
WFS: A Simple Silared File System for a Distributed Environlnent

by Daniel Swinehart, Gene McDaniel, anti David Boggs
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304 USA

Abstract:

WFS is a shared file server available to a large network
community. WFS responds to a carefully limited repertoire of
commands that client programs transmit over the network. The
system does not utilize connections, but instead behaves like a
remote disk and reacts to page-level requests. The design
emphasizes reliance upon client programs to implement the
traditional facilities (stremn IO, a directory system, etc.) of a file
system. The use of atomic commands and connectionless protocols
nearly eliminates the need for WFS to maintain transitory state
information from request to request. Various uses of the system are
discussed and extensions are proposed to provide security and
protection without violating the design principles.

1. hitroduction

Existing file systems implement different levels of

service for their clients, and correspondingly leave

different amounts of work for the clients to do.

Traditionally, file systems have evolved to provide more

and more functionality from simple file access to

complicated arrangements which provide sharing, security,

and distributed data storage.

This paper describes wF:S, a file system that provides a

concise set of file operations for use in a distributed

computing environment. Designed by the authors in

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0009 $00.75

1975, and built by one of us (Boggs) in tinder two months,

WFS has successfully supported a number of interactive

applications.

The filing needs of Woodstock, an early office system

prototype, dictated the functional and performance

criteria of WFS. Woodstock provided facilities for

creating, filing, and retrieving simple office documents,

and . a rudimentary facility for exchanging these

documents as electronic messages.

Woodstock's hardware environment was a network of

minicomputers, each providing specialized functions

(terminal control, editing, filing, message services, etc.) in

support of the overall application. WFS was designed as

the shared filing component, storing Woodstock

documents on high-capacity disks attached to one of these

processors.

During development, Woodstock used small local

disks on each editing processor. The software that

supported the editing application had to provide facilities

for transforming access to physical disk pages into higher-

level functions. These included character and word 1/o,

file positioning, and functions for opening and closing

files. The application also implemented its own

hierarchical document directory structure.

wFs was designed after the rest of the system was

operational. Consequently, it was easy to define its

functional specification, since Woodstock already

provided the higher-level functions. The local file access

was to be replaced by network access to a shared file

system running on another machine. A file system based

upon page-level access to randomly addressable files

would be adequate, and a small amount of file sharing

needed by the application could be accommodated by a

simple locking mechanism at the file level. A two month

limit on implementation time, combined with a conviction

that a very simple file system organization could achieve

1 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

doukasme
Text Box
 EVERNOTE EX. 1018

https://www.docketalarm.com/

the same purposes as existing more complex designs, led

to the system described here.

2. System Description

Z I The Client's File System Model

In this paper, a server is a program that supplies a

well-defined service over a computer network to client

programs, which use the service to implement some appli-

cation. A client program may or may not be operating in

direct response to the actions of a human user.

WFS is a server that provides its clients with a

collection of files. It is currently implemented on a

dedicated Xerox Alto research minicomputer [Thacker et

a0 augmented by one or more disk drives, each with a

transfer rate of around 7 megabits per second and a

capacity of from 80 to 300 megabytes. A WFS file

contains up to 60,516 data pages, each 246 16-bit words

long. Clients may write pages in any order, and WFS

waits to allocate space for a page until it is first written. A

file is denoted by a 32-bit unsigned integer, its f i le

identifier (1:[19). WFS allocates FIDs for new files, on

request, from a single name space. There is no additional

naming or directory structure within the system. For this

reason, and because of the carefully limited repertoire of

operations, an application programmer might well choose

to view each FID as a handle on a "virtual disk",

interfaced through a moderately intelligent controller.

Z2 wpS Operations

The complete set of WFS operations is shown in

Table 1. Each operation involves an exchange of network

packets using the protocol described in the next section.

The operations partition into four groups, used for:

• Reading and writing pages of files

• Allocating and deallocating I=lDs and pages of files

• Obtaining and modifying file properties

• Performing system maintenance activities

The most commonly executed operations are those

used for reading and writing a selected file page, given its

FID and page number. A number of page properties are

returned along with each page that is read (see below),

and client modifications to some page properties may be

specified during each write operation.

~[lqe second group of operations allows one to create a

file (with no assigned pages) and obtain its FID, to

expunge a FID (illegal if any pages remain), and to de-

allocate the storage for a page. In addition, there is an

operation that allows a client to create a file with an

explicitly specified FID value. WFS reserves a range of FID

values for this purpose when it creates a new file system.

