
Page 1 of 171 SAMSUNG EXHIBIT 1009
Samsung v. Image Processing Techs.

SAMSUNG EXHIBIT 1009
Page 2 of 171

Computer
Architecture

A

Quantitative

Approach

LOS ANGELES PUBLIC LIBRAFIY
CENTRAL LIBRARY

DEPT. OF SCIENCE TECHNOLOGY & PATENTS
630 WEST 51h ST.

LOS ANGELES, CA. 90071

David A. Patterson

UNIVERSITY OF CALIFORNIA AT BERKELEY

John L. Hennessy
STANFORD UNIVERSITY

With a Contribution by

David Goldberg
Xerox Palo Alto Research Center

MORGAN KAUFMANN PUBLISHERS, INC.

SAN MATEO, CALIFORNIA

SAMSUNG EXHIBIT 1009

Page 2 of 171

SAMSUNG EXHIBIT 1009
Page 3 of 171

Sponsoring Editor Bruce Spatz
Production Manager Shirley Jowell

Technical Writer Walker Cunningham

Text Design Gary Head

Cover Design David Lance Goines

Copy Editor Linda Medoff

Proofreader Paul Medoff
Computer Tvpesetting and Graphics Fifth Street Computer Services

Library of Congress Cataloging—in—Publication Data
Patterson, David A.

Computer architecture : a quantitative approach / David A.
Patterson, John L. Hennessy

p. cm.

Includes bibliographical references
ISBN 1-55860— 069—8

1. Computer architecture. I. Hennessy, John L. ll. Title.
QA76.9.A73P377 1990
004.2’2--dc20 89-85227 CIP

Morgan Kaufmann Publishers, Inc.
Editorial Office: 2929 Campus Drive. San Mateo. CA 94403

Order from: PO. Box 50490. Palo Alto, CA 94303—9953

@1990 by Morgan Kaufmann Publishers. Inc.
All rights reserved.

No part of this publication may be reproduced. stored in a retrieval system. or transmitted
in any form or by any means—electronic. mechanical. recording. or otherwise——without
the prior permission of the publisher.

All instruction sets and other design information of the DLX computer system contained
herein is copyrighted by the publisher and may npt be incorporated in other publications
or distributed by media without formal acknowledgement and written consent from the
publisher. Use of the DLX in other publications for educational purposes is encouraged
and application for permission is welcomed.
ADVICE. PRAISE. & ERRORS: Any correspondence related to this publication or
intended for the authors should be addressed to the editorial offices of Morgan Kaufmann
Publishers. Inc, Dept. P&H APE. Information regarding error sightings is encouraged.
Any error sightings that are accepted for correction in subsequent printings will be
rewarded by the authors with a payment of $1.00 (U.S.) per correction upon availability
of the new printing. Electronic mail can be sent to bugs3@vsop.stanford.edu. (Please
include your full name and permanent mailing address.)
INSTRUCTOR SUPPORT: For information on classroom software and other instructor
materials available to adopters. please contact the editorial offices of Morgan Kaufmann
Publishers. Inc. (415)578-9911.

Fourth Printing

SAMSUNG EXHIBIT 1009

Page 3 of 171

SAMSUNG EXHIBIT 1009
Page 4 of 171

T0 Andrea, Linda, and ourfour sons

SAMSUNG EXHIBIT 1009

Page 4 of 171

SAMSUNG EXHIBIT 1009
Page 5 of 171

Ideally one would desire an indefinitely large memory

capacity such that any particular . . . word would be im-

mediately available. . . . We are . . . forced to recognize the

I possibility of constructing a hierarchy ofmemories, each of
I which has greater capacity than the preceding but which is

I I less quickly accessible.

I

a I i I
I A. W. Burks. H. H. Goldstine, and J. von Neumann, I
I I II ml Preliminary Discussion of the Logical Design I

I I of an Electronic Computing Instrument (1946) I
II t tI. H

II I 1i I
:1 I I J
I ‘I "I II» w

I I

’~ I I 1I I II I I
I w w 1 _
I I I II I I

8.1 Introduction: Principle of Locality 403 II 8.2 General Principles of Memory Hierarchy 404 I
III, I 8.3 Caches 408

8.4 Main Memory 425 I
‘ g I I 8.5 Virtual Memory 432

I I I 8.6 Protection and Examples of Virtual Memory 438
II ‘ I 8.7 More Optimizations Based on Program Behavior 449 I

I II" 8.8 Advanced Topics—Improving Cache-Memory I
I . II I Performance 454 II II 8.9 Putting It All Together: The VAX-1 1/780 Memory

I III I Hierarchy 475 '
I xi 8.10 Fallacies and Pitfalls 480 '

I I I 8.1 1 Concluding Remarks 484 I
I I I 8.1 2 Historical Perspective and References (485 II I ‘ Exercises 490 I

SAMSUNG EXHIBIT 1009

Page 5 of 171

SAMSUNG EXHIBIT 1009
Page 6 of 171

8 Memory-Hierarchy
Design

l 8.1 l Introduction: Principle of Locality
Computer pioneers correctly predicted that programmers would want unlimited

l amounts of fast memory. As the 90/10 rule in the first chapter predicts. most
I programs fortunately do not access all code or data uniformly (see Section 1.3.

pages 8712). The 90/10 rule can be restated the principle of locality. This

hypothesis. which holds that all programs favor a portion of their address space

at any instant of time. has two dimensions:

- Temporal locality (locality in time)—lf an item is referenced. it will tend to

I be referenced again soon.

- Spatial locality (locality in space)—If an item is referenced, nearby items will
tend to be referenced soon.

A memory hierarchy is a natural reaction to locality and technology. The

principle of locality and the guideline that smaller hardware is faster yield the

concept ofilnerarchyhasedbndifferem speeds and sizes. Since slower memory

is cheaper. a ntemoryjierarchy‘jsorganged into several levels—each smaller.

faster. and more expensive per byte than the level below. The levels of the

hierarchy subset one another; all data in one level is also found in the level
below. and all data in that lower level is found in the one below it. and so on

until we reach the bottom of the hierarchy.

SAMSUNG EXHIBIT 1009

Page 6 of 171

SAMSUNG EXHIBIT 1009
Page 7 of 171

404 8.1 Introduction: Principle of Locality

8.2

This chapter includes a half-dozen examples that demonstrate how taking

advantage of the principle of locality can improve performance. All these

strategies map addresses from a larger memory to a smaller but faster memory.

As part of address mapping, the memory hierarchy is usually given the

responsibility of address checking; protection schemes used for doing this are

covered in this chapter. Later we will explore advanced memory hierarchy topics

and trace a memory access through three levels of memory on the VAX-l 1/780.

General Principles of Memory Hierarchy

Before proceeding with examples of the memory hierarchy, let’s define some

general terms applicable to all memory hierarchies. A memory hierarchy

normally consists of many levels. but it is managed between two adjacent levels

at a time. The upper level—the one closer to the processor—is smaller and faster

than the lower level (see Figure 8.1). The minimum unit of information that can

be either present or not present in the two-level hierarchy is called a block. The

size of a block may be either fixed or variable. If it is fixed, the memory size is a

multiple of that block size. Most of this chapter will be concerned with fixed

block sizes, although a variable block design is discussed in Section 8.6.

Success or failure of an access to the upper level is designated as a hit or a

miss: A hit is a memory access found in the upper level, while a miss means it is

not found in that level. Hit rate, or hit ratio—like a batting average—is the

fraction of memory accesses found in the upper level. This is sometimes repre—

sented as a percentage. Miss rate (1.0 — hit rate) is the fraction of memory

accesses not found in the upper level.

 Processor I

FIGURE 8.1 Every pair of levels in the memory hierarchy can be thought of as
having an upper and lower level. Within each level the unit of information that is present
or not is called a block.

SAMSUNG EXHIBIT 1009

Page 7 of 171

SAMSUNG EXHIBIT 1009
Page 8 of 171

Memory-Hierarchy Design

Since performance is the major reason for having a memory hierarchy, the

speed of hits and misses is important. Hit time is the time to access the upper

level of the memory hierarchy, which includes the time to determine whether the

access is a hit or a miss. Whetimeto replace a block i_n the upper

level with the corresponding bblflrpmthe_lower level plus the time to deliver!
this block to the reguesting device (normally the CPU). The miss penalty is

further divided into two components: access time—the time to access the first
word of a block on a miss; and transfer time—the additional time to transfer the

remaining words in the block. Access time is related to the latency of the lower-

level memory, while transfer time is related to the bandwidth between the lower—

level and upper-level memories. (Sometimes access latency is used to mean
access time.)

The memory address is divided into pieces that access each part of the

hierar/chy. Eblaglilfilame address is the higher-order piece of_theW
identifies a block at that level of thefihierarchy (sée Figure 8.2). The block-afi‘set

address is the lower-order piece of the address and identifies an item within a

block. The size of the block-offset address is logz (size of block); the size of the
block-frame address is then the size of the full address at this level less the size

of the block—offset address.

Block-frame address Block-offset address
01011010001000001001010 111001110'

FIGURE 8.2 Example of the frame address and offset address portions of a 32-bit
lower-level memory address. In this case the block size is 512, making the size of the
offset address 9 bits and the size of the block-frame address 23 bits.

Evaluating Performance of a Memory Hierarchy

Because instruction count is independent of the hardware, it is tempting to

evaluate CPU performance using that number. As we saw in Chapters 2 and 4,

however, such indirect performance measures have waylaid many a computer

designer. The corresponding temptation for evaluating memory-hierarchy

performance is to concentrate on miss rate, for it, too, is independent of the

speed of the hardware. As we shall see, miss rate can be just as misleading as

instruction count. A better ingsurggfimemorymierarchy,Vperfogrrnance is the‘ x

aWQQSS memory:

Average memory-access time = Hit time + Miss rate * Miss penalty

The components of average access time can be measured either in absolute

time—say, 10 nanoseconds on a hit—or in the number of clock cycles that the

SAMSUNG EXHIBIT 1009

Page 8 of 171

SAMSUNG EXHIBIT 1009
Page 9 of 171

406 8.2 General Principles of Memory Hierarchy

CPU waits for the memory—such as a miss penalty of 12 Clock cycles.

Remember that average memory-access time is still an indirect measure of

performance; so while it is a better measure than miss rate. it is not a substitute
for execution time.

The relationship of block size to miss penalty and miss rate is shown

abstractly in Figure 8.3. These representations assume that the size of the upper-

level memory does not change. The access-time portion of the miss penalty is

not affected by block size, but the transfer time does increase with block size. If

access time is large, initially there will be little additional miss penalty relative
to access time as block size increases. However, increasing block size means

fewer blocks in the upper-level memory. Increasing block size lowers the miss

rate until the reduced misses of larger blocks (spatial locality) are outweighed

by the increased misses as the number of blocks shrinks (temporal locality).

Miss Transfer Miss
penalty time rate

Block size Block size

FIGURE 8.3 Block size versus miss penalty and miss rate. The transfer-time portion of
the miss penalty obviously grows with increasing block size. For a fixed-size upper—level
memory, miss rates fall with increasing block size until so much of the block is not used that
it displaces useful information in the upper level, and miss rates begin to rise. The point on
the curve on the right where miss rates begin to rise with increasing block size is
sometimes called the pollution point.

Averageaccess
time

Block size
FIGURE 8.4 The relationship between average memory-access time and block size.

SAMSUNG EXHIBIT 1009

Page 9 of 171

SAMSUNG EXHIBIT 1009
Page 10 of 171

Memory—Hierarchy Design 407

The goal of a memory hierarchy is to reduce execution time not misses.
Hence, computer designersmm
time rather than the lowest miss rate. This is related to the product of miss rate

and miss penalty, as Figure 8.4 shows abstractly. Of course, overall CPU

performance is the ultimate performance test, so care must be taken when re-

ducing average memory-access time to be sure that changes to clock cycle time

and CPI improve overall performance as well as average memory-access time.

Implications of a Memory Hierarchy to the CPU

Processors designed without a memory hierarchy are simpler because memory

accesses always take the same amount of time. Misses in a memory hierarchy

mean that the CPU must be able to handleyariabl’emmemory-access times. If the
mfipé'n‘alfi is on the order of tens of clock cycles, the processor normally waits

W . . .

'forthe memory transfer to complete. On the other hand, if the miss penalty 15
thousaEI-ds of processor clock cycles, it is too wasteful to let the CPU sit idle; in
this case, the CPU is interrupted and used for another process during the miss

handling. Thus, avoiding the overhead of a long miss penalty means any

memory access can result in a CPU interrupt. This also means the CPU must be

able to recover any memory address that can cause such an interrupt, so that the

system can know what to transfer to satisfy the miss (see Section 5.6). When the

memory transfer is complete, the original process is restored, and the instruction
that missed is retried.

The processor must also have some mechanism to determine whether or not

information is in the top level of the memory hierarchy. This check happens on

every memory access and affects hit time; maintaining acceptable performance

usually requires the check to be implemented in hardware. The final implication

of a memory hierarchy is that the computer must have a mechanism to transfer

blocks between upper- and lower—level memorylW
clock cycles, it is controlled by hardware; if it is thousands of clock cycles, it(WM...

can be controlled by software.

Four Questions for Classifying Memory Hierarchies

The fundamental principles that drive all memory hierarchies allow us to use

terms that transcend the levels we are talking about. These same principles allow

us to pose four questions about any level of the hierarchy:

Q1: Where can a block be placed in the upper level? (Block placement)

Q2: How is a block found if it is in the upper level? (Block identification)

Q3: Which block should be replaced on a miss? (Block replacement)

Q4: What happens on a write? (Write strategy)

These questions will help us gain an understanding of the different tradeoffs

demanded by the relationships of memories at different levels of a hierarchy.

SAMSUNG EXHIBIT 1009

Page 10 of 171

SAMSUNG EXHIBIT 1009
Page 11 of 171

408 8.3 Caches

8.3 Caches

Cache: a safe place for hiding or storing things. .

Webster’s New World Dictionary of the American Language,
Second College Edition (1976)

Cache is the name first chosen to represent the level of the memory hierarchy 7
between the CPU and main memory, and that is the dominant use of the term.

While the concept of caches is younger than the IBM 360 architecture, caches

appear today in every class of computer and in some computers more than once.

In fact, the word has become so popular that it has replaced “buffer” in many

computer-science circles.

The general terms defined in the prior section can be used for caches.

although the word line is often used instead of block. Figure 8.5 shows the

typical range of memory—hierarchy parameters for caches.

 Block (line) size 4 — 128 bytes 1 (I

Hit time 1 — 4 clock cycles (normally 1) it

Miss penalty 8 — 32 clock cycles

(Access time) (6 — 10 clock cycles) ‘ j

(Transfer time) (2 — 22 clock cycles) f.
Miss rate 1% — 20% "

Cache size 1 KB — 256 KB

FIGURE 8.5 Typical values of key memory-hierarchy parameters for caches in 1990
workstations and minicomputers. t

Now let’s examine caches in more detail by answering the four memoryv

hierarchy questions.

Q1: Where Can a Block Be Placed in E; Cache?

Restrictions on where a block is placed create three categories of cache

organization:

I If each block has only one place it can appear in the cache, the cache is said i

to be direct mapped. The mapping is usually (block-frame address) modulo 1
(number of blocks in cache). |

u If a block can be placed anywhere in the cache, the cache is said to be fully
associative.

SAMSUNG EXHIBIT 1009 .
Page 11 of 171 ‘1

SAMSUNG EXHIBIT 1009
Page 12 of 171

Memory-Hierarchy Design 409

u If a block can be placed in a restricted set of places in the cache, the cache is

said to be set associative. A set is a group of two or more blocks in the cache.

A block is first mapped onto a set, and then the block can be placed anywhere

within the set. The set is usually chosen by bit selection; that is, (block-frame
address) modulo (number of sets in cache). If there are n blocks in a set. the

cache placement is called n-way set associative.

The range of caches from direct mapped to fully associative is really a

continuum of levels of set associativity: Direct mapped is simply one-way set

associative and a fully associative cache with m blocks could be called m-way

set associative. Figure 8.6 shows where block 12 can be placed in a cache

according to the block—placement policy.

Fully associative: Direct mapped: Set associative:
block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywhere in set 0

(12 mode) (72 mod4)

Block 01234567 Block 01234567 01234567

no, no. .
Set Set Set Set

0 1 2 3

Block-frame address

Block 1

no. 01234567890

FIGURE 8.6 The cache has 8 blocks, while memory has 32 blocks. The set-
associative organization has 4 sets with 2 blocks per set, called two-way set associative.
(Real caches contain hundreds of blocks and real memories contain hundreds of thousands
of blocks.) Assume that there is nothing in the cache and that the block-frame address in
question identifies lower-level block 12. The three options for caches are shown left to right.
In fully associative, block 12 from the lower level can go into any of the 8 blocks of the
cache. With direct mapped, block 12 can only be placed into block 4 (12 modulo 8). Set
associative, which has some of both features, allows the block to be placed anywhere in set
0 (12 modulo 4). With two blocks per set, this means block 12 can be placed either in block
0 or block 1 of the cache.

SAMSUNG EXHIBIT 1009

Page 12 of 171

SAMSUNG EXHIBIT 1009
Page 13 of 171

410 8.3 Caches

Q2: How Is a Block Found If It Is in the Cache?

Caches include an address tag on each block that gives the block-frame address.

The tag of every cache block that might contain the desired information is

checked to see if it matches the block-frame address from the CPU. Figure 8.7

gives an example. Because speed is of the essence, all possible tags are searched

in parallel; serial search would make set associativity counterproductive.

Fully associative Direct mapped Set associative
Block 01234567 Block 01234567 Block 01234567

Set Set Set Set

IIIIIII IIIIIII IIIIIII
Hill 1 ii i H

Search

FIGURE 8.7 In tulIy associative placement, the block for block-frame address 12 can
appear in any of the 8 blocks; thus, all 8 tags must be searched. The desired data is
found in cache block 6 in this example. In direct-mapped placement there is only one cache
block where memory block 12 can be found. In set-associative placement, with 4 sets,
memory block 12 must be in set 0 (12 mod 4); thus, the tags of cache blocks 0 and 1 are
checked. In this case the data is found in cache block 1. Speed of cache access dictates
that searching must be performed in parallel for fully associative and set—associative
mappings.

There must be a way to know that a cache block does not have valid

information. The most common procedure is to add a valid bit to the tag to say

whether or not this entry contains a iyalid address. If the bit is not set, there
cannot be a match on this address.

A common omission in finding the cost of caches is to forget the cost of the

tag memory. One tag is required for each block. AWg
block sizes is that the tag overhead per cache entry b'écomes a smaller fractiquof
tWfl—g“

Wenext question, let’s explore the relationship of a
CPU address to the cache. Figure 8.8 shows how an address is divided into three

fields to find data in a set—associative cache: the block—oflset field used to select
the desired data from the block, the index field used to select the set, and the tag

field used for the comparison. While the comparison could be made on more of

the address than the tag, there is no need:

SAMSUNG EXHIBIT 1009

Page 13 of 171

SAMSUNG EXHIBIT 1009
Page 14 of 171

Memory-Hierarchy Design

- Checking the index would be redundant, since it was used to select the set to

be checked (an address stored in set 0, for example, must have 0 in the index
field or it couldn’t be stored in set 0).

n The offset is unnecessary in the comparison because all block offsets match

and the entire block is present or not.

If the total size is kept the same, increasing associativity increases the number of

blocks per set, thereby decreasing the size of the index and increasing the size of

the tag. That is, the tag/index boundary in Figure 8.8 moves to the right with
increasing associativity.

FIGURE 8.8 The 3 portions of an address in a set-associative or direct-mapped cache.
The tag is used to check all the blocks in the set and the index is used to select the set. The
block offset is the address of the desired data within the block.

Q3: Which Block Should Be Replaced on a Cache Miss?

If the choice were between a block that has valid data and a block that doesn’t,

then it would be easy to select which block to replace. Alas, the high hit rate of

caches means that the overwhelming decision is between blocks that have valid
data.

A benefit of direct-mapped placement is that hardware decisions are

simplified. In fact, so simple that there is no choice: Only one block is checked

for a hit, and only that block can be replaced. With fully associative or set-

associative placement, there are several blocks to choose from on a miss. There

are two primary strategies employed for selecting which block to replace:

- Random—To spread allocation uniformly, candidate blocks are randomly

selected. Some systems use a scheme for spreading data across a set of blocks

in a pseudorandomized manner to get reproducible behavior, which is

particularly useful during hardware debugging.

I Least—recently used (LRU)—To reduce the chance of throwing out informa—
tion that will be needed soon, accesses to blocks are recorded. The block

replaced is the one that has been unused for the longest time. This makes use

of a corollary of temporal locality: If recently used blocks are likely to be

used again, then the best candidate for disposal is the least recently used.

Figure 8.9 (page 412) shows which block is the least—recently used for a

sequence of block-frame addresses in a fully associative memory hierarchy.

SAMSUNG EXHIBIT 1009

Page 14 of 171

SAMSUNG EXHIBIT 1009
Page 15 of 171

412 8.3 Caches

A virtue of random is that it is simple to build in hardware. As the number of

blocks to keep track of increases, LRU becomes increasingly expensive and is \

frequently only approximated. Figure 8.10 shows the difference in miss rates I
between LRU and random replacement. Replacement policy plays a greater role

in smaller caches than in larger caches where there are more choices of what to

replace.
, , ., , _ § ‘ ,

Block-frame addresses : 3 2 1 0 1} 0 ‘
to w ._. w l O

 LRUblocknumber 0 0 o 0 3‘3 3 1 0 0‘21

FIGURE 8.9 Least-recently used blocks for a sequence of block-frame addresses in
a fully associative memory hierarchy. This assumes that there are 4 blocks and that in
the beginning the LRU block is number 0. The LRU block number is shown below each
new block reference. Another policy, First—in—first-out(FIFO), simply discards the block that
was used N unique accesses before, independent of its reference pattern in the last N — 1
references. Random replacement generally outperforms FIFO and it is easier to implement.

—_—_—_—__—__fi

Associativity: 2-way 4-way 8-waySize LRU Random LRU Random LRU Random

4.67% 5.29% 4.39% 4.96% ‘16 KB 5.18% 5.69%
’ ' ' ' l

64KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53% ‘
FIGURE 8.10 Miss rates comparing least-recently used versus random replacement
for several sizes and associativities. This data was collected for a block size of 16 bytes

using one of the VAX traces containing user and operating system code (SAVEO). This
trace is included in the software supplement for course use. There is little difference
between LRU and random for larger size caches in this trace.

Q4: What Happens on 3 Write?

Reads dominate cache accesses. A11 instruction accesses are reads, and most

instructions don’t write to memory. Figure 4.34 (page 18]) suggests a mix of 9%

stores and 17% loads for four DLX programs, making writes less than 100/1 of

the memory traffic. Making the common case fast means optimizing caches for

reads, but Amdahl’s Law reminds us that high-performance designs cannot 1

neglect the speed of writes.

Fortunately, the common case is also the easy case to make fast. The block

can be read at the same time that the tag is read and compared. so the block read

begins as soon as the block-frame address is available. If the read is a hit, the

block is passed on to the CPU immediately. If it is a miss, there is no benefit—«
but also no harm.

1 ‘
256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12% ‘ ‘

SAMSUNG EXHIBIT 1009

Page 15 of 171

SAMSUNG EXHIBIT 1009
Page 16 of 171a;"

Memory—Hierarchy Design 41 3

Such is not the case for writes. The processor specifies the size of the write,

usually between 1 and 8 bytes; only that portion of a block can be changed. In

general this means a read-modify-write sequence of operations on the block:
read the original block, modify one portion, and write the new block value.

Moreover, modifying a block cannot begin until the tag is checked to see if it is

a hit. Because tag checking cannot occur in parallel, then, writes normally take
longer than reads.

Thus, it is the write policies that distinguish many cache designs. There are
two basic options when writing to the cache:

I Write through (or store through)—The information is written to both the

block in the cache and to the block in the lower—level memory.

I Write back (also called copy back or store in)—The information is written

only to the block in the cache. The modified cache block is written to main

memory only when it is replaced.

Write-back cache blocks are called clean or dirty, depending on whether the

information in the cache differs from that in lower-level memory. To reduce the

frequency of writing back blocks on replacement, a feature called the dirty bit is
commonly used. This status bit indicates whether or not the block was modified

while in the cache. If it wasn’t, the block is not written, since the lower level has
the same information as the cache.

Both write back and write through have their advantages. With write bragki
writes occur at the?@emme‘aafi‘rfiafia‘ry, add-multiple writes within a

bl'o'c'k require only one write to the lower-level memory. Since every write
doesn’t go to memory, write back uses less memory bandwidth, making write

back attractive in multiprocessors. With write through, read misses don’t result

in writes to the lower level, and write through is easier to implement than write

back. Write through also has the advantage that main memory has the most

current copy of the data. This is important in multiprocessors and for I/O, which

we shall examine in Section 8.8. Hence, multiprocessors want write back to

reduce the memory traffic per processor and write through to keep the cache and

memory consistent.

When the CPU must wait for writes to complete during write throughs, the

CPU is said to write stall. A common optimization to reduce write stalls is a

write bufler, which allows the processor to continue while the memory is
updated. As we shall see in Section 8.8, write stalls can occur even with write

uffers.

There are two options on a write miss:

- Write allocate (also calledfetch on write)—The block is loaded, followed by
the write—hit actions above. This is similar to a read miss.

I No write allocate (also called write around)—The block is modified in the
lower level and not loaded into the cache.

SAMSUNG EXHIBIT 1009

Page 16 of 171#—_4—i

SAMSUNG EXHIBIT 1009
Page 17 of 171

414 8.3 Caches

While either write-miss policy could be used with write through or write back,

generally write-back caches use write allocate (hoping that subsequent writes to
that block will be captured by the cache) and write—through caches often use no

write allocate (since subsequent writes to that block will still have to go to

memory).

An Example Cache: The VAX-1 1/780 Cache

To give substance to these ideas, Figure 8.1] shows the organization of the
cache on the VAX-11/780. The cache contains 8192 bytes of data in 8—byte

blocks with two—way—set—associative placement, random replacement, write

through with a one-word write buffer, and no write allocate on a write miss.
Let’s trace a cache hit through the steps of a hit as labeled in Figure 8.11.

(The five steps are shown as circled numbers.) The address coming into the
cache is divided into two fields: the 29-bit block-frame address and 3-bit block

offset. The block—frame address is further divided into an address tag and cache

index. Step 1 shows this division.
The cache index selects the set to be tested to see if the block is in the cache.

(A set is one block from each bank in Figure 8.11.) The size of the index

depends on cache size, block size, and set associativity. In this case, a 9—bit
index results:

Blocks _ Cache size _ 8192 _ _ 9

Bank a Block size * Set associativity_ 8 >I< 2 T 512 _ 2

In a two—way—set—associative cache, the index is sent to both banks. This is

step 2.

After reading an address tag from each bank, the tag portion of the block—

frame address is compared to the tags. This is step 3 in the figure. To be sure the

tag contains valid information, the valid bit must be set, or the results of the

comparison are ignored.

Assuming one of the tags does match, a 2:1 multiplexer (step 4) is set to

select the block from the matching set. Why can’t both tags match? It is the job

of the replacement algorithm to make,sure that an address appears in only one
block. To reduce the hit time, the data is read at the same time as the address

tags; thus, by the time the block multiplexer is ready, the data is also ready.

This step is needed in set-associative caches, but it can be omitted from

direct-mapped caches since there is no selection to be made. The multiplexer

used in this step can be on the critical timing path, endangering the clock cycle
time of the CPU. (The example on pages 418—419 and the fallacy on page 481

explore the trade-off of lower miss rates and higher clock cycle time.)

In the final step the word is sent to the CPU. All five steps occur within a

single CPU clock cycle.

What happens on a miss? The cache sends a stall signal to the CPU telling it
to wait, and two words (eight bytes) are read from memory. That takes 6 clock

cycles on the VAX—11/780 (ignoring bus interference). When the data arrives.

SAMSUNG EXHIBIT 100

Page 17 of 171

\l

4

SAMSUNG EXHIBIT 1009
Page 18 of 171

Memory-Hierarchy Design

the cache must pick a block to replace: the VAX—l 1/780 selects one of the two
blocks at random. Replacing a block means updating the data. the address tag.
and the valid bit. Once this is done, the cache goes through a regular hit cycle
and returns the data to the CPU.

Writes are more complicated in the VAX—1 1/780. as they are in any cache. If
the word to be written is in the cache. the first four steps are the same. The next

step is to write the data in the block. then write the Changed-data portion into the

BI

Kr Blockrlrame Block1 CPU'1‘ address offset ‘ dd
N <20> <9> <3> Satares;I a

Tag I
Valid Tag
<1> <20>

l

CD

1

l.
FIGURE 8.11 The organization of the VAX-11/780 cache. The 8-KB cache is two-way
set associative with 8-byte blocks. it has 512 sets with two blocks per set; the set is
selected by the 9~bit index. The five steps of a read hit, shown as circled numbers in order
of occurrence, label this organization. The line from memory to the cache is used on a miss
to load the cache. Multiplexing as found in step 4 is not needed in a direct-mapped cache.
Note that the offset is connected to chip select of the data SRAMs to allow the proper
words to be sent to the 2:1 multiplexer.

SAMSUNG EXHIBIT 1009

Page 18 of 171

SAMSUNG EXHIBIT 1009
Page 19 of 171

416 8.3 Caches '1

cache. The VAX—l 1/780 uses no write allocate. Consequently, on a write miss

the CPU writes “around” the cache to lower-level memory and does not affect
the cache.

Since this is a write—through cache, the process isn’t yet over. The word is

also sent to a one-word write buffer. If the write buffer is empty, the word and
full address are written in the buffer, and we are finished. The CPU continues

working while the write buffer writes the word to memory. If the buffer is full.

the cache (and CPU) must wait until the buffer is empty.

Cache Performance

CPU time can be divided into the clock cycles the CPU spends executing the

program and the clock cycles the CPU spends waiting for the memory system.
Thus,

CPU time = (CPU-execution clock cycles + Memory—stall clock cycles) * Clock cycle time

To simplify evaluation of cache alternatives, sometimes designers assume ‘
that all memory stalls are due to the cache. This is true for many machines; on ‘ —
machines where this is not true, the cache still dominates stalls that are not

exclusively due to the cache. We use this simplifying assumption here, but it is

important to account for all memory stalls when calculating final performance!

The formula above raises the question whether the clock cycles for a cache

access should be considered part of CPU-execution clock cycles or part of mem—

ory-stall clock cycles. While either convention is defensible, the most widely

accepted is to include hit clock cycles in CPU-execution clock cycles. }

Memory-stall clock cycles can then be defined in terms of the number of

memory accesses per program, miss penalty (in clock cycles), and miss rate for
reads and writes:

Reads . . "

Memory-stall clock cycles — Program * Read miss rate * Read miss penalty j

+ fiwmes * Write miss rate * Write miss penalty 1 A
Program ,4 I

We simplify the complete formula by combining the reads and writes together:

MemoQ accessess

Memory-stall clock cyCles = Program * Miss rate * Miss penalty

1

Factoring instruction count (IC) from execution time and memory stall \
cycles, we now get a CPU—time formula that includes memory accesses per ‘

instruction, miss rate, and miss penalty: , |. _ g _ , .
CPU time — IC * (CPI . + Memo aécesses * Miss rate * Miss penalty)* Clock cycle timeExecution Instruction

SAMSUNG EXHIBIT 1009

Page 19 of 171

SAMSUNG EXHIBIT 1009
Page 20 of 171

Memory-Hierarchy Design 417

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference:

Missiesii Memory accesses .
Instruction: Instruction i'k MISS rate

The advantage of this measure is that it is independent of the hardware
implementation. For example, the VAX—l 1/780 instruction unit can make

' ’ repeated references to a single byte (see Section 8.7). which can artificially
. 1 reduce the miss rate if measured as misses per memory reference rather than per

instruction executed. The drawback is that this measure is architecture
dependent, thus it is most popular with architects working with a single
computer family. They then use this version of the CPU-time formula:

. ,Mijsez ,. ~ . 1 . -CPU time — IC * (CPIExecution + Instruction It» Miss penalty) v Clock cycle time
We can now explore the consequences of caches on performance.

Let’s use the VAX—11/780 as a first example. The cache miss penalty is 6 clock
cycles. and all instructions normally take 8.5 clock cycles (ignoring memory
stalls). Assume the miss rate is 11%. and there is an average of 3.0 memory
references per instruction. What is the impact on performance when behavior of
the cache is included?

. -5 ‘CPU time = IC * (CPI ‘ . + MSW/ism“CiOCk C (ieé)* Clock cycleExecution Instruction

time

The performance, including cache misses, is

CPU time : IC * (8.5 + 3.0 * 11% * 6) * Clock cycle timewith cache

2 Instruction count * 10.5 * Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache. so CPU time increases with CPI from 8.5 to 10.5. Hence, the impact of
the memory hierarchy is to stretch the CPU time by 24%.

Let’s now calculate the impact on performance when behavior of the cache is
included on a machine with a lower CPI. Assume that the cache miss penalty is
10 clock cycles and. on average, instructions take 1.5 clock cycles; the miss rate
is 1 1%. and there is an average of 1.4 memory references per instruction.

CPU time =IC * (CPI . + Minggfi't’auiciigam) * Clock cycle timeExecution Instruction
SAMSUNG EXHIBIT 1009

Page 20 of 171

SAMSUNG EXHIBIT 1009
Page 21 of 171

418 8.3 Caches

t .11 Making the same assumptions as in the previous example on cache hits, the per—
formance, including cache misses, is

1“; CPU timewith cache = IC * (1.5 + 1.4*11%*10) * Clock cycle time

The clock cycle time and instruction count are the same, with or without a

cache, so CPU time increases with CPI from 1.5 to 3.0. Including cache

11

i ‘ 1 = Instruction count*3.0*Clock cycle time

1
, behavior doubles execution time.

As these examples illustrate, cache-behavior penalties range from significant

.1 to enormous. Furthermore, cache misses have a double-barreled impact on a
l CPU with a low CPI and a fast clock:

1. The lower the CPI, the more pronounced the impact is.

‘5 2. Independent of the CPU, main memories have similar memory—access times,
, tli‘ since they are built from the same memory chips. When calculating CPI, the

1 cache miss penalty is measured in CPU clock cycles needed for a miss.

Therefore, a higher CPU clock rate leads to a larger miss penalty, even if
main memories are the same speed.

l l The importance of the cache for CPUs with low CPI and high clock rates is thus

‘ greater; and, consequently, greater is the danger of neglecting cache behavior in

r. assessing performance of such machines.
While minimizing average memory—access time is a reasonable goal and we

l will use it in much of this chapter, keep in mind that the final goal is to reduce
CPU execution time.

What is the impact of two different cache organizations on the performance of a
CPU? Assume that the CPI is normally 1.5 with a clock cycle time of 20 ns, that
there are 1.3 memory references per instruction, and that the size of both caches

is 64 KB. One cache is direct mapped and the other is two-way set associative.
Since the speed of the CPU is tied directly to the speed of the caches, assume the
CPU clock cycle time must be stretched 8.5% to accommodate the selection

multiplexer of the set—associative cache (step 4 in Figure 8.11 on page 415.) To
the first approximation, the cache miss penalty is 200 ns for either cache

organization. (In practice it must be rounded up or down to an integer number of
clock cycles.) First, calculate the average memory-access time, and then CPU
performance.

Figure 8.12 on page 421 shows that the miss rate of a direct-mapped 64—KB
cache is 3.9% and the miss rate for a two—way—set—associative cache of the same

size is 3.0%. Average memory-access time is

Average memory-access time = Hit time + Miss rate * Miss penalty

1

ll SAMSUNG EXHIBIT 1009
l Page 21 of 171

SAMSUNG EXHIBIT 1009
Page 22 of 171

Memory—Hierarchy Design

Thus, the time for each organization is

Average memory-access time1_way = 20 + 039*200 = 27.8 ns

Average memory-access timegswuy = 20* l .085 + .030*200 = 27.7 ns

The average memory—access time is better for the two—way—set—associative
cache.

CPU perfomiance is

M'sses .

s a * Miss penalty) Clock cycle timeCPU time = [C >I< (CPIExecution + Instruction

= [C * (CPIExmi0n =:< Clock cycle time +
Memor accesses . . .

l.—' * Miss rate * Miss penalty * Clock cycle time)Instruction

Substituting 200ns for (Miss penalty * Clock cycle time). the performance of

each cache organization is

CPU time1_way = IC*(1.5*20 + l.3*0.039*200) = 40. 1 *IC

CPU time}way = IC*(1.5*20%< 1.085 + 1.3*0.030*200) = 404* IC

and relative performance is

CPU timezwx _ 40.4 * Instruction count

CPU time1_wuy_ 40.1 * Instruction count

In contrast to the results of average access—time comparison, the direct—mapped

cache leads to slightly better performance. Since CPU time is our bottom-line

evaluation (and direct mapped is simpler to build), the preferred cache is direct

mapped in this example. (See the fallacy on page 481 for more on this kind of
trade-off.)

The Three Sources of Cache Misses: Compulsory,

Capacity, and Conflicts

An intuitive model of cache behavior attributes all misses to one of three
sources:

- C(2ni/9ulsr)1‘_y'_The first access to a block is not in the cache. so the block

must be brought into the cache. These are also called cold start misses orfirst
reference misses.

I Capacityfllf the cache cannot contain all the blocks needed during execution

of a program, capacity misses will occur due to blocks being discarded and
later retrieved.

SAMSUNG EXHIBIT 1009

Page 22 of 171

SAMSUNG EXHIBIT 1009
Page 23 of 171

420 8.3 Caches

I Conflict—If the block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur

because a block can be discarded and later retrieved if too many blocks map
to its set. These are also called collision misses.

Figure 8.12 shows the relative frequency of cache misses, broken down by
the “three Cs.” To show the benefit of associativity, conflict misses are divided
into misses caused by each decrease in associativity. The categories are labeled
n-way, meaning the misses caused by going to the lower level of associativity
from the next one above. Here are the four categories:

8—way: from fully associative (no conflicts) to 8-way associative

4-way: from 8—way associative to 4-way associative

2-way: from 4-way associative to 2-way associative

1—way: from 2—way associative to 1-way associative (direct mapped)

Figure 8.13 (page 422) presents the same data graphically. The top graph shows
absolute miss rates; the bottom graph plots percentage of all the misses by cache
size.

Having identified the three Cs, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoids all
conflict misses. Associativity is expensive in hardware, however, and may slow
access time (see the example above or the second fallacy in Section 8.10),
leading to lower overall performance. There is little to be done about capacity
except to buy larger memory chips. If the upper-level memory is much smaller
than what is needed for a program, and a significant percentage of the time is
spent moving data between two levels in the hierarchy, the memory hierarchy is
said to thrash. Because so many replacements are required, thrashing means the
machine runs close to the speed of the lower-level memory, or maybe even
slower due to the miss overhead. Making blocks larger reduces the number of
compulsory misses, but it can increase conflict misses.

The three C’s give insight into the cause of misses, but this simple model has
its limits. For example, increasing cache size reduces conflict misses as well as

capacity misses, since a larger cache spreads out references. Thus, a miss might
move from one category to the other as parameters change. Three C’s ignore
replacement policy, since it is difficult to model and since, in general, it is of less
significance. In specific circumstances the replacement policy can actually lead
to anomalous behavior, such as poorer miss rates for larger associativity, which
is directly contradictory to the three C’s model.

SAMSUNG EXHIBIT 1009

Page 23 of 171

SAMSUNG EXHIBIT 1009
Page 24 of 171

Memory-Hierarchy Design 421

Cache size Degree Total Miss-rate components (relative percent)

associative miss (Sum = 100% of total miss rate)
rate Compulsory Capacity Conflict

1 KB l—way 0.191 0.009 5% 0.141 73% 0.042 22%

1 KB 2-way 0.161 0.009 6% 0.141 87% 0.012 7%

1 KB 4-way 0.152 0.009 6% 0.141 92% 0.003 2%

1 KB 8—way 0.149 0.009 6% 0.141 94% 0.000 0%

2 KB l—way 0.148 0.009 6% 0.103 70% 0.036 24%

2 KB 2-way 0.122 0.009 7% 0.103 84% 0.010 8%

2 KB 4—way 0.115 0.009 8% 0.103 90% 0.003 2%

2 KB 8—way 0.113 0.009 8% 0.103 91% 0.001 1%

4 KB l—way 0.109 0.009 8% 0.073 67% 0.027 25%

4 KB 2-way 0.095 0.009 9% 0.073 77% 0.013 14%

4 KB 4—way 0.087 0.009 10% 0.073 84% 0.005 6%

4 KB 8-way 0.084 0.009 11% 0.073 87% 0.002 3%

8 KB 1-way 0.087 0.009 10% 0.052 60% 0.026 30%

8 KB 2—way 0.069 0.009 13% 0.052 75% 0.008 12%

8 KB 4-way 0.065 0.009 14% 0.052 80% 0.004 6%

8 KB 8—way 0.063 0.009 14% 0.052 83% 0.002 3%

16 KB l-way 0.066 0.009 14% 0.038 57% 0.019 29%

16 KB 2—way 0.054 0.009 17% 0.038 70% 0.007 13%

16 KB 4-way 0.049 0.009 18% 0.038 76% 0.003 6%

16 KB 8—way 0.048 0.009 19% 0.038 78% 0.001 3%

32 KB l-way 0.050 0.009 18% 0.028 55% 0.013 27%

32 KB 2-way 0.041 0.009 22% 0.028 68% 0.004 11%

32 KB 4—way 0.038 0.009 23% 0.028 73% 0.001 4%

32 KB 8-way 0.038 0.009 24% 0.028 74% 0.001 2%

64 KB l-way 0.039 0.009 23% 0.019 50% 0.01 1 27%

64 KB 2—way 0.030 0.009 30% 0.019 65% 0.002 5%

64 KB 4—way 0.028 0.009 32% 0.019 68% 0.000 0%

64 KB 8-way 0.028 0.009 32% 0.019 68% 0.000 0%

128 KB l-way 0.026 0.009 34% 0.004 16% 0.013 50%

128 KB 2-way 0.020 0.009 46% 0.004 21% 0.006 33%

128 KB 4-way 0.016 0.009 55% 0.004 25% 0.003 20%

128 KB 8-way 0.015 0.009 59% 0.004 27% 0.002 14%

FIGURE 8.12 Total miss rate for each size cache and percentage of each according to the “three Cs.” Compul-
sory misses are independent of cache size, while capacity misses decrease as capacity increases. Hill [1987] measured
this trace using 32—byte blocks and LRU replacement. It was generated on a VAX—11 running Ultrix by mixing three
systems’ traces, using a multiprogramming workload and three user traces. The total length was just over a million
addresses; the largest piece of data referenced during the trace was 221 KB. Figure 8.13 (page 422) shows the same
information graphically. Note that the 2:1 cache rule of thumb (inside front cover) is supported by the statistics in this
table: a direct—mapped cache of size N has about the same miss rate as a 2—way—set—associative cache of size N/2.

