EXHIBIT
1007



<
<

TCP/IP
| nstrated
\oluz

>
9
O
N
O
“
=
Tl
"
—
Tl
_<
-
<
@
=11
Tl
w
A
O
Z
>
—
D)
@)
=
)
&
=
Z
)
"
mm
7
Tl
W

Viptela, Inc. - Exhibit 100
Page



Internet

AIX 322 Solaris 2.2 Sun0S§4.1.1 104.1
aix solaris emini atewa Cisco
g g ¥ router
T.1.92 f132 fim T.1.4
Ethernet l 1183
| Telebit
netb NetBlazer
modem|
SLIP| (dialup)
modem
BSD/386 1.0 BSD/3861.0 Sun0OS4.1.3 [.1.29 SVR4
. SLIP .
slip 1365 1366 bsdi sun svrd
T.13.35 T.13.33 T.13.34

Ethernet

Portion of the class B network 140.252 used for all the examples in the text.
All the hosts are in the tuc.noao.edu domain.

Viptela, Inc. - Exhibit 1007
-Page 2




IP Header

0 15 16 31
4-bit  |4-bit header| 8-bit type of service . .
version length (TOS) 16-bit total length (in bytes)
16-bit identification g:z; 13-bit fragment offset
8-bit t(i,;n.rﬁo live 8-bit protocol 16-bit header checksum 20 bytes
32-bit source IP address
32-bit destination IP address
/ options (if any) {
f data
UDP Header
0 15 16 31
16-bit source port number 16-bit destination port number T
8 bytes
16-bit UDP length 16-bit UDP checksum j_
/ data (if any) /
TCP Header
0 15 16 31
16-bit source port number 16-bit destination port number
32-bit sequence number
32-bit acknowledgment number 20 bytes

{

4-bit header|  reserved UlA[P[R[STF Y .
. 16-b d
length I it window size
16-bit TCP checksum 16-bit urgent pointer
/ options (if any)
/ data (if any)

Viptela, Inc. - Exhibit 1007

Page 3



TCP/IP lllustrated, Volume 1

Viptela, Inc. - Exhibit 1007
Page 4



Addison-Wesley Professional Computing Series
Brian W. Kernighan, Consulting Editor

Ken Arnold /John Peyton, A C User’s Guide to ANSI C

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard
Template Library :

David R. Butenhof, Programming with POSIX® Threads

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin, Firewalls and Internet Security: Repelling the Wily Hacker

David A. Curry, UNIX® System Security: A Guide for Users and System Administrators

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software :

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of
Reusable Object-Oriented Software

David R. Hanson, C Interfaces and Implementations: Technigues for Creating Reusable Software

Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with
Tcl and Tk

Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++

Brian W. Kernighan and Rob Pike, The Practice of Programming

S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and
the Telephone Network

John Lakos, Large-Scale C++ Software Design

Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs

Scott Meyers, Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Atul Saini, STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library

John K., Qusterhout, Tel and the Tk Toolkit

Craig Partridge, Gigabit Networking

]. Stephen Pendergrast Jr., Desktop KornShell Graphical Programming

Radia Perlman, Interconnections, Second Edition: Bridges and Routers

David M. Piscitello/A. Lyman Chapin, Open Systems Networking: TCP/IP and OSI

Stephen A. Rago, UNIX® System V Network Programming ‘

Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and
Caching for Kernel Programmers

W. Richard Stevens, Advanced Programming in the UNIX® Environment

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the
UNIX® Domain Protocols

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

Please see our web site (http:/ /www.awl.com/cseng/series/ professionalcomputing) for more information on these titles.

Viptela, Inc. - Exhibit 1007
Page 5



TCP/IP IMlustrated, Volume 1

The Protocols

W. Richard Stevens

I\
\ A4

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts « Harlow, England » Menlo Park, California
Berkeley, California « Don Mills, Ontario ¢ Sydney
Bonn « Amsterdam « Tokyo ¢« Mexico City

Viptela, Inc. - Exhibit 1007

Page 6



UNIX is a technology trademark of X/Open Company, Ltd.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information please contact: '

Corporate & Professional Publishing Group

Addison-Wesley Publishing Company

One Jacob Way

Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
Stevens, W. Richard
TCP/IP Illustrated: the protocols/W. Richard Stevens.
p. cm. — (Addison-Wesley professional computing series)
Includes bibliographical references and index.
ISBN 0-201-63346-9 (v. 1)
L. TCP/IP (Computer network protocol) L. Title. IL Series.
TK5105.55574 1994
004.6"2—dc20

Copyright © 1994 Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

Text printed on recycled and acid-free paper.

ISBN 0201633469
141516171819 MA 02 01 00 99

14th Printing July 1999

Viptela, Inc. - Exhibit 1007

Page 7



To Brian Kernighan and John Wait,
for their encouragement, faith, and support
over the past 5 years.

Viptela, Inc. - Exhibit 1007
Page 8



Praise for TCP/IP lllustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutes of picking up the text,
I encountered several scenarios which had tripped-up both my colleagues and myself in the past.
Stevens reveals many of the mysteries once held tightly by the ever-elusive networking gurus.
Having been involved in the implementation of TCP/IP for some years now, I consider this by far
the finest text to date.”

— Robert A. Ciampa, Network Engineer, Synernetics, division of 3COM

“While all of Stevens’ books are readable and téchnically excellent, this new opus is awesome.
Although many books describe the TCP/IP protocols, Stevens provides a level of depth and real-
world detail lacking from the competition. He puts the reader inside TCP/IP using a visual approach
and shows the protocols in action.”

— Steven Baker, Networking Columnist, Unix Review

“TCP/IP Hlustrated, Volume I is an excellent reference for developers, network administrators, or
anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is comprehensive in its
coverage of TCP/IP topics, providing enough details to satisfy the experts while giving enough
background and commentary for the novice.”

— Bob Williams, V.P, Marketing, NetManage, Inc.

“... the difference is that Stevens wants to show as well as tell about the protocols. His principal
teaching tools are straight-forward explanations, exercises at the ends of chapters, byte-by-byte
diagrams of headers and the like, and listings of actual traffic as examples.”

— Walter Zintz, UnixWorld

“Much better than theory only ... W. Richard Stevens takes a multihost-based configuration and uses
it as a travelogue of TCP/IP examples with illustrations. TCP/IP lllustrated, Volume 1 is based on
practical examples that reinforce the theory — distinguishing this book from others on the subject,
and making it both readable and informative.”

— Peter M. Haverlock, Consultant, IBM TCP/IP Development

“The diagrams he uses are excellent and his writing style is clear and readable. In sum, Stevens has
made a complex topic easy to understand. This book merits everyone’s attention, Please read it and -
keep it on your bookshelf.”

— Elizabeth Zinkann, Sys Admin

“W. Richard Stevens has produced a fine text and reference work. It is well organized and very
clearly written with, as the title suggests, many excellent illustrations exposing the intimate details
of the logic and operation of IP, TCP, and the supporting cast of protocols and applications.”

— Scott Bradner, Consultant, Harvard University OIT/NSD

Viptela, Inc. - Exhibit 1007
Page 9



Contents

Preface XV
Chapter 1. Introduction 1

1.1 Introduction 1

1.2 Layering 1

1.3 TCP/IP Layering 6

1.4 Internet Addresses 7

1.5 The Domain Name System 9

1.6 Encapsulation 9

1.7 Demuiltiplexing 11

1.8 Client—Server Model 12

1.9 Port Numbers 12

1.10  Standardization Process 14

1.11 RFCs 14

1.12  Standard, Simple Services 15

1.13  The Internet 16

1.14  Implementations 16

1.15  Application Programming Interfaces 17

1.16  Test Network 18

1.17  Summary 19

Viptela, Inc. - Exhibit 1007
Page 10



viii TCP/IP Tlustrated Contents
Chapter 2. Link Layer 21
2.1 Introduction 21
2.2 Ethernet and IEEE 802 Encapsulation 21
2.3 Trailer Encapsulation 23
24 SLIP: Serial Line IP 24
2.5 Compressed SLIP 25
2.6 PPP: Point-to-Point Protocol 26
2.7 Loopback Interface 28
2.8 MTU 29
2.9 Path MTU 30
2.10  Serial Line Throughput Calculations 30
211 Summary 31
Chapter 3. IP: Internet Protocol 33
3.1 Introduction 33
3.2 IP Header 34
3.3 IP Routing 37
3.4 Subnet Addressing 42
3.5 Subnet Mask 43
3.6 Special Case IP Addresses 45
3.7 A Subnet Example 46
3.8 ifconfig Command 47
3.9 netstat Command 49
3.10 IP Futures 49
3.11  Summary 50
Chapter 4. ARP: Address Resolution Protocol 53
4.1 Introduction 53
4.2 An Example 54
4.3 ARP Cache 56
4.4 ARP Packet Format 56
4.5 ARP Examples 57
4.6 Proxy ARP 60
4.7 Gratuitous ARP 62
4.8 arp Command 63
4.9 Summary 63
Chapter 5. RARP: Reverse Address Resolution Protocol 65
5.1 Introduction 65
5.2 RARP Packet Format 65
5.3 RARP Examples 66
5.4 RARP Server Design 67
55 Summary 68

Viptela, Inc

. - Exhibit 1007
Page 11



TCP/IP Tlustrated

Contents ix

Chapter 6.

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter 7.

7.1
7.2
7.3
7.4
7.5

Chapter 8.

8.1
8.2
8.3
8.4
8.5
8.6

Chapter 9.

9.1
9.2
8.3
9.4
9.5
9.6
9.7

Chapter 10.

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

ICMP: Internet Control Message Protocol

Introduction 69

ICMP Message Types 70

ICMP Address Mask Request and Reply 72
ICMP Timestamp Request and Reply 74
ICMP Port Unreachable Error 77

4.4BSD Processing of ICMP Messages 81
Summary 83

Ping Program

Introduction 85

Ping Program 85

IP Record Route Option 91
IP Timestamp Option 95
Summary 96

Traceroute Program

Introduction 97

Traceroute Program Operation 97
LAN Output 99

WAN Output 102

IP Source Routing Option 104
Summary 109

IP Routing

Introduction 111

Routing Principles 112

JCMP Host and Network Unreachable Errors 117
To Forward or Not to Forward 119

ICMP Redirect Errors 119

ICMP Router Discovery Messages 123

Summary 125

Dynamic Routing Protocols

Introduction 127

Dynamic Routing 127

Unix Routing Daesmons 128

RIP: Routing Information Protocol 129
RIP Version 2 136

OSPF: Open Shortest Path First 137
BGP: Border Gateway Protocol 138
CIDR: Classless Interdomain Routing 140
Summary 141

Viptela, Inc

69

85

97

111

127

. - Exhibit 1007
Page 12



X TCP/IP Hlustrated Contents
Chapter 11. UDP: User Datagram Protocol 143
111 Introduction 143
11.2  LIDP Header 144
11.3  UDP Checksum 144
11.4 A Simple Example 147
11.5 IP Fragmentation 148
11.6  ICMP Unreachable Error (Fragmentation Required) 151
11.7  Determining the Path MTU Using Traceroute 153
11.8  Path MTU Discovery with UDP 155
11.9  Interaction Between UDP and ARP 157
11.10 Maximum UDP Datagram Size 159
11.11 ICMP Source Quench Error 160
11.12 UDP Server Design 162
11.13  Summary 167
Chapter 12. Broadcasting and Multicasting 169
12.1 Introduction 169
12.2  Broadcasting 171
12.3  Broadcasting Examples 172
12.4  Multicasting 175
125  Summary 178
Chapter 13. IGMP: Internet Group Management Protocol ’ 179
13.1  Introduction 179
13.2 IGMP Message 180
13.3 IGMP Protocol 180
134  An Example 183
13.5  Summary 186
Chapter 14. DNS: The Domain Name System 187
141 Introduction 187
14.2  DNS Basics 188
14.3 DNS Message Format 191
14.4 A Simple Example 194
14.5  Pointer Queries 198
14.6  Resource Records 201
14.7  Caching 203
14.8 UDP or TCP 206
14.9  Another Example 206
1410 Summary 208

Viptela, Inc. - Exhibit 1007
Page 13



TCP/IP Illustrated

Contents xi

Chapter 15.

15.1
15.2
15.3
15.4
1556

Chapter 16.

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Chapter 17.

17.1
17.2
17.3
17.4

Chapter 18.

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12

Chapter 19.

191
19.2
19.3
19.4
19.5
19.6

TFETP: Trivial File Transfer Protocol

Introduction 209
Protocol 209

An Example 211
Security 213
Summary 213

BOOTP: Bootstrap Protocol

Introduction 215

BOOTP Packet Format 215
An Example 218

BOOTP Server Design 219
BOOTP Through a Router 220
Vendor-Specific Information 221
Summary 222

TCP: Transmission Conirol Protocol

Introduction 223
TCP Services 223
TCP Header 225
Summary 227

TCP Connection Establishment and Termination

Introduction 229 ‘
Connection Establishment and Termination 229
Timeout of Connection Establishment 235
Maximum Segment Size 236

TCP Half-Close 238

TCP State Transition Diagram 240

Reset Segments 246

Simultaneous Open 250

Simultaneous Close 252

TCP Options = 253

TCP Server Design 254

Summary 260

TCP Interactive Data Flow

Introduction 263

Interactive Input 263

Delayed Acknowledgments 265
Nagle Algorithm 267

Window Size Advertisements 274
Summary 274

209

215

223

229

263

Viptela, Inc. - Exhibit 1007

Page 14



xii TCP/IP Illustrated Contents
Chapter 20. TCP Bulk Data Flow 275
20.1  Introduction 275
20.2  Normal Data Flow 275
20.3  Sliding Windows 280
20.4  Window Size 282
20.5 PUSH Flag 284
20.6  Slow Start 285
20.7 Bulk Data Throughput 286
20.8 Urgent Mode 292
20.9  Summary 296
Chapter 21. TCP Timeout and Retransmission 297
21.1 Introduction 297
212  Simple Timeout and Retransmission Example 298
21.3  Round-Trip Time Measurement 299
214  An RTT Example 301
21.5  Congestion Example 306
. 218  Congestion Avoidance Algorithm 310
21.7 Fast Retransmit and Fast Recovery Algorithms 312
21.8  Congestion Example (Continued) 313
21.9  Per-Route Metrics 316
21.10 ICMP Errors 317
21.11 Repacketization 320
21.12 Summary - 321
Chapter 22. TCP Persist Timer 323
22.1  Introduction 323
22.2 An Example 323
22.3  Silly Window Syndrome 325
22.4  Summary 330
Chapter 23. TCP Keepalive Timer 331
23.1  Introduction 331
23.2  Description 332
23.3 Keepalive Examples 333
23.4  Summary 337
Chapter 24. TCP Futures and Performance 339
24.1  Introduction 339
24.2  Path MTU Discovery 340
24.3 Long Fat Pipes 344
24.4  Window Scale Option 347

Viptela, Inc. - Exhibit 1007

Page 15



TCP/IP Illustrated

Contents xiii

24.5
24.6
24.7
24.8
24.9

Chapter 25.

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10
25.11
25.12
25.13

Chapter 26.

26.1
26.2
26.3
26.4
26.5
26.6

Chapter 27.

271
27.2
27.3
27.4

Chapter 28.

28.1
28.2
28.3
28.4
28.5

Timestamp Option 349

PAWS: Protection Against Wrapped Sequence Numbers 351

T/TCP: A TCP Extension for Transactions 351
TCP Performance 354
Summary 356

SNMP: Simple Network Management Protocol

Introduction 359

Protocol 360

Structure of Management Information 363
Object Identifiers 364

Introduction to the Management Information Base
Instance ldentification 367

Simple Examples 370

Management Information Base (Continued) 372
Additional Examples 382

Traps 385

ASN.1 and BER 386

SNMP Version 2 387

Summary 388

Telnet and Rlogin: Remote Login

introduction 389
Rlogin Protocol 391
Rlogin Examples 396
Telnet Protocol 401
Telnet Examples 406
Summary 417

FTP: File Transfer Protocol

Introduction 419
FTP Protocol 419
FTP Examples 426
Summary 439

SMTP: Simple Mail Transfer Protocol

Introduction 441
SMTP Protocol 442
SMTP Examples 448
SMTP Futures 452
Summary 459

Viptela, Inc

359

365

389

419

441

. - Exhibit 1007
Page 16



xiv

TCP/IP Ilustrated Contents
Chapter 29. NFS: Neiwork File System 461

29.1  Introduction 461

29.2  Sun Remote Procedure Call 461

29.3 XDR: External Data Representation 465

29.4  Port Mapper 465

29.5 NFS Protocol 467

29.6 NFS Examples 474

29.7 NFS Version 3 479

29.8  Summary 480
Chapter 30. Other TCP/IP Applications 481

30.1  Introduction 481

30.2  Finger Protocol 481

30.3  Whois Protocol 483

30.4  Archie, WAIS, Gopher, Veronica, and WWW 484

30.5 X Window System 486

306  Summary 490
Appendix A. The tcpdump Program 491

A BSD Packet Filter 491

A2 SunOS Network Interface Tap 493

A3 SVR4 Data Link Provider Interface 494

A4 tepdump OQutput 495

A5 Security Considerations 496

A6 Socket Debug Option 496
Appendix B. Computer Clocks 499
Appendix C. The sock Program 503
Appendix D. Solutions to Selected Exercises 507
Appendix E. Configurable Options 525

E.1 BSD/386 Version 1.0 526

E.2 SunOS 4.1.3 527

E.3 System V Release 4 529

E.4 Solaris 2.2 529

E.5 AIX 3.2.2 536

E.6 4.4BSD 537
Appendix F. Source Code Availability 539
Bibliography 543
Index 555

Viptela, Inc. - Exhibit 1007

Page 17



Preface

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective than
other texts on TCP/IP. Instead of just describing the protocols and what they do, we'll
use a popular diagnostic tool to watch the protocols in action. Seeing how the protocols
operate in varying circumstances provides a greater understanding of how they work
and why certain design decisions were made. It also provides a look into the imple-
mentation of the protocols, without having to wade through thousands of lines of
source code.

When networking protocols were being developed in the 1960s through the 1980s,
expensive, dedicated hardware was required to see the packets going “across the wire.”
Extreme familiarity with the protocols was also required to comprehend the packets dis-
played by the hardware. Functionality of the hardware analyzers was limited to that
built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous workstation
to monitor a local area network [Mogul 1990]. Just attach a workstation to your net-
work, run some publicly available software (described in Appendix A), and watch what
goes by on the wire. While many people consider this a tool to be used for diagnosing
network problems, it is also a powerful tool for understanding how the network proto-
cols operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP protocols
operate: programmers writing network applications, system administrators responsible
for maintaining computer systems and networks utilizing TCP/IP, and users who deal
with TCP/IP applications on a daily basis.

Viptela, Inc. - Exhibit IOX(‘),7
Page 18



xvi

TCP/IP Ilustrated Preface

Organization of the Book

The following figure shows the various protocols and applications that are covered.
The italic number by each box indicates the chapter in which that protocol or applica-
tion is described.

Chap. 7 26 28 8 14 15 16 25 29

. Telnet & Tace- NFS
’ Ping Rlogm H FTP ’ SMTP \Lﬁoute DNS TFTP HBOOTP F}NMPJ HW‘

7,18,19,20 11,12
e o> |

6 1emp 39100 ‘_@13

Data 5
ARP Link RARP

:

media

.
N

(Numerous fine points are missing from this figure that will be discussed in the appro-
priate chapter. For example, both the DNS and RPC use TCP, which we don’t show.)

We take a bottom-up approach to the TCP/IP protocol suite. After providing a
basic introduction to TCP/IP in Chapter 1, we will start at the link layer in Chapter 2
and work our way up the protocol stack. This provides the required background for
later chapters for readers who aren’t familiar with TCP/IP or networking in general.

This book also uses a functional approach instead of following a strict bottom-to-
top order. For example, Chapter 3 describes the IP layer and the IP header. But there
are numerous fields in the IP header that are best described in the context of an applica-
tion that uses or is affected by a particular field. Fragmentation, for example, is best
understood in terms of UDP (Chapter 11), the protocol often affected by'it. The time-to-
live field is fully described when we look at the Traceroute program in Chapter 8,
because this field is the basis for the operation of the program. Similarly, many features
of ICMP are described in the later chapters, in terms of how a particular ICMP message
is used by a protocol or an application.

We also don’t want to save all the good stuff until the end, so we describe TCP/IP
applications as soon as we have the foundation to understand them. Ping and Trace-
route are described after IP and ICMP have been discussed. The applications built on
UDP (multicasting, the DNS, TFTF, and BOOTP) are described after UDP has been

Viptela, Inc. - Exhibit 1007
Page 19



TCP/IP Ilustrated Preface xvii

examined. The TCP apphcatlons, however, along with network management, must be
saved until the end, after we've thoroughly described TCP. This text focuses on how
these applications use the TCP/IP protocols. We do not prov1de all the details on run-
ning these applications.

Readers

This book is self-contained and assumes no specific knowledge of networking or
TCP/IP. Numerous references are provided for readers interested in additional details
on specific topics.

This book can be used in many ways. It can be used as a self-study reference and
covered from start to finish by someone interested in all the details on the TCP/IP
protocol suite. Readers with some TCP/IP background might want to skip ahead and
start with Chapter 7, and then focus on the specific chapters in which they’re interested.
Exercises are provided at the end of the chapters, and most solutions are in Appen-
dix D. This is to maximize the usefulness of the text as a self-study reference.

When used as part of a one- or two-semester course in computer networking, the
focus should be on IP (Chapters 3 and 9), UDP (Chapter 11), and TCP (Chapters 17-24),
along with some of the application chapters.

Many forward and backward references are provided throughout the text, along
with a thorough index, to allow individual chapters to be studied by themselves. A list
of all the acronyms used throughout the text, along with the compound term for the
acronym, appears on the inside back covers.

If you have access to a network you are encouraged to obtain the software used in
this book (Appendix F) and experiment on your own. Hands-on expenmentatlon with
the protocols will provide the greatest knowledge (and make it more fun).

Systems Used for Testing

Every example in the book was run on an actual network and the resulting output
saved in a file for inclusion in the text. Figure 1.11 (p. 18) shows a diagram of the differ-
ent hosts, routers, and networks that are used. (This figure is also duplicated on the
inside front cover for easy reference while reading the book.) This collection of net-
works is simple enough that the topology doesn’t confuse the examples, and with four
systems acting as routers, we can see the error messages generated by routers.

Most of the systems have a name that indicates the type of software being used:
bsdi, svr4, sun, solaris, aix, slip, and so on. In this way we can identify the type
of software that we're dealing with by looking at the system name in the printed output.

A wide range of different operating systems and TCP/IP implementations are used:

e BSD/386 Version 1.0 from Berkeley Software Design, Inc., on the hosts named
bsdi and slip. This system is derived from the BSD Networking Software,
Release 2.0. (We show the lineage of the various BSD releases in Figure 1.10 on

p-17.)

Viptela, Inc. - Exhibit 1007
Page 20



xviii TCP/IP Illustrated Preface

¢ Unix System V/386 Release 4.0 Version 2.0 from U.H. Corporation, on the host
named svr4. This is vanilla SVR4 and contains the standard implementation of
TCP/IP from Lachman Associates used with most versions of SVR4.

¢ SunOS 4.1.3 from Sun Microsystems, on the host named sun. The SunOS 4.1.x
systems are probably the most widely used TCP/IP implementations. The
TCP/IP code is derived from 4.2BSD and 4.3BSD.

e Solaris 2.2 from Sun Microsystems, on the host named solaris. The Solaris 2.x
systems have a different implementation of TCP/IP from the earlier SunOS 4.1.x
systems, and from SVR4. (This operating system is really SunOS 5.2, but is com-
monly called Solaris 2.2.)

o AIX 3.22 from IBM on the host named aix. The TCP/IP implementation is
based on the 4.3BSD Reno release.

o 44BSD from the Computer Systems Research Group at the University of Califor-
nia at Berkeley, on the host vangogh.cs.berkeley.edu. This system has the
latest release of TCP/IP from Berkeley. (This system isn’t shown in the figure on
the inside front cover, but is reachable across the Internet.)

Although these are all Unix systems, TCP/IP is operating system independent, and is
available on almost every popular non-Unix system. Most of this text also applies to
these non-Unix implementations, although some programs (such as Traceroute) may
not be provided on all systems.

Typographical Conventions

When we display interactive input and output we’ll show our typed input in a bold
font, and the computer output like this. Comments are added in italics.

bsdi % telnet svr4 discard connect to the discard server
Trying 140.252,13.34... this line and next output by Telnet client

Connected to svri4.

Also, we always include the name of the system as part of the shell prompt (bsdi in
this example) to show on which host the command was run.

Throughout the text we'll use indented, parenthetical notes such as this to describe historical
points or implementation details. '

We sometimes refer to the complete description of a command in the Unix manual
as in ifconfig(8). This notation, the name of the command followed by a number in
parentheses, is the normal way of referring to Unix commands. The number in paren-
theses is the section number in the Unix manual of the “manual page” for the com-
mand, where additional information can be located. Unfortunately not all Unix systems
organize their manuals the same, with regard to the section numbers used for various
groupings of commands. We'll use the BSD-style section numbers (which is the same
for BSD-derived systems such as SunOS 4.1.3), but your manuals may be organized
differently.

Viptela, Inc. - Exhibit 1007
Page 21



TCP/IP Ilustrated Preface xix

Acknowledgments

Although the author’s name is the only one to appear on the cover, the combined effort
of many people is required to produce a quality text book. First and foremost is the
author’s family, who put up with the long and weird hours that go into writing a book.
Thank you once again, Sally, Bill, Ellen, and David.

The consulting editor, Brian Kernighan, is undoubtedly the best in the business. He
was the first one to read various drafts of the manuscript and mark it up with his infi-
nite supply of red pens. His attention to detail, his continual prodding for readable
prose, and his thorough reviews of the manuscript are an immense resource to a writer.

Technical reviewers provide a different point of view and keep the author honest by
catching technical mistakes. Their comments, suggestions, and (most importantly) criti-
cisms add greatly to the final product. My thanks to Steve Bellovin, Jon Crowcroft, Pete
Haverlock, and Doug Schmidt for comments on the entire manuscript. Equally valu-
able comments were provided on portions of the manuscript by Dave Borman, Tony
DeSimone, Bob Gilligan, Jeff Gitlin, John Gulbenkian, Tom Herbert, Mukesh Kacker,
Barry Margolin, Paul Mockapetris, Burr Nelson, Steve Rago, James Risner, Chris
Walquist, Phil Winterbottom, and Gary Wright. A special thanks to Dave Borman for
his thorough review of all the TCP chapters, and to Bob Gilligan who should be listed as
a coauthor for Appendix E.

An author cannot work in isolation, so I would like to thank the following persons
for lots of small favors, especially by answering my numerous e-mail questions: Joe
Godsil, Jim Hogue, Mike Karels, Paul Lucchina, Craig Partridge, Thomas Skibo, and
Jerry Toporek.

This book is the result of my being asked lots of questions on TCP/IP for which I
could find no quick, immediate answer. It was then that I realized that the easiest way
to obtain the answers was to run small tests, forcing certain conditions to occur, and just
watch what happens. I thank Pete Haverlock for asking the probing questions and Van
Jacobson for providing so much of the publicly available software that is used in this
book to answer the questions.

A book on networking needs a real network to work with along with access to the
Internet. My thanks to the National Optical Astronomy Observatories (NOAO), espe-
cially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing access to their net-
works and hosts. A special thanks to Steve Grandi for answering lots of questions and
providing accounts on various hosts. My thanks also to Keith Bostic and Kirk McKu-
sick at the U.C. Berkeley CSRG for access to the latest 4.4BSD system.

Finally, it is the publisher that pulls everything together and does whatever is
required to deliver the final product to the readers. This all revolves around the editor,
and John Wait is simply the best there is. Working with John and the rest of the profes-
sionals at Addison-Wesley is a pleasure. Their professionalism and attention to detail
show in the end result.

Camera-ready copy of the book was produced by the author, a Troff die-hard, using
the Groff package written by James Clark. I welcome electronic mail from any readers
with comments, suggestions, or bug fixes.

Tucson, Arizona W. Richard Stevens
October 1993 rstevens@noao.edu
http://www.noao.edu/~rstevens

Viptela, Inc. - Exhibit 1007
Page 22



1.1

1.2

Infroduction

Introduction

The TCP/IP protocol suite allows computers of all sizes, from many different computer
vendors, running totally different operating systems, to communicate with each other.
It is quite amazing because its use has far exceeded its original estimates. What started
in the late 1960s as a government-financed research project into packet switching net-
works has, in the 1990s, turned into the most widely used form of networking between
computers. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms the
basis for what is called the worldwide Internet, or the Internet, a wide area network
(WAN) of more than one million computers that literally spans the globe.

This chapter provides an overview of the TCP/IP protocol suite, to establish an ade-
quate background for the remaining chapters. For a historical perspectlve on the early
development of TCP/IP see [Lynch 1993].

Layering

Networking protocols are normally developed in layers, with each layer responsible for a
different facet of the communications. A protocol suite, such as TCP/IP, is the combina-
tion of different protocols at various layers. TCP/IP is normally considered to be a
4-layer system, as shown in Figure 1.1.

Viptela, Inc. - Exhibit 1087
Page 23



2

Introduction Chapter 1

Application Telnet, FTP, e-mail, etc.

Transport TCP, UDP

Network 1P, ICMP, IGMP

Link device driver and interface card

Figure 1.1 The four layers of the TCP/IP protocol suite.

Each layer has a different responsibility.

1. The link layer, sometimes called the data-link layer or network interface layer, nor-

mally includes the device driver in the operating system and the corresponding
network interface card in the computer. Together they handle all the hardware
details of physically interfacing with the cable (or whatever type of media is
being used).

The network layer (sometimes called the internet layer) handles the movement of
packets around the network. Routing of packets, for example, takes place here.
IP (Internet Protocol), ICMP (Internet Control Message Protocol), and IGMP
(Internet Group Management Protocol) provide the network layer in the
TCP/IP protocol suite.

The transport layer provides a flow of data between two hosts, for the applica-
tion layer above. In the TCP/IP protocol suite there are two vastly different
transport protocols: TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol).

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received pack-
ets, setting timeouts to make certain the other end acknowledges packets that
are sent, and so on. Because this reliable flow of data is provided by the trans-
port layer, the application layer can ignore all these details.

UDP, on the other hand, provides a much simpler service to the application
layer. It just sends packets of data called datagrams from one host to the other,
but there is no guarantee that the datagrams reach the other end. Any desired
reliability must be added by the application layer.

There is a use for each type of transport protocol, which we’ll see when we look
at the different applications that use TCP and UDP.

Viptela, Inc. - Exhibit 1007
Page 24



Section 1.2 Layering 3

4. The application layer handles the details of the particular application. There are
many common TCP/IP applications that almost every implementation pro-
vides:

Telnet for remote login,

FTP, the File Transfer Protocol,

SMTP, the Simple Mail Transfer protocol, for electronic mail,
SNMP, the Simple Network Management Protocol,

and many more, some of which we cover in later chapters.

If we have two hosts on a local area network (LAN) such as an Ethernet, both run-
ning FTP, Figure 1.2 shows the protocols involved.

handles
o FTP FTP protocol FTP user apphca}hon
application | ). e - ———E oo B rver processes details
a ]
/ /
transport | TCP = - - Shptecel Tce kernel handles
Y communication
details
y {
network r - — — — [P protocol __ _ P
{
. Ethernet Ethernet protocol Ethernet
link . g — — — - — — B )
driver driver

Ethernet

Figure 1.2 Two hosts on a LAN running FTP.

We have labeled one application box the FTP client and the other the FIP server.
Most network applications are designed so that one end is the client and the other side
the server. The server provides some type of service to clients, in this case access to files
on the server host. In the remote login application, Telnet, the service provided to the
client is the ability to login to the server’s host.

Each layer has one or more protocols for communicating with its peer at the same
layer. One protocol, for example, allows the two TCP layers to communicate, and
another protocol lets the two IP layers communicate.

On the right side of Figure 1.2 we have noted that normally the application layer is
a user process while the lower three layers are usually implemented in the kernel (the
operating system). Although this isn’t a requirement, it’s typical and this is the way it’s
done under Unix.

Viptela, Inc. - Exhibit 1007
Page 25



4  Introduction Chapter 1

There is another critical difference between the top layer in Figure 1.2 and the lower
three layers. The application layer is concerned with the details of the application and
not with the movement of data across the network. The lower three layers know noth-
ing about the application but handle all the communication details.

We show four protocols in Figure 1.2, each at a different layer. FTP is an application
layer protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the
Ethernet protocols operate at the link layer. The TCP/IP protocol suite is a combination of
many protocols. Although the commonly used name for the entire protocol suite is
TCP/IP, TCP and IP are only two of the protocols. (An alternative name is the Infernet
Protocol Suite.)

The purpose of the network interface layer and the application layer are
obvious—the former handles the details of the communication media (Ethernet, token
ring, etc.) while the latter handles one specific user application (FIP, Telnet, etc.). But on
first glance the difference between the network layer and the transport layer is some-
what hazy. Why is there a distinction between the two? To understand the reason, we
have to expand our perspective from a single network to a collection of networks.

One of the reasons for the phenomenal growth in networking during the 1980s was
the realization that an island consisting of a stand-alone computer made little sense. A
few stand-alone systems were collected together into a network. While this was
progress, during the 1990s we have come to realize that this new, bigger island consist-
ing of a single network doesn’t make sense either. People are combining multiple net-
works together into an internetwork, or an infernef. An internet is a collection of
networks that all use the same protocol suite.

The easiest way to build an internet is to connect two or more networks with a
router. This is often a special-purpose hardware box for connecting networks. The nice
thing about routers is that they provide connections to many different types of physical
networks: Ethernet, token ring, point-to-point links, FDDI (Fiber Distributed Data Inter-
face), and so on.

These boxes are also called IP routers, but we'll use the term rotiter.

Historically these boxes were called gateways, and this term is used throughout much of the
TCP/IP literature. Today the term gateway is used for an application gateway: a process that
connects two different protocol suites (say, TCP/IP and IBM’s SNA) for one particular applica-
tion (often electronic mail or file transfer).

Figure 1.3 shows an internet consisting of two networks: an Ethernet and a token
ring, connected with a router. Although we show only two hosts communicating, with
the router connecting the two networks, any host on the Ethernet can communicate with
any host on the token ring.

In Figure 1.3 we can differentiate between an end system (the two hosts on either
side) and an intermediate system (the router in the middle). The application layer and the
transport layer use end-to-end protocols. In our picture these two layers are needed only
on the end systems. The network layer, however, provides a hop-by-hop protocol and is
used on the two end systems and every intermediate system.

Viptela, Inc. - Exhibit 1007
Page 26



Section 1.2 Layering 5

FTP FTP protocol FIP
. T
client server
| |
§ {
ve S ICPprotocol > TCP
A )
T router y
P |elDProtocel L . IPprotocol } - pp
| |
3 | | 9
| |
1 | [
[ |
Ethernet _Ethernet 1| Ethernet tokenring | I token ring token ring
driver protocol _HT driver driver | protocol driver

SR R [ |

Ethernet
token ring

Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service.
That is, it does its best job of moving a packet from its source to its final destination, but
there are no guarantees. TCP, on the other hand, provides a reliable transport layer
using the unreliable service of IP. To provide this service, TCP performs timeout and
retransmission, sends and receives end-to-end acknowledgments, and so on. The trans-
port layer and the network layer have distinct responsibilities.

A router, by definition, has two or more network interface layers (since it connects
two or more networks). Any system with multiple interfaces is called multihomed. A
host can also be multihomed but unless it specifically forwards packets from one inter-
face to another, it is not called a router. Also, routers need not be special hardware
boxes that only move packets around an internet. Most TCP/IP implementations allow
a multihomed host to act as a router also, but the host needs to be specifically config-
ured for this to happen. In this case we can call the system either a host (when an appli-
cation such as FTP or Telnet is being used) or a router (when it's forwarding packets
from one network to another). We'll use whichever term makes sense given the context.

One of the goals of an internet is to hide all the details of the physical layout of the
internet from the applications. Although this isn’t obvious from our two-network inter-
net in Figure 1.3, the application layers can’t care (and don’t care) that one host is on an
Ethernet, the other on a token ring, with a router between. There could be 20 routers
between, with additional types of physical interconnections, and the applications would
run the same. This hiding of the details is what makes the concept of an internet so
powerful and useful.

Viptela, Inc. - Exhibit 1007
Page 27



6  Introduction Chapter 1
Another way to connect networks is with a bridge. These connect networks at the
link layer, while routers connect networks at the network layer. Bridges makes multiple
LANSs appear to the upper layers as a single LAN.
TCP/IP internets tend to be built using routers instead of bridges, so we’'ll focus on
routers. Chapter 12 of [Perlman 1992] compares routers and bridges.
13 TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows some of the

additional protocols that we talk about in this text.

User
Process

User
Process

User
Process

User
Process

| Hardware |
Interface |

media

transport
____________ 1
I

I

IGMP !

I

I

____________ |
____________ .
I

I

B RARP |

|

I

____________ A

application

Figure 1.4 Various protocols at the different layers in the TCP/IP protocol suite.

TCP and UDP are the two predominant transport layer protocols. Both use IP as

the network layer.

TCP provides a reliable transport layer, even though the service it uses (IP) is unreli-
able. Chapters 17 through 22 provide a detailed look at the operation of TCP. We then
look at some TCP applications: Telnet and Rlogin in Chapter 26, FTP in Chapter 27, and

SMTP in Chapter 28. The applications are normally user processes.

Viptela, Inc. - Exhibit 1007
Page 28



Section 1.4 Internet Addresses 7

1.4

UDP sends and receives datagrams for applications. A datagram is a unit of infor-
mation (i.e., a certain number of bytes of information that is specified by the sender)
that travels from the sender to the receiver. Unlike TCP, however, UDP is unreliable.
There is no guarantee that the datagram ever gets to its final destination. Chapter 11
looks at UDP, and then Chapter 14 (the Domain Name System), Chapter 15 (the Trivial
File Transfer Protocol), and Chapter 16 (the Bootstrap Protocol) look at some applica-
tions that use UDP. SNMP (the Simple Network Management Protocol) also uses UDP,
but since it deals with many of the other protocols, we save a discussion of it until
Chapter 25.

IP is the main protocol at the network layer. It is used by both TCP and UDP. Every
piece of TCP and UDP data that gets transferred around an internet goes through the IP
layer at both end systems and at every intermediate router. In Figure 1.4 we also show
an application accessing IP directly. This is rare, but possible. (Some older routing pro-
tocols were implemented this way. Also, it is possible to experiment with new transport
layer protocols using this feature.) Chapter 3 looks at IP, but we save some of the details
for later chapters where their discussion makes more sense. Chapters 9 and 10 look at
how IP performs routing,

ICMP is an adjunct to IP. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. Chapter 6 looks at
ICMP in more detail. Although ICMP is used primarily by ID, it is possible for an appli-
cation to also access it. Indeed we’ll see that two popular diagnostic tools, Ping and
Traceroute (Chapters 7 and 8), both use ICMP.

IGMP is the Internet Group Management Protocol. It is used with multicasting:
sending a UDP datagram to multiple hosts. We describe the general properties of
broadcasting (sending a UDP datagram to every host on a specified network) and
multicasting in Chapter 12, and then describe IGMP itself in Chapter 13.

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution
Protocol) are specialized protocols used only with certain types of network interfaces
(such as Ethernet and token ring) to convert between the addresses used by the IP layer
and the addresses used by the network interface. We examine these protocols in Chap-
ters 4 and 5, respectively.

Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP
address). These addresses are 32-bit numbers. Instead of using a flat address space such
as 1,2, 3, and so on, there is a structure to Internet addresses. Figure 1.5 shows the five
different classes of Internet addresses.

These 32-bit addresses are normally written as four decimal numbers, one for each
byte of the address. This is called dotted-decimal notation. For example, the class B
address of the author’s primary system is 140.252.13.33.

The easiest way to differentiate between the different classes of addresses is to look
at the first number of a dotted-decimal address. Figure 1.6 shows the different classes,
with the first number in boldface.

Viptela, Inc. - Exhibit 1007
Page 29



8

Introduction

Chapter 1

7 bits 24 bits

Class A ‘ 0 ‘ netid hostid \

14 bits 16 bits

Class B ‘ 1 ‘ 0 | netid hostid ‘

21 bits . 8bits

Class C m 1 m netid hostid ‘

28 bits

Class D ‘ 1 ‘ 1 ‘ 1 ‘ 0 ‘ multicast group ID ‘
28 bits

Class E ‘ 1 ‘ 1 ‘ 1 ‘ 1 ‘ (reserved for future use) {

Figure 1.5 The five different classes of Internet addresses.

Class Range
A 0.0.0.0 to 127.255.255.255
B 128.0.0.0 to 191.255.255.255
C 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255
E 240.0.0.0 to 255.255.255.255

Figure 1.6 Ranges for different classes of IP addresses.

It is worth reiterating that a multihomed host will have multiple IP addresses: one per

interface.

Since every interface on an internet must have a unique IP address, there must be
one central authority for allocating these addresses for networks connected to the
worldwide Internet. That authority is the Internet Network Information Center, called the
InterNIC. The InterNIC assigns only network IDs. The assignment of host IDs is up to
the system administrator.

Registration services for the Internet (IP addresses and DNS domain names) used to be han-
dled by the NIC, at nic.ddn.mil. On April 1, 1993, the InterNIC was created. Now the NIC
handles these requests only for the Defense Data Network (DDN). All other Internet users now
use the InterNIC registration services, at rs. internic.net. '

There are actually three parts to the InterNIC: registration services (rs.internic.net),
directory and database services (ds.internic.net), and information services
(is.internic.net). See Exercise 1.8 for additional information on the InterNIC.

There are three types of IP addresses: unicast (destined for a single host), broadcast
(destined for all hosts on a given network), and multicast {destined for a set of hosts that
belong to a multicast group). Chapters 12 and 13 look at broadcasting and multicasting
in more detail.

Viptela, Inc. - Exhibit 1007
Page 30



Section 1.6 Encapsulation 9

In Section 3.4 we'll extend our description of IP addresses to include subnetting,
after describing IP routing. Figure 3.9 shows the special case IP addresses: host IDs and
network IDs of all zero bits or all one bits.

1.5 The Domain Name System

Although the network interfaces on a host, and therefore the host itself, are known by IP
addresses, humans work best using the name of a host. In the TCP/IP world the Domain
Name System (DNS) is a distributed database that provides the mapping between IP
addresses and hostnames. Chapter 14 looks into the DNS in detail.

For now we must be aware that any application can call a standard library function
to look up the IP address (or addresses) corresponding to a given hostname. Similarly a
function is provided to do the reverse lookup—given an IP address, look up the corre-
sponding hostname.

Most applications that take a hostname as an argument also take an IP address.
When we use the Telnet client in Chapter 4, for example, one time we specify a host-
name and another time we specify an IP address.

1.6  Encapsulation

When an application sends data using TCP, the data is sent down the protocol stack,
through each layer, until it is sent as a stream of bits across the network. Each layer
adds information to the data by prepending headers (and sometimes adding trailer
information) to the data that it receives. Figure 1.7 shows this process. The unit of data
that TCP sends to IP is called a TCP segment. The unit of data that IP sends to the net-
work interface is called an IP datagram. The stream of bits that flows across the Ethernet
is called a frame.

The numbers at the bottom of the headers and trailer of the Ethernet frame in Fig-
ure 1.7 are the typical sizes of the headers in bytes. We’ll have more to say about each of
these headers in later sections.

A physical property of an Ethernet frame is that the size of its data must be between
46 and 1500 bytes. We'll encounter this minimum in Section 4.5 and we cover the maxi-
mum in Section 2.8.

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The
use of this cute, but baroque term is historical, since much of the early work on TCP/IP was
done on systems such as the DEC-10, which did not use 8-bit bytes. Since almost every current
computer system uses 8-bit bytes, we’ll use the term byte in this text.

