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Praise for TCP/IP Illustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutes of picking upthe text,
I encountered several scenarios which had tripped-up both my colleagues and myself in the past.
Stevens reveals many of the mysteries once held tightly by the ever-elusive networking gurus.
Having been involved in the implementation of TCP/IP for some years now,I considerthis by far
the finest text to date.”

— Robert A. Ciampa, Network Engineer, Synernetics, division of 3COM

‘While all of Stevens’ books are readable and technically excellent, this new opus is awesome.
Although many books describe the TCP/IP protocols, Stevens provides a level of depth and real-
world detail lacking from the competition. He puts the reader inside TCP/IP using a visual approach
and showsthe protocols in action.”

—— Steven Baker, Networking Columnist, Unix Review

“TCPIIP Illustrated, Volume / is an excellent reference for developers, network administrators, or
anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is comprehensiveinits
coverage of TCP/IP topics, providing enough details to satisfy the experts while giving enough
background and commentary for the novice.”

— Bob Williams, V.P. Marketing, NetManage,Inc.

“.,. the difference is that Stevens wants to show as well as tell about the protocols. His principal
teaching tools are straight-forward explanations, exercises at the ends of chapters, byte-by-byte
diagramsof headers andthe like, and listings of actual traffic as examples.”

— Walter Zintz, UnixWorld

“Muchbetter than theory only ... W. Richard Stevens takes a multihost-based configuration and uses
it as a travelogue of TCP/IP examples with illustrations. TCP/IP Illustrated, Volume J is based on
practical examples that reinforce the theory — distinguishing this book from others on the subject,
and making it both readable and informative.”

—~ Peter M. Haverlock, Consultant, IBM TCP/IP Development

“The diagramshe uses are excellent and his writing style is clear and readable. In sum,Stevens has
made a complex topic easy to understand. This book merits everyone’s attention. Please read it and -
keep it on your bookshelf.”

— Elizabeth Zinkann, Sys Admin

“W. Richard Stevens has produceda fine text and reference work. It is well organized and very
clearly written with, as the title suggests, many excellentillustrations exposing the intimate details
of the logic and operation of IP, TCP, and the supporting cast of protocols and applications.”

— Scott Bradner, Consultant, Harvard University OIT/NSD
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Preface

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective than
other texts on TCP/IP. Instead of just describing the protocols and what they do, we'll
use a popular diagnostic tool to watch the protocols in action. Seeing how the protocols
operate in varying circumstances provides a greater understanding of how they work
and whycertain design decisions were made. It also provides a look into the imple-
mentation of the protocols, without having to wade through thousands of lines of
source code.

When networking protocols were being developed in the 1960s through the 1980s,
expensive, dedicated hardware was required to see the packets going “across the wire.”
Extreme familiarity with the protocols was also required to comprehendthe packets dis-
played by the hardware. Functionality of the hardware analyzers was limited to that
built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous workstation
to monitor a local area network [Mogul 1990]. Just attach a workstation to your net-
work, run somepublicly available software (described in Appendix A), and watch what
goes by on the wire. While many people consider this a tool to be used for diagnosing
network problems, it is also a powerful tool for understanding how the network proto-
cols operate, whichis the goal of this book.

This bookis intended for anyone wishing to understand how the TCP/IP protocols
operate: programmers writing network applications, system administrators responsible
for maintaining computer systems and networks utilizing TCP/IP, and users who deal
with TCP/IP applications on a daily basis.
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Organizaiion of the Book

The following figure shows the various protocols and applications that are covered.
The italic number by each box indicates the chapter in which that protocol or applica-
tion is described.

 

     

 

    

  
 

  
   

       
  

Chap. 7 26 27 28 30 8 14 15 16 25 29
. Telnet & Trace- NESPing Rlogin | FTP | SMTP | | route | ons| TFTP “voor SNMP | are

17, 18, 19, 20 1, 12TCP 21, 22, 23, 24 UDP |

6 ICMP 3,9, 10 IP W——~ IGMP 13
| | a|

4 2| Data 5
ARP Link RARP

media

(Numerousfine points are missing from this figure that will be discussed in the appro-
priate chapter. For example, both the DNS and RPC use TCP, which we don’t show.)

We take a bottom-up approach to the TCP/IP protocol suite. After providing a
basic introduction to TCP/IP in Chapter 1, we will start at the link layer in Chapter 2
and work our way up the protocol stack. This provides the required background for
later chapters for readers whoaren’t familiar with TCP/IP or networking in general.

This book also uses a functional approach instead of following a strict bottom-to-
top order. For example, Chapter 3 describes the IP layer and the IP header. But there
are numerousfields in the IP header that are best described in the context of an applica-
tion that uses or is affected by a particular field. Fragmentation, for example, is best
understood in terms of UDP (Chapter 11), the protocol often affected byit. The time-to-
live field is fully described when we look at the Traceroute program in Chapter 8,
because this field is the basis for the operation of the program. Similarly, many features
of ICMPare described in the later chapters, in terms of how a particular ICMP message
is used by a protocolor an application.

Wealso don’t wantto saveall the good stuff until the end, so we describe TCP/IP
applications as soon as we have the foundation to understand them. Ping and Trace-
route are described after IP and ICMP have been discussed. The applications built on
UDP (multicasting, the DNS, TFTP, and BOOTP) are described after UDP has been
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examined. The TCP applications, however, along with network management, must be
saved until the end, after we’ve thoroughly described TCP. This text focuses on how

these applications use the TCP/IP protocols. We do not provide alall the details on run-
ning these applications.

Readers

This book is self-contained and assumes no specific knowledge of networking or
TCP/IP. Numerous references are provided for readers interested in additional details
on specific topics.

This book can be used in many ways. It can be used asaself-study reference and
covered from start to finish by someone interested in all the details on the TCP/IP
protocol suite. Readers with some TCP/IP background might want to skip ahead and
start with Chapter 7, and then focus on the specific chapters in which they're interested.
Exercises are provided at the end of the chapters, and most solutions are in Appen-
dix D. This is to maximize the usefulness of the text as a self-study reference.

When used as part of a one- or two-semester course in computer networking, the
focus should be on IP (Chapters 3 and 9), UDP (Chapter 11), and TCP (Chapters 17-24),
along with someof the application chapters.

Many forward and backward references are provided throughoutthe text, along
with a thorough index, to allow individual chapters to be studied by themselves.Alist
of all the acronyms used throughout the text, along with the compound term for the
acronym, appears on the inside back covers.

If you have access to a network you are encouraged to obtain the software used in
this book (Appendix F) and experiment on your own. Hands-on experimentation with
the protocols will provide the greatest knowledge (and makeit more fun).

Systems Used for Testing

Every example in the book was run on an actual network and the resulting output
savedin a file for inclusion in the text. Figure 1.11 (p. 18) shows a diagram of the differ-
ent hosts, routers, and networks that are used. (This figure is also duplicated on the
inside front cover for easy reference while reading the book.) This collection of net-
worksis simple enough that the topology doesn’t confuse the examples, and with four
systemsacting as routers, we can see the error messages generated by routers.

Most of the systems have a name that indicates the type of software being used:
bsdi, svr4, sun, solaris, aix, slip, and so on. In this way wecan identify the type
of software that we’re dealing with by looking at the system namein the printed output.

A widerangeofdifferent operating systems and TCP/IP implementationsare used:

e BSD/386 Version 1.0 from Berkeley Software Design, Inc., on the hosts named
bsdi and slip. This system is derived from the BSD Networking Software,
Release 2.0. (We show thelineage of the various BSD releases in Figure 1.10 on
p. 17.)
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e¢ Unix System V/386 Release 4.0 Version 2.0 from U.H. Corporation, on the host
named svr4. This is vanilla SVR4 and contains the standard implementation of
TCP/IP from Lachman Associates used with most versions of SVR4.

e SunOS 4.1.3 from Sun Microsystems, on the host named sun. The SunOS 4.1.x
systems are probably the most widely used TCP/IP implementations. The
TCP/IP code is derived from 4.2BSD and 4.3BSD.

e Solaris 2.2 from Sun Microsystems, on the host named solaris. The Solaris 2.x
systemshavea different implementation of TCP/IP from the earlier SunOS 4.1.x
systems, and from SVR4. (This operating system is really SunOS5.2, but is com-
monly called Solaris 2.2.)

e AIX 3.2.2 from IBM on the host named aix. The TCP/IP implementation is
based on the 4.3BSD Renorelease.

e 4.4BSD from the Computer Systems Research Groupat the University of Califor-
nia at Berkeley, on the host vangogh.cs.berkeley.edu. This system has the
latest release of TCP/IP from Berkeley. (This system isn’t shownin the figure on
the inside front cover, but is reachable across the Internet.)

Although these are all Unix systems, TCP/IP is operating system independent, andis
available on almost every popular non-Unix system. Most of this text also applies to
these non-Unix implementations, although some programs (such as Traceroute) may
not be provided onall systems.

Typographical Conventions

Whenwedisplay interactive input and output we'll show our typed input in a bold
font, and the computer output like this. Comments are addedin italics.

bsdi % telnet svr4 discard connectto the discard server

Trying 140.252.13.34... this line and next output by Telnetclient
Connected to svr4.

Also, we always include the name of the system as part of the shell prompt (bsdi in
this example) to show on which host the command was run.

Throughoutthe text we'll use indented, parenthetical notes such as this to describe historical
points or implementation details. :

We sometimes refer to the complete description of a command in the Unix manual
as in ifconfig(8). This notation, the name of the command followed by a numberin
parentheses, is the normal way of referring to Unix commands. The number in paren-
theses is the section number in the Unix manual of the “manual page” for the com-
mand, where additional information can be located. Unfortunately not all Unix systems
organize their manuals the same, with regard to the section numbers used for various
groupings of commands. We’ll use the BSD-style section numbers (which is the same
for BSD-derived systems such as SunOS 4.1.3), but your manuals may be organized
differently.
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1.2

Introduction

Introduction

The TCP/IP protocol suite allows computersof all sizes, from many different computer
vendors, running totally different operating systems, to communicate with each other.
It is quite amazing because its use has far exceededits original estimates. Whatstarted
in the late 1960s as a government-financed research project into packet switching net-
workshas, in the 1990s, turned into the most widely used form of networking between
computers. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms the
basis for what is called the worldwide Internet, or the Internet, a wide area network
(WAN)of more than one million computers thatliterally spans the globe.

This chapter provides an overview of the TCP/IP protocol suite, to establish an ade-

quate background for the remaining chapters. For a historical perspective on the early
development of TCP/IP see [Lynch 1993].

Layering

Networking protocols are normally developedin layers, with each layer responsible for a
different facet of the communications. A protocol suite, such as TCP/IP, is the combina-
tion of different protocols at various layers. TCP/IP is normally considered to be a
4-layer system, as shownin Figure 1.1.
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Application Telnet, FTP, e-mail, etc. 

Transport TCP, UDP 

Network IP, ICMP, IGMP

Link device driver and interface card
  
 

Figure 1.1 The four layers of the TCP/IP protocolsuite.

Each layerhas a different responsibility.

1. Thelink layer, sometimescalled the data-link layer or network interface layer, nor-
mally includes the device driver in the operating system and the corresponding
network interface card in the computer. Together they handle all the hardware
details of physically interfacing with the cable (or whatever type of media is
being used).

The network layer (sometimescalled the internet layer) handles the movementof
packets around the network. Routing of packets, for example, takes place here.
IP (Internet Protocol), ICMP (Internet Control MessageProtocol), and IGMP
(Internet Group Management Protocol) provide the network layer in the
TCP/IP protocolsuite.

The transport layer provides a flow of data between two hosts, for the applica-
tion layer above. In the TCP/IP protocol suite there are two vastly different
transport protocols: TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol).

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received pack-
ets, setting timeouts to make certain the other end acknowledges packets that
are sent, and so on. Becausethis reliable flow of data is provided by the trans-
port layer, the application layer can ignore all these details.

UDP, on the other hand, provides a much simpler service to the application
layer. It just sends packets of data called datagrams from one host to the other,
but there is no guarantee that the datagrams reach the other end. Any desired
reliability must be added by the application layer.

There is a use for each type of transport protocol, which we'll see when we look
at the different applications that use TCP and UDP.
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4. The application layer handles the details of the particular application. There are
many common TCP/IP applications that almost every implementation pro-
vides:

Telnet for remote login,
FTP, the File Transfer Protocol,

SMTP,the Simple Mail Transfer protocol, for electronic mail,
SNMP,the Simple Network ManagementProtocol,

and many more, some of which wecoverin later chapters.

If we have two hosts on a local area network (LAN) such as an Ethernet, both run-
ning FTP, Figure 1.2 showsthe protocols involved.

  

  

  

  

     
  

  

handles

«ati FIP FTP protocol FIP user application
application|ant MOTTTTFh conver processes details

TCP protocol
transport] TCP9je -- ---Feo -»| TCP kernel handles

communication
details

network IP lag — — — IPprotocol _ pe IP

: Ethernet Ethernetprotocol Ethernetlink : [ei§—eepe} .driver driver

    
  

 Ethernet

Figure 1.2 Two hosts ona LAN running FTP.

We have labeled one application box the FIP client and the other the FTP server.
Mostnetwork applications are designed so that one endis the client and the other side
the server. The server provides some typeof service to clients, in this case accesstofiles
on the server host. In the remote login application, Telnet, the service provided to the
client is the ability to login to the server’s host.

Each layer has one or more protocols for communicating with its peer at the same
layer. One protocol, for example, allows the two TCP layers to communicate, and
another protocollets the two IP layers communicate.

Onthe right side of Figure 1.2 we have noted that normally the application layeris
a user process while the lower three layers are usually implemented in the kernel (the
operating system). Althoughthis isn’t a requirement,it’s typical and this is the wayit’s
done under Unix.
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There is anothercritical difference between the top layer in Figure 1.2 and the lower
three layers. The application layer is concerned with the details of the application and
not with the movementof data across the network. The lower three layers know noth-
ing about the application but handle all the communication details.

We show four protocols in Figure 1.2, each at a different layer. FTP is an application
layer protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the
Ethernet protocols operate at the link layer. The TCP/IP protocol suite is a combination of
many protocols. Although the commonly used namefor the entire protocol suite is
TCP/IP, TCP and IP are only twoof the protocols. (An alternative nameis the Internet
Protocol Suite.)

The purpose of the network interface layer and the application layer are
obvious—the former handles the details of the communication media (Ethernet, token
ring,etc.) while the latter handles one specific user application (FTP, Telnet, etc.). But on
first glance the difference between the network layer and the transport layer is some-
what hazy. Whyis there a distinction between the two? To understand the reason, we
have to expand our perspective from a single network to a collection of networks.

Oneof the reasons for the phenomenal growth in networking during the 1980s was
the realization that an island consisting of a stand-alone computer made little sense. A
few stand-alone systems were collected together into a network. While this was
progress, during the 1990s we have cometo realize that this new, bigger island consist-
ing of a single network doesn’t make sense either. People are combining multiple net-
works together into an internetwork, or an internet. An internet is a collection of
networksthat all use the same protocolsuite.

The easiest way to build an internet is to connect two or more rietworks with a
router. This is often a special-purpose hardware box for connecting networks. The nice
thing about routers is that they provide connections to many different types of physical
networks: Ethernet, token ring, point-to-point links, FDDI (Fiber Distributed Data Inter-
face), and so on.

These boxesare also called IP routers, but we'll use the term rotiter.

Historically these boxes werecalled gateways, and this term is used throughout much of the
TCP/IP literature. Today the term gateway is used for an application gateway: a process that
connects two different protocol suites (say, TCP/IP and IBM’s SNA)for one particular applica-
tion (often electronic mailor file transfer).

Figure 1.3 shows an internet consisting of two networks: an Ethernet and a token
ring, connected with a router. Although we show only two hosts communicating, with
the router connecting the two networks, ay host on the Ethernet can communicate with
any host on the tokenring.

In Figure 1.3 we can differentiate between an end system (the two hosts on either
side) and an intermediate system (the router in the middle). The application layer and the
transport layer use end-to-end protocols. In our picture these two layers are needed only
on the end systems. The network layer, however, provides a hop-by-hop protocol andis
used on the two end systems and every intermediate system.
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Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service.
Thatis, it does its best job of moving a packet from its sourcetoits final destination, but
there are no guarantees. TCP, on the other hand, provides a reliable transport layer
using the unreliable service of IP. To provide this service, TCP performs timeout and
retransmission, sends and receives end-to-end acknowledgments, and so on. The trans-
port layer and the network layer havedistinct responsibilities.

A router, by definition, has two or more network interface layers (since it connects
two or more networks). Any system with multiple interfaces is called multihomed. A
host can also be multihomed but unless it specifically forwards packets from one inter-
face to another, it is not called a router. Also, routers need not be special hardware
boxes that only move packets around an internet. Most TCP/IP implementations allow
a multihomed host to act as a router also, but the host needs to be specifically config-
ured for this to happen. In this case we can call the system either a host (when an appli-
cation such as FTP or Telnet is being used) or a router (whenit’s forwarding packets
from one network to another). We’ll use whichever term makes sense given the context.

One of the goals of an internet is to hide all the details of the physical layout of the
internet from the applications. Although this isn’t obvious from our two-networkinter-
net in Figure 1.3, the application layers can’t care (and don’t care) that one host is on an
Ethernet, the other on a token ring, with a router between. There could be 20 routers
between, with additional types of physical interconnections, and the applications would
run the same. This hiding of the details is what makes the concept of an internet so
powerful and useful.

Viptela, Inc. - Exhibit 1007
Page 27



Viptela, Inc. - Exhibit 1007 
Page 28

 6=Introduction Chapter 1

Another way to connect networks is with a bridge. These connect networks at the
link layer, while routers connect networksat the network layer. Bridges makes multiple
LANsappearto the upperlayers as a single LAN.

TCP/IP internets tend to be built using routers instead of bridges, so we'll focus on
routers, Chapter 12 of [Perlman 1992] compares routers and bridges.

1.3. TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows someof the
additional protocols that we talk about in this text.
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Figure 1.4 Various protocolsat the different layers in the TCP/IP protocolsuite.

TCP and UDPare the two predominant transport layer protocols. Both use IP as
the networklayer.

TCP providesa reliable transport layer, even thoughtheserviceit uses (IP) is unreli-
able. Chapters 17 through 22 provide a detailed look at the operation of TCP. We then
look at some TCP applications: Telnet and Rlogin in Chapter 26, FTP in Chapter 27, and
SMTPin Chapter 28. The applications are normally user processes.
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1.4

UDPsends andreceives datagrams for applications. A datagram is a unit of infor-
mation(i.e., a certain number of bytes of information that is specified by the sender)
that travels from the sender to the receiver. Unlike TCP, however, UDP is unreliable.
There is no guarantee that the datagram ever gets to its final destination. Chapter 11
looks at UDP, and then Chapter 14 (the Domain Name System), Chapter 15 (the Trivial
File Transfer Protocol), and Chapter 16 (the Bootstrap Protocol) look at some applica-
tions that use UDP. SNMP(the Simple Network Management Protocol) also uses UDP,
but since it deals with many of the other protocols, we save a discussion of it until
Chapter25,

IP is the main protocol at the network layer. It is used by both TCP and UDP. Every
piece of TCP and UDP datathat gets transferred around an internet goes through the IP
layer at both end systems and at every intermediate router. In Figure 1.4 we also show
an application accessing IP directly. This is rare, but possible. (Some older routing pro-
tocols were implemented this way. Also, it is possible to experiment with new transport
layer protocols using this feature.) Chapter 3 looks at IP, but we save someof the details
for later chapters where their discussion makes more sense. Chapters 9 and 10 look at
howIP performsrouting.

ICMPis an adjunct to IP. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. Chapter 6 looks at
ICMPin more detail. Although ICMPis used primarily byIP,it is possible for an appli-
cation to also access it. Indeed we’ll see that two popular diagnostic tools, Ping and
Traceroute (Chapters 7 and 8), both use ICMP.

IGMPis the Internet Group ManagementProtocol. It is used with multicasting:
sending a UDP datagram to multiple hosts. We describe the general properties of
broadcasting (sending a UDP datagram to every host on a specified network) and
multicasting in Chapter 12, and then describe IGMPitself in Chapter13.

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution

Protocol) are specialized protocols used only with certain types of network interfaces
(such as Ethernet and token ring) to convert between the addresses used by the IP layer
and the addresses used by the network interface. We examine these protocols in Chap-
ters 4 and 5, respectively.

Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP
address). These addresses are 32-bit numbers. Instead of using a flat address space such
as 1, 2,3, and so on,there is a structure to Internet addresses. Figure 1.5 showsthe five
different classes of Internet addresses.

These 32-bit addresses are normaily written as four decimal numbers, one for each
byte of the address. This is called dotted-decimal notation. For example, the class B
address of the author’s primary system is 140,252.13.33.

The easiest way to differentiate between the different classes of addresses is to look
at the first number of a dotted-decimal address, Figure 1.6 shows the different classes,
withthefirst numberin boldface.
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Figure 1.5 Thefive different classes of Internet addresses.

 

  Class Range
A 0.0.0.0 to 127.255.255.255
B 128,0.0.0 to 191.255.255.255
Cc 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255
EB 240.0.0,.0 to 255.255.255.255

   
 

Figure 1.6 Rangesfor different classes of IP addresses.

It is worth reiterating that a multihomed host will have multiple IP addresses: one per
interface. :

Since every interface on an internet must have a unique IP address, there must be
one central authority for allocating these addresses for networks connected to the
worldwide Internet. That authority is the Internet Network Information Center, called the
InterNIC. The InterNIC assigns only network IDs. The assignmentof host IDsis up to
the system administrator.

Registration services for the Internet (IP addresses and DNS domain names) used to be han-
dled by the NIC, at nic.ddn.mil, On April 1, 1993, the InterNIC was created. Now the NIC
handles these requests only for the Defense Data Network (DDN). All other Internet users now
use the InterNIC registration services, at rs. internic.net. ,

There are actually three parts to the InterNIC: registration services (rs. internic.net),
directory and database services (ds.internic.net), and information—services
(is.internic.net). See Exercise 1.8 for additional information on the InterNIC.

There are three types of IP addresses: unicast (destined for a single host), broadcast
(destined for all hosts on a given network), and multicast (destined for a set of hosts that
belong to a multicast group). Chapters 12 and 13 look at broadcasting and multicasting
in more detail.
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In Section 3.4 we'll extend our description of IP addresses to include subnetting,
after describing IP routing. Figure 3.9 showsthe special case IP addresses: host IDs and
network IDsofall zero bits or all onebits.

1.5 The Domain Name System

Although the network interfaces on a host, and therefore the hostitself, are known by IP
addresses, humans work best using the name of a host. In the TCP/IP world the Domain
Name System (DNS) is a distributed database that provides the mapping between IP
addresses and hostnames. Chapter 14 looks into the DNSin detail.

For now we must be aware that any application can call a standard library function
to look up the IP address (or addresses) corresponding to a given hostname. Similarly a
function is provided to do the reverse lookup—given an IP address, look up the corre-
sponding hostname.

Mostapplications that take a hostname as an argumentalso take an IP address.
When we use the Telnet client in Chapter 4, for example, one time we specify a host-
name and another time we specify an IP address.

1.6 Encapsulation

When an application sends data using TCP, the data is sent down the protocol stack,
through each layer, until it is sent as a stream of bits across the network. Each layer
adds information to the data by prepending headers (and sometimes addingtrailer
information) to the data that it receives. Figure 1.7 showsthis process. The unit of data
that TCP sendsto IP is called a TCP segment. The unit of data that IP sends to the net-
work interface is called an IP datagram. The stream ofbits that flows across the Ethernet
is called a frame.

The numbers at the bottom of the headers andtrailer of the Ethernet frame in Fig-
ure 1.7 are the typical sizes of the headers in bytes. We’ll have more to say about each of
these headersin later sections.

A physical property of an Ethernet frameis that the size of its data must be between
46 and 1500 bytes. We’ll encounter this minimum in Section 4.5 and we cover the maxi-
mum in Section 2.8,

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The
use ofthis cute, but baroque term is historical, since much of the early work on TCP/IP was
done on systems such as the DEC-10, which did not use 8-bit bytes. Since almost every current
computer system uses 8-bit bytes, we'll use the term byte in this text.

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP
and the network interface is a packet. This packet can be either an IP datagram ora fragment of
an IP datagram. We discuss fragmentation in detail in Section 11.5.

We could draw a nearly identical picture for UDP data. The only changesare that
the unit of information that UDP passes to IP is called a UDP datagram, and the size of
the UDPheaderis 8 bytes.

Viptela, Inc. - Exhibit 1007
Page 31



Viptela, Inc. - Exhibit 1007 
Page 32

10 Introduction

 

 

  
 

   
 

 

 

   
 

 

   
 

 

 

  
   
 

 

   
 

  

Chapter 1

user data

'

application
v v

Appl
header user data

i

j TCP
TCP toys

header application data \i

-@—TCP segment —————— IP
v v

IP TCP sys

header header application data \i

}<gq—_HH—— JP datagram. ——_—peEthernet
driver

Ethernet IP TCP application data Ethernet
header header header PP trailer Ethernet

14 20 20 4
fgg______________________ Ethernet frame =_————______—_>|

jd46 to 1500 bytes —______———+e

  
Figure 1.7 Encapsulation of data as it goes downthe protocolstack.

Recall from Figure 1.4 (p. 6) that TCP, UDP, ICMP, and IGMPall send data to IP. IP
must add sometype of identifier to the IP header that it generates, to indicate the layer
to which the data belongs. IP handles this by storing an 8-bit value in its header called
the protocol field. A value of 1 is for ICMP,2 is for IGMP, 6 indicates TCP, and 17 is for
UDP.

Similarly, many different applications can be using TCP or UDP at any one time.
The transport layer protocols store an identifier in the headers they generate to identify
the application. Both TCP and UDP use 16-bit port numbers to identify applications.
TCP and UDPstore the source port number and the destination port numberin their
respective headers.

The network interface sends and receives frames on behalf of IP, ARP, and RARP.
There must be some form of identification in the Ethernet header indicating which net-
work layer protocol generated the data. To handle this there is a 16-bit frame typefield
in the Ethernet header.
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1.7  Demultiplexing

Whenan Ethernet frameis received at the destination hostit starts its way up the proto-
col stack and all the headers are removed by the appropriate protocol box. Each proto-
col box looks at certain identifiers in its header to determine which box in the next

upperlayer receives the data. This is called demultiplexing. Figure 1.8 shows howthis
takes place.
 

application| ... |application application] ... application        

demultiplexing based on
destination port number
in TCP or UDP header 

UDP     
  

demultiplexing based on
protocol value in IP header

 

 

 
 

 
demultiplexing based on
frame type in Ethernet header

 
 

Ethernet
driver 

incoming frame

Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled “ICMP” and “IGMP”is always a challenge. In Fig-
ure 1.4 we showed them at the samelayeras IP, because they really are adjuncts to IP. But here
we show them aboveIP, to reiterate that ICMP messages and IGMP messages are encapsulated
in IP datagrams.

We havea similar problem with the boxes “ARP” and “RARP.” Here we show them abovethe
Ethernet device driver because they both have their own Ethernet frame types, like IP data-
grams. But in Figure 2.4 we'll show ARP as part of the Ethernet device dtiver, beneath IP,
becausethat’s whereit logically fits.

Realize that these pictures of layered protocol boxes are not perfect.

When wedescribe TCP in detail we'll see that it really demultiplexes incoming seg-
ments using the destination port number, the source IP address, and the source port
number.
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1.8 Client-Server Model

Most networking applications are written assuming oneside is the client and the other
the server. The purposeof the application is for the server to provide some definedser-
vice for clients.

We can categorize servers into two classes: iterative or concurrent. An iterative
server iterates through the followingsteps.

Ii. Wait for a client request to arrive.

12. Process the client request.

13. Send the response backtothe client that sent the request.

14. Go backto step I.

The problem with an iterative server is when step 12 takes a while. During this time no
other clients are serviced.

A concurrent server, on the other hand, performsthe following steps.

Cl. Wait for a client request to arrive.

C2. Start a new server to handlethis client’s request. This may involve creating a
new process, task, or thread, depending on what the underlying operating sys-
tem supports. How this step is performed depends on the operating system.

This new server handles this client’s entire request. When complete, this new
server terminates.

C3. Go backto step C1.

The advantage of a concurrentserver is that the server just spawnsother servers to han-
dle the client requests. Each client has, in essence, its own server. Assuming the operat-
ing system allows multiprogramming, multiple clients are serviced concurrently.

The reason we categorize servers, and notclients, is because a client normally can’t
tell whetherit’s talking to an iterative server or a concurrentserver.

As a general rule, TCP servers are concurrent, and UDP servers are iterative, but
there are a few exceptions. We’ll look in detail at the impact of UDP onits servers in
Section 11.12, and the impact of TCP onits servers in Section 18.11.

1.9 Port Numbers

Wesaid that TCP and UDPidentify applications using 16-bit port numbers. How are
these port numbers chosen?

Servers are normally knownbytheir well-known port number. For example, every
TCP/IP implementation that provides an FTP server provides that service on TCP port
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21. Every Telnet server is on TCP port 23. Every implementation of TFTP (the Trivial
File Transfer Protocol) is on UDP port 69. Those services that can be provided by any
implementation of TCP/IP have well-known port numbers between 1 and 1023. The
well-known ports are managed bythe Internet Assigned Numbers Authority (LANA).

Until 1992 the well-known ports were between 1 and 255. Ports between 256 and 1023 were
normally used by Unix systems for Unix-specific services—that is, services found on a Unix
system, but probably not found on other operating systems. The IANA now manages the
ports between 1 and 1023.

An example of the difference between an Internet-wide service and a Unix-specific service is
the difference between Telnet and Rlogin. Both allow usto login across a network to another
host. Telnet is a TCP/IP standard with a well-known port numberof 23 and can be imple-
mented on almost any operating-system. Rlogin, on the other hand, wasoriginally designed
for Unix systems (although many non-Unix systems now provideit also) so its well-known
port was chosen in the early 1980s as 513.

A client usually doesn’t care what port numberit uses on its end. All it needs to be
certain of is that whatever port number it uses be unique on its host. Client port num-
bers are called ephemeralports (i.e., short lived). This is because a client typically exists
only as long as the user running the client needsits service, while servers typically run
as long as the host is up.

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and
5000. The port numbers above 5000 are intended for other servers (those that aren't
well knownacross the Internet). We'll see many examples of how ephemeral ports are
allocated in the examples throughout thetext.

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDPstart at
32768. Section E.4 details the configuration options that can be modified by the system admin-
istrator to change these defaults.

The well-known port numbers are contained in the file /etc/services on most
Unix systems. To find the port numbers for the Telnet server and the Domain Name
System, we can execute

2.
sun % grep telnet /etc/services
telnet 23/tcp says it uses TCP port 23

sun % grep domain /etc/services
domain 53/udp says it uses UDP port 53
domain 53/tep and TCPport 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuser privi-
leges can assignitself a reserved port.

These port numbersare in the range of 1 to 1023, and are used by some applications
(notably Rlogin, Section 26.2), as part of the authentication between the client and
server.
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1.10 Standardization Process

Whocontrols the TCP/IP protocol suite, approves new standards, and the like? There
are four groups responsible for Internet technology.

1. The Internet Society (ISOC) is a professional society to facilitate, support, and
promote the evolution and growth ofthe Internet as a global research communi-
cations infrastructure.

2. The Internet Architecture Board (IAB) is the technical oversight and coordination
body. It is composed of about 15 international volunteers from various disci-
plines and servesas the final editorial and technical review board for the quality
of Internet standards. The 1AB falls under the ISOC.

3. The Internet Engineering Task Force (IETF) is the near-term, standards-oriented
group, divided into nine areas (applications, routing and addressing, security,
etc.). The IETF develops the specifications that become Internet standards. An
additional Internet Engineering Steering Group (IESG) was formed to help the
IETF chair.

4, The Internet Research Task Force (IRTF) pursues long-term research projects.

Both the IRTF and the IETF fall under the IAB. [Crocker 1993] provides additional
details on the standardization process within the Internet, as well as someofits early
history.

RFCs

All the official standards in the internet community are published as a Request for Com-
ment, or RFC, Additionally there are lots of RFCs that are not official standards, but are
published for informational purposes. The RFCs range in size from 1 page to almost
200 pages. Eachis identified by a number, such as RFC 1122, with higher numbersfor
newer RFCs.

All the RFCs are available at no charge through electronic mail or using FTP across
the Internet. Sending electronic mail as shownhere:

To: rfc-info@ISI.EDU

Subject: getting rfcs

help: ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs.
The latest RFC index is always a starting point when looking for something. This

index specifies when a certain RFC has been replaced by a newer RFC, and if a newer
RFC updates someofthe information in that RFC.

There are a few important RFCs.

1. The Assigned Numbers RFC specifies all the magic numbers and constants that
are used in the Internet protocols. At the time of this writing the latest version
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1.12

of this RFC is 1340 [Reynolds and Postel 1992]. All the Internet-wide well-
known portsare listed here.

Whenthis RFC is updated(it is normally updated at least yearly) the index list-
ing for 1340 will indicate which RFC hasreplacedit.

2. The Internet Official Protocol Standards, currently RFC 1600 [Postel 1994]. This
REC specifies the state of standardization of the various Internet protocols. Each
protocol has one of the following states of standardization: standard, draft stan-
dard, proposed standard, experimental, informational, or historic. Additionally
each protocol has a requirementlevel: required, recommended,elective, limited
use, or not recommended.

Like the Assigned Numbers RFC,this RFC is also reissued regularly. Be sure
you’re reading the current copy.

3. The Host Requirements RFCs, 1122 and 1123 [Braden 1989a, 1989b]. RFC 1122
handles the link layer, network layer, and transport layer, while RFC 1123 han-
dles the application layer. These two RFCs make numerous corrections and
interpretations of the important earlier RFCs, and are often the starting point
when looking at any of the finer details of a given protocol. Theylist the fea-
tures and implementation details of the protocols as either “must,” “should,”
“may,” “should not,” or “must not.”

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127
[Braden 1989c] provides an informal summary of the discussions and conclu-
sions of the working group that developed the Host Requirements RFCs.

4. The Router Requirements RFC. The official version of this is RFC 1009 [Braden
and Postel 1987], but a new version is nearing completion [Almquist 1993]. This
is similar to the host requirements RFCs, but specifies the unique requirements
of routers.

Standard, Simple Services

There are a few standard, simple services that almost every implementation provides.
We'll use someof these servers throughoutthe text, usually with the Telnet client. Fig-
ure 1.9 describes these services. We can see from this figure that when the same service
is provided using both TCP and UDP, both port numbers are normally chosen to be the
same.

If we examine the port numbers for these standard services and other standard TCP/IP ser-
vices (Telnet, FTP, SMTP, etc.), most are odd numbers. This is historical as these port numbers
are derived from the NCP port numbers. (NCP, the Network Control Protocol, preceded TCP
as a transport layer protocol for the ARPANET.) NCP wassimplex, not full-duplex, so each
application required two connections, and an even-oddpair of port numbers was reserved for
each application. When TCP and UDP becamethe standard transport layers, only a single
port number was neededper application, so the odd port numbers from NCP wereused.
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Name TCP port|UDP port|RFC Description
echo 7 7 862|Server returns whateverthe client sends.
discard 9 9 863|Server discards whateverthe client sends.

daytime 13 13 867|Server returns the time and date in a human-readable
format.

chargen 19 19 864|TCP server sends a continual stream of characters, until the
connection is terminated by the client. UDP server
sends a datagram containing a random numberof
characters each timethe client sends a datagram.

time 37 37 868|Server returns the time as a 32-bit binary number. This
numberrepresents the numberof secondssince
midnight January 1, 1900, UTC,

  

      
 

Figure 1.9 Standard, simple services provided by most implementations.

The Internet

In Figure 1.3 we showed an internet composed of two networks—an Ethernet and a
token ring. In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need
to allocate IP addresses centrally (the InterNIC) and the well-known port numbers(the
IANA). The word internet means different things depending on whetherit’s capitalized
or not.

The lowercase internet means multiple networks connected together, using a com-
mon protocol suite. The uppercase Internet refers to the collection of hosts (over one
million) around the world that can communicate with each other using TCP/IP. While
the Internet is an internet, the reverse is not true.

implementations

The de facto standard for TCP/IP implementations is the one from the Computer Sys-
tems Research Group at the University of California at Berkeley. Historically this has
been distributed with the 4.x BSD system (Berkeley Software Distribution), and with the

“BSD Networking Releases.” This source code has been the starting point for many
other implementations.

Figure 1.10 shows a chronology of the various BSD releases, indicating the impor-
tant TCP/IP features. The BSD Networking Releases shownontheleft side are publicly
available source codereleases containing all of the networking code: both the protocols
themselves and manyof the applications andutilities (such as Telnet and FTP).

Throughout the text we'll use the term Berkeley-derived implementation to refer to
vendor implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally
developed from the Berkeley sources. These implementations have much in common,
often including the same bugs!
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4.2BSD (1983)
first widely available

release of TCP/IP

4.3BSD (1986)
TCP performance improvements

4.3BSD Tahoe(1988)
slow start,

congestion avoidance,
fast retransmit

BSD Networking Software |
Release 1.0 (1989): Net/1

4.3BSD Reno(1990)

fast recovery,
TCP headerprediction,

oo SLIP header compression,
routing table changes

BSD Networking Software
Release 2.0 (1991): Net/2

4.4BSD (1993)
muiticasting,

oo long fat pipe modifications
4.ABSD-Lite (1994)

also referred to as Net/3

Figure 1.10 Various BSD releases with important TCP/IP features.

Muchofthe original research in the Internetis still being applied to the Berkeley
system—new congestion control algorithms (Section 21.7), multicasting (Section 12.4),
“long fat pipe” modifications (Section 24.3), and the like.

1.15 Application Programming Interfaces

Two popular application programming interfaces (APIs) for applications using the TCP/IP
protocols are called sockets and TLI (Transport Layer Interface). The former is some-
times called “Berkeley sockets,” indicating where it was originally developed. Thelat-
ter, originally developed by AT&T, is sometimes called XTI (X/Open Transport
Interface), recognizing the work done by X/Open, an international group of computer
vendors that producetheir own set of standards. XTIis effectively a superset of TLI.
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1.16

This text is not a programming text, but occasional reference is made to features of
TCP/IP that we look at, and whether that feature is provided by the most popular API
(sockets) or not. All the programming details for both sockets and TLI are available in
[Stevens 1990].

Test Network

Figure 1.11 showsthe test network that is used forall the examples in the text. This fig-
ure is also duplicated on the inside front cover for easy reference while reading the
book.

    

          

Internet

AIX 3.2.2 Solaris 2.2 SunOS 4.1.1 104.1

aix solaris emini atewa Cisco
3 3 ¥Y router

®

 

 
1.92 1,32 ria 
 Ethernet 1.183

Telebit
NetBlazer

 

netb   
 

 

modem 

SLIP|(dialup)     
    

            

modem

BSD/386 1.0 BSD/3861.0 SunOS 4.1.3 gh29 SVR4
. SLIP .6=—_—_—=®

slip "3.65 73.66 bsdi sun svxr4
13.35 13.33 113,34

Ethernet

Figure 1.11 Test network used for all the examplesin the text. All IP addresses begin with 140.252,

Mostof the examples are run on the lower four systemsin this figure (the author’s sub-
net). All the IP addressesin this figure belong to the class B network ID 140.252. All the
hostnames belong to the .tuc.noao.edu domain. (noao standsfor “National Optical
Astronomy Observatories” and tuc stands for Tucson.) For example, the lower right
system has a complete hostname of svr4.tuc.noao.edu and an IP address of
140,252.13.34. The notation at the top of each box is the operating system running on
that system. This collection of systems and networks provides hosts and routers run-
ning a variety of TCP/IP implementations.
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It should be noted that there are many more networks and hosts in the noao.edu
domain than we show in Figure 1.11. All we show here are the systems that we'll
encounter throughoutthe text.

In Section 3.4 we describe the form of subnetting used on this network, and in Sec-
tion 4.6 we'll provide more details on the dialup SLIP connection between sun and
netb. Section 2.4 describes SLIP in detail.

1.17 Summary

This chapter has been a whirlwind tour of the TCP/IP protocol suite, introducing many
of the terms and protocols that we discuss in detail in later chapters.

The four layers in the TCP/IP protocol suite are the link layer, network layer, trans-
port layer, and application layer, and we mentioned the different responsibilities of
each. In TCP/IP the distinction between the network layer and the transport layeris
critical: the network layer (IP) provides a hop-by-hop service while the transport layers
(TCP and UDP) provide an end-to-endservice.-

An internet is a collection of networks. The common building block for an internet
is a router that connects ihe networks at the IP layer. The capital-I Internet is an internet
that spans the globe and consists of more than 10,000 networks and more than one mil-
lion computers.

On an internet each interface is identified by a unique IP address, although users
tend to use hostnames instead of IP addresses. The Domain Name System provides a
dynamic mapping between hostnames and IP addresses. Port numbers are used to
identify the applications communicating with each other and we said that servers use
well-knownports while clients use ephemeral ports.

Exercises

11. Calculate the maximum numberof class A, B, and C network IDs.

12 Fetch the file nsfnet/statistics/history.netcount using anonymous FIP (Sec-
tion 27.3) from the host nic.merit.edu. This file contains the number of domestic and
foreign networks announced to the NSFNETinfrastructure. Plot these values with the year
on the x-axis and a logarithmic y-axis with the total number of networks. The maximum
value for the y-axis should be the value calculated in the previous exercise. If the data
shows a visual trend, extrapolate the values to estimate when the curfent addressing
scheme will run out of network IDs. (Section 3.10 talks about proposals to correct this
problem.)

1.3 Obtain a copy of the Host Requirements RFC [Braden 1989a] and look up the robustness
principle that applies to every layer of the TCP/IP protocol suite. Whatis the reference for
this principle?

1.4 Obtain a copy of the latest Assigned Numbers RFC. Whatis the well-known port for the
“quote of the day” protocol? Which REC defines the protocol?
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1.5

1.6

1.7

18

If you have an account on a hostthat is connected to a TCP/IP internet, whatis its primary
IP address? Is the host connected to the worldwide Internet? Is it multihomed?

Obtain a copy of RFC 1000 to learn where the term RFC originated.

Contact the Internet Society, isoc@isoc.org or +1 703 648 9888, to find out about joining.

Fetch the file about-internic/information-about-the-internic using anony-
mous FTP from the host is.internic.net.
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2.2

Link Layer

Introduction

From Figure 1.4 (p. 6) we see that the purposeof the link layer in the TCP/IP protocol
suite is to send and receive (1) IP datagrams for the IP module, (2) ARP requests and
replies for the ARP module, and (3) RARP requests and replies for the RARP module.
TCP/IP supports many different link layers, depending on the type of networking
hardware being used: Ethernet, token ring, FDDI (Fiber Distributed Data Interface),
RS-232 serial lines, and the like.

In this chapter we'll look at someof the details involved in the Ethernet link layer,
two specialized link layers for serial interfaces (SLIP and PPP), and the loopback driver
that’s part of most implementations. Ethernet and SLIP are the link layers used for
most of the examples in the book. Wealso talk about the MTU (Maximum Transmission
Unit), a characteristic of the link layer that we encounter numeroustimesin the remain-
ing chapters. We also show somecalculations of how to choose the MTU foraserial
line.

 
Ethernet and IEEE 802 Encapsulation

The term Ethernet generally refers to a standard published in 1982 by Digital Equipment
Corp., Intel Corp., and Xerox Corp. It is the predominant form of local area network
technology used with TCP/IP today. It uses an access method called CSMA/CD, which
stands for Carrier Sense, Multiple Access with Collision Detection. It operates at 10
Mbits/sec and uses 48-bit addresses.

A few years later the IEEE (Institute of Electrical and Electronics Engineers) 802
Committee published a sightly different set of standards. 802.3 covers an entire set of
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CSMA/CD networks, 802.4 covers token bus networks, and 802.5 covers token ring net-
works. Commonto all three of these is the 802.2 standard that defines the logical link
control (LLC) common to many of the 802 networks. Unfortunately the combination of
802.2 and 802.3 defines a different frame format from true Ethernet. ([Stallings 1987]
covers all the details of these IEEE 802 standards.)

In the TCP/IP world, the encapsulation of IP datagrams-is defined in RFC 894
[Hornig 1984] for Ethernets and in RFC 1042 [Postel and Reynolds 1988] for IEEE 802
networks. The Host Requirements RFC requires that every Internet host connected to a
10 Mbits/sec Ethernetcable:

1. Must be able to send and receive packets using RFC 894 (Ethernet) encapsula-
tion.

2. Should be able to receive RFC 1042 (IEEE 802) packets intermixed with RFC 894
packets.

3. Maybeable to send packets using RFC 1042 encapsulation. If the host can send
both types of packets, the type of packet sent must be configurable and the con-
figuration option must default to RFC 894 packets.

RFC 894 encapsulation is most commonly used. Figure 2.1 shows the two different
forms of encapsulation. The number below each boxin the figure is the size of that box
in bytes.

Both frame formats use 48-bit (6-byte) destination and source addresses. (802.3
allows 16-bit addresses to be used, but 48-bit addresses are normal.) These are what we
call hardware addresses throughout the text. The ARP and RARP protocols (Chapters 4
and 5) map between the 32-bit IP addresses and the 48-bit hardware addresses.

The next 2 bytes are different in the two frame formats. The 802 length field says
how many bytes follow, up to but not including the CRC at the end. The Ethernet type
field identifies the type of data that follows. In the 802 frame the same type field occurs
later in the SNAP (Sub-network Access Protocol) header. Fortunately none of the valid
802 length values is the same as the Ethernet type values, making the two frame formats
distinguishable. .

In the Ethernet frame the data immediately follows the type field, while in the 802
frame format 3 bytes of 802.2 LLC and 5 bytes of 802.2 SNAP follow. The DSAP (Desti-
nation Service Access Point) and SSAP (Source Service Access Point) are both set to
Oxaa. Thectrl field is set to 3. The next 3 bytes, the org code are all 0. Following this is
the same 2-byte type field that we had with the Ethernet frame format. (Additional type
field values are given in RFC 1340 [Reynolds and Postel 1992].)

The CRC field is a cyclic redundancy check (a checksum) that detects errors in the
rest of the frame. (This is also called the FCS or frame check sequence.)

There is a minimum size for 802.3 and Ethernet frames. This minimum requires
that the data portion be at least 38 bytes for 802.3 or 46 bytes for Ethernet. To handle
this, pad bytes are inserted to assure that the frame is long enough. We’ll encounter this
minimum when westart watching packets on the wire.

In this text we'll display the Ethernet encapsulation when we need to, because this
is the most commonly used form of encapsulation.
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IEEE 802.2/802.3 Encapsulation (RFC 1042):
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Figure 2.1 IEEE 802.2/802.3 encapsulation (RFC 1042) and Ethernet encapsulation (RFC 894).

 2.3 ‘Trailer Encapsulation

RFC 893 [Leffler and Karels 1984] describes another form of encapsulation used on
Ethernets, called trailer encapsulation. It was an experiment with early BSD systems on
DEC VAXesthat improved performance by rearranging the orderof the fields in the IP
datagram. The variable-length fields at the beginning of the data portion of the Ether-
net frame (the IP header and the TCP header) were moved to the end (right before the
CRC). This allows the data portion of the frame to be mapped to a hardware page,
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2.4

saving a memory-to-memory copy whenthe data is copied in the kernel. TCP data that
is a multiple of 512 bytes in size can be moved by just manipulating the kernel’s page
tables. Two hosts negotiated the useof trailer encapsulation using an extension of ARP.
Different Ethernet frame type values are defined for these frames.

Nowadaystrailer encapsulation is deprecated, so we won’t show any examples of
it. Interested readers are referred to RFC 893 and Section 11.8 of [Leffler et al. 1989] for
additional details.

SLIP: Serial Line IP

SLIP stands for Serial Line IP. It is a simple form of encapsulation for IP datagrams on
serial lines, and is specified in RFC 1055 [Romkey 1988]. SLIP has become popularfor
connecting home systems to the Internet, through the ubiquitous RS-232 serial port
found on almost every computer and high-speed modems.

The following rules specify the framing used by SLIP.

1. The IP datagram is terminated by the special character called END (0xc0).
Also, to prevent any line noise before this datagram from being interpreted as
part of this datagram, most implementations transmit an END character at the
beginning of the datagram too. (If there was someline noise, this END termi-
nates that erroneous datagram, allowing the current datagram to be transmitted.
That erroneous datagram will be thrown away by a higher layer whenits con-
tents are detected to be garbage.)

2. If a byte of the IP datagram equals the END character, the 2-byte sequence
Oxdb, Oxdc is transmitted instead. This special character, Oxdb, is called the
SLIP ESC character, but its value is different from the ASCII ESC character
(Ox1b).

3. Ifa byte of the IP datagram equals the SLIP ESC character, the 2-byte sequence
Oxdb, Oxdd is transmitted instead.

Figure 2.2 shows an exampleof this framing, assuming that one END character and one
ESC character appear in the original IP datagram. In this example the numberof bytes
transmitted acrossthe serial line is the length of the IP datagram plus4.

SLIP is a simple framing method. It has somedeficiencies that are worth noting.

1. Each end must know the other’s IP address. There is no method for one end to

inform the otherof its IP address.

2. There is no type field (similar to the frame type field in Ethernet frames). If a
serial line is used for SLIP, it can’t be used for some other protocol at the same
time.

3. There is no checksum added by SLIP (similar to the CRC field in Ethernet
frames). If a noisy phone line corrupts a datagram being transferred by SLIP,
it’s up to the higher layers to detect this. (Alternately, newer modemscan detect
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—______________________ IP datagram
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Figure 2.2. SLIP encapsulation.

and correct corrupted frames.) This makes it essential that the upper layers pro-
vide some form of CRC. In Chapters 3 and 17 we'll see that there is always a
checksum for the IP header, and for the TCP header and the TCP data. But in

Chapter 11 we'll see that the checksum that covers the UDP header and UDP
datais optional.

Despite these shortcomings, SLIP is a popular protocol that is widely used.

The history of SLIP dates back to 1984 when Rick Adams implemented it in 4.2BSD, Despite
its self-description as a nonstandard, it is becoming more popular as the speed andreliability
of modemsincrease. Publicly available implementations abound, and many vendors support
it today.

Compressed SLIP

Since SLIP lines are often slow (19200 bits/sec or below) and frequently used for inter-
active traffic (such as Telnet and Rlogin, both of which use TCP), there tend to be many
small TCP packets exchanged across a SLIP line. To carry 1 byte of data requires a
20-byte IP header and a 20-byte TCP header, an overhead of 40 bytes. (Section 19.2
shows the flow of these small packets when a simple command is typed during an
Rlogin session.)

Recognizing this performance drawback, a newer version of SLIP, called CSLIP (for
compressed SLIP), is specified in RFC 1144 [Jacobson 1990a]. CSLIP normally reduces
the 40-byte headerto 3 or 5 bytes. It maintains the state of up to 16 TCP connections on
each end of the CSLIP link and knowsthat some of the fields in the two headers for a

given connection normally don’t change. Ofthe fields that do change, most changeby a
small positive amount. These smaller headers greatly improve the interactive response
time.

Most SLIP implementations today support CSLIP. Both SLIP links on the author’s subnet(see
inside front covet) are CSLIP links.
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2.6 PPP: Point-to-Point Protocol

PPP, the Point-to-Point Protocol, corrects all the deficiencies in SLIP. PPP consists of

three components.

1. A way to encapsulate IP datagrams onaserial link. PPP supports either an
asynchronouslink with 8 bits of data and no parity (i.e., the ubiquitousserial
interface found on most computers) or bit-oriented synchronouslinks.

2. A link control protocol (LCP)to establish, configure, and test the data-link connec-
tion. This allows each end to negotiate various options.

3. A family of network control protocols (NCPs) specific to different network layer
protocols. RFCs currently exist for IP, the OSI network layer, DECnet, and
AppleTalk. The IP NCP, for example, allows each end to specify if it can per-
form header compression, similar to CSLIP. (The acronym NCP wasalso used
for the predecessor to TCP.)

REC 1548 [Simpson 1993] specifies the encapsulation method and the link control proto-
col. RFC 1332 [McGregor 1992] specifies the network control protocolforIP.

The format of the PPP frames was chosen to look like the IS0 HDLC standard

(high-level data link control), Figure 2.3 shows the format of PPP frames.
 

     
  
 

 

 

 

flag|addr|control oe flag
1k FP 03 protocol information CRC TE
1 1 1 2 up to 1500 bytes 2 1

protocol ;
0021 IP datagram

protocol link control dataco21

protocol
8021 network control data

   
 

Figure 2.3 Format of PPP frames.

Each frame begins and ends with a flag byte whose value is 0x7e. This is followed
by an address byte whose value is always 0xff, and then a control byte, with a value of
0x03.

Next comesthe protocol field, similar in function to the Ethernet type field. A value
of 0x0021 meansthe information field is an IP datagram, a value of 0xc021 meansthe
information field is link control data, and a value of 0x8021 is for network control data.
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The CRC field (or FCS, for frame check sequence) is a cyclic redundancy check, to
detect errors in the frame.

Since the byte value 0x7e is the flag character, PPP needs to escape this byte whenit
appears in the information field. On a synchronouslink this is done by the hardware
using a techniquecalled bit stuffing [Tanenbaum 1989]. On asynchronouslinks the spe-
cial byte 0x7d is used as an escape character. Whenever this escape character appears
in a PPP frame, the next character in the frame has hadits sixth bit complemented, as
follows:

1. The byte 0x7e is transmitted as the 2-byte sequence 0x7d, 0x5e. This is the
escapeofthe flag byte.

2. The byte 0x7d is transmitted as the 2-byte sequence 0x7d, 0x5d. This is the
escape of the escapebyte.

3. By default, a byte with a value less than 0x20 (i.e., an ASCII control character) is
also escaped. For example, the byte 0x01 is transmitted as the 2-byte sequence
Ox7d, 0x21. (In this case the complement of the sixth bit turns the bit on,
whereasin the two previous examples the complementturned thebit off.)

The reason for doing this is to prevent these bytes from appearing as ASCII con-
trol characters to the serial driver on either host, or to the modems, which some-

times interpret these control characters specially. It is also possible to use the
link control protocol to specify which,if any, of these 32 values must be escaped.
By default, all 32 are escaped.

Since PPP, like SLIP, is often used across slow serial links, reducing the numberof
bytes per frame reduces the latency for interactive applications. Using the link control
protocol, most implementations negotiate to omit the constant address and control fields
and to reduce thesize of the protocol field from 2 bytes to 1 byte. If we then compare the
framing overhead in a PPP frame, versus the 2-byte framing overhead in a SLIP frame
(Figure 2.2), we see that PPP adds three additional bytes: 1 byte for the protocol field,
and 2 bytes for the CRC. Additionally, using the IP network control protocol, most
implementations then negotiate to use Van Jacobson header compression (identical to
CSLIP compression) to reduce the size of the IP and TCP headers.

In summary, PPP provides the following advantages over SLIP: (1) support for mul-
tiple protocols on a single serial line, not just IP datagrams, (2) a cyclic redundancy
check on every frame, (3) dynamic negotiation of the IP address for each end (using the
IP network control protocol), (4) TCP and IP header compression similar to CSLIP, and
(5) a link control protocol for negotiating many data-link options. The price we pay for
all these features is 3 bytes of additional overhead per frame, a few frames of negotia-
tion whenthe link is established, and a more complex implementation.

Despite all the added benefits of PPP over SLIP, today there are more SLIP users than PPP
users. As implementations become more widely available, and as vendors start to support
PPP, it should (eventually) replace SLIP.
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2.7 Loopback Interface

Mostimplementations support a loopback interface that allowsa client and server on the
same host to communicate with each other using TCP/IP. The class A network ID 127
is reserved for the loopback interface. By convention, most systems assign the IP
address of 127.0.0.1 to this interface and assign it the name localhost. An IP data-
gram sent to the loopback interface must not appear on any network.

Although we could imagine the transport layer detecting that the other end is the
loopback address, and short circuiting some of the transport layer logic andall of the
network layer logic, most implementations perform complete processing of the data in
the transport layer and network layer, and only loop the IP datagram back to itself
whenthe datagram leaves the bottom of the network layer.

Figure 2.4 showsa simplified diagram of how the loopback interface processes IP
datagrams.
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Figure 2.4 Processing of IP datagrams by loopback interface.
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2.8

The key points to note in this figure are as follows:

1. Everything sent to the loopback address (normally 127.0.0.1) appears as IP
input.

2. Datagrams sent to a broadcast address or a multicast address are copied to the
loopback interface and sent out on the Ethernet. This is because the definition
of broadcasting and multicasting (Chapter 12) includes the sending host.

3. Anything sent to one of the host’s own IP addresses is sent to the loopback
interface.

While it may seem inefficient to perform all the transport layer and IP layer process-
ing of the loopback data,it simplifies the design because the loopback interface appears
as just anotherlink layer to the network layer. The network layer passes a datagram to
the loopback interface like any other link layer, and it happens that the loopbackinter-
face then puts the datagram backonto IP’s input queue.

Another implication of Figure 2.4 is that IP datagramssentto the one of the host’s
own IP addresses normally do not appear on the corresponding network. For example,
on an Ethernet, normally the packet is not transmitted and then read back. Comments
in some of the BSD Ethernet device drivers indicate that many Ethernet interface cards
are not capable of reading their own transmissions. Since a host must process IP data-
gramsthat it sends to itself, handling these packets as shown in Figure 2.4 is the sim-
plest way to accomplishthis.

The 4.4BSD implementation defines the variable useloopbackandinitializes it to 1. If this
variable is set to 0, however, the Ethernet driver sends local packets onto the network instead
of sending them to the loopback driver. This may or may not work, depending on your Ether-
net interface card and device driver.

MTU

As we can see from Figure 2.1, there is a limit on the size of the frame for both Ethernet
encapsulation and 802.3 encapsulation. This limits the number of bytes of data to 1500
and 1492, respectively. This characteristic of the link layer is called the MTU, its maxi-
mum transmission unit. Most types of networks have an upperlimit.

If IP has a datagram to send, and the datagram is larger than the link layer’s MTU,
IP performsfragmentation, breaking the datagram up into smaller pieces (fragments), so
that each fragment is smaller than the MTU. We discuss IP fragmentation in Sec-
tion 11.5,

Figure 2.5 lists some typical MTU values, taken from RFC 1191 [Mogul and Deering
1990]. Thelisted MTU for a point-to-pointlink (e.g., SLIP or PPP) is not a physical char-
acteristic of the network media. Instead it is a logical limit to provide adequate
response time for interactive use. In the Section 2.10 we’ll see where this limit comes
from.

In Section 3.9 we'll use the net stat commandto print the MTUof an interface.
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2.9

2.10

 

Network MTU (bytes)

Hyperchannel 65535
16 Mbits/sec token ring (IBM) 17914
4 Mbits/sec token ring (IEEE 802.5) 4464
FDDI 4352
Ethernet 1500

TEEE 802.3/802.2 1492
X.25 576

Point-to-point (low delay) 296

  

   
 

Figure 2.5 Typical maximum transmission units (MTUs).

Path MTU

Whentwohosts on the same network are communicating with each other, it is the MTU
of the network that is important. But when two hosts are communicating across mullti-
ple networks, each link can have a different MTU. The important numbersare not the
MTUsof the two networks to which the two hosts connect, but rather the smallest MTU
of any data link that packets traverse between the two hosts. This is called the path
MTU.

The path MTU between any two hosts need not be constant. It depends on the
route being used at any time. Also, routing need not be symmetric (the route from A to
B may notbethe reverse of the route from B to A), hence the path MTU need notbe the
same in the two directions.

RFC 1191 [Mogul and Deering 1990] specifies the “path MTU discovery mecha-
nism,” a way to determine the path MTUat any time. We’ll see how this mechanism
operates after we’ve described ICMP andIP fragmentation. In Section 11.6 we'll exam-
ine the ICMP unreachable error that is used with this discovery mechanism andin Sec-
tion 11.7 we'll show a version of the traceroute program that uses this mechanism to
determine the path MTU to a destination. Sections 11.8 and 24.2 show how UDP and
TCP operate whenthe implementation supports path MTU discovery.

Serial Line Throughput Calculations

If the line speed is 9600 bits/sec, with 8 bits per byte, plus 1 start bit and 1 stop bit, the
line speed is 960 bytes/sec. Transferring a 1024-byte packet at this speed takes 1066 ms.
If we’re using the SLIP link for an interactive application, along with an application
such as FTP that sends or receives 1024-byte packets, we have to wait, on the average,
half of this time (533 ms) to send ourinteractive packet.

This assumesthat our interactive packet will be sent across the link before any fur-
ther “big” packets. Most SLIP implementations do provide this type-of-service queue-
ing, placing interactive traffic ahead of bulk data traffic. The interactive traffic is
normally Telnet, Rlogin, and the control portion (the user commands, not the data) of
FTP.
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This type of service queueing is imperfect. It cannot affect noninteractive traffic that is already
queued downstream (e.g., at the serial driver). Also newer modemshavelarge buffers so non-
interactive traffic may already be buffered in the modem.

Waiting 533 ms is unacceptable for interactive response. Humanfactors studies
have found that an interactive response time longer than 100-200 ms is perceived as
bad [Jacobson 1990a]. This is the round-trip time for an interactive packet to be sent
and something to be returned (normally a character echo).

Reducing the MTUof the SLIP link to 256 means the maximum amountoftime the
link can be busy with a single frame is 266 ms, and half of this (our average wait) is 133
ms. This is better, but still not perfect. The reason we choosethis value (as compared to
64 or 128) is to provide good utilization of the line for bulk data transfers (such as large
file transfers). Assuming a 5-byte CSLIP header, 256 bytes of data in a 261-byte frame
gives 98.1%of the line to data and 1.9%to headers, which is good utilization. Reducing
the MTU below 256 reduces the maximum throughput that we can achieve for bulk
data transfers.

The MTUvaluelisted in Figure 2.5, 296 for a point-to-pointlink, assumes 256 bytes
of data and the 40-byte TCP and IP headers. Since the MTUis a value that IP queries
the link layer fox, the value must include the normal TCP and IP headers. This is how
IP makes its fragmentation decision. IP knows nothing about the header compression
that CSLIP performs.

Our average wait calculation (one-half the time required to transfer a maximum
sized frame) only applies when a SLIP link (or PPP link) is used for both interactivetraf-
fic and bulk data transfer. When only interactive traffic is being exchanged, 1 byte of
data in each direction (assuming 5-byte compressed headers) takes around 12.5 msfor
the round trip at 9600 bits/sec. This is well within the 100-200 ms range mentioned
earlier. Also notice that compressing the headers from 40 bytes to 5 bytes reduces the
round-trip time for the 1 byte of data from 85 to 12.5 ms.

Unfortunately these types of calculations are harder to make when newererror cor-
recting, compressing modemsare being used. The compression employed by these
modemsreduces the numberof bytes sent across the wire, but the error correction may
increase the amount of time to transfer these bytes. Nevertheless, these calculations
give us a starting point to make reasonable decisions.

In later chapters we'll use these serial line calculations to verify someof the timings
that we see when watching packets go acrossaserial link.

Summary

This chapter has examined the lowest layer in the Internet protocol suite, the link layer.
Welooked at the difference between Ethernet and JEEE 802.2/802.3 encapsulation, and
the encapsulation used by SLIP and PPP. Since both SLIP and PPP are often used on
slow links, both provide a way to compress the commonfields that don’t often change.
This provides better interactive response.

The loopback interface is provided by most implementations. Access to this inter-
face is either through the special loopback address, normally 127.0.0.1, or by sending IP
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datagrams to one of the host’s own IP addresses. Loopback data has been completely
processed by the transport layer and by IP whenit loops around to go up the protocol
stack.

Wedescribed an important feature of many link layers, the MTU, and the related
concept of a path MTU. Using the typical MTUsfor serial lines, we calculated the
latency involved in SLIP and CSLIPlinks.

This chapter has covered only a few of the common data-link technologies used
with TCP/IP today. One reason for the success of TCP/IPis its ability to work on top of
almost any data-link technology.

Exercises

2.1 If your system supports the net stat(1) command(see Section 3.9 also), useit to determine
the interfaces on your system and their MTUs.
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Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and
IGMP data gets transmitted as IP datagrams (Figure 1.4). A fact that amazes many
newcomers to TCP/IP, especially those from an X.25 or SNA background,is that IP pro-
vides an unreliable, connectionless datagram delivery service.

By unreliable we mean there are no guarantees that an IP datagram successfully gets
to its destination. IP provides a best effort service. When something goes wrong, such
as a router temporarily running out of buffers, IP has a simple error handling algorithm:
throw away the datagram and try to send an ICMP message back to the source. Any
requiredreliability must be provided by the upperlayers(e.g., TCP).

The term connectionless means that IP does not maintain any state information about
successive datagrams. Each datagram is handled independently from all other data-
grams. This also means that IP datagrams can get delivered out of order. If a source
sends two consecutive datagrams (first A, then B) to the same destination, each is
routed independently and can take different routes, with B arriving before A.

In this chapter wetake a brief lookat the fields in the IP header, describe IP routing,
and cover subnetting. We also look at two useful commands: ifconfig and netstat.
We leave a detailed discussion of some of the fields in the IP headerfor later when we

can see exactly how the fields are used. RFC 791 [Postel 1981a] is the official specifica-
tion of IP.
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3.2 IP Header

Figure 3.1 shows the format of an IP datagram. The normalsize of the IP headeris 20
bytes, unless options are present.
 

   
     
  
 

 

0 15 16 31

4-bit |4-bitheader| 8-bit type of service 4 .
version length (TOS) 16-bit total length (in bytes)

as ee 3-bit .
16-bit identification 13-bit fragmentoffset

flags

S-bit time to live 8-bit protocol 16-bit header checksum 20 bytes
(TTL)

32-bit source IP address

32-bit destination IP address

v

L options(if any) Z

/ data Z

  
 

Figure 3.1 IP datagram, showingthefields in the IP header.

Wewill show the pictures of protocol headers in TCP/IP as in Figure 3.1. The most sig-
nificant bit is numbered0 at theleft, and theleast significantbit of a 32-bit value is num-
bered 31 ontheright.

The 4 bytes in the 32-bit value are transmitted in the order: bits 0-7 first, then bits
8-15, then 16-23, and bits 24-31 last. This is called big endian byte ordering, which is
the byte ordering required for all binary integers in the TCP/IP headers as they traverse
a network. This is called the network byte order. Machines that store binary integers in
other formats, such as thelittle endian format, must convert the header values into the

network byte order before transmitting the data.
The current protocol version is 4, so IP is sometimes called [Pv4. Section 3.10 dis-

cusses some proposals for a new versionofIP.
The header length is the numberof 32-bit words in the header, including any options.

Since this is a 4-bit field, it limits the header to 60 bytes. In Chapter 8 we'll see that this
limitation makes some of the options, such as the record route option, useless today.
The normalvalueof this field (when no options are present) is 5.

The type-of-service field (TOS) is composed of a 3-bit precedence field (which is
ignored today), 4 TOS bits, and an unused bit that must be 0. The 4 TOSbits are: mini-
mize delay, maximize throughput, maximize reliability, and minimize monetary cost.
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Only 1 of these 4 bits can be turned on. If all 4 bits are 0 it implies normal service.
RFC 1340 [Reynolds and Postel 1992] specifies how these bits should be set by all the
standard applications. RFC 1349 [Almquist 1992] contains somecorrections to this RFC,
and a more detailed description of the TOSfeature.

Figure 3.2 shows the recommended values of the TOSfield for various applications.
In the final column we show the hexadecimal value, since that’s what we'll see in the

tcpdump outputlater in the text.
 

  Application Minimize Maximize Maximize Minimize Hex
delay throughput reliability monetary cost|value

Telnet/Rlogin 1 0 0 0 0x10
FTP

control 1 0 0 0 0x10
data 0 1 0 0 0x08

any bulk data 0 1 0 0 0x08
TFTP 1 0 0 0 0x10
SMTP

command phase 1 0 0 0 0x10
data phase 1 0 0 0x08

DNS

UDP query 1 0 0 0 0x10
TCP query 0 0 0 0 0x00
zone transfer 0 1 0 0 0x08

ICMP
error 0 0 0 0 0x00

query 0 0 0 0 0x00
any IGP 0 0 1 0 0x04
SNMP 0 0 1 0 0x04
BOOTP 0 0 0 0 0x00
NNTP 0 0 0 1 0x02

       
 

Figure 3.2 Recommended values for type-of-servicefield.

The interactive login applications, Telnet and Rlogin, want a minimum delay since
they're used interactively by a human for small amounts of data transfer. File transfer
by FTP, on the other hand, wants maximum throughput. Maximum reliability is speci-
fied for network management (SNMP)andthe routing protocols. Usenet news (NNTP)
is the only one shownthat wants to minimize monetarycost.

The TOS feature is not supported by most TCP/IP implementations today, though
newersystemsstarting with 4.3BSD Renoaresetting it. Additionally, new routing pro-
tocols such as OSPF and IS-IS are capable of making routing decisions based on this
field.

In Section 2.10 we mentioned that SLIP drivers normally provide type-of-service queueing,
allowing interactive traffic to be handled before bulk data. Since most implementations don’t
use the TOSfield, this queueing is done ad hoc by SLIP, with the driver looking at the protocol
field (to determine whetherit’s a TCP segmentor not) and then checking the source and desti-
nation TCP port numbersto see if the port number correspondsto an interactive service. One
driver comments that this “disgusting hack” is required since most implementations don’t
allow the application to set the TOSfield.
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Thetotal length field is the total length of the IP datagram in bytes. Usingthis field
and the header length field, we know where the data portion of the IP datagram starts,
and its length. Since this is a 16-bit field, the maximum size of an IP datagram is 65535
bytes. (Recall from Figure 2.5 [p. 30] that a Hyperchannel has an MTU of 65535. This
meansthere really isn’t an MTU—it uses the largest IP datagram possible.) This field
also changes when a datagram is fragmented, which wedescribe in Section 11.5.

Althoughit’s possible to send a 65535-byte IP datagram, mostlink layers will frag-
ment this. Furthermore, a host is not required to receive a datagram larger than 576
bytes. TCP divides the user’s data into pieces, so this limit normally doesn’t affect TCP.
With UDP we'll encounter numerous applications in later chapters (RIP, TFTP, BOOTP,
the DNS, and SNMP)that limit themselves to 512 bytes of user data, to stay below this
576-byte limit. Realistically, however, most implementations today (especially those
that support the Network File System, NFS) allow for just over 8192-byte IP datagrams.

The total length field is required in the IP header since somedata links (e.g., Ether-
net) pad small frames to be a minimum length. Even though the minimum Ethernet
frame size is 46 bytes (Figure 2.1), an IP datagram can be smaller. If the total length
field wasn’t provided, the IP layer wouldn’t know how much of a 46-byte Ethernet
frame wasreally an IP datagram.

Theidentification field uniquely identifies each datagram sent by a host. It normally
increments by one each time a datagram is sent. We return to this field when welookat
fragmentation and reassembly in Section 11.5. Similarly, we’ll also lookat the flags field
andthefragmentation offset field when wetalk about fragmentation.

RFC 791 [Postel 1981a] says that the identification field should be chosen by the upper layer
that is having IP send the datagram. This implies that two consecutive IP datagrams, one gen-
erated by TCP and one generated by UDP, can have the sameidentification field. While this is
OK (the reassembly algorithm handlesthis), most Berkeley-derived implementations have the
TP layer increment a kernel variable each time an IP datagram is sent, regardless of which layer
passed the data to IP to send. This kernel variableis initialized to a value based onthetime-of-
day whenthe system is bootstrapped.

The time-to-live field, or TTL, sets an upper limit on the number of routers through
which a datagram can pass. It limits the lifetime of the datagram.It is initialized by the
sender to somevalue (often 32 or 64) and decremented by one byevery router that han-
dles the datagram. When this field reaches 0, the datagram is thrown away, and the
senderis notified with an ICMP message. This prevents packets from getting caught in
routing loops forever. We return to this field in Chapter 8 when we look at the Trace-
route program. .

Wetalked about the protocol field in Chapter 1 and showed how it is used by IP to
demultiplex incoming datagrams in Figure 1.8. It identifies which protocol gave the
datafor IP to send.

The header checksumis calculated over the IP header only. It does not cover any data
that follows the header. ICMP, IGMP, UDP, and TCPall have a checksum in their own
headers to cover their header and data.

To compute the IP checksum for an outgoing datagram,the value of the checksum
field is first set to 0. Then the 16-bit one’s complement sum of the headeris calculated
(i.e., the entire header is considered a sequence of 16-bit words). The 16-bit one’s
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complement of this sum is stored in the checksum field. When an IP datagram is
received, the 16-bit one’s complement sum of the header is calculated. Since the
receiver’s calculated checksum contains the checksum stored by the sender, the
receiver’s checksum is all onebits if nothing in the header was modified. If the result is
notall one bits (a checksum error), IP discards the received datagram. No error mes-
sage is generated. It is up to the higher layers to somehow detect the missing datagram
and retransmit.

ICMP, IGMP, UDP, and TCP all use the same checksum algorithm, although TCP
and UDP include various fields from the IP header, in addition to their own header and

data. RFC 1071 [Braden, Borman, and Partridge 1988] contains implementation tech-
niques for computing the Internet checksum. Since a router often changes only the TTL
field (decrementing it by 1), a router can incrementally update the checksum whenit
forwards a received datagram, instead of calculating the checksum over the entire IP
header again. RFC 1141 [Mallory and Kullberg 1990] describes an efficient way to do
this.

The standard BSD implementation, however, does not use this incremental update feature
when forwarding a datagram.

Every IP datagram contains the source IP address and the destination IP address.
These are the 32-bit values that we described in Section 1.4.

Thefinal field, the options, is a variable-length list of optional information for the
datagram. The options currently defined are:

e security and handling restrictions (for military applications, refer to RFC 1108
[Kent 1991] for details),

e record route (have each router record its IP address, Section 7.3),

e timestamp (have each router record its IP address and time, Section 7.4),

e loose source routing (specifying a list of IP addresses that must be traversed by
the datagram, Section 8.5), and

e strict source routing (similar to loose source routing but here only the addresses
in the list can be traversed, Section 8.5).

These options are rarely used and notall host and routers supportall the options.
The optionsfield always ends on a 32-bit boundary. Pad bytes with a value of 0 are

added if necessary. This assures that the IP header is always a multiple of 32 bits (as
required for the headerlengthfield).

3.3. IP Routing

Conceptually, IP routing is simple, especially for a host. If the destination is directly
connected to the host(e.g., a point-to-point link) or on a shared network(e.g., Ethernet
or token ring), then the IP datagram is sent directly to the destination. Otherwise the
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host sends the datagram to a default router, and lets the router deliver the datagram to
its destination. This simple scheme handles most host configurations.

In this section and in Chapter 9 we'll look at the more general case where the IP
layer can be configured to act as a router in addition to acting as a host. Most multiuser
systemstoday, including almost every Unix system, can be configured toact as a router.
Wecan then specify a single routing algorithm that both hosts and routers can use. The
fundamental difference is that a host never forwards datagrams from one ofits inter-
faces to another, while a router forwards datagrams. A host that contains embedded
router functionality should never forward a datagram unless it has been specifically
configured to do so. We say more aboutthis configuration option in Section 9.4.

In our general scheme, IP can receive a datagram from TCP, UDP, ICMP, or IGMP
(that is, a locally generated datagram) to send, or one that has been received from a net-
workinterface (a datagram to forward). The IP layer has a routing table in memorythat
it searches each time it receives a datagram to send. When a datagram is received from
a network interface, IP first checks if the destination IP address is one of its own IP

addresses or an IP broadcast address. If so, the datagram is delivered to the protocol
module specified by the protocol field in the IP header. If the datagram is not destined
for this IP layer, then (1) if the IP layer was configured to act as a router the packetis for-
warded(that is, handled as an outgoing datagram as described below), else (2) the data-
gram is silently discarded.

Each entry in the routing table contains the following information:

e Destination IP address. This can be either a complete host address or a network
address, as specified by the flag field (described below) for this entry. A host
address has a nonzero host ID (Figure 1.5) and identifies one particular host,
while a network address has a host ID of 0 andidentifies all the hosts on that

network (e.g., Ethernet, token ring),

e IP address of a next-hop router, or the IP addressof a directly connected network.
A next-hop router is one that is on a directly connected network to which we can
send datagramsfor delivery. The next-hop routeris not the final destination, but
it takes the datagrams wesend it and forwards them to the final destination.

e Flags. Oneflag specifies whether the destination IP address is the address of a
network or the address of a host. Another flag says whether the next-hop router
field is really a next-hop router or a directly connected interface. (We describe
each ofthese flags in Section 9.2.)

° Specification of which network interface the datagram should be passed to for
transmission.

IP routing is done on a hop-by-hop basis. As we can see from this routing table
information, IP does not know the complete route to any destination (except, of course,
those destinations that are directly connected to the sending host). All that IP routing
provides is the IP address of the next-hop router to which the datagram is sent. It is
assumed that the next-hop router is really “closer” to the destination than the sending
host is, and that the next-hop router is directly connected to the sending host.
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IP routing performs the following actions:

1. Search the routing table for an entry that matches the complete destination IP
address (matching network ID and host ID). If found, send the packet to the
indicated next-hop router or to the directly connected interface (depending on
the flags field). Point-to-point links are found here, for example, since the other
end of such a link is the other host’s complete IP address.

2. Search the routing table for an entry that matches just the destination network
ID. If found, send the packet to the indicated next-hop router or to the directly
connected interface (depending onthe flags field). All the hosts on the destina-
tion network can be handled with this single routing table entry. All the hosts
on a local Ethernet, for example, are handled with a routing table entry of this
type.

This check for a network match must take into account a possible subnet mask,
which wedescribe in the next section.

3. Search the routing table for an entry labeled “default.” If found, send the packet
to the indicated next-hop router.

If none of the steps works, the datagram is undeliverable. If the undeliverable data-
gram was generated on this host, a “host unreachable” or “network unreachable” error
is normally returned to the application that generated the datagram.

A complete matching host address is searched for before a matching network ID.
Only if both of these fail is a default route used. Default routes, along with the ICMP
redirect message sent by a next-hop router (if we chose the wrong default for a data-
gram), are powerful features of IP routing that we'll come back to in Chapter 9.

The ability to specify a route to a network, and not haveto specify a route to every
host, is another fundamental feature of IP routing. Doing this allows the routers on the
Internet, for example, to have a routing table with thousandsof entries, instead of a
routing table with more than one million entries.

Examples

First consider a simple example: our host bsdi has an IP datagram to send to our host
sun. Both hosts are on the same Ethernet (see inside front cover), Figure 3.3 showsthe
delivery of the datagram.

WhenIP receives the datagram from one of the upper layers it searches its routing
table and finds that the destination IP address (140.252.13.33)is on a directly connected
network (the Ethernet 140.252.13.0). A matching network address is found in the rout-
ing table. (In the next section we'll see that because of subnetting the network address
of this Ethernet is really 140.252.13.32, but that doesn’t affect this discussion of routing.)

The datagram is passed to the Ethernet device driver, and sent to sun as an Ether-
net frame (Figure 2.1). The destination address in the IP datagram is Sun’s IP address
(140.252.13.33) and the destination address in the link-layer headeris the 48-bit Ethernet
address of sun’s Ethernet interface. This 48-bit Ethernet address is obtained using ARP,
as we describein the next chapter.
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destination network = bsdi
140.252.13.0 Sot . sun

15.35) 18.357 '
; Ethernet, 140,252.13 ;I i

¥___| link] IP
> hdr|hdr ne     

| Lp dest IP = 140.252.1333
...» dest Enet = Enet of 140.252.13.33

Figure 3.3 Delivery of IP datagram from bsdi to sun.

Now consider another example: bsdi has an IP datagram to send to the host
ftp.uu.net, whose IP address is 192.48.96.9. Figure 3.4 shows the path of the data-
gram throughthefirst three routers. First bsdi searches its routing table but doesn’t
find a matching host entry or a matching networkentry. It uses its default entry, which
tells it to send datagrams to sun, the next-hop router. When the datagram travels from
bsdi to sun the destination IP addressis the final destination (192.48.96.9) but the link-
layer address is the 48-bit Ethernet address of sun’s Ethernet interface. Compare this
datagram with the one in Figure 3.3, where the destination IP address and the destina-
tion link-layer address specified the same host (sun).

When sun receives the datagram it realizes that the datagram’s destination IP
addressis not one of its own, and sun is configured to act as a router, so it forwards the
datagram. Its routing table is searched and the default entry is used. The default entry
on sun tells it to send datagrams to the next-hop router netb, whose IP address is
140.252.1.183. The datagram is sent across the point-to-point SLIP link, using the mini-
mal encapsulation we showedin Figure 2.2. We don’t show a link-layer header, as we
do on the Ethernets, because there isn’t one on a SLIP link.

When netbreceives the datagram it goes through the samesteps that sun just did:
the datagram is not destined for one of its own IP addresses, and netb is configured to
act as a router, so the datagram is forwarded. The default routing table entry is used,
sending the datagram to the next-hop router gateway (140.252.1.4). ARP is used by
netb on the Ethernet 140.252.1 to obtain the 48-bit Ethernet address corresponding to
140.252,1.4, and that Ethernet address is the destination addressin the link-layer header.

gateway goes through the same steps as the previous two routers and its default
routing table entry specifies 140.252.104.2 as the next-hop router. (We'll verify that this
is the next-hop router for gateway using Traceroute in Figure 8.4.)

A few key points comeoutin this example.

1. All the hosts and routers in this example used a default route. Indeed, most
hosts and somerouters can use a default route for everything other than desti-
nations on local networks.
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Figure 3.4 Initial path of datagram from bsdi to ftp. uu. net (192.48.96.9).

2. The destination IP address in the datagram never changes. (In Section 8.5 we'll
see that this is not true only if source routing is used, which is rare.) All the
routing decisions are based on this destination address.

3. A different link-layer header can be used oneachlink, and the link-layer desti-
nation address (if present) always contains the link-layer address of the next
hop. In our example both Ethernets encapsulated a link-layer header containing
the next-hop’s Ethernet address, but the SLIP link did not. The Ethernet
addresses are normally obtained using ARP.

In Chapter 9 we'll look at IP routing again, after describing ICMP. We’ll also look at
some sample routing tables and how they’re used for routing decisions.
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3.4 Subnet Addressing

All hosts are now required to support subnet addressing (RFC 950 [Mogul and Postel
1985]). Instead of considering an IP address as just a network ID and hostID,the host
ID portion is divided into a subnet ID anda hostID.

This makes sense because class A and class B addresses have too manybits allo-
cated for the host ID: 2"*-2 and 26-2, respectively. People don’t attach that many
hosts to a single network. (Figure 1.5 [p. 8] shows the formatof the different classes of
IP addresses.) We subtract 2 in these expressions because host IDsofall zero bits or all
onebits are invalid.

After obtaining an IP network ID of a certain class from the InterNIC,it is up to the
local system administrator whether to subnet or not, and if so, how manybits toallo-
cate to the subnet ID and host ID. For example, the internet used in this text has a
class B network address (140.252) and of the remaining 16 bits, 8 are for the subnet ID
and 8 for the host ID. This is shownin Figure 3.5.

16 bits 8 bits 8 bits

Class B | netid = 140.252 subnetid hostid
 

  

Figure 3.5 Subnetting a class B address.

This division allows 254 subnets, with 254 hosts per subnet.
Many administrators use the natural 8-bit boundary in the 16 bits of a class B host

ID as the subnet boundary. This makes it easier to determine the subnet ID from a dot-
ted-decimal number, but there is no requirementthat the subnet boundary for a class A
or class B address be on a byte boundary.

Mostexamples of subnetting describe it using a class B address. Subnetting is also
allowed for a class C address, but there are fewer bits to work with. Subnetting is rarely
shown with a class A address because there are so few class A addresses. (Most class A
addresses are, however, subnetted.)