SAMSUNG EXHIBIT 1009

Page 24 of 171

SAMSUNG EXHIBIT 1009
Page 25 of 171

422 8.3 Caches

20%

18"/
0 Conflict: 1-way

16% Conflict: 2-way
Conflict: 4-way

14% . -
Conflict: 8-way '4

12% 5"
i.

Miss 10% 2
rate t
per 8% :.
miss ‘-t 6
YD 6%

4% 1
‘ !

2%
l

00/° ,, .. , _ ,_
1 2 4 8 16 32 64 128 p

Cache size in K bytes

100

90 Conflict:
1-way

80

70 Conflict:
2—way
Conflict:

60 4-wayConflict:

Percentage 50 8»wayotdirect—
mapped 40
misses

30

20

10 ,
Compulsory

1 2 4 8 16 32 64 128

Cache size in K bytes

FIGURE 8.13 Total miss rate (top) and distribution of miss rate (bottom) for each
size cache according to three Cs for the data in Figure 8.12 (page 421). The top
diagram is the actual miss rates, while the bottom diagram is scaled to the direct—mapped
miss ratio.

SAMSUNG EXHIBIT 100

Page 25 of 171

SAMSUNG EXHIBIT 1009
Page 26 of 171

Memory-Hierarchy Design

Choices for Block Sizes in Caches

Figures 8.3 and 8.4 (page 406) showed the abstract tradeoff of block size versus

miss rate and memory-access time. Figures 8.14 and 8.15 (page 424) show the

specific numbers for a set of programs and cache sizes. Larger block sizes

reduce compulsory misses. as the principle of spatial locality suggests. At the

same time. larger blocks also reduce the number of blocks in the cache,

increasing conflict misses.

40%

35%

30%

25%
Miss
rate 20%

1 5%

1 0%

5%

0%

Block size (bytes)

' FIGURE 8.14 Miss rate versus block size. Note that for a 1-KB cache, 256-byte
“‘ blocks have a higher miss rate than either 16- or 64-byte blocks. (The smallest block is

 4 bytes.) In this particular example, the cache would have to be 256 KB in order for

% increasing block size to always result in decreased misses. This data was collected for a
direct-mapped cache using one of the VAX traces containing user and operating system

z”, code, which is distributed with this book (SAVEO).

Instruction-Only or Data-Only Caches Versus
Unified Caches

Unlike other levels of the memory hierarchy. caches are sometimes divided into

instruction—only and data—only caches. Caches that can contain either instructions

or data are unified caches, or mixed caches. The CPU knows whether it is issuing
an instruction address or a data address. so there can be separate ports for both,

thereby doubling the bandwidth between the cache and the CPU. (Section 6.4 in

Chapter 6 shows the advantages of dual memory ports for pipelined execution.)

Separate caches also offers the opportunity of optimizing each cache separately:

different capacities, block sizes. and associativities may lead to better

performance. Splitting thus affects the cost and performance far beyond what is

indicated by the change in miss rates. We limit our discussion to that point now

simply to show how miss rates for instructions differ from miss rates for data.

SAMSUNG EXHIBIT 1009

Page 26 of 171

SAMSUNG EXHIBIT 1009
Page 27 of 171

424

8.3 Caches

'—
12

n 1 KB
10

Average
memory- 8
access
time in 6
clock

cycles 4 a a 8 KB
" 16 KB

2 64 KB256 KB0
4 16 64 256

Block size (bytes)

FIGURE 8.15 Average access time versus block size using the miss rates in Figure
8.14. This assumes an 8—clock—cycle latency and that the memory and bus can transfer 4
bytes per clock cycle. On a miss all the blocks are loaded into the cache before the requested
word is sent to the CPU. The lowest average memory-access time is either for 16-byte or 64-
byte blocks, and 256-byte blocks are better than 4—byte blocks only for the largest cache.

Figure 8.16 shows that instruction—only caches have lower miss rates than

data-only caches. Separating instructions and data removes misses due to

conflicts between instruction blocks and data blocks. but the split also fixes the
cache space devoted to each type. A fair comparison of separate instruction and
data caches to unified caches requires the total cache size to be the same.

Therefore, a separate l-KB instruction cache and I-KB data cache should be

compared to a unified 2-KB cache. Calculating the average miss rate with

separate instruction—only and data—only caches necessitates knowing the
percentage of memory references to each cache.

Size Instruction only Data only Unified

0.25 KB 22.2% 26.8% 28.6%

0.50 KB 17.9% 7 20.9% 23.9% 7 7 1‘
7 1 KB 14.3% 7 16.0% 7 19.0%

2 KB 7 11.6% ‘7 11.8% 14.9% ‘
' 4 KB _ 8.6% _ 8.7%7 117.2% 7 7

8 KB 5.78% 7 7 6.8% 7 7 8.3% 1

16 KB 3.6% 7 5.3% 7 7 5.9% p
7 32 KB 7 2.2% 4.0% 7 74.3% 7

64 KB 1.4% 7 27.8% 7 2.9% 7
128 KB 7 1.0% 2.717% 7 1.9% 7
2576 KB 7 0.9% 7 19% 7 1.6%

FIGURE 8.16 Miss rates for instruction-only, data-only, and unified caches of different
sizes. The data are for a 2—way—assoclative cache using LRU replacement with 16-byte
blocks for an average of user/system traces on the VAX-11 and system traces on the IBM
370 [Hill 1987]. The percentage of instruction references in these traces is about 53%.

SAMSUNG EXHIBIT 1009

Page 27 of 171

‘.1

SAMSUNG EXHIBIT 1009
Page 28 of 171

Memory-Hierarchy Design 425

Which has the lower miss rate: a l6-KB instruction cache with a l6—KB data

cache or a 32-KB unified cache? Assume 53% of the references are instructions.

Example

Answer As stated in the legend of Figure 8.16, 53% of the memory accesses are

instruction references. Thus, the overall miss rate for the split caches is

53% * 3.6% + 47% * 5.3% : 4.4%

A 32—KB unified cache has a slightly lower miss rate of 4.3%.

8.4 Main Memory

the one single development that put computers on theirfeet was the invention

of a reliable form ofmemory, namely, the core memory. Its cost was
reasonable, it was reliable and, because it was reliable, it could in due course

be made large.

Maurice Wilkes, Memoirs ofa Computer Pioneer (1985, p. 209)

Provided there is only one level of cache, main memory is the next level down in

the hierarchy. Main memory satisfies the demands of caches and vector units,

and serves as the I/O interface as it is the destination of input as well as the

source for output. Unlike caches, performance measures of main memory

emphasize both latency and bandwidth. Generally, main memory latency (which

affects the cache miss penalty) is the primary concern of the cache, while main-

memory bandwidth is the primary concern of 1/0 and vector units. As cache

blocks grow from 4-8 bytes to 64~256 bytes, main memory bandwidth becomes

important to caches as well. The relationship of main memory and 1/0 is
discussed in Chapter 9.

Memory latency is traditionally quoted using two measures—access time and

cycle time. Access time is the time between when a read is requested and when
the desired word arrives, while cycle time is the minimum time between requests

to memory. In the 1970s, as DRAMs grew in capacity the cost of a package with

all the necessary address lines became an issue. The solution was to multiplex

the address lines, thereby cutting the number of address pins in half. The top half

of the address comes first, during the row-access strobe, or RAS. This is fol-

lowed by the second half of the address during the column—access strobe, or
CAS. These names come from the internal chip organization, for the memory is

organized as a rectangular matrix addressed by rows and columns.

An additional requirement of DRAMs derives from the property signified by

its first letter, D, for dynamic. Every DRAM must have every row accessed
within a certain time window, such as 2 milliseconds, or the information in the

DRAM can be lost. This requirement means that the memory system is

SAMSUNG EXHIBIT 1009

Page 28 of 171

SAMSUNG EXHIBIT 1009
Page 29 of 171

426

8.4 Main Memory

occasionally unavailable because it is sending a signal telling every chip to
refresh. The cost of a refresh is typically a full memory access (RAS and CAS)
for each row of the DRAM. Since the memory matrix in a DRAM is likely to be
square, the number of steps in a refresh is usually the square root of the DRAM
capacity.

In contrast to DRAMs are SRAMs—the first letter standing for “static.” The
dynamic nature of the circuits for DRAM require data to be written back after

being read, hence the difference between the access time and the cycle time and
also the need to refresh. SRAMs use more circuits per bit to prevent the
information from being disturbed when read. Thus, unlike DRAMs, there is no
difference between access time and cycle time and there is no need to refresh

SRAM. In DRAM designs the emphasis is on capacity, while SRAM designs are
concerned with both capacity and speed. (Because of this concern, SRAM
address lines are not multiplexed.) For memories designed in comparable
technologies, the capacity of DRAMs is roughly 16 times that of SRAMs, and
the cycle time of SRAMs is 8 to 16 times faster than DRAMs.

The main memory of virtually every computer sold in the last decade is

composed of semiconductor DRAMs (and virtually all caches use SRAM).
Amdahl suggested a rule of thumb that memory capacity should grow linearly
with CPU speed to keep a balanced system (see Section 1.4), and CPU designers
rely on DRAMs to supply that demand: they expect a four—fold improvement in
capacity every three years. Unfortunately, the performance of DRAMs is
growing at a much slower rate. Figure 8.17 shows a performance improvement
in row-access time of about 22% per generation, or 7% per year. As noted in
Chapter 1, CPU performance improved 18% to 35% per year prior to 1985, and
since that time has jumped to 50% to 100% per year. Figure 8.18 plots these
optimistic and pessimistic CPU performance projections against the steady 7%
performance improvement in DRAM speeds.

1 Row access (RAS) Column

Year of Chip size Slowest Fastest access Cycle i
introduction DRAM DRAM (CAS) time i.

I980 64 Kbit 180 ns 150 ns 75 ns 250 ns l

1983 256 Kbit 150 ns 120 ns 50 ns 220 ns
' ' ' 7 ’7.

1986 1 Mbit 120 ns 100 ns 25 ns I90 ns

1989 4 Mbit 100 ns 80 ns 20 us 165 ns ‘
.. . . . , , , ‘

1992? 16 Mbit :85 ns :65 ns :15 ns 2140 ns 1

FIGURE 8.17 Times of fast and slow DRAMs with each generation. The improvement
by a factor of two in column access accompanied the switch from NMOS DRAMs to CMOS
DRAMs. With three years per generation, the performance improvement of row access time
is about 7% per year. Data in the last row represent predicted performance for 16-Mbit
DRAMs, which are not yet available.

 SAMSUNG EXHIBIT 100

Page 29 of 17

SAMSUNG EXHIBIT 1009
Page 30 of 171

Memory—Hierarchy Design 427

1000008/
° CPU (19151)

P
e
r 10000%

f CPU (slow)0
f

m

a 1000%Fl
C

e DRAM
1000/o I I ——+—I; I I I I I

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

FIGURE 8.18 Starting with 1980 performance as a baseline, the performance of
DRAMs and CPUs are plotted over time. The DRAM baseline is 64 KB in 1980, with
three years to the next generation. The slow CPU line assumes a 19% improvement per
year until 1985 and a 50% improvement thereafter. The fast CPU line assumes a 26%
performance improvement between 1980 and 1985 and 100% per year thereafter. Note
that the vertical axis must be on a logarithmic scale to record the size of the CPU—DRAM
performance gap.

The CPU—DRAM performance gap is clearly a problem on the horizon—

Amdahl’s Law warns us what will happen if we ignore one portion of the

computation while trying to speed up the rest. Section 8.8 will describe what can

be done with cache organization to reduce this performance gap, but simply

making caches larger cannot eliminate it. Innovative organizations of main

memory are needed as well. In the rest of this section we will examine tech—

niques for organizing memory to improve performance. including techniques

especially for DRAMs.

Organizations for Improving Main Memory
Performance

While it is generally easier to improve memory bandwidth with new organ-

izations than it is to reduce latency, a bandwidth improvement does allow cache-

block size to increase without a corresponding increase in the miss penalty.

Let’s illustrate these organizations with the case of satisfying a cache miss.

Assume the performance of the basic memory organization is

1 clock cycle to send the address

6 Clock cycles for the access time per word

1 Clock cycle to send a word of data

SAMSUNG EXHIBIT 1009

Page 30 of 171

SAMSUNG EXHIBIT 1009
Page 31 of 171

8.4 Main Memory

Given a cache block of four words, the miss penalty is 32 clock cycles, with a
memory bandwidth of one-half byte per clock cycle.

Figure 8.19 shows some of the options to faster memory systems. The
simplest approach to increasing memory bandwidth, then, is to make the
memory wider.

(a) Onewordwrde (b) Wide memory organization (c) Interleaved

memory organization memory organization

CPU

Cache

l
Bus

C

Memory Memory
bank 0 bank 1 Memory Memory

bank 2 bank 3

Memory

FIGURE 8.19 Three examples of bus width, memory width, and memory interleaving
to achieve higher memory bandwidth. (a) is the simplest design, with everything the
width of one word; (b) shows a wider memory, bus, and cache; while (0) shows a narrow
bus and cache with an interleaved memory.

{7’

Wider Main Memory

Caches are often organized with a width of one word because most CPU

accesses are that size. Main memory, in turn, is one word wide to match the

width of the cache. Doubling or quadrupling the width of the memory will
therefore double or quadruple the memory bandwidth. With a main memory
width of two words the miss penalty in our example would drop from 4*8 or 32

clock cycles to 2*8 or 16 clock cycles. At four words wide the miss penalty is
just 1*8 clock cycles. The bandwidth is then one byte per clock cycle at two
words wide and two bytes per clock cycle when the memory is four words wide.

There is cost in the wider bus. The CPU will still access the cache a word at a

time, so there now needs to be a multiplexer between the cache and the CPU—

and that multiplexer may be on the critical timing path. (If the cache is faster

SAMSUNG EXHIBIT 1009

Page 31 of 171

SAMSUNG EXHIBIT 1009
Page 32 of 171

 Example

Memory-Hierarchy Design

than the bus, however, the multiplexer can be placed between the cache and the

bus.) Another drawback is that since main memory is traditionally expansible by

the customer. the minimum increment is doubled or quadrupled. Finally,

memories with error correction have difficulties with writes to a portion of the

protected block (e.g., a write of a byte); the rest of the data must be read so that
the new error correction code can be calculated and stored when the data is

written. If the error correction is done over the full width, the wider memory will

increase the frequency of such “read—modify—write‘~ sequences because more

writes become partial block writes. Many designs of wider memory have

separate error correction every 32 bits since most writes are that size. One

example of wider main memory was a computer whose cache, bus. and memory
were all 512 bits wide.

Interleaved Memory

Memory chips can be organized in banks to read or write multiple words at a

time rather than a single word. The banks are one word wide so that the width of

the bus and the cache need not change, but sending addresses to several banks

permits them all to read simultaneously. For example, sending an address to four

banks (with access times shown on page 427) yields a miss penalty of l+6+4*l

or 1 l clock cycles, giving a bandwidth of about 1.5 bytes per clock cycle. Banks

are also valuable on writes. While back—to—back writes would normally have to

wait for earlier writes to finish, banks allow one clock cycle for each write,

provided the writes are not destined to the same bank.

The mapping of addresses to banks affects the behavior of the memory

systetn. The example above assumes the addresses of the four banks are
interleaved at the word level—bank 0 has all words whose address modulo 4 is

0, bank 1 has all words whose address modulo 4 is 1, and so on. This mapping is

referred to as the interleavingfactor; interleaved memory normally means banks

of memory that are word interleaved. This optimizes sequential memory
accesses. A cache-read miss is an ideal match to word-interleaved memory, as

the words in a block are read sequentially. Write—back caches make writes as

well as reads sequential, getting even more efficiency from interleaved memory.

What can interleaving and a wide memory buy? Consider the following

description of a machine and its cache performance:

Block size = l word

Memory bus width 2 l word

Miss rate = 15%

Memory accesses per instruction = 1.2

SAMSUNG EXHIBIT 1009

Page 32 of 171

SAMSUNG EXHIBIT 1009
Page 33 of 171

430 8.4 Main Memory

Cache miss penalty 2 8 cycles (as above)

Average cycles per instruction (ignoring cache misses) = 2

If we change the block size to two words. the miss rate falls to 10%, and a four—
word block has a miss rate of 5%. What is the improvement in performance of
interleaving two ways and four ways versus doubling the width of memory and
the bus, assuming the access times on page 427.

Answer The CPI for the base machine using one—word blocks is

2 + (1.2*15%*8) = 3.44

Since the clock cycle time and instruction count won’t change in this example.
we can calculate performance improvement by just comparing CPI.

Increasing the block size to two words gives the following options:

32—bit bus and memory, no interleaving = 2 + (1 .2*10%*2*8) = 3.92

32-bit bus and memory, interleaving = 2 + (1.2*10%*(1+6+2)) : 3.08

64—bit bus and memory, no interleaving = 2 + (1.2*10%*1*8) = 2.96

Thus, doubling the block size slows down the straightforward implementation
(3.92 versus 3.44), while interleaving or wider memory is 12% or 16% faster,
respectively. If we increase the block size to four, the following is obtained:

32—bit bus and memory, no interleaving = 2 + (1.2*5%*4*8) = 3.92

32-bit bus and memory, interleaving = 2 + (l.2*5%*(l+6+4)) = 2.66

64—bit bus and memory, no interleaving = 2 + (I .2*5%*2*8) = 2.96

Again, the larger block hurts performance for the simple case, although the
interleaved 32—bit memory is now fastest—29% versus 16% for the wider

memory and bus. f,

accesses. A further reason is to allow multiple independent accesses. Multiple
memory controllers allow banks (or sets of word—interleaved banks) to operate
independently. For example, an input device may use one controller and its

memory, the cache may use another. and a vector unit may use a third. To .1
reduce the chances of conflicts many banks are needed; the NEC SX/3, for
instance, has up to 128 banks. ’

As capacity per memory chip increases, there are fewer chips in the same- ‘
sized memory system, making multiple banks much more expensive. For exam- l
ple, a 16—MB main memory takes 512 memory chips of 256 K (262,144) X l ,
bits, easily organized into 16 banks of 32 memory chips. But it takes only 32 4A ,
M (4,194,304) x 1—bit memory chips for 16 MB, making one bank the limit. This ,3

is the main disadvantage of interleaved memory banks. Even though the _~%

The original motivation for memory banks was interleaving sequential ‘l

ll
SAMSUNG EXHIBIT 1009

Page 33 of 171

SAMSUNG EXHIBIT 1009
Page 34 of 171

Memory-Hierarchy Design 431

Amdahl/Case rule of thumb for balanced computer systems recommends
increasing memory capacity with increasing CPU performance, the 60% growth
in DRAM capacity exceeded the rate of increase in CPU performance in the past
(page 17 of Chapter 1). If the rate of increase of CPU speeds seen in the late
1980s can be maintained (Figure 8.18, page 427) and these systems follow the
Amdahl/Case rule of thumb, then the number of chips may not be reduced.

A second disadvantage of interleaving is again the difficulty of main memory
expansion. Since memory-control hardware will likely need equal-sized banks,
doubling the main memory will probably be the minimum increment.

DRAM-Specific lnterleaving for Improving Main
Memory Performance

DRAM access times are divided into row access and column access. DRAMs
buffer a row of bits inside the DRAM for the column access. This row is usually
the square root of the DRAM size—1024 bits for 1 Mbit, 2048 for 4 Mbits, and
so on. All DRAMs come with optional timing signals that allow repeated
accesses to the buffer without a row-access time. There are three versions for
this optimization:

I Nibble mode—The DRAM can supply three extra bits from sequential
locations for every row access.

I Page mode—The buffer acts like a SRAM; by changing column address,
random bits can be accessed in the buffer until the next row access or refreshtime.

- Static column—Very similar to page mode, except that it’s not necessary to
hit the column—access strobe line every time the column address changes; this
option has been nicknamed SCRAM, for static column DRAM.

Starting with the l-Mbit DRAMs, most dies can perform any of the three
options, with the optimization selected at the time the die is packaged by
choosing which pads to wire up. These operations change the definition of cycle
time for DRAMs. Figure 8.20 (page 432) shows the traditional cycle time plus
the fastest speed between accesses in the optimized mode.

The advantage of these optimizations is that they use the circuitry already on
the DRAMs, adding little cost to the system while achieving almost a fourfold
improvement in bandwidth. For example, nibble mode was designed to take
advantage of the same program behavior as interleaved memory. The chip reads
four bits at a time internally, supplying four bits externally in the time of four
optimized cycles. Unless the bus transfer time is faster than the optimized cycle
time, the cost of four—way interleaved memory is only more complicated timing
control. Page mode and static column could also be used to get even higher
interleaving with slightly more complex control. DRAMs also tend to have weak
tristate buffers, implying traditional interleaving with more memory chips must
include buffer chips for each memory bank.

SAMSUNG EXHIBIT 1009

Page 34 of 171

SAMSUNG EXHIBIT 1009
Page 35 of 171

432 8.4 Main Memory

Chip Row access Column Cycle Optimized
size Slowest Fastest access time time nibble,

DRAM DRAM page, static
column

64 Kbits 180 ns 150 ns 75 ns 250 ns 150 ns

256 Kbits 150 its 120 ns 50 ns 220 ms 100 ns

1 Mbits 120 ns 100 ns 25 ns 190 ns 50 ns

4 Mbits 100 ns 80 ns 20 ns 165 ns 40 ns

16 Mbits :85 ns :65 ns :15 ns :14() ns :30 ns

FIGURE 8.20 DRAM cycle time for the optimized accesses. This is Figure 8.17 (page
426) with a column added to show the optimized cycle time for the three modes. Starting

with the 1-Mbit DRAM, optimized cycle time is about four times faster than unoptimized
cycle time. It is so much faster that page mode was renamed fast page mode. The
optimized cycle time is the same no matter which of the 3 optimized modes is selected.

Thus, the authors expect that most main memory systems in the future will

use such techniques to reduce the CPU—DRAM performance gap. Unlike

traditional interleaved memories, there are no disadvantages using these DRAM

modes as DRAMs scale upward in capacity, nor is there the problem of the

minimum expansion increment in main memory.

One possibility that recently arrived is DRAMs that do not multiplex the
address lines. At the cost of a larger package, a full random access falls between

a row—access time and a column—access time in Figure 8.20. If unencoded

DRAMs can stay close to the price per bit of the high volume encoded DRAMs.

the computer architect will have another option in his bag of tricks for memory

design.

8.5 Virtual Memory f

a system has been devised to make the care drum combination appear to the

programmer as a single level store, the requisite transfers taking plaee
automatically.

Kilburn et a1. [1962]

At any instant in time computers are running multiple processes, each with its

own address space. (Processes are described in the next section.) It would be too
expensive to dedicate a full—address-space worth of memory for each process. \
especially since many processes use only a small part of their address space. ‘ ”

Hence, there must be a means of sharing a smaller amount of physical memory

between many processes. One way to do this, virtual memory, divides physical

memory into blocks and allocates them to different processes. Inherent in such

an approach must be a protection scheme that restricts a process to the blocks

SAMSUNG EXHIBIT 100

Page 35 of 17

SAMSUNG EXHIBIT 1009
Page 36 of 171

Memory~Hierarchy Design

belonging just to that process. Most forms of virtual memory also reduce the

time to start a program, since not all code and data need be in physical memory
before a program can begin.

While virtual memory is essential for current computers, sharing is not the

reason virtual memory was invented. In former days if a program became too

large for physical memory, it was up to the programmer to make it fit.

Programmers divided programs into pieces and then identified the pieces that
were mutually exclusive. These overlays were loaded or unloaded under user

program control during execution, with the programmer ensuring that the
program never tried to access more physical main memory in the machine. As

one can well imagine. this responsibility eroded programmer productivity.

Virtual memory. invented to relieve programmers of this burden. automatically
managed the two levels of the memory hierarchy represented by main memory
and secondary storage.

In addition to sharing protected memory space and automatically managing

the memory hierarchy, virtual memory also simplifies loading the program for

execution. Called relocation, this procedure allows the same program to run in

any location in physical memory. (Prior to the popularity of virtual memory.

machines would include a relocation register just for that purpose.) An

alternative to a hardware solution would be software that changed all addresses
in a program each time it was run.

Several general memory-hierarchy terms from Section 8.3 apply to virtual

memory, while some other terms are different. Page or segment is used for

block, and page fault. or address fault. is used for miss. With virtual memory.

the CPU produces virtual addresses that are translated by a combination of

hardware and software to physical addresses, which can be used to access main

memory. This process is called memory mapping or address translation. Today.

the two memory hierarchy levels controlled by virtual memory are DRAMs and

magnetic disks. Figure 8.21 shows a typical range of memory hierarchy

parameters for virtual memory.

Plock (page) size 512 — 8192 bytes

Hit time l—lO clock cycles fl

Miss penalty R 100,000 — 600,000 clock cycles

(Access time) (100,00(L500.000 clock cycles)

(Transfer time) (10.000—100000 clock cycles)

Miss rate 0,()0001%—0.001%

Main memory size 4 2048 MBW

FIGURE 8.21 Typical ranges of parameters for virtual memory. These figures.
contrasted with the values for caches in Figure 8.5 (page 408), represent increases of 10 to
100,000 times.

SAMSUNG EXHIBIT 1009

Page 36 of 171

SAMSUNG EXHIBIT 1009
Page 37 of 171

434 8.5 Virtual Memory

There are further differences between caches and virtual memory beyond

those quantitative ones seen by comparing Figure 8.21 (page 433) to Figure 8.5

(page 408):

- Replacement on cache misses is primarily controlled by hardware, while

virtual memory replacement is primarily controlled by the operating system;

the longer miss penalty means the operating system can afford to get involved

and spend more time deciding what to replace.

- The size of the processor address determines the size of virtual memory, but

the cache size is normally independent of the processor address.

- In addition to acting as the lower—level memory for main memory in the

hierarchy, secondary storage is also used for the file system that is not

normally part of the address space; most of secondary storage is in fact taken

up by the file system.

Virtual memory encompasses several related techniques. Virtual memory

systems can be categorized into two classes: those with fixed-size blocks, called

pages, and those with variable size blocks, called segments. Pages are typically

fixed at 512 to 8192 bytes, while segment size varies. The largest segment

supported on any machine ranges from 216 bytes up to 232 bytes; the smallest
segment is one byte.

The decision to use paged virtual memory versus segmented virtual memory

affects the CPU. Paged addressing has a single, fixed—size address divided into

page number and offset within a page, analogous to cache addressing. A single

address does not work for segmented addresses; the variable size of segments

requires one word for a segment number and one word for an offset within a

segment, for a total of two words. An unsegmented address space is simpler for

the compiler.

The pros and cons of these two approaches have been well documented in

operating systems textbooks; these are summarized in Figure 8.22. Because of

the replacement problem (the third line of the figure), few machines today use

pure segmentation. Some machines/use a hybrid approach, called paged

segments, in which a segment is an integral number of pages. This simplifies

replacement because memory need not be contiguous, and the full segments

need not be in main memory.

We are now ready to answer the four memory—hierarchy questions for virtual
memory.

Q1: Where Can a Block Be Placed in Main Memory?

The miss penalty for virtual memory involves access to a rotating magnetic

storage device and is therefore quite high. Given the choice of lower miss rates

or a simpler placement algorithm, operating systems designers always pick
lower miss rates because of the horrendous cost of a miss. Thus, operating

systems allow blocks to be placed anywhere in main memory. According to the

SAMSUNG EXHIBIT 1009

Page 37 of 171————————_————-—‘—4

SAMSUNG EXHIBIT 1009
Page 38 of 171

Memory-Hierarchy Design 435

terminology in Figure 8.6 (page 409), this strategy would be labeled fully
associative.

Q2: How Is a Block Found If It Is in Main Memory?

Both paging and segmentation rely on a data structure that is indexed by the

page or segment number. This data structure contains the physical address of the

block. For paging, the offset is simply concatenated to this physical page address

(see Figure 8.23, page 436). For segmentation, the offset is added to the

segment’s physical address to obtain the final virtual address.

Page Segment

Words per One Two (segment and offset)
address

Programmer Invisible to application May be visible to application
visible? programmer programmer

Replacing a Trivial (all blocks are the Hard (must find contiguous,
block same size) variable—size, unused portion of

main memory)

Memory use Internal fragmentation External fragmentation (unused
inefficiency (unused portion of page) pieces of main memory)

Efficient disk Yes (adjust page size to Not always (small segments may
traffic balance access time and transfer just a few bytes)

transfer time)

FIGURE 8.22 Paging versus segmentation. Both can waste memory, depending on the
block size and how well the segments fit together in main memory. Programming
languages with unrestricted pointers require both the segment and the address to be
passed. A hybrid approach, called paged segments, shoots for the best of both worlds:
segments are composed of pages, so replacing a block is easy, yet a segment may be
treated as a logical unit.

This data structure containing the physical page addresses usually takes the

form of a page table. Indexed by the virtual page number, the size of the table is

the number of pages in the virtual-address space. Given a 28-bit virtual address,

4 KB pages, and 4 bytes per page-table entry, the size of the page table would be

256 KB. To reduce the size of this data structure, some machines apply a

hashing function to the virtual address so that the data structure need only be the

size of the number of physical pages in main memory; this number would be

much smaller than the number of virtual pages. Such a structure is called an

inverted page table. Using the example above, a 64—MB physical memory would

only need 64 KB (4*64 MB/4 KB) for an inverted page table.

To reduce address translation time, computers use a cache dedicated to these

address translations, called a translation—lookaside buffer, or simply translation

buffer. They are described in more detail shortly.

SAMSUNG EXHIBIT 1009

Page 38 of 171

SAMSUNG EXHIBIT 1009
Page 39 of 171

‘> Virtual address
Virtual page number

l i

i‘ ‘
‘ i 436 8.5 Virtual Memory _

I|

Physical address

1 ‘ ‘ i“ FIGURE 8.23 The mapping of a virtual address to a physical address via a page

T ‘i table.i y

i Q3: Which Block Should Be Replaced on a Virtual Memory Miss?
M As mentioned above, the overriding operating system guideline is minimizing

‘ 3 page faults. Consistent with this, almost all operating systems try to replace the
W least—recently used (LRU) block, because that is the one least likely to be

needed. To help the operating system estimate LRU. many machines provide a

‘ i i use bit or reference bit, which is set whenever a page is accessed. The operating
system periodically clears the use bits and later records them so it can determine

which pages were touched during a particular time period. By keeping track in

this way, the operating system can select a page that is among the least-recently
referenced.

Q4: What Happens on 3 Write?

iii The level below main memory contains rotating magnetic disks that take

l hundreds of thousands of clock cycles to access. Because of the great

discrepancy in access time, no one has yet built a virtual memory operating i

i 1 system that can write through main memory straight to disk on every store by \

if the CPU. (This remark should not be interpreted as an opportunity to become l
famous by being the first to build one!) Thus, the write strategy is always write l

back. Since the cost of an unnecessary access to the next-lower level is so high. I '
virtual memory systems include a dirty bit so that the only blocks written to disk

are those that have been altered since they were loaded from the disk.

SAMSUNG EXHIBIT 1009

Pae 39 of171

SAMSUNG EXHIBIT 1009
Page 40 of 171

Memory—Hierarchy Design 437

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the page is

a question of balancing forces that favor a larger page size versus those favoring
a smaller size. The following favor a larger size:

I The size of the page table is inversely proportional to the page size; memory

(or other resources used for the memory map) can therefore be saved by
making the pages bigger.

- Transferring larger pages to or from secondary storage, possibly over a
network, is more efficient than transferring smaller pages.

(The larger page size may also help in address translation of cache addresses;
see Section 8.8.)

The main motivation for a smaller page size is conserving storage. A small

page size will result in less wasted storage when a contiguous region of virtual

memory is not equal in size to a multiple of the page size. The term for this

unused memory in a page is internal fragmentation. Assuming that each process

has three primary segments (text, heap, and stack), the average wasted storage

per process will be 1.5 times the page size. This is negligible for machines with

megabytes of memory and page sizes in the range of 2 KB to 8 KB. Of course,

when the page sizes become very large (more than 32 KB), lots of storage (both

main and secondary) may be wasted, as well as I/O bandwidth. A final concern

is process startvup time; many processes are small, so larger page sizes would

lengthen the time to invoke a process.

Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory and often

paged themselves. This means that every memory access takes at least twice as

long, with one memory access to obtain the physical address and a second access

to get the data. This cost is far too dear.

One remedy is to remember the last translation, so that the mapping process

is skipped if the current address refers to the same page as the last one. A more

general solution is to again rely on the principle of locality; if the references

have locality, then the address translations for the references must also have

locality. By keeping these address translations in a special cache, a memory

access rarely requires a second access to translate the data. This special address

translation cache is referred to as a translation—lonkaside buffer or TLB, also

called a “translation buffer,” or TB. A TLB entry is like a cache entry where the

tag holds portions of the virtual address and the data portion holds a physical

page-frame number, protection field, use bit, and dirty bit. To change the

physical page-frame number or protection of an entry in the page table the

operating system must make sure the old entry is not in the TLB; otherwise, the

SAMSUNG EXHIBIT 1009 Pae 40 of171

SAMSUNG EXHIBIT 1009
Page 41 of 171

438 8.5 Virtual Memory

system won't behave properly. Note that this dirty bit means the corresponding

page is dirty. not that the address translation in the TLB is dirty nor that a

particular block in the data cache is dirty. Figure 8.24 shows typical parameters

 for TLBs.

Block size 4 e 8 bytes (1 page—table entry) ‘
Hit time 1 clock cycle

Miss penalty 10 7 30 clock cycles

Miss rate 0.1% — 2%

TLB size 32 — 8192 bytes

FIGURE 8.24 Typical values of key memory-hierarchy parameters for TLBs. TLBs
are simply caches tor the virtual«to-physical address translations found in the page tables.

One architectural challenge stems from the difficulty of combining caches

with virtual memory. The virtual address must first go through the TLB before

the physical address can access the cache. meaning that the cache hit time must

be stretched to allow for address translation (or the pipeline could be stretched as

in Chapter 6). One way to reduce hit time is to access the cache with the page
offset, the portion of the virtual address that does not need to be translated.

While the cache address tags are being read, the virtual portion of the address

(the page—frame address) is sent to the TLB to be translated. The address

comparison is then between the physical address from the TLB and the cache

tag. Since the TLB is usually smaller and faster than the cache—address—tag

memory. simultaneous TLB reading need not slow down cache hit times. The

drawback with this scheme is that a direct—mapped cache can be no bigger than a

page. Another option. virtually addressed caches. is discussed in Section 8.8.

8.6 Protection and Exampjes of Virtual Memory

The invention of multiprogramming led to new demands for protection and

sharing between programs. These are closely tied to virtual memory in

computers today. and so we cover the topic here along with two examples of

virtual memory.

Multiprogramming lead to the concept of a process. Metaphorically. a

process is a program’s breathing air and living space; that is. a running program

plus any state needed to continue running the program. Timesharing means

sharing the CPU and memory with several users at the same time to give the

appearance that every user has his own machine. Thus. at any instant it must be

possible to switch from one process to another. This is called a process swift-Ii or

center! switch. Figure 8.25 shows the frequency of these switches on the VAX .
8700. ‘-

SAMSUNG EXHIBIT 1009

Pae 41 of 171

SAMSUNG EXHIBIT 1009
Page 42 of 171

Memory»Hierarchy Design 439

19.353

l Instructions between process switches ‘
i 7 . r r 7 7. .77 r 7 i w l

i Clock cycles between process switches 170.113
Time between process switches 7.7 ms

FIGURE 8.25 Frequency of process switches on VAX 8700 for timesharing
workload. Most switching occurs on interrupts caused by l/O events or by the interval timer
(see Figure 5.10, page 216). Since neither the latency of the I/O device nor the timer is af—

fected by the speed of the CPU clock, faster machines generally execute more clock cycles
and instructions between process switches.

A process must operate correctly whether it executes continuously from start

to finish or is interrupted repeatedly and switched with other processes. The

responsibility for maintaining correct process behavior is shared by the computer
designer, who must ensure that the CPU portion of the process state can be

saved and restored. and the operating system designer, who must guarantee that

processes do not interfere with each others‘ computations. The safest way to

protect the state of one process from another would be to copy the current

information to disk. But a process switch would then take secondsifar too long

for a timesharing environment. The problem is solved by operating systems

partitioning main memory so that several different processes have their state in

memory at the same time. This means that the operating system designer needs

help from the computer designer to provide protection so that one process cannot

modify another. Besides protection, the computers also provide for sharing of

code and data between processes. to allow communication between processes or

to save memory by reducing the number of copies of identical information.

Protecting Processes

The simplest protection mechanism is a pair of registers that checks every
address to be sure that it falls between the two limits traditionally called base
and bound. An address is valid if

Base S Address S Bound

In some systems the address is considered an unsigned number that is always

added to the base. so the valid test isjust

(Base + Address) S Bound

For user processes to be protected from each other. they can‘t change the base

and bounds registers. yet the operating system must be able to change the

registers so that it can switch processes. Hence. the computer designer has three

more responsibilities in helping the operating system designer protect processes
from each other:

SAMSUNG EXHIBIT 1009

Pae 42 of171

SAMSUNG EXHIBIT 1009
Page 43 of 171

440 8.6 Protection and Examples of Virtual Memory

1. Provide at least two modes indicating whether the running process is a user

process or an operating system process. sometimes called a kernel process. a
supervisor process or an executive process.

2. Provide a portion of the CPU state that a user process can use but not write.
This includes the base/bound registers, a user/supervisor mode bit(s). and the

interrupt enable/disable bit. Users are prevented from writing this state because
the operating system cannot control user processes if users can change the
address—range checks, disable interrupts, or give themselves supervisor
privileges.

3. Provide mechanisms whereby the CPU can go from user mode to supervisor
mode and vice versa. The first direction is typically accomplished by a system

call, implemented as a special instruction that transfers control to a dedicated
location in supervisor code space. The PC from the point of the system call is
saved. and the CPU is placed in supervisor mode. The return to user mode is like
a subroutine return that restores the previous user/supervisor mode.

Base and bound constitute the minimum protection system. Virtual memory

provides an alternative to this simple model. As we have seen, the CPU address
must go through a mapping from virtual to physical address. This provides the
opportunity for the hardware to check further for errors in the program or to
protect processes from each other. The simplest way of doing this is to add
access permission flags to each page or segment. For example. since few
programs today intentionally modify their own code. an operating system can
detect accidental writes to code by offering read—only protection to pages. This

can be extended by adding a user/kernel bit to prevent a user program from
trying to access pages that belong to the kernel. As long as the CPU provides a
read/write signal and a user/kernel signal, it is easy for the address translation
hardware to detect stray memory accesses before they can do damage. As seen
in Section 5.6 of Chapter 5, such reckless behavior interrupts the CPU. Obvious—
ly. user programs cannot be allowed to modify the page table.

Protection can be escalated. depending on the apprehension of the computer

designer or the purchaser. Rings added to the CPU-protection structure expand
memory-access protection from two levels (user and kernel) to many more. Like
a military classification system of top secret. secret. classified. and unclassified. I
concentric rings of security levels allow the most trusted to access anything. the "
second most trusted to access everything except the innermost level. and so on i
down to “civilian” programs which are the least trusted and. hence. have the
mOst limited range of accesses. There may also be restrictions on the entrance

point between the levels. The 80286 protection structure. which uses rings. is
described later in this section. It is not clear today whether rings are an \

improvement on the simple system of user and kernel modes.
As the designer‘s apprehension escalates to trepidation. these simple rings.

may not suffice. The fact that a program in the inner sanctum can aceess
anything calls for a new classification system. Instead of a military model. the

SAMSUNG EXHIBIT 1009

Page 43 of 171

SAMSUNG EXHIBIT 1009
Page 44 of 171

Memory-Hierarchy Design

analogy of this next model is to keys and locks: A program can't unlock access
to the data unless it has the key. For these keys. or capabilities. to be useful. the

hardware and operating system must be able to explicitly pass them from one

program to another without allowing a program itself to forge them. Such

checking requires a great deal ot‘hardwarc support.

A Paged Virtual Memory Example:

VAX-1 1 Memory Management and the VAX-1 1/780 TLB

The VAX architecture uses a combination of segmentation and paging. This

combination provides protection while minimizing page—table size. The address

space is first divided into two segments: process (bit 31 = (l) and system (bit

3l=l). Every process has its own private space and shares system space with

every other process. The process address space is further subdivided into two

regions called P0 and P1. using bit 30 to distinguish them. Area P0 (bit 30 = 0)

grows from address 0 upward while Pl (bit 30 = 1) grows downward to 0.

Figure 8.26 shows the layout of P0 and P1. The two segments can grow until
one exceeds its 230 address—space size and its virtual memory is exhausted.

Many systems today use some such combination of predivided segments and

paging. The approach provides many advantages: Segmentation divides system

and process address space and conserves page-table space. while paging

provides virtual memory. relocation. and protection.

P0 P1
process process

address spaceaddress space
FIGURE 8.26 The organization of P0 and P1 in the VAX. This is the process half of the
address space. selected with a 0 in bit 31 ot a virtual address. Bit 30 of the address divides
PO and P1. Operating systems put the text and heap areas into P0 and a downward
growing stack into P1.