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP
and the network interface is a packet. This packet can be either an IP datagram or a fragment of
an IP datagram. We discuss fragmentation in detail in Section 11.5.

We could draw a nearly identical picture for UDP data. The only changes are that
the unit of information that UDP passes to IP is called a UDP datagram, and the size of
the UDP header is 8 bytes.

Viptela, Inc. - Exhibit 1007
Page 31



10  Introduction Chapter 1

user data
! , application
| |/
h[:f cll);r user data
§
' ! TCP
Y ¥
TCP L.
header application data
tw————  TCP segment —————t P
y v
P TCP N
header header application data !
it IP datagram . Ethernet
| ! driver
\ y
Ethernet P TCP application dat Ethernet
header header header pplication data trailer Ethernet
14 20 20 4
| Ethernet frame >I

|<-. 46 to 1500 bytes _-»‘

Figure 1.7 Encapsulation of data as it goes down the protocol stack.

Recall from Figure 1.4 (p. 6) that TCP, UDP, ICMP, and IGMP all send data to IP. IP
must add some type of identifier to the IP header that it generates, to indicate the layer
to which the data belongs. IP handles this by storing an 8-bit value in its header called
the protocol field. A value of 1 is for ICMP, 2 is for IGMP, 6 indicates TCP, and 17 is for
UDP.

Similarly, many different applications can be using TCP or UDP at any one time.
The transport layer protocols store an identifier in the headers they generate to identify
the application. Both TCP and UDP use 16-bit port numbers to identify applications.
TCP and UDP store the source port number and the destination port number in their
respective headers.

The network interface sends and receives frames on behalf of IP, ARP, and RARP.
There must be some form of identification in the Ethernet header indicating which net-
work layer protocol generated the data. To handle this there is a 16-bit frame type field
in the Ethernet header. '

Viptela, Inc. - Exhibit 1007
Page 32



Section 1.7

Demultiplexing

11

1.7

Demultiplexing

When an Ethernet frame is received at the destination host it starts its way up the proto-
col stack and all the headers are removed by the appropriate protocol box. Each proto-
col box looks at certain identifiers in its header to determine which box in the next
upper layer receives the data. This is called demultiplexing. Figure 1.8 shows how this

takes place.
application application application application
demultiplexing based on
destination port number
in TCP or UDP header
TCP UbP
FCMP \ IGMP \
demultiplexing based on
protocol value in IP header
i
ARP RARP

‘\

Ethernet
driver

incoming frame

} demultiplexing based on

frame type in Ethernet header

Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled “ICMP” and “IGMP” is always a challenge. In Fig-
ure 1.4 we showed them at the same layer as IP, because they really are adjuncts to IP. But here
we show them above IP, to reiterate that ICMP messages and IGMP messages are encapsulated

in IP datagrams.

We have a similar problem with the boxes “ARP” and “RARP.” Here we show them above the
Ethernet device driver because they both have their own Ethernet frame types, like IP data-
grams. But in Figure 2.4 we’ll show ARP as part of the Ethernet device dtiver, beneath IP,
because that’s where it logically fits.

Realize that these pictures of layered protocol boxes are not perfect.

When we describe TCP in detail we'll see that it really demultiplexes incoming seg-
ments using the destination port number, the source IP address, and the source port

number.

Viptela, Inc. - Exhibit 1007

Page 33



12 Introduction Chapter 1
1.8  Client-Server Model
Most networking applications are written assuming one side is the client and the other
the server. The purpose of the application is for the server to provide some defined ser-
vice for clients.

We can categorize servers into two classes: iterative or concurrent. An iterative
server iterates through the following steps.

I1.  Wait for a client request to arrive.

I2.  Process the client request.

I3.  Send the response back to the client that sent the request.

4. Go back to step I1.

The problem with an iterative server is when step 12 takes a while. During this time no
other clients are serviced.

A concurrent server, on the other hand, performs the following steps.

Cl. Wait for a client request to arrive.

C2. Start a new server to handle this client’s request. This may involve creating a
new process, task, or thread, depending on what the underlying operating sys-
tem supports. How this step is performed depends on the operating system.
This new server handles this client’s entire request. When complete, this new
server terminates,

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other servers to han-
dle the client requests. Each client has, in essence, its own server. Assuming the operat-
ing system allows multiprogramming, multiple clients are serviced concurrently.

The reason we categorize servers, and not clients, is because a client normally can’t
tell whether it’s talking to an iterative server or a concurrent server.

As a general rule, TCP servers are concurrent, and UDP servers are iterative, but
there are a few exceptions. We'll look in detail at the impact of UDP on its servers in
Section 11.12, and the impact of TCP on its servers in Section 18.11.

1.9 Port Numbers

We said that TCP and UDP identify applications using 16-bit port numbers. How are
these port numbers chosen?

Servers are normally known by their well-known port number. For example, every
TCP/IP implementation that provides an FTP server provides that service on TCP port

Viptela, Inc. - Exhibit 1007
Page 34



Section 1.9 ' Port Numbers 13

21. Every Telnet server is on TCP port 23. Every implementation of TFTP (the Trivial
File Transfer Protocol) is on UDP port 69. Those services that can be provided by any
implementation of TCP/IP have well-known port numbers between 1 and 1023. The
well-known ports are managed by the Internet Assigned Numbers Authority (IANA).

Until 1992 the well-known ports were between 1 and 255. Ports between 256 and 1023 were
normally used by Unix systems for Unix-specific services—that is, services found on a Unix
system, but probably not found on other operating systems. The JANA now manages the
ports between 1 and 1023,

An example of the difference between an Internet-wide service and a Unix-specific service is
the difference between Telnet and Rlogin. Both allow us to login across a network to another
host. Telnet is a TCP/IP standard with a well-known port number of 23 and can be imple-
mented on almost any operating.system. Rlogin, on the other hand, was originally designed
for Unix systems (although many non-Unix systems now provide it also) so its well-known
port was chosen in the early 1980s as 513.

A client usually doesn’t care what port number it uses on its end. All it needs to be
certain of is that whatever port number it uses be unique on its host. Client port num-
bers are called ephemeral ports (i.e., short lived). This is because a client typically exists
only as long as the user running the client needs its service, while servers typically run
as long as the host is up.

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and
5000. The port numbers above 5000 are intended for other servers (those that aren’t
well known across the Internet). We’ll see many examples of how ephemeral ports are
allocated in the examples throughout the text.

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDP start at
32768, Section E.4 details the configuration options that can be modified by the system admin-
istrator to change these defaults.

The well-known port numbers are contained in the file /etc/services on most
Unix systems. To find the port numbers for the Telnet server and the Domain Name
System, we can execute

o,

sun % grep telnet /etc/services

telnet 23/tcp says it uses TCP port 23
sun % grep domain /etc/services

domain 53/udp says it uses LUDP port 53
domain 53/tcp and TCP port 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuser privi-
leges can assign itself a reserved port.

These port numbers are in the range of 1 to 1023, and are used by some applications
(notably Rlogin, Section 26.2), as part of the authentication between the client and
server.

Viptela, Inc. - Exhibit 1007
Page 35



i4

Introduction Chapter 1

1.10 Standardization Process

1.11

Who controls the TCP/IP protocol suite, approves new standards, and the like? There
are four groups responsible for Internet technology.

1. The Internet Society (ISOC) is a professional society to facilitate, support, and
promote the evolution and growth of the Internet as a global research communi-
cations infrastructure.

2. The Internet Architecture Board (IAB) is the technical oversight and coordination
body. It is composed of about 15 international volunteers from various disci-

plines and serves as the final editorial and technical review board for the quality
of Internet standards. The IAB falls under the ISOC.

3. The Internet Engineering Task Force (IETF) is the near-term, standards-oriented
group, divided into nine areas (applications, routing and addressing, security,
etc.). The IETF develops the specifications that become Internet standards. An
additional Internet Engineering Steering Group (IESG) was formed to help the
IETF chair.

4, The Internet Research Task Force (IRTF) pursues long-term research projects.

Both the IRTF and the IETF fall under the IAB. [Crocker 1993] provides additional
details on the standardization process within the Internet, as well as some of its early
history.

RFCs

All the official standards in the internet community are published as a Request for Com-
ment, or RFC. Additionally there are lots of RECs that are not official standards, but are
published for informational purposes. The RFCs range in size from 1 page to almost
200 pages. Each is identified by a number, such as RFC 1122, with higher numbers for
newer RFCs.

All the RFCs are available at no charge through electronic mail or using FTP across
the Internet. Sending electronic mail as shown here:

To: rfc-info@ISI.EDU
Subject: getting rfcs

help: ways_to_get rfcs

returns a detailed listing of various ways to obtain the RFCs.

The latest RFC index is always a starting point when looking for something. This
index specifies when a certain RFC has been replaced by a newer RFEC, and if a newer
RFC updates some of the information in that RFC.

There are a few important RFCs.

1. The Assigned Numbers RFC specifies all the magic numbers and constants that
are used in the Internet protocols. At the time of this writing the latest version

Viptela, Inc. - Exhibit 1007
Page 36



Section 1.12 Standard, Simple Services 15

1.12

of this RFC is 1340 [Reynolds and Postel 1992]. All the Internet-wide well-
known ports are listed here.

When this RFC is updated (it is normally updated at least yearly) the index list-
ing for 1340 will indicate which RFC has replaced it.

2. The Internet Official Protocol Standards, currently RFC 1600 [Postel 1994]. This
RFC specifies the state of standardization of the various Internet protocols. Each
protocol has one of the following states of standardization: standard, draft stan-
dard, proposed standard, experimental, informational, or historic. Additionally
each protocol has a requirement level: required, recommended, elective, limited
use, or not recommended.

Like the Assigned Numbers RFC, this REC is also reissued regularly. Be sure
you're reading the current copy.

3. The Host Requirements RFCs, 1122 and 1123 [Braden 1989a, 1989b|. REC 1122
handles the link layer, network layer, and transport layer, while RFC 1123 han-
dles the application layer. These two RFCs make numerous corrections and
interpretations of the important earlier RFCs, and are often the starting point
when looking at any of the finer details of a given protocol. They list the fea-
tures and implementation details of the protocols as either “must,” “should,”
“may,” “should not,” or “must not.”

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127
[Braden 1989c] provides an informal summary of the discussions and conclu-
sions of the working group that developed the Host Requirements RFCs.

4. The Router Requirements RFC. The official version of this is RFC 1009 [Braden
and Postel 1987], but a new version is nearing completion [Almquist 1993]. This
is similar to the host requirements RFCs, but specifies the unique requirements
of routers.

Standard, Simple Services

There are a few standard, simple services that almost every implementation provides.
We'll use some of these servers throughout the text, usually with the Telnet client. Fig-
ure 1.9 describes these services. We can see from this figure that when the same service
is provided using both TCP and UDP, both port numbers are normally chosen to be the
same,

If we examine the port numbers for these standard services and other standard TCP/IP ser-
vices (Telnet, FTP, SMTP, etc.), most are odd numbers. This is historical as these port numbers
are derived from the NCP port numbers, (NCF, the Network Control Protocol, preceded TCP
as a transport layer protocol for the ARPANET.) NCP was simplex, not full-duplex, so each
application required two connections, and an even-odd pair of port numbers was reserved for
each application, When TCP and UDP became the standard transport layers, only a single
port number was needed per application, so the odd port numbers from NCP were used.

Viptela, Inc. - Exhibit 1007
Page 37



16

Introduction Chapter 1

Name TCP port | UDP port | RFC Description

echo 7 7 862 | Server returns whatever the client sends.

discard 9 9 863 | Server discards whatever the client sends.

daytime 13 13 867 | Server returns the time and date in a human-readable
format.

chargen 19 19 864 | TCP server sends a continual stream of characters, until the
connection is terminated by the client. UDP server
sends a datagram containing a random number of
characters each time the client sends a datagram.
time 37 37 868 | Server returns the time as a 32-bit binary number. This
number represents the number of seconds since
midnight January 1, 1900, UTC,

Figure 1.9 Standard, simple services provided by most implementations.

The Internei

In Figure 1.3 we showed an internet composed of two networks—an Ethernet and a
token ring. In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need
to allocate IP addresses centrally (the InterNIC) and the well-known port numbers (the
IANA). The word internet means different things depending on whether it’s capitalized
or not.

The lowercase internet means multiple networks connected together, using a com-
mon protocol suite. The uppercase Internet refers to the collection of hosts (over one
million) around the world that can communicate with each other using TCP/IP. While
the Internet is an internet, the reverse is not true.

Implementations

The de facto standard for TCP/IP implementations is the one from the Computer Sys-
tems Research Group at the University of California at Berkeley. Historically this has
been distributed with the 4.x BSD system (Berkeley Software Distribution), and with the
“BSD Networking Releases.” This source code has been the starting point for many
other implementations. :

Figure 1.10 shows a chronology of the various BSD releases, indicating the impor-
tant TCP /1P features. The BSD Networking Releases shown on the left side are publicly
available source code releases containing all of the networking code: both the protocols
themselves and many of the applications and utilities (such as Telnet and FTP).

Throughout the text we'll use the term Berkeley-derived implementation to refer to
vendor implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally
developed from the Berkeley sources. These implementations have much in common,
often including the same bugs!

Viptela, Inc. - Exhibit 1007
Page 38



Section 1.15 Application Programming Interfaces 17

4.2BSD (1983)
first widely available
release of TCP/IP

l

4.3BSD (1986)
TCP performance improvements

:

4.3BSD Tahoe (1988)
slow start,
congestion avoidance,
fast retransmit
BSD Networking Software ¢

Release 1.0 (1989): Net/1
4.3BSD Reno (1990)

fast recovery,

TCP header prediction,
/ SLIP header compression,
routing table changes

BSD Networking Software
Release 2.0 (1991): Net/2

4.4BSD (1993)

multicasting,
/ long fat pipe modifications

4.4BSD-Lite (1994)
also referred to as Net/3

Figure 1.10 Various BSD releases with important TCP/IP features.

Much of the original research in the Internet is still being applied to the Berkeley
system—new congestion control algorithms (Section 21.7), multicasting (Section 12.4),
“long fat pipe” modifications (Section 24.3), and the like.

Application Programming Interfaces

Two popular application programming interfaces (APIs) for applications using the TCP/IP
protocols are called sockets and TLI (Transport Layer Interface). The former is some-
times called “Berkeley sockets,” indicating where it was originally developed. The lat-
ter, originally developed by AT&T, is sometimes called XTI (X/Open Transport
Interface), recognizing the work done by X/Open, an international group of computer
vendors that produce their own set of standards. XTI is effectively a superset of TLL

Viptela, Inc. - Exhibit 1007
Page 39



18

Introduction Chapter 1

1.16

This text is not a programming text, but occasional reference is made to features of
TCP/IP that we look at, and whether that feature is provided by the most popular API
(sockets) or not. All the programming details for both sockets and TLI are available in
[Stevens 1990].

Test Network
Figure 1.11 shows the test network that is used for all the examples in the text. This fig-

ure is also duplicated on the inside front cover for easy reference while reading the
book. '

Internet
AIX 322 Solaris 2.2 Sun0OS4.1.1 T.104.1
aix solaris emini atewa Cisco
g g ¥ router
T‘wz T.1.32 T.l,ll T.1.4
Ethernet l 1183
Telebit
netb NetBlazer
modem|
SLIP | (dialup)
BSD/386 1.0 BSD/3861.0 Sun0S4.1.3 |.1. SVR4
. SLIP .
slip 13.65 —13.66 bsdi svrd
T.13.35 T.13.34

Ethernet

Figure 1.11 Test network used for all the examples in the text. All IP addresses begin with 140.252,

Most of the examples are run on the lower four systems in this figure (the author’s sub-
net). All the IP addresses in this figure belong to the class B network ID 140.252. All the
hostnames belong to the .tuc.noao.edu domain. (noao stands for “National Optical
Astronomy Observatories” and tuc stands for Tucson.) For example, the lower right
system has a complete hostname of svr4.tuc.noao.edu and an IP address of
140.252.13.34. The notation at the top of each box is the operating system running on
that system. This collection of systems and networks provides hosts and routers run-
ning a variety of TCP/IP implementations.

Viptela, Inc. - Exhibit 1007
Page 40



Chapter 1 Exercises 19

It should be noted that there are many more networks and hosts in the noao.edu
domain than we show in Figure 1.11. All we show here are the systems that we’ll
encounter throughout the text.

In Section 3.4 we describe the form of subnetting used on this network, and in Sec-
tion 4.6 we'll provide more details on the dialup SLIP connection between sun and
netb. Section 2.4 describes SLIP in detail.

1.17 Summary

This chapter has been a whirlwind tour of the TCP/IP protocol suite, introducing many
of the terms and protocols that we discuss in detail in later chapters.

The four layers in the TCP/IP protocol suite are the link layer, network layer, trans-
port layer, and application layer, and we mentioned the different responsibilities of
each. In TCP/IP the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides a hop-by-hop service while the transport layers
(TCP and UDP) provide an end-to-end service. -

An internet is a collection of networks. The common building block for an internet
is a router that connects w2 networks at the IP layer. The capital-I Internet is an internet
that spans the globe and consists of more than 10,000 networks and more than one mil-
lion computers.

On an internet each interface is identified by a unique IP address, although users
tend to use hostnames instead of IP addresses. The Domain Name System provides a
dynamic mapping between hostnames and 1P addresses. Port numbers are used to
identify the applications communicating with each other and we said that servers use
well-known ports while clients use ephemeral ports.

Exercises

1.1 Calculate the maximum number of class A, B, and C network IDs.

1.2 Petch the file nsfnet/statistics/history.netcount using anonymous FIP (Sec-
tion 27.3) from the host nic.merit.edu. This file contains the number of domestic and
foreign networks announced to the NSENET infrastructure. Plot these values with the year
on the x-axis and a logarithmic y-axis with the total number of networks. The maximum
value for the y-axis should be the value calculated in the previous exercise. If the data
shows a visual trend, extrapolate the values to estimate when the curtent addressing
scheme will run out of network IDs. (Section 3.10 talks about proposals to correct this
problem.)

1.3 Obtain a copy of the Host Requirements RFC [Braden 1989a] and look up the robustness
principle that applies to every layer of the TCP/IP protocol suite. What is the reference for
this principle?

1.4 Obtain a copy of the latest Assigned Numbers RFC. What is the well-known port for the
“quote of the day” protocol? Which RFC defines the protocol?

Viptela, Inc. - Exhibit 1007
Page 41



20  Introduction Chapter 1

1.5

1.6
1.7
1.8

If you have an account on a host that is connected to a TCP/IP internet, what is its primary
IP address? Is the host connected to the worldwide Internet? Is it multihomed?

Obtain a copy of RFC 1000 to learn where the term RFC originated.
Contact the Internet Society, isoc@isoc.org or +1 703 648 9888, to find out about joining,

Fetch the file about-internic/information-about-the-internic using anony-
mous FIP from the host is . internic.net.

Viptela, Inc. - Exhibit 1007
Page 42



2.1

2.2

Link Layer

Introduction

From Figure 1.4 (p. 6) we see that the purpose of the link layer in the TCP/IP protocol
suite is to send and receive (1) IP datagrams for the IP module, (2) ARP requests and
replies for the ARP module, and (3) RARP requests and replies for the RARP module.
TCP/IP supports many different link layers, depending on the type of networking
hardware being used: Ethernet, token ring, FDDI (Fiber Distributed Data Interface),
RS-232 serial lines, and the like.

In this chapter we'll look at some of the details involved in the Ethernet link layer,
two specialized link layers for serial interfaces (SLIP and PPP), and the loopback driver
that’s part of most implementations. Ethernet and SLIP are the link layers used for
most of the examples in the book. We also talk about the MTU (Maximum Transmission
Unit), a characteristic of the link layer that we encounter numerous times in the remain-
ing chapters. We also show some calculations of how to choose the MTU for a serial
line.

Ethernet and IEEE 802 Encapsulation

The term Ethernet generally refers to a standard published in 1982 by Digital Equipment
Corp., Intel Corp., and Xerox Corp. It is the predominant form of local area network
technology used with TCP/IP today. It uses an access method called CSMA/CD, which
stands for Carrier Sense, Multiple Access with Collision Detection. It operates at 10
Mbits/sec and uses 48-bit addresses.

A few years later the IEEE (Institute of Electrical and Electronics Engineers) 802
Committee published a sightly different set of standards. 802.3 covers an entire set of

Viptela, Inc. - Exhibit 1087
Page 43



22 Link Layer Chapter 2

CSMA /CD networks, 802.4 covers token bus networks, and 802.5 covers token ring net-
works. Common to all three of these is the 802.2 standard that defines the logical link
control (LLC) common to many of the 802 networks. Unfortunately the combination of
802.2 and 802.3 defines a different frame format from true Ethernet. ([Stallings 1987]
covers all the details of these IEEE 802 standards.)

In the TCP/IP world, the encapsulation of IP datagrams-is defined in RFC 894
[Hornig 1984] for Ethernets and in RFC 1042 [Postel and Reynolds 1988] for IEEE 802
networks. The Host Requirements REC requires that every Internet host connected to a
10 Mbits/sec Ethernet cable:

1. Must be able to send and receive packets using RFC 894 (Ethernet) encapsula-
tion.

2. Should be able to receive RFC 1042 (IEEE 802) packets intermixed with RFC 894
packets.

3. May be able to send packets using RFC 1042 encapsulation. If the host can send
both types of packets, the type of packet sent must be configurable and the con-
figuration option must default to RFC 894 packets.

RFC 894 encapsulation is most commonly used. Figure 2.1 shows the two different
forms of encapsulation. The number below each box in the figure is the size of that box
in bytes.

Both frame formats use 48-bit (6-byte) destination and source addresses. (802.3
allows 16-bit addresses to be used, but 48-bit addresses are normal.) These are what we
call hardware addresses throughout the text. The ARP and RARP protocols (Chapters 4
and 5) map between the 32-bit IP addresses and the 48-bit hardware addresses.

The next 2 bytes are different in the two frame formats. The 802 length field says
how many bytes follow, up to but not including the CRC at the end. The Ethernet type
field identifies the type of data that follows. In the 802 frame the same type field occurs
later in the SNAP (Sub-network Access Protocol) header. Fortunately none of the valid
802 length values is the same as the Ethernet type values, making the two frame formats
distinguishable. )

In the Ethernet frame the data immediately follows the type field, while in the 802
frame format 3 bytes of 802.2 LLC and 5 bytes of 802.2 SNAP follow. The DSAP (Desti-
nation Service Access Point) and SSAP (Source Service Access Point) are both set to
Oxaa. The ctrl field is set to 3. The next 3 bytes, the org code are all 0.- Following this is
the same 2-byte type field that we had with the Ethernet frame format. -(Additional type
field values are given in RFC 1340 [Reynolds and Postel 1992].)

The CRC field is a cyclic redundancy check (a checksum) that detects errors in the
rest of the frame. (This is also called the FCS or frame check sequence.)

There is a minimum size for 802.3 and Ethernet frames. This minimum requires
that the data portion be at least 38 bytes for 802.3 or 46 bytes for Ethernet. To handle
this, pad bytes are inserted to assure that the frame is long enough. We'll encounter this
minimum when we start watching packets on the wire.

In this text we'll display the Ethernet encapsulation when we need to, because this
is the most commonly used form of encapsulation.

Viptela, Inc. - Exhibit 1007
Page 44



Section 2.3 ) Trailer Encapsulation 23

1EEE 802.2/802.3 Encapsulation (RFC 1042):

l—— 8023 MAC ——pla- 802.2 LLC —}t— 802.2 SNAP —#
destination| source SAPISSAP| entl | org code

addr addr |18 an | an | 03 00 fype data CRC
6 6 2 1 1 1 3 2 38-1492 . 4
f . [
t
type
[
| 0800 IP datagram
| 2 38-1492 '
[ |
| pe [
[ . [
| 0806 ARP request/reply [PAD) |
| 2 28 10 |
! |
' type :
{ .
: \ 8035 \ RARP request/ 1eplyJPAD :
| 2 28 10 |
[ [
| [
[ [
| |
Ethernet Encapsulation (RFC 894): I«‘fa 46-1500 bytes ';;:
destination| source
addr addr type data CRC
6 6 2 46-1500 4
type .
0800 IP datagram
2 46—-1500
type ’
0806 ARP request/reply |PAD
2 28 18
type
8035 RARP request/reply | PAD
2 28 18

Figure 2.1 IEEE 802.2/802.3 encapsulation (RFC 1042) and Ethernet encapsulation (REC 894).

2.3 Trailer Encapsulation

RFC 893 [Leffler and Karels 1984] describes another form of encapsulation used on
Ethernets, called trailer encapsulation. It was an experiment with early BSD systems on
DEC VAXes that improved performance by rearranging the order of the fields in the IP
datagram. The variable-length fields at the beginning of the data portion of the Ether-
net frame (the IP header and the TCP header) were moved to the end (right before the
CRC). This allows the data portion of the frame to be mapped to a hardware page,

Viptela, Inc. - Exhibit 1007
Page 45



24

Link Layer Chapter 2

2.4

saving a memory-to-memory copy when the data is copied in the kernel. TCP data that
is a multiple of 512 bytes in size can be moved by just manipulating the kernel’s page
tables. Two hosts negotiated the use of trailer encapsulation using an extension of ARP.
Different Ethernet frame type values are defined for these frames.

Nowadays trailer encapsulation is deprecated, so we won’t show any examples of
it. Interested readers are referred to RFC 893 and Section 11.8 of [Leffler et al. 1989] for
additional details.

SLIP: Serial Line IP

SLIP stands for Serial Line IP. It is a simple form of encapsulation for IP datagrams on
serial lines, and is specified in RFC 1055 [Romkey 1988]. SLIP has become popular for
connecting home systems to the Internet, through the ubiquitous RS-232 serial port
found on almost every computer and high-speed modems.

The following rules specify the framing used by SLIP.

1. The IP datagram is terminated by the special character called END (0xc0).
Also, to prevent any line noise before this datagram from being interpreted as
part of this datagram, most implementations transmit an END character at the
beginning of the datagram too. (If there was some line noise, this END termi-
nates that erroneous datagram, allowing the current datagram to be transmitted.
That erroneous datagram will be thrown away by a higher layer when its con-
tents are detected to be garbage.)

2. If a byte of the IP datagram equals the END character, the 2-byte sequence
Oxdb, Oxdc is transmitted instead. This special character, 0xdb, is called the
SLIP ESC character, but its value is different from the ASCII ESC character
(0x1b).

3. If a byte of the IP datagram equals the SLIP ESC character, the 2-byte sequence
Oxdb, 0xdd is transmitted instead.

Figure 2.2 shows an example of this framing, assuming that one END character and one
ESC character appear in the original IP datagram. In this example the number of bytes
transmitted across the serial line is the length of the IP datagram plus 4.

SLIP is a simple framing method. It has some deficiencies that are worth noting.

1. Each end must know the other’s IP address. There is no method for one end to
inform the other of its IP address.

2. There is no type field (similar to the frame type field in Ethernet frames). If a
serial line is used for SLIP, it can’t be used for some other protocol at the same
time.

3. There is no checksum added by SLIP (similar to the CRC field in Ethernet
frames). If a noisy phone line corrupts a datagram being transferred by SLIP,
it’s up to the higher layers to detect this. (Alternately, newer modems can detect

Viptela, Inc. - Exhibit 1007
Page 46



Section 2.5 Compressed SLIP 25

2.5

| IP datagram |
= & i
cO db
! i 1 \ \ 1 N\ N \ N
i i \ \
! i \ \ AN AN
! f \ \ \ N
END! s ‘Esc \ END
c0 db | dc db |dd c0
1 1 1 1 1 1

Figure 2.2 SLIP encapsulation.

and correct corrupted frames.) This makes it essential that the upper layers pro-
vide some form of CRC. In Chapters 3 and 17 we'll see that there is always a
checksum for the IP header, and for the TCP header and the TCP data. But in
Chapter 11 we'll see that the checksum that covers the UDP header and UDP
data is optional.

Despite these shortcomings, SLIP is a popular protocol that is widely used.

The history of SLIP dates back to 1984 when Rick Adams implemented it in 4.2BSD. Despite
its self-description as a nonstandard, it is becoming more popular as the speed and reliability
of modems increase. Publicly available implementations abound, and many vendors support
it today.

Compressed SLIP

Since SLIP lines are often slow (19200 bits/sec or below) and frequently used for inter-
active traffic (such as Telnet and Rlogin, both of which use TCP), there tend to be many
small TCP packets exchanged across a SLIP line. To carry 1 byte of data requires a
20-byte IP header and a 20-byte TCP header, an overhead of 40 bytes. (Section 19.2
shows the flow of these small packets when a simple command is typed during an
Rlogin session.)

Recognizing this performance drawback, a newer version of SLIP, called CSLIP (for
compressed SLIP), is specified in RFC 1144 [Jacobson 1990a]. CSLIP normally reduces
the 40-byte header to 3 or 5 bytes. It maintains the state of up to 16 TCP connections on
each end of the CSLIP link and knows that some of the fields in the two headers for a
given connection normally don’t change. Of the fields that do change, most change by a
small positive amount. These smaller headers greatly improve the interactive response
time.

Most SLIP implementations today support CSLIP. Both SLIP links on the author’s subnet (see
inside front cover) are CSLIP links.

Viptela, Inc. - Exhibit 1007
Page 47



26  Link Layer Chapter 2

2.6 PPP: Point-to-Point Protocol

PPP, the Point-to-Point Protocol, corrects all the deficiencies in SLIP. PPP consists of
three components.

1. A way to encapsulate IP datagrams on a serial link. PPP supports either an
asynchronous link with 8 bits of data and no parity (i.e., the ubiquitous serial
interface found on most computers) or bit-oriented synchronous links.

2. Alink control protocol (LCP) to establish, configure, and test the data-link connec-
tion. This allows each end to negotiate various options.

3. A family of network control protocols (NCPs) specific to different network layer
protocols. RFCs currently exist for IP, the OSI network layer, DECnet, and
AppleTalk. The IP NCP, for example, allows each end to specify if it can per-
form header compression, similar to CSLIP. (The acronym NCP was also used
for the predecessor to TCP.)

REC 1548 [Simpson 1993] specifies the encapsulation method and the link control proto-
col. RFC 1332 [McGregor 1992] specifies the network control protocol for IP.

The format of the PPP frames was chosen to look like the ISO HDLC standard
(high-level data link control). Figure 2.3 shows the format of PPP frames.

flag | addr |control e flag
75 PR 03 protocol information CRC B
1 1 1 2 up to 1500 bytes 2 1
protocol
0021 IP datagram
protocol .
c021 link control data
pgoot gClOl network control data

Figure 2.3 Format of PPP frames.

Each frame begins and ends with a flag byte whose value is 0x7e. This is followed
by an address byte whose value is always 0xff, and then a control byte, with a value of
0x03.

Next comes the protocol field, similar in function to the Ethernet type field. A value
of 0x0021 means the information field is an IP datagram, a value of 0xc021 means the
information field is link control data, and a value of 0x8021 is for network control data.

Viptela, Inc. - Exhibit 1007
Page 48



Section 2.6 PPP: Point-to-Point Protocol 27

The CRC field (or FCS, for frame check sequence) is a cyclic redundancy check, to
detect errors in the frame.

Since the byte value 0x7e is the flag character, PPP needs to escape this byte when it
appears in the information field. On a synchronous link this is done by the hardware
using a technique called bit stuffing [Tanenbaum 1989]. On asynchronous links the spe-
cial byte 0x7d is used as an escape character. Whenever this escape character appears
in a PPP frame, the next character in the frame has had its sixth bit complemented, as
follows:

1. The byte 0x7e is transmitted as the 2-byte sequence 0x7d, 0x5e. This is the
escape of the flag byte.

2. The byte 0x7d is transmitted as the 2-byte sequence 0x7d, 0x5d. This is the
escape of the escape byte.

3. By default, a byte with a value less than 0x20 (i.e., an ASCII control character) is
also escaped. For example, the byte 0x01 is transmitted as the 2-byte sequence
0x7d, 0x21. (In this case the complement of the sixth bit turns the bit on,
whereas in the two previous examples the complement turned the bit off.)

The reason for doing this is to prevent these bytes from appearing as ASCII con-
trol characters to the serial driver on either host, or to the modems, which some-
times interpret these control characters specially. It is also possible to use the
link control protocol to specify which, if any, of these 32 values must be escaped.
By default, all 32 are escaped.

Since PPP, like SLIP, is often used across slow serial links, reducing the number of
bytes per frame reduces the latency for interactive applications. Using the link control
protocol, most implementations negotiate to omit the constant address and control fields
and to reduce the size of the protocol field from 2 bytes to 1 byte. If we then compare the
framing overhead in a PPP frame, versus the 2-byte framing overhead in a SLIP frame
(Figure 2.2), we see that PPP adds three additional bytes: 1 byte for the protocol field,
and 2 bytes for the CRC. Additionally, using the IP network control protocol, most
implementations then negotiate to use Van Jacobson header compression (identical to
CSLIP compression) to reduce the size of the IP and TCP headers.

In summary, PPP provides the following advantages over SLIP: (1) support for mul-
tiple protocols on a single serial line, not just IP datagrams, (2) a cyclic redundancy
check on every frame, (3) dynamic negotiation of the IP address for each end (using the
IP network control protocol), (4) TCP and IP header compression similar to CSLIP, and
(5) a link control protocol for negotiating many data-link options. The price we pay for
all these features is 3 bytes of additional overhead per frame, a few frames of negotia-
tion when the link is established, and a more complex implementation.

Despite all the added benefits of PPP over SLIP, today there are more SLIP users than PPP
users. As implementations become more widely available, and as vendors start to support
PPP, it should (eventually) replace SLIP.

Viptela, Inc. - Exhibit 1007
Page 49



28

Link Layer Chapter 2

2.7

Loopback Interface

Most implementations support a loopback interface that allows a client and server on the
same host to communicate with each other using TCP/IP. The class A network ID 127
is reserved for the loopback interface. By convention, most systems assign the IP
address of 127.0.0.1 to this interface and assign it the name localhost. An IP data-
gram sent to the loopback interface must not appear on any network.

Although we could imagine the transport layer detecting that the other end is the
loopback address, and short circuiting some of the transport layer logic and all of the
network layer logic, most implementations perform complete processing of the data in
the transport layer and network layer, and only loop the IP datagram back to itself
when the datagram leaves the bottom of the network layer.

Figure 2.4 shows a simplified diagram of how the loopback interface processes IP
datagrams.

IP output
function

I o I N A

! | | |
! | t g - |
| place on IP | | ye [ destination IP address place on IP \
I input quete —+ T equal broadcast address inout queue |
| putq | | or multicast address? putq i
! \ t no \ |
Lo g t [
loopback driver ' :
i { I
| [
| yes destination IP address  Ethernet
| equal interface IP address ? tdriver
! [
i no, use ARP to |
: get destination :
| Ethernet address : |
! 1P i
! ARP| demultiplex based on !
' ARP | '
[ Ethernet frame type [
| |
I send receive I
S U ]
Ethernet

Figure 2.4 Processing of IP datagrams by loopback interface.

Viptela, Inc. - Exhibit 1007
Page 50



Section 2.8 MTU 29

2.8

The key points to note in this figure are as follows:

1. Everything sent to the loopback address (normally 127.0.0.1) appears as IP
input.
2. Datagrams sent to a broadcast address or a multicast address are copied to the

loopback interface and sent out on the Ethernet. This is because the definition
of broadcasting and multicasting (Chapter 12) includes the sending host.

3. Anything sent to one of the host’s own IP addresses is sent to the loopback
interface.

While it may seem inefficient to perform all the transport layer and IP layer process-
ing of the loopback data, it simplifies the design because the loopback interface appears
as just another link layer to the network layer. The network layer passes a datagram to
the loopback interface like any other link layer, and it happens that the loopback inter-
face then puts the datagram back onto IP’s input queue.

Another implication of Figure 2.4 is that IP datagrams sent to the one of the host’s
own IP addresses normally do not appear on the corresponding network. For example,
on an Ethernet, normally the packet is not transmitted and then read back. Comments
in some of the BSD Ethernet device drivers indicate that many Ethernet interface cards
are not capable of reading their own transmissions. Since a host must process IP data-
grams that it sends to itself, handling these packets as shown in Figure 2.4 is the sim-
plest way to accomplish this.

The 4.4BSD implementation defines the variable useloopback and initializes it to 1. If this
variable is set to 0, however, the Ethernet driver sends local packets onto the network instead
of sending them to the loopback driver. This may or may not work, depending on your Ether-
net interface card and device driver.

MTU

As we can see from Figure 2.1, there is a limit on the size of the frame for both Ethernet
encapsulation and 802.3 encapsulation. This limits the number of bytes of data to 1500
and 1492, respectively. This characteristic of the link layer is called the MTU, its maxi-
mum transmission unit. Most types of networks have an upper limit.

If IP has a datagram to send, and the datagram is larger than the link layer’s MTU,
IP performs fragmentation, breaking the datagram up into smaller pieces (fragments), so
that each fragment is smaller than the MTU. We discuss IP fragmentation in Sec-
tion 11.5.

Figure 2.5 lists some typical MTU values, taken from RFC 1191 [Mogul and Deering
1990]. The listed MTU for a point-to-point link (e.g., SLIP or PPP) is not a physical char-
acteristic of the network media. Instead it is a logical limit to provide adequate
response time for interactive use. In the Section 2.10 we'll see where this limit comes
from.

In Section 3.9 we'l] use the net stat command to print the MTU of an interface.

Viptela, Inc. - Exhibit 1007
Page 51



30

Link Layer Chapter 2

2.9

2.10

B Network MTU (byteﬁ

Hyperchannel 65535
16 Mbits/sec token ring (IBM) 17914
4 Mbits/sec token ring (IEEE 802.5) 4464
FDDI 4352
Ethernet 1500
1EEE 802.3/802.2 1492
X.25 576
Point-to-point (low delay) 296

Figure 2.5 Typical maximum transmission units (MTUs).

Path MTU

When two hosts on the same network are communicating with each other, it is the MTU
of the network that is important. But when two hosts are communicating across multi-
ple networks, each link can have a different MTU. The important numbers are not the
MTUs of the two networks to which the two hosts connect, but rather the smallest MTU
of any data link that packets traverse between the two hosts. This is called the path
MTU.

The path MTU between any two hosts need not be constant. It depends on the
route being used at any time. Also, routing need not be symmetric (the route from A to
B may not be the reverse of the route from B to A), hence the path MTU need not be the
same in the two directions.

RFC 1191 [Mogul and Deering 1990] specifies the “path MTU discovery mecha-
nism,” a way to determine the path MTU at any time. We’'ll see how this mechanism
operates after we've described ICMP and IP fragmentation. In Section 11.6 we'll exam-
ine the ICMP unreachable error that is used with this discovery mechanism and in Sec-
tion 11.7 we'll show a version of the traceroute program that uses this mechanism to
determine the path MTU to a destination. Sections 11.8 and 24.2 show how UDP and
TCP operate when the implementation supports path MTU discovery.

Serial Line Throughput Calculations

If the line speed is 9600 bits/sec, with 8 bits per byte, plus 1 start bit and 1 stop bit, the
line speed is 960 bytes/sec. Transferring a 1024-byte packet at this speed takes 1066 ms.
If we're using the SLIP link for an interactive application, along with an application
such as FTP that sends or receives 1024-byte packets, we have to wait, on the average,
half of this time (533 ms) to send our interactive packet.

This assumes that our interactive packet will be sent across the link before any fur-
ther “big” packets. Most SLIP implementations do provide this type-of-service queue-
ing, placing interactive traffic ahead of bulk data traffic. The interactive traffic is
normally Telnet, Rlogin, and the control portion (the user commands, not the data) of
FTP.

Viptela, Inc. - Exhibit 1007
Page 52



Section 2.11 Summary 31

2.11

This type of service queueing is imperfect. It cannot affect noninteractive traffic that is already
queued downstream (e.g., at the serial driver). Also newer modems have large buffers so non-
interactive traffic may already be buffered in the modem.

Waiting 533 ms is unacceptable for interactive response. Human factors studies
have found that an interactive response time longer than 100—-200 ms is perceived as
bad [Jacobson 1990a]. This is the round-trip time for an interactive packet to be sent
and something to be returned (normally a character echo).

Reducing the MTU of the SLIP link to 256 means the maximum amount of time the
link can be busy with a single frame is 266 ms, and half of this (our average wait) is 133
ms. This is better, but still not perfect. The reason we choose this value (as compared to
64 or 128) is to provide good utilization of the line for bulk data transfers (such as large
file transfers). Assuming a 5-byte CSLIP header, 256 bytes of data in a 261-byte frame
gives 98.1% of the line to data and 1.9% to headers, which is good utilization. Reducing
the MTU below 256 reduces the maximum throughput that we can achieve for bulk
data transfers.

The MTU value listed in Figure 2.5, 296 for a point-to-point link, assumes 256 bytes
of data and the 40-byte TCP and IP headers. Since the MTU is a value that IP queries
the link layer for, the value must include the normal TCP and IP headers. This is how
IP makes its fragmentation decision. IP knows nothing about the header compression
that CSLIP performs.

Our average wait calculation (one-half the time required to transfer a maximum
sized frame) only applies when a SLIP link (or PPP link) is used for both interactive traf-
fic and bulk data transfer. When only interactive traffic is being exchanged, 1 byte of
data in each direction (assuming 5-byte compressed headers) takes around 12.5 ms for
the round trip at 9600 bits/sec. This is well within the 100—-200 ms range mentioned
earlier. Also notice that compressing the headers from 40 bytes to 5 bytes reduces the
round-trip time for the 1 byte of data from 85 to 12.5 ms.

Unfortunately these types of calculations are harder to make when newer error cor-
recting, compressing modems are being used. The compression employed by these
modems reduces the number of bytes sent across the wire, but the error correction may
increase the amount of time to transfer these bytes. Nevertheless, these calculations
give us a starting point to make reasonable decisions.

In later chapters we’ll use these serial line calculations to verify some of the timings
that we see when watching packets go across a serial link.

Summary

This chapter has examined the lowest layer in the Internet protocol suite, the link layer.
We looked at the difference between Ethernet and IEEE 802.2/802.3 encapsulation, and
the encapsulation used by SLIP and PPP. Since both SLIP and PPP are often used on
slow links, both provide a way to compress the common fields that don’t often change.
This provides better interactive response.

The loopback interface is provided by most 1mp1ementat10ns Access to this inter-
face is either through the special loopback address, normally 127.0.0.1, or by sending IP

Viptela, Inc. - Exhibit 1007
Page 53



32 Link Layer Chapter 2

datagrams to one of the host’s own IP addresses. Loopback data has been completely
processed by the transport layer and by IP when it loops around to go up the protocol
stack.

We described an important feature of many link layers, the MTU, and the related
concept of a path MTU. Using the typical MTUs for serial lines, we calculated the
latency involved in SLIP and CSLIP links,

This chapter has covered only a few of the common data-link technologies used
with TCP/IP today. One reason for the success of TCP/IP is its ability to work on top of
almost any data-link technology.

Exercises

2.1 If your system supports the net stat(l) command (see Section 3.9 also), use it to determine
the interfaces on your system and their MTUs.

Viptela, Inc. - Exhibit 1007
Page 54



IP: Infernet Protocol

Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDF, ICMP, and
IGMP data gets transmitted as IP datagrams (Figure 1.4). A fact that amazes many
newcomers to TCP/IP, especially those from an X.25 or SNA background, is that IP pro-
vides an unreliable, connectionless datagram delivery service.

By unrelinble we mean there are no guarantees that an IP datagram successfully gets
to its destination. IP provides a best effort service. When something goes wrong, such
as a router temporarily running out of buffers, IP has a simple error handling algorithm:
throw away the datagram and try to send an ICMP message back to the source. Any
required reliability must be provided by the upper layers (e.g., TCP).

The term connectionless means that IP does not maintain any state information about
successive datagrams. Each datagram is handled independently from all other data-
grams. This also means that IP datagrams can get delivered out of order. If a source
sends two consecutive datagrams (first A, then B) to the same destination, each is
routed independently and can take different routes, with B arriving before A.