Subnetting hides the details of internal network organization (within a company or
campus) to external routers. Using our example network, all IP addresses have the
class B network ID of 140.252. But there are more than 30 subnets and more than 400

hosts distributed over those subnets. A single router provides the connection to the
Internet, as shownin Figure 3.6.

In this figure we have labeled most of the routers as Rn, where n is the subnet num-
ber. We show the routers that connect these subnets, along with the nine systems from
the figure on the inside front cover. The Ethernets are shown as thicker lines, and the
point-to-point links as dashed lines. We do not show all the hosts on the various sub-
nets. For example, there are more than 50 hosts on the 140.252.3 subnet, and more than
100 on the 140.252.1 subnet.

The advantage to using a single class B address with 30 subnets, compared to 30
class C addresses, is that subnetting reduces the size of the Internet’s routing tables.
The fact that the class B address 140.252 is subnetted is transparent to all Internet
routers other than the ones within the 140.252 subnet. To reach any host whose IP
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Figure 3.6 Arrangement of most of the noao. edu 140,252 subnets.

address begins with 140.252, the external routers only need to know the path to the IP
address 140.252.104.1. This means that only one routing table entry is needed for all the
140.252 networks, instead of 30 entries if 30 class C addresses were used. Subnetting,
therefore, reduces the size of routing tables. (In Section 10.8 we'll look at a new tech-
nique that helps reducethe size of routing tables even if class C addresses are used.)

To show that subnetting is not transparent to routers within the subnet, assume in
Figure 3.6 that a datagram arrives at gateway from the Internet with a destination
address of 140.252.57.1. The router gateway needs to know that the subnet numberis
57, and that datagrams for this subnet are sent to kpno. Similarly kpno must send the
datagram to R55, who then sendsit to R57.

Subnet Mask

Part of the configuration of any host that takes place at bootstrap time is the specifica-
tion of the host’s IP address. Most systems have this stored in a diskfile that’s read at
bootstrap time, and we’ll see in Chapter 5 how a diskless system can alsofind out its IP
address whenit’s bootstrapped.

Viptela, Inc. - Exhibit 1007
Page 65



Viptela, Inc. - Exhibit 1007 
Page 66

44 IP: Internet Protocol Chapter 3 

In addition to the IP address, a host also needs to know how many bits are to be
used for the subnet ID and how manybits are for the host ID. This is also specified at
bootstrap time using a subnet mask, This mask is a 32-bit value containing onebits for
the network ID and subnet ID, and zero bits for the host ID, Figure 3.7 showsthe for-
mation of the subnet mask for two different partitions of a class B address. The top
example is the partitioning used at noao. edu, shownin Figure 3.5, where the subnet
ID and hostID are both 8 bits wide. The lower example showsa class B address parti-
tioned for a 10-bit subnet ID and a 6-bit host ID.

 

   

 

   

16 bits 8 bits 8 bits

Class B netid subnetid hostid

Subnetmask; 1112122114 2212122212221 1211111112 0000000 0 =O0xffffff00
= 255.255.255,0

16 bits 10 bits 6 bits

Class B netid subnetid hostid

Subnetmask; 1 2122212 Lidirir1iirtiriirrir1riiitoo0o0o o =OxfFFFEECO
= 255.255.255.192

Figure 3.7 Example subnet masks for twodifferent class B subnet arrangements.

Although IP addresses are normally written in dotted-decimal notation, subnet masks
are often written in hexadecimal, especially if the boundary is not a byte boundary,
since the subnet mask is a bit mask.

Given its own IP address and its subnet mask, a host can determine if an IP data-
gram is destined for (1) a host on its own subnet, (2) a host on a different subnet on its
ownnetwork,or (3) a host on a different network. Knowing your own IP addresstells
you whether you havea class A, B, or C address (from the high-order bits), which tells
you where the boundary is between the network ID and the subnet ID. The subnet
maskthentells you where the boundaryis between the subnet ID and the hostID.

Example

Assume our host address is 140,.252.1.1 (a class B address) and our subnet mask is
255.255.255.0 (8 bits for the subnet ID and8bits for the host ID).

e If a destination IP address is 140.252.4.5, we know that the class B network IDs
are the same (140.252), but the subnet [Ds are different (1 and 4). Figure 3.8
showshowthis comparison of two IP addresses is done, using the subnet mask.

e If the destination IP address is 140,252.1.22, the class B network IDs are the same
(140.252), and the subnet IDs are the same (1). The host IDs, however, are differ-
ent,

e If the destination IP address is 192.43.235.6 (a class C address), the network [Ds
are different. No further comparisons can be madeagainst this address.
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Class B 140 252 1 1 |

Subnet mask:!-1 1211122 211222121212'111111211'000000 0 0 =255,.255,255.0

lee network IDs equal |__subnet IDs
not equal

Class B 140 252 4 5 |
  

  

Figure 3.8 Comparison of two class B addresses using a subnet mask.

The IP routing function makes comparisonslike this all the time, given two IP addresses
and a subnet mask.

3.6 Special Case IP Addresses

Having described subnetting we now show the seven special case IP addresses in Fig-
ure 3.9, In this figure, 0 meansa field of all zero bits, -1 meansa field of all one bits, and
netid, subnetid, and hostid mean the correspondingfield that is neitherall zero bits norall
one bits. A blank subnet ID column meansthe address is not subnetted.
 
 

  

 

 

IP address Can appearas _
netID|subnetID|hostID| source?|destination? Description

0 | 0 OK never this host on this net (see restrictions below)
0 hostid OK never specified host on this net(see restrictions below)

127 anything| OK OK _| loopback address (Section 2.7)
~1 -1 never OK limited broadcast (never forwarded)

netid -1 never OK net-directed broadcast to netid

netid subnetid -1 never OK subnet-directed broadcast to netid, subnetid
netid ~1 ~1 never OK all-subnets-directed broadcast to netid

       
 

Figure 3.9 Special case IP addresses.

We have divided this table into three sections. The first two entries are special case
source addresses, the next oneis the special loopback address, and the final four are the
broadcast addresses.

The first two entries in the table, with a network ID of 0, can only appear as the
source address as part ofan initialization procedure when a host is determining its own
IP address, for example, when the BOOTP protocol is being used (Chapter 16).

In Section 12.2 we'll examine the four types of broadcast addresses in moredetail.
4fy
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3.7 A Subnet Example

This example showsthe subnet used in the text, and how two different subnet masks
are used, Figure 3.10 showsthe arrangement.

 

   
  

 

     

            

 

Internet

[ozs2s041
gateway

ig Ethernet, subnet 140,252.1
7a -- - - —7 7 q

4140.252.1.29 |!
, SLIP . !eee

slip 6 subnet 66 bsdi sun svr4 '

140.252.13.64 135 j 33 ii| |
Ethernet, subnet 140.252.13.32 \a _ ~ J

 
 

~~ author’s subnet: 140.252.13

Figure 3.10 Arrangementof hosts and networks for author’s subnet.

If you compare this figure with the one on the inside front cover, you'll notice that
we've omitted the detail that the connection from the router sun to the top Ethernet in
Figure 3.10 is really a dialup SLIP connection. This detail doesn’t affect our description
of subnetting in this section. We’ll return to this detail in Section 4.6 when we describe
proxy ARP.

The problem is that we have two separate networks within subnet 13: an Ethernet
and a point-to-pointlink (the hardwired SLIP link). (Point-to-point links always cause
problems since each end normally requires an IP address.) There could be more hosts
and networksin the future, but not enough hostsacross the different networksto justify
using another subnet number. Our solution is to extend the subnet ID from8to 11bits,
and decrease the host ID from 8 to 5 bits. This is called variable-length subnets since most
networks within the 140.252 network use an 8-bit subnet mask while our network uses

an 11-bit subnet mask.

RFC 1009 [Braden and Postel 1987] allows a subnetted network to use more than one subnet
mask. The new Router Requirements RFC [Almquist 1993] requires supportforthis.

The problem, however, is that not all routing protocols exchange the subnet mask along with
the destination network ID, We’ll see in Chapter 10 that RIP does not support variable-length
subnets, while RIP Version 2 and OSPF do. We don’t have a problem with our example, since
RIP isn’t required on the author’s subnet.

Figure 3.11 shows the IP address structure used within the author’s subnet. The
first 8 bits of the 11-bit subnet ID are always 13 within the author’s subnet. For the
remaining 3 bits of the subnet ID, we use binary 001 for the Ethernet, and binary 010 for
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16 bits ~<t———_ 11 bits -—>__5 bits

Class B net ID = 140,252 subnet ID Da host ID
~q_____________pp128643216 8 4 2 18 bits = 13

Subnet mask: T1iiiriirtiitiwzarartrirtrtitittrtidr~idarti tii 000 oO 0 =O0xffffffed
= 255.255.255.224

Figure 3.11 Using variable-length subnets.

the point-to-point SLIP link. This variable-length subnet mask does not cause a prob-
lem for other hosts and routers in the 140.252 network—as long asall datagrams des-
tined for the subnet 140.252.13 are sent to the router sun (IP address 140.252.1.29) in
Figure 3,10, and if sun knowsabout the 11-bit subnet ID for the hosts on its subnet 13,
everythingis fine.

The subnet mask for all the interfaces on the 140.252.13 subnet is 255.255.255.224, or

Ox££ELLfe0. This indicates that the rightmost 5 bits are for the host ID, and the 27bits
to the left are the network ID and subnetID.

Figure 3.12 showsthe allocation of IP addresses and subnet masksfor the interfaces
shownin Figure 3.10.
 

  

 

 

 

  

Host IP address Subnet mask Net ID/Subnet ID|Host ID Comment

sun 140,252.1.29 255.255.255.0 140,252.1 29 on subnet 1
140.252,13.33|255.255.255.224 140.252.13.32 1 on author’s Ethernet

svr4|140,252,.13.34}255.255.255.224 140.252.13.32 2

bsdai|140.252.13.35|255.255.255.224 140.252.13.32 3 on Ethernet

140.252.13.66|255.255.255.224 140.252,13.64 2 point-to-point

slip|140.252.13.65|255,255,255,224 140,252,13.64 1 point-to-point
140.252.13.63|255.255.255,224 140,252.13.32 31 broadcast addr on Ethernet

       
 

Figure 3,12 IP addresses on author’s subnet.

The first column is labeled “Host,” but both sun and bsdi also act as routers, since

they are multihomed and route packets from one interface to another.
The final row in this table notes that the broadcast address for the bottom Ethernet

in Figure 3.10 is 140.252.13.63: it is formed from the subnet ID of the Ethernet
(140.252.13.32) and the low-order 5 bits in Figure 3.11 set to 1 (16+8+4+2+1= 831).
(We'll see in Chapter 12 that this address is called the subnet-directed broadcast
address.)

ifconfig Command

Nowthat we've described the link layer and the IP layer we can show the command
used to configure or query a network interface for use by TCP/IP. The ifconfig(8)
commandis normally run at bootstrap time to configure each interface on a host.
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Por dialup interfaces that may go up and down(such as SLIP links), ifconfig
must be run (somehow) each time the line is brought up or down. Howthis is done
each time the SLIP link is brought up or down depends on the SLIP software being
used.

The following output showsthe values for the author’s subnet. Compare theseval-
ues with the values in Figure 3.12.

sun % /usr/etc/ifconfig -a SunOS-a option says report on all interfaces
le0: flags=63<UP, BROADCAST, NOTRAILERS, RUNNING>

inet 140.252.13.33 netmask ffffffed broadcast 140.252.13.63

sl0: flags=1051<UP, POINTOPOINT, RUNNING, LINKO>
inet 140.252.1.29 --> 140.252.1.183 netmask ffffff00

1o0: flags=49<UP, LOOPBACK, RUNNING>
inet 127.0.0.1 netmask f££000000

The loopback interface (Section 2.7) is considered a network interface. Its class A
addressis not subnetted.

Other things to notice are that trailer encapsulation (Section 2.3) is not used on the
Ethernet, and that the Ethernet is capable of broadcasting, while the SLIP link is a point-
to-pointlink.

The flag LINKO for the SLIP interface is the configuration option that enables com-
pressed slip (CSLIP, Section 2.5). Other possible options are LINK1, which enables
CSLIP if a compressed packet is received from the other end, and LINK2, which causes
all outgoing ICMP packets to be thrown away. We'll look at the destination address of
this SLIP link in Section 4.6.

A commentin theinstallation instructions gives the reason forthis last option: “This shouldn’t
haveto be set, but somecretin pinging you can drive your throughputto zero,”

bsdi is the other router. Since the —a option is a SunOSfeature, we have to execute
ifconfig multiple times, specifying the interface name as an argument:

bsdi % /sbin/ifconfig wed
we0: flags=863<UP, BROADCAST, NOTRAILERS, RUNNING, SIMPLEX>

inet 140.252.13.35 netmask ff££fffe0 broadcast 140.252.13.63

bsdi % /sbin/ifconfig s10
810: flags=1011<UP, POINTOPOINT, LINKO>

inet 140.252.13.66 --> 140.252.13.65 netmask ffffffe0

Here we see a new option for the Ethernet interface (we0): SIMPLEX. This 4.4BSD flag
specifies that the interface can’t hear its own transmissions. It is set in BSD/386 forall
the Ethernet interfaces. Whenset, if the interface is sending a frame to the broadcast
address, a copy is made for the local host and sent to the loopback address. (We show
an exampleof this feature in Section 6.3.)

On the host slip the configuration of the SLIP interface is nearly identical to the
output shown above on bsdi, with the exception that the IP addresses of the two ends
are swapped:

slip % /sbin/ifconfig s10
sl0: flags=1011<UP, POINTOPOINT, LINKO>

inet 140.252.13.65 --> 140.252.13.66 netmask ffffffe0
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3.10

The final interface is the Ethernet interface on the host svr4. It is similar to the

Ethernet output shown earlier, except that SVR4’s version of ifconfig doesn’t print
the RUNNINGflag:

svr4 % /usr/sbin/ifconfig emd0
emd0: flags=23<UP, BROADCAST, NOTRAILERS>

inet 140.252.13.34 netmask ffffffe0 broadcast 140.252.13.63

The ifconfig command normally supports other protocol families (other than
TCP/IP) and has numerous additional options. Check your system’s manualfor these
details.

netstat Command

The netstat(1) commandalso provides information about the interfaces on a system.
The -i flag prints the interface information, and the —n flag prints IP addresses instead
of hostnames.

2.
sun % netstat -in

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
led 1500 140.252.13.32 140.252.13.33 67719 0 92133 0 1 0
sl0 $52 140.252.1.183 140.252.1.29 48035 0) 54963 0 0 0
100 1536 127.0.0.0 127.0.0.1 15548 0 15548 0 0 0

This command prints the MTU of each interface, the number of input packets, input
etrors, output packets, output errors, collisions, and the current size of the output
queue.

We'll return to the netstat commandin Chapter 9 when we use it to examine the
routing table, and in Chapter 13 when we use a modified version to see active multicast
groups.

IP Futures

There are three problems with IP. They are a result of the phenomenal growth of the
Internet over the past few years. (See Exercise 1.2 also.)

1. Overhalf of all class B addresses have already been allocated. Current estimates
predict exhaustion of the class B address space around 1995,if they continue to
be allocated as they have been in thepast.

2. 32-bit IP addresses in general are inadequate for the predicted long-term growth
of the Internet.

3. The current routing structure is not hierarchical, but flat, requiring one routing
table entry per network. As the number of networks grows, amplified by the
allocation of multiple class C addressesto a site with multiple networks, instead
of a single class B address, thesize of the routing tables grows.
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3.11

CIDR (Classless Interdomain Routing) proposes a fix to the third problem that will
extend the usefulness of the current version of IP (IP version 4) into the next century.
Wediscussit in more detail in Section 10.8.

Four proposals have been made for a new version ofIP, often called IPng, for the
next generation of IP. The May 1993 issue of IEEE Network (vol. 7, no. 3) contains
overviewsofthefirst three proposals, along with an article on CIDR. RFC 1454 [Dixon
1993] also comparesthe first three proposals.

1. SIP, the Simple Internet Protocol. It proposes a minimalset of changes to IP that
uses 64-bit addresses and a different header format. (The first 4 bits of the
headerstill contain the version number, with a value other than 4.)

2. PIP. This proposalalso useslarger, variable-length, hierarchical addresses with
a different header format.

3. TUBA, which stands for “TCP and UDP with Bigger Addresses,” is based on the
OSI CLNP (Connectionless Network Protocol), an OSI protocol similar to IP. It
provides muchlarger addresses: variable length, up to 20 bytes. Since CLNP is
an existing protocol, whereas SIP and PIP are just proposals, documentation
already exists on CLNP. RFC 1347 [Callon 1992] provides details on TUBA.
Chapter 7 of [Perlman 1992] contains a comparison of IPv4 and CLNP. Many
routers already support CLNP, but few hosts do.

4. TP/IX, which is described in RFC 1475 [Ullmann 1993]. As with SIP, it uses

64 bits for IP addresses, but it also changes the TCP and UDP headers: 32-bit
port number for both protocols, along with 64-bit sequence numbers, 64-bit
acknowledgment numbers, and 32-bit windows for TCP.

Thefirst three proposals use basically the same versions of TCP and UDPasthe trans-
portlayers.

Since only one of these four proposals will be chosen as the successor to [Pv4, and
since the decision may have been madeby the time you read this, we won’t say any
more about them. With the forthcoming implementation of CIDR to handle the short-
term problem,it will take many years to implementthe successor to IPv4.

Summary

Westarted this chapter with a description of the IP header and briefly described all the
fields in this header. Wealso gave an introduction to IP routing, and saw that host rout-
ing can be simple: the destination is either on a directly connected network, in which
case the datagram is sentdirectly to the destination, or a default router is chosen.

Hosts and routers have a routing table that is used forall routing decisions. There
are three types of routes in the table: host specific, network specific, and optional default
routes. There is a priority to the entries in a routing table. A host route will be chosen
over a network router, and a default route is used only when noother route exists to the
destination.
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IP routing is done on a hop-by-hop basis. The destination IP address never changes
as the datagram proceeds throughall the hops, but the encapsulation and destination
link-layer address can change on each hop. Most hosts and many routers use a default
next-hop routerfor all nonlocaltraffic.

Class A and B addresses are normally subnetted. The numberof bits used for the
subnetIDis specified by the subnet mask. We gave a detailed example ofthis, using the
author’s subnet, and introduced variable-length subnets. The use of subnetting reduces
the size of the Internet routing tables, since many networks can often be accessed
through a single point. Information on the interfaces and networks is available through
the ifconfig and netstat commands. This includes the IP address of the interface,
its subnet mask, broadcast address, and MTU.

Wefinished the chapter with a discussion of potential changes to the Internet proto-
col suite-the next generation ofIP.

Exercises

3.1 Must the loopback address be 127.0.0.1?

3.2 Identify the routers in Figure 3.6 with more than two networkinterfaces.
3.3. What's the difference in the subnet mask for a class A address with 16 bits for the subnet ID

and a class B address with 8 bits for the subnet ID?

3.4 Read RFC 1219 [Tsuchiya 1991] for a recommended technique for assigning subnet IDs and
host IDs.

3.5 Is the subnet mask 255,255.0.255 valid for a class A address?

3.6 Why do you think the MTU of the loopbackinterface printed in Section 3.9 is set to 1536?

3.7. The TCP/IP protocol suite is built on a datagram network technology, the IP layer. Other
protocol suites are built on a connection-oriented network technology. Read [Clark 1988] to
discover the three advantages the datagram network layer provides.
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ARP: Address Resolution

Protocol

Introduction

The problem that we deal with in this chapter is that IP addresses only make sense to
the TCP/IP protocol suite. A data link such as an Ethernet or a token ring has its own
addressing scheme (often 48-bit addresses) to which any network layer using the data
link must conform. A network such as an Ethernet can be used by different network
layers at the same time. For example, a collection of hosts using TCP/IP and another
collection of hosts using some PC network software can share the same physical cable.

When an Ethernet frame is sent from one host on a LAN to another, it is the 48-bit
Ethernet address that determines for which interface the frame is destined. The device

driver software never looks at the destination IP address in the IP datagram.
Address resolution provides a mapping between the two different forms of

addresses: 32-bit IP addresses and whatever type of address the data link uses. RFC 826
[Plummer 1982]is the specification of ARP.

Figure 4.1 shows the two protocols we talk about in this chapter and the next: ARP
(address resolution protocol) and RARP (reverse address resolution protocol).

32-bit Internet address

neo Trae
48-bit Ethernet address

Figure 4.1 Address resolution protocols: ARP and RARP.
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4.2

ARP provides a dynamic mapping from an IP address to the corresponding hardware
address. We use the term dynamic since it happens automatically and is normally not a
concern of either the application user or the system administrator.

RARP is used by systems without a disk drive (normally diskless workstations or X
terminals) but requires manual configuration by the system administrator. We describe
it in Chapter5.

An Example

Whenever we type a command of the form
% ftp bsdi

the following steps take place. These numbered steps are shownin Figure 4.2.

1. The application, the FTP client, calls the function gethostbyname(3)to convert
the hostname (bsdi) into its 32-bit IP address. This function is called a resolver
in the DNS (Domain Name System), which we describe in Chapter 14. This con-
version is done using the DNS, or on smaller networks, a static hosts file
(/etc/hosts).

2. The FTP client asks its TCP to establish a connection with that IP address.

3. TCP sends a connection request segment to the remote host by sending an IP
datagram to its IP address. (We’ll see the details of how this is done in Chap-
ter 18.)

4, If the destination host is on a locally attached network (e.g., Ethernet, token
ring, or the other end of a point-to-point link), the IP datagram can be sent
directly to that host. If the destination host is on a remote network, the IP rout-
ing function determines the Internet address of a locally attached next-hop
router to send the IP datagram to. In either case the IP datagram is sent to a
host or router on a locally attached network.

5. Assuming an Ethernet, the sending host must convert the 32-bit IP address into
a 48-bit Ethernet address. A translation is required from the logical Internet
address to its corresponding physical hardware address. This is the function of
ARP.

ARPis intended for broadcast networks where many hosts or routers are con-
nected to a single network.

6. ARP sends an Ethernet frame called an ARP request to every host on the net-
work. This is called a broadcast. We show the broadcast in Figure 4.2 with
dashed lines. The ARP request contains the IP address of the destination host
(whose name is bsdi) and is the request “if you are the owner of this IP
address, please respond to me with your hardware address.”
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Figure 4.2. Operation of ARP whenuser types “£tp hostname”.

7. The destination host's ARP layer receives this broadcast, recognizes that the
sender is asking for its hardware address, and replies with an ARP reply. This
reply contains the IP address and the corresponding hardware address.

8. The ARP reply is received and the IP datagram that forced the ARP
request-reply to be exchanged can now besent.

9. The IP datagram is sent to the destination host.
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4.3

4.4

The fundamental concept behind ARP is that the network interface has a hardware
address (a 48-bit value for an Ethernet or token ring interface). Frames exchanged at the
hardware level must be addressed to the correct interface. But TCP/IP works with its
ownaddresses: 32-bit IP addresses. Knowing a host's IP address doesn’t let the kernel
send a frame to that host. The kernel(ie., the Ethernet driver) must know the destina-
tion’s hardware address to send it data. The function of ARP is to provide a dynamic
mapping between 32-bit IP addresses and the hardware addresses used by various net-
worktechnologies.

Point-to-point links don’t use ARP. When these links are configured (normally at
bootstrap time) the kernel must be told of the IP address at each end of the link. Hard-
ware addresses such as Ethernet addressesare not involved.

ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache on each
host. This cache maintains the recent mappings from Internet addresses to hardware
addresses. The normal expiration time of an entry in the cache is 20 minutes from the
time the entry wascreated.

We can examine the ARP cache with the arp(8) command. The -a option displays
all entries in the cache:

bsdi % arp ~a
sun (140.252.13.33) at 8:0:20:3:f6:42
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26

The 48-bit Ethernet addresses are displayed as six hexadecimal numbers separated by
colons. We discuss additional features of the arp commandin Section 4.8.

ARP Packet Format

Figure 4.3 showsthe format of an ARP request and an ARP reply packet, when used on
an Ethernet to resolve an IP address. (ARP is general enough to be used on other net-
works and can resolve addresses other than IP addresses. The first four fields following
the frame type field specify the types and sizes of the final fourfields.)

pi hard size

  
 

          
(~ protsize

Ethernet Ethernet iframe) hard|prot sender sender target target°
destination addr} source addr|type| type] type P| Ethernet addr|IPaddr|Ethernetaddr|IP addr  6 6 2 2 2 11 2 6 4 6 4

{ag Ethernet headeret28 byte ARP request/reply— ———+

Figure 4.3 Format of ARP request or reply packet when used on an Ethernet.

The first two fields in the Ethernet header are the source and destination Ethernet

addresses. The special Ethernet destination address of all one bits means the broadcast
address. All Ethernet interfaces on the cable receive these frames.
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4.5

The 2-byte Ethernet frame type specifies the type of data that follows. For an ARP
request or an ARPreply, this field is 0x0806.

The adjectives hardware and protocol are used to describe the fields in the ARP pack-
ets. For example, an ARP request asks for the hardware address (an Ethernet address in
this case) corresponding to a protocol address (an IP addressin this case).

The hard type field specifies the type of hardware address. Its value is 1 for an Ether-
net. Prot type specifies the type of protocol address being mapped. Its value is 0x0800
for IP addresses. This is purposely the same valueas the type field of an Ethernet frame
containing an IP datagram. (See Figure 2.1; p. 23.)

The next two 1-byte fields, hard size and prot size, specify the sizes in bytes of the
hardware addresses and the protocol addresses. For an ARP request or reply for an IP
address on an Ethernetthey are 6 and 4, respectively.

The op field specifies whether the operation is an ARP request (a value of 1), ARP
reply (2), RARP request (3), or RARP reply (4). (We talk about RARP in Chapter5.)
This field is required since the frame type field is the same for an ARP request and an
ARPreply.

The next four fields that follow are the sender’s hardware address (an Ethernet
address in this example), the sender’s protocol address (an IP address), the target hard-
ware address, and the target protocol address. Notice there is some duplication of infor-
mation: the sender’s hardware address is available both in the Ethernet header and in

the ARP request.
For an ARP request all the fields are filled in except the target hardware address.

When a system receives an ARP request directed toit, it fills in its hardware address,
swaps the two sender addresses with the two target addresses, sets the opfield to 2, and
sendsthereply.

ARP Examples

In this section we'll use the tcpdump command to see what really happens with ARP
when weexecute normal TCP utilities such as Telnet. Appendix A contains additional
details on the tcpdump program.

Normal Example

To see the operation of ARP we'll execute the telnet command, connecting to the dis-
card server.

bsdi % arp -a verify ARP cache is empty
bsdi % telnet svr4 discard connect to the discard server

Trying 140.252.13.34...
Connected to svr4,

Escape character is ’“]'.

7] type Control, right bracket to get Telnet client prontpt
telnet> quit and terminate
Connection closed.
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While this is happening we run the tcpdump command onanother system (sun) with
the -e option. This displays the hardware addresses (which in our examples are 48-bit
Ethernet addresses).

1 0.0 0:0:c0:6f£:2d:40 ££: ff: f£:ff£:f£:ff arp 60:
arp who-has svr4 tell bsdi

2 0.002174 (0.0022) 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60:
arp reply svr4 is-at 0:0:c0:c2:9b:26

3 0.002831 (0.0007) 0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
bsdi.1030 > svr4.discard: S 596459521:596459521 (0)
win 4096 <mss 1024> [tos 0x10]

4 0.007834 (0.0050) 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60:
svr4.discard > bsdi.1030: S 3562228225:3562228225 (0)
ack 596459522 win 4096 <mss 1024>

5 0.009615 (0.0018) 0:0:c0:6f:20:40 0:0:c0:c2:9b:26 ip 60:
bsdi.1030 > svr4.discard: . ack 1 win 4096 [tos 0x10]

Figure 4.4 ARP request and ARP reply generated by TCP connection request.

Figure A.3 in Appendix A contains the raw output from tcpdump used for Figure 4.4.
Since this is the first example of tcpdump output in the text, you should review that
appendix to see how we've beautified the output.

We have deleted the final four lines of the tcpdump output that correspond to the
termination of the connection (which we cover in Chapter 18), since they’re not relevant
to the discussion here.

In line 1 the hardware address of the source (bsdi) is 0:0:c0:6f:2d:40. The
destination hardware address is ££: ff: ff: ff: ff: ££, which is the Ethernet broadcast

address. Every Ethernet interface on the cable will receive the frame and processit, as
shownin Figure 4.2.

The next output field on line 1, arp, meansthe frame type field is 0x0806, specify-
ing either an ARP request or an ARP reply.

The value 60 printed after the words arp and ip on each ofthe five lines is the
length of the Ethernet frame. Since the size of an ARP request and ARP replyis 42 bytes
(28 bytes for the ARP message, 14 bytes for the Ethernet header), each frame has been
paddedto the Ethernet minimum:60 bytes.

Referring to Figure 1.7, this minimum of 60 bytes starts with and includes the
14-byte Ethernet header, but does not include the 4-byte Ethernet trailer. Some books
state the minimum as 64 bytes, which includes the Ethernettrailer. We purposely did
not include the 14-byte Ethernet header in the minimum of 46 bytes shown in Fig-
ure 1.7, since the corresponding maximum (1500 bytes) is what’s referred to as the
MTU—maximumtransmission unit (Figure 2.5). We use the MTUoften, becauseit lim-
its the size of an IP datagram, but are normally not concerned with the minimum. Most
device drivers or interface cards automatically pad an Ethernet frame to the minimum
size. The IP datagramsonlines3, 4, and 5 (containing the TCP segments) are all smaller
than the minimum, and have also been paddedto 60 bytes.

The next field on line 1, arp who-has,identifies the frame as an ARP request with
the IP address of svr4 as the target IP address and the IP address of bsdi as the sender
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IP address. tcpdump prints the hostnames corresponding to the IP address by default.
(We'll use the -n option in Section 4.7 to see the actual IP addresses in an ARP request.)

From line 2 we see that while the ARP request is broadcast, the destination address
of the ARP reply is bsdi (0:0:c0:6£:2d:40). The ARP reply is sent directly to the
requesting host; it is not broadcast.

tcpdump prints arp rep1lyfor this frame, along with the hostname and hardware
address of the responder,

Line 3 is the first TCP segment requesting that a connection be established. Its des-
tination hardware address is the destination host (svr4). We’ll cover the details of this
segment in Chapter 18.

The numberprinted after the line number on eachline is the time (in seconds) when
the packet was received by tcpdump. Each line other than thefirst also contains the
time difference (in seconds) from the previous line, in parentheses. We can see in this
figure that the time between sending the ARP request and receiving the ARP reply is 2.2
ms. The first TCP segment is sent 0.7 msafter this. The overhead involved in using
ARP for dynamic address resolution in this exampleis less than 3 ms.

A final point from the tcpdump output is that we don’t see an ARP request from
svr4 beforeit sendsits first TCP segment(line 4). While it’s possible that svr4 already
had an entry for bsdi in its ARP cache, normally when a system receives an ARP
request addressed to it, in addition to sending the ARP reply it also saves the
requestor’s hardware address and IP address in its own ARP cache. This is on the logi-
cal assumption thatif the requestor is about to send it an IP datagram,the receiver of
the datagram will probably senda reply.

ARP Request to a Nonexistent Host

What happensif the host being queried for is down or nonexistent? To see this we spec-
ify a nonexistent Internet address—the network ID and subnetID are that of the local
Ethernet, but there is no host with the specified host ID. From Figure 3.10 we see the
host IDs 36 through 62 are nonexistent (the host ID of 63 is the broadcast address). We'll
use the host ID 36 in this example.

telnet to an address this time, not a hostname
bsdi % date ; telnet 140.252.13.36 ; date
Sat Jan 30 06:46:33 MST 1993

Trying 140.252.13,.36...
telnet: Unable to connect to remote host: Connection timed out

Sat Jan 30 06:47:49 MST 1993 76 seconds after previous date output

bsdi % arp -a check the ARP cache
? (140.252.13.36) at (incomplete)

Figure 4.5 showsthe tcpdump output.
1 0.0 arp who-has 140.252.13.36 tell bsdi
2 5.509069 ( 5.5091) arp who-has 140.252.13.36 tell bsdi
3 29.509745 (24.0007) arp who-has 140.252.13.36 tell bsdi

Figure 4.5 ARP requests to a nonexistent host.
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This time wedidn’t specify the -e option since we already know that the ARP requests
are broadcast.

What's interesting here is to see the frequency of the ARP requests: 5.5 secondsafter
the first request, then again 24 secondslater. (We examine TCP’s timeout and retrans-
mission algorithms in more detail in Chapter 21.) The total time shownin the tcpdump
output is 29.5 seconds. But the output from the date commandsbefore and after the
telnet command showsthat the connection request from the Telnet client appears to
have given up after about 75 seconds. Indeed, we’ll see later that most BSD implemen-
tations set a limit of 75 seconds for a TCP connection request to complete.

In Chapter 18 when wesee the sequence of TCP segments that is sent to establish
the connection, we'll see that these ARP requests correspond one-to-one with theinitial
TCP SYN (synchronize) segment that TCP is trying to send.

Note that on the wire we never see the TCP segments. All we can see are the ARP
requests. Until an ARP reply comes back, the TCP segments can’t be sent, since the des-
tination hardware addressisn’t known. If we ran tcpdumpinafiltering mode, looking
only for TCP data, there would have been no outputatall.

ARP Cache Timeout

4.6

A timeout is normally provided for entries in the ARP cache. (In Section 4.8 we'll see
that the arp command allowsan entry to be placed into the cache by the administrator
that will never time out.) Berkeley-derived implementations normally have a timeout
of 20 minutes for a completed entry and 3 minutes for an incomplete entry. (We saw an
incomplete entry in our previous example where we forced an ARP to a nonexistent
host on the Ethernet.) These implementations normally restart the 20-minute timeout
for an entry each timethe entry is used.

The Host Requirements RFC saysthat this timeout should occur evenif the entryis in use, but
most Berkeley-derived implementations do not do this—theyrestart the timeouteach time the
entry is referenced.

Proxy ARP

Proxy ARP lets a router answer ARP requests on one of its networks for a host on
another of its networks. This fools the sender of the ARP request into thinking that the
router is the destination host, when in fact the destination host is “on the other side” of

the router. The router is acting as a proxy agent for the destination host, relaying pack-
ets to it from other hosts.

An example is the best way to describe proxy ARP. In Figure 3.10 we showedthat
the system sun was connected to two Ethernets. But we also noted that this wasn’t
really true, if you comparethat figure with the one on the inside front cover. Thereis in
fact a router between sun and the subnet 140.252.1, and this router performs proxy ARP
to make it appear as though sunis actually on the subnet 140.252.1. Figure 4.6 shows
the arrangement, with a Telebit NetBlazer, named netb, between the subnet and the
host sun.
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Figure 4.6 Example of proxy ARP.

When someother host on the subnet 140.252.1 (say, gemini) has an IP datagram to
send to sun at address 140.252.1.29, gemini compares the network ID (140.252) and
subnet ID (1) and since they are equal, issues an ARP request on the top Ethernetin Fig-
ure 4.6 for IP address 140.252.1.29. The router netb recognizes this IP address as one
belonging to one of its dialup hosts, and responds with the hardware address ofits
Ethernet interface on the cable 140.252.1. The host gemini sends the IP datagram to
netb across the Ethernet, and netb forwards the datagram to sun across the dialup
SLIP link. This makes it transparent to all the hosts on the 140.252.1 subnet that host
sunis really configured “behind”the router netb.

If we execute the arp command onthe host gemini, after communicating with the
host sun, we see that both IP addresses on the 140.252.1 subnet, netb and sun, map to
the same hardware address. This is often a clue that proxy ARP is being used.

gemini % arp ~-a

many lines for other hosts on the 140,252.1 subnet
netb (140.252.1.183) at 0:80:ad:3:6a:80
sun (140.252.1.29) at 0:80:ad:3:6a:80

Another detail in Figure 4.6 that we need to explain is the apparent lack of an IP
address at the bottom of the router netb (the SLIP link). That is, why don’t both ends
of the dialup SLIP link have an IP address, as do both ends of the hardwired SLIP link
between bsdi and slip? We noted in Section 3.8 that the destination address of the
dialup SLIP link, as shown by the ifconfig command, was 140.252.1.183. The Net-
Blazer doesn’t require an IP address for its end of each dialup SLIP link. (Doing so
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47

would use up more IP addresses.) Instead, it determines which dialup hostis sendingit
packets by which serial interface the packet arrives on, so there’s no need for each
dialup host to use a unique IP addressforits link to the router. All the dialup hosts use
140.252.1.183 as the destination address for their SLIP link.

Proxy ARP handlesthe delivery of datagrams to the router sun, but how are the
other hosts on the subnet 140.252.13 handled? Routing must be used to direct data-
gramsto the other hosts. Specifically, routing table entries must be made somewhere on
the 140.252 network that point all datagrams destined to either the subnet 140.252.13, or
the specific hosts on that subnet, to the router netb. This router then knows howto get
the datagramsto theirfinal destination, by sending them throughthe router sun.

Proxy ARP is also called promiscuous ARP or the ARP hack. These names are from
another use of proxy ARP: to hide two physical networks from each other, with a router
between the two. In this case both physical networks can use the same network ID as
long as the router in the middle is configured as a proxy ARP agent to respond to ARP
requests on one network for a host on the other network. This technique has been used
in the past to “hide” a group of hosts with older implementations of TCP/IP on a sepa-
rate physical cable. Two common reasons for separating these older hosts are their
inability to handle subnetting and their use of the older broadcasting address (a host ID
of all zero bits, instead of the current standard of a host ID with all one bits).

Gratuitous ARP

Another feature of ARP that we can watch is called gratuitous ARP. It occurs when a
host sends an ARP request looking for its own IP address. This is usually done when
the interface is configured at bootstrap time.

In our internet, if we bootstrap the host bsdi and run tcpdump onthe host sun,
wesee the packet shownin Figure4.7.

1 0.0 0:0:c0:6f:2d:40 ££: ff: f£:ff:ff:ff arp 60:
arp who-has 140.252.13.35 tell 140.252.13.35

Figure 4.7 Example of gratuitous ARP.

(We specified the ~n flag for tcpdump to print numeric dotted-decimal addresses,
instead of hostnames.) In termsof the fields in the ARP request, the sender’s protocol
address and the target’s protocol address are identical: 140.252.13.35 for host bsdi.
Also, the source address in the Ethernet header, 0:0:c0:6f:2d:40 as shown by
tcpdump, equals the sender’s hardware address (from Figure 4.4).

Gratuitous ARP provides twofeatures.

1. It lets a host determine if another host is already configured with the same IP
address. The host bsdiis not expecting a reply to this request. Butif a reply is
received, the error message “duplicate IP address sent from Ethernet address:
aibie:die:f” is logged on the console. This is a warning to the system administra-
tor that one of the systems is misconfigured.
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4.8

4.9

2. If the host sending the gratuitous ARP has just changed its hardware address
(perhaps the host was shut down,the interface card replaced, and then the host
wasrebooted), this packet causes any other host on the cable that has an entry
in its cache for the old hardware address to update its ARP cache entry accord-
ingly. A little known fact of the ARP protocol [Plummer 1982] is that if a host
receives an ARP request from an IP address that is already in the receiver’s
cache, then that cache entry is updated with the sender’s hardware address
(e.g., Ethernet address) from the ARP request. This is done for any ARP request
received by the host. (Recall that ARP requests are broadcast, so this is done by
all hosts on the network each time an ARP requestis sent.)

[Bhide, Elnozahy, and Morgan 1991] describe an application that can use this
feature of ARP to allow a backupfile server to take over from a failed server by
issuing a gratuitous ARP request with the backup’s hardware address and the
failed server’s IP address. This causes all packets destined for the failed server
to be sent to the backup instead, without the client applications being aware that
the original server hasfailed.

Unfortunately the authors then decided against this approach, since it depends on the
correct implementation of ARP onall types of clients. They obviously encounteredclient
implementationsthat did not implement ARP according toits specification.

Monitoring all the systems on the author’s subnet shows that SunOS 4.1.3 and 4.4BSD
both issue gratuitous ARPs when bootstrapping, but SVR4 doesnot.

arp Command

We've used this command with the -a flag to display all the entries in the ARP cache.
Other options are provided.

The superuser can specify the -d option to delete an entry from the ARP cache.
(This was used before running a few of the examples,to let us see the ARP exchange.)

Entries can also be added using the -s option. It requires a hostname and an Ether-
net address: the IP address corresponding to the hostname, and the Ethernet address are
added to the cache. This entry is made permanent (ie., it won't time out from the
cache) unless the keyword temp appears at the end of the commandline.

The keyword pub at the end of a commandline with the -s option causes the sys-
tem to act as an ARP agentfor that host. The system will answer ARP requests for the
IP address corresponding to the hostname, replying with the specified Ethernetaddress.
If the advertised address is the system’s own,then this system is acting as a proxy ARP
agentfor the specified hostname.

Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally doesits
work without the application or the system administrator being aware. The ARP cache
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is fundamental to its operation, and we’ve used the arp command to examine and
manipulate the cache. Each entry in the cache has a timer that is used to remove both
incomplete and completed entries. The arp command displays and modifies entries in
the ARP cache.

Wefollowed through the normal operation of ARP along with specialized versions:
proxy ARP (when a router answers ARP requests for hosts accessible on another of the
router’s interfaces) and gratuitous ARP (sending an ARP request for your own IP
address, normally when bootstrapping).

Exercises

4.1

4.2

4.3

4.4

In the commands we typed to generate the output shownin Figure 4.4 (p. 58), what would
happenif, after verifying that the local ARP cache was empty, we type the command

bsdi % rsh svr4d arp -a

to verify that the ARP cache is also empty on the destination host? (This command causes
the arp —a commandto be executed onthe host svr4.)

Describe a test to determine if a given host handles a received gratuitous ARP request
correctly.

Step 7 in Section 4.2 can take a while (milliseconds) because a packet is sent and ARP then
waits for the response. How do you think ARP handles multiple datagrams that arrive
from IP for the same destination address during this period?

At the end of Section 4.5 we mentioned that the Host Requirements RFC and Berkeley-
derived implementations differ in their handling of the timeout of an active ARP entry.
Whathappensif we're on a Berkeley-derived client and keep trying to contact a server host
that’s been taken downto replace its Ethernet board? Does this changeif the server issues a
gratuitous ARP whenit bootstraps?
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5.1

5.2

RARP: Reverse. Address

Resolution Protocol

Introduction

Whena system with a local disk is bootstrapped it normally obtainsits IP address from
a configuration file that’s read from a disk file. But a system without a disk, such as an
X terminal or a diskless workstation, needs some other wayto obtain its IP address.

Each system on a network has a unique hardware address, assigned by the manu-
facturer of the network interface. The principle of RARP is for the diskless system to
read its unique hardware address from the interface card and send an RARP request (a
broadcast frame on the network) asking for someone to reply with the diskless system’s
IP address (in an RARP reply).

While the concept is simple, the implementation is often harder than ARP for rea-
sons described later in this chapter. The official specification of RARP is RFC 903 [Fin-
layson et al. 1984].

RARP Packet Format

The format of an RARP packet is almost identical to an ARP packet (Figure 4.3, p. 56).
The only differences are that the frame type is 0x8035 for an RARP requestor reply, and
the op field has a value of 3 for an RARP request and 4 for an RARP reply.

As with ARP, the RARP request is broadcast and the RARP reply is normally
unicast.
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5.3 RARP Examples

In our internet we can force the host sun to bootstrap from the network, instead of its
local disk. If we run an RARP server and tcpdump on the host bsdi weget the output
shownin Figure 5.1. We use the ~e flag to have tcpdumpprint the hardware addresses:

1 0.0 8:0:20:3:£6:42 fF: ff: fF: fEF:f£: ff rarp 60:
rarp who-is 8:0:20:3:f6:42 tell 8:0:20:3:£6:42

2 0.13 (0.13) 0:0:c0:6£:2d:40 8:0:20:3:f£6:42 rarp 42:
rarp reply 8:0:20:3:£6:42 at sun

3 0.14 (0.01) 8:0:20:3:£6:42 0:0:c0:6£:2d:40 ip 65:
sun.26999 > bsdi.tftp: 23 RRO "8CFCOD21.SUN4C"

Figure 5.1 RARP request and reply.

The RARP request is broadcast(line 1) and the RARPreply online 2 is unicast. The out-
put on line 2, at sun, means the RARP reply contains the IP address for the host sun
(140.252.13.33). |

Online 3 we see that once sun receives its IP address,it issues a TFTP read-request
(RRQ) for the file 8CFCOD21.SUN4C. (TFIPis the Trivial File Transfer Protocol. We
describe it in more detail in Chapter 15.) The eight hexadecimal digits in the filename
are the hex representation of the IP address 140.252.13.33 for the host sun. This is the IP
address that was returned in the RARP reply. The remainder of the filename, SUN4C,
indicates the type of system being bootstrapped.

tepdump says that line 3 is an IP datagram of length 65, and not a UDP datagram
(whichit really is), because we are running tcpdump with the —e flag, to see the hard-
ware-level addresses. Another point to notice in Figure 5.1 is that the length of the
Ethernet frame on line 2 appears to be shorter than the minimum (which wesaid was 60
bytes in Section 4.5.) The reason is that we are running tcpdump on the system thatis
sending this Ethernet frame (bsdi). The application, rarpd, writes 42 bytes to the BSD
Packet Filter device (14 bytes for the Ethernet header and 28 bytes for the RARP reply)
and this is what tcpdump receives a copy of. But the Ethernet device driver pads this
short frame to the minimum size for transmission (60). Had we been running tcpdump
on another system, the length would have been 60.

Wecan see in this example that when this diskless system receives its IP address in
an RARPreply, it issues a TFTP request to read a bootstrap image. At this point we
won't go into additional detail about how diskless systems bootstrap themselves.
(Chapter 16 describes the bootstrap sequence of a diskless X terminal using RARP,
BOOTP, and TFTP.)

Figure 5.2 showsthe resulting packets if there is no RARP server on the network.
The destination address of each packet is the Ethernet broadcast address. The Ethernet
address following who-is is the target hardware address, and the Ethernet address fol-
lowing tel]is the sender’s hardware address.

Note the frequency of the retransmissions. Thefirst retransmission occurs after 6.55
seconds and then increases to 42.80 seconds, then goes downto 5.34 seconds, then 6.55,
and then works its way back to 42.79 seconds. This continues indefinitely. If we
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5.4

1 0.0 8:0:20:3:£6:42 ££: ff: ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42

2 6.55 ( 6.55) 8:0:20:3:£6:42 fF: f£:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42

3 15.52 ( 8.97) 8:0:20:3:£6:42 ff: ff: f£f:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42

4 29.32 (13.80) 8:0:20:3:£6:42 £f£:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:f£6:42 tell 8:0:20:3:£6:42

5 52.78 (23.46) 8:0:20:3:£6:42 fF: ff:f£f:ff:ff:f£ rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42

6 95.58 (42.80) 8:0:20:3:£6:42 fF: ff£:ff:f£:f£:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42

7 100.92 ( 5.34) 8:0:20:3:£6:42 ££:££:ff:f£:ff:ff rarp 60:
rarp who~is 8:0:20:3:£6:42 tell 8:0:20:3:f£6:42

8 107.47 ( 6.55) 8:0:20:3:£6:42 ff:ff:ff:ff:ff£: ff rarp 60:
rarp who-is 8:0:20:3:f6:42 tell 8:0:20:3:£6:42

9 116.44 ( 8.97) 8:0:20:3:£6:42 ff£:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:f6:42

10 130.24 (13.80) 8:0:20:3:£6:42 ££: ff:ff:ff:ff:f£ rarp 60:
varp who-is 8:0:20:3:f£6:42 tell 8:0:20:3:£6:42

11 153.70 (23.46) 8:0:20:3:£6:42 f£:f£:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42

12° 196.49 (42.79) 8:0:20:3:£6:42 f£:ff:ff:f£:fF:ff rarp 60:
rarp who-is 8:0:20:3:f£6:42 tell 8:0:20:3:f6:42

Figure 5.2 RARP requests with no RARPserver on the network,

calculate the differences between each timeout interval we see a doubling effect: from
5,34 to 6.55 is 1.21 seconds, from 6.55 to 8.97 is 2.42 seconds, from 8.97 to 13.80 is 4.83

seconds, and so on. Whenthe timeout interval reaches somelimit (greater than 42.80
seconds)it’s reset to 5.34 seconds.

Increasing the timeout valuelike this is a better approach than using the same value
each time, In Figure 6.8 we'll see one wrong way to perform timeout and retransmis-
sion, and in Chapter 21 we’ll see TCP’s method.

RARP Server Design

While the concept of RARP is simple, the design of an RARP server is system depen-
dent and complex. Conversely, providing an ARP serveris simple, and is normally part
of the TCP/IP implementation in the kernel. Since the kernel knows its IP addresses

and hardware addresses, when it receives an ARP request for one of its IP addresses, it
just replies with the corresponding hardware address.

RARP Servers as User Processes

The complication with an RARP serveris that the server normally provides the map-
ping from a hardware address to an IP address for many hosts (all the diskless systems
on the network). This mapping is contained in a disk file (normally /etc/ethers on
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Unix systems). Since kernels normally don’t read and parse disk files, the function of an
RARP server is provided as a user process, not as part of the kernel’s TCP/IP
implementation.

To further complicate matters, RARP requests are transmitted as Ethernet frames
with a specific Ethernet frame type field (0x8035 from Figure 2.1.) This means an
RARP server must have some way of sending and receiving Ethernet frames of this
type. In Appendix A wedescribe how the BSD Packet Filter, Sun’s Network Interface
Tap, and the SVR4 Data Link Provider Interface can be used to receive these frames.
Since the sending and receiving of these frames is system dependent, the implementa-
tion of an RARP serveris tied to the system.

Multiple RARP Servers per Network

5.5

Another complication is that RARP requests are sent as hardware-level broadcasts, as
shown in Figure 5.2, This means they are not forwarded by routers, To allow diskless
systems to bootstrap even when the RARP server host is down, multiple RARP servers
are normally provided on a single network (e.g., a single cable).

As the number of servers increases (to provide redundancy), the network traffic
increases, since every server sends an RARP reply for every RARP request. The diskless
system that sent the RARP request normally uses the first RARP reply that it receives.
(We never had this problem with ARP, because only a single host sends an ARPreply.)
Furthermore, there is a chance that each RARPserver can try to respond at about the
sametime, increasing the probability of collisions on an Ethernet.

Summary

RARP is used by many diskless systems to obtain their IP address when bootstrapped.
The RARP packet format is nearly identical to the ARP packet. An RARP request is
broadcast, identifying the sender’s hardware address, asking for anyone to respond
with the sender’s IP address. The reply is normally unicast.

Problems with RARP include its use of a link-layer broadcast, preventing most
routers from forwarding an RARP request, and the minimal information returned:just
the system’s IP address. In Chapter 16 we'll see that BOOTP returns more information
for the diskless system that is bootstrapping:its IP address, the nameof a host to boot-
strap from, and so on.

While the RARP conceptis simple, the implementation of an RARP serveris system
dependent. Hence not all TCP/IP implementations provide an RARP server.

Exercises »

5.1 Isa separate frame type field required for RARP? Could the same value be used for ARP and
RARP 0x0806?

5.2 With multiple RARP servers on a network, how can they prevent their responses from col-
liding with each on the network?
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ICMP: Internet Control

Message Protocol

Introduction

ICMPis often considered part of the IP layer. It communicates error messages and
other conditions that require attention. ICMP messages are usually acted on by either
the IP layer or the higher layer protocol (TCP or UDP). Some ICMP messages cause
errors to be returned to user processes.

ICMP messagesare transmitted within IP datagrams, as shownin Figure 6.1.

<————___———__ JP datagram —————+|
IP

header

20 bytes

 

' ICMP message  
Figure 6.1 ICMP messages encapsulated within an IP datagram.

REC 792 [Postel 1981b] contains the official specification of ICMP.
Figure 6.2 shows the format of an ICMP message. Thefirst 4 bytes have the same

format for all messages, but the remainder differs from one message to the next. We'll
show the exact format of each message when wedescribeit.

There are 15 different values for the type field, which identify the particular ICMP
message. Some types of ICMP messages then use different values of the code field to
further specify the condition.

The checksumfield covers the entire ICMP message. The algorithm used is the same
as we described for the IP header checksum in Section 3.2. The ICMP checksum is

required,
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0 78 15 16 31

8-bit type 8-bit code 16-bit checksum

Z (contents depends on type and code) Z

Figure 6.2 ICMP message.

In this chapter we talk about ICMP messages in general and a few in detail: address
mask request and reply, timestamp request and reply, and port unreachable. We discuss
the echo request and reply messages in detail with the Ping program in Chapter 7, and
wediscuss the ICMP messages dealing with IP routing in Chapter9.

6.2 ICMP Message Types

Figure 6.3 lists the different ICMP message types, as determined by the type field and
code field in the ICMP message.

The final two columnsin this figure specify whether the ICMP messageis a query
message or an error message. We need to make this distinction because ICMP error
messages are sometimes handled specially. For example, an ICMP error message is
never generated in response to an ICMP error message. (If this were not the rule, we
could end up with scenarios where an error generates an error, which generates an
error, and so on,indefinitely.)

When an ICMP error message is sent, the message always contains the IP header
and the first 8 bytes of the IP datagram that caused the ICMP error to be generated.
This lets the receiving ICMP module associate the message with one particular protocol
(TCP or UDP from the protocolfield in the IP header) and one particular user process
(from the TCP or UDP port numbersthat are in the TCP or UDP header containedin the
first 8 bytes of the IP datagram). We’ll show an exampleof this in Section 6.5.

An ICMPerror messageis never generated in response to

1. An ICMPerror message. (An ICMP error message may, however, be generated
in response to an ICMP query message.)

2. A datagram destined to an IP broadcast address (Figure 3.9) or an IP multicast
address (a class D address, Figure 1.5).

3. A datagram sentas a link-layer broadcast.
A fragmentother than thefirst. (We describe fragmentation in Section 11.5.)
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type code Description Query|Error  

0 0 echo reply (Ping reply, Chapter7) e
 

3 destination unreachable:

network unreachable (Section 9.3)
host unreachable (Section 9.3)
protocol unreachable
port unreachable (Section 6.5)
fragmentation needed but don’t-fragmentbit set (Section 11.6)
source route failed (Section 8.5)
destination network unknown
destination host unknown

source hostisolated (obsolete)
destination network administratively prohibited
destination host administratively prohibited

11 network unreachable for TOS (Section 9.3)
12 host unreachable for TOS (Section 9.3)
13 communication administratively prohibited byfiltering
14 host precedenceviolation
15 precedencecutoff in effect

SCWUANDOPWNPOC
ray e©6©@©©©©©©&&©6&@
 

4 0 source quench (elementary flow control, Section 11.11)
5 redirect (Section 9.5):

redirect for network °
redirect for host °

redirect for type-of-service and network °
redirect for type-of-service and host °

 

 

echo request (Ping request, Chapter 7) °
 

router advertisement (Section 9.6) ®
router solicitation (Section 9.6) ®

Oolo;jwnnro
10

11 time exceeded:

time-to-live equals 0 during transit (Traceroute, Chapter8) e
time-to-live equals 0 during reassembly (Section 11.5) °

 

a) 
12 parameter problem:

IP headerbad(catchall error) ®
required option missing °
 

13
14

15
16

17
18

timestamp request (Section 6.4) °
timestampreply (Section 6.4) °
 

information request (obsolete) °
information reply (obsolete) ° 

address mask request (Section 6.3) °
address mask reply (Section 6.3) °

ooroooo;ra
    
 

Figure 6.3 ICMP messagetypes.

5. A datagram whose source address does notdefine a single host. This means the
source address cannot be a zero address, a loopback address, a broadcast
address, or a multicast address.

These rules are meant to prevent the broadcast storms that have occurred in the past
when ICMPerrors were sent in response to broadcast packets.

Viptela, Inc. - Exhibit 1007
Page 92



Viptela, Inc. - Exhibit 1007 
Page 93

72 ICMP: Internet Control Message Protocol Chapter 6 

6.3 ICMP Address Mask Request and Reply

The ICMP address mask request is intended for a diskless system to obtain its subnet
mask (Section 3.5) at bootstrap time. The requesting system broadcasts its ICMP
request. (This is similar to a diskless system using RARP to obtain its IP address at
bootstrap time.) An alternative method for a diskless system to obtain its subnet mask
is the BOOTPprotocol, which we describe in Chapter 16. Figure 6.4 shows the format
of the ICMP address mask request and reply messages.

0 78 15 16 31 

type (17 or 18) code (0) checksum  
identifier sequence number 12 bytes  

32-bit subnet mask  
 

Figure 6.4 ICMP address mask request and reply messages.

The identifier and sequence numberfields in the ICMP messagecan beset to anything
the sender chooses, and these values are returned in the reply. This allows the sender to
match replies with requests.

We can write a simple program (named icmpaddrmask) that issues an ICMP
address mask request and printsall replies. Since normal usageis to send the request to
the broadcast address, that’s what we'll do. The destination address (140.252.13.63) is
the broadcast address for the subnet 140.252.13.32 (Figure 3.12).

sun % icmpaddrmask 140.252.13.63

received mask = f£fffffe0, from 140.252.13.33 front ourself
received mask = ffffffe0, from 140.252.13.35 from bsdi
received mask = ffff0000, from 140.252.13.34 from svr4

The first thing we note in this output is that the returned value from svr4 is wrong. It
appears that SVR4 is returning the general class B address mask, assuming no subnets,
even though the interface on svr4 has been configured with the correct subnet mask:

svr4 % ifconfig emd0
emd0Q: flags=23<UP, BROADCAST, NOTRAILERS>

inet 140.252.13.34 netmask f£fffFfeO broadcast 140.252.13.63

There is a bug in the SVR4 handling of the ICMP address mask request.
We'll watch this exchange on the host bsdi using tcpdump. The output is shown

in Figure 6.5. We specify the -e option to see the hardware addresses.
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1 0.0 8:0:20:3:f6:42 ff: ff£:f£:f£:ff:ff ip 60:
sun > 140,.252.13.63: icmp: address mask request

2 0.00 (0.00) 0:0:c0:6f:20d:40 fF: ff:£f:f£:ff£:ff ip 46:
bsdi > sun: icmp: address mask is Oxffffffe0

3° 0.01 (0.01) 0:0:c0:¢2:9b:26 8:0:20:3:£6:42 ip 60:
svr4 > sun: icmp: address mask is Oxffff0000

Figure 6.5 ICMP address mask request sent to broadcast address.

Note that the sending host, sun, receives an ICMPreply (the output line with the com-
mentfrom ourself shownearlier), even though nothing is seen on the wire. This is a gen-
eral characteristic of broadcasting: the sending host receives a copy of the broadcast
packet through some internal loopback mechanism. Since by definition the term
“broadcast” meansall the hosts on the local network,it should include the sending host.
(Referring to Figure 2.4 [p. 28] what is happening is that when the Ethernet driver rec-
ognizes that the destination address is the broadcast address, the packet is sent onto the
networkand a copy is made and passedto the loopback interface.)

Next, bsdi broadcasts the reply, while svr4 sends the reply only to the requestor.
Normally the reply should be unicast unless the source IP address of the request is
0.0.0.0, which it isn’t in this example. Therefore, sending the reply to the broadcast
address is a BSD/386 bug.

The Host Requirements RFC says that a system must not send an address mask reply unlessit
is an authoritative agent for address masks. (To be an authoritative agent it must be specifi-
cally configured to send these replies. See Appendix E.) As we can see from this example,
however, most host implementations sendareply if they get a request. Some hosts even send
the wrongreply!

The final point is shown by the following example. We send an address mask
request to our own IP address and to the loopback address:

2.
sun % icmpaddrmask sun
received mask = ff000000, from 140.252.13.33

sun % icmpaddrmask localhost
received mask = ££000000, from 127.0.0.1

In both cases the returned address mask corresponds to the loopback address, the
class A address 127.0.0.1. Again, referring to Figure 2.4 we see that IP datagramssentto
the host’s own IP address (140.252.13.33 in this example) are actually sent to the loop-
back interface. The ICMP address mask reply must correspond to the subnet mask of
the interface on which the request wasreceived (since a multihomedhost can havedif-
ferent subnet masks for each interface), and in both cases the request is received from
the loopbackinterface.
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6.4 ICMP Timestamp Request and Reply

The ICMP timestamp request allows a system to query another for the current time.
The recommended value to be returned is the number of milliseconds since midnight,
Coordinated Universal Time (UTC), (Older manuals refer to UTC as Greenwich Mean

Time.) The nice feature of this ICMP messageis that it provides millisecond resolution,
whereas some other methods for obtaining the time from another host (such as the
rdate commandprovided by some Unix systems) providea resolution of seconds. The
drawback is that only the time since midnight is returned—the caller must know the
date from someother means.

Figure 6.6 showsthe format of the ICMP timestamp request and reply messages.

0 78 15 16 31 

type (13 or 14) code(0) checksum  
identifier sequence number 
 

32-bit originate timestamp 20 bytes
 

32-bit receive timestamp
 

32-bit transmit timestamp

   
 

Figure 6.6 ICMP timestamp request and reply messages.

The requestorfills in the originate timestamp and sends the request. The replying sys-
tem fills in the receive timestamp when it receives the request, and the transmit time-
stamp when it sends the reply. In actuality, however, most implementations set the
latter two fields to the same value. (The reason for providing the threefields is to let the
sender computethe time for the request to be sent, and separately compute the timefor
the reply to be sent.)

Examples

We can write a simple program (named icmptime) that sends an ICMP timestamp
request to a host and prints the returned reply. Wetry it first on our small internet:

sun % icmptime bsdi
orig = 83573336, recv = 83573330, xmit = 83573330, rtt = 2 ms
difference = -6 ms

sun % icmptime bsdi
orig = 83577987, recv = 83577980, xmit = 83577980, rtt = 2 ms

difference = -7 ms '
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The program prints the three timestamps in the ICMP message: the originate (orig),
receive (recv), and transmit (xmit) timestamps. As we can see in this and the follow-
ing examples, all the hosts set the receive and transmit timestamps to the same value.

Wealso calculate the round-trip time (rtt), whichis the time the reply is received
minus the time the request was sent. The difference is the received timestamp
minusthe originate timestamp. Figure 6.7 showsthe relationship between these values.

originate received transmit

| request to reply —o|

Is — RIT |

Figure 6.7 Relationship between values printed by our icmptime program.

   

 
 

If we believe the RIT and assume that one-half of the RIT is for the request, and the
other half for the reply, then the sender’s clock needs to be adjusted by difference
minus one-half the RTT, to have the sametime as the host being queried. In the preced-
ing example, the clock on bsdi was 7 and 8 ms behind the clock on sun.

Since the timestamp values are the number of milliseconds past midnight, UTC,
they should always be less than 86,400,000 (24 x 60 x 60 x 1000). These examples were
run just before 4:00 PM. in a time zone that is 7 hours behind UTC, so the values being
greater than 82,800,000 (2300 hours) makes sense.

If we run this program several times to the host bsdi weseethatthe final digit in
the receive and transmit timestamp is always 0. This is because the software release
(Version 0.9.4) only provides a 10-ms clock. (We describe this in Appendix B.)

If we run the program twice to the host svr4 wesee that the low-order three digits
of the SVR4 timestamp are always0:

sun % icmptime svr4
orig = 83588210, recv = 83588000, xmit = 83588000, rtt = 4 ms
difference = ~210 ms

sun % icmptime svr4
orig = 83591547, recv = 83591000, xmit = 83591000, rtt = 4 ms
difference = —547 ms

For some reason SVR4 doesn’t provide any millisecond resolution using the ICMP time-
stamp. This imprecision makes the calculated differences useless for subsecond adjust-
ments. .

If we try two other hosts on the 140.252.1 subnet, the results show that one clock
differs from sun’s by 3.7 seconds, and. the other by nearly 75 seconds:

sun % icmptime gemini
orig = 83601883, recv = 83598140, xmit
difference = -3743 ms

83598140, rtt = 247 ms

2.
sun % icmptime aix
orig = 83606768, recv = 83532183, xmit
difference = -74585 ms

253 ms
N

83532183, rtt
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Anotherinteresting example is to the router gateway (a Cisco router). It shows
that when a system returns a nonstandard timestamp value (something other than mil-
liseconds past midnight, UTC),it is supposed to turn on the high-orderbit of the 32-bit
timestamp. Our program detects this, and prints the receive and transmit timestamps
in angle brackets (after turning off the high-order bit). Also, we can’t calculate the dif-
ference betweenthe originate and receive timestamps, since they’re not the same units.

sun % iemptime gateway
orig = 83620811, recv = <4871036>, xmit = <4871036>, rtt = 220 ms

|

sun % iemptime gateway
orig = 83641007, recv = <4891232>, xmit = <4891232>, rtt = 213 ms

If we run our program to this host a few times it becomes obvious that the values do
contain millisecond resolution and do count the number of milliseconds past some
starting point, but the starting point is not midnight, UTC. (It could be a counterthat’s
incremented every millisecond since the router was bootstrapped, for example.)

Asa final example we’ll compare sun’s clock with a system whose clock is known
to be accurate—an NTP stratum 1 server. (We say more about NTP, the Network Time
Protocol, below.)

2
sun % icmptime clock.1linl.gov
orig = 83662791, recv = 83662919, xmit = 83662919, rtt = 359 ms
difference = 128 ms

2
sun % iemptime clock.11nl.gov
orig = 83670425, recv = 83670559, xmit = 83670559, rtt = 345 ms
difference = 134 ms

If we calculate the difference minus one-half the RTT, this output indicates that the clock
on sun is between 38.5 and 51.5 msfast.

Alternatives

There are other waysto obtain the time anddate.

1. We described the daytime service and time service in Section 1.12. The former
returns the current time and date in a human readable form, a line of ASCII
characters. We can test this service using the telnet command:

sun % telnet bsadi daytime
Trying 140.252.13.35 ...
Connected to bsdi.

Escape character is '*]’. first three lines outputare fromthe Telnet client
Wed Feb 3 16:38:33 1993 here's the daytime service output
Connection closed by foreign host. this is also from the Telnet client

The time server, on the other hand, returns a 32-bit binary value with the num-
ber of seconds since midnight January 1, 1900, UTC. While this provides the

date, the time valueis in units of a second. (The rdate command that we men-
tioned earlier uses the TCP time service.)
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2. Serious timekeepers use the Network Time Protocol (NTP) described in
REC 1305 [Mills 1992]. This protocol uses sophisticated techniques to maintain
the clocks for a group of systems on a LAN or WANto within millisecond accu-
racy. Anyoneinterested in precise timekeeping on computers should read this
RFC.

3. The Open Software Foundation’s (OSF) Distributed Computing Environment
(DCE) defines a Distributed Time Service (DTS) that also provides clock syn-
chronization between computers. [Rosenberg, Kenney, and Fisher 1992] provide
additional details on this service.

4, Berkeley Unix systems provide the daemon timed(8) to synchronize the clocks
of systems on a local area network. Unlike NTP and DTS, timed does not work
across wide area networks.

ICMP Port Unreachable Error

The last two sections looked at ICMP query messages—the address mask and time-
stamp queries and replies. We'll now examine an ICMP error message, the port
unreachable message, a subcode of the ICMP destination unreachable message, to see
the additional information returned in an ICMP error message. We'll watch this using
UDP(Chapter11).

Onerule of UDPis thatif it receives a UDP datagram andthe destination port does
not correspond to a port that some process has in use, UDP responds with an ICMP port
unreachable. We can force a port unreachable using the TFTPclient. (We describe TFTP
in Chapter 15.)

The well-known UDPport for the TFTP server to be reading from is 69. But most
TFTP client programsallow usto specify a different port using the connect command.
Weusethis to specify a port of 8888:

bsdi % tftp
tfitp> connect svr4 8888 specify the hostname and port number
tftp> get temp. foo try to fetcha file
Transfer timed out. about 25 seconds later

tfitp> quit

The connect command saves the nameof the host to contact and the port number on
that host, for when welater issue the get command. After typing the get command a
UDPdatagram is sent to port 8888 on host svr4. Figure 6.8 shows the tcpdump output
for the exchangeof packets that takes place.

Before the UDP datagram can be sent to svr4 an ARP request is sent to determine
its hardware address(line 1). The ARP reply (line 2) is returned and then the UDP data-
gram is sent (line 3). (We have left the ARP request-reply in this tcpdump output to
remind us that this exchange may be required before the first IP datagram is sent from
one host to the other. In future output we'll delete this exchangeif it’s not relevant to
the topic being discussed.)
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5.004304 (0.0035) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

10.000887 (4.9966) bsdi.2924 > svr4.8888: udp 20
10.004416 (0.0035) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

1 0.0 arp who-has svr4 tell bsdi
2 0.002050 (0.0020) arp reply svr4 is-at 0:0:c0:c2:9b:26

3 0.002723 (0.0007) bsdi.2924 > svr4.8888: udp 20
4 0.006399 (0.0037) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

5 5.000776 (4.9944) bsdi.2924 > svr4.8888: udp 20
6

7
8

9 15.001014 (4.9966) bsdi.2924 > svr4.8888: udp 20
10 15.004574 (0.0036) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

11 20.001177 (4.9966) bsdi.2924 > svr4,.8888: udp 20
12) 20.004759 (0.0036) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

Figure 6.8 ICMP port unreachable generated by TFTP request.

An ICMP port unreachable is immediately returned (line 4). But the TFTP client
appears to ignore the ICMP message, sending another UDP datagram about 5 seconds
later (line 5). This continues three more times before theclient gives up.

Notice that the ICMP messages are exchanged between hosts, without a port num-
ber designation, while each 20-byte UDP datagram is from a specific port (2924) and to
a specific port (8888).

The number 20 at the end of each UDPlineis the length of the data in the UDP
datagram. In this example 20 is the sum of the TFTP’s 2-byte opcode, the 9-byte null
terminated name temp.foo, and the 9-byte null terminated string netascii. (See
Figure 15.1 for the details of the TFTP packet layout.)

If we run this same example using the -e option of tcpdump wesee the exact
length of each ICMP port unreachable message that’s returned to the sender. This
length is 70 bytes, and is allocated as shownin Figure 6.9.

esIP datagram.—$_ 2-—-—_______—__>}
iICMP message ————_—_——__>

jt data portion of ICMP message —+>        Ethernet IP ICMP IP header of datagram UDP
header header header that generated error header

14 bytes 20 bytes 8 bytes 20 bytes 8 bytes

Figure 6.9 ICMP message returned for our “UDP port unreachable” example.
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One rule of ICMP is that the ICMP error messages (see the final column of Fig-
ure 6.3, p. 71) must include the IP header (including any options) of the datagram that
generated the error along with atleast the first 8 bytes that followed this IP header. In
our example, the first 8 bytes following the IP header contain the UDP header (Fig-
ure 11.2).

The important fact is that contained in the UDP headerare the source and destina-
tion port numbers. It is this destination port number (8888) that caused the ICMPport
unreachable to be generated. The source port number (2924) can be used by the system
receiving the ICMPerror to associate the error with a particular user process (the TFTP
client in this example).

One reason the IP header of the datagram that caused the error is sent back is
becausein this IP header is the protocolfield that lets ICMP know howto interpret the 8
bytes that follow (the UDP headerin this example). When welook at the TCP header
(Figure 17.2) we'll see that the source and destination port numbers are contained in the
first 8 bytes of the TCP header.

The general format of the ICMP unreachable messages is shown in Figure 6.10.

 

  
 

0 7 8 15 16 31

type (3) code (0-15) checksum

8 bytes

Unused (must be 0) |

7 IP header(including options) + first 8 bytes of original IP datagram data Z  
 

Figure 6.10 ICMP unreachable message.

In Figure 6.3 we noted that there are 16 different ICMP unreachable messages, codes 0
through 15. The ICMP port unreachable is code 3. Also, although Figure 6.10 indicates
that the second 32-bit word in the ICMP message must be 0, the Path MTU Discovery
mechanism (Section 2.9) allows a router to place the MTU ofthe outgoing interface in
the low-order 16 bits of this 32-bit value, when code equals 4 (“fragmentation needed
but the don’t fragmentbit is set”). We show an exampleofthis error in Section 11.6.

Although the rules of ICMP allow a system to return more than thefirst 8 bytes of the data
portion of the IP datagram that caused the ICMP error, most Berkeley-derived implementa-
tions return exactly 8 bytes. The Solaris 2.2 ipicmp_return_data_bytes option returns
the first 64 bytes of data by default (Section E.4),
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tcpdump Time Line

Throughout the text we’ll also display the tcpdump output in a time line diagram as
shownin Figure 6.11.

 

 

  
 

  
 

 

 

 

 

 

 

bsdi.2924 svr4.8888

0.0 arp who-has svr4 tel] bsdi
: -c0:02:9b:26

arp reply svr4 ig-at 0:0:c0:c2:9b:2
0.002050 (5.0007)0.002723 (0.0007 _udp 20 bytes

ICMP: svr4 udp port 8888 unreachable
0.006399 (0.0087) Laat

5,000776(4.9944) je —2dp20bytes

ICMP: svr4 udp port 8888 unreachable
5.004304 (0.0035) Lat

4 Z

10.000887 (4.9966) udp 20 bytes

ICMP:svr4 udp port 8888 unreachable
10,004416 (0.0035) Let

£ /

15,.001014 (4.9966) udp 20 bytes
=a

ICMP:svr4. udp port 8888 unreachable
15.004574 (0.0036) janet

f /

20.001177 (4.9966) udp 20 bytes
Bi

ICMP: svr4 udp port 8888 unreachable
20.004759 (0.0036) [act

 
Figure 6.11 Timeline of TFTP requestto an invalid port.
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Time increases down the page and the labels on the far left of the figure are the
same time values as in our tcpdump output (Figure 6.8). The labels at the top are the
hostnames and port numbers for each side of the time line. Be aware that the y-axis
downthe pageis not exactly proportional to the time value. Whenthere is a significant
time lag, as between each 5-second retransmission in this example, we'll designate that
with a squiggle on both sides of the time line. When UDP or TCP data is being trans-
mitted, we show that packet with a thickerline.

Whydoes the TFTP client keep retransmitting its request when the ICMP messages
are being returned? An element of network programming is occurring in which BSD
systems don’t notify user processes using UDP of ICMP messagesthat are received for
that socket unless the process has issued a connect on that socket. The standard BSD
TFTP client does not issue the connect, so it never receives the ICMPerror notification.

Another point to notice here is the poor retransmission timeout algorithm used by
this TFTP client. It just assumes that 5 seconds is adequate and retransmits every 5 sec-
onds, for a total of 25 seconds. We'll see later that TCP has a muchbetter algorithm.

This old-fashioned timeout and retransmission algorithm used by the TFTPclient is forbidden
by the Host Requirements RFC, Nevertheless, all three systems on the author’s subnet, and
Solaris 2.2 still use it. AIX 3.2.2 applies an exponential backoff to its timeout, sending packets
at 0, 5, 15, and 35 seconds, which is the recommended way. We talk much more abouttime-
outs in Chapter 21.

Finally note that the ICMP messagesare returned about 3.5 msafter the UDP data-
gram is sent, which we'll see in Chapter 7 is similar to the round-trip times for Ping
replies.

4.4BSD Processing of ICMP Messages

Since ICMP covers such a wide range of conditions, from fatal errors to informational
messages, each ICMP messageis handled differently, even within a given implementa-
tion. Figure 6.12 is a redo of Figure 6.3, showing the handling performed by 4.4BSD for
eachof the possible ICMP messages.

If the final column specifies the kernel, that ICMP messageis handled by the kernel.
If the final column specifies “user process”, then that message is passedto all user pro-
cesses that have registered with the kernel to read received ICMP messages. If there are
none of these user processes, the messageis silently discarded. (These user processes
also receive a copy of all the other ICMP messages, even those handled by the kernel,
but only after the kernel has processed the message.) Some messages are completely
ignored. Finally, if the final column is a string in quotes, that is the Unix error message
corresponding to that condition. Some of these errors, such as TCP’s handling of a
source quench, we'll cover in later chapters.
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type code Description Handled by

0 0 echoreply user process
3 destination unreachable:

0 network unreachable “No route to host”
1 host unreachable “No route to host”

2 protocol unreachable “Connection refused”
3 port unreachable “Connection refused”
4 fragmentation needed but DF bit set “Message too long”
5 source route failed “Noroute to host”
6 destination network unknown “Noroute to host”
7 destination host unknown “Noroute to host”

8 source hostisolated (obsolete) “No route to host”
9 dest. network administratively prohibited “Noroute to host”

10 dest. host administratively prohibited “Noroute to host”
11 network unreachable for TOS “No route to host”
12 host unreachable for TOS “Noroute to host”

13 communication administratively prohibited|(ignored)
14 host precedenceviolation (ignored)
15 precedencecutoff in effect (ignored)

4 Q source quench kernel for TCP, ignored by UDP
5 redirect:

0 redirect for network kernel updates routing table
1 redirect for host kernel updates routing table
2 redirect for type-of-service and network kernel updates routing table
3 redirect for type-of-service and host kernel updates routing table

8 0 echo request kernel generates reply

9 0 router advertisement user process
10 0 router solicitation user process
a time exceeded:

0 TTL equals 0 during transit user process
1 TIL equals 0 during reassembly user process

12 parameter problem:
0 IP header bad(catchall error) “Protocol not available”
1 required option missing “Protocol not available”

13 0 timestamp request kernel generates reply
14 0 timestamp reply user process

15 Q information request(obsolete) (ignored)
16 0 information reply (obsolete) user process
17 0 address mask request kernel generates reply
18 0 address mask reply user process

  
 

Figure 6.12 Handling of the ICMP messagetypes by 4.4BSD,
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6.7 Summary

This chapter has been a look at the Internet Control Message Protocol, a required part of
every implementation. Figure 6.3 lists all the ICMP message types, most of which we'll
discuss later in the text.

Welooked at the ICMP address mask request and reply and the timestamp request
and reply in detail. These are typical of the request-reply messages. Both have an iden-
tifier and sequence number in the ICMP message. The sending application stores a
unique value in the identifier field, to distinguish between replies for itself and replies
for other processes. The sequence number field lets the client match replies with
requests.

We also saw the ICMP port unreachable error, a common ICMPerror. This let us
examine the information returned in an ICMPerror: the IP header and the next 8 bytes
of the IP datagram that caused the error. This information is required by the receiver of
the ICMPerror, to know more aboutthe cause of the error. Both TCP and UDPstore the

source and destination port numbersin the first 8 bytes of their headers for this reason.
Finally, we presented ourfirst time line of tcpdump output, a presentation format

we'll use in later chapters.

Exercises

6.1 At the end of Section 6.2 welisted five special conditions under which an ICMP error mes-
sage is not sent. What would happenif these five conditions weren't followed and we sent
a broadcast UDP datagram to an unlikely port on the local cable?

6.2 Read the Host Requirements RFC [Braden 1989a] to see if the generation of an ICMP port
unreachableis a “must,” “should,” or “may.” What section and page is this found on?

6.3 Read RFC 1349 [Almquist 1992] to see how the IP type-of-service field (Figure 3.2) should
be set by ICMP.

6.4 If your system provides the netstat command,use it to see what types of ICMP messages
are received and sent.
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7.2

Ping Program

Introduction

The name “ping”is taken from the sonar operation to locate objects. The Ping program
was written by Mike Muuss and it tests whether another host is reachable. The pro-
gram sends an ICMP echo request message to a host, expecting an ICMP echoreply to
be returned. (Figure 6.3 lists all the ICMP messagetypes.)

Normally if you can’t Ping a host, you won’t be able to Telnet or FTP to that host.
Conversely, if you can’t Telnet to a host, Ping is often the starting point to determine
whatthe problem is. Ping also measures the round-trip timeto the host, giving us some
indication of how “far away”thathostis.

In this chapter we'll use Ping as a diagnostic tool and to further explore ICMP. Ping
also gives us an opportunity to examine the IP record route and timestamp options.
Chapter 11 of [Stevens 1990] provides the source codefor the Ping program.

Years ago we could make the unqualified statement that if we can’t Ping a host, we can’t Telnet
or FTP to that host. With the increased awarenessof security on the Internet, routers that pro-
vide access controllists, and firewall gateways, unqualified statements like this are no longer
true. Reachability of a given host may depend not only on reachability at the IP layer, but also
on what protocol is being used, and the port numbers involved. Ping may show a host as
being unreachable, yet we might be able to Telnet to port 25 (the mail server).

Ping Program

Wecall the ping program that sends the echo requests the client, and the host being
pinged the server. Most TCP/IP implementations support the Ping server directly in the
kernel—the server is not a user process. (The two ICMP query services that we
described in Chapter 6, the address mask and timestamp requests, are also handled
directly by the kernel.)
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Figure 7.1 shows the ICMPecho request and echo reply messages.
0 78 15 16 31 

type (0 or8) code (0) checksum |
8 bytes

   identifier sequence number | 

Z optional data Z  
 

Figure 7.1 Format of ICMP messagefor echo request and echoreply.

As with other ICMP query messages, the server must echo the identifier and sequence
numberfields. Also, any optional data sent by the client must be echoed. These are pre-
sumably of interest to the client.

Unix implementations of ping set the identifier field in the ICMP messageto the
process ID of the sending process. This allows pingto identify the returned responses
if there are multiple instances of ping running at the same time on the same host.

The sequence number starts at 0 and is incremented every time a new echo requestis
sent. ping prints the sequence number of each returned packet, allowing us to seeif
packets are missing, reordered, or duplicated. IP is a best effort datagram delivery ser-
vice, so any ofthese three conditions can occur.

Historically the ping program has operated in a mode where it sends an echo
request once a second, printing each echo reply that is returned. Newer implementa-
tions, however, require the -s option to operate this way. By default, these newer
implementations send only a single echo request and output “host is alive” if an echo
reply is received, or “no answer”if no reply is received within 20 seconds.

LAN Output

ping output on a LAN normally looks like the following:
bsdi % ping svr4
PING svr4 (140.252.13.34): 56 data bytes
64 bytes from 140.252.13.34: icmp_seq=0 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=1 tt1=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=2 tt1=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=3 tt1=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=4 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=5 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=6 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=7 tt1=255 time=0 ms
*? type interrupt key to stop
--- svr4 ping statistics ---
8 packets transmitted, 8 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
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Whenthe ICMPechoreply is returned, the sequence numberis printed, followed by the
TTL, and the round-trip time is calculated. (TTL is the time-to-live field in the IP
header. The current BSD ping program prints the received TTL each time an echo
reply is received—some implementations don’t do this. We examine the usage of the
TTL in Chapter 8 with the traceroute program.)

As wecan see from the output above, the echo replies were returned in the order
sent (0, 1,2, and so on).

pingis able to calculate the round-trip time by storing the time at which it sends
the echo request in the data portion of the ICMP message. Whenthereply is returnedit
subtracts this value from the current time. Notice that on the sending system, bsdi, the
round-trip times are all calculated as.0 ms. This is because of the low-resolution timer
available to the program. The BSD/386 Version 0.9.4 system only provides a 10-ms
timer. (We talk more about this in Appendix B.) We’ll see later that when looking at the
tcpdump output from this ping example on a system with a finer resolution clock (the
Sun) the time difference between the ICMP echo request and its echo reply is just under
4 ms.

Thefirst line of output contains the IP address of the destination host, even though
wespecified its name (svr4). This implies that the name has been converted to the IP
address by a resolver. We examine resolvers and the DNS in Chapter 14. For now real-
ize that if we type a ping command,and a few secondspassbeforethefirst line of out-
put with the IP address is printed, this is the time required for the DNS to determine the
IP address corresponding to the hostname.

Figure 7.2 shows the tcpdump outputfor this example.