To conserve page—table space. each of the three regions—P0 process. Pl

process. and system—is provided with a pair of base—bound registers that
indicate the start and limit of the page table for each region. The alternative

would be to have a single page table that covers the full address space.

independent of the program‘s actual size. The small size of the VAX pages—
512 bytes. yielding large page tables—makes such conservation especially
important.

Figure 8.27 (page 442) shows the mapping of a VAX address. The two most—
significant bits of an address select which segment or base-boundiregister pair

SAMSUNG EXHIBIT 1009

Page 44 of 171

SAMSUNG EXHIBIT 1009
Page 45 of 171

 442 8.6 Protection and Examples of Virtual Memory

to use in selecting a page table and checking the reference. A one in the first bit

selects the system page table, whose base and length are found respectively in

the system base register and in the system length register. A zero in the first bit

of an address (as in the figure) selects page table P0 or Pl, found by the P0 or P1

base registers and checked by the P0 or P1 limit (bound) registers. The P0 and

P1 page tables are in the system-space virtual memory, while the system page

table is in physical memory.

This offers an interesting way to conserve physical memory. Since the P0 and

P1 page tables are also in virtual memory, this means the page tables can be

paged. Just as some code and data can remain on disk during program execution,

the page-table translation entries for that code and data can remain on disk until

they are used. This is especially important for programs whose memory size

varies dynamically during execution, as page tables can be increased as P0 or Pl

space grows. In the worst case, then, a process page fault can result in a second

page fault bringing in the missing piece of the process page table needed to

complete the address translation. What prevents all pages tables from being

Virtual address

a 21 —page number 9—page offset

System/user PO/P1 _
bit selector PX page table base

F’X - bl |' '
PX page table

Page index
exceeds page-

table size

Page-table entry

Physical address

Main memory

FIGURE 8.27 The mapping of a VAX virtual address. PX refers to either P0 or P1.

SAMSUNG EXHIBIT 1009

Page 45 of 171———4

SAMSUNG EXHIBIT 1009
Page 46 of 171

Memory-Hierarchy Design 443

migrated to secondary storage? Some system page tables are loaded into

physical memory when the operating system is booted and are prevented from

migrating to disk. Thus, eventually a series of faults must cross an address stored

in the system page table that is “frozen” into main memory.

While this explains translation of legal addresses, what prevents the user from

creating illegal address translations and getting into mischief? The page tables

themselves are protected from being written to by user programs. Thus, the user

can try any virtual address, but by controlling the page-table entries the

operating system controls what physical memory is accessed. Sharing of

memory between processes is accomplished by having a page-table entry in each

address space point to the same physical-memory page.

A page-table entry (PTE) on the VAX is straightforward. Other than the

physical page-frame number these are the only architecture-defined fields:

M—the modify bit indicating the page is dirty

V—the valid bit indicating this PTE has a valid address

PROT—four protection bits

Note that there is no reference or use bit. Hence, a page-replacement

algorithm such as LRU must rely on the modify bit or some software technique

to measure usage. Rather than simply a kernel/user protection structure, the

VAX uses a four-level structure consisting of kernel, executive, supervisor, and

user. The four protection bits in the PTE contain 16 encodings of selected

combinations of no access, read-only access, and read—write access, with the four

security levels. For example, 1001 means read-write access for kernel and

executive-level processes, read access for supervisor-level processes, and no

access for user-level processes. To further isolate these four levels, each has its

own stack and its own copy of the stack pointer (R15).

The first implementation of this architecture was the VAX-l 1/780, which

employs a TLB to reduce address—translation time. Figure 8.28 shows the key
parameters of this TLB.

Block size 1 PTE (4 bytes)

Hit time 1 clock cycle

Miss penalty (average) 22 clock cycles

Miss rate 1% — 2%

Cache size 128 P’I‘Es (512 bytes)

Block selection Random

Write strategy (Not applicable)

Block placement 2—way set associative

FIGURE 8.28 Memory hierarchy parameters of the VAX-11/780 TLB.

SAMSUNG EXHIBIT 1009

Page 46 of 171

SAMSUNG EXHIBIT 1009
Page 47 of 171

444
8.6 Protection and Examples of Virtual Memory

Figure 8.29 shows the VAX—l 1/780 TLB organization, with each step of a
translation labeled. The TLB uses two—way~set—associative placement; thus, the
translation begins (steps 1 and 2) by sending a portion of the virtual address

(“index”) to both sets to select the two tags that are to be compared. Of course,
the tag must be marked valid to allow a match. At the same time, the type of
memory access is checked for a violation (also in step 2) against protection
information in the TLB.

For reasons similar to those in the cache case, there is no need to include the

9 bits of the VAX page offset in the TLB; nor is there reason to include the 6

address bits to index the TLB. The remaining bits are used in the comparison
(step 3). The matching address tag sends the corresponding physical address
through the multiplexer (step 4). The page offset is then combined with the

physical page frame to form a full physical address (step 5).

System Page-frame Page
process address offset

<17> <9> <1> <5>

<21>
Ph sical address

Bank 0
(64
blocks)

(low-order 9 bits
<9) of address)

30-bit
physical
address

(high-order 21 bits

of address)

FIGURE 8.29 Operation of the VAX-11/780 TLB during address translation. The five
steps of a TLB hit are shown as circled numbers.

There is one unusual feature of the VAX—11/780 TLB: The TLB is further

subdivided to make sure the process portion of the address occupies no more
than 50% of the TLB entries. The top 32 entries of each bank are reserved for

system space, and the bottom 32 are reserved for process space. The most

SAMSUNG EXHIBIT 1009

Page 47 of 171

SAMSUNG EXHIBIT 1009
Page 48 of 171

Memory—Hierarchy Design 445

significant bit of the address is used to select the appropriate half of the TLB
(step 1). Since the system portion of the address space is the same for all pro—
cesses, a process switch invalidates only the lower 32 entries of each bank for
the VAX-l 1/780 TLB. This restriction had two goals. The first was to reduce the
process-switch time by reducing the number of TLB entries that had to be inval—
idated; the second was to improve performance by preventing the system or user
process from throwing out the other’s translations when process switches were
frequent. Splitting the TLB will usually lead to higher overall TLB miss rate, but
may reduce the peak TLB miss rate in heavily process-switching environments.

A Segmented Virtual Memory Example: Protection
in the Intel 80286/80386

The second system is the most dangerous system a man ever designs. . . . The
general tendency is to over—design the second system, using all the ideas and
frills that were cautiously sidetracked on the first one.

F. P. Brooks, Jr., The Mythical Man»Month (1975)

The original 8086 used segments for addressing, yet it provided nothing for
virtual memory or for protection. Segments had base registers but no bound
registers and no access checks; and before a segment register could be loaded
the corresponding segment had to be in physical memory. Intel’s dedication to
virtual memory and protection is evident in subsequent models, with a few fields
extended to support larger addresses.

Like the VAX, the 80286 has four levels of protection. The innermost level
(0) corresponds to VAX kernel mode, and the outermost level (3) corresponds to
VAX user mode. The 80286 also follows the VAX by having separate stacks for
each level to avoid security breaches between the levels. There are also data
structures analogous to VAX page tables that contain the physical addresses for
segments, as well as a list of checks to be made on translated addresses.

The Intel designers did not stop there. The 80286 divides the address space,
allowing both the operating system and the user access to the full space. The
80286 user can call an operating system routine in this space and even pass pa—
rameters to it retaining full protection. This is not a trivial action, since the stack
for the operating system is different from the user’s stack. Moreover, the 80286
allows the operating system to maintain the protection level of the called routine
for the parameters that are passed to it. This potential loophole in protection is
prevented by not allowing the user to ask the operating system to access
something indirectly that he would not have been able to access himself. Such
security loopholes are called Trojan horses.

The 80286 designers were guided by the principle of trusting the operating
system as little as possible, while supporting sharing and protection. As an
example of the use of such protected sharing, suppose a payroll program writes
checks and also updates the year-to—date information on total salary and benefits
payments. Thus. we want to give the program the ability to read the salary and

SAMSUNG EXHIBIT 1009

Page 48 of 171

SAMSUNG EXHIBIT 1009
Page 49 of 171

446 8.6 Protection and Examples of Virtual Memory

year-to-date information and modify the year-to-date information but not the
salary. We shall see the mechanism to support such features shortly. In the rest
of this section we will look at the big picture of the 80286 protection and exam—
ine its motivation. Readers interested in the detailed picture can find it in a com-
prehensive book by Crawford and Gelsinger [1987].

Adding Bounds Checking and Memory Mapping

The first step in enhancing the 80286 was getting the segmented addressing to
check bounds as well as supply a base. Rather than a base address. as in the
8086. segment registers in the 80286 contain an index to a virtual memory data
structure called a descriptor table. Descriptor tables play the role of page tables
in the VAX. On the 80286 the equivalent of a page-table entry is a segment
descriptor. It contains fields found in PTEs:

A present bit—equivalent t0 the PTE valid bit, used to indicate this is a valid
translation

A basefi'eld—equivalent to a page-frame address, containing the physical
address of the first byte of the segment

An access bit—like the reference bit or use bit in some architectures that is
helpful for replacement algorithms

An altrihutesfield—like the protection field in the VAX PTE, which speci-
fies the valid operations and protection levels for operations that use this
segment

There is also a limilfiela’, not found in paged systems, which establishes the
upper bound of valid offsets for this segment. Figure 8.30 shows examples of
80286 segment descriptors.

Adding Sharing and Protection

The Intel designers’ next step was to provide for protected sharing. Like the
VAX, half of the address space is sha/red by all processes and half is unique to
each process, called global address spare and local address space. respectively.
Each half is given a descriptor table with the appropriate name. A descriptor
pointing to a shared segment is placed in the global-descriptor table, while a
descriptor for a private segment is placed in the local-descriptor table.

A program loads an 80286 segment register with an index to the table and a
bit saying which table it desires. The operation is checked according to the
attributes in the descriptor, the physical address being formed by adding the off—
set in the CPU to the base in the descriptor, provided the offset is less than the
limit field. Unlike the encoding of operations and levels in the VAX PTE. every
segment descriptor has a separate two-bit field to give the legal access level of
this segment. A violation occurs only if the program tries to use a segment with
a lower protection level in the segment descriptor.

SAMSUNG EXHIBIT 1009

Page 49 of 171 4

SAMSUNG EXHIBIT 1009
Page 50 of 171

Memory-Hierarchy Design
We can now show how to invoke the payroll program to update the year—t0-

date information without allowing it to update salaries. The program could be

given a descriptor to the infomiation that has the writable field clear, meaning it

can read but not write the data. A trusted program can then be supplied that will

only write the year-to-date information and is given a descriptor with the

writable field set (Figure 8.30). The payroll program invokes the trusted code

using a code—segment descriptor with the conforming field set (Figure 8.30).

This means the called program takes on the privilege level of the code being

called rather than the privilege level of the caller. Hence. the payroll program

can read the salaries and call a trusted program to update the year-to-date totals,

yet the payroll program cannot modify the salaries. If a Trojan horse exists in

this system, to be effective it must be located in the trusted code whose only job

is to update the year-to-date information. The argument for this style of protec-

tion is that limiting the scope of the vulnerability enhances security.

8 bits

Attributes

Code segment

24 bits 16 bits

Present

 Data segment

 Conforming

Present

8 bits 8 bits

Accessed

 Expand down Writable

16 bits 16 bits

Word
Count

Attributes

Call gate

 Destination selector Destination offset

Present

FIGURE 8.30 The 80286 segment descriptors are all 48 bits long and are distin-
guished by bits in the attributes field. Base, limit, present, readable, and writable are all
self-explanatory. DPL means descriptor privilege level—this is checked against the code
privilege level to see if the access will be allowed. Conforming says the code takes on the
privilege level of the code being called rather than the privilege level of the caller; it is used
for library routines. The expand—down fie/d flips the check to let the base field be the high-
water mark and the limit field be the low-water mark. As one might expect, this is used for
stack segments that grow down. Word count controls the number of words copied from the
current stack to the new stack on a call gate. The other two fields of the call—gate descriptor,
destination selector and destination offset, select the descriptor of the destination of the call
and the offset into it. There are many more than these three segment descriptors in the

80286. The principal change in the 80386 was to lengthen the base by eight bits and the
limit by four bits.

SAMSUNG EXHIBIT 1009

Page 50 of 171
\

SAMSUNG EXHIBIT 1009
Page 51 of 171

8.6 Protection and Examples of Virtual Memory

Adding Safe Calls from User to OS Gates and
Inheriting Protection Level for Parameters

Allowing the user to jump into the operating system is a bold step. How, then,
can a hardware designer increase the chances of a safe system without trusting
the operating system or any other piece of code? The 80286 approach is to
restrict where the user can enter a piece of code, to safely place parameters on
the proper stack, and to make sure the user parameters don’t get the protection
level of the called code.

To restrict entry into others’ code, the 80286 provides a special segment
descriptor, or (all gate, identified by a bit in the attributes field. Unlike other
descriptors, call gates are full physical addresses of an object in memory; the
offset supplied by the CPU is ignored. As stated above, their purpose is to pre-
vent the user from randomly jumping anywhere into a protected or more- privi—
leged code segment. In our programming example, this means the only place the
payroll program can invoke the trusted code is at the proper boundary. This is
needed to make conforming segments work as intended.

What happens if caller and callee are “mutually suspicious,” so that neither
trusts each other? The solution is found in the word-count field in the bottom
descriptor in Figure 8.30 (page 447). When a call instruction invokes a call—gate
descriptor, the descriptor will copy the number of words specified in the
descriptor from the local stack onto the stack corresponding to the level of this
segment. This allows the user to pass parameters by first pushing them onto the
local stack. The hardware then safely transfers them onto the correct stack. A
return from a call gate will pop the parameters off both stacks and copy any
return values to the proper stack.

This still leaves open the potential loophole of having the operating system
use the user’s address, passed as parameters, with the operating system’s secu—
rity level, instead of with the user’s level. The 80286 solves this problem by
dedicating two bits in every CPU segment register to the requested protection
level. When an operating system routine is invoked, it can execute an instruction
that sets this two—bit field in all address parameters with the protection level of
the user that called the routine. Thus, when these address parameters are loaded
into the segment registers, they will set the requested protection level to the
proper value. The 80286 hardware then uses the requested protection level to
prevent any foolishness: No segment can be accessed from the system routine
using those parameters if it has a more-privileged protection level than
requested.

Summary: Protection on the VAX Versus the 80286

If the 80286 protection model looks harder to build than the VAX model, that’s
because it is. This effort must be especially frustrating for the 80286 engineers.
since most customers just use the 80286 as a fast 8086 and don’t exploit the
elaborate protection mechanism. Also, the fact that the protection model is a

SAMSUNG EXHIBIT 1009

Page 51 of 171

SAMSUNG EXHIBIT 1009
Page 52 of 171

Memory‘Hierarchy Design 449

8.7

mismatch for the simple paging protection of UNIX means it will be used only

by someone writing an operating system specially for this computer. 05/2 from

Microsoft is the best candidate. but only time will tell whether the performance

cost of such protection is justified for a personal—computer operating system.

Two questions remain: Will the considerable protection—engineering effort,

which must be borne by each generation of the 80x86 family, be put to good use,

and will it prove any safer in practice than a paging system?

More Optimizations Based on

Program Behavior

Making the frequent case fast is the inspiration for almost all inventions aimed at

improving performance. In this section are two more examples of hardware

optimized to program behavior. The first fetches instructions before they are

needed, and the second avoids saving registers to memory on procedure calls.

Instruction-Prefetch Buffers

Many machines use an instruction—pref?tch buffer to take advantage of the nor-

mal sequential execution of instructions. Typically, an instruction buffer con—

tains two to eight sequential instructions; as each instruction is consumed by the

CPU, a subsequent instruction word is prefetched. Prefetching only makes sense

if the memory system can deliver instructions much faster than the CPU can

consume them; otherwise the buffer cannot get ahead of the CPU. This can be

accomplished by having a wider path that fetches more than one instruction at a

time. or by simply having a faster memory system than the CPU. The drawback

to instruction buffers is that they increase memory traffic by requesting words of

instructions that may never be needed by the CPU, as is the case when a branch

is taken. lnstruction—prefetch buffers are also useful for aligning variable-sized
instructions.

The 8—byte instruction—prefetch buffer (1B) of the VAX—l 1/780, shown in

Figure 8.31 (page 450), will serve as an example. The opcode of the current

instruction is in the high-order byte of the IB; as pieces of the instruction are

consumed, the whole buffer is shifted to the left by the appropriate amount. The

left—most byte can correspond to any byte address, while the rest of the bytes in

the IB must be sequential. The Vs in the figure represent a valid bit per byte of

the instruction buffer and indicate the sequential bytes that contain valid instruc—
tions.

The [B tries to stay ahead of the PC. Whenever at least one byte is free in the

IB. a read is requested for an aligned 32—bit word that contains that byte; only

32—bit words are prefetched from the memory. When the 32—bit prefetched word

arrives, the IB loads as much of it as it has space for. A 32—bit instruction word

therefore takes between one and four fetches from memory, depending on luck.

SAMSUNG EXHIBIT 1009

Page 52 of 171

SAMSUNG EXHIBIT 1009
Page 53 of 171

450 8.7 More Optimizations Based on Program Behavior

When the PC changes due to a branch or interrupt. the IB may have

prefetched one or two unneeded instructions. The PC change causes all the valid
bits to be turned off. and the IB is reloaded. Section 8.9 examines the perfor-

mance impact of the IB.

PC IB address

FIGURE 8.31 The VAX-11/780 instruction-prefetch buffer. Every byte has a valid bit to
determine the number of consecutive bytes that have valid instructions. The instruction
decoder can read the top four bytes of the buffer in a single clock cycle.

Registers and Register Windows

Figures 3.28 and 3.29 (pages 1 17—] 18) in Chapter 3 show that saving registers

on procedure calls and restoring them on returns can account for 5% to 40% of

the data memory references. As an alternative, several banks of registers can be

used, with a new one allocated on each call. Although this could limit the depth

of procedure calls. the limitation is Woided by operating the banks as a circular

buffer, providing unlimited depth. This technique has been termed regisrcr
windows.

Figure 8.32 shows the essence of the idea. On the x axis is time. measured in

procedure calls or returns: on the y axis is the depth or nesting of procedure
calls. Each call moves down the y axis. and each return moves up. The boxes

show memory being accessed to save some of the buffer. either when it is full

and is followed by a call (window overflow) or when it is empty and is followed

by a return (window underflow). The figure shows eight window overflows and

two window underflows during this section of program execution. Over the life

of the program the number of overflows and underflows will equalize.

One might well ask what the trade-off is between buffer size and overflows or

underflows. Figure 8.33 shows the shape of the curve for several programs writ—

ten in several programming languages. The knee of the curve seems to be six to

eight banks. While this holds for most programs. the optimization is based on

SAMSUNG EXHIBIT 1009

Page 53 of 1,71 ,

SAMSUNG EXHIBIT 1009
Page 54 of 171

Time (in units of procedure call/returns)ff»
FIGURE 8.32 Change in procedure nesting depth over time. The boxes show proce«
dure calls and returns inside the buffer before a window overflow or underflow. The pro—
gram starts with three calls, a return, a call, a return, three calls, and then a window
overflow

I.—
60%

50%

40%

Percentage of
calls that Smama'k
overflow 30%

USP

20% C

1 0%

0%
2 4 6 8 1 O 12 14 1 6

Number of register banks

FIGURE 8.33 Number of banks or windows of registers versus overflow rate for
several programs in C, LISP, and Smalltalk. The programs measured for C include a C
compiler, a Pascal interpreter, troff, a sort program, and a few UNIX utilities [Halbert and
Kessler 1980].The LISP measurements include a circuit simulator, a theorem prover, and
several small LISP benchmarks [Taylor et al. 198611 The Smalltalk programs come from the
Smalltalk macro benchmarks [McCall 1983] which include a compiler. browser, and decom-
piler [Blakken 1983 and Ungar 1987].

program-specific patterns of calls and returns that might be quite different in
some other programs. The worst case for register windows would be hundreds of
calls followed by hundreds of returns. This would make Figure 8.32 look like
seismograph output during an earthquake. and the performance impact would be
just as devastating!

SAMSUNG EXHIBIT 1009

Page 54 of 171

SAMSUNG EXHIBIT 1009
Page 55 of 171

452

8.7 More Optimizations Based on Program Behavior

FIGURE 8.34 Parameters can be passed in registers if there are common registers
between two banks or windows. This scheme divides registers into globals, which don’t
change on a procedure call, and locals, which do change. By having an overlap between
locals for adjacent procedure calls and renumbering the registers on a call, the outgoing
parameters of the caller become the incoming parameters of the callee. For example, a
value placed in register 15 before a call is in register 31 after the call.

The difficulty of passing parameters in registers presents a drawback: If each
procedure has its own unique set of registers, then nothing is common. This can
be overcome by overlapping the register banks or windows such that there is a
common area in which to pass parameters. Figure 8.34 shows one such design.
Six registers overlap each window, with R15 to R10 of the caller’s registers
becoming R31 to R26 after the call. Ten registers are not included in the win—
dows, so there are 16 (32 — 10 — 6) registers per window even though each
procedure sees 32 registers at a time.

From Figure 8.33 we can estimate the percentage of calls that overflow the
windows or returns that underflow them, but to understand the impact on per-
formance we must know the cost an overflow or underflow. With an overlapping
register design, like the one on SPARC, the cost is saving l6 registers on an
overflow (or restoring l6 registers on an underflow) plus the cost of interrupt.
On the Sun 4 today it takes about 60 clock cycles for an overflow or underflow.

SAMSUNG EXHIBIT 1009

Page 55 of 171

SAMSUNG EXHIBIT 1009
Page 56 of 171

Memory~Hierarchy DeSign 453

The Pros and Cons of Register Windows

Depending on the application, programming language, and user practices, the

compiler can close the gap between machines with and without register win-

dows. Most machines, for example, have separate floating-point registers, which

means that floating-point—intensive programs will be unaffected by register win-

dows. Also, many data references are to objects that cannot be allocated in regis-

ters, like arrays or structures (see Figures 3.28 and 3.29 on pages 117—118 of
Chapter 3).

An optimization called interprocedural register allocation allows more intel-

ligent allocation of registers across procedure boundaries. Unfortunately, inter-

procedural register allocation works best when procedures are compiled or
linked at the same time. Long compilation and link time do not match the em-

phasis on a rapid debug-edit-compile cycle in current dynamic languages like

LISP and Smalltalk. Interprocedural register allocation is not generally appli-

cable to object-oriented languages like Objective C and Smalltalk because in the

dynamic equivalent of a procedure call the compiler doesn’t know which proce—

dure will be invoked on such calls. Register windows also simplify some com—

piler decisions, since there is no extra cost in using a register that will not be

saved or restored separately.

GCC TeX

Percentage of DLX instructions call or return 1.8% 3.6%

, Registers stored per call 2.3 3.2

Loads DLX ' 3,928,710 2,31 1,545

Loads SPARC " V 3,313,317 V 2,736,979

Ratio loads DLX /SPA1iC 1.20 1.03

Stores DLX ‘ 2,037,226 1,974,078

Stores sfiXaC ' 1,246,538 ' 1,401,186

Ratiorstoreis out 7 SPARC 1.60 1.41

FIGURE 8.35 Benefits of register windows on loads and stores for non—floating-
point programs. The first row shows the percentage of DLX instructions executed that are
calls or returns. The second row shows the average number of register saves and restores
per call on the DLX architecture with optimization level 02. The following rows show the
total number of loads and stores for each optimization and for the SPARC architecture,
which has register windows. The data below includes the loads and stores due to window
overflow and window underflow. GCC executes about 20% more loads and 60% more

stores on DLX than on a machine with register windows, while TeX executes about 3%
more loads and 41% more stores. These savings correspond to about 7% of the instruction
count for GCC and 5% for TeX. How this translates into memory-system performance
depends on the details of the rest of the memory hierarchy. Interprocedural register alloca—
tion closes this gap. For example, using 03 optimization on TeX reduces the number of
DLX loads by 5% to 2,671,631 and the number of stores by 10% to 1,791,831. Note that
the inputs for these programs were not the same as those used in Chapters 2 or 4. (Spice
was not included because register windows offer no benefit for floating-point programs.)

SAMSUNG EXHIBIT 1009

Page 56 of 171

SAMSUNG EXHIBIT 1009
Page 57 of 171

454 8.7 More Optimizations Based on Program Behavior

l The danger of register windows is that the larger number of registers could
I lit.“ slow down the clock rate. So far. this has not been the case for commercial

HM machines. The SPARC architecture (with register windows) and the MIPS
R2000 architecture (without) are contemporary machines built in several tech—

nologies. The SPARC clock rate has not been slower than MIPS for implementa—

tions in similar technologies, probably because cache-access times dominate

register-access times in implementations to date of either architecture. A second

concern is the impact of register windows on process—switch time. Sun Micro-

systems has found that UNIX operating system vagaries dominate process—

l ‘ ‘ switch time. and less than 20% of the process-switch time is spent on saving or
‘ restoring registers. Figure 8.35 (page 453) compares some measures of the

benefits of register windows on our benchmark programs.

ii ‘ 8.8 Advanced Topics—Improving Cache-Memory

‘ Performance

i‘ i ‘ This section covers advanced topics in cache memories. going through new
in ideas at a much quicker pace than previous sections. The central points of this

chapter are not lost if this section is skipped; in fact. the Putting It All Together
section that follows is independent of this material.

The increasing gap between CPU and main memory speeds has attracted the

l l‘ attention of many architects. After making some easy decisions in the beginning.

‘ it the architect faces a threefold dilemma when attempting to further reduce aver“
t age access tlme:

- Increasing block size doesn’t improve average access time; the lower miss

rate doesn‘t offset the higher miss penalty.

I Making the cache bigger would make it slower. jeopardizing the CPU clock

i rate.

i it - Making the cache more associatiy; would also make it slower, again jeopar—
dizing the CPU clock rate.

Hi‘ i. Moreover, the miss rate calculated from user programs paints too rosy a picture.

Figure 8.36 shows the real cache miss rate for a running program. including the

operating system code invoked by the programs. This reveals the average access

1 time to be worse than expected.

i This section covers a plethora of techniques for improving cache perfor—
mance: subblock placement. write buffers. out—of—order fetching. virtually

addressed caches, two—level caches, and issues relating to cache coherency. The \

i i cache—coherency sections include an example of the stale—data problem. a survey
of coherency alternatives. an example cache protocol. a synchronization

algorithm used in cache coherent multiprocessors. a timeline showing multi—

processor synchronization. and comments about the impact of memory consis-
tency on parallel processors.

SAMSUNG EXHIBIT 1009

Page 57 of 171

SAMSUNG EXHIBIT 1009
Page 58 of 171

Memory»Hierarchy Design

Miss
rate

6% '

4% v

2% -

0%

4K 8K 16K 32K 64K 128K 256K 512K 1024K

Cache size

I System miss rate [3 System-user conflict D User miss ratemiss rate

i FIGURE 8.36 The miss rate of a program, including the operating system code it

‘ invokes, versus cache size. The top category is what would be measured from a user
‘ trace; the bottom category is the miss rate for the operating system code; and the middle

category is the miss rate due to conflicts between the user code and system code. Agarwal
[1987] collected these statistics for the Ultrix operating system running on a VAX, assuming
direct-mapped caches with a block size of 16 bytes.

‘ Reducing Hit Times—Making Writes Faster

As mentioned before. writes usually take more than one Clock cycle because the

tag must be checked before writing the data. There are two ways to do faster
\ writes.

SAMSUNG EXHIBIT 1009
Page 59 of 171

456
8.8 Advanced Topics—improving Cache—Memory Performance

The first, used on the VAX 8800, pipelines the writes for a write-through
cache. Tags and data are split so that they can be addressed independently. As
usual, the cache compares the tag with the current write address. The difference
is that the memory access during this comparison uses the address and data from

the previous write. Therefore, writes can be performed back to back at one per
clock cycle because the CPU does not have to wait for the write to the cache if
the first stage is a hit. The 8800 pipeline does not affect read hits—the second

stage of the write occurs during the first stage of the next write or during a cachemiss.

Another way of reducing writes to one clock cycle involves caches that must
be direct mapped, using a technique known as subblock placement. Like the
VAX—l 1/780 instruction buffer, there is a valid bit on units smaller than the full
block, called subblocks. The valid bits specify some parts of the block as valid
and some parts as invalid. A match of the tag doesn’t mean the word is necessar—

ily in the cache, as the valid bits for that word must also be on. Figure 8.37 gives
an example. Note that for caches with subblock placement a block can no longer
be defined as the minimum unit transferred between cache and memory. For
such caches a block is defined as the unit of information associated with an
address tag.

Subblocks

(,4

FIGURE 8.37 In this example there are four subblocks per block. In the first block
(top) all the valid bits are on, equivalent to the valid bit being on for a block in a normal
cache. In the last block (bottom), the opposite is true; no valid bits are on. In the second
block, locations 300 and 301 are valid and will be hits, while locations 302 and 303 will be
misses. For the third block, locations 201 and 203 are hits. if, instead of this organization,
there were 16 blocks the size of the subblock, 16 tags would be needed instead of 4.

Subblock placement was invented to reduce the long miss penalty of large
blocks (since only a part of a large block need be read) and to reduce the tag
storage for small caches. It can also help write hits by always writing the word
(no matter what happens with the tag match), turning the valid bit on, and then
sending the word to memory. Let’s look at the cases to see why this trick works:

SAMSUNG EXHIBIT 1009

Page 59 of 171

SAMSUNG EXHIBIT 1009
Page 60 of 171

Memory—Hierarchy Design 457

. Tag match and valid bit already set. Writing the block was the proper action.

and nothing was lost by setting the valid bit on again.

I Tag match and valid bit not set. The tag match means that this is the proper

block; writing the data into the block makes it appropriate to turn the valid biton.

I Tag mismatch. This is a miss and will modify the data portion of the block.

However, as this is a write—through cache, no harm was done; memory still

has an up-to—date copy of the old value. Only the tag to the address of the

write need be changed because the valid bit has already been set. If the block

size is one word and the store instruction is writing one word. then the write

is complete. When the block is larger than a word or if the instruction is a

byte or halfword store, then either the rest of the valid bits are turned off

(allocating the subblock without fetching the rest of the block) or memory is
requested to send the missing part of the block (write allocate).

This trick isn’t possible with a write-back cache because the only valid copy of

the data may be in the block, and it could be overwritten before checking the tag.

Reducing Miss Penalty—Making Write Misses
Faster

Now that we have seen how to make write hits faster, let’s look at write misses.

With a write—through cache the most important improvement is a write buffer

(page 416) of the proper size (see the fallacy on page 482 in Section 8.10). Write

buffers, however, do complicate things in that they might have the updated value
of a location needed on a read miss.

Look at this code sequence:

SW 512(RO),R3 ; Ml512] (—R3 (cache index 0)

.JW R1,1024(RO) ; Rl<—M[1024] (cache index 0)

,JW R2,512(RO) ; R2 <—M[512l (cache index 0)

Assume a direct—mapped cache that maps 512 and 1024 to the same block, and a

four—word write buffer. Will R3 always equal R2?

Let‘s follow the cache to see the danger. The data in R3 is placed into the write

buffer after the store. The following load uses the same cache index and is there—

fore a miss. We then try to load the data from location 512 into register R2; this

also results in a miss. If the write buffer hasn’t completed writing to location 512

in memory, the read of location 512 will put the old, wrong value into the cache

block, and then into R2. Without proper precautions. R3 would not be equal to
R2!

SAMSUNG EXHIBIT 1009

Page 60 of 171

SAMSUNG EXHIBIT 1009
Page 61 of 171

458 8.8 Advanced Topics—Improving Cache—Memory Performance

The simplest way out of this dilemma is for the read miss to wait until the

write buffer is empty. However, a write buffer of a few words in a write—through
cache will almost always have data in the buffer on a miss, thereby increasing
the read miss penalty. The designers of the MIPS M/ 1000 estimated that waiting
for a four-word buffer to empty would have increased the average read miss
penalty by 50%. The alternative is to check the contents of the write buffer on a
read miss, and if there are no conflicts and the memory system is available, let
the read miss continue.

The cost of writes in a write-back cache can also be reduced. By just adding a
full block buffer to store a dirty block, the read can happen first. After the new
data is loaded into the block, the CPU continues execution. The buffer then
writes in parallel with the CPU. Similar to the situation above, if a read miss
occurs the CPU can stall until the buffer is empty.

Reducing Miss Penalty—Making Read Misses
Faster

Making writes faster is helpful, but it is reads that dominate cache accesses. The
strategy to making read misses faster is to be impatient: Don’t wait for the full
block to be loaded before sending the requested word to the CPU. Here are two
specific strategies:

- Early restart—As soon as the requested word of the block arrives, send it to

the CPU and let the CPU continue execution. l

l Out-aflorderfetch—Request the missed word first from memory and send it i
to the CPU as soon as it arrives; let the CPU continue execution while filling
the rest of the words in the block. Out-of—order fetch is also called wrapped Ifetch.

Alas, these read tricks are not as important as they sound. Spatial locality—the 1
reason for big blocks in the first pla —dictates that the next cache request is ‘
likely to be to the same block. Also, andling another request while trying to fill
the rest of a block quickly gets complicated.

A more subtle reason why out-of—order fetch will not be as rewarding as one
might think is that not all the words of a block have an equal likelihood of being
accessed first. With a l6—word block in an instruction cache, for example, the
average block entry point is 2.8 words from the left—most byte. If entries were
evenly distributed, the average would be 8 words. The high—order word is the
most likely one, due to sequential accesses from prior blocks on instruction
fetches and sequentially stepping through arrays for data caches.

For pipelined machines that allow out—of—order completion using a scoreboard \
or Tomasulo-style control (Section 6.7 of Chapter 6), the CPU need not stall on ‘

a cache miss, offering another way to reduce memory stalls. Spatial locality sug-
gests this optimization (called a lock—up free cache) may be limited in practiCe.
since again the next reference is likely to be to the same block.

SAMSUNG EXHIBIT 1009 a i

Page 61 of 171

SAMSUNG EXHIBIT 1009
Page 62 of 171

Memory—Hierarchy Design 459

Making Cache Hits Faster—Virtually Addressed Caches

Miss penalty is an important part of average access time, but hit time affects
both the average access time and the clock rate of the CPU. Helping the hit time

may therefore help everything. A solution mentioned earlier is to use the physi—
cal part of the address to index the cache while sending the virtual address

through the TLB. The limitation is that a direct—mapped cache can be no bigger
than the page size. To allow large cache sizes with the 4-KB pages in the Sys-

tem/370, IBM uses high associativity so that they can still access the cache with

a physical index. The IBM 3033, for example, is l6—way set associative, even

though studies show there is little benefit to miss rates above 4-way set
associativity.

02mm;

m»m:0
13.0°/

8.7%

4.1% 4.3% 4.3% 4.3%

0.3% 0.3% 0.3% 0.3%

. 0.13% 0.3% 0.3% - 0.3%
8K 16K 32K 64K 128K 256K 512K 1024K

Cache size

I Uniprocess L__| PIDs Cl Purge

FIGURE 8.38 Miss rate versus cache size of a program measured three ways:

without process switches (uniprocess), with process switches using a process-
identifier tag (Ple), and with process switches but without Ple (purge). PIDs
increase the uniprocess absolute miss rate by 0.3 to 0.6 and save 0.6 to 4.3 over purging.
Agarwal [1987] collected these statistics for the Ultrix operating system running on a VAX.
assuming direct—mapped caches with a block size of 16 bytes.

SAMSUNG EXHIBIT 1009

Page 62 of 171

SAMSUNG EXHIBIT 1009
Page 63 of 171

.

 460 8.8 Advanced Topics—Improving Cache-Memory Performance

One scheme for fast cache hits without this size restriction is go to a more
heavily pipelined memory access where the TLB is just one step of the pipeline.
The TLB is a distinct unit that is smaller than the cache, and thus easily
pipelined. This scheme doesn’t change memory latency, but relies on the effi—
ciency of the CPU pipeline to achieve higher memory bandwidth.

Another alternative is to match on virtual addresses directly. Such caches are
termed virtual (at/765. This eliminates the TLB translation time from a cache hit.
Why doesn’t everyone build virtually addressed caches? One reason is that
every time a process is switched. the virtual addresses refer to different physical
addresses, requiring the cache to be flushed. Figure 8.38 (page 459) shows the
impact on miss rates of this flushing. One solution is to increase the width of the
cache—address tag with a process—identifier tag (PID). If the operating system
assigns these tags to processes, it only need flush the cache when a PID is
recycled (the PID provides protection). Figure 8.38 shows that improvement.

Another reason why virtual caches are not more universally adopted has to do
with operating systems and user programs that use two different virtual
addresses for the same physical address. These duplicate addresses, called
synonyms 0r aliases. could result in two copies of the same data in a virtual
cache; if one is modified, the other will have the wrong value. With a physical
cache this wouldn‘t happen, since the accesses would first be translated to the
same physical cache block. There are hardware schemes, called anti—aliasing.
that can guarantee every cache block a unique physical address, but software can
make this much easier by forcing aliases to share some address bits. The version
of UNIX from Sun Microsystems, for example, requires all aliases to be identi—
cal in the last 18 bits of their addresses. Thus, a direct-mapped cache that is 2'8
(256K) bytes or smaller can never have duplicate physical addresses for blocks.
This requirement also simplifies anti—aliasing hardware for larger caches or for
set—associative caches. (Of course, the best software solution from the hardware
designers perspective is to do away with aliases!)

The final area of concern with virtual addresses is I/O. [/0 typically uses
physical addresses and thus would require mapping to virtual addresses to inter—
act with a virtual cache. (The impact of 1/0 on caches is further discussed
below.)

Reducing Miss Penalty—Two-Level Caches

Let’s return our attention to miss penalty. CPUs are getting faster and main
memories are getting larger, but slower relative to the faster CPUs. The question
facing the architect is: Should I make the cache faster to keep pace with the
speed of CPUs, or make the cache larger to overcome the widening gap between
the CPU and main memory? One answer is: Both. By adding another level of
cache between the original cache and memory. the first-level cache can be small
enough to match the clock cycle time of the CPU while the second-level cache

can be large enough to capture many accesses that would go to main memory.

SAMSUNG EXHIBIT 1009

Page 63 of 171

SAMSUNG EXHIBIT 1009
Page 64 of 171

Example

Answer

Memory—Hierarchy Design 461

Definitions for a second level of cache are not always straightforward. Let’s

start with the definition of average filer/"N‘y—ar'r‘vss time for a two-level cache.

Using the subscripts L1 and L2 to refer respectively to a first—level and a second-

level cache, the original formula is

Average memory—access time = Hit timeLl + Miss rate” * Miss penaltyL]

and

Miss penalty” = Hit timeLg + Miss rateLz Miss penalty”
so

Average memory-access time = Hit timeLl + Miss rate” *

(Hit time” + Miss rateLZ >i< Miss penalty”)

In this formula, the success of the second—level miss rate is measured on the left—

overs from the first-level cache. To avoid ambiguity, these terms are adopted

here for a two—level cache system:

I Local miss rate—The number of misses in the cache divided by the total
number of memory accesses to this cache; this is miss rateLz above.

I Global miss rate—The number of misses in the cache divided by the total

number of memory accesses generated by the CPU; using the terms above,
this is miss rateLl * miss rate L2.

Suppose that in 1000 memory references there are 40 misses in the first-level
cache and 20 misses in the second—level cache. What are the various miss rates?

The miss rate for the first-level cache is 40/1000 or 4%. The local miss rate for

the second—level cache is 20/40 or 50%. The global miss rate of the second-level
cache is 20/1000 or 2%.

Figure 8.39 (page 462) and Figure 8.40 (page 463) show how miss rates and

relative execution time change with the size of a second—level cache. Figure 8.4]

(page 463) shows typical parameters of second—level caches.

With these definitions in place, we can consider the parameters of second—

level caches. The foremost difference between the two levels is that the speed of

the first—level cache affects the clock rate of the CPU, while the speed of the

second-level cache only affects the miss penalty of the first—level cache. Thus,

we can consider many alternatives in the second—level cache that would be ill

chosen for the first-level cache. There is but one consideration for the design of

the second—level cache: Will it lower the average memory-access—time portion
of the CPI?

SAMSUNG EXHIBIT 1009

Page 64 of 171

SAMSUNG EXHIBIT 1009
Page 65 of 171

462

8.8 Advanced Topics—improving CacheMemory Performance

I.

80.0% -

70.0%

60.0%
M

i 50.0%S

5 40.0%

r 30.0%a
22%

t 20.0% 18% 15% 15% 15%
9 Local miss rate10.0%

1% 1% . .
0.0% 3%——i—3%—o—3%—+2°/° Single cache miss rate

4 8 16 32 64 128 256 512 1024 2048 4096 Global miss rate
Cache size (KB)

100.0%

Local miss rate
M 10.0°/°I
s
s

V
a
1

e 1.0%+
Single cache miss rate
Global miss rate

0.1%l- —i———1~—i——i——+— l- i-—-l-——1- -l
4 8 16 32 64 128 256 512 1024 2048 4096

Cache size (K?)

FIGURE 8.39 Miss rates versus cache size. The top graph shows the results plotted
on a linear scale as we have done with earlier figures, while the bottom graph shows
the results plotted on a log scale. As miss rates shrink the log scale makes the differ—
ences easier to follow. The miss rate of a single—level cache versus size is plotted
against the local miss rate and global miss rate of a second—level cache using a 32—KB
first—level cache. Second-level caches smaller than the 32—KB first level have high miss
rates (at least for similar block sizes), as this figure illustrates. After 256 KB the single
cache and global miss rates are virtually identical. Przybylski [1990] collected these
data using traces available with this book: tour traces from the VAX system and user
programs and four user programs from the MIPS R2000 that were randomly interleaved
to duplicate the effect of process switches.