In this chapter we take a brief look at the fields in the IP header, describe IP routing,
and cover subnetting. We also look at two useful commands: i fconfig and netstat.
We leave a detailed discussion of some of the fields in the IP header for later when we
can see exactly how the fields are used. RFC 791 [Postel 1981a] is the official specifica-
tion of IP.

Viptela, Inc. - Exhibit 1687
Page 55



34

IP: Internet Protocol Chapter 3

3.2

IP Header

Figure 3.1 shows the format of an IP datagram. The normal size of the IP header is 20
bytes, unless options are present.

0 15 16 31
R
4-bit  |4-bit headexr| 8-bit type of service m .
version length (TOS) 16-bit total length (in bytes)
16-bit identification 3bit 13-bit fragment offset
flags
B-bit time fo live 8-bit protocol 16-bit header checksum 20 bytes
(TTL)
32-bit source IP address
. o
32-bit destination IP address
Z options (if any) Z
/ data /

Figure 3.1 IP datagram, showing the fields in the IP header.

We will show the pictures of protocol headers in TCP/IP as in Figure 3.1. The most sig-
nificant bit is numbered 0 at the left, and the least significant bit of a 32-bit value is num-
bered 31 on the right.

The 4 bytes in the 32-bit value are transmitted in the order: bits 0-7 first, then bits
8-15, then 16-23, and bits 24-31 last. This is called big endian byte ordering, which is
the byte ordering required for all binary integers in the TCP/IP headers as they traverse
a network. This is called the network byte order. Machines that store binary integers in
other formats, such as the little endian format, must convert the header values into the
network byte order before transmitting the data. -

The current protocol version is 4, so IP is sometimes called IPv4. Section 3.10 dis-
cusses some proposals for a new version of IP.

The header length is the number of 32-bit words in the header, including any options.
Since this is a 4-bit field, it limits the header to 60 bytes. In Chapter 8 we’ll see that this
limitation makes some of the options, such as the record route option, useless today.
The normal value of this field (when no options are present) is 5.

The type-of-service field (TOS) is composed of a 3-bit precedence field (which is
ignored today), 4 TOS bits, and an unused bit that must be 0. The 4 TOS bits are: mini-
mize delay, maximize throughput, maximize reliability, and minimize monetary cost.

Viptela, Inc. - Exhibit 1007
Page 56



Section 3.2 IP Header 35

Only 1 of these 4 bits can be turned on. If all 4 bits are 0 it implies normal service.
RFC 1340 [Reynolds and Postel 1992] specifies how these bits should be set by all the
standard applications. RFC 1349 [Almquist 1992] contains some corrections to this RFC,
and a more detailed description of the TOS feature.

Figure 3.2 shows the recommended values of the TOS field for various applications.
In the final column we show the hexadecimal value, since that’s what we'll see in the
tcpdump output later in the text.

Application Minimize Maximize Maximize Minimize Hex

PP delay throughput reliability monetary cost | value
Telnet/Rlogin 1 .0 0 0 0x10
FTP

control 1 0 0 0 0x10

data 0 1 0 0 0x08
any bulk data 0 1 0 0 0x08
TETP 1 0 0 0 0x10
SMTP

command phase 1 0 0 0 0x10

data phase 1 0 0 0x08
DNS

UDP query 1 0 0 0 0x10

TCP query 0 0 0 0 0x00

zone transfer 0 1 0 0 0x08
ICMP

error 0 0 0 0 0x00

query 0 0 0 0 0x00
any IGP 0 0 1 0 0x04
SNMP 0 0 1 0 0x04
BOOTP 0 0 0 0 0x00
NNTP 0 0 0 1 0x02

Figure 3.2 Recommended values for type-of-service field.

The interactive login applications, Telnet and Rlogin, want a minimum delay since
they're used interactively by a human for small amounts of data transfer. File transfer
by FTP, on the other hand, wants maximum throughput. Maximum reliability is speci-
fied for network management (SNMP) and the routing protocols. Usenet news (NNTP)
is the only one shown that wants to minimize monetary cost.

The TOS feature is not supported by most TCP/IP implementations today, though
newer systems starting with 4.3BSD Reno are setting it. Additionally, new routing pro-
tocols such as OSPF and IS-IS are capable of making routing decisions based on this
field.

In Section 2.10 we mentioned that SLIP drivers normally provide type-of-service queueing,
allowing interactive traffic to be handled before bulk data. Since most implementations don't
use the TOS field, this queueing is done ad hoc by SLIP, with the driver looking at the protocol
field (to determine whether it’s a TCP segment or not) and then checking the source and desti-
nation TCP port numbers to see if the port number corresponds to an interactive service. One
driver comments that this “disgusting hack” is required since most implementations don’t
allow the application to set the TOS field.

Viptela, Inc. - Exhibit 1007
Page 57



36 IP: Internet Protocol Chapter 3

The total length field is the total length of the IP datagram in bytes. Using this field
and the header length field, we know where the data portion of the IP datagram starts,
and its length. Since this is a 16-bit field, the maximum size of an IP datagram is 65535
bytes. (Recall from Figure 2.5 [p. 30] that a Hyperchannel has an MTU of 65535. This
means there really isn't an MTU—it uses the largest IP datagram possible.) This field
also changes when a datagram is fragmented, which we describe in Section 11.5.

Although it’s possible to send a 65535-byte IP datagram, most link layers will frag-
ment this. Furthermore, a host is not required to receive a datagram larger than 576
bytes. TCP divides the user’s data into pieces, so this limit normally doesn’t affect TCP.
With UDP we'll encounter numerous applications in later chapters (RIP, TFTP, BOOTP,
the DNS, and SNMP) that limit themselves to 512 bytes of user data, to stay below this
576-byte limit. Realistically, however, most implementations today (especially those
that support the Network File System, NFS) allow for just over 8192-byte IP datagrams.

The total length field is required in the IP header since some data links (e.g., Ether-
net) pad small frames to be a minimum length. Even though the minimum Ethernet
frame size is 46 bytes (Figure 2.1), an IP datagram can be smaller. If the total length
field wasn’t provided, the IP layer wouldn’t know how much of a 46-byte Ethernet
frame was really an IP datagram.

The identification field uniquely identifies each datagram sent by a host. It normally
increments by one each time a datagram is sent. We return to this field when we look at
fragmentation and reassembly in Section 11.5. Similarly, we’ll also look at the flags field
and the fragmentation offset field when we talk about fragmentation.

RFC 791 [Postel 1981a] says that the identification field should be chosen by the upper layer
that is having IP send the datagram. This implies that two consecutive IP datagrams, one gen-
erated by TCP and one generated by UDP, can have the same identification field. While this is
OK (the reassembly algorithm handles this), most Berkeley-derived implementations have the
TP layer increment a kernel variable each time an IP datagram is sent, regardless of which layer
passed the data to IP to send. This kernel variable is initialized to a value based on the time-of-
day when the system is bootstrapped.

The time-to-live field, or TTL, sets an upper limit on the number of routers through
which a datagram can pass. It limits the lifetime of the datagram. It is initialized by the
sender to some value (often 32 or 64) and decremented by one by every router that han-
dles the datagram. When this field reaches 0, the datagram is thrown away, and the
sender is notified with an ICMP message. This prevents packets from getting caught in
routing loops forever. We return to this field in Chapter 8 when we look at the Trace-
route program. .

We talked about the protocol field in Chapter 1 and showed how it is used by IP to
demultiplex incoming datagrams in Figure 1.8, It identifies which protocol gave the
data for IP to send.

The header checksum is calculated over the IP header only. It does not cover any data
that follows the header. ICMP, IGMP, UDP, and TCP all have a checksum in their own
headers to cover their header and data.

To compute the IP checksum for an outgoing datagram, the value of the checksum
field is first set to 0. Then the 16-bit one’s complement sum of the header is calculated
(i.e., the entire header is considered a sequence of 16-bit words). The 16-bit one’s

Viptela, Inc. - Exhibit 1007
Page 58



Section 3.3 IP Routing 37

complement of this sum is stored in the checksum field. When an IP datagram is
received, the 16-bit one’s complement sum of the header is calculated. Since the
receiver’s calculated checksum contains the checksum stored by the sender, the
receiver’s checksum is all one bits if nothing in the header was modified. If the result is
not all one bits (a checksum error), IP discards the received datagram. No error mes-
sage is generated. It is up to the higher layers to somehow detect the missing datagram
and retransmit.

ICMP, IGMP, UDP, and TCP all use the same checksum algorithm, although TCP
and UDP include various fields from the IP header, in addition to their own header and
data. RFC 1071 [Braden, Borman, and Partridge 1988] contains implementation tech-
niques for computing the Internet checksum. Since a router often changes only the TTL
field (decrementing it by 1), a router can incrementally update the checksum when it
forwards a received datagram, instead of calculating the checksum over the entire IP
header again. RFC 1141 [Mallory and Kullberg 1990] describes an efficient way to do
this.

The standard BSD implementation, however, does not use this incremental update feature
when forwarding a datagram.

Every IP datagram contains the source IP address and the destination IP address.
These are the 32-bit values that we described in Section 1.4.

The final field, the options, is a variable-length list of optional information for the
datagram. The options currently defined are:

e security and handling restrictions (for military applications, refer to RFC 1108
[Kent 1991] for details),

e record route (have each router record its IP address, Section 7.3),
e timestamp (have each router record its IP address and time, Section 7.4),

* loose source routing (specifying a list of IP addresses that must be traversed by
the datagram, Section 8.5), and

e strict source routing (similar to loose source routing but here only the addresses
in the list can be traversed, Section 8.5).

These options are rarely used and not all host and routers support all the options.

The options field always ends on a 32-bit boundary. Pad bytes with a value of 0 are
added if necessary. This assures that the IP header is always a multiple of 32 bits (as
required for the header length field).

3.3 IP Routing

Conceptually, IP routing is simple, especially for a host. If the destination is directly
connected to the host (e.g., a point-to-point link) or on a shared network (e.g., Ethernet
or token ring), then the IP datagram is sent directly to the destination. Otherwise the

Viptela, Inc. - Exhibit 1007
Page 59



38  IP: Internet Protocol Chapter 3

host sends the datagram to a default router, and lets the router deliver the datagram to
its destination. This simple scheme handles most host configurations.

In this section and in Chapter 9 we'll look at the more general case where the IP
layer can be configured to act as a router in addition to acting as a host. Most multiuser
systems today, including almost every Unix system, can be configured to act as a router.
We can then specify a single routing algorithm that both hosts and routers can use. The
fundamental difference is that a host never forwards datagrams from one of its inter-
faces to another, while a router forwards datagrams. A host that contains embedded
router functionality should never forward a datagram unless it has been specifically
configured to do so. We say more about this configuration option in Section 9.4.

In our general scheme, IP can receive a datagram from TCF, UDP, ICMP, or IGMP
(that is, a locally generated datagrain) to send, or one that has been received from a net-
work interface (a datagram to forward). The IP layer has a routing table in memory that
it searches each time it receives a datagram to send. When a datagram is received from
a network interface, IP first checks if the destination IP address is one of its own IP
addresses or an IP broadcast address. If so, the datagram is delivered to the protocol
module specified by the protocol field in the IP header. If the datagram is not destined
for this IP layer, then (1) if the IP layer was configured to act as a router the packet is for-
warded (that is, handled as an outgoing datagram as described below), else (2) the data-
gram is silently discarded.

Each entry in the routing table contains the following information:

¢ Destination IP address. This can be either a complete host address or a network
address, as specified by the flag field (described below) for this entry. A host
address has a nonzero host ID (Figure 1.5) and identifies one particular host,
while a network address has a host ID of 0 and identifies all the hosts on that
network (e.g., Ethernet, token ring).

e IP address of a next-hop router, or the IP address of a directly connected network.
A next-hop router is one that is on a directly connected network to which we can
send datagrams for delivery. The next-hop router is not the final destination, but
it takes the datagrams we send it and forwards them to the final destination.

e Flags. One flag specifies whether the destination IP address is the address of a
network or the address of a host. Another flag says whether the next-hop router
field is really a next-hop router or a directly connected interface. (We describe
each of these flags in Section 9.2.)

e Specification of which network interface the datagram should be passed to for
transmission.

IP routing is done on a hop-by-hop basis. As we can see from this routing table
information, IP does not know the complete route to any destination (except, of course,
those destinations that are directly connected to the sending host). All that IP routing
provides is the IP address of the next-hop router to which the datagram is sent. It is
assumed that the next-hop router is really “closer” to the destination than the sending
host is, and that the next-hop router is directly connected to the sending host.

Viptela, Inc. - Exhibit 1007
Page 60



Section 3.3 IP Routing 39

IP routing performs the following actions:

1. Search the routing table for an entry that matches the complete destination IP
address (matching network ID and host ID). If found, send the packet to the
indicated next-hop router or to the directly connected interface (depending on
the flags field). Point-to-point links are found here, for example, since the other
end of such a link is the other host’s complete IP address.

2. Search the routing table for an entry that matches just the destination network
ID. If found, send the packet to the indicated next-hop router or to the directly
connected interface (depending on the flags field). All the hosts on the destina-
tion network can be handled with this single routing table entry. All the hosts
on a local Ethernet, for example, are handled with a routing table entry of this

type.

This check for a network match must take into account a possible subnet mask,
which we describe in the next section.

3. Search the routing table for an entry labeled “default.” If found, send the packet
to the indicated next-hop router.

If none of the steps works, the datagram is undeliverable. If the undeliverable data-
gram was generated on this host, a “host unreachable” or “network unreachable” error
is normally returned to the application that generated the datagram.

A complete matching host address is searched for before a matching network ID.
Only if both of these fail is a default route used. Default routes, along with the ICMP
redirect message sent by a next-hop router (if we chose the wrong default for a data-
gram), are powerful features of IP’ routing that we'll come back to in Chapter 9.

The ability to specify a route to a network, and not have to specify a route to every
host, is another fundamental feature of IP routing. Doing this allows the routers on the
Internet, for example, to have a routing table with thousands of entries, instead of a
routing table with more than one million entries.

Examples

First consider a simple example: our host bsdi has an IP datagram to send to our host
sun. Both hosts are on the same Ethernet (see inside front cover). Figure 3.3 shows the
delivery of the datagram.

When IP receives the datagram from one of the upper layers it searches its routing
table and finds that the destination IP address (140.252.13.33) is on a directly connected
network (the Ethernet 140.252.13.0). A matching network address is found in the rout-
ing table. (In the next section we’ll see that because of subnetting the network address
of this Ethernet is really 140.252.13.32, but that doesn’t affect this discussion of routing.)

The datagram is passed to the Ethernet device driver, and sent to sun as an Ether-
net frame (Figure 2.1). The destination address in the IP datagram is Sun’s IP address
(140.252.13.33) and the destination address in the link-layer header is the 48-bit Ethernet
address of sun’s Ethernet interface. This 48-bit Ethernet address is obtained using ARP,
as we describe in the next chapter.

Viptela, Inc. - Exhibit 1007
Page 61



40

IP: Internet Protocol Chapter 3

destination network = bsdi
140.252.13.0 sdi : sun
.13.35T ; 1333
; Ethernet, 140,252.13 :
H !
y [link] IP '
™ hdr | hdr Foo

| Lo destIP =140252.13.33
t--3 dest Enet = Enet of 140.252.13.33

Figure 3.3 Deli\}ery of IP datagram from bsdi. to sun.

Now consider another example: bsdi has an IP datagram to send to the host
ftp.uu.net, whose IP address is 192.48.96.9. Figure 3.4 shows the path of the data-
gram through the first three routers. First bsdi searches its routing table but doesn’t
find a matching host entry or a matching network entry. It uses its default entry, which
tells it to send datagrams to sun, the next-hop router. When the datagram travels from
bsdi to sun the destination IP address is the final destination (192.48.96.9) but the link-
layer address is the 48-bit Ethernet address of sun’s Ethernet interface. Compare this
datagram with the one in Figure 3.3, where the destination IP address and the destina-
tion link-layer address specified the same host (sun).

When sun receives the datagram it realizes that the datagram’s destination IP
address is not one of its own, and sun is configured to act as a router, so it forwards the
datagram. Its routing table is searched and the default entry is used. The default entry
on sun tells it to send datagrams to the next-hop router netb, whose IP address is
140.252.1.183. The datagram is sent across the point-to-point SLIP link, using the mini-
mal encapsulation we showed in Figure 2.2. We don’t show a link-layer header, as we
do on the Ethernets, because there isn’t one on a SLIP link.

When netb receives the datagram it goes through the same steps that sun just did:
the datagram is not destined for one of its own IP addresses, and netb is configured to
act as a router, so the datagram is forwarded. The default routing table entry is used,
sending the datagram to the next-hop router gateway (140.252.1.4). ARP is used by
netb on the Ethernet 140.252.1 to obtain the 48-bit Ethernet address corresponding to
140.252.1.4, and that Ethernet address is the destination address in the link-layer header.

gateway goes through the same steps as the previous two routers and its default
routing table entry specifies 140.252.104.2 as the next-hop router. (We'll verify that this
is the next-hop router for gateway using Traceroute in Figure 8.4.)

A few key points come out in this example.

1. All the hosts and routers in this example used a default route. Indeed, most
hosts and some routers can use a default route for everything other than desti-
nations on local networks.

Viptela, Inc. - Exhibit 1007
Page 62



Section 3.3 1P Routing 41

Internet
¢--» dest Enet = Enet of 140.252.1.4
4 P -pdest IP = 192.48.96.9
{ | d
next hop = L_ link | IP
140.252.104.2 gateway [© T hdr | hdr
(default)
1.4
Ethernet, 140.252.1
next hop =
140.252.1.4
(default)
1P
hdr
L s dest IP = 192.48.96.9
next hop = next hop =
140.252.13.33 140.252.1.183
(default) (default)

Ethernet, 140.252.13

ink | IP | !
hdr | hdr oo

¢
(

| t--pdestIP=192.48.969
t--# dest Enet = Enet of 140.252.13.33

Figure 3.4 Initial path of datagram from bsdi to ftp.uu.net (192.48.96.9).

2. The destination IP address in the datagram never changes. (In Section 8.5 we'll
see that this is not true only if source routing is used, which is rare.) All the
routing decisions are based on this destination address.

3. A different link-layer header can be used on each link, and the link-layer desti-
nation address (if present) always contains the link-layer address of the next
hop. In our example both Ethernets encapsulated a link-layer header containing
the next-hop’s Ethernet address, but the SLIP link did not. The Ethernet
addresses are normally obtained using ARP.

In Chapter 9 we’ll look at IP routing again, after describing ICMP. We'll also look at
some sample routing tables and how they’re used for routing decisions.

Viptela, Inc. - Exhibit 1007
Page 63



42

IP: Internet Protocol Chapter 3

3.4

Subnet Addressing

All hosts are now required to support subnet addressing (RFC 950 [Mogul and Postel
1985]). Instead of considering an IP address as just a network ID and host ID, the host
ID portion is divided into a subnet ID and a host ID.

This makes sense because class A and class B addresses have too many bits allo-
cated for the host ID: 2% —2 and 2!6 -2, respectively. People don't attach that many
hosts to a single network. (Figure 1.5 [p. 8] shows the format of the different classes of
IP addresses.) We subtract 2 in these expressions because host IDs of all zero bits or all
one bits are invalid.

After obtaining an IP network ID of a certain class from the InterNIC, it is up to the
local system administrator whethet to subnet or not, and if so, how many bits to allo-
cate to the subnet ID and host ID. Por example, the internet used in this text has a
class B network address (140.252) and of the remaining 16 bits, 8 are for the subnet ID
and 8 for the host ID. This is shown in Figure 3.5.

16 bits 8 bits 8 bits
Class B ‘ netid = 140.252 subnetid hostid

Figure 3.5 Subnetting a class B address.

This division allows 254 subnets, with 254 hosts per subnet.

Many administrators use the natural 8-bit boundary in the 16 bits of a class B host
ID as the subnet boundary. This makes it easier to determine the subnet ID from a dot-
ted-decimal number, but there is no requirement that the subnet boundary for a class A
or class B address be on a byte boundary.

Most examples of subnetting describe it using a class B address. Subnetting is also
allowed for a class C address, but there are fewer bits to work with. Subnetting is rarely
shown with a class A address because there are so few class A addresses. (Most class A
addresses are, however, subnetted.)

Subnetting hides the details of internal network organization (within a company or
campus) to external routers. Using our example network, all IP addresses have the
class B network ID of 140.252. But there are more than 30 subnets and more than 400
hosts distributed over those subnets. A single router provides the connection to the
Internet, as shown in Figure 3.6.

In this figure we have labeled most of the routers as Rn, where n is the subnet num-
ber. We show the routers that connect these subnets, along with the nine systems from
the figure on the inside front cover. The Ethernets are shown as thicker lines, and the
point-to-point links as dashed lines. We do not show all the hosts on the various sub-
nets. For example, there are more than 50 hosts on the 140.252.3 subnet, and more than
100 on the 140.252.1 subnet.

The advantage to using a single class B address with 30 subnets, compared to 30
class C addresses, is that subnetting reduces the size of the Internet’s routing tables.
The fact that the class B address 140.252 is subnetted is transparent to all Internet
routers other than the ones within the 140.252 subnet. To reach any host whose IP

Viptela, Inc. - Exhibit 1007
Page 64



Section 3.5 Subnet Mask 43

.57.0

192.68.189.0  .82.0 R57

.52.0 .53.0 .54.0 .55.0 .58.0 .60.0

wo w2 T [ T 7

N / R52 R53 R54 R55 R58 R60

\ 7/
| T T
.81.0 51.0
T
I
I
Internet <—1é0—'2§ 2—19 431 gate
way
14 1.0 1. L
. 1183
R2 R3 R6 R8 R10 netb
| \ ;N
/ \
2.0 4.0 6.0 7.0 8.0 9.0 10.0 A1.0 / \
/1.29 \
. ].13.65 ,
slip " TRE bsdi| |[svrd sun R12
13.35 13.34 13.33
13.0 12,0

Figure 3.6 Arrangement of most of the noao . edu 140.252 subnets.

address begins with 140.252, the external routers only need to know the path to the IP
address 140.252.104.1. This means that only one routing table entry is needed for all the
140.252 networks, instead of 30 entries if 30 class C addresses were used. Subnetting,
therefore, reduces the size of routing tables. (In Section 10.8 we’ll look at a new tech-
nique that helps reduce the size of routing tables even if class C addresses are used.)

To show that subnetting is not transparent to routers within the subnet, assume in
Figure 3.6 that a datagram arrives at gateway from the Internet with a destination
address of 140.252.57.1. The router gateway needs to know that the subnet number is
57, and that datagrams for this subnet are sent to kpno. Similarly kpno must send the
datagram to R55, who then sends it to R57.

3.5 Subnet Mask

Part of the configuration of any host that takes place at bootstrap time is the specifica-
tion of the host’s IP address. Most systems have this stored in a disk file that’s read at
bootstrap time, and we'll see in Chapter 5 how a diskless system can also find out its IP
address when it’s bootstrapped.

Viptela, Inc. - Exhibit 1007
Page 65



44  IP: Internet Protocol Chapter 3

In addition to the IP address, a host also needs to know how many bits are to be
used for the subnet ID and how many bits are for the host ID. This is also specified at
bootstrap time using a subnet mask. This mask is a 32-bit value containing one bits for
the network ID and subnet ID, and zero bits for the host ID. Figure 3.7 shows the for-
mation of the subnet mask for two different partitions of a class B address. The top
example is the partitioning used at noao.edu, shown in Figure 3.5, where the subnet
ID and host ID are both 8 bits wide. The lower example shows a class B address parti-
tioned for a 10-bit subnet ID and a 6-bit host ID.

16 bits 8 bits 8 bits
Class B ‘ netid —‘ subnetid ‘ hostid ‘
Subnetmask: 11111111 111211111 11111111 00000000 =0xEFELFFO0
= 255.255,255.0
16 bits 10 bits 6 bits
Class B ( netid { subnetid [ hostid [
Subnetmask: 11111111 1111121111111 111 11 000000 =0xEFFfffcod
= 255.255,255.192

Figure 3.7 Example subnet masks for two different class B subnet arrangements.

Although IP addresses are normally written in dotted-decimal notation, subnet masks
are often written in hexadecimal, especially if the boundary is not a byte boundary,
since the subnet mask is a bit mask.

Given its own IP address and its subnet mask, a host can determine if an IP data-
gram is destined for (1) a host on its own subnet, (2) a host on a different subnet on its
own network, or (3) a host on a different network. Knowing your own IP address tells
you whether you have a class A, B, or C address (from the high-order bits), which tells
you where the boundary is between the network ID and the subnet ID. The subnet
mask then tells you where the boundary is between the subnet ID and the host ID.

Example

Assume our host address is 140.252.1.1 (a class B address) and our subnet mask is
255.255.255.0 (8 bits for the subnet ID and 8 bits for the host ID).

e [f a destination IP address is 140.252.4.5, we know that the class B network IDs
are the same (140.252), but the subnet IDs are different (1 and 4). Figure 3.8
shows how this comparison of two IP addresses is done, using the subnet mask.

e If the destination IP address is 140.252.1.22, the class B network IDs are the same
(140.252), and the subnet IDs are the same (1). The host IDs, however, are differ-
ent,

¢ If the destination IP address is 192.43.235.6 (a class C address), the network IDs
are different. No further comparisons can be made against this address.

Viptela, Inc. - Exhibit 1007
Page 66



Section 3.6 Special Case IP Addresses 45

end of end of
class B specified
network ID subnet ID
16 bits * 8 bits * 8 bits
Class B 140 ‘ 252 1 1

Subnetmask;; 1 1111111 111211111,11111111

| 0000000 0 =255255255.0

! network IDs equal ! subnet IDs '
b g g
! | not equal I

Class B 140 | 252 4 5 |

Figure 3.8 Comparison of two class B addresses using a subnet mask.

The IP routing function makes comparisons like this all the time, given two IP addresses
and a subnet mask.

3.6 Special Case IP Addresses

Having described subnetting we now show the seven special case IP addresses in Fig-
ure 3.9. In this figure, 0 means a field of all zero bits, —1 means a field of all one bits, and
netid, subnetid, and hostid mean the corresponding field that is neither all zero bits nor all
one bits. A blank subnet ID column means the address is not subnetted.

IP address Can appear as Description
netID | subnetID | hostID | source? | destination?
0 0 OK never this host on this net (see restrictions below)
0 hostid OK never specified host on this net (see restrictions below)
127 anything OK OK loopback address (Section 2.7) J
-1 -1 never OK limited broadcast (never forwarded) ‘
netid -1 never OK net-directed broadcast to netid
netid subnetid -1 never OK subnet-directed broadcast to netid, subnetid
netid ~1 -1 never OK all-subnets-directed broadcast to netid

Figure 3.9 Special case IP addresses.

We have divided this table into three sections. The first two entries are special case
source addresses, the next one is the special loopback address, and the final four are the
broadcast addresses.

The first two entries in the table, with a network ID of 0, can only appear as the
source address as part of an initialization procedure when a host is determining its own
IP address, for example, when the BOOTP protocol is being used (Chapter 16).

In Section 12.2 we’ll examine the four types of broadcast addresses in more detail.

[

)

Viptela, Inc. - Exhibit 1007
Page 67



46

IP: Internet Protocol Chapter 3

3.7

A Subnet Example

This example shows the subnet used in the text, and how two different subnet masks
are used. Figure 3.10 shows the arrangement.

Internet
T140.252.104.1
gateway
TA Ethernet, subnet 140.252.1
T T T T T T T T T T T T T T T T S T T T T — s — s s s e s T T s = 1
| 140.252.1.29 I
I I
| , SLIP , !
| slip &5 subnet @ bsdi sun svré |
I - I
| 140.252.13.64 T'35 T'B?’ &7 |
I I
| Ethernet, subnet 140.252.13.32 i
L o e i

author’s subnet: 140.252.13

Figure 3.10 Arrangement of hosts and networks for author’s subnet.

If you compare this figure with the one on the inside front cover, you'll notice that
we’ve omitted the detail that the connection from the router sun to the top Ethernet in
Figure 3.10 is really a dialup SLIP connection. This detail doesn’t affect our description
of subnetting in this section. We’ll return to this detail in Section 4.6 when we describe
proxy ARP.

The problem is that we have two separate networks within subnet 13: an Ethernet
and a point-to-point link (the hardwired SLIP link). (Point-to-point links always cause
problems since each end normally requires an IP address.) There could be more hosts
and networks in the future, but not enough hosts across the different networks to justify
using another subnet number. Our solution is to extend the subnet ID from 8 to 11 bits,
and decrease the host ID from 8 to 5 bits. This is called variable-length subnets since most
networks within the 140.252 network use an 8-bit subnet mask while our network uses
an 11-bit subnet mask.

RFC 1009 [Braden and Postel 1987] allows a subnetted network to use more than one subnet
mask. The new Router Requirements REC [Almquist 1993] requires support for this.

The problem, however, is that not all routing protocols exchange the subnet mask along with
the destination network ID. We'll see in Chapter 10 that RIP does not support variable-length
subnets, while RIP Version 2 and OSPF do. We don’t have a problem with our example, since
RIP isn’t required on the author’s subnet.

Figure 3.11 shows the IP address structure used within the author’s subnet. The
first 8 bits of the 11-bit subnet ID are always 13 within the author’s subnet. For the
remaining 3 bits of the subnet ID, we use binary 001 for the Ethernet, and binary 010 for

Viptela, Inc. - Exhibit 1007
Page 68



Section 3.8 ifconfig Command 47

3.8

16 bits < 1lbits—®  5bits
Class B [ net ID = 140.252 subnetID | hostID
a 5128643216 8 4 2 1
8 bits =13
Subnetmask: 11111111 11111111 11111111 111 0000 0=0xffffffed
= 255.255.255.224

Figure 3,11 Using variable-length subnets,

the point-to-point SLIP link. This variable-length subnet mask does not cause a prob-
lem for other hosts and routers in the 140.252 network—as long as all datagrams des-
tined for the subnet 140.252.13 are sent to the router sun (IP address 140.252.1.29) in
Figure 3.10, and if sun knows about the 11-bit subnet ID for the hosts on its subnet 13,
everything is fine.

The subnet mask for all the interfaces on the 140.252.13 subnet is 255.255.255.224, or
Oxff££ffe0. This indicates that the rightmost 5 bits are for the host ID, and the 27 bits
to the left are the network ID and subnet ID.

Figure 3.12 shows the allocation of IP addresses and subnet masks for the interfaces
shown in Figure 3.10.

Host IP address Subnet mask Net ID/Subnet ID | Host ID Comment

sun 140.252.1.29 255.255.255.0 140.252.1 29 on subnet 1
140.252,13.33 | 255.255.255.224 140.252.13.32 1 on author’s Ethernet

svrd | 140.252.13.34 | 255.255.255.224 140.252.13.32 2

bsdi | 140.252.13.35 | 255.255.255.224 140.252.13.32 3 on Ethernet
140.252.13.66 | 255.255.255.224 140.252.13.64 2 point-to-point

slip | 140.252.13.65 | 255.255.255.224 140.252.13.64 1 point-to-point
140.252.13.63 | 255.255.255.224 140.252.13.32 31 broadcast addr on Ethernet

Figure 3.12 IP addresses on author’s subnet.

The first column is labeled “Host,” but both sun and bsdi also act as routers, since
they are multihomed and route packets from one interface to another.

The final row in this table notes that the broadcast address for the bottom Ethernet
in Figure 3.10 is 140.252.13.63: it is formed from the subnet ID of the Ethernet
(140.252.13.32) and the low-order 5 bits in Figure 3.11 set to 1 (16+8+4+2+1=31).
(We'll see in Chapter 12 that this address is called the subnet-directed broadcast
address.)

ifconfig Command

Now that we've described the link layer and the IP layer we can show the command
used to configure or query a network interface for use by TCP/IP. The ifconfig(8)
command is normally run at bootstrap time to configure each interface on a host.

Viptela, Inc. - Exhibit 1007
Page 69



48 IP: Internet Protocol Chapter 3

For dialup interfaces that may go up and down (such as SLIP links), ifconfig
must be run (somehow) each time the line is brought up or down. How this is done
each time the SLIP link is brought up or down depends on the SLIP software being
used.

The following output shows the values for the author’s subnet. Compare these val-
ues with the values in Figure 3.12.

sun % /usr/etc/ifconfig -a SunOS -a option says report on all interfaces
le0: flags=63<UP,BROADCAST,NOTRAILERS, RUNNING>

inet 140.252.13.33 netmask ffffffe0 broadcast 140.252.13.63
s10: flags=1051<UP,POINTOPOINT, RUNNING, LINKO>

inet 140.252.1.29 ——> 140.252.1.183 netmask ff££££f00
lo0: flags=49<UP, LOOPBACK, RUNNING>

inet 127.0.0.1 netmask ££000000

The loopback interface (Section 2.7) is considered a network interface. Its class A
address is not subnetted.

Other things to notice are that trailer encapsulation (Section 2.3) is not used on the
Ethernet, and that the Ethernet is capable of broadcasting, while the SLIP link is a point-
to-point link.

The flag LINKO for the SLIP interface is the configuration option that enables com-
pressed slip (CSLIP, Section 2.5). Other possible options are LINK1, which enables
CSLIP if a compressed packet is received from the other end, and LINK2, which causes
all outgoing ICMP packets to be thrown away. We'll look at the destination address of
this SLIP link in Section 4.6.

A comment in the installation instructions gives the reason for this last option: “This shouldn’t
have to be set, but some cretin pinging you can drive your throughput to zero.”

bsdi is the other router. Since the —a option is a SunOS feature, we have to execute
ifconfig multiple times, specifying the interface name as an argument:
bsdi % /sbin/ifconfig wel
wel: flags=863<UP, BROADCAST, NOTRAILERS, RUNNING, SIMPLEX>
inet 140.252.13.35 netmask ffffffel broadcast 140.252.13.63
bsdi % /sbin/ifconfig sl0
s10: flags=1011<UP, POINTOPOINT, LINKO>
inet 140.252.13.66 ——> 140.252.13.65 netmask ffffffel

Here we see a new option for the Ethernet interface (we0): SIMPLEX. This 44BSD flag
specifies that the interface can’t hear its own transmissions. It is set in BSD/386 for all
the Ethernet interfaces. When set, if the interface is sending a frame to the broadcast
address, a copy is made for the local host and sent to the loopback address. (We show
an example of this feature in Section 6.3.)

On the host slip the configuration of the SLIP interface is nearly identical to the
output shown above on bsdi, with the exception that the IP addresses of the two ends
are swapped.:

slip % /sbin/ifconfig sl0

510: flags=1011<UP, POINTOPOINT, LINKO>
inet 140.252.13.65 —-—> 140.252.13.66 netmask ffffffel

Viptela, Inc. - Exhibit 1007
Page 70



Section 3.10 IP Futures 49

3.9

3.10

The final interface is the Ethernet interface on the host svr4. It is similar to the
Ethernet output shown earlier, except that SVR4’s version of ifconfig doesn’t print
the RUNNING flag:

svrd % /usr/sbin/ifconfig emdO

emd0: flags=23<UP, BROADCAST, NOTRAILERS>
inet 140.252.13.34 netmask ffffffel broadcast 140.252.13.63

The ifconfig command normally supports other protocol families (other than
TCP/IP) and has numerous additional options. Check your system’s manual for these
details.

netstat Command

The netstat(l) command also provides information about the interfaces on a system.
The -1 flag prints the interface information, and the -n flag prints IP addresses instead
of hostnames.

Q.

sun % netstat —-in

Name Mtu Net/Dest Address Ipkts 1Ierrs Opkts Oerrs Collis Queue
le0 1500 140.252.13.32 140.252.13.33 67719 0 92133 0 1 0
s10 552 140.252.1.183 140.252.1.29 48035 0 54963 0 0 0
100 1536 127.0.0.0 127.0.0.1 15548 0 15548 0 0 0

This command prints the MTU of each interface, the number of input packets, input
errors, output packets, output errors, collisions, and the current size of the output
queue.

We'll return to the netstat command in Chapter 9 when we use it to examine the
routing table, and in Chapter 13 when we use a modified version to see active multicast
groups.

IP Futures

There are three problems with IP. They are a result of the phenomenal growth of the
Internet over the past few years. (See Exercise 1.2 also.)

1. Over half of all class B addresses have already been allocated. Current estimates
predict exhaustion of the class B address space around 1995, if they continue to
be allocated as they have been in the past.

2. 32-bit IP addresses in general are inadequate for the predicted long-term growth
of the Internet.

3. The current routing structure is not hierarchical, but flat, requiring one routing
table entry per network. As the number of networks grows, amplified by the
allocation of multiple class C addresses to a site with multiple networks, instead
of a single class B address, the size of the routing tables grows.

Viptela, Inc. - Exhibit 1007
Page 71



50

IP: Internet Protocol Chapter 3

3.11

CIDR (Classless Interdomain Routing) proposes a fix to the third problem that will
extend the usefulness of the current version of IP (IP version 4) into the next century.
We discuss it in more detail in Section 10.8.

Four proposals have been made for a new version of IP, often called IPng, for the
next generation of IP. The May 1993 issue of IEEE Network (vol. 7, no. 3) contains
overviews of the first three proposals, along with an article on CIDR. RFC 1454 [Dixon
1993] also compares the first three proposals.

1. SIP, the Simple Internet Protocol. It proposes a minimal set of changes to IP that
uses 64-bit addresses and a different header format. (The first 4 bits of the
header still contain the version number, with a value other than 4.)

2. PIP. This proposal also uses larger, variable-length, hierarchical addresses with
a different header format.

3. TUBA, which stands for “TCP and UDP with Bigger Addresses,” is based on the
OSI CLNP (Connectionless Network Protocol), an OSI protocol similar to IP. It
provides much larger addresses: variable length, up to 20 bytes. Since CLNP is
an existing protocol, whereas SIP and PIP are just proposals, documentation
already exists on CLNP. RFC 1347 [Callon 1992] provides details on TUBA.
Chapter 7 of [Perlman 1992] contains a comparison of IPv4 and CLNP. Many
routers already support CLNP, but few hosts do.

4. TP/IX, which is described in RFC 1475 [Ullmann 1993]. As with SIP, it uses
64 bits for IP addresses, but it also changes the TCP and UDP headers: 32-bit
port number for both protocols, along with 64-bit sequence numbers, 64-bit
acknowledgment numbers, and 32-bit windows for TCP.

The first three proposals use basically the same versions of TCP and UDP as the trans-
port layers.

Since only one of these four proposals will be chosen as the successor to IPv4, and
since the decision may have been made by the time you read this, we won’t say any
more about them. With the forthcoming implementation of CIDR to handle the short-
term problem, it will take many years to implement the successor to IPv4.

Summary

We started this chapter with a description of the IP header and briefly described all the
fields in this header. We also gave an introduction to IP routing, and saw that host rout-
ing can be simple: the destination is either on a directly connected network, in which
case the datagram is sent directly to the destination, or a default router is chosen.

Hosts and routers have a routing table that is used for all routing decisions. There
are three types of routes in the table: host specific, network specific, and optional default
routes. There is a priority to the entries in a routing table. A host route will be chosen
over a network router, and a default route is used only when no other route exists to the
destination.

Viptela, Inc. - Exhibit 1007
Page 72



Chapter 3 Exercises 51

IP routing is done on a hop-by-hop basis. The destination IP address never changes
as the datagram proceeds through all the hops, but the encapsulation and destination
link-layer address can change on each hop. Most hosts and many routers use a default
next-hop router for all nonlocal traffic.

Class A and B addresses are normally subnetted. The number of bits used for the
subnet ID is specified by the subnet mask. We gave a detailed example of this, using the
author’s subnet, and introduced variable-length subnets. The use of subnetting reduces
the size of the Internet routing tables, since many networks can often be accessed
through a single point. Information on the interfaces and networks is available through
the i feconfig and netstat commands. This includes the IP address of the interface,
its subnet mask, broadcast address, and MTU.

We finished the chapter with a discussion of potential changes to the Internet proto-
col suite-the next generation of IP.

Exercises

31 Must the loopback address be 127.0.0.1?
3.2 Identify the routers in Figure 3.6 with more than two network interfaces.

3.3 What's the difference in the subnet mask for a class A address with 16 bits for the subnet ID
and a class B address with 8 bits for the subnet ID?

3.4 Read RFC 1219 [Tsuchiya 1991] for a recommended technique for assigning subnet IDs and
host IDs.

3,5 Isthe subnet mask 255.255.0.255 valid for a class A address?
3.6  Why do you think the MTU of the loopback interface printed in Section 3.9 is set to 1536?

3.7 The TCP/IP protocol suite is built on a datagram network technology, the IP layer. Other
protocol suites are built on a connection-oriented network technology. Read [Clark 1988] to
discover the three advantages the datagram network layer provides.

Viptela, Inc. - Exhibit 1007
Page 73



ARP: Address Resolution
Protocol

Introduction

The problem that we deal with in this chapter is that IP addresses only make sense to
the TCP/IP protocol suite. A data link such as an Ethernet or a token ring has its own
addressing scheme (often 48-bit addresses) to which any network layer using the data
link must conform. A network such as an Ethernet can be used by different network
layers at the same time. For example, a collection of hosts using TCP/IP and another
collection of hosts using some PC network software can share the same physical cable.

When an Ethernet frame is sent from one host on a LAN to anothey, it is the 48-bit
Ethernet address that determines for which interface the frame is destined. The device
driver software never looks at the destination IP address in the IP datagram.

Address resolution provides a mapping between the two different forms of
addresses: 32-bit IP addresses and whatever type of address the data link uses. RFC 826
[Plummer 1982] is the specification of ARP.

Figure 4.1 shows the two protocols we talk about in this chapter and the next: ARP
(address resolution protocol) and RARP (reverse address resolution protocol).

32-bit Internet address

ARPl TRARP

48-bit Ethernet address
Figure 4.1 Address resolution protocols: ARP and RARP.

53
Viptela, Inc. - Exhibit 1007
Page 74



54

ARP: Address Resolution Protocol Chapter 4

4.2

ARP provides a dynamic mapping from an IP address to the corresponding hardware
address. We use the term dynamic since it happens automatically and is normally not a
concern of either the application user or the system administrator.

RARP is used by systems without a disk drive (normally diskless workstations or X
terminals) but requires manual configuration by the system administrator. We describe
it in Chapter 5.

An Example

Whenever we type a command of the form

% ftp bsdi

the following steps take place. These numbered steps are shown in Figure 4.2.

1. The application, the FIP client, calls the function gethostbyname(3) to convert
the hostname (bsdi) into its 32-bit IP address. This function is called a resolver
in the DNS (Domain Name System), which we describe in Chapter 14. This con-
version is done using the DNS, or on smaller networks, a static hosts file
(/etc/hosts).

2. The FTP client asks its TCP to establish a connection with that IP address.

3. TCP sends a connection request segment to the remote host by sending an 1P
datagram to its IP address. (We'll see the details of how this is done in Chap-
ter 18.)

4. If the destination host is on a locally attached network (e.g., Ethernet, token
ring, or the other end of a point-to-point link), the IP datagram can be sent
directly to that host. If the destination host is on a remote network, the IP rout-
ing function determines the Internet address of a locally attached next-hop
router to send the IP datagram to. In either case the IP datagram is sent to a
host or router on a locally attached network.

5. Assuming an Ethernet, the sending host must convert the 32-bit IP address into
a 48-bit Ethernet address. A translation is required from the logical Internet
address to its corresponding physical hardware address. This is the function of
ARP.

ARP is intended for broadcast networks where many hosts or routers are con-
nected to a single network.

6. ARP sends an Ethernet frame called an ARP request to every host on the net-
work. This is called a broadcast. We show the broadcast in Figure 4.2 with
dashed lines. The ARP request contains the IP address of the destination host
(whose name is bsdi) and is the request “if you are the owner of this IP
address, please respond to me with your hardware address.”