1 0.0 bsdi > svr4: icmp: echo request
2 0.003733 (0.0037) svr4 > bsdi: icmp: echo reply

3. 0.998045 (0.9943) bsdi > svr4: icmp: echo request
4 1.001747 (0.0037) svr4 > bsdi: icmp: echo reply

5 1.997818 (0.9961) bsdi > svr4: icmp: echo request
6 2.001542 (0.0037) svr4 > bsdi: icmp: echo reply

7 2.997610 (0.9961) bsdi > svr4: icmp: echo request
8 3.001311 (0.0037) svr4 > bsdi: icmp: echo reply

9 3.997390 (0.9961) bsdi > svr4: icmp: echo request
10 4.001115 (0.0037) svx4 > bsdi: icmp: echo reply

11 4.997201 (0.9961) bsdi > svr4: icmp: echo request
12 5.000904 (0.0037) svr4 > bsdi: icmp: echo reply

13 5.996977 (0.9961) bsdi > svr4: icmp: echo request
14 6.000708 (0.0037) svr4 > bsdi: icmp: echo reply

15 6.996764 (0.9961) bsdi > svr4: icmp: echo request
16 7.000479 (0.0037) svr4 > bsdi: icmp: echo reply

 
Figure 7.2. ping output across a LAN.

The time between sending the echo request and receiving the echo reply is always 3.7
ms. We canalso see that echo requests are sent approximately 1 second apart.
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Often the first round-trip timeis larger than the rest. This occursif the destination’s
hardware address isn’t in the ARP cache of the sender. As we saw in Chapter 4, send-
ing an ARP request and getting the ARP reply can take a few milliseconds before the
first echo request can be sent. The following example showsthis:

2.
sun % arp -a make stire ARP cacheis empty

sun % ping svxr4
PING svr4: 56 data bytes

64 bytes from svr4 (140.252.13.34): icmp_seq=0. time=7. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=1. time=4. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=2. time=4. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=3. time=4. ms
*9 : type interrupt key to stop
—---svr4 PING Statistics—--—

4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 4/4/7

The additional 3 msin the first RIT is probably for the ARP request andreply.
This example was run on the host sun, which provides a timer with microsecond

resolution, but the ping program prints the round-trip times with only millisecond res-
olution. The earlier example, run under BSD/386 Version 0.9.4, printed the round-trip
times as 0 ms, since the available timer provided only 10-ms accuracy. The following
output is from BSD/386 Version 1.0, which provides a timer with microsecond resolu-
tion and a version of ping that prints the higher resolution.

bsdi % ping svr4
PING svr4 (140.252.13.34): 56 data bytes
64 bytes from 140.252.13.34: icmp_seq=0 tt1=255 time=9.304 ms
64 bytes from 140.252.13.34: icmp_seq=1 ttl=255 time=6.089 ms
64 bytes from 140.252.13.34: icmp_seq=2 tt1=255 time=6.079 ms
64 bytes from 140.252.13.34: icmp_seq=3 tt1=255 time=6.096 ms
“9 type interrupt key to stop
—-- svr4 ping statistics —--
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 6.079/6.880/9.304 ms

WANOutput

On a wide area network the results can be quite different. The following example was
captured on a weekday afternoon, a time whenthe Internet is normally busy:

gemini % ping vangogh.cs.berkeley.edu
PING vangogh.cs.berkeley.edu: 56 data bytes
64 bytes from (128.32.130.2): icmp_seq=0. time=660. ms
64 bytes from (128.32.130.2): icmp_seq=5. time=1780. ms
64 bytes from (128.32.130.2): icmp_seq=7. time=380. ms
64 bytes from (128.32.130.2): icmp_seq=8. time=420. ms
64 bytes from (128.32.130.2): icmp_seq=9. time=390. ms
64 bytes from (128.32.130.2): icmp_seq=14. time=110. ms
64 bytes from (128.32.130.2): icmp_seq=15. time=170. ms
64 bytes from (128.32.130.2): icmp_seq=16. time=100. ms
°? type interrupt key to stop
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 -~--vangogh.CS.Berkeley.EDU PING Statistics----
17 packets transmitted, 8 packets received, 52% packet loss
round-trip (ms) min/avg/max = 100/501/1780

Either the echo requests or the echo replies for sequence numbers 1, 2, 3, 4, 6, 10, 11, 12,
and 13 were lost somewhere. Note also the large variance in the round-trip times. (This
high packetloss rate of 52% is an anomaly. This is not normalfor the Internet, even on a
weekday afternoon.)

It is also possible across WANsto see packets duplicated (the same sequence num-
ber printed two or more times), and to see packets reordered (sequence number N +1
printed before sequence numberN).

Hardwired SLIP Links

Let’s look at the round-trip times encountered over SLIP links, since they often run at
slow asynchronous speeds, such as 9600 bits/sec or less. Recall our serial line through-
put calculations in Section 2.10. For this example we’ll set the speed of the hardwired
SLIP link between hosts bsdi and slip to 1200 bits/sec.

We can estimate the round-trip time as follows. First, notice from the example Ping
output shown earlier that by default it sends 56 bytes of data in the ICMP message.
With a 20-byte IP header and an 8-byte ICMP headerthis gives a total IP datagram size
of 84 bytes. (We can verify this by running tcpdump -e and seeing the Ethernet frame
sizes.) Also, from Section 2.4 we knowthatat least two additional bytes are added: the
ENDbyte at the beginning and end of the datagram. It’s also possible for additional
bytes to be added by the SLIP framing, but that depends on the value of each byte in the
datagram. At 1200 bits/sec with 8 bits per byte, 1 start bit, and 1 stop bit, the rate is 120
bytes per second, or 8.33 ms per byte. Our estimate is then (86 x 8.33 x 2), or 1433 ms.
(The multiplier of 2 is because weare calculating the round-trip time.)

The following outputverifies our calculation:
svr4 % ping -s slip
PING slip: 56 data bytes
64 bytes from slip (140.252.13.65): icmp_seq=0. time=1480. ms
64 bytes from slip (140.252.13.65): icmp_seq=1. time=1480. ms
64 bytes from slip (140.252.13.65): icmp_seq=2. time=1480. ms
64 bytes from slip (140.252.13.65): icmp_seq=3. time=1480. ms“9

-~--slip PING Statistics-—---
5 packets transmitted, 4 packets received, 20% packet loss
round-trip (ms) min/avg/max = 1480/1480/1480

(The -s option is required for SVR4 to send one request every second.) The round-trip
time is almost 1.5 seconds but the program is still sending out each ICMP echo request
at 1-second intervals. This means there are two outstanding echo requests (sent at time
0 and time 1) before the first reply comes back (at time 1.480). That’s also why the sum-
mary line says one packet has been lost. It really hasn’t beenlost, it’s probably still on
its way back.

We'll return to this slow SLIP link in Chapter 8 when we examine the traceroute
program.
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Dialup SLIP Links

The conditions change with a dialup SLIP link since we now have modems on each end
of the link. The modemsbeing used between the systems sun and netb provide what
is called V.32 modulation (9600 bits/sec), V.42 error control (also called LAP-M), and
V.42bis data compression. This means that our simple calculations, which were fairly
accurate for a hardwired link where we knewall the parameters, becomeless accurate.

Numerousfactors are at work. The modemsintroduce some latency. The size of
the packets may decrease with the data compression, but the size may then increase to a
multiple of the packet size used by the error control protocol. Also the receiving
modem can’t release received data bytes until the cyclic redundancy character (the
checksum) has been verified. Finally, we’re dealing with a computer’s asynchronous
serial interface on each end, and many operating systems read these interfaces only at
fixed intervals, or when a certain numberof characters have been received.

As an example, we ping the host gemini from the host sun:
sun % ping gemini
PING gemini: 56 data bytes
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
----gemini PING Statistics-~~-
12 packets transmitted, 12 packets received, 0% packet loss
round-trip (ms) min/avg/max = 280/314/373

.11): icmp_seq=0. time=373. ms

.11): iomp_seq=1. time=360. ms

.11): iLomp_seq=2. time=340. ms
11): ieomp_seq=3. time=320. ms
.11): idemp_seq=4. time=330. ms
11): dcomp_seq=5. time=310. ms
11): icomp_seq=6. time=290. ms
11): icmp_seq=7. time=300. ms
.11): icomp_seq=8. time=280. ms
11): icmp_seq=9. time=290. ms
.11): icmp_seq=10. time=300. ms
11): icmp_seq=11. time=280. ms

PPPRPPPREPHPPER
Note that the first RTT is not a multiple of 10 ms, but every other line is. If we run this
numerous times, we see this property every time. (This is not caused by the resolution
of the clock on the host sun, because we know that its clock provides millisecond reso-
lution from the tests we run in Appendix B.)

Also note that the first RTT is larger than the next, and they keep decreasing, and
then they range between 280 and 300 ms. If welet it run for a minute or two, the RTTs
stay in this range, never going below 260 ms. If we calculate the expected RIT at
9600 bits/sec (Exercise 7.2) we get 180 ms, so our observed values are about 1.5 times
the expected value.

If we run ping for 60 seconds andlookat the average RTTit calculates, we find that
with V.42 and V.42bis our average is 277 ms. (This is better than the average printed for
our preceding example, because we ran it longer to amortize the longer RTTs at the
beginning.) If we turn off just the V.42bis data compression our average is 330 ms. If
weturn off the V.42 error control (whichalso turnsoff the V.42bis data compression) our
average is 300 ms. These modem parameters do affect the RTTs, and using the error
control and data compression appears to be the best.
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7.3 IP Record Route Option

The ping program gives us an opportunity to look at the IP record route (RR) option.
Mostversions of ping provide the —R option that enables the record route feature. It
causes ping to set the IP RR option in the outgoing IP datagram (which contains the
ICMP echo request message). This causes every router that handles the datagram to
addits IP addressto a list in the options field. When the datagram reachesthe final des-
tination, the list of IP addresses should be copied into the outgoing ICMPechoreply,
andall the routers on the return path also add their IP addressesto the list. When ping
receives the echoreplyit prints the list of IP addresses.

As simple as this sounds, there are pitfalls. Generation of the RR option by the
source host, processing of the RR option by the intermediate routers, andreflection of
the incoming RRlist in an ICMP echo request into the outgoing ICMP echoreply areall
optional features. Fortunately, most systems today do support these optional features,
but some systems don’t reflect the IPlist.

The biggest problem, however, is the limited room in the IP headerfor the list of IP
addresses. We saw in Figure 3.1 (p. 34) that the header length in the IP headeris a 4-bit
field, limiting the entire IP header to 15 32-bit words (60 bytes). Since the fixed size of
the IP header is 20 bytes, and the RR option uses 3 bytes for overhead (which we
describe below), this leaves 37 bytes (60- 20-3) for the list, allowing up to nine IP
addresses. In the early days of the ARPANET, nine IP addresses seemedlike a lot, but
since this is a round-trip list (in the case of the -R option for ping),it’s of limited use
today. (In Chapter 8 we’ll look at the Traceroute tool for determining the route followed
by a datagram.) Despite these shortcomings, the record route option works and pro-
vides an opportunity to look in detail at the handling of IP options.

Figure 7.3 showsthe general format of the RR option in the IP datagram.

  

           
basi 39 bytes be

code) len|ptr|IPaddr#1|IPaddr#2|IPaddr#3 vee IP addr #9

1 1 1 y 4bytes y 4bytes 4 4 bytes 4 4 bytes

ptr=4 pir=8 ptr=12 ptr = 36 ptr =40

Figure 7.3. General format of record route option in IP header.

Code is a 1-byte field specifying the type of IP option. For the RR optionits valueis 7.
Len is the total numberof bytes of the RR option, which in this case is 39. (Althoughit’s
possible to specify an RR option with less than the maximum size, ping always pro-
vides a 39-byte option field, to record up to nine IP addresses. Given the limited room
in the IP header for options, it doesn’t make sense to specify a size less than the maxi-
mum.)

Ptr is called the pointerfield. It is a 1-based index into the 39-byte option of where
to store the next IP address. Its minimum value is 4, which is the pointerto the first IP
address. As each IP address is recorded into the list, the value of ptr becomes8, 12, 16,
up to 36. After the ninth address is recorded ptr becomes40, indicatingthelist is full.
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Whena router (which by definition is multihomed) records its IP addressin thelist,
which IP address is recorded? It could be the address of the incoming interface or the
outgoing interface. RFC 791 [Postel 1981a] specifies that the router records the outgoing
IP address. We'll see that when the originating host (the host running ping) receives
the ICMPecho reply with the RR option enabled,it also records its incoming IP address
in thelist.

Normal Example

Let’s run an example of the RR option with the ping program. We'll run ping on the
host svr4 to the host slip. One intermediate router (bsdi) will handle the datagram.
The following output is from svr4:

svr4 % ping -R slip
PING slip (140,252.13.

252.64 bytes from 140.
RR: bsdi (140.

slip (140.
bsdi (140.
svxr4 (140.

64 bytes from 140.
252,64 bytes from 140

“9?

252
252

252

65)
13.

13.
13,

252.
252.

13.
13.

.13.
13.

--- slip ping statistics
3 packets transmitted, 3
round-trip min/avg/max

: 56 data bytes

65: icmp_seq=0 tt1=254 time=280 ms
66)
65)
35)
34)

65: icmp_seq=1 ttl=254 time=280 ms (same route)
65: iomp_seq=2 ttl=254 time=270 ms (same route)

packets received, 0% packet loss
270/276/280 ms

Figure 7.4 shows the four hops that the packets take (two in each direction), and which
hop adds which IP addressto the RRlist.

i SLIP
Si2P  &E5 66

 

 beat sun   

1st = 140,252.13.66<—§

TTTEA
2nd = 140.252.13.65

Figure 7.4 ping with record route option.

svr4

35 34 fe = 140.252.13.34
Ethernet

emptylist

OTS
3rd = 140.252.13.35

The router bsdi addsa different IP address to thelist in each direction. It always adds
the IP address of the outgoing interface. We can also see that when the ICMPechoreply
reachesthe originating system (svx4)it adds the IP address of the incominginterface to
thelist.
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We can also watch this exchange of packets from the host sun, running tcpdump
with its —v option (to see the IP options). Figure 7.5 showsthe output.

1 0.0 svr4 > slip: icmp: echo request (ttl 32, id 35835,
optlen=40 RR{39}= RR{#0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/ 0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0} EOL)

2 0.267746 (0.2677) slip > svr4: icmp: echo reply (ttl 254, id 1976,
optlen=40 RR{39}= RR{140.252.13.66/140.252.13.65/
140.252.13.35/#0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/0.0.0.0} EOL)

Figure 7.5 tcpdump output of record route option.

The output optlen=40 indicates there are 40 bytes of option space in the IP header.
(Recall that the length of the IP header must be a multiple of 4 bytes.) RR{39} means
the record route option is present, and its length field is 39. The list of nine IP addresses
is then shown, with a poundsign (#) indicating which IP addressis pointed to by the ptr
field in the RR option header. Since we are watching these packets on the host sun (see
Figure 7.4) we only see the ICMP echo request with the empty list, and the ICMP echo
reply with three addresses in the list. We have deleted the remaining lines in the
tcpdump output, since they are nearly identical to what we show in Figure 7.5.

The notation EOL at the end of the record route information indicates the IP option
“end oflist” value appeared. The EOL option has a value of 0. What’s happeningis
that 39 bytes of RR data are in the 40 bytes of option space in the IP header. Since the
option spaceis set to 0 before the datagram is sent, this final byte of 0 that follows the 39
bytes of RR data is interpreted as an EOL. That is what we want to have happen. If
there are multiple options in the option field of the IP header, and pad bytes are needed
before the next option starts, the other special character NOP (“no operation”), with a
value of 1, can be used.

In Figure 7.5, SVR4 sets the TTL field of the echo request to 32, and BSD/386sets it to 255. (It
prints as 254 since the router bsdi has already decrementedit by one.) Newer systemsare set-
ting the TTL of ICMP messagesto the maximum (255).

It turns outthat of the three TCP/IP implementations used by the author, both BSD/386 and
SVR4 supportthe record route option. Thatis, they correctly update the RR list when forward-
ing a datagram,andtheycorrectly reflect the RR list from an incoming ICMP echo request to
the outgoing ICMP echoreply. SunOS 4.1.3, however, updates the RR list when forwarding a
datagram,but doesnotreflect the RRlist. Solaris 2.x corrects this problem.

Abnormal Output

The following example was seen by the author and provides a starting point for our
description of the ICMP redirect message in Chapter 9. We ping the host aix on the
140.252.1 subnet (accessible through the dialup SLIP connection on the host sun) with
the record route option. We get the following output, when run on the host slip:
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slip % ping -R aix
PING aix (140.252.1.92): 56 data bytes

64 bytes from 140.252.1.92: icmp_seq=0 tt1=251 time=650 ms
RR: bsdi (140.252.13.35)

sun (140.252.1.29)
netb (140.252.1.183)
aix (140.252.1.92)

gateway (140.252.1.4) why is this router used?
netb (140.252.1.183)
sun (140.252.13.33)
bsdi (140.252.13.66)
Slip (140.252.13.65)

64 bytes from aix: icmp_seq=1 tt1=251 time=610 ms (same route)
64 bytes from aix: icmp_seq=2 tt1=251 time=600 ms (same route)“9

--- aix ping statistics -—-
4 packets transmitted, 3 packets received, 25% packet loss
round-trip min/avg/max = 600/620/650 ms

We could have run this example from the host bsdi. We choseto run it from slip to
see all nine IP addresses in the RR list used.

The puzzle in this output is why the outgoing datagram (the ICMP echo request)
wentdirectly from netb to aix, but the return (the ICMP echo reply) went from aix,
through the router gateway, before going to netb, What we're seeing hereis a feature
of IP routing that we describe below. Figure 7.6 showsthe path of the datagrams.

Internet

Ath = 140.252.1.92“@g-

14 ; Ethernet
  

ping destination

 
  

 
1.183 | 3rd = 140.252.1183

6th = 140,252.1.183}|     

      

1 sur A
8th = 140.252.13.66 7th = 140.252.13.33 i2nd = 140.252.1.29

pingclient “~~~ 7-777 iTr 1,29

SLIPa|13.65 Tar|PStt sun
13.35 13.33

Ethernet

~~ “emptylisf ist=140.252.135.355"

Figure 7.6 ping with record route, showing IP routing feature.

The problem is that aix does not know to send IP datagrams destined for the subnet
140,252.13 to netb. Instead, aix has a default entry in its routing table that tells it to
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send all datagramsto the router gateway if it doesn’t have a particular route for the
destination. The router gateway has more routing knowledge than any of the hosts on
the 140.252.1 subnet. (There are more than 150 hosts on this Ethernet and instead of
running a routing daemon on every one, each has a “default” entry that points to the
router gateway.)

An unanswered question here is why doesn’t gateway send an ICMPredirect (Sec-
tion 9.5) to aix to updateits routing table? For some reason (perhapsthat the datagram
generating the redirect is an ICMP echo request message) the redirect is not generated.
But if we use Telnet and connect to the daytime server on aix, the ICMP redirect is gen-
erated, and the routing table on aix is updated. If we then execute ping with the
record route option enabled, the route shows that the datagrams go from netb to aix
and back to netb, without the extra hop to the router gateway. We’ll look at these
ICMPredirects in more detail in Section 9.5.

7.4 IP Timestamp Option

The IP timestamp option is similar to the record route option. Figure 7.7 showsthefor-
matof the IP timestamp option (compare with Figure 7.3).

  

             
<a 40 bytes =|

code| len|ptr |OF/FL|/timestamp #1 timestamp #2|timestamp #3 see timestamp #9

1 1 1 4 bytes 4 bytes 4 bytes 4 bytes

Figure 7.7 General format of timestamp option in IP header.

The code field is 0x44 for the timestamp option. The twofields len and ptr are the same
as for the record route option: the total length of the option (normally 36 or 40) and a
pointer to the next available entry (5, 9, 13,etc.).

The next two fields are 4-bit values: OF is the overflow field and FL is a flags field.
The operation of the timestamp option is driven by the flags field, as shown in Fig-

 

  

ure 7.8.

flags Description

0 Record only timestamps. This is what we show in Figure 7.7.
1 Eachrouterrecords its IP address andits timestamp. There is room for only four of these

pairs in the optionslist.
3 The senderinitializes the optionslist with up to four pairs of IP addresses and a 0

timestamp. A router records its timestamp only if the next IP address in thelist
matchesthe router’s.

   
 

Figure 7.8 Meaningof theflags value for timestamp option.

If a router can’t add a timestamp because there’s no room left, it just increments the
overflow field.
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0.9

The preferred value for the timestamps is the number of milliseconds past mid-
night, UTC, similar to the ICMP timestamp request and reply (Section 6.4). If this for-
matis not available to a router, it can insert whatever time representation thatit uses,
but must then turn on the high-order bit of the timestamp to indicate the nonstandard
value.

Given the limitations that we encountered with the record route option, things get
worse with the timestamp option. If we record both IP addresses and timestamps (a
flags of 1), we can store only four of these pairs. Recording only timestamps is next to
useless because we have no indication regarding which timestamp corresponds to
whichrouter (unless we havea fixed topology that never changes). A flags of3 is better,
as we canthen select which routers insert their timestamp. A more fundamental prob-
lem is that you probably have no control over how accurate the timestampis at any
given router. This makesit fruitless to try to measure hop times between routers using
this IP option. We’ll see that the traceroute program (Chapter 8) provides a better way
of measuring hop times betweenrouters.

Summary

The ping program is the basic connectivity test between two systems running TCP/IP.
It uses the ICMP echo request and echo reply messages and does not use a transport
layer (TCP or UDP). The Ping server is normally part of the kernel’s ICMP implementa-
tion.

Welooked at the normal ping output for a LAN, WAN,and SLIP links (dialup and
hardwired), and performed someserial line throughput calculations for a dedicated
SLIP link. pingalso let us examine and usethe IP record route option. We used this IP
option to see how default routes are often used, and will return to this topic in Chap-
ter 9. We also lookedat the IP timestamp option,butit is of limited practical use.

Exercises

7.1 Drawatimeline for the ping outputfor the SLIP link in Section 7.2.

7.2 Calculate the RTT if the SLIP link between bsdi and slipis set to 9600 bits/sec. Assume

the default of 56 bytesof data.

7.3 The current BSD ping program allows us to specify a pattern for the data portion of the
ICMP message. (The first 8 bytes of the data portion are notfilled with the pattern, since
the time at which the packet is sent is stored here.) If we specify a pattern of 0xc0, recalcu-
late the answerto the previous exercise. (Hint: Reread Section 2.4.)

74 Does the use of compressed SLIP (CSLIP, Section 2.5) affect the ping times that we
observed in Section 7.2?

7.5 Examine Figure 2.4 (p. 28). Do you expect any difference between a ping of the loopback
address, versus a ping of the host’s Ethernet address?
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8.2

Iraceroute Program

Iniroduction

The Traceroute program, written by Van Jacobson, is a handy debugging tool that
allows us to further explore the TCP/IP protocols. Although there are no guarantees
that two consecutive IP datagrams from the same source to the same destination follow
the same route, most of the time they do, Traceroute lets us see the route that IP data-
grams follow from one host to another. Traceroute also lets us use the IP source route
option.

The manual page states: “Implemented by Van Jacobson from a suggestion by Steve Deering.
Debugged by a cast of thousands with particularly cogent suggestions or fixes from C. Philip
Wood, Tim Seaver, and Ken Adelman.”

Traceroute Program Operation

In Section 7.3 we described the IP record route option (RR). Why wasn’t this used
instead of developing a new application? There are three reasons. First, historically not
all routers have supported the record route option, making it unusable oncertain paths.
(Traceroute doesn’t require any special or optional features at any intermediate routers.)

Second, record route is normally a one-way option. The sender enables the option
and the receiver has to fetch all the values from the received IP header and somehow

return them to the sender. In Section 7.3 we saw that most implementations of the Ping
server (the ICMP echoreply function within the kernel) reflect an incoming RRlist, but
this doubles the number of IP addresses recorded (the outgoing path and the return
path), which runs into the limit described in the next paragraph. (Traceroute requires
only a working UDP module at the destination—no special server application is
required.)
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The third and major reason is that the room allocated for options in the IP header
isn’t large enough today to handle most routes. There is room for only nine IP
addresses in the IP header optionsfield. In the old days of the ARPANETthis was ade-
quate, butit is far too small nowadays.

Traceroute uses ICMP and the TTL field in the IP header. The TTL field (time-to-
live) is an 8-bit field that the senderinitializes to some value. The recommendedinitial
value is specified in the Assigned Numbers RFC andis currently 64. Older systems
would often initialize it to 15 or 32. We saw in some of the Ping examples in Chapter 7
that ICMPechoreplies are often sent with the TTL set to its maximum value of 255.

Each router that handles the datagram is required to decrement the TTL by either
one or the number of seconds that the router holds onto the datagram. Since most
routers hold a datagram for less than a second, the TTL field has effectively become a
hop counter, decremented by one by each router.

RFC 1009 [Braden and Postel 1987] required a router that held a datagram for more than 1 sec-
ond to decrement the TTL by the numberof seconds. Few routers implemented this require-
ment, The new Router Requirements RFC [Almquist 1993] makes this optional, allowing a
router to treat the TTL asjust a hop count.

The purpose of the TTL field is to prevent datagrams from ending up in infinite
loops, which can occur during routing transients. For example, when a router crashes
or when the connection between two routers is lost, it can take the routing protocols
sometime (from seconds to a few minutes) to detect the lost route and work aroundit.
During this time period it is possible for the datagram to end up in routing loops. The
TTLfield puts an upperlimit on these looping datagrams.

Whena router gets an IP datagram whose TTLis either 0 or 1 it must not forward
the datagram. (A destination host that receives a datagram like this can deliver it to the
application, since the datagram does not have to be routed. Normally, however, no sys-
tem should receive a datagram with a TTL of 0.) Instead the router throws away the
datagram and sends back to the originating host an ICMP “time exceeded” message.
The key to Traceroute is that the IP datagram containing this ICMP message has the
router’s IP address as the source address.

We can now guess the operation of Traceroute. It sends an IP datagram with a TTL
of 1 to the destination host. The first router to handle the datagram decrements the
TTL, discards the datagram, and sends back the ICMP time exceeded. This identifies
the first router in the path. Traceroute then sends a datagram with a TTL of 2, and we
find the IP address of the second router. This continues until the datagram reaches the
destination host. But even though the arriving JP datagram has a TTLof 1, the destina-
tion host won't throw it away and generate the ICMP time exceeded, since the data-
gram hasreached its final destination. How can we determine when we've reached the
destination?

Traceroute sends UDP datagramsto the destination host, but it chooses the destina-
tion UDP port numberto be an unlikely value (larger than 30,000), makingit improba-
ble that an application at the destination is using that port. This causes the destination
host’s UDP module to generate an ICMP “port unreachable” error (Section 6.5) when
the datagram arrives. All Traceroute needs to do is differentiate between the received
ICMP messages—time exceeded versus port unreachable—to know whenit’s done.
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The Traceroute program mustbe able to set the TTL field in the outgoing datagram. Notall
programming interfaces to TCP/IP support this, and not all implementations support the
capability, but most current systems do, and are able to run Traceroute. This programming
interface normally requires the user to have superuser privilege, meaning it may take special
privilege to run it on your host,

8.3 LAN Output

We're now ready to run traceroute and see the output. We'll use our simple internet
(see the figure on the inside front cover) going from svr4 to slip, through the router
bsdi. The hardwired SLIP link between bsdi and slip is 9600 bits/sec.2.

svr4 % traceroute slip
traceroute to slip (140.252.13.65), 30 hops max, 40 byte packets

1 bsdi (140.252.13.35) 20 ms 10ms 10 ms
2 slip (140.252.13.65) 120 ms 120 ms 120 ms

The first unnumbered line of output gives the name and IP address of the destination
and indicates that traceroute won't increase the TTL beyond 30. The datagram size
of 40 bytes allows for the 20-byte IP header, the 8-byte UDP header, and 12 bytes of user
data. (The 12 bytes of user data contain a sequence number that is incremented each
time a datagram is sent, a copy of the outgoing TTL, and the time at which the data-
gram wassent.)

The next twolines in the output begin with the TTL, followed by the name of the
host or router, and its IP address. For each TTL value three datagrams are sent. For
each returned ICMP message the round-trip time is calculated and printed. If no
response is received within 5 seconds for any of the three datagrams, an asterisk is
printed instead and the next datagram is sent. In this output the first three datagrams
had a TTL of 1 and the ICMP messages were returned in 20, 10, and 10 ms. The next
three datagrams were sent with a TTL of 2 and the ICMP messages were returned 120
mslater. Since the TTL of 2 reachedthe final destination, the program then stopped.

The round-trip times are calculated by the traceroute program on the sending
host. They are the total RTTs from the traceroute program to that router. If we’re
interested in the per-hop time wehaveto subtract the value printed for TTL N from the
value printed for TTL N +1.

Figure 8.1 shows the tcpdump outputfor this run. As we might have guessed, the
reason that thefirst probe packet to bsdi had an RITof 20 ms and the next two had an
RIT of 10 ms was because of an ARP exchange. tcpdump showsthis is indeed the case.

The destination UDP port starts at 33435 and is incremented by one each time a
datagram is sent. This starting port number can be changed with a command-line
option. The UDP datagram contains 12 bytes of user data, which wecalculated earlier
when traceroute outputthat it was sending 40-byte datagrams.

Next, tcpdump prints the comment [tt1 1] when the IP datagram has a TTL of1.
It prints a message like this when the TTL is 0 or 1, to warn us that something looks
funny in the datagram. Here we expect to see the TTL of 1, but with some other appli-
cation it could be a warning that the datagram might notgetto its final destination. We
should never see a datagram passing by with a TTL of 0, unless the router that put it on
the wire is broken.
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1 0.0 arp who-has bsdi tell svr4
2 0.000586 (0.0006) arp reply bsdi is-at 0:0:c0:6f:2d:40

3° 0.003067 (0.0025) svr4.42804 > slip.33435: udp 12 [ttl 1]
4 0.004325 (0.0013) bsdi > svr4: icmp: time exceeded in-transit

5 0.069810 (0.0655) svr4.42804 > slip.33436: udp 12 [ttl 1]
6 0.071149 (0.0013) bsdi > svr4: icmp: time exceeded in-transit

7 0.085162 (0.0140) svr4.42804 > slip.33437: udp 12 [ttl 1]
8 0.086375 (0.0012) bsdi > svr4: icmp: time exceeded in-transit

9 0.118608 (0.0322) svr4.42804 > slip.33438: udp 12
10 0.226464 (0.1079) slip > svr4: icmp: slip udp port 33438 unreachable

11 0.287296 (0.0608) svr4.42804 > slip.33439: udp 12
12) 0.395230 (0.1079) slip > svr4: icmp: slip udp port 33439 unreachable

13° 0.409504 (0.0143) svr4.42804 > slip.33440: udp 12
14 0.517430 (0.1079) slip > svr4: icmp: slip udp port 33440 unreachable

Figure 8.1 tcpdump output for traceroute example from svr4 to slip.

The ICMP message “time exceeded in transit” is what we expect to see from the
router bsdi, since it will decrement the TTL to 0. The ICMP message comes from the
router even thoughthe IP datagram that was thrown away wasgoing to slip.

There are two different ICMP “time exceeded” messages (Figure 6.3, p. 71), each
with a different code field in the ICMP message. Figure 8.2 shows the format of this
ICMPerror message.
 

   
 

0 78 ; 15 16 31

type (11) code (0 or 1) checksum |
8 bytes

Unused (mustbe 0) |

LZ IP header(including options) + first 8 bytes of original IP datagram data Z  
 

Figure 8.2 ICMP time exceeded message.

The one we’ve been describing is generated when the TTL reaches 0, and is specified by
a code of 0.

It’s also possible for a host to send an ICMP “time exceeded during reassembly”
when it times out during the reassembly of a fragmented datagram. (We talk about
fragmentation and reassembly in Section 11.5.) This error is specified by a code of 1.

Lines 9-14 in Figure 8.1 correspond to the three datagrams sent with a TTL of2.
These reachthe final destination and generate an ICMP port unreachable message.
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It is worthwhile to calculate what the round-trip times should be for the SLIP link,
similar to what we did in Section 7.2 when weset the link to 1200 bits/sec for the Ping
example. The outgoing UDP datagram contains 12 bytes of data, 8 bytes of UDP
header, 20 bytes of IP header, and 2 bytes (at least) of SLIP framing (Section 2.4) for a
total of 42 bytes. Unlike Ping, however, the size of the return datagrams changes.
Recall from Figure 6.9 (p. 78) that the returned ICMP messagecontains the IP headerof
the datagram that caused the error and thefirst 8 bytes of data that followed that IP
header (which is a UDP header in the case of traceroute). This gives us a total of
20+8+20+8+2, or 58 bytes. With a data rate of 960 bytes/sec the expected RIT is
(42 + 58)/960 or 104 ms. This correspondsto the 110-ms value measured on svr4.

The source port number in Figure 8.1 (42804) seems high. traceroute sets the
source port number of the UDP datagramsthat it sends to the logical-OR of its Unix
process ID with 32768. In case tracerouteis being run multiple times on the same
host, each process looks at the source port number in the UDP headerthat’s returned by
ICMP, and only handles those messagesthat are replies to probes thatit sent.

There are several points to note with traceroute. First, there is no guarantee that
the route today will be in use tomorrow,or even that two consecutive IP datagramsfol-
low the sameroute. If a route changes while the program is running you'll see it occur
because tracerouteprints the new IP address for the given TTL if it changes.

Second, there is no guarantee that the path taken by the returned ICMP message
retraces the path of the UDP datagram sent by traceroute. This implies that the
round-trip times printed may not be a true indication of the outgoing and returning
datagram times. (If it takes 1 second for the UDP datagramto travel from the source to
a router, but 3 seconds for the ICMP message to travel a different path back to the
source, the printed round-trip time is 4 seconds.)

Third, the source IP address in the returned ICMP messageis the IP address of the
interface on the router on which the UDP datagram arrived. This differs from the IP
record route option (Section 7.3), where the IP address recorded was the outgoing inter-
face’s address. Since every router by definition has two or more interfaces, running
traceroute from host A to host B can generate different output than from host B to
host A. Indeed, if we run traceroute from host slip to svr4 the output becomes:

2
slip % traceroute svr4
traceroute to svr4 (140.252,.13.34), 30 hops max, 40 byte packets

1 bsdi (140.252.13.66) 110 ms 110 ms 110 ms
2 svr4 (140.252.13.34) 110 ms 120 ms 110 ms

This time the IP address printed for host bsdi is 140,.252.13.66, the SLIP interface, while
previously it was 140.252.13.35, the Ethernet interface. Since traceroutealsotries to
print the nameassociated with an IP address, the names can change. (In our example
both interfaces on bsdi have the same name.)

Consider Figure 8.3. It shows two local area networks with a router connected to
each LAN. The two routers are connected with a point-to-point link. If we run
traceroutefrom a host on the left LAN to a host on the right LAN, the IP addresses
found for the routers will be if1 and if3. But going the other way will print the IP
addresses if4 and if2. The two interfaces if2 and if3 share the same network ID, while
the other two interfaces have different network IDs.
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8.4

   
network 1 ifl iff network 3  

if2 network 2 if3OOOrouter 1 router 2      

Figure 8.3 Identification of interfaces printed by traceroute.

Finally, across wide area networks the traceroute output is much easier to com-
prehend if the IP addresses are printed as readable domain names, instead of as IP
addresses. But since the only piece of information traceroute has whenit receives
the ICMP message is an IP address, it does a “reverse name lookup” to find the name,
given the IP address. This requires the administrator responsible for that router or host
to configure their reverse name lookup function correctly (which isn’t always the case).
Wedescribe how an IP address is converted to a name using the DNSin Section 14.5.

WAN Output

The output shownearlier for our small internet is adequate for examining the protocols
in action, but more a realistic use of traceroute involveslarger internets such as the
worldwide Internet.

Figure 8.4 is from the host sun to the Network Information Center, the NIC.
2

sun % traceroute nic.ddn.mil

traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 218 ms 227 ms 233 ms
gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 204 ms2

3 butch.telcom.arizona.edu (140.252,.104.2) 204 ms 228 ms 234 ms
4 Gabby.Telcom.Arizona.EDU (128.196.128.1) 234 ms 228 ms 204 ms
5 NSIgate.Telcom.Arizona.EDU (192.80.43.3) 233 ms 228 ms 234 ms

6
7
8

JPL1.NSN.NASA.GOV (128.161.88.2) 234 ms 590 ms 262 ms
JPL3.NSN.NASA.GOV (192.100.15.3) 238 ms 223 ms 234 ms
GSFC3.NSN.NASA.GOV (128.161.3.33) 293 ms 318 ms 324 ms

9 GSFC8.NSN.NASA.GOV (192.100.13.8) 294 ms 318 ms 294 ms
10 SURA2.NSN.NASA.GOV (128.161.166.2) 323 ms 319 ms 294 ms
11 nsn-FIX-pe.sura.net (192.80.214.253) 294 ms 318 ms 294 ms
12 GSI.NSN.NASA.GOV (128.161.252.2) 293 ms 318 ms 324 ms

13° NIC.DDN.MIL (192.112,.36.5) 324 ms 321 ms 324 ms

Figure 8.4 traceroute from host sun to nic.ddn.mil.

Since running this example for inclusion in the text, the NIC for non-DDNsites (i.e., non-
military) has moved from nic.ddn.mil to rs.internic.net, the new “InterNIC.”
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Once the datagrams leave the tuc.noao.edu network they enter the
telcom.arizona.edu network. They then enter the NASA Science Internet,
nsn.nasa.gov. The routers for TTLs 6 and 7 are at the Jet Propulsion Laboratory
(JPL). The network sura.net in the output for TTL 11 is the Southeastern Universities
Research Association Network. The name GSI at TTL 12 is Government Systems, Inc.,
the operator of the NIC.

The second RTT for the TTL of 6 (590) is more than double the other two RTTs (234
and 262). This illustrates the dynamics of IP routing. Something happened somewhere
between the sending host and this router that slowed down this datagram. Also, we
can’t tell if it was the outbound datagram that got held up or the return ICMPerror.

The RIT for the first probe with a TTL of 3 (204) is less than the RTT for the first
probe with a TTL of 2 (233). Since each printed RTTis the total time from the sending
host to that router, this can (and does) happen.

The examplein Figure 8.5 is from the host sun to the author’s publisher.
sun % traceroute aw.com

traceroute to aw.,com (192,.207.117.2), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 227 ms 227 ms 234 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms

Ww butch. telcom.arizona.edu (140.252.104.2) 233 ms 229 ms 234 ms
Gabby.Telcom.Arizona.EDU (128.196.128.1) 264 ms 228 ms 234 ms

5 Westgate.Telcom.Arizona.EDU (192.80.43.2}) 234 ms 228 ms 234 ms

ms
 

6 uu-ua.AZ.westnet.net (192.31.39.233) 263 ms 258 ms 264 ms
7 -enssl42.UT.westnet.net (192.31.39.21) 263 ms 258 ms 264 ms

8 t3-2.Denver-cnss97.t3.ans.net (140.222.97.3) 293 ms 288 ms 275 ms
9 €3-3,Denver-cnss96.t3.ans.net (140.222,.96.4) 283 ms 263 ms 261 ms

10 t3-1,.St-Louis-cnss80.t3.ans.net (140.222.80.2) 282 ms 288 ms 294 ms
11 t3-1.Chicago-cnss24.t3.ans.net (140.222.24.2) 293 ms 288 ms 294 ms
12 t3-2.Cleveland-cnss40.t3.ans.net (140.222.40.3) 294 ms 288 ms 294 ms
13 t3-1.New-York-cnss32.t3.,ans.net (140.222.32.2) 323 ms 318 ms 324 ms
14 t3-1.Washington-DC-cnss56.t3.ans.net (140.222.56.2) 323 ms 318 ms 324 ms
15 t3-0.Washington-DC-cnss58.t3.ans.net (140.222.58.1) 324 ms 318 ms 324 ms
16 t3-0.enss136.t3.ans.net (140,.222.136.1) 323 ms 318 ms 324 ms

17 Washington.DC.ALTER.NET (192.41.177.248) 323 ms 377 ms 324 ms
18 Boston.MA.ALTER.NET (137.39.12.2) 324 ms 347 ms 324 ms
19 AW-gw.ALTER.NET (137.39.62.2) 353 ms 378 ms 354 ms

 

 

20 aw.com (192.207.117.2) 354 ms 349 ms 354 ms

Figure 8.5 traceroute from host sun. tuc.noao. edu to aw.com

This time the datagramsenter the regional network westnet .net (TTLs 6 and 7) after
leaving the telcom.arizona.edu network. They then enter the NSFNET backbone,
t3.ans.net, which is run by Advanced Network & Services. (T3 is the common
abbreviation for the 45 Mbits/sec phone lines used by the backbone.) The final network
is alter .net, the connection point to the Internet for aw. com.
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8.5 IP Source Routing Option

Normally IP routing is dynamic with each router making a decision about which next-
hop router to send the datagram to. Applications have no control of this, and are nor-
mally not concerned with it. It takes tools such as Traceroute to figure out what the
route reallyis.

The idea behind source routing is that the sender specifies the route. Two formsare
provided:

e Strict source routing. The sender specifies the exact path that the IP datagram
mustfollow, If a router encounters a next hop in the source route that isn’t on a
directly connected network, an ICMP “source route failed”error is returned.

° Loose source routing. The sender specifies a list of IP address that the datagram
must traverse, but the datagram can also pass through other routers between
any two addressesin thelist.

Traceroute provides a way to look at source routing, as we can specify an option allow-
ing us to force a source route, and see what happens.

Some of the publicly available Traceroute source code packages contain patches to specify
loose source routing. But the standard versions normally don’t include this option. A com-
mentin the patchesis that “Van Jacobson’soriginal traceroute (spring 1988) supported this fea-
ture, but he removedit due to pressure from people with broken gateways.” For the examples
showninthis section, the author installed these patches and modified them to allow both loose
andstrict source routing.

Figure 8.6 showsthe format of the source route option.
  

           
Laxt 39 bytes Be

code| len|ptr|IPaddr#l|IP addr #2|IP addr #3 tee IP addr #9

1 1 1 4 bytes 4 bytes 4 bytes 4 bytes

Figure 8.6 General formatof the source route optionin the IP header.

This format is nearly identical to the format of the record route option that we showed
in Figure 7.3. But with source routing we havetofill in the list of IP addresses before
sending the IP datagram, while with the record route option we allocate room and zero
out the list of IP addresses, letting the routersfill in the next entry in the list. Also, with
source routing we only allocate room for and initialize the number of IP addresses
required, normally fewer than nine. With the record route option weallocated as much
room as we could,for up to nine addresses.

The code is 0x83 for loose source routing, and 0x89 for strict source routing. The
len and ptrfields are identical to what we described in Section 7.3.

The source route options are actually called “source and record route” (LSRR and
SSRR, for loose and strict) since the list of IP addresses is updated as the datagram
passes along the path. What happensis asfollows:

Viptela, Inc. - Exhibit 1007
Page 124



Viptela, Inc. - Exhibit 1007 
Page 125

Section 8.5 IP Source Routing Option 105 

e The sending host takes the source route list from the application, removes the
first entry (it becomes the destination address of the datagram), movesall the
remaining entries left by one entry (whereleft is as in Figure 8.6), and places the
original destination address as the final entry in the list. The pointerstill points
to the first entry in thelist (e.g., the value of the pointeris 4).

e Each router that handles the datagram checks whether it is the destination
address of the datagram. If not, the datagram is forwarded as normal. (In this
case loose source routing must have been specified, or we wouldn’t have
received the datagram.)

e If the router is the destination, and the pointer is not greater than the length,
then (1) the next address in the list (where ptr points) becomes the destination
address of the datagram,(2) the IP address corresponding to the outgoing inter-
face replaces the source address just used, and (3) the pointer is incremented
by 4.

This is best explained with an example. In Figure 8.7 we assumethat the sending appli-
cation on host S sends a datagram to D, specifying a source route of R1, R2, and R3.

dest = D

( #R1, R2, R3)

   
  dest = R1 dest = R2 dest = R3 dest =D

° raz, 3, DT| ®! orrars, pr) © rere|§|rt ke RFP (D        

Figure 8.7 Example of IP source routing.

In this figure the pound sign (#) denotes the pointer field, which assumesthe values of
4, 8,12, and 16. The length field will always be 15 (three IP addresses plus 3 bytes of
overhead), Notice how the destination address of the IP datagram changes on every
hop.

Whenan application receives data that was source routed, it should fetch the value
of the received route and supply a reversed route for sendingreplies.

The Host Requirements RFC specifies that a TCP client must be able to specify a source route,
and that a TCP server must be able to receive a source route, and use the reverse route forall

segments on that TCP connection. If the TCP serverlater receives a different source route, that
newersource route overrides the earlier one.

traceroute Examples with Loose Source Routing

The -g option to traceroutelets us specify intermediate routers to be used with loose
source routing. This option can be specified up to eight times. (The reasonthis is eight
and notnine is that the programming interface being used requires that the final entry
be the destination.)
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Recall from Figure 8.4 that the route to the NIC, nic.ddn.mil, was through the
NASA Science Internet. In Figure 8.8 we force the datagrams to pass through the
NSENETinstead by specifying the router enss142.UT.westnet .net (192.31.39.21) as
an intermediate router:

sun % traceroute -g 192.31.39.21 nic.ddn.mil
traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 259 ms 256 ms 235 ms

butch.telcom.arizona.edu (140.252.104.2) 234 ms 228 ms 234 ms
Gabby.Telcom.Arizona.EDU (128.196.128.1) 234 ms 257 ms 233 ms

enss142.UT.westnet.net (192.31.39.21) 294 ms 288 ms 295 ms

t3-3.Denver-cnss96.t3.ans.net (140.222,96.4) 293 ms 288 ms 294 ms
t3-1.St-Louis—-cnss80.t3.ans.net (140.222.80.2) 294 ms 318 ms 294 ms
* t3-1.Chicago-cnss24.t3.ans.net (140.222.24.2) 318 ms 295 ms

9 t3-2.Cleveland-cnss40.t3.ans.net (140.222.40.3) 319 ms 318 ms 324 ms
10 t3-1.New-York~cnss32.t3.ans.net (140.222.32.2) 324 ms 318 ms 324 ms
11 t3-1.Washington-DC-cnss56.t3.ans.net (140.222.56.2) 353 ms 348 ms 325 ms
12 t3-0.Washington-DC-cnss58.t3.ans.net (140.222.58.1) 348 ms 347 ms 325 ms
13 t3-0.enssi45.t3.ans.net (140.222.145.1) 353 ms 348 ms 325 ms

2
3

4

5 t3-2.Denver-cnss97.t3.ans.net (140.222.97.3) 294 ms 286 ms 293 ms
6
7
8

14 nsn-FIX-pe.sura.net (192.80.214.253) 353 ms 348 ms 325 ms
15 GSI.NSN.NASA.GOV (128.161.252.2) 353 ms 348 ms 354 ms
16 NIC.DDN.MIL (192.112.36.5) 354 ms 347 ms 354 ms

Figure 8.8 tracerouteto nic.ddn.mil with a loose source route through the NSFNET.

This time there appear to be 16 hops with an average RTT of around 350 ms, while the
normal route shown in Figure 8.4 had only 13 hops and an average RIT of around 322
ms. The default route appears better. (There are also other decisions made when routes
are established. Some are made onthe basis of the organizational and political bound- °
aries of the networks involved.)

But wesaid there appear to be 16 hops, because a comparison of this output with our
previous example through the NSFNET (Figure 8.5) shows three missing routers in this
example using loose source routing. (These are probably caused by bugsin the router’s
generation of ICMP time exceeded errors in response to source routed datagrams.) The
router gateway. tuc.noao.edu is missing between netb and butch, andthe routers
Westgate.Telcom.Arizona.edu and uu-ua.AZ.westnet.net are also missing
between Gabby and enss142.UT.westnet.net. There is probably a software prob-
lem in these missing routers related to incoming datagrams with the loose source rout-
ing option. There are really 19 hops between the source and the NIC, when using the
NSENET. Exercise 8.5 continues the discussion of these missing routers.

This example also illustrates another problem. On the command line we have to
specify the dotted-decimal IP address of the router enss142.UT.westnet.net
instead of its. name. This is because the reverse name lookup (return the name, given
the IP address, Section 14.5), associates the name with the IP address, but the forward
lookup (given the name, return the IP address) fails. The forward mapping and reverse
mapping are two separate files in the DNS (Domain Name System) and notall
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administrators keep the two synchronized with each other. It’s not uncommon to have
one direction work and the other direction fail.

Something that we haven’t seen beforeis the asterisk (*) printed for the first RTT for
the TTL of 8, This indicates that a timeout occurred and no response wasreceived
within 5 seconds for this probe.

Another point that we can infer from a comparison of this figure and Figure 8.4 is
that the router nsn—-FIX-pe.sura.net is connected to both the NSFNET and the
NASAScience Internet.

traceroute Examples with Strict Source Routing

The -G option in the author’s version of traceroute is identical to the -g option
described earlier, but the source route is strict instead of loose. We can use this to see

what happens when aninvalid strict source route is specified. Recall from Figure 8.5
that the normal sequence of routers for datagrams from the author’s subnet to the
NSENETis through netb, gateway, butch, and gabby. (We’ve omitted the domain
suffixes, .tuc.noao.edu and .telcom.arizona.edu, in all the output below to
make it easier to read.) We specify a strict source route that omits butch, trying to go
directly from gateway to gabby. We expectthis to fail, as shownin Figure 8.9.

2
sun % traceroute -G netb -G gateway -G gabby westgate
traceroute to westgate (192.80.43.2), 30 hops max, 40 byte packets

1 netb (140.252.1.183) 272 ms 257 ms 261 ms
2 gateway (140.252.1.4) 263 ms 259 ms 234 ms
3 gateway (140.252.1.4) 263 ms !S * 235 ms !8S

Figure 8.9 traceroute withasirict source routethatfails.

The key here is the notation !S following the RTTs for the TTL of 3. This indicates that
traceroute received an ICMP “source route failed” error message: a type of 3 anda
code of 5 from Figure 6.3. The asterisk for the second RTT for the TTL of 3 indicates no
response was received for that probe. This is what we expect, since it’s impossible for
gateway to send the datagram directly to gabby, because they’re not directly con-
nected.

The reason that both TTLs 2 and 3 are from gatewayis that the values for the TTL
of 2 are from gateway whenit receives the datagram with an incoming TTL of 1. It dis-
covers that the TTL has expired before it looks at the (invalid) strict source route, and
sends back the ICMP time exceeded. The line with a TTL of 3 is received by gateway
with an incoming TTL of 2, so it looks at the strict source route, discovers that it’s
invalid, and sends back the ICMP source route failed error.

Figure 8.10 shows the tcpdump output corresponding to this example. This output
wascollected on the SLIP link between sun and netb. We hadto specify the —v option
for tepdump to display the source route information. This produces other output that
we don’t need, such as the datagram ID, which we've deleted. Also, the notation SSRR
stands for “strict source and record route.”
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1 0.0 sun.33593 > netb.33435: udp 12 [ttl 1]
(optlen=16 SSRR{#gateway gabby westgate} EOL)

0.270278 (0.2703) netb > sun: icmp: time exceeded in-transit

0.284784 (0.0145) sun.33593 > netb.33436: udp 12 [ttl 1]
(optlen=16 SSRR{#gateway gabby westgate} EOL)

0.540338 (0.2556) netb > sun: icmp: time exceeded in-transit

0.550062 (0.0097) sun,33593 > netb.33437: udp 12 [ttl 1]
(optlen=16 SSRR{#gateway gabby westgate} EOL)

6 0.810310 (0.2602) netb > sun: icmp: time exceeded in-transit

7 0.818030 (0.0077) sun.33593 > netb.33438: udp 12 (ttl 2,
optlen=16 SSRR{#gateway gabby westgate} EOL)

1.080337 (0.2623) gateway > sun: icmp: time exceeded in-transit

1.092564 (0.0122) sun, 33593 > netb.33439: udp 12 (ttl 2,
optlen=16 SSRR{i#gateway gabby westgate} EOL)

10 1.350322 (0.2578) gateway > sun: icmp: time exceeded in-transit

71 1.357382 (0.0071) sun.33593 > netb.33440: udp 12 (ttl 2,
optlen=16 SSRR{#gateway gabby westgate} EOL)

12> 1.590586 (0.2332) gateway > sun: icmp: time exceeded in-transit

13° 1.598926 (0.0083) sun.33593 > netb.33441: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)

14 1.860341 (0.2614) gateway > sun:
icmp: gateway unreachable - source route failed

15 1.875230 (0.0149) sun.33593 > netb.33442: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)

16 6.876579 (5.0013) sun.33593 > netb.33443: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)

17° 7.110518 (0.2339) gateway > sun:
icmp: gateway unreachable - source route failed

Figure 8.10 tcpdump output of traceroutewithfailed strict source route.

First note that each UDP datagram sent by sun hasa destination of netb, not the
destination host (westgate). We described this with the example shownin Figure 8.7.
Similarly, the other two routers specified with the -G option (gateway and gabby) and
the final destination (westgate) become the SSRR optionlist on thefirst hop.

Wecan also see from this output that the timeout used by traceroute (the time
difference between lines 15 and 16) is 5 seconds.

traceroute RoundTrips with Loose Source Routing

Earlier we said that there is no guarantee that the route from A to B is the same as the
route from B to A. Other than having a login on both systems and running
traceroute oneach end,it’s hard to find out if there is a difference in the two paths.
Using loose source routing, however, we can determinethe route in both directions.

Thetrick is to specify loose source routing with the destination as the loose route,
and the sending hostas the final destination. For example, on the host sun we canfind
the paths to and from the host bruno.cs.colorado. edu (Figure 8.11) .
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8.6

2
sun % traceroute -g bruno.cs.colorado.edu sun
traceroute to sun (140.252.13.33), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 230 ms 227 ms 233 ms

gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms

butch.telcom.arizona.edu (140.252.104.2) 234 ms 229 ms 234 ms
Gabby.Telcom.Arizona.EDU (128.196.128.1) 233 ms 231 ms 234 ms
NSIgate.Telcom.Arizona.EDU (192.80.43.3) 294 ms 258 ms 234 ms

JPL1.NSN.NASA.GOV (128.161.88.2) 264 ms 258 ms 264 ms
JPL2.NSN.NASA.GOV (192.100.15.2) 264 ms 258 ms 264 ms
NCAR.NSN.NASA.GOV (128.161.97.2) 324 ms * 295 ms

oa~InOFPWNY
9 ou~gw.ucar.edu (192.43.244.4) 294 ms 318 ms 294 ms

10 engr-gw.Colorado.EDU (128.138.1.3) 294 ms 288 ms 294 ms
11 bruno.cs.colorado.edu (128.138.243.151) 293 ms 317 ms 294 ms
12 engr-gw-ot.cs.colorado.edu (128.138.204.1) 323 ms 317 ms 384 ms
13. cu-gw.Colorado.EDU (128.138.1.1) 294 ms 318 ms 294 ms

14 enss.ucar.edu (192.43.244.10) 323 ms 318 ms 294 ms

15 t3-1.Denver—cnss97.t3.ans.net (140.222.97,.2) 294 ms 288 ms 384 ms
16 t3-0.enss142.t3.ans.net (140.222.142.1) 293 ms 288 ms 294 ms

17 Gabby.Telcom.Arizona.EDU (192.80.43.1) 294 ms 288 ms 294 ms
18 Butch.Telcom.Arizona.EDU (128.196.128.88) 293 ms 317 ms 294 ms

19 gateway.tuc.noao.edu (140.252.104.1) 294 ms 289 ms 294 ms
20 netb.tuc.noao.edu (140.252,1.183) 324 ms 321 ms 294 ms
21 sun.tuc.noao.edu (140.252.13.33) 534 ms 529 ms 564 ms

Figure 8.11 traceroute example showing unsymmetrical routing path.

The outbound path (TTLs 1-11) differs from the return path (TTLs 11-21), a goodillus-
tration that Internet routing need not be symmetrical.

This output also illustrates the point we discussed with Figure 8.3. Compare the
output for TTLs 2 and 19: both are for the router gateway.tuc.noao.edu, but the
two IP addresses are different. Since traceroute identifies the incoming interface,
and since we're passing through the router in two different directions, once on the out-
bound path (TTL 2) and then on the return path (TTL 19), we expect this. We see the
same effect comparing TTLs 3 and 18, and TTLs 4 and 17.

Summary

Traceroute is an indispensable tool when working with a TCP/IP network. Its opera-
tion is simple: send UDP datagramsstarting with a TTL of 1, increasing the TTL by1, to
locate each router in the path. An ICMP time exceededis returned by each router when
it discards the UDP datagram, and an ICMPport unreachable is generated by the final
destination.

We ran examples of traceroute on both LANs and WANs,and usedit to examine
IP source routing. We used loose source routing to seeif the route to a destinationis the
sameasthe return route from that destination.
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Exercises

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

What can happen if an IP implementation decrements the incoming TTL and thentests for
equalto 0?

How does traceroute calculate the RIT? Compare this to the RIT calculation done by
ping.

(This exercise and the next one are based on actual problems determined when
traceroute was being developed, and are from comments in the traceroute source
code.) Assume there are three routers (R1, R2, and R3) between the source and destination
and that the middle router (R2) decrements the TTL but incorrectly forwards the IP data-
gram when the incoming TTL was 1. Describe what happens. How can youseethis occur
when running traceroute?

Again assume there are three routers between the source and destination. This time the
destination host has a bug wherebyit always uses the incoming TTL as the outgoing TTL of
an ICMP message. Describe what happens and how you wouldsee this.

We can run tcpdump on the SLIP link between sun and netb whenrunning the example
from Figure 8.8. If we specify the -v option we can see the TTL value of the returned ICMP
messages. Doing this shows the incoming TTL from netb to be 255, from butchit’s 253,
from Gabby it’s 252, and from enss142.UT.westnet.net it’s 249. Does this give any
additional information about whetherthere really are some missing routers?

Both SunOS and SVR4 provide a version of ping with a -1 option that provides a loose
source route. The manual pages state that it’s intended to be used with the -R option
(which specifies the record route option). If you have access to either of these systems, try
these two options together. What’s happening? If you can watch the datagrams with
tcpdump,describe what's going on.

Compare the ways ping and traceroute handle multiple instances of the client on the
samehost.

Compare the ways ping and traceroute measure the round-trip time.

Wesaid traceroutepicks the starting UDP destination port number at 33435 and incre-
ments this by one for each packet sent. In Section 1.9 we said ephemeral port numbers are
normally between 1024 and 5000, making it unlikely that Traceroute’s destination portis in
use on the destination host. Is this still true under Solaris 2.2? (Hint: Read Section E.4.)

Read RFC 1393 [Malkin 1993b] for a proposed alternative way of determining the path to a
destination. Whatare its advantages and disadvantages?
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9.1

IP Routing

Introduction

Routing is one of the most important functions of IP. Figure 9.1 showsa simplified view
of the processing doneat the IP layer. Datagrams to be routed can be generated either
on the local host or on someother host. In the latter case this host must be configured to
act as a router, or datagramsreceived through the network interfaces that are not ours
are dropped(ie., silently discarded).

In Figure 9.1 we also show a routing daemon, which is normally a user process.
The most common daemons used on Unix systems are the programs routed and
gated. (The term daemon meansthe process is running “in the background,” carrying
out operations on behalf of the whole system. Daemonsare normally started when the
system is bootstrapped and run as long as the system is up.) The topics of which rout-
ing protocol to use on a given host, how to exchange routing information with adjacent
routers, and how the routing protocols work are complex and canfill an entire book of
their own. (Interested readers are referred to [Perlman 1992] for many of the details.)
We'll look briefly at dynamic routing and the Routing Information Protocol (RIP) in
Chapter 10. Our maininterest in the current chapter is howasingle IP layer makesits
routing decisions.The routing table that we show in Figure 9.1 is accessed frequently by IP (on a busy
host this could mean hundredsof times a second) but is updated much less frequently
by a routing daemon (possibly about once every 30 seconds). The routing table can also
be updated when ICMP “redirect” messages are received, something we'll look at in
Section 9.5, and by the route command. This command is often executed when the
system is bootstrapped,to install someinitial routes. We'll also use the netstat com-
mandin this chapter to display the routingtable.
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Figure 9.1 Processing doneatthe IP layer.

9.2 Routing Principles

The place to start our discussion of IP routing is to understand what is maintained by
the kernel in its routing table. The information contained in the routing table drivesall
the routing decisions madebyIP.

In Section 3.3 welisted the steps that IP performs whenit searches its routing table.

Search for a matching host address.

Search for a matching network address.

Search for a default entry. (The default entry is normally specified in the routing
table as a network entry, with a network ID of0.)

A matching host address is always used before a matching network address.
The routing done by IP, when it searches the routing table and decides whichinter-

face to send a packetout, is a routing mechanism. This differs from a routing policy, which
is a set of rules that decides which routes go into the routing table. IP performs the
routing mechanism while a routing daemon normally provides the routing policy.

Viptela, Inc. - Exhibit 1007
Page 132



Viptela, Inc. - Exhibit 1007 
Page 133

Section 9.2 Routing Principles 113 

Simple Routing Table

Let’s start by looking at some typical host routing tables. On the host svr4 we execute
the netstat command with the -r option to list the routing table and the —n option,
which prints IP addresses in numeric format, rather than as names. (We do this because
some of the entries in the routing table are for networks, not hosts. Without the -n
option, the netstat commandsearches the file /etc/networks for the network
names. This confuses the discussion by adding another set of names—network names
in addition to hostnames.)

2.
svr4 % netstat -xrn

Routing tables
Destination Gateway . Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 0 emd0
127.0.0.1 127.0.0.1 UH 1 0 100
default 140.252.13.33 UG 0 0 emd0
140.252.13.32 140.252.13.34 U 4 25043 emdd

The first line says for destination 140.252.13.65 (host slip) the gateway (router) to send
the packet to is 140.252.13.35 (osdi). This is what we expect, since the host slip is con-
nected to bsdi with a SLIP link, and bsdiis on the same Ethernetas this host.

There are five different flags that can be printed for a given route.

The route is up.

The route is to a gateway (router). If this flag is not set, the destination is
directly connected.

H_ Theroute is to a host, that is, the destination is a complete host address. If this
flag is not set, the route is to a network, and the destination is a network
address: a net ID, or a combination of a net ID and a subnetID.

D The route was created by a redirect (Section 9.5).

M Theroute was modified by a redirect (Section 9.5).

TheG flag is important becauseit differentiates between an indirect route and a direct
route. (The G flag is not set for a direct route.) The difference is that a packet going out a
direct route has both the IP address and the link-layer address specifying the destina-
tion (Figure 3.3, p. 40). When a packetis sent out an indirect route, the IP address speci-
fies the final destination but the link-layer address specifies the gateway (that is, the
next-hop router). We saw an example of this in Figure 3.4 (p. 41). In this routing table
example we havean indirect route (the G flag is set) so the IP address of a packet using
this route is the final destination (140.252.13.65), but the link-layer address must corre-
spond to the router 140.252.13.35.

It’s important to understand the difference between the G and H flags. TheGflag
differentiates between a direct and an indirect route, as described above. The H flag,
however, specifies that the destination address (the first column of netstat output)is
a complete host address. The absence of the H flag means the destination addressis a
network address (the host ID portion will be 0). When the routing table is searched for
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a route to a destination IP address, a host address entry must match the destination
address completely, while a network address only needs to match the network ID and
any subnet ID of the destination address. Also, some versions of the netstat com-
mandprintall the host entries first, followed by the networkentries.

The reference count column gives the number of active uses for each route. A con-
nection-oriented protocol such as TCP holds on to a route while the connection is estab-
lished. If we established a Telnet connection between the two hosts svr4 and slip, we

would see the reference count go to 1. With another Telnet connection the reference
count would goto 2, and so on.

The next column (“use”) displays the numberof packets sent through that route. If
weare the only users of the route and we run the ping program to send 5 packets, the
count goes up by 5. Thefinal column,the interface, is the nameof the local interface.

The second line of output is for the loopback interface (Section 2.7), always named
100. TheG flag is notset, since the route is not to a gateway. The H flag indicates that
the destination address (127.0.0.1) is a host address, and not a network address. When
the G field is not set, indicating a direct route, the gateway column gives the IP address
of the outgoing interface.

The third line of output is for the default route. Every host can have one or more
default routes. This entry says to send packets to the router 140.252.13.33 (sun) if a
more specific route can’t be found. This means the current host (svr4) can access other
systems across the Internet through the router sun (and its SLIP link), using this single
routing table entry. Being able to establish a default route is a powerful concept. The
flags for this route (UG) indicate thatit’s a route to a gateway, as we expect.

Here we purposely call sun a router and not a host because whenit’s used as a default router,
its IP forwarding functionis being used, notits host functionality.

The Host Requirements RFC specifically states that the IP layer must support multiple default
routes. Many implementations, however, don’t support this. When multiple default routes
exist, a common technique is to round robin among them. This is what Solaris 2.2 does, for
example.

Thefinal line of output is for the attached Ethernet. The H flag is not set, indicating
that the destination address (140.252.13,32) is a network address with the host portion
set to 0. Indeed, the low-order 5 bits are 0 (Figure 3.11, p. 47). Since this is a direct route
(the G flag is not set) the gateway columnspecifies the IP address of the outgoing
interface.

Implied in this final entry, but not shown by the netstat output, is the mask asso-
ciated with this destination address (140.252.13.32). If this destination is being com-
pared against the IP address 140.252.13.33, the addressis first logically ANDed with the
mask associated with the destination (the subnet mask of the interface, Oxf£ff££fe0N,
from Section 3.7) before the comparison. For a network route to a directly connected
network, the routing table mask defaults to the subnet mask of the interface. But in
general the routing table mask can assume any 32-bit value. A value other than the
default can be specified as an option to the route command.

The complexity of a host’s routing table depends on the topology of the networks to
which the host has access.
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1. The simplest (but least interesting) case is a host that is not connected to any
networksat all. The TCP/IP protocols can still be used on the host, but only to
communicate with itself! The routing table in this case consists of a single entry
for the loopbackinterface.

2. Next is a host connected to a single LAN,only able to access hosts on that LAN.
The routing table consists of two entries: one for the loopback interface and one
for the LAN (such as an Ethernet).

3. The next step occurs when other networks (such as the Internet) are reachable
through a single router. This is normally handled with a default entry pointing
to that router.

4, The final step is when other host-specific or network-specific routes are added.
In our example the route to the host slip, through the router bsdi, is an exam-
ple ofthis.

Let’s follow through the steps IP performs when using this routing table to route
some example packets on the host svr4.

1. Assumethe destination address is the host sun, 140.252.13.33. A search is first

made for a matching host entry. The two host entries in the table (slip and
localhost) don’t match, so a search is made through the routing table again
for a matching network address. A match is found with the entry 140.252.13.32
(the network [Ds and subnet IDs match), so the emd0 interface is used. This is a

direct route, so the link-layer address will be the destination address.

2. Assume the destination address is the host slip, 140.252.13.65, The first search
through the table, for a matching host address, finds a match. This is an indirect
route so the destination IP address remains 140.252.13.65, but the link-layer
address must be the link-layer address of the gateway 140.252.13.35, and the
interface is emd0.

3, This time we’re sending a datagram across the Internet to the host aw.com
(192.207.117.2). The first search of the routing table for a matching host address
fails, as does the second search for a matching network address. Thefinal step
is a search for a default entry, and this succeeds. The route is an indirect route
through the gateway 140.252.13.33 using the interface emd0.

4. In our final example we send a datagram to our ownhost. There are four ways
to do this, using either the hostname, the host IP address, the loopback name, or
the loopback IP address:

ftp svr4
ftp 140.252.13.34

ftp localhost
ftp 127.0.0.1
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In the first two cases, the second search of the routing table yields a network
match with 140.252.13.32, and the packet is sent downto the Ethernet driver. As
we showedin Figure 2.4 (p. 28) it will be seen that this packet is destined for the
host’s own IP address, and the packet is sent to the loopback driver, which
sendsit to the IP input queue.

In the latter two cases, specifying the nameof the loopback interface or its IP
address, the first search of the routing table finds the matching host address
entry, and the packet is sent to the loopback driver, which sends it to the IP
input queue.

In all four cases the packetis sent to the loopback driver, but two different rout-
ing decisions are made.

Initializing a Routing Table

We neversaid how these routing table entries are created. Whenever an interface is ini-
tialized (normally when the interface’s address is set by the ifconfig command) a
direct route is automatically created for that interface. For point-to-point links and the
loopback interface, the route is to a host (i.e., the H flag is set). For broadcast interfaces
such as an Ethernet, the route is to that network.

Routes to hosts or networks that are not directly connected must be entered into the
routing table somehow. One common wayis to execute the route command explicitly
from the initialization files when the system is bootstrapped. On the host svr4 thefol-
lowing two commandswere executed to add the entries that we showedearlier:

route add default sun 1

route add slip bsdi 1

The third arguments (default and slip) are the destinations, the fourth argumentis
the gateway (router), and the final argumentis a routing metric. All that the route
command does with this metric is install the route with the G flag set if the metric is
greater than 0, or withoutthe G flag if the metric is 0.

Unfortunately, few systems agree on which start-up file contains the route commands,
Under 4.4BSD and BSD/386 it is /etc/netstart, under SVR4 it is /etc/inet/rc.inet,
underSolaris 2.x it is /etc/rce2.da/S69inet, SunOS 4.1.x uses /etc/rc.local, and AIX
3.2.2 uses /atc/re.net,

Some systems allow a default router to be specified in a file such as
/etc/defaultrouter, and this default is added to the routing table on every reboot.

Other waysto initialize a routing table are to run a routing daemon (Chapter 10) or
to use the newerrouter discovery protocol (Section 9.6).

A More Complex Routing Table

The host sun is the default router for all the hosts on our subnet, since it has the dialup
SLIP link that connects to the Internet (see the figure on the inside front cover).
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sun % netstat -rn

Routing tables
Destination Gateway Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 171 led
127.0.0.1 127.0.0.1 UH 1 766 100
140.252.1.183 140.252.1.29 UH 0 0 sl0
default 140.252.1.183 UG 1 2955 s10
140.252.13.32 140.252.13.33 U 8 99551 led

Thefirst two entries are identical to thefirst two for the host svr4: a host-specific route
to slip through the router bsdi, and the loopback route.

Thethird line is new. It is a direct route (the G flag is not set) to a host (the H flag is
set) and corresponds to our point-to-point link, the SLIP interface. If we compareit to
the output from the ifconfig command,

sun % ifconfig s10
sl0: flags=1051<UP, POINTOPOINT, RUNNING>

inet 140.252.1.29 +=—-> 140.252.1.183 netmask ff£fFFLLO0

wesee that the destination address in the routing table is the other end of the point-to-
pointlink (the router netb) and the gateway addressis really the local IP address of the
outgoing interface (140.252.1.29). (We said earlier that the gateway address printed by
netstat for a direct route is the local IP address of the interface to use.)

The default entry is an indirect route (G flag) to a network (no H flag), as we expect.
The gateway address is the address of the router (140.252.1.183, the other end of the
SLIP link) and not the local IP address of the SLIP link (140.252.1.29). Again, this is
becauseit is an indirect route, not a direct route.

Weshould also note that the third and fourth lines output by netstat (the ones
with an interface of s10) are created by the SLIP software being used when the SLIP
line is brought up, and deleted when the SLIP link is brought down.

No Route to Destination

9.3

All our examples so far have assumedthat the search of the routing table finds a match,
even if the match is the default route. What if there is no default route, and a match

isn’t found for a given destination?
The answer depends on whether the IP datagram being routed was generated on

the host or is being forwarded (e.g., we're acting as a router). If the datagram was gen-
erated on this host, an error is returned to the application that sent the datagram,either
“host unreachable” or “network unreachable.” If the datagram was being forwarded,
an ICMPhost unreachableerror is sent back to original sender. We examinethis error in
the following section.

ICMP Host and Network Unreachable Errors

The ICMP “host unreachable” error message is sent by a router whenit receives an IP
datagram that it cannot deliver or forward. (Figure 6.10 showsthe format of the ICMP
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unreachable messages.) We can see this easily on our network by taking down the
dialup SLIP link on the router sun, and trying to send a packet through the SLIP link
from any of the other hosts that specify sun as the default router.

Older implementations of the BSD TCP/IP software generated either a host unreachable, or a
network unreachable, depending on whether the destination was on a local subnet or not.
4.4BSD generates only the host unreachable,

Recall from the netstat output for the router sun shown in the previous section
that the routing table entries that use the SLIP link are added when the SLIP link is
brought up, and deleted when the SLIP link is brought down. This means that when
the SLIP link is down,there is no default route on sun. But we don’t try to changeall
the other host’s routing tables on our small network, having them also remove their
default route. Instead we count on the ICMP host unreachable generated by sun for
any packets thatit gets that it cannot forward.

Wecan see this by running ping on svr4, for a host on the other side of the dialup
SLIP link (which is down):

svr4 % ping gemini
ICMP Host Unreachable from gateway sun (140.252.13.33)
ICMP Host Unreachable from gateway sun (140.252.13.33)

“2 type interrupt key to stop

Figure 9.2 shows the tcpdump output for this example, run on the host bsdi.

1 0.0 svr4 > gemini: icmp: echo request
2 0.00 (0.00) sun > svx4: icmp: host gemini unreachable

3° 0.99 (0.99) svr4 > gemini: icmp: echo request
4 0.99 (0.00) sun > svr4: icmp: host gemini unreachable

Figure 9.2 ICMP host unreachable in response to ping.

Whenthe router sun finds no route to the host gemini,it responds to the echo request
with a host unreachable.

If we bring the SLIP link to the Internet up, and try to ping an IP address that is not
connected to the Internet, we expect an error. Whatis interesting is to see how far the
packet gets into the Internet, before the error is returned:

sun % ping 192.82.148.1 this IP address is not connected to the Internet
PING 192.82.148.1: 56 data bytes
ICMP Host Unreachable from gateway enss142.UT.westnet.net (192.31.39.21)
for icmp from sun (140.252.1.29) to 192.82.148.1 :

Looking at Figure 8.5 (p. 103) we see that the packet madeit through six routers before
detecting that the IP address was invalid. Only when it got to the border of the
NSENET backbone was the error detected. This implies that the six routers that for-
wardedthe packet were doing so because of default entries, and only whenit reached
the NSFNET backbone did a router have complete knowledge of every network con-
nected to the Internet. This illustrates that many routers can operate with just partial
knowledgeof the big picture.

Viptela, Inc. - Exhibit 1007
Page 138



Viptela, Inc. - Exhibit 1007 
Page 139

Section 9,5 ICMP Redirect Errors 119 

9.4

9.5

[Ford, Rekhter, and Braun 1993] define a top-level routing domain as one that main-
tains routing information to most Internet sites and does not use default routes. They
note that five of these top-level routing domains exist on the Internet: the NSFNET
backbone, the Commercial Internet Exchange (CIX), the NASA Science Internet (NSD,
SprintLink, and the European IP Backbone (EBONE).

To Forward or Not to Forward

We’ve mentioned a few times that hosts are not supposed to forward IP datagrams
unless they have been specifically configured as a router. How is this configuration
done?

Most Berkeley-derived implementations have a_ kernel variable named
ipforwarding, or some similar name. (See Appendix E.) Some systems (BSD/386
and SVR4, for example) only forward datagramsif this variable is nonzero. SunOS 4.1.x
allows three values for the variable: -1 means never forward and never change the
value of the variable, 0 means don’t forward by default but set this variable to 1 when
two or more interfaces are up, and 1 means always forward. Solaris 2.x changes the
three values to be 0 (never forward), 1 (always forward), and 2 (only forward when two
or more interfaces are up).

Older 4.2BSD hosts forwarded datagrams by default, which caused lots of problems
for systems configured improperly. That’s why this kernel option must always default
to “never forward” unless the system administrator specifically enables forwarding.

ICMP Redirect Errors

The ICMP redirect error is sent by a router to the sender of an IP datagram when the
datagram should have been sent to a different router. The concept is simple, as we
show in the three steps in Figure 9.3. The only time we'll see an ICMPredirect is when
the host has a choice of routers to send the packet to. (Recall the earlier example of this
we saw in Figure 7.6, p. 94.)

1. We assumethat the host sends an IP datagram to R1. This routing decision is
often made because R1is the default router for the host.

2. Ri receives the datagram and performs a lookup in its routing table and deter-
mines that R2 is the correct next-hop router to send the datagram to. Whenit
sends the datagram to R2, R1 detects that it is sending it out the sameinterface
on which the datagram arrived (the LAN to which the host and the two routers
are attached). This is the clue to a router that a redirect can be sent to the origi-
nal sender.

3. R1 sends an ICMPredirect to the host, telling it to send future datagramsto that
destination to R2, instead of R1.
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Figure 9.3. Example of an ICMPredirect.

A common use for redirects is to let a host with minimal routing knowledge build up a
better routing table over time. The host can start with only a default route (either R1 or
R2 from our example in Figure 9.3) and anytime this default turns out to be wrong,it’ll
be informed by that default router with a redirect, allowing the host to update its rout-
ing table accordingly. ICMP redirects allow TCP/IP hosts to be dumb whenit comesto
routing, with all the intelligence in the routers. Obviously R1 and R2 in our example
have to know more about the topology of the attached networks, but all the hosts
attached to the LAN canstart with a default route and learn more as they receive
redirects.

An Example

We can see ICMPredirects in action on our network (inside front cover). Although we
show only three hosts (aix, solaris, and gemini) and two routers (gateway and
netb) on the top network, there are more than 150 hosts and 10 other routers on this
network. Most of the hosts specify gateway as the default router, since it provides
access to the Internet.

Howis the author’s subnet (the bottom four hosts in the figure) accessed from the
hosts on the 140.252.1 subnet? First recall that if only a single host is at the end of the
SLIP link, proxy ARP is used (Section 4.6). This means nothing special is required for
hosts on the top network (140.252.1) to access the host sun (140.252.1.29). The proxy
ARP software in netb handlesthis.

When a network is at the other end of the SLIP link, however routing becomes
involved. Onesolution is for every host and router to know that the router netb is the
gateway for the network 140.252.13. This could be donebyeither a static route in each
host's routing table, or by running a routing daemonin each host. A simpler way (and
the methodactually used)is to utilize ICMP redirects.
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Let’s run the ping program from the host solaris on the top network to the host
bsdi (140.252.13.35) on the bottom network. Since the subnet IDs are different, proxy
ARP can’t be used. Assuminga static route has not been installed, the first packet sent
will use the default route to the router gateway. Here is the routing table before we
run ping:

solaris % netstat -rn

Routing Table:
  Destination Gateway Flags Ref Use Interface

127.0.0.1 127.0.0.1 UH 0 848 100
140.252.1.0 140.252.1.32 U 3 15042 led

224.0.0.0 140.252.1.32 © U 3 0 led
default 140.252.1.4 UG 0 5747

(The entry for 224.0.0.0 is for IP multicasting. We describe it in Chapter 12.) If we spec-
ify the -v option to ping, we'll see any ICMP messagesreceived by the host. We need
to specify this to see the redirect messagethat’s sent.

solaris % ping -sv bsdi
PING bsdi: 56 data bytes
ICMP Host redirect from gateway gateway (140.252.1.4)
to netb (140.252.1.183) for bsdi (140.252.13.35)

64 bytes from bsdi (140.252.13.35): icmp_seq=0. time=383. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=1. time=364. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=2. time=353. ms
“9 type interrupt key to stop
—---bsdi PING Statistics----

4 packets transmitted, 3 packets received, 25% packet loss
round-trip (ms) min/avg/max = 353/366/383

Before wereceive the first ping response, the host receives an ICMP redirect from the
default router gateway. If we then look at the routing table, we'll see that the new
route to the host bsdi has beeninserted. (This new entry is shownin a bolderfont.)

2.
solaris % netstat -rn

Routing Table:
 Destination Gateway Flags Ref Use Interface

127.0.0.1 127.0.0.1 UH 0 848 100
140.252.13.35 140.252.1.183 UGHD 0 2
140.252.1.0 140.252.1.32 U 3 15045 led
224.0.0.0 140.252.1.32 U 3 0 led
default 140.252.1.4 UG 0 5749

This is the first time we’ve seen the D flag, which means the route wasinstalled by an
ICMPredirect. The G flag meansit’s an indirect route to a gateway (netb), and the H
flag meansit’s a host route (as we expect), not a network route.

Since this is a host route, added by a host redirect, it handles only the host bsdi. If
wethen access the host svr4, another redirect is generated, creating another host route.
Similarly, accessing the host slip creates another host route. The point here is that
each redirectis for a single host, causing a host route to be added. All three hosts on the
author’s subnet (bsdi, svr4, and slip) could also be handled by a single network
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route pointing to the router sun. But ICMP redirects create host routes, not network
routes, because the router generating the redirect in this example (gateway) has no
knowledgeof the subnet structure on the 140.252.13 network.

More Details

Figure 9.4 showsthe format of the ICMPredirect message.

 

 

 

0 78 15 16 31

type (5) code (0-3) checksum t
8 bytes

router IP address that should be used |

Z IP header(including options) + first 8 bytes of original IP datagram data 
 

Figure 9.4 ICMPredirect message.

There are four different redirect messages, with different code values, as shown in Fig-
ure 9.5,
 

code Description  

0 redirect for network
1 redirect for host

2 redirect for type-of-service and network
3 redirect for type-of-service and host

   
 

Figure 9.5 Different code values for ICMPredirect.

There are three IP addresses that the receiver of an ICMP redirect must look at: (1)
the IP address that caused the redirect (which is in the IP header returned as the data
portion of the ICMP redirect), (2) the IP address of the router that sent the redirect
(which is the source IP address of the IP datagram containing the redirect), and (3) the
IP address of the router that should be used (which is in bytes 4-7 of the ICMP
message).

There are numerous rules about ICMPredirects. First, redirects are generated only
by routers, not by hosts. Also, redirects are intended to be used by hosts, not routers. It
is assumed that routers participate in a routing protocol with other routers, and the
routing protocol should obviate the need for redirects. (This means that in Figure 9.1
the routing table should be updated byeither a routing daemonorredirects, but not by
both.)
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9.6

4.4BSD, when acting as a router, performs the following checks, all of which must
be true before an ICMPredirect is generated.

The outgoing interface must equal the incoming interface.

2. The route being used for the outgoing datagram must not have been created or
modified by an ICMPredirect, and must not be the router’s default route.

3. The datagram must not be source routed.
4, The kernel must be configured to send redirects.

The kernel variable is named ip_sendredirects, or something similar. (See Appen-
dix E.) Most current systems (4.4BSD, SunOS4.1.x, Solaris 2.x, and AIX 3.2.2, for exam-
ple) enable this variable by default. Other systems such as SVR4disableit by default.

Additionally, a 4.4BSD hostthat receives an ICMP redirect performs some checks before
modifying its routing table. These are to prevent a misbehaving router or host, or a
malicious user, from incorrectly modifying a system’s routing table.

The new router must be on a directly connected network.
The redirect must be from the current router for that destination.

The redirect cannottell the host to use itself as the router.PmON
The route that’s being modified mustbe an indirect route.

Ourfinal point about redirects is that routers should send only host redirects (codes
1 or 3 from Figure 9.5) and not network redirects. Subnetting makes it hard to specify
exactly when a networkredirect can be sent instead of a host redirect. Some hoststreat
a received network redirect as a host redirect, in case a router sends the wrongtype.

ICMP Router Discovery Messages

We mentioned earlier in this chapter that one way to initialize a routing table is with
static routes specified in configuration files. This is often used to set a default entry. A
newer wayis to use the ICMProuter advertisement andsolicitation messages.

The general concept is that after bootstrapping, a host broadcasts or multicasts a
router solicitation message. One or more routers respond with a router advertisement
message. Additionally, the routers periodically broadcast or multicast their router
advertisements, allowing any hosts that are listening to update their routing table
accordingly.