SAMSUNG EXHIBIT 1009

Page 65 of 171

SAMSUNG EXHIBIT 1009
Page 66 of 171

Memory-Hierarchy Design 463

1024 1.52 I Level two hll = 4 clock cycles

1:] Level two hll : 8 clock cycles

Level two

“Che 256 168size

(KB) 128

64

32

16

8

4 2.69+— l
1 1 5 2 2.5 3 0

Relative execution time

FIGURE 8.40 Relative execution time by second-level—cache size. Przybylski [1990]
collected these data using a 32—KB, first-level, write-back cache, varying the size of the
second-level cache. The two bars are for different clock cycles for a level two cache hit.
The reference execution time of 1.00 is for a 4096-KB, second—level cache with a one—
clock-cycle latency on a second‘level hit. He used four traces from the VAX system and
user programs (available with this book) and four user programs from the MIPS R2000 that
were randomly interleaved to duplicate the effect of process switches.

Block (line) size 32 — 256 bytes

Hit time ‘ 4 10 clock cycles 7

Miss penalty 30 — 80 clock cycles

(Access time) (14 — 18 clock cycles)

(Transfer time) (16 — 64 clock cycles)
Local miss rate 15% e 30%

Cache size 256 KB — 4 MB

FIGURE 8.41 Typical values of key memory-hierarchy parameters for second-level
caches.

SAMSUNG EXHIBIT 1009

Page 66 of 171

SAMSUNG EXHIBIT 1009
Page 67 of 171

Example

Answer

8.8 Advanced Topics—Improving Cache—Memory Performance

The initial choice for second—level caches is size. Since everything in the
first-level cache is likely to be in the seCOnd—level cache. the second-level cache

should be bigger. If second-level caches are just a little bigger. the local miss

rate will be high. This observation inspires design of huge second-level caches—

the size of main memory in recent computers! If the second—level cache is much

larger than the first—level cache, then the global miss rate is about the same as a

single—level cache of the same size (see Figure 8.39, page 462). Large size

means that the second-level cache may have practically no capacity misses.

leaving compulsory and a few conflict misses for our attention. One question is
whether set associativity makes more sense for second-level caches.

Given the data below, what is the impact of second—levelacache associativity on

the miss penalty?

u Two—way set associativin increases hit time by 10% of a CPU clock cycle

- Hit timeLg for direct mapped = 4 clock cycles

I Local miss rateLg for direct mapped = 25%

- Local miss men for two—way set associative : 20%

I Miss penaltng = 30 clock cycles

For a direct—mapped. second—level cache. the first-level—cache miss penalty is

Miss penaltyL] = 4 + 25%=t=30 = l 1.5 clock cycles

Adding the cost of associativity increases the hit cost only 0.1 clock cycles. make

ing the new first-level—cache miss penalty

Miss penaltyLl = 4.1 + 20% *30 = 10.1 clock cycles

In reality. second-level caches are almost always synchronized with the first—
level cache and CPU. Accordingly. the second—level hit time must be an integral

number of clock cycles. If we are lucky. we can shave the second-level hit time

to four cycles; if not. we can round up to five cycles. Either choice is an im—

provement over the direct-mapped, second—level cache:

Miss penaltyLl : 4 + 20%*30 = 10.0 clock cycles

Miss penaltyLl = 5 + 20%*30 2 ll.() clock cycles

SAMSUNG EXHIBIT 1009

Page 67 of 171

SAMSUNG EXHIBIT 1009
Page 68 of 171

Memory-Hierarchy Design 465

512 i 95
|

256 1 54

1 341
Block srze of 28
secondrievei

cache (bytes) 64 1 27

32 1,28

16 7.36
t v r t v l v

1 00 1.25 1 50 1,75 2.00

Relative CPU execution time

FIGURE 8.42 Relative execution time by block size for a two-level cache. Przybyiski
[1990] collected these data using a 512—KB secondelevel cache. He used four traces from

the VAX system and user programs (available with this book) and tour user programs from
the MIPS R2000 that were randomly interleaved to duplicate the effect of process switches.

Higher associativity is worth considering because it has small impact on the
second—level hit time and because so much of the average access time is due to

misses. However, for these very large caches the benefits of associatit ity dimin—
ish because larger size has eliminated many conflict misses.

As long as spatial locality holds there tnay be a benefit in increasing block
size. Increasing block size cart increase conflict misses with small caches since

there may not be enottgh places to put data. therefore increasing miss rate.
Because this is not an issue in large. second—level caches. and because memory—
access time is relatively longer. larger block sizes are popular. Figure 8.42
shows the variation in execution time as the second-level block size changes.

One final consideration concerns whether all data in the first—level cache is

always in the second—level cache. If so. the second—level cache is said to have the

multilevel inclusion properly. Inclusion is desirable because consistency
between 1/0 and caches (or between caches in a multiprocessor) can be deter—
mined just by checking the second—level cache.

The drawback to this natural inclusion is that the lower average memory—
access times cart suggest smaller blocks for the smaller first—level cache and

larger blocks for the larger second—level cache. Inclusion can still be maintained

in this case with a little extra work on a second-level miss: The second-level

cache must invalidate all first—level blocks that map onto the second—level block

to be replaced. causing a slightly higher first—level miss rate.

G EXHIBIT 1009

Page 68 of 171

SAMSUNG EXHIBIT 1009
Page 69 of 171

‘, data can be found in memory or in the cache. As
ging or reading the data and the cache

stands between the CPU and memory, there is little danger in the CPU seeing
the old or stale copy. I/O means the opportunity exists for other devices to cause
copies to be inconsistent or for other devices to read the stale copies. Figure 8.43
illustrates the problem. This is generally referred to as the cache—coherency

problem.

CPU CPU CPU

Cache Cache

A' 100 A' 550

B' 200 B‘ 200
_

Memory Memory

A 100 A 100

B 200 B 200
—

,.

l/O I/O
{’Ouiput Agives 100

(a) Cache and (b) Cache and (c) Cache and
memory coherent: memory incoherent: memory incoherent:
A’ = A & B’ = B A'¢A (A stale) 3:8 (8' stale)

FIGURE 8.43 The cache-coherency problem. A' and B‘
and B in memory. (a) shows cache and main memory in a
a write~back cache when the CPU writes 550 into A. Now
memory has the old, stale value of 100. It

would get the state data. In (c) the [/0 system inputs 440 into
now B‘ in the cache has the old, stale data.

refer to the cached copies of A
coherent state. In (b) we assume

A' has the value but the value in

an output used the value of A from memory, it
the memory copy of B, so

SAMSUNG EXHIBIT 1009

Page 69 of 171

SAMSUNG EXHIBIT 1009
Page 70 of 171

Memory-Hierarchy Design 467

The question is this: Where does the 1/0 occur in the computer—between the
l/O device and the cache or between the l/() device and main memory? If input
puts data into the cache and output reads data from the cache. both I/O and the
CPU see the same data, and the problem is solved. The difficulty in this
approach is that it interferes with the CPU. l/O competing with the CPU for
cache access will cause the CPU to stall for I/O. Input will also interfere with the
cache by displacing some information with the new data that is unlikely to be
accessed by the CPU soon. For example. on a page fault the CPU may need to
access a few words in a page. but a program is not likely to access every word of
the page if it were loaded into the cache.

The goal for the 1/0 system in a computer with a cache is to prevent the stale—
data problem while interfering with the CPU little as possible. Many systems,
therefore, prefer that 1/0 occur directly to main memory, acting as an l/O buffer.
If a write—through cache is used. then memory has an up—to—date copy of the
information. and there is no stale—data issue for output. (This is the reason many
machines use write through.) Input requires some extra work. The software solu—
tion is to guarantee that no blocks of the [/0 buffer designated for input are in
the cache. In one approach, a buffer page is marked as noncacheable; the operat-
ing system always inputs to such a page. In another approach. the operating sys—
tem flushes the buffer addresses from the cache after the input occurs. A hard—
ware solution is to check the I/O addresses on input to see if they are in the
cache. If so, the cache entries are invalidated to avoid stale data. All these
approaches can also be used for output with write—back caches. More about this
is found in the next chapter.

Reducing Bus Traffic—Multiprocessor Cache
Coherency

The cache—coherency problem applies to multiprocessors as well as [/0 Unlike
I/O. where multiple data copies is a rare event—one to be avoided whenever
possible—a program running on multiple processors will want to have copies of
the same data in several caches. Performance of a multiprocessor program
depends on the performance of the system when sharing data. The protocols to
maintain coherency for multiple processors are called catlie-coherency prom—
(015. There are two classes of protocols followed to maintain cache coherency:

I Directory based—The information about one block of physical memory is
kept in just one location.

- Snooping—Every cache that has a copy of the data from a block of physical
memory also has a copy of the information about it. These caches are usu—
ally on a shared—memory bus, and all cache controllers monitor or snoop on
the bus to determine whether or not they have a copy of the shared block.

SAMSUNG EXHIBIT 1009

Page 70 of 171

SAMSUNG EXHIBIT 1009
Page 71 of 171

468 8.8 Advanced Topics—Improving Cache»Memory Performance

In directory—based protocols there is logically a single directory that keeps the
state of every block in main memory. Information in the directory can include
which caches have copies of the block, whether it is dirty. and so on. Of course
directory entries can be distributed so that different requests can go to different
memories, thereby reducing contention. However, they retain the characteristic
that the sharing status ofa block is always in a single known location.

Snooping protocols became popular with multiprocessors using microproces—
sors and caches on a shared memory because they can use a preexisting physical
connection: the bus to memory. Snooping has an edge over directory protocols
in that the coherency information is proportional to the number of blocks in a
cache rather than the number of blocks in main memory. Directories, on the
other hand. do not require a single bus going to all caches and. hence, may scale
to more processors.

The coherency problem is for a processor to have exclusive access to write an
object and to have the most recent copy when reading an object. Thus, both
directory-based and snooping protocols must locate all the caches that share the
object to be written. The consequence of a write to shared data is either to
invalidate all other copies or to broadcast the write to the shared copies. Because
of write—back caches, coherency protocols must also help read misses determine
who has the most up—to-date value.

tracked differently, and caches are involved only if the directory says they have
a copy of a block whose status must change.

Sharing information is added to the status bits already in a cache block for
snooping protocols, and that information is used in monitoring bus activities. On
a read miss all caches check to see if they have a copy of the requested block and
take the appropriate action, such as supplying the data to the cache that missed.
Similarly, on a write all caches check to see if they have a copy and then act.
perhaps invalidating their copy or changing their copy to the new value.

Since every bus transaction checks cache-address tags. one might assume that
it interferes with the CPU. It would, were it not for duplicating the address—tag
portion of the cache (not the whole cache) to get an extra read port for snooping.
This way, snooping interferes withfthe CPU’s access to the cache only when '
there is a coherency problem (although on a miss with snooping the CPU must
arbitrate with the bus to change the snoop tags as well as the normal tags). When
a coherency operation occurs in the cache the CPU will likely stall, since the
cache is unavailable. In multilevel caches, if the coherency check can be limited

will probably not be necessary.

Snooping protocols are of two types, depending on what happens on a write: \

I Write invalidate—The writing processor causes all copies in other caches to \
be invalidated before changing its local copy; it is then free to update the data
until another processor asks for it. The writing processor issues an invalida—

SAMSUNG EXHIBIT 1009

Page 71 of 17

SAMSUNG EXHIBIT 1009
Page 72 of 171

Memory—Hierarchy Design 469

tion signal over the bus, and all caches check to see if they have a copy; if so,

they must invalidate the block containing the word. Thus, this scheme allows

multiple readers but only a single writer.

I Write broua’rast—Rather than invalidate every block that is shared, the writ-

ing processor broadcasts the new data over the bus; all copies are then

updated with the new value. This scheme continuously broadcasts writes to

shared data while write invalidate deletes all other copies so that there is only

one local copy for subsequent writes. Write-broadcast protocols usually allow

blocks to be tagged as shared (broadcast) or private (local). One way to think

of this protocol is it acts like a write—through cache for shared data

(broadcasting to other caches) and a write-back cache for private data (the

modified data leaves the cache only on a miss).

Most cache-based multiprocessors use write back caches because it reduces

bus traffic and thereby allows more processors on a single bus. Write-back
caches use either invalidation or broadcast, and numerous variations exist for

both alternatives (see the next section). So far, there is no consensus on which is

the superior scheme. Some programs have less coherency overhead with write
invalidate, and some with write broadcast. A later section shows how

synchronization can be implemented in coherency-based multiprocessors; the

accesses for synchronization seem to favor write broadcast.

One early insight has been that block size plays an important role in cache

coherency. Take, for example, the case of snooping on a second-level cache with

a block size of eight words, and a single word is alternatively written and read

by two processors. Whether write invalidation or write broadcast is used, the

protocol that only broadcasts or sends a word has an advantage over a scheme
that transfers the full block. Another concern of large blocks is called false shar—

ing: two different shared variables are located in the same cache block, causing
the block to be exchanged between processors even though the processors are

accessing different variables. Compiler research is working to reduce cache miss

rates by allocating data with high processor locality to the same blocks. Success
in this field could increase the desirability of large blocks for multiprocessors.

Measurements to date indicate that shared data has lower spatial and temporal

locality than observed for other types of data, independent of the coherency
policy.

An Example Protocol

To illustrate the complexities of a cache—coherency protocol, Figure 8.44 (page

470) shows a finite-state transition diagram for a write-invalidation protocol

based on write- back policy. The three states of the protocol are duplicated to

represent transitions based on CPU actions, as opposed to transitions based on

bus operations. This is done only for purposes of this figure; there is only one

finite-state machine per cache, with stimuli coming either from the attached
CPU or from the bus.

SAMSUNG EXHIBIT 1009

Page 72 of 171

SAMSUNG EXHIBIT 1009
Page 73 of 171

470 8.8 Advanced Topics—improving Cache»Memory Performance

Invalid
(not valid

cache block)

 Read only

Read/Write

(dirty)

write

Invalid Read only

(not valid (clean)cache block) Invalidate or
write miss
on bus for
this block

Read miss or write
miss on bus for block Cache state transitions
(Wine-DECK bi Ck) usmg signals from bus

Read/Write
(dirty)

FIGURE 8.44 A write-invalidate, cache-coherency protocol. The upper part of the
diagram shows state transitions based on actions of the CPU associated with this cache; \
the lower part shows transitions based on operations on the bus. There is only one state
machine in a cache, although there are two represented here to clarify when a transition
occurs. The black arrows and states would be in a normal cache, with the gray arrows
added to get cache coherency. In contrast to what is shown here, some protocols call
writes to clean data a “write miss,” so that there is no separate signal for invalidation.

SAMSUNG EXHIBIT 1009

Page 73 of 171

SAMSUNG EXHIBIT 1009
Page 74 of 171

Memory-Hierarchy Design 471

Transitions happen on read misses. write misses. or write hits: read hits do

not change cache state. When the CPU has a read miss. it will change the state of

that block to Read only and write back the old block if it was in the Read/Write

state (dirty). All the caches snoop on the read miss to see if this block is in their

cache. If one has a copy and it is in the Read/Write state. then the block is writ—

ten to memory and that block is changed to the invalid state. (An optimization

not shown in the figure would be to change the state of that block to Read only.)
When a CPU writes into a block. that block goes to the Read/Write state. If the

write was a hit. an invalidate signal goes out over the bus. Because caches

monitor the bus. all check to see if they have a copy of that block: if they do.

they invalidate it. If the write was amiss. all caches with copies go to the invalid
state.

As you might imagine. there are many variations on cache coherency that are

much more complicated than this simple model. The variations include whether

or not the other caches try to supply the block if they have a copy. whether or
not the block must be invalidated on a read miss. as well as write invalidate ver—

sus write broadcast as discussed above. Figure 8.45 summarizes several snoop—

ing cache-coherency protocols.
__

Name Category Memory-write policy L'nique feature

Write Once Write invalidate Write back after first write

Synapse N+l Write invalidate Write back Explicit memory ownershipi Berkeley Write invalidate Write back ()wned shared state

Illinois Write invalidate Write back Clean private state; can supply data from
any cache with a clean copy

Firefly Write broadcast Write back for private. Memory updated on broadcast
i Write through for shared

Dragon Write broadcast Write back for private.
Memory not updated on broadcast '

Write through for shared

FIGURE 8.45 Six snooping protocols summarized. Archibald and Baer [1986] use these names to describe the six
protocols, and Eggers [1989] summarizes the similarities and differences as shown above. Figure 8.44 (page 470) is
simpler than any of these protocols.

Synchronization Using Coherency

One of the major requirements of a shared—memory multiprocessor is being able

to coordinate processes that are working on a common task. Typically. a pro—

grammer will use /()('/\’ variables to synchronize the processes.

The difficulty for the architect of a multiprocessor is to provide a mechanism

to decide which processor gets the lock and to provide the operation that locks a

variable. Arbitration is easy for shared-bus multiprocessors. since the bus is the

only path to memory: The processor that gets the bus locks out all other proces—

sors from memory. If the CPU and bus provide an atomic swap operation. pro—

grammers cart create locks with the proper semantics. The adjective atomic is

SAMSUNG EXHIBIT 1009

Page 74 of 171

SAMSUNG EXHIBIT 1009
Page 75 of 171

472 8.8 Advanced Topics—Improving Cache—Memory Performance

key, for it means that a processor can both read a location and set it to the

locked value in the same bus operation, preventing any other processor from
reading or writing memory.

Figure 8.46 shows a typical procedure for locking a variable using an atomic
swap instruction. Assume that 0 means unlocked and 1 means locked. A proces—
sor first reads the lock variable to test its state. A processor keeps reading and
testing until the value indicates that the lock is unlocked. The processor then
races against all other processes that were similarly “spin waiting” to see who

[—

Load lock
variable

Unlocked?
(= 0?)

Try to lack variable using swap:
Read lock variable and then set

variable to locked value (1)

Succeed?
(= 0'?)

Enter critical

section

Exit criticalsection

Unlock:
Set lock variable to 0

FIGURE 8.46 Steps to acquire a lock to synchronize processes and then to release
the lock on exit from the key section of code.

SAMSUNG EXHIBIT 1009

Page 75 of 171

SAMSUNG EXHIBIT 1009
Page 76 of 171

Memory-Hierarchy Design

Step Processor P0 Processor Pl Processor P2 Bus activity

1 Has lock Spins. testing if lock : 0 Spins, testing if lock : () None

2 Set lock to 0 and Write invalidate of lock

7 hi) sent over bus 7 7 fl 7 r W V 7 r 7777* 7 variable from P0
3 Cache miss Cache miss Bus decides to service P2

7 H 7 7 7 V V V 7 V g 7 cache miss

4 » (Waits while bus busy) Lock 2 0 Cache miss for P2 satisfied
5 Lock 2 0 Swap: read lock and set Cache miss for P1 satisfied

7 to l

6 Swap: read lock and set Value from swap 2 (l and Write invalidate of lock
to I i sent over bus variable from P2

7 Value from swap = l and Enter critical section Write invalidate of lock
I sent over bus variable from Pl

8 Spins, testing if lock =0 None

FIGURE 8.47 Cache-coherency steps and bus traffic for three processors, P0, P1, and P2. This figure assumes
write—invalidate coherency. P0 starts with the lock (step 1). PO exits and unlocks the lock (step 2). P1 and P2 race to see
which reads the unlocked value during the swap (steps 3—5). P2 wins and enters the critical section (steps 6 and 7), while
P1 spins and waits (steps 7 and 8).

can lock the variable first. All processes use a swap instruction that reads the 01d

value and stores a 1 into the lock variable. The single winner will see the 0, and

the losers will see a 1 that was placed there by the winner. (The losers will con-
tinue to set the variable to the locked value, but that doesn‘t matter.) The win-

ning processor executes the code after the lock and then stores a 0 into the lock

variable when it exits, starting the race all over again. Testing the old value and

then setting to a new value is why the atomic swap instruction is called test and
set in some instruction sets.

Let’s examine how the “spin lock" scheme of Figure 8.46 works with bus-

based cache coherency. One advantage of this algorithm is that it allows proces—

sors to spin wait on a local copy of the lock in their caches. This reduces the

amount of bus traffic versus lock algorithms that loop trying to perform a test

and set. (Figure 8.47 shows the bus and cache operations for multiple processes

trying to lock a variable.) Once the processor with the lock stores a 0 into the
lock, all other caches see that store and invalidate their copy of the lock variable.

They then get the new value for the lock of 0. (With write—broadcast cache

coherency as on page 469, the caches would update their copy rather than first

invalidate and then load from memory.) This new value starts the race to see

who can set the lock first. The winner gets the bus and stores a 1 into the lock;

the other caches replace their copy of the lock variable containing 0 with a 1.

They read that the variable is already locked and must return to testing and

spinning. This scheme has difficulty scaling up to many processors because of

the communication traffic generated when the lock is released.

SAMSUNG EXHIBIT 1009

Page 76 of 171

SAMSUNG EXHIBIT 1009
Page 77 of 171

474 8.8 Advanced Topics—Improving Cache-Memory Performance

Models of Memory Consistency

When we introduce cache coherency to maintain the consistency of multiple
copies of an object, we raise a new question: How consistent must the values
seen by two processors be kept? The problem is best understood with an exam-

ple: Here are two code segments from processes Pl and P2 shown side by side:
P1: A : 0; P2: B = O;

A — l; B = 1,

L1: if (=: O) L2: if (:= O)

Assume the processes are running on different processors, and that locations A
and B are originally cached by both processors with the initial value of 0. If
memory is always consistent, it will be impossible for both if statements

(labeled L1 and L2) to evaluate their conditions as true (either A2] or 1321). But
suppose write invalidates have a delay, and the processor is allowed to continue
during this delay, then it is possible that both P] and P2 have not seen the inval-
idations for B and A (respectively) before they attempt to read the values. The
question that is raised by this example is: How consistent a picture of memory
must different processors see?

One approach, called sequential consistency, requires that the result of any
execution is the same as if the accesses of each processor were kept in order and
the accesses among different processors were arbitrarily interleaved. In this case,
the apparent anomaly in the above example cannot occur. Implementing sequen—

tial consistency usually requires a processor to delay any memory access until all k
the invalidations caused by all previous writes are completed. Although this
model presents a simple programming paradigm, it reduces potential perfor—
mance, especially in a machine with a large number of processors, or long inter—
connect delays.

Alternative models provide a weaker model of memory consistency. For
example, the programmer may be required to use synchronization instructions to

order memory accesses to the same variable. Now. instead of delaying all ac-
cesses until invalidations complete, only synchronization accesses need to be
delayed.

Whether programmers expect sequential consistency or some weaker form of
consistency is still an open issue in 1990. The example above would work
“correctly” with sequential consistency, but not with a weaker model. For weak

consistency to produce the same results as sequential consistency, the program
would have to be modified to include synchronization operations that order the
accesses to variables A and B. It is natural to expect synchronization if you want
processes to see the latest data independent of execution rates. Some machines l

choose to implement sequential consistency as the programming model, while I
others opt for a weaker consistency. In the future, as attempts are made to build \
larger multiprocessors, the issue of memory consistency will become .
increasingly performance critical. "

SAMSUNG EXHIBIT 1009

Page 77 of 171

SAMSUNG EXHIBIT 1009
Page 78 of 171

Memory-Hierarchy Design

Putting It All Together: The VAX-1 1/780

Memory Hierarchy

The challenge for the memory—hierarchy designer is in choosing parameters that

work well together. not in inventing new techniques or simulating a cache in a

well-understood configuration. A full example using the VAX-l 1/780 memory

hierarchy is presented here in detail to illuminate the interactions. Although

VAX—l l/780 is not a very recent machine. measurements and design documen—

tation are available on all aspects of its memory hierarchy. Figure 8.48 gives the
overall picture.

Let's start with an instruction fetch just after a branch. when the instruction

prefetch buffer is empty. The virtual address in the PC is first sent to the TLB.

The most significant bit and the lower five bits of the page-frame address index

an entry in each bank of the TLB. Including the most—significant bit. used to dis-

tinguish system space from process space. guarantees that half of each bank

contains system translations and half contains process translations. The

addresses in the tags are compared to see if the entry is a match to the page ad—

dress requested by the TLB. If the valid bit of the entry is not set then there is no

match no matter what the tag comparison and a miss is indicated.

If there is a match. the physical address is formed by concatenating the phys—

ical page-frame address of the TLB page—table entry with the page—offset portion

of the address. To save time. the portion of the TLB containing the PTE is read

at the same time as the tags. and a 2:1 multiplexer controlled by the tag—match—

ing logic picks the proper PTE. While the address is being formed. the protection

bits of the PTE are checked. Since this is an instruction fetch. there is no prob-

lem as long as the page can be read by a process at this level. If there are no

protection violations. this physical address is sent to the cache.

At the same time the physical address is sent to the cache. two registers in the

CPU instruction-prefetch buffer get the new values. The virtual-instruction-

buffer address register (VIBA) is given the virtual page frame of the PC, and the

plzysical-instruction-bzgffer address register (PIBA) is given the corresponding

physical address. This trick. which was originally used in the first machine with

virtual memory. avoids the instruction-prefetch buffer’s accessing the TLB as

long as the instructions are from the same page. The PIBA is actually given the

PC address plus 4. so that it can begin prefetching the next instruction. It contin-

ues trying to prefetch ahead of the PC until a jump (a frequent occurrence in the

VAX) or until the PIBA tries to cross a page boundary; in either case the VIBA

and PIBA are no longer used for translating instruction addresses.

Meanwhile. the cache has just received the physical address of the instruc—

tion. With 8—byte blocks. a two-way—set—associative cache. and 512 blocks per

set. nine bits of the address are needed to index both banks simultaneously. The

partial addresses in the tags are compared with the corresponding bits of the

physical PC address to see if there is a match. Of course. there are valid bits in

each tag that must be turned on. or there can be no match.

SAMSUNG EXHIBIT 1009

Page 78 of 171

SAMSUNG EXHIBIT 1009
Page 79 of 171

476 8.9 Putting It All Together: The VAX‘11/780 Memory Hierarchy

CPU

Prefetch

PC VlBA PIBA Data write
Data Data

Instr &.___ Address

III-IIIII-IIIII

Data read

(Prefetch
using PIBA)

System Page-frame Page
process address offset
<1> <17> <5>

<9>

Address

Bank 0
(64
blocks)

30-bit
physical
address

Cache

Block-frame Block

address offset
(20> <9> <3>
I

Write buffer

Main
memory

FIGURE 8.48 The overall picture of the VAX-11/780 memory hierarchy. Individual
components can be seen in greater detail in Figures 8.11 (page 415), 8.29 (page 444), and
8.31 (page 450).

SAMSUNG EXHIBIT 1009

Page 79 of 171

SAMSUNG EXHIBIT 1009
Page 80 of 171

Memory—Hierarchy Design 477

If there is a match, the lower bits of the physical PC address select the word

from the cache block to be sent to the instruction-prefetch unit. Once again,

reading data and tags together obviates any additional time delay.

When the word arrives at the prefetch unit, it is placed in the high—order four

bytes of the buffer, and those bytes are marked valid. The PIBA immediately

begins accessing the cache with the PC address plus 4 to prefetch the next word.

As mentioned above, as long as the page-frame address in the PC matches the

VIBA, the PIBA bypasses the TLB and goes directly to the cache.

Let’s assume this instruction writes a register into memory. The first step will

be to send the effective memory address to the TLB for translation. Since this is

a write, the modify bit of the matching PTE must also be turned on; this results

in a microcode-level trap of the instruction storing the register if the modify bit

isn’t set already, taking another clock cycle to write the new value in the TLB.

The physical address is then sent to the cache. We then go through the same pro-

cess as before (excluding the read), except that this time it takes an extra clock

cycle to modify the portion of the block selected by the write and to write it back
into the cache.

In a write-through cache the data must be written to main memory. To avoid

the seven—cycle delay of main memory on every write, the VAX-11/780 uses a

one-word write buffer. If the buffer is empty, the word is written and the CPU is

given the signal to continue. If it is full, the CPU stalls until the buffer is empty.
How well does the 780 work? The bottom line in this evaluation is the per-

centage of time lost while the CPU is waiting for the memory hierarchy. In one

timesharing workload the average number of clock cycles per 780 instruction is

10.6 clock cycles. The breakdown by category is

Compute: 7.3 clock cycles

Read: 0.8 clock cycles

Read stall: 1.0 clock cycles

Write: 0.4 clock cycles

Write stall: 0.4 clock cycles

Instruction—prefetch—buffer stall: 0.7 clock cycles

About 20% of the time the VAX-11/780 stalls while waiting for memory. When

the base CPI is 8.5 (compute + read + write), 2.1 clock cycles for the memory

hierarchy (read stall + write stall + prefetch stall) may be satisfactory, but it

would devastate the performance of a machine with a CPI of l to 2.

Let’s analyze each unit of the 780 memory hierarchy. An instruction-

prefetch—buffer stall means that the buffer is empty, waiting for the cache to

supply instructions because of a cache miss, a branch, too many data accesses

(they have priority), not enough bytes to decode the instruction, or some com-
bination of the above. The PIBA loadings due to branches versus page crossings

vary with the benchmark, but branching is the cause 64% to 91% of the time

SAMSUNG EXHIBIT 1009

Page 80 of 171

SAMSUNG EXHIBIT 1009
Page 81 of 171

478 8.9 Putting It All Together: The VAX—11/780 Memory Hierarchy

(median = 76%). The prefetch unit references the cache 2.2 times on average per
VAX instruction. The average instruction size is 3.8 bytes, making the effective
size of the average prefetch just 1.7 bytes.

Figure 3.33 in Chapter 3 (page 123) shows that the VAX executes many fewer
bytes of instructions than DLX. This ignores the instruction-prefetch buffer.
How much should we increase the instruction bytes fetched from the cache to
include the effect of prefetching?

prefetcher cannot cause cache misses.

The question can also be answered in terms of the number of bytes discarded
because of a taken branch. About 25% of instructions change the PC on the
VAX, and there could be from zero to eight bytes in the prefetch unit when a
branch is taken. Assuming an optimistic two bytes, we get a 13% increase:

3.8 + (25%*2)
3.8 = 1.13

Assuming six bytes, we get a 39% increase:

3.8 + (25%*6)

K18

While the variable size of VAX instructions does improve the bytes fetched
in comparison to DLX. a fairer evaluation of the VAX would increase the bytes
fetched from the cache by at least 13% to 39%.

= 1.39

With the instruction-prefetch buffer performing many translations via the

PIBA and VIBA, how should TLB misses be measured? The TLB instruction
and data-stream miss rates provide one definition:

. \

TLB instr ction-stream miss rate — Mlsses caused b B
u ‘ ‘ Reloadings of PIBA

Misses

Requests for 32-bit words of data

TLB data-stream miss rate =

SAMSUNG EXHIBIT 1009

Page 81 of 171

SAMSUNG EXHIBIT 1009
Page 82 of 171

Memory—Hierarchy DeSign 479

The data—stream definition means references to data objects larger than four
bytes count as multiple accesses, as do accesses to unaligned data. Figure 8.49
shows the TLB miss rates.

TLB miss rates Instruction stream Data stream Total

Process 07 % 0.6 % 0.7 %

System 15.4 % 5.4 % 7.2 %

Total 3.5 % 1.6 a 1.9 %
FIGURE 8.49 Miss rates for the VAX-11/780 TLB, ignoring the impact of instructions
not translated by the TLB. This data was measured on a different timesharing workload
than earlier VAX measurements [Clark and Emer 1985].

Overall references to the TLB after filtering by the PIBA are divided into

20% user instruction stream, 62% user data stream, 3% system instruction

stream, and 15% system data stream. To account for the filtering of addresses by
the PIBA optimization, TLB misses can also be counted as a rate per instruction
executed, as in Figure 8.50.
-——_—————_——_

TLB misses per 100 Instruction stream Data stream Total
instructions

Process 0.18 0.50 0.68

System 0.62 1.03 1.65

Total 0.80 1.53 2.33

FIGURE 8.50 Misses per hundred instructions for the VAX-11/780 TLB. Unlike Figure
8.49, this overall TLB evaluation accounts for the effect of the PIBA.

The VAX TLB spends on average 21.6 clock cycles on a miss (including 3.5

clock cycles for cache misses for some page-table entries), adding a total of 0.7

clock cycles per instruction for TLB misses to the average instruction. Thus,

about a third of the memory—system stalls are due to TLB misses.

The same study by Emer and Clark [1984] showed a significant variation on
cache miss rates:

- Data—stream, cache miss rates varied over the day from 12% to 25%, with a
mean of 17%.

- Instruction-buffer—stream, cache miss rates varied from 4% to 13%, with a
mean of 8%.

u The distribution of accesses to the cache from the CPU was instruction—

prefetch—buffer—stream reads, 68%, data—stream reads, 20%, and data-stream

writes, 12%. Calculated per instruction, there are about 2.2 references from

the instruction—prefetch buffer, 0.8 data reads per instruction, and 0.4 data
writes per instruction.

SAMSUNG EXHIBIT 1009

Page 82 of 171

SAMSUNG EXHIBIT 1009
Page 83 of 171

480 89 Putting It All Together: The VAX—11/780 Memory Hierarchy

According to the VAX-11/780 Architecture Handbook, for the workload mea—
sured in 1978 the TLB miss rate was about 3%. What do the measurements say
for the timesharing workload measured in 1984?

Assuming just one memory reference to get the average VAX instruction of 3.8
bytes, the miss rate is 1%:

2.3 TLB misses

100 instructions 2 3

1+0.8+O.4 references = 100*2.2 = 0'01
Instruction

Including the VIBA-PIBA, Figure 8.49 on page 479 shows a 1.9% miss rate.

According to the VAX-11/780 Architecture Handbook, for the workload mea-
sured in 1978 the cache miss rate was about 5%. What do the measurements say
for the timesharing workload measured in 1984?

The cache miss rate varies. The mean miss rate is

68%*8% + 20%*17% +12%*17% =11%

In the best case, the answer is

68%*4% + 20%*12% + 12%*12% = 7%

In the worst case,

68%*13% + 20%*25% +12%*25% = 17%

8. 1 O l Fallacies and Pitfalls
f 1

As the most naturally quantitative of the computer architecture disciplines,
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet
the authors were limited here not by lack of warnings, but by space.

Pitfall: T00 small an address space.

Just five years after DEC and Camegie-Mellon University collaborated to design 1
the new PDP—ll computer family, it was apparent that their creation had a fatal i
flaw. An architecture announced by IBM six years before the\PDP-11 is still 1thriving, with minor modifications, 25 years later. And the DEC VAX, criticized
for including unnecessary functions, has sold 100,000 units since the PDP-ll 1
went out of production. Why?

SAMSUNG EXHIBIT 1009

Page 83 of 171\

SAMSUNG EXHIBIT 1009
Page 84 of 171

Memory-Hierarchy Design 481

The fatal flaw of the PDP-ll was the size of its addresses as compared to the

IBM 360 and the VAX. Address size limits the program length, since the size of

a program and the amount of data needed by the program must be less than
ZaddreSS We. The reason the address size is so hard to change is that it determines
the minimum width of anything that can contain an address: PC, register, mem—

ory word, and effective—address arithmetic. If there is no plan to expand the

address from the start, then the chances of successfully changing address size are

so slim that it normally means the end of that computer family. Bell and Strecker

[1976] put it like this:

There is only one mistake that can be made in computer design that is difficult to

recoverfrorrknot having enough address bitsfor memory addressing and

memory management. The PDP—l I followed the unbroken tradition ofnearly

every known computer. [p. 2]

A partial list of successful machines that eventually starved to death for lack of
address bits includes the PDP—8, PDP—10, PDP-l 1, Intel 8080, Intel 8086, Intel

80186, Intel 80286, AMI 6502, Zilog 280, CRAY-1, and CRAY X—MP.

Fallacy: Given the hardware resources, the computer designer who selects a

set-associative cache over a direct—mapped cache of the same size will get a

faster computer.

The question here is whether the extra logic of the set-associative cache affects

the hit time, and therefore possibly the CPU clock rate. (See Figure 8.11.) If it

does affect hit time, then the question is whether the advantage in lower miss

rate offsets the slower hit time. In the mid-19805 many recognized this danger

and selected direct—mapped placement; for example, the MIPS M/500, Sun

3/260, and VAX 8800. Hill [1988] makes an eloquent case for direct-mapped

caches, including lower costs, faster hit times, and therefore smaller average

access times for large, direct—mapped caches. Direct—mapped caches also allow
the data read to be sent to the CPU and used even before hit/miss is determined,

particularly useful with a pipelined CPU. Hill found about a 10% difference in
hit times for TTL or ECL board—level caches and 2% difference for custom

CMOS caches, with an absolute change in the miss rates of less than 1% for

large caches. Since a direct-mapped cache hit can be accessed faster and hit time

typically sets the clock cycle time of the processor, a CPU with a direct—mapped
cache can be as fast as or faster than a CPU with a two—way—set—associative

cache of the same size. Przybylski, Horowitz, and Hennessy [1988] show several

examples of such tradeoffs.

Fallacy: A memory system can be designed using traces from a difierent
architecture.

Figure 8.51 (page 482) shows instruction and data cache miss rates for the same

programs on two different architectures. This data is from the first portion of

execution of Spice on DLX and the VAX. The shift from data accesses in the

SAMSUNG EXHIBIT 1009

Page 84 of 171

SAMSUNG EXHIBIT 1009
Page 85 of 171

482 8.10 Fallacies and Pitfalls

VAX to instruction accesses on DLX seen in Figure 3.33 (page 123) of Chapter
3 is reflected here: 61% of the VAX references and 52% of the misses are to
data. Note that while DLX has only three—quarters of the absolute number of

data misses, its data miss rate is three times higher.

VAX DLX *’

Instruction references 576,169 918,537 ‘
instruction misses ’ 2,033 7 3,1878 7
Instruction miss rate V 0.4% 0.3%
Data references 7 923,831 7 264,453
Data misses ' 2,200 7 1,595
Data miss rate 0.2% 0.6%

Total references 1,500,000 1,182,990
Percentage of instructions of total 38% 78% 1 ‘references

Total misses ' 4,233 4,782 7
Percentage of instruction misses of 48% 67%total misses

Average miss rate 0.3% 0.4%

FIGURE 8.51 Miss rates for VAX and DLX for an initial phase of Spice. The simulation
assumes separate instruction and data caches. Each cache is direct mapped, uses 16-byte

blocks, and contains 64 KB. Both use write through with write allocate. (Note that unlike
Chapter 2, this data was collected using the F77 compiler and was for a portion of the
Spice program).

Pitfall: Basing the size of the write buffer on the speed of memory and the 1
average mix of writes.

This seems like a reasonable approach: l

. . Memor references

Write-buffer Size =%>‘<
Clock Cycle - Write percentage * Clock cycles to write memory

If there is one memory reference per clock cycle, 10% of the memory references
are writes, and writing a word of memory takes 10 cycles, then a one-word
buffer is added (1* 10%* 10:1). Calculating for the VAX-l 1/780 using data from i

the last section, \

3.4 memory references * 0.4 writes * 6 clogk cycles _ 0 22 I
10.6 clock cycles 3.4 memory references Write _ '

Thus, a one—word buffer seems sufficient.

SAMSUNG EXHIBIT 100

Page 85 of 171

SAMSUNG EXHIBIT 1009
Page 86 of 171

Memory-Hierarchy Design 483

The pitfall is that when writes come close together. the CPU must stall until

the prior write is completed. The single-word write buffer of the VAX-l 1/780 is
the major reason for its write stalling (about 209'} of all stalls). The proper ques—
tion to ask is how large a buffer is needed to keep CPU write stalls to a small

amount. The impact of write—buffer size can be established by simulation or

estimated with a queuing model.

Pitfall: Ertending an address space by adding segments on top of a flat
address space.

During the l970s, many programs grew to the point they couldn’t address all of
the code and data with just a 16-bit address. Machines were then revised to offer

32-bit addresses, either through a flat 32—bit address space or by adding 16 bits

of segment to the existing 16—bit address. From the point of view of marketing,
adding segments solves the addressing problem. Unfortunately. there is trouble
any time a programming language wants an address that is larger than one seg-
ment. such as indices for large arrays. unrestricted pointers. or reference

parameters. Moreover. adding segments can turn every address into two
wordsione for the segment number and one for the segment offset—causing

problems in the use of addresses in registers. In the l990s. 32-bit addresses will
be exhausted. and it will be interesting to see if history will repeat itself on the

consequences of going to larger flat addresses versus adding segments.

Fallacy: Caches are as fast as registers.

This fallacy is important. because if caches were as fast as registers. there would
be no need for registers. Without registers there would be no need for a register
allocator. and so compilers could be simpler. The fallacy is difficult to prove

quantitatively. yet example after example can be cited. Lampson [1982] summa-
rized this experience:

A register bank is faster than a cache, both because it is smaller. and because
the address mechanism is much simpler. Designers ofhigh perfarmance

machines have typicallyfolmd it is possible to read one register and write
another in a single cycle. while two cycles [latency] are neededfor a cache
access. Also. since there are not too many registers it isjeasible to duplicate

or triplicate them, so that several registers can be read out simultaneously,
IP- 74]

As mentioned in Chapter 3, the short addresses of registers allow more compact

instruction encoding. It seems to the authors that the deterministic access of

multiported register banks will always offer lower latency or higher bandwidth,
or both. when compared to the nondeterministic access of caches.

SAMSUNG EXHIBIT 1009

Page 86 of 171

SAMSUNG EXHIBIT 1009
Page 87 of 171

484 8.11 Concluding Remarks

8. 1 1 Concluding Remarks

The difficulty of building a memory system to keep pace with faster CPUs is
underscored by the fact that the raw material for main memory is the same
that found in the cheapest computer. It is the principle of locality that saves us
here—its soundness is demonstrated at all levels of the memory hierarchy in
current computers, from disks to instruction buffers.