Viptela, Inc. - Exhibit 1007
Page 75



Section 4.2 An Example 55

hostname
hostname
resolver @ FIP
IP addr™
@) establish connection
\ with IP address
TCP
3) send IP datagram
,to IP address
P
ARP )
(5)
T
©, 1909

T

| Ethernet

! driver

i

ARP request (Ethernet broadcast) i
| e T T - T
I I
T T
| I
i T
! Ethernet I Ethernet
I . I .
| driver | driver
| ]
I l
I ]
)
ARP ARP P
|
TCP

Figure 4.2 Operation of ARP when user types “ftp hostname”.

7. The destination host’s ARP layer receives this broadcast, recognizes that the
sender is asking for its hardware address, and replies with an ARP reply. This
reply contains the IP address and the corresponding hardware address.

8. The ARP reply is received and the IP datagram that forced the ARP
request-reply to be exchanged can now be sent.

9. The IP datagram is sent to the destination host.

Viptela, Inc. - Exhibit 1007
Page 76



56

ARP: Address Resolution Protocol Chapter 4

4.3

4.4

The fundamental concept behind ARP is that the network interface has a hardware
address (a 48-bit value for an Ethernet or token ring interface). Frames exchanged at the
hardware level must be addressed to the correct interface. But TCP/IP works with its
own addresses: 32-bit IP addresses. Knowing a host’s IP address doesn’t let the kernel
send a frame to that host. The kernel (i.e., the Ethernet driver) must know the destina-
tion’s hardware address to send it data. The function of ARP is to provide a dynamic
mapping between 32-bit IP addresses and the hardware addresses used by various net-
work technologies.

Point-to-point links don’t use ARP. When these links are configured (normally at
bootstrap time) the kernel must be told of the IP address at each end of the link. Hard-
ware addresses such as Ethernet addresses are not involved.

ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache on each
host. This cache maintains the recent mappings from Internet addresses to hardware
addresses. The normal expiration time of an entry in the cache is 20 minutes from the
time the entry was created.

We can examine the ARP cache with the arp(8) command. The —a option displays
all entries in the cache:

bsdi % arp =-a

sun (140.252.13.33) at 8:0:20:3:£6:42

svrd (140.252.13.34) at 0:0:c0:¢c2:9b:26

The 48-bit Ethernet addresses are displayed as six hexadecimal numbers separated by
colons. We discuss additional features of the arp command in Section 4.8.

ARP Packet Format

Figure 4.3 shows the format of an ARP request and an ARP reply packet, when used on
an Ethernet to resolve an IP address. (ARP is general enough to be used on other net-
works and can resolve addresses other than IP addresses. The first four fields following
the frame type field specify the types and sizes of the final four fields.)

hard size
I——> prot size '
Ethernet Ethernet frame| hard | prot T sender sender target target
destination addr| source addrg[ typj type | type %P | Bhernetaddr | IPaddr | Ethemetaddr | IPaddr
6 6 2 2 2 11 2 6 4 6 4
’4—- Ethernet header >|’<..-' 28 byte ARP request/reply >

Figure 4.3 Format of ARP request or reply packet when used on an Ethernet.

The first two fields in the Ethernet header are the source and destination Ethernet
addresses. The special Ethernet destination address of all one bits means the broadcast
address. All Ethernet interfaces on the cable receive these frames.

Viptela, Inc. - Exhibit 1007
Page 77



Section 4.5 ARP Examples 57

4.5

The 2-byte Ethernet frame type specifies the type of data that follows. For an ARP
request or an ARP reply, this field is 0x0806.

The adjectives hardware and protocol are used to describe the fields in the ARP pack-
ets. For example, an ARP request asks for the hardware address (an Ethernet address in
this case) corresponding to a protocol address (an IP address in this case).

The hard type field specifies the type of hardware address. Its value is 1 for an Ether-
net. Prot type specifies the type of protocol address being mapped. Its value is 0x0800
for IP addresses. This is purposely the same value as the type field of an Ethernet frame
containing an IP datagram. (See Figure 2.1, p. 23.)

The next two 1-byte fields, hard size and prot size, specify the sizes in bytes of the
hardware addresses and the protocol addresses. For an ARP request or reply for an IP
address on an Ethernet they are 6 and 4, respectively.

The op field specifies whether the operation is an ARP request (a value of 1), ARP
reply (2), RARP request (3), or RARP reply (4). (We talk about RARP in Chapter 5.)
This field is required since the frame type field is the same for an ARP request and an
ARP reply.

The next four fields that follow are the sender’s hardware address (an Ethernet
address in this example), the sender’s protocol address (an IP address), the target hard-
ware address, and the target protocol address. Notice there is some duplication of infor-
mation: the sender’s hardware address is available both in the Ethernet header and in
the ARP request.

For an ARP request all the fields are filled in except the target hardware address.
When a system receives an ARP request directed to it, it fills in its hardware address,
swaps the two sender addresses with the two target addresses, sets the op field to 2, and
sends the reply.

ARP Examples

In this section we'll use the tcpdump command to see what really happens with ARP
when we execute normal TCP utilities such as Telnet. Appendix A contains additional
details on the tcpdump program.

Normal Example

To see the operation of ARP we’ll execute the telnet command, connecting to the dis-
card server.

bsdi % arxp -a verify ARP cache is empty

bsdi % telnet svrd discard connect to the discard server

Trying 140.252.13.34...

Connected to svr4d,

Escape character is '"]'.

"1 type Control, right bracket to get Telnet client prompt
telnet> quit and terminate

Connection closed.

Viptela, Inc. - Exhibit 1007
Page 78



" 58

ARP: Address Resolution Protocol Chapter 4

While this is happening we run the tcpdump command on another system (sun) with
the —e option. This displays the hardware addresses (which in our examples are 48-bit
Ethernet addresses).

1 0.0 0:0:c0:6£:2d:40 ff:ff:ff:£f:f£:ff arp 60:
arp who—has svr4 tell bsdi

2 0.002174 (0.0022) 0:0:c0:¢2:90:26 0:0:c0:6£:2d:40 arp 60:
arp reply svrd is-at 0:0:c0:c2:9b:26

3 0.002831 (0,0007) 0:0:c0:6f£:2d:40 0:0:c0:c2:9b:26 ip 60:
bsdi.1030 > svrd.discard: S 596459521:596459521 (0)
win 4096 <mss 1024> [tos 0x10]

4 0.007834 (0.0050) 0:0:c0:c2:9b:26 0:0:c0:6£:2d:40 ip 60:
svrd.discard > bsdi.1030: S 3562228225:3562228225(0)
ack 596459522 win 4096 <mss 1024>

5 0.009615 (0.0018) 0:0:c0:6£:2d:40 0:0:¢c0:c2:9b:26 ip 60:
bsdi.1030 > svréd.discard: . ack 1 win 4096 [tos 0x10]

Figure 4.4 ARP request and ARP reply generated by TCP connection request.

Figure A.3 in Appendix A contains the raw output from tcpdump used for Figure 4.4.
Since this is the first example of tcpdump output in the text, you should review that
appendix to see how we’ve beautified the output.

We have deleted the final four lines of the tcpdump output that correspond to the
termination of the connection (which we cover in Chapter 18), since they're not relevant
to the discussion here.

In line 1 the hardware address of the source (bsdi) is 0:0:c0:6£:2d:40. The
destination hardware address is ££: £f; ££: £f: £f: ££, which is the Ethernet broadcast
address. Every Ethernet interface on the cable will receive the frame and process it, as
shown in Figure 4.2.

The next output field on line 1, arp, means the frame type field is 0x0806, specify-
ing either an ARP request or an ARP reply.

The value 60 printed after the words arp and ip on each of the five lines is the
length of the Ethernet frame. Since the size of an ARP request and ARP reply is 42 bytes
(28 bytes for the ARP message, 14 bytes for the Ethernet header), each frame has been
padded to the Ethernet minimum: 60 bytes.

Referring to Figure 1.7, this minimum of 60 bytes starts with and includes the
14-byte Ethernet header, but does not include the 4-byte Ethernet trailer. Some books
state the minimum as 64 bytes, which includes the Ethernet trailer. We purposely did
not include the 14-byte Ethernet header in the minimum of 46 bytes shown in Fig-
ure 1.7, since the corresponding maximum (1500 bytes) is what's referred to as the
MTU—maximum transmission unit (Figure 2.5). We use the MTU often, because it lim-
its the size of an IP datagram, but are normally not concerned with the minimum. Most
device drivers or interface cards automatically pad an Ethernet frame to the minimum
size. The IP datagrams on lines 3, 4, and 5 (containing the TCP segments) are all smaller
than the minimum, and have also been padded to 60 bytes.

The next field on line 1, arp who-has, identifies the frame as an ARP request with
the IP address of svr4 as the target IP address and the IP address of bsdi as the sender

Viptela, Inc. - Exhibit 1007
Page 79



Section 4.5 ARP Examples 59

IP address. tcpdump prints the hostnames corresponding to the IP address by default.
(We'll use the -n option in Section 4.7 to see the actual IP addresses in an ARP request.)

From line 2 we see that while the ARP request is broadcast, the destination address
of the ARP reply is bsdi (0:0:c0:6£:2d:40). The ARP reply is sent directly to the
requesting host; it is not broadcast.

tepdump prints arp reply for this frame, along with the hostname and hardware
address of the responder.

Line 3 is the first TCP segment requesting that a connection be established. Its des-
tination hardware address is the destination host (svr4). We'll cover the details of this
segment in Chapter 18.

The number printed after the line number on each line is the time (in seconds) when
the packet was received by tcpdump. Each line other than the first also contains the
time difference (in seconds) from the previous line, in parentheses. We can see in this
figure that the time between sending the ARP request and receiving the ARP reply is 2.2
ms. The first TCP segment is sent 0.7 ms after this. The overhead involved in using
ARP for dynamic address resolution in this example is less than 3 ms.

A final point from the tcpdump output is that we don’t see an ARP request from
svr4 before it sends its first TCP segment (line 4). While it’s possible that svr4 already
had an entry for bsdi in its ARP cache, normally when a system receives an ARP
request addressed to it, in addition to sending the ARP reply it also saves the
requestor’s hardware address and IP address in its own ARP cache. This is on the logi-
cal assumption that if the requestor is about to send it an IP datagram, the receiver of
the datagram will probably send a reply.

ARP Request to a Nonexistent Host

What happens if the host being queried for is down or nonexistent? To see this we spec-
ify a nonexistent Internet address—the network ID and subnet ID are that of the local
Ethernet, but there is no host with the specified host ID. From Figure 3.10 we see the
host IDs 36 through 62 are nonexistent (the host ID of 63 is the broadcast address). We'll
use the host ID 36 in this example.
telnet to an address this time, not a hostname

bsdi % date ; telnet 140.252.13.36 ; date

Sat Jan 30 06:46:33 MST 1993

Trying 140.252.13.36...

telnet: Unable to connect to remote host: Connection timed out

Sat Jan 30 06:47:49 MST 1993 76 seconds after previous date output

bsdi % arp -a check the ARP cache
? (140.252.13.36) at (incomplete)

Figure 4.5 shows the tcpdump output.

1 0.0 arp who-has 140.252.13.36 tell bsdi
2 5.509069 ( 5.5091) arp who-has 140.252.13.36 tell bsdi
3 29.509745 (24.0007) arp who-has 140.252,13.36 tell bsdi

Figure 4.5 ARP requests to a nonexistent host.

Viptela, Inc. - Exhibit 1007
Page 80



60

ARP: Address Resolution Protocol Chapter 4

This time we didn’t specify the —e option since we already know that the ARP requests
are broadcast.

What's interesting here is to see the frequency of the ARP requests: 5.5 seconds after
the first request, then again 24 seconds later. (We examine TCP’s timeout and retrans-
mission algorithms in more detail in Chapter 21.) The total time shown in the tcpdump
output is 29.5 seconds. But the output from the date commands before and after the
telnet command shows that the connection request from the Telnet client appears to
have given up after about 75 seconds. Indeed, we’ll see later that most BSD implemen-
tations set a limit of 75 seconds for a TCP connection request to complete.

In Chapter 18 when we see the sequence of TCP segments that is sent to establish
the connection, we'll see that these ARP requests correspond one-to-one with the initial
TCP SYN (synchronize) segment that TCP is trying to send.

Note that on the wire we never see the TCP segments. All we can see are the ARP
requests. Until an ARP reply comes back, the TCP segments can’t be sent, since the des-
tination hardware address isn’t known. If we ran tcpdump in a filtering mode, looking
only for TCP data, there would have been no output at all.

ARP Cache Timeout

4.6

A timeout is normally provided for entries in the ARP cache. (In Section 4.8 we’ll see
that the arp command allows an entry to be placed into the cache by the administrator
that will never time out.) Berkeley-derived implementations normally have a timeout
of 20 minutes for a completed entry and 3 minutes for an incomplete entry. (We saw an
incomplete entry in our previous example where we forced an ARP to a nonexistent
host on the Ethernet) These implementations normally restart the 20-minute timeout
for an entry each time the entry is used.

The Host Requirements RFC says that this timeout should occur even if the entry is in use, but
most Berkeley-derived implementations do not do this—they restart the timeout each time the
entry is referenced.

Proxy ARP

Proxy ARP lets a router answer ARP requests on one of its networks for a host on
another of its networks. This fools the sender of the ARP request into thinking that the
router is the destination host, when in fact the destination host is “on the other side” of
the router. The router is acting as a proxy agent for the destination host, relaying pack-
ets to it from other hosts.

An example is the best way to describe proxy ARP. In Figure 3.10 we showed that
the system sun was connected to two Ethernets. But we also noted that this wasn't
really true, if you compare that figure with the one on the inside front cover. There is in
fact a router between sun and the subnet 140.252.1, and this router performs proxy ARP
to make it appear as though sun is actually on the subnet 140.252.1. Figure 4.6 shows
the arrangement, with a Telebit NetBlazer, named netb, between the subnet and the
host sun.

Viptela, Inc. - Exhibit 1007
Page 81



Section 4.6 Proxy ARP 61

gemini
f
- [ [ _ARPrequest for140.252.129
Ethernet, subnet 140.252.1 + ll 40.252.1.183
|, ARP reply " Telebit NetBlazer
netb router configured to act as
proxy ARP agent for sun
modem|
SLIP | (dialup)
modem
140.252.1.29
, SLIP )
slip o5 %6 bsdi sun svr4
135 33 T.34

Ethernet 140.252.13

Figure 4.6 Example of proxy ARP.

When some other host on the subnet 140.252.1 (say, gemini) has an IP datagram to
send to sun at address 140.252.1.29, gemini compares the network ID (140.252) and
subnet ID (1) and since they are equal, issues an ARP request on the top Ethernet in Fig-
ure 4.6 for IP address 140.252.1.29. The router netb recognizes this IP address as one
belonging to one of its dialup hosts, and responds with the hardware address of its
Ethernet interface on the cable 140.252.1. The host gemini sends the IP datagram to
netb across the Ethernet, and netb forwards the datagram to sun across the dialup
SLIP link. This makes it transparent to all the hosts on the 140.252.1 subnet that host
sun is really configured “behind” the router netb.

If we execute the arp command on the host gemini, after communicating with the
host sun, we see that both IP addresses on the 140.252.1 subnet, netb and sun, map to
the same hardware address. This is often a clue that proxy ARP is being used.

gemini % arp -a

may lines for other hosts on the 140.252.1 subnet

netb (140.252.1.183) at 0:80:ad:3:6a:80
sun (140.252.1.29) at 0:80:ad:3:6a:80

Another detail in Figure 4.6 that we need to explain is the apparent lack of an IP
address at the bottom of the router netb (the SLIP link). That is, why don’t both ends
of the dialup SLIP link have an IP address, as do both ends of the hardwired SLIP link
between bsdi and slip? We noted in Section 3.8 that the destination address of the
dialup SLIP link, as shown by the ifconfig command, was 140.252.1.183. The Net-
Blazer doesn’t require an IP address for its end of each dialup SLIP link. (Doing so

Viptela, Inc. - Exhibit 1007
Page 82



62

ARP: Address Resolution Protocol Chapter 4

4.7

would use up more IP addresses.) Instead, it determines which dialup host is sending it
packets by which serial interface the packet arrives on, so there’s no need for each
dialup host to use a unique IP address for its link to the router. All the dialup hosts use
140.252.1.183 as the destination address for their SLIP link.

Proxy ARP handles the delivery of datagrams to the router sun, but how are the
other hosts on the subnet 140.252.13 handled? Routing must be used to direct data-
grams to the other hosts. Specifically, routing table entries must be made somewhere on
the 140.252 network that point all datagrams destined to either the subnet 140.252.13, or
the specific hosts on that subnet, to the router netb. This router then knows how to get
the datagrams to their final destination, by sending them through the router sun.

Proxy ARP is also called promiscuous ARP or the ARP hack. These names are from
another use of proxy ARP: to hide two physical networks from each other, with a router
between the two. In this case both physical networks can use the same network ID as
long as the router in the middle is configured as a proxy ARP agent to respond to ARP
requests on one network for a host on the other network. This technique has been used
in the past to “hide” a group of hosts with older implementations of TCP/IP on a sepa-
rate physical cable. Two common reasons for separating these older hosts are their
inability to handle subnetting and their use of the older broadcasting address (a host ID
of all zero bits, instead of the current standard of a host ID with all one bits).

Gratuitous ARP

Another feature of ARP that we can watch is called gratuitous ARP. It occurs when a
host sends an ARP request looking for its own IP address. This is usually done when
the interface is configured at bootstrap time.

In our internet, if we bootstrap the host bsdi and run tcpdump on the host sun,
we see the packet shown in Figure 4.7.

1 0.0 0:0:c0:6£:2d:40 f£f:ff:ff:ff:££:£f arp 60:
arp who-has 140.252.13.35 tell 140.252.13.35

Figure 4.7 Example of gratuitous ARP.

(We specified the -n flag for tcpdump to print numeric dotted-decimal addresses,
instead of hostnames.) In terms of the fields in the ARP request, the sender’s protocol
address and the target’s protocol address are identical: 140.252.13.35 for host bsdi.
Also, the source address in the Ethernet header, 0:0:c0:6£:2d:40 as shown by
tcpdump, equals the sender’s hardware address (from Figure 4.4).

Gratuitous ARP provides two features.

1. It lets a host determine if another host is already configured with the same IP
address. The host bsdi is not expecting a reply to this request. But if a reply is
received, the error message “duplicate IP address sent from Ethernet address:
ab:c:d:exf” is logged on the console. This is a warning to the system administra-
tor that one of the systems is misconfigured.

Viptela, Inc. - Exhibit 1007
Page 83



Section 4.9 Summary 63

4.8

4.9

2. If the host sending the gratuitous ARP has just changed its hardware address
(perhaps the host was shut down, the interface card replaced, and then the host
was rebooted), this packet causes any other host on the cable that has an entry
in its cache for the old hardware address to update its ARP cache entry accord-
ingly. A little known fact of the ARP protocol [Plummer 1982] is that if a host
receives an ARP request from an IP address that is already in the receiver’s
cache, then that cache entry is updated with the sender’s hardware address
(e.g., Ethernet address) from the ARP request. This is done for any ARP request
received by the host. (Recall that ARP requests are broadcast, so this is done by
all hosts on the network each time an ARP request is sent.)

[Bhide, Elnozahy, and Morgan 1991] describe an application that can use this
feature of ARP to allow a backup file server to take over from a failed server by
issuing a gratuitous ARP request with the backup’s hardware address and the
failed server’s IP address. This causes all packets destined for the failed server
to be sent to the backup instead, without the client applications being aware that
the original server has failed.

Unfortunately the authors then decided against this approach, since it depends on the
correct implementation of ARP on all types of clients. They obviously encountered client
implementations that did not implement ARP according to its specification.

Monitoring all the systems on the author’s subnet shows that SunOS 4.1.3 and 4.4BSD
both issue gratuitous ARPs when bootstrapping, but SVR4 does not.

arp Command

We've used this command with the -a flag to display all the entries in the ARP cache.
Other options are provided.

The superuser can specify the -d option to delete an entry from the ARP cache.
(This was used before running a few of the examples, to let us see the ARP exchange.)

Entries can also be added using the -s option. It requires a hostname and an Ether-
net address: the IP address corresponding to the hostname, and the Ethernet address are
added to the cache. This entry is made permanent (i.e., it won't time out from the
cache) unless the keyword temp appears at the end of the command line.

The keyword pub at the end of a command line with the -s option causes the sys-
tem to act as an ARP agent for that host. The system will answer ARP requests for the
IP address corresponding to the fostname, replying with the specified Ethernet address.
If the advertised address is the system’s own, then this system is acting as a proxy ARP
agent for the specified hostname.

Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally does its
work without the application or the system administrator being aware. The ARP cache

Viptela, Inc. - Exhibit 1007
Page 84



64  ARP: Address Resolution Protocol Chapter 4

is fundamental to its operation, and we've used the arp command to examine and
manipulate the cache. Each entry in the cache has a timer that is used to remove both
incomplete and completed entries. The arp command displays and modifies entries in
the ARP cache.

We followed through the normal operation of ARP along with specialized versions:

proxy ARP (when a router answers ARP requests for hosts accessible on another of the:
router’s interfaces) and gratuitous ARP (sending an ARP request for your own IP
address, normally when bootstrapping).

Exercises

4.1

4.2

4,3

4.4

In the commands we typed to generate the output shown in Figure 4.4 (p. 58), what would
happen if, after verifying that the local ARP cache was empty, we type the command

bsdi % rsh svré4 arp ~a

to verify that the ARP cache is also empty on the destination host? (This command causes
the arp —a command to be executed on the host svr4.)

Describe a test to determine if a given host handles a received gratuitous ARP request
correctly.
Step 7 in Section 4.2 can take a while (milliseconds) because a packet is sent and ARP then

waits for the response. How do you think ARP handles multiple datagrams that arrive
from IP for the same destination address during this period?

At the end of Section 4.5 we mentioned that the Host Requirements RFC and Berkeley-
derived implementations differ in their handling of the timeout of an active ARP entry.
What happens if we're on a Berkeley-derived client and keep trying to contact a server host
that’s been taken down to replace its Ethernet board? Does this change if the server issues a
gratuitous ARP when it bootstraps?

Viptela, Inc. - Exhibit 1007
Page 85



5.1

5.2

RARP: Reverse Address
Resolution Protocol

Introduction

When a system with a local disk is bootstrapped it normally obtains its IP address from
a configuration file that’s read from a disk file. But a system without a disk, such as an
X terminal or a diskless workstation, needs some other way to obtain its IP address.

Each system on a network has a unique hardware address, assigned by the manu-
facturer of the network interface. The principle of RARP is for the diskless system to
read its unique hardware address from the interface card and send an RARP request (a
broadcast frame on the network) asking for someone to reply with the diskless system’s
IP address (in an RARP reply).

While the concept is simple, the implementation is often harder than ARP for rea-
sons described later in this chapter. The official specification of RARP is RFC 903 [Fin-
layson et al. 1984].

RARP Packet Format

The format of an RARP packet is almost identical to an ARP packet (Figure 4.3, p. 56).
The only differences are that the frame type is 0x8035 for an RARP request or reply, and
the op field has a value of 3 for an RARP request and 4 for an RARP reply.

As with ARP, the RARP request is broadcast and the RARP reply is normally
unicast.

Viptela, Inc. - Exhibit 1807
Page 86



66

RARP: Reverse Address Resolution Protocol Chapter 5

5.3

RARP Examples

In our internet we can force the host sun to bootstrap from the network, instead of its
local disk. If we run an RARP server and tcpdump on the host bsdi we get the output
shown in Figure 5.1. We use the -e flag to have tcpdump print the hardware addresses:

1 0.0 8:0:20:3:f6:42 ff:ff;ff:ff:f£:ff rarp 60:

rarp who-is 8:0:20:3:f6:42 tell 8:0:20:3:£6:42
2 0.13 (0.13) 0:0:c0:6£:2d:40 8:0:20:3:£6:42 rarp 42:

rarp reply 8:0:20:3:£6:42 at sun
3 0.14 (0.01) 8:0:20:3:£6:42 0:0:c0:6£:2d:40 ip 65:

sun.26999 > bsdi.tftp: 23 RRQ "8CFCOD21.SUN4C"

Figure 5.1 RARP request and reply.

The RARP request is broadcast (line 1) and the RARP reply on line 2 is unicast. The out-
put on line 2, at sun, means the RARP reply contains the IP address for the host sun
(140.252.13.33). '

On line 3 we see that once sun receives its IP address, it issues a TFTP read-request
(RRQ) for the file 8CFCOD21.5UN4C. (TFIP is the Trivial File Transfer Protocol. We
describe it in more detail in Chapter 15.) The eight hexadecimal digits in the filename
are the hex representation of the IP address 140.252.13.33 for the host sun. This is the IP
address that was returned in the RARP reply. The remainder of the filename, SUN4C,
indicates the type of system being bootstrapped.

tcpdunp says that line 3 is an [P datagram of length 65, and not a UDP datagram
(which it really is), because we are running tcpdump with the —e flag, to see the hard-
ware-level addresses. Another point to notice in Figure 5.1 is that the length of the
Ethernet frame on line 2 appears to be shorter than the minimum (which we said was 60
bytes in Section 4.5.) The reason is that we are running tcpdump on the system that is
sending this Ethernet frame (bsdi). The application, rarpd, writes 42 bytes to the BSD
Packet Filter device (14 bytes for the Ethernet header and 28 bytes for the RARP reply)
and this is what tcpdump receives a copy of. But the Ethernet device driver pads this
short frame to the minimum size for transmission (60). Had we been running t cpdump
on another system, the length would have been 60.

We can see in this example that when this diskless system receives its IP address in
an RARP reply, it issues a TFTP request to read a bootstrap image. At this point we
won’t go into additional detail about how diskless systems bootstrap themselves.
(Chapter 16 describes the bootstrap sequence of a diskless X terminal using RARP,
BOOTP, and TFTP) ;

Figure 5.2 shows the resulting packets if there is no RARP server on the network.
The destination address of each packet is the Ethernet broadcast address. The Ethernet
address following who-1is is the target hardware address, and the Ethernet address fol-
lowing tell is the sender’s hardware address.

Note the frequency of the retransmissions. The first retransmission occurs after 6.55
seconds and then increases to 42.80 seconds, then goes down to 5.34 seconds, then 6.55,
and then works its way back to 42.79 seconds. This continues indefinitely. If we

Viptela, Inc. - Exhibit 1007
Page 87



Section 5.4 RARP Server Design 67

54

1 0.0 8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
2 6.55 ( 6.55) 8:0:20:3:£6:42 ff:ff:fEf;fL£:££:£f rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
3 15.52 ( 8.97) 8:0:20:3:£6:42 ff:ff:ff:£f:f£:£ff rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
4 29.32 (13.80) 8:0:20:3:£6:42 ff:ff:ff:ff:£f:ff rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
5 52.78 (23.46) 8:0:20:3:£6:42 fE:ff:ff:fFf:£f: £f rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
6 95.58 (42.80) 8:0:20:3:£6:42 ff:ff:ff:ff:ff:ff rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
7 100.92 ( 5.34) 8:0:20:3:£6:42 ff:f£:££:f£:£f:£f rarp 60:

rarp who~is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
8 107.47 ( 6.55) 8:0:20:3:£6:42 ff:ff:ff:ff:££:£f rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
9 116.44 ( 8.97) 8:0:20:3:£6:42 ff:ff:ff:ff:££f:£f rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
10 130.24 (13.80) 8:0:20:3:£6:42 ff: £ ff:ff:ff:ff rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
11 153,70 (23.46) 8:0:20:3:£6:42 ff:ff:£f:ff:ff:ff rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42
12 196.49 (42.79) 8:0:20:3:£6:42 ff:ff:ff:ff:££:£f rarp 60:

rarp who-is 8:0:20:3:£6:42 tell 8:0:20:3:£6:42

Figure 5.2 RARP requests with no RARP server on the network.

calculate the differences between each timeout interval we see a doubling effect: from
5.34 to 6.55 is 1.21 seconds, from 6.55 to 8.97 is 2.42 seconds, from 8.97 to 13.80 is 4.83
seconds, and so on. When the timeout interval reaches some limit (greater than 42.80
seconds) it’s reset to 5.34 seconds.

Increasing the timeout value like this is a better approach than using the same value
each time. In Figure 6.8 we'll see one wrong way to perform timeout and retransmis-
sion, and in Chapter 21 we'll see TCP’s method.

RARP Server Design

While the concept of RARP is simple, the design of an RARP server is system depen-
dent and complex. Conversely, providing an ARP server is simple, and is normally part
of the TCP/IP implementation in the kernel. Since the kernel knows its IP addresses
and hardware addresses, when it receives an ARP request for one of its IP addresses, it
just replies with the corresponding hardware address.

RARP Servers as User Processes

The complication with an RARP server is that the server normally provides the map-
ping from a hardware address to an IP address for many hosts (all the diskless systems
on the network). This mapping is contained in a disk file (normally /etc/ethers on

Viptela, Inc. - Exhibit 1007
Page 88



68

RARP: Reverse Address Resolution Protocol Chapter 5

Unix systems). Since kernels normally don’t read and parse disk files, the function of an
RARP server is provided as a user process, not as part of the kernel’s TCP/IP
implementation.

To further complicate matters, RARP requests are transmitted as Bthernet frames
with a specific Ethernet frame type field (0x8035 from Figure 2.1.) This means an
RARP server must have some way of sending and receiving Ethernet frames of this
type. In Appendix A we describe how the BSD Packet Filter, Sun’s Network Interface
Tap, and the SVR4 Data Link Provider Interface can be used to receive these frames.
Since the sending and receiving of these frames is system dependent, the implementa-
tion of an RARP server is tied to the system.

Multiple RARP Servers per Network

5.5

Another complication is that RARP requests are sent as hardware-level broadcasts, as
shown in Figure 5.2, This means they are not forwarded by routers. To allow diskless
systems to bootstrap even when the RARP server host is down, multiple RARP servers
are normally provided on a single network (e.g., a single cable).

As the number of servers increases (to provide redundancy), the network traffic
increases, since every server sends an RARP reply for every RARP request. The diskless
system that sent the RARP request normally uses the first RARP reply that it receives.
(We never had this problem with ARP, because only a single host sends an ARP reply.)
Furthermore, there is a chance that each RARP server can try to respond at about the
same time, increasing the probability of collisions on an Ethernet.

Summary

RARP is used by many diskless systems to obtain their IP address when bootstrapped.
The RARP packet format is nearly identical to the ARP packet. An RARP request is
broadcast, identifying the sender’s hardware address, asking for anyone to respond
with the sender’s IP address. The reply is normally unicast.

Problems with RARP include its use of a link-layer broadcast, preventing most
routers from forwarding an RARP request, and the minimal information returned: just
the system’s IP address. In Chapter 16 we’ll see that BOOTP returns more information
for the diskless system that is bootstrapping: its IP address, the name of a host to boot-
strap from, and so on.

While the RARP concept is simple, the implementation of an RARP server is system
dependent. Hence not all TCP/IP implementations provide an RARP server.

Exercises -
5.1 Is a separate frame type field required for RARP? Could the same value be used for ARP and
RARP 0x0806?

5.2 With multiple RARP servers on a network, how can they prevent their responses from col-
liding with each on the network?

Viptela, Inc. - Exhibit 1007
Page 89



6.1

ICMP: Internet Control
Message Protocol

Introduction

ICMP is often considered part of the IP layer. It communicates error messages and
other conditions that require attention. ICMP messages are usually acted on by either
the IP layer or the higher layer protocol (TCP or UDP). Some ICMP messages cause
errors to be returned to user processes.

ICMP messages are transmitted within IP datagrams, as shown in Figure 6.1.

{< IP datagram ‘-'r'{
P .
header ICMP message
20 bytes

Figure 6.1 ICMP messages encapsulated within an IP datagram.

RFC 792 [Postel 1981b] contains the official specification of ICMP.

Figure 6.2 shows the format of an ICMP message. The first 4 bytes have the same
format for all messages, but the remainder differs from one message to the next. We'll
show the exact format of each message when we describe it.

There are 15 different values for the type field, which identify the particular ICMP
message. Some types of ICMP messages then use different values of the code field to
further specify the condition.

The checksum field covers the entire ICMP message. The algorithm used is the same
as we described for the IP header checksum in Section 3.2. The ICMP checksum is
required,

Viptela, Inc. - Exhibit 1007
Page 90



70  ICMP: Internet Control Message Protocol Chapter 6
0 7 8 15 16 31
8-bit type 8-bit code 16-bit checksum
/ (contents depends on type and code) /
Figure 6.2 ICMP message.

In this chapter we talk about ICMP messages in general and a few in detail: address
mask request and reply, timestamp request and reply, and port unreachable. We discuss
the echo request and reply messages in detail with the Ping program in Chapter 7, and
we discuss the ICMP messages dealing with IP routing in Chapter 9.

6.2 ICMP Message Types

Figure 6.3 lists the different ICMP message types, as determined by the type field and
code field in the ICMP message.

The final two columns in this figure specify whether the ICMP message is a query
message or an error message. We need to make this distinction because ICMP error
messages are sometimes handled specially. For example, an ICMP error message is
never generated in response to an ICMP error message. (If this were not the rule, we
could end up with scenarios where an error generates an error, which generates an
error, and so on, indefinitely.)

When an ICMP error message is sent, the message always contains the IP header
and the first 8 bytes of the IP datagram that caused the ICMP error to be generated.
This lets the receiving ICMP module associate the message with one particular protocol
(TCP or UDP from the protocol field in the IP header) and one particular user process
(from the TCP or UDP port numbers that are in the TCP or UDP header contained in the
first 8 bytes of the IP datagram). We'll show an example of this in Section 6.5.

An ICMP error message is never generated in response to

1. An ICMP error message. (An ICMP error message may, however, be generated
in response to an ICMP query message.)

2. A datagram destined to an IP broadcast address (Figure 3.9) or an IP multicast
address (a class D address, Figure 1.5).

3. A datagram sent as a link-layer broadcast.

A fragment other than the first. (We describe fragmentation in Section 11.5.)

Viptela, Inc. - Exhibit 1007
Page 91



Section 6.2 ICMP Message Types 71

type  code Description Query | Error‘

0 0  echo reply (Ping reply, Chapter 7) °

3 destination unreachable:

network unreachable (Section 9.3)

host unreachable (Section 9.3)

protocol unreachable

port unreachable (Section 6.5)

fragmentation needed but don’t-fragment bit set (Section 11.6)
source route failed (Section 8.5)

destination network unknown

destination host unknown

source host isolated (obsolete)

destination network administratively prohibited
destination host administratively prohibited

network unreachable for TOS (Section 9.3)

host unreachable for TOS (Section 9.3)

communication administratively prohibited by filtering
host precedence violation

precedence cutoff in effect

SO NNNT K WNNRLO

= e
= W N -

e © © ¢ © © ® © © © © & © 6 ¢ ©

—
€21

'y
o

source quench (elementary flow control, Section 11.11)
5 redirect (Section 9.5):

redirect for network °
redirect for host °
redirect for type-of-service and network °
redirect for type-of-service and host °

echo request (Ping request, Chapter 7) °

router advertisement (Section 9.6) e
router solicitation (Section 9.6) ®

QOO LN—=O

10
1 time exceeded:
time-to-live equals 0 during transit (Traceroute, Chapter 8) o
time-to-live equals 0 during reassembly (Section 11.5) °

-0

12 parameter problem:
IP header bad (catchall error) o
required option missing °

13
14
15
16
17
18

timestamp request (Section 6.4) °
timestamp reply (Section 6.4) °

information request (obsolete) °
information reply {obsolete) °

address mask request (Section 6.3) °
address mask reply (Section 6.3) °

[N o) el leNal o]

Figure 6.3 ICMP message types.

5. A datagram whose source address does not define a single host. This means the
source address cannot be a zero address, a loopback address, a broadcast
address, or a multicast address.

These rules are meant to prevent the broadcast storms that have occurred in the past
when ICMP errors were sent in response to broadcast packets.

Viptela, Inc. - Exhibit 1007
Page 92



72

ICMP: Internet Control Message Protocol Chapter 6

6.3

ICMP Address Mask Request and Reply

The ICMP address mask request is intended for a diskless system to obtain its subnet
mask (Section 3.5) at bootstrap time. The requesting system broadcasts its ICMP
request. (This is similar to a diskless system using RARP to obtain its IP address at
bootstrap time.) An alternative method for a diskless system to obtain its subnet mask
is the BOOTP protocol, which we describe in Chapter 16. Figure 6.4 shows the format
of the ICMP address mask request and reply messages.

0 7 8 15 16 31

type (17 or 18) code (0) checksum

identifier sequence number 12 bytes

32-bit subnet mask

Figure 6.4 ICMP address mask request and reply messages.

The identifier and sequence number fields in the ICMP message can be set to anything
the sender chooses, and these values are returned in the reply. This allows the sender to
match replies with requests.

We can write a simple program (named icmpaddrmask) that issues an ICMP
address mask request and prints all replies. Since normal usage is to send the request to
the broadcast address, that’s what we'll do. The destination address (140.252.13.63) is
the broadcast address for the subnet 140.252.13.32 (Figure 3.12).

sun % icmpaddrmask 140.252.13.63

received mask = ffffffe0, from 140.252.13.33 front ourself
received mask = ffffffe0, from 140.252.13.35 from bsdi
received mask = f££££f0000, from 140.252,13.34 from svr4

The first thing we note in this output is that the returned value from svr4 is wrong. It

appears that SVR4 is returning the general class B address mask, assuming no subnets,

even though the interface on svr4 has been configured with the correct subnet mask:
svr4 % ifconfig emd0

emdO: flags=23<UP,BROADCAST, NOTRAILERS>
inet 140.252.13.34 netmask ffffffe0 broadcast 140.252.13.63

There is a bug in the SVR4 handling of the ICMP address mask request.
We’ll watch this exchange on the host bsdi using tcpdump. The output is shown
in Figure 6.5. We specify the —e option to see the hardware addresses.

Viptela, Inc. - Exhibit 1007
Page 93



Section 6.3 ICMP Address Mask Request and Reply 73

1 0.0 8:0:20:3:£6:42 ff:ff:£f:f£:f£:£ff ip 60:
sun > 140.252.13.63: icmp: address mask request
2 0.00 (0.00) 0:0:c0:6£:2d:40 ff:ff:ff:£f£:££:£f 1ip 46:

bsdi > sun: icmp: address mask is Oxffffffel

3 0.01 (0.01) 0:0:c0:c2:9b:26 8:0:20:3:£6:42 ip 60:
svrd > sun: icmp: address mask is Oxf£f£0000

Figure 6.5 ICMP address mask request sent to broadcast address.

Note that the sending host, sun, receives an ICMP reply (the output line with the com-
ment from ourself shown earlier), even though nothing is seen on the wire. This is a gen-
eral characteristic of broadcasting: the sending host receives a copy of the broadcast
packet through some internal loopback mechanism. Since by definition the term
“broadcast” means all the hosts on the local network, it should include the sending host.
(Referring to Figure 2.4 [p. 28] what is happening is that when the Ethernet driver rec-
ognizes that the destination address is the broadcast address, the packet is sent onto the
network and a copy is made and passed to the loopback interface.)

Next, bsdi broadcasts the reply, while svr4 sends the reply only to the requestor.
Normally the reply should be unicast unless the source IP address of the request is
0.0.0.0, which it isn’t in this example. Therefore, sending the reply to the broadcast
address is a BSD/386 bug.

The Host Requirements RFC says that a system must not send an address mask reply unless it
is an authoritative agent for address masks. (To be an authoritative agent it must be specifi-
cally configured to send these replies. See Appendix E.) As we can see from this example,
however, most host implementations send a reply if they get a request. Some hosts even send
the wrong reply!

The final point is shown by the following example. We send an address mask
request to our own IP address and to the loopback address:

=3

sun % icmpaddrmask sun
received mask = f£000000, from 140.252.13.33

sun % icmpaddrmask localhost
received mask = ££000000, from 127.0.0.1

In both cases the returned address mask corresponds to the loopback address, the
class A address 127.0.0.1. Again, referring to Figure 2.4 we see that IP datagrams sent to
the host’s own IP address (140.252.13.33 in this example) are actually sent to the loop-
back interface. The ICMP address mask reply must correspond to the subnet mask of
the interface on which the request was received (since a multihomed host can have dif-
ferent subnet masks for each interface), and in both cases the request is received from
the loopback interface.

Viptela, Inc. - Exhibit 1007
Page 94



74

ICMP: Internet Control Message Protocol Chapter 6

6.4

ICMP Timestamp Request and Reply

The ICMP timestamp request allows a system to query another for the current time.
The recommended value to be returned is the number of milliseconds since midnight,
Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean
Time.) The nice feature of this ICMP message is that it provides millisecond resolution,
whereas some other methods for obtaining the time from another host (such as the
rdate command provided by some Unix systems) provide a resolution of seconds. The
drawback is that only the time since midnight is returned —the caller must know the
date from some other means.
Figure 6.6 shows the format of the ICMP timestamp request and reply messages.

0 78 15 16 31

type (13 or 14) code (0) checksum

identifier sequence number

32-bit originate timestamp 20 bytes

32-bit receive timestamp

32-bit transmit timestamp

Figure 6.6 ICMP timestamp request and reply messages.

The requestor fills in the originate timestamp and sends the request. The replying sys-
tem fills in the receive timestamp when it receives the request, and the transmit time-
stamp when it sends the reply. In actuality, however, most implementations set the
latter two fields to the same value. (The reason for providing the three fields is to let the
sender compute the time for the request to be sent, and separately compute the time for
the reply to be sent.)

Examples

We can write a simple program (named icmptime) that sends an ICMP timestamp
request to a host and prints the returned reply. We try it first on our small internet:

)

sun % icmptime bsdi
orig = 83573336, recv = 83573330, xmit = 83573330, rtt = 2 ms
difference = -6 ms

sun % icmptime bedi
orig = 83577987, recv = 83577980, xmit = 83577980, rtt = 2 ms
difference = -7 ms '

Viptela, Inc. - Exhibit 1007
Page 95



Section 6.4 ICMP Timestamp Request and Reply 75

The program prints the three timestamps in the ICMP message: the originate (orig),
receive (recv), and transmit (xmit) timestamps. As we can see in this and the follow-
ing examples, all the hosts set the receive and transmit timestamps to the same value.
We also calculate the round-trip time (rtt), which is the time the reply is received
minus the time the request was sent. The difference is the received timestamp
minus the originate timestamp. Figure 6.7 shows the relationship between these values.

originate received transmit

request L reply o

| = ol
ol

= __RIT ]

Figure 6.7 Relationship between values printed by our icmpt ime program,

If we believe the RTT and assume that one-half of the RTT is for the request, and the
other half for the reply, then the sender’s clock needs to be adjusted by difference
minus one-half the RTT, to have the same time as the host being queried. In the preced-
ing example, the clock on bsdi was 7 and 8 ms behind the clock on sun.

Since the timestamp values are the number of milliseconds past midnight, UTC,
they should always be less than 86,400,000 (24 x 60 x 60 x 1000). These examples were
run just before 4:00 PM. in a time zone that is 7 hours behind UTC, so the values being
greater than 82,800,000 (2300 hours) makes sense.

If we run this program several times to the host bsdi we see that the final digit in
the receive and transmit timestamp is always 0. This is because the software release
(Version 0.9.4) only provides a 10-ms clock. (We describe this in Appendix B.)

If we run the program twice to the host svr4 we see that the low-order three digits
of the SVR4 timestamp are always 0:

<)

sun % icmptime svr4

orig = 83588210, recv = 83588000, xmit = 83588000, rtt = 4 ms
difference = -210 ms

sun % icmptime svrd

orig = 83591547, recv = 83591000, xmit = 83591000, rtt = 4 ms

difference = -547 ms

For some reason SVR4 doesn’t provide any millisecond resolution using the ICMP time-
stamp. This imprecision makes the calculated differences useless for subsecond adjust-
ments.

