, such chat both
eyes must be located "fairly close" to the centei-
of the face.
The difficulty with this method is to find a
threshold that will generate the correct eye-
regions. We used a method called adaptive
thresholding [13] that starts out with a low
threshold. If two good eye-regions are found,
that threshold is stored, and used the next time
the eyes have to be localized. If no good eye-
regions are found, the system automatically
attempts with a higher threshold, until the
regions are found.
Estimation of the position of the iris. Once
the eye-regions are localized, we can apply a
very simple template in order to localize the iris.

Figure 3. The eye-template.
We constructed a template consisting of two
circles, one inside the other. A good match

316

SAMSUNG EXHIBIT 1008
Page 3 of 6

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 4. Snapshots from the system during tracking. Note that in the second image, the system
missed tracking of one eye.

would result in many dark pixels in the area
inside the inner circle, and many bright pixels in
the area between the two circles. The template is
shown in Figure 3. This match occurs when the
inner circle is centered on the iris and the
outside circle covers the sclera.
The match M(al ,a2) is computed as

(p,q)-l (~ . q) ~ a 2

A low value for M(al ,a2) corresponds to a good
match. The template is matched across the
predicted eye-region, and the best match is
reported.

Tracking the eyes
We track the eye by looking for the darkest
pixel in the predicted region [13]. In order to
recover from tracking errors, we make sure that
none of the geometrical constraints are violated.
If they are, we relocalize the eyes in the next
frame. To find the best match for the eye-
template, we initially center it at the darkest

pixel, and then perform a gradient descent in
order to find a local minimum. In Figure 4, we
show a few snapshots during tracking.

DETECTION OF FATIGUE
As the driver becomes more fatigued, we expect
the eye-blinks to last longer. We count the
number of consecutive frames that the eyes are
closed in order to decide the condition of the
driver. For this, we need a robust way to
determine if the eyes are open or closed; so we
developed a method that looks at the horizontal
histogram across the pupil.

During initialization (the first frames after the
driver has settled down), an average match over a
number of frames is calculated. When the match
in a frame is “significantly” lower than the
average, we call that frame a closed frame. If the
match is close to the average, we call that a n
open frame. After C consecutive closed frames,
we issue a warning signal, where C is the
number of frames corresponding to
approximately 2 to 2.5 seconds (the time when
the eyes have been closed for too long).

317

SAMSUNG EXHIBIT 1008
Page 4 of 6

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Horizontal histogram across the
pupil
We use the characteristic curve generated by
plotting the image-intensities along the line
going through the pupil from left to right, as
shown in Figure 5 . The pupil is always the
darkest point. Surrounding the pupil, we have
the iris, which is also very dark. To the right and
left of the iris is the white sclera. In Figure S we
show two curves, one corresponding to an open
eye, and one corresponding to a closed eye.
Note that the curve corresponding to the closed
eye is very flat.
We compute the matching function M(x,y) as

M (x , y> = y> / min{I(x - r , Y > , I (x + r, y> 1
where (x,y) is the computed center of the pupil
and r is the radius of the iris. Z(x,y) is the image
intensity at (x,~). When the eye is open, the
valley in the intensity-curve corresponding to
the pupil will be surrounded by two large peaks
corresponding to the sclera. When the eye is
closed, this curve is usually very flat in the
center. However, in the latter case there is no
pupil to center the curve on, which can lead to a
very unpredictable shape. In order to minimize
the risk of having one big peak nearby (due to
noise), we always use the minimum peak at the
distance r from the pupil. This will lead to a
good match when the eye is open, and very
likely to a bad match when the eye is closed.

RESULTS AND FUTURE WORK
We simulated three “test-drives” where we

Figure 5 . Histograms corresponding to an
open and a closed eye, respectively.

measured the accuracy of the detection of
opened/closed eyes. In each test-drive, we
simulated 10 long eye-blinks, and recorded how
many were computed by the system. In each
test-drive, the driver had the head turned in a
different angle. The results are shown in Table
1.
For this test, we did not allow for any rapid head
movements, since we wanted to simulate the
situation when the driver is tired. For small head-
movements, the system rarely loses track of the
eyes, as we can see from the results. We can also
see that when the head is turned too much
sideways, we had some false alarms. However, in
the case where the head is tilted forward (which
is the most likely posture when the driver is
tired), the system operated perfectly.
When we perform the detection of driver fatigue,
we operate on frames of size 640 by 320. This
frame-size allows us to operate at approximately
5 frames per second. In order to track the eyes,
without detecting fatigue, it is enough to use
frames of size 320 by 160, which allows a
frame-rate of approximately 15 frames / second.
At this point, the system has problems localizing
eyes when the person is wearing glasses, or has a
large amount of facial hair. We believe that by
using a small set of face templates, similar to
[lS], we will be able to avoid this problem,
without losing anything in performance. Also,
we are not using any color-information in the
image. By using techniques described in [13],
we can further enhance robustness.

Currently, we do not adjust zoom or direction of
the camera during operation. Future work may
be to automatically zoom in on the eyes, once
they are localized. This would avoid the trade-
off between having a wide field of view in order
to locate the eyes, and a narrow field of view In
order to detect fatigue.
We are only looking at the number of
consecutive frames where the eyes are closed. At
that point, it may be too late to issue the signal.
By study the eye-movement patterns, we are
hoping to find a method to generate the alert
signal at an earlier stage.

318

SAMSUNG EXHIBIT 1008
Page 5 of 6

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