Register Instruction- TLB First-level Second-level Virtual
windows prefetch cache cache memorybuffer

Block size 64 bytes 1 byte 4 — 8 4 — 128 bytes 32 — 256 512 — 8192
(1 PTE) bytes bytes

Hit time 1 clock cycle 1 clock cycle 1 clock cycle 1 — 4 clock 4 — 10 clock 1 — 10 clock
cycles cycles cycles

‘ Miss penalty 32 — 64 clock 2 — 6 clock 10 — 30 clock 8 — 32 clock 30 — 80 clock 100,000 ~ i
cycles cycles cycles cycles cycles 600,000

clock cycles

Miss rate 1%—3% 10%—25% 0.1%—2% 1%—20% 15% —30% 0.00001%— 1
(local) 0.001%

Size 512 bytes 6 — 12 bytes 32 — 8192 1 KB — 256 KB — 4 MB —
(8 — 1024 256 KB 4 MB 2048 MB
PTEs)

Backing First-level First-level First-level Second—level Static- Disks
store cache cache cache cache column

DRAM

Q1: block Circular N.A. Set asso- Direct Set asso— Fully
placement buffer (Queue) ciative mapped ciative associative

Q2: block 2 registers: Valid bits + Tag/ Tag/ Tag/ Table
identification high and low I register block block block

Q3: block re- First in— NA. Random N.A. (Direct Random LRU
placement first out (Queue) (mapped)
Q4: write Write back Flush on Flush on Write Write Write back
strategy write to in- write to page through or through or

struction table write back write back
buffer

(if possible) I

FIGURE 8.52 Summary of the memory-hierarchy examples in this chapter.

Misses in every level can be categorized by three causEs—compulsory.
capacity, and conflict—and different techniques work for each case. Figure 8.52
summarizes the attributes of the memory—hierarchy examples described in this
chapter.

SAMSUNG EXHIBIT‘ 1009

Page 87 of 171

SAMSUNG EXHIBIT 1009
Page 88 of 171

Memory—Hierarchy Design 485

 There tends to be a knee in the curve of memory-hierarchy cost/performance:

Above that knee is wasted performance and below that knee is wasted hardware.

Architects find that knee by simulation and quantitative analysis.

Historical Perspective and References

While the pioneers of computing knew of the need for a memory hierarchy and
coined the term, the automatic management of two levels was first proposed by

Kilburn, et al. [1962] and demonstrated with the Atlas computer at the Univer-

sity of Manchester. This was the year before the IBM 360 was announced.

While IBM planned for its introduction with the next generation (System/370),

the operating system wasn’t up to the challenge in 1970. Virtual memory was
announced for the 370 family in 1972, and it was for this machine that the term

i “translation—lookaside buffer" was coined (see Case and Padegs [1978]). The

] only computers today without virtual memory are a few supercomputers and
‘ personal computers.

Both the Atlas and the IBM 360 provided protection on pages, and over time
machines evolved more elaborate mechanisms. The most elaborate mechanism

was capabilities, which reached its highest interest in the late 19705 and early

1980s [Fabry 1974 and Wulf, Levin, and Harbison 1981]. Wilkes [1982], one of

the early workers on capabilities, had this to say about capabilities:

Anyone who has been concerned with an implementation of the type just

described [capability system], or has tried to explain one to others, is likely to

feel that complexity has got out ofhand. It is particularly disappointing that the
attractive idea of capabilities being tickets that can be freely handed around has
become lost

Compared with a conventional computer system, there will inevitably be a cost
to be met in providing a system in which the domains ofprotection are small and

frequently changed. This cost will manifest itself in terms ofadditional hard-
ware, decreased runtime speed, and increased memory occupancy. It is at

present an open question whether, by adoption of the capability approach, the
cost can be reduced to reasonable proportions.

Today there is little interest in capabilities either from the operating systems or
the computer architecture communities, although there is growing interest in

protection and security.
Bell and Strecker [1976] reflected on the PDP—ll and identified a small

address space as the only architectural mistake that is difficult to recover from.
At the time of the creation of PDP-l 1, core memories were increasing at a very

slow rate, and the competition from 100 other minicomputer companies meant

that DEC might not have a cost—competitive product if every address had to go

through the 16-bit datapath twice. Hence. the decision to add just 4 more address

SAMSUNG EXHIBIT 1009

Page 88 of 171

SAMSUNG EXHIBIT 1009
Page 89 of 171

8.12 Historical Perspective and References

bits than the predecessor of the PDP-l l. The architects of the IBM 360 were
aware of the importance of address size and planned for the architecture to
extend to 32 bits of address. Only 24 bits were used in the IBM 360. however.
because the low-end 360 models would have been even slower with the larger
addresses. Unfortunately. the architects didn’t reveal their plans to the software
people. and the expansion effort was foiled by programmers who stored extra
information in the upper eight “unused” address bits.

A few years after the Atlas paper. Wilkes published the first paper describing
the concept of a cache [1965]:

The use is discussed ofafast core memory of, say, 32,000 words as slave to a
slower core memory of, say, one million words in sueh a way that in practical
eases the efl'eetire access time is nearer that of the fast memory than that of the
slow memory. [p. 270]

that G. Scarott suggested the idea of a cache memory.
Subsequent to that publication. IBM started a project that led to the first

commercial machine with a cache. the IBM 360/85 [Liptay 1968]. Gibson
[1967] describes how to measure program behavior as memory traffic as well as
miss rate and shows how the miss rate varies between programs. Using a sample
of 20 programs (each with 3.000.000 referencesl), Gibson also relied on average
memory—access time to compare systems with and without caches. This was over
20 years ago, and yet many used miss rates until recently.

Conti, Gibson, and Pitkowsky [1968] describe the resulting performance of
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the ll programs in
the paper. even though the 360/85 has a slower clock cycle time (80 ns versus 60
ns), smaller memory interleaving (4 versus 16). and a slower main memory
(1.04 psec versus 0.75 psec). This is the first paper to use the term “cache.”
Strecker [1976] published the first comparative cache-design paper examining
caches for the PDP-l 1. Smith [1982] later published a thorough survey paper.
using the terms “spatial locality" and “temporal locality"; this paper has served
as a reference for many computer designers. While most studies have relied on
simulations, Clark [1983] used a hardware monitor to record cache misses of the
VAX—1 1/780 over several days. Section 8.9 reports these findings, along with
the work Clark did with Emer on TLBs [1984. 1985]. A similar study was per—
formed on the VAX 8800 [Clark et al. 1988]. Agarwal. Sites, and Horowitz
[1986] changed the microcode of a VAX to make traces of system and user
code. These traces are used in this book (and are available through the
publisher). Hill [1987] proposed the three Cs used in Section 8.4 to explain
cache misses. Caches remain an active area of research, as STnith [1986] has
recorded in his extensive bibliography.

SAMSUNG EXHIBIT 100

Page 89 of 17

SAMSUNG EXHIBIT 1009
Page 90 of 171

Memory—Hierarchy Design 487

Many of the ideas in the advanced cache section have only been tried

recently. The inclusion of caches on microprocessors such as the Motorola

68020 gave rise to two—level cache machines: the Sun 3/260 in 1986 was perhaps

the first. In 1988, the Silicon Graphics 4D/240 had two levels of caches for data

and instructions. with the second level added primarily for cache coherency to

allow four—way multiprocessing. The MIPS RC 6280 is probably the first

machine to go to two-level caches for the reasons given on page 465 [Roberts.

Taylor. and Layman 1990]. Goodman and Chiang [1984] were the first to

publish an investigation of static—column DRAM in a memory hierarchy, while

Kelly [1988] refined the idea by using virtual addresses. Goodman [1987]
showed that aliases can be handled at cache-miss time, and Wang, Baer, and

Levy [1989] show that the extra control for this does not look too bad for two
levels of cache.

In comparison to the other ideas in the advanced section, cache—coherency

research is much older. Tang [1976] published the first cache-coherency proto—

col using directories, and this approach was implemented in the IBM 3081.
Censier and Feautrier [1978] describe a technique with status tags in memory.

The first machine to use snooping caches was the Synapse N+l [Frank 1984];

the first publication on snooping caches was by Goodman [1983]. Archibald and

Baer [1986] survey the wide variety of schemes for cache coherency. References

on the protocols mentioned in their paper and in Figure 8.45 are Frank [1984]

for Synapse; Goodman [1983] for Write Once: Katz et a1. [1985] for Berkeley;

McCreight [1984] for Dragon; Papamarcos and Patel [1984] for Illinois; and
Thacker and Stewart [1987] for Firefly. Baer and Wang [1988] discuss

multilevel inclusion. Eggers‘s [1989] nomenclature for categorizing snooping

caches is adopted in this text. Chapter 10, Section 10.7 mentions the use of

prefetching to improve cache performance, and Kroft [1981] describes the
design of a cache that allows the cache to service subsequent requests while the
requested data is prefetched. Przybylski [1990] and the dissertations by Agarwal
[1987], Eggers [1989]. and Hill [1987] investigate many aspects of the advanced
cache topics in more depth.

Papers on another use of locality. register windows or stack caches, are by
Patterson and Sequin [1981], Ditzel and McClellan [1982], and Lampson

[1982]. Sites wrote an earlier paper [1979] suggesting one way to use the

expanding resources of VLSI was to get higher performance by using a lot of
registers, and these schemes are one interpretation of that recommendation.

References

A G A R W A L. A. [1987]. Analysis of Cucle Po/jfnrmunt c for Operating Systems and
Mu/Iiprogramming. PhD. Thesis. Stanford Univ.. Tech. Rep. No. CSL-TR-87v332 (May).

AGARWAL. A.. R. L. SITES, AND M. HOROWITZ [1986]. “ATUM: A new technique for capturing

address traces using microcode." Pi'rn'. [3th Annual .8‘_vm[msimn on Computer Architecture (June
2—5), Tokyo, Japan, 119—127.

SAMSUNG EXHIBIT 1009

Page 90 of 171

SAMSUNG EXHIBIT 1009
Page 91 of 171

488 8.12 Historical Perspective and References

ARCHIBALD. J. AND J.—L. BAER [1986]. “Cache coherence protocols: Evaluation using a
multiprocessor simulation model,” ACM Trans. on Computer Systems 4:4 (November) 273498.

BAER, J.—L. AND W.—H. WANG [1988]. “On the inclusion property for multi-level cache hier—
archies,” Proc. 15th Annual Symposium on Computer Architecture (May~June), Honolulu, 73780.

BELL , C. G. AND W. D. STRECKER [1976]. “Computer structures: What have we learned from the
PDP—l 1?," Proc. Third Annual Symposium on Computer Architecture (January). Pittsburgh. Pcnn..1—14.

BLAKKEN, J. [1983]. “Register windows for SOAR.” in Smalltalk On A RISC: Architectural
Investigations, Proc. of CS 292R (April) 12m140, University of California.

CASE, R.P. AND A. PADEGS [1978]. “The architecture of the IBM System/370,“ Communications of
the ACM 21:1, 7396. Also appears in D. P. Siewiorek. C. G. Bell, and A. Newell, Computer
Structures: Principles and Examples (1982), McGraw—Hill, New York, 830—855.

CENSIER, L. M. AND P. FEAUTRIER [1978]. “A new solution to the coherence problem in
multicache systems,” IEEE Trans. on Computers C-27212 (December) 1 1 12—1 1 18.

CLARK, D. W. [1983]. “Cache performance of the VAX—11/780," ACM Trans. on ComputerSystems 1:], 24—37.

CLARK, D. W. AND J. S. EMER [1985]. “Performance of the VAX—11/780 translation buffer:
Simulation and measurement," ACM Trans. on Computer Systems 3:1. 31462.

CLARK, D. W. P. J. BANNON, AND J. B. KELLER [1988]. “Measuring VAX 8800 Performance with
a Histogram hardware monitor,” Proc. 15th Annual Symposium on Computer Architecture (May—June), Honolulu, Hawaii, 176—185.

CONT], C., D. H. GIBSON, AND S. H. PITOWSKY [1968]. “Structural aspects of the System/360
Model 85, part I: General organization," IBM Systems J. 7: 1, 2—14.

CRAWFORD, J. H AND P. P. GELSINGER [1987]. Programming the 80386. Sybex, Alameda, Calif.

DITZEL, D. R., AND H.R. MCCLELLAN [1982]. “Register allocation for free: The C machine stack
cache“ Symposium on Architectural Support for Programming Languages and Operating Systems
(March 1~3), Palo Alto, Calif., 48—56.

EGGERS, S. [1989]. Simulation Analysis ofData Sharing in Shared Memory Multiprocessor-s . Ph.
D. Thesis, Univ. of California, Berkeley. Computer Science Division Tech. Rep. UCB/CSD
89/501 (April). 4

EMER, J. S. AND D. W. CLARK [1984]. “A characterization of processor performance of the VAX—
l l/780,” Proc. llth Annual Symposium on Computer Architecture (June), Ann Arbor, Mich., 301*310.

FABRY, R. S. [1974]. “Capability based addressing," Comm. ACM 17:7 (July) 4034112.

FRANK, S. J. [1984]. “Tightly coupled multiprocessor systems speed memory access times."
Electronics 57:1 (January) 164—169.

GIBSON. D. H. [1967]. “Considerations in block—oriented systems design," AFIPS Conf. Proc. 30.SJCC, 75—80.

GOODMAN, J. R. [1983]. “Using cache memory to reduce processor memory traffic," Proc. Tenth 1
Annual Symposium on Computer Architecture (June 5—7), Stockholm, Sweden, 124—131.

GOODMAN. J. R. and M.-C. Chiang [1984]. “The use of static column RAM as a memory l
hierarchy," Proc. llth Annual Symposium on Computer Architecture (June 577), Ann Arbor.

Mich., 1677174. \
GOODMAN, J. R. [1987]. “Coherency for multiprocessor virtual address caches,” Proc. Second lnt'l

Conf. on Architectural Support for Programming Languages and Operating Systems, Palo AltO. lCalif., 71—81.

HALBERT, D. C. AND P. B. KESSLER [1980]. “Windows of overlapping register frames," CS 292R
Final Reports (June) 82—100.

SAMSUNG EXHIBIT 1009

Page 91 of 171

SAMSUNG EXHIBIT 1009
Page 92 of 171

 Memory—Hierarchy Design 489

HILL. M. D. [1987]. Aspects of Cache Memory and Instruction Bufler Performance, Ph. D. Thesis.
Univ. of California at Berkeley Computer Science Division. Tech. Rep. UCB/CSD 87/381
(November).

HILL. M. D. [1988]. “A case for direct mapped caches.“ Computer 21:12 (December) 25—40.

HUGUET, M. AND T. LANG [1985]. “A reduced register file for RISC architectures,” Computer
Architecture News 13:4 (September) 22—31.

KATZ. R.. S. EGGERS, D. A. WOOD. C. PERKINS, AND R. G. SHELDON [1985]. “Implementing a

cache consistency protocol.” Proc. 12th Annual Symposium on Computer Architecture, 276—283.

KELLY, E. [1988]. “‘SCRAM Cache’ in Sun-4/110 beats traditional caches." Sun Technology 1:3
(Summer) 19—21.

KILBURN, T.. D. B. G. EDWARDS, M. J. LANIGAN, F. H. SUMNER [1962]. “One-level‘storage
system.” IRE Transactions on Electronic Computers EC—l 1 (April) 223—235. Also appears in D. P.
Siewiorek, C. G. Bell, and A. Newell. Computer Structures: Principles and Examples (1982).
McGraw-Hill, New York, 135—148.

KROFT. D. [1981]. “Lockup—free instruction fetch/prefetch cache organization." Proc. Eighth
Annual Symposium on ComputerArchitecture (May 12—14), Minneapolis, Minn.. 81—87.

LAMPSON. B. W. [1982]. “Fast procedure calls,” Symposium on Architectural Support for
Programming Languages and Operating Systems (March 1—3), Palo Alto, Calif, 66—75,

LIPTAY, J. S. [1968]. “Structural aspects of the System/360 Model 85, part II: The cache.” IBM
SystemsJ. 7:1,15—21.

MCCALL, K. [1983]. “The Smalltalk—80 benchmarks.” Smalltalk 80: Bits of History, Words of
Advice, G. Krasner, ed.. Addison—Wesley, Reading, Mass. 153—174.

MCCREIGHT, E. [1984]. “The Dragon computer system: An early overview." Tech. Rep. Xerox
Corp. (September).

MCFARLING. S. [1989]. “Program optimization for instruction caches," Proc. Third International
Conf. on Architectural Support for Programming Languages and Operating Systems (April 3—6).
Boston. Mass, 183—191.

PAPAMARCOS. M. AND J. PATEL [1984]. “A low coherence solution for multiprocessors with

private cache memories,” Proc. of the Ilth Annual Symposium on Computer Architecture (June),
Ann Arbor, Mich., 348—354.

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance»Directed Approach. Morgan Kaufmann
Publishers. San Mateo, Calif.

PRZYBYLSKI, S. A.. M. HOROWITZ, AND J. L. HENNESSY [1988]. “Performance tradeoffs in cache

design,” Proc. 15th Annual Symposium on Computer Architecture (May-June), Honolulu. Hawaii,
290—298.

ROBERTS. D., G. TAYLOR. AND T. LAYMAN [1990]. “An ECL RISC microprocessor designed for
two—level cache." IEEE Compcon (February).

SAMPLES, A. D. AND P. N. HILFINGER [1988]. “Code reorganization for instruction caches." Tech,
Rep. UCB/CSD 88/447 (October), Univ. of Calif. Berkeley.

SITES, R. L., [1979]. “How to use 1000 registers." Caltech Conf. on VLSI (January).

SMITH, A. J. [1982]. “Cache memories," Computing Surveys 14:3 (September) 473—530.

SMITH. A. J. [1986]. “Bibliography and readings on CPU cache memories and related topics."
Computer Architecture News (January) 22—42.

SMITH. J. E. AND J. R. GOODMAN [1983]. “A study of instruction cache organizations and

replacement policies,” Proc. Tenth Annual Symposium on Computer Architecture (June 5—7),
Stockholm. Sweden,. 132—137.

STRECKER, W. D. [1976]. “Cache memories for the PDP—l 1?." Proc. Third Annual Symposium on
Computer Architecture (January). Pittsburgh. Penn.. 155—158.

SAMSUNG EXHIBIT 1009

Page 92 of 171

SAMSUNG EXHIBIT 1009
Page 93 of 171

8.12 Historical Perspective and References

TANG. C. K. [1976]. “Cache system design in the tightly coupled multiprocessor system." Pl‘()(‘.
[976 AFIPS National Computer Cwill. 749—753.

TAYLOR, G. S.. P. N. HlLFlNGER. .l. R. LARUS. D. A. PATTERSON, AND B. G. ZORN [1986].
“Evaluation of the SPUR Lisp architecture." Prue. [31/1 Annual Sym/mxium on Computer
Architecture (June 2—5). Tokyo. Japan. 444—452. l

THACKER. C. P. AND L. C. STEWART [19871. “Firefly: a multiprocessor workstation." Pl‘Ot'.
Seeoml Int'l Conf. on Arehiteetm‘al Support for Programming Languages and Operating .S'ystetnx.Palo Alto. Calif” 164—172.

UNGAR. D. M. [1987]. The Design of a High Performance Smalltalk System. The MIT Press
Distinguished Dissertation Series. Cambridge. Mass.

WANG. W.»H.. J.~L. BAER. AND H. M. LEVY [19891. “Organization and performance ofa two—level
virtual-real cache hierarchy," Proe. 16th Annual S_\'m/msium on Computer Architecture (May 28—June 1). Jerusalem. Israel . 140—148.

WILKES. M. [1965]. “Slave memories and dynamic storage allocation.“ IEEE Trans. E/eetronie
Computers EC»14:2 (April) 270—271.

WILKES. M. V. [1982]. “Hardware support for memory protection: Capability implementations."
Proe. Symposium on Are/titeetural Support/or Programming Langaagm and Operating System:
(March 1—3). Palo Alto. Calif.. 107—116

WULF. W. A., R. LEVIN AND S. P. HARBlSON [1981]. Hydra/Catnip: An Experimental ComputerSystem. McGraw-Hill, New York.

EXERCISES

8.1 [15/15/12/12] <2.2,8.4> Let's try to show how you can make unfair benchmarks.
Here are two machines with the same processor and main memory but different cache
organizations. Assume the miss time is 10 times a cache—hit time for both machines.
Assume writing a 32—bit word takes 5 times as long as a cache hit (for the write—through
cache). and that writing a whole 16-byte block takes 10 times as long as a cache-read hit.
(for the write—back cache). The caches are unified; that is. they contain both instructions
and data. 4

Cache A: 64 sets, 2 elements per set. each block is 16 bytes, and it uses write through.
Cache B: 128 sets. 1 element per set. each block is 16 bytes. and it uses write back.

a. [15] Describe a program that makes machine A run as much faster as possible than 1
machine B. (Be sure to state any further assumptions you need. ifany.)

b. [15] Describe a program that makes machine B run as much faster as possible than
machine A. (Be sure to state any further assumptions you need. ifanyl)

c. [12] Approximately how much faster is the program in Part a on machine A thanmachine B?

d. [12] Approximately how much faster is the program in Part b on machine B thanmachine A?

8.2 [20] <2.2.6.4,X.4> To simplify pipelined execution. some machines insert NOP
instructions rather than interlock the pipeline (see pages 273—275 in Chapter 6). Ignoring (
cache misses. assume that the Spice code takes 2.000.000 clocks in either case (since the
version without NOPS still interlocks. which takes an extra clock each time.) Figure 8.53

SAMSUNG EXHIBIT 100

Page 93 of ‘17

SAMSUNG EXHIBIT 1009
Page 94 of 171

Memory-Hierarchy Design 491

shows data collected for a portion of Spice execution with a 64—KB. direct—mapped,

instruction—only cache with one-word blocks.

l With NOPS Without NOPS Ratio with/without
l Total references 1,500,000 1,180,000 1.27
l Cache misses 34,153 24.908 1,37
iMiss rate 2.28 2.10 W 7 T 1.09

FIGURE 8.53 Spice miss rates with and without NOPs.

The conclusion of a study based on Figure 8.53 was that a 90/! increase in the miss rate of
the program with NOPS will have a small but measurable impact on performance. What
is the actual impact on performance assuming a 10-clock miss penalty?

8.3 [15/15] <8.4> You purchased an Acme computer with the following features:

1. 90% of all memory accesses are found in the cache:

2 Each cache block is two words, and the whole block is read on any miss:

3, The processor sends references to its cache at the rate of 107 words per second;

4 25% of the references of (3) are writes:

5. Assume that the bus can support 107 words per second, reads or writes:

6. The bus reads or writes a single word at a time (the bus cannot read or write two
words at once);

7. Assume at any one time. 30% of the blocks in the cache have been modified;

8. The cache uses write allocate on a write miss.

You are considering adding a peripheral to the bus, and you want to know how much of
the bus bandwidth is already used. Calculate the percentage of bus bandwidth used on the
average in the two cases below. The percentage is called the traffic ratio in the literature.
Be sure to state your assumptions.

a. [15] The cache is write through.

b. [151 The cache is write back.

8.4 [20] <8.4> One drawback to the write—back scheme is that writes will probably take
two cycles. During the first cycle. we detect whether a hit will occur. and during the
second (assuming a hit) we actually write the data. Let‘s assume that 50% of the blocks
are dirty for a write-back cache. Using statistics for loads and stores from DLX in Figure
C4 in Appendix C. estimate the performance of a write—through cache with a one—cycle
write versus a write—back cache with a two-cycle write for each of the programs. For this
question. assume that the write buffer for write through will never stall the CPU (no
penalty). Assume a cache hit takes 1 clock cycle. the cache miss penalty is 10 clock

SAMSUNG EXHIBIT 1009

Page 94 of 171

SAMSUNG EXHIBIT 1009
Page 95 of 171

Exercises

cycles, and a block write from the cache to main memory takes 10 clock cycles. Finally,
assume the instructi0n~cache miss rate is 2% and the data—cache miss rate is 4%.

:3 (D (D O. ('D 0.. 5" -1 U l" X 5I F. .1 S:O E.’ O :5 § i>< m :1 D. —. 3'" (D P 9.7 '9. .5. :1 O _,_ 2'1 (IO 5 76 00 Ch A ’U A? OD (D A N J; V 5" '1 <>X

Miss penalty is 12 clock cycles. 1
A perfect write buffer that never stalls the CPU.

The base CPI assuming a perfect memory system is 6.0 for the VAX and 1.5 for DLX.

A unified cache adds 1 extra clock cycle to each load and store of DLX (since there is
a single memory port) but not for the VAX.

You are considering three options:

1. A 4—way~set—associative unified cache of 64 KB.

2. Two 2—way~set-associative caches of 32 KB each. one for instructions and one fordata.

with a 4—word write buffer. The Motorola 88200 is 4—way set associative with 16 KB
per chip and a 16-byte block using LRU replacement.

b. [15] Here is the data on the price of each chip (quantity 1 as of 8/1/89):
Motorola 88100: $697

1Motorola 88200: $875

SAMSUNG EXHIBIT 1009

Pae 95 of

SAMSUNG EXHIBIT 1009
Page 96 of 171

Memory—Hierarchy Design 493

MIPS R3000 (25 MHZ): $300

MIPS R3010 FPU (25 MHz): $350

I6K by 4 SRAM (for 25 MHZ R3000): $21

Which system will be cheaper and by how much?

8.7 [15/25/15/15] <2.3,8.4> The Intel i860 has its caches on chip and its die size is

1.2 cm* 1 .2 cm. It has a 2—way—set—associative. 4—KB instruction cache and a 2-way—set—

[associative, S—KB data cache using write through or write back. Both caches use 32—bth
blocks. There are no write buffers or process identifiers to reduce cache flushing. The

J i860 also includes a 64—entry, 4—way—set—associative TLB to map its 4—KB pages. Address
‘ translation occurs before the caches are accessed. The Cypress 7C601 CPU chip size is
i 0.8 cm by 0.7 cm and has no on-board cache—a cache controller chip (7C604) and two

16K * 16 cache chips (7C157) are offered to form a 64-KB unified cache. The controller

includes a TLB with 64 entries managed fully associatively with 4096 process identifiers
to reduce flushing. It supports 32—ber blocks with direct—mapped placement, and either
write through or write back. There is a one—block write buffer for write back and a four—

word write buffer for write through. The chip sizes are 1.0 cm by 0.9 cm for the 7C604
and 0.8 cm by 0.7 cm. for the 7C157.

a. [15] Using the cost model of Chapter 2. what is the cost of the Cypress chip set

versus the Intel chip? (Use Figure 2.1 1 on page 62 to determine chip costs by finding
the closest die size in that table to the Intel and Cypress die area.)

b. [25] Use the DLX cache traces and cache simulator to determine the average
memory—access time for each cache organization. Assume a miss takes 6 clocks

latency plus 1 clock for each 32—bit word. Assume both systems run at the same clock
rate and use write allocate.

c. [15] What is the comparative cost/performance of these chips using average memory—
access time as the measure?

d. [15] What is the percent increase in cost of a color workstation that uses the more

expensive chips?

8.8 [25/10/15] <8.4> The CRAY X-MP instruction buffers can be thought of as an

instruction—only cache. The total size is 1 KB, broken into 4 blocks of 256 bytes per
[block. The cache is fully associative and uses a first—in/first—out replacement policy. The

access time on a miss is 10 clock cycles. with the transfer time of 64 bytes every clock
cycle. The X—MP takes 1 clock cycle on a hit. Use the cache simulator and the DLX
traces to determine:

a. [25] Instruction miss rate

b. [10] Average instruction memory—access time measured in clock cycles
1
1 c. [15] What does the CPI of the CRAY X—MP have to be for the portion due to

instruction cache misses to be 10% or less?

SAMSUNG EXHIBIT 1009

Page 96 of 171

EXHIBIT 1009
Page 97 of 171

494 Exercises

a. [20] Explain why this would be possible. (Hint: you can’t explain this with the 3C

model because it ignores replacement policy.)

b. [25] Use the cache simulator to see iftheir results hold for the traces.

d. A 64—KB, direct—mapped, write—though cache with four—word blocks but the
“interleaving” comes from a page-mode DRAM.

e. A 64—KB, direct—mapped. write~back cache with four—word blocks but the
“interleaving” comes from a page mode DRAM.

8.14 [20] <8.6> If the base CPI with a perfect memory system is 1.5, what is the CPI for
these cache organizations? Use Figure 8.12 (page 421):

a. Direct—mapped, l6—KB unified cache using write back.

EXHIBIT 1009

Page 97 of 171

SAMSUNG EXHIBIT 1009
Page 98 of 171

Memory—Hierarchy Design 495

b. TWO-way~set—ass0ciative. 16-KB unified cache using write back.

c. Direct»mapped. 32—KB unified cache using write back.

Assume the memory latency is 6 clocks, the transfer rate is 4 bytes per clock cycle and
that 50% of the transfers are dirty. There are 16 bytes per block and 20% 0f the
instructions are data-transfer instructions. The caches fetch words 0f the block in address
order and the CPUs stall until all words of the block arrive. There is no write buffer. Add
to the assumptions above a TLB that takes 20 clock cycles on a TLB miss. A TLB does
not slow down a cache hit. For the TLB, make the simplifying assumption that 1% of all
references aren‘t found in TLB, either when addresses come directly from the CPU or
when addresses come from cache misses. What is the impact on performance of the TLB
if the cache above is physical or virtual?

8.15 [30] <3.8,8.9> The example in Section 8.9 (page 478) refines the instructions
fetched into the CPU from the cache due to the instruction—prefetch buffer. How does this
increase of 13% to 39% in instruction words fetched affect the difference in the
instruction words fetched from DLX versus VAX? The extra instruction fetches of the
VAX hurt only when they bring something into the cache that is not used before it is
displaced, while DLX would seem to need a larger cache for its larger program. Write a
simulator emulating the instruction—prefetch buffer to measure the increase in cache

8.16 [25—40] <8.7> Study the impact of adding register windows to DLX. This study can
range from simply estimating the register—traffic savings to modifying the DLX compiler
and simulator to measure costs and benefits directly.

8.17 [10] <8.8> Data General described the design of a three—level cache for an ECL
implementation of the 88000 architecture. What is the fonnula for average access time fora three—level cache?

8.18 [20] <8.8> What is the performance loss for a four—way multiprocessor with I/O
devices? Suppose 1% of all data references to the cache cause invalidation to the other
data caches and that all CPUs stall four clocks on an invalidation. Assume a 64—KB,
direct—mapped cache for data and a 64—KB, direct—mapped cache for instructions with a
block size of 32 bytes yields a 1% miss rate for instructions and a 2% miss rate for data,
with 20% of all CPU memory references being for data. The CPI of the CPU is 1.5 with a
perfect memory system and it takes 10 clocks on a cache miss whether the data is dirty orclean.

8.19 [25] <8,8> Use the traces to calculate the effectiveness of early restart and out-of—
order fetch. What is the distribution of first accesses to a block as block size increases
from 2 words to 64 words by factors of two for:

a. A 64—KB, instruction—only cache?

b. A 64—KB, data—only cache?

c. A 128-KB unified cache?

Assume direct—mapped placement.

SAMSUNG EXHIBIT 1009

Page 98 of 171

SAMSUNG EXHIBIT 1009
Page 99 of 171

8.20 [30] <8.8> Use the cache simulator and traces with a program you write yourself to
compare the effectiveness schemes for fast writes:

a. l—word buffer and the CPU stalls on a data—read cache miss with a write-through
cache.

b. 4—word buffer and the CPU stalls on a data—read cache miss with a write-through
cache.

c. 4-word buffer and the CPU stalls on a data—read cache miss only if there is a potential

conflict in the addresses with a write-through cache.

d. A write-back cache that writes dirty data first and then loads the missed block.

e. A write—back cache with a one—block write buffer that loads the miss data first and

then stalls the CPU on a clean miss if the write buffer is not empty.

f. A write—back cache with a one—block write buffer that loads the miss data first and

then stalls the CPU on a clean miss only if the write buffer is not empty and there is

a potential conflict in the addresses.

Assume a 64KB. direct—mapped cache for data and a 64—KB. direct—mapped cache for

instructions with a block size of 32 bytes. The CPI of the CPU is 1.5 with a perfect

memory system and it takes 14 clocks on a cache miss and 7 clocks to write a single word
to memory.

8.21 [30] <8.8> Use the cache simulator and traces with a program you write yourself to
create a two—level cache simulator. Use this program to see at what cache size is the

global miss rate of a second—level cache approximately the same as a single—level cache of
the same capacity.

8.22 [Discussion] <8.6> Some people have argued that with increasing capacity of
memory storage per chip, virtual memory is an idea whose time has passed, and they

expect to see it dropped from future computers. Find reasons for and against this
argument.

8.23 [Discussion] <8.6> So far. few computer systems take advantage of the extra

security available with gates and rings found in a machine like the Intel 80286. Construct
some scenario whereby the computer industry would switch over to this model of

protection.

] l
8.24 [Discussion] <8.4> Recent research has tried to use compilers to improve cache l
performance (see McFarling [1989] and Samples and Hilfinger [1988]): l

a. Which of the 3C‘s are compilers trying to improve and which are they not? Why?

b. Which mapping is best for compiler improvement? Why?

8.25 [Discussion] <8.3> Many times a new technology has been invented that is expected

to make a major change to the memory hierarchy. For the sake of this question. let's

suppose that biological computer technology becomes a reality. Suppose biological

SAMSUNG EXHIBIT 1009

Page 99 of 171

SAMSUNG EXHIBIT 1009
Page 100 of 171

Memory-Hierarchy Design

memory leehnology has an unusual Characteristic: It is as law as the l‘aslexi
semieomluelor DRAMS. and it can be randome aeeexs‘ed; but it only costs as much ax

magnetic—disk memory. [I has the further adxamagge of not being any slower no matter
how big i1 1%. The only drawback is that you can only fli'ite it an0. but you can fiead it
Many times. Thus it is called a “WORM” memory. Because ol‘ the way it is
manufactured. the WORM— memory module can be easily replaced See if you Can come

up with several new ideas to take advantage of \N()Rl\1\‘ in build better computers using

“bio—Iechnology."

SAMSUNG EXHIBIT 1009

Page 100 of 171,, __—__———

SAMSUNG EXHIBIT 1009
Page 101 of 171

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

____________—_————————

1/0 certainly has been lagging in the last decade.
Seymour Cray, Public Lecture (1976)

Also, [/0 needs a lot ofwork.

David Kuck, Keynote Address,

15th Annual Symposium on Computer Architecture (1988)

/

Introduction 499

Predicting System Performance 501

IIO Performance Measures 506

Types of I/O Devices 512
Buses—Connecting IIO Devices to CPU/Memory 528

Interfacing to the CPU 533

Interfacing to an Operating System 535

Designing an IIO System 539
Putting It All Together:
The IBM 3990 Storage Subsystem 546

Fallacies and Pitfalls ‘ 554

Concluding Remarks if 559
560

Historical Perspective and References
Exercises

SAMSUNG EXHIBIT 1009

Page 101 of 171

SAMSUNG EXHIBIT 1009
Page 102 of 171

Input/Output

9.1 | Introduction
Input/output has been the orphan of computer architecture. Historically

neglected by CPU enthusiasts, the prejudice against [/0 is institutionalized in the

most widely used performance measure, CPU time (page 35). Whether a

computer has the best or the worst [/0 system in the world cannot be measured

by CPU time, which by definition ignores 1/0. The second class citizenship of

1/0 is even apparent in the label “peripheral” applied to I/O devices.

This attitude is contradicted by common sense. A computer without 1/0

t devices is like a car without wheels—you can’t get very far without them. And

\ while CPU time is interesting, response time—the time between when the user
types a command and when she gets results—is surely a better measure of

performance. The customer who pays for a computer cares about response time,

even if the CPU designer doesn’t. Finally, as rapid improvements in CPU perfor—

mance compress traditional classes of computers together, it is 1/0 that serves to

distinguish them:

- The difference between a mainframe computer and a minicomputer is that a

mainframe can support many more terminals and disks.

- The difference between a minicomputer and a workstation is that a

workstation has a screen, a keyboard, and a mouse.

SAMSUNG EXHIBIT 1009

Page 102 of 171

SAMSUNG EXHIBIT 1009
Page 103 of 171

9.1 Introduction

I The difference between a file server and a workstation is that a file server has
disks and tape units but no screen, keyboard, or mouse.

I The difference between a workstation and a personal computer is that
workstations are always connected together on a network.

It may come to pass that computers from high-end workstations to low-end
supercomputers will use the same “super—microprocessors.” Differences in cost
and performance would be determined only by the memory and I/O systems
(and the number of processors).

I/O’s revenge is at hand. Stippose we have a difference between CPU time
and response time of 10%, and we speed up the CPU by a factor of 10, while
neglecting I/O. Amdahl’s Law tells us that we will get a speedup of only 5
times, with half the potential of the CPU wasted. Similarly, making the CPU 100
times faster without improving the [/0 would obtain a speedup of only 10 times,
squandering 90% of the potential. If, as predicted in Chapter 1, performance of
CPUs improves at 50% to 100% per year, and I/O does not improve, every task
will become I/O bound. There would be no reason to buy faster CPUs—and no
jobs for CPU designers.

While this single chapter cannot fully vindicate I/O, it may at least atone for
some of the sins of the past and restore some balance.

Are CPUs Ever Idle?

Some suggest that the prejudice is well founded. [/0 speed doesn’t matter, they
argue, since there is always another process to run while one process waits for a
peripheral.

There are several points to make in reply. First, this is an argument that
performance is measured as throughput—more tasks per hour—rather than as
response time. Plainly, if users didn’t care about response time, interactive
software never would have been invented, and there would be no workstations
today. (The next section gives experimental evidence on the importance of
response time.) It may also be expensive to rely on processes while waiting for
I/O, since main memory must be larger or else the paging traffic from process
switching would actually increase [/0 Furthermore, with desktop computing
there is only one person per CPU, and thus fewer processes tha in timesharing;
many times the only waiting process is the human being! And some
applications, such as transaction processing (Section 9.3), place strict limits on
response time as part of the performance analysis.

But let’s accept the argument at face value and explore it further. Suppose the
difference between response time and CPU time today is 10%, and a CPU that is
ten times faster can be achieved without changing I/O performance. A process
will then spend 50% of its time waiting for I/O, and two processes will have to
be perfectly aligned to avoid CPU stalls while waiting for I/O. Any further CPU
improvement will only increase CPU idle time.

SAMSUNG EXHIBIT 1009

Page 103 of 171

SAMSUNG EXHIBIT 1009
Page 104 of 171

Input/Output 501

Thus, [/0 throughput can limit system throughput, just as 1/0 response time
limits system response time. Let’s see how to predict performance for the whole
system.

9.2 Predicting System Performance

System performance is limited by the slowest part of the path between CPU and
I/O devices. The performance of a system can be limited by the speed of any of
these pieces of the path, shown in Figure 9.1:

n The CPU

- The cache memory

I The main memory

- The memory—I/O bus

I The 1/0 controller or [/0 channel

I The 1/0 device

I The speed of the I/O software

I The efficiency of the software’s use of the I/O device

Processor

Interrupts

Memory-l/O bus

I
l/O

controller

Network

[/0
controller

Graphics
output

FIGURE 9.1 Typical collection of l/O devices on a computer.

l/O
controller

Main
memory

 SAMSUNG EXHIBIT 1009

Page 104 of 171

SAMSUNG EXHIBIT 1009
Page 105 of 171

502 9.2 Predicting System Performance

If the system is not balanced, the high performance of some components may be

lost due to the low performance of one link in the chain. The art of [/0 design is

to configure a system such that the speeds of all components are matched.

In earlier chapters we have assumed that the fastest CPU is the single object

of our desire. but CPU performance is not the same as system performance. For

example, suppose we have two workloads. A and B. Both workloads take 10

seconds to run. Workload A does so little [/0 that it is not worth mentioning.

Workload B keeps l/O devices busy four seconds. and this time is completely

overlapped with CPU activities. Suppose the CPU is replaced by a newer model

with five times the performance. Intuitively, we realize that workload A takes

two seconds—fully five times faster—but workload B is l/O bound and cannot

take less than four seconds. Figure 9.2 illustrates our intuition.

Old CPU’ l/O timeworkload A CPU time

Old CPU' |/O timeworkload 8 CPU time

New CPU, l/O time
workload A CPU time

New CPU, l/O timeworkload B CPU time

Time (secs)

FIGURE 9.2 The overlapped execution of the two workloads with the original CPU
and then a CPU with five times the performance. We can see that the elapsed time for
workload A is indeed 1/5 of the time with the new CPU, but it is limited to four seconds in

workload B because l/O speed is not improved.

I,

Determining the performance of such cases requires a new formula. The

elapsed execution time of a workload can be broken into three pi‘eces

Timeworkload = TimCCPu + TimeI/o * Timeoveriap

where TimeCpU means the time the CPU is busy, Timel/O means the time the

[/0 system is busy. and Timeoverlap means the time both the CPU and the [/0
system are busy. Using workload B with the old CPU in Figure 9.2 as an

example, the times in seconds are:

10 for Timeworkload.

10 for TimeCpU.

SAMSUNG EXHIBIT 1009

Page 105 of 171

SAMSUNG EXHIBIT 1009
Page 106 of 171

Input/Output

4 for Timer and
4 for Timeowrmp.

Assuming we speed up only the CPU. one way to calculate the time to
execute the workload is:

Timech Time- _ 7",, 7,, 7 , - overla

Tlmeworkload — S d + Tlme1/0 ‘ 7 7 7 7 7 7Pee UPC‘PU SpeeduPCPU

Since the CPU time is shrunk. it stands to reason that the overlap time is also

shrunk. The system speedup when we want to improve 1/0 is equivalent:

Timel/Q 7 {WageringT'me =Time + ' e 7* —
l workload CPU SpeedupI/O speedup”)

Let’s try an example before explaining a limitation of these formulas.

One workload takes 50 seconds to run. with the CPU being busy 30 seconds and

the 1/0 being busy 30 seconds. How much time will the workload take if we

replace the CPU with one that has four times the performance?

Example

Answer The total elapsed time is 50 seconds. yet the sum of CPU time and [/0 time is 60

seconds. Thus the overlap time must be 10 seconds. Plugging into the formula:

‘ TimeCPU - Time it 30 1(

T1m€work10ud = ‘ i i" ’ + TtmeI/O — S‘bgeafgrgil : + g 2

This example uncovers a complication with this formula: How much of the

time that the workload is busy on the faster CPU is overlapped with 1/0? Figure

9.3 (page 504) shows three options. Depending on the resulting overlap after

speedup. the time for the workload varies from 30 to 37.5 seconds.