If we try two other hosts on the 140.252.1 subnet, the results show that one clock
differs from sun’s by 3.7 seconds, and the other by nearly 75 seconds:

sun % icmptime gemini
orig = 83601883, recv = 83598140, xmit = 83598140, rtt = 247 ms

difference = -3743 ms

)

sun % icmptime aix
orig = 83606768, recv = 83532183, xmit
difference = -74585 ms

I

83532183, rtt

253 ms

Viptela, Inc. - Exhibit 1007
Page 96



76 ICMP: Internet Control Message Protocol Chapter 6

Another interesting example is to the router gateway (a Cisco router). It shows
that when a system returns a nonstandard timestamp value (something other than mil-
liseconds past midnight, UTC), it is supposed to turn on the high-order bit of the 32-bit
timestamp. Our program detects this, and prints the receive and transmit timestamps
in angle brackets (after turning off the high-order bit). Also, we can’t calculate the dif-
ference between the originate and receive timestamps, since they’re not the same units.

sun % icmptime gateway
orig = 83620811, recv = <4871036>, xmit = <4871036>, rtt = 220 ms

!

)

sun % icmptime gateway
orig = 83641007, recv = <4891232>, xmit = <4891232>, rtt = 213 ms

If we run our program to this host a few times it becomes obvious that the values do
contain millisecond resolution and do count the number of milliseconds past some
starting point, but the starting point is not midnight, UTC. (It could be a counter that’s
incremented every millisecond since the router was bootstrapped, for example.)

As a final example we’ll compare sun’s clock with a system whose clock is known
to be accurate—an NTP stratum 1 server. (We say more about NTP, the Network Time
Protocol, below.)

Q.

sun % icmptime clock.llnl.gov
orig = 83662791, recv = 83662919, xmit = 83662919, rtt = 359 ms
difference = 128 ms

sun % icmptime clock.llnl.gov
orig = 83670425, recv = 83670559, xmit = 83670559, rtt = 345 ms
difference = 134 ms

If we calculate the difference minus one-half the RTT, this output indicates that the clock
on sun is between 38.5 and 51.5 ms fast.

Alternatives
There are other ways to obtain the time and date.

1. We described the daytime service and time service in Section 1.12. The former
returns the current time and date in a human readable form, a line of ASCII
characters. We can test this service using the telnet command:

sun % telnet bsdi daytime
Trying 140.252.13.35 ...
Connected to bsdi.

Escape character is ‘"]’. first three lines output are from the Telnet client
Wed Feb 3 16:38:33 1993 here’s the daytime service output
Connection closed by foreign host. this is also from the Telnet client

The time server, on the other hand, returns a 32-bit binary value with the num-
ber of seconds since midnight January 1, 1900, UTC. While this provides the
date, the time value is in units of a second. (The rdate command that we men-
tioned earlier uses the TCP time service.)

Viptela, Inc. - Exhibit 1007
Page 97



Section 6.5 ICMP Port Unreachable Error 77

6.5

2. Serious timekeepers use the Network Time Protocol (NTP) described in
REC 1305 [Mills 1992]. This protocol uses sophisticated techniques to maintain
the clocks for a group of systems on a LAN or WAN to within millisecond accu-
racy. Anyone interested in precise timekeeping on computers should read this
RFC.

3. The Open Software Foundation’s (OSF) Distributed Computing Environment
(DCE) defines a Distributed Time Service (DTS) that also provides clock syn-
chronization between computers. [Rosenberg, Kenney, and Fisher 1992] provide
additional details on this service.

4. Berkeley Unix systems provide the daemon timed(8) to synchronize the clocks
of systems on a local area network. Unlike NTP and DTS, t imed does not work
across wide area networks.

ICMP Port Unreachable Error

The last two sections looked at ICMP query messages—the address mask and time-
stamp queries and replies. We'll now examine an ICMP error message, the port
unreachable message, a subcode of the ICMP destination unreachable message, to see
the additional information returned in an ICMP error message. We'll watch this using
UDP (Chapter 11).

One rule of UDP is that if it receives a UDP datagram and the destination port does
not correspond to a port that some process has in use, UDP responds with an ICMP port
unreachable. We can force a port unreachable using the TFTP client. (We describe TFTP
in Chapter 15.)

The well-known UDP port for the TFIP server to be reading from is 69. But most
TFTP client programs allow us to specify a different port using the connect command.
We use this to specify a port of 8888:

bsdi % tftp

tftp> connect svr4 8888 specify the hostname and port number
tftp> get temp.foo try to fetch a file

Transfer timed out. about 25 seconds later

tftp> quit

The connect command saves the name of the host to contact and the port number on
that host, for when we later issue the get command. After typing the get command a
UDP datagram is sent to port 8888 on host svr4. Figure 6.8 shows the t cpdump output
for the exchange of packets that takes place.

Before the UDP datagram can be sent to svr4 an ARP request is sent to determine
its hardware address (line 1). The ARP reply (line 2) is returned and then the UDP data-
gram is sent (line 3). (We have left the ARP request-reply in this tcpdump output to
remind us that this exchange may be required before the first IP datagram is sent from
one host to the other. In future output we'll delete this exchange if it’s not relevant to
the topic being discussed.) j

Viptela, Inc. - Exhibit 1007
Page 98



78

ICMP: Internet Control Message Protocol Chapter 6

5.004304 (0.0035) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

10.000887 (4.9966) bsdi.2924 > svr4.8888: udp 20
10.004416 (0.0035) svr4d > bsdi: icmp: svr4 udp port 8888 unreachable

1 0.0 arp who-has svrd tell bsdi

2 0.002050 (0.0020) arp reply svr4d is-at 0:0:c0:¢c2:9b:26

3 0.002723 (0.0007) bsdi.2924 > svr4.8888: udp 20

4 0.006399 (0.0037) svrd > bsdi: icmp: svr4 udp port 8888 unreachable
5 5.000776 (4.9944) bsdi.2924 > svr4.8888: udp 20

6

7

8

9 15.001014 (4.9966) bsdi.2924 > svr4.8888: udp 20
10 15.004574 (0.0036) svrd > bsdi: icmp: svrd4 udp port 8888 unreachable

11 20.001177 (4.9966) bsdi.2924 > svr4.8888: udp 20
12 20.004759 (0.0036) svrd > bsdi: icmp: svrd4 udp port 8888 unreachable

Figure 6.8 ICMP port unreachable generated by TFTP request.

An ICMP port unreachable is immediately returned (line 4). But the TFTP client
appears to ignore the ICMP message, sending another UDP datagram about 5 seconds
later (line 5). This continues three more times before the client gives up.

Notice that the ICMP messages are exchanged between hosts, without a port num-
ber designation, while each 20-byte UDP datagram is from a specific port (2924) and to
a specific port (8888).

The number 20 at the end of each UDP line is the length of the data in the UDP
datagram. In this example 20 is the sum of the TFIP’s 2-byte opcode, the 9-byte null
terminated name temp.foo, and the 9-byte null terminated string netascii. (See
Figure 15.1 for the details of the TFTP packet layout.)

If we run this same example using the -e option of tcpdump we see the exact
length of each ICMP port unreachable message that’s returned to the sender. This
length is 70 bytes, and is allocated as shown in Figure 6.9.

%‘«:‘. IP datagram =>I‘

}47 ICMP message —»‘
’4— data portion of ICMP message —»{

Ethernet 1P ICMP IP header of datagram UDP
header header header that generated error header
14 bytes 20 bytes 8 bytes 20 bytes 8 bytes

Figure 6.9 ICMP message returned for our “UDP port unreachable” example,

Viptela, Inc. - Exhibit 1007
Page 99



Section 6.5 ICMP Port Unreachable Error 79

One rule of ICMP is that the ICMP error messages (see the final column of Fig-
ure 6.3, p. 71) must include the IP header (including any options) of the datagram that
generated the error along with at least the first 8 bytes that followed this IP header. In
our example, the first 8 bytes following the IP header contain the UDP header (Fig-
ure 11.2).

The important fact is that contained in the UDP header are the source and destina-
tion port numbers. It is this destination port number (8888) that caused the ICMP port
unreachable to be generated. The source port number (2924) can be used by the system
receiving the ICMP error to associate the error with a particular user process (the TFTP
client in this example).

One reason the IP header of the datagram that caused the error is sent back is
because in this IP header is the protocol field that lets ICMP know how to interpret the 8
bytes that follow (the UDP header in this example). When we look at the TCP header
(Figure 17.2) we'll see that the source and destination port numbers are contained in the
first 8 bytes of the TCP header.

The general format of the ICMP unreachable messages is shown in Figure 6.10.

0 78 15 16 31
type (3) code (0-15) checksum T
8 bytes
Unused (must be 0) i
} IP header (including options} + first 8 bytes of original IP datagram data }

Figure 6,10 ICMP unreachable message.

In Figure 6.3 we noted that there are 16 different ICMP unreachable messages, codes 0
through 15. The ICMP port unreachable is code 3. Also, although Figure 6.10 indicates
that the second 32-bit word in the ICMP message must be 0, the Path MTU Discovery
mechanism (Section 2.9) allows a router to place the MTU of the outgoing interface in
the low-order 16 bits of this 32-bit value, when code equals 4 (“fragmentation needed
but the don’t fragment bit is set”). We show an example of this error in Section 11.6.

Although the rules of ICMP allow a system to return more than the first 8 bytes of the data
portion of the IP datagram that caused the ICMP error, most Berkeley-derived implementa-
tions return exactly 8 bytes. The Solaris 2.2 ip_icmp_return_data_bytes option returns
the first 64 bytes of data by default (Section E.4),

Viptela, Inc. - Exhibit 1007
Page 100



80

ICMP: Internet Control Message Protocol

Chapter 6

tcpdump Time Line

0.0

0.002050 (0.0020
0.002723 (0.0007

0.006399 (0.0037)

5.000776 (4.9944)

5,004304 (0.0035)

10.000887 (4.9966)

10.004416 (0.0035)

15.001014 (4.9966)

15.004574 (0.0036)

20001177 (4.9966)

20.004759 (0.0036)

bsdi.2924

arp who-hag svr4 tel] bsdj
) (1c0:c2:9b:26
arp reply syrd is-at 0:0:c0:c2:9b
TCMP: svrd udp port 8888 unreac
! /
ICMP: svid udp port 8888 unreac
) /
_udp 20 bytes
. eachable _*
[CMP: syrd udp port 8888 UnTEaS
) /
udp 20 bytes
hable
JCMP: svrd udp port 8888 unreac
) /
udp 20 bytes
unreachable

ICMP: svrd udp port 8888

Figure 6.11 Time line of TFTP request to an invalid port.

Throughout the text we’ll also display the tcpdump output in a time line diagram as
shown in Figure 6.11.

svr4.8888

Viptela, Inc. - Exhibit 1007

Page 101



Section 6.6 4.4BSD Processing of ICMP Messages 81

6.6

Time increases down the page and the labels on the far left of the figure are the
same time values as in our tcpdump output (Figure 6.8). The labels at the top are the
hostnames and port numbers for each side of the time line. Be aware that the y-axis
down the page is not exactly proportional to the time value. When there is a significant
time lag, as between each 5-second retransmission in this example, we'll designate that
with a squiggle on both sides of the time line. When UDP or TCP data is being trans-
mitted, we show that packet with a thicker line.

Why does the TFTP client keep retransmitting its request when the ICMP messages
are being returned? An element of network programming is occurring in which BSD
systems don’t notify user processes using UDP of ICMP messages that are received for
that socket unless the process has issued a connect on that socket. The standard BSD
TFTP client does not issue the connect, so it never receives the ICMP error notification.

Another point to notice here is the poor retransmission timeout algorithm used by
this TFTP client. It just assumes that 5 seconds is adequate and retransmits every 5 sec-
onds, for a total of 25 seconds. We'll see later that TCP has a much better algorithm.

This old-fashioned timeout and retransmission algorithm used by the TFTP client is forbidden
by the Host Requirements RFC. Nevertheless, all three systems on the author’s subnet, and
Solaris 2.2 still use it. AIX 3.2.2 applies an exponential backoff to its timeout, sending packets
at 0, 5, 15, and 35 seconds, which is the recommended way. We talk much more about time-
outs in Chapter 21.

Finally note that the ICMP messages are returned about 3.5 ms after the UDP data-
gram is sent, which we’ll see in Chapter 7 is similar to the round-trip times for Ping
replies.

4.4BSD Processing of ICMP Messages

Since ICMP covers such a wide range of conditions, from fatal errors to informational
messages, each ICMP message is handled differently, even within a given implementa-
tion. Figure 6.12 is a redo of Figure 6.3, showing the handling performed by 4.4BSD for
each of the possible ICMP messages.

If the final column specifies the kernel, that ICMP message is handled by the kernel.
If the final column specifies “user process”, then that message is passed to all user pro-
cesses that have registered with the kernel to read received ICMP messages. If there are
none of these user processes, the message is silently discarded. (These user processes
also receive a copy of all the other ICMP messages, even those handled by the kernel,
but only after the kernel has processed the message.) Some messages are completely
ignored. Finally, if the final column is a string in quotes, that is the Unix error message
corresponding to that condition. Some of these errors, such as TCP’s handling of a
source quench, we'll cover in later chapters.

Viptela, Inc. - Exhibit 1007
Page 102



82  ICMP: Internet Control Message Protocol

Chapter 6

type  code Description Handled by
0 0  echoreply user process
3 destination unreachable:
0 network unreachable “No route to host”
1 host unreachable “No route to host”
2 protocol unreachable “Connection refused”
3 port unreachable “Connection refused”
4 fragmentation needed but DF bit set “Message too long”
5 source route failed “No route to host”
6 destination network unknown “No route to host”
7 destination host unknown “No route to host”
8 source host isolated (obsolete) “No route to host”
9 dest. network administratively prohibited “No route to host”
10 dest. host administratively prohibited “No route to host”
11 network unreachable for TOS “No route to host”
12 host unreachable for TOS “No route to host”
13 communication administratively prohibited | (ignored)
14 host precedence violation (ignored)
15 precedence cutoff in effect (ignored)
4 0  source quench kernel for TCP, ignored by UDP
5 redirect:
0 redirect for network kernel updates routing table
1 redirect for host kernel updates routing table
2 redirect for type-of-service and network kernel updates routing table
3 redirect for type-of-service and host kernel updates routing table
8 0  echorequest kernel generates reply
9 0 router advertisement user process
10 0  router solicitation user process
1 time exceeded:
0 TTL equals 0 during transit user process
1 TTL equals 0 during reassembly user process
12 parameter problem:
0 IP header bad (catchall error) “Protocol not available”
1 required option missing Protocol not available”
13 0  timestamp request kernel generates reply
14 0  timestamp reply user process
15 0  information request (obsolete) (ignored)
16 0  information reply (obsolete) user process
17 0  address mask request kernel generates reply
18 0  address mask reply user process

Figure 6,12 Handling of the ICMP message types by 4.4BSD.

Viptela, Inc. - Exhibit 1007
Page 103



Chapter 6 Exercises 83

6.7

Summary

This chapter has been a look at the Internet Control Message Protocol, a required part of
every implementation. Figure 6.3 lists all the ICMP message types, most of which we'll
discuss later in the text.

We looked at the ICMP address mask request and reply and the timestamp request
and reply in detail. These are typical of the request-reply messages. Both have an iden-
tifier and sequence number in the ICMP message. The sending application stores a
unique value in the identifier field, to distinguish between replies for itself and replies
for other processes. The sequence number field lets the client match replies with
requests.

We also saw the ICMP port unreachable error, a common ICMP error. This let us
examine the information returned in an ICMP error: the IP header and the next 8 bytes
of the IP datagram that caused the error. This information is required by the receiver of
the ICMP error, to know more about the cause of the error. Both TCP and UDP store the
source and destination port numbers in the first 8 bytes of their headers for this reason.

Finally, we presented our first time line of tcpdump output, a presentation format
we’ll use in later chapters.

Exercises

6.1 At the end of Section 6.2 we listed five special conditions under which an ICMP error mes-
sage is not sent. What would happen if these five conditions weren’t followed and we sent
a broadcast UDP datagram to an unlikely port on the local cable?

6.2 Read the Host Requirements RFC [Braden 1989a] to see if the generation of an ICMP port
unreachable is a “must,” “should,” or “may.” What section and page is this found on?

6.3 Read RFC 1349 [Almquist 1992] to see how the IP type-of-service field (Figure 3.2) should
be set by ICMP. ‘

6.4 If your system provides the netstat command, use it to see what types of ICMP messages
are received and sent.

Viptela, Inc. - Exhibit 1007
Page 104



7.1

7.2

Ping Program

Introduction

The name “ping” is taken from the sonar operation to locate objects. The Ping program
was written by Mike Muuss and it tests whether another host is reachable. The pro-
gram sends an ICMP echo request message to a host, expecting an ICMP echo reply to
be returned. (Figure 6.3 lists all the ICMP message types.)

Normally if you can’t Ping a host, you won’t be able to Telnet or FTP to that host.
Conversely, if you can’t Telnet to a host, Ping is often the starting point to determine
what the problem is. Ping also measures the round-trip time to the host, giving us some
indication of how “far away” that host is.

In this chapter we’ll use Ping as a diagnostic tool and to further explore ICMP. Ping
also gives us an opportunity to examine the IP record route and timestamp options.
Chapter 11 of [Stevens 1990] provides the source code for the Ping program.

Years ago we could make the unqualified statement that if we can’t Ping a host, we can’t Telnet
or FTP to that host. With the increased awareness of security on the Internet, routers that pro-
vide access control lists, and firewall gateways, unqualified statements like this are no longer
true. Reachability of a given host may depend not only on reachability at the IP layer, but also
on what protocol is being used, and the port numbers involved. Ping may show a host as
being unreachable, yet we might be able to Telnet to port 25 (the mail server).

Ping Program

We call the ping program that sends the echo requests the client, and the host being
pinged the server. Most TCP/IP implementations support the Ping server directly in the
kernel—the server is not a user process. (The two ICMP query services that we
described in Chapter 6, the address mask and timestamp requests, are also handled
directly by the kernel.)

Viptela, Inc. - Exhibit 1067
Page 105



86

Ping Program Chapter 7

Figure 7.1 shows the ICMP echo request and echo reply messages.
0 7 8 15 16 31

type (0 or 8) code (0) checksum T
8 bytes

identifier sequence number

/ optional data

Figure 7.1 Format of ICMP message for echo request and echo reply.

As with other ICMP query messages, the server must echo the identifier and sequence
number fields. Also, any optional data sent by the client must be echoed. These are pre-
sumably of interest to the client.

Unix implementations of ping set the identifier field in the ICMP message to the
process ID of the sending process. This allows ping to identify the returned responses
if there are multiple instances of ping running at the same time on the same host.

The sequence number starts at 0 and is incremented every time a new echo request is
sent. ping prints the sequence number of each returned packet, allowing us to see if
packets are missing, reordered, or duplicated. IP is a best effort datagram delivery ser-
vice, so any of these three conditions can occur.

Historically the ping program has operated in a mode where it sends an echo
request once a second, printing each echo reply that is returned. Newer implementa-
tions, however, require the ~s option to operate this way. By default, these newer
implementations send only a single echo request and output “host is alive” if an echo
reply is received, or “no answer” if no reply is received within 20 seconds.

LLAN Output

ping output on a LAN normally looks like the following:

bsdi % ping svr4

PING svr4 (140.252.13.34): 56 data bytes

64 bytes from 140.252.13.34: icmp_seq=0 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seqg=1 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seq=2 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp seg=3 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp seq=4 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seg=5 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seg=6 ttl=255 time=0 ms
64 bytes from 140.252.13.34: icmp_seqg=7 ttl=255 time=0 ms
~? type interrupt key to stop
——— svrd4 ping statistics ---

8 packets transmitted, 8 packets received, 0% packet loss
round—-trip min/avg/max = 0/0/0 ms

Viptela, Inc. - Exhibit 1007
Page 106



Section 7.2 Ping Program 87

When the ICMP echo reply is returned, the sequence number is printed, followed by the
TTL, and the round-trip time is calculated. (TTL is the time-to-live field in the IP
header. The current BSD ping program prints the received TTL each time an echo
reply is received—some implementations don’t do this. We examine the usage of the
TTL in Chapter 8 with the traceroute program.)

As we can see from the output above, the echo replies were returned in the order
sent (0, 1, 2, and so on).

ping is able to calculate the round-trip time by storing the time at which it sends
the echo request in the data portion of the ICMP message. When the reply is returned it
subtracts this value from the current time. Notice that on the sending system, bsdi, the
round-trip times are all calculated as.0 ms. This is because of the low-resolution timer
available to the program. The BSD/386 Version 0.9.4 system only provides a 10-ms
timer., (We talk more about this in Appendix B.) We'll see later that when looking at the
tepdump output from this ping example on a system with a finer resolution clock (the
Sun) the time difference between the ICMP echo request and its echo reply is just under
4 ms.

The first line of output contains the IP address of the destination host, even though
we specified its name (svr4). This implies that the name has been converted to the IP
address by a resolver. We examine resolvers and the DNS in Chapter 14. For now real-
ize that if we type a ping command, and a few seconds pass before the first line of out-
put with the IP address is printed, this is the time required for the DNS to determine the
IP address corresponding to the hostname.

Figure 7.2 shows the t cpdump output for this example.

1 0.0 bsdi > svrd: icmp: echo request
2 0.003733 (0.0037) svrd > bsdi: icmp: echo reply
3 0.998045 (0.9943) bsdi > svr4: icmp: echo request
4 1.001747 (0.0037) svrd > bsdi: icmp: echo reply
5 1.997818 (0.9961) bsdi > svrd: icmp: echo request
6 2.001542 (0.0037) svrd > bsdi: icmp: echo reply
7 2.997610 (0.9961) bsdi > svrd: icmp: echo request
8 3.001311 (0.0037) svrd > bsdi: icmp: echo reply
9 3.997390 (0.9961) bsdi > svrd: icmp: echo request
10 4.001115 (0.0037) svrd > bsdi: icmp: echo reply
11  4.997201 (0.9961) bsdi > svrd: icmp: echo request
12 5.000904 (0.0037) svrd > bsdi: icmp: echo reply
13 5.996977 (0.9961) bsdi > svrd: icmp: echo request
14 6.000708 (0.0037) svrd4 > bsdi: icmp: echo reply
15 6.996764 (0.9961) bsdi > svrd: icmp: echo request
16 7.000479 (0.0037) svr4d > bsdi: icmp: echo reply

Figure 7.2 ping output across a LAN.

The time between sending the echo request and receiving the echo reply is always 3.7
ms. We can also see that echo requests are sent approximately 1 second apart.

Viptela, Inc. - Exhibit 1007
Page 107



88  Ping Program Chapter 7

Often the first round-trip time is larger than the rest. This occurs if the destination’s
hardware address isn't in the ARP cache of the sender. As we saw in Chapter 4, send-
ing an ARP request and getting the ARP reply can take a few milliseconds before the
first echo request can be sent. The following example shows this:

sun % arp -a make stre ARP cache is empty

)

sun % ping svré

PING svrd: 56 data bytes

64 bytes from svr4 (140,252.13.34): icmp seq=0. time=7. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=1l. time=4. ms
64 bytes from svrd4 (140.252.13.34): icmp_seg=2. time=4. ms
64 bytes from svrd (140.252.13.34): icmp_seq=3. time=4. ms
~? ) type interrupt key to stop
————-svrd4 PING Statistics———-

4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 4/4/7

The additional 3 ms in the first RTT is probably for the ARP request and reply.

This example was run on the host sun, which provides a timer with microsecond
resolution, but the ping program prints the round-trip times with only millisecond res-
olution. The earlier example, run under BSD /386 Version 0.9.4, printed the round-trip
times as 0 ms, since the available timer provided only 10-ms accuracy. The following
output is from BSD/386 Version 1.0, which provides a timer with microsecond resolu-
tion and a version of ping that prints the higher resolution.

bsdi % ping svrd

PING svrd (140.252.13.34): 56 data bytes

64 bytes from 140.252.13.34: icmp seq=0 ttl1=255 time=9.304 ms
64 bytes from 140.252.13.34: icmp seg=1 ttl=255 time=6.089 ms
64 bytes from 140.252.13.34: icmp_seg=2 ttl=255 time=6.079 ms
64 bytes from 140.252.13.34: icmp_seqg=3 ttl=255 time=6.096 ms
~? type interrupt key to stop

—-—— svrd4 ping statistics ———

4 packets transmitted, 4 packets received, 0% packet loss
round—-trip min/avg/max = 6.079/6.880/9.304 ms

WAN Output

On a wide area network the results can be quite different. The following example was
captured on a weekday afternoon, a time when the Internet is normally busy:

)

gemini % ping vangogh.cs.berkeley.edu

PING vangogh.cs.berkeley.edu: 56 data bytes

64 bytes from (128.32.130.2): icmp seq=0. time=660. ms
64 bytes from (128.32.130.2): icmp seg=5. time=1780. ms
64 bytes from (128.32.130.2): icmp_seg=7. time=380. ms
64 bytes from (128.32.130.2): icmp_seq=8. time=420. ms
64 bytes from (128.32.130.2): icmp_seg=9. time=390. ms
64 bytes from (128.32.130.2): icmp seg=14. time=110. ms
64 bytes from (128.32.130.2): icmp seq=15. time=170. ms
64 bytes from (128.32.130.2): icmp_seq=16. time=100. ms
-7 type interrupt key to stop

Viptela, Inc. - Exhibit 1007
Page 108



Section 7.2 Ping Program 89

----vangogh.CS.Berkeley.EDU PING Statistics----
17 packets transmitted, 8 packets received, 52% packet loss
round-trip (ms) min/avg/max = 100/501/1780

Either the echo requests or the echo replies for sequence numbers 1, 2, 3, 4, 6, 10, 11, 12,
and 13 were lost somewhere. Note also the large variance in the round-trip times. (This
high packet loss rate of 52% is an anomaly. This is not normal for the Internet, even on a
weekday afternoon.)

It is also possible across WANS to see packets duplicated (the same sequence num-
ber printed two or more times), and to see packets reordered (sequence number N +1
printed before sequence number N).

Hardwired SLIP Links

Let’s look at the round-trip times encountered over SLIP links, since they often run at
slow asynchronous speeds, such as 9600 bits/sec or less. Recall our serial line through-
put calculations in Section 2.10. For this example we’ll set the speed of the hardwired
SLIP link between hosts bsdi and s1ip to 1200 bits/sec.

We can estimate the round-trip time as follows. First, notice from the example Ping
output shown earlier that by default it sends 56 bytes of data in the ICMP message.
With a 20-byte IP header and an 8-byte ICMP header this gives a total IP datagram size
of 84 bytes. (We can verify this by running tcpdump -e and seeing the Ethernet frame
sizes.) Also, from Section 2.4 we know that at least two additional bytes are added: the
END byte at the beginning and end of the datagram. It's also possible for additional
bytes to be added by the SLIP framing, but that depends on the value of each byte in the
datagram. At 1200 bits/sec with 8 bits per byte, 1 start bit, and 1 stop bit, the rate is 120
bytes per second, or 8.33 ms per byte. Our estimate is then (86 x 8.33 x 2), or 1433 ms.
(The multiplier of 2 is because we are calculating the round-trip time.)

The following output verifies our calculation:

svrd % ping -s slip

PING slip: 56 data bytes

64 bytes from slip (140.252.13.65

64 bytes from slip (140.252.13.65

64 bytes from slip (140.252.13.65
64 bytes from slip (140.252.13.65
~o

----glip PING Statistics----

5 packets transmitted, 4 packets received, 20% packet loss
round-trip (ms) min/avg/max = 1480/1480/1480

: icmp_seqg=0., time=1480. ms
: icmp_seg=1l. time=1480., ms
: icemp_seqg=2. time=1480. ms
: icmp_seg=3. time=1480. ms

(The -s option is required for SVR4 to send one request every second.) The round-trip
time is almost 1.5 seconds but the program is still sending out each ICMP echo request
at 1-second intervals. This means there are two outstanding echo requests (sent at time
0 and time 1) before the first reply comes back (at time 1.480). That’s also why the sum-
mary line says one packet has been lost. It really hasn’t been lost, it’s probably still on
its way back.

We'll return to this slow SLIP link in Chapter 8 when we examine the traceroute
program.

Viptela, Inc. - Exhibit 1007
Page 109



90  Ping Program Chapter 7

Dialup SLIP Links

The conditions change with a dialup SLIP link since we now have modems on each end
of the link. The modems being used between the systems sun and netb provide what
is called V.32 modulation (9600 bits/sec), V.42 error control (also called LAP-M), and
V.42bis data compression. This means that our simple calculations, which were fairly
accurate for a hardwired link where we knew all the parameters, become less accurate.

Numerous factors are at work. The modems introduce some latency. The size of
the packets may decrease with the data compression, but the size may then increase to a
multiple of the packet size used by the error control protocol. Also the receiving
modem can’t release received data bytes until the cyclic redundancy character (the
checksum) has been verified. Finally, we're dealing with a computer’s asynchronous
serial interface on each end, and many operating systems read these interfaces only at
fixed intervals, or when a certain number of characters have been received.

As an example, we ping the host gemini from the host sun:

sun % ping gemini

PING gemini: 56 data bytes

64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252,
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252,
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
—-—--—gemini PING Statistics——--
12 packets transmitted, 12 packets received, 0% packet loss
round-trip (ms) min/avg/max = 280/314/373

.11): icmp_seg=0. time=373. ms
.11): icmp seg=1l. time=360. ms
.11): icmp_seq=2. time=340. ms
.11) ¢ icmp_seqg=3. time=320. ms
.11): icmp_seg=4. time=330. ms
.11): icmp_seg=5. time=310. ms
.11): icmp_seqg=6. time=290. ms
.11) ¢ icmp_seg=7. time=300. ms
.11): icmp_seg=8. time=280. ms
.11): icmp_seg=9. time=290. ms
.11): icmp_seq=10. time=300. ms
.11): icmp_seqg=11. time=280. ms

[ = T = = O = W = N S Oy Y

Note that the first RTT is not a multiple of 10 ms, but every other line is. If we run this
numerous times, we see this property every time. (This is not caused by the resolution
of the clock on the host sun, because we know that its clock provides millisecond reso-
lution from the tests we run in Appendix B.)

Also note that the first RTT is larger than the next, and they keep decreasing, and
then they range between 280 and 300 ms. If we let it run for a minute or two, the RTTs
stay in this range, never going below 260 ms. If we calculate the expected RTT at
9600 bits/sec (Exercise 7.2) we get 180 ms, so our observed values are about 1.5 times
the expected value.

If we run ping for 60 seconds and look at the average RTT it calculates, we find that
with V.42 and V.42bis our average is 277 ms. (This is better than the average printed for
our preceding example, because we ran it longer to amortize the longer RTTs at the
beginning.) If we turn off just the V.42bis data compression our average is 330 ms. If
we turn off the V.42 error control (which also turns off the V.42bis data compression) our
average is 300 ms. These modem parameters do affect the RTTs, and using the error
control and data compression appears to be the best.

Viptela, Inc. - Exhibit 1007
Page 110



Section 7.3 IP Record Route Option 91

7.3

IP Record Route Option

The ping program gives us an opportunity to look at the IP record route (RR) option.
Most versions of ping provide the ~R option that enables the record route feature. It
causes ping to set the IP RR option in the outgoing IP datagram (which contains the
ICMP echo request message). This causes every router that handles the datagram to
add its IP address to a list in the options field. When the datagram reaches the final des-
tination, the list of IP addresses should be copied into the outgoing ICMP echo reply,
and all the routers on the return path also add their IP addresses to the list. When ping
receives the echo reply it prints the list of IP addresses.

As simple as this sounds, there are pitfalls. Generation of the RR option by the
source host, processing of the RR option by the intermediate routers, and reflection of
the incoming RR list in an ICMP echo request into the outgoing ICMP echo reply are all
optional features. Fortunately, most systems today do support these optional features,
but some systems don't reflect the IP list.

The biggest problem, however, is the limited room in the IP header for the list of IP
addresses. We saw in Figure 3.1 (p. 34) that the header length in the IP header is a 4-bit
field, limiting the entire IP header to 15 32-bit words (60 bytes). Since the fixed size of
the IP header is 20 bytes, and the RR option uses 3 bytes for overhead (which we
describe below), this leaves 37 bytes (60 —20-3) for the list, allowing up to nine IP
addresses. In the early days of the ARPANET, nine IP addresses seemed like a lot, but
since this is a round-trip list (in the case of the -R option for ping), it’s of limited use
today. (In Chapter 8 we'll look at the Traceroute tool for determining the route followed
by a datagram.) Despite these shortcomings, the record route option works and pro-
vides an opportunity to look in detail at the handling of IP options.

Figure 7.3 shows the general format of the RR option in the IP datagram.

|<.' 39 bytes ==i
code| len | ptr | IPadde#1 | IPaddr#2 | IPaddr#3 e IP addr #9
1 1 1 4 bytes * 4 bytes 4 bytes 4 bytes
pir=4 ptr=8 ptr=12 pir =36 pir=40

Figure 7.3 General format of record route option in IP header.

Code is a 1-byte field specifying the type of IP option. For the RR option its value is 7.
Len is the total number of bytes of the RR option, which in this case is 39. (Although it’s
possible to specify an RR option with less than the maximum size, ping always pro-
vides a 39-byte option field, to record up to nine IP addresses. Given the limited room
in the IP header for options, it doesn’t make sense to specify a size less than the maxi-
mum.)

Ptr is called the pointer field. It is a 1-based index into the 39-byte option of where
to store the next IP address. Its minimum value is 4, which is the pointer to the first IP
address. As each IP address is recorded into the list, the value of ptr becomes 8, 12, 16,
up to 36. After the ninth address is recorded ptr becomes 40, indicating the list is full.

Viptela, Inc. - Exhibit 1007
Page 111



92 Ping Program

Chapter 7

When a router (which by definition is multihomed) records its IP address in the list,
which IP address is recorded? It could be the address of the incoming interface or the
outgoing interface. RFC 791 [Postel 1981a] specifies that the router records the outgoing
IP address. We'll see that when the originating host (the host running ping) receives
the ICMP echo reply with the RR option enabled, it also records its incoming 1P address

in the list.

Normal Example

Let’s run an example of the RR option with the ping program. We'll run ping on the
host svr4 to the host s1ip. One intermediate router (bsdi) will handle the datagram.
The following output is from svr4:

svrd4 % ping -R slip

PING slip (140.252.13.
252,
.13
.13,
252,
252.
.13,

64 bytes from 140.
RR: bsdi (140,
slip (140.
bsdi (140.
svrd (140,

64 bytes from 140.
.252.

64 bytes from 140

4

252
252

252

65)
13.

13.
13.

13.

-—- slip ping statistics
3 packets transmitted, 3
round-trip min/avg/max =

: 56 data bytes
65: icmp_seq=0 ttl=254 time=280 ms

.66)

65)
35)
34)
65: icmp_ seqg=1 ttl=254 time=280 ms (same route)
65: icmp seq=2 ttl=254 time=270 ms (same route)

packets received, 0% packet loss
270/276/280 ms

Figure 7.4 shows the four hops that the packets take (two in each direction), and which
hop adds which IP address to the RR list.

SLIP

slip &

.66

st = 140.252.13.66

2nd = 140.252.13.65

bsdi sun svrd
135 [ = T4th = 140.252.13.34
Ethernet
empty list

3rd = 1402521335

Figure 7.4 ping with record route option.

The router bsdi adds a different IP address to the list in each direction. It always adds
the IP address of the outgoing interface. We can also see that when the ICMP echo reply
reaches the originating system (svr4) it adds the IP address of the incoming interface to

the list.

Viptela, Inc. - Exhibit 1007
Page 112



Section 7.3 IP Record Route Option 93

We can also watch this exchange of packets from the host sun, running tcpdump
with its —v option (to see the IP options). Figure 7.5 shows the output.

1 0.0 svrd4 > slip: icmp: echo request (ttl 32, id 35835,
optlen=40 RR{39}= RR{#0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/ 0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0} EOL)

2 0.267746 (0.2677) slip > svr4: icmp: echo reply (ttl 254, id 1976,
optlen=40 RR{39}= RR{140.252.13.66/140.252.13.65/
140.252.13.35/40.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/0.0.0.0} EOL)

Figure 7.5 tcpdump output of record route option.

The output optlen=40 indicates there are 40 bytes of option space in the IP header.
(Recall that the length of the IP header must be a multiple of 4 bytes.) RR{39} means
the record route option is present, and its length field is 39. The list of nine IP addresses
is then shown, with a pound sign (#) indicating which IP address is pointed to by the ptr
field in the RR option header. Since we are watching these packets on the host sun (see
Figure 7.4) we only see the ICMP echo request with the empty list, and the ICMP echo
reply with three addresses in the list. We have deleted the remaining lines in the
tecpdump output, since they are nearly identical to what we show in Figure 7.5.

The notation EOL at the end of the record route information indicates the IP option
“end of list” value appeared. The EOL option has a value of 0. What's happening is
that 39 bytes of RR data are in the 40 bytes of option space in the IP header. Since the
option space is set to 0 before the datagram is sent, this final byte of 0 that follows the 39
bytes of RR data is interpreted as an EOL. That is what we want to have happen. If
there are multiple options in the option field of the IP header, and pad bytes are needed
before the next option starts, the other special character NOP (“no operation”), with a
value of 1, can be used.

In Figure 7.5, SVR4 sets the TTL field of the echo request to 32, and BSD/386 sets it to 255. (It
prints as 254 since the router bsdi has already decremented it by one.) Newer systems are set-
ting the TTL of ICMP messages to the maximum (255).

It turns out that of the three TCP/IP implementations used by the author, both BSD/386 and
SVR4 support the record route option. That is, they correctly update the RR list when forward-
ing a datagram, and they correctly reflect the RR list from an incoming ICMP echo request to
the outgoing ICMP echo reply. SunOS 4.1.3, however, updates the RR list when forwarding a
datagram, but does not reflect the RR list. Solaris 2.x corrects this problem.

Abnormal Output

The following example was seen by the author and provides a starting point for our
description of the ICMP redirect message in Chapter 9. We ping the host aix on the
140.252.1 subnet (accessible through the dialup SLIP connection on the host sun) with
the record route option. We get the following output, when run on the host s1ip:

Viptela, Inc. - Exhibit 1007
Page 113



94  Ping Program : Chapter 7

slip % ping -R aix
PING aix (140.252.1.92): 56 data bytes
64 bytes from 140.252.1.92: icmp_seq=0 ttl=251 time=650 ms
RR: bsdi (140.252.13.35)
sun (140.252.1.29)
netb (140.252.1.183)
aix (140.252.1.92)
gateway (140.252.1.4) why is this router used?
netb (140.252.1.183)
sun (140.252.13.33)
bsdi (140.252.13.66)
slip (140.252.13.65)
64 bytes from aix: icmp_ seg=1l ttl=251 time=610 ms (same route)
64 bytes from aix: ilcmp_seqg=2 ttl=251 time=600 ms (same route)
~n
—-- aix ping statistics —-—
4 packets transmitted, 3 packets received, 25% packet loss
round-trip min/avg/max = 600/620/650 ms

We could have run this example from the host bsdi. We chose to run it from slip to
see all nine IP addresses in the RR list used.

The puzzle in this output is why the outgoing datagram (the ICMP echo request)
went directly from netb to aix, but the return (the ICMP echo reply) went from aix,
through the router gateway, before going to netb. What we're seeing here is a feature
of IP routing that we describe below. Figure 7.6 shows the path of the datagrams.

Internet

ping destination

1183 | 3rd = 140.252.1.183

netb
6th = 140.252,1.183 |
|
v sup A
8th = 140.252.13.66 7th = 140.252.13.33 12nd =140.252.1.29
ping client < - -~ - —- -~ ~— e e .1.29 :
4 SLIP ,
slip  o93%s 3 st sun
13.35 1333
Ethernet
T Tempty list Ist= 1402521335

Figure 7.6 ping with record route, showing IP routing feature.

The problem is that aix does not know to send IP datagrams destined for the subnet
140.252.13 to netb. Instead, aix has a default entry in its routing table that tells it to

Viptela, Inc. - Exhibit 1007
Page 114



Section 7.4 1P Timéstamp Option 95

7.4

send all datagrams to the router gateway if it doesn’t have a particular route for the
destination. The router gateway has more routing knowledge than any of the hosts on
the 140.252.1 subnet. (There are more than 150 hosts on this Ethernet and instead of
running a routing daemon on every one, each has a “default” entry that points to the
router gateway.)

An unanswered question here is why doesn’t gateway send an ICMP redirect (Sec-
tion 9.5) to aix to update its routing table? For some reason (perhaps that the datagram
generating the redirect is an ICMP echo request message) the redirect is not generated.
But if we use Telnet and connect to the daytime server on aix, the ICMP redirect is gen-
erated, and the routing table on aix is updated. If we then execute ping with the
record route option enabled, the route shows that the datagrams go from netb to aix
and back to netb, without the extra'hop to the router gateway. We'll look at these
ICMP redirects in more detail in Section 9.5.

IP Timestamp Option

The IP timestamp option is similar to the record route option. Figure 7.7 shows the for-
mat of the IP timestamp option (compare with Figure 7.3).

g o]

< 40 bytes -

code| len | pir |OF|FL|timestamp #1 |timestamp #2|timestamp #3 cee timestamp #9
1 1 1 4 bytes 4 bytes 4 bytes 4 bytes

Figure 7.7 General format of timestamp option in IP header.

The code field is 0x44 for the timestamp option. The two fields len and ptr are the same
as for the record route option: the total length of the option (normally 36 or 40) and a
pointer to the next available entry (5, 9, 13, etc.).

The next two fields are 4-bit values: OF is the overflow field and FL is a flags field.
The operation of the timestamp option is driven by the flags field, as shown in Fig-
ure 7.8,

‘ flngs Description ‘
0 Record only timestamps. This is what we show in Figure 7.7.
1 Each router records its IP address and its timestamp. There is room for only four of these
pairs in the options list.
3 The sender initializes the options list with up to four pairs of IP addresses and a 0

timestamp. A router records its timestamp only if the next IP address in the list
matches the router’s.

Figure 7.8 Meaning of the flags value for timestamp option.

If a router can’t add a timestamp because there’s no room left, it just increments the
overflow field.

Viptela, Inc. - Exhibit 1007
Page 115



96

Ping Program Chapter 7

7.5

The preferred value for the timestamps is the number of milliseconds past mid-
night, UTC, similar to the ICMP timestamp request and reply (Section 6.4). If this for-
mat is not available to a router, it can insert whatever time representation that it uses,
but must then turn on the high-order bit of the timestamp to indicate the nonstandard
value.

Given the limitations that we encountered with the record route option, things get
worse with the timestamp option. If we record both IP addresses and timestamps (a
flags of 1), we can store only four of these pairs. Recording only timestamps is next to
useless because we have no indication regarding which timestamp corresponds to
which router (unless we have a fixed topology that never changes). A flags of 3 is better,
as we can then select which routers insert their timestamp. A more fundamental prob-
lem is that you probably have no control over how accurate the timestamp is at any
given router. This makes it fruitless to fry to measure hop times between routers using
this IP option. We'll see that the traceroute program (Chapter 8) provides a better way
of measuring hop times between routers.

Summary

The ping program is the basic connectivity test between two systems running TCP/IP.
It uses the ICMP echo request and echo reply messages and does not use a transport
layer (TCP or UDP). The Ping server is normally part of the kernel’s ICMP implementa-
tion.

We looked at the normal ping output for a LAN, WAN, and SLIP links (dialup and
hardwired), and performed some serial line throughput calculations for a dedicated
SLIP link. ping also let us examine and use the IP record route option. We used this IP
option to see how default routes are often used, and will return to this topic in Chap-
ter 9. We also looked at the IP timestamp option, but it is of limited practical use.

Exercises

7.1 Draw a time line for the ping output for the SLIP link in Section 7.2.

7.2 Calculate the RTT if the SLIP link between bsdi and s1ip is set to 9600 bits/sec. Assume
the default of 56 bytes of data.