RFC 1256 [Deering 1991] specifies the format of these two ICMP messages. Fig-
ure 9.6 shows the format of the ICMP router solicitation message. Figure 9.7 showsthe
format of the ICMP router advertisement message sent by routers.

Multiple addresses can be advertised by a router in a single message. Number of
addresses is the number. Address entry size is the number of 32-bit words for each router
address, and is always 2. Lifetime is the number of seconds that the advertised
addresses can be considered valid.
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0 78 15 16 31

type (10) code (0) checksum I
8 bytes

Unused(sent as 0) |  
 

Figure 9.6 Format of ICMProutersolicitation message.

 

   
0 78 15 16 31

type (9) code(0) checksum

8 bytes

numberof address lifetiraddresses entry size (2) enme | 
router address [1]
 

preferencelevel [1]
 

router address[2]

preferencelevel [2]
   
 

Figure 9.7 Format of ICMProuter advertisement message.

One or more pairs of an IP address and a preference then follow. The IP address
must be one of the sending router’s IP addresses. The preference level is a signed 32-bit
integer indicating the preference of this address as a default router address, relative to
other router addresses on the same subnet. Larger values imply more preferable
addresses. The preference level 0x80000000 means the corresponding address,
although advertised, is not to be used by the receiver as a default router address. The
default value of the preference is normally 0.

Router Operation

Whena router starts up it transmits periodic advertisements on all interfaces capable of
broadcasting or multicasting. These advertisements are not exactly periodic, but are
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randomized, to reduce the probability of synchronization with other routers on the
samesubnet. The normaltime interval between advertisements is between 450 and 600

seconds. The default lifetime for a given advertisementis 30 minutes.
Anotheruseof the lifetime field occurs when an interface on a router is disabled. In

that case the router can transmit a final advertisement on the interface with the lifetime

set to 0.

In addition to the periodic, unsolicited advertisements, a routeralsolistensfor solic-
itations from hosts. It respondsto these solicitations with a router advertisement.

If there are multiple routers on a given subnet, it is up to the system administrator
to configure the preference level for each router as appropriate. For example, the pri-
mary default router would have a higher preference than a backup.

Host Operation

Uponbootstrap a host normally transmits three router solicitations, 3 seconds apart. As
soon as a valid advertisementis received, the solicitations stop.

A host also listens for advertisements from adjacent routers. These advertisements
can cause the host’s default router to change. Also, if an advertisementis not received
for the current default, that default can time out.

As long as the normal default router stays up, that router will send advertisements
every 10 minutes, with a lifetime of 30 minutes. This means the host’s default entry
won't time out, even if one or two advertisementsare lost. ,

Implementation

9.7

The router discovery messages are normally generated by and processed by a user pro-
cess (a daemon). This adds yet another program updating the routing table in Fig-
ure 9.1, although it would only add or delete a default entry. The daemon would have
to be configured to act as a routeror a host.

These two ICMP messages are new and not supported byall systems. Solaris 2.x is the only
system in our network that supports these messages (the in. rdisc daemon). Although the
RFC recommendsusing IP multicasting whenever possible, router discovery can work using
broadcast messagesalso.

Summary

The operation of IP routing is fundamental to a system running TCP/IP, be it a host or
router. The routing table entries are simple: up to 5 flag bits, a destination IP address
(host, network, or default), a next-hop router IP address (for an indirect route) or a local
interface IP address (for a direct route), and a pointer to a local interface to use. Host
entries have priority over network entries, which have priority over default entries.

A search of this routing table is made for every IP datagram that the system gener-
ates or forwards, and can be updated by either a routing daemon or ICMPredirects. By
default a system should never forward a datagram unless it has specifically been
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configured to do so, Static routes can be entered using the route command, and the
newer ICMP router discovery messages can be used to initialize and dynamically
update default entries. Hosts can start with a simple routing table that is updated
dynamically by ICMPredirects from its default router.

Ourdiscussion in this chapter has focused on how a single system usesits routing
table. In the next chapter we examine how routers exchange routing information with
eachother.

Exercises

9.1

9.2

9.3

94

9.5

Whydo youthink both types of ICMP redirects—network and host—exist?

In the routing table for svr4 shownat the beginning of Section 9.2, is a specific route to the
host slip (140.252,13.65) necessary? What would changeif this entry were removed from
the routing table?
Consider a cable with both 4.2BSD hosts and 4.3BSD hosts. Assume the network ID is

140.1. The 4.2BSD hosts only recognize a host ID ofall zero bits as the broadcast address
(140.1.0.0), while the 4.3BSD hosts normally send a broadcast using a host ID ofall onebits
(140.1.255.255). Also, the 4.2BSDhosts by default will try to forward incoming datagrams,
even if they have only a singleinterface.

Describe the events that happen when the 4.2BSD hosts receive an IP datagram with the
destination address of 140.1.255.255.

Continue the previous exercise, assuming someone corrects this problem by adding an
entry to the ARP cache on one system on the 140.1 subnet (using the arp command) saying
that the IP address 140.1.255.255 has a corresponding Ethernet address of all one bits (the
Ethernet broadcast). Describe what happens now.

Examine your system’s routing table and describe each entry.
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Dynamic Routing Protocols

Introduction

Our discussion in the previous chapter dealt with static routing. The routing table
entries were created by default when an interface was configured (for directly con-
nected interfaces), added by the route command (normally from a system bootstrap
file), or created by an ICMPredirect (usually when the wrong default was used).

This is fine if the network is small, there is a single connection point to other net-
works, and there are no redundant routes (where a backup route can be used if a pri-
mary route fails). If any of these three conditions is false, dynamic routing is normally
used.

This chapter looks at the dynamic routing protocols used by routers to communi-
cate with each other. We concentrate on RIP, the Routing Information Protocol, a widely
used protocol that is provided with almost every TCP/IP implementation. We then
look at two newer routing protocols, OSPF and BGP. The chapter finishes with an
examination of a new routing technique, called classless interdomain routing, that is
starting to be implemented across the Internet to conserve class B network numbers.

Dynamic Routing

Dynamic routing occurs when routers talk to adjacent routers, informing each other of
what networks each router is currently connected to. The routers must communicate
using a routing protocol, of which there are many to choose from. The process on the
router that is running the routing protocol, communicating with its neighbor routers, is
usually called a routing daemon. As shownin Figure 9.1, the routing daemon updates
the kernel’s routing table with informationit receives from neighborrouters.

7
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10.3

The use of dynamic routing does not change the way the kernel performs routing at
the IP layer, as we described in Section 9.2. We called this the routing mechanism. The
kernel still searches its routing table in the same way, looking for host routes, network
routes, and default routes. What changes is the information placed into the routing
table—instead of coming from route commandsin bootstrap files, the routes are
added and deleted dynamically by a routing daemon,as routes change overtime.

As we mentioned earlier, the routing daemon adds a routing policy to the system,
choosing which routes to place into the kernel’s routing table. If the daemon finds mul-
tiple routes to a destination, the daemon chooses (somehow) which route is best, and
which one to insert into the kernel’s table. If the daemon finds that a link has gone
down(perhapsa router crashed or a phoneline is out of order), it can delete the affected
routes or add alternate routes that bypass the problem.

In a system such as the Internet, many different routing protocols are currently
used. The Internet is organized into a collection of autonomous systems (ASs), each of
which is normally administered by a single entity. A corporation or university campus
often defines an autonomous system. The NSFNET backbone of the Internet forms an
autonomoussystem, becauseall the routers in the backbone are under a single adminis-
trative control.

Each autonomous system can select its own routing protocol to communicate
between. the routers in that autonomous system. This is called an interior gateway proto-
col (IGP) or intradomain routing protocol. The most popular IGP has been the Routing
Information Protocol (RIP). A newer IGP is the Open Shortest Path First protocol (OSPF).
It is intended as a replacement for RIP. An older IGP that has fallen out of use is
HELLO— theIGP used on the original NSFNET backbonein 1986.

The new Router Requirements RFC [Almquist 1993] states that a router that implements any
dynamic routing protocol must support both OSPF and RIP, and may support other IGPs.

Separate routing protocols called exterior gateway protocols (EGPs) or interdomain
routing protocols are used betweenthe routers in different autonomous systems. Histori-
cally (and confusingly) the predominant EGP has been a protocol of the same name:
EGP. A newer EGP is the Border Gateway Protocol (BGP) that is currently used
between the NSENET backbone and someof the regional networks that attach to the
backbone. BGPis intended to replace EGP.

Unix Routing Daemons

Unix systems often run the routing daemon named routed. Itis provided with almost
every implementation of TCP/IP. This program communicates using only RIP, which
we describe in the next section. It is intended for small to medium-size networks.

Analternative program is gated. It supports both IGPs and EGPs. [Fedor 1988]
describes the early development of gated. Figure 10.1 compares the various routing
protocols supported by routed and two different versions of gated. Most systems
that run a routing daemon run routed, unless they need support for the other proto-
cols supported by gated.
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10.4

 

 

  

 

Daemon Interior Gateway Protocol Exterior Gateway Protocol
HELLO RIP OSPF EGP BGP

routed V1

gated, Version 2 ° V1 ° Vi
gated, Version 3 ° V1, V2 v2 e V2, V3

        
Figure 10.1 Routing protocols supported by routed and gated.

We describe RIP Version 1 in the next section, the differences with RIP Version 2 in
Section 10.5, OSPF in Section 10.6, and BGPin Section 10.7.

RIP: Routing Information Protocol

This section provides an overview of RIP, because it is the most widely used (and most
often maligned) routing protocol. The official specification for RIP is RFC 1058 [Hedrick
1988a], but this RFC was written years after the protocol was widely implemented.

Message Format

RIP messages are carried in UDP datagrams, as shown in Figure 10.2. (Wetalk more
about UDP in Chapter 11.)

kei IPdatagram §=—W—¥—-p|

<q————- UDP datagram ——_—p|      IP UDP

header header RIP message

20 bytes 8 bytes

Figure 10.2 RIP message encapsulated within a UDP datagram.

Figure 10.3 showsthe format of the RIP message, when used with IP addresses.
A command of 1 is a request, and 2 is a reply. There are two other obsolete com-

mands (3 and 4), and two undocumented ones: poll (5) and poll-entry (6). A request
asks the other system to sendall or part of its routing table. A reply contains all or part
of the sender’s routing table.

The version is normally 1, although RIP Version 2 (Section 10.5) sets this to 2.
The next 20 bytes specify the address family (which is always 2 for IP addresses), an

IP address, and an associated metric. We'll see later in this section that RIP metrics are

hop counts.
Up to 25 routes can be advertised in a RIP message using this 20-byte format. The

limit of 25 is to keep the total size of the RIP message, 20 x 25+ 4 = 504, less than 512
bytes. With this limit of 25 routes per message, multiple messages are often required to
send an entire routing table.
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0 78 15 16 31 

command (1-6) version (1) (must be zero) 

address family (2) (must be zero)  
32-bit IP address
 

(mustbe zero) 20 bytes 

(must be zero) 

metric (1-16) 

Z (up to 24 more routes, with same format as previous 20 bytes) Z

  
 

Figure 10.3 Format of a RIP message.

Normal Operation

Let’s look at the normal operation of routed, using RIP. The well-known port number
for RIP is UDP port 520.|

! e Initialization. When the daemonstarts it determines all the interfaces that are

up and sends a request packet out each interface, asking for the other router’s
complete routing table. On a point-to-point link this request is sent to the other
end. The request is broadcast if the network supports it. The destination UDP

| port is 520 (the routing daemon on the other router).
|

This request packet has a command of 1 but the address family is set to 0 and the
metric is set to 16. This is a special request that asks for a complete routing table
from the other end.

e Request received. If the request is the special case we just mentioned, then the
entire routing table is sent to the requestor. Otherwise each entry in the request
is processed: if we have a route to the specified address, set the metric to our
value, else set the metric to 16. (A metric of 16 is a special valuecalled “infinity”
and means wedon’t have a route to that destination.) The responseis returned.

e Response received. The responseis validated and may update the routing table.
New entries can be added, existing entries can be modified, or existing entries
can be deleted.
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e Regular routing updates. Every 30 seconds, all or part of the router’s entire
routing table is sent to every neighbor router. The routing table is either broad-
cast (e.g., on an Ethernet) or sent to the other end of a point-to-pointlink.

e Triggered updates. These occur whenever the metric for a route changes. The
entire routing table need not be sent—only those entries that have changed
mustbe transmitted.

Each route has a timeout associated with it. If a system running RIP finds a route that
has not been updated for 3 minutes, that route’s metric is set to infinity (16) and marked
for deletion. This means we have missed six of the 30-second updates from the router
that advertised that route. The deletion of the route from the local routing table is
delayed for another 60 secondsto ensure the invalidation is propagated.

Metrics

The metrics used by RIP are hop counts. The hop countfor all directly connected inter-
faces is 1. Consider the routers and networks shown in Figure 10.4. The four dashed
lines we show are broadcast RIP messages.

N2=1 hop<p  
N1

 

ends up with a route to N3
through R2 with hop countof 2    

N3=1 hop<h- — —)— —*
5acsaanaasatacssscissa |N]

“Ni=ihop

  
 

R2 hin up with a route to N1through R1 with hop countof 2   
5nrSSEicmc|S]3

“Ni =Thop

  
Figure 10.4 Example routers and networks.

Router R1 advertises a route to N2 with a hop countof 1 by sending a broadcast on N1.
(It makes no sense to advertise a route to N1 in the broadcast sent on N1.) It also adver-
tises a route to N1 with a hop count of 1 by sending a broadcast on N2, Similarly, R2
advertises a route to N2 with a metric of 1, and a route to N3 with a metric of 1.

If an adjacent router advertises a route to another network with a hop countof1,
then our metric for that network is 2, since we have to send a packet to that router to get
to the network. In our example, the metric to N1 for R2 is 2, as is the metric to N3 for
Rt.

As each router sendsits routing tables to its neighbors, a route can be determined to
each network within the AS. If there are multiple paths within the AS from a router to a
network, the router selects the path with the smallest hop count and ignores the other
paths.
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The hop countis limited to 15, meaning RIP can be used only within an AS where
the maximum number of hops between hosts is 15. The special metric of 16 indicates
that no route exists to the IP address.

Problems

As simple as this sounds, there are pitfalls. First, RIP has no knowledge of subnet
addressing. If the normal 16-bit host ID of a class B address is nonzero, for example,
RIP can’t tell if the nonzero portion is a subnet ID or if the IP address is a complete host
address. Some implementations use the subnet maskof the interface through which the
RIP information arrived, which isn’t always correct.

Next, RIP takes a long time to stabilize after the failure of a router or a link. The
time is usually measured in minutes. Duringthis settling time routing loops can occur.
There are many subtle details in the implementation of RIP that must be followed to
help prevent routing loops and to speed convergence. RFC 1058 [Hedrick 1988a] con-
tains many details on how RIP should be implemented.

The use of the hop countas the routing metric omits other variables that should be
taken into consideration. Also, a maximum of 15 for the metric limits the sizes of net-
works on which RIP can be used.

Example

We’ll use the program ripquery, which is available from the gated distribution, to
query somerouters for their routing table. ripquery tries to send one of the undocu-
mented requests (named “poll,” a command of 5 from Figure 10.3) to the router, asking
for its entire routing table. If no response is received in 5 seconds, the standard RIP
request is issued (command of 1). (Earlier we said a request with the family set to 0 and
the metric set to 16 asks the other router for its entire routing table.)

Figure 10.5 showsthe two routers that we'll query for their routing table from the
host sun. If we execute ripquery from sun, fetching the routing information from its
next-hop router, netb, wegetthe following:

2
sun % ripquery -n netb

504 bytes from netb (140.252.1.183): first message contains 504 bytes
lots ofotherlines deleted

140.252.1.0, metric 1 the top Ethernet in Figure 10.5
140.252.13.0, metric 1 the bottom Ethernet in Figure 10.5

244 bytes from netb (140.252.1.183): second message with remaining 244 bytes
lots ofotherlines deleted

As weexpect, the metric for our subnet that is announced by netbis 1. Additionally,
the top Ethernet that netb is also attached to (140.252.1.0) has a metric of 1. (The -n
flag says to print the IP addresses numerically instead of trying to look up the names.)
In this example netb has been configured to consider all the hosts on the subnet
140.252.13 as directly connected to it—that is, netb knows nothing about which hosts
are actually on the 140,252.13 subnet. Since there is only one connection point to the
140.252.13 subnet, advertising different metrics for each host makeslittle practical sense.
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Figure 10.5 Two routers netb and gateway that we'll query fortheir routing tables.

Figure 10,6 shows the packet exchange using tcpdump. We specify the SLIP inter-
face with the -i s10 option.

9.
sun % tcpdump -s600 -i s10

1 0.0 sun.2879 > netb.route: rip-poll 24
2 5.014702 (5.0147) sun.2879 > netb.route: rip-req 24
3 5.560427 (0.5457) netb.route > sun.2879: rip-resp 25:
4 5.710251 (0.1498) netb.route > sun.2879: rip-resp 12:

Figure 10.6 tcpdump output while running ripquery program.

Thefirst request issued is the RIP poll command(line 1). This times out after 5 seconds
and a normal RIP requestis issued(line 2). The number 24at the end of lines 1 and2 is
the size of the request packets in bytes: the 4-byte RIP header (with the command and
version) followed by a single 20-byte address and metric.

Line 3 is thefirst reply message. The number 25at the end indicates that 25 address
and metric pairs are in the message, which wecalculated earlier to be 504 bytes. This is
what ripqueryprinted above. Wespecified the -s600 option to tcpdumptelling it to
read 600 bytes from the network. This allows it to receive the entire UDP datagram
(instead of just the first portion of it) and it then prints the contents of the RIP response.
We've omitted that output.

Line 4 is the second response message from the router, with the next 12 address and
metric pairs. We can calculate the size of this message to be 12 x 20+ 4 = 244, whichis
what ripqueryprinted earlier.

If we go one router beyond netb, to gateway, we expect the metric to our subnet
(140.252.13.0) to be 2. We can check this by executing:
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sun % ripquery -n gateway
504 bytes from gateway (140.252.1.4):

lots of otherlines deleted
140.252.1.0, metric 1 the top Ethernet in Figure 10.5
140.252.13.0, metric 2 the bottom Ethernet in Figure 10.5

Here the metric for the top Ethernet in Figure 10.5 (140.252.1.0) stays at 1, since that
Ethernet is directly connected to both gateway and netb. Our subnet 140.252.13.0,
however, now has the expected metric of 2.

Another Example

We'll now watchall the unsolicited RIP updates on an Ethernet and see just what RIP
sends on a regularbasis to its neighbors. Figure 10.7 shows the arrangement of many of
the noao.edu networks. We have namedthe routers Rn for simplicity, where n is the
subnet number, except for the ones we use elsewhere in the text. We show the point-to-
point links with dashedlines and the IP address at each end oftheselinks.
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Figure 10.7. Manyof the noao. edu 140.252 networks,

We'll run the Solaris 2.x program snoop, which is similar to tcpdump, on the host
solaris. We can run this program without superuser privileges, but only to capture
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broadcast packets, multicast packets, or packets sent to the host. Figure 10.8 showsthe
packets captured during a 60-second period. We have replaced mostof the official host-
names with our notation Ri.

2
solaris % snoop -P -tr udp port 520

0.00000 R6.tuc.noao.edu —-> 140.252.1.255 RIP R (1 destinations)
4.49708 R4.tuc.noao.edu —-> 140.252.1.255 RIP R (1 destinations)
6.30506 R2.tuc.noao.edu -—> 140.252.1.255 RIP R (1 destinations)

11.68317 R7V.tuc.noao.edu -> 140.252.1.255 RIP R (1 destinations)
16.19790 R8.tuc.noao.edu -> 140.252.1.255 RIP R (1 destinations)
16.87131 R3.tuc.noao.edu —-> 140.252.1.255 RIP R (1 destinations)
17.02187 gateway.tuc.noao.edu -> 140.252.1.255 RIP R (15 destinations)
20.68009 R10.tuc.noao.edu —> BROADCAST RIP (4 destinations)

29.87848 R6.tuc.noao.edu —-> 140.252.1.255 RIP
34.50209 R4.tuc.noao.edu -> 140.252.1.255 RIP
36.32385 R2.tuc.noao.edu => 140.252.1.255 RIP
41.34565 R7.tuc.noao.edu —> 140.252.1.255 RIP

1
1

(1 destinations)
(1 destinations)
(1 destinations)
(1 destinations)

46.19257 R8.tuc.noao.edu —-> 140.252.1.255 RIP {1 destinations)
46.52199 R3.tuc.noao.edu —-> 140.252.1.255 RIP (1 destinations)

47.01870 gateway.tuc.noao.edu —> 140.252.1.255 RIP R (15 destinations)
50.66453 R1O.tuc.noao.edu -> BROADCAST RIP R (4 destinations)

DAAnmwWwwDanDw 
Figure 10.8 RIP broadcasts captured at solaris overa 60-second period.

The -P flag captures packets in nonpromiscuous mode, —-tr prints the relative time-
stamps, and udp port 520 captures only UDP datagramswith a source ordestination
port of 520,

Thefirst six packets, from R6, R4, R2, R7, R8, and R3, each advertise just one net-
work. If we looked at the packets we would see that R6 advertises a route to 140.252.6.0
with a hop countof 1, R4 advertises a route to 140.252.4.0 with a hop countof 1, and so
on.

The router gateway, however, advertises 15 routes. We can run snoop with the -v
flag and see the entire contents of the RIP message. (This flag outputs the entire con-
tents of the entire packet: the Ethernet header, the IP header, the UDP header, and the
RIP message. We’ve deleted everything except the RIP information.) Figure 10.9 shows
the output.

Compare these advertised hop counts on the 140.252.1 network with the topology
shownin Figure 10.7.

A puzzle in the output in Figure 10.8 is why R10 is advertising four networks when
Figure 10.7 showsonly three. If we look at the RIP packet with snoop weseethefol-
lowing advertised routes:

RIP: Address Metric

RIP: 140.251.0.0 16 (not reachable)
RIP: 140.252.9.0 1
RIP: 140.252.10.0 1
RIP: 140.252.11.0 1

The route to the class B network 140.251 is bogus and should not be advertised. (It
belongs to anotherinstitution, not noao. edu.)
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solaris % snoop -P -v -tr udp port 520 host gateway

many lines deleted
RIP: Opcode = 2 (route response)
RIP: Version = 1

RIP: Address Metric

RIP: 140.252.101.0 1
RIP: 140.252.104.0 1

RIP: 140.252.51.0 2
RIP: 140.252.81.0 2
RIP: 140.252.105.0 2
RIP: 140.252.106.0 2

RIP: 140.252.52.0 3
RIP: 140.252.53.0 3
RIP: 140.252.54.0 3
RIP: 140.252.55.0 3
RIP: 140.252.58.0 3
RIP; 140.252.60.0 3
RIP: 140.252.82.0 3
RIP: 192.68.189.0 3

RIP: 140.252.57.0 4

Figure 10.9 RIP response from gateway.

The notation “BROADCAST”output by snoop in Figure 10.8 for the RIP packet
sent by RIO means the destination IP address is the limited broadcast address
255.255.255.255 (Section 12.2), instead of the subnet-directed broadcast address
(140.252.1.255) that the other routers use.

10.5 RIP Version 2

RFC 1388 [Malkin 1993a] defines newer extensions to RIP, and the result is normally
called RIP-2. These extensions don’t change the protocol, but pass additional informa-
tion in thefields labeled “must be zero” in Figure 10.3. RIP and RIP-2 can interoperate
if RIP ignoresthe fields that must be zero.

Figure 10.10 is a redo of that figure, as defined by RIP-2. Theversion is 2 for RIP-2.
The routing domain is an identifier of the routing daemon to which this packet

belongs. In a Unix implementation this could be the daemon’s process ID. This field
allows an administrator to run multiple instances of RIP on a single router, each operat-
ing within one routing domain.

The route tag exists to support exterior gateway protocols. It carries an autonomous
system number for EGP and BGP.

The subnet mask for each entry applies to the corresponding IP address. The next-hop
IP address is where packets to the corresponding destination IP address should besent.
A valueof 0 in this field means packets to the destination should be sent to the system
sending the RIP message.
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0 78 15 16 31 

command(1-6) version (2) routing domain 

address family (2) route tag  
32-bit IP address
 

32-bit subnet mask 20 bytes 

32-bit next-hop IP address 

metric (1-16)
 

ZL (up to 24 more routes, with same format as previous 20 bytes) Z

  
 

Figure 10.10 Formatof a RIP-2 message.

A simple authentication scheme is provided with RIP-2. Thefirst 20-byte entry in a
RIP message can specify an address family of Ox£f££, with a route tag value of 2. The
remaining 16 bytes of the entry contain a cleartext password.

Finally, RIP-2 supports multicasting in addition to broadcasting (Chapter 12). This
can reduce the load on hosts that are not listening for RIP-2 messages.

10.6 OSPF: Open Shortest Path First

OSPF is a neweralternative to RIP as an interior gateway protocol. It overcomesall the
limitations of RIP. OSPF Version 2 is described in RFC 1247 [Moy 1991].

OSPFis a link-state protocol, as opposed to RIP, whichis a distance-vector protocol.
The term distance-vector means the messages sent by RIP contain a vector of distances
(hop counts). Each router updates its routing table based on the vector of these dis-
tances that it receives from its neighbors.

In a link-state protocol a router does not exchange distances with its neighbors.
Instead each router actively tests the status of its link to each of its neighbors, sends this
information to its other neighbors, which then propagate it throughout the autonomous
system. Each router takes this link-state information and builds a complete routing
table.
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10.7

From a practical perspective, the important difference is that a link-state protocol
will always convergefaster than a distance-vector protocol. By converge we mean stabi-
lizing after something changes, such as a router going downor a link going down. Sec-
tion 9.3 of [Perlman 1992] compares other issues between the two types of routing
protocols.

OSPFis different from RIP (and many other routing protocols) in that OSPF uses IP
directly. That is, it does not use UDP or TCP. OSPF has its own value for the protocol
field in the IP header (Figure 3.1).

Besides being a link-state protocol instead of a distance-vector protocol, OSPF has
many other features that makeit superior to RIP.

1. OSPF can calculate a separate set of routes for each IP type-of-service (Fig-
ure 3,2), This means that for any destination there can be multiple routing table
entries, one for each IP type-of-service.

2. Eachinterface is assigned a dimensionless cost. This can be assigned based on
throughput, round-trip time, reliability, or whatever. A separate cost can be
assigned for each IP type-of-service.

3. Whenseveral equal-cost routes to a destination exist, OSPF distributes traffic
equally among the routes. This is called load balancing.

4, OSPF supports subnets: a subnet mask is associated with each advertised route.
This allows a single IP address of any class to be broken into multiple subnets of
various sizes. (We showed an example of this in Section 3.7 and called it
variable-length subnets.) Routes to a host are advertised with a subnet maskofall
one bits. A default route is advertised as an IP address of 0.0.0.0 with a mask of

all zero bits.

5. Point-to-point links between routers do not need an IP address at each end.
These are called unnumbered networks. This can save IP addresses—a scarce

resource these days!

6. A simple authentication scheme can be used. A cleartext password can be spec-
ified, similar to the RIP-2 scheme (Section 10.5).

7. OSPF uses multicasting (Chapter 12), instead of broadcasting, to reduce the load
on systems not participating in OSPF.

With most router vendors supporting OSPE, it will start replacing RIP in many net-
works.

BGP: Border Gateway Protocol

BGP is an exterior gateway protocol for communication between routers in different
autonomous systems. BGP is a replacement for the older EGP that was used on the
ARPANET. BGPVersion 3 is defined in RFC 1267 [Lougheed and Rekhter 1991].
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REC 1268 [Rekhter and Gross 1991] describes the use of BGP in the Internet. Much
of the following description comes from these two RFCs, Also, during 1993 BGP
Version 4 was under development (see RFC 1467 [Topolcic 1993]) to support CIDR,
which wedescribe in Section 10.8.

A BGPsystem exchanges networkreachability information with other BGP systems.
This information includes the full path of autonomoussystems that traffic must transit
to reach these networks. This information is adequate to construct a graph of AS con-
nectivity. Routing loops can then be pruned from this graph and routing policy deci-
sions can be enforced.

Wefirst categorize an IP datagram in an AS aseither local traffic or transit traffic.
Local traffic in an ASeither originates or terminates in that AS. Thatis, either the
source IP address or the destination IP address identifies a host in that AS. Anything
else is called transit traffic. A major goal of BGP usagein the Internet is to reduce tran-
sit traffic.

An AScan be categorized as one of the following:

1. A-stub AS has only a single connection to one other AS. A stub AScarries only
localtraffic.

2. Amultihomed AS has connections to more than one other AS, but refuses to carry
transit traffic.

3. A transit AS has connections to more than one other AS and is designed, under
certain policy restrictions, to carry both local and transit traffic.

The overall topology of the Internet is then viewed as an arbitrary interconnection of
transit, multihomed, and stub ASs. Stub and multihomed ASs need not use BGP—they
can run EGP to exchangereachability information with transit ASs.

BGPallowsfor policy-based routing. Policies are determined by the AS administrator
and specified to BGP in configuration files. Policy decisions are not part of the protocol,
but policy specifications allow a BGP implementation to choose between paths when
multiple alternatives exist and to control the redistribution of information. Routing
policies are related to political, security, or economic considerations.

BGPis different from RIP and OSPF in that BGP uses TCPasits transport protocol.
Two systems running BGP establish a TCP connection between themselves and then
exchange the entire BGP routing table. From that point on, incremental updates are sent
as the routing table changes.

BGPis a distance vector protocol, but unlike RIP (which announces hopsto a desti-
nation), BGP enumerates the route to each destination (the sequence of AS numbers to
the destination). This removes some of the problems associated with distance-vector
protocols. An ASis identified by a 16-bit number.

BGPdetects the failure of either thelink or the host on the other end of the TCP con-

nection by sending a keepalive message to its neighbor on a regular basis. The recom-
mended time between these messages is 30 seconds. This application-level keepalive
messageis independentof the TCP keepalive option (Chapter 23).
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10.8 CIDR: Classless Interdomain Routing

In Chapter 3 wesaid there is a shortage of class B addresses, requiring sites with multi-
ple networks to now obtain multiple class C network IDs, instead of a single class B net-
work ID. Although the allocation of these class C addresses solves one problem
(running out of class B addresses) it introduces another problem:every class C network
requires a routing table entry. Classless Interdomain Routing (CIDR) is a way to prevent
this explosion in the size of the Internet routing tables. It is also called supernetting and
is described in RFC 1518 [Rekhter and Li 1993] and RFC 1519 [Fuller et al. 1993], with a
overview in [Ford, Rekhter, and Braun 1993]. CIDR has the Internet Architecture
Board’s blessing [Huitema 1993]. RFC 1467 [Topolcic 1993] summarizes the state of
deployment of CIDRin the Internet.

The basic concept in CIDRis to allocate multiple IP addresses in a way that allows
summarization into a smaller numberof routing table entries. For example, if a single
site is allocated 16 class C addresses, and those 16 are allocated so that they can be sum-
marized, then all 16 can be referenced through a single routing table entry on the Inter-
net. Also, if eight different sites are connected to the same Internet service provider
through the same connection point into the Internet, and if the eight sites are allocated
eight different IP addresses that can be summarized, then only a single routing table
entry need be used on theInternetfor all eight sites.

Three features are needed to allow this summarization to take place.

1. Multiple IP addresses to be summarized together for routing must share the
same high-orderbits of their addresses.

2. The routing tables and routing algorithms must be extended to base their rout-
ing decisions on a 32-bit IP address and a 32-bit mask.

3. The routing protocols being used must be extended to carry the 32-bit mask in
addition to the 32-bit address. OSPF (Section 10.6) and RIP-2 (Section 10.5) are
both capable of carrying the 32-bit mask, as is the proposed BGPVersion4.

As an example, RFC 1466 [Gerich 1993] recommends that new class C addresses in
Europe be in the range 194.0.0.0 through 195.255.255.255. In hexadecimal these
addresses are from 0xc2000000 through Oxc3fff£f£fL. This represents 131,072 differ-
ent class C network IDs, but they all share the same high-order7 bits. In countries other
than Europea single routing table entry with an IP address of 0xc2000000 and a 32-bit
mask of 0xfe000000 (254.0.0.0) could be used to route all of these 65536 class C net-
workIDs to a single point. Subsequentbits of the class C address(that is, the bits fol-
lowing 194 or 195) can also be allocated hierarchically, perhaps by country or by service
provider, to allow additional summarization within the European routers using addi-
tional bits beyond the 7 high-orderbits of the 32-bit mask.

CIDR also uses a technique whereby the best match is always the one with the
longest match: the one with the greatest numberof onebits in the 32-bit mask. Continu-
ing the example from the previous paragraph, perhaps one service provider in Europe
needsto use a different entry point router than the rest of Europe. If that provider has
been allocated the block of addresses 194.0.16.0 through 194.0.31.255 (16 class C network
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IDs), routing table entries for just those networks would have an IP address of 194.0.16.0
and a mask of 255.255.240.0 (Oxfffff000). A datagram being routed to the address
194.0,.22.1 would match both this routing table entry and the onefor the rest of the Euro-
pean class C networks. But since the mask 255.255.240 is “longer” than the mask
254.0.0.0, the routing table entry with the longer maskis used.

The term “classless” is because routing decisions are now madebased on masking
operations of the entire 32-bit IP address. Whether the IP address is class A, B, or C
makesno difference.

Theinitial deployment of CIDR is proposed for new class C addresses. Makingjust
this change will slow down the growth of the Internet routing tables, but does nothing
for all the existing routes. This is the short-term solution. As a long-term solution,if
CIDR were applied to all IP addresses, and if existing IP addresses were reallocated
(and all existing hosts renumbered!) according to continental boundaries and service
providers, [Ford, Rekhter, and Braun 1993] claim that the current routing table consist-
ing of 10,000 network entries could be reduced to 200 entries.

Summary

There are two basic types of routing protocols: interior gateway protocols (IGPs), for
routers within an autonomous system, and exterior gateway protocols (EGPs), for
routers to communicate with routers in other autonomoussystems.

The most popular IGP is the Routing Information Protocol (RIP) with OSPF being a
newerIGP thatis gaining widespread use. A new and popular EGPis the Border Gate-
way Protocol (BGP). In this chapter we looked at RIP and the types of messagesthatit
exchanges. RIP Version 2 is a recent enhancement that supports subnetting and other
minor improvements. We also described OSPF, BGP, and classless interdomain routing
(CIDR), a newer technique being deployed to reduce the size of the Internet routing
tables.

There are a two other OSI routing protocols that you may encounter. Interdomain
Routing Protocol (IDRP) started out as a version of BGP modified for use with OSI
addresses instead of IP. Intermediate System to Intermediate System Protocol (IS—IS) is the
OSI standard IGP. It is used for routing CLNP (Connectionless Network Protocol), an
OSI protocol similar to IP. IS-IS and OSPFare similar.

Dynamic routing is still a fertile area of internetworking research. The choice of
which routing protocol to use, and which routing daemonto run, is complex. [Perlman
1992] provides manyof the details.

Exercises

10.1 In Figure 10.9 which of the routes came to gateway from the router kpno?

10.2 Assume a router has 30 routes to advertise using RIP, requiring one datagram with 25
routes and another with the remaining 5. What happensif once an hourthe first datagram
with 25 routesis lost?
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10.3

10.4

10.5

10.6

The OSPFpacket format has a checksum field, but the RIP packet does not. Why?

What effect does load balancing, as done by OSPF, have onatransport layer?

Read RFC 1058 for additional details on the implementation of RIP. In Figure 10.8 each
router advertises only the routes that it provides, and none of the other routes thatit
learned about through the other router’s broadcasts on the 140.252.1 network. Whatis this
technique called?
In Section 3.4 we said there are more than 100 hosts on the 140.252.1 subnet in addition to

the eight routers we show in Figure 10.7. What do these 100 hosts do with the eight broad-
casts that arrive every 30 seconds (Figure 10.8)?
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UDP: User Datagram Protocol

Introduction

UDPis a simple, datagram-oriented, transport layer protocol: each output operation by
a process produces exactly one UDP datagram, which causes one IP datagram to be
sent. This is different from a stream-oriented protocol such as TCP where the amountof
data written by an application may havelittle relationship to whatactually gets sent in
a single IP datagram.

Figure 11.1 showsthe encapsulation of a UDP datagram as an IP datagram.

——_—_____._ [Pdatagram9—WHH1-W¥—_|

~@— UDP datagram -—————p
      IP UDP

header header UDPdata

20 bytes 8 bytes

Figure 11.1 UDP encapsulation.

RFC 768 [Postel 1980] is the official specification of UDP.
UDPprovides noreliability: it sends the datagrams that the application writes to

the IP layer, but there is no guarantee that they ever reach their destination. Given this
lack of reliability, we are tempted to think we should avoid UDP and alwaysusea reli-
able protocol such as TCP. After we describe TCP in Chapter 17 we'll return to this
topic and see whattypes of applications can utilize UDP.
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11.2

The application needs to worry about the size of the resulting IP datagram. If it
exceeds the network’s MTU (Section 2.8), the IP datagram is fragmented. This applies
to each network that the datagram traverses from the source to the destination, not just
the first network connected to the sending host. (We defined this as the path MTU in
Section 2.9.) We examine IP fragmentation in Section 11.5.

UDP Header

Figure 11.2 showsthefields in the UDP header.

0 15 16 © 31 

16-bit source port number 16-bit destination port number
 

8 bytes

16-bit UDP length 16-bit UDP checksum | 
 

/ data (if any) /  
 

Figure 11.2 UDP header.

The port numbers identify the sending process and the receiving process. In Figure 1.8
we showed that TCP and UDP use the destination port number to demultiplex incom-
ing data from IP. Since IP has already demultiplexed the incoming IP datagram to
either TCP or UDP (based onthe protocol value in the IP header), this means the TCP
port numbers are looked at by TCP, and the UDP port numbers by UDP. The TCP port
numbers are independentof the UDP port numbers.

Despite this independence,if a well-knownservice is provided by both TCP and UDP, the port
numberis normally chosen to be the same for both transport layers. This is purely for conve-
nience and is not required by the protocols.

The UDP length field is the length of the UDP header and the UDP data in bytes.
The minimum valuefor this field is 8 bytes. (Sending a UDP datagram with 0 bytes of
data is OK.) This UDPlength is redundant. The IP datagram contains:its total length in
bytes (Figure 3.1), so the length of the UDP datagram is this total length minus the
length of the IP header (whichis specified by the headerlength field in Figure 3.1).

UDP Checksum

The UDP checksum covers the UDP header and the UDP data. Recall that the checksum

in the IP header only covers the IP header—it does not cover any data in the IP
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datagram. Both UDP and TCP have checksums in their headers to cover their header
and their data. With UDP the checksum is optional, while with TCP it is mandatory.

Although the basics for calculating the UDP checksum are similar to what we
described in Section 3.2 for the IP header checksum (the ones complement sum of 16-bit
words), there are differences. First, the length of the UDP datagram can be an odd num-
ber of bytes, while the checksum algorithm adds 16-bit words. The solution is to
append a pad byte of 0 to the end, if necessary, just for the checksum computation.
(Thatis, this possible pad byte is not transmitted.)

Next, both UDP and TCPinclude a 12-byte pseudo-header with the UDP datagram
(or TCP segment)just for the checksum computation. This pseudo-headerincludescer-
tain fields from the IP header. The purpose is to let UDP double-check that the data has
arrived at the correct destination (ie., that IP has not accepted a datagram that is not
addressed to this host, and that IP has not given UDP a datagram that is for another
upper layer). Figure 11.3 shows the pseudo-header along with a UDP datagram.

 

 

 

  
   
  
 

0 15 16 31 ~

32-bit source IP address

UDP

32-bit destination IP address pseudo
header

zero 8-bit protocol (17) 16-bit UDP length

Z

16-bit source port number 16-bit destination port number
UDP
header

16-bit UDPlength 16-bit UDP checksum
a“

Z data Z

pad byte (0)

 
   
Figure 11.3 Fields used for computation of UDP checksum.

In this figure we explicitly show a datagram with an odd length, requiring a pad byte
for the checksum computation. Notice that the length of the UDP datagram appears
twice in the checksum computation.

If the calculated checksum is 0, it is stored as all one bits (65535), which is equiva-
lent in ones-complementarithmetic. If the transmitted checksum is 0, it indicates that
the sender did not compute the checksum.
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If the sender did compute a checksum andthe receiver detects a checksum error, the
UDPdatagram is silently discarded. No error message is generated. (This is what hap-
pensif an IP header checksum erroris detected by IP.)

This UDP checksum is an end-to-end checksum, It is calculated by the sender, and
then verified by the receiver. It is designed to catch any modification of the UDP header
or data anywhere betweenthe sender andreceiver.

Despite UDP checksumsbeing optional, they should always be enabled. During the
1980s some computer vendors turned off UDP checksums by default, to speed up their
implementation of Sun’s Network File System (NFS), which uses UDP. Whilethis might
be acceptable on a single LAN, where the cyclic redundancy check on the data-link
frame(e.g., Ethernet or token ring frame) can detect most corruption of the frame, when
the datagrams pass through routers, all bets are off. Believe it or not, there have been
routers with software and hardware bugs that have modified bits in the datagrams
being routed. These errors are undetectable in a UDP datagram if the end-to-end UDP
checksum is disabled. Also realize that some data-link protocols (e.g., SLIP) don’t have
any form of data-link checksum.

The Host Requirements RFC requires that UDP checksumsbe enabled by default. It also states
that an implementation must verify a received checksum if the sender calculated one(i.e., the
received checksum is nonzero). Many implementations violate this, however, and only verify
a received checksum if outgoing checksumsare enabled.

topdump Output

It ishard to detect whether a particular system has UDP checksumsenabled. It is nor-
mally impossible for an application to obtain the checksum field in a received UDP
header. To get around this, the author added another option to the tcpdump program
that prints the received UDP checksum.If this printed value is 0, it means the sending
host did not calculate the checksum.

Figure 11.4 shows the output to and from three different systems on ourtest net-
work (see the figure on the inside front cover). We ran our sock program (Appen-
dix C), sending a single UDP datagram with 9 bytes of data to the standard echo server.

0.0 sun.1900 > gemini.echo: udp 9 (UDP cksum=6e90)
0.303755 ( 0.3038) gemini.echo > sun.1900: udp 9 (UDP cksum=0)

17.392480 (17.0887) sun.1904 > aix.echo: udp 9 (UDP cksum=6e3b)
17.614371 ( 0.2219) aix.echo > sun.1904: udp 9 (UDP cksum=6e3b)

32,.092454 (14.4781) sun.1907 > solaris.echo: udp 9 (UDP cksum=6e74)
32.314378 ( 0.2219) solaris.echo > sun.1907: udp 9 (UDP cksum=6e74)

RoHwNB
Figure 11.4 tcpdump output to see whether other hosts enable UDP checksum.

Wecan see from this that two of the three systems have UDP checksumsenabled.
Also notice that for this simple example the outgoing datagram has the same check-

sum as the incoming datagram (lines 3 and 4, 5 and 6). Looking at Figure 11.3 we see
that the two IP addresses are swapped,as are the two port numbers. The otherfields in
the pseudo-header and the UDP headerare the same,asis the data being echoed. This
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reiterates that the UDP checksums(indeed, all the checksums in the TCP/IP protocol
suite) are simple 16-bit sums. They cannot detect an error that swaps twoof the 16-bit
values.

The author also directed a DNS query at each of the eight root nameservers described in Sec-
tion 14.2. The DNS uses UDP primarily, and only two of the eight had UDP checksums
enabled!

SomeStatistics

11.4

[Mogul 1992] provides counts of various checksum errors on a busy NFS (NetworkFile
System) server that had been up for 40 days. Figure 11.5 summarizes these numbers. 

  Layer Numberof Approximate total
checksum errors|numberof packets

Ethernet 446 170,000,000
IP 14 170,000,000
UDP 5 140,000,000
TCP 350 30,000,000

    
 

Figure 11.5 Counts of corrupted packets detected by various checksums.

The final columnis only the approximate total for each row, since other protocols are in
use at the Ethernet and IP layers. For example, notall the Ethernet frames are IP data-
grams, since minimally ARP is also used on an Ethernet. Not all IP datagrams are UDP
or TCP, since ICMPalso usesIP.

Note the much higher percentage of TCP checksum errors compared to UDP check-
sum errors. This is probably because the TCP connections on this system tended to be
“long distance” (traversing many routers, bridges, etc.) while the UDPtraffic was local.

The bottom line is not to trust the data-link (e.g., Ethernet, token ring, etc.) CRC
completely. You should enable the end-to-end checksumsall the time. Also, if your
data is valuable, you might not wantto trust either the UDP or the TCP checksum com-
pletely, since these are simple checksums and were not meant to catch all possible
errors.

A Simple Example

We'll use our sock program to generate some UDP datagrams that we can watch with
tcpdump:

bsdi % sock -v -u -i -n4 svr4 discard
connected on 140.252.13.35.1108 to 140.252.13.34.9

bsdi % sock -v -u ~i -n4 -w0 svr4 discard
connected on 140.252.13.35.1110 to 140.252.13.34.9

The first time we execute the program we specify the verbose mode (-v) to see the
ephemeral port numbers, specify UDP (-u) instead of the default TCP, and use the
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11.5

source mode (-i) to send data instead of trying to read and write standard input and
output. The -n4option says to output 4 datagrams(instead of the default 1024) and the
destination host is svr4. We described the discard service in Section 1.12. We use the

default output size of 1024 bytes per write.
The second time we run the program we specify -w0, causing O-length datagrams

to be written. Figure 11.6 shows the tcpdump output for both commands.

 

0 bsdi.1108

-002424 (
.006210 (

0.010276 (

> svr4.discard: udp 1024
.0024) bsdi.1108 > svr4.discard: udp 1024

>
>

Qoo .0038) bsdi.1108 svr4.discard: udp 1024
.0041) bsdi.1108 svr4.discard: udp 1024

. 7098) bsdi.i110 > svr4.discard: udp 0

.0010) bsdi.1110 > svr4.discard: udp 0

.9010} bsdi.1110 > svr4.discard: udp 0

.0010) bsdi.1110 > svr4.discard: udp 0

41.721072
41 .722094
41.723070

mSN™NDORWHH oooFFooo41.720114 (4
{
(
(

Figure 11.6 tcpdump output when UDP datagramsare sent in onedirection.

This output shows the four 1024-byte datagrams, followed by the four 0-length data-
grams. Each datagram followed the previous by a few milliseconds. (It took 41 seconds
to type in the second command.)

There is no communication between the sender and receiver before the first data-

gram is sent. (We'll see in Chapter 17 that TCP must establish a connection with the
other end before the first byte of data can be sent.) Also, there are no acknowledgments
by the receiver when the data is received. The sender, in this example, has no idea
whether the other end receives the datagrams.

Finally note that the source UDP port number changes each time the program is
run. First it is 1108 and then it is 1110. We mentioned in Section 1.9 that the ephemeral
port numbers used byclients are typically in the range 1024 through 5000, as we see
here.

IP Fragmentation

As we described in Section 2.8, the physical network layer normally imposes an upper
limit on the size of the frame that can be transmitted. WhenevertheIP layer receives an
IP datagram to send, it determines which local interface the datagram is being sent on
(routing), and queries that interface to obtain its MTU. IP compares the MTU with the
datagram size and performs fragmentation, if necessary. Fragmentation can take place
either at the original sending host or at an intermediate router.

Whenan IP datagram is fragmented, it is not reassembled until it reachesits final
destination. (This handling of reassembly differs from some other networking protocols
that require reassembly to take place at the next hop, notat the final destination.) The
IP layer at the destination performs the reassembly. The goal is to make fragmentation
and reassembly transparentto the transport layer (TCP and UDP), whichit is, except for
possible performance degradation. It is also possible for the fragment of a datagram to
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again be fragmented (possibly more than once). The information maintained in the IP
headerfor fragmentation and reassembly provides enough information to do this.

Recalling the IP header (Figure 3.1, p. 34), the following fields are used in fragmen-
tation. The identification field contains a unique value for each IP datagram that the
sender transmits. This number is copied into each fragment of a particular datagram.
(We now see the usefor this field.) The flags field uses one bit as the “more fragments”
bit. This bit is turned on for each fragment comprising a datagram exceptthefinalfrag-
ment. The fragmentoffset field contains the offset (in 8-byte units) of this fragment from
the beginning of the original datagram. Also, when a datagram is fragmentedthe total
length field of each fragment is changed to be the size of that fragment.

Finally, one of the bits in the flags field is called the “don’t fragment”bit. If this is
turned on, IP will not fragment the datagram. Instead the datagram is thrown away
and an ICMPerror (“fragmentation needed but don’t fragment bit set,” Figure 6.3) is
sent to the originator. We’ll see an exampleofthis error in the next section.

When an IP datagram is fragmented, each fragment becomes its own packet, with
its own IP header, and is routed independently of any other packets. This makes it pos-
sible for the fragments of a datagram to arrive at the final destination out of order, but
there is enough information in the IP header to allow the receiver to reassemble the
fragments correctly.

Although IP fragmentation looks transparent, there is one feature that makesit less
than desirable: if one fragment is lost the entire datagram must be retransmitted. To
understand why this happens, realize that IP itself has no timeout and
retransmission—that is the responsibility of the higher layers. (TCP performs timeout
and retransmission, UDP doesn’t. Some UDP applications perform timeout and
retransmission themselves.) When a fragment is lost that came from a TCP segment,
TCP will time out and retransmit the entire TCP segment, which corresponds to an IP
datagram. There is no way to resend only one fragment of a datagram. Indeed,if the
fragmentation was done by an intermediate router, and not the originating system,
there is no way for the originating system to know how the datagram was fragmented.
For this reason alone, fragmentation is often avoided. [Kent and Mogul 1987] provide
arguments for avoiding fragmentation.

Using UDPit is easy to generate IP fragmentation. (We'll see later that TCP triesto
avoid fragmentation and that it is nearly impossible for an application to force TCP to
send segments large enough to require fragmentation.) We can use our sock program
and increase the size of the datagram until fragmentation occurs. On an Ethernet the
maximum amountof data in a frame is 1500 bytes (Figure 2.1), which leaves 1472 bytes
for our data, assuming 20 bytes for the IP header and 8 bytes for the UDP header. We'll
run our sock program, with data sizes of 1471, 1472, 1473, and 1474 bytes. We expect
the last two to cause fragmentation:

bsdi % sock -u -i -nil -w1471 svr4 discard
bsdi % sock -u -i -nl -w1472 svr4 discard
bsdi % sock -u -i -nl -w1473 svr4 discard
bsdi % sock -u -i -n1 -w1474 svr4 discard

Figure 11.7 shows the corresponding tcpdump output.
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0.0 bsdi.1112 > svr4.discard: udp 1471

21.008303 (21.0083) bsdi.1114 > svr4.discard: udp 1472

50.449704 (29.4414) bsdi.1116 > svr4.discard: udp 1473 (frag 26304:1480@0+)
50.450040 (0.0003) bsdi > svr4: (frag 26304:1@1480)

75.328650 (24.8786) bsdi.1118 > svr4.discard: udp 1474 (frag 26313:1480@0+)
75.328982 ( 0.0003) bsdi > svr4: (frag 26313:2@1480)

DoPGNHw
Figure 11.7 Watching fragmentation of UDP datagrams.

Thefirst two UDP datagrams(lines 1 and 2) fit into Ethernet frames, and are not frag-
mented. But the length of the IP datagram corresponding to the write of 1473 bytesis
1501, which must be fragmented (lines 3 and 4). Similarly the datagram generated by
the write of 1474 bytes is 1502, and is also fragmented(lines 5 and6).

When. the IP datagram is fragmented, tcpdump prints additional information.
First, the output frag 26304 (lines 3 and 4) and frag 26313 (lines 5 and 6) specify the
value of the identification field in the IP header.

The next numberin the fragmentation information, the 1480 between the colon and
the at sign in line 3, is the size, excluding the IP header. Thefirst fragment of both data-
grams contains 1480 bytes of data: 8 bytes for the UDP header and 1472 bytes of user
data. (The 20-byte IP header makes the packet exactly 1500 bytes.) The second frag-
mentof the first datagram (line 4) contains 1 byte of data—the remaining byte of user
data. The second fragment of the second datagram (line 6) contains the remaining 2
bytes of user data.

Fragmentation requires that the data portion of the generated fragments (that is,
everything excluding the IP header) be a multiple of 8 bytes for all fragments other than
the final one. In this example, 1480 is a multiple of 8.

The number following the at sign is the offset of the data in the fragment, from the
start of the datagram. Thefirst fragment of both datagramsstarts at 0 (lines 3 and 5)
and the second fragmentof both datagramsstarts at byte offset 1480 (lines 4 and 6). The
plus sign following this offset that is printed for the first fragment of both datagrams
means there are more fragments comprising this datagram. This plus sign corresponds
to the “more fragments” bit in the 3-bit flags in the IP header. The purposeof this bit is
to let the receiver know whenit has completed the reassembly ofall the fragments for a
datagram.

Finally, notice that lines 4 and 6 (fragments other than the first) omit the protocol
(UDP) and the source and destination ports. The protocol could be printed, sinceit’s in
the IP header that’s copied into the fragments. The port numbers, however, are in the
UDP header, which only occurs in the first fragment.

Figure 11.8 shows what’s happening with the third datagram that is sent (with 1473
bytes of user data). It reiterates that any transport layer header appears onlyin thefirst
fragment.

Also note the terminology: an IP datagramis the unit of end-to-end transmission at
the IP layer (before fragmentation and after reassembly), and a packetis the unit of data
passed betweenthe IP layer and the link layer. A packet can be a complete IP datagram
or a fragmentof an IP datagram.
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Figure 11.8 Example of UDP fragmentation.

11.6 ICMP Unreachable Error (Fragmentation Required)

Another variation of the ICMP unreachable error occurs when a router receives a data-

gram that requires fragmentation, but the don’t fragment (DF)flag is turned on in the IP
header. This error can be used by a program that needs to determine the smallest MTU
in the path to a destination—called the path MTUdiscovery mechanism (Section 2.9).

Figure 11.9 showsthe format of the ICMP unreachableerror for this case. This dif-
fers from Figure 6.10 because bits 16~31 of the second 32-bit word can provide the MTU
of the next hop, instead of being 0.
 

   
 

0 78 15 16 31

type (3) code(4) checksum I
8 bytes

Unused (mustbe 0) MTUof next-hop network |

7 IP header(including options) + first 8 bytes of original IP datagram data . 7  
 

Figure 11.9 ICMP unreachable error when fragmentation required but don’t fragmentbit set.

If a router doesn’t provide this newer format ICMPerror, the next-hop MTUissetto 0.

The new Router Requirements RFC [Almquist 1993] states that a router must generate this
newerform when originating this ICMP unreachableerror.
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Example

A problem encountered by the author involving fragmentation and this ICMPerroris
trying to determine the MTU onthe dialup SLIP link from the router netb to the host
sun. We know the MTUofthis link from sun to netb: it’s part of the SLIP configura-
tion process when SLIP wasinstalled in the host sun, plus we saw it with the netstat
commandin Section 3.9. We want to determine the MTU in the other direction also. (In
Chapter 25 we'll see how to determine this using SNMP.) On a point-to-pointlink,it is
not required that the MTU be the samein both directions.

The technique used was to run ping on the host solaris, to the host bsdi,
increasing the size of the data packets until fragmentation was seen on the incoming
packets. This is shownin Figure 11.10.

  

 

       
MTU=1500 MTU=1500 MTU=1500 MTU=1500

. SLIP .bsdi sun @——————_#@  netb solaris

MTU=552 MTU=?

<qglCMP echo in
_fragment__ request g

fragment

watch with fragmentation
tcpdump

Figure 11.10 Systems being used to determine MTU of SLIP link from netb to sun.

tcpdump was run on the host sun, watching the SLIP link, to see when fragmentation
occurred, No fragmentation was observed and everything wasfine until the size of the
data portion of the ping packet was increased from 500 to 600 bytes. The incoming
echo requests were seen (there wasstill no fragmentation), but the echo replies disap-
peared.

To track this down, tcpdump was also run on bsdi, to see what it was receiving
and sending. Figure 11.11 showsthe output.

1 0.0 solaris > bsdi: icmp: echo request (DF)
2 0.000000 (0.0000) bsdi > solaris: icmp: echo reply (DF)
3 0.000000 (0.0000) sun > bsdi: icmp: solaris unreachable -

need to frag, mtu = 0 (DF)

4 0.738400 (0.7384) solaris > bsdi: icmp: echo request (DF)
5 0.748800 (0.0104) bsdi > solaris: icmp: echo reply (DF)
6 0.748800 (0.0000) sun > bsdi: icmp: solaris unreachable —

need to frag, mtu = 0 (DF)

Figure 11.11 tcpdump output for ping of bsdi from solaris with 600-byte IP datagram.

First, the notation (DF) in each line meansthe don’t fragmentbit is turned on in the
IP header. It turns out that Solaris 2.2 normally turns this bit on, as part of its imple-
mentation of the path MTU discovery mechanism.
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Line 1 showsthat the echo request got through the router netb to sun without
being fragmented, and with the DFbit set, so we knowthat the SLIP MTU of netb has
not been reached yet.

Next, notice in line 2 that the DF flag is copied into the echo reply. This is what
causes the problem. The echo reply is the same size as the echo request (just over 600
bytes), but the MTU on sun’s outgoing SLIP interface is 552. The echo reply needsto be
fragmented, but the DF flag is set. This causes sun to generate the ICMP unreachable
error back to bsdi (whereit’s discarded).

This is why we never saw any echo replies on solaris. The replies never got past
sun. Figure 11.12 showsthe path of the packets.

  
 
  
 

MTU=1500 MTU=1500 : MTU=1500

SLIP

MTU=1500  

bsdi netb solaris        
MTU=? 

ICMP echo

request
request

request
ICMPecho

fragmentation required
and DF set

Figure 11.12 Packets exchanged in example.

Finally, the notation mtu=0 in lines 3 and 6 of Figure 11.11 indicates that sun does
not return the MTU of the outgoing interface in the ICMP unreachable message, as
shownin Figure 11.9. (In Section 25.9 we return to this problem and use SNMPto deter-
minethat the MTU ofthe SLIP interface on netb is 1500.)

Determining the Path MTU Using Traceroute

Although most systems don’t support the path MTU discovery feature, we can easily
modify a version of traceroute (Chapter 8) to let us determine the path MTU. What
we'll do is send packets with the “don’t fragment” bit set. The size of the first packet
we send will equal the MTU of the outgoing interface, and whenever wereceive an
ICMP “can’t fragment” error (which we described in the previous section) we’ll reduce
the size of the packet. If the router sending the ICMPerror sends the newerversion that
includes the MTU of the outgoing interface, we'll use that value; otherwise we'll try the
next smallest MTU. As RFC 1191 [Mogul and Deering 1990] states, there are a limited
number of MTUs, so our program hasa table of the likely values and movesto the next
smallest value.

Let's first try it from our host sun to the host slip, knowing that the SLIP link has
an MTUof 296:
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sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU = 1500

1 bsdi (140.252.13.35) 15 ms 6ms 6 ms
2 bsdi (140.252.13.35) 6 ms

fragmentation required and DF set, trying new MTU = 1492
fragmentation required and DF set, trying new MTU = 1006
fragmentation required and DF set, trying new MTU = 576
fragmentation required and DF set, trying new MTU = 552
fragmentation required and DF set, trying new MTU = 544
fragmentation required and DF set, trying new MTU = 512
fragmentation required and DF set, trying new MTU = 508
fragmentation required and DF set, trying new MTU = 296

2 slip (140.252.13.65) 377 ms 377 ms 377 ms

In this example the router bsdi does not return the MTU of the outgoing interface in
the ICMPerror, so we step throughthe likely values for the MTU. Thefirst line of out-
put for a TTL of 2 prints a hostnameof bsdi, butthat’s becauseit’s the router returning
the ICMPerror. Thefinal line of output for a TTL of 2 is what we’re lookingfor.

It’s not hard to modify the ICMP code on bsdi to return the MTU of the outgoing
interface, and if we do that and rerun our program, weget the following output:

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU = 1500

1 bsdi (140.252.13.35) 53 ms 6 ms 6 ms
2 bsdi (140.252.13.35) 6 ms

fragmentation required and DF set, next hop MTU = 296
2 slip (140.252.13.65) 377 ms 378 ms 377 ms

Here we don’t haveto try eight different values for the MTU before finding the right
one—the router returns the correct value.

The Worldwide Internet

As an experiment, this modified version of traceroute was run numerous times to
various hosts around the world. Fifteen countries (including Antarctica) were reached
and various transatlantic and transpacific links were used. Before doing this, however,
the MTU ofthe dialup SLIP link between the author’s subnet and the router neth (Fig-
ure 11.12) was increased to 1500, the sameas an Ethernet.

Out of 18 runs, only 2 had a path MTU ofless than 1500. One of the transatlantic
links had an MTUof 572 (a value not evenlisted as a likely value in RFC 1191) and the
router did return the newer format ICMPerror. Another link, between two routers in

Japan, wouldn’t handle a 1500-byte frame, and the router did not return the newerfor-
mat ICMPerror. Setting the MTU downto 1006 did work.

The conclusion we can make from this experimentis that many, but not all, WANs
today can handle packets larger than 512 bytes. Using the path MTU discovery feature
will allow applications to take advantage of these larger MTUs.
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11.8 Path MTU Discovery with UDP

Let’s examine the interaction between an application using UDP and the path MTU dis-
covery mechanism. We want to see what happens when the application writes data-
gramsthat are too big for some intermediatelink.

Example

Since the only system that we’ve been using that supports the path MTU discovery
mechanism is Solaris 2.x, we'll use it as the source host to send 650-byte datagrams to
slip. Since our host slip sits behind a SLIP link with an MTU of 296, any UDP data-
gram greater than 268 bytes (296 — 20 — 8) with the “don’t fragment”bit set should cause
the router bsdi to generate the ICMP “can’t fragment” error. Figure 11.13 shows the

 
 
 
 

  

   

topology and the MTUs.

run

tcpdump
here

MTU=1500 MTU=1500 Vy MTU=1500 MTU=1500

SLIP SLIP
slip netb solaris

MTU=296 MTU=296 MTU=552  MTU=1500

       

650-byte UDP datagram with DF bitset
 

“ICMPcan’t fragmenterror

Figure 11.13 Systems used for path MTU discovery using UDP.

The following command generates ten 650-byte UDP datagrams, with a 5-second pause
between each datagram:

solaris % sock -u -i -nl10 -w650 -p5 slip discard

Figure 11.14 shows the tcpdump output. Whenthis example wasrun, the router bsdi
wasset to not return the next-hop MTU aspartof the ICMP “can’t fragment”error.

The first datagram is sent with the DF bit set (line 1) and generates the expected
error from the router bsdi (line 2). What’s puzzling is that the next datagram is also
sent with the DFbit set (line 3) and generates the same ICMPerror(line 4). We would
expect this datagram to be sent with the DFbitoff.

Online 5 it appears IP hasfinally learned that datagramsto this destination should
not be sent with the DF bit set, so IP goes ahead and fragments the datagramsat the
source host. This is different from earlier examples where IP sends the datagram thatis
passed to it by UDP andallowsthe router with the smaller MTU (bsdi in this case) to
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1 0.0 solaris.38196 > slip.discard: udp 650 (DF)
2 0.004218 (0.0042) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 0 (DF)

3 4.980528 (4.9763) solaris.38196 > slip.discard: udp 650 (DF)
4 4.984503 (0.0040) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 0 (DF)

5 9.870407 (4.8859) solaris.38196 > slip.discard: udp 650 (frag 47942:552@0+)
6 9.960056 (0.0896) solaris > slip: (frag 47942:106@552)

7 14.940338 (4.9803) solaris.38196 > slip.discard: udp 650 (DF)
8 14.944466 (0.0041) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 0 (DF)

9 19.890015 (4.9455) solaris.38196 > slip.discard: udp 650 (frag 47944:552@0+)
10 19.950463 (0.0604) solaris > slip: (frag 47944:106@552)

11 24.870401 (4.9199) solaris.38196 > slip.discard: udp 650 (frag 47945:552@0+)
12 24.960038 (0.0896) solaris > slip: (frag 47945:106@552)

13° 29.880182 (4.9201) solaris.38196 > slip.discard: udp 650 (frag 47946:552@0+)
14 29,.940498 (0.0603) solaris > slip: (frag 47946:106@552)

15 34.860607 (4.9201) solaris.38196 > slip.discard: udp 650 (frag 47947:552@0+)
16 34.950051 (0.0894) solaris > slip: (frag 47947:106@552)

17 39.870216 (4.9202) solaris.38196 > slip.discard: udp 650 (frag 47948:552@0+)
18 39.930443 (0.0602) solaris > slip: (frag 47948:106@552)

19 44.940485 (5.0100) solaris.38196 > slip.discard: udp 650 (DF)
20 44.944432 (0.0039) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu

Figure 11.14 Path MTU discovery using UDP.

= 0 (DF)

do the fragmentation. Since the ICMP “can’t fragment” message didn’t specify the
next-hop MTU,it appears that IP guesses that an MTUof 576 is OK. Thefirst fragment
(line 5) contains 544 bytes of UDP data, the 8-byte UDP header, and the 20-byte IP
header, for a total IP datagram size of 572 bytes. The second fragment(line 6) contains
the remaining 106 bytes of UDP data and a 20-byte IP header.

Unfortunately the next datagram,line 7, has its DF bit set, so it’s discarded by bsdi
and the ICMPerror returned. What has happenedhere is that an IP timer has expired.
telling IP to see if the path MTUhasincreased by setting the DF bit again. Wesee this
happen again on lines 19 and 20, Comparing the times on lines 7 and 19 it appears that
IP turns on the DFbit, to see if the path MTUhasincreased, every 30 seconds.

This 30-second timer value is way too small, RFC 1191 recommendsa value of 10 minutes. It
can be changed by modifying the parameter ip_irepathmtu_interval (Section E.4).
Also there is no wayin Solaris 2.2 to turn off this path MTU discovery for a single UDP appli-
cation or for all UDP applications. It can only be enabled or disabled on a systemwidebasis by
changing the parameter ip_path_mtu_discovery. As we can see from this example,
enabling path MTU discovery when UDP applications write datagrams that will probably be
fragmented can cause datagramsto be discarded.
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The maximum datagram size assumed by the IP layer on solaris (576 bytes)is
not right. In Figure 11.13 we see that the real MTUis 296 bytes. This means the frag-
ments generated by solaris will be fragmented again by bsdi. Figure 11.15 shows
the tcpdump outputcollected on the destination host (slip) for thefirst datagram that
arrives (lines 5 and 6 from Figure 11.14).

1 0.0 solaris.38196 > slip.discard: udp 650 (frag 47942:272@0+)
2 0.304513 (0.3045) solaris > slip: (frag 47942:272@272+)
3 0.334651 (0.0301) solaris > slip: (frag 47942:8@544+)
4 0.466642 (0.1320) solaris > slip: (frag 47942:106@552)

Figure 11,15 First datagram arriving at host slip from solaris.

In this example the host solaris should not fragment the outgoing datagrams but
should turn off the DF bit and let the router with the smaller MTU do the fragmenta-
tion.

Now we'll run the same example but modify the router bsdi to return the next-hop
MTUin the ICMP “can’t fragment” error. Figure 11.16 showsthefirst six lines of the
tcpdump output.

1 0.0 solaris.37974 > slip.discard: udp 650 (DF)
2 0.004199 (0.0042) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 296 (DF)

3 4.950193 (4.9460) solaris.37974 > slip.discard: udp 650 (DF)
4 4.954325 (0.0041) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 296 (DF)

5 9.779855 (4.8255) solaris.37974 > slip.discard: udp 650 (frag 35278:272@0+)
6 9.930018 (0.1502) solaris > slip: (frag 35278:272@272+)
7 9.990170 (0.0602) solaris > slip: (frag 35278:114@544)

Figure 11.16 Path MTUdiscovery using UDP.

Again, the first two datagrams are sent with the DF bit set, and both elicit the ICMP
error. The ICMPerror now specifies the next-hop MTU of 296.

In lines 5, 6, and 7 we see the source host perform fragmentation, similar to Fig-
ure 11.14. But knowing the next-hop MTU, only three fragments are generated, com-
pared to the four fragments generated by the router bsdi in Figure 11.15.

Interaction Between UDP and ARP

Using UDP wecan see an interesting (and often unmentioned) interaction with UDP
and typical implementations of ARP.

We use our sock program to generate a single UDP datagram with 8192 bytes of
data. We expect this to generate six fragments on an Ethernet (see Exercise 11.3). We
also assure that the ARP cache is empty before running the program, so that an ARP
request and reply must be exchangedbeforethe first fragmentis sent.
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bsdi % arp ~a verify ARP cacheis empty
bsdi % sock -u -i ~nl -w8192 svr4 discard

We expectthe first fragment to cause an ARP request to be sent. Five more fragments
are generated by IP and this presents two timing questions that we'll need to use
tcpdump to answer: are the remaining fragments ready to be sent before the ARP reply
is received, and if so, what does ARP do with multiple packets to a given destination
whenit’s waiting for an ARP reply? Figure 11.17 shows the tcpdump output.

1 0.0 arp who-has svr4 tell bsdi
2 0.001234 (0.0012) arp who-has svr4 tell bsdi
3 9.001941 (0.0007) arp who-has svr4 tell bsdi
4 0.002775 (0.0008) arp who-has svr4 tell bsdi
5 0.003495 (0.0007) arp who-has svr4 tell bsdi
6 0.004319 (0.0008) arp who-has svr4 tell bsdi
7 0.008772 (0.0045) arp reply svr4 is-at 0:0:c0:c2:9b:26
8 0.009911 (0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26
9 0.011127 (0.0012) bsdi > svr4: (frag 10863:800@7400)

10 0.011255 (0.0001) arp reply svr4 is-at 0:0:c0:02:9b:26
11 0.012562 (0.0013) arp reply svr4 is-at 0:0:c0:c2:9b:26
12) 0.013458 (0.0009) arp reply svr4 is-at 0:0:c0:c2:9b:26
13° 0.014526 (0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26
14 0.015583 (0.0011) arp reply svr4 is~at 0:0:c0:c2:9b:26

Figure 11.17 Packet exchange when an 8192-byte UDP datagram is sent on an Ethernet.

There are a few surprises in this output. First, six ARP requests are generated
before the first ARP reply is returned. What we guessis happeningis that IP generates
the six fragments rapidly, and each one causes an ARP request.

Next, when thefirst ARP reply is received (line 7) only the last fragmentis sent(line
9)! It appears thatthe first five fragments have been discarded. Indeed,this is the nor-
mal operation of ARP. Most implementations keep only the last packet sent to a given
destination while waiting for an ARPreply.

The Host Requirements RFC requires an implementation to prevent this type of ARP flooding
{repeatedly sending an ARP request for the same IP addressat a high rate). The recommended
maximum rate is one per second. Here wesee six ARP requests in 4.3 ms.

The Host Requirements RFC states that ARP should save at least one packet, and this should
be the latest packet. That's what wesee here.

Another unexplained anomaly in this output is that svr4 sends back seven ARP
replies, notsix. .

The final point worth mentioning is that tcpdump was left to run for 5 minutes
after the final ARP reply was returned, waiting to see if svr4 sent back an ICMP “time
exceeded during reassembly” error. The ICMP error was never sent. (We showed the
format of this message in Figure 8.2. A code of 1 indicates that the time was exceeded
during the reassembly of a datagram.)

The IP layer must start a timer whenthefirst fragment of a datagram appears. Here
“first” meansthe first arrival of any fragment for a given datagram,notthe first frag-
ment (with a fragmentoffset of 0). A normal timeoutvalueis 30 or 60 seconds.If all the
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fragments for this datagram have not arrived when the timer expires,all these frag-
ments are discarded. If this were not done, fragments that never arrive (as we see in
this example) could eventually cause the receiver to run outof buffers.

There are two reasons we don’t see the ICMP message here. First, most Berkeley-
derived implementations never generate this error! These implementations do set a
timer, and do discard all fragments when the timer expires, but the ICMPerroris never
generated. Second, the first fragment—the one with an offset of 0 containing the UDP
header—wasneverreceived. (It wasthe first of the five packets discarded by ARP.) An
implementation is not required to generate the ICMPerror unlessthis first fragment has
been received. The reasonis that the receiver of the ICMPerror couldn’ttell which user

process sent the datagram that was discarded, because the transport layer header is not
available. It’s assumed that the upper layer (either TCP or the application using UDP)
will eventually time out and retransmit.

In this section we've used IP fragmentation to see this interaction between UDP and.
ARP. Wecanalsosee this interaction if the sender quickly transmits multiple UDP data-
grams. We choseto use fragmentation because the packets get generated quickly by IP,
faster than multiple datagrams can be generated by a user process.

As unlikely as this example might seem, it occurs regularly. NFS sends UDP data-
grams whose length just exceeds 8192 bytes. On an Ethernet these are fragmented as
we've indicated, and if the appropriate ARP cache entry times out, you can see what
we've shown here. NFS will time out and retransmit, but the first IP datagram canstill
be discarded because of ARP’s limited queue.

Maximum UDP Datagram Size

Theoretically, the maximum size of an IP datagram is 65535 bytes, imposed by the 16-bit
total length field in the IP header (Figure 3.1). With an IP headerof 20 bytes and a UDP
header of 8 bytes, this leaves a maximum of 65507 bytes of user data in a UDP data-
gram. Most implementations, however, provide less than this maximum.

There are two limits we can encounter. First the application program may be lim-
ited by its programming interface. The sockets API (Section 1.15) provides a function
that the application can call to set the size of the receive buffer and the send buffer. For
a UDPsocket,this size is directly related to the maximum size UDP datagram the appli-
cation can read or write. Most systems today provide a default of just over 8192 bytes
for the maximum size of a UDP datagram that can be read or written. (This default is
because 8192 is the amountof user data that NFS reads and writes by default.)

The next limitation comes from the kernel’s implementation of TCP/IP. There may
be implementation features (or bugs) that limit the size of an IP datagram to less than
65535 bytes.

The author experimented with various UDP datagram sizes, using the sock program. Using
the loopback interface under SunOS 4.1.3, the maximum size IP datagram was 32767 bytes.
Ail higher values failed. But going across an Ethernet from BSD/386 to SunOS4.1.3, the maxi-
mum size IP datagram the Sun could accept was 32786 (that is, 32758 bytes of user data).
Using the loopback interface underSolaris 2.2, the maximum 65535-byte IP datagram could be
sent and received. From Solaris 2.2 to AIX 3.2.2, the maximum 65535-byte IP datagram could
be transferred. Obviously this limit depends on the source and destination implementations.
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We mentioned in Section 3.2 that a host is required to receive at least a 576-byte IP
datagram. Many UDPapplications are designed torestrict their application data to 512
bytes or less, to stay below this limit. We saw this in Section 10.4, for example, where
the Routing Information Protocol alwayssent less than 512 bytes of data per datagram.
We'll encounter this same limit with other UDP applications: the DNS (Chapter 14),
TEFTP (Chapter 15), BOOTP (Chapter 16), and SNMP (Chapter 25).

Datagram Truncation

17.11

Just because IP is capable of sending and receiving a datagram of a given size doesn’t
mean the receiving application is prepared to read that size. UDP programminginter-
faces allow the application to specify the maximum number of bytes to return each
time. What happens if the received datagram exceeds the size the application is pre-
pared to deal with?

Unfortunately the answer depends on the programming interface and the imple-
mentation.

The traditional Berkeley version of the sockets API truncates the datagram, discarding any
excess data. Whether the application is notified depends on the version. (4.3BSD Reno and
later can notify the application that the datagram wastruncated.)

The sockets API under SVR4 (including Solaris 2.x) does not truncate the datagram. Any
excess data is returned in subsequent reads. The application is not notified that multiple reads
are being fulfilled from a single UDP datagram.

The TLI API does not discard the data, Instead a flag is returned indicating that more data is
available, and subsequent reads by the application returnthe rest of the datagram.

When we discuss TCP we'll see that it provides a continuous stream of bytes to the
application, without any message boundaries. TCP passes the data to the application in
whatever size reads the application asks for—there is never any data loss across this
interface.

ICMP Source Quench Error

Using UDP weare also able to generate the ICMP “source quench” error. This is an
error that may be generated by a system (router or host) whenit receives datagramsat a
rate that is too fast to be processed. Note the qualifier “may.” A system is not required
to send a source quench,even if it runs out of buffers and throws datagrams away.

Figure 11.18 showsthe format of the ICMP source quench error. We have a perfect
scenario with our test network for generating this error. We can send datagrams from
bsdi to the router sun across the Ethernet that must be routed across the dialup SLIP
link. Since the SLIP link is about 1000 times slower than the Ethernet, we should easily
be able to overrunits buffer space. The following command sends 100 1024-byte data-
grams from the host bsdi through the router sun to solaris. We send the datagrams
to the standard discard service, where they'll be ignored:

bsdi % sock ~u -i -wl1024 -n100 solaris discard
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Figure 11.18 ICMP source quench error.

Figure 11.19 shows the tcpdump output corresponding to this command.

1 0.0 bsdi.1403 > solaris.discard: udp 1024
26 lines that we don't show

27 0.10 (0.00) bsdi.1403 > solaris.discard: udp 1024
28 0.11 (0.01) sun > bsdi: icmp: source quench

29 0.11 (0.00) bsdi.1403 > solaris.discard: udp 1024
30 0.11 (0.00) sun > bsdi: icmp: source quench

142lines that we don’t show

173 0.71 (0.06) bsdi.1403 > solaris.discard: udp 1024
174 0.71 (0.00) sun > bsdi: itomp: source quench

Figure 11.19 ICMP source quench from the router sun.

We have removed lots of lines from this output; there is a pattern. The first 26 data-
gramsare received without an error; we show the output only for the first. Starting
with our 27th datagram, however, every time we send a datagram, wereceive a source
quench in return. There are a total of 26+ (74 x 2) = 174 lines of output.

From ourserial line throughput calculations in Section 2.10, it takes just over 1 sec-
ond to transfer a 1024-byte datagram at 9600 bits/sec. (In our example it should take
longer than this since the 20+8+ 1024 byte datagram will be fragmented because the
MTUofthe SLIP link from sun to netb is 552 bytes.) But we can see from the timing in
Figure 11.19 that the router sun receives all 100 datagramsin less than 1 second, before
the first one is through the SLIP link. It’s not surprising that we used up many ofits
buffers.

Although RFC 1009 [Braden and Postel 1987] requires a router to generate source quenches
whenit runs out of buffers, the new Router Requirements RFC [Almquist 1993] changesthis
and says that a router must not originate source quench errors. The current feeling is to depre-
cate the source quench error, since it consumes network bandwidth and is an ineffective and
unfair fix for congestion.

Another point to make regarding this example is that our sock program either
never received a notification that the source quenches were being received,orif it did,it

Viptela, Inc. - Exhibit 1007
Page 181



Viptela, Inc. - Exhibit 1007 
Page 182

162 UDP: User Datagram Protocol Chapter 11 

11.12

Client

appears to have ignored them. It turns out that BSD implementations normally ignore
received source quenchesif the protocol is UDP. (ICPis notified, and slows down the
data transfer on the connection that generated the source quench, as we discuss in Sec-
tion 21.10.) Part of the problem is that the process that generated the data that caused
the source quench may have already terminated when the source quenchis received.
Indeed, if we use the Unix time program to measure how long our sock program takes
to run, it only executes for about 0.5 seconds. But from Figure 11.19 wesee that some of
the source quenchesare received 0.71 secondsafter the first datagram wassent, after the
process has terminated. What is happening is that our program writes 100 datagrams
and terminates. But not all 100 datagrams have been sent—some are queued for
output.

This example reiterates that UDP is an unreliable protocol and illustrates the value
of end-to-end flow control. Even though our sock program successfully wrote 100
datagramsto its network, only 26 were really sent to the destination. The other 74 were
probably discarded by the intermediate router. Unless we build some form of acknowl-
edgmentinto the application, the senderhas no idea whetherthe receiver really got the
data.

UDP Server Design

There are some implications in using UDPthat affect the design and implementation of
a server. The design and implementation of clients is usually easier than thatof servers,
which is why wetalk about server design and notclient design. Servers typically inter-
act with the operating system and most servers need a way to handle multiple clients at
the sametime.

Normally a client starts, immediately communicates with a single server, and is
done. Servers, on the other hand, start and then go to sleep, waiting for a client’s
request to arrive. In the case of UDP, the server wakes up whena client’s datagram
arrives, probably containing a request message of some form from the client.

Ourinterest here is not in the programming aspects of clients and servers ([Stevens
1990] coversall those details), but in the protocol features of UDP that affect the design
and implementation of a server using UDP. (We examine the details of TCP server
design in Section 18.11.) Although some of the features we describe depend on the
implementation of UDP being used, the features are common to most implementations.

IP Address and Port Number

Whatarrives from the client isa UDP datagram. The IP header contains the source and
destination IP addresses, and the UDP header contains the source and destination UDP

port numbers. When an application receives a UDP datagram, it must be told by the
operating system who sent the message—the source IP address and port number.

This feature allows an iterative UDP server to handle multiple clients. Each reply is
sent backto theclient that sent the request.
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Destination IP Address

Some applications need to know whothe datagram wassent to, that is, the destination
IP address. For example, the Host Requirements RFC states that a TFTP server should
ignore received datagramsthat are sent to a broadcast address. (We describe broadcast-
ing in Chapter 12 and TFTP in Chapter 15.)

This requires the operating system to pass the destination IP address from the
received UDP datagram to the application. Unfortunately, not all implementations pro-
vide this capability.

The sockets API provides this capability with the IP_RECVDSTADDR socket option. Of the sys-
tems usedin the text, only BSD/386, 4.4BSD, and AIX 3.2.2 support this option. SVR4, SunOS
4.x, and Solaris 2.x don’t supportit.

UDP Input Queue

Wesaid in Section 1.8 that most UDP servers are iterative servers. This means a single
server process handles all the client requests on a single UDP port (the server’s well-
knownport).

Normally there is a limited size input queue associated with each UDPport that an
application is using. This means that requests that arrive at about the same time from
different clients are automatically queued by UDP. The received UDP datagramsare
passed to the application (when it asks for the next one) in the order they were received.

It is possible, however, for this queue to overflow, causing the kernel’s UDP module
to discard incoming datagrams. We can see this with the following experiment. We
start our sock program on the host bsdi running as a UDPserver:

bsdi % sock -s -u -v -E -R256 -r256 -P30 6666

from 140.252.13.33, to 140.252.13.63: 1111111111 from sun,to broadcast address
from 140.252.13.34, to 140.252.13.35: 4444444444444_front svr-4, to unicast address

Wespecify the following flags: -s to run as a server, -u for UDP,-v to print the client’s
IP address, and -E to print the destination IP address (which is supported by this sys-
tem). Additionally we set the UDP receive buffer for this port to 256 bytes (-R), along
with the size of each application read (-1r). The flag - P30 tells it to pause for 30 seconds
after creating the UDP port, before reading the first datagram. This gives us time to
start the clients on two other hosts, send some datagrams, and see how the receive
queueing works.

Once the serveris started, and is in its 30-second pause, westart one client on the
host sun and send three datagrams:

 

sun % sock -u -v 140.252.13.63 6666 to Ethernet broadcast address
connected on 140.252.13.33.1252 to 140.252.13.63.6666

1111111111 11 bytes of data (with newline)
222222222 10 bytes of data (with newline)
33333333333 12 bytes ofdata (with newline)

The destination address is the broadcast address (140.252.13.63). We also start a second
client on the host svr4 and send another three datagrams:
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svr4 % sock -u -v bsdi 6666
connected on 0.0.0.0.1042 to 140.252.13.35.6666

4444444444444 14 bytes of data (with newline)
555555555555555 16 bytes ofdata (with newline)
66666666 9 bytes of data (with newline)

The first thing we notice in the interactive output shown earlier on bsdi is that only
two datagrams were received by the application: the first one from sun with all 1s, and
the first one from svr4 with all 4s. The other four datagrams appear to have been
thrown away.