In reality we can't know which is correct without measuring the workload on

the faster CPU to see what overlap occurs. The formulas above assume option

f (c) in Figure 9.3; the overlap scales by the same speedup as the CPU. so we will

1

call it Timescalcd (rather than Timeworkload). Maximum overlap assumes that as

much of the overlap as possible is maintained. but that the new overlap cannot

be larger than the original overlap or the CPU time after speedup. Minimum

overlap assumes that as much of the overlap as possible is eliminated. but that

the overlap time will not shrink by more than the time removed from the CPU or
[/0 time. If we introduce the abbreviations NCWCPU = TimeCpU/ Speedupch

and NewI/O = Timel/O/ SpeedupI/O, the time of the workload for maximum
overlap (Timebest) and minimum overlap (Timewom) can be written as:

Timebesl = NEWCPU + TimeI/O — Minimum (TimeoverlaPNeprU)

' Timeworst : NCWCPU + Timel/O ~ Maximum (0.Timeoverlap— (TlmeCPU—NCWCPU»

SAMSUNG EXHIBIT 1009

h, Page 106 of‘l7‘l

SAMSUNG EXHIBIT 1009
Page 107 of 171

504 9.2 Predicting System Performance

(a) Before (50 secs) (b) After: “Maximum overlap" (30 secs)
Time overlap Time overlap

I-n @313
CE TimeCPU EITimeCPu

(c) After: "Scaled overlap" (35 secs) (d) After: “Minimum overlap" (375 secs)

Timeoverlap

[1:] Timecpu C] Timech

FIGURE 9.3 The original overlap in the example above (a) and three interpretations
of overlap after speedup. Each block represents 10 seconds, except that the block for the
new CPU time is 7.5 seconds. The overlapped portions of Timech and Timel/O are
shaded. (b) shows the new Timecpu overlapping completely with l/O, giving a time of the
workload of 30 seconds. (0) shows the overlap of the Timech is sealed with Speedupcpu,
giving a total of 35 seconds, with 2.5 seconds of overlapped execution. (d) shows no
overlap with l/O, so the total is 37.5 seconds.

Calculate the three time predictions for workload B in Figure 9.2 Timebcst=15‘0+4—Minimum (153,4) =2+4~2=4

Timescaled=%+4—§=2+4—0.8=5.2
. 10 . 10

Tlmeworm = g + 4 — Maxrmum (0,4—(10—§)) = 2 + 4 — 0 = 6
{/

Sometimes changes will be made to both the CPU and the I/O system. The
formulas become:

Timeovierlap
PeedUPCPUSPCCdUPI/o)

Timescaied = NeWCPU + NewI/O — Maximums

Timebest = NeprU + NewI/O —Minimum(TimeoverlaPNeprUNewI/O)

Timewom = NCWCPU + NCWI/O — Max (0,Time0verlap—Max (TimeCpU—Newcpu,TimeI/O—NewI/ol)

SAMSUNG EXHIBIT 1009

Page 107 of 171

SAMSUNG EXHIBIT 1009
Page 108 of 171

Example

Answer

Input/Output 505

The formula for scaled overlap says that the overlap period is reduced by the
larger of the two speedups. The formula for maximum overlap (Timebesl) says

that as much overlap as possible is retained. but the new overlap cannot be larger

than the original overlap or the CPU or 1/0 time after speedup. Finally, the
formula for minimum overlap (Timewum) says that the overlap is reduced by

the larger of the time removed from the CPU time and the time removed from

the 1/0 time (but that the overlap time cannot be less than 0). Figure 9.4 shows

the three examples of speedup where both the 1/0 and CPU are improved.

(a) Before (50 secs) (b) After "Maxtmum overlap" (15 secs)
T'meoverlap Time overlap

TimeI/O E:

[j TimeCPU

(d) After: “No overlap" (22.5 secs)

C Time CPU

(c) After: “Scaled overlap" (20 secs)

Time overlap

l]: Tlmecpu

FIGURE 9.4 Time for workload in Figure 9.3(a) with SpeedupcPU = 4 and
Speedup“o = 2.

Let‘s look at a detailed example showing speedup of both the CPU and I/O.

Suppose a workload on the current systems takes 64 seconds. The CPU is busy

the whole time, and the channels connecting the I/O devices to the CPU are busy

36 seconds. The computer manager is considering two upgrade options: either a

single CPU that has twice the performance, or two CPUs that have twice the

throughput and twice many channels. The time of the actual I/O devices is so

small it can be ignored. For the dual CPU option assume that the workload can

be evenly spread between the CPUs and channels. What is the performance

improvement for each option?

Since there is no change to the I/O system with the single faster CPU, time for

the workload assuming scaled overlap is then simply

_ Timecpu . TimeoverlapTime. . . = + Time — '
WM SPCEdUPCPu U0 5P€€dUPCPU

'%

=%1+36—2)é =32+36—18=50

SAMSUNG EXHIBIT 1009

Page 108 of 171

SAMSUNG EXHIBIT 1009
Page 109 of 171

9.2 Predicting System Performance

9.3

For the dual CPU with more channels,

Timescaled :

--TJFT£C£L ,T'l‘S/(L g , , ,,,, Jinfivmaufifl if
Speedupcpu SpeedupI/O Maximum(SpeedupCpU.SpeedupI/O)

36 366427* +

2 2 ‘Maximimafjflhm‘lszn

Assuming scaled overlap, the dual CPU is more than 50% faster. Using best—
case scaling, the dual CPU is 13% faster. while worst—case scaling suggests it is
39% faster.

As these examples demonstrate. we need improvement in HQ performance to
match the improvement in CPU performance if we are to achieve faster com-
puter systems. We can now examine metrics of I/O devices to understand how to
improve their performance and thus the whole system.

l/O Performance Measures

1/0 performance has measures that have no counterparts in CPU design. One of
these is diversity: Which I/O devices can connect to the computer system?
Another is capacity: How many [/0 devices can connect to a computer system?

In addition to these unique measures, the traditional measures of perfor—
mance. response time and throughput also apply to [/0 (I/O throughput is
sometimes called “I/O bandwidth” and response time is sometimes called “la—
tency.”) The next two figures offer insight into how response time and
throughput trade off against each other. Figure 9.5 shows the simple producer—
server model. The producer creates tasks to be performed and places them in the
queue; the server takes tasks from the queue and performs them.

Producer
FIGURE 9.5 The traditional producer-server model of response time and throughput.
Response time begins when a task is placed in the queue and ends when it is completed by
the server. Throughput is the number of tasks completed by the server in unit time.

SAMSUNG EXHIBIT 1009

Page 109 of 171

SAMSUNG EXHIBIT 1009
Page 110 of 171

Input/Output 507

Response time is defined as the time a task takes from the moment it is placed

in the queue until the server finishes the task. Throughput is simply the average

number of tasks completed by the server over a time period. To get the highest

possible throughput. the server should never be idle. and thus the queue should

never be empty. Response time. on the other hand. counts time spent in the

queue and is therefore minimized by the queue being empty.
Another measure of 1/0 performance is the interference of 1/0 with CPU

execution. Transferring data may interfere with the execution of another process.
There is also overhead due to handling l/O interrupts. Our concern here is how

many more clock cycles a process will take because of [/0 for another process.

Throughput Versus Response Time

Figure 9.6 shows throughput versus response time (or latency). for a typical [/0

system. The knee of the curve is the area where a little more throughput results

in much longer response time or, conversely. a little shorter response time results
in much lower throughput.

300 'l

Response time
(latency) -in ms

100 —

.l

0 ‘l l —r— l ‘1 r 1 l i— r— 1
0% 20% 40% 60% 80% l 00%

Percent of maxtmum throughput (bandwtdth)

FIGURE 9.6 Throughput versus response time. Latency is normally reported as
response time. Note that absolute minimum response time achieves only 11% of the
throughput while the response time for 100% throughput takes seven times the minimum
response time. Chen [1989] collected these data for an array of magnetic disks.

SAMSUNG EXHIBIT 1009

Page 110 of 171

SAMSUNG EXHIBIT 1009
Page 111 of 171

9.3 I/O Performance Measures

Life would be simpler if improving performance always meant improvements

in both response time and throughput. Adding more servers. as in Figure 9.7,

increases throughput: By spreading data across two disks instead of one. tasks

may be serviced in parallel. Alas, this does not help response time, unless the

workload is held constant and the time in the queues is reduced because of more
resources.

Queue 9

Queue .
FIGURE 9.7 The single-producer, single-server model of Figure 9.5 is extended with
another server and queue. This increases l/O system throughput and takes less time to
service producer tasks. Increasing the number of servers is a common technique in I/O
systems. There is a potential imbalance problem with two queues; unless data is placed
perfectly in the queues, sometimes one server will be idle with an empty queue while the
other server is busy with many tasks in its queue.

Producer

How does the architect balance these conflicting demands? If the computer is

interacting with human beings. Figure 9.8 suggests an answer. This figure

presents the results of two studies of interactive environments, one keyboard

oriented and one graphical. An interaction or transaction with a computer is
divided into three parts:

1. Entry time: The time for the user to enter the command. In the graphics

system in Figure 9.8 it took 0.25 seconds on average to enter the command

versus 4.0 seconds for the conventional system.

2. System response time: The time between when the user enters the command

and the complete response is displayed.

3. Think time: The time from the reception of the response until the user begins
to enter the next command.

The sum of these three parts is called the transaction time. Several studies report

that user productivity is inversely proportional to transaction time; transactions

per hour measures the work completed per hour by the user.

SAMSUNG EXHIBIT 1009

Page 111 of 171

SAMSUNG EXHIBIT 1009
Page 112 of 171

input/Output 509

Workload

Conventional interactive workload
(1.0 sec, system response time)

Conventional interactive workload
(0.3 sec. system response time)

—34% total
(-70% think)

High-function graphics workload
(1.0 sec. system response time)

High»function graphics workload
(0.3 sec. system response time)

40% total
(—81% think)

i- ——1— I 1— I I
5 10

Time (seconds)

E] System response time E] ThinktimeI Entry time

FIGURE 9.8 A user transaction with an interactive computer divided into entry time,

system response time, and user think time for a conventional system and graphics
system. The entry times are the same independent of system response time. The entry
time was 4 seconds for the conventional system and 0.25 seconds for the graphics system.
(From Brady [1986].)

The results in Figure 9.8 show that reduction in response time actually

decreases transaction time by more than just the response time reduction:

Cutting system response time by 0.7 seconds saves 4.9 seconds (34%) from the

conventional transaction and 2.0 seconds (70%) from the graphics transaction.

This implausible result is explained by human nature; people need less time to

think when given a faster response.

Whether these results are explained as a better match to the human attention

span or getting people “on a roll,” several studies report this behavior. In fact, as

computer responses drop below a second, productivity seems to make a more

than linear jump. Figure 9.9 (page 510) compares transactions per hour (the
inverse of transaction time) of a novice, an average engineer, and an expert

performing physical design tasks at graphics displays. System response time

magnified talent: a novice with subsecond response time was as productive as an

experienced professional with slower response, and the experienced engineer in

turn could outperform the expert with a similar advantage in response time. In

all cases the number of transactions per hour jumps more than linearly with

subsecond response time.

Since humans may be able to get much more work done per day with better

response time, it is possible to attach an economic benefit to the customer of

lowering response time into the subsecond range [IBM 1982], thereby helping

the architect decide how to tip the balance between response time and

throughput.

UNG EXHIBIT 1009

Page 112 of 171

SAMSUNG EXHIBIT 1009
Page 113 of 171

510 9.3 1/0 Performance Measures

4500 j
4000 Expen

Transactions
per user
hour

(productivity)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

System response time (secs)

Examples of Measurements of l/O Performance—
Magnetic Disks

Supercomputer I/O Benchmarks

Supercomputer 1/0 is dominated by accesses to large files on magnetic disks.
For example, Bucher and Hayes [1980] benchmarked supercomputer I/O using
8-MB sequential file transfers. Many supercomputer installations run batch jobS.
each of which may last for hours. In these situations, I/O consists of one large
read followed by writes to snapshot the state of the computation should the

SAMSUNG EXHIBIT 1009

Page 113 of 171

SAMSUNG EXHIBIT 1009
Page 114 of 171

Input/Output 511

throughput: number of bytes per second that can be transferred between
supercomputer main memory and disks during large transfers.

Transaction Processing I/O Benchmarks

In contrast, transaction processing (TP) is chiefly concerned with 1/0 rate: the
number of disk accesses per second, as opposed to data rare, measured as bytes
of data per second. TP generally involves changes to a large body of shared
information from many terminals, with the TP system guaranteeing proper be—
havior on a failure. If, for example, a bank’s computer fails when a customer
withdraws money, the TP system would guarantee that the account is debited if

the customer received the money and that the account is unchanged if the money
was not received. Airline reservations systems as well as banks are traditional
customers for TP.

Two dozen members of the TP community conspired to form a benchmark
for the industry and, to avoid the wrath of their legal departments, published the
report anonymously [1985]. This benchmark, called DebitCredit, simulates bank

tellers and has as its bottom line the number of debit/credit transactions per
second (TPS); in 1990, the TPS for high—end machines is about 300. The

DebitCredit performs the operation of a customer depositing or withdrawing
money. The performance measurement is the peak TPS, with 95% of the
transactions having less than a one-second response time. The DebitCredit

computes the cost per TPS, based on the five—year cost of the computer—system
hardware and software. Disk [/0 for DebitCredit is random reads and writes of
100—ber records along with occasional sequential writes.

Depending on how cleverly the transaction-processing system is designed,
each transaction results in between two and ten disk I/Os and takes between

5,000 and 20,000 CPU instructions per disk [/0 The variation largely depends
on the efficiency of the transaction processing software. although in part it
depends on the extent to which disk accesses can be avoided by keeping
infomiation in main memory. The benchmark requires that for TPS to increase,
the number of tellers and the size of the account file must also increase. Figure
9.10 shows this unusual relationship in which more TPS requires more users.
Xx

TPS Number of ATMs Account-file size

10 ' 1.000 70.1 GB
100 7 l0.000 7 1.0 GB

l 1000 7 7 100,000 7 V 10.0 GB
10,000 1,000,000 7 7 _ 100.0 GB T

FIGURE 9.10 Relationship among TPS, tellers, and account-file size. The DebitCredit
benchmark requires that the computer system handle more tellers and larger account files
before it can claim a higher transaction—per—second milestone. The benchmark is supposed
to include “terminal handling" overhead, but this metric is sometimes ignored.

SAMSUNG EXHIBIT 1009

Page 114 of 171

SAMSUNG EXHIBIT 1009
Page 115 of 171

4.

51 2 9.3 1/0 Performance Measures

This is to ensure that the benchmark really measures disk I/O; otherwise a large

main memory dedicated to a database cache with a small number of accounts
would unfairly yield a very high TPS. (Another perspective is the number of
accounts must grow since a person is not likely to use the bank more frequently

just because the bank has a faster computer!)

File System I/O Benchmarks

File systems. for which disks are mainly used in timesharing systems, have a
different access pattern. Ousterhout et al. [1985] measured a UNIX file system
and found that 80% of accesses to files of less than 10 KB and 90% of all file

accesses were sequential. The distribution by type of file access was 67% reads.
27% writes. and 6% read-write accesses. In 1988. Howard et al. [1988] proposed

a file-system benchmark that is becoming popular. Their paper describes five

phases of the benchmark, using 70 files with a total size of 200 KB:

MakeDir—Constructs a target subtree that is identical in structure to the source
subtree.

Copy—~Copies every filefrom the source subtree t0 the target subtree.

ScanDir—Recursively traverses the target subtree and examines the status of

every file in it. It does not actually read the contents ofanyfile.

ReadAll—Scans every byte ofei'eryfile in the target subtree once.

Make—Compiles and links all thefiles in the target subtree. 1p. 55]

The file-system measurements of Howard et al. [1988], like those of Ousterhout
et al. [1985], found the ratio of disk reads to writes to be about 2:1. This
benchmark reflects that measure.

9.4 Types of I/O Devices

Now that we have covered measurements of 1/0 performance, let‘s describe the

devices themselves. While the computing model has changed little since 1950.

1/0 devices have become rich and diverse. Three characteristics are useful in

organizing this disparate conglomeration: ‘

- Behavior—input (read once). output (write only, cannot be read). or storage

(can be reread and usually rewritten)

- Partner—either a human or a machine is at the other end of the I/O device.

either feeding data on input or reading data on output

I Data rate—the peak rate at which data can be transferred between the 1/0

device and the main memory or CPU

SAMSUNG EXHIBIT 1009

Page 115 of 171

SAMSUNG EXHIBIT 1009
Page 116 of 171

Input/Output

Using these characteristics. a keyboard is an input device used by a human with
a peak data rate of about 10 bytes per second. Figure 9.1 I shows some of the I/O
devices connected to computers.

The advantage of designing I/O devices for humans is that the performance
target is fixed. Figure 9.12 shows the I/O performance of people.
/

Device Behavior Partner Data rate

I (KB/sec)
‘ Keyboard Input Human 0_01
{7Mctls7c7777 7 7 7 7037777” 777 tiarfiéfi'“ 77 7 7 777 0.02

t Input 7 7 Human777777 7 7 7 77770.02
f gcanner 7 7 Input Human 777 7 7 7 7 7727070700’#
I77V7oic7e output 7 Output 7Human 777 7 7 7 777707604,
7 Line printer 7 7 Output Human 7 7 7 7 7 7 77l.00
7 Laser printer 7 7Output 7 7 Human 7 77 7 77777 7 717070.007
I Graphics display ' Output 7 7 7Human7 7 7 7 7 77 30:00000 7
‘7 (CPU to frame buffer) Output 7 Human 7 7 7 7 27007.00

Network—terminal 7 Input or output Machine 7 7 7 777 70.05
. Network—7L/7\I\I77 7 7 Input oroutput7 7 Machine7 7 7 7 77 77

Optical disk Storage Machine 7 7 7 75007.00
‘ Magnetidtape Storage 7 7 7 Machine 7 7 7 7777200000
(Magnetic disk Storage Machine 2,000.00
FIGURE 9.11 Examples of I/O devices categorized by behavior, partner, and data
rate. This is the raw data rate of the device rather than the rate an application would see.
Storage devices can be further distinguished by whether they support sequential access
(e.g.. tapes) or random access (e.g., disks). Note that networks can act either as input or
output devices but, unlike storage, cannot reread the same information.

//
‘ Human organ I/O rate (KB/sec) 1/0 latency (ms) I

Ear 8000—60000 10
‘ Eye—reading text 0030—0375 10

Eye—pattern recognition l25.000 10
Hand*typing 0,010«0.020 100
Voice 7 7 7 77 0.0030015" 77 7 7 7 100

FIGURE 9.12 Peak l/O rates for people. Input via seeing patterns is our highest I/O rate;
hence the popularity of graphic output devices. Maberly [1966] says the average reading
speed is 28 bytes per second and the maximum is 375 bytes per second. The telephone
company sets a 170—ms limit to the time between when an operator pushes a button to
accept a call until a voice path must be established. The phone company transmits voice at
8 KB per second. (None of these parameters are expected to change, unless anabolic
steroids become a breakfast supplement!)

SAMSUNG EXHIBIT 1009

Page 116 of 171

SAMSUNG EXHIBIT 1009
Page 117 of 171

ge on user productivity. In th" ' 0t talking aboutfloppy disks. but the original “hard” disks. These ' '
calls DASDs, for Direct—Access Storage Devices.

Magnetic Disks

I thin/r Silicon Valley w '
products in the last deca

than from silicon. They

 Mouse

Voice input
Networkterminal

Voice output
Line printer

Laser printer

Device Scanner
Network»LAN

Display (irame buffer)
Optical disk

Magnetic tape
Magnetic disk

1 000

Data rate (K B/s)

SAMSUNG EXHIBIT 1009

Page 117 of 171

SAMSUNG EXHIBIT 1009
Page 118 of 171

Input/Output 515

As descriptions of magnetic disks can be found in countless books, we will

only list the key characteristics with the terms illustrated in Figure 9.14. A mag
netic disk consists of a collection of platters (l to 20). rotating on a spindle at

about 3600 revolutions per minute (RPM). These platters are metal disks

covered with magnetic recording material on both sides. Disk diameters vary by
a factor of five, from 14 to 2.5 inches. Traditionally, the widest disks have the

highest performance, and the smallest disks have the lowest cost per disk drive.

Platters

Platter

Sectors
FIGURE 9.14 Disks are organized into platters, tracks, and sectors. Both sides of a
platter are coated so that information can be stored on both surfaces.

Each disk surface is divided into concentric circles. designated tracks. There

are typically 500 to 2000 tracks per surface. Each track in turn is divided into

sectors that contain the information; each track might have 32 sectors. The

sector is the smallest unit that can be read or written. The sequence recorded on

the magnetic media is a sector number. a gap. the information for that sector

including error correction code, a gap. the sector number of the next sector. and

so on. Traditionally all tracks have the same number of sectors; the outer tracks.

which are longer. record information at a lower density than the inner tracks.

Recording more sectors on the outer tracks than on the inner tracks. called

SAMSUNG EXHIBIT 1009

Page 118 of 171

SAMSUNG EXHIBIT 1009
Page 119 of 171

9.4 Types of I/O Devices

constant bit density, is becoming more widespread with the advent of intelligent
interface standards such as SCSI (see Section 9.5). IBM mainframe disks allow
users to select the Size of the sectors, while almost all other systems fix the sizeof the sector.

To read and write information into a sector, a movable arm containing a
read/write head is located over each surface. Bits are recorded using a run—
length limited code, which improves the recording density of the magnetic
media. The arms for each surface are connected together and move in

system the actual average seek time may be only 25% to 33% of the advertised
number, due to locality of disk references. Section 9.10 has a detailed example.

The time for the requested sector to rotate under the head is the rotation
latency or rotational delay. Most disks rotate at 3600 RPM, and an average
latency to the desired information is halfway around the disk; the average
rotation time for most disks is therefore

. . 0.5

Average rotation t1me —m— 0.0083 sec — 8.3 ms

their data to memory.

Thus, the final component of disk—access time is controller time, which is the
overhead the controller imposes in performing an [/0 access. When referring to
performance of a disk in a computer system, the time spent waiting for a disk to
become free (queueing delay) is added to this time.

SAMSUNG EXHIBIT 1009

Page 119 of 171

SAMSUNG EXHIBIT 1009
Page 120 of 171

Input/Output

517

Example

Answer

What is the average time to read or write a 512-byte sector for a typical disk
today? The advertised average seek time is 20 ms, the transfer rate is 1MB/sec,
and the controller overhead is 2 ms. Assume the disk is idle so that there is no
queuing delay.

Average disk access is equal to average seek time + average rotational delay +
transfer time + controller overhead. Using the calculated, average seek time, the
answer is

0.5 KB

20ms+8.3ms+m+2ms=20+8.3+0.5 +2 =30.8ms

Assuming the measured, average seek time is 25% of the calculated number, the
answer is

5ms+8.3ms+0.5ms+2ms:15.8ms

Figure 9.15 shows characteristics of magnetic disks for four manufacturers.

Large-diameter drives have many more megabytes to amortize the cost of

electronics, so the traditional wisdom was that they had the lowest cost per
megabyte. But this advantage is offset for the small drives by the much higher
sales volume, which lowers manufacturing costs: 1990 OEM prices are $2 to $3
R

Characteristics IBM 3380 Fujitsu Imprimis Conner
M2361A Wren IV CP3100

Disk diameter (inches) 14 10.5 5.25 3.5

Formatted data capacity (MB) 7500 600 344 100

MTTF (hours) 52,000 20,000 40,000 30,000

Number of arms/box 4 1 1 1

Maximum I/Os/second/arm 50 40 35 30

Typical I/Os/second/arm 30 24 28 20

Maximum I/Os/second/box 200 40 35 30

Typical I/Os/second/box 120 24 28 20

Transfer rate (MB/sec) 3 2.5 1.5 1

Power/box (W) 1,650 640 35 10

MB/W 1.1 0.9 9.8 10.0

Volume (cu. ft.) 24 3.4 0.1 .03

MB/cu. ft. 310 180 3440 3330

FIGURE 9.15 Characteristics of magnetic disks from Ionr manufacturers. Compar-
‘son of IBM 3380 disk model AK4 for mainframe computers, Fujitsu M2361A "Super Eagie"
disk for minicomputers, Imprimis Wren IV disk for workstations, and Conner Peripherals
CP3100 disk for personal computers. Maximum I/Os/second signifies maximum number of
average seeks and average rotates for a single sector access. (Table from Katz, Patterson,
and Gibson [1990].)

SAMSUNG EXHIBIT 1009

Page 120 of 171

SAMSUNG EXHIBIT 1009
Page 121 of 171

518
9.4 Types of 1/0 Devices

The small drives also have

a megabyte of disk storage in
e of a megabyte of DRAM in a ‘

and volume. The price of
es cheaper than the pric

Areal density = I[2191:5011 a disk surface * Big on a track
nch Inch

Areal density can be predicted according to the maxtmum meal demzry (MAD)tormula‘

‘ ~197l/10
MAD: 10W“ar ’

million bits per square inch

Thus, storage density im
every three years.

to 25% per year, withsmaller drives playing the larger role in this improvement. Because it is easier to

(chip) DRAM
1980 (board)
E 1980

O

1985 1985
E . DRAM(chip)

1990 1990 I 1980
E O

.1985

Access Time Gap D'Sk

I 1990 ’

SAMSUNG EXHIBIT 1009

Page 121 of 171

SAMSUNG EXHIBIT 1009
Page 122 of 171

Input/Output 519

spin the smaller masS, smaller diameter disks save power as well as volume.
Smaller drives also have fewer cylinders so the seek distances are shorter. In
1990, 5.25—inch or 3.5—inch drives are probably the leading technology, while
the future may see even smaller drives. We can expect significant savings in
volume and power, but little in speed. Increasing density (bits per inch on a
track) has improved transfer times, and there has been some small improvement
in seek speed. Rotation speeds have been steady at 3600 RPM for a decade, but
some manufacturers plan to go to 5400 RPM in the early 1990s.

As mentioned earlier, magnetic disks have been challenged many times for
supremacy of secondary storage. One reason has been the fabled Access Time
Gap as shown in Figure 9.16. Many a scientist has tried to invent a technology
to fill that gap. Let’s look at some of the recent attempts.

Using DRAMs as Disks

A current challenger to disks for dominance of secondary storage is solid state
disks (SSDs), built from DRAMs with a battery to make the system nonvolatile;
and expanded storage (ES), a large memory that allows only block transfers to
or from main memory. ES acts like a software-controlled cache (the CPU stalls
during the block transfer) while SSD involves the operating system just like a
transfer from magnetic disks. The advantages of SSD and ES are trivial seek
times, higher potential transfer rate, and possibly higher reliability. Unlike just a
larger main memory, SSDs and E85 are autonomous: They require special
commands to access their storage, and thus are “safe” from some software errors
that write over main memory. The block—access nature of SSD and ES allows
error correction to be spread over more words, which means lower cost or
greater error recovery. For example, IBM ’s ES uses the greater error recovery to
allow it to be constructed from less reliable (and less expensive) DRAMs
without sacrificing product availability. SSDs, unlike main memory and ES,
may be shared by multiple CPUs because they function as separate units,
Placing DRAMs in an I/O device rather than memory is also one way to get
around the address—space limits of the current 32-bit computers. The
disadvantage of SSD and ES is cost, which is at least ten times per megabyte the
cost of magnetic disks.

Optical Disks

Another challenger to magnetic disks is optical compact disks or CDs. The
CD/ROM is removable and inexpensive to manufacture, but it is a read—only
media. The newer CD/writable is also removable, but has a high cost per
megabyte and low performance. A common misperception about write-once
optical disks is that once they are written, the information cannot be destroyed;
in fact, write once means one reliable write and then a “fuzzy” bitwise ORing of
the previous and new data.

SAMSUNG EXHIBIT 1009

Page 122 of 171

SAMSUNG EXHIBIT 1009
Page 123 of 171

9.4 Types of I/O Devices

So far. magnetic disk challengers have never had a product to market at the

right time. By the time a new product ships. disks have made advances as pre—
dicted by MAD formula. and costs have dropped accordingly. Optical disks.
however. may have the potential to compete with new tape technologies for
archival storage.

Disk Arrays

One other future candidate for optimizing storage is not a new technology. but a
new organization of disk storage—arrays of small and inexpensive disks. The
argument for arrays is that since price per megabyte is independent of disk size.
potential throughput can be increased by having many disk drives and, hence,
many disk arms. Simply spreading data over multiple disks automatically forces
accesses to several disks. (While arrays improve throughput. latency is not
necessarily improved.) The drawback to arrays is that with more devices.

reliability drops: N devices generally have l/N the reliability of a single device.

Reliability and Availability

This brings us to two terms that are often confused—reliability and availability.
The term reliability is commonly used incorrectly to mean availability: if
something breaks. but the user can still use the system. it seems as if the system
still “works,” and hence it seems more reliable. Here is the proper distinction:

Reliability—is anything broken?

Availability—is the system still available to the user?

Adding hardware can therefore improve availability (for example, ECC on
memory). but it cannot improve reliability (the DRAM is still broken).

Reliability can only be improved by bettering environmental conditions. by
building from more reliable components. or by building with fewer components.
Another term, data integrity, refers {6 always reporting when information is lost
when a failure occurs; this is very important to some applications.

So. while a disk array can never be more feliable than a smaller number of

larger disks when each disk has the same failure rate, availability can be
improved by adding redundant disks. That is. if a single disk fails, the lost
information can be reconstructed from redundant information. The only danger
is in getting another disk failure between the time a disk fails and the time it is

replaced (termed mean time to repair or MTTR). Since the mean time mfailm‘t’
(MTTF) of disks is three to five years, and the MTTR is measured in hours.

redundancy can make the availability of 100 disks much higher than that of a
single disk.

Since disk failures are self—identifying, information can be reconstructed from

just parity: The good disks plus the parity disk can be used to calculate the

information that is on the failed disk. Hence. the cost of higher availability is

SAMSUNG EXHIBIT 1009

Page 123 of 171

SAMSUNG EXHIBIT 1009
Page 124 of 171

 Input/Output

l/N. where N is the number of disks protected by parity. Just as direct-mapped

associative placement in caches can be considered a special case of set—

associative placement (see Section 8.4). the mirroring or shadowing of disks can

be considered the special case of one data disk and one parity disk (N21). Parity

can be accomplished by duplicating the data. so mirrored disks have the

advantage of simplifying parity calculation. Duplicating data also means that the

controller can improve read performance by reading from the disk of the pair

that has the shortest seek distance. although this optimization is at the cost of

write performance because the arms of the pair of disks are no longer always

over the same track. Of course. the redundancy of N = 1 has the highest
overhead for increasing disk availability.

The higher throughput, measured either as megabytes per second or I/Os

per second. and the ability to recover from failures make disk arrays attractive.

When combined with the advantages of smaller volume and lower power of

small-diameter drives. redundant arrays of small or inexpensive drives may play

a larger role in future disk systems. The current drawback is the added

complexity of a controller for disk arrays.

Graphics Displays

Through computer displays 1 have landed an airplane on the deck ofa moving

carrier. observed a nuclear particle hit a potential well.flown in a rocket at

nearly the speed of light and watched a computer reveal its innermost workings.

Ivan Sutherland (the "father" of computer graphics). quoted in
“Computer Software for Graphics." St'lé’llllllt‘ American (1984)

While magnetic disks may dominate throughput and cost of 1/0 devices. the

most fascinating l/O device is the graphics display. Based on television

technology, a raster cathode ray tube (CRT) display scans an image out one line

at a time. 30 to 60 times per second. At this refresh rate the human eye doesn‘t

notice a “flicker” on the screen. The image is composed of a matrix of picture

elements. or pixels. which can be represented as a matrix of bits. called a bit

map. Depending on size of screen and resolution. the display matrix consists of

340*512 to 1560* 1280 pixels. For black and white displays. often 0 is black and

1 is white. For displays that support over 100 different shades of black and

white, sometimes called gray—scale displays. 8 bits per pixel are required. A

color display might use 8 bits for each of the three primary colors (red, blue. and

green). for 24 bits per pixel.

The hardware support for graphics consists mainly of a raster refresh buffer.

orframe buffer. to store the bit map. The image to be represented on screen is

stored into the frame buffer. and the bit pattern per pixel is read out to the

graphics display at the refresh rate. Figure 9.17 (page 522) shows a frame buffer

with four bits per pixel and Figure 9.18 (page 522) shows how the buffer is
connected to the bus.

SAMSUNG EXHIBIT 1009

Page 124 of 171

SAMSUNG EXHIBIT 1009
Page 125 of 171

9.4 Types of I/O Devices

Frame buffer
Raster scan
CRT display

FIGURE 9.17 Each coordinate in the frame buffer on the left determines the shade of
the corresponding coordinate for the raster scan CRT display on the right. Pixel
(xo,yo) contains the bit pattern 0011, which is a lighter shade of gray on the screen than the
bit pattern 1101 in pixel (x1,y1).

FIGURE 9.18 The frame buffer is connected to both the I/O bus and the display.
Because of the high data rate from the butter to’the display, the frame buffer is frequentlydual ported.

The goal of the bit map is to faithfully represent what is on the screen. As the
computer switches from one image to another, the screen may look “splotchy”
during the change. Here are two ways of dealing with this:

- Change the frame buffer only during the “vertical blanking interval.” This is
the time the gun in the raster CRT display takes to go back to the upper-left-
hand comer before starting to paint the pixels of the next image. This takes 1
to 2 ms of every 16 ms at the 60—Hz refresh rate each time the screen is
painted.

SAMSUNG EXHIBIT 1009

Page 125 of 171

SAMSUNG EXHIBIT 1009
Page 126 of 171

Input/Output 523

u If the vertical blanking interval is not long enough, the frame buffer can be

double buffered. so that one is read while the other is being written. This way.
images in sequence (as in animation) are drawn in alternate frame buffers.

Double buffering, of course, doubles the cost of the memory in the frame
buffer.

From the point of View of the CPU, graphics is logically output only. But the

frame buffer is capable of being read as well as written. permitting operations to
be performed directly on the screen images. These operations are called bit blts,

for bit block transfer. Bit blts are commonly used for operations such as moving
a window or changing the shape of the cursor. A current debate in graphics
architecture is whether reading the frame buffer is limited to the operating
system or should user programs be able to read it as well.

Cost of Computer Graphics

The CRT monitor itself is based on television technology and is sensitive to
consumer demand. Today prices vary from $100 for a black—and-white monitor

to $15,000 for a large studio color monitor, not including memory. The amount

of memory in a frame buffer depends directly on the size of the screen and the
bits per pixel:

340*512*1bits : 21.5 KB

1280*1024*24 bits = 3840 KB

(By the way, this bottom dimension is the proposed size for high-definition

television.) Note that the memory cost is doubled if double buffering is used.

To reduce costs of a color frame buffer, many systems use a two-level

representation that takes advantage of the fact that few pictures need the full

pallet of possible colors (see Figure 9.19 on page 524).

The intermediate level contains the full color width of. say, 24 bits and a

large collection of the possible colors that can appear on the screen—256

different colors, for example. While this collection is large, it is still much

smaller than 224. This intermediary table has been variously named a color map,
color table, or video look-up table. Each pixel need have only enough bits to

indicate a color in the color map. As a simple example. Figure 9.19 uses a 4-

word color map. which means the frame buffer needs only 2 bits per pixel. The

savings for a full-sized color display with a 256-color map is

1280* 1024*24 — (1280*1024*8 + 256*24)

= 3,840 KB — (1280 KB + .75 KB) z 2560 KB

This amounts to a threefold reduction in memory size. In 1990 a 256— by 24-bit

color map and an analog interface to a color CRT fit in a single chip.

SAMSUNG EXHIBIT 1009

Page 126 of 171

SAMSUNG EXHIBIT 1009
Page 127 of 171

9.4 Types of l/O Devices

Frame buffer
Raster scan
CRT display

FIGURE 9.19 An example of a color map to reduce the cost of the frame buffer.
Suppose only nine bits per color are needed. Rather than store the full nine bits per pixel in
the frame buffer, just enough bits per pixel are stored to index the table containing the
unique colors in a picture. Only the color map has the nine bits for the colors in the display.
Near photographic color pictures can be produced with about 125 colors using the right
shades of the color spectrum; but at least 24 bits are needed to get the right shades! The
color map is loaded by the application program, offering each picture its own palette ofcolors to chose from.

Performance Demands of Graphics Displays

The performance of graphics is determined by the frequency an application
needs new images and by the quality of those images. The amount of
information transferred from memory to the frame buffer depends on complexity
of image, with a full color display requiring almost four megabytes. The transfer
rate depends on the speed with which the image should be changed as well as
the amount of information. Animation requires at least 15 changes per second
for movement to appear smooth on atscreen. For interactive graphics, the time to
update the frame buffer measures th effectiveness of the application; for people
to feel comfortable the total reactiorl3time must be less than a second (see Figure
9.9, page 510). With a drawing system. the portion of the screen one is working
on must change almost immediately, as human visual perception is on the order
of 0.02 seconds. Figure 9.20 shows some sample graphics tasks and their
performance requirements. Note that the frame buffer must have enough
bandwidth to refresh the display and to allow the CPU to change the image
being refreshed.

The high data rate—and the large market of graphics displays—has made a
dual-ported DRAM chip popular. This chip has a serial I/O port and iiternal
shift register that is connected to the display in a graphics application in addition
to the traditional randomly addressed data port. This chip is so widely used in
frame buffers that it is called a video DRAM.

SAMSUNG EXHIBIT 1009

Page 127 of 171

SAMSUNG EXHIBIT 1009
Page 128 of 171

Input/Output 525

______’_————————

Graphics tasks Bandwidth requirements_—__’——.—————_i

Text editm‘*Scrolling text in window means moving 0.8 MB/sec
all bits in half the frame buffer about 10 times per
second. 7

VLSI design—Moving a portion of the design means 63 MB/sec
moving all bits in half of a color frame buffer in less
than 0.1 second.

Television commercial—Showing movie-quality W 90.0 MB/sec
images means changing 24 times per second.
Visualization of scientific data—About the same as a 90.0 MB/sec
television commercial.

FIGURE 9.20 Graphics tasks and their performance requirements. VLSI design uses
8 bits of color while the television commercial and visualization use 24 bits. Bandwidth is
measured at the frame buffer.

Future Directions in Graphics Displays

It is safe to predict that people will want better pictures in the future. They will
want, for example, more lines on a screen and more bits per inch on a line to
make sharper images, more bits per color to make more colorful images, and
more bandwidth to allow animation.

To simplify the display of three-dimensional images, a z dimension per pixel
can be added to the x and y coordinates. It says where the pixel is located from
the viewer along a z axis (e.g., into the CRT). A 3D image starts with 2 set to the
furthest possible location from the viewer and the color set to the background
color. To get a proper 3D perspective, the Z coordinate stored with the pixel in
the frame buffer is checked before placing a color in a pixel. If the new color is

closer, the old color is replaced and the Z coordinate is updated; if it is further
away. the new color is discarded. This scheme is called a 2 buffer approach to
hidden surface elimination. It adds at least 8 bits per pixel, plus the performance
cost of reading and comparing before writing a pixel. The Silicon Graphics 4D
series of graphics workstations uses 16 bits for the z dimension in its pixels,
meaning objects are assigned a 16—bit number to show how Close they are to the
viewer.

The increasing number of bits per DRAM chip reduces the number of chips
needed in the frame buffer, as well as the number of chips that can

simultaneously transfer bits to the screen. This is why video DRAMS are so
popular. As capacity increases, the serial ports of video DRAMS will have to
become faster and wider to match the demands of future graphics systems.

SAMSUNG EXHIBIT 1009

Page 128 of 171

SAMSUNG EXHIBIT 1009
Page 129 of 171

526 9.4 Types of HO Devices

Networks

There is an old network saying: Bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is fixed—you can’t bribeGod.

David Clark, M.I.T.

Networks are the backbone of current computer systems; a new machine without
an optional network interface would be ridiculed. By connecting computers 1
electronically, networked computers have these advantages:

I Commanication—Information is exchanged between computers at high

speeds.

I Resource sharing—Rather than each machine having its own I/O devices,
devices can be shared by computers on the network.

I Nonlocal access—By connecting I/O devices over long distances, users need

not be near the computer they are using.

Figure 9.21 shows the characteristics of networks. These characteristics are
illustrated below with three examples.

Distance 0.01 to 10,000 kilometers

Speed 0.001 MB/sec to 100 MB/sec

Topology Bus, ring, star, tree

Shared lines None (point-to—point) or shared (multidrop)

FIGURE 9.21 Range of network characteristics.

The RS232 standard provides a 0.3— to 19.2-Kbits-per-sec0nd terminal

network. A central computer connects to many terminals over slow but cheap
dedicated wires. These point-to-pdint connections form a star from the central

computer, with each terminal ranging from 10 to 100 meters in distance from the ‘
computer. ‘The local area network, or LAN, is what is commonly meant today when
people mention a network, and Ethernet is what most people mean when they .
mention a LAN. (Ethernet has in fact become such a common term that it is
often used as a generic term for LAN.) The Ethernet is essentially a 10,000
Kbits-per—second bus that has no central control. Messages or packets are sent
over the Ethernet in blocks that vary from 128 bytes to 1530 bytes and take 0.1
ms and 1.5 ms to send, respectively. Since there is no central control, all nodes
“listen” to see if there is a message for that node. Without a central arbiter to
decide who gets the bus, a computer first listens to make sure it doesn’t send a
message while another message is on the network. If the network is idle the node
tries to send. Of course, some other node may decide to send at the same instant.
Luckily, the computer can detect any resulting collisions by listening to what is

SAMSUNG EXHIBIT 1009

Page 129 of 171

SAMSUNG EXHIBIT 1009
Page 130 of 171

Input/Output 527

sent. (Mixed messages will sound like garbage.) To avoid repeated head-on

collisions, each node whose packet was trashed backs off a random time before

resending. If Ethernets do not have high utilization, this simple approach to

arbitration works well. Many LANs become overloaded through poor capacity

planning, and response time and throughput can degrade rapidly at higher
utilization.

The success of LANs has led to multiples of them at a single site. Connecting

computers to separate Ethernets becomes necessary at a certain point because
there is a limit to the number of nodes that can be active on a bus if effective

communication speeds are to be achieved; one limit is 1024 nodes per Ethernet.