Operation Description
Page Transfer

ReadPage(fid,pageNum)
WritePage(fid,pageNum,lock,page properties)

File Management
GetFID0
ExpFID(fid)
DeallocatePage(fid,lock, pageNum)

Status Query/Modification
GetFIDStatus(fid)
SetFIDStatus(fid,mask,value)
ReadPageMap(fid,lock, pageMapNumber)

Read or write page properties and page data

Allocates a new file and returns its lid
If rid has no pages allocated, expunges (deletes) the file
Releases storage for page and removes page from page map

Return file status values
Set client status values, ignore attempt to affect system values
Return page map information to determine which pages are allocated

Lock(rid)
UnLock(rid)

Maintenance
ReallocFID(fid)

ResetLastFID(newFid)

ReadRealPage(realAddress)

GetVMap0

WFSPing0

Return key, required in subsequent operations until file is unlocked
Unlock file (set lock to zero)

These operations allow examination of the system at the disk logical
and physical page level. In addition, the FID allocation routines
can be used to restore the file system using backup information.

WFS merely acknowledges this operation. It allows one to check the
oasic communications path.

Table 1. WFS Operations

10

2 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

~[11e third group allows the client to find out what file

pages are allocated, and to examine a FID's current file

properties. One of the operations allows the cfient to

modify those file properties that are under its control.

The fourth group provides maintenance facilities.

Utility client programs use them to copy WFS files to a

backup store, restore selected files, rebuild WFS volumes

flom backup, and repair client-level file structures.

2.3 Properties

WFS associates with each data page a set of page

properties, some of which are of interest to the client (see

Figure 1). WFS reads and writes the page properties along

with the data. The first few fields provide a safety check

since they duplicate the FID and page number, and the

system checks them on each page access. They may also

be used by low-level crash recovery routines to reconstruct

damaged file structures. The client fields are assigned and

interpreted by the client. The client may ask WFS to

compare a page's client properties against the ones

supplied in a command, and to abort the command if they

fail to match. This allows the system to validate client

assertions about the page in question.

Page Identification
(Fid, Page Number)

Date and Time

System Private

Client Private

Page
Identification
(10 words)

Page
Data
(246 words)

Figure 1. WFS Disk Page Format

Similarly, each FIb has a set of file properties (see

Figure 2). The system uses some of this space to record

the status of the file directory entry (free, allocated,

deleted, expunged). The client cannot change these.

Other properties are cooperatively maintained by the

system and its clients. Whenever a file is dirtied, WFS sets

the file's dirty bit. A client that desires higher reliability

may backup dirty files and then clear this bit. Finally,

some space is reserved for client-private uses; WFS does

not touch these properties.

FID

File Location
Page map disk address

FID Properties
System private
Client/System shared
Client Private

Figure 2. FID Directory Entry

2.4 File locks

A client may lock a file, preventing access by anyone

without the proper" key. The lock operation returns a key

that must be supplied with all subsequent operations on

the file, until either" the client ussues an unlock operation

or the lock breaks. WFS will break a file's lock if no

operation has been performed on the file for a minute or

so. A system restart breaks all locks. A key of zero fits an

unlocked file. A client can detect a broken lock because

the non*zero key will not fit the lock on an unlocked file.

key lock access file state

0 0 allowed unlocked
0 X denied locked
X X allowed locked
X Y denied locked
X 0 denied unlocked

These locking operations provide primitives that are

adequate to implement completely safe sharing

mechanisms (see section 4.2.)

Z5 Communications Protocol

Within the Xerox research community, the foundation

for process-to-process communication is an internetwork

packet (or dalagram), as opposed to a stream (or virtual
circuit) [Boggs et al]. However, many of the applications

that use the Xerox internetwork choose to hide the packet

boundaries and to assure reliable transmission by means

of a stream Facility constructed from the packet protocols.

A stream is an example of a connection-based protocol: a

substantial amount of state must be correctly maintained

at both ends for the duration of the connection.

The WFS protocol, on the other hand, is based on the

direct transmission of internetwork packets, and does not

rely on the reliable delivery of every packet. WFS

provides an example of a connectionIess protocol: the

11

3 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

server maintains no state betweon packets, and the client

maintains very little--often none.

To perfom~ a WFS operation, a client constructs a

request packet containing the operation code and any

necessary parameters, and sends it to the selected WFS

host (see Figure 3). WFS processes commands in the

order in which they arrive and then returns a response

packet to the sender. The response contains the requested

data or a failure code. The server is entirely passive: it

never initiates activity, but only responds to requests.

PUP header
Network info, process id

message length, etc.
Visible to network

software only

Operation Code
ReadPage, ExpFid, etc

Request /Reply
Parameters

Lock, file properties

Page Data
if required (246 words)

Software Checksum
visible to network
software, only.