The tcpdump outputin Figure 11.20 showsthatall six datagrams were delivered to
the destination host. The datagrams were typed on the twoclients in alternating order:
first from sun, then from svr4, and so on. We can also see that all six were delivered in
about 12 seconds, within the 30-second period while the server was sleeping.

1 0.0 sun.1252 > 140.252.13.63.6666: udp 11
2 2.499184 (2.4992) svr4.1042 > bsdi.6666: udp 14
3 4.959166 (2.4600) sun.1252 > 140.252.13.63.6666: udp 10
4 7.607149 (2.6480) svr4.1042 > bsdi.6666: udp 16
5 10.079059 (2.4719) sun.1252 > 140.252.13.63.6666: udp 12
6 12.415943 (2.3369) svr4.1042 > bsdi.6666: udp 9

Figure 11.20 tcpdump for UDP datagramssentby twoclients.

We can also see the server’s -E option lets it know the destination IP address of
each datagram. If it wanted to, it could choose what to do with the first datagram it
receives, which was sent to a broadcast address.

We can see several points in this example. First, the application is not told whenits
input queue overflows. The excess datagrams are just discarded by UDP. Also, from
the tcpdump output wesee that nothing is sent back to the clientto tell it that its data-
gram was discarded. There is nothing like an ICMP source quench sent back to the
sender, Finally, it appears that the UDP input queueis FIFO (first-in, first-out), whereas
wesaw that the ARP input queue in Section 11.9 was LIFO (last-in,first-out).

Restricting Local IP Address

Most UDPservers wildcard their local IP address when they create a UDP end point.
This means that an incoming UDP datagram destined for the server’s port will be
accepted on any local interface. For example, we can start a UDP server on port 7777:

sun % sock -u -s 7777

Wethen use the net stat commandto seethestate of the end point:°.
sun % netstat -a -n -f inet

Active Internet connections (including servers)
Proto Recv-Q Send-Q local Address Foreign Address (state)
udp 0 0 *.7777 *

We have deleted manylines of output other than the one in which we’re interested. The
~a flag reports on all network end points. The —n flag prints IP addresses as dotted-
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decimal numbers, instead of trying to use the DNS to convert the address to a name,
and prints numeric port numbers instead of service names. The -£ inet option reports
only TCP and UDPendpoints.

The local address is printed as *.7777 where the asterisk means the local IP
address has been wildcarded.

When the server creates its end point it can specify one of the host’s local IP
addresses, including one of its broadcast addresses, as the local IP address for the end
point. Incoming UDP datagramswill then be passed to this end point only if the desti-
nation IP address matches the specified local address. With our sock program, if we
specify an IP address before the port number, that IP address becomes the local IP
address for the end point. For example,

sun % sock -u -s 140.252.1.29 7777

restricts the server to datagrams arriving on the SLIP interface (140.252.1.29). The
netstat output showsthis:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 140.252.1.29.7777 KK

If we try to send this server a datagram from a host on the Ethernet, bsdi at address
140.252.13.35, an ICMP port unreachable is returned. The server never sees the data-
gram. Figure 11.21 showsthis scenario.

1 0.0 bsdi.1723 > sun.7777: udp 13
2 0.000822 (0.0008) sun > bsdi: icmp: sun udp port 7777 unreachable

Figure 11.21 Rejection of UDP datagram caused by server’s local address binding.

It is possible to start different servers at the same port, each with a different local IP
address. Normally, however, the system mustbe told by the application that it is OK to
reuse the same port number.

With the sockets API the SO_LREUSEADDRsocket option mustbe specified. This is done by our
sock program by specifying the —-A option.

Onour host sun we canstartfive different servers on the same UDPport(8888):

sun % sock -u -s 140.252.1.29 8888 for SLIP link
sun % sock -u -s -A 140.252.13.33 8888 for Ethernet
sun % sock -u ~s -A 127.0.0.1 8888 forloopbackinterface
sun % sock -u -s -A 140,252.13.63 8888 for Ethernet broadcasts
sun % sock -u -s -A 8888 everything else (wildcard IP address)

All except the first of the servers must be started with the ~A flag,telling the system that
it’s OK to reuse the same port number. The netstat output showsthefive servers:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 *.8888 x *
udp 0 0 140.252.13.63.8888 kK
udp 0 0 127.0.0.1.8888 xk
udp 0 0 140.252.13.33.8888 x
udp 0 0 140.252.1.29.8888 xk
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In this scenario, the only datagramsthat will go to the server with the wildcarded local
IP address are those destined to 140.252.1.255, because the other four servers cover all

other possibilities.
There is a priority implied when an end point with a wildcard address exists. An

end point with a specific IP address that matches the destination IP address is always
chosen over a wildcard. The wildcard end point is used only when a specific match is
not found.

Restricting Foreign IP Address

In all the netstat output that we showedearlier, the foreign IP address and foreign
port number are shown as *.* meaning the end point will accept an incoming UDP
datagram from any IP address and any port number. Most implementations allow a
UDPend pointto restrict the foreign address.

This means the end point will only receive UDP datagrams from that specific IP
address and port number. Our sock program uses the -f option to specify the foreign
IP address and port number:

sun % sock -u -s -£ 140.252.13.35.4444 5555

This sets the foreign IP address to 140.252.13.35 (our host bsdi) and the foreign port
number to 4444, The server’s well-known port is 5555, If we run netstat wesee that
the local IP address hasalso been set, even though wedidn’t specifyit:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 140.252.13.33.5555 140.252.13.35.4444

This is a side effect of specifying the foreign IP address and foreign port on Berkeley-
derived systems: if the local address has not been chosen when the foreign address is
specified, the local address is chosen automatically. Its value becomes the IP address of
the interface chosen by IP routing to reach the specified foreign IP address. Indeed, in
this example the IP address on sun for the Ethernet that is connected to the foreign

 

  

addressis 140.252.13.33.

Figure 11.22 summarizes the three types of address bindings that a UDP server can
establish foritself.

Local Address|Foreign Address Description

localIP. lport foreignIP.foort restricted to one client
localTP.lport xe restricted to datagramsarriving on onelocalinterface: localIP

*, Iport ** receivesall datagramssentto Iport
     

Figure 11.22 Specification of local and foreign IP addresses and port numberfor UDPserver.

In all cases, [port is the server’s well-known port and localIP must be the IP address of a
local interface. The ordering of the three rowsin the table is the order that the UDP
module applies when trying to determine which local end point receives an incoming
datagram. The most specific binding (the first row)is tried first, and the least specific
(the last row with both IP addresses wildcarded)is tried last.
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Multiple Recipients per Port

Althoughit’s not specified in the RFCs, most implementations allow only one applica-
tion end point at a time to be associated with any one local IP address and UDP port
number. When a UDP datagram arrives at a host destined for that IP address and port
number, one copyis delivered to that single end point. The IP address of the end point
can be the wildcard, as shownearlier.

For example, under SunOS 4.1.3 we start one server on port 9999 with a wildcarded
local IP address:

2.
sun % sock -u -s 9999

If we then try to start another server with the same wildcarded local address and the
sameport, it doesn’t work, even if we specify the —A option:

sun % sock -u -s 9999 we expect this to fail
can't bind local address: Address already in use

sun % sock -u -s -~A 9999 so we try -Aflag this time
can’t bind local address: Address already in use

On systems that support multicasting (Chapter 12), this changes. Multiple end
points can use the same local IP address and UDP port number, although the applica-
tion normally must tell the API that this is OK (ie, our —-A flag to specify the
SO_REUSEADDRsocketoption).

4.4BSD, which supports multicasting, requires the application to set a different socket option
(SO_REUSEPORT)to allow multiple end points to share the same port. Furthermore each end
point mustspecify this option, includingthefirst one to usethe port.

When a UDP datagram arrives whose destination IP address is a broadcast or
multicast address, and there are multiple end points at the destination IP address and
port number, one copy of the incoming datagram is passed to each end point. (The end
point’s local IP address can be the wildcard, which matches any destination IP address.)
But if a UDP datagram arrives whose destination IP address is a unicast address, only a
single copy of the datagram is delivered to one of the end points. Which end point gets
the unicast datagram is implementation dependent.

11.13 Summary

UDPis a simple protocol. Its official specification, RFC 768 [Postel 1980], requires only
three pages. The services it provides to a user process, above and beyondIP, are port
numbers and an optional checksum. We used UDP to examine this checksum and to
see how fragmentation is performed.

We then examined the ICMP unreachable error that is part of the new path MTU
discovery feature (Section 2.9), We watched path MTU discovery using Traceroute and
UDP. Wealso looked at the interaction between UDP and ARP whereby most ARP
implementationsonly retain the most recently transmitted datagram to a given destina-
tion, while waiting for an ARPreply.
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The ICMP source quench error can be sent by a system that is receiving IP data-
grams faster than they can be processed. It is easy to generate these ICMP errors using
UDP.

Exercises

11.1 In Section 11.5 we caused fragmentation on an Ethernet by writing a UDP datagram with
1473 bytes of user data. Whatis the smallest amount of user data that causes fragmenta-
tion on an Ethernet if IEEE 802 encapsulation (Section 2.2) is used instead?

11.2. Read RFC 791 [Postel 1981a] to determine whyall fragments other than the last must have
a length that is a multiple of 8 bytes.

11.3. Assume an Ethernet and a UDP datagram with 8192 bytes of user data. How many frag-
ments are transmitted and whatis the offset and length of each fragment?

11.4 Continue the previous exercise, assuming these fragments then traverse a SLIP link with
an MTU of 552. You also need to rememberthat the amount of data in each fragment(Le.,
everything other than the IP header) must be a multiple of 8 bytes. How many fragments
are transmitted and whatis the offset and length of each fragment?

11.5 An application using UDP sends a datagram that gets fragmented into four pieces.
Assume that fragments 1 and 2 makeit to the destination, with fragments 3 and 4 being
lost. The application then times out and retransmits the UDP datagram 10 secondslater
and this datagram is fragmented identically to the first transmission (ie., same offsets and
lengths). Assumethatthis time fragments 1 and 2 are lost but fragments 3 and 4 makeit to
the destination. Also assumethat the reassembly timer on the receiving host is 60 seconds,
so when fragments 3 and 4 of the retransmission makeit to the destination, fragments 1
and 2 from the first transmission have not been discarded. Can the receiver reassemble the

IP datagram from the four fragments it now has?

11.6 How do you knowthat the fragments in Figure 11.15 really correspond to lines 5 and 6 in
Figure 11.14?

11.7 After the host gemini had been up for 33 days, the netstat program showedthat 129 IP
datagramsout of 48 million had been dropped because of a bad header checksum, and 20
TCP segments out of 30 million had been dropped because of a bad TCP checksum. Nota
single UDP datagram was dropped, however, because of a UDP checksum error, out of the
approximately 18 million UDP datagrams. Give two reasons why. (Hint: See Figure 11.4.)

11.8 In our discussion of fragmentation we never said what happens to IP options in the IP
header—are they copied as part of the IP header in each fragment, orleft in the first frag-
ment only? We’ve described the following IP options: record route (Section 7.3), time-
stamp (Section 7.4), strict and loose source routing (Section 8.5). How would you expect
fragmentation to handle these options? Check your answer with RFC 791,

11.9 In Figure 1.8 (p. 11) we said that incoming UDP datagrams are demultiplexed based on the
destination UDP port number, Is that correct?
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Broadcasting and Multicasting

Introduction

We mentioned in Chapter 1 that there are three kinds of IP addresses: unicast, broadcast,
and multicast. In this chapter we discuss broadcasting and multicasting in more detail.

Broadcasting and multicasting only apply to UDP, where it makes sense for an
application to send a single message to multiple recipients. TCP is a connection-
oriented protocol that implies a connection between two hosts (specified by IP
addresses) and one process on each host(specified by port numbers).

Consider a set of hosts on a shared network such as an Ethernet. Each Ethernet

frame contains the source and destination Ethernet addresses (48-bit values). Normally
each Ethernet frame is destined for a single host. The destination address specifies a
single interface—called a unicast. In this way communication between any two hosts
doesn’t bother any of the remaining hosts on the cable (except for possible contention
for the shared media).

There are times, however, when a host wants to send a frameto every other host on
the cable—called a broadcast. We saw this with ARP and RARP. Multicasting fits
between unicasting and broadcasting: the frame should be delivered to a set of hosts
that belong to a multicast group.

To understand broadcasting and multicasting we need to understand thatfiltering
takes place on each host, each time a frame passes by on the cable. Figure 12.1 shows a
picture of this.

First, the interface card sees every frame that passes by on the cable and makes a
decision whether to receive the frame and deliver it to the device driver. Normally the
interface card receives only those frames whose destination address is either the hard-
ware address of the interface or the broadcast address. Additionally, most interfaces
can be placed into a promiscuous mode whereby they receive a copy of every frame.
This modeis used by tcpdump,for example.

169
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Figure 12.1 Filtering that takes place up the protocol stack whena frameis received.
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Today most interfaces can also be configured to receive frames whose destination
addressis a multicast address, or some subset of multicast addresses. On an Ethernet, a

multicast address has the low-order bit of the high-order byte turned on. In hexadeci-
malthis bit looks like 01:00:00:00:00:00. (We can consider the Ethernet broadcast
address, ££: ££: ff£:f££:ff£: ff as a special case of the Ethernet multicast address.)

If the interface card receives the frame, it is passed to the device driver. (One reason
the interface card might discard the frame is if the Ethernet checksum is incorrect.)
Additionalfiltering is performed by the device driver. First, the frame type must spec-
ify a protocol that is supported (IP, ARP, etc.). Second, additional multicastfiltering
may be performed, to check whether the host belongs to the addressed multicast group.

The device driver then passes the frame to the next layer, such asIP, if the frame
type specifies an IP datagram. IP performs morefiltering, based on the source and des-
tination IP addresses, and passes the datagram up to the next layer (such as TCP or
UDP)if all is well.

Each time UDPreceives a datagram from IP, it performsfiltering based on the desti-
nation port number, and sometimes the source port number too. If no process is cur-
rently using the destination port number, the datagram is discarded and an ICMP port
unreachable message is normally generated. (TCP performssimilarfiltering based on
its port numbers.) If the UDP datagram has a checksum error, UDPsilently discardsit.

The problem with broadcasting is the processing load that it places on hosts that
aren’t interested in the broadcasts. Consider an application that is designed to use UDP

Viptela, Inc. - Exhibit 1007
Page 190



Viptela, Inc. - Exhibit 1007 
Page 191

Section 12.2 Broadcasting 171 

12.2

broadcasts. If there are 50 hosts on the cable, but only 20 are participating in the appli-
cation, every time one of the 20 sends a UDP broadcast, the other 30 hosts have to pro-
cess the broadcast, all the way up through the UDPlayer, before the UDP datagram is
discarded. The UDP datagram is discarded by these 30 hosts because the destination
port numberis not in use.

The intent of multicasting is to reduce this load on hosts with no interest in the
application. With multicasting a host specifically joins one or more multicast groups. If
possible, the interface card is told which multicast groups the host belongs to, and only
those multicast frames are received.

Broadcasting

In Figure 3.9 we showed four different forms of IP broadcast addresses. We now
describe them in moredetail.

Limited Broadcast

The limited broadcast address is 255.255.255.255. This can be used as the destination

address of an IP datagram during the host configuration process, when the host might
not know its subnet mask or even its IP address.

A datagram destined for the limited broadcast address is never forwarded by a
router under any circumstance. It only appears on the local cable.

An unanswered questionis: if a host is multihomed and a process sends a datagram
to the limited broadcast address, should the datagram be sent out each connected inter-
face that supports broadcasting? If not, an application that wants to broadcast outall
interfaces must determineall the interfaces on the host that support broadcasting, and
send a copy out each interface.

Most BSD systems treat 255.255.255.255 as an alias for the broadcast address of the
first interface that was configured, and don’t provide any way to send a datagram out
all attached, broadcast-capable interfaces. Indeed, two applications that send UDP
datagrams out every interface are routed (Section 10.3) and rwhod (the server for the
BSD rwhoclient). Both of these applications go through a similar start-up procedure to
determine all the interfaces on the host, and which ones are capable of broadcasting.
The net-directed broadcast address corresponding to that interface is then used as the
destination address for datagramssentoutthe interface.

The Host Requirements RFC takes no stand on the issue of whether a multihomed host should
sendalimited broadcastoutall its interfaces.

Net-directed Broadcast

The net-directed broadcast address has a host ID of all one bits. A class A net-directed

broadcast addressis netid.255.255.255, where netid is the class A network ID.

A router must forward a net-directed broadcast by default, but it must also have an
option to disable this forwarding.
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Subnet-directed Broadcast

The subnet-directed broadcast address hasa hostID ofall one bits but a specific subnet ID.
Classification of an IP address as a subnet-directed broadcast address requires knowl-
edge of the subnet mask. For example, if a router receives a datagram destined for
128.1.2.255, this is a subnet-directed broadcast if the class B network 128.1 has a subnet
mask of 255,255,255.0, but it is not a broadcast if the subnet mask is 255.255.254.0
(OxffF£Ffe00).

All-subnets-directed Broadcast

12.3

Anall-subnets-directed broadcast address also requires knowledge of the destination net-
work’s subnet mask, to differentiate this broadcast address from a net-directed broad-

cast address. Both the subnet ID and the host ID areall one bits. For example, if the
destination’s subnet mask is 255.255,255.0, then the class B IP address 128.1.255.255 is an
all-subnets-directed broadcast. But if the network is not subnetted, then this is a net-
directed broadcast.

Current feeling [Almquist 1993] is that this type of broadcast is obsolete. It is better
to use multicasting than an all-subnets-directed broadcast.

[Almquist 1993] notes that RFC 922 requires that an all-subnets-directed broadcast be sent to
all subnets, but no current routers do so. This is fortunate since a host that has been misconfig-
ured without its subnet mask sendsall its “local” broadcasts to all subnets. For example,if the
host with IP address 128.1.2.3 doesn’t set a subnet mask, then its broadcast address normally
defaults to 128.1.255.255. But if the subnet mask should have been set to 255.255,255.0, then

broadcasts from this misconfigured host appeardirectedto all subnets.

Thefirst widespread implementation of TCP/IP, the 4.2BSD system in 1983, used a host ID of
all zero bits for the broadcast address. One of the earliest references to the broadcast IP

address is IEN 212 [Gurwitz and Hinden 1982], and it proposed to define the IP broadcast
address as a host ID of one bits. (IENs are the Internet Experiment Notes, basically predecessors
to the RFCs.) RFC 894 [Hornig 1984] commented that 4.2BSD used a nonstandard broadcast
address, but RFC 906 [Finlayson 1984] noted that there was noInternet standardfor the broad-
cast address. The RFC editor added a footnote to RFC 906 acknowledging the lack of a stan-
dard broadcast address, but strongly recommendedthat a host ID of all one bits be used as the
broadcast address, Although Berkeley adopted the use of all one bits for the broadcast address
with 4.3BSD in 1986, some operating systems (notably SunOS 4.x) continued to use the non-
standard broadcast address throughthe early 1990s.

Broadcasting Examples

How are broadcasts sent and what do routers and hosts do with broadcasts? Unfortu-

nately this is a hard question to answer because it depends on the type of broadcast
address, the application, the TCP/IP implementation, and possible configuration
switches.

First, the application must support broadcasting. If we execute
sun % ping 255.255.255.255
/usr/etc/ping: unknown host 255.255.255.255
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intending to send a broadcast on thelocal cable, it doesn’t work. But the problem here
is a programming problem in the application (ping). Most applications that accept
either a dotted-decimal IP address or a hostnamecall the function inet_addr(3) to
convert the dotted-decimal character string to its 32-bit binary IP address, and if this
fails, assume the character string is a hostname. Unfortunately this library function
returns —1 to indicate an error (such as a character other than a digit or decimal point in
the string), but the limited broadcast address (255.255.255.255) also converts into —1.
Most programsthen assumethat the character string is a hostname, look it up using the
DNS(Chapter 14), and end up printing an error such as “unknown host.”

If we fix this programming shortfall in the ping program, however, theresults are
often not what we expect. On six different systems tested by the author, only one han-
dled this as expected and generated a broadcast packet on the local cable. Most looked
up the IP address 255.255.255.255 in the routing table, applied the default route, and
sent a unicast packet to the default router. Eventually the packet was thrown away.

A subnet-directed broadcast is what we should be using. Indeed, in Section 6.3 we
sent datagrams to the IP address 140.252.13.63 for the bottom Ethernet in our test net-
work (inside front cover), and got replies from all the hosts on the Ethernet. The sub-
net-directed broadcast address associated with each interface is the value used with the

ifconfig command (Section 3.8). If we ping that address, the result is what we
expect:

sun % arp -a ARPcacheis empty

sun % ping 140.252.13.63
PING 140.252.13.63: 56 data bytes

64 bytes from sun (140.252.13.33): icmp_seq=0. time=4. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=0. time=172. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=0. time=192. ms

64 bytes from sun (140.252.13.33): icmp_seq=1. time=1. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=1l. time=52. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=1. time=90. ms

*? type interrupt key to stop
----140.252,13.63 PING Statistics—--——

2 packets transmitted, 6 packets received, ~-200% packet loss
round-trip (ms) min/avg/max = 1/85/192

sun % arp —a check ARP cache again
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26
bsdi (140.252.13.35) at 0:0:c0:6f:2d:40

IP looks at the destination address (140.252.13.63), determines that it is the subnet-
directed broadcast address, and sends the datagram to the link-layer broadcast address.

We mentioned in Section 6.3 that this type of broadcast meansall the hosts on the
local network, including the sender. Wesee here that we do get a reply from the send-
ing host (sun) in addition to the other hosts on the cable.

In this example we've also shown the ARP cache before and after the ping of the
broadcast address, This is to show the interaction between broadcasting and ARP. The
ARPcache is empty before we execute ping, but full afterward. (That is, there is one
entry for every other host on the cable that responded to the echo request.) How did
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this happen when wesaid that the Ethernet frame is sent to the link-layer broadcast
address (Oxff£fffLfFLL)? The sendingof these frames by sun does not require ARP.

If we watch ping using tcpdump, wesee thatit is the recipients of the broadcast
frames that generate an ARP request to sun, before they can send their reply. This is
because the reply is unicast. We said in Section 4.5 that the receiver of an ARP request
(sun in this example) normally adds the requestor’s IP address and hardware address
to its ARP cache, in addition to sending an ARP reply. This is on the assumption thatif
the requestor is about to send. us a packet, we'll probably want to send something back.

Our use of ping is somewhat special because the type of programming interface
that it uses (called “raw sockets” on most Unix implementations) always allows a data-
gram to be sent to the broadcast address. What if we use an application that was not
designed to support broadcasting, such as TFTP? (We cover TFTP in more detail in
Chapter 15.)

bsdi % tftp start the client
tftp> connect 140.252.13.63 specify the IP address of the server
tftp> get temp. foo and try to fetcha filefrom the server
tftp: sendto: Permission denied
tftp> quit terminate the client

Here we get an error immediately, and nothing is sent on the cable. What's happening
here is that the sockets API doesn’t allow a process to send a UDP datagram to the
broadcast address unless the process specifically states that it plans to broadcast. Thisis
intended to prevent users from mistakenly specifying a broadcast address (as we did
here) when the application was never intended to broadcast.

With the sockets API the application must set the SO_BROADCAST socket option before send-
ing a UDPdatagram to a broadcast address.

Notall systems enforce this restriction. Some implementations allow any process to broadcast
UDP datagrams, without requiring the process to say so. Others are more restrictive and
require a process to have superuserprivileges to broadcast.

The next question is whether directed broadcasts are forwarded or not. Someker-
nels and routers have an option to enable or disable this feature. (See Appendix E.)

If we enable this feature on our router bsdi and run ping from the host slip, we
can see if the subnet-directed broadcasts are forwarded by bsdi. Forwarding a directed
broadcast meansthe router takes the incoming unicast datagram, determines that the
destination address is the directed broadcast for one of its interfaces, and then forwards

the datagram onto the appropriate network using a link-layer broadcast.
slip % ping 140.252.13.63
PING 140.252.13.63 (140.252.13.63): 56 data bytes
64 bytes from 140.252.13.35: icmp_seq=0 tt1=255 time=190 ms
64 bytes from 140.252.13.33: icmp_seq=0 ttl=254 time=280 ms (DUP!)
64 bytes from 140.252,.13.34: icmp_seq=0 ttl=254 time=360 ms (DUP!)

64 bytes from 140.252.13.35: icmp_seq=1 ttl=255 time=180 ms
64 bytes from 140.252.13.33: icmp_seq=1 ttl=254 time=270 ms (DUP!)
64 bytes from 140.252.13.34: icmp_seq=1 ttl=254 time=360 ms (DUP!)

*9 type interrupt key to stop
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-~-- 140.252.13.63 ping statistics ---
3 packets transmitted, 2 packets received, +4 duplicates, 33% packet loss
round-trip min/avg/max = 180/273/360 ms

Weseethat this does indeed work. Wealso see that the BSD ping program checks for
duplicate sequence numbers and prints DUP! when this occurs. It normally means a
packet was duplicated somewhere, but here we expect to see this, since we sent the
requests to a broadcast address.

Wecan also run this test from a host much farther away from the network to which
the broadcast is directed. If we run ping from the host vangogh.cs.berkeley.edu
(14 hops away from our network), it still works if the router sun is configured to for-
ward directed broadcasts. In this case the IP datagrams (carrying the ICMP echo
requests) are forwarded by every router in the path as a normal datagram. None of
them knowsthat it’s really a directed broadcast. The next to last router, neth, thinks
it’s for the host with an ID of 63, and forwards it to sun. It is the router sun that detects

that the destination IP address is really the broadcast address of an attached interface,
and turns the datagram into a link-layer broadcast on that network.

Broadcasting is a feature that should be used with great care. In many cases IP
multicasting will prove to be a better solution.

Multicasting

IP multicasting provides two services for an application.

1. Delivery to multiple destinations. There are many applications that deliver
information to multiple recipients: interactive conferencing and dissemination
of mail or news to multiple recipients, for example. Without multicasting these
types of services tend to use TCP today (delivering a separate copy to each des-
tination). Even with multicasting, some of these applications might continue to
use TCPforits reliability.

2. Solicitation of servers by clients. A diskless workstation, for example, needs to
locate a bootstrap server. Today this is provided using a broadcast (as we'll see
with BOOTP in Chapter 16), but a multicast solution would imposeless over-
head on the hosts that don’t provide the service.

In this section we'll take a look at multicast addresses, and the next chapter looks at the
protocol used by multicasting hosts and routers (IGMP).

Multicast Group Addresses

Figure 12.2 showsthe format ofa class D IP address.
28 bits

Class D 1}1)/1)]0 multicast group ID

 

      

Figure 12.2 Formatof a class D IP address.
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Unlike the other three classes of IP addresses (A, B, and C), which we showedin Fig-
ure 1.5, the 28 bits allocated for the multicast group ID have nofurther structure.

A multicast group address is the combination of the high-order 4 bits of 1110 and the
multicast group ID. These are normally written as dotted-decimal numbers andare in
the range 224.0.0.0 through 239.255.255.255.

The set of hosts listening to a particular IP multicast address is called a host group.
A host group can span multiple networks. Membership in a host group is
dynamic—hosts may join and leave host groups at will. There is no restriction on the
numberof hosts in a group, and a host does not have to belong to a group to send a
messageto that group.

Some multicast group addresses are assigned as well-known addresses by the
IANA (Internet Assigned Numbers Authority). These are called permanent host groups.
This is similar to the well-known TCP and UDP port numbers. Similarly, these well-
known multicast addresses are listed in the latest Assigned Numbers RFC. Notice that
it is the multicast address of the group that is permanent, not the membership of the
group.

For example, 224.0,0.1 means “all systems on this subnet,” and 224.0.0.2 means “all
routers on this subnet.” The multicast address 224.0.1.1 is for NTP, the Network Time

Protocol, 224.0.0.9 is for RIP-2 (Section 10.5), and 224.0.1.2 is for SGI's (Silicon Graphics)
dogfight application.

Converting Multicast Group Addresses to Ethernet Addresses

The IANA ownsan Ethernet address block, which in hexadecimal is 00:00:5e. This is

the high-order 24 bits of the Ethernet address, meaning that this block includes
addresses in the range 00:00:5e:00:00:00 through 00:00:5e:ff:ff:ff. The
IANAallocates half of this block for multicast addresses. Given that the first byte of
any Ethernet address must be 01 to specify a multicast address, this means the Ethernet
addresses corresponding to IP multicasting are in the range 01:00:5e:00:00:00
through 01:00:5e:7f: ff: ff.

Ournotation here uses the Internet standard bit order, for a CSMA/CDor token bus network,

as the bits appear in memory. This is what most programmers and system administrators deal
with. The IEEE documentation uses the transmission order ofthe bits. The Assigned Num-
bers RFC gives additional details on the differences between these representations.

This allocation allows for 23 bits in the Ethernet address to correspond to the IP
multicast group ID. The mappingplaces the low-order23 bits of the multicast group ID
into these 23 bits of the Ethernet address. This is shownin Figure 12.3.

Since the upper 5 bits of the multicast group ID are ignored in this mapping,it is
not unique. Thirty-two different multicast group IDs map to each Ethernet address.
For example, the multicast addresses 224.128.64.32 (hex e0.80.40.20) and 224.0.64.32
(hex e0.00.40.20) both mapinto the Ethernet address 01:00:5e:00:40:20.

Since the mapping is not unique, it implies that the device driver or the IP module
in Figure 12.1 must perform filtering, since the interface card may receive multicast
frames in which the host is really not interested. Also, if the interface card doesn’t
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these 5 bits in the multicast group ID are
not used to form the Ethernet address 

t |
0 7 81 15 16 23 24 31

4 I

|

 

Class D IP address: |1 11 0    coeelea 
 low-order 23 bits of multicast

group ID copied to Ethernet address  
 90000001/00000000010111210/0 —pele dP eto Pa Pea

48-bit Ethernet address
     

Figure 12.3 Mapping of a class D IP address into Ethernet multicast address.

provide adequatefiltering of multicast frames, the device driver may haveto receive all
multicast frames, and perform thefiltering itself.

LANinterface cards tend to come in two varieties. One type performs multicast filtering
based on the hash value of the multicast hardware address, which means some unwanted

frames can always get through, The other type has a small, fixed number of multicast
addresses tolisten for, meaning that when the host needs to receive more multicast addresses
than are supported, the interface must be put into a “multicast promiscuous” mode. Hence,
both types of interfaces still require that the device driver perform checking that the received
frameis really wanted.

Even if the interface performs perfect multicast filtering (based on the 48-bit hardware
address), since the mapping from a class D IP address to a 48-bit hardware address is not one-
to-one,filtering is still required.

Despite this imperfect address mapping and hardwarefiltering, multicasting is still better than
broadcasting.

Multicasting on a single physical network is simple. The sending process specifies a
destination IP address that is a multicast address, the device driver converts this to the

corresponding Ethernet address, and sendsit. The receiving processes mustnotify their
IP layers that they want to receive datagrams destined for a given multicast address,
and the device driver must somehow enable reception of these multicast frames. This is
called “joining a multicast group.” (The reason weusethe plural “receiving processes”
is because there are normally multiple receivers for a given multicast message,either on
the same host or on multiple hosts, which is why we’re using multicasting in the first
place.) When a multicast datagram is received by a host, it must deliver a copy to all
the processes that belong to that multicast group. This is different from UDP where a
single process receives an incoming unicast UDP datagram. With multicasting it is pos-
sible for multiple processes on a given host to belong to the same multicast group.

But complications arise when we extend multicasting beyond a single physical net-
work and pass multicast packets through routers. A protocol is needed for multicast
routers to know if any hosts on a given physical network belong to a given multicast
group. This protocol is called the Internet Group Management Protocol (IGMP)andis the
topic of the next chapter.
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Multicasting on FDDI and Token Ring Networks

12.5

FDDI networks use the same mapping between the class D IP address and the 48-bit
FDDIaddress [Katz 1990]. Token ring networks normally use a different mapping,
becauseoflimitations in most token ring controllers [Pusateri 1993].

Summary

Broadcasting is sending a packet to all hosts on a network (usually a locally attached
network) and multicasting is sending a packet to a set of hosts on a network. Basic to
these two concepts is an understanding of the different types of filtering that occur
when a received frame passes up a protocol stack. Each layer can discard a received
packetfor different reasons.

There are four types of broadcast addresses: limited, net-directed, subnet-directed,
and all-subnets-directed. The most common is subnet-directed. The limited broadcast

address is normally seen only when a system is bootstrapping.
Problems occur when trying to broadcast through routers, often because the router

may not know the subnet mask of the destination network. The results depend on
many factors: which type of broadcast address, configuration parameters, and so on.

A class D IP addressis called a multicast group address. It is converted to an Ether-
net address by placing its lower 23 bits into a fixed Ethernet address. The mappingis
not unique, requiring additionalfiltering by one of the protocol modules.

Exercises

12.1 Does broadcasting increase the amountof networktraffic?

12,2 Consider 50 hosts on an Ethernet: 20 running TCP/IP and 30 running some other protocol
suite. How are broadcasts from one protocol suite handled by hosts running the other
protocol suite?

12.3 You login to a Unix system that you’ve never used before and wantto find the subnet-
directed broadcast addressfor all attached interfaces that support broadcasting. How can
you do this?

12.4 If we ping the broadcast address with a large packet size, as in

sun % ping 140.252.13.63 1472
PING 140.252.13.63: 1472 data bytes

1480 bytes from sun (140.252.13.33): icmp_seq=0. time=6. ms
1480 bytes from svr4 (140.252.13.34): icmp_seq=0. time=84. ms
1480 bytes from bsdi (140.252.13.35): icmp_seq=0. time=128. ms

it works, but increasing the packet size by 1 byte gives us the following error:

sun % ping 140.252.13.63 1473
PING 140.252.13.63: 1473 data bytes
sendto: Message too long

What's going on?

12.5 Redo Exercise 10.6 assuming the eight RIP messages are multicast instead of broadcast
(assume RIP Version 2 is being used). What changes?
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13

IGMP: Internet Group

Management Protocol

Introduction

Section 12.4 provided an overview of IP multicasting and described how class D IP
addresses are mapped into Ethernet addresses. We briefly mentioned how multicasting
occurs on a single physical network, but said complications occur when multiple net-
works are involved and the multicast datagrams must pass throughrouters.

In this chapter we'll look at the Internet Group Management Protocol (IGMP), which is
used by hosts and routers that support multicasting. It lets all the systems on a physical
network know which hosts currently belong to which multicast groups. This informa-
tion is required by the multicast routers, so they know which multicast datagrams to
forward onto which interfaces. IGMPis defined in RFC 1112 [Deering 1989].

Like ICMP, IGMP is considered part of the IP layer. Also like ICMP, IGMP mes-
sages are transmitted in JP datagrams. Unlike other protocols that we’ve seen, IGMP
hasa fixed-size message, with no optional data. Figure 13.1 showsthe encapsulation of
an IGMP message within an IP datagram.

¢__— IP datagram t———>}
     IP IGMP

header message

20 bytes 8 bytes

Figure 13.1 Encapsulation of an IGMP messagewithin an IP datagram.

IGMP messagesare specified in the IP datagram with a protocol value of 2.
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13.2

13.3

IGMP Message

Figure 13.2 showsthe formatof the 8-byte IGMP message.

 

    
0 34 7 8 15 16 31

4-bit 4-bit

IGMP IGMP (unused) 16-bit checksum

version (1)|type (1-2) 8 bytes

32-bit group address (class D IP address) |  
 

Figure 13,2 Formatof fields in IGMP message.

The IGMPversion is 1. An IGMPtype of 1 is a query sent by a multicast router, and 2 is a
response sent by a host. The checksumis calculated in the same manner as the ICMP
checksum.

The group address is a class D IP address. In a query the group addressis set to 0,
and in a report it contains the group address being reported. We'll say more aboutit in
the next section when wesee how IGMPoperates.

IGMP Protocol

Joining a Multicast Group

Fundamental to multicasting is the concept of a process joining a multicast group on a
given interface on a host. (We use the term process to mean a program being executed
by the operating system.) Membership in a multicast group on a given interface is
dynamic—it changes over time as processes join and leave the group.

We imply here that a process must have a way of joining a multicast group on a
given interface. A process can also leave a multicast group that it previously joined.
These are required parts of any API on a host that supports multicasting. We use the
qualifier “interface” because membership in a group is associated with an interface. A
process can join the same group on multiple interfaces.

Therelease of IP multicasting for Berkeley Unix from Stanford University. details these changes
for the sockets API. These changes are also provided in Solaris 2.x and documented in the
ip(7) manual pages.

Implied here is that a host identifies a group by the group address and the interface.
A host must keep a table of all the groupsthat at least one process belongsto, and a ref-
erence count of the numberof processes belonging to the group.
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IGMP Reports and Queries

IGMP messages are used by multicast routers to keep track of group membership on
each of the router’s physically attached networks. The following rules apply.

1. A host sends an IGMP report whenthefirst process joins a group. If multiple
processes on a given host join the same group, only one reportis sent, the first
time a process joins that group. This report is sent out the same interface on
which the process joined the group.

2. A host does not send a report when processes leave a group, even whenthelast
process leaves a group. The host knowsthat there are no members in a given
group, so whenit receives the next query (next step), it won't report the group.

3. A multicast router sends an IGMP query at regular intervals to see if any hosts
still have processes belonging to any groups. The router must send one query
out each interface. The group address in the queryis 0 since the router expects
one response from a host for every group that contains one or more members on
that host.

4. A host responds to an IGMP query by sending one IGMP report for each group
thatstill contains at least one process.

Using these queries and reports, a multicast router keeps a table of which of its inter-
faces have one or more hosts in a multicast group. Whenthe router receives a multicast
datagram to forward,it forwards the datagram (using the corresponding multicast link-
layer address) only out the interfaces that still have hosts with processes belonging to
that group.

Figure 13.3 shows these two IGMP messages, reports sent by hosts, and queries sent
by routers. The router is asking each host to identify each group on that interface.

  

    

IGMPreport, TTL = 1, IGMPquery, TTL = 1,
IGMP group addr = group address - IGMP group addr = 0

dest IP addr = group address dest IP addr = 224.0.0.1
src IP addr = host’s IP addr src IP addr= router’s IP addr

~<ej— f llieedendiendientednentneninenieienienianineniend ee i elenaanne i — +>

| |

host multicastrouter      

Figure 13.3 IGMP reports and queries.

Wetalk about the TTL field later in this section.
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Implementation Details

There are many implementation details in this protocol that improveits efficiency. First,
when a host sends an initial IGMP report (when thefirst process joins a group), there’s
no guarantee that the report is delivered (since IP is used as the delivery service).
Another report is sent at a later time. This later time is chosen by the host to be a ran-
dom value between 0 and 10 seconds.

Next, when a host receives a query from a router it doesn’t respond immediately,
but schedules the responses for later times. (We use the plural “responses” because the
host must send one report for each group that contains one or more members.) Since
multiple hosts can be sending a report for the same group, each schedules its response
using random delays. Also realize that all the hosts on a physical network receiveall
the reports from other hosts in the same group, because the destination address of the
report in Figure 13.3 is the group’s address. This meansthat, if a host is scheduled to
send a report, but receives a copy of the same report from another host, the response
can be canceled. This is because a multicast router doesn’t care how many hosts belong
to the group—only whetherat least one host belongs to the group. Indeed, a multicast
router doesn’t even care which host belongs to a group. It only needs to know that at
least one host belongs to a group on a given interface.

On a single physical network without any multicast routers, the only IGMPtraffic is
the reports issued by the hosts that support IP multicasting, when the host joins a new
group.

Time-to-Live Field

In Figure 13.3 we noted that the TTL field of the reports and queries is set to 1. This
refers to the normal TTL field in the IP header. A multicast datagram with an initial
TTL of 0 is restricted to the same host. By default, multicast datagrams are sent with a
TTL of 1. This restricts the datagram to the same subnet. Higher TTLs can be for-
warded by multicast routers.

Recall from Section 6.2 that an ICMPerror is never generated in responseto a data-
gram destined to a multicast address. Multicast routers do not generate ICMP “time
exceeded” errors when the TTL reaches0.

Normally user processes aren’t concerned with the outgoing TTL. One exception, however,is
the Traceroute program (Chapter 8), which is based on setting the TTL field. Since multicast-
ing applications mustbe able to set the outgoing TTLfield, this implies that the programming
interface must provide this capability to user processes.

By increasing the TTL an application can perform an. expanding ring search for a par-
ticular server. The first multicast datagram is sent with a TTL of 1. If no responseis
received, a TTL of 2 is tried, then 3, and so on. In this way the application locates the
closest server, in terms of hops.

The special range of addresses 224.0.0.0 through 224.0.0,255 is intended for applica-
tions that never need to multicast further than one hop. A multicast router should
never forward a datagram with one of these addresses as the destination, regardless of
the TTL.
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All-Hosts Group

13.4

In Figure 13.3 wealso indicated that the router’s IGMP query is sent to the destination
IP address of 224.0.0.1. This is called the all-hosts group address. It refers to all the
multicast-capable hosts and routers on a physical network. Each host automatically
joins this multicast group on all multicast-capable interfaces, when the interface is ini-
tialized. Membership in this group is never reported.

An Example

Now that we’ve gone through someof the details of IP multicasting, let’s take a look at
the messages involved. We’ve added IP multicasting support to the host sun and will
use some test programs provided with the multicasting software to see what happens.

First we'll use a modified version of the netstat commandthat reports multicast
group membership for each interface. (We showed the standard netstat -ni output
for this host in Section 3.9.) In the following output we show thelines corresponding to
multicast groupsin a bold font:

sun % netstat ~nia

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
led 1500 140,252.13. 140.252.13.33 4370 0 4924 0 0

224.0.0.1
08:00:20:03:£6:42
01:00:5e:00:00:01

slo 552 140.252.1 140.252.1.29 13587 0 15615 0 0
224.0.0.1

100 1536 127 127.0.0.1 1351 0 1351 0 0

224.0.0.1.

The —n option prints IP addresses in numeric format (instead of trying to print them as
names), —i prints the interface statistics, and —a reports on all configured interfaces.

The secondline of output for 1e0 (the Ethernet) showsthat this interface belongs to
the multicast group 224.0.0.1 (“all hosts’), and twolines later the corresponding Ether-
net address is shown: 01:00:5e:00:00:01. This is what we expect for the Ethernet
address, given the mapping we described in Section 12.4. We also see that the other two
interfaces that support multicasting, the SLIP link s10 and the loopback interface 100,
also belongto the all-hosts group.

We must also show the IP routing table, as the normal routing table is used for
multicast datagrams. The bold entry showsthatall datagrams for 224.0.0.0 are sent to
the Ethernet:

9.
sun % netstat -rn

Routing tables
Destination Gateway Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 32 led
127.0.0.1 127.0.0.1 UH 1 381 100
140.252.1.183 140.252.1.29 UH 0 6 sl0
default 140.252.1.183 UG 0 328 sl0
224.0.0.0 140.252.13.33 U 0 66 led
140.252.13.32 140.252.13.33 U 8 5581 led
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If you compare this routing table to the one shown in Section 9.2 for the router sun,
you'll see that the multicast entry is the only change.

Wenowrun a test program that lets us join a multicast group on an interface. (We
don’t show any output for our use of this test program.) Wejoin the group 224.1.2.3 on
the Ethernet interface (140.252.13.33), Executing netstat showsthat the kernel has
joined the group, and again the Ethernet address is what we expect. We show the
changes from the previous netstat output in a bold font:

2.
sun % netstat -nia

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
led 1500 140.252.13. 140.252.13.33 4374 0 4929 0 0

224.1.2.3
224.0.0.1
08:00:20:03:£6:42
01:00:5@:01:02:03
01:00:5e:00:00:01

sl0 552 140.252.1 140.252,.1.29 13862 0 15943 0 0
224.0.0.1

100 1536 127 127.0.0.1 1360 0 1360 0 0
224.0.0.1

We have shownthe output again for the other two interfaces, s10 and 100,to reiterate
that the multicast group is joined only on oneinterface.

Figure 13.4 shows the tcpdump output corresponding to the process joining the
multicast group.

1 0.0 8:0:20:3:£6:42 1:0:5e:1:2:3 ip 60:
sun > 224.1.2.3: igmp report 224.1.2.3 [ttl 1]

2 6.94 (6.94) 8:0:20:3:£6:42 1:0:5e:1:2:3 ip 60:
sun > 224,.1.2.3: igmp report 224.1.2.3 [ttl 1]

Figure 13.4 tcpdump output whena hostjoins a multicast group.

Line 1 occurs whenthe host joins the group. The nextline is the delayed report that we
said is sent at some random time up to 10 secondsafterward.

We have shown the hardware addresses in these twolines, to verify that the Ether-
net destination addressis the correct multicast address. We can also see that the source

IP address is the one corresponding to sun, and the destination IP address is the multi-
cast group address. We can also see that the reported address is that same multicast
group address,Finally, we note that the TTL is 1, as specified. tcpdump prints the TTL in square
brackets whenits value is 0 or 1. This is because the TTL is normally greater than this.
With multicasting, however, we expectto see lots of IP datagrams with a TTL of1.

Implied in this output is that a multicast router must receive all multicast datagrams
on all its interfaces. The router has no idea which multicast groups the hosts mightjoin.
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Multicast Router Example

Let’s continue the previous example, but we’ll also start a multicast routing daemon on
the host sun. Ourinterest here is not the details of multicast routing protocols, but to
see the IGMP queries and reports that are exchanged. Even though the multicast rout-
ing daemonis running on the only host that supports multicasting (sun), all the queries
and reports are multicast on the Ethernet, so we can see them on any other system on
the Ethernet.

Before starting the routing daemon we joined another multicast group: 224.9.9.9.
Figure 13.5 showsthe output.

1 0.0 sun > 224.0.0.4: igmp report 224.0.0.4
2 0.00 ( 0.00) sun > 224.0.0.1: igmp query
3 5.10 ( 5.10) sun > 224.9.9.9: igmp report 224.9.9.9

4 5.22 ( 0.12) sun > 224.0.0.1: igmp query
5 7.90 ( 2.68) sun > 224.1.2.3: igmp report 224.1.2.3
6 8.50 ( 0.60) sun > 224,0.0.4: igmp report 224.0.0.4
7 11.70 ( 3.20) sun > 224,9.9.9: igmp report 224.9.9.9

8 125.51 (113.81) sun > 224.0.0.1: igmp query
9 125.70 ( 0.19) sun > 224.9.9.9: igmp report 224.9.9.9

10 128.50 ( 2.80) sun > 224.1.2.3: igmp report 224.1.2.3
71 129.10 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4

12) 247.82 (118.72) sun > 224.0.0.1: igmp query
13° 248.09 ( 0.27) sun > 224.1.2.3: igmp report 224.1.2.3
14 248.69 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4
15 255.29 ( 6.60) sun > 224.9.9.9: igmp report 224.9.9.9

Figure 13.5 tcpdump output while multicast routing daemonis running.

Wehavenotincluded the Ethernet addressesin this output, because we've already veri-
fied that they are what we expect. We've also deleted the notation that the TTL equals
1, because again that’s what we expect.

Line 1 is output when the routing daemonstarts. It sends a report that it has joined
the group 224.0.0.4. Multicast address 224.0.0.4 is a well-known address used by
DVMRP (Distance Vector Multicast Routing Protocol), the protocol currently used for
multicast routing. (DVMRP is defined in RFC 1075 [Waitzman, Partridge, and Deering
1988].)

When the daemonstarts it also sends out a query (line 2). The destination IP
addressof the query is 224.0.0.1 (all-hosts), as shown in Figure 13.3.

The first report (line 3) is received about 5 secondslater, for group 224.9.9.9, This is
the only report received before another queryis sent (line 4). These two queries (lines 2
and 4) occur rapidly when the daemonstarts up,as it tries to build its multicast routing
table.
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13.5

Lines 5, 6, and 7 are what we expect: one report from the host sun for each group to
which it belongs. Notice that the group 224.0.0.4 is reported, in addition to the two
groups that we explicitly joined, because as long as the routing daemon is running,it
belongs to this group.

The next query on line 8 occurs about 2 minutes after the previous query. Againit
elicits the three reports we expect (lines 9, 10, and 11). The reports are in a different
order this time, as expected, since the time between receiving the query and sending the
report should be randomized.

The final query that we show occurs about 2 minutes after the previous query, and
again we have the expected responses.

Summary

Multicasting is a way to send a message to multiple recipients. In many applicationsit
is better than broadcasting, since multicasting imposes less overhead on hosts that are
not participating in the communication. The simple host membership reporting proto-
col (IGMP)is the basic building block for multicasting.

Multicasting on a LAN oracross closely connected LANs uses the techniques we’ve
described in this chapter. Since broadcasting is often restricted to a single LAN, mullti-
casting could be used instead of broadcasting for many applications that use broadcast-
ing today. .

A problem that has not been completely solved, however, is multicasting across
wide area networks. [Deering and Cheriton 1990] propose extensions to common rout-
ing protocols to support multicasting. Section 9.13 of [Perlman 1992] discusses some of
the problems with multicasting across WANs.

[Casner and Deering 1992] describe the delivery of audio for an IETF meeting across
the Internet using multicasting and a virtual networkcalled the MBONE (multicasting
backbone).

Exercises

13.1 We said that hosts schedule IGMP reports with random delays. How can the hosts on a
LANtry to ensure that no two hosts generate the same random delay?

13.2 In [Casner and Deering 1992] they mention that UDP lacks two features needed for send-
ing audio samples across the MBONE:detection of packet reordering and detection of
duplicate packets. How could you add these capabilities above UDP?
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DNS: The Domain Name

System

Introduction

The Domain Name System, or DNS,is a distributed database that is used by TCP/IP
applications to map between hostnames and IP addresses, and to provide electronic
mail routing information. We use the term distributed because no single site on the Inter-
net knowsall the information. Each site (university department, campus, company, or
department within a company, for example) maintains its own database of information
and runs a server program that other systems across the Internet (clients) can query.
The DNS provides the protocol that allows clients and servers to communicate with
each other.

From an application’s point of view, access to the DNSis through a resolver. On
Unix hosts the resolver is accessed primarily through two library functions,
gethostbyname(3) and gethostbyaddr(3), which are linked with the application
when the application is built. Thefirst takes a hostname and returns an IP address, and
the second takes an IP address and looks up a hostname. The resolver contacts one or
more name servers to do the mapping.

In Figure 4.2 (p. 55) we showedthat the resolver is normally part of the application.
It is not part of the operating system kernel as are the TCP/IP protocols. Another fun-
damental point from this figure is that an application must convert a hostnameto an IP
address before it can ask TCP to open a connection or send a datagram using UDP. The
TCP/IP protocols within the kernel know nothing about the DNS.

In this chapter we'll take a look at how resolvers communicate with name servers
using the TCP/IP protocols (mainly UDP). We do not cover all the administrative
details of running a nameserverorali the options available with resolvers and servers.
These details can fill an entire book. (See [Albitz and Liu 1992] for all the details on the
care and feeding of the standard Unix resolver and nameserver.)

187
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RFC 1034 [Mockapetris 1987a] specifies the concepts and facilities provided by the
DNS, and RFC 1035 [Mockapetris 1987b] details the implementation and specification.
The most commonly used implementation of the DNS, both resolver and nameserver,is
called BIND—the Berkeley Internet Name Domain server. The server is called named.
Ananalysis of the wide-area network traffic generated by the DNSis given in [Danzig,
Obraczka, and Kumar 1992].

14.2 DNS Basics

The DNS namespaceis hierarchical, similar to the Unix filesystem. Figure 14.1 shows
this hierarchical organization.

unnamed root ——()

United Arab Zimbabwe

es) noao Emirates
140 tuc tr)
252 sun

second level
domains

top level arpa u
domains P rel HS Jee

  
enri

“S sun.tuc.noao.edu. cnri.reston.va.us. —~

13@) | generic domains country domains P| 
 

33
“t— 93.13,252.140.in-addx.arpa.

Figure 14.1 Hierarchical organization of the DNS.

Every node(circles in Figure 14.1) has a label of up to 63 characters. The rootof the
tree is a special node with a null label. Any comparison of labels considers uppercase
and lowercase characters the same. The domain name of any nodeinthetreeis thelist of
labels, starting at that node, working up to the root, using a period (“dot”) to separate
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the labels. (Note that this is different from the Unixfilesystem, which forms a pathname
by starting at the top and going downthetree.) Every node in the tree must have a
unique domain name,but the samelabel can be usedat different points in the tree.

A domain namethat ends with a period is called an absolute domain name or a fully
qualified domain name (FQDN). An example is sun.tuc.noao.edu.. If the domain
name does not end with a period, it is assumed that the name needs to be completed.
How the nameis completed depends on the DNS software being used. If the uncom-
pleted name consists of two or morelabels, it might be considered to be complete; oth-
erwise a local addition might be addedto the right of the name. For example, the name
sun might be completed by adding the local suffix .tuc.noao.edu..

The top-level domains are divided into three areas:

1. arpa isa special domain used for address-to-name mappings. (We describethis
in Section 14.5.)

2. The seven 3-character domains are called the generic domains. Sometexts call
these the organizational domains.

3. All the 2-character domains are based on the country codes found in ISO 3166.
These are called the country domains, or the geographical domains.

Figure 14.2 lists the normalclassification of the seven generic domains.
 

  

 
Domain Description

com commercial organizations
edu educational institutions

gov other U.S. governmental organizations
ant international organizations
mil USS, military
net networks

org other organizations

  
 

Figure 14.2 The 3-character generic domains.

DNSfolklore says that the 3-character generic domains are only for U.S. organiza-
tions, and the 2-character country domainsfor everyoneelse, but this is false. There are
many non-U.S. organizations in the generic domains, and many U.S. organizations in
the .us country domain. (RFC 1480 [Cooper and Postel 1993] describes the .us
domain in more detail.) The only generic domains that are restricted to the United
States are .gov and .mil.

Many countries form second-level domains beneath their 2-character country code
similar to the generic domains: .ac.uk, for example, is for academicinstitutions in the
United Kingdom and .co.uk is for commercial organizations in the United Kingdom.

One important feature of the DNSthat isn’t shown in figures such as Figure 14.1 is
the delegation of responsibility within the DNS. No single entity manages every label
in the tree. Instead, one entity (the NIC) maintains a portion of the tree (the top-level
domains) and delegates responsibility to others for specific zones.
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A zoneis a subtree of the DNStree that is administered separately. A common zone
is a second-level domain, noao.edu, for example. Many second-level domains then
divide their zone into smaller zones. For example, a university might divide itself into
zones based on departments, and a company might divide itself into zones based on
branch offices or internal divisions.

If you are familiar with the Unix filesystem, notice that the division of the DNStree into zones
is similar to the division of a logical Unix filesystem into physical disk partitions. Just as we
can’t tell from Figure 14.1 where the zones of authority lie, we can’t tell from a similar picture
of a Unixfilesystem which directories are on which disk partitions.

Once the authority for a zone is delegated, it is up to the person responsible for the
zone to provide multiple name servers for that zone. Whenever a new systemis installed
ina zone, the DNS administrator for the zone allocates a name and an IP address for the

new system and enters these into the name server’s database. This is where the need
for delegation becomes obvious. At a small university, for example, one person could
do this each time a new system was added, but in a large university the responsibility
would have to be delegated (probably by departments), since one person couldn’t keep
up with the work.

A nameserver is said to have authority for one zone or multiple zones. The person
responsible for a zone must provide a primary name server for that zone and one or more
secondary name servers. The primary and secondaries must be independent and redun-
dant servers so that availability of name service for the zone isn’t affected by a single
point of failure.

The main difference between a primary and secondaryis that the primary loadsall
the information for the zone from disk files, while the secondaries obtain all the infor-

mation from the primary. When a secondary obtains the information from its primary
wecall this a zone transfer.

Whena newhostis added to a zone, the administrator adds the appropriate infor-
mation (name and IP address minimally) to a disk file on the system running the pri-
maty. The primary nameserver is then notified to reread its configuration files. The
secondaries query the primary on a regular basis (normally every 3 hours) andif the
primary contains newer data, the secondary obtains the new data using a zonetransfer.

What does a nameserver do whenit doesn’t contain the information requested? It
must contact another nameserver. (This is the distributed nature of the DNS.) Not every
name server, however, knows how to contact every other nameserver. Instead every
name server must know how to contact the root name servers. As of April 1993 there
were eight root servers and all the primary servers must know the IPaddress of each
root server. (These IP addresses are contained in the primary’s configuration files. The
primary servers must know the IP addresses of the root servers, not their DNS names.)
The root servers then know the name andlocation (i.e., the IP address) of each authori-
tative nameserver for all the second-level domains. This implies an iterative process:
the requesting name server must contact a root server. The root server tells the request-
ing server to contact another server, and so on. We'll look into this procedure with
some exampleslater in this chapter.
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14.3

You can fetch the current list of root servers using anonymous FTP. Obtain the file
netinfo/root-servers.txt from either ftp.rs.internic.net ornic.ddn.mil.

A fundamental property of the DNS is caching. That is, when a name server
receives information about a mapping (say, the IP address of a hostname)it caches that
information so that a later query for the same mapping can use the cached result and
not result in additional queries to other servers. Section 14.7 shows an example of
caching.

DNS Message Format

There is one DNS message defined for both queries and responses. Figure 14.3 shows
the overall format of the message.
 

 

  
 

 

 

 

0 : 15 16 31

identification flags

numberof questions numberof answer RRs 12 bytes

numberof authority RRs numberof additional RRs

/ questions 7

/ answers(variable numberof resource records) Z

7 authority 7
(variable numberof resource records)

7 additional information(variable numberof resource records) f

  
 

Figure 14.3 General format of DNS queries and responses.

The message hasa fixed 12-byte header followed by four variable-length fields.
The identification is set by the client and returned by the server. It lets the client

match responsesto requests.
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The 16-bitflags field is divided into numerouspieces, as shownin Figure 14.4.
 

OR opcode AAITC|RD|RA| (zero) rcode
1 4 11 %1éi1 3 4

         

Figure 14.4 flags field in the DNS header.

We'll start at the leftmost bit and describe eachfield.

QRis a 1-bit field: 0 means the messageis a query, 1 meansit’s a response.

opcode is a 4-bit field. The normal valueis 0 (a standard query). Other values are
1 (an inverse query) and 2 (server status request).

AA is a 1-bit flag that means “authoritative answer.” The nameserver is author-
itative for the domain in the question section.

TC is a 1-bit field that means “truncated.” With UDP this meansthetotal size of
the reply exceeded 512 bytes, and only the first 512 bytes of the reply was
returned,

RD is a 1-bit field that means “recursion desired.” This bit can be set in a query
and is then returned in the response. This flag tells the name server to handle
the query itself, called a recursive query. If the bit is not set, and the requested
name server doesn’t have an authoritative answer, the requested name server
returns a list of other name servers to contact for the answer. This is called an

iterative query. We'll see examples of both types of queries in later examples.
RA is a 1-bit field that means “recursion available.” This bit is set to 1 in the

response if the server supports recursion, We'll see in our examples that most
nameservers provide recursion, except for somerootservers.
There is a 3-bit field that must be 0.

rcode is a 4-bit field with the return code. The common values are 0 (no error)
and 3 (name error), A name error is returned only from an authoritative name
server and means the domain namespecified in the query does notexist.

The next four 16-bit fields specify the number of entries in the four variable-length
fields that complete the record. For a query, the number of questions is normally 1 and
the other three counts are 0. Similarly, for a reply the numberofanswers is at least 1, and
the remaining two counts can be 0 or nonzero.

Quesiion Portion of DNS Query Message

The format of each question in the question section is shownin Figure 14.5, There is nor-
mally just one question.

The query name is the name being looked up. It is a sequence of one or more labels.
Each label begins with a 1-byte countthat specifies the numberof bytes that follow. The
name is terminated with a byte of 0, which is a label with a length of 0, which is the
label of the root. Each count byte must be in the range of 0 to 63, since labels are limited
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0 15 16 31 

/ query name Z
 

query type queryclass    
Figure 14.5 Formatof question portion of DNS query message.

to 63 bytes. (We'll see later in this section that a count byte with the two high-order bits
turned on, values 192 to 255, is used with a compression scheme.) Unlike many other
message formats that we’ve encountered, this field is allowed to end on a boundary
other than a 32-bit boundary. No paddingis used.

Figure 14.6 shows how the domain name gemini .tuc.noao. edu is stored.
 

   6/gle;m/ifn]isl3}efulc}]4][n}Jo}falo}]3]e}]d}ulo

i tO
count count count count count

                    

Figure 14.6 Representation of the domain name gemini.tuc.noao.edu.

Each question has a query type and each response (called a resource record, which
wetalk about below) has a type. There are about 20 different values, some of which are
now obsolete. Figure 14.7 shows someof these values. The query type is a superset of
the type: twoof the values we show can be used only in questions.
 

  

       
Name Numeric Description type? ‘ype?

A 1 IP address e ®
NS 2 name server ° °
CNAME 5 canonical name ° °

PTR 12 pointer record ° ®
HINFO 13 host info ° °

Mx 15 mail exchange record ° °

AXFR 252 requestfor zone transfer e
* or ANY 255 requestfor all records ° 

Figure 14.7 type and query type values for DNS questions and responses.

The most common query type is an A type, which means an IP address is desired
for the query name. A PTR query requests the names corresponding to an IP address.
This is a pointer query that we describe in Section 14.5. We describe the other query
types in Section 14.6.

The query class is normally 1, meaning Internet address. (Some other non-IP values
are also supported at somelocations.)
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Resource Record Portion of DNS Response Message

14.4

The final three fields in the DNS message, the answers, authority, and additional informa-
tion fields, share a common format called a resource record or RR. Figure 14.8 shows the
formatof a resource record. ,

0 15 16 31 

Z domain name Z
 

type , class
 

time-to-live
 

resource data length
 
 

resource data
Z Z

  
 

Figure 14.8 Format of DNS resource record.

The domain name is the name to which the following resource data corresponds.It is
in the same format as we described earlier for the query namefield (Figure 14.6).

The type specifies one of the RR type codes. These are the sameas the query type val-
ues that we described earlier. The class is normally 1 for Internet data.

The ftime-to-live field is the number of seconds that the RR can be cached by the
client. RRs often have a TTL of 2 days.

The resource data length specifies the amountof resource data. The formatof this data
depends on the type. For a type of 1 (an A record) the resource data is a 4-byte IP
address.

Now that we've described the basic format of the DNS queries and responses, we'll
see whatis passed in the packets by watching some exchanges using tcpdump.

A Simple Example

Let’s start with a simple example to see the communication between a resolver and a
name server, We'll run the Telnetclient on the host sun to the host gemini, connecting
to the daytimeserver:
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2.
sun % telnet gemini daytime
Trying 140.252.1.11 wae first three lines ofoutput arefrom Telnet client
Connected to gemini.tuc.noao.edu.
Escape character is ‘7*]’.

Wed Mar 24 10:44:17 1993 this is the output from the daytime server
Connection closed by foreign host. and this is from the Telnetclient

For this example we direct the resolver on the host sun (where the Telnet client is run)
to use the nameserver on the host noao.edu (140.252.1.54). Figure 14.9 shows the
arrangementof the three systems.

  

name ._, |daytimenoao.edu geminiserver server

1.54 \ A A\ /
\ /
\ /

      

140.252.1
  

 

   
Figure 14.9 Systems being used for simple DNS example.

As we've mentioned before, the resolver is part of the client, and the resolver contacts a
name server to obtain the IP address before the TCP connection can be established

between Telnet and the daytimeserver.
In this figure we’ve omitted the detail that the connection between sun and the

140.252.1 Ethernetis really a SLIP link (see the figure on the inside front cover) because
that doesn’t affect the discussion. We will, however, run tcpdump on the SLIP link to
see the packets exchanged between the resolver and nameserver.

Thefile /etc/resolv.conf on the host sun tells the resolver what to do:
2.

sun % cat /etc/resolv.conf
nameserver 140.252.1.54
domain tuc.noao.edu

The first line gives the IP address of the name server—the host noao.edu. Up to three
nameserver lines can be specified, to provide backup in case one is down or unreach-
able. The domain line specifies the default domain. If the name being looked upis not
a fully qualified domain name(it doesn’t end with a period) then the default domain
.tuc.noao.edu is appended to the name. This is why we can type telnet gemini
instead of telnet gemini.tuc.noao.edu.

Figure 14.10 shows the packet exchange between the resolver and nameserver.
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1 0.0 140.252.1.29.1447 > 140.252.1.54.53: 1+ A?

gemini.tuc.noao.edu. (37)

2 0.290820 (0.2908) 140.252.1.54.53 > 140.252.1.29.1447: 1* 2/0/0 A
140.252.1.11 (69)

Figure 14.10 tcpdump output for nameserver query of the hostname gemini.tuc.noao.edu.

We've instructed tcpdump not to print domain names for the source and destination IP
addresses of each IP datagram. Instead it prints 140.252.1.29 for the client (the resolver)
and 140.252.1.54 for the name server. Port 1447 is the ephemeral port used by the client
and 53 is the well-known port for the nameserver. If tcpdump hadtried to print names
instead of IP addresses, then it would have been contacting the same name server
(doing pointer queries), confusing the output.

Starting with line 1, the field after the colon (1+) means the identification field is 1,
and the plus sign means the RD flag (recursion desired) is set. We see that by default,
the resolver asks for recursion.

The next field, A?, means the query type is A (we want an IP address), and the
question markindicates it’s a query (not a response). The query nameis printed next:
gemini.tuc.noao.edu.. The resolver added the final period to the query name,
indicating that it’s an absolute domain name.

The length of user data in the UDP datagram is shownas 37 bytes: 12 bytes are the
fixed-size header (Figure 14.3); 21 bytes for the query name (Figure 14.6), and 4 bytes for
the query type and query class. The odd-length UDP datagram reiterates that there is
no padding in the DNS messages.

Line 2 in the tcpdump output is the response from the name server and 1* is the
identification field with the asterisk meaning the AA flag (authoritative answer) is set.
(We expectthis server, the primary server for the noao.edu domain, to be authoritative
for names within its domain.)

The output 2/0/0 showsthe numberof resource recordsin thefinal three variable-
length fields in the response: 2 answer RRs, 0 authority RRs, and 0 additional RRs.
tcpdump only prints the first answer, which in this case has a type of A (IP address)
with a value of 140.252.1.11.

Why do we get two answers to our query? Because the host gemini is multi-
homed. Two IP addresses are returned. Indeed, another useful tool with the DNSis a
publicly available program named host. It lets us issue queries to a name server and
see what comes back. If we run this program we'll see the two IP addresses for this
host:

sun % host gemini
gemini.tuc.noao.edu A 140.252.1.11
gemini.tuc.noao.edu A 140.252.3.54

Thefirst answerin Figure 14.10 and thefirst line of output from the host commandare
the IP address that shares the same subnet (140,252.1) as the requesting host. This is not
an accident. If the name server and the host issuing the query are on the same network
(or subnet), then BIND sorts the results so that addresses on common networks appear
first.
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We canstill access the host gemini using the other address, but it might be less efficient.
Using traceroutein this instance shows that the normal route from subnet 140.252.1 to
140.252.3 is not through the host gemini, but through another router that’s connected to both
networks. Soin this case if we accessed gemini through the other IP address (140.252.3.54) all
the packets would require an additional hop. We return to this example and explore the rea-
son for the alternative route in Section 25.9, when we can use SNMPtolook at a router’s rout-

ing table.

There are other programsthat provide easy interactive access to the DNS. nslookupis sup-
plied with most implementations of the DNS. Chapter 10 of [Albitz and Liu 1992] provides a
detailed description of how to use this program. The dig program (“Domain Internet
Groper”) is another publicly available tool that queries DNS servers. doc (“Domain Obscenity
Control”) is a shell script that uses dig and diagnoses misbehaving domains by sending
queries to the appropriate DNS name servers, and performing simple analysis of the
responses. See Appendix F for details on how to obtain these programs.

The final detail to account for in this example is the size of the UDP data in the
reply: 69 bytes. We need to know twopoints to account for these bytes.

1. The question is returned in the reply.

2. There can be manyrepetitions of domain namesin a reply, so a compression
scheme is used. Indeed, in our example, there are three occurrences of the
domain name gemini.tuc.noao.edu.

The compression scheme is simple. Anywhere the label portion of a domain
name can occur, the single count byte (which is between 0 and 63) has its two
high-order bits turned on instead. This meansit is a 16-bit pointer and not an
8-bit count byte. The 14 bits that follow in the pointer specify an offset in the
DNSmessageof a label to continue with. (Theoffsetof the first byte in the iden-
tification field is 0.) We purposely said that this pointer can occur wherever a
label can occur, not just where a complete domain name can-occur, sinceit’s pos-
sible for a pointer to form either a complete domain nameor just the ending
portion of aname. (This is because the ending labels in the names from a given
domain tend to be identical.)

Figure 14.11 shows the format of the DNSreply, line 2 from Figure 14.10. We also show
the IP and UDP headers to reiterate that DNS messages are normally encapsulated in
UDP datagrams. We explicitly show the count bytes in the labels of the domain namein
the question. The two answers returned are the same, except for the different IP
addresses returned in each answer. In this example the pointer in each answer would
have a value of 12, the offset from the start of the DNS header of the complete domain
name.

Thefinal point to note from this example is from the second line of output from the
Telnet command, which werepeathere:

sun % telnet gemini daytime we only type gemini
Trying 140.252.1.11

Connected to gemini.tuc.noao.edu. but the Telnet client outputs FQRDN

We typed just the hostname (gemini), not the FODN,but the Telnet client output the
FQDN. What's happeningis that the Telnet client looks up the name wetypebycalling
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14.5

  

ls IP datagram —+|

<—______________— UDP datagram>

~<——____—__————— DNS message—+

IP UDP DNS question | answer#1 (RR)|answer #2 (RR)
       header header} header (Figure 14.5) (Figure 14.8)|(Figure 14.8)

20 bytes 8bytes 12bytes 25 bytes 4 16 bytes ~ 16 bytes

 

 

domain name qtype| qclass ptr|type|class TTL length
(6gemini3tuc4noac3edu0) am} ® (42)} @))@) (4)

21 bytes 2 2 2 2 2 4 2 4

IP addr           
Figure 14.11 Format of DNS reply correspondingto line 2 of Figure 14.10.

the resolver (gethostbyname), which returns the IP addresses and the FQDN. Telnet
then prints the IP address that it’s trying to establish a TCP connection with, and when
the connection is established, it outputs the FODN.

If there is a significant pause between typing the Telnet command and printing the
IP address, this delay is caused by the resolver contacting a nameserver to resolve the
nameinto an IP address. A pause between printing Trying and Connected to, how-
ever, is a delay caused by the establishment of the TCP connection between the client
and server, not the DNS.

Pointer Queries

A perpetual stumbling block in understanding the DNS is how pointer queries are
handled—given an IP address, return the name (or names) corresponding to that
address.

First return to Figure 14.1 (p. 188) and examine the arpa top-level domain, and the
in-addr domain beneath it. When an organization joins the Internet and obtains
authority for a portion of the DNS name space, such as noao.edu,, they also obtain
authority for a portion of the in~addr.arpa name space corresponding to their IP
address on the Internet. In the case of noao.eduit is the class B network ID 140.252.

The level of the DNS tree beneath in-addr.arpa must be the first byte of the IP
address (140 in this example), the next level is the next byte of the IP address (252), and
so on. But remember that names are written starting at the bottom of the DNStree,
working upward, This means the DNS name for the host sun, with an IP address of
140.252,13.33, is 33.13.252.140.in-addr.arpa.

We have to write the 4 bytes of the IP address backward because authority is dele-
gated based on network IDs: the first byte of a class A address, the first and second
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bytes of a class B address, andthefirst, second, and third bytes of a class C address, The
first byte of the IP address must be immediately below the in-addrlabel, but FODNs
are written from the bottom of the tree up. If FQDNs were written from the top down,
then the DNS namefor the IP address would be arpa. in-addr.140.252.13.33, but
the FODNfor the host would be edu. noao.tuc. sun.

If there was not a separate branch of the DNStree for handling this address-to-
nametranslation, there would be no way to do the reverse translation other than start-
ing at the root of the tree and trying every top-level domain. This could literally take
days or weeks, given the currentsize of the Internet. The in-addr.arpa solution is a
clever one, although the reversed bytes of the IP address and the special domain are
confusing.

Having to worry about the in-addr.arpa domain and reversing the bytes of the
IP address affects us only if we’re dealing directly with the DNS, using a program such
as host, or watching the packets with tcpdump. From an application’s point of view,
the normal resolver function (gethostbyaddr) takes an IP address and returns infor-
mation about the host. The reversal of the bytes and appending the domain
in-addr. arpa are done automatically by this resolver function.

Example

Let’s use the host program to do a pointer lookup and watch the packets with
tcpdump. We'll use the samesetup as in Figure 14.9, running the host program on the
host sun, and the nameserver on the host noao.edu. We specify the IP address of our
host svr4:

sun % host 140.252.13.34
Name: svr4.tuc.noao.edu
Address: 140.252.13.34

Since the only command-line argumentis an IP address, the host program automati-
cally generates the pointer query. Figure 14.12 shows the t cpdump output.

1 0.0 140.252.1.29,.1610 > 140.252.1.54.53:; 1+ PTR?

34.13.252.140.in-addr.arpa. (44)

2 0.332288 (0.3323) 140.252.1.54.53 > 140.252,.1.29.1610: 1* 1/0/0 PTR
svr4.tuc.noao.edu. (75)

Figure 14.12 tcpdump outputfor a pointer query.

Line 1 showsthatthe identifier is 1, the recursion-desired flag is set (the plus sign), and
the query type is PTR. (Recall that the question mark means this is a query and not a
response.) The data size of 44 bytes is from the 12-byte DNS header, 28 bytesfor the 7
labels in the domain name, and 4 bytes for the query type and queryclass.

The reply has the authoritative-answer bit set (the asterisk) and contains one
answer RR. The RR type is PTR and the resource data contains the domain name.

Whatis passed from the resolver to the name server for a pointer query is not a
32-bit IP address, but the domain name 34.13.252.140.in-addr.arpa.
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Hostname Spoofing Check

Whenan IP datagram arrives at a host for a server, be it a UDP datagram or a TCP con-
nection request segment, all that’s available to the server process is the client’s IP
address and port number (UDP or TCP). Someservers requirethe client’s IP address to
have a pointer record in the DNS. We'll see an example of this, using anonymous FTP
from an unknownIP address, in Section 27.3.

Other servers, such as the Rlogin server (Chapter 26), not only require that the
client’s IP address have a pointer record, but then ask the DNSfor the IP addresses cor-
responding to the name returned in the PTR response, and require that one of the
returned addresses match the source IP address in the received datagram. This checkis
because entries in the .rhosts file (Section 26.2) contain the hostname, not an IP
address, so the server wants to verify that the hostnamereally corresponds to the
incoming IP address.

Some vendors automatically put this check into their resolver routines, specifically
the function gethostbyaddr. This makes the check available to any program using
the resolver, instead of manually placing the check in each application.

Wecan see an example of this using the SunOS4.1.3 resolverlibrary. We have writ-
ten a simple program that performs a pointer query by calling the function
gethostbyaddr. We have also set our /etc/resolv.conf file to use the name
server on the host noao.edu, which is across the SLIP link from the host sun. Fig-
ure 14.13 shows the tcpdump output collected on the SLIP link when the function
gethostbyaddr is called to fetch the name corresponding to the IP address
140.252.1.29 (our host sun).

1 0.0 sun.1812 > noao.edu.domain: 1+ PTR?

29.1.252.140.in-addr.arpa. (43)
2 0.339091 (0.3391) noao.edu.domain > sun.1812: 1* 1/0/0 PTR

sun,tuc.noao.edu. (73)

3 0.344348 (0.0053) sun.1813 > noao.edu.domain: 2+ A?
sun.,tuc.noao.edu. (33)

4 0.669022 (0.3247) noao.edu.domain > sun.1813: 2* 2/0/0 A
140.252.1.29 (69)

Figure 14.13 Calling resolver function to perform pointerquery.

Line 1 is the expected pointer query, and line 2 is the expected response. But the
resolver function automatically sends an IP address query in line 3 for the name
returned in line 2. The response in line 4 contains two answer records, since the host
sun has two IP addresses. If one of the addresses does not match the argument to
gethostbyaddr, a message is sent to the system logging facility, and the function
returns an error to the application.
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14.6 Resource Records

We've seen a few different types of resource records (RRs) so far: an IP address has a
type of A, and PTR meansa pointer query. We’ve also seen that RRs are what a name
server returns: answer RRs, authority RRs, and additional information RRs. There are
about 20 different types of resource records, some of which we'll now describe. Also,
more RR types are being added overtime.

A

PTR

CNAME

HINFO

Mx

An A record defines an IP address. It is stored as a 32-bit binary value.

This is the pointer record used for pointer queries. The IP addressis rep-
resented as a domain name (a sequenceoflabels) in the in-addr.arpa
domain. ,

This stands for “canonical name.” It is represented as a domain name (a
sequenceoflabels). The domain namethat has a canonical nameis often
called an alias. These are used by some FTPsites to provide an easy to
rememberalias for some other system.

For example, the gated server (mentioned in Section 10.3) is available
through anonymous FTP from the server gated.cornell.edu. But
there is no system named gated,this is an alias for some other system.
That other system is the canonical name for gated. cornell. edu:

2
sun % host -t cname gated.cornell.edu
gated.cornell.edu CNAME COMET. CIT. CORNELL. EDU

Here weuse the -t option to specify one particular query type.

Host information: two arbitrary character strings specifying the CPU and
operating system. Notall sites provide HINFO recordsforall their sys-
tems, and the information provided may notbe upto date.

sun % host ~t hinfo sun

sun.tuc.noao.edu HINFO Sun-4/25 Sun4.1.3

Mail exchange records, which are used in the following scenarios: (1) A
site that is not connected to the Internet can get an Internet-connected
site to be its mail exchanger. The two sites then workout an alternative
way to exchange any mail that arrives, often using the UUCP protocol.
(2) MX records provide a way to deliver mail to an alternative host when
the destination host is not available. (3) MX records allow organizations
to provide virtual hosts that one can send mail to, such as
cs.university.edu, even if a host with that name doesn’t exist. (4)
Organizations with firewall gateways can use MX records to limit con-
nectivity to internal systems.
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NS

Manysites that are not connected to the Internet have a UUCP link with
an Internet connected site such as UUNET. MXrecords are then pro-
vided so that electronic mail can be sent to the site using the standard
user@host notation. For example, a fictitious domain foo.com might
have the following MX records:

sun % host -t mx foo.com

foo.com MX relay1.UU.NET
foo.com MX relay2.UU.NET

MX records are used by mailers on hosts connected to the Internet. In
this example the other mailers are told “if you have mail to send to
user@foo.com, send the mail to relayl.uu.net- or
relay2.uu.net.”

MXrecords have 16-bit integers assigned to them,called preference values.
If multiple MX recordsexist for a destination, they’re used in order,start-
ing with the smallest preference value.

Another example of MX records handles the case when a host is down or
unavailable. In that case the mailer uses the MX records only if it can’t
connect to the destination using TCP. In the case of the author’s primary
system, which is connected to the Internet by a SLIP connection, whichis
downmostof the time, we have:

sun % host -tv mx sun

Query about sun for record types MX
Trying sun within tuc.noao.edu ...
Query done, 2 answers, authoritative status: no error
sun.tuc.noao.edu 86400 IN MX 0 sun.tuc.noao.edu
sun.tuc.noao.edu 86400 IN MX 10 noao.edu

Wealso specified the -v option, to see the preference values. (This
option also causes other fields to be output.) The second field, 86400, is
the time-to-live value in seconds. This TTL is 24 hours (24 x 60 x 60). The
third column,IN,is the class (Internet). We see that direct delivery to the
host itself, the first MX record, has the lowest preference value of 0. If
that doesn’t work (ie., the SLIP link is down), the next higher preference
is used (10) and delivery is attempted to the host noao.edu. If that
doesn’t work, the sender will time out and retry at a later time.

In Section 28.3 we show examples of SMTP mail delivery using MX
records.

Nameserver record, These specify the authoritative name server for a
domain. They are represented as domain names (a sequenceoflabels).
We'll see examples of these recordsin the next section.

These are the commontypes of RRs. We'll encounter many of them in later examples.
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14.7 Caching

To reduce the DNStraffic on the Internet, all name servers employ a cache. With the
standard Unix implementation, the cache is maintained in the server, not the resolver.
Since the resolver is part of each application, and applications come and go, putting the
cache into the program that lives the entire time the system is up (the nameserver)
makes sense. This makes the cache available to any applications that use the server.
Any otherhosts at the site that use this name server also share the server’s cache.

In the scenario that we've used for our examples so far (Figure 14.9), we’ve run the
clients on the host sun accessing the name server across the SLIP link on the host
noao.edu. We'll change that now and run the name server on the host sun. In this
way if we monitor the DNS traffic on the SLIP link using tcpdump, we'll only see
queries that can’t be handled by the server out ofits cache.

By default, the resolver looks for a name server on the local host (UDP port 53 or
TCP port 53). We delete the nameserverdirective from our resolverfile, leaving only
the domain directive:

2
sun % cat /etc/resolv.conf
domain tuc.noao.edu

The absence of a nameserverdirective in this file causes the resolver to use the name

server on the local host.

Wethen use the host commandto execute the following query:
2.

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9

Figure 14.14 shows the tcpdump outputfor this query.
1 0.0 sun.tuc.noao.edu.domain > NS.NIC.DDN.MIL.domain:

2 A? ftp.uu.net. (28)
2 0.559285 ( 0.5593) NS.NIC.DDN.MIL.domain > sun.tuc.noao.edu.domain:

2- 0/5/5 (229)

3 0.564449 ( 0.0052) sun,tuc.noao.edu.domain > ns.UU.NET. domain:
3+ A? ftp.uu.net. (28)

4 1.009476 ( 0.4450) ns.UU.NET.domain > sun.tuc.noao.edu.domain:
3* 1/0/0 A ftp.UU.NET (44)

Figure 14.14 tcpdumpoutput for: host ftp. uu. net.

This time we've used a new option for tcpdump. Wecollected all the data to or from UDP or
TCP ports 53 with the -w option. This saves the raw output in a file for later processing. This
prevents tcpdump from trying to call the resolveritself, to print all the names corresponding
to the IP addresses. After we ran our queries, we terminated tcpdump andreran it with the
-r option. This causes it to read the raw outputfile and generate its normal printed output
(which we show in Figure 14,14), This takes a few seconds, since tcpdumpcalls the resolver
itself,
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The first thing to notice in our tcpdump output is that the identifiers are small inte-
gers (2 and 3). This is because we terminated the nameserver, and then restarted it, to
force the cache to be empty. When the nameserver starts up, it initializes the identifier
to 1.

When we type our query, looking for the IP address of the host ftp.uu.net,the
name server contacts one of the eight root servers, ns.nic.ddn.mil (line 1). This is
the normal A type query that we’ve seen before, but notice that the recursion-desired
flag is not specified. (A plus sign would have been printed after the identifier 2 if the
flag wasset.) In our earlier examples we always saw the resolver set the recursion-
desired flag, but here we see that our name server doesn’tset the flag whenit’s contact-
ing one of the root servers. This is because the root servers shouldn't be asked to recur-
sively answer queries—they should be used only to find the addresses of other,
authoritative servers.

Line 2 showsthat the response comes back with no answerRRs,five authority RRs,
and five additional information RRs. The minus sign following the identifier 2 means
the recursion-available (RA) flag was not set—this root server wouldn’t answera recur-
sive query even if we askedit to.