7.3 The current BSD ping program allows us to specify a pattern for the data portion of the
ICMP message. (The first 8 bytes of the data portion are not filled with the pattern, since
the time at which the packet is sent is stored here.) If we specify a pattern of 0xc0, recalcu-
late the answer to the previous exercise. (Hint: Reread Section 2.4.)

74 Does the use of compressed SLIP (CSLIP, Section 2.5) affect the ping times that we
observed in Section 7.27

7.5 Examine Figure 2.4 (p. 28). Do you expect any difference between a ping of the loopback
address, versus a ping of the host’s Ethernet address?

Viptela, Inc. - Exhibit 1007
Page 116



8.1

8.2

Traceroute Program

Introduction

The Traceroute program, written by Van Jacobson, is a handy debugging tool that
allows us to further explore the TCP/IP protocols. Although there are no guarantees
that two consecutive IP datagrams from the same source to the same destination follow
the same route, most of the time they do. Traceroute lets us see the route that IP data-
grams follow from one host to another. Traceroute also lets us use the IP source route
option.

The manual page states: “Implemented by Van Jacobson from a suggestion by Steve Deering,.
Debugged by a cast of thousands with particularly cogent suggestions or fixes from C. Philip
Wood, Tim Seaver, and Ken Adelman.”

Traceroute Program Operation

In Section 7.3 we described the IP record route option (RR). Why wasn’t this used
instead of developing a new application? There are three reasons. First, historically not
all routers have supported the record route option, making it unusable on certain paths.
(Traceroute doesn’t require any special or optional features at any intermediate routers.)

Second, record route is normally a one-way option. The sender enables the option
and the receiver has to fetch all the values from the received IP header and somehow
return them to the sender. In Section 7.3 we saw that most implementations of the Ping
server (the ICMP echo reply function within the kernel) reflect an incoming RR list, but
this doubles the number of IP addresses recorded (the outgoing path and the return
path), which runs into the limit described in the next paragraph. (Traceroute requires
only a working UDP module at the destination—no special server application is
required.)

Viptela, Inc. - Exhibit 1807
Page 117



98  Traceroute Program ' Chapter 8

The third and major reason is that the room allocated for options in the IP header
isn't large enough today to handle most routes. There is room for only nine IP
addresses in the IP header options field. In the old days of the ARPANET this was ade-
quate, but it is far too small nowadays.

Traceroute uses ICMP and the TTL field in the IP header. The TTL field (time-to-
live) is an 8-bit field that the sender initializes to some value. The recommended initial
value is specified in the Assigned Numbers RFC and is currently 64. Older systems
would often initialize it to 15 or 32. We saw in some of the Ping examples in Chapter 7
that ICMP echo replies are often sent with the TTL set to its maximum value of 255.

Each router that handles the datagram is required to decrement the TTL by either
one or the number of seconds that the router holds onto the datagram. Since most
routers hold a datagram for less than a second, the TTL field has effectively become a
hop counter, decremented by one by each router.

RFC 1009 [Braden and Postel 1987] required a router that held a datagram for more than 1 sec-
ond to decrement the TTL by the number of seconds. Few routers implemented this require-
ment, The new Router Requirements RFC [Almquist 1993] makes this optional, allowing a
router to treat the TTL as just a hop count.

The purpose of the TTL field is to prevent datagrams from ending up in infinite
loops, which can occur during routing transients. For example, when a router crashes
or when the connection between two routers is lost, it can take the routing protocols
some time (from seconds to a few minutes) to detect the lost route and work around it.
During this time period it is possible for the datagram to end up in routing loops. The
TTL field puts an upper limit on these looping datagrams.

When a router gets an IP datagram whose TTL is either 0 or 1 it must not forward
the datagram. (A destination host that receives a datagram like this can deliver it to the
application, since the datagram does not have to be routed. Normally, however, no sys-
tem should receive a datagram with a TTL of 0.) Instead the router throws away the
datagram and sends back to the originating host an ICMP “time exceeded” message.
The key to Traceroute is that the IP datagram containing this ICMP message has the
router’s IP address as the source address.

We can now guess the operation of Traceroute. It sends an IP datagram with a TTL
of 1 to the destination host. The first router to handle the datagram decrements the
TTL, discards the datagram, and sends back the ICMP time exceeded. This identifies
the first router in the path. Traceroute then sends a datagram with a TTL of 2, and we
find the IP address of the second router. This continues until the datagram reaches the
destination host. But even though the arriving IP datagram has a TTL: of 1, the destina-
tion host won't throw it away and generate the ICMP time exceeded, since the data-
gram has reached its final destination. How can we determine when we’ve reached the
destination?

Traceroute sends UDP datagrams to the destination host, but it chooses the destina-
tion UDP port number to be an unlikely value (larger than 30,000), making it improba-
ble that an application at the destination is using that port. This causes the destination
host’s UDP module to generate an ICMP “port unreachable” error (Section 6.5) when
the datagram arrives, All Traceroute needs to do is differentiate between the received
ICMP messages—time exceeded versus port unreachable—to know when it’s done.

Viptela, Inc. - Exhibit 1007
Page 118



Section 8.3 LAN Output 99

The Traceroute program must be able to set the TTL field in the outgoing datagram. Not all
programming interfaces to TCP/IP support this, and not all implementations support the
capability, but most current systems do, and are able to run Traceroute. This programming
interface normally requires the user to have superuser privilege, meaning it may take special
privilege to run it on your host.

8.3 LAN Output

We're now ready to run traceroute and see the output. We’ll use our simple internet
(see the figure on the inside front cover) going from svr4 to slip, through the router
bsdi. The hardwired SLIP link between bsdi and s1ip is 9600 bits/sec.

>3

svr4 % traceroute slip

traceroute to slip (140.252.13.65), 30 hops max, 40 byte packets
1 bsdi (140.252.13.35) 20 ms 10 ms 10 ms

2 slip (140.252.13.65) 120 ms 120 ms 120 ms

The first unnumbered line of output gives the name and IP address of the destination
and indicates that traceroute won't increase the TTL beyond 30. The datagram size
of 40 bytes allows for the 20-byte IP header, the 8-byte UDP header, and 12 bytes of user
data. (The 12 bytes of user data contain a sequence number that is incremented each
time a datagram is sent, a copy of the outgoing TTL, and the time at which the data-
gram was sent.)

The next two lines in the output begin with the TTL, followed by the name of the
host or router, and its IP address. For each TTL value three datagrams are sent. For
each returned ICMP message the round-trip time is calculated and printed. If no
response is received within 5 seconds for any of the three datagrams, an asterisk is
printed instead and the next datagram is sent. In this output the first three datagrams
had a TTL of 1 and the ICMP messages were returned in 20, 10, and 10 ms. The next
three datagrams were sent with a TTL of 2 and the ICMP messages were returned 120
ms later. Since the TTL of 2 reached the final destination, the program then stopped.

The round-trip times are calculated by the traceroute program on the sending
host. They are the total RTTs from the traceroute program to that router. If we're
interested in the per-hop time we have to subtract the value printed for TTL N from the
value printed for TTL N + 1.

Figure 8.1 shows the tcpdump output for this run. As we might have guessed, the
reason that the first probe packet to bsdi had an RTT of 20 ms and the next two had an
RTT of 10 ms was because of an ARP exchange. tcpdump shows this is indeed the case.

The destination UDP port starts at 33435 and is incremented by one each time a
datagram is sent. This starting port number can be changed with a command-line
option. The UDP datagram contains 12 bytes of user data, which we calculated earlier
when traceroute output that it was sending 40-byte datagrams.

Next, t cpdump prints the comment [tt1 1] when the IP datagram has a TTL of 1.
It prints a message like this when the TTL is 0 or 1, to warn us that something looks
funny in the datagram. Here we expect to see the TTL of 1, but with some other appli-
cation it could be a warning that the datagram might not get to its final destination. We
should never see a datagram passing by with a TTL of 0, unless the router that put it on
the wire is broken.

Viptela, Inc. - Exhibit 1007
Page 119



100  Traceroute Program Chapter 8

1 0.0 arp who-has bsdi tell svrd

2 0.000586 (0.0006) arp reply bsdi is-at 0:0:c0:6f£:2d:40

3 0.003067 (0.0025) svr4.42804 > s1ip.33435: udp 12 [ttl 1]

4 0.004325 (0.0013) bsdi > svrd: icmp: time exceeded in-transit

5 0.069810 (0.0655) svrd.42804 > s1ip.33436: udp 12 [ttl 1]

6 0.071149 (0.0013) bsdi > svr4: icmp: time exceeded in-transit

7 0.085162 (0.0140) svr4.42804 > slip.33437: udp 12 [ttl 1]

8 0.086375 (0.0012) bsdi > svrd: icmp: time exceeded in-transit

9 0.118608 (0.0322) svrd.42804 > slip.33438: udp 12

10 0.226464 (0.1079) slip > svrd: icmp: slip udp port 33438 unreachable
11 0.287296 (0.0608) svr4,42804 > slip.33439: udp 12

12 0.395230 (0.1079) slip > svrd: icmp: slip udp port 33439 unreachable
13 0.409504 (0.0143) svr4.42804 > slip.33440: udp 12

14 0.517430 (0.1079) slip > svrd: icmp: slip udp port 33440 unreachable

Figure 8.1 tcpdump output for traceroute example from svr4 to slip.

The ICMP message “time exceeded in transit” is what we expect to see from the
router bsdi, since it will decrement the TTL to 0. The ICMP message comes from the
router even though the IP datagram that was thrown away was going to slip.

There are two different ICMP “time exceeded” messages (Figure 6.3, p. 71), each
with a different code field in the ICMP message. Figure 8.2 shows the format of this
ICMP error message.

0 78 ‘ 15 16 31
type (11) code (0 or 1) checksum —T_
8 bytes
Unused (must be 0) i
( IP header (including options) + first 8 bytes of original IP datagram data {

Figure 8.2 ICMP time exceeded message.

The one we’'ve been describing is generated when the TTL reaches 0, and is specified by
a code of 0.

It's also possible for a host to send an ICMP “time exceeded during reassembly”
when it times out during the reassembly of a fragmented datagram. (We talk about
fragmentation and reassembly in Section 11.5.) This error is specified by a code of 1.

Lines 9-14 in Figure 8.1 correspond to the three datagrams sent with a TTL of 2.
These reach the final destination and generate an ICMP port unreachable message.

Viptela, Inc. - Exhibit 1007
Page 120



Section 8.3 LAN Output 101

It is worthwhile to calculate what the round-trip times should be for the SLIP link,
similar to what we did in Section 7.2 when we set the link to 1200 bits/sec for the Ping
example. The outgoing UDP datagram contains 12 bytes of data, 8 bytes of UDP
header, 20 bytes of IP header, and 2 bytes (at least) of SLIP framing (Section 2.4) for a
total of 42 bytes. Unlike Ping, however, the size of the return datagrams changes.
Recall from Figure 6.9 (p. 78) that the returned ICMP message contains the IP header of
the datagram that caused the error and the first 8 bytes of data that followed that IP
header (which is a UDP header in the case of traceroute). This gives us a total of
20+8+20+8+2, or 58 bytes. With a data rate of 960 bytes/sec the expected RIT is
(42 +58)/960 or 104 ms. This corresponds to the 110-ms value measured on svr4.

The source port number in Figure 8.1 (42804) seems high. traceroute sets the
source port number of the UDP datagrams that it sends to the logical-OR of its Unix
process ID with 32768. In case traceroute is being run multiple times on the same
host, each process looks at the source port number in the UDP header that’s returned by
ICMP, and only handles those messages that are replies to probes that it sent.

There are several points to note with traceroute. First, there is no guarantee that
the route today will be in use tomorrow, or even that two consecutive IP datagrams fol-
low the same route. If a route changes while the program is running you'll see it occur
because traceroute prints the new IP address for the given TTL if it changes.

Second, there is no guarantee that the path taken by the returned ICMP message
retraces the path of the UDP datagram sent by traceroute. This implies that the
round-trip times printed may not be a true indication of the outgoing and returning
datagram times. (If it takes 1 second for the UDP datagram to travel from the source to
a router, but 3 seconds for the ICMP message to travel a different path back to the
source, the printed round-trip time is 4 seconds.)

Third, the source IP address in the returned ICMP message is the IP address of the
interface on the router on which the UDP datagram arrived. This differs from the IP
record route option (Section 7.3), where the TP address recorded was the outgoing inter-
face’s address. Since every router by definition has two or more interfaces, running
traceroute from host A to host B can generate different output than from host B to
host A. Indeed, if we run traceroute from host s1ip to svr4 the output becomes:

)

slip % tracexroute svrd

traceroute to svrd (140.252.13.34), 30 hops max, 40 byte packets
1 Dbsdi (140.252.13.66) 110 ms 110 ms 110 ms

2 svrd (140.252.13.34) 110 ms 120 ms 110 ms

This time the IP address printed for host bsdi is 140.252.13.66, the SLIP interface, while
previously it was 140.252.13.35, the Ethernet interface. Since traceroute also tries to
print the name associated with an IP address, the names can change. (In our example
both interfaces on bsdi have the same name.)

Consider Figure 8.3. It shows two local area networks with a router connected to
each LAN. The two routers are connected with a point-to-point link. If we run
traceroute from a host on the left LAN to a host on the right LAN, the IP addresses
found for the routers will be ifl and if3. But going the other way will print the IP
addresses if4 and if2. The two interfaces if2 and if3 share the same network ID, while
the other two interfaces have different network IDs.

Viptela, Inc. - Exhibit 1007
Page 121



102

Traceroute Program

Chapter 8

8.4

network 1

if2 network 2 if3

router 1 router 2

Figure 8.3 Identification of interfaces printed by traceroute.

l ift ’ﬂl network 3

Finally, across wide area networks the traceroute output is much easier to com-
prehend if the IP addresses are printed as readable domain names, instead of as IP
addresses. But since the only piece of information traceroute has when it receives
the ICMP message is an IP address, it does a “reverse name lookup” to find the name,
given the IP address. This requires the administrator responsible for that router or host
to configure their reverse name lookup function correctly (which isn’t always the case).
We describe how an IP address is converted to a name using the DNS in Section 14.5.

WAN Output

The output shown earlier for our small internet is adequate for examining the protocols
in action, but more a realistic use of traceroute involves larger internets such as the
worldwide Internet.

Figure 8.4 is from the host sun to the Network Information Center, the NIC.

sun

)

% traceroute nic.ddn.mil

traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 byte packets

netb.tuc.noao.edu (140.252.1.183) 218 ms 227 ms 233 ms
gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 204 ms

butch.telcom.arizona.edu (140.252.104.2) 204 ms 228 ms 234 ms
Gabby.Telcom.Arizona.EDU (128.196.128.1) 234 ms 228 ms 204 ms
NSIgate.Telcom.Arizona.EDU (192.80.43.3) 233 ms 228 ms 234 ms

JPL1.NSN.NASA.GOV (128.161.88.2) 234 ms 590 ms 262 ms
JPL3.NSN.NASA.GOV (192.100.15.3) 238 ms 223 ms 234 ms
GSFC3.NSN,.NASA.GOV (128.161.3.33) 293 ms 318 ms 324 ms
GSFC8 .NSN.NASA.GOV (192.100.13.8) 294 ms 318 ms 294 ms
SURAZ2.NSN.NASA.GOV (128.161.166.2) 323 ms 319 ms 294 ms
nsn~FIX-pe.sura.net (192.80.214.253) 294 ms 318 ms 294 ms
GSI.NSN.NASA.GOV (128.161.252.2) 293 ms 318 ms 324 ms

NIC.DDN.MIL (192.112.36.5) 324 ms 321 ms 324 ms

Figure 8.4 traceroute from host suntonic.ddn.mil.

Since running this example for inclusion in the text, the NIC for non-DDN sites (i.e., non-
military) has moved from nic.ddn.mil to rs.internic.net, the new “InterNIC.”

Viptela, Inc. - Exhibit 1007

Page 122



Section 8.4 WAN Output 103

Once the datagrams leave the tuc.noao.edu network they enter the
telcom.arizona.edu network. They then enter the NASA Science Internet,
nsn.nasa.gov. The routers for TTLs 6 and 7 are at the Jet Propulsion Laboratory
(JPL). The network sura.net in the output for TTL 11 is the Southeastern Universities
Research Association Network. The name GSI at TTL 12 is Government Systems, Inc.,
the operator of the NIC,

The second RTT for the TTL of 6 (590) is more than double the other two RTTs (234
and 262). This illustrates the dynamics of IP routing. Something happened somewhere
between the sending host and this router that slowed down this datagram. Also, we
can’t tell if it was the outbound datagram that got held up or the return ICMP error.

The RTT for the first probe with a TTL of 3 (204) is less than the RTT for the first
probe with a TTL of 2 (233). Since each printed RTT is the total time from the sending
host to that router, this can (and does) happen.

The example in Figure 8.5 is from the host sun to the author’s publisher.

sun % traceroute aw.com
traceroute to aw.com (182.207.117.2), 30 hops max, 40 byte packetsg

1 netb.tuc.nocao.edu (140.252.1.183) 227 ms 227 ms 234 ms
2 gateway.tuc.noao.edu (140.252.1.4}) 233 ms 229 mg 234 ms

3 butch.telcom.arizona.edu (140.252.104.2) 233 ms 229 ms 234 ms
Gabby.Telcom.Arizona .EDU (128.196.128.1) 264 ms 228 ms 234 ms
5 Westgate.Telcom.Arizona.EDU (192.80.43.2) 234 ms 228 ms 234 ms

-~

6 uu-ua.AZ.westnet.net (192.31.39.233) 263 ms 258 ms 264 ms
7 enssld2.UT.westnet.net (192.31.39.21) 263 ms 258 ms 264 ms

8 t3-2.Denver-cnss97.t3.ans.net (140.222.97.3) 293 ms 288 ms 275 ms
9 t3-3.Denver-cnss96.t3.ans.net (140.222.96.4) 283 ms 263 ms 261 ms
10 t3-1.St-Louis-cnss80.t3.ans.net (140.222.80.2) 282 ms 288 ms 294 ms
11 t3-1.Chicago-cnss24.t3.ans.net (140.222.24.2) 293 mg 288 ms 294 ms
12 t3-2.Cleveland-cnss40.t3.ans.net (140.222.40.3) - 294 ms 288 ms 294 ms
13 t3-1.New-York-cnss32.t3.ans.net (140.222.32.2) 323 ms 318 ms 324 ms
14 t3-1.Washington-DC-cngsh6.t3.ans.net (140.222.56.2) 323 mg 318 ms 324 ms
15 t£3-0.Washington-DC-cnss58.t3.ans.net (140.222.58.1) 324 ms 318 ms 324 ms
16 t3-0.enssl36.t3.ans.net (140.222.136.1) 323 ms 318 ms 324 ms

17 Washington,DC.ALTER.NET (192.41.177.248) 323 ms 377 ms 324 ms
18 Boston.MA.ALTER.NET (137.39.12.2) 324 ms 347 ms 324 ms
19 AW-gw.ALTER.NET (137.39.62.2) 353 ms 378 mg 354 ms

20 aw.com (192.207.117.2) 354 ms 349 ms 354 ms

Figure 8.5 traceroute from host sun. tuc.noao.edu to aw.com

This time the datagrams enter the regional network westnet .net (TTLs 6 and 7) after
leaving the telcom.arizona.edu network. They then enter the NSFNET backbone,
t3.ans.net, which is run by Advanced Network & Services. (T3 is the common
abbreviation for the 45 Mbits/sec phone lines used by the backbone.) The final network
is alter .net, the connection point to the Internet for aw. com.

Viptela, Inc. - Exhibit 1007
Page 123



104

Traceroute Program Chapter 8

8.5

IP Source Routing Option

Normally IP routing is dynamic with each router making a decision about which next-
hop router to send the datagram to. Applications have no control of this, and are nor-
mally not concerned with it. It takes tools such as Traceroute to figure out what the
route really is.

The idea behind source routing is that the sender specifies the route. Two forms are
provided:

e Strict source routing. The sender specifies the exact path that the IP datagram
must follow. If a router encounters a next hop in the source route that isn’t on a
directly connected network, an ICMP “source route failed” error is returned.

e Loose source routing. The sender specifies a list of IP address that the datagram
must traverse, but the datagram can also pass through other routers between
any two addresses in the list.

Traceroute provides a way to look at source routing, as we can specify an option allow-
ing us to force a source route, and see what happens.

Some of the publicly available Traceroute source code packages contain patches to specify
loose source routing. But the standard versions normally don’t include this option. A com-
ment in the patches is that “Van Jacobson’s original traceroute (spring 1988) supported this fea-
ture, but he removed it due to pressure from people with broken gateways.” For the examples
shown in this section, the author installed these patches and modified them to allow both loose
and strict source routing,

Figure 8.6 shows the format of the source route option.

|<.- 39 bytes >|
code| len | ptr | IPaddr#1 | IPaddr#2 | IP addr#3 v 1P addr #9
1 1 1 4 bytes 4 bytes 4 bytes 4 bytes

Figure 8.6 General format of the source route option in the IP header.

This format is nearly identical to the format of the record route option that we showed
in Figure 7.3. But with source routing we have to fill in the list of IP addresses before
sending the IP datagram, while with the record route option we allocate room and zero
out the list of IP addresses, letting the routers fill in the next entry in the list. Also, with
source routing we only allocate room for and initialize the number of IP addresses
required, normally fewer than nine. With the record route option we allocated as much
room as we could, for up to nine addresses.

The code is 0x83 for loose source routing, and 0x89 for strict source routing. The
len and ptr fields are identical to what we described in Section 7.3.

The source route options are actually called “source and record route” (LSRR and
SSRR, for loose and strict) since the list of IP addresses is updated as the datagram
passes along the path. What happens is as follows:

Viptela, Inc. - Exhibit 1007
Page 124



Section 8.5 IP Source Routing Option 105

e The sending host takes the source route list from the application, removes the
first entry (it becomes the destination address of the datagram), moves all the
remaining entries left by one entry (where left is as in Figure 8.6), and places the
original destination address as the final entry in the list. The pointer still points
to the first entry in the list (e.g., the value of the pointer is 4).

e FEach router that handles the datagram checks whether it is the destination
address of the datagram. If not, the datagram is forwarded as normal. (In this
case loose source routing must have been specified, or we wouldn’t have
received the datagram.)

o If the router is the destination, and the pointer is not greater than the length,
then (1) the next address in the list (Where pir points) becomes the destination
address of the datagram, (2) the IP address corresponding to the outgoing inter-
face replaces the source address just used, and (3) the pointer is incremented

by 4.

This is best explained with an exafnple. In Figure 8.7 we assume that the sending appli-
cation on host S sends a datagram to D, specifying a source route of R1, R2, and R3.

dest=D
{#R1, R2,R3)

s dest=R1 R dest = R2 ol R2 dest =R3 o R3 dest=D D
[#R2,R3,D) {R1,#R3,D| [R1,R2,#D} (R1,R2, R3#1 |

Figure 8.7 Example of IP source routing.

In this figure the pound sign (#) denotes the pointer field, which assumes the values of
4, 8,12, and 16. The length field will always be 15 (three IP addresses plus 3 bytes of
overhead). Notice how the destination address of the IP datagram changes on every
hop.

When an application receives data that was source routed, it should fetch the value
of the received route and supply a reversed route for sending replies.

The Host Requirements RFC specifies that a TCP client must be able to specify a source route,
and that a TCP server must be able to receive a source route, and use the reverse route for all
segments on that TCP connection. If the TCP server later receives a different source route, that
newer source route overrides the earlier one.

traceroute Examples with Loose Source Routing

The -g option to traceroute lets us specify intermediate routers to be used with loose
source routing. This option can be specified up to eight times. (The reason this is eight
and not nine is that the programming interface being used requires that the final entry
be the destination.)

Viptela, Inc. - Exhibit 1007
Page 125



106

Traceroute Program Chapter 8

Recall from Figure 8.4 that the route to the NIC, nic.ddn.mil, was through the
NASA Science Internet. In Figure 8.8 we force the datagrams to pass through the
NSENET instead by specifying the router enss142.UT.westnet .net (192.31.39.21) as
an intermediate router:

sun % traceroute -g 192.31.39.21 nic.ddn.mil
traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 byte packets
1 netb.tuc.ncao.edu (140.252.1.183) 259 ms 256 ms 235 ms

butch.telcom.arizona.edu (140.252.104.2) 234 ms 228 ms 234 ms
Gabby.Telcom.Arizona.EDU (128.196.128.1) 234 ms 257 ms 233 ms

enssld42.UT.westnet.net (192.31.39.21) 294 ms 288 ms 295 ms

t3-~3.Denver—-cnss96.t3.ans.net (140.222.96.4) 293 ms 288 ms 294 ms
£3-1.8t-Louis-cnss80.t3.ans.net (140.222.80.2) 294 ms 318 ms 294 ms
* t3-1.Chicago-cnss24.t3.ans.net (140.222.24.2) 318 ms 295 ms
9 t3-2.Cleveland-cnssd40.t3.ans.net (140.222.40.3) 319 ms 318 ms 324 ms
10 t3-1.New-York-cnss32.t3.ans.net (140.222.32.2) 324 ms 318 ms 324 ms
11 t3~1.Washington-DC-cnssb6.t3.ans.net (140.222.56.2) 353 ms 348 ms 325 ms
12 t3-0.Washington-DC-cnss58.t3.ans.net (140.222.58.1) 348 ms 347 ms 325 ms
13 t3-0.enssl4d45.t3.ans.net (140.222.145.1) 353 ms 348 ms 325 ms

2
3
4
5 t3-2.Denver-cnss97.t3.ans.net (140.222.97.3) 294 ms 286 ms 293 ms
6
7
8

14 nsn-FIX-pe.sura.net (192.80.214.253) 353 ms 348 ms 325 ms
15 GSI.NSN.NASA.GOV (128.161.252.2) 353 ms 348 ms 354 ms
16 NIC.DDN.MIL (192.112.36.5) 354 ms 347 ms 354 ms

Figure 8.8 traceroute tonic.ddn.mil with aloose source route through the NSFNET.

This time there appear to be 16 hops with an average RTT of around 350 ms, while the
normal route shown in Figure 8.4 had only 13 hops and an average RTT of around 322
ms. The default route appears better. (There are also other decisions made when routes
are established. Some are made on the basis of the organizational and political bound-
aries of the networks involved.)

But we said there appear to be 16 hops, because a comparison of this output with our
previous example through the NSENET (Figure 8.5) shows three missing routers in this
example using loose source routing. (These are probably caused by bugs in the router’s
generation of ICMP time exceeded errors in response to source routed datagrams.) The
router gateway . tuc.noao.edu is missing between netb and butch, and the routers
Westgate.Telcom.Arizona.edu and uu-ua.AZ.westnet.net are also missing
between Gabby and enss142.UT.westnet.net. There is probably a software prob-
lem in these missing routers related to incoming datagrams with the loose source rout-
ing option. There are really 19 hops between the source and the NIC, when using the
NSFNET. Exercise 8.5 continues the discussion of these missing routers.

This example also illustrates another problem. On the command line we have to
specify the dotted-decimal IP address of the router enssl142.UT.westnet.net
instead of its. name. This is because the reverse name lookup (return the name, given
the IP address, Section 14.5), associates the name with the IP address, but the forward
lookup (given the name, return the IP address) fails. The forward mapping and reverse
mapping are two separate files in the DNS (Domain Name System) and not all

Viptela, Inc. - Exhibit 1007
Page 126



Section 8.5 IP Source Routing Option 107

administrators keep the two synchronized with each other. It’s not uncommon to have
one direction work and the other direction fail.

Something that we haven't seen before is the asterisk (*) printed for the first RTT for
the TTL of 8. This indicates that a timeout occurred and no response was received
within 5 seconds for this probe.

Another point that we can infer from a comparison of this figure and Figure 8.4 is
that the router nsn-FIX-pe.sura.net is connected to both the NSENET and the
NASA Science Internet,

traceroute Examples with Strict Source Routing

The -G option in the author’s version of traceroute is identical to the -g option
described earlier, but the source route is strict instead of loose. We can use this to see
what happens when an invalid strict source route is specified. Recall from Figure 8.5
that the normal sequence of routers for datagrams from the author’s subnet to the
NSENET is through netb, gateway, butch, and gabby. (We've omitted the domain
suffixes, .tuc.noao.edu and .telcom.arizona.edu, in all the output below to
make it easier to read.) We specify a strict source route that omits butch, trying to go
directly from gateway to gabby. We expect this to fail, as shown in Figure 8.9.

S

sun % traceroute -G netb -G gateway -G gabby westgate

traceroute to westgate (192.80.43.2), 30 hops max, 40 byte packets
1 netb (140.252.1.183) 272 ms 257 ms 261 ms

2 gateway (140.252.1.4) 263 ms 259 ms 234 ms

3 gateway (140.252.1.4) 263 ms !S * 235 ms !S

Figure 8.9 traceroute with a strict source route that fails.

The key here is the notation ! S following the RTTs for the TTL of 3. This indicates that
traceroute received an ICMP “source route failed” error message: a fype of 3 and a
code of 5 from Figure 6.3. The asterisk for the second RTT for the TTL of 3 indicates no
response was received for that probe. This is what we expect, since it's impossible for
gateway to send the datagram directly to gabby, because they’re not directly con-
nected.

The reason that both TTLs 2 and 3 are from gateway is that the values for the TTL
of 2 are from gateway when it receives the datagram with an incoming TTL of 1. It dis-
covers that the TTL has expired before it looks at the (invalid) strict source route, and
sends back the ICMP time exceeded. The line with a TTL of 3 is received by gateway
with an incoming TTL of 2, so it looks at the strict source route, discovers that it’s
invalid, and sends back the ICMP source route failed error.

Figure 8.10 shows the tcpdump output corresponding to this example. This output
was collected on the SLIP link between sun and netb. We had to specify the ~v option
for tcpdump to display the source route information. This produces other output that
we don’t need, such as the datagram ID, which we’ve deleted. Also, the notation SSRR
stands for “strict source and record route.”

Viptela, Inc. - Exhibit 1007
Page 127



108  Traceroute Program Chapter 8

1 0.0 sun.33593 > netb.33435: udp 12 [ttl 1]
(optlen=16 SSRR{#gateway gabby westgate} EOL)
0.270278 (0.2703) netb » sun: icmp: time exceeded in-transit
0.284784 (0.0145) sun.33593 > netb.33436: udp 12 [ttl 1]
(optlen=16 SSRR{#gateway gabby westgate} EOL)
0.540338 (0.2556) netb » sun: icmp: time exceeded in-transit
0.550062 (0.0097) sun,.33593 > netb.33437: udp 12 [ttl 1]
(optlen=16 SSRR{#gateway gabby westgate} EOL)
6 0.810310 (0.2602) netb » sun: icmp: time exceeded in-transit
7 0.818030 (0.0077) sun.33593 > netb.33438: udp 12 (ttl 2,
optlen=16 SSRR{#gateway gabby westgate} EOL)
1.080337 (0.2623) gateway > sun: icmp: time exceeded in-transit
1.092564 (0.0122) sun;33593 > netb.33439: udp 12 (ttl 2,
optlen=16 SSRR{#tgateway gabby westgate} EOL)
10 1.350322 (0.2578) gateway > sun: icmp: time exceeded in-transit
11 1.357382 (0.0071) sun, 33593 > netb.33440: udp 12 (ttl 2,
optlen=16 SSRR{#gateway gabby westgate} EOL)
12 1.590586 (0.2332) gateway > sun: icmp: time exceeded in-transit
13 1.598926 (0.0083) sun, 33593 > netb.33441: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)
14 1.860341 (0.2614) gateway > sun:
icmp: gateway unreachable - source route failed
15 1.875230 (0.0149) sun, 33593 > netb.33442: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)
16 6.876579 (5.0013) sun.33593 > netb.33443: udp 12 (ttl 3,
optlen=16 SSRR{#tgateway gabby westgate} EOL)
17 7.110518 (0.2339) gateway > sun:

icmp: gateway unreachable - source route failed

Figure 8.10 tcpdump output of traceroute with failed strict source route.

First note that each UDP datagram sent by sun has a destination of netb, not the
destination host (westgate). We described this with the example shown in Figure 8.7.
Similarly, the other two routers specified with the -G option (gateway and gabby) and
the final destination (westgate) become the SSRR option list on the first hop.

We can also see from this output that the timeout used by traceroute (the time
difference between lines 15 and 16) is 5 seconds.

traceroute Round Trips with Loose Source Routing

Earlier we said that there is no guarantee that the route from A to B is the same as the
route from B to A. Other than having a login on both systems and running
traceroute on each end, it’s hard to find out if there is a difference in the two paths.
Using loose source routing, however, we can determine the route in both directions.

The trick is to specify loose source routing with the destination as the loose route,
and the sending host as the final destination. For example, on the host sun we can find
the paths to and from the host bruno.cs.colorado.edu (Figure 8.11) .

Viptela, Inc. - Exhibit 1007
Page 128



Section 8.6 Summary 109

[)

sun % traceroute —-g bruno.cs.colorado.edu sun
traceroute to sun (140.252.13.33), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 230 ms 227 ms 233 ms
gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms

butch.telcom.arizona.edu (140.252.104.2) 234 ms 229 ms 234 ms
Gabby.Telcom.Arizona .EDU (128.196.128.1) 233 ms 231 ms 234 ms
NSIgate.Telcom.Arizona.EDU (192.80.43.3) 294 ms 258 ms 234 ms

JPL1.NSN.NASA.GOV (128.161.88.2) 264 ms 258 ms 264 ms
JPL2 .NSN.NASA.GOV (192.100.15.2) 264 ms 258 ms 264 ms
NCAR.NSN.NASA.GOV (128.161.97.2) 324 ms * 295 ms

9 cu~gw.ucar.edu (192.43.244.4) 294 ms 318 ms 294 ms

10 engr-gw.Colorado.EDU (128.138.1.3) 294 ms 288 ms 294 ns

11 bruno.cs.colorado.edu (128.138.243.151) 293 ms 317 ms 294 ms

12 engr-gw-ot.cs.colorado.edu (128.138.204.1) 323 ms 317 ms 384 ms
13 cu—-gw.Colorado.EDU (128.138.1.1) 294 ms 318 ms 294 ms

14 enss.ucar.edu (192.43.244.10) 323 ms 318 ms 294 ms

15 t3-1.Denver—-cnss97.t3.ans.net (140.222.97.2) 294 ms 288 ms 384 ms
16 t3-0.enssld42.t3.ans.net (140.222.142.1) 293 ms 288 ms 294 ms

17 Gabby.Telcom.Arizona.EDU (192.80.43.1) 294 ms 288 ms 294 ms
18 Butch.Telcom.Arizona.EDU (128.,196.128.88) 293 ms 317 ms 294 ms

19 gateway.tuc.noao.edu (140.252.104.1) 294 ms 289 ms 294 ms
20 netb.tuc.noaoc.edu (140.252.1.183) 324 ms 321 ms 294 nms
21 sun.tuc.noao.edu (140.252.13.33) 534 ms 529 ms 564 ms

®W o W N

Figure 8,11 traceroute example showing unsymmetrical routing path.

The outbound path (TTLs 1-11) differs from the return path (TTLs 11-21), a good illus-
tration that Internet routing need not be symmetrical.

This output also illustrates the point we discussed with Figure 8.3. Compare the
output for TTLs 2 and 19: both are for the router gateway.tuc.noao.edu, but the
two IP addresses are different. Since traceroute identifies the incoming interface,
and since we're passing through the router in two different directions, once on the out-
bound path (TTL 2) and then on the return path (TTL 19), we expect this. We see the
same effect comparing TTLs 3 and 18, and TTLs 4 and 17.

8.6 Summary

Traceroute is an indispensable tool when working with a TCP/IP network. Its opera-
tion is simple: send UDP datagrams starting with a TTL of 1, increasing the TTL by 1, to
locate each router in the path. An ICMP time exceeded is returned by each router when
it discards the UDP datagram, and an ICMP port unreachable is generated by the final
destination.

We ran examples of t raceroute on both LANs and WANS, and used it to examine
IP source routing. We used loose source routing to see if the route to a destination is the
same as the return route from that destination.

Viptela, Inc. - Exhibit 1007
Page 129



110 Traceroute Program Chapter 8

Exercises

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8
8.9

8.10

What can happen if an IP implementation decrements the incoming TTL and then tests for
equal to 0?

How does traceroute calculate the RTT? Compare this to the RTT calculation done by
ping.

(This exercise and the next one are based on actual problems determined when
traceroute was being developed, and are from comments in the traceroute source
code.) Assume there are three routers (R1, R2, and R3) between the source and destination
and that the middle router (R2) decrements the TTL but incorrectly forwards the IP data-
gram when the incoming TTL was 1. Describe what happens. How can you see this occur
when running t raceroute?

Again assume there are three routers between the source and destination. This time the
destination host has a bug whereby it always uses the incoming TTL as the outgoing TTL of
an ICMP message. Describe what happens and how you would see this.

We can run tepdump on the SLIP link between sun and netb when running the example
from Figure 8.8. If we specify the —v option we can see the TTL value of the returned ICMP
messages. Doing this shows the incoming TTL from netb to be 255, from butch it’s 253,
from Gabby it's 252, and from enss142.UT.westnet.net it's 249. Does this give any
additional information about whether there really are some missing routers?

Both SunOS and SVR4 provide a version of ping with a -1 option that provides a loose
source route. The manual pages state that it's intended to be used with the -R option
(which specifies the record route option). If you have access to either of these systems, try
these two options together. What's happening? If you can watch the datagrams with
tcpdump, describe what's going on.

Compare the ways ping and traceroute handle multiple instances of the client on the
same host.

Compare the ways ping and traceroute measure the round-trip time.

We said traceroute picks the starting UDP destination port number at 33435 and incre-
ments this by one for each packet sent. In Section 1.9 we said ephemeral port numbers are
normally between 1024 and 5000, making it unlikely that Traceroute’s destination port is in
use on the destination host. Is this still true under Solaris 2.2? (Hint: Read Section E.4.)

Read RFC 1393 [Malkin 1993b] for a proposed alternative way of determining the path to a
destination. What are its advantages and disadvantages?

Viptela, Inc. - Exhibit 1007
Page 130



9.1

IP Routing

Introduction

Routing is one of the most important functions of IP. Figure 9.1 shows a simplified view
of the processing done at the IP layer. Datagrams to be routed can be generated either
on the local host or on some other host. In the latter case this host must be configured to
act as a router, or datagrams received through the network interfaces that are not ours
are dropped (i.e., silently discarded).

In Figure 9.1 we also show a routing daemon, which is normally a user process.
The most common daemons used on Unix systems are the programs routed and
gated. (The term daemon means the process is running “in the background,” carrying
out operations on behalf of the whole system. Daemons are normally started when the
system is bootstrapped and run as long as the system is up.) The topics of which rout-
ing protocol to use on a given host, how to exchange routing information with adjacent
routers, and how the routing protocols work are complex and can fill an entire book of
their own. (Interested readers are referred to [Perlman 1992] for many of the details.)
We'll look briefly at dynamic routing and the Routing Information Protocol (RIP) in
Chapter 10. Our main interest in the current chapter is how a single IP layer makes its
routing decisions.

The routing table that we show in Flgure 9.1 is accessed frequently by IP (on a busy
host this could mean hundreds of times a second) but is updated much less frequently
by a routing daemon (possibly about once every 30 seconds). The routing table can also
be updated when ICMP “redirect” messages are received, something we’ll look at in
Section 9.5, and by the route command. This command is often executed when the
system is bootstrapped, to install some initial routes. We'll also use the netstat com-
mand in this chapter to display the routing table.

Viptela, Inc. - Exhibit 1007
Page 131



112 IP Routing Chapter 9
routing route netstat
daemon command | | command
T T
routing table “ II /’
updates from, / /
adjacent routers \\ // ) UDP TCP
/

9.2

I I
I I
I I
! I
A Y yes |
| Vo \& g |
X v // > 4 our packet (one of |
’ * # S / our IP addresses or| !
: e 4 IP output: broadcast addrs) ? :
I / routing put: |
U able calculate next hop |
: AN o ! router (if necessary) :
! I
I process IP options |
I I
| 3 |
I I
I I
I I
I IP input queue |
! i
:_IP layer !

network interfaces

Figure 9.1 Processing done at the IP layer.

Routing Principles

The place to start our discussion of IP routing is to understand what is maintained by
the kernel in its routing table. The information contained in the routing table drives all
the routing decisions made by IP.

In Section 3.3 we listed the steps that IP performs when it searches its routing table.

Search for a matching host address.
2. Search for a matching network address.

Search for a default entry. (The default entry is normally specified in the routing
table as a network entry, with a network ID of 0.)

A matching host address is always used before a matching network address.

The routing done by IP, when it searches the routing table and decides which inter-
face to send a packet out, is a routing mechanism. This differs from a routing policy, which
is a set of rules that decides which routes go into the routing table. IP performs the
routing mechanism while a routing daemon normally provides the routing policy.

Viptela, Inc. - Exhibit 1007
Page 132



Section 9.2 Routing Principles 113

Simple Routing Table

Let’s start by looking at some typical host routing tables. On the host svr4 we execute
the netstat command with the —r option to list the routing table and the -n option,
which prints IP addresses in numeric format, rather than as names. (We do this because
some of the entries in the routing table are for networks, not hosts. Without the -n
option, the netstat command searches the file /etc/networks for the network
names. This confuses the discussion by adding another set of names—network names
in addition to hostnames.)

o

svr4 % netstat -xn
Routing tables

Destination Gateway ’ Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 0 emd0
127.0.0.1 127.0.0.1 UH 1 0 100
default 140.252.13.33 UG 0 0 emd0
140.252.13.32 140.252.13.34 U 4 25043 emd0

The first line says for destination 140.252.13.65 (host s1ip) the gateway (router) to send
the packet to is 140.252.13.35 (bsdi). This is what we expect, since the host s1ip is con-
nected to bsdi with a SLIP link, and bsdi is on the same Ethernet as this host.

There are five different flags that can be printed for a given route.

The route is up.

The route is to a gateway (router). If this flag is not set, the destination is
directly connected.

H The route is to a host, that is, the destination is a complete host address. If this
flag is not set, the route is to a network, and the destination is a network
address: a net ID, or a combination of a net ID and a subnet ID.

D The route was created by a redirect (Section 9.5).

M The route was modified by a redirect (Section 9.5).

The G flag is important because it differentiates between an indirect route and a direct
route. (The G flag is not set for a direct route.) The difference is that a packet going out a
direct route has both the IP address and the link-layer address specifying the destina-
tion (Figure 3.3, p. 40). When a packet is sent out an indirect route, the IP address speci-
fies the final destination but the link-layer address specifies the gateway (that is, the
next-hop router). We saw an example of this in Figure 3.4 (p. 41). In this routing table
example we have an indirect route (the G flag is set) so the IP address of a packet using
this route is the final destination (140.252.13.65), but the link-layer address must corre-
spond to the router 140.252.13.35.

It’s important to understand the difference between the G and H flags. The G flag
differentiates between a direct and an indirect route, as described above. The H flag,
however, specifies that the destination address (the first column of netstat output) is
a complete host address. The absence of the H flag means the destination address is a
network address (the host ID portion will be 0). When the routing table is searched for

Viptela, Inc. - Exhibit 1007
Page 133



114  IP Routing Chapter 9

a route to a destination IP address, a host address entry must match the destination
address completely, while a network address only needs to match the network ID and
any subnet ID of the destination address. Also, some versions of the netstat com-
mand print all the host entries first, followed by the network entries.

The reference count column gives the number of active uses for each roufe. A con-
nection-oriented protocol such as TCP holds on to a route while the connection is estab-
lished. If we established a Telnet connection between the two hosts svr4 and slip, we
would see the reference count go to 1. With another Telnet connection the reference
count would go to 2, and so on.

The next column (“use”) displays the number of packets sent through that route. If
we-are the only users of the route and we run the ping program to send 5 packets, the
count goes up by 5. The final column, the interface, is the name of the local interface.