There is also a physical limit to the distance of an Ethernet, usually about 1

kilometer. To allow Ethernets to work together, two kinds of devices have been
created:

I A bridge connects two Ethernets. There are still two independent buses that

can simultaneously send messages, but the bridge acts as a filter, allowing

only those messages from nodes on one bus to nodes on the other bus to cross

over the bridge.

I A gateway typically connects several Ethernets. It receives a message, looks

up the destination address in a table, and then routes the message over the

appropriate network to the proper node. This routing table can be changed

during execution to reflect the state of the networks. Some use the term router

instead of gateway since it is closer to the function performed.

When Ethernets are connected together with gateways they form an Internet.

Long—haul networks cover distances of 10 to 10,000 kilometers. The first and

most famous long-haul network was the ARPANET (named after its funding

agency, the Advanced Research Projects Agency of the US. government). It

transferred at 50 Kbits per second and used point-to-point dedicated lines leased

from telephone companies. The host computer talked to an interface message

processor (IMP), which communicated over the telephone lines. The IMP took

information and broke it into 1-Kbit packets. At each hop the packet was stored

and then forwarded to the proper IMP according to the address in the packet.

The destination IMP reassembled the packets into a message and then gave it to

the host. Fragmentation and reassembly, as it was called, was done to reduce the

latency due to the store andforward delay. Most networks today use this packet

switched approach, where packets are individually routed from source to

destination. Figure 9.22 (page 528) summarizes the performance, distance, and
costs of these various networks.

While these networks have been presented here as alternatives, a computer

system is really a hierarchy of networks, as Figure 9.23 (page 528) shows. To

deal with this hierarchy of networks connecting machines that communicate

differently, there must be a standard software interface to handle messages.

These are called protocols, and are typically layered to interface with different

levels of software in computer systems. The overhead of these protocols can eat

up a significant portion of the network bandwidth.

SAMSUNG EXHIBIT 1009

Page 130 of 171

SAMSUNG EXHIBIT 1009
Page 131 of 171

528 9.4 Types of I/O Devices

Just as with disks in Figure 9.6 (page 507), there is a tradeoff of latency and

throughput in networks. Small messages give the lowest latency in most

networks, but they also result in lower network bandwidth; similarly, a network

can achieve higher bandwidth at the cost of longer latency.

Network Performance Distance Cable Connect to Connector to

‘ (Kbits / sec) (km) cost network cost computer cost

R8232 19 0.1 $0.25 $1—$5 $5

/foot /connector /serial port chip

1 Ethernet 10,000 1 31—335 $100 $50 [Ethernet

/foot /transceiver interface chip

ARPANET 50 10,000 8 10.000 $50,00(P $5,000—$10.000
/month $100.000/ IMP /[MP connection

FIGURE 9.22 The performance, maximum distance, and costs of three example
networks. An Internet is simply multiple Ethernets and a bridge, which costs about $2,000
to $5,000, or a gateway, which costs about $20,000 to $50,000.

Computer

Computer

Computer

FIGURE 9.23 A computer system today participates in a hierarchy of networks.
Ideally, the user is not aware of what network is being used in performing tasks. The
gateway routes packets to a particular network, a network routes packets to a particular
host computer, and the host computer routes packets to a particular process.

9.5 l Buses—Connecting IIO Devices to
CPU/Memory

In a computer system, the various subsystems must have interfaces to one

another; for instance. the memory and CPU need to communicate, as well as the

CPU and I/O devices. This is commonly done with a bus. The bus serves as 21

SAMSUNG EXHIBIT 1009

Page 131 of 171

SAMSUNG EXHIBIT 1009
Page 132 of 171

Input/Output 529

shared communication link between the subsystems. The two major advantages

of the bus organization are low cost and versatility. By defining a single

interconnection scheme, new devices can easily be added, and peripherals may

even be ported between computer systems that use a common bus. The cost is

low, since a single set of wires is shared multiple ways.

The major disadvantage of a bus is that it creates a communication bot-

tleneck, possibly limiting the maximum [/0 throughput. When I/O must pass

through a central bus this bandwidth limitation is as real as—and sometimes
more severe than—memory bandwidth. In commercial systems. where 1/0 is

very frequent, and in supercomputers, where the necessary [/0 rates are very

high because the CPU performance is high, designing a bus system capable of

meeting the demands of the processor is a major challenge.

One reason bus design is so difficult is that the maximum bus speed is largely

limited by physical factors: the length of the bus and the number of devices (and,

hence, bus loading). These physical limits prevent arbitrary bus speedup. The

desire for high I/O rates (low latency) and high [/0 throughput can also lead to

conflicting design requirements.

Buses are traditionally classified as CPU—memory buses or 1/0 buses. I/O

buses may be lengthy, may have many types of devices connected to them, have

a wide range in the data bandwidth of the devices connected to them (see Figure

9.1 on page 501), and normally follow a bus standard. CPU—memory buses, on

the other hand, are short, generally high speed, and matched to the memory

system to maximize memory—CPU bandwidth. During the design phase, the de-

signer of a CPU—memory bus knows all the types of devices that must connect

together, while the I/O bus designer must accept devices varying in latency and

bandwidth capabilities. To lower costs, some computers have a single bus for

both memory and I/O devices.

Let's consider a typical bus transaction. A bus transaction includes two parts:

sending the address and receiving or sending the data. Bus transactions are

usually defined by what they do to memory: A read transaction transfers data

from memory (to either the CPU or an I/O device), and a write transaction writes

data to the memory. In a read transaction, the address is first sent down the bus

to the memory, together with the appropriate control signals indicating a read.

The memory responds by returning the data on the bus with the appropriate

control signals. A write transaction requires that the CPU or 1/0 device send

both address and data and requires no return of data. Usually the CPU must wait

between sending the address and receiving the data on a read, but the CPU often
does not wait on writes.

The design of a bus presents several options, as Figure 9.24 (page 530)

shows. Like the rest of the computer system, decisions will depend on cost and

performance goals. The first three options in the figure are clear choices—

separate address and data lines, wider data lines, and multiple-word transfers all

give higher performance at more cost.
The next item in the table concerns the number of bus masters. These are

devices that can initiate a read or write transaction; the CPU, for instance, is al—

SAMSUNG EXHIBIT 1009

* iiPaje 132 OTT71¥7 T

SAMSUNG EXHIBIT 1009
Page 133 of 171

530 9.5 Buses—Connecting I/O Devices to CPU/Memory

ways a bus master. A bus has multiple masters when there are multiple CPUs or
when I/O devices can initiate a bus transaction. If there are multiple masters, an

arbitration scheme is required among the masters to decide who gets the bus

next. Arbitration is often a fixed priority, as is the case with daisy-chained
devices or an approximately fair scheme that randomly chooses which master
gets the bus.

With multiple masters a bus can offer higher bandwidth by going to packets,
as opposed to holding the bus for the full transaction. This technique is
designated split transactions. (Some systems call this ability connect/disconnect
or a pipelined bus.) The read transaction is broken into a read-request transaction
that contains the address, and a memory-reply transaction that contains the data.

Each transaction must now be tagged so that the CPU and memory can tell what
is what. Split transactions make the bus available for other masters while the

memory reads the words from the requested address. It also normally means that

the CPU must arbitrate for the bus to send the data and the memory must
arbitrate for the bus to return the data. Thus, a split—transaction bus has higher
bandwidth, but it usually has higher latency than a bus that is held during the
complete transaction.

The final item, clocking, concerns whether a bus is synchronous or
asynchronous. If a bus is synchronous it includes a clock in the control lines and

a fixed protocol for address and data relative to the clock. Since little or no logic
is needed to decide what to do next, these buses can be both fast and inexpen-
sive. However, they have two major disadvantages. Everything on the bus must
run at the same clock rate, and because of clock-skew problems, synchronous
buses cannot be long. CPU—memory buses are typically synchronous.

An asynchronous bus, on the other hand, is not clocked. Instead, self—timed,
handshaking protocols are usedbetween bus sender and receiver. This scheme

makes it much easier to accommodate a wide variety of devices and to lengthen
the bus without worrying about clock skew or synchronization problems. If a
synchronous bus can be used, it is/ usually faster than an asynchronous bus
because of the overhead of synchronizing the bus for each transaction. The

choice of synchronous versus asynchronous bus has implications not only for
data bandwidth but also for an I/O system’s capacity in terms of physical
m

Option High performance Low cost

Bus width Separate address and data lines Multiplex address and data lines

Data width Wider is faster (e.g., 32 bits) Narrower is cheaper (e.g., 8 bits)

Transfer size Multiple words has less bus overhead Single-word transfer is simpler

Bus masters Multiple (requires arbitration) Single master (no arbitration)

Split Yes—separate Request and Reply packets gets No—continuous connection is cheaper and
transaction? higher bandwidth (needs multiple masters) has lower latency

Clocking Synchronous Asynchronous

FIGURE 9.24 The main options for a bus. The advantage of separate address and data buses is primarily on writes.

SAMSUNG EXHIBIT 1009

Page 133 of 171

SAMSUNG EXHIBIT 1009
Page 134 of 171

Input/Output 531

distance and number of devices that can be connected to the bus; asynchronous

buses scale better with technological changes. I/O buses are typically asynch—

ronous. Figure 9.25 suggests the relationship of when to use one over the other.

Bus Standards

The number and variety of I/O devices are not fixed on most computer systems_,

permitting customers to tailor computers to their needs. As the interface to

which devices are connected, the I/O bus can also be considered an expansion

bus for adding [/0 devices over time. Standards that let the computer designer

and I/O—device designer work independently, therefore, play a large role in

determining the choice of buses. As long as both the computer-system designer

and the I/O-device designer meet the requirements, any I/O device can connect

to any computer. In fact, an I/O bus standard is the document that defines how to
connect them.

Machines sometimes grow to be so popular that their I/O buses become de

facto standards; examples are the PDP-ll Unibus and the IBM PC—AT Bus.

Once many [/0 devices have been built for the popular machine, other computer

designers will build their I/O interface so that those devices can plug into their

machines as well. Sometimes standards also come from an explicit standards

effort on the part of I/O device makers. The intelligent peripheral interface (IPI)

Clock skew
(function of
bus length) Asynchronous better

Synchronous better

Mixture of IIO
device speeds

FIGURE 9.25 Preferred bus type as a function of length/clock skew and variation in
NO device speed. Synchronous is best when the distance is short and the I/O devices on
the bus all transfer at similar speeds.

SAMSUNG EXHIBIT 1009

Page 134 of 171

SAMSUNG EXHIBIT 1009
Page 135 of 171

9.5 Buses—Connecting I/O Devices to CPU/Memory

and Ethernet are examples of standards from cooperation of manufacturers. If
standards are successful, they are eventually blessed by a sanctioning body like
ANSI 0r IEEE. Occasionally, a bus standard comes top—down directly from a
standards committee—the FutureBus is one example.

Figure 9.26 summarizes characteristics of several bus standards. Note that the
bandwidth entries in the figure are not listed as single numbers for the CPU—
memory buses (VME, FutureBus, and Multibus 11). Because of the bus
overhead, the size of the transfer affects bandwidth significantly. Since the bus
usually transfers to or from memory. the speed of the memory also affects the
bandwidth. For example, with infinite transfer size and infinitely fast (0 ns)
memory, FutureBus is 240% faster than VME, but FutureBus is only about 20%
faster than VME for single—word transfers from a 150—ns memory. _____/

VME bus FutureBus Multibus II IPI SCSI

Bus width (signals) 128 96 96 16 8
Address/data multiplexed? Not multi— Multiplexed Multiplexed N/A N/A

plexed

Data width (primary) 16 to 32 bits 32 bits 32 bits 16 bits 8 bits
Transfer size Single or Single or Single or Single or Single or

multiple multiple multiple multiple multiple
Number of bus masters Multiple Multiple Multiple Single Multiple
Split transaction? No Optional Optional Optional Optional
Clocking Asynchronous Asynchronous Synchronous Asynchronous Either
Bandwidth, 0—ns access memory. 25.0 MB/sec 37.0 MB/sec 20.0 MB/sec 25.0 MB/sec 5.0 MB/sec or
single word 1.5 MB/sec
Bandwidth. 150-ns access 12.9 MB/sec 15.5 MB/sec 10.0 MB/sec 25.0 MB/sec 5.0 MB/sec or
memory. single word 1.5 MB/sec
Bandwidth, O—ns access memory, 27.9 MB/sec 95.2 MB/sec 40.0 MB/sec 25.0 MB/sec 5.0 MB/sec or
multiple words (infinite block 4/ 1.5 MB/sec
length)

Bandwidth. 150-ns access 13.6 MB/sec 20.8 MB/sec 13.3 MB/sec 25.0 MB/sec 5.0 MB/sec or
memory. multiple words (infinite 1.5 MB/sec
block length)

Maximum number of devices 21 20 21 8 7

Maximum bus length 0.5 meter 0.5 meter 0.5 meter 50 meters 25 meters
Standard IEEE 1014 IEEE 896.1 ANSI/IEEE ANSI X3.129 ANSI X3.13I1296

FIGURE 9.26 Information on five bus standards. The first three were defined originally as CPU—memory buses and

the last two as I/O buses. For the CPU—memory buses the bandwidth calculations assume a fully loaded bus and are
given for both single—word transfers and blockt
ory latency and assuming 150-ns access time.
backplane length. (Data in the first three columns is from Borrill [1986].)
maximum data-transfer rate. The SCSI standard offers eith

ransfers of unlimite

version transfers at 1.5 MB/sec and the synchronous at 5 MB/sec.

SAMSUNG EXHIBIT 1009

Pa e 135 of 17

d length; measurements are shown both ignoring mem—
Bandwidth assumes the average distance of a transfer is one-third of the

The bandwidth for the HO buses is given as their

er asynchronous or synchronous 1/0; the asynchronous

SAMSUNG EXHIBIT 1009
Page 136 of 171

Input/Output

Interfacing to the CPU

Having described [/0 devices and looked at some of the issues of the connecting
bus. we are ready to discuss the CPU end of the interface. The first question is

1 how the physical connection of the I/O bus should be made. The two choices areconnecting it to memory or to the cache. In the following section we will discuss
the pros and cons of connecting an l/O bus directly to the cache: in this section
we examine the more usual case in which the 1/0 bus is connected to the main
memory bus. Figure 9.27 shows a typical organization. In low-cost systems, the

x [/0 bus is the memory bus; this means an I/O command on the bus could
1 interfere with a CPU instruction fetch. for example.Once the physical interface is chosen. the question becomes how does the

CPU address an I/O device that it needs to send or receive data. The most
wrapped 1/0. In this scheme. portions of the

s. Reads and writes to those addresses

f the I/O space may also be set
I accesses to those

common practice is called memory

address space are assigned to I/O device
may cause data to be transferred: some portion 0
aside for device control, so commands to the device are jus
memory-mapped addresses. The alternative practice is to use dedicated I/O
opcodes in the CPU. In this case. the CPU sends a signal that this address is for
I/O devices. Examples of computers with 1/0 instructions are the Intel 80x86
and the IBM 370 computers. No matter which addressing scheme is selected.
each l/O device has registers to provide status and control information. Either

CPU—memory bus

Bus
adapter

l/O

[/0 I/O controllercontroller

Graphrcs
output

 controller

0 devices and an l/O bus to the CPU-memoryFIGURE 9.27 A typical interface of I/
\ bus.

SAMSUNG EXHIBIT 1009

Page 136 of 171

SAMSUNG EXHIBIT 1009
Page 137 of 171

9.6 Interfacing to the CPU

through loads and stores in memory—mapped 1/0 or through special instructions,
the CPU sets flags to determine the operation the [/0 device will perform.

1/0 is rarely a single operation. For example, the DEC LPl 1 line printer has
two [/0 device registers: one for status information and one for data to be

printed. The status register contains a done bit, set by the printer when it has
printed a character, and an error bit, indicating that the printer is jammed or out
of paper. Each byte of data to be printed is put into the data register; the CPU
must then wait until the printer sets the done bit before it can place another
character in the buffer.

This simple interface, in which the CPU periodically checks status bits to see
if it is time for the next I/O operation, is called polling. As one might expect, the
fact that CPUs are so much faster than I/O devices means polling may waste a
lot of CPU time. This was recognized long ago, leading to the invention of
interrupts to notify the CPU when it is time to do something for the I/O device.
Interrupt-driven I/O, used by most systems for at least some devices, allows the
CPU to work on some other process while waiting on the I/O device. For
example, the LP] 1 has a mode that allows it to interrupt the CPU whenever the
clone bit or error bit is set. In general-purpose applications, interrupt driven 1/0
is the key to multitasking operating systems and good response times.

The drawback to interrupts is the operating system overhead on each event. In
real—time applications with hundreds of I/O events per second, this overhead can
be intolerable. One hybrid solution for real-time systems is to use a clock to
periodically interrupt the CPU, at which time the CPU polls all I/O devices.

Delegating l/O Responsibility from the CPU

Interrupt-driven I/O relieves the CPU from waiting for every I/O event, but there
are still many CPU cycles spent in transferring data. Transferring a disk block of
2048 words, for instance, would require at least 2048 loads and 2048 stores, as
well as the overhead for the interrupt. Since [/0 events so often involve block
transfers, direct memory access (DMA) hardware is added to many computer
systems to allow transfers of numbers of words without intervention by theCPU.

DMA is a specialized processor that transfers data between memory and an
I/O device, while the CPU goes on with other tasks. Thus, it is external to the

CPU and must act as a master on the bus. The CPU first sets up the DMA
registers, which contain a memory address and number of bytes to be
transferred. Once the DMA transfer is complete, the controller interrupts the
CPU. There may be multiple DMA devices in a computer system; for example,
DMA is frequently part of the controller for an l/O device.

Increasing the intelligence of the DMA device can further unburden the CPU.

Devices called [/0 processors, (or 1/0 controllers, or channel controllers)
operate from either fixed programs or from programs downloaded by the
operating system. The operating system typically sets up a queue of [/0 control

SAMSUNG EXHIBIT 1009

Page 137 of 171

SAMSUNG EXHIBIT 1009
Page 138 of 171

Input/Output 7 535

9.7

blocks that contain information such as data location (source and destination)

and data size. The 1/0 processor then takes items from the queue, doing

everything requested and sending a single interrupt when the task specified in

the [/0 control blocks is complete. Whereas the LPll line printer would cause

4800 interrupts to print a 60—line by 80—character page, an [/0 processor could

save 4799 of those interrupts.

I/O processors can be compared to multiprocessors in that they facilitate

several processes executing simultaneously in the computer system. I/O

processors are less general than CPUs, however, since they have dedicated tasks,

and thus parallelism is also much more limited. Also, an I/O processor doesn't

normally change information, as a CPU does, but just moves information from

one place to another.

Interfacing to an Operating System

In a manner analogous to the way compilers use an instruction set (see Section

3.7 of Chapter 3), operating systems control what I/O techniques implemented

by the hardware will actually be used. For example, many [/0 controllers used in

early UNIX systems were 16—bit microprocessors. To avoid problems with 16—
bit addresses in controllers, UNIX was changed to limit the maximum I/O

transfer to 63 KB or less; at the time of this book’s publication, that limit is still

in effect. Thus, a new I/O controller designed to efficiently transfer l—MB files
would never see more than 63 KB at a time under UNIX, no matter how large
the files.

Caches Cause Problems for Operating Systems—
Stale Data

The prevalence of caches in computer systems has added to the responsibilities

of the operating system. Caches imply the possibility of two copies of the data—
one each for cache and main memory—while virtual memory can result in three

copies—for cache, memory and disk. This brings up the possibility of stale data:
the CPU or 1/0 system could modify one copy without updating the other c0pies

(see Section 8.8 in Chapter 8). Either the Operating system or the hardware muSt
make sure that the CPU reads the most recently input data and that 1/0 outputs

the correct data, in the presence of caches and virtual memory. Whether the

stale-data problem arises depends in part on where the 1/0 is connected to the

computer. If it is connected to the CPU cache, as shown in Figure 9.28 (page
536), there is no stale—data problem; all I/O devices and the CPU see the most
accurate version in the cache, and existing mechanisms in the memory hierarchy

ensure that other copies of the data will be updated. The side effect is lost CPU

performance, since I/O will replace blocks in the cache with data that are

unlikely to be needed by the process running in the CPU at the time of the

SAMSUNG EXHIBIT 1009

Page 138 of 171

SAMSUNG EXHIBIT 1009
Page 139 of 171

536 9.7 Interfacing to an Operating System

transfer. In other words, all [/0 data goes through the cache but little of it is
referenced. This arrangement also requires arbitration between CPU and 1/0 to

, decide who accesses the cache. If [/0 is connected to memory. as in Figure 9.27
(page 533), then it doesn’t interfere with CPU, provided the CPU has a cache. In
this situation, however, the stale-data problem occurs. Alternatively, I/O can just
invalidate data—either all data that might match (no tag check) or only data thatmatches.

There are two parts to the stale-data problem:

1. The 1/0 system sees stale data on output because memory is not up to date.

2 The CPU sees stale data in the cache on input after the I/O system has
updated memory.

The first dilemma is how to output correct data if there is a cache and 1/0 is
connected to memory. A write—through cache solves this by ensuring that
memory will have the same data as the cache. A write—back cache requires the
operating system to flush output addresses to make sure they are not in the
cache. This takes time, even if the data is not in the cache, since address checks
are sequential. Alternatively, the hardware can check cache tags during output to
see if they are in a write-back cache, and only interact with the cache if the
output tries to read data that is in the cache.

The second problem is ensuring that the cache won’t have stale data after
input. The operating system can guarantee that the input data area can’t possibly

CPU—memory bus

 l/O I/O

controller controller

Graphics
output

FIGURE 9.28 Example of HO connected directly to the cache.

I/O
controller

Network ’

SAMSUNG EXHIBIT 1009

Page 139 of 171

SAMSUNG EXHIBIT 1009
Page 140 of 171

Input/Output 537

be in the cache. If it can’t guarantee this, the operating system flushes input

addresses to make sure they are not in the cache. Again, this takes time, whether

or not the input addresses are in the cache. As before, extra hardware can be

added to check tags during an input and invalidate the data if there is a conflict.

These problems are basically the same as cache coherency in a multiprocessor,

discussed in Section 8.8 of Chapter 8; [/0 can be thought of as a second

dedicated processor in a multiprocessor.

DMA and Virtual Memory

Given the use of virtual memory, there is the matter of whether DMA should

transfer using virtual addresses or physical addresses. Here are some problems

with DMA using physically mapped I/O:

- Transferring a buffer that is larger than one page will cause problems, since

the pages in the buffer will not usually be mapped to sequential pages in

physical memory.

I Suppose DMA is ongoing between memory and a frame buffer, and the

operating system removes some of the pages from memory (or relocates

them). The DMA would then be transferring data to or from the wrong page

of memory.

One answer to these questions is virtual DMA. It allows the DMA to use

virtual addresses that are mapped to physical addresses during the DMA. Thus, a

buffer must be sequential in virtual memory but the pages can be scattered in

physical memory. The operating system could update the address tables of a

DMA if a process is moved using virtual DMA, or the operating system could

“lock” the pages in memory until the DMA is complete. Figure 9.29 (page 538)

shows address-translation registers added to the DMA device.

Caches Helping Operating Systems—-
File or Disk Caches

While the invention of caches made the life of the operating systems designer

more difficult, operating systems designers’ concern for performance led them

to cache-like optimizations, using main memory as a “cache” for disk traffic to

improve I/O performance. The impact of using main memory as a buffer or

cache for file or disk accesses is demonstrated in Figure 9.30 (page 538). It

shows the change in disk I/Os for a cacheless system measured as miss rate (see

Section 8.2 in Chapter 8). File caches or disk caches change the number of disk

[/05 and the mix of reads and writes; depending on cache size and write policy,
between 50% to 70% of all disk accesses could become writes with such caches.

Without file or disk caches, between 15% and 33% of all accesses are writes,

depending on the environment.

SAMSUNG EXHIBIT 1009

Page 140 of 171

SAMSUNG EXHIBIT 1009
Page 141 of 171

9.7 Interfacing to an Operating System

CPU—memory bus

Address-
translation
registers

l/O

controller

FIGURE 9.29 Virtual DMA requires a register for each page to be transferred in the
DMA controller, showing the protection bits and the physical page corresponding toeach virtual page.

r.

Disk/file
cache
miss rate

VAXUNIX

0%‘1r‘r—T—r—‘v—r—r—rfi‘1I—i1fi‘fr
0 4 8 12 16 20 24 28 32

Cache size (MB)

versus cache size. Ousterhout et al. [1985] collected the VAX UNIX data on VAX—11/785s
with 8 MB to 16 MB of main memory, running 4.2 BSD UNIX using a 16—KB block size.
Smith [1985] collected the IBM SVS and IBM MVS traces on IBM 370/168 using a one-
track block size (which varied from 7294 bytes to 19254 bytes, depending on the disk). The
difference between a file cache and a disk cache is that the file cache uses logical block
numbers while a disk cache uses addresses that have been mapped to the physical sector
and track on a disk. This difference is similar to the difference between a virtually
addressed and a physically addressed cache (see Section 8.8 in Chapter 8).

SAMSUNG EXHIBIT 1009

Page 141 of 171

SAMSUNG EXHIBIT 1009
Page 142 of 171

Input/Output

7539

9.8 Designing an IIO System

The art of 1/0 is finding a design that meets goals for cost and variety of devices

while avoiding bottlenecks to I/O performance. This means that components

must be balanced between main memory and the I/O device because perfor—

mance—and hence effective cost/performance—can only be as good as the

weakest link in the I/O chain. The architect must also plan for expansion so that

customers can tailor the 1/0 to their applications. This expansibility, both in

numbers and types of I/O devices, has its costs in longer backplanes, larger
power supplies to support I/O devices, and larger cabinets.

In designing an I/O system, analyze performance, cost, and capacity using
varying [/0 connection schemes and different numbers of I/O devices of each

type. Here is a series of six steps to follow in designing an I/O system. The

answers in each step may be dictated by market requirements or simply by

cost/performance goals.

1. List the different types of I/O devices to be connected to the machine, or a

list of standard buses that the machine will support.

2. List the physical requirements for each I/O device. This includes volume,

power, connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any
controller needed for this device.

4. Record the CPU resource demands of each I/O device. This should include:

Clock cycles for instructions used to initiate an 1/0, to support operation

of an I/O device (such as handling interrupts), and complete l/O

CPU clock stalls due to waiting for 1/0 to finish using the memory, bus, or
cache

CPU clock cycles to recover from an I/O activity, such as a cache flush

5. List the memory and I/O bus resource demands of each l/O device. Even

when the CPU is not using memory, the bandwidth of main memory and the
[/0 bus are limited.

6. The final step is establishing performance of the different ways to organize

these I/O devices. Performance can only be properly evaluated with

simulation, though it may be estimated using queuing theory.

You then select the best organization, given your performance and cost goals.

Cost and performance goals affect the selection of the 1/0 scheme and

physical design. Performance can be measured either as megabytes per second

or I/Os per second, depending on the needs of the application. For high per—

formance, the only limits should be speed of 1/0 devices, number of I/O devices,

and speed of memory and CPU. For low cost, the only expenses should be those

SAMSUNG EXHIBIT 1009

Page 142 of 171

SAMSUNG EXHIBIT 1009
Page 143 of 171

9.8 Designing an l/O System

Example

Answer

for the l/O devices themselves and for cabling to the CPU. Cost/performance
design, of course, tries for the best of both worlds.

To make these ideas clearer, let’s go through several examples.

First, let’s look at the impact on the CPU of reading a disk page directly into the
cache. Make the following assumptions:

Each page is 8 KB and the cache-block size is 16 bytes.

The addresses corresponding to the new page are not in the cache.

The CPU will not access any of the data in the new page.

90% of the blocks that were displaced from the cache will be read in again,
and each will cause a miss.

The cache uses write back, and 50% of the blocks are dirty on average.

The 1/0 system buffers a full cache block before writing to the cache (this is
called a speed—matching bufler, matching transfer bandwidth of the I/O
system and memory).

The accesses and misses are spread uniformly to all cache blocks.

There is no other interference between the CPU and I/O for the cache slots.

There are 15,000 misses every one million clock cycles when there is no 1/0.

The miss penalty is 15 clock cycles, plus 15 more cycles to write the block if
it was dirty.

Assuming one page is brought in every one million clock cycles, what is the
impact on performance?

Each page fills 8192/16 or 512 blocks. l/O transfers do not cause cache misses
on their own because entire caché’ blocks are transferred. However, they do
displace blocks already in the cache. If half of the displaced blocks are dirty it
takes 256*15 clock cycles to write them back to memory. There are also misses
from 90% of the blocks displaced in the cache because they are referenced later.
adding another 90%*512, or 46] misses. Since this data was placed into the
cache from the l/O system, all these blocks are dirty and will need to be written
back when replaced. Thus, the total is 256* 15 + 461*30 more clock cycles than
the original 1,000,000 + 15,000* 15. This turns into a 1% decrease in
performance:

256*15 +46l*30 _ 17670 _ 0014
1000000+15000*15 — 1225000 — '

Now let’s look at the cost/performance of different [/0 organizations. A
simple way to perform this analysis is to look at maximum throughput assuming

SAMSUNG EXHIBIT 1009

Fee 143 of 171

SAMSUNG EXHIBIT 1009
Page 144 of 171

Example

Answer

Input/Output 541

that resources can be used at 100% of their maximum rate without side effects
from interference. A later example takes a more realistic view.

Given the following performanCe and cost information:

a 50—MIPS CPU costing $50,000

an 8-byte—wide memory with a 200-ns cycle time

80 MB/sec [/0 bus with room for 20 SCSI buses and controllers

SCSI buses that can transfer 4 MB/sec and support up to 7 disks per bus
(these are also called SCSI strings)

a $2500 SCSI controller that adds 2 milliseconds (ms) of overhead to perform
a disk I/O

an operating system that uses 10,000 CPU instructions for a disk [/0

a choice of a large disk containing 4 GB or a small disk containing 1 GB,
each costing $3 per MB

both disks rotate at 3600 RPM, have a 12-ms average seek time, and can
transfer 2MB/sec

the storage capacity must be 100 GB, and

the average I/O size is 8 KB

Evaluate the cost per I/O per second (IOPS) of using small or large drives.
Assume that every disk I/O requires an average seek and average rotational
delay. Use the optimistic assumption that all devices can be used at 100% of

capacity and that the workload is evenly divided between all disks.

[/0 performance is limited by the weakest link in the chain, so we evaluate the

maximum performance of each link in the I/O chain for each organization to

determine the maximum performance of that organization.
Let’s start by calculating the maximum number of IOPS for the CPU, main

memory. and [/0 bus. The CPU I/O performance is determined by the speed of
the CPU and the number of instructions to perform a disk I/O:

50 MIPS

= 5000
Maximum IOPS for CPU =

The maximum performance of the memory system is determined by the memory
cycle time, the width of the memory, and the size of the I/O transfers:

2 >l<
Maximum IOPS for main memory 2

8 KB per [/0 z 5000

SAMSUNG EXHIBIT 1009.

Page 144 of 171

SAMSUNG EXHIBIT 1009
Page 145 of 171

542 9.8 Designing an l/O System

The [/0 bus maximum
performance is limited by the bus bandwidth and the sizeof the 1/0:

Maximum IOPS for the I/O bus =W
KB per l/O z 10000

Thus, no matter which disk is selected, the CPU and main memory limits the
maximum performance to no more than 5000 IOPS.

ms SCSI controller overhead

maximum rate per controller

 Maximum IOPS per SCSI controller 2 4 rim 2 250 IOPS
All the organizations will use sever
the whole system.

The final link in the chain is
disk 1/0 is

al controllers, so 250 IOPS is not the limit for

the disks themselves. The time for an average

. 0.5 8 KB

I/O time — 12 ms +m+m—12+8.3+ 4 — 24.3 ms

t GB disks. The maximum number ofl/Os for all the disks is:

Maximum IOPS for 25 4-GB disks 2

Maximum IOPS for 100 l—GB disks 2 100 * 41 =
SAMSUNG EXHIBIT 1009

Page 145 of 171

SAMSUNG EXHIBIT 1009
Page 146 of 171

Input/Output 543

standard limits disks to 7 per SCSI string. The minimum number of controllers is
for the 4—GB disks

Minimum number of SCSI strings for 25 4-GB disks = 2;]: or 4

and for l-GB disks

Minimum number of SCSI strings for 100 1-GB disks = g9 or 15

We can calculate the maximum IOPS for each configuration:

Maximum IOPS for 4 SCSI strings = 4 * 250 = 1000 IOPS

Maximum IOPS for 15 SCSI strings : 15 * 250 = 3750 IOPS

The maximum performance of this number of controllers is slightly lower
than the disk I/O throughput, so let’s also calculate the number of controllers so
they don’t become a bottleneck. One way is to find the number of disks they can
support per string:

250

Number of disks per SCSI string at full bandwidth =I = 6.1 or 6

and then calculate the number of strings:

Number of SCSI strings for full bandwidth 4-GB disks = g; = 4.1 or 5

Number of SCSI strings for full bandwidth l-GB disks 2 129 = 16.7 or 17

This establishes the performance of four organizations: 25 4-GB disks with 4
or 5 SCSI strings and 100 1—GB disks with 15 to 17 SCSI strings. The maximum
performance of each option is limited by the bottleneck (in boldface):

4—GB disks, 4 strings = Min(5000,5000,10000,1025,1000) = 1000 IOPS

4-GB disks, 5 strings = Min(5000,5000,10000.1025,1250) = 1025 IOPS

I—GB disks, 15 strings = Min(5000.5000,1000041003750) = 3750 IOPS

l-GB disks, 17 strings = Min(5000,5000,]0000,4100,4250) = 4100 IOPS

We can now calculate the cost for each organization:

x

SAMSUNG EXHIBIT 1009l .

I Page 146 of 171

SAMSUNG EXHIBIT 1009
Page 147 of 171

544 9.8 Designing an l/O System

4-GB disks, 4 strings = $50,000 + 4*$2,500 + 25 * (4096*$3) = $367,200
,000 + l7*$2,500 + 100 * (1024*$3) = $399,700

For the organizations in the last example, calculate the
of each resource in the computer system.

4-GB disks, 4-GB disks,
4 strings 5 strings

 l-GB disks, l-GB disks,
15 strings 17 strings

 Memory 20% 21% 75% 82% l

1/0 bus 10% 10% 38% 41% |SCSI buses 100% 82% 100% 96%
1 Disks 98% 100% 91% 100% #

SAMSUNG EXHIBIT 1009

Page 147 of 171

SAMSUNG EXHIBIT 1009
Page 148 of 171

Input/Output 545

No 1/0 bus should be utilized more than 75% to 80%;

No disk string should be utilized more than 40%;

No disk arm should be seeking more than 60% of the time.

Recalculate performance in the example above using these rules of thumb, and

show the utilization of each component. Are there other organizations that

follow these guidelines and improve performance?

Example

Answer Figure 9.31 shows that the I/O bus is far below the suggested guidelines, so we
concentrate on the utilization of seek and SCSI bus. The utilization of seek time

per disk is

Time of average seek 12 ms 12* . — = = 50%
Time between I/Os ng 24

41 IOPS

which is below the rule of thumb. The biggest impact is on the SCSI bus:

1

4ms

Suggested IOPS per SCSI string = * 40% : 100 IOPS.

With this data we can recalculate IOPS for each organization:

4—GB disks. 4 strings = Min(5000,5000,7500,1025,400) = 400 IOPS

4—GB disks. 5 strings = Min(5000,5000.7500,1025.500) = 500 IOPS

l—GB disks. 15 strings = Min(5000,5000,7500,4100,1500) = 1500 IOPS

l—GB disks, 17 strings = Min(5000.5000,7500,4100.1700) = 1700 IOPS

Under these assumptions, the small disks have about 3.0 to 4.2 times the

l performance of the large disks.
Clearly. the string bandwidth is the bottleneck now. The number of disks per

string that would not exceed the guideline is
. 10

Number of disks per SCSI string at full bandwrdth : 4‘10 2 2.4 or 2
l and the ideal number of strings is

l 25
Number of SCSI strings for full bandwidth 4—GB disks — E = 12.5 or 13

. . . . 100

Number of SCSI strings for full bandwrdth 1—GB disks :7 = 50

SAMSUNG EXHIBIT 1009

Page 148 of 171

SAMSUNG EXHIBIT 1009
Page 149 of 171

546 9.8 Designing an 1/O System

/ Resource 4-GB 4-GB l-GB l-GB 4-GB l-GB

disks, 4 disks, 5 disks, 15 disks, l7 disks, l3 disks, 20
‘ strings strings strings strings strings strings

CPU 8% 10% 30% 34% 21% 40%
Memory 8%\10% 30% 34% 21% 40%W“ , ,‘\..m, 21 I/O busi\\fifii‘ 5% 7%\7 20% \ 23% g\ 27%i SCSI buses 40% 40% 40% 40% 32% 40%1\\\\‘\ \“‘\‘\‘\,\,,,‘W1 Disks 39% 49% 37% 41% 100% 49%. . . 7“7‘\\\77\7‘\\Seek unhzanon 19% 24% 18% 20% 49% 24%

\‘\ \\\W\,\\\,fiL[OPS 400 500 1500 1700 1025 2000\\\\ X\

9-9 Putting It A
The IBM 39

ll Together:

90 Storage Subsystem

1009AMSUNG EXHIBIT

8 Page 149 of 17

1

SAMSUNG EXHIBIT 1009
Page 150 of 171

Input/Output 547

The IBM 360/370 [/0 architecture has evolved over a period of 25 years.
Initially, the [/0 system was general purpose, and no special attention was paid
to any particular device. As it became clear that magnetic disks were the chief
consumers of 1/0, the IBM 360 was tailored to support fast disk I/O. IBM’s
dominant philosophy is to choose latency over throughput whenever it makes a
difference. IBM almost never uses a large buffer outside the CPU; their goal is
to set up a clear path from main memory to the I/O device so that when a device

is ready, nothing can get in the way. Perhaps IBM followed a corollary to the
quote on page 526: you can buy bandwidth, but you need to design for latency.
As a secondary philosophy, the CPU is unburdened as much as possible to allow
the CPU to continue with computation while others perform the desired I/O
activities.

The example for this section is the high—end IBM 3090 CPU and the 3990
Storage Subsystem. The IBM 3090, models 3090/100 to 3090/600, can contain
one to six CPUs. This 18.5—ns-clock-cycle machine has a l6-way interleaved
memory that can transfer eight bytes every clock cycle on each of two

(3090/ 100) or four (3090/600) buses. Each 3090 processor has a 64-KB, 4-way—
set—associative, write—back cache. and the cache supports pipelined access taking
two cycles. Each CPU is rated about 30 IBM MIPS (see page 78), giving at
most 180 MIPS to the IBM 3090/600. Surveys of IBM mainframe installations

suggest a rule of thumb of about 4 GB of disk storage per MIPS of CPU power
(see Section 9.12).

It is only fair warning to say that IBM terminology may not be self—evident,
although the ideas are not difficult. Remember that this 1/0 architecture has
evolved since 1964. While there may well be ideas that IBM wouldn’t include if

they were to start anew, they are able to make this scheme work, and make it
work well.

The 3990 Ho Subsystem Data-Transfer Hierarchy
and Control Hierarchy

The 1/0 subsystem is divided into two hierarchies:

1. Control—This hierarchy of controllers negotiates a path through a maze of
possible connections between the memory and the I/O device and controls
the timing of the transfer.

2. Data—This hierarchy of connections is the path Over which data flows
between memory and the I/O device.

After going over each of the hierarchies, we trace a disk read to help understand
the function of each component.

For simplicity, we begin by discussing the data—transfer hierarchy, shown in
Figure 9.33 (page 548). This figure shows one section of the hierarchy that con-
tains up to 64 large IBM disks; using 64 of the recently announced IBM 3390
disks, this piece could connect to over one trillion bytes of storage! Yet this

SAMSUNG EXHIBIT 1009

Page 150 of 171

SAMSUNG EXHIBIT 1009
Page 151 of 171

9.9 Putting It All Together: The IBM 3990 Storage Subsystem

piece represents only one—sixth of the capacity of the IBM 3090/600 CPU. This
ability to expand from a small [/0 system to hundreds of disks and terabytes of

‘ storage is what gives IBM mainframes their reputation in the 1/0 world.
The best-known member of the data hierarchy is the channel. The channel is

\ nothing more than 50 wires that connect two levels on the I/O hierarchy
together. Only 18 of the 50 wires are used for transferring data (8 data plus 1
parity in each direction), while the rest are for control information. For years the
maximum data rate was 3 MB per second, but it recently was raised to 4.5 MB
per second. Up to 48 channels can be connected to a 3090/100 CPU, and up to

Main memory
bank 0

O
O
0

Main memory
bank 15

Speed-matching

buffers 5

3090 CPU

+ cache

 Speed—matching
Channel butterscontroller

 i—ZU—iZO

Storage
director

Storage
director Storage

director Storage
director

FIGURE 9.33 The data-transfer hierarchy in the IBM 3990 VG Subsystem. Note that all the channels are connected
to all the storage directors. The disks at the bottom represent the quad—ported IBM 3380 disk drives, with the maximum of
64 disks. The collection of disks on the same path to the head—of—string controller is called a string.

SAMSUNG EXHIBIT 1009

Page 151 of 171

SAMSUNG EXHIBIT 1009
Page 152 of 171

4’—._4

lnput/Output 549

96 channels to a 3090/600. Because they are “multiprogrammed,” channels can
actually service several disks. For historical reasons, IBM calls this block
multiplexing.

Channels are connected to the 3090 main memory via two speed-matching
bufl'ers, which funnel all the channels into a single port to main memory. Such
buffers simply match the bandwidth of the I/O device to the bandwidth of the
memory system. There are two 8-bth buffers per channel.

The next level down the data hierarchy is the storage director. This is an
intermediary device that allows the many channels to talk to many different I/O
devices. Four to sixteen channels go to the storage director depending on the
model, and two or four paths come out the bottom to the disks. These are called
two-path strings orfour-path strings in IBM parlance. Thus. each storage
director can talk to any of the disks using one of the strings. At the top of each
string is the head of string, and all communication between disks and control
units must pass through it.