Although tcpdump doesn’t print the 10 RRs that are returned, we can execute the
host commandto see what's in the cache:

sun % host -v ftp.uu.net
Query about ftp.uu.net for record types A
Trying ftp.uu.net ...
Query done, 1 answer, status: no error
The following answer is not authoritative:
ftp.uu.net 19109 IN A 192.48.96.9
Authoritative nameservers:
UU.NET 170308 IN NS NS.UU.NET
UU.NET 170308 IN NS UUNET.UU.NET
UU.NET 170308 IN NS UUCP-GW-1.PA.DEC.COM
UU .NET 170308 IN NS UUCP-GW-2.PA.DEC.COM
UU.NET 170308 IN NS NS.EU.NET
Additional information:
NS.UU.NET 170347 IN A 137.39.1.3
UUNET.UU.NET 170347 IN A 192.48.96.2
UUCP-GW-1.PA.DEC.COM 170347 IN A 16.1.0.18
UUCP-GW~-2.PA.DEC.COM 170347 IN A 16.1.0.19
NS.EU.NET 170347 IN A 192.16.202.11

This time we specified the -v option to see more than just the A record. This showsthat
there are five authoritative name servers for the domain uu.net. The five RRs with

additional information that are returned by the root server contain the IP addresses of
these five name servers. This saves us from having to contact the root server again, to
look up the address of one of the servers. This is another implementation optimization
in the DNS.

The host commandstates that the answeris not authoritative. This is because the

answerwasobtained from our nameserver’s cache, not by contacting an authoritative
server,

Returning to line 3 of Figure 14.14, our nameserver contacts the first of the authori-
tative servers (ns.uu.net) with the same question: What is the IP address of
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ftp.uu.net? This time our server sets the recursion-desired flag. The answer is
returned online 4 as a response with one answerRR.

Wethen execute the host command again, asking for the same name:
2

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9

This time there is no tcpdump output. This is what we expect, since the answer output
by host is returned from the server’s cache.

We execute the host command again, looking for the address of
ftp.ee.lbl.gov:

sun % host ftp.ee.1bl.gov
ftp.ee.lbl.gov CNAME § ee.lbl.gov
ee.lbl.gov A 128.3.112.20

Figure 14.15 shows the tcpdump output.

1 18.664971 (17.6555) sun.tuc.noao.edu.domain > c.nyser.net.domain:
4 A? ftp.ee.lbl.gov. (32)

2 19.429412 ( 0.7644) c.nyser.net.domain > sun.tuc.noao.edu.domain:
4 0/4/4 (188)

3° 19.432271 ( 0.0029) sun.tuc.noao.edu.domain > nsl.1lbl.gov.domain:
5+ A? ftp.ee.lbl.gov. (32)

4 19,909242 ( 0.4770) nsl.lbl.gov.domain > sun.tuc.noao.edu.domain:
5* 2/0/0 CNAME ee.ibl.gov. (72)

Figure 14.15 tcpdump output for: host ftp.ee.1bl.gov.

Line 1 showsthat this time our server contacts anotherof the root servers (c.nyser.net). A
name server normally cycles through the various servers for a zone until round-trip estimates
are accumulated. The server with the smallest round-trip timeis then used.

Since our server is contacting a root server, the recursion-desired flag is not set.
This root server does not clear the recursion-available flag, as we saw in line 2 in Fig-
ure 14.14. (Even so, a nameserverstill should not ask a root server for a recursive
query.)

In line 2 the response comes back with no answers, but four authority RRs and four
additional information RRs. As we can guess, the four authority RRs are the names of
the name servers for ftp.ee.1bl.gov, and the four other RRs contain the IP
addresses of these four servers.

Line 3 is the query of the name server ns1.1b1.gov (the first of the four name
servers returned in line 2). The recursion-desiredflagis set.

The responsein line 4 is different from previous responses. Two answer RRsare
returned and tcpdump saysthatthe first one is a CNAME RR. The canonical name of
ftp.ee.1lbl.govis ee.lbl.gov.

This is a common usage of CNAMErecords. The FTP site for LBL always has a namebegin-
ning with ftp, but it may move from one host to another over time. Users need only know
the name ftp.ee.1b1.gov and the DNS will replace this with its canonical name whenrefer-
enced.

Viptela, Inc. - Exhibit 1007
Page 225



Viptela, Inc. - Exhibit 1007 
Page 226

206 DNS: The Domain Name System Chapter 14 

14.8

14.9

Rememberthat when we ran host,it printed both the CNAMEandthe IP address
of the canonical name. This is because the response(line 4 in Figure 14.15) contained
two answer RRs. The first one is the CNAME and the secondis the A record. If the A

record had not been returned with the CNAME,our server would have issued another

query, asking for the IP address of ee.1bl.gov. This is another implementation
optimization—both the CNAMEandthe A record of the canonical name are returned
in one response.

UDP or TCP

We've mentioned that the well-known port numbers for DNS nameservers are UDP
port 53 and TCP port 53. This implies that the DNS supports both UDP and TCP. But
all the examples that we’ve watched with tcpdump have used UDP. When is each
protocol used and why?

Whenthe resolver issues a query and the response comes back with the TC bit set
(“truncated”) it means the size of the response exceeded 512 bytes, so only the first 512
bytes were returned by the server. The resolver normally issues the request again, using
TCP. This allows more than 512 bytes to be returned. (Recall our discussion of the max-
imum UDPdatagram size in Section 11.10.) Since TCP breaks up a stream of user data
into what it calls segments, it can transfer any amount of user data, using multiple
segments.

Also, when a secondary name server for a domain starts up it performs a zone
transfer from the primary nameserver for the domain. We also said that the secondary
queries the primary on a regular basis (often every 3 hours) to see if the primary has
hadits tables updated, and if so, a zone transfer is performed. Zone transfers are done
using TCP, since there is much moredatato transfer than a single query or response.

Since the DNSprimarily uses UDP, both the resolver and the nameserver must per-
form their own timeout and retransmission. Also, unlike many other Internet applica-
tions that use UDP (TFTP, BOOTP, and SNMP), which operate mostly on local area
networks, DNS queries and responses often traverse wide area networks. The packet
loss rate and variability in round-trip times are normally higher on a WAN than a LAN,
increasing the importance of a good retransmission and timeout algorithm for DNS
clients.

Another Example

Let’s look at another example that ties together many of the DNS features that we’ve
described. We start an Rlogin client, connecting to an Rlogin server in some other
domain. Figure 14.16 shows the exchangeof packets that takes place. The following 11
steps take place, assuming none of the information is already cached by the client or
server:

1. The client starts and calls its resolver function to convert the hostname that we

typed into an IP address. A query of typeAis sent to a root server.
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Figure 14.16 Summaryof packets exchangedto start up Rloginclient and server.

The root server’s response contains the nameservers for the server’s domain.

Theclient’s resolver reissues the query of type A to the server’s nameserver.
This query normally has the recursion-desired flag set.

The response comesback with the IP address of the server host.
The Rlogin client establishes a TCP connection with the Rlogin server. (Chap-
ter 18 provides all the details of this step.) Three packets are exchanged
betweenthe client and server TCP modules.

The Rlogin server receives the connection from the client and calls its resolver
to obtain the name of the client host, given the IP address that the server
receives from its TCP. This is a PTR query issued to a root nameserver. This
root server can be different from the root server used bytheclient in step 1.
The root server’s response contains the name servers for the client's
in-addr. arpa domain.

The server’s resolver reissues the PTR query to the client’s nameserver.

The PTR response contains the FQDN ofthe client host.

The server's resolver issues a query of type A to the client’s name server, ask-
ing for the IP addresses corresponding to the name returned in the previous
step. This may be done automatically by the server’s gethostbyaddr func-
tion, as we described in Section 14.5, otherwise the Rlogin server doesthis step
explicitly. Also, the client’s name server is often the same as the client's
in-addr.arpa nameserver,butthis isn’t required.

The response from the client’s name server contains the A recordsfor the client
host. The Rlogin server compares the A records with the IP address from the
client’s TCP connection request.

Caching can reduce the numberof packets exchangedin thisfigure.
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14.10 Summary

The DNSis an essential part of any host connected to the Internet, and widely used in
private internets also. The basic organization is a hierarchical tree that forms the DNS
namespace.

Applications contact resolvers to convert a hostname to an IP address, and vice
versa. Resolvers then contact a local nameserver, and this server may contact oneof the
root servers or other serversto fulfill the request.

All DNS queries and responses have the same message format. This message con-
tains questions and possibly answer resource records (RRs), authority RRs, and addi-
tional RRs. We saw numerous examples, showing the resolver configuration file and
some of the DNS optimizations: pointers to domain names (to reduce the size of mes-
sages), caching, the in-addr.arpa domain (to look up a name given an IP address),
and returning additional RRs (to save the requestor from issuing another query).

Exercises

14.1 Classify a DNSresolver and a DNS nameserveraseither client, server, or both.

14.2 Account for all 75 bytes in the response in Figure 14.12,

14.3 In Section 12.3 we said that an application that accepts either a dotted-decimal IP address
or a hostname should assume the former, and if that fails, then assume a hostname. What

happensif the orderof the tests is reversed?

14.4 Every UDP datagram has an associated length. A process that receives a UDP datagram is
told whatits length is. When a resolver issues a query using TCP instead of UDP, since
TCPis a stream of bytes without any record markers, how does the application know how
much data is returned? Noticethatthere is no length field in the DNS header (Figure 14.3).
(Hint: Look at RFC 1035.)

14.5 We said that a name server must know the IP addresses of the root servers and that this

information is available via anonymous FTP. Unfortunately not all system administrators
update their DNSfiles whenever changes are madeto thelist of root servers. (Changes do
occur to the list of root servers, but not frequently.) How do you think the DNS handles
this?

14.6 Fetch the file specified in Exercise 1.8 and determine whois responsible for maintaining
the root nameservers. How frequently are the root servers updated?

14.7 Whatis a problem with maintaining the cache in the name server, and having a stateless
resolver?

14.8 In the discussion of Figure 14.10 we said that the nameserver sorts the A recordsso that
addresses on common networks appear first. Who should sort the A records, the name
server or the resolver?
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15.1

15.2

15

IFIP: Trivial File Transfer

Protocol

Introduction

TFTPis the Trivial File Transfer Protocol. It is intended to be used when bootstrapping
diskless systems (normally workstations or X terminals). Unlike the File Transfer Proto-
col (FTP), which we describe in Chapter 27 and which uses TCP, TFTP was designed to
use UDP, to makeit simple and small. Implementations of TFTP (and its required UDP,
IP, and a device driver) can fit in read-only memory.

This chapter provides an overview of TFTP because we'll encounter it in the next
chapter with the Bootstrap Protocol. We also encountered TFTP in Figure 5.1 when we
bootstrapped the host sun from the network. It issued a TFTP request after obtaining
its IP address using RARP.

’ RFC 1350 [Sollins 1992] is the official specification of version 2 of TFTP. Chapter 12
of [Stevens 1990] provides a complete source code implementation of a TFTP client and
server, and describes some of the programming techniques used with TFTP.

Protocol

Each exchange between a client and server starts with the client asking the server to
either read a file for the client or write a file for the client. In the normal case of boot-

strapping a diskless system,thefirst request is a read request (RRQ). Figure 15.1 shows
the formatof the five TFTP messages. (Opcodes1 and 2 share the same format.)

The first 2 bytes of the TFTP message are an opcode. For a read request (RRQ) and
write request (WRQ)thefilename specifies the file on the server that the client wants to
read from or write to. We specifically show that this filenameis terminated by a byte of
0 in Figure 15.1. The mode is one of the ASCII strings netascii or octet (in any

209
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h am : hovclen (1=RRQ) filename 0 mode 0
eade eade (2=WRO)

20 bytes 8 bytes 2 bytes N bytes 1 N bytes 1

opcode|block
(3=data)|number data
2bytes|2 bytes 0-512 bytes

opcode|block
(4=ACK)| number

2bytes,2 bytes

opcode|error error message 0
(5=error)|number

2bytes 2 bytes N bytes 1

Figure 15.1 Formatof the five TFTP messages.

combination of uppercase or lowercase), again terminated by a byte of 0. netascii
means the data are lines of ASCII text with each line terminated by the 2-character
sequence of a carriage return followed by a linefeed (called CR/LF). Both ends must
convert between this format and whatever the local host uses as a line delimiter. An

octettransfer treats the data as 8-bit bytes with no interpretation.
Each data packet contains a block number that is later used in an acknowledgment

packet. As an example, when readinga file the client sends a read request (RRQ) speci-
fying the filename and mode. If the file can be read by theclient, the server responds
with a data packet with a block numberof 1. Theclient sends an ACKof block number
1. The server responds with the next data packet, with a block number of 2. The client
sends an ACKof block number 2. This continues until the file is transferred. Each data

packet contains 512 bytes of data, except for the final packet, which contains 0-511
bytes of data. Whentheclient receives a data packet with less than 512 bytes ofdata,it
knowsit has received the final packet.
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15.3

In the case of a write request (WRQ), the client sends the WRQ specifying the file-
name and mode. If the file can be written by the client, the server responds with an
ACKof block number 0. The client then sends the first 512 bytes offile with a block
numberof 1. The server responds with an ACK of block number1.

This type of data transmission is called a stop-and-wait protocol. It is found only in
simple protocols such as TFTP. We'll see in Section 20.3 that TCP provides a different
form of acknowledgment, which can provide higher throughput. TFTP is designed for
simplicity of implementation, not high throughput.

The final TFTP messagetype is the error message, with an opcode of 5. This is what
the server respondswith if a read request or write request can’t be processed. Read and
write errors during file transmission also cause this message to be sent, and transmis-
sion is then terminated. The error number gives a numeric error code, followed by an
ASCII error message that might contain additional, operating system specific informa-
tion.

Since TFTP uses the unreliable UDP,it is up to TFTP to handle lost and duplicated
packets. Lost packets are detected with a timeout and retransmission implemented by
the sender. (Be aware of a potential problem called the “sorcerer’s apprentice syn-
drome” that can occur if both sides time out and retransmit. Section 12.2 of [Stevens

1990] shows how the problem can occur.) As with most UDP applications, there is no
checksum in the TFTP messages, which assumes any corruption of the data will be
caught by the UDP checksum (Section 11.3).

An Example

Let’s examine TFTP by watching the protocol in action. We'll run the TFTP client on the
host bsdi andfetchatext file from the host svr4:

bsdi % tftp svr4 start the TFTPclient
tftp> get testl.c fetchafilefrom the server
Received 962 bytes in 0.3 seconds

tfitp> quit and terminate

bsdi % 1s -1 testl.c how many bytes in thefile wefetched?
-rw-r--r-- 1 rstevens staff 914 Mar 20 11:41 testl.c

bsdi % we -l1 testl.c and how many lines?
48 testl.c

The first point that catches our eye is that the file contains 914 bytes under Unix, but
TFTP transfers 962 bytes. Using the wc program weseethat there are 48lines in thefile,
so the 48 Unix newline characters are expanded into 48 CR/LF pairs, since the TFTP
default is anetascii transfer.

Figure 15.2 showsthe packet exchangethat takes place.
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1 0.0 bsdi.1106 > svr4.tftp: 19 RRQ "testl.c”

2 0.287080 (0.2871) svr4.1077 > bsdi.1106: udp 516
3 0.291178 (0.0041) bsdi.1106 > svr4.1077: udp 4

4 0.299446 (0.0083) svr4.1077 > bsdi.1106: udp 454
5 0.312320 (0.0129) bsdi.1106 > svr4.1077: udp 4

Figure 15.2 Packet exchange for TFTPofa file.

Line 1 shows the read request from the client to the server. Since the destination UDP
port is the TFTP well-known port (69), tcpdump interprets the TFTP packet and prints
RRQ and the nameof the file. The length of the UDP data is printed as 19 bytes and is
accounted for as follows: 2 bytes for the opcode, 7 bytesfor the filename, 1 byte of 0, 8
bytes for netascii, and another byte of 0.

The next packet is from the server (line 2) and contains 516 bytes: 2 bytes for the
opcode, 2 bytes for the block number, and 512 bytes of data. Line 3 is the acknowledg-
ment for this data: 2 bytes for the opcode and 2 bytes for the block number.

The final data packet (line 4) contains 450 bytes of data. The 512 bytes of data in
line 2 and this 450 bytes of data accountfor the 962 bytes of data outputbytheclient.

Note that tcpdump doesn’t output any additional TFTP protocol information for
lines 2-5, whereas it interpreted the TFTP message in line 1. This is because the
server’s port number changes between lines 1 and 2. The TFIP protocol requires that
the client send the first packet (the RRQ or WRQ)to the server’s well-known UDP port
(69). The server then allocates some other unused ephemeral port on the server’s host
(1077 in Figure 15.2), which is then used by the server for all further packet exchange
between this client and server. Theclient’s port number (1106 in this example) doesn’t
change. tcpdump hasno idea that port 1077 on host svr4is really a TFTP server.

The reason the server’s port number changesis so the server doesn’t tie up the well-
known port for the amount of time required to transfer the file (which could be many
seconds or even minutes). Instead, the well-knownportis left available for other TFTP
clients to send their requests to, while the current transfer is under way.

Recall from Figure 10.6 (p. 133) that when the RIP server had more than 512 bytes to
send to the client, both UDP datagrams came from the server’s well-knownport. In
that example, even though the server had to write multiple datagrams to sendall the
data back, the server did one write, followed by the next, both from its well-known
port. Here, with TFTP, the protocol is different since there is a longer term relationship
between the client and server (which we said could be seconds or minutes). If one
server process used the well-known port for the duration of the file transfer, it would
either have to refuse any further requests that arrived from other clients, or that one
server process would have to multiplex file transfers with multiple clients at the same
time, on the same port (69). The simplest solution is to have the server obtain a new
port after it receives the RRQ or WRO. Naturally the client must detect this new port
whenit receives the first data packet (line 2 in Figure 15.2) and then send all further
acknowledgments(lines 3 and 5) to that new port.

In Section 16.3 we'll see TFTP used when an X terminal is bootstrapped.
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15.4

15.5

Security

Notice in the TFTP packets (Figure 15.1) that there is no provision for a usernameor
password. Thisis a feature (i.e., “security hole”) of TFTP. Since TFTP was designed for
use during the bootstrap process it could be impossible to provide a username and
password.

This feature of TFTP was used by manycrackers to obtain copies of a Unix pass-
word file and then try to guess passwords. To prevent this type of access, most TFTP
servers nowadays provide an option whereby only files in a specific directory (often
/tftpboot on Unix systems) can be accessed. This directory then contains only the
bootstrap files required by the diskless systems.

For additional security, the TFTP server on a Unix system normally sets its user ID
and group ID to values that should not be assigned to any real user. This allows access
only to files that have world-read or world-write permissions.

Summary

TFTPis a simple protocol designedto fit into read-only memory and be used only dur-
ing the bootstrap process of diskless systems. It uses only a few message formats and a
stop-and-wait protocol,

To allow multiple clients to bootstrap at the same time, a TFTP server needsto pro-
vide some form of concurrency. Because UDP does not provide a unique connection
betweena client and server (as does TCP), the TFTP server provides concurrency by cre-
ating a new UDPport for each client. This allows different client input datagramsto be
demultiplexed by the server’s UDP module, based on destination port numbers, instead
of doing this in the serveritself.

The TFIP protocol provides no security features. Most implementations count on
the system administrator of the TFTP server to restrict any client’s accessto thefiles nec-
essary for bootstrapping only.

Chapter 27 covers the File Transfer Protocol (FTP), which is designed for general
purpose, high-throughputfile transfer.

Exercises

15.1 Read the Host Requirements RFC to see what a TFIP server should.doif it receives a
request and the destination IP address of the request is a broadcast address,

15.2 What do you think happens when the TFTP block number wraps around from 65535 to 0?
Does RFC 1350 say anything about this?

15.3 We said that the TFTP sender performsthe timeout and retransmission to handle lost pack-
ets. How does this affect the use of TFTP whenit’s being used as part of the bootstrap
process?

15.4 Whatis the limiting factor in the time required to transfer a file using TFTP?
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lO

BOOTP: Bootstrap Protocol

Introduction

In Chapter 5 we described how a diskless system, with no knowledgeofits IP address,
can determineits IP address using RARP whenit is bootstrapped. There are two prob-
lems with RARP:(1) the only thing returnedis the IP address, and (2) since RARP uses a
link-layer broadcast, RARP requests are not forwarded by routers (necessitating an
RARP server on every physical network). This chapter describes an alternative method
for a diskless system to bootstrapitself, called the Bootstrap Protocol, or BOOTP.

BOOTP uses UDP and normally works in conjunction with TFTP (Chapter 15).
RFC 951 [Croft and Gilmore 1985] is the official specification for BOOTP with clarifica-
tions given in RFC 1542 [Wimer 1993].

BOOTP Packet Format

BOOTP requests and replies are encapsulated in UDP datagrams, as shownin Fig-
ure 16.1.

feAaa. IP datagram §=§=£——__________________|

<q UDP datagram 9=—-——_—_----____»
      IP UDP

header header BOOTPrequest/reply

20 bytes 8 bytes 300 bytes

Figure 16.1 Encapsulation of BOOTP requests and replies within a UDP datagram.
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Figure 16.2 showsthe format of the 300-byte BOOTP request andreply.
 

  
  
 

 

 

 

 

 

 

 

 
0 78 15 16 23 24 31

Opcode hardware type hardware address hop count A
=request, 2=re = Ethernet engt or Ethernet(1=request, 2=reply) (1=Eth length (6 for Eth oP

transaction ID

numberof seconds (unused)

client IP address

yourIP address

server IP address

gateway IP address

300 bytes

7 client hardware address (16 bytes) LZ

Z server hostname(64 bytes) Z

—|

L bootfilename (128 bytes) f

Z vendor-specific information (64 bytes) Z

Vv.

  
 

Figure 16.2 Format of BOOTPrequest andreply.

Opcode is 1 for a request and 2 for a reply. The hardware type field is 1 for a 10
Mbits/sec Ethernet, the same value that is in the field of the same name in an ARP

request or reply (Figure 4.3). Similarly, the hardware address length is 6 bytes for an
Ethernet.

The hop count is set to 0 by the client, but can be used by a proxy server (described
in Section 16.5).
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The transaction ID is a 32-bit integer set by the client and returned by the server.
This lets the client match a response with a request. The client should set this to a ran-
dom numberfor each request.

Numberof seconds can be set by the client to the time since it started trying to boot-
strap. The servers can look at this value, and perhaps a secondary server for a client
won't respond until the number of seconds has exceeded some value, implying that the
client’s primary server is down.

If the client already knowsits IP address,it fills in the client IP address, Otherwise,
the client sets this to 0. In the latter case the server fills in your IP address with the
client’s IP address. The server IP addressis filled in by the server. If a proxy server is
used (Section 16.5), that proxy serverfills in its gateway IP address.

Theclient mustset its client hardware address. Although this is the same value as in
the Ethernet header, by placing the field in the UDP datagram also, it is easily available
to any user process (e.g., a BOOTPserver) that receives the datagram. It is normally
much harder (or impossible) for a process reading UDP datagrams to determine the
fields in the Ethernet header that carried the UDP datagram.

The server hostname is a null terminated string that is optionally filled in by the
server. The server can also fill in the boot filename with the fully qualified, null termi-
nated pathnameofa file to bootstrap from.

The vendor-specific area is used for various extensions to BOOTP. Section 16.6
describes some of these extensions.

Whena client is bootstrapping using BOOTP (an opcodeof 1) the request is nor-
mally a link-layer broadcast and the destination IP address in the IP headeris normally
255.255.255.255 (the limited broadcast, Section 12.2). The source IP address is often
0.0.0.0 since the client does not know its own JP address yet. Recall from Figure 3.9 that
0.0.0.0 is a valid source IP address whena system is bootstrappingitself.

Port Numbers

There are two well-known ports for BOOTP: 67 for the server and 68 for the client. This
meansthe client does not choose an unused ephemeral port, but uses 68 instead, The
reason two port numbers were chosen, instead of just one for the server, is that a
server’s reply can be (but normally isn’t) broadcast.

If the server’s reply were broadcast, and if the client were to choose an ephemeral
port number, these broadcasts would also be received by other applications on other
hosts that happen to be using the same ephemeral port number. Hence, it is considered
bad form to broadcast to a random (i.e., ephemeral) port number.

If the client also used the server’s well-known port (67) as its port, then all servers
on the network are awakened. to look at each broadcast reply. (If all the servers were
awakened, they would examine the opcode, see that it’s a reply and not a request, and
go back to sleep.) Therefore the choice was madeto haveall clients use a single well-
knownportthat differs from the server’s well-known port.

If multiple clients are bootstrapping at the same time, and if the server broadcasts
the replies, each client sees the replies intended for the other clients. The clients can use
the transaction ID field in the BOOTP header to match replies with requests, or the
client can examine the returned client hardware address.

Viptela, Inc. - Exhibit 1007
Page 236



Viptela, Inc. - Exhibit 1007 
Page 237

218 BOOTP: Bootstrap Protocol Chapter 16 

16.3 An Example

Let’s look at an example of BOOTP when an X terminal is bootstrapped. Figure 16.3
shows the tcpdump output. (The client’s name is proteus andthe server’s nameis
mercury. This tcpdump output was obtained on a different network from the one
we've been using forall the other examples in the text.)

1 0.0 0.0.0.0.68 > 255.255.255.255. bootp:
secs:100 ether 0:0:a7:0:62:7c

2 0.355446 (0.3554) mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncd19r"

3 0.355447 (0.0000) arp who-has proteus tell 0.0.0.0
4 0.851508 (0.4961) arp who-has proteus tell 0.0.0.0
5 1.371070 (0.5196) arp who-has proteus tell proteus

6 1.863226 (0.4922) proteus.68 > 255.255.255.255. bootp:
secs:100 ether 0:0:a7:0:62:7e

7 1.871038 (0.0078) mercury.bootp > proteus.68: secs:100 Y:proteus
Simercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncd19r"

8 3.871038 (2.0000) proteus.68 > 255.255.255.255.bootp:
secs:100 ether 0:0:a7:0:62:7c

9 3.878850 (0.0078) mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xned1l9r"

10 5.925786 (2.0469) arp who-has mercury tell proteus
1 5.929692 (0.0039) arp reply mercury is-at 8:0:2b:28:eb:1d

12 5.929694 (0.0000) proteus.tftp > mercury.tftp: 37 RRQ
"/local/var/bootfiles/Xncd19r"

13 5.996094 (0.0664) mercury.2352 > proteus.tftp: 516 DATA block 1
14 6.000000 (0.0039) proteus.tftp > mercury.2352: 4 ACK

manylines deleted here

15 14.980472 (8.9805) mercury.2352 > proteus.tftp: 516 DATA block 2463
16 14.984376 (0.0039) proteus.tftp > mercury.2352: 4 ACK
17 14.984377 (0.0000) mercury.2352 > proteus.tftp: 228 DATA block 2464
18 14.984378 (0.0000) proteus.tftp > mercury.2352: 4 ACK

Figure 16.3 Example of BOOTPbeing used to bootstrap an X terminal.

In line 1 wesee the client’s request from 0.0.0.0.68, destined for 255.255.255.255.67.
The only fields the client has filled in are the number of seconds andits Ethernet
address. We’ll see that this client always sets the number of seconds to 100. The hop
count and transaction ID are both 0 since they are not output by tcpdump. (A transac-
tion ID of 0 meanstheclient ignores the field, since it would set this field to a random
numberif it was going to verify the returned value in the response.)

Line 2 is the reply from the server. Thefields filled in by the server are the client’s
IP address (which tcpdump prints as the name proteus), the server’s IP address
(printed as the name mercury), the IP address of a gateway (printed as the name
mercury), and the nameofa bootfile.
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After receiving the BOOTP reply, the client immediately issues an ARP request to
see if anyone else on the network has its IP address. The name proteus following
who-has correspondsto the target IP address (Figure 4.3), and the sender’s IP address
is set to 0.0.0.0. It sends another identical ARP request0.5 secondlater, and another one
0.5 secondafter that. In the third ARP request(line 5) it changes the sender’s IP address
to be its own JP address. This is a gratuitous ARP request (Section 4.7).

Line 6 shows that the client waits another 0.5 second and broadcasts another

BOOTP request. The only difference between this request and line 1 is that now the
client puts its own IP address in the IP header. It receives the same reply from the same
server(line 7). The client waits another 2 seconds and broadcasts yet another BOOTP
request (line 8) and receives the same reply from the sameserver.

The client then waits another 2 seconds and sends an ARP request for its server
mercury(line 10). The ARP reply is received and the client immediately issues a TFTP
read request for its boot file (line 12), What follows are 2464 TFTP data packets and
acknowledgments. The amount of data transferred is 512 x 2463 +224 = 1,261,280
bytes. This loads the operating system into the X terminal. We have deleted mostof the
TFTPlines from Figure 16.3.

Onething to notice, when comparing this TFTP exchange with Figure 15.2, is that
here the client uses the TFTP well-knownport (69) for the entire transfer. Since one of
the two partners is using port 69, tcpdump knowsthat the packets are TFTP messages,
so it is able to interpret each packet using the TFTP protocol. This is why Figure 16.3
indicates which packets contain data, which contain acknowledgments, and what the
block number is for each packet. We didn’t get this additional information in Fig-
ure 15.2 because neither end was using TPTP’s well-known port for the data transfer.
Normally the TFTP client cannot use TFTP’s well-knownport, since that port is used by
the server on a multiuser system. But here the system is being bootstrapped, so a TFTP
serveris not provided, allowing the client to use the port for the duration of the transfer.
This also implies that the TFTP server on mercury doesn’t care whatthe client’s port
number is—it sends the data to the client’s port, whatever that happensto be.

From Figure 16.3 we see that 1,261,280 bytes are transferred in 9 seconds. This is a
rate of about 140,000 bytes per second. While this is slower than most FTPfile transfers
across an Ethernet, it is not that bad for a simple stop-and-wait protocol such as TFTP.

Whatfollowsas this X terminal is bootstrapped are additional TFTP transfers of the
terminal’s font files, some DNS nameserver queries, and then the initialization of the X
protocol. The total time in Figure 16.3 was almost 15 seconds, and another 6 secondsis
taken for the remaining steps. This gives a total of 21 seconds to bootstrap the diskless
X terminal.

BOOTP Server Design

The BOOTPclient is normally provided in read-only memory on the diskless system. It
is interesting to see how theserver is normally implemented.

First, the server reads UDP datagramsfrom its well-known port (67). Nothing spe-
cial is required. This differs from an RARP server (Section 5.4), which we said had to
read Ethernet frames with a type field of “RARP request.” The BOOTP protocol also
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16.5

madeit easy for the server to obtain the client’s hardware address, by placingit into the
BOOTPpacket (Figure 16.2).

Aninteresting problem arises: how can the server send a response directly back to
the client? The response is a UDP datagram, and the server knowsthe client’s IP
address (probably read from a configuration file on the server). But if the BOOTP server
sends a UDP datagram to that IP address (the normal way UDP output is handled), the
server’s host will probably issue an ARP requestfor that IP address. But theclient can’t
respond to the ARP request since it doesn’t know its IP address yet! (This is called the
“chicken and egg” issue in RFC 951.)

There are two solutions. Thefirst, commonly used by Unix servers, is for the server
to issue an ioct1(2) request to the kernel, to place an entry into the ARP cachefor this
client. (This is what the arp -s command does, Section 4.8.) The server can do this
since it knowsthe client’s hardware address and IP address. This means that when the

server sends the UDP datagram (the BOOTP reply), the server’s ARP module will find
the client’s IP address in the ARP cache.

Analternative solution is for the server to broadcast the BOOTPreply, instead of
sending it directly to the client. Since reducing the number of broadcasts on a network
is always desirable, this solution should be used only if the server cannot make an entry
into its ARP cache. Normally it requires superuser permission to make an entry into the -
ARPcache, requiring a broadcastreply if the server is nonprivileged.

BOOTP Through a Router

We said in Section 5.4 that one of the drawbacks of RARP is that it uses a link-layer
broadcast, which is normally not forwarded by a router. This required an RARP server
on each physical network. BOOTP can be used through a router, if supported by the
router. (Most major router vendors do supportthis feature.)

This is mainly intended for diskless routers, because if a multiuser system with a
disk is used as a router, it can probably run a BOOTPserveritself. Alternatively, the
common Unix BOOTPserver (Appendix F) supports this relay mode, but again, if you
can run a BOOTPserver on the physical network, there’s normally no need to forward
the requests to yet another server on another network.

Whathappensis that the router (also called the “BOOTPrelay agent”) listens for
BOOTPrequests on the server’s well-known port (67). When a requestis received, the
relay agent places its IP address into the gateway IP address field in the BOOTP request,
and sends the request to the real BOOTP server. (The address placed by the relay agent
into the gateway field is the IP address of the interface on which the request was
received.) The relay agent also increments the hops field by one. (This is to prevent
infinite loops in case the request is reforwarded. RFC 951 mentions that the request
should probably be thrown away if the hop count reaches 3.) Since the outgoing
request is a unicast datagram (as opposedto the original client request that was broad-
cast), it can follow any route to the real BOOTPserver, passing through other routers.
The real server gets the request, forms the BOOTPreply, and sendsit back to the relay
agent, not the client. The real server knowsthat the request has been forwarded, since
the gateway field in the request is nonzero. The relay agentreceives the reply and sends
it to the client.
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16.6 Vendor-Specific Information

In Figure 16.2 we showed a 64-byte vendor-specific area. RFC 1533 [Alexander and
Droms1993] defines the formatof this area. This area contains optional information for
the server to return to the client.

If information is provided, the first 4 bytes of this area are set to the IP address
99,130.83.99. This is called the magic cookie and meansthere is information in the area.

Therest of this area is a list of items. Each item begins with a 1-byte tag field. Two
of the items consist of just the tag field: a tag of 0 is a pad byte (to force following items
to preferred byte boundaries), and a tag of 255 marks the end of the items. Any bytes
remainingin this area after the first end byte should be set to pad bytes(0).

Other than these two 1-byte items, the remaining items consist of a single length
byte, followed by the information. Figure 16.4 shows the format of some of the items in
the vendor-specific area.
 

 

   
 

  
 

 
   
 

Pad: tag=0

1 byte

Subnet mask: tag=1 len=4 subnet mask

lbyte  I1byte 4 bytes

Timeoffset: tag=2|len=4 time

ibyte byte 4 bytes

IN

Gateway: tag=3|len=N of preferedgateway — ofgateway
“Tt byte ~ 1 byte 4 bytes ™N 4 bytes

{$$$ N bytes——+

  
14 other items with tags 4-17

 

End: tag=255   
1 byte

Figure 16.4 Format of someof the items in the vendor-specific area.

The subnet mask and time value are really fixed-length items because their values
always occupy 4 bytes. The time offset is the number of seconds since midnight Jan-
uary 1, 1900, UTC.
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The gateway item is an example of a variable-length item. The length is always a
multiple of 4, and the values are the 32-bit IP addresses of one or more gateways
(routers) for the client to use. Thefirst one returned mustbe the preferred gateway.

There are 14 other items defined in RFC 1533. Probably the most importantis the IP
address of a DNS nameserver, with a tag value of 6. Other items return the IP address
of a printer server, the IP address of a time server, and so on. Refer to the RFC forall the
details.

Returning to our example in Figure 16.3, we never saw an ICMP address mask
request (Section 6.3) that would have been broadcast by the client to find its subnet
mask. Although it wasn’t output by tcpdump, we can probably assumethatthe client’s
subnet mask was returned in the vendor-specific area of the BOOTPreply.

The Host Requirements RFC recommendsthat a system using BOOTP obtainits subnet mask
using BOOTP, not ICMP.

The size of the vendor-specific area is limited to 64 bytes. This is a constraint for
some applications. A new protocol named DHCP (Dynamic Host Configuration
Protocol) is built on, but replaces, BOOTP. DHCP extends this area to 312 bytes andis
defined in RFC 1541 [Droms 1993].

Summary

BOOTP uses UDP andis intended as an alternative to RARP for bootstrapping a disk-
less system to find its IP address. BOOTP canalso return additional information, such
as the IP address of a router, the client’s subnet mask, and the IP address of a name
server.

Since BOOTPis used in the bootstrap process, a diskless system needsthe following
protocols implemented in read-only memory: BOOTP, TFTP, UDP, IP, and a device
driver for the local network.

The implementation of a BOOTPserver is easier than an RARP server, since BOOTP
requests and replies are in UDP datagrams, not special link-layer frames. A router can
also serve as a proxy agent for a real BOOTP server, forwarding client requests to the
real server on a different network.

Exercises

16.1 We've said that one advantage of BOOTP over RARP is that BOOTP can work through
routers, whereas RARP, which is a link-layer broadcast, cannot. Yet in Section 16.5 we had
to define special ways for BOOTP to work through a router. What would happenif a capa-
bility were addedto routers allowing them to forward RARP requests?

16.2 Wesaid that a BOOTP client must use the transaction ID to match responses with requests,
in case there are multiple clients bootstrapping at the same time from a server that broad-
casts replies. But in Figure 16.3 the transaction IDis 0, implying that this client ignores the
transaction ID. How do youthink this client matches the responses with its requests?
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ICP: Transmission Control

Protocol

Introduction

In this chapter we providea description of the services provided by TCP for the applica-
tion layer. We also look at the fields in the TCP header. In the chapters that follow we
examineall of these headerfields in more detail, as we see how TCP operates.

Our description of TCP starts in this chapter and continues in the next seven chap-
ters. Chapter 18 describes how a TCP connection is established and terminated, and
Chapters 19 and 20 look at the normal transfer of data, both for interactive use (remote
login) and bulk data (file transfer). Chapter 21 provides the details of TCP’s timeout
and retransmission, followed by two other TCP timers in Chapters 22 and 23. Finally
Chapter 24 takes a look at newer TCP features and TCP performance.

The original specification for TCP is RFC 793 [Postel 1981c], although someerrors in
that RFC are corrected in the Host Requirements RFC.

TCP Services

Even though TCP and UDPuse the same network layer (IP), TCP providesatotally dif-
ferent service to the application layer than UDP does. TCP provides a connection-
oriented,reliable, byte stream service.

The term connection-oriented means the two applications using TCP (normally con-
sidered a client and a server) must establish a TCP connection with each other before
they can exchange data. The typical analogy is dialing a telephone number, waiting for
the other party to answer the phoneand say “hello,” and then saying who’scalling. In
Chapter 18 we look at how a connection is established, and disconnected some time
later wheneither end is done.
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There are exactly two end points communicating with each other on a TCP connec-
tion. Concepts that we talked about in Chapter 12, broadcasting and multicasting,
aren't applicable to TCP.

TCP providesreliability by doing the following:

The application data is broken into what TCP considers the best sized chunks to
send. This is totally different from UDP, where each. write by the application
generates a UDP datagram of that size. The unit of information passed by TCP
to IP is called a segment. (See Figure 1.7, p. 10.) In Section 18.4 we'll see how
TCP decides whatthis segmentsize is.

When TCP sends a segment it maintains a timer, waiting for the other end to
acknowledge reception of the segment. If an acknowledgmentisn’t received in
time, the segment is retransmitted. In Chapter 21 we’ll look at TCP’s adaptive
timeout and retransmission strategy. ,

When TCP receives data from the other end of the connection, it sends an
acknowledgment. This acknowledgmentis not sent immediately, but normally
delayed a fraction of a second, as we discussin Section 19.3.
TCP maintains a checksum on its header and data. This is an end-to-end check-

sum whose purpose is to detect any modification of the data in transit. If a seg-
ment arrives with an invalid checksum, TCP discards it and doesn’t

acknowledge receivingit. (It expects the sender to time out and retransmit.)

Since TCP segments are transmitted as IP datagrams, and since IP datagrams
can arrive out of order, TCP segments can arrive out of order. A receiving TCP
resequences the data if necessary, passing the received data in the correct order
to the application.

Since IP datagrams can get duplicated, a receiving TCP must discard duplicate
data.

TCP also provides flow control. Each end of a TCP connection has a finite
amountof buffer space. A receiving TCP only allows the other end to send as
mutchdata as the receiver has buffers for. This prevents a fast host from taking
all the buffers on a slowerhost.

A stream of 8-bit bytes is exchanged across the TCP connection between the two
applications. There are no record markers automatically inserted by TCP. This is what
wecalled a byte streamservice. If the application on one end writes 10 bytes, followed by
a wtite of 20 bytes, followed by a write of 50 bytes, the application at the other end of
the connection cannot tell what size the individual writes were. The other end may
read the 80 bytes in four reads of 20 bytes at a time. One end puts a stream of bytes into
TCP and the same, identical stream of bytes appears at the other end.

Also, TCP does not interpret the contents of the bytesat all. TCP has no ideaif the
data bytes being exchanged are binary data, ASCII characters, EBCDIC characters, or
whatever. The interpretation of this byte stream is up to the applications on each end of
the connection.
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This treatment of the byte stream by TCPis similar to the treatmentof a file by the Unix oper-
ating system. The Unix kernel does no interpretation whatsoever of the bytes that an applica-
tion reads or write—that is up to the applications. There is no distinction to the Unix kernel
betweena binaryfile or a file containing lines of text.

17.3. TCP Header

Recall that TCP data is encapsulated in an IP datagram, as shown in Figure 17.1.

<q IP datagram -———————_______p

~@———— TCP segment ——————p,
 

IP TCP
header header

  TCP data  
 

20 bytes 20 bytes

Figure 17.1 Encapsulation of TCP data in an IP datagram.

Figure 17.2 shows the format of the TCP header. Its normal size is 20 bytes, unless
options are present.

 

 

 

 

          
 

 

0 15 16 31
A

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgment number 20 bytes

UlA/P]R|S|F

‘bit heads "eu Ric/s|s}y}1 16-bit windowsize
ene G|K|H|T|N|N

16-bit TCP checksum 16-bit urgent pointer
v

Z options(if any) Z

Z data (if any) Z

  
 

Figure 17.2. TCP header.
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Each TCP segment contains the source and destination port number to identify the
sending and receiving application. These two values, along with the source and desti-
nation IP addressesin the IP header, uniquely identify each connection.

The combination of an IP address and a port number is sometimes called a socket.
This term appeared in the original TCP specification (RFC 793), andlater it also became
used as the nameof the Berkeley-derived programminginterface (Section 1.15). It is the
socket pair (the 4-tuple consisting of the client IP address, client port number, server IP
address, and server port number) that specifies the two end points that uniquely identi-
fies each TCP connection in an internet.

The sequence number identifies the byte in the stream of data from the sending TCP
to the receiving TCP that thefirst byte of data in this segment represents. [f we consider
the stream of bytes flowing in one direction between two applications, TCP numbers
each byte with a sequence number. This sequence numberis a 32-bit unsigned number
that wraps back aroundto 0 after reaching 2° — 1.

When a new connection is being established, the SYN flag is turned on. The
sequence numberfield contains the initial sequence number (ISN) chosen by this hostfor this
comnection. The sequence numberof the first byte of data sent by this host will be the
ISN plus one because the SYN flag consumes a sequence number. (We describe addi-
tional details on exactly how a connection is established and terminated in the next
chapter where we'll see that the FIN flag consumes a sequence numberalso.)

Since every byte that is exchanged is numbered,the acknowledgment number contains
the next sequence number that the sender of the acknowledgment expects to receive.
This is therefore the sequence numberplus 1 of the last successfully received byte of
data. This field is valid only if the ACKflag (described below)is on.

Sending an ACKcosts nothing because the 32-bit acknowledgment numberfieldis
always part of the header, as is the ACK flag. Therefore we'll see that once a connection
is established, this field is always set and the ACKflag is always on.

TCP providesafull-duplex service to the application layer. This meansthat data can
be flowing in each direction, independentof the other direction. Therefore, each end of
a connection must maintain a sequence numberof the data flowing in each direction.

TCP can be described as a sliding-window protocol without selective or negative
acknowledgments. (The sliding window protocol used for data transmission is
described in Section 20.3.) We say that TCP lacks selective acknowledgments because
the acknowledgment number in the TCP header meansthat the sender has successfully
received up through but not including that byte. There is currently no way to acknowl-
edge selected pieces of the data stream. For example, if bytes 1-1024 are received OK,
and the next segment contains bytes 2049-3072, the receiver cannot acknowledge this
new segment. All it can send is an ACK with 1025 as the acknowledgment number.
There is no means for negatively acknowledging a segment. For example, if the seg-
ment with bytes 1025-2048 did arrive, but had a checksum error, all the receiving TCP
can send is an ACK with 1025 as the acknowledgment number. In Section 21.7 we'll see
how duplicate acknowledgments can help determine that packets have beenlost.

The header length gives the length of the header in 32-bit words. This is required
because the length of the options field is variable. With a 4-bit field, TCP is limited to a
60-byte header. Without options, however, the normal sizeis 20 bytes.
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17.4

There are six flag bits in the TCP header. One or more of them can be turned on at
the same time. We briefly mention their use here and discuss each flag in more detail in
later chapters.

URG The urgent pointer is valid (Section 20.8).

ACK The acknowledgment numberis valid.

PSH Thereceiver should pass this data to the application as soon as possible (Sec-
tion 20.5).

RST Reset the connection (Section 18.7).

SYN Synchronize sequence numbers to initiate a connection. This flag and the
next are described in Chapter 18.

FIN The senderis finished sending data.

TCP’s flow control is provided by each end advertising a windowsize. This is the
numberof bytes, starting with the one specified by the acknowledgment numberfield,
that the receiver is willing to accept. This is a 16-bit field, limiting the window to 65535
bytes. In Section 24.4 we'll look at the new windowscale option that allows this value
to be scaled, providing larger windows.

The checksum covers the TCP segment: the TCP header and the TCP data. This is a
mandatory field that must be calculated and stored by the sender, and then verified by
the receiver. The TCP checksum is calculated similar to the UDP checksum, using a
pseudo-headeras described in Section 11.3.

The urgent pointer is valid only if the URGflag is set. This pointer is a positive offset
that must be added to the sequence numberfield of the segment to yield the sequence
numberof the last byte of urgent data. TCP’s urgent mode is a way for the sender to
transmit emergency data to the other end. We'll look at this feature in Section 20.8.

The most commonoptionfield is the maximum segment size option, called the MSS.
Each end of a connection normally specifies this option on the first segment exchanged
(the one with the SYN flag set to establish the connection). It specifies the maximum
sized segment that the sender wants to receive. We describe the MSS option in more
detail in Section 18.4, and someof the other TCP options in Chapter 24.

In Figure 17.2 we note that the data portion of the TCP segmentis optional. We'll
see in Chapter 18 that when a connection is established, and when a connectionis termi-
nated, segments are exchanged that contain only the TCP header with possible options.
A header without any data is also used to acknowledgereceived data, if there is no data
to be transmitted in that direction. There are also some cases dealing with timeouts
when a segment can be sent without any data.

Summary

TCP provides a reliable, connection-oriented, byte stream, transport layer service. We
looked briefly at all the fields in the TCP header and will examine them in detail in the
following chapters.
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TCP packetizes the user data into segments,sets a timeout any time it sends data,
acknowledges data received by the other end, reorders out-of-order data, discards
duplicate data, provides end-to-end flow control, and calculates and verifies a manda-
tory end-to-end checksum.

TCP is used by manyof the popular applications, such as Telnet, Rlogin, FTP, and
electronic mail (SMTP).

Exercises

17.1

17.2

17.3

17.4

17.5

We've covered the following packet formats, each of which has a checksum in its corre-
sponding header: IP, ICMP, IGMP, UDP, and TCP. For each one, describe whatportion of
an IP datagram the checksum covers and whether the checksum is mandatory or optional.

Whydoall the Internet protocols that we’ve discussed (IP, ICMP, IGMP, UDP, TCP) quietly
discard a packet that arrives with a checksum error?

TCP provides a byte-stream service where record boundaries are not maintained between
the sender and receiver. How can applications provide their own record markers?

Whyare the source and destination port numbersat the beginning of the TCP header?

Why does the TCP header have a header length field while the UDP header (Figure 11.2,
p. 144) does not?
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18.1

18.2

18

TCP Connection Establishment

and fermination

Introduction

TCP is a connection-oriented protocol. Before either end can send data to the other, a
connection must be established between them. In this chapter we take a detailed look at
how a TCP connection is established and later terminated.

This establishment of a connection between the two ends differs from a

connectionless protocol such as UDP. We saw in Chapter 11 that with UDP one endjust
sends a datagram to the other end, without any preliminary handshaking.

Connection Establishment and Termination

To see what happens when a TCP connection is established and then terminated, we
type the following commandon the system svr4:

svr4 % telnet bsdi discard

Trying 140.252.13.35 ...
Connected to bsdi.

Escape character is ‘’“]’.

“y type Control, right bracket to talk to the Telnet client
telnet> quit terminate the connection
Connection closed.

The telnet commandestablishes a TCP connection with the host bsdi on the port
correspondingto the discard service (Section 1.12). This is exactly the type of service we
need to see what happens when a connection is established and terminated, without
havingthe server initiate any data exchange.
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tepdump Output

Figure 18.1 shows the tcpdump outputfor the segments generated by this command.

1 0.0 svr4.1037 > bsdi.discard: S 1415531521:1415531521 (0)
win 4096 <mss 1024>

2 0.002402 (0.0024) bsdi.discard > svr4.1037: S 1823083521:1823083521 (0)
ack 1415531522 win 4096
<mss 1024>

3 0.007224 (0.0048) svr4.1037 > bsdi.discard: . ack 1823083522 win 4096

4 4.155441 (4.1482) svr4.1037 > bsdi.discard: F 1415531522:1415531522 (0)
, ack 1823083522 win 4096

5 4.156747 (0.0013) bsdi.discard > svr4.1037: . ack 1415531523 win 4096

6 4.158144 (0.0014) bsdi.discard > svr4.1037: F 1823083522:1823083522 (0)
ack 1415531523 win 4096

7 4.180662 (0.0225) svr4.1037 > bsdi.discard: . ack 1823083523 win 4096

Figure 18.1 tcpdump output for TCP connection establishment and termination.

These seven TCP segments contain TCP headers only. No data is exchanged.
For TCP segments, each outputline begins with

source > destination: flags

where flags represents four of the six flag bits in the TCP header (Figure 17.2). Fig-
ure 18.2 showsthefive different characters that can appear in theflags output.
 

  

    
3-character a

flag abbreviation Description

s SYN synchronize sequence numbers
F FIN senderis finished sending data
R RST reset connection

P PSH push data to receiving process as soon as possible
noneof abovefourflags is on
 

Figure 18.2 flag characters output by tcpdump forflag bits in TCP header.

In this example wesee the S, F, and period. We’ll see the other twoflags (R and P) later.
The other two TCP header flag bits—ACK and URG—are printed specially by
tcpdump.

It’s possible for more than oneof the four flag bits in Figure 18.2 to be on ina single
segment, but we normally see only one on atatime.

RFC 1025 [Postel 1987], the TCP and IP Bake Off, calls a segment with the maximum combina-
tion of allowable flag bits turned on at once (SYN, URG, PSH, FIN, and 1 byte of data) a
Kamikaze packet. It’s also known as a nastygram, Christmas tree packet, and lamp test
segment,
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In line 1, the field 1415531521:1415531521 (0) means the sequence number of
the packet was 1415531521 and the number of data bytes in the segment was 0.
tcpdump displays this by printing the starting sequence number, a colon, the implied
ending sequence number, and the numberof data bytes in parentheses. The advantage
of displaying both the sequence number and the implied ending sequence numberis to
see what the implied ending sequence number is, when the number of bytes is greater
than 0. This field is output only if (1) the segment contains one or more bytes of data or
(2) the SYN,FIN, or RST flag was on. Lines 1, 2, 4, and 6 in Figure 18.1 display this field
becauseof the flag bits—wenever exchange any data in this example.

In line 2 the field ack 1415531522 shows the acknowledgment number. This is
printed only if the ACKflag in the headeris on.

Thefield win 4096 in every line of output shows the windowsize being advertised
by the sender. In these examples, where we are not exchanging any data, the window
size never changes from its default of 4096. (We examine TCP’s windowsize in Sec-
tion 20.4.)

The final field that is output in Figure 18.1, <mss 1024> shows the maximum seg-
ment size (MSS) option specified by the sender. The sender does not wantto receive TCP
segments larger than this value. This is normally to avoid fragmentation (Section 11.5).
We discuss the maximum. segmentsize in Section 18.4, and show the formatof the vari-
ous TCP options in Section 18.10.

Time Line

Figure 18.3 showsthe time line for this sequence of packets. (We described some gen-
eral features of these time lines when we showedthefirst one in Figure 6.11, p. 80.) This
figure shows which end is sending packets. We also expand someof the tcpdump out-
put(e.g., printing SYN instead of S). In this time line we have also removed the win-
dowsize values, since they add nothing to the discussion.

Connection Establishment Protocol

Now let’s return to the details of the TCP protocol that are shown in Figure 18.3. To
establish a TCP connection:

1. The requesting end (normally called the client) sends a SYN segmentspecifying
the port numberof the server that the client wants to connect to, and theclient’s
initial sequence number (ISN, 1415531521 in this example). This is segment1.

2. The server responds with its own SYN segment containing the server’s initial
sequence number (segment 2). The server also acknowledges the client’s SYN
by ACKingtheclient’s ISN plus one. A SYN consumesone sequence number.

3. The client must acknowledge this SYN from the server by ACKINg the server’sISN plus one (segment3).

These three segments complete the connection establishment. This is often called the
three-way handshake.
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svr4,.1037 bsdi.discard

0.0 segment1 SYN 1415531521:1415531591(9)
: <mss 10245

; 521(0SYN 1923083521:18230895778 ) segment2
0.002402(0.0024) le sok 1415501522, <ms

0.007224 (0,0048) segment3 ack 1823083522
>

7 7
FIN 141554.155441 (4.1482 segment4 31522:14(41482) 6 15531522(0) ack 1823083599>|

ack 1415531523 segment 5
4.156747 (0.0013) a- 3ck 141553152

FIN 1823083522:1823083522(0) a segment6
4.158144(0.0014) La

4.180662 (0.0225) segment 7 ack 1823083523
>|

  
Figure 18.3 Timeline of connection establishment and connection termination.

The side that sends the first SYN is said to perform an active open. The otherside,
which receives this SYN and sends the next SYN, performs a passive open. (In Sec-
tion 18.8 we describe a simultaneous open where both sides can do an active open.)

When each end sends its SYN to establish the connection, it chooses an initial

sequence number for that connection. The ISN should change over time, so that each
connection has a different ISN. RFC 793 [Postel 1981c] specifies that the ISN should be
viewed as a 32-bit counter that increments by one every 4 microseconds. The purpose
in these sequence numbers is to prevent packets that get delayed in the network from
being delivered later and then misinterpreted as part of an existing connection.

How are the sequence numbers chosen? In 4.4BSD (and most Berkeley-derived implementa-
tions) when the system isinitialized the initial send sequence numberis initialized to 1. This
practice violates the Host Requirements RFC. (A commentin the code acknowledges that this
is wrong.) This variable is then incremented by 64,000 every half-second, and will cycle back
to 0 about every 9.5 hours. (This corresponds to a counter that is incremented every 8
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microseconds, not every 4 microseconds.) Additionally, each time a connection is established,
this variable is incremented by 64,000.

The 4.1-second gap between segments 3 and 4 is the time between establishing the
connection and typing the quit commandto telnet to terminate the connection.

Connection Termination Protocol

While it takes three segments to establish a connection, it takes four to terminate a con-
nection. This is caused by TCP’shalf-close. Since a TCP connectionis full-duplex (that
is, data can be flowing in each direction independently of the other direction), each
direction must be shut down independently. The rule is that either end can send a FIN
whenit is done sending data. When a TCP receives a FIN,it must notify the application
that the other end has terminated that direction of data flow. The sending of a FIN is
normally the result of the application issuing a close.

The receipt of a FIN only meansthere will be no more data flowingin that direction.
A TCPcanstill send data after receiving a FIN. While it’s possible for an application to
take advantage of this half-close, in practice few TCP applications use it. The normal
scenario is what we show in Figure 18.3. We describe the half-close in more detail in
Section 18.5.

Wesay that the end thatfirst issues the close (e.g., sends the first FIN) performs the
active close and the other end (that receives this FIN) performs the passive close. Nor-

mally one end doesthe active close and the other does the passiveclose, but we'll see in
Section 18.9 how both ends can do anactive close.

Segment 4 in Figure 18.3 initiates the termination of the connection and is sent when
the Telnet client closes its connection. This happens when we type quit. This causes
the client TCP to send a FIN,closing the flow of data from theclient to the server.

Whenthe server receives the FIN it sends back an ACK of the received sequence
numberplus one (segment 5). A FIN consumes a sequence number, just like a SYN. At
this point the server’s TCP also delivers an end-of-file to the application (the discard
server). The server then closes its connection, causing its TCP to send a FIN (segment
6), which the client TCP must ACK by incrementing the received sequence number by
one (segment7).

Figure 18.4 showsthe typical sequence of segments that we’ve described for the ter-
mination of a connection. We omit the sequence numbers. In this figure sending the
FINs is caused by the applications closing their end of the connection, whereas the
ACKsof these FINs are automatically generated by the TCP software.

Connections are normally initiated by the client, with the first SYN going from the
client to the server. Either end can actively close the connection (i.e., send the first FIN).
Often, however, it is the client that determines when the connection should be termi-

nated, since client processes are often driven by an interactive user, who enters some-
thing like “quit” to terminate. In Figure 18.4 we can switch the labelsat the top,calling
the left side the server and the right side the client, and everythingstill works fine as
shown. (Thefirst example in Section 14.4, for example, shows the daytimeserver clos-
ing the connection.)
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application close >

client server

 

 

FIN
bel

ack of FIN
Lt

FIN
Lt

» deliver EOF to application

< application close  pSOEEIN  
Figure 18.4 Normal exchange of segments during connection termination.

Normal tcpdump Output

Having to sort through all the huge sequence numbers is cumbersome, so the default
tepdump output shows the complete sequence numbers only on the SYN segments,
and showsall following sequence numbersasrelative offsets from the original sequence
numbers. (To generate the output for Figure.18.1 we had to specify the -S option.) The
normal tcpdump output corresponding to Figure 18.1 is shownin Figure 18.5.

1

NHBFDBHWH

0.

>bPDBD&©

0

002402

007224

155441

156747

.158144

. 180662

(0.

(4,

(0.

(0.

(0.

0024)

0048)

1482)

0013)

0014)

0225)

svr4.1037 > bsdi.discard: S 1415531521:1415531521 (0)

bsdi

svr4.

svr4.

bsdi.

bsdi.

svr4

.discard > svr4.1037:

1037 > bsdi.discard:

1037 > bsdi.discard:

discard > svr4.1037:

discard > svr4.1037:

.1037 > bsdi.discard:

win 4096 <mss 1024>

S 1823083521:1823083521 (0)
ack 1415531522
win 4096 <mss 1024>

- ack 1 win 4096

F 1:1(0) ack 1 win 4096

. ack 2 win 4096

F 1:1(0) ack 2 win 4096

» ack 2 win 4096

Figure 18.5 Normal tcpdump output for connection establishment and termination.

Unless we need to show the complete sequence numbers, we'll use this form of output
in all following examples.
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18.3 Timeout of Connection Establishment

There are several instances when the connection cannot be established. In one example
the server host is down. To simulate this scenario we issue our telnet commandafter

disconnecting the Ethernet cable from the server’s host. Figure 18.6 shows the
tcpdump output,

1 0.0 bsdi.1024 > svr4.discard: S 291008001:291008001 (0)
win 4096 <mss 1024>
{tos 0x10]

2 5.814797 ( 5.8148) bsdi.1024 > svr4.discard: S 291008001:291008001(0)
win 4096 <mss 1024>

/ [tos 0x10]
3 29,815436 (24.0006) bsdi.1024 > svr4.discard: S 291008001:291008001 (0)

win 4096 <mss 1024>

[tos 0x10]

Figure 18.6 tcpdump outputfor connection establishment that times out.

The interesting point in this output is how frequently the client’s TCP sends a SYN
to try to establish the connection. The second segmentis sent 5.8 secondsafter thefirst,
and the third is sent 24 secondsafter the second.

Asa side note, this example was run about 38 minutesafter the client was rebooted. This cor-
responds with the initial sequence numberof 291,008,001 (approximately 38 x 60 x 64000 x 2),
Recall earlier in this chapter we said that typical Berkeley-derived systemsinitialize the initial
sequence numberto 1 and then incrementit by 64,000 every half-second.

Also, this is the first TCP connection since the system was bootstrapped, which is why the
client’s port numberis 1024.

Whatisn’t shown in Figure 18.6 is how longthe client’s TCP keeps retransmitting
before giving up. To see this we haveto time the telnet command:

bsdi % date ; telnet svr4 discard ; date
Thu Sep 24 16:24:11 MST 1992
Trying 140.252.13.34...
telnet: Unable to connect to remote host: Connection timed out

Thu Sep 24 16:25:27 MST 1992
 

The time difference is 76 seconds. Most Berkeley-derived systemsset a time limit of 75
seconds on the establishment of a new connection. We’ll see in Section 21.4 that the

third packet sent by the client would have timed out around 16:25:29, 48 secondsafter it
wassent, had the client not given up after 75 seconds.

First Timeout Period

One puzzling item in Figure 18.6 is that the first timeout period, 5.8 seconds, is close to 6
seconds, but not exact, while the second period is almost exactly 24 seconds. Ten more
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of these tests were run andthefirst timeout period took on various values between 5.59
seconds and 5.93 seconds. The second timeout period, however, was always 24.00 (to
two decimalplaces).

What’s happening here is that BSD implementations of TCP run a timer that goes
off every 500 ms. This 500-mstimer is used for various TCP timeouts,all of which we
cover in later chapters. When wetype in the telnet command,aninitial 6-second
timer is established (12 clock ticks), but it may expire anywhere between 5.5 and 6 sec-
onds in the future. Figure 18.7 shows what’s happening.

11 clock ticks x 500 ms/ tick = 5.5 seconds 

 
11 10 9 8 7 6 5 4 3 2 1 0

| | | | | | | | | | | |

| | | | | | |
<a Asomewhere in here <a

application causes TCP per tek TCP reschedules
to set timeoutfor6 sec. timeout for 24 sec.

(12 ticks) in the future in the future

Figure 18.7. TCP 500-mstimer.

Although the timeris initialized to 12 ticks, the first decrement of the timer can occur
between 0 and 500 msafterit is set. From that point on the timer is decremented about
every 500 ms, but the first period can be variable. (We use the qualifier “about” because
the time when TCP gets control every 500 ms can be preempted by other interrupts
being handled by the kernel.)

Whenthat 6-second timer expires at the tick labeled 0 in Figure 18.7, the timeris
reset for 24 seconds(48 ticks) in the future. This next timer will be close to 24 seconds,
since it was set at a time when the TCP’s 500-ms timer handler wascalled by the kernel.

Type-of-Service Field

18.4

In Figure 18.6, the notation [tos 0x10] appears. This is the type-of-service (TOS)field
in the IP datagram (Figure 3.2). The B5D/386 Telnet client sets the field for minimum
delay.

Maximum Segment Size

The maximum segment size (MSS) is the largest “chunk” of data that TCP will send to
the other end. When a connection is established, each end can announce its MSS. The

values we've seen haveall been 1024. The resulting IP datagram is normally 40 bytes
larger: 20 bytes for the TCP header and 20 bytes for the IP header.

Sometexts refer to this as a “negotiated” option. It is not negotiated in any way.
When a connection is established, each end has the option of announcing the MSSit
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expects to receive. (An MSSoption can only appear in a SYN segment.) If one end does
not receive an MSS option from the other end, a default of 536 bytes is assumed. (This
default allows for a 20-byte IP header and a 20-byte TCP headerto fit into a 576-byte IP
datagram.)

In general, the larger the MSSthe better, until fragmentation occurs. (This may not
alwaysbe true. See Figures 24.3 and 24.4 for a counterexample.) A larger segmentsize
allows more data to be sent in each segment, amortizing the cost of the IP and TCP
headers. When TCP sends a SYN segment, either because a local application wants to
initiate a connection, or when a connection request is received from another host, it can
send an MSSvalue up to the outgoing interface’s MTU, minusthesize of the fixed TCP
and IP headers. For an Ethernet this implies an MSS of up to 1460 bytes. Using IEEE
802.3 encapsulation (Section 2.2), theMSS could go up to 1452 bytes.

The values of 1024 that we’ve seen in this chapter, for connections involving
BSD/386 and SVR4, are because many BSD implementations require the MSS to be a
multiple of 512. Other systems, such as SunOS 4.1.3, Solaris 2.2, and AIX 3.2.2, all
announce an MSS of 1460 when both endsare on a local Ethernet. Measurements in

[Mogul 1993] show how an MSS of 1460 provides better performance on an Ethernet
than an MSS of 1024.

If the destination IP addressis “nonlocal,” the MSS normally defaults to 536. While
it’s easy to say that a destination whose IP address has the same network ID and the
same subnetID as oursis local, and a destination whose IP addresshasa totally differ-
ent network ID from ours is nonlocal, a destination with the same network ID but a dif-

ferent subnet ID could be either local or nonlocal. Most implementations provide a
configuration option (Appendix E and Figure E.1) that lets the system administrator
specify whether different subnets are local or nonlocal. The setting of this option deter-
mines whether the announced MSSis as large as possible (up to the outgoing interface’s
MTU)or the default of 536.

The MSSlets a host limit the size of datagrams that the other end sends it. When
combined with the fact that a host can also limit the size of the datagramsthatit sends,
this lets a host avoid fragmentation when the host is connected to a network with a
small MTU.

Consider our host slip, which has a SLIP link with an MTU of 296 to the router
bsdi. Figure 18.8 showsthese systems and the host sun.

   

          
MTU=1500 MTU=1500

slip4ouPedbsdi sun |.
MTU=296 MTU=296

SYN <mss 1460>~<a
 

SYN <mss 256> i

Figure 18.8 TCP connection from sun to slip showing MSSvalues.
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18.5

Weinitiate a TCP connection from sun to slip and watch the segments using
tcpdump. Figure 18.9 showsonly the connection establishment (with the windowsize
advertisements removed).

1 0.0 sun.1093 > slip.discard: S§ 517312000:517312000 (0)
<mss 1460>

2 0.10 (0.00) slip.discard > sun.1093: S 509556225:509556225 (0)
ack 517312001 <mss 256>

3 0.10 (0.00) sun.1093 > slip.discard: . ack 1

Figure 18.9 tcpdump outputfor connection establishment from sun to slip.

The important fact here is that sun cannot send a segment with more than 256 bytes of
data, since it received an MSSoption of 256 (line 2). Furthermore, since slip knows
that the outgoing interface’s MTU is 296, even though sun announced an MSSof 1460,
it will never send more than 256 bytes of data, to avoid fragmentation. It’s OKfor a sys-
tem to send Jess than the MSS announcedbythe other end.

This avoidance of fragmentation works onlyif either host is directly connected to a
network with an MTU of less than 576. If both hosts are connected to Ethernets, and

both announce an MSSof 536, but an intermediate network has an MTUof 296, frag-
mentation will occur. The only way around this is to use the path MTU discovery
mechanism (Section 24.2).

TCP Half-Close

TCP providesthe ability for one end of a connection to terminate its output, whilestill
receiving data from the other end. This is called a half-close. Few applications take
advantage of this capability, as we mentionedearlier.

To use this feature the programming interface must provide a way for the applica-
tion to say “I am done sending data, so send an end-of-file (FIN)to the other end, but I
still want to receive data from the other end, until it sends me an end-of-file (FIN).”

The sockets API supports thehalf-close, if the application calls shutdown with a second argu-
mentof 1, instead of calling close. Most applications, however, terminate both directions of
the connection by calling close.

Figure 18.10 showsa typical scenario for a half-close. We show theclient on theleft
sideinitiating the half-close, but either end can do this. The first two segments are the
same: a FIN bytheinitiator, followed by an ACKof the FIN bythe recipient. But it then
changes from Figure 18.4, because the side that receives the half-close can still send
data. We show only one data segment, followed by an ACK, but any number of data
segments can be sent. (We talk more about the exchange of data segments and
acknowledgments in Chapter 19.) When the end that received the half-close is done
sending data, it closes its end of the connection, causing a FIN to be sent, and this deliv-
ers an end-of-file to the application that initiated the half-close. When this second FIN
is acknowledged, the connection is completely closed.
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client server

application shutdown > FIN

te} — deliver EOF to application

ack of FIN

data < application write

application read _—<—<—<———

a

FIN ¢< application close

 
deliver EOF to application —

PEIN
  

Figure 18.10 Example of TCP’s half-close.

Whyis there a half-close? One example is the Unix rsh(1) command, which exe-
cutes a command on another system. The command

sun % rsh bsdi sort < datafile

executes the sort command on the host bsdi with standard input for the rsh com-
mand being read from the file named datafile. A TCP connection is created by rsh
betweenitself and the program being executed on the other host. The operation of rsh
is then simple: it copies standard input (datafile) to the connection, and copies from
the connection to standard output (our terminal). Figure 18.11 shows the setup.
(Rememberthat a TCP connection is full-duplex.)

 

 
host sun host bsdi

datafile —— ~
teh” ts TCP connection sort

. standard aoterminal
output

    
Figure 18.11 The command: rsh bsdi sort < datafile.

On the remote host bsdi the rshd server executes the sort program so that its stan-
dard input and standard output are both the TCP connection. Chapter 14 of [Stevens
1990] details the Unix process structure involved, but what concerns us here is the use
of the TCP connection and the required use of TCP’shalf-close.
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18.6

The sort program cannot generate any output until all of its input has been read.
All the initial data across the connection is from the rsh client to the sort server, send-

ing the file to be sorted. When the end-of-file is reached on the input (datafile), the
rsh client performs a half-close on the TCP connection. The sort server then receives
an end-of-file on its standard input (the TCP connection), sorts the file, and writes the
result to its standard output (the TCP connection). The rsh client continues readingits
end. of the TCP connection, copying the sortedfile to its standard output.

Without a half-close, some other technique is needed to let the client tell the server
that the client is finished sending data, butstill let the client receive data from the
server. Two connections could be used as an alternative, but a single connection with a
half-close is better.

TCP State Transition Diagram

We've described numerousrules regarding the initiation and termination of a TCP con-
nection. These rules can be summarized in a state transition diagram, which we show
in Figure 18.12,

Thefirst thing to note in this diagram is that a subsetof the state transitionsis “typi-
cal.” We’ve marked the normal client transitions with a darker solid arrow, and the nor-
mal server transitions with a darker dashed arrow.

Next, the two transitions leading to the ESTABLISHEDstate correspond to opening
a connection, and the twotransitions leading from the ESTABLISHEDstate are for the
termination of a connection. The ESTABLISHEDstate is where data transfer can occur

between the two ends in both directions. Later chapters describe what happensin this
state.

We've collected the four boxes in the lowerleft of this diagram within a dashed box
and labeled it “active close.” Two other boxes (CLOSE_WAIT and LAST_ACK)are col-
lected in a dashed box with the label “passiveclose.”

The names of the 11 states (CLOSED, LISTEN, SYN_SENT,etc.) in this figure were
purposely chosen to be identical to the states output by the netstat command. The
netstat names, in turn, are almost identical to the names originally described in
RFC 793. The state CLOSEDis notreally a state, but is the imaginary starting point and
ending point for the diagram.

The state transition from LISTEN to SYN_SENT is legal but is not supported in
Berkeley-derived implementations.

The transition from SYN_RCVD back to LISTENis valid only if the SYN_RCVD
state was entered from the LISTENstate (the normalscenario), not from the SYN_SENT
state (a simultaneous open). This means if we perform a passive open (enter LISTEN),
receive a SYN, send a SYN with an ACK(enter SYN_RCVD), and then receive a reset
instead of an ACK,the end point returns to the LISTEN state and waits for another con-
nection request to arrive.
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Figure 18.12 TCP state transition diagram,
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Figure 18.13 shows the normal TCP connection establishment and termination,
detailing the different states through which the client and server pass. It is a redo of
Figure 18.3 showing onlythestates.

client server

LISTEN (passive open)

(active open) SYN_SENT SYN JpeSYN_RCVD

. SYN K, ack Jt
ESTABLISHED

po ESTABLISHED

Z Z

(active close) FIN_WAIT_1 FIN

CLOSE_WAIT (passive close)

ack M+1 
FIN_WAIT_2 [a

FINN LAST_ACK 
TIME_WAIT j«@—

po CLOSED

  
Figure 18.13 TCP states corresponding to normal connection establishment and termination.

We assumein Figure 18.13 that the client on the left side does an active open, and the
server on the right side does a passive open. Although weshow theclient doing the
active close, as we mentioned earlier, either side can do the active close.

You should follow through the state changes in Figure 18.13 using the state transi-
tion diagram in Figure 18.12, making certain you understand why each state change
takes place.

2MSL Wait State

The TIME_WAITstate is also called the 2MSL wait state. Every implementation must
choose a value for the maximum segment lifetime (MSL). It is the maximum amount of
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time any segmentcan exist in the network before being discarded. We knowthis time
limit is bounded, since TCP segments are transmitted as IP datagrams, and the IP data-
gram has the TTL field that limitsits lifetime.

RFC 793 [Postel 1981c] specifies the MSL as 2 minutes. Common implementation values, how-
ever, are 30 seconds, 1 minute, or 2 minutes.

Recall from Chapter 8 that the real-world limit on the lifetime of the IP datagram is
based on the numberof hops, not a timer.

Given the MSL value for an implementation, the rule is: when TCP performs an
active close, and sends the final ACK, that connection must stay in the TIME_WAIT
state for twice the MSL. This lets TCP resend the final ACK in case this ACKis lost (in
which case the other end will time out and retransmit its final FIN).

Another effect of this 2MSL wait is that while the TCP connection is in the 2MSL

wait, the socket pair defining that connection (client IP address, client port number,
server IP address, and server port number) cannot be reused. That connection can only
be reused when the 2MSLwait is over.

Unfortunately most implementations (i.e., the Berkeley-derived ones) impose a
more stringent constraint. By default a local port number cannot be reused while that
port numberis the local port numberof a socketpair that is in the 2MSL wait. We’ll see
examples of this common constraint below.

Some implementations and APIs provide a way to bypass this restriction. With the sockets
API, the SO_REUSEADDRsocket option can be specified. It lets the caller assign itself a local
port number that’s in the 2MSL wait, but we’ll see that the rules of TCPstill prevent this port
number from being part of a connection that is in the 2MSL wait.

Any delayed segments that arrive for a connection while it is in the 2MSL wait are
discarded. Since the connection defined by the socket pair in the 2MSL wait cannot be
reused during this time period, when wedoestablish a valid connection we know that
delayed segments from an earlier incarnation of this connection cannot be misinter-
preted as being part of the new connection. (A connection is defined by a socketpair.
Newinstances of a connection are called incarnations of that connection.)

As we said with Figure 18.13, it is normally the client that does the active close and
enters the TIMEWAITstate. The server usually does the passive close, and does not go
through the TIME_WAIT state. The implication is that if we terminate a client, and
restart the same client immediately, that new client cannot reuse the samelocal port
number. This isn’t a problem, since clients normally use ephemeral ports, and don’t
care whatthe local ephemeral port numberis.

With servers, however, this changes, since servers use well-known ports. If we ter-
minate a server that has a connection established, and immediately try to restart the
server, the server cannot assign its well-known port numberto its end point, since that
port numberis part of a connection that is in a 2MSL wait. It may take from 1 to 4 min-
utes before the server can be restarted.

We can see this scenario using our sock program. Westart the server, connectto it
from a client, and then terminate the server:
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sun % sock -v -s 6666 start as server, listening on port 6666
(execute client on bsdi that connects to this port)

connection on 140.252.13.33.6666 from 140.252.13.35.1081

°? then type interrupt key to terminate server

sun % sock -s 6666 and immediately try to restart server on same port
can’t bind local address: Address already in use

sun % netstat let’s check the state of the connection
Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 sun.6666 bsdi.1081 TIMEWAIT
many more lines that are deleted

When wetry to restart the server, the program outputs an error message indicating it
cannot bind its well-known port number, becauseit’s already in use(i.e., it’s in a 2MSL
wait).

We then immediately execute netstat to see the state of the connection, and verify
that it is indeed in the TIMEWAITstate.

If we continually try to restart the server, and measure the time until it succeeds, we can mea-
sure the 2MSL value. On SunOS 4.1.3, SVR4, BSD/386, and AIX 3.2.2, it takes 1 minute to

restart the server, meaning the MSL is 30 seconds. UnderSolaris 2.2 it takes 4 minutes to
restart the server, implying an MSL of 2 minutes.

We can see the same error from a client, if the client tries to allocate a port that is
part of a connection in the 2MSL wait (something clients normally don’t do):

sun % sock -v bsdi echo start as client, connect to echo server
connected on 140.252.13.33.1162 to 140.252.13.35.7

hello there type this line
hello there andit’s echoed by the server
“D type end-of-file characterto terminate client

sun % sock -b1162 bsdi echo
can’t bind local address: Address already in use

The first time we execute the client we specify the —v option to see whatthe local port
number is (1162). The second time we execute the client we specify the ~b option,
telling the client to assign itself 1162 as its local port number. As we expect, the client
can’t do this, since that port numberis part of a connection thatis in a 2MSL wait.

We need to reemphasize oneeffect of the 2MSL wait because we'll encounterit in
Chapter 27 with FTP, the File Transfer Protocol. As wesaid earlier, it is a socket pair
(that is, the 4-tuple consisting of a local IP address, local port, remote IP address and
remote port) that remains in the 2MSL wait. Although many implementations allow a
process to reuse a port numberthatis part of a connection thatis in the 2MSL wait (nor-
mally with an option named SO_REUSEADDR), TCP cannot allow a new connection to be
created with the same socket pair. We can see this with the following experiment:

sun % sock -v -s 6666 start as server, listening on port 6666
(execute client on bsdi that connects to this port)
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connection on 140.252.13.33.6666 from 140.252.13.35,.1098

“2 then type interrupt key to terminate server

sun % sock -b6666 bsdi 1098 try to start as client with local port 6666
can’t bind local address: Address already in use

sun % sock -A ~b6666 bsdi 1098 try again, this time with -A option
active open error: Address already in use

Thefirst time we run our sock program, werun it as a server on port 6666 and connect
to it from a client on the host bsdi. The client’s ephemeral port number is 1098. We
terminate the server so it does the active close. This causes the 4-tuple of 140.252.13.33
(local IP address), 6666 (local port number), 140.252.13.35 (foreign IP address), and 1098
(foreign port number) to enter the 2MSLwait on the server host.

The second time we run the program, we run it as a client and try to specify the
local port number as 6666 and connect to host bsdi on port 1098. But the program gets
an error whenit tries to assign itself the local port number of 6666, because that port
numberis part of the 4-tuple that is in the 2MSL wait state.

To try and get around this error we run the program again, specifying the —A
option, which enables the SO_REUSEADDRoption that we mentioned. This lets the pro-
gram assign itself the port number 6666, but we then get an error whenit tries to issue
the active open. Even thoughit can assign itself the port number 6666,it cannotcreate a
connection to port 1098 on the host bsdi, because the socket pair defining that connec-
tion is in the 2MSLwaitstate.

Whatif wetry to establish the connection from the other host? First we mustrestart
the server on sun with the —A flag, since the local port it needs (6666) is part of a con-
nection that is in the 2MSL wait:

sun % sock -A ~s 6666 start as server, listening on port 6666

Then, before the 2MSL wait is over on sun, westart the client on bsdi:

bsdi % sock -b1098 sun 6666
connected on 140.252.13.35.1098 to 140.252.13.33.6666

Unfortunately it works! This is a violation of the TCP specification, but is supported by
most Berkeley-derived implementations. These implementations allow a new connec-
tion request to arrive for a connection that is in the TIME_WAITstate, if the new
sequence numberis greater than the final sequence number from the previous incarna-
tion of this connection. In this case the ISN for the new incarnation is set to the final

sequence number from the previous incarnation plus 128,000. The appendix of
RFC 1185 [Jacobson, Braden, and Zhang 1990] showsthepitfalls still possible with this
technique.

This implementation feature lets a client and server continually reuse the same port
numberat each end for successive incarnations of the same connection, but only if the
server does the active close. We'll see another example of this 2MSL wait condition in
Figure 27,8, with FTP. See Exercise 18.5 also.
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Quiet Time Concept

The 2MSL wait provides protection against delayed segments from an earlier incarna-
tion of a connection from being interpreted as part of a new connection that uses the
same local and foreign IP addresses and port numbers. But this works only if a host
with connections in the 2MSL wait does not crash.

Whatif a host with ports in the 2MSLL wait crashes, reboots within MSL seconds,
and immediately establishes new connections using the same local and foreign IP
addresses and port numbers corresponding to the local ports that were in the 2MSL
wait before the crash? In this scenario, delayed segments from the connections that
existed before the crash can be misinterpreted as belonging to the new connectionscre-
ated after the reboot. This can happen regardless of how theinitial sequence numberis
chosen after the reboot.

To protect against this scenario, RFC 793 states that TCP should not create any con-
nections for MSL secondsafter rebooting. This is called the quiet time.

Few implementations abide by this since most hosts take longer than MSL secondsto reboot
after a crash,

FIN_WAIT_2 State

18.7

In the FIN_WAIT_2 state we have sent our FIN and the other end has acknowledgedit.
Unless we have donea half-close, we are waiting for the application on the other end to
recognize that it has received an end-of-file notification and close its end of the connec-
tion, which sends us a FIN. Only when the processat the other end does this close will
our end move from the FIN_WAIT_2 to the TIME_WAITstate.

This means our end of the connection can remain in this state forever. The other

endis still in the CLOSE_WAITstate, and can remain there forever, until the application
decidesto issueits close.

Many Berkeley-derived implementations prevent this infinite wait in the FIN_WAIT.2 state as
follows. If the application that does the active close does a complete close, not a half-close
indicating that it expects to receive data, then a timer is set. If the connection is idle for 10 min-
utes plus 75 seconds, TCP moves the connection into the CLOSED state. A commentin the
code acknowledges that this implementation feature violates the protocol specification.

Reset Segments

We've mentioned a bit in the TCP header named RST for “reset.” In general, a reset is
sent by TCP whenever a segmentarrives that doesn’t appear correct for the referenced
connection. (We use the term “referenced connection” to mean the connection specified
by the destination IP address and port number, and the source IP address and port
number. This is what RFC 793 calls a socket.)
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Connection Request to Nonexistent Port

A commoncase for generating a reset is when a connection request arrives and no pro-
cessis listening on the destination port. In the case of UDP, we saw in Section 6.5 that
an ICMP port unreachable was generated when a datagram arrived for a destination
port that was not in use. TCP usesa reset instead.

This example is trivial to generate—we use the Telnet client and specify a port
numberthat’s not in use on the destination:

bsdi % telnet svr4 20000 port 20000 should not be in use
Trying 140,.252.13.34...
telnet: Unable to connect to remote host: Connection refused

This error message is output by the Telnet client immediately. Figure 18.14 shows the
packet exchange corresponding to this command.

1 0.0 bsdi.1087 > svr4.20000: S 297416193:297416193 (0)
win 4096 <mss 1024>

[tos 0x10]

2 0.003771 (0.0038) svr4.20000 > bsdi.1087: R 0:0(0) ack 297416194 win 0

Figure 18.14 Reset generated by attempt to open connection to nonexistent port.

The values we need to examine in this figure are the sequence number field and
acknowledgment number field in the reset. Because the ACK bit was not on in the
arriving segment, the sequence numberof the reset is set to 0 and the acknowledgment
number is set to the incoming ISN plus the number of data bytes in the segment.
Although there is no real data in the arriving segment, the SYN bit logically occupies 1
byte of sequence numberspace; therefore, in this example the acknowledgment number
in thereset is set to the ISN, plus the data length (0), plus onefor the SYNbit.