The second line of output is for the loopback interface (Section 2.7), always named
100. The G flag is not set, since the route is not to a gateway. The H flag indicates that
the destination address (127.0.0.1) is a host address, and not a network address. When
the G field is not set, indicating a direct route, the gateway column gives the IP address
of the outgoing interface.

The third line of output is for the default route. Every host can have one or more
default routes. This entry says to send packets to the router 140.252.13.33 (sun) if a
more specific route can’t be found. This means the current host (svr4) can access other
systems across the Internet through the router sun (and its SLIP link), using this single
routing table entry. Being able to establish a default route is a powerful concept. The
flags for this route (UG) indicate that it's a route to a gateway, as we expect.

Here we purposely call sun a router and not a host because when it's used as a default router,
its IP forwarding function is being used, not its host functionality.

The Host Requirements RFC specifically states that the IP layer must support multiple default
routes. Many implementations, however, don’t support this. When multiple default routes
exist, a common technique is to round robin among them. This is what Solaris 2.2 does, for
example,

The final line of output is for the attached Ethernet. The H flag is not set, indicating
that the destination address (140.252.13.32) is a network address with the host portion
set to 0. Indeed, the low-order 5 bits are 0 (Figure 3.11, p. 47). Since this is a direct route
(the G flag is not set) the gateway column specifies the IP address of the outgoing
interface.

Implied in this final entry, but not shown by the netstat output, is the mask asso-
ciated with this destination address (140.252.13.32). If this destination is being com-
pared against the IP address 140.252.13.33, the address is first logically ANDed with the
mask associated with the destination (the subnet mask of the interface, Oxffffffe0,
from Section 3.7) before the comparison. For a network route to a directly connected
network, the routing table mask defaults to the subnet mask of the interface. But in
general the routing table mask can assume any 32-bit value. A value other than the
default can be specified as an option to the route command.

The complexity of a host’s routing table depends on the topology of the networks to
which the host has access.

Viptela, Inc. - Exhibit 1007
Page 134



Section 9.2 ' Routing Principles 115

1. The simplest (but least interesting) case is a host that is not connected to any
networks at all. The TCP/IP protocols can still be used on the host, but only to
communicate with itself! The routing table in this case consists of a single entry
for the loopback interface.

2. Next is a host connected to a single LAN, only able to access hosts on that LAN.
The routing table consists of two entries: one for the loopback interface and one
for the LAN (such as an Ethernet).

3. The next step occurs when other networks (such as the Internet) are reachable
through a single router. This is normally handled with a default entry pointing
to that router.

4. The final step is when other host-specific or network-specific routes are added.
In our example the route to the host s1ip, through the router bsdi, is an exam-
ple of this.

Let’s follow through the steps IP performs when using this routing table to route
some example packets on the host svr4.

1. Assume the destination address is the host sun, 140.252.13.33. A search is first
made for a matching host entry. The two host entries in the table (s1ip and
localhost) don’t match, so a search is made through the routing table again
for a matching network address. A match is found with the entry 140.252.13.32
(the network IDs and subnet IDs match), so the emd0 interface is used. This is a
direct route, so the link-layer address will be the destination address.

2. Assume the destination address is the host s1ip, 140.252.13.65. The first search
through the table, for a matching host address, finds a match. This is an indirect
route so the destination IP address remains 140.252.13.65, but the link-layer
address must be the link-layer address of the gateway 140.252.13.35, and the
interface is emd0.

3. This time we're sending a datagram across the Internet to the host aw.com
(192.207.117.2). The first search of the routing table for a matching host address
fails, as does the second search for a matching network address. The final step
is a search for a default entry, and this succeeds. The route is an indirect route
through the gateway 140.252,13.33 using the interface endo0.

4. In our final example we send a datagram to our own host. There are four ways
to do this, using either the hostname, the host IP address, the loopback name, or
the loopback IP address:

ftp svrd
ftp 140.252.13.34

ftp localhost
ftp 127.0.0.1

Viptela, Inc. - Exhibit 1007
Page 135



116  IP Routing Chapter 9

In the first two cases, the second search of the routing table yields a network
match with 140.252.13.32, and the packet is sent down to the Ethernet driver. As
we showed in Figure 2.4 (p. 28) it will be seen that this packet is destined for the
host’s own IP address, and the packet is sent to the loopback driver, which
sends it to the IP input queue.

In the latter two cases, specifying the name of the loopback interface or its IP
address, the first search of the routing table finds the matching host address
entry, and the packet is sent to the loopback driver, which sends it to the IP
input queue.

In all four cases the packet is sent to the loopback driver, but two different rout-
ing decisions are made.

Initializing a Routing Table

We never said how these routing table entries are created. Whenever an interface is ini-
tialized (normally when the interface’s address is set by the ifconfig command) a
direct route is automatically created for that interface. For point-to-point links and the
loopback interface, the route is to a host (i.e., the H flag is set). For broadcast interfaces
such as an Ethernet, the route is to that network.

Routes to hosts or networks that are not directly connected must be entered into the
routing table somehow. One common way is to execute the route command explicitly
from the initialization files when the system is bootstrapped. On the host svr4 the fol-
lowing two commands were executed to add the entries that we showed earlier:

route add default sun 1
route add slip bsdi 1

The third arguments (default and slip) are the destinations, the fourth argument is
the gateway (router), and the final argument is a routing metric. All that the route
command does with this metric is install the route with the G flag set if the metric is
greater than 0, or without the G flag if the metric is 0.

Unfortunately, few systems agree on which start-up file contains the route commands.
Under 44BSD and BSD/386 it is /etc/netstart, under SVR4 it is /etc/inet/rc.inet,
under Solaris 2.x it is /etc/rc2.d/S69inet, SunOS 4.1.x uses /etc/rc.local, and AIX
3.22uses /etc/rec. net.

Some systems allow a default router to be specified in a file such as
/etc/defaultrouter, and this default is added to the routing table on every reboot.

Other ways to initialize a routing table are to run a routing daemon (Chapter 10) or
to use the newer router discovery protocol (Section 9.6).

A More Complex Routing Table

The host sun is the default router for all the hosts on our subnet, since it has the dialup
SLIP link that connects to the Internet (see the figure on the inside front cover).

Viptela, Inc. - Exhibit 1007
Page 136



Section 9.3 ICMP Host and Network Unreachable Errors 117

o

sun % netstat —-rn
Routing tables

Destination Gateway Flags Refent Use Interface
140.252.13.65 140.252.13.35 UGH 0 171 le0
127.0.0.1 127.0.0.1 UH 1 766 1lo0
140.252.1.183 140.252.1.29 UH 0 0 510
default 140.252.1.183 UG 1 2955 s10
140.252.13.32 140.252.13.33 U 8 99551 leO

The first two entries are identical to the first two for the host svr4: a host-specific route
to s1ip through the router bsdi, and the loopback route.

The third line is new. It is a direct route (the G flag is not set) to a host (the H flag is
set) and corresponds to our point-to-point link, the SLIP interface. If we compare it to
the output from the i fconfig command,

sun % ifconfig sl0
s10: flags=1051<UP,POINTOPOINT, RUNNING>
inet 140.252.1.29 --> 140.252.1.183 netmask f£fffff00

we see that the destination address in the routing table is the other end of the point-to-
point link (the router netb) and the gateway address is really the local IP address of the
outgoing interface (140.252.1.29). (We said earlier that the gateway address printed by
netstat for a direct route is the local IP address of the interface to use.)

The default entry is an indirect route (G flag) to a network (no H flag), as we expect.
The gateway address is the address of the router (140.252.1.183, the other end of the
SLIP link) and not the local IP address of the SLIP link (140.252.1.29). Again, this is
because it is an indirect route, not a direct route.

We should also note that the third and fourth lines output by netstat (the ones
with an interface of s10) are created by the SLIP software being used when the SLIP
line is brought up, and deleted when the SLIP link is brought down.

No Route to Destination

9.3

All our examples so far have assumed that the search of the routing table finds a match,
even if the match is the default route. What if there is no default route, and a match
isn’t found for a given destination?

The answer depends on whether the IP datagram being routed was generated on
the host or is being forwarded (e.g., we're acting as a router). If the datagram was gen-
erated on this host, an error is returned to the application that sent the datagram, either
“host unreachable” or “network unreachable.” If the datagram was being forwarded,
an ICMP host unreachable error is sent back to original sender. We examine this error in
the following section.

ICMP Host and Network Unreachable Errors

The ICMP “host unreachable” error message is sent by a router when it receives an IP
datagram that it cannot deliver or forward. (Figure 6.10 shows the format of the ICMP

Viptela, Inc. - Exhibit 1007
Page 137



118  IP Routing Chapter 9

unreachable messages.) We can see this easily on our network by taking down the
dialup SLIP link on the router sun, and trying to send a packet through the SLIP link
from any of the other hosts that specify sun as the default router.

Older implementations of the BSD TCP/IP software generated either a host unreachable, or a
network unreachable, depending on whether the destination was on a local subnet or not.
4.4BSD generates only the host unreachable,

Recall from the netstat output for the router sun shown in the previous section
that the routing table entries that use the SLIP link are added when the SLIP link is
brought up, and deleted when the SLIP link is brought down. This means that when
the SLIP link is down, there is no default route on sun. But we don’t try to change all
the other host’s routing tables on our small network, having them also remove their
default route. Instead we count on the ICMP host unreachable generated by sun for
any packets that it gets that it cannot forward.

We can see this by running ping on svr4, for a host on the other side of the dialup
SLIP link (which is down):

o)

svrd % ping gemini

ICMP Host Unreachable from gateway sun (140.252,13.33)
ICMP Host Unreachable from gateway sun (140.252.13.33)
"2 type interrupt key to stop

Figure 9.2 shows the tcpdump output for this example, run on the host bsdi.

1 0.0 svrd > gemini: icmp: echo request
2 0.00 (0.00) sun > svr4: icmp: host gemini unreachable
3 0.99 (0.99) svrd > gemini: icmp: echo request
4 0.99 (0.00) sun > svrd4: icmp: host gemini unreachable

Figure 9.2 ICMP host unreachable in response to ping.

When the router sun finds no route to the host gemini, it responds to the echo request
with a host unreachable.

If we bring the SLIP link to the Internet up, and try to ping an IP address that is not
connected to the Internet, we expect an error. What is interesting is to see how far the
packet gets into the Internet, before the error is returned:

sun % ping 192.82.148.1 this IP address is not connected to the Internet
PING 192.82.148.1: 56 data bytes

ICMP Host Unreachable from gateway enssl42.UT.westnet.net (192.31.39.21)
for icmp from sun (140.252.1.29) to 192.82.148.1 ’

Looking at Figure 8.5 (p. 103) we see that the packet made it through six routers before
detecting that the IP address was invalid. Only when it got to the border of the
NSENET backbone was the error detected. This implies that the six routers that for-
warded the packet were doing so because of default entries, and only when it reached
the NSFENET backbone did a router have complete knowledge of every network con-
nected to the Internet. This illustrates that many routers can operate with just partial
knowledge of the big picture.

Viptela, Inc. - Exhibit 1007
Page 138



Section 9.5 ICMP Redirect Errors 119

9.4

9.5

[Ford, Rekhter, and Braun 1993] define a top-level routing domain as one that main-
tains routing information to most Internet sites and does not use default routes. They
note that five of these top-level routing domains exist on the Internet: the NSFNET
backbone, the Commercial Internet Exchange (CIX), the NASA Science Internet (NSI),
SprintLink, and the European IP Backbone (EBONE).

To Forward or Not to Forward

We've mentioned a few times that hosts are not supposed to forward IP datagrams
unless they have been specifically configured as a router. How is this configuration
done?

Most Berkeley-derived implementations have a kernel variable named
ipforwarding, or some similar name. (See Appendix E.) Some systems (BSD/386
and SVR4, for example) only forward datagrams if this variable is nonzero. SunOS 4.1.x
allows three values for the variable: —~1 means never forward and never change the
value of the variable, 0 means don’t forward by default but set this variable to 1 when
two or more interfaces are up, and 1 means always forward. Solaris 2.x changes the
three values to be 0 (never forward), 1 (always forward), and 2 (only forward when two
or more interfaces are up).

Older 4.2BSD hosts forwarded datagrams by default, which caused lots of problems
for systems configured improperly. That’s why this kernel option must always default
to “never forward” unless the system administrator specifically enables forwarding,

ICMP Redirect Errors

The ICMP redirect error is sent by a router to the sender of an IP datagram when the
datagram should have been sent to a different router. The concept is simple, as we
show in the three steps in Figure 9.3. The only time we’ll see an ICMP redirect is when
the host has a choice of routers to send the packet to. (Recall the earlier example of this
we saw in Figure 7.6, p. 94.)

1. We assume that the host sends an IP datagram to R1. This routing decision is
often made because R1 is the default router for the host.

2. R1 receives the datagram and performs a lookup in its routing table and deter-
mines that R2 is the correct next-hop router to send the datagram to. When it
sends the datagram to R2, R1 detects that it is sending it out the same interface
on which the datagram arrived (the LAN to which the host and the two routers
are attached). This is the clue to a router that a redirect can be sent to the origi-
nal sender.

3. R1 sends an ICMP redirect to the host, telling it to send future datagrams to that
destination to R2, instead of R1.

Viptela, Inc. - Exhibit 1007
Page 139



120

IP Routing Chapter 9

= _ (DIPdatagram __y f
¥

TTT T T T T T Pdatagram -

final destination

Figure 9.3 Example of an ICMP redirect.

A common use for redirects is to let a host with minimal routing knowledge build up a
better routing table over time. The host can start with only a default route (either R1 or
R2 from our example in Figure 9.3) and anytime this default turns out to be wrong, it'll
be informed by that default router with a redirect, allowing the host to update its rout-
ing table accordingly. ICMP redirects allow TCP/IP hosts to be dumb when it comes to
routing, with all the intelligence in the routers. Obviously R1 and R2 in our example
have to know more about the topology of the attached networks, but all the hosts
attached to the LAN can start with a default route and learn more as they receive
redirects.

An Example

We can see ICMP redirects in action on our network (inside front cover). Although we
show only three hosts (aix, solaris, and gemini) and two routers (gateway and
netb) on the top network, there are more than 150 hosts and 10 other routers on this
network. Most of the hosts specify gateway as the default router, since it provides
access to the Internet.

How is the author’s subnet (the bottom four hosts in the flgure) accessed from the
hosts on the 140.252.1 subnet? First recall that if only a single host is at the end of the
SLIP link, proxy ARP is used (Section 4.6). This means nothing special is required for
hosts on the top network (140.252.1) to access the host sun (140.252.1.29). The proxy
ARP software in netb handles this.

When a network is at the other end of the SLIP link, however routing becomes
involved. One solution is for every host and router to know that the router netb is the
gateway for the network 140.252.13. This could be done by either a static route in each
host’s routing table, or by running a routing daemon in each host. A simpler way (and
the method actually used) is to utilize ICMP redirects.

Viptela, Inc. - Exhibit 1007
Page 140



Section 9.5 ICMP Redirect Errors 121

Let’s run the ping program from the host solaris on the top network to the host
bsdi (140.252.13.35) on the bottom network. Since the subnet IDs are different, proxy
ARP can’t be used. Assuming a static route has not been installed, the first packet sent
will use the default route to the router gateway. Here is the routing table before we
run ping:

solaris % netstat -rn

Routing Table:

Destination Gateway Flags Ref Use Interface
127.0.0.1 127.0.0.1 UH 0 848 100
140.252.1.0 140.252.1.32 U 3 15042 1leO
224.0.0.0 140.252.1.32 U 3 0 1le0
default 140.252.1.4 UG 0 5747

(The entry for 224.0.0.0 is for IP multicasting. We describe it in Chapter 12.) If we spec-
ify the —~v option to ping, we’ll see any ICMP messages received by the host. We need
to specify this to see the redirect message that’s sent.

o

solaris % ping -sv bsdi

PING bsdi: 56 data bytes

ICMP Host redirect from gateway gateway (140.252.1.4)

to netb (140.252.1.183) for bsdi (140.252.13.35)

64 bytes from bsdi (140.252.13.35): icmp_seqg=0. time=383. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=l. time=364. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=2. time=353. ms
~e type interrupt key to stop
———-bsdi PING Statistics-——=-—

4 packets transmitted, 3 packets received, 25% packet loss
round-trip (ms) min/avg/max = 353/366/383

Before we receive the first ping response, the host receives an ICMP redirect from the
default router gateway. If we then look at the routing table, we'll see that the new
route to the host bsdi has been inserted. (This new entry is shown in a bolder font.)

-3

solaris % netstat -rn
Routing Table:

Destination Gateway FPlags Ref Use Interface
127.0.0.1 127.0.0.1 UH 0 848 1lo0
140.252.13.35 140.252.1.183 UGHD 0 2
140.252.1.0 140.252.1.32 U 3 15045 1le0
224.0.0.0 140.252.1.32 U 3 0 1leO
default 140.252.1.4 UG 0 5749

This is the first time we’ve seen the D flag, which means the route was installed by an
ICMP redirect. The G flag means it’s an indirect route to a gateway (netb), and the H
flag means it's a host route (as we expect), not a network route.

Since this is a host route, added by a host redirect, it handles only the host bsdi. If
we then access the host svr4, another redirect is generated, creating another host route.
Similarly, accessing the host slip creates another host route. The point here is that
each redirect is for a single host, causing a host route to be added. All three hosts on the
author’s subnet (bsdi, svr4, and slip) could also be handled by a single network

Viptela, Inc. - Exhibit 1007
Page 141



122 IP Routing Chapter 9

route pointing to the router sun. But ICMP redirects create host routes, not network
routes, because the router generating the redirect in this example (gateway) has no
knowledge of the subnet structure on the 140.252.13 network.

More Details

Figure 9.4 shows the format of the ICMP redirect message.

0 78 15 16 31
type (5) code (0-3) checksum T
8 bytes
router IP address that should be used J;
} IP header (including options) + first 8 bytes of original IP datagram data }

Figure 9.4 ICMP redirect message.

There are four different redirect messages, with different code values, as shown in Fig-
ure 9.5,

code Description

0 redirect for network

1 redirect for host

2 redirect for type-of-service and network
3 redirect for type-of-service and host

Figure 9.5 Different code values for ICMP redirect.

There are three IP addresses that the receiver of an ICMP redirect must look at: (1)
the IP address that caused the redirect (which is in the IP header returned as the data
portion of the ICMP redirect), (2) the IP address of the router that sent the redirect
(which is the source IP address of the IP datagram containing the redirect), and (3) the
IP address of the router that should be used (which is in bytes 4—7 of the ICMP
message).

There are numerous rules about ICMP redirects. First, redirects are generated only
by routers, not by hosts. Also, redirects are intended to be used by hosts, not routers. It
is assumed that routers participate in a routing protocol with other routers, and the
routing protocol should obviate the need for redirects. (This means that in Figure 9.1
the routing table should be updated by either a routing daemon or redirects, but not by
both.)

Viptela, Inc. - Exhibit 1007
Page 142



Section 9.6 ICMP Router Discovery Messages 123

9.6

4.4BSD, when acting as a router, performs the following checks, all of which must
be true before an ICMP redirect is generated.

The outgoing interface must equal the incoming interface.

2. The route being used for the outgoing datagram must not have been created or
modified by an ICMP redirect, and must not be the router’s default route.

3. The datagram must not be source routed.

The kernel must be configured to send redirects.

The kernel variable is named ip_ sendredirects, or something similar. (See Appen-
dix E.) Most current systems (4.4BSD, SunQS 4.1.x, Solaris 2.x, and AIX 3.2.2, for exam-
ple) enable this variable by default. Other systems such as SVR4 disable it by default.

Additionally, a 4.4BSD host that receives an ICMP redirect performs some checks before
modifying its routing table. These are to prevent a misbehaving router or host, or a
malicious uset, from incorrectly modifying a system’s routing table.

The new router must be on a directly connected network.
The redirect must be from the current router for that destination.

The redirect cannot tell the host to use itself as the router.

L

The route that’s being modified must be an indirect route.

Our final point about redirects is that routers should send only host redirects (codes
1 or 3 from Figure 9.5) and not network redirects. Subnetting makes it hard to specify
exactly when a network redirect can be sent instead of a host redirect. Some hosts treat
a received network redirect as a host redirect, in case a router sends the wrong type.

ICMP Router Discovery Messages

We mentioned earlier in this chapter that one way to initialize a routing table is with
static routes specified in configuration files. This is often used to set a default entry. A
newer way is to use the ICMP router advertisement and solicitation messages.

The general concept is that after bootstrapping, a host broadcasts or multicasts a
router solicitation message. One or more routers respond with a router advertisement
message. Additionally, the routers periodically broadcast or multicast their router
advertisements, allowing any hosts that are listening to update their routing table
accordingly.

RFC 1256 [Deering 1991] specifies the format of these two ICMP messages. Fig-
ure 9.6 shows the format of the ICMP router solicitation message. Figure 9.7 shows the
format of the ICMP router advertisement message sent by routers.

Multiple addresses can be advertised by a router in a single message. Number of
addresses is the number. Address entry size is the number of 32-bit words for each router
address, and is always 2. Lifetime is the number of seconds that the advertised
addresses can be considered valid.

Viptela, Inc. - Exhibit 1007
Page 143



124 P Routing Chapter 9

8 bytes
\ Unused (sent as 0) —\ l

Figure 9.6 Format of ICMP router solicitation message.

0 78 15 16 31

type (10) code (0) checksum

0 78 15 16 31
type (9) code (0) checksum T
8 bytes
number of address lifetime
addresses entry size (2) i

router address [1]

preference level {1]

router address [2]

preference level [2]

Figure 9.7 Format of ICMP router advertisement message.

One or more pairs of an IP address and a preference then follow. The IP address
must be one of the sending router’s IP addresses. The preference level is a signed 32-bit
integer indicating the preference of this address as a default router address, relative to
other router addresses on the same subnet. Larger values imply more preferable
addresses. The preference level 0x80000000 means the corresponding address,
although advertised, is not to be used by the receiver as a default router address. The
default value of the preference is normally 0.

Router Operation

When a router starts up it transmits periodic advertisements on all interfaces capable of
broadcasting or multicasting. These advertisements are not exactly periodic, but are

Viptela, Inc. - Exhibit 1007
Page 144



Section 9.7 Summary 125

randomized, to reduce the probability of synchronization with other routers on the
same subnet. The normal time interval between advertisements is between 450 and 600
seconds. The default lifetime for a given advertisement is 30 minutes.

Another use of the lifetime field occurs when an interface on a router is disabled. In
that case the router can transmit a final advertisement on the interface with the lifetime
set to 0.

In addition to the periodic, unsolicited advertisements, a router also listens for solic-
itations from hosts. It responds to these solicitations with a router advertisement.

If there are multiple routers on a given subnet, it is up to the system administrator
to configure the preference level for each router as appropriate. For example, the pri-
mary default router would have a higher preference than a backup.

Host Operation

Upon bootstrap a host normally transmits three router solicitations, 3 seconds apart. As
soon as a valid advertisement is received, the solicitations stop.

A host also listens for advertisements from adjacent routers. These advertisements
can cause the host’s default router to change. Also, if an advertisement is not received
for the current default, that default can time out.

As long as the normal default router stays up, that router will send advertisements
every 10 minutes, with a lifetime of 30 minutes. This means the host’s default entry
won’t time out, even if one or two advertisements are lost. ‘

Implementation

9.7

The router discovery messages are normally generated by and processed by a user pro-
cess (a daemon). This adds yet another program updating the routing table in Fig-
ure 9.1, although it would only add or delete a default entry. The daemon would have
to be configured to act as a router or a host.

These two ICMP messages are new and not supported by all systems. Solaris 2.x is the only
system in our network that supports these messages (the in.rdisc daemon). Although the
RFC recommends using IP multicasting whenever possible, router discovery can work using
broadcast messages also.

Summary

The operation of IP routing is fundamental to a system running TCP/IP, be it a host or
router. The routing table entries are simple: up to 5 flag bits, a destination IP address
(host, network, or default), a next-hop router IP address (for an indirect route) or a local
interface IP address (for a direct route), and a pointer to a local interface to use. Host
entries have priority over network entries, which have priority over default entries.

A search of this routing table is made for every IP datagram that the system gener-
ates or forwards, and can be updated by either a routing daemon or ICMP redirects. By
default a system should never forward a datagram unless it has specifically been

Viptela, Inc. - Exhibit 1007
Page 145



126  IP Routing Chapter 9

configured to do so. Static routes can be entered using the route command, and the
newer ICMP router discovery messages can be used to initialize and dynamically
update default entries. Hosts can start with a simple routing table that is updated
dynamically by ICMP redirects from its default router.

Our discussion in this chapter has focused on how a single system uses its routing

table. In the next chapter we examine how routers exchange routing information with
each other.

Exercises

9.1
9.2

9.3

9.4

9.5

Why do you think both types of ICMP redirects—network and host—exist?

In the routing table for svr4 shown at the beginning of Section 9.2, is a specific route to the
host s1ip (140.252.13.65) necessary? What would change if this entry were removed from
the routing table?

Consider a cable with both 4.2BSD hosts and 4.3BSD hosts. Assume the network ID is
140.1. The 4.2BSD hosts only recognize a host 1D of all zero bits as the broadcast address
(140.1.0.0), while the 4.3BSD hosts normally send a broadcast using a host ID of all one bits
(140.1.255.255). Also, the 4.2BSD hosts by default will try to forward incoming datagrams,
even if they have only a single interface.

Describe the events that happen when the 4.2BSD hosts receive an IP datagram with the
destination address of 140.1.255.255.

Continue the previous exercise, assuming someone corrects this problem by adding an
entry to the ARP cache on one system on the 140.1 subnet (using the arp command) saying
that the IP address 140.1.255.255 has a corresponding Ethernet address of all one bits (the
Ethernet broadcast). Describe what happens now.

Examine your system’s routing table and describe each entry.

Viptela, Inc. - Exhibit 1007
Page 146



10.1

10.2

10

Dynamic Routing Protocols

Introduction

Our discussion in the previous chapter dealt with static routing. The routing table
entries were created by default when an interface was configured (for directly con-
nected interfaces), added by the route command (normally from a system bootstrap
file), or created by an ICMP redirect (usually when the wrong default was used).

This is fine if the network is small, there is a single connection point to other net-
works, and there are no redundant routes (where a backup route can be used if a pri-
mary route fails). If any of these three conditions is false, dynamic routing is normally
used.

This chapter looks at the dynamic routing protocols used by routers to communi-
cate with each other. We concentrate on RIP, the Routing Information Protocol, a widely
used protocol that is provided with almost every TCP/IP implementation. We then
look at two newer routing protocols, OSPF and BGP. The chapter finishes with an
examination of a new routing technique, called classless interdomain routing, that is
starting to be implemented across the Internet to conserve class B network numbers.

Dynamic Routing

Dynamic routing occurs when routers talk to adjacent routers, informing each other of
what networks each router is currently connected to. The routers must communicate
using a routing protocol, of which there are many to choose from. The process on the
router that is running the routing protocol, communicating with its neighbor routers, is
usually called a routing daemon. As shown in Figure 9.1, the routing daemon updates
the kernel’s routing table with information it receives from neighbor routers.

127
Viptela, Inc. - Exhibit 1007
Page 147



128

Dynamic Routing Protocols Chapter 10

10.3

The use of dynamic routing does not change the way the kernel performs routing at
the IP layer, as we described in Section 9.2. We called this the routing mechanism. The
kernel still searches its routing table in the same way, looking for host routes, network
routes, and default routes. What changes is the information placed into the routing
table—instead of coming from route commands in bootstrap files, the routes are
added and deleted dynamically by a routing daemon, as routes change over time.

As we mentioned earlier, the routing daemon adds a routing policy to the system,
choosing which routes to place into the kernel’s routing table. If the daemon finds mul-
tiple routes to a destination, the daemon chooses (somehow) which route is best, and
which one to insert into the kernel’s table. If the daemon finds that a link has gone
down (perhaps a router crashed or a phone line is out of order), it can delete the affected
routes or add alternate routes that bypass the problem.

In a system such as the Internet, many different routing protocols are currently
used. The Internet is organized into a collection of autonomous systems (ASs), each of
which is normally administered by a single entity. A corporation or university campus
often defines an autonomous system. The NSFNET backbone of the Internet forms an
autonomous system, because all the routers in the backbone are under a single adminis-
trative control.

Each autonomous system can select its own routing protocol to communicate
between the routers in that autonomous system. This is called an interior gateway proto-
col (IGP) or intradomain routing protocol. The most popular IGP has been the Routing
Information Protocol (RIP). A newer IGP is the Open Shortest Path First protocol (OSPE).
It is intended as a replacement for RIP. An older IGP that has fallen out of use is
HELLO—the IGP used on the original NSFNET backbone in 1986.

The new Router Requirements RFC [Almquist 1993] states that a router that implements any
dynamic routing protocol must support both OSPF and RIP, and may support other IGPs.

Separate routing protocols called exterior gateway protocols (EGPs) or interdomain
routing protocols are used between the routers in different autonomous systems. Histori-
cally (and confusingly) the predominant EGP has been a protocol of the same name:
EGP. A newer EGP is the Border Gateway Protocol (BGP) that is currently used
between the NSFNET backbone and some of the regional networks that attach to the
backbone. BGP is intended to replace EGP.

Unix Routing Daemons

Unix systems often run the routing daemon named routed. It is provided with almost
every implementation of TCP/IP. This program communicates using only RIP, which
we describe in the next section. It is intended for small to medium-size networks.

An alternative program is gated. It supports both IGPs and EGPs. [Fedor 1988]
describes the early development of gated. Figure 10.1 compares the various routing
protocols supported by routed and two different versions of gated. Most systems
that run a routing daemon run routed, unless they need support for the other proto-
cols supported by gated. ‘

Viptela, Inc. - Exhibit 1007
Page 148



Section 10.4 RIP: Routing Information Protocol 129

10.4

Daemon Interior Gateway Protocol Exterior Gateway Protocol
HELLO RIP OSPF EGP BGP
routed 21
gated, Version 2 ° \%1 ° Vi
gated, Version 3 ° Vi1,V2 V2 e V2,V3

Figure 10.1 Routing protocols supported by routed and gated.

We describe RIP Version 1 in the next section, the differences with RIP Version 2 in
Section 10.5, OSPF in Section 10.6, and BGP in Section 10.7.

RIP: Routing Information Protocol

This section provides an overview of RIP, because it is the most widely used (and most
often maligned) routing protocol. The official specification for RIP is RFC 1058 [Hedrick
1988a], but this RFC was written years after the protocol was widely implemented.

Message Format

RIP messages are carried in UDP datagrams, as shown in Figure 10.2. (We talk more
about UDP in Chapter 11.)

}:.1 IP datagram »|
}q———-« UDP datagram —»{
IP uDP
header header RIP message
20 bytes 8 bytes

Figure 10.2 RIP message encapsulated within a UDP datagram.

Figure 10.3 shows the format of the RIP message, when used with IP addresses.

A command of 1 is a request, and 2 is a reply. There are two other obsolete com-
mands (3 and 4), and two undocumented ones: poll (5) and poll-entry (6). A request
asks the other system to send all or part of its routing table. A reply contains all or part
of the sender’s routing table.

The version is normally 1, although RIP Version 2 (Section 10.5) sets this to 2.

The next 20 bytes specify the address family (which is always 2 for IP addresses), an
IP address, and an associated metric. We'll see later in this section that RIP metrics are
hop counts,

Up to 25 routes can be advertised in a RIP message using this 20-byte format. The
limit of 25 is to keep the total size of the RIP message, 20 X 25+ 4 =504, less than 512
bytes. With this limit of 25 routes per message, multiple messages are often required to
send an entire routing table.

Viptela, Inc. - Exhibit 1007
Page 149



130  Dynamic Routing Protocols Chapter 10

0 78 15 16 31
command (1~6) version (1) (must be zero)
address family (2) » (must be zero)
32-bit IP address
(must be zero) 20 bytes

" (must be zero)

metric (1-16)

(up to 24 more routes, with same format as previous 20 bytes)

Figure 10.3 Format of a RIP message.

Normal Operation

Let’s look at the normal operation of routed, using RIP. The well-known port number
for RIP is UDP port 520.

Initialization. When the daemon starts it determines all the interfaces that are
up and sends a request packet out each interface, asking for the other router’s
complete routing table. On a point-to-point link this request is sent to the other
end. The request is broadcast if the network supports it. The destination UDP
port is 520 (the routing daemon on the other router).

This request packet has a command of 1 but the address family is set to 0 and the
metric is set to 16. This is a special request that asks for a complete routing table
from the other end. '

Request received. If the request is the special case we just mentioned, then the
entire routing table is sent to the requestor. Otherwise each entry in the request
is processed: if we have a route to the specified address, set the metric to our
value, else set the metric to 16. (A metric of 16 is a special value called “infinity”
and means we don’t have a route to that destination.) The response is returned.

Response received. The response is validated and may update the routing table.
New entries can be added, existing entries can be modified, or existing entries
can be deleted.

Viptela, Inc. - Exhibit 1007
Page 150



Section 10.4 RIP: Routing Information Protocol 131

o Regular routing updates. Every 30 seconds, all or part of the router’s entire
routing table is sent to every neighbor router. The routing table is either broad-
cast (e.g., on an Ethernet) or sent to the other end of a point-to-point link.

o Triggered updates. These occur whenever the metric for a route changes. The
entire routing table need not be sent—only those entries that have changed
must be transmitted.

Each route has a timeout associated with it. If a system running RIP finds a route that
has not been updated for 3 minutes, that route’s metric is set to infinity (16) and marked
for deletion. This means we have missed six of the 30-second updates from the router
that advertised that route. The deletion of the route from the local routing table is
delayed for another 60 seconds to ensure the invalidation is propagated.

Metrics

The metrics used by RIP are hop counts. The hop count for all directly connected inter-
faces is 1. Consider the routers and networks shown in Figure 10.4. The four dashed
lines we show are broadcast RIP messages.

N2 =1hop
-t -

N1

ends up with a route to N3
through R2 with hop count of 2

N3 =1hop
e e ey ot
N2

1=
R2 ends up with a route to N1
through R1 with hop count of 2
T
|
‘ ; N3
N3 =1hop

Figure 10.4 Example routers and networks.

Router R1 advertises a route to N2 with a hop count of 1 by sending a broadcast on N1.
(It makes no sense to advertise a route to N1 in the broadcast sent on N1.) It also adver-
tises a route to N1 with a hop count of 1 by sending a broadcast on N2, Similarly, R2
advertises a route to N2 with a metric of 1, and a route to N3 with a metric of 1.

If an adjacent router advertises a route to another network with a hop count of 1,
then our metric for that network is 2, since we have to send a packet to that router to get
to the network. In our example, the metric to N1 for R2 is 2, as is the metric to N3 for
R1.

As each router sends its routing tables to its neighbors, a route can be determined to
each network within the AS. If there are multiple paths within the AS from a router to a
network, the router selects the path with the smallest hop count and ignores the other
paths.

Viptela, Inc. - Exhibit 1007
Page 151



132  Dynamic Routing Protocols Chapter 10

The hop count is limited to 15, meaning RIP can be used only within an AS where
the maximum number of hops between hosts is 15. The special metric of 16 indicates
that no route exists to the I address.

Problems

As simple as this sounds, there are pitfalls. First, RIP has no knowledge of subnet
addressing. If the normal 16-bit host ID of a class B address is nonzero, for example,
RIP can’t tell if the nonzero portion is a subnet ID or if the IP address is a complete host
address. Some implementations use the subnet mask of the interface through which the
RIP information arrived, which isn’t always correct.

Next, RIP takes a long time to stabilize after the failure of a router or a link. The
time is usually measured in minutes. During this settling time routing loops can occur.
There are many subtle details in the implementation of RIP that must be followed to
help prevent routing loops and to speed convergence. RFC 1058 [Hedrick 1988a] con-
tains many details on how RIP should be implemented.

The use of the hop count as the routing metric omits other variables that should be
taken into consideration. Also, a maximum of 15 for the metric limits the sizes of net-
works on which RIP can be used.

Example

We'll use the program ripquery, which is available from the gated distribution, to
query some routers for their routing table. ripquery tries to send one of the undocu-
mented requests (named “poll,” a command of 5 from Figure 10.3) to the router, asking
for its entire routing table. If no response is received in 5 seconds, the standard RIP
request is issued (command of 1). (Earlier we said a request with the family set to 0 and
the metric set to 16 asks the other router for its entire routing table.)

Figure 10.5 shows the two routers that we’ll query for their routing table from the
host sun. If we execute ripquery from sun, fetching the routing information from its
next-hop router, netb, we get the following:

[)

sun % ripquery -n netb

504 bytes from netb (140.252.1.183): first message contains 504 bytes
, lots of other lines deleted
140.252.1.0, metric 1 the top Ethernet in Figure 10.5
140.252.13.0, metric 1 the bottom Ethernet in Figure 10.5
244 bytes from netb (140.252.1.183): second message with remaining 244 bytes

lots of other lines deleted

As we expect, the metric for our subnet that is announced by netb is 1. Additionally,
the top Ethernet that netb is also attached to (140.252.1.0) has a metric of 1. (The -n
flag says to print the IP addresses numerically instead of trying to look up the names.)
In this example netb has been configured to consider all the hosts on the subnet
140.252.13 as directly connected to it—that is, netb knows nothing about which hosts
are actually on the 140.252.13 subnet. Since there is only one connection point to the
140.252.13 subnet, advertising different metrics for each host makes little practical sense.

Viptela, Inc. - Exhibit 1007
Page 152



Section 10.4 RIP: Routing Information Protocol 133

gateway

140.252.1 \

netb

sun

140.252.13

Figure 10.5 Two routers netb and gateway that we'll query for their routing tables.

Figure 10.6 shows the packet exchange using tcpdump. We specify the SLIP inter-
face with the -1 s10 option.

sun % tepdump -s600 -i sl0

1 0.0 sun.2879 > netb.route: rip-poll 24
2 5.014702 (5.0147) sun.2879 > netb.route: rip-req 24

3 5.560427 (0.5457) netb.route > sun.2879: rip-resp 25:
4 5.710251 (0.1498) netb.route > sun.2879: rip-resp 12:

Figure 10.6 tcpdump output while running ripquery program.

The first request issued is the RIP poll command (line 1). This times out after 5 seconds
and a normal RIP request is issued (line 2). The number 24 at the end of lines 1 and 2 is
the size of the request packets in bytes: the 4-byte RIP header (with the command and
version) followed by a single 20-byte address and metric.

Line 3 is the first reply message. The number 25 at the end indicates that 25 address
and metric pairs are in the message, which we calculated earlier to be 504 bytes. This is
what ripquery printed above. We specified the ~s600 option to tcpdump telling it to
read 600 bytes from the network. This allows it to receive the entire UDP datagram
(instead of just the first portion of it) and it then prints the contents of the RIP response.
We've omitted that output.

Line 4 is the second response message from the router, with the next 12 address and
metric pairs. We can calculate the size of this message to be 12 x 20 +4 = 244, which is
what ripquery printed earlier.

If we go one router beyond netb, to gateway, we expect the metric to our subnet
(140.252.13.0) to be 2. We can check this by executing:

Viptela, Inc. - Exhibit 1007
Page 153



134  Dynamic Routing Protocols Chapter 10

o

sun % ripquery -n gateway
504 bytes from gateway (140.252.1.4):
lots of other lines deleted
140.252.1.0, metric 1 the top Ethernet in Figure 10.5
140.252.13.0, metric 2 the bottom Ethernet in Figure 10.5

Here the metric for the top Ethernet in Figure 10.5 (140.252.1.0) stays at 1, since that
Ethernet is directly connected to both gateway and netb. Our subnet 140.252.13.0,
however, now has the expected metric of 2.

Another Example

We'll now watch all the unsolicited RIP updates on an Ethernet and see just what RIP
sends on a regular basis to its neighbors. Figure 10.7 shows the arrangement of many of
the noao.edu networks. We have named the routers Rn for simplicity, where # is the
subnet number, except for the ones we use elsewhere in the text. We show the point-to-
point links with dashed lines and the IP address at each end of these links.

57.0
192,68.189.0  .82.0 R57
520 530 540 \.55.0 580  .60.0
R192 R82 ‘ ‘ ‘ ‘ ‘
10527 ,71062 |Rs2| |R53| |[R54| | RS5| |R58| |R60
105171061 ‘ ‘ ‘ ‘ ‘
BL.0 kpno 510
1013
L1014
Internet <a- — 1041 jgate-
way
\ 10
| | ] | | | | 1183
sol”l I'ro| |R3| |R4| | R6 ‘R7 RS R10 netb
aris
I R R R R T
2.0 3.0 4.0 6.0 7.0 8.0 9.0 100 T1L0 1202 7129
R12 sun
120 130

Figure 10.7 Many of the noao . edu 140.252 networks.

We'll run the Solaris 2.x program snoop, which is similar to tcpdump, on the host
solaris. We can run this program without superuser privileges, but only to capture

Viptela, Inc. - Exhibit 1007
Page 154



Section 10.4 RIP: Routing Information Protocol 135

broadcast packets, multicast packets, or packets sent to the host. Figure 10.8 shows the
packets captured during a 60-second period. We have replaced most of the official host-
names with our notation R.

solaris % snoop —-P —tr udp port 520

0.00000 R6.tuc.noac.edu —-> 140.252.1.255 RIP R (1 destinations}
4,49708 R4.tuc.noao.edu —> 140.252.1.255 RIP R (1 destinations)
6.30506 R2.tuc.noao.edu —> 140.252.1.255 RIP R (1 destinations)
11.68317 R7.tuc.noac.edu —> 140.252.1.255 RIP R (1l destinations)
16.19790 R8.tuc.nocao.edu -> 140.252.1.255 RIP R (1 destinations)
16.87131 R3.tuc.noao.edu —-> 140.252.1.255 RIP R (1 destinations)

17.02187 gateway.tuc.noao.edu -> 140.252.1.255 RIP R (15 destinations)
20.68009 R10.tuc.noao.edu —> BROADCAST RIP (4 destinations)

29.87848 R6.tuc.noao.edu —> 140.252.1.255 RIP
34.50209 R4.tuc.nocao.edu -> 140.252.1.255 RIP
36.32385 R2.tuc.noao.edu —> 140.252.1.255 RIP
41.34565 R7.tuc.noao.edu —> 140.252.1.255 RIP
1
1

(1 destinations)
(1 destinations)
(1 destinations)
(1 destinations)
46.19257 R8.tuc.noao.edu —> 140.252.1.255 RIP (1 destinations)
46.52199 R3.tuc.noao.edu —-> 140.252.1.255 RIP (1 destinations)
47.01870 gateway.tuc.noao.edu -> 140.252.1.255 RIP R (15 destinations)
50.66453 R10.tuc.noao.edu —-> BROADCAST RIP R (4 destinations)

oo™ " ™

Figure 10.8 RIP broadcasts captured at solaris over a 60-second period.

The -P flag captures packets in nonpromiscuous mode, ~tr prints the relative time-
stamps, and udp port 520 captures only UDP datagrams with a source or destination
port of 520.

The first six packets, from R6, R4, R2, R7, R8, and R3, each advertise just one net-
work. If we looked at the packets we would see that R6 advertises a route to 140.252.6.0
with a hop count of 1, R4 advertises a route to 140.252.4.0 with a hop count of 1, and so
on.

The router gateway, however, advertises 15 routes. We can run snoop with the —v
flag and see the entire contents of the RIP message. (This flag outputs the entire con-
tents of the entire packet: the Ethernet header, the IP header, the UDP header, and the
RIP message. We've deleted everything except the RIP information.) Figure 10.9 shows
the output.

Compare these advertised hop counts on the 140.252.1 network with the topology
shown in Figure 10.7.

A puzzle in the output in Figure 10.8 is why R10 is advertising four networks when
Figure 10.7 shows only three. If we look at the RIP packet with- snoop we see the fol-
lowing advertised routes:

RIP: Address Metric

RIP: 140.251.0.0 16 (not reachable)
RIP: 140.252.9.0 1

RIP: 140.252.10.0 1

RIP: 140.252.11.0 1

The route to the class B network 140.251 is bogus and should not be advertised. (It
belongs to another institution, not noao.edu.)