At the bottom of the datapath hierarchy are the disk devices themselves. To
increase availability, disk devices like the IBM 3380 provide four paths to
connect to the storage director; if one path fails, the device can still be
connected.

The redundant paths from main memory to the I/O device not only improve
availability, but also can improve performance. Since the IBM philosophy is to
avoid large buffers, the path from the I/O device to main memory must remain
connected until the transfer is complete. If there were a single hierarchical path
from devices to the speed—matching buffer, only one I/O device in a subtree
could transfer at a time. Instead, the multiple paths allow multiple devices to
transfer simultaneously through the storage director and into memory.

The task of setting up the datapath connection is that of the control hierarchy.
Figure 9.34 shows both the control and data hierarchies of the 3990 1/0
subsystem. The new device is the I/O processor. The 3090 channel controller
and I/O processor are load/store machines similar to DLX. except that there is no
memory hierarchy. In the next subsection we see how the two hierarchies work
together to read a disk sector.

Tracing a Disk Read in the IBM 3990 Ho
Subsystem

The 12 steps below trace a sector read from an IBM 3380 disk. Each of the 12
steps is labeled on a drawing of the full hierarchy in Figure 9.34 (page 550).
1. The user sets up a data structure in memory containing the operations that
should occur during this 1/0 event. This data structure is termed an [/0 control
block, or IOCB, which also points to a list of channel control words (CCWs).
This list is called a Channel program. Normally. the operating system provides
the channel program, but some users write their own. The operating system
checks the IOCB for protection violations before the I/O can continue.

 UNG EXHIBIT 1009

Page 152 of 171

SAMSUNG EXHIBIT 1009
Page 153 of 171

Speed-matching

buffers 5Illlllllllllllll

ystem

labeled with the 12 steps to read apage 548) is the [/0 processor.

SAMSUNG EXHIBIT 1009;

Page 153 of 17

SAMSUNG EXHIBIT 1009
Page 154 of 171

Input/Output 551

Location CCW Comment

CCWl : Defi ne Transfers a 16-ber parameter to the storage director. The
Extent channel sees this as a write data transfer.

CCW2 : Locate Transfers a 16—byte parameter to the storage director as
Reco rd above. The parameter identifies the operation (read in this

case) plus seek, sector number, and record ID. The channel
again sees this as a write data transfer.

CCW3 : Read Data Transfers the desired disk data to the channel and then to

the main memory.

FIGURE 9.35 A channel program to perform a disk read, consisting of three channel
command words (CCWs). The operating system checks for virtual memory access
violations of CCWs by simulating them to check for violations. These instructions are linked
so that only one START SUBCHANNEL instruction is needed.

3. The 1/0 processor uses the control wires of one of the channels to tell the

storage director which disk is to be accessed and the disk address to be read. The
channel is then released.

4. The storage director sends a SEEK command to the head—of—string controller

and the head-of—string controller connects to the desired disk, telling it to seek to

the appropriate track, and then disconnects. The disconnect occurs between

CCW2 and CCW3 in Figure 9.35.

Upon completion of these first four steps of the read, the arm on the disk

seeks the correct track on the correct IBM 3380 disk drive. Other [/0 operations

can use the control and data hierarchy while this disk is seeking and the data is

rotating under the read head. The [/0 processor thus acts like a multipro-

grammed system, working on other requests while waiting for an I/O event to

complete.

An interesting question arises: When there are multiple uses for a single disk,

what prevents another seek from screwing up the works before the original

request can continue with the I/O event in progress? The answer is the disk
appears busy to the programs in the 3090 between the time a START

SUBCHANNEL instruction starts a channel program (step 2) and the end of that

channel program. An attempt to execute another START SUBCHANNEL

instruction would receive busy status from the channel or from the disk device.

After both the seek completes and the disk rotates to the desired point relative
to the read head, the disk reconnects to a channel. To determine the rotational

position of the 3380 disk, IBM provides rotational positional sensing (RPS), a

feature that gives early warning when the data will rotate under the read head.

IBM essentially extends the seek time to include some of the rotation time,

thereby tying up the datapath as little as possible. Then the I/O can continue:

5. When the disk completes the seek and rotates to the correct position, it

contacts the head—of—string controller.

SAMSUNG EXHIBIT 1009

Page 154 of 171

SAMSUNG EXHIBIT 1009
Page 155 of 171

9.9 Putting It All Together: The [BM 3990 Storage Subsystem

6. The head—of—string controller looks for a free storage director to send the
signal that the disk is on the right track.

7. The storage director looks for a free c
hannel so that it can use the control

wires to tell the [/0 processor that the disk i s on the right track.

There is now a direct
path between the 1/0 device and memory and thetransfer can begin:

9. When the disk is ready to transfer, it sends the data at 3 megabytes per
second over a bit—serial line to the storage director.

10. The storage director collects 16 bytes in one of two buffers and sends the
information on to the channel controller.

other I/O activity, resulting in an RPS
ubsystem must either:

I Wait another full rotation—16.7 ms~bef0re the data is back under the head,or

I/

- Break down the hierarchical datapath and start all over again!
Lots of RPS misses can ruin response times.

SAMSUNG EXHIBIT 1009

Page 155 of 171

SAMSUNG EXHIBIT 1009
Page 156 of 171

Input/Output 553

microcode control of the 3380D made slight improvements in seek time plus
removed a restriction that disk arms that were on the same internal path were

prevented from operating at the same time. IBM calls this option Device Level

Select (DLS). This change reduced internal path delays to 0. This had little

impact since there was not much time waiting on internal delays because

customers intentionally placed data on disks trying to avoid internal path delays.

This second change reduced response time another 9%. The final change was
addition of a 32-MB write-through disk cache to a 3380D, called the IBM 3880-

23. The disk cache reduced average rotational latency, seek time, and queueing

delays, giving another 41% reduction in response time.
One indication of the effectiveness of DPR is the number of disk devices

connected to a string. Studies of IBM systems using DPR, which average 16

disk devices per string versus 12 without DPR, suggest dynamic reconnect

allows a higher I/O rate with comparable response time [Henly and McNutt
1989].

Summary of the IBM 3990 I/O Subsystem

Goals for I/O systems consist of supporting the following:

- Low cost

I A variety of types of I/O devices

Response
time

("15) I Queuing (wait for disk)
Delay (channel path)

I Delay (internal path)
_ Direct (channel working)
I Seek
I: Rotational latency

l 3380D DPR DLS Cache
Changes to 33800

FIGURE 9.36 Changes in response time with improvements in 33800 broken into six
categories [Friesenborg and Wicks 1985]. Queueing delay refers to the time when the
program waits for another program to finish with the disk. Channel—path delay is the time
the operation waits due to the channel path and storage director being busy with another

‘ task. Internal—path delay is similar to channel—path delay except it refers to internal paths in
the 3380D. Direct means the time the channel path is busy with the operation. Seek time

and rotational latency are the standard definitions. Robinson and Blount [1986] report in the
study of the 3880-23 that the read hit rate for the 32-MB write-through cache in some large
systems averages about 90%, with reads accounting for 92% of the disk accesses.

SAMSUNG EXHIBIT 1009

Page 156 of 171

SAMSUNG EXHIBIT
Page 157 of 171

9.10

9.9 Putting It All Together: The IBM73990 Storage Subsystem

. A large number of I/O devices at a time

I High perfomiance

- Low latency

Substantial expendability and lower latency are hard to get at the same time.

IBM channel—based systems achieve the third and fourth goals by utilizing

hierarchical data paths to connect a large number of devices. The many devices

and parallel paths allow simultaneous transfers and. thus. high throughput. By

avoiding large buffers and providing enough extra paths to minimize delay from

congestion. channels offer low—latency l/O as well. To maximize use of the

hierarchy. lBM uses rotational positional sensing to extend the time that other

tasks can use the hierarchy during an [/0 operation.

Therefore. a key to performance of the IBM [/0 subsystem is the number of

rotational positional misses and congestion on the channel paths. A rule of

thumb is that the single—path channels should be no more than 30% utilized and

the quad-path channels should be no more than 60% utilized. or too many

rotational positional misses will result. This I/O architecture dominates the

industry. yet it would be interesting to see what. if anything. IBM would do

differently if given a clean slate.

Fallacies and Pitfalls

Fullat'y.‘ [/0 plays a small role in supercomputer design

The goal of the llliac IV was to be the world’s fastest computer. It may not have

achieved that goal. but it showed 1/0 as the Achilles’ Heel of high-performance
machines. In some tasks. more time was spent in loading data than in computing.

Amdahl‘s Law demonstrated the importance of high perfonnance in all the parts

of a high—speed computer. (In fact. Amdahl made his comment in reaction to

claims for performance through parallelism made on behalf of the llliac IV.) The

llliac IV had a very fast transfer rate (60 MB/sec). but very small. fixed—head
disks (I2-MB capacity). Since they were not large enough. more storage was

provided on a separate computer. This led to two ways of measuring l/O
overhead:

Warm start—Assuming the data is on the fast. small disks. [/0 overhead is

the time to load the Illiac IV memory from those disks.

Cold start—Assuming the data is in on the other computer. I/O overhead
must include the time to first transfer the data to the llliac IV fast disks.

Figure 9.37 shows ten applications written for the llliac IV in 1979. Assuming

warm starts. the supercomputer was busy 78% of the time and waiting for I/O

22% of the time; assuming cold starts. it was busy 59% of the time and waiting
for I/O 41% of the time.

SAMSUNG EXHIBIT

Page 157 of 171

SAMSUNG EXHIBIT 1009
Page 158 of 171

v T r

000 10% 20% 30 "a 40°C 50% 60% 70% 8090 90:0 lOO‘}

I CPU °o cold start [:l CPU °o warm start I

FIGURE 9.37 Feierback and Stevenson [1979] summarized the important llliac IV
applications and the percentage of time spent computing versus waiting for NO. The
arithmetic means of the 10 programs are 78% computing for warm start and 59%
computing for cold start.

Pitfall: Moving _lllllt'll()l1.\‘ from the CPU to [lie I/() [H‘Ut't’SSOI‘ to improve

[)6l‘ftll‘llltlllt't‘.

There are many examples of this pitfall. although [/0 processors can enhance
performance. A problem inherent with a family of computers is that the ini—
gration of an l/() feature usually changes the instruction set architecture or
system architecture in a programmer-visible way. causing all future machines to
haye to liVe with a decision that made sense in the past. If CPUs are improved in
cost/performance more rapidly than the I/O processor (and this will likely be the
case) then moving the function may result in a slower machine in the next CPU.

SAMSUNG EXHIBIT 1009

Page 158 of 171

SAMSUNG EXHIBIT 1009
Page 159 of 171

9.10 Fallacies and Pitfalls

The most telling example comes from the IBM 360. It was decided that the

performance of the ISAM system, an early database system, would improve if
some of the record searching occurred in the disk controller itself. A key field
was associated with each record, and the device searched each key as the disk
rotated until it found a match. It would then transfer the desired record. For the

disk to find the key, there had to be an extra gap in the track. This scheme is
applicable to searches through indices as well as data.

The speed a track can be searched is limited by the speed of the disk and of

the number of keys that can be packed on a track. On an IBM 3330 disk the key
is typically 10 characters, but the total gap between records is equivalent to 191
Characters if there were a key. (The gap is only 135 characters if there is no key,
since there is no need for an extra gap for the key.) If we assume the data is also

10 characters and the track has nothing else on it, then a 13165—byte track can
contain

13165

m= 62 key—data records

This performance is

16.7 ms (1 revolution)
62 z .25 ms/key search

In place of this scheme, we could put several key-data pairs in a single block and
have smaller inter-record gaps. Assuming there are 15 key-data pairs per block
and the track has nothing else on it, then

13165 _ 13165
135+15*(10+10) ‘ 135+300

— 30 blocks of key-data pairs

The revised performance is then

16.7 ms (1 revolution)
30*” z .04 ms/key search

Yet as CPUs got faster, the CPU time for a search was trivial. While the strategy
made early machines faster, programs that use the search—key operation in the
I/O processor run six times slower on today’s machines!

Fallacy: Comparing the price of media versus the price of the packaged
system.

This happens most frequently when new memory technologies are compared to
magnetic disks. For example, comparing the DRAM-chip price to magnetic-disk
packaged price in Figure 9.16 (page 518) suggests the difference is less than a

factor of 10, but its much greater when the price of packaging DRAM is
included. A common mistake with removable media is to compare the media
cost not including the drive to read the media. For example, optical media costs

SAMSUNG EXHIBIT 1009

Page 159 of 171

SAMSUNG EXHIBIT 1009
Page 160 of 171

Input/Output 557

only $1 per MB in 1990, but including the cost of the optical drive may bring the
price closer to $6 per MB.

Fallacy: The time of an average seek of a disk in a computer system is the
timefor a seek ofnne-third the number ()fcylinders.

This fallacy comes from confusing the way manufacturers market disks with the
expected performance and with the false assumption that seek times are linear in
distance. The 1/3 distance rule of thumb comes from calculating the distance of
a seek from one random location to another random location, not including the

current cylinder and assuming there are a large number of cylinders. In the past,
manufacturers listed the seek of this distance to offer a consistent basis for

comparison. (As mentioned on page 516, today they calculate the “average” by
timing all seeks and dividing by the number.) Assuming (incorrectly) that seek
time is linear in distance, and using the manufacturers reported minimum and

“average” seek times, a common technique to predict seek time is:

Distance . .

F * (Tlmeaverage — Tlmeminimum)Time :Time ’ ' +'i
seek mimmum DlstanCeaverage

The fallacy concerning seek time is twofold. First, seek time is not linear
with distance; the arm must accelerate to overcome inertia, reach its maximum

traveling speed, decelerate as it reaches the requested position, and then wait to
allow the arm to stop vibrating (settle time). Moreover, in recent disks
sometimes the arm must pause to control vibrations. Figure 9.38 (page 558)

plots time versus seek distance for an example disk. It also shows the error in
the simple seek-time formula above. For short seeks, the acceleration phase
plays a larger role than the maximum traveling speed, and this phase is typically
modeled as the square root of the distance. Figure 9.39 (page 558) shows
accurate formulas used to model the seek time versus distance for two disks.

The second problem is the average in the product specification would only be
true if there was no locality to disk activity. Fortunately, there is both temporal
and spatial locality (page 403 in Chapter 8): disk blocks get used more than once
and disk blocks near the current cylinder are more likely to be used than those

farther away. For example, Figure 9.40 (page 559) shows sample measurements
of seek distances for two workloads: a UNIX timesharing workload and a

business-processing workload. Notice the high percentage of disk accesses to the
same cylinder, labeled distance 0 in the graphs, in both workloads.

Thus, this fallacy couldn’t be more misleading. The Exercises debunk this
fallacy in more detail.

SAMSUNG EXHIBIT 1009

Page 160 of 171

SAMSUNG EXHIBIT 1009
Page 161 of 171

558 9.10 Fallacies and Pitfalls

Measured

Formula: T: Tmin+(D/D aV9)*(Ta\,g —7'mIn)
oTfi—T—fi—F_F-,_,__, .——,—4—,—4 T-r—rfi—r—v-i

o 20 40 60 80 100 120 140 160 180 200
Seek distance

shorter seeks. For example, a 40«cylinder seek takes almost 10 ms, while a 50-seek takes less than 9 ms.

IBM 3380B IBM 3§801
Range for formula Formulas Range for formula Formulas

2 S 2 S

l 5 l‘ D‘ t l 500 1.9 + Distance — IS ance . 1“ D'.t
50 248+ Distance— 1S ance

 20 l

51 100 8.1 + 0.044 * (Distance—50) 51 130 7.28 + 0.0320 (Distance—50)
101 500 10.3 + 0.025 * (Distance~100) 131 500 10.08 + 0.0166 >1 (Distance—130)
501 884 20.4 + 0.017 =s< (Distance—500) 501 884 16.00 + 0.0114 >x< (Distance—500)

1 measured these disks and prr‘posed
distances in cylinders to which each

SAMSUNG EXHIBIT 1009

Page 161 of 171

SAMSUNG EXHIBIT 1009
Page 162 of 171

Input/Output 559

195 208 30%1 80 1 92 0%

165 176 — 0%
150 160
135 144

Seek ‘20 Seek 128
distance 105 distance 112

90 96
75 80
60 64
45 48
30 32
15 1 6 1 1%
0 0 ' I - r , _ 61%

‘1' l I'— l— I _-| —|
0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50% 60% 70°/o

Percentage of seeks (UNIX timesharing workload) Percentage 0‘ seeks (bUSineSS workload)

FIGURE 9.40 Sample measurements of seek distances for two systems. The left measurements were taken on a
UNIX timesharing system. The right measurements were taken from a business processing application in which the disk
seek activity was scheduled. Seek distance of 0 means the access was made to the same cylinder. The rest of the
numbers show the collective percentage for distances up between numbers on the y axis. For example, 11% for the bar
labeled 16 in the business graph means that the percentage of seeks between 1 and 16 cylinders was 11%. The UNIX
measurements stopped at 200 cylinders, but this captured 85% of the accesses. The total was 1000 cylinders. The
business measurements tracked all 816 cylinders of the disks. The only seek distances with 1% or greater of the seeks
that are not in the graph are 224 with 4% and 304, 336, 512, and 624 each having 1%. This total is 94%, with the
difference being small but nonzero distances in other categories. The measurements are courtesy of Dave Anderson of
Imprimis.

9.1 1 l Concluding Remarks
I/O systems are judged by the variety of I/O devices, the maximum number of

I/O devices, cost, and performance, measured both in latency and in throughput.

These common goals lead to widely varying schemes. with some relying
extensively on buffering and some avoiding buffering at all costs. If one is

clearly better than the other, it is not obvious today. Perhaps this situation is like

the instruction set debates of the 19805, and the strengths and weaknesses of the

alternatives will become apparent in the 19905.

According to Amdahl’s Law, ignorance of I/O will lead to wasted

performance as CPUs get faster. Disk performance is growing at 4% to 6% per
year, while CPUs are growing at a much faster rate. The future demands for I/O

include better algorithms, better organizations, and more caching in a struggle to
keep pace.

SAMSUNG EXHIBIT 1009

Page 162 of 171

SAMSUNG EXHIBIT 1009
Page 163 of 171

9.12 Historical Perspective and References

9. 1 2 i Historical Perspective and References
The forerunner of today’s workstations was the Alto developed at Xerox Palo
Alto Research Center in 1974 [Thacker et al. 1982]. This machine reversed
traditional wisdom, making instruction set interpretation take back seat to the
display: the display used half the memory bandwidth of the Alto. In addition to
the bit-mapped display, this historic machine had the first Ethernet [Metcalfe
and Boggs 1976] and the first laser printer. It also had a mouse, invented earlier
by Doug Engelbart of SRI, and a removable cartridge disk. The 16-bit CPU
implemented an instruction set similar to the Data General Nova and offered
writable control store (see Chapter 5, Section 5.8). In fact, a single micropro—
grammable engine drove the graphics display, mouse. disks, network, and, when
there was nothing else to do, interpreted the instruction set.

The attraction of a personal computer is that you don’t have to share it with
anyone. This means response time is predictable, unlike timesharing systems.
Early experiments in the importance of fast response time were performed by
Doherty and Kelisky [1979]. They showed that if computer—system response
time increased a second that user think time did also. Thadhani [1981] showed a
jump in productivity as computer response times dropped to a second and
another jump as they dropped to a half—second. His results inspired a flock of
studies, and they supported his observations [IBM 1982]. In fact, some studies
were started to disprove his results! Brady [1986] proposed differentiating entry
time from think time (since entry time was becoming significant when the two
were lumped together) and provided a cognitive model to explain the more than
linear relationship between computer response time and user think time.

The ubiquitous microprocessor has inspired not only personal computers in
the l970s, but the current trend to moving controller functions into I/O devices
in the late 1980s and l990s. For example, microcoded routines in a central CPU
made sense for the Alto in 1975, bpt technological changes soon made separate
microprogrammable controller [/0 devices economical. These were then
replaced by the application-specific integrated circuits. I/O devices continued
this trend by moving controllers into the devices themselves. These are called
intelligent devices, and some bus standards (e.g., IPI and SCSI) have been
created just for these devices. Intelligent devices can relax the timing constraints I
by handling many of the low—level tasks and queuing the results. For example.
many SCSI—compatible disk drives include a track buffer on the disk itself.
supporting read ahead and connect/disconnect. Thus, on a SCSI string some
disks can be seeking and others loading their track buffer while one is i
transferring data from its buffer over the SCSI bus.

Speaking of buses, the first multivendor bus may have been the PDP-H
Unibus in 1970. DEC encouraged other companies to build devices that would
plug into their bus, and many companies did. A more recent example is SCSI.

SAMSUNG EXHIBIT 1009

Fee 163 o

SAMSUNG EXHIBIT 1009
Page 164 of 171

Input/Output 561

which stands for small computer systems intetface. This bus, originally called
SASI, was invented by Shugart and was later standardized by the IEEE.
Sometimes buses are developed in academia; the NuBus was developed by Steve
Ward and his colleagues at MIT and used by several companies. Alas, this open—
door policy on buses is in contrast to companies with proprietary buses using
patented interfaces, thereby preventing competition from plug-compatible
vendors. This practice also raises costs and lowers availability of I/O devices
that plug into proprietary buses, since such devices must have an interface
designedjust for that bus. Levy [1978] has a nice survey on issues in buses.

We must also give a few references to specific I/O devices. Readers
interested in the ARPANET should see Kahn [1972]. As mentioned in one of
the section quotes, the father of computer graphics is Ivan Sutherland, who
received the ACM Turing Award in 1988. Sutherland’s Sketchpad system
[1963] set the standard for today’s interfaces and displays. See Foley and Van
Dam [1982] and Newman and Sproull [1979] for more on computer graphics.
Scranton, Thompson, and Hunter [1983] were among the first to report the
myths concerning seek times and distances for magnetic disks.

Comments on the future of disks can be found in several sources. Goldstein
[1987] projects the capacity and I/O rates for IBM mainframe installations in
1995, suggesting that the ratio is no less than 3.7 GB per IBM mainframe MIPS
today, and that will grow to 4.5 GB per MIPS in 1995. Frank [1987] speculated
on the physical recording density, proposing the MAD formula on disk growth
that we used in Section 9.4. Katz, Patterson, and Gibson [1990] survey current
high-performance disks and I/O systems and speculate about future systems. The
possibility of achieving higher-performance I/O systems using collections of
disks is found in papers by Kim [1986], Salem and Garcia-Molina [1986], and
Patterson, Gibson, and Katz [1987].

Looking backward rather than forward, the first machine to extend interrupts
from detecting arithmetic abnormalities to detecting asynchronous I/O events is
credited as the NBS DYSEAC in 1954 [Leiner and Alexander 1954]. The
following year the first machine with DMA was operational, the IBM SAGE.
Just as today’s DMA, the SAGE had address counters that performed block
transfers in parallel with CPU operations. The first I/O channel may have been
on the IBM 709 in 1957 [Bashe et a]. 1981 and 1986]. Smotherman [1989]
explores the history of 1/0 in more depth.

References

ANON ET AL. [1985]. “A measure of transaction proceSsing power." Tandem Tech. Rep. TR 85.2.
Also appeared in Datamation, April 1, 1985.

BASHE, C. J., W. BUCHHOLZ, G .V. HAWKINSJ .L. INGRAM, AND N. ROCHESTER [1981]. “The
architecture of IBM’s early computers." IBM J. afResearch and Development 25:5 (September)3637375.

SAMSUNG EXHIBIT 1009

Page 164 of 171

SAMSUNG EXHIBIT 1009
Page 165 of 171

9.12 Historical Perspective and References

BASHE. C. J.. L. R, JOHNSON, J. H. PALMER. AND
MIT Press. Cambridge. Mass.

BORRILL. P. L. [1986]. “32-bit buses
Calif. 1387145.

BRADY. J. T. [1

E. W. PUGH [1986]. IBM's Euer Computers.

986]. “A theory of productivity in the creative process." IEEE CG&A (May) 2544.
BUCHER.I.V.A1\'D A. H. HAYES [1980].

computers." Prov. Computer Peifrn‘man245~254.
“I/O Performance measurement on Cray—1 and CDC 7000
('e Evaluation Users Group. [6th Meeting. NBS 500-65.

CHEN. P.] 1989]. An Evaluation ofRer/undunt Arrays ofIne.\pen.\'ive Disks Using an Anululil 5890.
M. S. Thesis. Computer Science Division. Tech. Rep. UCB/CSD 89/506.

DOHERTY. W. J. AND R. P. KELISKY [1979]. “Managing VM/CMS systems for user effectiveness."IBM Systems]. 18:1. 143466.

FEIERBACK. G AND D. STEVENSON [1979]. “The Illiacle."
Supercomptuers. Maidenhead. England. This data also appea
A. Newell. Computer Structures: Principle269.

in lnfotet'lz State of the Art Report on
rs in D. P. Siewiorek. C. G. Bell. and

s and Examples (1982). McGraw—Hill, New York. 268~

FOLEY. J. D. AND A. VAN DAM [1982]. Funa’ame
Wesley, Reading, Mass.

FRANK. P. D. [1987]. “Advances in Head Technology." presentation
Technology (December 15). Santa Clara Univ.

FRIESENBORG. S. E. AND R. J. WICKS [1985]. "DASD expect
MVS/XA." Tech. Bulletin GG22—9363-02 (July 10

GOLDSTEIN. S. [1987]. “Storage performance—an eight year outlook.” Tech. Rep. TR 03.308—1
(October). Santa Teresa Laboratory. IBM. San Jose. Calif.

HENLY. M. AND B. MCNUTT [1989]. “DASD [/0 characteristics: A comparison of MVS to VM."
Tech. Rep. TR 02.1550 (May). IBM. General Products Division. San Jose, Calif.

HOWARD. J. H. ET AL. [1988]. “Scale and
Computer Systems 6: 1. 51~8 1.

ntals o/‘Interat'tit'e Computer Graphics. Addison-

at Challenges in Winchester

ations: The 3380. 3380-23. and
), Washington Systems Center.

performance in a distributed file system." ACM Trans. on

IBM [1982]. The Economic Value ofRupitl Response Time. GE20-0752—0 White Plains. N.Y.. 1 If82.

IMPRIMIS [1989]. “Imprimis Product S

GB." Document No. 64402302 (May). ,.

KAHN. R. E. [1972]. “Resource-sharing éom
(November) 1397—1407.

pecification. 97209 Sabre Disk Drive [PI-2 Interface 12

pater communication networks." Proe. IEEE 60:1 1

KATZ. R. H.. D. A. PATTERSON. AND G. A. GIBSON [1990].
performance computing,“ Prov. IEEE 78:2 (February).

KIM. M. Y. [1986].
(November).

LElNER. A. L. [1954].

“Disk system architectures for high

“Synchronized disk interleaving." IEEE Trans. on Computers C-35211

“System specifications for the DYSEAC."J. ACM 1:2 (April) 57~81.
LEINER. A. L. AND S. N. ALEXANDER [1954].

ofElet'tronic Computerx EC-3:1 (March) 1~10

LEVY. J. V. [1978]. “Buses: The skeleton of computer structures.~
View of Hardware Systems Design. C. G. Bell. J. C. Mudge.Press. Bedford. Mass.

MABERLY. N. C. [1966]. Mastering Speed Reading.

METCALFE. R. M. AND D. R. BOGGS [1976]. “Ethernet: Distributed packet switching for local
computer networks." Comm. ACM 19:7 (July) 395404.

"System organization of the DYSEAC.“ IRli Tram

‘ in Computer Engineering ,' A DIJC
and J. E. McNamara, eds.. Digital

New American Library. Inc. New York.

—An objective comparison." Prue. Busmn [986 West. San Jose.

1

SAMSUNG EXHIBIT 1009

Page 165 of 17

SAMSUNG EXHIBIT 1009
Page 166 of 171

Input/Output 563

NEWMAN. W. N. AND R. F. SPROULL [1979]. Principles :t/Intm‘ut'tivc Computer Graphics, 2nd
ed. McGraw—Hill. New York.

OUSTERHOUT. J. K. ET AL. [1985]. "A trace-driven analysis of the UNIX 4.2 BSD file system."
Proc. Tl’tll/l ACM SVHIIHUI'IHH on Opp/wing Systt'ms l’rim‘ip/m‘. Orcas Island, Wash, 15—24.

PATTERSON. D. A.. G. A. GIBSON. AND R. H. KA’I'Z [1987]. "A case for redundant arrays of

inexpensive disks (RAID)." Tech. Rep. UCB/CSD 87/391. Univ, of Calif. Also appeared in ACM
SIGMOD (‘on/I Pl't)('.. Chicago. Illinois. June 1—3. 1988, 1097116.

ROBINSON. B. AND L. BLOUNT [1986]. “The VM/HPO 3880-23 performance results." IBM Tech.
Bulletin, GGoo-OZ474X) (April). Washington Systems Center, Gathershurg, Md.

SALEM. K. AND H. GARCIA-MOLINA [1986]. “Disk striping." IEEE 1986 Int'/ Conf. on Data
Engineering.

SCRANTON. R. A.. D. A. THOMPSON. AND D. W. HUNTER [1983]. “The access time myth." Tech.

Rep. RC 10197 (45223) (September 21). IBM, Yorktown Heights. NY.

SMITH. A. J. [1985]. “Disk cache—miss ratio analysis and design considerations." ACM Trans. on
Computer Systems 3:3 (August) 1617203.

SMOTHERMAN . M. [1989]. “A sequencing-based taxonomy of 1/0 systems and review of historical
machines." Com/mtt'r Architecture News 17:5 (September) 5715.

SUTHERLAND. l. E. [1963]. “Sketchpad: A man—machine graphical communication system.“ Spring
Joint Computer Conf. 329.

THACKER. C. P.. E. M. MCCREIGHT. B. W. LAMPSON. R. F. SPROULL. AND D. R. BOGGS [1982].

“Alto: A personal computer," in Computer Structures: Principles and Emmp/cx. D. P. Siewiorek,
C. G. Bell. and A. Newell. eds. McGraerill. New York. 5497572.

THADHANI. A. J. [1981]. “Interactive user productivity." IBM Systems J. 20:4. 4074123.

THISQUEN. J. [1988]. “Seek time measurements," Amduhl Peripheral Products Division Tech. Rep.
(May).

EXERCISES

9.1 <9.10> [10/25/10] Using the formulas in Figure 9.39 (page 558):

a. [10] Calculate the seek time for moving the arm one-third of the cylinders for both
disks.

b. [25] Write a program to calculate the “average” seek time by estimating the time for
all possible seeks using these formulas and then dividing by the number of seeks.

c. | 10] How close does (a) approximate (b)?

9.2 <9.10> [15/20] Using the formulas in Figure 9.39 (page 558) and the statistics in

Figure 9.40 (page 559). calculate the average seek distance and the average seek time on
the IBM 3380]. Use the midpoint of a range as the seek distance. For example, use 98 as
the seek distance for the entry representing 91405 in Figure 9.40. For the business

workload. just ignore the missing 5% of the seeks. For the UNIX workload. assume the

missing 15% 0f the seeks have an average distance of 300 cylinders.

a. [15] If you were misled by the fallacy. you might calculate the average distance as
884/3. What is the measured distance for each workload?

SAMSUNG EXHIBIT 1009

Page 166 of 171

SAMSUNG EXHIBIT 1009
Page 167 of 171

b.

Exercises

[20] The time to seek 884/3 cylinders on the IBM 3380] is about 12.8 ms. What is
the average seek time for each workload on the IBM 3380J using the measurements?

9.3 <1.4,8.4,9.4> [20/10/Discussion] Assume the improvements in density of DRAMs
and magnetic disks continue as predicted in Figure 1.5 (page 17). Assuming that the
improvement in cost per megabyte tracks the density improvements and that 1990 is the
start of the 4-megabit DRAM generation, when will the cost per megabyte of DRAM
equal the cost per megabyte of magnetic disk given:

a.

9.4 <9.2> [12/12/12] Assume a workload takes 100 seconds to70

a.

9.5

The cost difference in 1990 is that DRAM is 10 times more expensive.

The cost difference in 1990 is that DRAM is 30 times more expensive.

[20] Which generation of DRAM chip—measured in bits per chip—will reach equity
for each cost difference assumption? What year will that occur?

[10] What will be the difference in cost in the previous generation?

[Discussion] Do you think the cost difference in the previous generation is sufficient
to prevent disks being replaced by DRAMs?

ta], with the CPU taking
seconds and I/O taking 50 seconds.

[12] Assume that the floating-point unit is responsible for 25 seconds of the CPU
time. You are considering a floating—point accelerator that goes five times faster.
What is the time of the workload for maximum overlap, scaled overlap, and no
overlap?

[12] Assume that seek and rotational delay of magnetic disks are responsible for 10
seconds of the I/O time. You are considering replacing the magnetic disks with solid
state disks that will remove all the seek and rotational delay. What is the time of the
workload for maximum overlap, scaled overlap, and no overlap?

[12] What is the time of the workload for scaled overla
3/

—9.9 Transaction-processing performance. The 1/0 bus and memory system of a

p if you make both changes?

computer are capable of sustaining 100 MB/sec without interfering with the performance
of an 80-MIPS CPU (costing $50,000). Here are the assumptions about the software:

Each transaction requires 2 disk reads plus 2 disk writes.

The operating system uses 15,000 instructions for each disk read or write.

The database software executes 40,000 instructions to process a transaction.

The transfer size is 100 bytes.

You have a choice of two different types of disks:

A 2.5—inch disk that stores 100 MB and costs $500.

A 3.5—inch disk that stores 250 MB and costs $1250.

Either disk in the system can support on average 30 disk reads or writes per second.

 SAMSUNG EXHIBIT 1009

Page 167 of 171

SAMSUNG EXHIBIT 1009
Page 168 of 171

Input/Output 565

Answer the questions below using the TP-l benchmark in Section 9.3. Assume that

the requests are spread evenly to all the disks. that there is no waiting time due to busy

disks, and that the account file must be large enough to handle 1000 TPS according to the
benchmark ground rules.

9.5 <9.3,9.4> [20] How many TP—l transactions per second are possible with each disk

organization, assuming that each uses the minimum number of disks to hold the account
file?

9.6 <9.3,9.4> [15] What is the system cost per transaction per second of each alternative
for TP-l ‘?

9.7 <9.3,9.4> [15] How fast a CPU makes the 100 MB/sec l/O bus a bottleneck for TP-

1? (Assume that you can continue to add disks.)

9.8 <9.3,9.4> [15] As manager of MTP (Mega TP), you are deciding whether to spend

your development money building a faster CPU or improve the performance of the
software. The database group says they can reduce a transaction to 1 disk read and 1 disk
write and cut the database instructions per transaction to 30,000. The hardware group can
build a faster CPU that sells for the same amount of the slower CPU with the same

development budget. (Assume you can add as many disks as needed to get higher
performance.) How much faster does the CPU have to be to match the performance gain
of the software improvement?

9.9 <9.3,9.4> [15/15] The MTP l/O group was listening at the door during the software

presentation. They argue that advancing technology will allow CPUs to get faster without

significant investment, but that the cost of the system will be dominated by disks if they
don’t develop new faster 2.5—inch disks. Assume the next CPU is 100% faster at the same
cost and that the new disks have the same capacity as the old ones.

a. [15] Given the new CPU and the old software, what will be the cost of a system with

enough old 2.5—inch disks so that they do not limit the TPS of the system ?

b. [15] Now assume you have as many new disks as you had old 2.5 inch disks in the

original design. How fast must the new disks be (l/Os per second) to achieve the
same TPS rate with the new CPU as the system in part a? What will the system cost?

9.10 <9.4> [20/20/20] Assume that we have the following two magnetic—disk

configurations: a single disk and an array of four disks. Each disk has 20 surfaces, 885
tracks per surface with 16 sectors/track, each sector holds 1K bytes, and it revolves at
3600 RPM. Using the seek—time formula, for the IBM 3380B in Figure 9.39 (page 558).
The time to switch between surfaces is the same as to move the arm one track. In the disk

array all the spindles are synchronized—sector 0 in every disk rotates under the head at
the exact same time~and the arms on all four disks are always over the same track. The

data is “striped” across all 4 disks, so four consecutive sectors on a single disk system

will be spread one sector per disk in the array. The delay of the disk controller is 2 ms per
transaction, either for a single disk or for the array. Assume the performance of the I/O

system is limited only by the disks and that there is a path to each disk in the array.

SAMSUNG EXHIBIT 1009

Page 168 of 171

SAMSUNG EXHIBIT 1009
Page 169 of 171

586 Exercises

Compare the performance in both I/Os per second and megabytes per second of these two
disk organizations assuming the following request patterns:

a. [20] Random reads of 4 KB of sequential sectors. Assume the 4 KB are aligned
under the same arm on each disk in the array.

b. [20] Reads of4 KB of sequential sectors where the average seek distance is 10 tracks.
ASSUme the 4 KB are aligned under the same arm on each disk in the array.

c. [20] Random reads of 1 MB of sequential sectors. (If it matters, assume the disk
controller allows the sectors to arrive in any order)

9.11 [20] <9.4> Assume that we have one disk defined as in Exercise 9.9. Assume that
we read the next sector after any read and that all read requests are one sector in length.
We store the extra sectors that were read ahead in a disk cache, Assume that the
probability of receiving a request for the sector we read ahead at some time in the future
(before it must be discarded because the disk—cache buffer fills) is 0.1. Assume that we
must still pay the controller overhead on a disk-cache read hit, and the transfer time for
the disk cache is 250 ns per word. ls the read-ahead strategy faster? (Hint: Solve the
problem in the steady state by assuming that the disk cache contains the appropriate
information and a request has just missed.)

9.12—9.14 Assume the following information about our DLX machine:

Loads 2 cycles

Stores 2 cycles

All other instructions are 1 cycle. Use the summary instruction mix information in Figure
C4 in Appendix C on DLX for GCC.

Here are the cache statistics for a write—through cache:

I Each cache block is four words. and the whole block is read on any miss.

I Cache miss takes 13 cycles,

I Write through takes 6 cycles to complete, and there is no write buffer.

Here are the cache statistics for a write—back cache:

I Each cache block is four words, and the whole block is read on any miss.

I Cache miss takes 13 cycles for a clean block and 21 cycles for a dirty block.

I Assume that on a miss, 30% of the time the block is dirty.
Assume that the bus

I is only busy during transfers.

I transfers on average 1 word / clock cycle, and

I must read or write a single word at a time (it is not faster to read or write two at
once).

SAMSUNG EXHIBIT 1009

Page 169 of 171

SAMSUNG EXHIBIT 1009
Page 170 of 171

Input/Output 567

9.12 [20/10/20/20] <9.4,9.5,9.6> Assume that DMA [/0 can take place simultaneously

with CPU cache hits. Also assume that the operating system can guarantee that there will

be no stale—data problem in the cache due to 1/0. The sector size is 1 KB.

a. [20] Assume the cache miss rate is 5%. On the average, what percentage of the bus is
used for each cache write policy? This measured is called the traffic ratio in cache
studies.

b. [10] 1f the bus can be loaded up to 80% of capacity without suffering severe

performance penalties, how much memory bandwidth is available for 1/0 for each
cache write policy? The cache miss rate is still 5%.

C. [20] Assume that a disk sector read takes 1000 clock cycles to initiate a read, 100,000

clock cycles to find the data on the disk. and 1000 clock cycles for the DMA to
transfer the data to memory. How many disk reads can occur per million instructions

executed for each write policy? How does this change if the cache miss rate is cut in
half?

(1. [20] Now you can have any number of disks. Assuming ideal scheduling of disk
accesses, what is the maximum number of sector reads that can occur per million
instructions executed?

9.13 [20/20] <9.4,9.5> Most machines today have a separate frame buffer to update the

screen to avoid slowing down the memory system. An interesting issue is the percentage

of the memory bandwidth that would be used if there were no frame buffer. Assume that
all accesses to the memory are the size of a full cache block and they all take the time of a
cache miss. The refresh rate is 60 Hz. Using the information in Section 9.4, calculate the

memory traffic for the following graphics devices:

1. A 340 by 540 black—and—white display.

2. A 1280 by 1024 color display with 24 bits of color.

3. A 1280 by 1024 color display using a 256-word color map.

Assume the clock rate of the CPU is 60 MHZ.

a. [20] What percentage of the memory/bus bandwidth do each of the three displays
consume?

b. [20] Suppose instead of the bus and main memory being 32 bits wide that both are
512 bits wide. How long should a memory access take now using the wider bus?

What percentage of memory bandwidth is now used by each display?

9.14 [20] <9.4,9.9> The IBM 3990 1/0 Subsystem storage director can have a large cache
for reads and writes. Assume the cache costs the same as four 3380D disks. What hit rate

must the cache achieve to get the same performance as four more 3380D disks? (See

Figure 9.15 (page 517) for 3380 performance.) Assume the cache could support 5000 I/Os
per second if everything hit the cache.

9.15 [50] <93, 9.4> Take your favorite computer and write three programs that achieve
the following:

1. Maximum bandwidth to and from disks

SAMSUNG EXHIBIT 1009

Page 170 of 171

SAMSUNG EXHIBIT 1009
Page 171 of 171

568 Exercises

2. Maximum bandwidth to a frame buffer

3. Maximum bandwidth to and from the local area network

What is the percentage of the bandwidth that you achieve compared to what the 1/0
device manufacturer claims? Also record CPU utilization in each case for the programs

running separately. Next run all three together and see what percentage of maximum
bandwidth you achieve for three l/O devices as well as the CPU utilization. Try to

detemiine why one gets a larger percentage than the Others.
9.16 [40] <9.2> The system speedup fonnulas are limited to one or two types of devices.

Derive simple to use formulas for unlimited numbers of devices. using as many different
assumptions on overlap that you can handle.

9.17 [Discussion] <9.2> What are arguments for predicting system performance using

maximum overlap. scaled overlap, and nonoverlap? Construct scenarios where each one
seems most likely and other scenarios where each interpretation is nonsensical.

9.18 [Discussion] <9. 1 l> What are the advantages and disadvantages of a minimal buffer
I/O system like that used by IBM versus a maximal buffer I/O system on [/0 system

cost/perfonnance‘?

SAMSUNG EXHIBIT 1009

Page 171 of 171