Aborting a Connection

Wesaw in Section 18.2 that the normal way to terminate a connectionis for one side to
send a FIN. This is sometimescalled an orderly release since the FIN is sentafterall pre-
viously queued data has been sent, and there is normally no loss of data. Butit’s also
possible to abort a connection by sending a reset instead of a FIN. This is sometimes
called an abortive release.

Aborting a connection provides two features to the application: (1) any queued data
is thrown away andthereset is sent immediately, and (2) the receiver of the RST cantell
that the other end did an abort instead of a normal close. The API being used by the
application must provide a way to generate the abort instead of a normalclose.

We can watch this abort sequence happen using our sock program. The sockets
API provides this capability by using the “linger on close” socket option (SO_LINGER).
Wespecify the -L option with a linger time of 0. This causes the abort to be sent when
the connection is closed, instead of the normal FIN. We’ll connect to a server version of
our sock program on svr4 andtype oneline of input:

Viptela, Inc. - Exhibit 1007
Page 266



Viptela, Inc. - Exhibit 1007 
Page 267

248 TCP Connection Establishment and Termination Chapter 18 

bsdi % sock -LO svr4 8888 this is the client; server shownlater

hello, world type oneline of input that’s sent to other end
“D type end-of-file characterto terminateclient

Figure 18.15 shows the tcpdump output for this example. (We have deleted all the win-
dow advertisements in this figure, since they add nothing to the discussion.)

1 0.0 bsdi.1099 > svr4.8888: S 671112193:671112193 (0)
<mss 1024>

2 0.004975 (0.0050) svr4.8888 > bsdi.1099: S 3224959489:3224959489 (0)
ack 671112194 <mss 1024>

3 0.006656 (0.0017) bsdi.1099 > svr4.8888: . ack 1

4 4,833073 (4.8264) bsdi.1099 > svr4.8888: P 1:14(13) ack 1
5 5.026224 (0.1932) svr4.8888 > bsdi.1099: . ack 14

6 9.527634 (4.5014) bsdi.1099 > svr4.8888: R 14:14(0) ack 1

Figure 18.15 Aborting a connection with a reset (RST) instead of a FIN.

Lines 1-3 show the normal connection establishment. Line 4 sends the data line

that we typed (12 characters plus the Unix newline character), and line 5 is the acknowl-
edgmentof the received data.

Line 6 corresponds to our typing the end-of-file character (Control-D) to terminate
the client. Since we specified an abort instead of a normalclose (the -L0 command-line
option), the TCP on bsdi sends an RST instead of the normal FIN. The RST segment
contains a sequence number and acknowledgment number. Also notice that the RST
segmentelicits no response from the other end—it is not acknowledged at all. The
receiver of the reset aborts the connection and advises the application that the connec-
tion wasreset.

Weget the following error on the server for this exchange:

svr4 % sock -s 8888 run as server, listen on port 8888
hello, world this is what the client sent over
read error: Connection reset by peer

This server reads from the network and copies whateverit receives to standard output.
It normally ends by receiving an end-of-file notification from its TCP, but here we see
that it receives an error when the RST arrives. The error is what we expect: the connec-
tion wasreset by the peer.

Detecting Half-Open Connections

A TCP connection is said to be half-open if one end has closed or aborted the connection
without the knowledgeof the other end. This can happen any time oneof the two hosts
crashes. As long as there is no attempt to transfer data across a half-open connection,
the end that’sstill up won’t detect that the other end has crashed.

Another commoncauseof a half-open connection is when a client host is powered
off, instead of terminating the client application and then shutting downthe client host.
This happens when PCsare being used to run Telnetclients, for example, and the users
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poweroff the PC at the end of the day. If there was no data transfer going on when the
PC was powered off, the server will never knowthat the client disappeared. When the
user comesin the next morning, powers on the PC, and starts a new Telnetclient, anew
occurrence of the server is started on the server host. This can lead to many half-open
TCP connections on the server host. (In Chapter 23 we'll see a way for one end of a TCP
connection to discover that the other end has disappeared using TCP’s keepalive
option.)

Wecan easily create a half-open connection. We'll execute the Telnet client on
bsdi, connecting to the discard server on svr4. Wetype oneline of input, and watchit
go across with tcpdump, and then disconnect the Ethernet cable on the server’s host,
and reboot the server host. This simulates the server host crashing. (We disconnect the
Ethernet cable before rebooting the server to preventit from sending a FIN out the open
connections, which some TCPs do when they are shut down.) After the server has
rebooted, we reconnect the cable, and try to send another line from the client to the
server. Since the server’s TCP has rebooted, and lost all memory of the connections that
existed before it was rebooted, it knows nothing about the connection that the data seg-
ment references. The rule of TCP is that the receiver respondswitha reset.

bsdi % telnet svr4 discard start the client

Trying 140.252.13.34...
Connected to svr4.

Escape character is ’“]’.
hi there this line is sent OK

here is where we reboot the server host
another line andthis one elicits a reset

Connection closed by foreign host.

Figure 18.16 shows the tcpdump output for this example. (We have removed from this
output the window advertisements, the type-of-service information, and the MSS
announcements, since they add nothing to the discussion.)

1 0.0 bsdi.1102 > svr4.discard: § 1591752193:1591752193 (0)
2 0.004811 ( 0.0048) svr4.discard > bsdi.1102: S 26368001:26368001 (0)

ack 1591752194

194.918225

3 0.006516 ( 0.0017) bsdi.1102 > svr4.discard: . ack 1

4 5.167679 ( 5.1612) bsdi.1102 > svr4.discard: P 1:11(10) ack 1
5 5.201662 ( 0.0340) svr4.discard > bsdi.1102: . ack 11

6 194.909929 (189.7083) bsdi.1102 > svr4.discard: P 11:25(14) ack 1
7 194.914957 ( 0.0050) arp who-has bsdi tell svr4
8 194.915678 ( 0.0007) arp reply bsdi is-at 0:0:c0:6f:2d:40
9 { 0.0025) svr4.discard > bsdi.1102: R 26368002: 26368002 (0)

Figure 18.16 Reset in response to data segment on a half-open connection.

Lines 1-3 are the normal connection establishment. Line 4 sends the line “hi there”

to the discard server, and line 5 is the acknowledgment.
At this point we disconnect the Ethernet cable from svr4, rebootit, and reconnect

the cable. This takes almost 190 seconds. We then type the next line of input to the
client (“another line”) and when we type the return key the line is sent to the server
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18.8

(line 6 in Figure 18.16). This elicits a response from the server, but note that since the
server was rebooted, its ARP cache is empty, so an ARP request and reply are required
(lines 7 and 8). Then the reset is sent in line 9. The client receives the reset and outputs
that the connection was terminated by the foreign host. (The final message output by
the Telnet client is not as informative as it could be.)

Simultaneous Open

It is possible, although improbable, for two applications to both perform an active open
to each other at the same time. Each end must transmit a SYN, and the SYNs must pass
each other on the network. It also requires each end to have a local port numberthatis
well knownto the other end. Thisis called a simultaneous open.

For example, one application on host A could havea local port of 7777 and perform
an active open to port 8888 on host B. The application on host B would havea local port
of 8888 and perform an active open to port 7777 on host A.

This is not the same as connecting a Telnet client on host A to the Telnet server on
host B, at the same time that a Telnet client on host B is connecting to the Telnet server
on host A. In this Telnet scenario, both Telnet servers perform passive opens, notactive
opens, and the Telnet clients assign themselves an ephemeral port number, not a port
numberthat is well knownto the other Telnet server.

TCP was purposely designed to handle simultaneous opens and the rule is that
only one connection results from this, not two connections. (Other protocol suites,
notably the OSI transport layer, create two connections in this scenario, not one.)

Whena simultaneous open occurs the state transitions differ from those shown in
Figure 18.13. Both ends send a SYNat about the same time, entering the SYN_SENT
state. When each endreceives the SYN,the state changes to SYN_RCVD(Figure 18.12),
and each end resends the SYN and acknowledges the received SYN. When each end
receives the SYN plus the ACK, the state changes to ESTABLISHED. These state
changes are summarized in Figure 18.17.

(active open) SYN_SENT
SYN_SENT(active open)

b= SYN_RCVD
SYN_RCVD

ESTABLISHED |<
ESTABLISHED

 
Figure 18.17 Segments exchanged during simultaneous open.
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A simultaneous open requires the exchange of four segments, one more than the
normal three-way handshake. Also notice that we don’t call either end a client or a
server, because both ends act as client and server.

An Example

It is possible, though hard, to generate a simultaneous open. The two ends must be
started at about the sametime, so that the SYNscross each other. Having a long round
trip time between the two endshelps, to let the SYNs cross. To do this we'll execute one
end on our host bsdi, and the other end on the host vangogh.cs.berkeley.edu.
Since there is a dialup SLIP link between them, the round-trip time should be long
enough (a few hundred milliseconds) to let the SYNscross.

One end (bsdi)assignsitself a local port of 8888 (the -b command-line option) and
performs an active open to port 7777 on the other host:

bsdi % sock -v —-b8888 vangogh.cs.berkeley.edu 7777
connected on 140.252.13.35.8888 to 128.32.130.2.7777

TCP_MAXSEG = 512
hello, world we type this line
and hi there this line was typed onother end
connection closed by peer this is output when FIN received

The other end is started at about the sametime, assignsitself a local port of 7777, and
performs an active open to port 8888:

9.
vangogh % sock -v ~b7777 bsdi.tuc.noao.edu 8888
connected on 128.32.130.2.7777 to 140.252.13.35.8888

TCP_MAXSEG = 512
hello, world this is typed on the other end
and hi there we type this line
“D and then type our EOF character

Wespecify the —v flag to our sock program to verify the IP address and port numbers
on each end of the connection. This flag also prints the MSS used by each end of the
connection. We also type in one line on each end, which is sent to the other end and
printed, to verify that both endsare indeed talking to each other.

Figure 18.18 shows the exchange of segments across the connection. (We have
deleted some new TCP options that appear in the original SYN from vangogh, a
4.4BSD system. We describe these newer options in Section 18.10.) Notice the two

SYNs(lines 1 and 2) followed by the two SYNs with ACKs(lines 3 and 4). These per-
form the simultaneous open.

Line 5 showsthe inputline “hello, world” going from bsdi to vangogh, with the
acknowledgmentin line 6. Lines 7 and 8 correspondto the line “and hi there” going in
the other direction. Lines 9-12 show the normal connection termination.

ManyBerkeley-derived implementations do not support the simultaneous opencorrectly. On
these systems, if you can get the SYNsto cross, you end up with an infinite exchange of seg-
ments, each with a SYN and an ACK,in each direction. The transition from the SYN_SENT

state to the SYN_RCVDstate in Figure 18.12 is not always tested in many implementations.
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1 0.0 bsdi.8888 > vangogh.7777: S 91904001: 91904001 (0)
win 4096 <mss 512>

2 0.213782 (0.2138) vangogh.7777 > bsdi.8888: S 1058199041:1058199041 (0)
win 8192 <mss 512>

3 0.215399 (0.0016) bsdi.8888 > vangogh.7777: S 91904001: 91904001 (0)
ack 1058199042 win 4096
<mss 512>

4 0.340405 (0.1250) vangogh.7777 > bsdi.8888: S 1058199041:1058199041 (0)
ack 91904002 win 8192
<mss 512>

5 5.633142 (5.2927) bsdi.8888 > vangogh.7777: P 1:14({13) ack 1 win 4096
6 6.100366 (0.4672) vangogh.7777 > bsdi.8888: . ack 14 win 8192

7 9.640214 (3.5398) vangogh .7777 > bsdi.8888: P 1:14(13) ack 14 win 8192
8 9.796417 (0.1562) bsdi.8888 > vangogh.7777: . ack 14 win 4096

9 13.060395 (3.2640) vangogh.7777 > bsdi.8888: F 14:14(0) ack 14 win 8192
10 13.061828 (0.0014) bsdi.8888 > vangogh.7777: . ack 15 win 4096
11=13.079769 (0.0179) bsdi.8888 > vangogh.7777: F 14:14(0) ack 15 win 4096
12° 13.299940 (0.2202) vangogh.7777 > bsdi.8888: . ack 15 win 8192

Figure 18.18 Exchange of segments during simultaneous open.

18.9 Simultaneous Close

Wesaid earlier that one side (often, but not always, the client) performsthe active close,
causing the first FIN to be sent. It’s also possible for both sides to perform an active
close, and the TCP protocol allowsfor this simultaneous close.

In terms of Figure 18.12, both ends go from ESTABLISHED to FIN_WAIT_1 when
the application issues the close. This causes both FINs to be sent, and they probably
pass each other somewherein the network. Whenthe FIN is received, each end transi-
tions from FIN_WAIT_1 to the CLOSINGstate, and each state sends its final ACK.

Wheneach endreceives the final ACK, the state changes to TIME_WAIT. Figure 18.19
summarizes these state changes.

With a simultaneous close the same number of segments are exchanged as in the

(active close) FIN_WAIT_1

normalclose.

FIN7

CLOSING

TIME_WAIT .

wN K

am CLOSING
FIN_WAIT_1(active close)

TIME_WAIT

Figure 18.19 Segments exchanged during simultaneousclose.
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18.10 TCP Options

The TCP headercan contain options (Figure 17.2). The only options defined in the orig-
inal TCP specification are the end of option list, no operation, and the maximum seg-
ment size option. We have seen the MSS option in almost every SYN segment in our
examples.

Newer RFCs, specifically RFC 1323 [Jacobson, Braden, and Borman 1992], define
additional TCP options, most of which are found only in the latest implementations.
(We describe these new options in Chapter 24.) Figure 18.20 shows the format of the
current TCP options—those from RFC 793 and RFC 1323.

 

 

   
 

 

Endof optionlist: kind=0

1 byte

No operation: kind=1

1 byte

maximum

Maximum segmentsize:|kind=2|len=4 segment
size (MSS)
 

1lbyte  I1byte 2 bytes
 

shift
Windowscale factor: kind=3|len=3 count   

Ibyte byte Ilbyte
 

Timestamp: kind=8|len=10 timestamp value timestampecho reply

   
   

1lbyte  I1byte 4 bytes 4 bytes

Figure 18.20 TCP options.

Every option begins with a 1-byte kind that specifies the type of option. The options
with a kind of 0 and 1 occupy a single byte. The other options have a len byte that fol-
lowsthe kind byte. The length is the total length, including the kind and len bytes.

The reason for the no operation (NOP) option is to allow the senderto padfields to
a multiple of 4 bytes. If we initiate a TCP connection from a 4.4BSD system,the follow-
ing TCP options are output by tcpdump on the initial SYN segment:

<mss 512,nop,wscale 0,nop,nop,timestamp 146647 0>

The MSS option is set to 512, followed by a NOP,followed by the windowscale option.
The reason for the first NOP is to pad the 3-byte window scale option to a 4-byte
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boundary. Similarly, the 10-byte timestamp option is preceded by two NOPs,to occupy
12 bytes, placing the two 4-byte timestamps onto 4-byte boundaries.

Four other options have been proposed, with kinds of4, 5, 6, and 7 called the selective-ACK
and echo options. We don’t show them in Figure 18.20 because the echo options have been
replaced with the timestamp option, and selective ACKs, as currently defined, are still under
discussion and were not included in RFC 1323. Also, the T/TCP proposal for TCP transactions
(Section 24.7) specifies three options with kinds of 11, 12, and 13.

18.11 TCP Server Design

Wesaid in Section 1.8 that most TCP servers are concurrent. When a new connection
request arrives at a server, the server accepts the connection and invokes a new process
to handle the new client. Depending on the operating system, various techniques are
used to invoke the new server. Under Unix the commontechnique is to create a new
process using the fork function. Lightweight processes (threads) can also be used,if
supported.

Whatwe'reinterested in is the interaction of TCP with concurrent servers. We need

to answer the following questions: how are the port numbers handled whena server
accepts a new connection request from a client, and what happens if multiple connec-
tion requests arrive at about the same time?

TCP Server Port Numbers

We can see how TCP handles the port numbers by watching any TCP server. We'll
watch the Telnet server using the netstat command. The following output is on a
system with no active Telnet connections. (We have deletedall the lines except the one
showing the Telnet server.)

sun % netstat -a -n -f£ inet

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
top 0 0 *,23 x * LISTEN

The —a flag reports on all network end points, not just those that are ESTABLISHED.
The -n flag prints IP addresses as dotted-decimal numbers, instead of trying to use the
DNSto convert the address to a name, and prints numeric port numbers (e.g., 23)
instead of service names(e.g., Telnet), The -£ inet option reports only TCP and UDP
end points.

The local address is output as *.23, where the asterisk is normally called the
wildcard character. This means that an incoming connection request (i.e.,a SYN) will be
accepted on anylocal interface. If the host were multihomed, we could specify a single
IP address for the local IP address (one of the host’s IP addresses), and only connections
received on that interface would be accepted. (We’ll see an example of this later in this
section.) The local port is 23, the well-known port numberfor Telnet.

The foreign address is output as *.*, which meansthe foreign IP address and for-
eign port number are not knownyet, because the end pointis in the LISTENstate, wait-
ing for a connection to arrive.
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We nowstart a Telnet client on the host slip (140.252.13.65) that connects to this
server. Here are the relevant lines from the net stat output:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED
tcp 0 0 *,23 kk LISTEN

Thefirst line for port 23 is the ESTABLISHEDconnection, All four elements of the local
and foreign addressare filled in for this connection:the local IP address and port num-
ber, and the foreign IP address and port number. The local IP address correspondsto
the interface on which the connection request arrived (the Ethernet interface,
140.252.13.33),

The end point in the LISTENstate is left alone. This is the end point that the con-
current server uses to accept future connection requests. It is the TCP module in the
kernel that creates the new end point in the ESTABLISHEDstate, when the incoming
connection request arrives and is accepted. Also notice that the port number for the
ESTABLISHEDconnection doesn’t change:it’s 23, the same as the LISTEN end point.

We nowinitiate another Telnet client from the same client (slip) to this server.
Hereis the relevant netstat output:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tep 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED
tep 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED
top 0 0 *,23 * LISTEN

We now have two ESTABLISHEDconnections from the same host to the sameserver.
Both have a local port number of 23. This is not a problem for TCP since the foreign
port numbers are different. They must be different because each of the Telnet clients
uses an ephemeral port, and the definition of an ephemeral port is one that is not cur-
rently in use on that host (slip).

This example reiterates that TCP demultiplexes incoming segments using all four
values that comprise the local and foreign addresses: destination IP address, destination
port number, source IP address, and source port number. TCP cannot determine which
process gets an incoming segmentby lookingat the destination port numberonly. Also,
the only one of the three end points at port 23 that will receive incoming connection
requests is the one in the LISTENstate. The end points in the ESTABLISHEDstate can-
not receive SYN segments, and the end point in the LISTEN state cannot receive data
segments.

Next we initiate a third Telnet client, from the host solaris that is across the SLIP
link from sun, and not on its Ethernet.

Proto Recv-Q Send-Q Local Address Foreign Address (state)
top 0 0 140.252.1.29.23 140.252.1.32.34603 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED
tcp 0 0 *,23 xk LISTEN

The local IP addressof the first ESTABLISHED connection now correspondsto the inter-
face address of SLIP link on the multihomed host sun (140.252,1.29).
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Restricting Local IP Address

Wecan see what happens whenthe server does not wildcard its local IP address, setting
it to one particular local interface address instead. If we specify an IP address (or host-
name) to our sock program when we invokeit as a server, that IP address becomes the
local IP addressof the listening end point. For example

sun % sock -s 140.252.1.29 8888

restricts this server to connections arriving on the SLIP interface (140.252.1.29). The
netstat output reflects this:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 140.252.1.29.8888 x * LISTEN

If we connect to this server across the SLIP link, from the host solaris, it works. Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 QO 140.252.1.29.8888 140.252.1.32.34614 ESTABLISHED
tcp 0 0 140.252.1.29.8888 kx LISTEN

Butif we try to connect to this server from a host on the Ethernet (140.252.13), the con-
nection request is not accepted by the TCP module. If we watch it with tcpdump the
SYN is responded to with an RST, as we show in Figure 18.21.

1 0.0 bsdi.1026 > sun.8888: S 3657920001:3657920001 (0)
win 4096 <mss 1024>

2 0.000859 (0.0009) sun.8888 > bsdi.1026: R 0:0(0) ack 3657920002 win 0

Figure 18.21 Rejection of a connection request based on local IP addressof server.

The server application never sees the connection request—therejection is done by the
kernel’s TCP module, based on the local IP address specified by the application.

Restricting Foreign IP Address

In Section 11.12 we saw that a UDP server can normally specify the foreign IP address
and foreign port, in addition to specifying the local IP address and local port. The inter-
face functions shown in RFC 793 allow a server doing a passive open to have either a
fully specified foreign socket (to wait for a particular client to issue an active open) or a
unspecified foreign socket (to wait for anyclient).

Unfortunately, most APIs don’t provide a way to do this. The server must leave the
foreign socket unspecified, wait for the connection to arrive, and then examine the IP
address and port numberoftheclient.

Figure 18.22 summarizes the three types of address bindings that a TCP server can
establish for itself. In all cases, [port is the server’s well-known port and localIlP must be
the IP address of a local interface. The ordering of the three rows in the table is the
order that the TCP module applies when trying to determine which local end point
receives an incoming connection request. The most specific binding (the first row, if
supported) is tried first, and the least specific (the last row with both IP addresses wild-
carded)is triedlast.
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Local Address|Foreign Address Description — 

 localIP. lport foreignIP.fport restricted to one client (normally not supported)
localIP. Iport * x restricted to connections arriving on one local interface: localIP

*, lport * receives all connections sent to [port
    

Figure 18.22 Specification of local and foreign IP addresses and port number for TCP server.

Incoming Connection Request Queue

A concurrent server invokes a new process to handle each client, so the listening server
should always be ready to handle the next incoming connection request. That’s the
underlying reason for using concurrent servers. But there is still a chance that multiple
connection requests arrive while the listening server is creating a new process, or while
the operating system is busy running other higher priority processes. How does TCP
handle these incoming connection requests while the listening application is busy?

In Berkeley-derived implementations the following rules apply.

L Eachlistening end point has a fixed length queue of connections that have been
accepted by TCP (ie, the three-way handshake is complete), but not yet
accepted by the application.

Be careful to differentiate between TCP accepting a connection and placing it on
this queue, and the application taking the accepted connection off this queue.

The application specifies a limit to this queue, commonly called the backlog.
This backlog must be between 0 and5, inclusive. (Most applications specify the
maximum value of 5.)

When a connection request arrives (i.e., the SYN segment), an algorithm is
applied by TCP to the current number of connections already queued for this
listening end point, to see whether to accept the connection or not. We would
expect the backlog value specified by the application to be the maximum num-
ber of queued connections allowed for this end point, but it’s not that simple.
Figure 18.23 showsthe relationship between the backlog value and the real max-
imum number of queued connections allowed by traditional Berkeley systems
and Solaris 2.2.
 

 

  
Back 1 Max# of queued connections

aen'og value Traditional BSD|Solaris 2.2
0 1 0
1 2 1
2 4 2
3 5 3
4 7 4
5 8 5

    
 

Figure 18.23 Maximum numberof accepted connections allowedforlistening end point.
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Keep in mind that this backlog value specifies only the maximum number of
queued connections for one listening end point, all of which have already been
accepted by TCP and are waiting to be accepted by the application. This back-
log has no effect whatsoever on the maximum number of established connec-
tions allowed by the system, or on the numberof clients that a concurrent server
can handle concurrently.

The Solaris values in this figure are what we expect. The traditional BSD values are (for
some unknownreason) the backlog value times 3, divided by2, plus1.

4, If there is room on this listening end point’s queue for this new connection
(based on Figure 18.23), the TCP module ACKs the SYN and completes the con-
nection. The server application with the listening end point won’t see this new
connection until the third segment of the three-way handshake is received.
Also, the client may think the server is ready to receive data when the client’s
active open completes successfully, before the server application has been noti-
fied of the new connection. (If this happens, the server’s TCP just queues the
incoming data.)

5. If there is not room on the queue for the new connection, TCP just ignores the
received SYN. Nothing is sent back (i.e, no RST segment). If the listening
server doesn’t get around to accepting someof the already accepted connections
that have filled its queue to the limit, the client’s active open will eventually
time out.

Wecan see this scenario take place with our sock program. We invoke it with a
new option (-0) that tells it to pause after creating the listening end point, before
accepting any connection requests. If we then invoke multiple clients during this pause
period, it should cause the server’s queue of accepted connectionstofill, and we can see
what happens with tcpdump.

bsdi % sock -s -v -qi -030 7777

The -q1 option sets the backlog ofthe listening end point to 1, whichfor this traditional
BSD system should allow two pending connection requests (Figure 18.23). The -030
option causes the program to sleep for 30 seconds before accepting any client connec-
tions. This gives us 30 secondsto start someclients, to fill the queue. We'll start four
clients on the host sun.

Figure 18.24 shows the tcpdump output, starting with the first SYN from thefirst
client. (We have removed the window size advertisements and MSS announcements.
We have also marked the client port numbers in bold when the TCP connection is
established—the three-way handshake.)

Thefirst client’s connection request from port 1090 is accepted by TCP (segments
1-3). The second client’s connection request from port 1091 is also accepted by TCP
(segments 4-6). The server applicationis still asleep, and has not accepted either con-
nection yet. Everything has been done by the TCP module in the kernel. Also, the two
clients have returned successfully from their active opens, since the three-way hand-
shakes are complete.
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1 0.0 sun.1090 > bsdi.7777: S 1617152000:1617152000 (0)
2 0.002310 ( 0.0023) bsdi.7777 > sun.1090: S 4164096001:4164096001 (0)

ack 1617152001

3 0.003098 ( 0.0008) sun.1090 > bsdi.7777: ack 1

4 4.291007 ( 4.2879) sun.1091 > bsdi.7777: S 1617792000:1617792000(0)
5 4.293349 ( 0.0023} bsdi.7777 > sun.1091: S 4164672001:4164672001 (0)

ack 1617792001

6 4.294167 ( 0.0008) sun.1091 > bsdi.7777: . ack 1

7 7.131981 ( 2.8378} sun.1092 > bsdi.7777: S 1618176000:1618176000(0)
8 10.556787 ( 3.4248) sun.1093 > bsdi.7777: S 1618688000:1618688000 (0)
9 12.695916 ( 2.1391) sun.1092 > bsdi.7777: S 1618176000:1618176000(0)

10 16.195772 ( 3.4999) sun.1093 > bsdi.7777: S 1618688000:1618688000(0Q)
11=24.695571 ( 8.4998) sun.1092 > bsdi.7777: S 1618176000:1618176000 (0)

72 28.195454 ( 3.4999) sun.1093 > bsdi.7777: S 1618688000:1618688000 (0)
13° 28.197810 ( 0.0024) bsdi.7777 > sun.1093: S 4167808001:4167808001 (0)

ack 1618688001

14 28.198639 ( 0.0008) sun.1093 > bsdi.7777: ack 1

15 48.694931 (20.4963) sun.1092 > bsdi.7777: S 1618176000:1618176000(0)
16 48.697292 ( 0.0024) bsdi.7777 > sun.1092: S 4170496001:4170496001 (0)

ack 1618176001

17 48.698145 ( 0.0009) sun.1092 > bsdi.7777: ack 1

Figure 18.24 tcpdump output for backlog example.

We try to start a third client in segment 7 (port 1092), and a fourth in segment 8
(port 1093). TCP ignores both SYNssince the queuefor this listening end pointis full.
Both clients retransmit their SYNs in segments 9, 10, 11, 12, and 15. The fourth client’s
third retransmission is accepted (segments 12-14) because the server’s 30-second pause
is over, causing the server to remove the two connections that were accepted, emptying
its queue. (The reason it appears this connection was accepted by the server at the time
28.19, and not at a time greater than 30, is because it took a few secondsto start thefirst
client [segment 1, the starting time point in the output] after starting the server.) The
third client’s fourth retransmission is then accepted (segments 15-17). The fourth client
connection (port 1093) is accepted by the server before the third client connection (port
1092) because of the timing interactions between the server’s 30-second pause and the
client’s retransmissions.

We would expect the queue of accepted connections to be passed to the application in FIFO
(first-in, first-out) order. That is, after TCP accepts the connections on ports 1090 and 1091, we
expect the application to receive the connection on port 1090 first, and then the connection on
port 1091, But a bug hasexisted for years in many Berkeley-derived implementations causing
them to be returned in a LIFO(last-in, first-out) order instead. Vendors have recently started
fixing this bug, butit still exists in systems such as SunOS4.1.3.

TCP ignores the incoming SYN when the queueis full, and doesn’t respond with an
RST, becausethis is a soft error, not a hard error. Normally the queueis full because the
application or the operating system is busy, preventing the application from servicing
incoming connections. This condition could change in a short while. But if the server’s
TCP responded with a reset, the client’s active open would abort (which is what we saw
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18.12

happen if the server wasn’t started). By ignoring the SYN, the server forces the client
TCP to retransmit the SYN later, hoping that the queue will then have room for the new
connection.

A subtle point in this example, which is found in most TCP/IP implementations, is
that TCP accepts an incoming connection request(i.e., a SYN) if there is room onthelis-
tener’s queue, without giving the application a chance to see whoit’s from (the source
IP address and source port number). This is not required by TCP, it’s just the common
implementation technique(i.e., the way the Berkeley sources have always doneit). If an
API such as TLI (Section 1.15) gives the application a way to learn when a connection
request arrives, and then allows the application to choose whether to accept the connec-
tion or not, be aware that with TCP, when the application is supposedly told that the
connection hasjust arrived, TCP’s three-way handshakeis over! Other transport layers
may be implemented to provide this separation to the application between arrival and
acceptance(i.e., the OSI transport layer) but not TCP.

Solaris 2.2 provides an option that prevents TCP from accepting an incoming connection
request until the application says so (tcp_eager_listenersin Section E.4).

This behavior also means that a TCP server has no way to cause a client's active
open to fail. When a new client connection is passed to the server application, TCP’s
three-way handshakeis over, and theclient’s active open has completed successfully. If
the server then looksat the client’s IP address and port number, and decides it doesn’t
wantto service this client, all the server can dois either close the connection (causing a
FIN to be sent) or reset the connection (causing an RST to be sent). In either case the
client thought everything was OK whenits active open completed, and may have
already sent a request to the server.

Summary

Before two processes can exchange data using TCP, they must establish a connection
between themselves. When they’re done they terminate the connection. This chapter
has provided a detailed look at how connections are established using a three-way
handshake, and terminated using four segments.

We used tcpdump to showall the fields in the TCP header. We’ve also seen how a
connection establishment can time out, how resets are sent, what happens with a half-
open connection, and how TCP provides a half-close, simultaneous opens, and simulta-
neouscloses.

Fundamental to understanding the operation of TCPis its state transition diagram.
We've followed through the steps involved in connection establishment and termina-
tion, and the state transitions that take place. We also looked at the implications of
TCP’s connection establishment onthe design of concurrent TCP servers.

A TCP connection is uniquely defined by a 4-tuple: the local IP address, local port
number, foreign IP address, and foreign port number. Whenever a connection is termi-
nated, one end must maintain knowledge of the connection, and we saw that the
TIME_WAITstate handles this. The rule is that the end that does the active close enters

this state for twice the implementation’s MSL.
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Exercises

18.1 In Section 18.2 we said that the initial sequence number (ISN) normally starts at 1 and is
incremented by 64,000 every half-second and every time an active open is performed, This
would imply that the low-order three digits of the ISN would always be 001. Butin Fig-
ure 18.3 these low-order three digits are 521 in each direction. What's going on?

18.2 In Figure 18.15 we typed 12 characters and saw 13 bytes sent by TCP. In Figure 18,16 we
typed eight characters but TCP sent 10 bytes. Why was 1 byte addedin thefirst case, but 2
bytes in the second case?

18.3 What's the difference between a half-open connection and a half-closed connection?

18.4 If we start our sock program as a server, and then terminate it (without having a client
connect to it), we can immediately restart the server. This implies that it doesn’t go
through the 2MSL wait state. Explain this in termsofthestate transition diagram.

18.5 In Section 18.6 we showedthat a client cannot reuse the samelocal port number while that
port is part of a connection in the 2MSL wait. But if we run our sock program twice in a
row as a client, connecting to the daytime server, we can reuse the same local port number.
Additionally, we’re able to create a new incarnation of a connection that should be in the
2MSL wait. What's going on?

sun % sock -v bsdi daytime
connected on 140.252.13.33.1163 to 140.252.13.35.13
Wed Jul 7 07:54:51 1993

connection closed by peer2
sun % sock -v -b1163 bsdi daytime reuse same local port number
connected on 140.252.13.33.1163 to 140.252.13.35.13
Wed Jul 7 07:55:01 1993

connection closed by peer

18.6 At the end of Section 18.6 when describing the FINWAIT2 state, we mentioned that
many implementations move a connection from this state into the CLOSEDstate if the
application did a complete close (not a half-close) after just over 11 minutes. If the other
end (in the CLOSE_WAITstate) waited 12 minutes before issuingits close (i.e., sendingits
FIN), what would its TCP get in response to the FIN?

18.7 Which end of a telephone conversation does the active open, and which does the passive
open? Are simultaneous opens allowed? Are simultaneous closes allowed?

18.8 In Figure 18.6 we don’t see an ARP request or an ARP reply. Obviously the hardware
address for host svr4 must be in the ARP cache on bsdi. What would changein this fig-
ure if this ARP cache entry was not present?

18.9 Explain the following tcpdump output. Compareit with Figure 18.13.
1 0:0 solaris.32990 > bsdi.discard: S 40140288:40140288 (0)

win 8760 <mss 1460>

2 0.003295 (0.0033) bsdi.discard > solaris.32990: S 4208081409:4208081409(0)
ack 40140289 win 4096
<mss 1024>

-419991 (0.4167) solaris.32990 > bsdi.discard: P 1:257(256) ack 1 win 9216
-449852 (0.0299) solaris.32990 > bsdi.discard: F 257:257(0) ack 1 win 9216
.451965 (0.0021) bsdi.discard > solaris.32990: . ack 258 win 3840
-464569 (0.0126) bsdi.discard > solaris.32990: F 1:1(0) ack 258 win 4096
.720031 (0.2555) solaris.32990 > bsdi.discard: . ack 2 win 9216

NEOCTH ooooo0
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18.10

18.11

18.12

18.13

18.14

18.15

18.16

18.17

18.18

Why doesn’t the server in Figure 18.4 combine the ACKof the client’s FIN with its own
FIN, reducing the numberof segmentsto three?

In Figure 18.16 why is the sequence numberof the RST 26368002?

Does TCP’s querying the link layer for the MTU violate the spirit of layering?

Assumein Figure 14,16 that each DNS queryis issued using TCP instead of UDP. How
many packets are exchanged?

With an MSL of 120 seconds, whatis the maximum at which a system caninitiate new con-
nections and then do an active close?

Read RFC 793 to see what happens when an end point that is in the TIME_WAITstate
receives a duplicate of the FIN that placedit into this state.
Read RFC 793 to see what happens when an end point that is in the TIMEWAITstate
receives an RST.

Read the Host Requirements RFC to obtain the definition of a halfduplex TCPclose.

In Figure 1.8 (p. 11) we said that incoming TCP segments are demultiplexed based on the
destination TCP port number. Is that correct?
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Flow ICP Interactive Dat

19.1 Introduction

The previous chapter dealt with the establishment and termination of TCP connections.
Wenow examinethetransfer of data using TCP.

Studies of TCP traffic, such as [Caceres et al. 1991], usually find that on a packet-
count basis about half of all TCP segments contain bulk data (FTP, electronic mail,
Usenet news) and the other half contain interactive data (Telnet and Rlogin, for exam-
ple). On a byte-countbasis the ratio is around 90% bulk data and 10%interactive, since
bulk data segments tend to be full sized (normally 512 bytes of user data), while interac-
tive data tends to be much smaller. (The above-mentioned study found that 90%of Tel-
net and Rlogin packets carry less than 10 bytes of user data.)

TCP obviously handles both types of data, but different algorithms come into play
for each. In this chapter we'll lookat interactive data transfer, using the Rlogin applica-
tion. We'll see how delayed acknowledgments work and how the Nagle algorithm
reduces the number of small packets across wide area networks. The same algorithms
apply to Telnet. In the next chapter we'll look at bulk data transfer.

19.2 Interactive Input

Let’s look at the flow of data when wetype an interactive command on an Rlogin con-
nection. Many newcomers to TCP/IP are surprised to find that each interactive key-
stroke normally generates a data packet. Thatis, the keystrokes are sent from the client
to the server 1 byte at a time (not oneline at a time). Furthermore, Rlogin has the

263
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remote system (the server) echo the characters that we (the client) type. This could gen-
erate four segments: (1) the interactive keystroke from the client, (2) an acknowledg-
mentof the keystroke from the server, (3) the echo of the keystroke from the server, and
(4) an acknowledgmentof the echo from the client. Figure 19.1 showsthis flow of data.

 

 

 

client server

keystroke > data byte
| p> server

ack of data byte
Let

echoof data byte <@— echo
display <@ a

ackof echoed byte   
Figure 19.1 One possible way to do remote echo of interactive keystroke.

Normally, however, segments 2 and 3 are combined—the acknowledgmentof the key-
stroke is sent along with the echo. We describe the technique that combines these
(called delayed acknowledgments) in the next section.

We purposely use Rlogin for the examples in this chapter because it always sends
one character at a time from the client to the server. When wedescribe Telnet in Chap-
ter 26, we'll see that it has an option that allowslines of input to be sent from the client
to the server, which reduces the network load.

Figure 19,2 showsthe flow of data when wetypethe five characters date\n. (We
do not show the connection establishment and we have removedall the type-of-service
output. BSD/386 sets the TOS for an Rlogin connection for minimum delay.) Line 1
sends the character d from the client to the server. Line 2 is the acknowledgmentofthis
character and its echo. (This is combining the middle two segments in Figure 19.1.)
Line 3 is the acknowledgmentof the echoed character. Lines 4-6 correspond to the
character a, lines 7-9 to the character t, and lines 10-12 to the character e. The frac-

tional second delays between lines 3-4, 6-7, 9-10, and 12-13 are the human delays
between typing each character.

Notice that lines 13-15are slightly different. One character is sent from the client to
the server (the Unix newline character, from our typing the RETURN key) but two char-
acters are echoed. These two characters are a carriage return and linefeed (CR/LF), to
movethe cursor back to the left and space downoneline.

Line 16 is the output of the date command from the server. The 30 bytes are com-
posed of the following 28 characters

Sat Feb 6 07:52:17 MST 1993
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1 0.0 bsdi.1023 > svr4.login: P 0:1(1) ack 1 win 4096
2 0.016497 (0.0165) svr4.login > bsdi.1023: P 1:2(1) ack 1 win 4096
3 0.139955 (0.1235) bsdi.1023 > svr4.login: . ack 2 win 4096

4 0.458037 (0.3181) bsdi.1023 > svr4.login: P 1:2(1) ack 2 win 4096
5 0.474386 (0.0163) svr4.login > bsdi.1023: P 2:3(1) ack 2 win 4096
6 0.539943 (0.0656) bsdi.1023 > svr4.login: . ack 3 win 4096

7 0.814582 (0.2746) bsdi.1023 > svr4.login: P 2:3(1) ack 3 win 4096
8 0.831108 (0.0165) svc4.login > bsdi.1023: P 3:4(1) ack 3 win 4096
9 0.940112 (0.1090) bsdi.1023 > svr4.login: . ack 4 win 4096

10 1.191287 (0.2512) bsdi.1023 > svr4.login: P 3:4(1) ack 4 win 4096
11 1.207701 (0.0164) svr4.login > bsdi.1023: P 4:5(1) ack 4 win 4096

12) 1.339994 (0.1323) bsdi.1023 > svr4,login: . ack 5 win 4096

13° 1.680646 (0.3407) bsdi.1023 > svr4.login: P 4:5(1) ack 5 win 4096
14 1.697977 (0.0173) svr4.login > bsdi.1023: P 5:7(2) ack 5 win 4096
15° 1.739974 (0.0420) bsdi.1023 > svr4.login: . ack 7 win 4096

16 1.799841 (0.0599) svr4.login > bsdi.1023: P 7:37(30) ack 5 win 4096
17° 1.940176 (0.1403) bsdi.1023 > svr4.login: . ack 37 win 4096
18 1.944338 (0.0042) svr4.login > bsdi.1023: P 37:44(7) ack 5 win 4096
19 2.140110 (0.1958) bsdi.1023 > svr4.login: . ack 44 win 4096

 
Figure 19.2. TCP segments when date typed on Rlogin connection.

plus a CR/LFpair at the end. The next 7 bytes sent from the serverto the client(line 18)
are the client’s prompt on the server host: svr4 % . Line 19 acknowledges these 7
bytes.

Notice how the TCP acknowledgments operate, Line 1 sends the data byte with the
sequence number 0. Line 2 ACKsthis by setting the acknowledgment sequence number
to 1, the sequence numberof the last successfully received byte plus one. (This is also
called the sequence number of the next expected byte.) Line 2 also sends the data byte
with a sequence numberof 1 from the server to the client. This is ACKed by the client
in line 3 by setting the acknowledged sequence number to2.

19.3 Delayed Acknowledgments

There are some subtle points in Figure 19.2 dealing with timing that we'll cover in this
section. Figure 19.3 shows the time line for the exchange in Figure 19.2. (We have
deleted all the window advertisements from this time line, and have added a notation
indicating whatdatais being transferred.)

We have labeled the seven ACKs sent from bsdi to svr4 as delayed ACKs. Nor-
mally TCP does not send an ACKthe instant it receives data. Instead, it delays the
ACK,hoping to have data going in the same direction as the ACK, so the ACKcan be
sent along with the data. (This is sometimescalled having the ACK piggyback with the
data.) Most implementations use a 200-ms delay—that is, TCP will delay an ACK up to
200 msto seeif there is data to send with the ACK.
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=

13 PSH _4:5(1) ack 5 (newline) |
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{ 15 ack 7
E>]
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( 7 ack 37
=}
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{ 19 ack 44
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Figure 19.3 Timeline of data flow for date command typed on an rlogin connection.
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19.4

If we look at the time differences between bsdi receiving the data and sending the
ACK,they appear to be random: 123.5, 65.6, 109.0, 132.3, 42.0, 140.3, and 195.8 ms. Look
instead at the actual times (starting from 0) when the ACKsare sent: 139.9, 539,9, 940.1,
1339.9, 1739.9, 1940.1, and 2140.1 ms. (We have marked these with an asterisk to the left
of the time in Figure 19.3.) There is a multiple of 200 ms between these times. Whatis
happening hereis that TCP has a timer that goes off every 200 ms, butit goesoff at fixed
points in time—every 200 msrelative to when the kernel was bootstrapped. Since the
data being acknowledged arrives randomly (at times 16.4, 474.3, 831.1, etc.), TCP asks to
be notified the next time the kernel’s 200-ms timer expires. This can be anywhere from
1 to 200 msin the future.

If we look at how long it takes svr4 to generate the echo of each character it
receives, the times are 16.5, 16.3, 16.5, 16.4, and 17.3 ms. Since this timeis less than 200

ms, we never see a delayed ACK onthat side. There is always data ready to be sent
before the delayed ACK timer expires. (We could still see a delayed ACK if the wait
period, about 16 ms, crosses one of the kernel’s 200-ms clock tick boundaries. We just
don’t see any of these in this example.)

We saw this same scenario in Figure 18.7 with the 500-ms TCP timer used when
detecting a timeout. Both TCP timers, the 200- and 500-ms timers, go off at times rela-
tive to when the kernel was bootstrapped. Whenever TCPsets a timer, it can go off any-
where between 1-200 or 1-500 msin the future.

The Host Requirements RFC states that TCP should implement a delayed ACK butthe delay
must beless than 500 ms.

Nagle Algorithm

Wesaw in the previoussection that 1 byte at a time normally flows from theclient to the
server across an Rlogin connection. This generates 41-byte packets: 20 bytes for the IP
header, 20 bytes for the TCP header, and 1 byte of data. These small packets (called
tinygrams) are normally not a problem on LANs, since most LANsare not congested,
but these tinygrams can add to congestion on wide area networks. A simple and ele-
gant solution was proposed in RFC 896 [Nagle 1984], called the Nagle algorithm.

This algorithm says that when a TCP connection has outstanding data that has not
yet been acknowledged, small segments cannot be sent until the outstanding data is
acknowledged. Instead, small amounts of data are collected by TCP andsentinasingle
segment when the acknowledgment arrives. The beauty of this algorithm is that it is
self-clocking: the faster the ACKs comeback, the faster the data is sent. But on a slow
WAN,whereit is desired to reduce the numberof tinygrams, fewer segments are sent.
(We'll see in Section 22.3 that the definition of “small”is less than the segmentsize.)

We saw in Figure 19.3 that the round-trip time on an Ethernetfor a single byte to be
sent, acknowledged, and echoed averaged around 16 ms. To generate data faster than
this we would have to be typing more than 60 characters per second. This means we
rarely encounter this algorithm when sending data between two hosts on a LAN.
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Things change, however, when the round-trip time (RTT) increases, typically across
a WAN. Let’s look at an Rlogin connection between our host slip and the host
vangogh.cs.berkeley.edu. To get out of our network (see inside front cover), two
SLIP links must be traversed, and then the Internet is used. We expect much longer
round-trip times. Figure 19.4 showsthe time line of some data flow while characters
were being typed quickly on the client (similar to a fast typist). (We have removed the
type-of-service information, but haveleft in the windowsize advertisements.)

PSH _5:6(1) ack 47, win 4096

vangogh.login

        

PSH 47:48(1) ack 6, win 8192        

PSH 6:7(1) ack 48, win 4096         

PSH 48:49(1) ack 7, win 8192          

PSH _7:9(2) ack 49, win 4095         

PSH 49:51(2) ack 9, win 8192          

PSH_9:10(1) ack 51, win 4094         

PSH 51:52(4) ack 10, win 8192        

PSH _10:12(2) ack 52, win 4095         

PSH_52:54(2) ack 12, win 8192 10
         

PSH 12:14(2) ack 54, win 4004     

ack 14, win 8190 12
 

PSH 54:56(2) ack 14, win 8192 13
         

PSH_14:17(3) ack 54, win 4096
        

PSH _17:18(1) ack 56, win 4096  ry    
PSH 56:59(3) ack 18, win 8191 16
        

PSH 18:21(3) ack 59, win 4093       

PSH_59:60(1) ack 21, win 8189 18        

slip.1023

0.0 1

0.197694 (0.1977) be

0.232457 (0.0348) 3

0.437593 (0.2051) et

0.464257 (0.0267) 5

0.677658 (0.2134) a

0.707709 (0.0301) 7

0.917762 (0.2101) <—

0.945862 (0.0281) 9

1.157640 (0.2118) eg

1.187501 (0.0299) 1

1.427852 (0.2404) Let

1.428025 (0.0002) +28

1.457191 (0.0292) 14

1.478429 (0.0212) 15

1.727608 (0.2492) ps

1.762913 (0.0353) 17

1.997900 (0.2350) (a

  
Figure 19.4 Data flow using rlogin between slip and vangogh.cs.berkeley.edu.
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The first thing we notice, comparing Figure 19.4 with Figure 19.3, is the lack of
delayed ACKs from slip to vangogh. This is because there is always data ready to
send before the delayed ACKtimer expires.

Next, notice the various amounts of data being sent from the left to the right: 1, 1, 2,
1, 2, 2, 3, 1, and 3 bytes. This is because the client is collecting the data to send, but
doesn’t send it until the previously sent data has been acknowledged. By using the
Nagle algorithm only nine segments were used to send 16 bytes, instead of 16 segments.

Segments 14 and 15 appear to contradict the Nagle algorithm, but we need to look
at the sequence numbers to see what's really happening. Segment 14 is in response to
the ACKreceived in segment 12, since the acknowledged sequence numberis 54. But
before this data segmentis sent by the client, segment 13 arrives from the server. Seg-
ment 15 contains the ACK of segment 13, sequence number 56. So the client is obeying
the Nagle algorithm, even though we see two back-to-back data segments from the
client to the server.

Also notice in Figure 19.4 that one delayed ACKis present, butit’s from the server
to the client (segment 12). We are assuming this is a delayed ACKsince it contains no
data. The server must have been busyatthis time, so that the Rlogin server was not
able to echo the character before the server’s delayed ACKtimer expired.

Finally, look at the amounts of data and the sequence numbersin the final two seg-
ments. The client sends 3 bytes of data (numbered 18, 19, and 20), then the server
acknowledges these 3 bytes (the ACK of 21 in the final segment) but sends back only 1
byte (numbered 59). What's happening here is that the server’s TCP is acknowledging
the 3 bytes of data once it has received them correctly, but it won’t have the echo of
these 3 bytes ready to send back until the Rlogin server sends them. This showsthat
TCP can acknowledge received data before the application has read and processed that
data. The TCP acknowledgment just means TCP has correctly received the data. We
also havean indication that the server process has not read these 3 bytes of data because
the advertised windowin the final segmentis 8189, not 8192.

Disabling the Nagle Algorithm

There are times when the Nagle algorithm needs to be turned off. The classic example
is the X Window System server (Section 30.5): small messages (mouse movements) must
be delivered without delay to provide real-time feedback for interactive users doing cer-
tain operations.

Here we'll show another example that’s easier to demonstrate—typing one of the
terminal’s special function keys during an interactive login. The function keys normally
generate multiple bytes of data, often beginning with the ASCII escape character. If
TCP gets the data 1 byte at a time, it’s possible for it to send the first byte (the ASCII
ESC) and then hold the remaining bytes of the sequence waiting for the ACK of this
byte. But when the serverreceives thisfirst byte it doesn’t generate an echo until the
remaining bytes are received. This often triggers the delayed ACKalgorithm on the
server, meaning that the remaining bytes aren’t sent for up to 200 ms. This can lead to
noticeable delays to the interactive user.
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The sockets API uses the TCP_NODELAYsocket option to disable the Nagle algorithm.

The Host Requirements RFC states that TCP should implement the Nagle algorithm but there
must be a wayfor an application to disable it on an individual connection.

An Example

Wecansee this interaction between the Nagle algorithm and keystrokes that generate
multiple bytes. We establish an Rlogin connection from our host slip to the host
vangogh.cs.berkeley.edu. We then type the Fl function key, which generates 3
bytes: an escape, a left bracket, and an M. We then type the F2 function key, which gen-
erates another 3 bytes. Figure 19.5 shows the tcpdump output. (We have removedthe
type-of-service information and the window advertisements.)

type F1 key
1 0.0 slip.1023 > vangogh.login: P 1:2(1) ack 2
2 0.250520 (0.2505) vangogh.login > slip.1023: P 2:4(2) ack 2
3 0.251709 (0.0012) slip.1023 > vangogh.login: P 2:4(2) ack 4
4 0.490344 (0.2386) vangogh.login > slip.1023: P 4:6(2) ack 4
5 0.588694 (0.0984) slip.1023 > vangogh.login: . ack 6

type F2 key
6 2.836830 (2.2481) slip.1023 > vangogh.login: P 4:5(1) ack 6
7 3.132388 (0.2956) vangogh.login > slip.1023: P 6:8(2) ack 5
8 3.133573 (0.0012) slip.1023 > vangogh.login: P 5:7(2) ack 8
9 3.370346 (0.2368) vangogh.login > slip.1023: P 8:10(2) ack 7

10 3.388692 (0.0183) slip.1023 > vangogh,login: . ack 10

Figure 19.5 Watching the Nagle algorithm when typing characters that generate multiple bytes of data.

Figure 19.6 shows the time line for this exchange. At the bottom of this figure we
showthe 6 bytes going from the client to the server with their sequence numbers, and
the 8 bytes of echo being returned.

Whenthefirst byte of input is read by the rlogin client and written to TCP, it is
sent by itself as segment 1. This is the first of the 3 bytes generated by the F1 key. Its
echo is returned in segment 2, and only then are the next 2 bytes sent (segment 3). The
echo of the second 2 bytes is received in segment 4 and acknowledged in segment5.

The reason the echo of the first byte occupies 2 bytes (segment 2) is because the
ASCII escape character is echoed as 2 bytes: a caret and a left bracket. The next 2 bytes
of input, a left bracket and an M,are echoed as themselves.

The same exchange occurs when the next special function key is typed (segments
6-10), As we expect, the time difference between segments 5 and 10 (slip sending the
acknowledgmentof the echo) is a multiple of 200 ms, since both ACKsare delayed.
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slip.1023 vangogh.login

0.0 type Fl > 1 fe PSH 1:2(1) ack 2
ey

PSH. 2:4(2) ack 2 |2

0.250520 (0.2505) fmm0.251709 (0.0012 3 be PSH 2:4(2) ack 4
Bey

PSH 4:6(2) ack 4 4
0.490344 (0.2386) la

0.588694 (0.0984) 5 ack 6 ae]

d. P 42.836830 (2.2481) type F2 > SH 4:5(1) ack 6
a

PSH 6:8(2) ack 5 wal 7
3.132388 (0.2956 |e

3.133573 (0.0012 8 PSH _5:7(2) ack 8

PSH 8:10(2) ack 7 |,
3.370346 (0.2368) gj

3.388692 (0.0183) 10 ack 10
{Bem}

F2 key F1 keyee

| Ni [ [esc M/ lesc _ F1 echo F2 echo<Q
seqt 6 5 4 3 2 1

enee
23 45 67 8 9

Figure 19.6 Time line for Figure 19.5 (watching the Nagle algorithm).

Wenow repeat this same example using a version of rlogin that has been modi-
fied to turn off the Nagle algorithm. Figure 19.7 shows the tcpdump output. (Again,
we havedeleted the type-of-service information and the window advertisements.)
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type F1 key
1 0.0 slip.1023 > vangogh.login: P 1:2(1) ack 2
2 0.002163 (0.0022) slip.1023 > vangogh.login: P 2:3(1) ack 2
3 0.004218 (0.0021) slip.1023 > vangogh.login: P 3:4(1) ack 2
4 0.280621~(0.2764) vangogh.login > slip.1023: P 5:6(1) ack 4
5 0.281738 (0.0011) slip.1023 > vangogh.login: . ack 2
6 2.477561 (2.1958) vangogh. login > slip.1023: P 2:6(4) ack 4
7 2.478735 (0.0012) slip.1023 > vangogh.login: . ack 6

type F2 key
8 3,217023 (0.7383) slip.1023 > vangogh.login: P 4:5(1) ack 6
9 3.219165 (0.0021) slip.i1023 > vangogh.login: P 5:6(1) ack 6

10 3.221688 (0.0025) slip.1023 > vangogh.login: P 6:7(1) ack 6
11 3.460626 (0.2389) vangogh. login > slip.1023: P 6:8(2) ack 5
12 3.489414 (0.0288) vangogh. login > slip.1023: P 8:10(2) ack 7
13° 3.640356 (0,1509) slip.1023 > vangogh.login: . ack 10

Figure 19.7 Disabling the Nagle algorithm during an Rlogin session.

It is instructive and more enlightening to take this output and construct the time
line, knowing that some of the segmentsare crossing in the network. Also, this example
requires careful examination of the sequence numbers, to follow the data flow. We
show this in Figure 19.8. We have numbered the segments to correspond with the num-
bering in the tcpdump output in Figure 19.7.

Thefirst change wenotice is that all 3 bytes are sent when they’re ready (segments
1, 2, and 3). There is no delay—the Nagle algorithm has been disabled.

The next packet we see in the tcpdump output (segment 4) contains byte 5 from the
server with an ACK4, This is wrong. The client immediately responds with an ACK 2
(it is not delayed), not an ACK6, since it wasn’t expecting byte 5 to arrive. It appears a
data segment waslost. We show this with a dashedline in Figure 19.8.

How do we knowthis lost segment contained bytes 2, 3, and 4, along with an ACK
3? The next byte we’re expecting is byte number 2, as announced by segment5.
(Whenever TCP receives out-of-order data beyond the next expected sequence number,
it normally responds with an acknowledgmentspecifying the sequence numberof the
next byte it expects to receive.) Also, since the missing segment contained bytes 2,3,
and 4, it means the server must have received segment 2, so the missing segment must
have specified an ACK 3 (the sequence number of the next byte the server is expecting
to receive.) Finally, notice that the retransmission, segment 6, contains data from the
missing segment and segment 4. This is called repacketization, and we'll discuss it more
in Section 21.11.

Returning to our discussion of disabling the Nagle algorithm, we can see the 3 bytes
of the next special function key that we typeis sent as three individual segments (8, 9,
and 10). This time the server echoes the byte in segment8 first (segment 11), and then
echoes the bytes in segments 9 and 10 (segment12).

Whatwe've seen in this example is that the default use of the Nagle algorithm can
cause additional delays when multibyte keystrokes are entered while running an inter-
active application across a WAN. (See Exercise 19.3.)

Wereturn to the topic of timeout and retransmission in Chapter 21.
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0.280621 (0.2764
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(timeout and
retransmission)

2.477561 (2.1958
2.478735 (0.0012
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Figure 19.8 Timeline for Figure 19.7 (Nagle algorithm disabled).
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19.5

19.6

Window Size Advertisements

In Figure 19.4 (p. 268) we see that slip advertises a window of 4096 bytes and
vangoghadvertises a window of 8192 bytes. Most segments in this figure contain one
of these two values.

Segment 5, however, advertises a window of 4095 bytes. This meansthereis still 1
byte in the TCP buffer for the application (the Rlogin client) to read. Similarly, the next
segment from the client advertises a window of 4094 bytes, meaning there are 2 bytes
still to be read.

The server normally advertises a window of 8192 bytes, because the server’s TCP
has nothing to send until the Rlogin server reads the received data and echoes it. The
data from the serveris sent after the Rlogin server has read its input from the client.

The client TCP, on the other hand, often has data to send when the ACKarrives,

since it’s buffering the received characters just waiting for the ACK. When theclient
TCP sends the buffered data, the Rlogin client has not had a chance to read the data
received from the server, so the client’s advertised window is less than 4096.

Summary

Interactive data is normally transmitted in segments smaller than the maximum seg-
ment size. With Rlogin a single byte of data is normally sent from the client to the
server. Telnet allows for the input to be sent one line at a time, but most implementa-
tions todaystill send single characters of input.

Delayed acknowledgments are used by the receiver of these small segmentsto seeif
the acknowledgment can be piggybacked along with data going back to the sender.
This often reduces the number of segments, especially for an Rlogin session, where the
server is echoing the characters typedattheclient.

On slower WANsthe Nagle algorithm is often used to reduce the number of these
small segments. This algorithm limits the senderto a single small packet of unacknowl-
edged data at any time. But there are times when the Nagle algorithm needsto be dis-
abled, and we showed an example ofthis.

Exercises

19.1 Consider a TCP client application that writes a small application header (8 bytes) followed
by a small request (12 bytes). It then waits for a reply from the server. What happensif the
request is sent using two writes (8 bytes, then 12 bytes) versus a single write of 20 bytes?

19.2 In Figure 19.4 we are running tcpdump on the router sun. This means the data in the
arrows from the right to the left still have to go through bsdi, and the data in the arrows
from theleft to the right have already come through bsdi. When wesee a segment going
to slip, followed by a segment coming from slip, the time differences between the two
are: 34.8, 26.7, 30.1, 28.1, 29.9, and 35.3 ms. Given that there are two links between sun and
slip (an Ethernet and a 9600 bits/sec CSLIP link), do these time differences make sense?
(Hint: Reread Section 2.10.)

19.3. Compare the time required to send a special function key and haveit acknowledged using
the Nagle algorithm (Figure 19.6) and with the algorithm disabled (Figure 19.8).
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20.1

20.2

20

TCP Bulk Data Flow

Introduction

In Chapter 15 we saw that TFTP uses a stop-and-wait protocol. The sender of a data
block required an acknowledgment for that block before the next block was sent. In this
chapter we'll see that TCP uses a different form of flow control called a sliding window
protocol. It allows the sender to transmit multiple packets before it stops and waits for
an acknowledgment. This leads to faster data transfer, since the sender doesn’t have to
stop and wait for an acknowledgment each time a packet is sent.

Wealso look at TCP’s PUSH flag, something we’ve seen in many of the previous
examples. Wealso look at slowstart, the technique used by TCP for getting the flow of
data established on a connection, and then we examine bulk data throughput.

Normal Data Flow

Let’s start with a one-way transfer of 8192 bytes from the host svr4 to the host bsdi.
We run our sock program on bsdias the server:

bsdi % sock -i -s 7777

The —i and -s flags tell the program to run as a “sink” server (read from the network
and discard the data), and the server’s port numberis specified as 7777. The corre-
spondingclient is then run as:

svr4 % sock ~i -n8 bsdi 7777

This causes the client to perform eight 1024-byte writes to the network. Figure 20.1
showsthe time line for this exchange. We haveleft the first three segments in the out-
put to show the MSSvaluesfor each end.
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Figure 20.1 Transfer of $192 bytes from svr4 to bsdi.
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svr4.1056 bsdi.7777
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The sender transmits three data segments (4-6) first. The next segment (7)
acknowledges the first two data segments only. We know this because the acknowl-
edged sequence numberis 2049, not 3073.

Segment7 specifies an ACK of 2049 and not 3073 for the following reason. When a
packet arrives it is initially processed by the device driver’s interrupt service routine
and then placed onto IP’s input queue. The three segments 4, 5, and 6 arrive one after
the other and are placed onto IP’s input queuein the received order. IP will pass them
to TCP in the same order. When TCP processes segment4, the connection is marked to
generate a delayed ACK. TCP processes the next segment (5) and since TCP now has
two outstanding segments to ACK, the ACK of 2049 is generated (segment 7), and the
delayed ACKflag for this connection is turned off. TCP processes the next input seg-
ment (6) and the connection is again marked for a delayed ACK. Before segment 9
atrives, however, it appears the delayed ACKtimer goes off, and the ACK of 3073 (seg-
ment8) is generated. Segment 8 advertises a window of 3072 bytes, implying that there
are still 1024 bytes of data in the TCP receive buffer that the application has notread.

Segments 11-16 show the “ACK every other segment” strategy that is common.
Segments 11, 12, and 13 arrive and are placed on IP’s input queue. When segment11is
processed by TCP the connection is marked for a delayed ACK. When segment 12 is
processed, an ACKis generated (segment 14) for segments 11 and 12, and the delayed
ACK flag for this connection is turned off. Segment 13 causes the connection to be
marked again for a delayed ACK butbefore the timer goes off, segment 15 is processed,
causing the ACK(segment 16) to be sent immediately.

It is important to notice that the ACK in segments 7, 14, and 16 acknowledge two
received segments. With TCP’s sliding-window protocol the receiver does not have to
acknowledge every received packet. With TCP, the ACKs are cumulative—they
acknowledge that the receiver has correctly received all bytes up through the acknowl-
edged sequence number minus one. In this example three of the ACKs acknowledge
2048 bytes of data and two acknowledge 1024 bytes of data. (This ignores the ACKsin
the connection establishment and termination.)

What we are watching with tcpdump are the dynamics of TCP in action. The
ordering of the packets that we see on the wire depends on manyfactors, most of which
we have no control over: the sending TCP implementation, the receiving TCP imple-
mentation, the reading of data by the receiving process (which depends on the process
scheduling by the operating system), and the dynamics of the network (i.e., Ethernet
collisions and backoffs), There is no single correct way for two TCPs to exchange a
given amountofdata.

To show how things canchange, Figure 20.2 shows another time line for the same
exchange of data between the same two hosts, captured a few minutes after the one in
Figure 20.1.
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Figure 20.2 Anothertransfer of 8192 bytes from svr4 to bsdi.

 
A few things have changed. This time the receiver does not send an ACKof 3073;

instead it waits and sends the ACK of 4097. The receiver sends only four ACKs (seg-
ments 7, 10, 12, and 15): three of these are for 2048 bytes and one for 1024 bytes. The
ACKofthe final 1024 bytes of data appears in segment 17, along with the ACKof the
FIN. (Compare segment17 in this figure with segments 16 and 18 in Figure 20.1.)
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Fast Sender, Slow Receiver

Figure 20.3 shows another timeline, this time from a fast sender (a Sparc) to a slow
receiver (an 80386 with a slow Ethernet card). The dynamicsare different again.
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Figure 20.3 Sending 8192 bytes from a fast senderto a slow receiver, ,

The sender transmits four back-to-back data segments (4-7) to fill the receiver’s
window. The sender then stops and waits for an ACK. The receiver sends the ACK
(segment 8) but the advertised windowis 0. This means the receiver hasall the data,
butit’s all in the receiver’s TCP buffers, because the application hasn’t had a chanceto
read the data. Another ACK (called a window update) is sent 17.4 ms later, announcing
that the receiver can now receive another 4096 bytes. Althoughthis looks like an ACK,
it is called a window update because it does not acknowledge any new data, it just
advancesthe right edge of the window.
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The sender transmits its final four segments (10-13), again filling the receiver’s win-
dow. Notice that segment 13 contains twoflag bits: PUSH and FIN. This is followed by
another two ACKsfrom the receiver. Both of these acknowledge the final 4096 bytes of
data (bytes 4097 through 8192) and the FIN (numbered 8193).

Sliding Windows

Thesliding window protocol that we observed in the previous section can be visualized
as shownin Figure 20.4.

_ offered window 

 

    

“ (advertised by receiver) =
usable window

1 2 3 4 5 6 7 8 9 10 11

can’t send untiloeorFrDo>
sent and sent, not ACKed be window moves

acknowledged can send ASAP

Figure 20.4 Visualization of TCP sliding window.

In this figure we have numbered the bytes 1 through 11. The window advertised by the
receiver is called the offered window and covers bytes 4 through 9, meaning that the
receiver has acknowledged all bytes up through and including number 3, and has
advertised a window size of 6. Recall from Chapter 17 that the window sizeis relative
to the acknowledged sequence number. The sender computesits usable window, which
is how muchdata it can send immediately.

Over time this sliding window movesto the right, as the receiver acknowledges
data. Therelative motion of the two ends of the window increases or decreases the size

of the window. Three terms are used to describe the movement of the right and left
edges of the window.

1. The window closes as the left edge advances to the right. This happens when
data is sent and acknowledged.

2. The window opens when the right edge movesto the right, allowing more data
to be sent. This happens when the receiving process on the other end reads
acknowledged data, freeing up space in its TCP receive buffer. °

3. The window shrinks when the right edge movesto the left. The Host Require-
ments RFC strongly discourages this, but TCP must be able to cope with a peer
that does this. Section 22.3 shows an example when one side would like to
shrink the window by movingthe right edge to the left, but cannot.

Figure 20.5 showsthese three terms. The left edge of the window cannot move to
the left, because this edge is controlled by the acknowledgment numberreceived from
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closes shrinks opens[_———<§$$$ 

window   
Figure 20.5 Movement of window edges.

the other end. If an ACK were received that implied moving the left edge to theleft, it
is a duplicate ACK, and discarded.

If the left edge reaches the right edge, it is called a zero window. This stops the
sender from transmitting any data. -

An Example

Figure 20.6 shows the dynamics of TCP’s sliding window protocol for the data transfer

 

         
  
 

 

 

 
  
  
 

in Figure 20.1.
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Figure 20.6 Sliding window protocolfor Figure 20.1.
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20.4

There are numerous points that we can summarize usingthis figure as an example.

1. The sender does not have to transmit a full window’s worth of data.

2. One segment from the receiver acknowledges data andslides the windowto the
right. This is because the windowsize is relative to the acknowledged sequence
number.

3. The size of the window can decrease, as shown by the change from segment7 to
segment 8, but the right edge of the window must not moveleftward.

4, The receiver does not have to wait for the window to fill before sending an
ACK. Wesaw earlier that many implementations send an ACKfor every two
segments that are received, |

We'll see more examples of the dynamics of the sliding window protocol in later
examples.

Window Size

The size of the window offered by the receiver can usually be controlled by the receiv-
ing process. This can affect the TCP performance.

4,2BSD defaulted the send buffer and receive buffer to 2048 bytes each. With 4.3BSD both were
increased to 4096 bytes. As we can see from all the examplesso far in this text, SunOS 4.1.3,
BSD/386, and SVR4still use this 4096-byte default. Other systems, such as Solaris 2.2, 4.4BSD,
and AIX 3.2, use larger default buffer sizes, such as 8192 or 16384 bytes.

The sockets API allows a process to set the sizes of the send buffer and the receive buffer. The
size of the receive buffer is the maximum size of the advertised window for that connection.

Someapplications changethe socket buffer sizes to increase performance.

[Mogul 1993] shows someresults for file transfer between two workstations on an
Ethernet, with varying sizes for the transmit buffer and receive buffer. (For a one-way
flow of data such asfile transfer, it is the size of the transmit buffer on the sending side
and the size of the receive buffer on the receiving side that matters.) The common
default of 4096 bytes for both is not optimal for an Ethernet. An approximate 40%
increase in throughput is seen by just increasing both buffers to 16384 bytes. Similar
results are shown in [Papadopoulos and Parulkar 1993].

In Section 20.7 we'll see how to calculate the minimum buffer size, given the band-
width of the communication media and the round-trip time between the two ends.

An Example

Wecan control the sizes of these buffers with our sock program. We invoke the server
as:

bsdi % sock -i -s -R6144 5555
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whichsets the size of the receive buffer (-R option) to 6144 bytes. We then start the
client on the host sun and haveit perform one write of 8192 bytes:

sun % sock -i -nl -w8192 bsdi 5555

Figure 20.7 showstheresults.

0.0

0.002282 (0.0023)

0.003067 (0.0008)

0.022170 (0.0191)

0.024136 (0.0020)

0.026084 (0.0019)

0.027711 (0.0016)

0.029334 (0.0016)

0.030910 (0.0016)

0.044570 (0.0137)

0.046510 (0.0019)

0.048234 (0.0017)

0.050074 (0.0018)

0.054250 (0,0042)

0.056215 (0.0020)

0.058233 (0.0020)

0.059518 (0.0013)

0.060167 (0.0006)

Figure 20.7 Data transfer with receiver offering a windowsize of 6144 bytes.
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First notice that the receiver’s window size is offered as 6144 bytes in segment2.

Because of this larger window,the client sends six segments immediately (segments
4-9), and then stops. Segment 10 acknowledgesall the data (bytes 1 through 6144) but
offers a window of only 2048, probably because the receiving application hasn’t had a
chance to read more than 2048 bytes. Segments 11 and 12 complete the data transfer
from the client, and this final data segment also carries the FIN flag.
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20.5

Segment 13 contains the same acknowledgment sequence number as segment 10,
but advertises a larger window. Segment 14 acknowledgesthe final 2048 bytes of data
and the FIN, and segments 15 and 16 just advertise a larger window. Segments 17 and
18 complete the normal close.

PUSH Flag

We've seen the PUSHflag in every one of our TCP examples, but we’ve never described
its use. It’s a notification from the senderto the receiver for the receiver to pass all the
data that it has to the receiving process. This data would consist of whatever is in the
segment with the PUSH flag, along with any other data the receiving TCP hascollected
for the receiving process.

In the original TCP specification, it was assumed that the programming interface
would allow the sending process to tell its TCP when to set the PUSH flag. In an inter-
active application, for example, when the client sent a command to the server, the client
would set the PUSH flag and wait for the server’s response. (In Exercise 19.1 we could
imaginethe client setting the PUSH flag when the 12-byte request is written.) By allow-
ing the client application to tell its TCP to set the flag, it was a notification to the client's
TCP that the client process didn’t want the data to hang around in the TCP buffer, wait-
ing for additional data, before sending a segment to the server. Similarly, when the
server’s TCP received the segment with the PUSHflag, it was a notification to pass the
data to the server process and not waitto see if any additional data arrives.

Today, however, most APIs don’t provide a way for the application to tell its TCP to
set the PUSH flag. Indeed, many implementors feel the need for the PUSH flag is out-
dated, and a good TCP implementation can determine whentosettheflag byitself.

Most Berkeley-derived implementations automatically set the PUSH flag if the data
in the segment being sent empties the send buffer. This means we normally see the
PUSHflag set for each application write, because data is usually sent whenit’s written.

A commentin the code indicates this algorithm is to please those implementations that only
pass received data to the application when a buffer fills or a segment is received with the
PUSHflag.

It is not possible using the sockets API to tell TCP to turn on the PUSHflagorto tell whether
the PUSHflag wasset in received data.

Berkeley-derived implementations ignore a received PUSH flag because they nor-
mally never delay the delivery of received data to the application. ,

Examples

In Figure 20.1 (p. 276) we see the PUSH flag turned onforall eight data segments (4-6,
9, 11-13, and 15). This is because the client did eight writes of 1024 bytes, and each
write emptied the send buffer.

Look again at Figure 20.7 (p. 283). We expect the PUSHflag to be set on segment 12,
sincethat is the final data segment. Why was the PUSH flag set on segment 7, when the
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20.6

sender knew there were still more bytes to send? The reason is that the size of the
sender’s send buffer is 4096 bytes, even though wespecified a single write of 8192
bytes.

Another point to note in Figure 20.7 concerns the three consecutive ACKs, segments
14, 15, and 16. We saw two consecutive ACKsin Figure 20.3, but that was because the
receiver had advertised a window of 0 (stopping the sender) so when the window
opened up, another ACK wasrequired, with the nonzero window,to restart the sender.
In Figure 20.7, however, the window never reaches 0, Nevertheless, when the size of
the window increases by 2048 bytes, another ACKis sent (segments 15 and 16) to pro-
vide this window update to the other end. (These two window updates in segments 15
and 16 are not needed, since the FIN has been received from the other end, meaningit
will not send any more data.) Many implementations send this window updateif the
window increases by either two maximum sized segments (2048 bytes in this example,
with an MSS of 1024) or 50% of the maximum possible window (3072 bytes in this
example, with a maximum window of 6144). We’ll see this again in Section 22.3 when
we examinethesilly window syndromein detail.

As another example of the PUSHflag, look again at Figure 20.3 (p. 279). The reason
wesee the flag on for the first four data segments (4-7) is because each one caused a
segment to be generated by TCP and passed to the IP layer. But then TCP had to stop,
waiting for an ACK to move the 4096-byte window. While waiting for the ACK, TCP
takes the final 4096 bytes of data from the application. When the window opens up
(segment 9) the sending TCP knowsit has four segments that it can send immediately,
so it only turns on the PUSHflagfor the final segment (13).

Slow Start

In all the examples we've seen so far in this chapter, the sender starts off by injecting
multiple segments into the network, up to the windowsize advertised by the receiver.
While this is OK when the two hosts are on the same LAN,if there are routers and

slower links between the sender and the receiver, problems can arise. Some intermedi-
ate router must queue the packets, and it’s possible for that router to run out of space.
[Jacobson 1988] shows how this naive approach can reduce the throughput of a TCP
connection drastically.

TCP is now required to support an algorithm called slow start. It operates by
observing that the rate at which new packets should be injected into the networkis the
rate at which the acknowledgments are returned by the other end.

Slow start adds another window to the sender’s TCP: the congestion window, called
cwnd. When a new connection is established with a host on another network, the con-

gestion windowis initialized to one segment(ie., the segment size announced by the
other end). Each time an ACKis received, the congestion window is increased by one
segment. (cwnd is maintained in bytes, but slow start always increments it by the seg-
ment size.) The sender can transmit up to the minimum of the congestion window and
the advertised window. The congestion window is flow control imposed by the sender,
while the advertised windowis flow control imposed bythereceiver.
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The senderstarts by transmitting one segment and waiting for its ACK. When that
ACKis received, the congestion windowis incremented from one to two, and two seg-
ments can be sent. When each of those two segments is acknowledged, the congestion
windowis increased to four. This provides an exponential increase.

At some point the capacity of the internet can be reached, and an intermediate
router will start discarding packets. This tells the sender that its congestion window
has gotten too large. When wetalk about TCP’s timeout and retransmission algorithms
in the next chapter, we'll see how this is handled, and what happensto the congestion
window. For now,let’s watch slow start in action.

An Example

20.7

Figure 20.8 shows data being sent from the host sun to the host
vangogh.cs.berkeley.edu. The data traverses a slow SLIP link, which should be
the bottleneck. (We have removed the connection establishment from this timeline.)

Wesee the sender transmit one segment with 512 bytes of data and then waitforits
ACK. The ACKis received 716 ms later, which is an indicator of the round-trip time.
The congestion window is then increased to two segments, and two segmentsaresent.
When the ACK in segment 5 is received, the congestion window is increased to three
segments. Two more segments are sent (not three) because the ACK for segment 4 is
still outstanding. When the ACK in segment8 is received, the congestion windowis
increased to 4 but only two more segments are sent, because the ACKs for segments 6
and7 arestill outstanding.

We'll return to slow start in Section 21.6 and see how it’s normally implemented.
with another technique called congestion avoidance.

Bulk Data Throughput

Let’s look at the interaction of the window size, the windowed flow control, and slow

start on the throughput of a TCP connection carrying bulk data.
Figure 20.9 showsthe steps over time of a connection between a sender on theleft

and a receiver on the right. Sixteen units of time are shown. We show only discrete
units of time in this figure, for simplicity. We show segments carrying data going from
the left to right in the top half of each picture, numbered 1, 2, 3, and so on. The ACKs

go in the other direction in the bottom half of each picture. We draw the ACKssmaller,
and show the segment number being acknowledged.
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Figure 20.8 Example ofslowstart.
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Figure 20.9 Times 0-15 for bulk data throughput example.
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At time 0 the sender transmits one segment. Since the sender is in slow start (its
congestion window is one segment), it must wait for the acknowledgmentofthis seg-
ment before continuing.

At times 1, 2, and 3 the segment moves one unit of time to the right. At time 4 the
receiver reads the segment and generates the acknowledgment. Attimes 5, 6, and 7 the
ACK movesto the left one unit, back to the sender. We have a round-trip time (RTT) of
8 units of time.

We have purposely drawn the ACK segment smaller than the data segment, since
it’s normally just an IP header and a TCP header. We're showing only a unidirectional
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flow of data here. Also, we assumethat the ACK moves at the same speed as the data
segment, which isn’t always true.

In general the time to send a packet depends on twofactors: a propagation delay (caused by
the finite speed of light, latencies in transmission equipment, etc.) and a transmission delay
that depends on the speed of the media (how many bits per second the media can transmit).
For a given path between two nodes the propagation delay is fixed while the transmission
delay depends on the packet size. At lower speeds the transmission delay dominates(e.g.,
Exercise 7.2 where we didn’t even consider the propagation delay), whereas at gigabit speeds
the propagation delay dominates(e.g., Figure 24.6).

Whenthe sender receives the ACKit can transmit two more segments (which we’ve
numbered 2 and 3), at times 8 and9. Its congestion window is now two segments.
These two segments moveright toward the receiver, where the ACKsare generated at
times 12 and 13. The spacing of the ACKsreturnedto the senderis identical to the spac-
ing of the data segments. This is called the self-clocking behavior of TCP. Since the
receiver can only generate ACKs whenthe data arrives, the spacing of the ACKsat the
sender identifies the arrival rate of the data at the receiver. (In actuality, however,
queueing on the return path can changethearrival rate of the ACKs.)

Figure 20.10 shows the next 16 time units. The arrival of the two ACKs increases
the congestion window from two to four segments, and these four segments are sent at
times 16-19. Thefirst of the ACKsreturnsat time 23. The four ACKsincrease the con-

gestion window from four to eight segments, and these eight segments are transmitted
at times 24-31.

At time 31, and atall successive times, the pipe between the sender and receiveris
full. It cannot hold any more data, regardless of the congestion window or the window
advertised by the receiver. Each unit of time a segmentis removed from the network by
the receiver, and anotheris placed into the network by the sender. However manydata
segmentsfill the pipe, there are an equal number of ACKs making the return trip. This
is the ideal steady state of the connection.

Bandwidth-Delay Product

We can now answerthe question: how big should the window be? In our example, the
sender needs to have eight segments outstanding and unacknowledged at any time, for
maximum throughput. The receiver’s advertised window mustbe that large, since that
limits how muchthe sendercan transmit.

Wecan calculate the capacity of the pipe as

capacity (bits) = bandwidth(bits/sec) x round-trip time (sec)

This is normally called the bandwidth-delay product. This value can vary widely, depend-
ing on the network speed and the RTT between the two ends. For example, a T1 tele-
phoneline (1,544,000 bits/sec) across the United States (about a 60-ms RTT) gives a
bandwidth-delay product of 11,580 bytes. This is reasonable in terms of the buffer sizes
wetalked about in Section 20.4, but a T3 telephoneline (45,000,000 bits/sec) across the
United States gives a bandwidth-delay product of 337,500 bytes, which is bigger than
the maximum allowable TCP window advertisement (65535 bytes). We describe the
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Figure 20,10 Times 16-31 for bulk data throughput example.

new TCP windowscale option in Section 24.4 that gets aroundthis currentlimitation of
TCP.

The value 1,544,000 bits/sec for a T1 phone line is the raw bit rate. The data rate is actually
1,536,000 bits/sec, since 1 bit in 193 is used for framing. The raw bit rate of a T3 phonelineis
actually 44,736,000 bits/sec, and the data rate can reach 44,210,000 bits/sec. For our discussion
we'll use 1.544 Mbits/sec and 45 Mbits/sec.

Either the bandwidth or the delay can affect the capacity of the pipe between the
sender and receiver. In Figure 20.11 we show graphically how a doubling of the RTT
doubles the capacity of the pipe.
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Figure 20.11 Doubling the RTT doubles the capacity of the pipe.

In the lowerillustration of Figure 20.11, with the longer RTT, the pipe can hold eight
segments, instead of four.

Similarly, Figure 20.12 shows that doubling the bandwidth also doubles the capacity
of the pipe.

        ' zo
Figure 20.12 Doubling the bandwidth doubles the capacity of the pipe.

In the lowerillustration of Figure 20.12, we assumethat the network speed has doubled,
allowing us to send four segments in half the time as in the top picture. Again, the
capacity of the pipe has doubled. (We assume that the segments in the top half of this
figure have the same area, that is the same numberofbits, as the segments in the bot-
tom half.)

Congestion

Congestion can occur when data arrives on a big pipe (a fast LAN) and. gets sent out a
smaller pipe (a slower WAN). Congestion can also occur when multiple input streams
arrive at a router whose output capacity is less than the sum ofthe inputs.

Figure 20.13 showsa typical scenario with a big pipe feeding a smaller pipe. We say
this is typical because most hosts are connected to LANs, with an attached router that is
connected to a slower WAN. (Again, we are assuming theareasofall the data segments
(9-20) in the top half of the figure are the same, and the areas of all the acknowledg-
ments in the bottom half are all the same.)

In this figure we have labeled the router R1 as the “bottleneck,” because it is the
congestion point. It can receive packets from the LANonits left faster than they can be
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Figure 20.13 Congestion caused by a bigger pipe feeding a smallerpipe.

sent out the WANonits right. (Commonly R1 and R3 are the samerouter, as are R2 and
R4, but that’s not required; asymmetrical paths can occur.) When router R2 puts the
received packets onto the LAN onits right, they maintain the same spacing as they did
on the WANonits left, even though the bandwidth of the LAN is higher. Similarly, the
spacing of the ACKs on their way back is the same as the spacing of the slowest link in
the path.

In Figure 20.13 we have assumedthat the sender did not use slow start, and sent the
segments we’ve numbered 1-20 as fast as the LAN could take them. (This assumes the
receiving host advertised a window ofat least 20 segments.) The spacing of the ACKs
will correspond to the bandwidth of the slowest link, as we show. We are assuming the
bottleneck router has adequate buffering for all 20 segments. This is not guaranteed,
and can lead to that router discarding packets. We'll see how to avoid this when we
talk about congestion avoidancein Section 21.6.

20.8 Urgent Mode

TCP provides whatit calls urgent mode, allowing one end to tell the other end that
“urgent data” of some form has been placed into the normal stream of data. The other

end is notified that this urgent data has been placed into the data stream, andit’s up to
the receiving end to decide whatto do.