WFS Disk
Page Format

Figure 3. Request /Acknowledgment Packets

Since the reliable delivery of request packets and their

responses is not guaranteed, the client must take the

appropriate steps to assure robust performance. It usually

suffices to retransmit a request if a reasonable interval has

elapsed without receiving its response. The operations are

designed so that any write action will have the same effect

if it is repeated. In addition, it must not be possible for

packets to be delayed for so long that write and read

operations can occur out of order without detection. This

behavior is not difficult to arrange in our environment,

but would have to be dealt with if the methods were

generalized.

2.6 File Syslem Implementation

WFS is written in BCPI. [Richards], supported by a

simple custom-tailored operating system and communica-

tions package.

For each file, WFS maintains a page map that

translates client page numbers into physical disk addresses

and identifies unallocated pages. Depending on the

current length of the file, the page map is either one or

two levels deep (see Figure 4).

The FID directory is a hash table implemented as a

contiguous, fixed-size file at a known disk address.

Entries in the directory associate FIDS with their

corresponding file properties and top-level page map

locations.

FID Direr.tory

IPageMaPh__

Data

a [- - - - -] D a t a PageMaPL IPagel

Data
Page 244

lea I a,,o Map 0

1 Leaf D2;a 244
Map 1

Leaf -] Data
Map 244 ~ Page 245

Data | Page
/

Figure 4. WFS File Structure. Small files use a
single page map level, while larger files use a two
level map. Empty data pages are not allocated on
the disk.

12

4 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A single process interprets client operations in the

WI:S server. This process sequentially extracts request

packets from the network input queue, checks them for

validity, and dispatches to the indicated operation. When

the operation completes, the process returns a response

packet to the requesting client. By using this simple,

sequential scheme, lockup behavior is impossible, and

starvation (unfair treatment of a particular client) is very

unlikely.

During a write operation, WFS reads the specified data

page (and in some cases auxiliary pages) before writing it,

in order to validate its FII), page number, and other page

properties. If a discrepancy is found, the operation is

rejected (see section 2.5.) The system writes the data into

its assigned disk page immediately, before returning the

acknowledgment packet.

Although a WFS application will occasionally make

closely spaced references to the same data page, such

references are not frequent enough to warrant special

treatment. However, multiple references to auxiliary disk

pages (page maps, directories, and allocation bit tables)

predominate. For this reason, WFS uses a substantial

percentage of main memory as a write-through cache of

recently referenced disk pages. Discarding the least

recently referenced page whenever cache space is needed

favors retention of the auxiliary pages, while

accommodating the infrequent case of closely spaced

accesses to the same data page.

Since pages to be changed are always written

immediately, the cache is entirely redundant and is

maintained for efficiency only; any page of it, or all of it,

can be discarded for any reason (including a system crash)

without affecting tile integrity of the file system.

27 Performance

WFS has never been used in an environment subject to

a high volume of concurrent accesses by a large number

of hosts. However, we did measure its performance under

a heavy load generated by one to three hosts running the

Woodslock application. Table 2 provides the performance

figures obtained from these tests (see [McDaniel]

regarding the network-based instrumentation tool). The

table compares both reading and writing times of WFS

with times obtained by performing the same activities

using the local disk. The wl:s times include the cost of

the client's service routines that provide packet

composition, transmission and response interpretation
activities as well as the actual wt:s software and disk

access times. In each case, one or more Woodstock users

manually produced a very high request rate. While the

table doesn't detail this observation, we found that the

network transmission times through the high-bandwidth

Ethernet local network [Metcalfe-Boggs] were negligible.

Measurements of subsequent server/client configurations

have produced comparable results.

Write operations yielded poorer results than read

operations in the tests because wt:s reads data pages to

valiclate them before writing new contents (see section

2.6).

In tile single-user (lightly loaded) case, WFS improved

Woodstock's average input response time over the local

disk's time for several reasons: WFS'S disks were faster

than Woodstock's local disks, requested pages were

sometimes still in the WFS main memory cache, and the

amount of arm motion on the local disk was reduced

because it no longer had to seek between a code swap-

area and the user data area .

In general, performance has been adequate for a

number of nontrivial applications. Notice that the

measurements exhibit nearly linear degradation with

increasing load. A system implementing more

sophisticated scheduling methods could improve this

perfo~Taance.

Read Page AVG MIN M A X

Using Local Disk 60 30 90

WFS with one user 4 8 20 2 6 0

with two users 76 20 3 3 0

with three users 1 0 0 20 3 3 0

All times in milliseconds

Wr i te Page AVG MIN M A X

Using Local Disk 47 10 1 1 0

W F S with one user 73 30 2 6 0

with two users 1 0 9 30 3 5 0

with three users 1 5 0 4 0 4 2 0

Tab le 2. W F S P e r f o r m a n c e Observa t ions . In multiple-user
experiments, system users manually produced extremely
demanding loads. Maximum load for the same number
of users could, be somewhat greater.

13

5 of 9f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