The notification from one end to the other that urgent data exists in the data stream
is done by setting two fields in the TCP header (Figure 17.2, p. 225). The URG bitis
turned on and the 16-bit urgent pointeris set to a positive offset that must be added to
the sequence numberfield in the TCP header to obtain the sequence numberofthelast
byte of urgent data.

There is continuing debate about whetherthe urgent pointer points to the last byte of urgent
data, or to the byte following the last byte of urgent data. The original TCP specification gave

Viptela, Inc. - Exhibit 1007
Page 311



Viptela, Inc. - Exhibit 1007 
Page 312

Section 20.8 Urgent Mode 293 

both interpretations but the Host Requirements RFC identifies which is correct: the urgent
pointerpoints to the last byte of urgentdata.

The problem, however, is that most implementations (Le., the Berkeley-derived implementa-
tions) continue to use the wronginterpretation. An implementation that follows the specifica-
tion in the Host Requirements RFC might be compliant, but might not communicate correctly
with most other hosts.

TCP must inform the receiving process when an urgent pointer is received and one
was not already pending on the connection,or if the urgent pointer advancesin the data
stream. The receiving application can then read the data stream and mustbeabletotell
when the urgent pointer is encountered. As long as data exists from the receiver’s cur-
rent read position until the urgent pointer, the application is considered to be in an
“urgent mode.” After the urgent pointer is passed, the application returns to its normal
mode.

TCPitself sayslittle more about urgent data. There is no way to specify where the
urgent data starts in the data stream. The only information sent across the connection
by TCPis that urgent mode has begun (the URG bit in the TCP header) and the pointer
to the last byte of urgent data. Everythingelse is left to the application.

Unfortunately many implementations incorrectly call TCP’s urgent mode
out-of-band data. If an application really wants a separate out-of-band channel, a second
TCP connection is the easiest way to accomplish this. (Some transport layers do pro-
vide what most people consider true out-of-band data: a logically separate data path
using the same connection as the normal data path. This is not what TCP provides.)

The confusion between TCP’s urgent mode and out-of-banddata is also because the predomi-
nant programminginterface, the sockets API, maps TCP’s urgent modeinto what sockets calls
out-of-band data.

 

Whatis urgent mode used for? The two most commonly used applications are Tel-
net and Rlogin, when the interactive user types the interrupt key, and we show exam-
ples of this use of urgent mode in Chapter 26. Another is FTP, when the interactive user
aborts a file transfer, and we show an exampleof this in Chapter 27.

Telnet and Riogin use urgent modefrom the serverto the client becauseit’s possible
for this direction of data flow to be stopped by the client TCP (Le., it advertises a win-
dow of 0). But if the server process enters urgent mode, the server TCP immediately
sends the urgent pointer and the URG flag, even thoughit can’t send any data. When
the client TCP receives this notification, it in turn notifies the client process, so the client
can read its input from the server, to open the window,andlet the data flow.

Whathappensif the sender enters urgent mode multiple times before the receiver
processes all the data up through the first urgent pointer? The urgent pointer just
advances in the data stream, and its previous position at the receiver is lost. There is
only one urgent pointer at the receiver and its value is overwritten when a new value
for the urgent pointer arrives from the other end. This meansif the contents of the data
stream that are written by the sender whenit enters urgent mode are important to the
receiver, these data bytes must be specially marked (somehow) by the sender. We'll see
that Telnet marksall of its command bytes in the data stream by prefixing them with a
byte of 255.
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An Example

Let’s watch how TCP sends urgent data, even when the receiver’s window is closed.
We'll start our sock program on the host bsdi and have it pause for 10 secondsafter
the connection is established (the -P option), before it reads from the network. Thislets
the other endfill the send window.

bsdi % sock -i -s -P10 5555

Wethen start the client on the host suntelling it to use a send buffer of 8192 bytes (-S
option) and perform six 1024-byte writes to the network (-n option). We also specify
-U5 telling it to write 1 byte of data and enter urgent mode before writing the fifth buff-
er to the network. Wespecify the verboseflag to see the order of the writes:

sun % sock -v -i -n6 -S8192 -U5 bsdi 5555
connected on 140.252.13.33.1305 to 140.252.13.35.5555

SO_SNDBUF = 8192
TCP_MAXSEG = 1024
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1 byte of urgent data
wrote 1024 bytes
wrote 1024 bytes

Weset the send buffer size to 8192 bytes, to let the sending application immediately
write all of its data. Figure 20,14 shows the tcpdump output for this exchange. (We
have removed the connection establishment.) Lines 1-5 show the senderfilling the
receiver’s window with four 1024-byte segments. The sender is then stopped because
the receiver’s window is full. (The ACK on line 4 acknowledges data, but does not
movetheright edge of the window.)

After the fourth application write of normal data, the application writes 1 byte of
data and enters urgent mode. Line6 is the result of this application write. The urgent
pointer is set to 4098. The urgent pointer is sent with the URG flag even though the
sender cannot send any data.

Five of these ACKsare sent in about 13 ms (lines 6-10). The first is sent when the
application writes 1 byte and enters urgent mode. The next two are sent when the
application does the final two writes of 1024 bytes. (Even though TCP can’t send these
2048 bytes of data, each time the application performs a write, the TCP output function
is called, and when it sees that urgent mode has been entered, sends another urgent
notification.) The fourth of these ACKs occurs whenthe application closes its end of the
connection. (The TCP output function is again called.) The sending application termi-
nates milliseconds after it starts—before the receiving application has issued its first
read. TCP queues all the data and sends it when it can. (This is why wespecified a
send buffer size of 8192—-soall the data can fit in the buffer.) The fifth of these ACKsis
probably generated by the reception of the ACK online 4. The sending TCP has proba-
bly already queued its fourth segment for output (line 5) before this ACK arrives. The
receipt of this ACK from the other end also causes the TCP output routine to be called.

Viptela, Inc. - Exhibit 1007
Page 313



Viptela, Inc. - Exhibit 1007 
Page 314

Section 20.8 Urgent Mode=.295 

1 0.0 sun.1305 > bsdi.5555: P 1:1025(1024) ack 1 win 4096
2 0.073743 (0.0737) sun.1305 > bsdi.5555: P 1025:2049(1024) ack 1 win 4096
3 0.096969 (0.0232) sun.1305 > bsdi.5555: P 2049:3073(1024) ack 1 win 4096
4 0.157514 (0.0605) bsdi.5555 > sun.1305: . ack 3073 win 1024
5 0.164267 (0.0068) sun.1305 > bsdi.5555: P 3073:4097(1024) ack 1 win 4096

6 0.167961 (0.0037) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
7 0.171969 (0.0040) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
8 0.176196 (0.0042) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
9 0.180373 (0.0042) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

10 0.180768 (0.0004) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

Tl 0.367533 (0.1868) bsdi.5555 > sun.1305: . ack 4097 win 0
12.) 0.368478 (0.0009) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

13° 9.829712 (9.4612) bsdi.5555 > sun.1305: . ack 4097 win 2048
14 9.831578 (0.0019) sun.1305 > bsdi.5555: . 4097:5121(1024) ack 1 win 4096

urg 4098
15 9.833303 (0.0017) sun.1305 > bsdi.5555: . 5121:6145(1024) ack 1 win 4096

16 9.835089 (0.0018) bsdi.5555 > sun.1305: . ack 4097 win 4096
17 9.835913 (0.0008) sun.1305 > bsdi.5555: FP 6145:6146(1) ack 1 win 4096
18 9.840264 (0.0044) bsdi.5555 > sun.1305: . ack 6147 win 2048
19° 9.842386 (0.0021) bsdi.5555 > sun.1305: . ack 6147 win 4096
20 9.843622 (0.0012) bsdi.5555 > sun.1305: F 1:1(0) ack 6147 win 4096
21 9.844320 (0.0007) sun.1305 > bsdi.5555: . ack 2 win 4096

Figure 20.14 tcpdump output for TCP urgent mode.

The receiver then acknowledgesthe final 1024 bytesof data(line 11) but also adver-
tises a window of 0. The sender responds with another segmentcontaining the urgent
notification. NS

The receiver advertises a window of 2048 bytes in line 13, when the application
wakes up and reads some of the data from the receive buffer. The next two 1024-byte
segments are sent (lines 14 and 15). The first segment has the urgent notification set,’
since the urgent pointer is within this segment. The second segment has turned the
urgent notification off.

Whenthe receiver opens the window again (line 16) the sender transmits the final
byte of data (numbered 6145) and also initiates the normal connection termination.

Figure 20.15 shows the sequence numbers of the 6145 bytes of data that are sent.
Wesee that the sequence numberof the byte written when urgent mode was entered is
4097, but the value of the urgent pointer in Figure 20.14 is 4098. This confirms that this
implementation (SunOS 4.1.3) sets the urgent pointer to 1 byte beyond thelast byte of
urgent data.

write write write write urg write writefeaed ——>)

3073 4096 wl 4098 5121|5122 6145

4

 

 

2049 3072     seq #}1 1024} 1025 2048

- ~ = pire ets mh ~ Bey— fe <= peesegment segment segment segment segment segment

Figure 20.15 Application writes and TCP segments for urgent mode example.
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20.9

This figure also lets us see how TCP repacketizes the data that the application
wrote. The single byte that was output when urgent mode wasentered is sent along
with the next 1023 bytes of data in the buffer. The next segmentalso contains 1024 bytes
of data, and the final segmentcontains 1 byte of data.

Summary

Aswesaid early in the chapter, there is no single way to exchange bulk data using TCP.
It is a dynamic process that depends on many factors, some of which we can control
(e.g., send and receive buffer sizes) and some of which we have no control over (e.g.,
network congestion, implementation features). In this chapter we’ve examined many
TCP transfers, explaining all the characteristics and algorithms that we could see.

Fundamental to the efficient transfer of bulk data is TCP’s sliding windowprotocol.
We then looked at what it takes for TCP to get the fastest transfer possible by keeping
the pipe betweenthe sender and receiver full. We measured the capacity of this pipe as
the bandwidth-delay product, and saw the relationship between this and the window
size. We return to this concept in Section 24.8 when we look at TCP performance.

Wealso looked at TCP’s PUSHflag, since we'll alwaysseeit in trace output, but we
have no control over its setting. The final topic was TCP’s urgent data, which is often
mistakenly called “out-of-band data.” TCP’s urgent modeis just a notification from the
sender to the receiver that urgent data has been sent, along with the sequence number
of the final byte of urgent data. The programming interface for the application to use
with urgent data is often less than optimal, which leads to much confusion.

Exercises

20.1 In Figure 20.6 (p. 281) we could have shown a byte numbered 0 and a byte numbered 8193.
Whatdo these 2 bytes designate?

20.2 Look ahead to Figure 22.1 (p. 324) and explain the setting of the PUSH flag by the host
bsdi.

20.3 In a Usenet posting someone complained about a throughput of 120,000 bits/sec on a
256,000 bits/sec link with a 128-ms delay between the United States and Japan (47%utili-
zation), and a throughputof 33,000 bits/sec when the link was routed overa satellite (13%
utilization). What does the window size appear to be for both cases?: (Assume a 500-ms
delay forthe satellite link.) How big should the windowbefor the satellite link?

20.4 If the API provided a way for a sending application to tell its TCP to turn on the PUSH
flag, and a way forthe receiver to tell if the PUSH flag was on in a received segment, could
the flag then be used as a record marker?

20.5 In Figure 20.3 why aren’t segments 15 and 16 combined?

20.6 In Figure 20,13 we assume that the ACKs come back nicely spaced, corresponding to the
spacing of the data segments. What happensif the ACKs are queued somewhere on the
retum path, causing a bunch of them to arrive at the same time at the sender?
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21

ICP Timeout and Refransmission

Introduction

TCP provides a reliable transport layer. One of the ways it provides reliability is for
each end to acknowledge the data it receives from the other end, But data segments
and acknowledgments can get lost. TCP handlesthis by setting a timeout whenit sends
data, and if the data isn’t acknowledged when the timeout expires, it retransmits the
data. A critical element of any implementation is the timeout and retransmission strat-
egy. Howis the timeout interval determined, and how frequently does a retransmission
occur?

We've already seen two examples of timeout and retransmission: (1) In the ICMP
port unreachable example in Section 6.5 we saw the TFTP client using UDP employing a
simple (and poor) timeout and retransmission strategy: it assumed 5 seconds was an
adequate timeout period and retransmitted every 5 seconds. (2) In the ARP example to
a nonexistent host (Section 4.5), we saw that when TCP tried to establish the connection
it retransmitted its SYN using a longer delay between each retransmission.

TCP managesfour different timers for each connection.

1. A retransmission timer is used when expecting an acknowledgment from the
other end. This chapter looks at this timer in detail, along with related issues
such as congestion avoidance.

2. A persist timer keeps window size information flowing even if the other end
closes its receive window. Chapter 22 describes this timer.

3. A keepalive timer detects when the other end on an otherwise idle connection
crashes or reboots. Chapter 23 describes this timer.

4, A 2MSL timer measures the time a connection has been in the TIMEWAIT
state. We described this state in Section 18.6.

297
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21.2

In this chapter we start with a simple example of TCP’s timeout and retransmission
and then move to a larger example thatlets us look atall the details involved in TCP’s
timer management. We look at how typical implementations measure the round-trip
time of TCP segments and how TCP uses these measurements to estimate the retrans-
mission timeout of the next segment it transmits. We then look at TCP’s congestion
avoidance—what TCP does when packets are lost—and follow through an actual
example where packets are lost. We also look at the newer fast retransmit and fast
recovery algorithms, and see how they let TCP detect lost packets faster than waiting
for a timer to expire.

Simple Timeout and Retransmission Example

Let’s first lookat the retransmission strategy used by TCP. We'll establish a connection,
send somedata to verify that everything is OK, disconnect the cable, send some more
data, and watch what TCP does:

bsdi % telnet svr4 discard

Trying 140.252.13.34...
Connected to svr4.

Escape character is '“]’. 

hello, world send this line normally
and hi disconnect cable before sending this line
Connection closed by foreign host. output when TCP gives up after 9 minutes

Figure 21.1 shows the tcpdump output. (We have removedall the type-of-service infor-
mation that is set by bsdi.)

1 0.0 bsdi.1029 > svr4.discard: S 1747921409:1747921409 (0)
win 4096 <mss 1024>

2 0.004811 ( 0.0048) svr4.discard > bsdi.1029: S 3416685569:3416685569(0)
ack 1747921410
win 4096 <mss 1024>

   
3 0.006441 ( 0.0016) bsdi.1029 > svr4.discard: . ack 1 win 4096

4 6.102290 ( 6.0958) bsdi.1029 > svr4.discard: P 1:15(14) ack 1 win 4096
5 6.259410 ( 0.1571) svr4.discard > bsdi.1029: . ack 15 win 4096

6 24.480158 (18.2207) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
7 25.493733 ( 1.0136) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
8 28.493795 ( 3.0001) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
9 34.493971 ( 6.0002) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096

10 46.484427 (11.9905) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
11 70.485105 (24.0007) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
12 118.486408 (48.0013) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
13° 182.488164 (64.0018) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
14 246.489921 (64.0018) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
15 310.491678 (64.0018) bsdi.1029 > svr4d.discard: P 15:23(8) ack 1 win 4096
16 374.493431 (64.0018) bsdi.1029 > svr4d.discard: P 15:23(8) ack 1 win 4096
17 438.495196 (64.0018) bsdi.1029 > svr4d.discard: P 15:23(8) ack 1 win 4096
18 502,.486941 (63.9917) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
19 566.488478 (64.0015) bsdi.1029 > svr4.discard: R 23:23(0) ack 1 win 4096

  
Figure 21.1 Simple example of TCP’s timeout and retransmission.
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21.3

Lines 1, 2, and 3 correspond to the normal TCP connection establishment. Line 4 is
the transmission of “hello, world” (12 characters plus the carriage return and linefeed),
and line 5 is its acknowledgment. We then disconnect the Ethernet cable from svr4.

Line 6 shows “and hi” being sent. Lines 7-18 are 12 retransmissions of that seg-
ment, and line 19 is when the sending TCPfinally gives up and sendsa reset.

Examine the time difference between successive retransmissions: with rounding
they occur 1, 3, 6, 12, 24, 48, and then 64 seconds apart. We’ll see later in this chapter
that the first timeout is actually set for 1.5 secondsafter thefirst transmission. (The rea-
son it occurs 1.0136 secondsafter thefirst transmission, and not exactly 1.5 seconds, was
explained in Figure 18.7.) After this the timeout value is doubled for each retransmis-
sion, with an upperlimit of 64 seconds.

This doubling is called an exponential backoff. Compare this to the TFTP example in
Section 6.5, where every retransmission occurred 5 secondsafter the previous.

The time difference between the first transmission of the packet (line 6 at time
24.480) and thereset (line 19 at time 566.488) is about 9 minutes. Modern TCP’sare per-
sistent when trying to send data!

On most implementationsthis total timeout value is not tunable. Solaris 2.2 allows the admin-
istrator to changethis (the tcp_ip_abort_interval variable in Section E.4) andits default
is only 2 minutes, not the more common 9 minutes,

Round-Trip Time Measurement

Fundamental to TCP’s timeout and retransmission is the measurement of the round-trip
time (RTT) experienced on a given connection. We expect this can change over time, as
routes might change and as network traffic changes, and TCP should track these
changes and modify its timeout accordingly.

First TCP must measure the RTT between sending a byte with a particular sequence
number and receiving an acknowledgment that covers that sequence number. Recall
from the previous chapter that normally there is not a one-to-one correspondence
between data segments and ACKs. In Figure 20.1 (p. 276) this means that one RTT that
can be measured by the senderis the time between the transmission of segment 4 (data
bytes 1-1024) and the reception of segment 7 (the ACK of bytes 1-2048), even though
this ACKis for an additional 1024 bytes. We'll use M to denote the measured RTT.

The original TCP specification had TCP update a smoothed RIT estimator (called
R) using the low-passfilter

Rea@R+1-a)M

where @ is a smoothing factor with a recommended value of 0.9. This smoothed RITis
updated every time a new measurement is made. Ninety percent of each new estimate
is from the previous estimate and 10%is from the new measurement.

Given this smoothed estimator, which changes as the RIT changes, RFC 793 recom-
mended the retransmission timeout value (RTO) be set to

RTO = RB

where £ is a delay variance factor with a recommendedvalueof2.
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[Jacobson 1988] details the problems with this approach,basically that it can’t keep
up with wide fluctuations in the RIT, causing unnecessary retransmissions. As
Jacobson notes, unnecessary retransmissions add to the network load, when the net-
workis already loaded. It is the network equivalent of pouring gasoline onafire.

What’s needed is to keep track of the variance in the RTT measurements, in addi-
tion to the smoothed RIT estimator, Calculating the RTO based on both the mean and
variance provides much better response to wide fluctuations in the round-trip times,
than just calculating the RTO as a constant multiple of the mean. Figures 5 and 6 in
[Jacobson 1988] show a comparison of the RFC 793 RTO values for some actual round-
trip times, versus the RTO calculations we show below, which take into account the
variance of the round-trip times.

As described by Jacobson, the mean deviation is a good approximation to the stan-
dard deviation, but easier to compute. (Calculating the standard deviation requires a
square root.) This leads to the following equations that are applied to each RTT mea-
surement M.

Err=M-A

A¢ A+ gErr

D<D+h(lErr| -D)

RTO =A+4D

where A is the smoothed RIT (an estimator of the average) and D is the smoothed
mean deviation. Err is the difference between the measured value just obtained and the
current RTT estimator. Both A and D are usedto calculate the next retransmission time-

out (RTO). The gain g is for the average andis set to 1/8 (0.125). The gain for the devi-
ation is h and is set to 0.25. The larger gain for the deviation makes the RTO go up
faster when the RTT changes.

[Jacobson 1988] specified 2D in the calculation of RTO, but after further research, [Jacobson
1990c] changed the value to 4D, which is what appeared in the BSD Net/1 implementation.

Jacobson. specifies a way to doall these calculations using integer arithmetic, and
this is the implementation typically used. (That’s one reason g, h, and the multiplier 4
are all powers of 2, so the operations can be done using shifts instead of multiplies and
divides.)

Comparing the original method with Jacobson’s, wesee that the calculations of the
smoothed average are similar (@ is one minus the gain g) but a different gain is used.
Also, Jacobson’s calculation of the RTO depends on both the smoothed RTT and the
smoothed mean deviation, whereas the original method used a multiple of the
smoothed RIT.

We'll see how these estimators are initialized in the next section, when we go
through an example.
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Karn’s Algorithm

21.4

A problem occurs when a packet is retransmitted, Say a packet is transmitted, a time-
out occurs, the RTO is backed off as shownin Section 21.2, the packet is retransmitted
with the longer RTO, and an acknowledgmentis received. Is the ACK for the first
transmission or the second? This is called the retransmission ambiguity problem.

[Karn and Partridge 1987] specify that when a timeout and retransmission occur, we
cannot update the RTT estimators when the acknowledgmentfor the retransmitted data
finally arrives. This is because we don’t know to which transmission the ACK corre-
sponds. (Perhapsthefirst transmission was delayed and not thrown away, or perhaps
the ACKofthefirst transmission was delayed.).

Also, since the data was retransmitted, and the exponential backoff has been
applied to the RTO, we reuse this backed off RTO for the next transmission. Don’t cal-
culate a new RTO until an acknowledgmentis received for a segment that was not
retransmitted.

An RTT Example

We'll use the following example throughout this chapter to examine various imple-
mentation details of TCP’s timeout and retransmission, slow start, and congestion
avoidance.

Using our sock program, 32768 bytes of data are sent from our host slip to the
discard service on the host vangogh.cs.berkeley. edu using the command:

slip % sock -D -i -n32 vangogh.cs.berkeley.edu discard

From the figure on the inside front cover, slip is connected to the 140,.252.1 Ethernet by
two SLIP links, and from there across the Internet to the destination. With two

9600 bits/sec SLIP links, we expect some measurable delays.
This command performs 32 1024-byte writes, and since the MTU between slip and

bsdiis 296, this becomes 128 segments, each with 256 bytes of user data. The total time
for the transfer is about 45 seconds and wesee one timeout and three retransmissions.

While this transfer was running we ran tcpdump on the host slip and captured all
the segments sent and received. Additionally we specified the -D option to turn on
socket debugging (Section A.6). We were then able to run a modified version of the
trpt(8) program to print numerousvariables in the connection control block relating to
the round-trip timing, slow start, and congestion avoidance.

Given the volumeof trace output, we can’t showit all. Instead we'll look at pieces
as we proceed through the chapter. Figure 21.2 showsthetransfer of data and acknowl-
edgmentsfor thefirst 5 seconds. We have modified this outputslightly from our previ-
ous display of tcpdump output. Although we only measurethe times that the packetis
sent or received on the host running tcpdump,in this figure we want to show that the
packets are crossing in the network (which they are, since this WAN connection is not
like a shared Ethernet), and show whenthe receiving host is probably generating the
ACKs. (We have also removed all the window advertisements from this figure. slip
always advertised a window of 4096, and vangogh always advertised a window of
8192.)
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slip.1024 vangogh.discard

0.0

RIT #1

(1.061 sec)

1.061206 (1.0612
1.063093 (0.0019
1.065502 (0.0024

RIT #2

(0.808 sec)

1.872966 (0.0019
1.871101 (0.8056

1.875377 (0.0024

2.137876 (0.2625
2.140096 (0.0022

RIT #3

(1.015 sec)

 
2.887534 (0.7474)
2.947597 (0.0601)

   
Figure 21.2 Packet exchange and RTT measurement.
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Also note in this figure that we have numbered the segments 1-13 and 15, in the order
in which they were sent or received on the host slip. This correlates with the
tcpdump output that was collected on this host.

Round-Trip Time Measuremenis

Three curly braces have been placed on theleft side of the time line indicating which
segments were timed for RTT calculations. Notall data segmentsare timed.

MostBerkeley-derived implementations of TCP measure only one RTT value per
connection at any time. If the timer for a given connection is already in use when a data
segmentis transmitted, that segmentis not timed.

The timing is done by incrementing a counter every time the 500-ms TCP timer rou-
tine is invoked. This means that a segment whose acknowledgmentarrives 550 msafter
the segment was sent could end up with either a 1 tick RTT (implying 500 ms) or a 2 tick
RTT (implying 1000 ms).

In addition to this tick counter for each connection, the starting sequence numberof
the data in the segmentis also remembered. When an acknowledgment that includes
this sequence numberis received, the timer is turned off. If the data was not retransmit-
ted when the ACKarrives, the smoothed RTT and smoothed mean deviation are

updated based on this new measurement.
The timer for the connection in Figure 21.2 is started when segment1 is transmitted,

and turned off when its acknowledgment(segment2) arrives. Although its RTT is 1.061
seconds (from the tcpdump output), examining the socket debug information shows
that three of TCP’s clock ticks occurred during this period, implying an RTT of 1500 ms.

The next segment timed is number 3. When segment 4 is transmitted 2.4 mslater,it
cannot be timed, since the timer for this connection is already in use. When segment 5
arrives, acknowledging the data that was being timed, its RTT is calculated to be 1 tick
(500 ms), even though wesee that its RTT is 0.808 seconds from the tcpdump output.

The timer is started again when segment 6 is transmitted, and turned off whenits
acknowledgment (segment 10) is received 1.015 seconds later. The measured RIT is 2
clock ticks. Segments 7 and 9 cannot be timed, since the timer is already being used.
Also, when segment 8 is received (the ACK of 769), nothing is updated since the
acknowledgment wasnotfor bytes being timed.

Figure 21.3 showsthe relationship in this example between the actual RTTs that we
can determine from the tcpdump output, and the counted clockticks.

      

     
0.03 0.53 1.03 1,53 2.03 2.53. 3.03( \ ' \ \

! | | | Le
0.0 1.061 1.063 1.871 1.872 2.887

t A AV V
on off on off on off

~<a | bb <a
 

1.061 sec, 3 ticks 0,808 sec, 1 tick 1.015 sec, 2 ticks

Figure 21.3 RTT measurements andclockticks.
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On the top we show theclock ticks, every 500 ms. On the bottom we show the times
output by tcpdump, and whenthe timer for the connection is turned on and off. We
know that 3 ticks occur between sending segment 1 and receiving segment 2, 1.061 sec-
onds later, so we assumethefirst tick occurs at time 0.03. (The first tick must be
between 0.00 and 0.061.) The figure then shows how the second measured RTT was
counted as 1 tick, and the third as 2 ticks.

In this complete example, 128 segments were transmitted, and 18 RIT samples were
collected. Figure 21.4 shows the measured RTT (taken from the tcpdump output) along
with the RTO used by TCP for the timeout (taken from the socket debug output). The
x-axis starts at time 0 in Figure 21.2, when the first data segment is transmitted, not
whenthefirst SYN is transmitted.

  
 

 

 
6-

54

4 TCP’s calculated RTO

RTT/RTO |
(seconds)

2-4
measured RIT

14

OTA TT TT TTT TT
0 5 10 15 20 25 30 35

time (seconds)

Figure 21.4 Measured RTT and TCP’s calculated RTO for example.

Thefirst three data points for the measured RIT correspond to the 3 RTTs that we
show in Figure 21.2. The gaps in the RTT samples around times 10, 14, and 21 are
caused by retransmissions that took place there (which we'll show later in this chapter).
Karn’s algorithm prevents us from updating our estimators until another segmentis
transmitted and acknowledged. Also note that for this implementation, TCP’s calcu-
lated RTO is always a multiple of 500 ms.

RTT Estimator Calculations

Let’s see how the RTT estimators (the smoothed RTT and the smoothed mean deviation)
are initialized and updated, and how eachretransmission timeoutis calculated.
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The variables A andDare initialized to 0 and 3 seconds, respectively. The initial
retransmission timeout is calculated using the formula

RTO =A+4+2D =04+2x3 =6seconds

(The factor 2D is used only for this initial calculation. After this 4D is added to A to cal-
culate RTO, as shownearlier.) This is the RTO for the transmission of the initial SYN.

It turns out that this initial SYN is lost, and we time out and retransmit. Figure 21.5
showsthefirst four lines from the tcpdump outputfile.

1 0.0 slip.1024 > vangogh.discard: S 35648001:35648001 (0)
win 4096 <mss 256>

2 5.802377 (5.8024) slip.1024 > vangogh.discard: S 35648001:35648001 (0)
win 4096 <mss 256>

3 6.269395 (0.4670) vangogh.discard > slip.1024: S 1365512705:1365512705 (0)
ack 35648002
win 8192 <mss 512>

4 6.270796 (0.0014) slip.1024 > vangogh.discard: . ack 1 win 4096

Figure 21.5 Timeout and retransmissionof initial SYN.

Whenthe timeout occurs after 5.802 seconds, the current RTO is calculated as

RTO =A+4D=0+4x3=12 seconds

The exponential backoff is then applied to the RTO of 12. Sincethis is the first timeout
we use a multiplier of 2, giving the next timeout value as 24 seconds. The next timeout
is calculated using a multiplier of 4, giving a value of 48 seconds: 12x 4. (Theseinitial
RTOsfor the first SYN on a connection, 6 seconds and then 24 seconds, are what we

saw in Figure 4.5.)
The ACKarrives 467 ms after the retransmission. The values of A and D are not

updated, because of Karn’s algorithm dealing with the retransmission ambiguity. The
next segment sent is the ACK on line 4, but it is not timed since it is only an ACK.
(Only segments containing data are timed.)

Whenthe first data segment is sent (segment 1 in Figure 21.2) the RTO is not
changed, again owing to Karn’s algorithm. The current value of 24 seconds is reused
until an RTT measurement is made. This means the RTO for time 0 in Figure 21.4 is
really 24, but we didn’t plotthat point.

When the ACK for the first data segment arrives (segment 2 in Figure 21.2), three
clock ticks were counted and our estimatorsare initialized as ,

A=M+0.5=1.5+0.5=2

D=A/2=1

(The value 1.5 for M is for 3 clock ticks.) The previousinitialization of A and D to 0 and
3 wasfor the initial RTO calculation. This initialization is for thefirst calculation of the

estimators using the first RTT measurement M. The RTOis calculated as

RTO =A+4D=2+4x1=6 seconds
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Whenthe ACKfor the second data segmentarrives (segment 5 in Figure 21.2), 1 clock
tick is counted (0.5 seconds) and ourestimators are updated as

Err = M-A=0.5-2=-1.5

A=A+ gErr =2-0.125x*1.5 = 1.8125

D=D+h(\Err| -D)=14+0.25x (1.5-1) =1.125

RTO = A+4D =1.8125+4%x 1.125 = 6.3125

There are some subtleties in the fixed-point representations of Err, A, and D, and the
fixed-point calculations that are actually used (which we’ve shownin floating-point for
simplicity). These differences yield an RTO of 6 seconds(not 6.3125), which is what we
plot in Figure 21.4 for time 1.871.

Slow Start

21.5

Wedescribed the slow start algorithm in Section 20.6. We can seeit in action again in
Figure 21.2 (p. 302).

Only one segmentis initially transmitted on the connection, and its acknowledg-
ment must be received before another segment is transmitted. When segment 2 is
received, two more segments are transmitted.

Congestion Example

Nowlet’s look at the transmission of the data segments. Figure 21.6 is a plot of the
starting sequence numberin a segment versus the time that the segment was sent. This
provides a nice way to visualize the data transmission. Normally the data points
should move up andto the right, with the slope of the points being the transfer rate.
Retransmissions will appear as motion down and totheright.

At the beginning of Section 21.4 we said the total time for the transfer was about 45
seconds, but we show only 35 seconds in this figure. These 35 seconds account for
sending the data segments only. The first data segment was not transmitted until 6.3
secondsafter the first SYN was sent, because the first SYN appears to have been lost
and was retransmitted (Figure 21.5). Also, after the final data segment and the FIN
were sent (at time 34.1 in Figure 21.6) it took another 4.0 secondsto receive the final 14
ACKsfrom the receiver, before the receiver’s FIN was received.
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Figure 21.6 Sending of 32768 bytes of data from slip to vangogh.

We can immediately see the three retransmissions around times 10, 14, and 21 in
Figure 21.6. At each of these three points we can also see that only one segmentis
retransmitted, because only one dot dips below the upwardslope.

Let’s examine the first of these dips in detail (around the 10-second mark). From
the tcpdump output wecan put together Figure 21.7.
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slip.1024 vangogh.discard

7.149042 43} 9 51
ee

act

7.419087 (0.0023 537.420653 (0.0016

7.688778 (0.0022) 56
7.778708 (0.0023)

2 256 bytes

8.226522 (478) 158 to appl8.228772 (0.0023

~ HOLE
8.498925 (0.0024 “og Gave 256 bytes)
8.500346 (0.0014

8.766436 (0.2661 Sp

8.768662 (0.0022 61 (save 256 bytes)

“S62 (save 256 bytes)
9.156176 (0.3875
9.158419 (0.0022 :

64 (save 256 bytes)

9.489518 (0.3311)
65 (save 256 bytes)

66 (save 256 bytes)
9.879355 (0.3898

( ) 6g (save 256 bytes)
10.029321 (0.1500
10.031239 (0.0019

10.239456 (0.2082) "70 (save 256 bytes)

10.479344 (0.2399)

10.779073 (5.0010)10.780960 (0.0019 2304 bytes
72 to appl

11.049394 0.0019311.051328 (0.0019

11438824 (0.3875
11.440718 (0.0019

11.618798 (0.1781)

   
Figure 21.7 Packet exchangefor retransmission around the 10-second mark.
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We have removedall the window advertisements from this figure, except for seg-
ment 72, which we discuss below. slip always advertised a window of 4096, and
vangogh advertised a window of 8192, The segments are numberedin this figure as a
continuation of Figure 21.2, where the first data segment across the connection was
numbered 1. As in Figure 21.2, the segments are numbered according to their send or
receive order on the host slip, where tcpdump wasbeing run. We have also removed
a few segments that have no relevance to the discussion (44, 47, and 49, all ACKs from
vangogh),

It appears that segment45 got lost or arrived damaged—wecan’ttell from this out-
put. What wesee on the host slip is the acknowledgmentfor everything up through
but not including byte 6657 (segment 58), followed by eight more ACKs of this same
sequence number. It is the reception of segment 62, the third of the duplicate ACKs,
that forces the retransmission of the data starting at sequence number 6657 (segment
63). Indeed, Berkeley-derived implementations count the number of duplicate ACKs
received, and when the third one is received, assume that a segment has been lost and
retransmit only one segment, starting with that sequence number. This is Jacobson’sfast
retransmit algorithm, whichis followed by his fast recovery algorithm. We discuss both
algorithmsin Section 21.7.

Notice that after the retransmission (segment 63), the sender continues normal data
transmission (segments 67, 69, and 71). TCP does not wait for the other end to acknowl-
edge the retransmission. .

Let's examine what happens at the receiver. When normal data is received in
sequence (segment 43), the receiving TCP passes the 256 bytes of data to the user pro-
cess. But the next segment received (segment 46) is out of order: the starting sequence
numberof the data (6913) is not the next expected sequence number (6657). TCP saves
the 256 bytes of data and responds with an ACK of the highest sequence number suc-
cessfully received, plus one (6657). The next seven segments received by vangogh (48,
50, 52, 54, 55, 57, and 59) are also outof order. The data is saved by the receiving TCP,
and duplicate ACKsare generated.

Currently there is no way for TCP totell the other end that a segment is missing.
Also, TCP cannot acknowledge out-of-order data. All vangogh can doatthis pointis
continue sending the ACKsof 6657.

Whenthe missing data arrives (segment 63), the receiving TCP nowhasdata bytes
6657-8960 in its buffer, and passes these 2304 bytes to the user process. All 2304 bytes
are acknowledged in segment 72. Also notice that this ACK advertises a window of
5888 (8192 — 2304), since the user process hasn’t had a chance to read the 2304 bytes that
are ready forit.

If we look in detail at the tcpdump output for the dips around times 14 and 21 in
Figure 21.6, we see that they too were caused by the receipt of three duplicate ACKs,
indicating that a packet had been lost. In each of these cases only a single packet was
retransmitted.

We'll continue this example in Section 21.8, after describing more about the conges-
tion avoidance algorithms.
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21.6 Congestion Avoidance Algorithm

Slow start, which we described in Section 20.6, is the way to initiate data flow across a
connection. But at some point we'll reach the limit of an intervening router, and packets
can be dropped. Congestion avoidance is a way to deal with lost packets. It is
described in [Jacobson 1988].

The assumption of the algorithm is that packet loss caused by damageis very small
(much less than 1%), therefore the loss of a packet signals congestion somewherein the
network between the source and destination. There are two indications of packet loss: a
timeout occurring and the receipt of duplicate ACKs. (We saw the latter in Section 21.5.
If we are using a timeoutas an indication of congestion, we can see the need for a good
RTT algorithm, such as that described in Section 21.3.)

Congestion avoidance and slow start are independent algorithms with different
objectives. But when congestion occurs we want to slow downthe transmission rate of
packets into the network, and then invoke slow start to get things going again. In prac-
tice they are implemented together.

Congestion avoidance and slow start require that two variables be maintained for
each connection: a congestion window, cwnd, and a slow start threshold size, ssthresh.
The combined algorithm operates as follows:

1. Initialization for a given connection sets cwnd to one segment and ssthresh to
65535 bytes.

2. The TCP output routine never sends more than the minimum of cwnd and the
receiver’s advertised window.

Congestion avoidance is flow control imposed by the sender, while the adver-
tised window is flow control imposed by the receiver. The former is based on
the sender’s assessmentof perceived network congestion; the latter is related to
the amountof available buffer space at the receiver for this connection.

3. When congestion occurs (indicated by a timeout or the reception of duplicate
ACKs), one-half of the current window size (the minimum of cwnd and the

receiver’s advertised window, but at least two segments) is saved in ssthresh.
Additionally, if the congestion is indicated by a timeout, cwnd is set to one seg-
ment(i.e., slow start).

4, When new data is acknowledged by the other end, we increase cwnd, but the
wayit increases depends on whether we're performing slow start or congestion
avoidance.

If cwnd is less than or equalto ssthresh, we're doing slow start; otherwise we’re
doing congestion avoidance. Slow start continues until we’re halfway to where
we were when congestion occurred (since we recorded half of the windowsize
that got us into trouble in step 2), and then congestion avoidance takes over.

Slow start has cwnd start at one segment, and be incremented by one segment
every time an ACKis received. As mentioned in Section 20.6, this opens the
window exponentially: send one segment, then two, then four, and so on.
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Congestion avoidance dictates that cwnd be incremented by 1/cwnd each time
an ACKis received. This is an additive increase, compared to slow start’s expo-
nential increase. We wantto increase cwnd by at most one segment each round-
trip time (regardless how many ACKsare received in that RTT), whereas slow
start will increment cwnd by the number of ACKsreceived in a round-trip time.

All 4.3BSD releases and 4.4BSD incorrectly add a small fraction of the segment size (the seg-
ment size divided by 8) during congestion avoidance. This is wrong and should not be emu-
lated in future releases [Floyd 1994]. Nevertheless, we show this term in future calculations, to
arrive at the same answerasthe (incorrect) implementation.

The 4.3BSD Tahoerelease, described in [Leffler et al. 1989], performed slow start only if the
other end was onadifferent network. This was changed with the 4.3BSD Renorelease so that
slowstart is always performed.

Figure 21.8 is a visual description of slow start and congestion avoidance. We show
cwnd and ssthresh in units of segments, but they're really maintained in bytes.

20—
18

16— ssthresh

14

12

cwnd _|
(segments)

3

6—

4—

2]

0
 

 
! ! |

0 1 2 3 4 5 6 7

round-trip times

Figure 21.8 Visualization of slow start and congestion avoidance.

In this figure we assume that congestion occurred when cwnd had a value of 32 seg-
ments. ssthresh is then set to 16 segments and cwnd is set to 1 segment. One segmentis
then sent at time 0 and assuming its ACKis returned at time 1, cwnd is incremented to 2
segments. Two segments are then sent and assuming their ACKsreturn by time2, cwnd
is incremented to 4 segments (once for each ACK). This exponential increase continues
until cwnd equals ssthresh, after 8 ACKs are received between times 3 and 4. From this
point on the increase in cwnd is linear, with a maximum increase of one segment per
round-trip time.

Aswecan see in this figure, the term “slow start” is not completely correct. It is a
slower transmission of packets than what caused the congestion, but the rate of increase
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21.7

in the numberof packets injected into the network increases during slow start. Therate
of increase doesn’t slow down until ssthresh is reached, when congestion avoidance
takes over.

Fast Retransmit and Fast Recovery Algorithms

Modifications to the congestion avoidance algorithm were proposed in 1990 [Jacobson
1990b]. We've already seen these modifications in action in our congestion example
(Section 21.5).

Before describing the change,realize that TCP is required to generate an immediate
acknowledgment (a duplicate ACK) when an out-of-order segmentis received. This
duplicate ACK should not be delayed. The purpose of this duplicate ACK is to let the
other end know that a segment was received out of order, and totell it what sequence
numberis expected.

Since we don’t know whether a duplicate ACKis caused by a lost segmentorjust a
reordering of segments, we wait for a small number of duplicate ACKs to be received.
It is assumed thatif there is just a reordering of the segments, there will be only one or
two duplicate ACKs before the reordered segment is processed, which will then gener-
ate a new ACK.If three or more duplicate ACKs are received in a row,it is a strong
indication that a segmenthas been lost. (We saw this in Section 21.5.) We then perform
a retransmission of what appears to be the missing segment, without waiting for a
retransmission timer to expire. This is the fast retransmit algorithm. Next, congestion
avoidance, but not slow start is performed. This is the fast recovery algorithm.

In Figure 21.7 we saw that slow start was not performed after the three duplicate
ACKswerereceived. Instead the sender did the retransmission, followed by three more
segments with new data (segments 67, 69, and 71), before the acknowledgment of the
retransmission was received (segment 72).

The reason for not performing slow start in this case is that the receipt of the dupli-
cate ACKstells us more than just a packet has been lost. Since the receiver can only
generate the duplicate ACK when another segmentis received, that segmenthas left the
network andis in the receiver’s buffer. That is, there is still data flowing between the
two ends, and we don’t wantto reduce the flow abruptly by going into slowstart.

This algorithms are usually implemented together as follows.

1. Whenthe third duplicate ACKis received, set ssthresh to one-half of the mini-
mum of the current congestion window (cwnd) and the receiver’s advertised
window.

Retransmit the missing segment.

Set cwnd to ssthresh plus 3 times the segmentsize.

2. Each time another duplicate ACK arrives, increment cwnd by the segment size
and transmit a packet (if allowed by the new value of cwnd).

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh
(the value set in step 1). This should be the ACKof the retransmission from step
1, one round-trip time after the retransmission. Additionally, this ACK should
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acknowledgeall the intermediate segments sent between the lost packet and the
receipt of the third duplicate ACK. This step is congestion avoidance, since
we're slowing down to one-half the rate we were at when the packet waslost.

We'll see what happensto the two variables cwnd andssthresh in the calculations in the
next section.

The fast retransmit algorithm first appeared in the 4.3BSD Tahoerelease, butit was incorrectly
followed by slow start. The fast recovery algorithm appeared in the 4.3BSD Renorelease.

Congestion Example (Continued)

Watching a connection using tcpdump and the socket debug option (which we
described in Section 21.4) we can see the values of cwnd and ssthresh as each segmentis
transmitted. If the MSS is 256 bytes, the initial values of cwnd and ssthresh are 256 and
65535, respectively. Each time an ACKis received we can see cwnd incremented by the
MSS, taking on the values 512, 768, 1024, 1280, and so on. Assuming congestion doesn’t
occur, eventually the congestion window will exceed the receiver’s advertised window,
meaning the advertised windowwill limit the data flow.

A more interesting example is to see what happens when congestion occurs. We'll
use the same example from Section 21.4. There were four occurrences of congestion
while this example was being run. There was a timeout on the transmission of the ini-
tial SYN to establish the connection (Figure 21.5), followed by three lost packets during
the data transfer (Figure 21.6).

Figure 21.9 showsthe values of the two variables cwnd and ssthresh whentheinitial
SYN is retransmitted, followed by the first seven data segments. (We showed the
exchangeofthe initial data segments and their ACKsin Figure 21.2.) We show the data
bytes transmitted using the tcpdump notation: 1:257(256) means bytes 1 through 256.

Whenthe timeout of the SYN occurs,ssthreshis set to its minimum value (512 bytes,
which is two segments for this example). cwnd is set to one segment(256 bytes, whichit
wasalready at) to enter the slow start phase.

When the SYN and ACKare received, nothing happensto the two variables, since
new data is not being acknowledged.

When the ACK257arrives, wearestill in slow start since cwnd is less than or equal
to ssthresh, so cwnd in incremented by 256. The same thing happens when the ACK513
arrives.

When the ACK 769 arrives we are no longer in slow start, but enter congestion
avoidance. The new value for cwnd is calculated as

segsize X segsize ‘ segsize
cwnd 8

This is the 1/cwnd increase that we mentioned earlier, taking into account that cwnd is
really maintained in bytes and not segments. For this example wecalculate

256 x 256 ; 256
768 8

cwnd — cwnd +
 

cond <— 768 +
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Segment# Action Variable

(Figure 21.2) Send Receive Comment cwnd ssthresh
initialize 256 65535

SYN
timeout 256 512

SYN retransmit

SYN, ACK
ACK

1 1:257(256)
2 ACK 257 slow start 512 512

3 257:513(256)
4 513:769(256)-
5 ACK 513 slow start 768 512

6 769:1025(256)
7 1025:1281(256)

8 ACK 769|cong, avoid 885 512
9 1281:1537(256)

10 ACK 1025|cong. avoid 991 512
11 . 1537:1793(256) ,
12 ACK 1281|cong. avoid 1089 512

 
 

Figure 21,9 Example of congestion avoidance.

which equals 885 (using integer arithmetic). When the next ACK 1025 arrives we
calculate

256 x 256 + 25685 +cond — 8 385 3

which equals 991. (In these expressions weinclude the incorrect 256/8 term to match
the values calculated by the implementation, as we noted on p. 311.)

This additive increase in cwnd continues until the first retransmission, around the

10-second mark in Figure 21.6. Figure 21.10 is a plot of the same data as in Figure 21.6,
with the value of cwnd added.

The first six values for cwnd in this figure are the values we calculated for Fig-
ure 21.9. It is impossible in this figure to tell the difference visually between the expo-
nential increase during slow start and the additive increase during congestion
avoidance, because the slow start phase is so quick.

We need to explain what is happening at the three points where a retransmission
occurs. Recall that each of the retransmissions took place because three duplicate ACKs
were received, indicating a packet had been lost. This is the fast retransmit algorithm
from Section 21.7. ssthresh is immediately set to one-half the windowsize that was in
effect when the retransmission took place, but cwnd is allowed to keep increasing while
the duplicate ACKsare received, since each duplicate ACK means that a segment has
left the network (the receiving TCP has buffered it, waiting for the missing hole in the
data to arrive). This is the fast recovery algorithm.

Figure 21.11 is similar to Figure 21.9, showing the values of cwnd and ssthresh. The
segment numbersin the first column correspondto Figure 21.7.
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Figure 21.10 Value of cwnd and send sequence numberwhile data is being transmitted.

 

 

  

   
Segment# Action Variable

(Figure 21.7) Send Receive Comment cuwnd ssthresh

58 ACK 6657 | ACK ofnew data|2426 512
59 8705:8961(256)
60 ACK 6657|duplicate ACK #1 2426 512
61 ACK 6657|duplicate ACK #2 2426 512
62 ACK 6657|duplicate ACK #3 1792 1024
63 6657:6913(256) retransmission
64 ACK 6657|duplicate ACK #4 2048 | 1024
65 ACK 6657|duplicate ACK #5 2304 1024
66 ACK 6657|duplicate ACK #6 2560 1024
67 8961:9217(256)
68 ACK 6657|duplicate ACK #7 2816 1024
69 9217:9473(256)
70 ACK 6657|duplicate ACK #8 3072 1024
71 9473:9729(256)
72 ACK 8961|ACK of new data 1280 1024

    
 

Figure 21.11 Example of congestion avoidance(continued).
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The values for cwnd have been increasing continually, from the final value in Fig-
ure 21.9 for segment 12 (1089), to the first value in Figure 21.11 for segment 58 (2426).
The value of ssthresh has remained the same (512), since there have been no retransmis-
sionsin this period.

Whenthefirst two duplicate ACKs arrive (segments 60 and 61) they are counted,
and cwndis left alone. (This is the flat portion of Figure 21.10 preceding the retransmis-
sion.) When the third one arrives, however, ssthresh is set to one-half cwnd (rounded
downto the next multiple of the segmentsize). cwnd is set to ssthresh plus the number
of duplicate ACKs times the segmentsize (i.e., 1024 plus 3 times 256). The retransmis-
sion is then sent.

Five more duplicate ACKsarrive (segments 64-66, 68, and 70) and cwnd is incre-
mented by the segment size each time. Finally a new ACK arrives (segment 72) and
cwnd is set to ssthresh (1024) and the normal congestion avoidance takes over. Since
cwnd is less than or equal to ssthresh (they are equal), the segment size is added to cwnd,
giving a value of 1280. When the next new ACKis received (which isn’t shown in Fig-
ure 21.11), cwnd is greater than ssthresh, so cwndis set to 1363.

During the fast retransmit and fast recovery phase, we transmit new data after
receiving the duplicate ACKs in segments 66, 68, and 70, but not after receiving the
duplicate ACKs in segments 64 and 65. The reason is the value of cwnd, versus the
numberof unacknowledged bytes of data. When segment 64 is received, cwnd equals
2048, but we have 2304 unacknowledged bytes (nine segments: 46, 48, 50, 52, 54, 55, 57,
59, and 63), We can’t send anything. When segment65 arrives, cwnd equals 2304, so we
still can’t send anything. But when segment 66 arrives, cwnd equals 2560, so we can
send a new data segment. Similarly when segment68 arrives, cwnd equals 2816, which
is greater than the 2560 bytes of unacknowledged data, so we can send another new
data segment. The same scenario happens when segment70 is received.

Whenthe next retransmission takes place at time 14.3 in Figure 21.10,it is also trig-
gered by the reception of three duplicate ACKs, so we see the sameincrease in cwnd as
one more duplicate ACK arrives, followed by a decrease to 1024.

The retransmission at time 21.1 in Figure 21.10 is also triggered by duplicate ACKs.
Wereceive three more duplicates after the retransmission, so we see three additional
increases in cwnd, followed by a decrease to 1280. For the remainder of the transfer
cwnd increaseslinearly to a final value of 3615.

Per-Route Metrics

Newer TCP implementations maintain many of the metrics that we've described in this
chapter in the routing table entry. When a TCP connectionis closed, if enough data was
sent to obtain meaningfulstatistics, and if the routing table entry for the destination is
not a default route, the following information is saved in the routing table entry, for the
next use of the entry: the smoothed RTT, the smoothed mean deviation, and the slow
start threshold. The quantity “enough data” is 16 windowsof data. This gives 16 RTT
samples, which allows the smoothed RTT filter to converge within 5% of the correct
value.

Viptela, Inc. - Exhibit 1007
Page 335



Viptela, Inc. - Exhibit 1007 
Page 336

Section 21.10 ICMP Errors 317 

21.10

Additionally, the route(8) command can be used by the administrator to set the
metrics for a given route: the three values mentioned in the preceding paragraph, along
with the MTU,the outbound bandwidth-delay product(Section 20.7), and the inbound
bandwidth-delay product.

When a new TCP connection is established, either actively or passively, if the rout-
ing table entry being used for the connection has values for these metrics, the corre-
spondingvariableis initialized from the metrics.

ICMP Errors

Let’s see how TCP handles ICMPerrors that are returned for a given connection. The
most common ICMPerrors that TCP can encounter are source quench, host unreach-
able, and network unreachable.

Current Berkeley-based implementations handle these ICMPerrors as follows:

e A received source quench causes the congestion window,cwnd, to be set to one
segment to initiate slow start, but the slow start threshold, ssthresh, is not
changed, so the window will open until it’s either open all the way (limited by
the window size and round-trip time) or until congestion occurs.

e A received host unreachable or network unreachable is effectively ignored, since
these two errors are considered transient. It could be that an intermediate router

has gone downandit can take the routing protocols a few minutes to stabilize
on an alternative route. During this period either of these two ICMP errors can
occur, but they must not abort the connection. Instead, TCP keeps trying to send
the data that caused the error, although it may eventually time out. (Recall in
Figure 21.1 that TCP did not give up for 9 minutes.)

Current Berkeley-based implementations record that the ICMP error occurred,
and if the connection times out, the ICMPerroris translated into a more relevant
error code than “connection timed out.”

Earlier BSD implementations incorrectly aborted a connection whenever an ICMP host
unreachable or network unreachable wasreceived.

An Example

Wecan see how an ICMPhost unreachable is handled by taking our dialup SLIP link
downduring the middle of a connection. We establish a connection from the host slip
to the host aix. (From the figure on the inside front cover we see that this connection
goes through our dialup SLIP link.) After establishing the connection and transferring
somedata, the dialup SLIP link between the routers sun and netb is taken down. This
causes the default routing table entry on sun (which we showed in Section 9,2) to be
removed. We expect sun to then respond to IP datagrams destined for the 140.252.1
Ethernet with an ICMPhost unreachable. We want to see how TCP handles these ICMP
errors.
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Hereis the interactive session on the host slip:

slip % sock aix echo run our sock program
test line type this line
test line and it’s echoed

SLIP link is brought downhere
another line then type this line and watchretransntissions

SLIP link is reestablished here

another line and the line andits echo are exchanged
line number 3
line number 3
the last line

SLIP link is brought downhere, and not reestablished
read error: No route to host . TCPfinally gives up

Figure 21.12 showsthe corresponding tcpdump output, captured on the router bsdi.
(We have removed the connection establishment and all the window advertisements.)
We connect to the echo server on the host aix and type “test line” (line 1). It is echoed
(line 2) and the echo is acknowledged(line 3). We then take downthe SLIP link.

We type “another line”(line 3) and expect to see TCP time out and retransmit the
message. Indeed, this line is sent six times before a reply is received. Lines 4-13 show
the first transmission and the next four retransmissions, each of which generates an
ICMPhost unreachable from the router sun. This is what we expect: the IP datagrams
go from slip to the router bsdi (which has a default route that points to sun), and
then to sun, where the broken link is detected.

While these retransmissions are taking place, the SLIP link is brought back up, and
the retransmission on line 14 gets delivered. Line 15 is the echo from aix, andline 16 is
the acknowledgmentof the echo.

This shows that TCP ignores the ICMP host unreachable errors and keeps retrans-
mitting. We can also see the expected exponential backoff in each retransmission time-
out: the first appears to be 2.5 seconds, which is then multiplied by 2 (giving 5 seconds),
then 4 (10 seconds), then 8 (20 seconds), then 16 (40 seconds).

We then type the third line of input (“line number 3”) and see it sent on line 17,
echoed on line 18, and the echo acknowledged online 19.

We now want to see what happens when TCP retransmits and gives up, after
receiving the ICMP host unreachable, so we take down the SLIP link again. After tak-
ing it down wetype“the last line” and seeit transmitted 13 times before TCP gives up.
(We have deleted lines 30-43 from the output. They are additional retransmissions.)

The thing we notice, however, is the error message printed by our sock program
whenit finally gives up: “No route to host.” This corresponds to the Unix error associ-
ated with the ICMP host unreachable error (Figure 6.12, p. 82). This shows that TCP
saves the ICMPerror that it receives on the connection, and whenit finally gives up, it
prints that error, instead of “Connection timed out.”

Finally, notice the different retransmission intervals in lines 22-46, compared to
lines 6-14. It appears that TCP updated its estimators when the third line we typed
was sent and acknowledged without any retransmissions in lines 17-19, The initial
retransmission timeout is now 3 seconds, giving successive values of 6, 12, 24, 48, and
then the upperlimit of 64.
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1 0.0 slip.1035 > aix.echo: P 1:11(10) ack 1
2 0.212271 ( 0.2123) aix.echo > slip.1035: P 1:11(10) ack 11
3 0.310685 ( 0.0984) slip.1035 > aix.echo: ack 11

SLIP link brought down here

4 174.758100 (174.4474) slip.1035 > aix.echo: P 11:24(13) ack 11
5 174.759017 ( 0.0009) sun > slip: icmp: host aix unreachable

6 177.150439 ( 2.3914) slip.1035 > aix.echo: P 11:24(13) ack 11
7 177,151271 ( 0.0008) sun > slip: icmp: host aix unreachable

8 182.150200 ( 4.9989) slip.1035 > aix.echo: P 11:24(13) ack 11
9 182.151189 ¢( 90.0010) sun > slip: icmp: host aix unreachable

10 192.149671 ( 9.9985) slip.1035 > aix.echo: P 11:24(13) ack 11
11 192.150608 ¢ 0.0009) sun > slip: icmp: host aix unreachable

12 212.148783 ( 19.9982) slip.1035 > aix.echo: P 11:24(13) ack il
13 212.149786 ( 0.0010) sun > slip: icmp: host aix unreachable

SLIP link brought up here

14 252.146774 ( 39.9970) slip.1035 > aix.echo: P 11:24(13) ack 11
15 252.439257 ( 0.2925) aix.echo > slip.1035: P 11:24(13) ack 24
16 252.505331 ( 0.0661) slip.1035 > aix.echo: . ack 24

17 261.977246 ( 9.4719) slip.1035 > aix.echo: P 24:38(14) ack 24
18 262.158758 ( 0.1815) aix.echo > slip.1035: P 24:38(14) ack 38
19 262.305086 ( 0.1463) slip.1035 > aix.echo: ack 38

SLIP link brought downhere

20 458.155330 (195.8502) slip.1035 > aix.echo: P 38:52(14) ack 38
21 458.156163 ( 0.0008) sun > slip: icmp: host aix unreachable

22 461.136904 ( 2.9807) slip.1035 > aix.echo: P 38:52(14) ack 38
23 461.137826 ( 0.0009) sun > slip: icmp: host aix unreachable

24 467.136461 ( 5.9986) slip.1035 > aix.echo: P 38:52(14) ack 38
25 467.137385 ( 0.0009) sun > slip: icmp: host aix unreachable

26 479.135811 ( 11.9984) slip.1035 > aix.echo: P 38:52(14) ack 38
27 479.136647 ( 0.0008) sun > slip: icmp: host aix unreachable

28 503.134816 ( 23.9982) slip.1035 > aix.echo: P 38:52(14) ack 38
29 503.135740 ( 0.0009) sun > slip: icmp: host aix unreachable

14 lines ofoutput deleted here

44 1000.219573 ( 64.0959) slip.1035 > aix.echo: P 38:52(14) ack 38
45 1000.220503 ( 0.0009) sun > slip: icmp: host aix unreachable

46 1064.201281 ( 63.9808) slip.1035 > aix.echo: R 52:52(0) ack 38
47 1064.202182 ( 0.0009) sun > slip: icmp: host aix unreachable

Figure 21,12 TCP handling of received ICMP host unreachableerror.
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21.11 Repacketization

When TCP times out and retransmits, it does not have to retransmit the identical seg-
ment again, Instead, TCP is allowed to perform repacketization, sending a bigger seg-
ment, which can increase performance. (Naturally, this bigger segment cannot exceed
the MSS announced by the other receiver.) This is allowed in the protocol because TCP
identifies the data being sent and acknowledged by its byte number, not its segment
number.

Wecaneasily see this in action. We use our sock program to connect to the discard
server and type one line. We then disconnect the Ethernet cable and type a secondline.
While this second line is being retransmitted, we type a third line. We expect the next
retransmission to contain both the second andthird lines.

bsdi % sock svr4 discard

hello there first line gets sent OK
then we disconnect the Ethernet cable

line number 2 this line gets retransmitted
and 3 type this line before second line sent OK

then reconnect Ethernet cable

Figure 21.13 shows the tcpdump output. (We have removed the connection establish-
ment, the connection termination, and all the window advertisements.)

1 0.0 bsdi.1032 > svr4.discard: P 1:13(12) ack 1
2 0.140489 ( 0.1405) svr4.discard > bsdi.1032: . ack 13

Ethernet cable disconnected here

3° 26.407696 (26.2672) bsdi.1032 > svr4.discard: P 13:27(14) ack 1
4 27.639390 ( 1.2317) bsdi.1032 > svr4.discard: P 13:27(14) ack 1
5 30.639453 ( 3.0001) bsdi.1032 > svr4.discard: P 13:27(14) ack 1

third line typed here

N 36.639653 ( 6.0002) bsdi.1032 > svr4.discard: P 13:33(20) ack 1
7 48,640131 (12.0005) bsdi.1032 > svr4.discard: P 13:33(20) ack 1

Ethernet cable reconnected here

8 72.640768 (24.0006) bsdi.1032 > svr4.discard: P 13:33(20) ack 1
9 72.719091 ( 0.0783) svr4.discard > bsdi.1032: . ack 33

Figure 21.13 Repacketization of data by TCP.

Lines 1 and 2 showthefirst line (“hello there”) being sent and its acknowledgment.
Wethen disconnect the Ethernet cable and type “line number 2” (14 bytes, including the
newline). These bytes are transmitted on line 3, and then retransmitted on lines 4 and 5.

Before the retransmission on line 6 we type “and 3”(6 bytes, including the newline)
and see this retransmission contain 20 bytes: both lines that we typed. When the
acknowledgmentarrives on line 9,it is for all 20 bytes.
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21.12 Summary

This chapter has provided a detailed look at TCP’s timeout and retransmission strategy.
Our first example was a lost SYN to establish a connection and we saw how an expo-
nential backoff is applied to successive retransmission timeoutvalues.

TCP calculates the round-trip time and then uses these measurements to keep track
of a smoothed RIT estimator and a smoothed mean deviation estimator. These two

estimators are then used to calculate the next retransmission timeout value. Many
implementations only measure a single RTT per window. Karn’s algorithm removesthe
retransmission ambiguity problem by preventing us from measuring the RTT when a
packetis lost.

Our detailed example, which included three lost packets, let us see many of TCP’s
algorithmsin action: slow start, congestion avoidance, fast retransmit, and fast recovery.
We werealso able to hand calculate TCP RTT estimators along with the congestion win-
dow and slow-start threshold, and verify the values with the actual values from the
trace output.

Wefinished the chapter by looking at the effect various ICMPerrors have on a TCP
connection and how TCP is allowed to repacketize its data. We saw how the “soft”
ICMPerrors don’t cause a connection to be terminated, but are remembered so thatif
the connection terminates abnormally, the soft error can be reported.

Exercises

21.1 In Figure 21.5 the first timeout was calculated as 6 seconds and the next as 24 seconds. If
the ACK for the initial SYN had not arrived after the 24-second timeout expired, when
would the next timeout occur?

21.2 In the discussion following Figure 21.5 we said that the timeoutintervals are calculated as
6, 24, and then 48 seconds, as we saw in Figure 4.5. But if we watch a TCP connection to a
nonexistent host from an SVR4 system, the timeout intervals are 6, 12, 24, and 48 seconds.
What's going on?

21.3 Compare the performance of TCP’s sliding window versus TFTP’s stop-and-wait protocol
as follows. In this chapter we transferred 32768 bytes in about 35 seconds (Figure 21.6)
across a link with an RTT that averaged around 1.5 seconds (Figure 21.4). Calculate how
long TFTP would take for the sametransfer.

21.4 In Section 21.7 we said that the receipt of a duplicate ACK is caused by a segment being
lost or reordered. In Section 21.5 we saw the generation of duplicate ACKs caused by a
lost segment. Draw a picture showing that a reordering of segments also generates dupli-
cate ACKs.

21.5 There is a noticeable blip in Figure 21.6 between times 28.8 and 29.8. Is this a retransmis-
sion?
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21.6

21.7

21.8

In Section 21.6 we said that the 4.3BSD Tahoerelease only performed slow start if the desti-
nation was on a different network. How do you think “different network” was deter-
mined? (Hint: Look at Appendix E.)

In Section 20.2 we said that TCP normally ACKs every other segment. But in Figure 21.2
wesee the receiver ACK every segment. Why?

Are per-route metricsreally useful, given the prevalence of default routes?
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22.1

22.2

22

ICP Persist Timer

Introduction

We've seen that TCP has the receiver perform flow control by specifying the amountof
data it is willing to accept from the sender: the window size. What happens when the
windowsize goes to 0? This effectively stops the sender from transmitting data, until
the window becomes nonzero.

Wesawthis scenario in Figure 20.3 (p. 279). When the sender received segment9,
opening the window that was shut down by segment 8,it immediately started sending
data. TCP must handle the case of this acknowledgment that opens the window (seg-
ment 9) being lost. Acknowledgments are not reliably transmitted—that is, TCP does
not ACK acknowledgments, it only ACKs segments containing data.

If an acknowledgment is lost, we could end up with both sides waiting for the
other: the receiver waiting to receive data (since it provided the sender with a nonzero
window) and the sender waiting to receive the window update allowing it to send. To
prevent this form of deadlock from occurring the sender usesapersist timer that causes
it to query the receiver periodically, to find out if the window has been increased. These
segments from the sender are called windowprobes. In this chapter we'll examine win-
dow probes and the persist timer. We’ll also examine the silly window syndrome,
which is tied to the persist timer.

An Example

To see the persist timer in action we'll start a receiver process that listens for a connec-
tion request from a client, accepts the connection request, and then goesto sleep for a
long time before reading from the network.
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Our sock program lets us specify a pause option —P that sleeps between the server
accepting the connection request and performingthefirst read. We'll invoke the server
as:

svr4 % sock -i -s -P100000 5555

This has the server sleep for 100,000 seconds (27.8 hours) before reading from the net-
work. Theclient is run on the host bsdi and performs 1024-byte writes to port 5555 on
the server. Figure 22.1 shows the tcpdump output. (We have removed the connection
establishmentfrom the output.)

    

1 0.0 bsdi.1027 > svr4.5555: P 1:1025(1024) ack 1 win 4096
2 0.191961 ( 0.1920) svr4.5555 > bsdi.1027: . ack 1025 win 4096
3 0.196950 ( 0.0050) bsdi.1027 > svr4.5555: . 1025:2049(1024) ack 1 win 4096

4 0.200340 ( 0.0034) bsdi.1027 > svr4.5555: . 2049:3073(1024) ack 1 win 4096
5 0.207506 ( 0.0072) svr4.5555 > bsdi.1027: . ack 3073 win 4096
6 0.212676 ( 0.0052) bsdi.1027 > svr4.5555: . 3073:4097(1024) ack 1 win 4096
7 0.216113 ( 0.0034) bsdi.1027 > svr4.5555: P 4097:5121(1024) ack 1 win 4096
8 0.219997 ( 0.0039) bsdi.1027 > svr4.5555: P 5121:6145(1024) ack 1 win 4096
9 0.227882 ( 0.0079) svr4.5555 > bsdi.1027: . ack 5121 win 4096

10 0.233012 ( 0.0051) bsdi.1027 > svr4.5555: P 6145:7169(1024) ack 1 win 4096
11 0.237014 ( 0.0040) bsdi.1027 > svr4.5555: P 7169:8193(1024) ack 1 win 4096
12 0.240961 ( 0.0039) bsdi.1027 > svr4.5555: P 8193:9217(1024) ack 1 win 4096
13 0.402143 ( 0.1612) svr4.5555 > bsdi.1027: . ack 9217 win 0

14 5.351561 ( 4.9494) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
15 5.355571 ( 0.0040) svr4.5555 > bsdi.1027: . ack 9217 win 0

16 10.351714 ( 4.9961) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
17 10.355670 ( 0.0040) svr4.5555 > bsdi.1027: . ack 9217 win 0

18 16.351881 ( 5.9962) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
19 16.355849 ( 0.0040) svr4.5555 > bsdi.1027: . ack 9217 win 0

20 28.352213 (11.9964) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
21 28.356178 ( 0.0040) svr4.5555 > bsdi.1027: . ack 9217 win 0

22 52.352874 (23.9967) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
23 52.356839 ( 0.0040} svr4.5555 > bsdi.1027: . ack 9217 win 0

24 100.354224 (47.9974) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
25 100.358207 ( 0.0040) svr4.5555 > bsdi.1027: . ack 9217 win 0

26 160.355914 (59.9977) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
27) 160.359835 ( 0.0039) svr4.5555 > bsdi.1027: . ack 9217 win 0

28 220.357575 (59.9977) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
29 220.361668 ( 0.0041) svr4.5555 > bsdi.1027: . ack 9217 win 0

30=280.359254 (59.9976) bsdi.1027 > svr4.5555: . 9217:9218(1) ack 1 win 4096
31 280.363315 ( 0.0041) svr4.5555 > bsdi.1027: . ack 9217 win 0

 
Figure 22.1 Exampleof persist timer probing a zero-sized window.

Segments 1-13 shows the normal data transfer from the client to the server, filling
up the window with 9216 bytes of data. The server advertises a window of 4096, and
has a default socket buffer size of 4096, but really accepts a total of 9216 bytes. This is
some form of interaction between the TCP/IP code and the streams subsystem in SVR4.
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22.3

In segment13 the server acknowledges the previous four data segments, but adver-
tises a windowof 0, stopping the client from transmitting any more data. This causes
the client to set its persist timer. If the client doesn’t receive a window update when the
timer expires, it probes the empty window,to see if a window update has been lost.
Since our server process is asleep, the 9216 bytes of data are buffered by TCP, waiting
for the applicationto issue a read.

Notice the spacing of the window probesby the client. The first (segment 14)is
4,949 secondsafter receiving the zero-sized window. The next (segment16) is 4.996 sec-
ondslater. The spacingis then about6, 12, 24, 48, and 60 secondsafter the previous.

Whyare the spacings alwaysa fraction of a secondless than 5, 6, 12, 24, 48, and 60?
These probesare triggered by TCP’s 500-ms timer expiring. Whenthe timer expires, the
window probeis sent, and a reply is received about 4 mslater. The receipt of the reply
causes the timer to be restarted, but the time until the next clock tick is about 500 minus
4ms.

The normal TCP exponential backoff is used when calculating the persist timer. The
first timeout is calculated as 1.5 seconds for a typical LAN connection. This is multi-
plied by 2 for a second timeout value of 3 seconds. A multiplier of 4 gives the next
value of 6, a multiplier of 8 gives a value of 12, and so on. But the persist timer is
always bounded between 5 and 60 seconds, which accounts for the values wesee in Fig-
ure 22,1,

The window probes contain 1 byte of data (sequence number 9217). TCP is always
allowed to send 1 byte of data beyond the end of a closed window. Notice, however,
that the acknowledgments returned with the windowsize of 0 do not ACKthis byte.
(They ACKthereceipt of all bytes through and including byte number 9216.) Therefore
this byte keeps being retransmitted.

The characteristic of the persist state that is different from the retransmission time-
out in Chapter 21 is that TCP never gives up sending window probes. These window
probes continue to be sent at 60-secondintervals until the window opensuporeither of
the applications using the connection is terminated.

Silly Window Syndrome

Window-based flow control schemes, such as the one used by TCP, canfall victim to a
condition knownasthe silly window syndrome (SWS), Whenit occurs, small amounts of
data are exchanged across the connection, instead of full-sized segments [Clark 1982].

It can be caused by either end: the receiver can advertise small windows(instead of
waiting until a larger window could be advertised) and the sender can transmit small
amounts of data (instead of waiting for additional data, to send a larger segment). Cor-
rect avoidanceof thesilly window syndromeis performed on both ends.

1, The receiver must not advertise small windows. The normalalgorithm is for
the receiver not to advertise a larger window thanit is currently advertising
(which can be 0) until the windowcan be increased by either one full-sized seg-
ment (i.e, the MSS being received) or by one-half the receiver’s buffer space,
whicheveris smaller.
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2. Sender avoidance of the silly window syndrome is done by not transmitting
unless one of the following conditions is true: (a) a full-sized segment can be
sent, (b) we can send at least one-half of the maximum sized window that the
other end has ever advertised, or (c) we can send everything we have andeither
we are not expecting an ACK(i.e., we have no outstanding unacknowledged
data) or the Nagle algorithm is disabled for this connection (Section 19.4).

Condition (b) deals with hosts that always advertise tiny windows, perhaps
smaller than the segment size. Condition (c) prevents us from sending small
segments when we have unacknowledged data that is waiting to be ACKed and
the Nagle algorithm is enabled. If the application is doing small writes (e.g.,
smaller than the segmentsize), it is condition (c) that avoids the silly window
syndrome.

These three conditions also let us answer the question: if the Nagle algorithm
prevents us from sending small segments while there is outstanding unac-
knowledged. data, how small is small? From condition (a) we see that “small”
means the number of bytes is less than the segment size. Condition (b) only
comesinto play with older, primitive hosts.

Condition (b) in step 2 requires that the sender keep track of the maximum window size
advertised by the other end. This is an attempt by the sender to guess the size of the
other end’s receive buffer. Although the size of the receiver buffer could decrease while
the connection is established, in practicethis is rare.

An Example

We'll now go through a detailed exampleto see thesilly window syndromeavoidance
in action, which also involves the persist timer. We’ll use our sock program with the
sending host, sun, doing six 1024-byte writes to the network:

sun % sock -i -n6 bsdi 7777

But we’ll put some pauses in the receiving process on the host bsdi, pausing 4 seconds —
before doing the first read, and then pausing 2 seconds between successive reads.
Additionally, the receiver issues 256-byte reads:

bsdi % sock -i -s -P4 -p2 -r256 7777

The reason for the initial pause is to let the receiver’s buffer fill, forcing it to stop the
transmitter. Since the receiver then performs small reads from the network, we expect
to see the receiver perform silly window syndromeavoidance.

Figure 22.2 is the time line for the transfer of the 6144 bytes of data. (We have
deleted the connection establishment.)

We also need to track what happens with the application that’s reading the data at
each point in time, along with the number of bytes currently in the receive buffer, and
the number of bytes of available space in the receive buffer. Figure 22.3 shows every-
thing that’s happening.
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sun.1069 bsdi.7777

 

 

 

 

 

 

 

 
 

 

 

0.0 1 PSH 1:1025(1024) ack 1, win 4096
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15.172006¢0.0017 —A100:5124(1024) ack 1, win 4096
ack 5124, win 509 14315.370307 ( 0.1983) fed

Z ZL
20,151782 ( 4.7815) 14 3124:5633(509) ack 1, win 4096

ack 5633, win 0 1520.170297( 0.0185) lee

Z Z
25.151162 ( 4.9809) 16 5633:5634(1) ack 1, win 4096

ack 5634, win 1279 Fi25,170302(0,0191

25.171801 { 0.0018) isle FIN/PSH_5634:6145(511) ack 1, win 4096
ack 6146, win 767 > 1925.174401 ( 0.0026) 5

Z
ack 6146, win 2816 : 2039.991658 (14.8173) Le

4 f
FIN 1:1(0) ack 6146, win 4096 2151.991775 (12.0001 lt

51.992665(0.0009
22 ack 2, win 4096

Figure 22.2 Timeline showing receiver avoidance of silly window syndrome.
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Ti Segment# Action Receiver buffer

ame (Figure 22.2) Send TCP Receive TCP Application data available
0.000 1 1:1025(1024) 1024 3072
0,002 2 1025:2049(1024) 2048 2048
0,003 3 2049:3073(1024) 3072 1024
0,005 4 3073:4097(1024) 4096 0
0.170 5 ACK4097, win 0
3.99 read 256 3840 256

5,151 6 4097:4098(1) 3841 255
5.17 7 ACK4098, win 0
5.99 read 256 3585 511
7.99 read 256 3329 767
9,99 read 256 3073 1023

10.151 8 4098:4099(1) 3074 1022
10.170 9 ACK4099, win 0
11.99 read 256 2818 1278
13.99 read 256 2562 1534.

15.151 10 4099:4100(1) 2563 1533
15.170 11 ACK4100, win 1533
15.172 12 4100:5124(1024) 3587 509
15.370 13 ACK 5124, win 509
15.99 read 256 3331 765
17.99 read 256 3075 1021
19.99 read 256 2819 1277

20.151 14 5124:5633(509) 3328 768
20.170 15 ACK 5633, win 0
21.99 read 256 3072 1024
23.99 read 256 2816 1280

25.151 16 5633:5634(1) 2817 1279
25.170 17 ACK5634, win 1279
25.171 18 5634:6145(511) 3328 768 -
25,174 19 ACK6146, win 767
25.99 read 256 3072 1024
27.99 read 256 2816 1280
29.99 read 256 2560 1536
31.99 read 256 2304 1792
33.99 read 256 2048 2048
35.99 read 256 1792 2304
37.99 read 256 1536 2560
39.99 read 256 1280 2816

39,99 20 ACK6146, win 2816
41.99 read 256 1024 3072

43.99 read 256 "768 3328 |
45.99 read 256 512 3584
47,99 read 256 256 3840
49,99 read 256 0 4096

51.99 read 256 (EOF) 0 4096
51.991 21 ACK 6146, win 4096
51,992 22 ACK 2

 
 

Figure 22.3 Sequenceof eventsfor receiver avoidanceofthesilly window syndrome.
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In Figure 22.3 the first column is the relative point in time for each action. Those
times with three digits to the right of the decimal point are taken from the tcpdump
output (Figure 22.2). Those times with 99 to the right of the decimal point are the
assumed times of the action on the receiving host. (Having these relative times on the
receiver contain 99 for the hundredths of a second correlates them with segments 20 and
22 in Figure 22.2, the only two events on the receiver that we can see with t cpdump that
are triggered by a timeout on the receiving host. All the other packets that we see from
bsdi are triggered by the reception of a segment from the sender. It also makes sense,
because this would place the initial 4-second pause just before time 0 when the sender
transmits the first data segment. This is about when the receiver would get control,
after receiving the ACKof its SYN in the connection establishment.)

The amountof data in the receiver’s buffer increases whenit receives data from the

sender, and decreases as the application reads data from the buffer. What we want to
follow are the window advertisements sent by the receiver to the sender, and what
those window advertisements are. This lets us see how thesilly window syndromeis
avoided by the receiver. :

The first four data segments and the corresponding ACK (segments 1-5) show the
senderfilling the receiver's buffer. At that point the sender is stopped butit still has
more data to send. It sets its persist timer for its minimum value of 5 seconds.

When the persist timer expires, 1 byte of data is sent (segment 6). The receiving
application has read 256 bytes from the receive buffer (at time 3.99), so the byte is
accepted and acknowledged (segment7). But the advertised windowisstill 0, since the
receiver does not have room for either one full-sized segment or one-half of its buffer.
Thisis silly window avoidance by the receiver.

The sender’s persist timer is reset and goes off again 5 secondslater (at time 10.151).
Onebyte is again sent and acknowledged (segments 8 and 9). Again the amount of
room in the receiver’s buffer (1022 bytes) forces it to advertise a window of 0.

Whenthe sender’s persist timer expires next, at time 15.151, another byte is sent
and acknowledged (segments 10 and 11). This time the receiver has 1533 bytes available
in its buffer, so a nonzero windowis advertised. The sender immediately takes advan-
tage of the window and sends 1024 bytes (segment 12). The acknowledgmentof these
1024 bytes (segment 13) advertises a window of 509 bytes. This appears to contradict
what we’ve seen earlier with small window advertisements.

What's happening here is that segment 11 advertised a window of 1533 bytes but
the sender only transmitted 1024 bytes. If the acknowledgment in segment 13 adver-
tised a window of0, it would violate the TCP principle that a window cannotshrink by
moving the right edge of the windowto theleft (Section 20.3). That’s why the small
windowof 509 bytes must be advertised.

Next wesee that the sender does not immediately transmit into this small window.
This is silly window avoidance by the sender. Instead it waits for another persist timer
to expire at time 20.151, when it sends 509 bytes. Even though it ends up sending this
small segment with 509 bytes of data, it waits 5 seconds before doing so, to see if an
ACKarrives that opens up the window more. These 509 bytes of data leave only 768
bytes of available space in the receive buffer, so the acknowledgment (segment 15)
advertises a windowof0.
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22.4

Thepersist timer goes off again at time 25.151, and the sender transmits 1 byte. The
receive buffer then has 1279 bytes of space, which is the window advertised in segment
17,

The sender has only 511 additional bytes of data to transmit, which it sends imme-
diately upon receiving the window advertisement of 1279 (segment 18). This segment
also contains the FIN flag. The receiver acknowledges the data and the FIN, advertising
a window of 767. (See Exercise 22.2.)

Since the sending application issues a close after performingits six 1024-byte writes,
the sender’s end of the connection goes from the ESTABLISHED state to the
FIN_WAIT_1 state, to the FIN_WAIT_2 state (Figure 18.12). It sits in this state until
receiving a FIN from the other end. There is no timerin this state (recall our discussion
at the end of Section 18.6), since the FIN that it sent in segment 18 was acknowledged in
segment 19. This is why wesee no further transmissions by the sender until it receives
the FIN (segment 21).

The receiving application continues reading 256 bytes of data every 2 seconds from
the receive buffer. Why is the ACKsent at time 39.99 (segment 20)? The amount of
room in the receive buffer has gone from its last advertised value of 767 (segment 19) to
2816 when the application reads at time 39.99. This equals 2049 bytes of additional
space in the receive buffer. Recalling thefirst rule at the start of this section, the receiver
now sends a window update because the amount of room hasincreased by one-half the
room in the receive buffer. This implies that the receiving TCP checks whether to send a
window update every time the application reads data from TCP’sreceive buffer.

Thefinal application read occurs at time 51.99 and the application receives an end-
of-file notification, since the buffer is empty. This causes the final two segments (21 and
22), which complete the termination of the connection.

Summary

TCP’s persist timer is set by one end of a connection whenit has data to send, but has
been stopped because the other end has advertised a zero-sized window. The sender
keeps probing the closed window using a retransmission interval similar to what we
saw in Chapter 21. This probing of the closed window continuesindefinitely.

When we ran an example to see the persist timer we also encountered TCP’s avoid-
ance of the silly window syndrome. This is to prevent TCP from advertising small win-
dowsor from sending small segments. In our example we saw avoidanceof the silly
window syndromeby both the sender and thereceiver.

Exercises

22.1 In Figure 22.3 notice the times of all the acknowledgments (segments 5,7, 9, 11, 13, 15, and
17): 0.170, 5.170, 10.170, 15.170, 15.370, 20.170, and 25.170. Also notice the time differences
between sending the data and receiving the ACK: 164.9, 18.5, 18.7, 18.8, 198.3, 18.5, and
19.1 ms. Explain what’s probably going on.

22.2 In Figure 22.3 at time 25.174 a window of 767 is advertised, but 768 bytes are available in
the receive buffer. Whythe difference of 1 byte?
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23.1

28

ICP Keepalive Timer

Introduction

Many newcomers to TCP/TP are surprised to learn that no data whatsoeverflowsacross
an idle TCP connection. That is, if neither process at the ends of a TCP connectionis
sending data to the other, nothing is exchanged between the two TCP modules. Thereis
no polling, for example, as you might find with other networking protocols. This
means we can start a client process that establishes a TCP connection with a server, and
walk away for hours, days, weeks or months, and the connection remains up. Interme-
diate routers can crash and reboot, phone lines may go downand back up, but as long
as neither host at the ends of the connection reboots, the connection remains estab-
lished.

This assumes that neither application—theclient or server—has application-level
timers to detect inactivity, causing either application to terminate. Recall at the end of
Section 10.7 that BGP sends an application probe to the other end every 30 seconds.
This is an application timer that is independent of the TCP keepalive timer.

There are times, however, when a server wants to knowif the client’s host has either

crashed and is down, or crashed and rebooted. The keepalive timer, a feature of many
implementations, provides this capability.

Keepalives are not part of the TCP specification. The Host Requirements RFC provides three
reasons not to use them: (1) they can cause perfectly good connections to be dropped during
transient failures, (2) they consume unnecessary bandwidth, and (3) they cost money on an
internet that charges by the packet. Nevertheless, many implementations provide the keep-
alive timer,

The keepalive timer is a controversial feature. Many feel that this polling of the
other end has no place in TCP and should be doneby the application, if desired. This is
one ofthereligious issues, because of the fervor expressed by some on thetopic.

331
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