Viptela, Inc. - Exhibit 1007
Page 155



136  Dynamic Routing Protocols Chapter 10
solaris % snoop —-P -v —tr udp port 520 host gateway
many lines deleted

RIP: Opcode = 2 (route response)

RIP: Version =1

RIP: Address Metric

RIP: 140.252.101.0 1

RIP: 140.252.104.0 1

RIP: 140.252.51.0 2

RIP: 140.252.81.0 2

RIP: 140.252.105.0 2

RIP: 140.252.106.0 2

RIP: 140.252.52.0 3

RIP: 140.252.53.0 3

RIP: 140.252.54.0 3

RIP: 140.252.55.0 3

RIP: 140.252.58.0 3

RIP: 140.252.60.0 3

RIP: 140.252.82.0 3

RIP: 192.68.189.0 3

RIP: 140.252.57.0 4

Figure 10.9 RIP response from gateway.

The notation “BROADCAST” output by snoop in Figure 10.8 for the RIP packet
sent by R10 means the destination IP address is the limited broadcast address
255.255.255.255 (Section 12.2), instead of the subnet-directed broadcast address
(140.252.1.255) that the other routers use.

10.5 RIP Version 2

RFC 1388 [Malkin 1993a] defines newer extensions to RIP, and the result is normally
called RIP-2. These extensions don’t change the protocol, but pass additional informa-
tion in the fields labeled “must be zero” in Figure 10.3. RIP and RIP-2 can interoperate
if RIP ignores the fields that must be zero.

Figure 10.10 is a redo of that figure, as defined by RIP-2. The version is 2 for RIP-2.

The routing domain is an identifier of the routing daemon to which this packet
belongs. In a Unix implementation this could be the daemon’s process ID. This field
allows an administrator to run multiple instances of RIP on a single router, each operat-
ing within one routing domain.

The route tag exists to support exterior gateway protocols. It carries an autonomous
system number for EGP and BGP.

The subnet mask for each entry applies to the corresponding IP address. The next-hop
IP address is where packets to the corresponding destination IP address should be sent.
A value of 0 in this field means packets to the destination should be sent to the system
sending the RIP message.

Viptela, Inc. - Exhibit 1007
Page 156



Section 10.6 OSPF: Open Shortest Path First 137

10.6

0 78 15 16 31

command (1-6) version (2) routing domain

address family (2) route tag

32-bit IP address

32-bit subnet mask 20 bytes

32-bit next-hop IP address

metric (1-16)

T (up to 24 more routes, with same format as previous 20 bytes) {

Figure 10,10 Format of a RIP-2 message.

A simple authentication scheme is provided with RIP-2. The first 20-byte entry in a
RIP message can specify an address family of Ox££££, with a route tag value of 2. The
remaining 16 bytes of the entry contain a cleartext password.

Finally, RIP-2 supports multicasting in addition to broadcasting (Chapter 12). This
can reduce the load on hosts that are not listening for RIP-2 messages.

OSPF: Open Shoriest Path First

OGSPF is a newer alternative to RIP as an interior gateway protocol. It overcomes all the
limitations of RIP. OSPF Version 2 is described in RFC 1247 [Moy 1991].

OSPF is a link-state protocol, as opposed to RIP, which is a distance-vector protocol.
The term distance-vector means the messages sent by RIP contain a vector of distances
(hop counts). Each router updates its routing table based on the vector of these dis-
tances that it receives from its neighbors.

In a link-state protocol a router does not exchange distances with its neighbors.
Instead each router actively tests the status of its link to each of its neighbors, sends this
information to its other neighbors, which then propagate it throughout the autonomous
system. Each router takes this link-state information and builds a complete routing
table.

Viptela, Inc. - Exhibit 1007
Page 157



l
?

138  Dynamic Routing Protocols Chapter 10

From a practical perspective, the important difference is that a link-state protocol

will always converge faster than a distance-vector protocol. By converge we mean stabi-

lizing after something changes, such as a router going down or a link going down. Sec-

tion 9.3 of [Perlman 1992] compares other issues between the two types of routing
protocols.

OSPF is different from RIP (and many other routing protocols) in that OSPF uses IP
directly. That is, it does not use UDP or TCP. OSPF has its own value for the protocol
field in the IP header (Figure 3.1).

Besides being a link-state protocol instead of a distance-vector protocol, OSPF has
many other features that make it superior to RIP.

1. OSPF can calculate a separate set of routes for each IP type-of-service (Fig-
ure 3.2). This means that for any destination there can be multiple routing table
entries, one for each IP type-of-service.

2. Each interface is assigned a dimensionless cost. This can be assigned based on
throughput, round-trip time, reliability, or whatever. A separate cost can be
assigned for each IP type-of-service.

3. When several equal-cost routes to a destination exist, OSPF distributes traffic
equally among the routes. This is called load balancing.

4. OSPF supports subnets: a subnet mask is associated with each advertised route.
This allows a single IP address of any class to be broken into multiple subnets of
various sizes. (We showed an example of this in Section 3.7 and called it
variable-length subnets.) Routes to a host are advertised with a subnet mask of all
one bits. A default route is advertised as an IP address of 0.0.0.0 with a mask of
all zero bits.

5. Point-to-point links between routers do not need an IP address at each end.
These are called unnumbered networks. This can save IP addresses—a scarce
resource these days!

6. A simple authentication scheme can be used. A cleartext password can be spec-
ified, similar to the RIP-2 scheme (Section 10.5).

7. OSPF uses multicasting (Chapter 12), instead of broadcasting, to reduce the load
on systems not participating in OSPF.

With most router vendors supporting OSPF, it will start replacing RIP in many net-
works. ~
10.7 BGP: Border Gateway Protocol

BGP is an exterior gateway protocol for communication between routers in different
autonomous systems. BGP is a replacement for the older EGP that was used on the
ARPANET. BGP Version 3 is defined in RFC 1267 [Lougheed and Rekhter 1991].

Viptela, Inc. - Exhibit 1007
Page 158



Section 10.7 BGP: Border Gateway Protocol 139

REC 1268 [Rekhter and Gross 1991] describes the use of BGP in the Internet. Much
of the following description comes from these two RFCs. Also, during 1993 BGP
Version 4 was under development (see RFC 1467 [Topolcic 1993]) to support CIDR,
which we describe in Section 10.8.

A BGP system exchanges network reachability information with other BGP systems.
This information includes the full path of autonomous systems that traffic must transit
to reach these networks. This information is adequate to construct a graph of AS con-
nectivity. Routing loops can then be pruned from this graph and routing policy deci-
sions can be enforced.

We first categorize an IP datagram in an AS as either local traffic or transit traffic.
Local traffic in an AS either originates or terminates in that AS. That is, either the
source IP address or the destination IP address identifies a host in that AS. Anything
else is called transit traffic. A major goal of BGP usage in the Internet is to reduce tran-
sit traffic.

An AS can be categorized as one of the following:

1. A stub AS has only a single connection to one other AS. A stub AS carries only
local traffic.

2. A multihomed AS has connections to more than one other AS, but refuses to carry
transit traffic,

3. A transit AS has connections to more than one other AS and is designed, under
certain policy restrictions, to carry both local and transit traffic.

The overall topology of the Internet is then viewed as an arbitrary interconnection of
transit, multihomed, and stub ASs. Stub and multihomed ASs need not use BGP—they
can run EGP to exchange reachability information with transit ASs.

BGP allows for policy-based routing. Policies are determined by the AS administrator
and specified to BGP in configuration files. Policy decisions are not part of the protocol,
but policy specifications allow a BGP implementation to choose between paths when
multiple alternatives exist and to control the redistribution of information. Routing
policies are related to political, security, or economic considerations.

BGP is different from RIP and OSPF in that BGP uses TCP as its transport protocol.
Two systems running BGP establish a TCP connection between themselves and then
exchange the entire BGP routing table. From that point on, incremental updates are sent
as the routing table changes.

BGP is a distance vector protocol, but unlike RIP (which announces hops to a desti-
nation), BGP enumerates the route to each destination (the sequence of AS numbers to
the destination). This removes some of the problems associated with distance-vector
protocols. An AS is identified by a 16-bit number.

BGP detects the failure of either the link or the host on the other end of the TCP con-
nection by sending a keepalive message to its neighbor on a regular basis. The recom-
mended time between these messages is 30 seconds. This application-level keepalive
message is independent of the TCP keepalive option (Chapter 23).

Viptela, Inc. - Exhibit 1007
Page 159



140

Dynamic Routing Protocols Chapter 10

10.8

CIDR: Classless Interdomain Routing

In Chapter 3 we said there is a shortage of class B addresses, requiring sites with multi-
ple networks to now obtain multiple class C network IDs, instead of a single class B net-
work ID. Although the allocation of these class C addresses solves one problem
(running out of class B addresses) it introduces another problem: every class C network
requires a routing table entry. Classless Interdomain Routing (CIDR) is a way to prevent
this explosion in the size of the Internet routing tables. It is also called supernetting and
is described in RFC 1518 [Rekhter and Li 1993] and RFC 1519 [Fuller et al. 1993], with a
overview in [Ford, Rekhter, and Braun 1993]. CIDR has the Internet Architecture
Board's blessing [Huitema 1993]. RFC 1467 [Topolcic 1993] summarizes the state of
deployment of CIDR in the Internet.

The basic concept in CIDR is to allocate multiple IP addresses in a way that allows
summarization into a smaller number of routing table entries. For example, if a single
site is allocated 16 class C addresses, and those 16 are allocated so that they can be sum-
marized, then all 16 can be referenced through a single routing table entry on the Inter-
net. Also, if eight different sites are connected to the same Internet service provider
through the same connection point into the Internet, and if the eight sites are allocated
eight different IP addresses that can be summarized, then only a single routing table
entry need be used on the Internet for all eight sites.

Three features are needed to allow this summarization to take place.

1. Multiple IP addresses to be summarized together for routing must share the
same high-order bits of their addresses.

2. The routing tables and routing algorithms must be extended to base their rout-
ing decisions on a 32-bit IP address and a 32-bit mask.

3. The routing protocols being used must be extended to carry the 32-bit mask in
addition to the 32-bit address. OSPF (Section 10.6) and RIP-2 (Section 10.5) are
both capable of carrying the 32-bit mask, as is the proposed BGP Version 4. '

As an example, RFC 1466 [Gerich 1993] recommends that new class C addresses in
Europe be in the range 194.0.0.0 through 195.255.255.255. In hexadecimal these
addresses are from 0xc2000000 through Oxc3££££££. This represents 131,072 differ-
ent class C network IDs, but they all share the same high-order 7 bits. In countries other
than Europe a single routing table entry with an IP address of 0xc2000000 and a 32-bit
mask of 0x£e000000 (254.0.0.0) could be used to route all of these 65536 class C net-
work IDs to a single point. Subsequent bits of the class C address (that is, the bits fol-
lowing 194 or 195) can also be allocated hierarchically, perhaps by country or by service
provider, to allow additional summarization within the European routers using addi-
tional bits beyond the 7 high-order bits of the 32-bit mask.

CIDR also uses a technique whereby the best match is always the one with the
longest match: the one with the greatest number of one bits in the 32-bit mask. Continu-
ing the example from the previous paragraph, perhaps one service provider in Europe
needs to use a different entry point router than the rest of Europe. If that provider has
been allocated the block of addresses 194.0.16.0 through 194.0.31.255 (16 class C network

Viptela, Inc. - Exhibit 1007
Page 160



Chapter 10 Exercises 141

10.9

IDs), routing table entries for just those networks would have an IP address of 194.0.16.0
and a mask of 255.255.240.0 (0OXx£££££000). A datagram being routed to the address
194.0.22.1 would match both this routing table entry and the one for the rest of the Euro-
pean class C networks. But since the mask 255.255.240 is “longer” than the mask
254.0.0.0, the routing table entry with the longer mask is used.

The term “classless” is because routing decisions are now made based on masking
operations of the entire 32-bit [P address. Whether the IP address is class A, B, or C
makes no difference.

The initial deployment of CIDR is proposed for new class C addresses. Making just
this change will slow down the growth of the Internet routing tables, but does nothing
for all the existing routes. This is the short-term solution. As a long-term solution, if
CIDR were applied to all IP addresses, and if existing IP addresses were reallocated
(and all existing hosts renumbered!) according to continental boundaries and service
providers, [Ford, Rekhter, and Braun 1993] claim that the current routing table consist-
ing of 10,000 network entries could be reduced to 200 entries.

Summary

There are two basic types of routing protocols: interior gateway protocols (IGPs), for
routers within an autonomous system, and exterior gateway protocols (EGPs), for
routers to communicate with routers in other autonomous systems.

The most popular IGP is the Routing Information Protocol (RIP) with OSPF being a
newer IGP that is gaining widespread use. A new and popular EGP is the Border Gate-
way Protocol (BGP). In this chapter we looked at RIP and the types of messages that it
exchanges. RIP Version 2 is a recent enhancement that supports subnetting and other
minor improvements. We also described OSPF, BGP, and classless interdomain routing
(CIDR), a newer technique being deployed to reduce the size of the Internet routing
tables.

There are a two other OSI routing protocols that you may encounter. Interdomain
Routing Protocol (IDRP) started out as a version of BGP modified for use with OSI
addresses instead of IP. Intermediate System to Intermediate System Protocol (IS-IS) is the
O8I standard IGP. It is used for routing CLNP (Connectionless Network Protocol), an
OSI protocol similar to IP. IS-IS and OSPF are similar.

Dynamic routing is still a fertile area of internetworking research. The choice of
which routing protocol to use, and which routing daemon to run, is complex. [Perlman
1992] provides many of the details.

Exercises

10.1 In Figure 10.9 which of the routes came to gateway from the router kpno?

10.2 Assume a router has 30 routes to advertise using RIP, requiring one datagram with 25
routes and another with the remaining 5. What happens if once an hour the first datagram
with 25 routes is lost? ’

Viptela, Inc. - Exhibit 1007
Page 161



142 Dynamic Routing Protocols Chapter 10

10.3
104
10.5

10.6

The OSPF packet format has a checksum field, but the RIP packet does not. Why?
What effect does load balancing, as done by OSPF, have on a transport layer?

Read REC 1058 for additional details on the implementation of RIP. In Figure 10.8 each
router advertises only the routes that it provides, and none of the other routes that it
learned about through the other router’s broadcasts on the 140.252.1 network. What is this
technique called?

In Section 3.4 we said there are more than 100 hosts on the 140.252.1 subnet in addition to
the eight routers we show in Figure 10.7. What do these 100 hosts do with the eight broad-
casts that arrive every 30 seconds (Figure 10.8)?

Viptela, Inc. - Exhibit 1007
Page 162



11.1

Il

UDP: User Datagram Protocol

Introduction

UDP is a simple, datagram-oriented, transport layer protocol: each output operation by
a process produces exactly one UDP datagram, which causes one IP datagram to be
sent. This is different from a stream-oriented protocol such as TCP where the amount of
data written by an application may have little relationship to what actually gets sent in
a single IP datagram.

Figure 11.1 shows the encapsulation of a UDP datagram as an IP datagram.

lr-? IP datagram 4—|7|
}q— UDP datagram ——————b{
i UDP
header header UDP data
20 bytes 8 bytes

Figure 11.1 UDP encapsulation.

RFC 768 [Postel 1980] is the official specification of UDP.

UDP provides no reliability: it sends the datagrams that the application writes to
the IP layer, but there is no guarantee that they ever reach their destination. Given this
lack of reliability, we are tempted to think we should avoid UDP and always use a reli-
able protocol such as TCP. After we describe TCP in Chapter 17 we'll return to this
topic and see what types of applications can utilize UDP.

Viptela, Inc. - Exhibit 16%)37
Page 163



144

UDP: User Datagram Protocol Chapter 11

11.2

11.3

The application needs to worry about the size of the resulting IP datagram. If it
exceeds the network’s MTU (Section 2.8), the IP datagram is fragmented. This applies
to each network that the datagram traverses from the source to the destination, not just
the first network connected to the sending host. (We defined this as the path MTU in
Section 2.9.) We examine IP fragmentation in Section 11.5.

UDP Header

Figure 11.2 shows the fields in the UDP header.

0 15 16 - 31

16-bit source port number 16-bit destination port number

—

8 bytes
16-bit UDP length 16-bit UDP checksum

} data (if any) }

-

Figure 11.2 UDP header.

The port numbers identify the sending process and the receiving process. In Figure 1.8
we showed that TCP and UDP use the destination port number to demultiplex incom-
ing data from IP. Since IP has already demultiplexed the incoming IP datagram to
either TCP or UDP (based on the protocol value in the IP header), this means the TCP
port numbers are looked at by TCP, and the UDP port numbers by UDP. The TCP port
numbers are independent of the UDP port numbers.

Despite this independence, if a well-known service is provided by both TCP and UDP, the port
number is normally chosen to be the same for both transport layers. This is purely for conve-
nience and is not required by the protocols.

The UDP length field is the length of the UDP header and the UDP data in bytes.
The minimum value for this field is 8 bytes. (Sending a UDP datagram with O bytes of
data is OK.) This UDP length is redundant, The I’ datagram contains-its total length in
bytes (Figure 3.1), so the length of the UDP datagram is this total length minus the
length of the IP header (which is specified by the header length field in Figure 3.1).

UDP Checksum

The UDP checksuimn covers the UDP header and the UDP data. Recall that the checksum
in the IP header only covers the IP header—it does not cover any data in the IP

Viptela, Inc. - Exhibit 1007
Page 164



Section 11.3 UDP Checksum 145

datagram. Both UDP and TCP have checksums in their headers to cover their header
and their data. With UDP the checksum is optional, while with TCP it is mandatory.

Although the basics for calculating the UDP checksum are similar to what we
described in Section 3.2 for the IP header checksum (the ones complement sum of 16-bit
words), there are differences. First, the length of the UDP datagram can be an odd num-
ber of bytes, while the checksum algorithm adds 16-bit words. The solution is to
append a pad byte of 0 to the end, if necessary, just for the checksum computation.
(That is, this possible pad byte is not transmitted.)

Next, both UDP and TCP include a 12-byte pseudo-header with the UDP datagram
(or TCP segment) just for the checksum computation. This pseudo-header includes cer-
tain fields from the IP header. The purpose is to let UDP double-check that the data has
arrived at the correct destination (i.e:;, that IP has not accepted a datagram that is not
addressed to this host, and that IP has not given UDP a datagram that is for another
upper layer). Figure 11.3 shows the pseudo-header along with a UDP datagram.

0 15 16 31
~
32-bit source IP address
upr
32-bit destination IP address pseudo
header
zero 8-bit protocol (17) 16-bit UDP length
Z
16-bit source port number 16-bit destination port number
ubDpr
header
16-bit UDP length 16-bit UDP checksum
-~
/ data /
pad byte (0)

Figure 11.3 Fields used for computation of UDP checksum.

In this figure we explicitly show a datagram with an odd length, requiring a pad byte
for the checksum computation. Notice that the length of the UDP datagram appears
twice in the checksum computation.

If the calculated checksum is 0, it is stored as all one bits (65535), which is equiva-
lent in ones-complement arithmetic. If the transmitted checksum is 0, it indicates that
the sender did not compute the checksum.

Viptela, Inc. - Exhibit 1007
Page 165



146  UDP: User Datagram Protocol Chapter 11

If the sender did compute a checksum and the receiver detects a checksum error, the
UDP datagram is silently discarded. No error message is generated. (This is what hap-
pens if an IP header checksum error is detected by IP.)

This UDP checksum is an end-to-end checksum. It is calculated by the sender, and
then verified by the receiver. It is designed to catch any modification of the UDP header
or data anywhere between the sender and receiver.

Despite UDP checksums being optional, they should always be enabled. During the
1980s some computer vendors turned off UDP checksums by default, to speed up their
implementation of Sun’s Network File System (NFS), which uses UDP. While this might
be acceptable on a single LAN, where the cyclic redundancy check on the data-link
frame (e.g., Ethernet or token ring frame) can detect most corruption of the frame, when
the datagrams pass through routers, all bets are off. Believe it or not, there have been
routers with software and hardware bugs that have modified bits in the datagrams
being routed. These errors are undetectable in a UDP datagram if the end-to-end UDP
checksum is disabled. Also realize that some data-link protocols (e.g., SLIP) don’t have
any form of data-link checksum.

The Host Requirements RFC requires that UDP checksums be enabled by default. It also states
that an implementation must verify a received checksum if the sender calculated one (i.e., the
received checksum is nonzero). Many implementations violate this, however, and only verify
a received checksum if outgoing checksums are enabled.

tepdump Output

It is hard to detect whether a particular system has UDP checksums enabled. It is nor-
mally impossible for an application to obtain the checksum field in a received UDP
header. To get around this, the author added another option to the tepdump program
that prints the received UDP checksum. If this printed value is 0, it means the sending
host did not calculate the checksum.

Figure 11.4 shows the output to and from three different systems on our test net-
work (see the figure on the inside front cover). We ran our sock program (Appen-
dix C), sending a single UDP datagram with 9 bytes of data to the standard echo server.

0.0 sun.1900 > gemini.echo: udp 9 (UDP cksum=6e90)
0.303755 ( 0.3038) gemini.echo > sun.1900: udp 9 (UDP cksum=0)

17.392480 (17.0887) sun.1904 > aix.echo: udp 9 (UDP cksum=6e3b)
17.614371 ( 0.2219) aix.echo > sun.1904: udp 9 (UDP cksum=6e3b)

32.092454 (14.4781) sun.1907 > solaris.echo: udp 9 (UDP cksgm=6e74)
32.314378 ( 0.2219) solaris.echo > sun.1907: udp 9 (UDP cksum=6e74)

L R

Figure 11.4 tcpdump output to see whether other hosts enable UDP checksum,

We can see from this that two of the three systems have UDP checksums enabled.

Also notice that for this simple example the outgoing datagram has the same check-
sum as the incoming datagram (lines 3 and 4, 5 and 6). Looking at Figure 11.3 we see
that the two IP addresses are swapped, as are the two port numbers. The other fields in
the pseudo-header and the UDP header are the same, as is the data being echoed. This

Viptela, Inc. - Exhibit 1007
Page 166



Section 11.4

A Simple Example 147

reiterates that the UDP checksums (indeed, all the checksums in the TCP/IP protocol
suite) are simple 16-bit sums. They cannot detect an error that swaps two of the 16-bit

values.

The author also directed a DNS query at each of the eight root name servers described in Sec-
tion 14.2. The DNS uses UDP primarily, and only two of the eight had UDP checksums

enabled!

Some Statistics

11.4

[Mogul 1992] provides counts of various checksum errors on a busy NFS (Network File
System) server that had been up for 40 days. Figure 11.5 summarizes these numbers.

Layer Number of Approximate total
checksum errors | number of packets
Ethernet 446 170,000,000
r 14 170,000,000
uDP 5 140,000,000
TCP 350 30,000,000

Figure 11.5 Counts of corrupted packets detected by various checksums.

The final column is only the approximate total for each row, since other protocols are in
use at the Ethernet and IP layers. For example, not all the Ethernet frames are IP data-
grams, since minimally ARP is also used on an Ethernet. Not all IP datagrams are UDP
or TCP, since ICMP also uses IP.

Note the much higher percentage of TCP checksum errors compared to UDP check-
sum errors. This is probably because the TCP connections on this system tended to be
“long distance” (traversing many routers, bridges, etc.) while the UDP traffic was local.

The bottom line is not to trust the data-link (e.g., Ethernet, token ring, etc.) CRC
completely. You should enable the end-to-end checksums all the time. Also, if your
data is valuable, you might not want to trust either the UDP or the TCP checksum com-
pletely, since these are simple checksums and were not meant to catch all possible
eITors.

A Simple Example

We'll use our sock program to generate some UDP datagrams that we can watch with
tcpdump:

bsdi % sock -v -u -i -nd4 svrd discard
connected on 140.252.13.35.1108 to 140.252.13.34.9

bsdi % sock -v -u ~i -nd4d -w0 svr4d discard
connected on 140.252.13.35.1110 to 140.252.13.34.9

The first time we execute the program we specify the verbose mode (-v) to see the
ephemeral port numbers, specify UDP (-u) instead of the default TCP, and use the

Viptela, Inc. - Exhibit 1007
Page 167



148

UDP: User Datagram Protocol Chapter 11

115

source mode (-1) to send data instead of trying to read and write standard input and
output. The -n4 option says to output 4 datagrams (instead of the default 1024) and the
destination host is svr4. We described the discard service in Section 1.12. We use the
default output size of 1024 bytes per write.

The second time we run the program we specify -w0, causing 0-length datagrams
to be written. Figure 11.6 shows the t cpdump output for both commands.

.0 bsdi.1108
.002424 ( 0.0024) bsdi.1108
.006210 ( 0.0038) Dbsdi.1108
0.010276 ( 0.0041) 1bsdi.l1108

svrd.discard: udp 1024
svrd.discard: udp 1024
svrd.discard: udp 1024
svrd.discard: udp 1024

o oo
vV V.V V

.7098) bsdi.1110 > gvrd.discard: udp 0
.0010) Jsdi.1110 > svrd.discard: udp O
.0010)  bsdi.l1110 > svrd.discard: udp O
.0010) bsdi.1110 > svrd.discard: udp 0

41.721072
41.722094
41.723070

o NN A Lo Nl
o O O o O O

41.720114 (4
(
(
(

Figure 11.6 tcpdump output when UDP datagrams are sent in one direction.

This output shows the four 1024-byte datagrams, followed by the four 0-length data-
grams. Each datagram followed the previous by a few milliseconds. (It took 41 seconds
to type in the second command.)

There is no communication between the sender and receiver before the first data-
gram is sent. (We'll see in Chapter 17 that TCP must establish a connection with the
other end before the first byte of data can be sent.) Also, there are no acknowledgments
by the receiver when the data is received. The sender, in this example, has no idea
whether the other end receives the datagrams.

Finally note that the source UDP port number changes each time the program is
run. First it is 1108 and then it is 1110. We mentioned in Section 1.9 that the ephemeral
port numbers used by clients are typically in the range 1024 through 5000, as we see
here.

IP Fragmentation

As we described in Section 2.8, the physical network layer normally imposes an upper
limit on the size of the frame that can be transmitted. Whenever the IP layer receives an
IP datagram to send, it determines which local interface the datagram is being sent on
(routing), and queries that interface to obtain its MTU. IP compares the MTU with the
datagram size and performs fragmentation, if necessary. Fragmentation can take place
either at the original sending host or at an intermediate router.

When an IP datagram is fragmented, it is not reassembled until it reaches its final
destination. (This handling of reassembly differs from some other networking protocols
that require reassembly to take place at the next hop, not at the final destination.) The
IP layer at the destination performs the reassembly. The goal is to make fragmentation
and reassembly transparent to the transport layer (TCP and UDP), which it is, except for
possible performance degradation. It is also possible for the fragment of a datagram to

Viptela, Inc. - Exhibit 1007
Page 168



Section 11.5 IP Fragmentation 149

again be fragmented (possibly more than once). The information maintained in the IP
header for fragmentation and reassembly provides enough information to do this.

Recalling the IP header (Figure 3.1, p. 34), the following fields are used in fragmen-
tation. The identification field contains a unique value for each IP datagram that the
sender transmits. This number is copied into each fragment of a particular datagram.
(We now see the use for this field.) The flags field uses one bit as the “more fragments”
bit. This bit is turned on for each fragment comprising a datagram except the final frag-
ment. The fragment offset field contains the offset (in 8-byte units) of this fragment from
the beginning of the original datagram. Also, when a datagram is fragmented the total
length field of each fragment is changed to be the size of that fragment.

Finally, one of the bits in the flags field is called the “don’t fragment” bit. If this is
turned on, IP will not fragment the datagram. Instead the datagram is thrown away
and an ICMP error (“fragmentation needed but don't fragment bit set,” Figure 6.3) is
sent to the originator. We’ll see an example of this error in the next section.

When an IP datagram is fragmented, each fragment becomes its own packet, with
its own IP header, and is routed independently of any other packets. This makes it pos-
sible for the fragments of a datagram to arrive at the final destination out of order, but
there is enough information in the IP header to allow the receiver to reassemble the
fragments correctly. '

Although IP fragmentation looks transparent, there is one feature that makes it less
than desirable: if one fragment is lost the entire datagram must be retransmitted. To
understand why this happens, realize that IP itself has no timeout and
retransmission—that is the responsibility of the higher layers. (TCP performs timeout
and retransmission, UDP doesn’t. Some UDP applications perform timeout and
retransmission themselves.) When a fragment is lost that came from a TCP segment,
TCP will time out and retransmit the entire TCP segment, which corresponds to an IP
datagram. There is no way to resend only one fragment of a datagram. Indeed, if the
fragmentation was done by an intermediate router, and not the originating system,
there is no way for the originating system to know how the datagram was fragmented.
For this reason alone, fragmentation is often avoided. [Kent and Mogul 1987] provide
arguments for avoiding fragmentation.

Using UDP it is easy to generate IP fragmentation. (We'll see later that TCP tries to
avoid fragmentation and that it is nearly impossible for an application to force TCP to
send segments large enough to require fragmentation.) We can use our sock program
and increase the size of the datagram until fragmentation occurs. On an Ethernet the
maximum amount of data in a frame is 1500 bytes (Figure 2.1), which leaves 1472 bytes
for our data, assuming 20 bytes for the IP header and 8 bytes for the UDP header. We’ll
run our sock program, with data sizes of 1471, 1472, 1473, and 1474 bytes. We expect
the last two to cause fragmentation:

bsdi % sock -u =i -nl -wl471 svréd discard
bsdi % sock -u -i -nl -wl472 svr4 discard
bsdi % sock -u -i -nl -wld473 svr4 discard
bsgdi % sock -~u -i -nl -wld74 svr4 discard

Figure 11.7 shows the corresponding tcpdump output.

Viptela, Inc. - Exhibit 1007
Page 169



150

UDP: User Datagram Protocol Chapter 11

0.0 bsdi.1112 > gvrd.discard: udp 1471
21.008303 (21.0083) bsdi.l1l1l1l4 > svrd.discard: udp 1472

50.449704 (29.4414) bsdi.l1l16 > svrd.discard: udp 1473 (frag 26304:1480Q0+)
50.450040 ( 0.0003) bsdi > svrd: (frag 26304:1@1480)

75.328650 (24.8786) bsdi.1118 > svrd.discard: udp 1474 (frag 26313:1480@0+)
75,328982 ( 0.0003) bsdi > svrd: (frag 26313:201480)

YU R W N =

Figure 11.7 Watching fragmentation of UDP datagrams.

The first two UDP datagrams (lines 1 and 2) fit into Ethernet frames, and are not frag-
mented. But the length of the IP datagram corresponding to the write of 1473 bytes is
1501, which must be fragmented (lines 3 and 4). Similarly the datagram generated by
the write of 1474 bytes is 1502, and is also fragmented (lines 5 and 6).

When the IP datagram is fragmented, tcpdump prints additional information.
First, the output frag 26304 (lines 3 and 4) and frag 26313 (lines 5 and 6) specify the
value of the identification field in the IP header.

The next number in the fragmentation information, the 1480 between the colon and
the at sign in line 3, is the size, excluding the IP header. The first fragment of both data-
grams contains 1480 bytes of data: 8 bytes for the UDP header and 1472 bytes of user
data. (The 20-byte IP header makes the packet exactly 1500 bytes.) The second frag-
ment of the first datagram (line 4) contains 1 byte of data—the remaining byte of user
data. The second fragment of the second datagram (line 6) contains the remaining 2
bytes of user data.

Fragmentation requires that the data portion of the generated fragments (that is,
everything excluding the IP header) be a multiple of 8 bytes for all fragments other than
the final one. In this example, 1480 is a multiple of 8.

The number following the at sign is the offset of the data in the fragment, from the
start of the datagram. The first fragment of both datagrams starts at 0 (lines 3 and 5)
and the second fragment of both datagrams starts at byte offset 1480 (lines 4 and 6). The
plus sign following this offset that is printed for the first fragment of both datagrams
means there are more fragments comprising this datagram. This plus sign corresponds
to the “more fragments” bit in the 3-bit flags in the IP header. The purpose of this bit is
to let the receiver know when it has completed the reassembly of all the fragments for a
datagram.

Finally, notice that lines 4 and 6 (fragments other than the first) omit the protocol
(UDP) and the source and destination ports. The protocol could be printed, since it’s in
the IP header that’s copied into the fragments. The port numbers, however, are in the
UDP header, which only occurs in the first fragment.

Figure 11.8 shows what’s happening with the third datagram that is sent (with 1473
bytes of user data). It reiterates that any transport layer header appears only in the first
fragment.

Also note the terminology: an IP datagram is the unit of end-to-end transmission at
the IP layer (before fragmentation and after reassembly), and a packet is the unit of data
passed between the IP layer and the link layer. A packet can be a complete IP datagram
or a fragment of an IP datagram.

Viptela, Inc. - Exhibit 1007
Page 170



Section 11.6 ICMP Unreachable Error (Fragmentation Required) 151

11.6

|[==.- IP datagram >|~|
iP ubDp
header header UDP data (1473 bytes)
s 20 bytes _ -~ 8 bytes -~ PESANERN
/// /// /// /// \\ \\
' - - - N N
e - - - A N
-7 e e Phd ~ N
- P - - AN N
P UDP P
header header header
20 bytes 8 bytes © 1472 bytes 20 bytes 1 byte
}@ packet z:I }67 packet —»{

Figure 11.8 Example of UDP fragmentation.

ICMP Unreachable Error (Fragmentation Required)

Another variation of the ICMP unreachable error occurs when a router receives a data-
gram that requires fragmentation, but the don't fragment (DF) flag is turned on in the IP
header. This error can be used by a program that needs to determine the smallest MTU
in the path to a destination—called the path MTU discovery mechanism (Section 2.9).

Figure 11.9 shows the format of the ICMP unreachable error for this case. This dif-
fers from Figure 6.10 because bits 16—31 of the second 32-bit word can provide the MTU
of the next hop, instead of being 0.

0 78 15 16 31
type (3) code (4) checksum T
8 bytes
Unused (must be 0) MTU of next-hop network i
/ IP header (including options) + first 8 bytes of original IP datagram data . /

Figure 11.9 ICMP unreachable error when fragmentation required but don’t fragment bit set.

If a router doesn’t provide this newer format ICMP error, the next-hop MTU is set to 0.

The new Router Requirements RFC [Almquist 1993] states that a router must generate this
newer form when originating this ICMP unreachable error.

Viptela, Inc. - Exhibit 1007
Page 171



152 UDP: User Datagram Protocol Chapter 11

Example

A problem encountered by the author involving fragmentation and this ICMP error is
trying to determine the MTU on the dialup SLIP link from the router netb to the host
sun. We know the MTU of this link from sun to netb: it’s part of the SLIP configura-
tion process when SLIP was installed in the host sun, plus we saw it with the netstat
command in Section 3.9. We want to determine the MTU in the other direction also. (In
Chapter 25 we'll see how to determine this using SNMP.) On a point-to-point link, it is
not required that the MTU be the same in both directions.

The technique used was to run ping on the host solaris, to the host bsdi,
increasing the size of the data packets until fragmentation was seen on the incoming
packets. This is shown in Figure 11.10.

MTU=1500 MTU=1500 MTU=1500 MTU=1500

SLIP }7
sun netb solaris
MTU=552 MTU=?
JCMP echo in
_fragment request ping
fragment
watch with fragmentation
tcpdump

Figure 11.10 Systems being used to determine MTU of SLIP link from netb to sun.

tepdump was run on the host sun, watching the SLIP link, to see when fragmentation
occurred. No fragmentation was observed and everything was fine until the size of the
data portion of the ping packet was increased from 500 to 600 bytes. The incoming
echo requests were seen (there was still no fragmentation), but the echo replies disap-
peared.

To track this down, tcpdump was also run on bsdi, to see what it was receiving
and sending. Figure 11.11 shows the output.

1 0.0 solaris > bsdi: icmp: echo request (DF)

2 0.000000 (0.0000) bsdi > solaris: icmp: echo reply (DF)

3 0.000000 (0.0000) sun > bsdi: icmp: solaris unreachable -
need to frag, mtu = 0 (DF)

4 0.738400 (0.7384) solaris > bsdi: icmp: echo request (DF)

5 0.748800 (0.0104) bsdi > solaris: icmp: echo reply (DF)

6 0.748800 (0.0000) sun > bsdi: icmp: solaris unreachable -

need to frag, mtu = 0 (DF)
Figure 11.11 tcpdump output for ping of bsdi from solaris with 600-byte IP datagram.
First, the notation (DF) in each line means the don't fragment bit is turned on in the

IP header. It turns out that Solaris 2.2 normally turns this bit on, as part of its imple-
mentation of the path MTU discovery mechanism.

Viptela, Inc. - Exhibit 1007
Page 172



Section 11.7 Determining the Path MTU Using Traceroute 153

11.7

Line 1 shows that the echo request got through the router netb to sun without
being fragmented, and with the DF bit set, so we know that the SLIP MTU of netb has
not been reached yet.

Next, notice in line 2 that the DF flag is copied into the echo reply. This is what
causes the problem. The echo reply is the same size as the echo request (just over 600
bytes), but the MTU on sun’s outgoing SLIP interface is 552. The echo reply needs to be
fragmented, but the DF flag is set. This causes sun to generate the ICMP unreachable
error back to bsdi (where it's discarded).

This is why we never saw any echo replies on solaris. The replies never got past
sun. Figure 11.12 shows the path of the packets.

MTU=1500 MTU=1500 ' MTU=1500 MTU=1500
SLIP

bsdi L, sun netb | solaris

MTU=552 MTU=?

ICMP echo
ICMP echo - T T

________ request
ICMP echo < request q

request
ICMP echo

fragmentation reqtired
and DF set

Figure 11.12 Packets exchanged in example.

Finally, the notation mtu=0 in lines 3 and 6 of Figure 11.11 indicates that sun does
not return the MTU of the outgoing interface in the ICMP unreachable message, as
shown in Figure 11.9. (In Section 25.9 we return to this problem and use SNMP to deter-
mine that the MTU of the SLIP interface on netb is 1500.)

Determining the Path MTU Using Traceroute

Although most systems don't support the path MTU discovery feature, we can easily
modify a version of traceroute (Chapter 8) to let us determine the path MTU. What
we’ll do is send packets with the “don’t fragment” bit set. The size of the first packet
we send will equal the MTU of the outgoing interface, and whenever we receive an
ICMP “can’t fragment” error (which we described in the previous section) we'll reduce
the size of the packet. If the router sending the ICMP error sends the newer version that
includes the MTU of the outgoing interface, we'll use that value; otherwise we'll try the
next smallest MTU. As RFC 1191 [Mogul and Deering 1990] states, there are a limited
number of MTUs, so our program has a table of the likely values and moves to the next
smallest value.

Let’s first try it from our host sun to the host s1ip, knowing that the SLIP link has
an MTU of 296:

Viptela, Inc. - Exhibit 1007
Page 173



154  UDP: User Datagram Protocol Chapter 11

sun % traceroute.pmtu slip

traceroute to slip (140.252,13.65), 30 hops max
outgoing MTU = 1500

1 bsdi (140.252.13.35) 15 ms 6 ms 6 ms

2 bsdi (140.252.13.35) 6 ms

fragmentation required and DF set, trying new MTU = 1492
fragmentation required and DF set, trying new MTU = 1006
fragmentation required and DF set, trying new MTU = 576
fragmentation required and DF set, trying new MTU = 552
fragmentation required and DF set, trying new MTU = 544
fragmentation required and DF set, trying new MTU = 512
fragmentation required and DF set, trying new MTU = 508
fragmentation required and DF set, trying new MTU = 296

2 slip (140.252.13.65) 377 ms 377 ms 377 ms

In this example the router bsdi does not return the MTU of the outgoing interface in
the ICMP error, so we step through the likely values for the MTU. The first line of out-
put for a TTL of 2 prints a hostname of bsdi, but that’s because it’s the router returning
the ICMP error. The final line of output for a TTL of 2 is what we’re looking for.

It’s not hard to modify the ICMP code on bsdi to return the MTU of the outgoing
interface, and if we do that and rerun our program, we get the following output:

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU = 1500
1 bsdil (140.252.13.35) 53 ms 6 ms 6 ms
2 bsdi (140.252.13.35) 6 ms
fragmentation required and DF set, next hop MTU = 296
2 slip (140.252.13.65) 377 ms 378 ms 377 ms

Here we don’t have to try eight different values for the MTU before finding the right
one—the router returns the correct value.

The Worldwide Internet

As an experiment, this modified version of traceroute was run numerous times to
various hosts around the world. Fifteen countries (including Antarctica) were reached
and various transatlantic and transpacific links were used. Before doing this, however,
the MTU of the dialup SLIP link between the author’s subnet and the router netb (Fig-
ure 11.12) was increased to 1500, the same as an Ethernet.

Out of 18 runs, only 2 had a path MTU of less than 1500. One of the transatlantic
links had an MTU of 572 (a value not even listed as a likely value in RFC 1191) and the
router did return the newer format ICMP error. Another link, between two routers in
Japan, wouldn’t handle a 1500-byte frame, and the router did not return the newer for-
mat ICMP error. Setting the MTU down to 1006 did work.

The conclusion we can make from this experiment is that many, but not all, WANs
today can handle packets larger than 512 bytes. Using the path MTU discovery feature
will allow applications to take advantage of these larger MTUs.

Viptela, Inc. - Exhibit 1007
Page 174



Section 11.8 Path MTU Discovery with UDP 155

11.8 Path MTU Discovery with UDP

Let’s examine the interaction between an application using UDP and the path MTU dis-
covery mechanism. We want to see what happens when the application writes data-
grams that are too big for some intermediate link.

Example

Since the only system that we've been using that supports the path MTU discovery
mechanism is Solaris 2.x, we’ll use it as the source host to send 650-byte datagrams to
slip. Since our host slip sits behind a SLIP link with an MTU of 296, any UDP data-
gram greater than 268 bytes (296 — 20 — 8) with the “don’t fragment” bit set should cause
the router bsdi to generate the ICMP “can’t fragment” error. Figure 11.13 shows the

topology and the MTUs.
run
tepdump
here
MTU=1500 MTU=1500 i MTU=1500 MTU=1500
slip SLIP_ bsdi sun ¢ SLIP 5> netb solaris
MTU=296 MTU=296 MTU=552 MTU=1500
- 650byte UDP datagram with DFbitset

ICMP can’t fragment error

Figure 11.13 Systems used for path MTU discovery using UDP.

The following command generates ten 650-byte UDP datagrams, with a 5-second pause
between each datagram:

solaris % sock -u —-i -nl0 ~w650 -p5 slip discard

Figure 11.14 shows the tcpdump output. When this example was run, the router bsdi
was set to not return the next-hop MTU as part of the ICMP “can’t fragment” error.

The first datagram is sent with the DF bit set (line 1) and generates the expected
error from the router bsdi (line 2). What's puzzling is that the next datagram is also
sent with the DF bit set (line 3) and generates the same ICMP error (line 4). We would
expect this datagram to be sent with the DF bit off.

On line 5 it appears IP has finally learned that datagrams to this destination should
not be sent with the DF bit set, so IP goes ahead and fragments the datagrams at the
source host. This is different from earlier examples where IP sends the datagram that is
passed to it by UDP and allows the router with the smaller MTU (bsdi in this case) to

Viptela, Inc. - Exhibit 1007
Page 175



156  UDP: User Datagram Protocol Chapter 11
1 0.0 solaris.38196 > slip.discard: udp 650 (DF)
2 0.004218 (0.0042) bsdi > solaris: icmp:
slip unreachable - need to frag, mtu = 0 (DF)
3 4.980528 (4.9763) solaris.38196 > slip.discard: udp 650 (DF)
4 4.984503 (0.0040) Dbsdi > solaris: icmp:
slip unreachable - need to frag, mtu = 0 (DF)
5 9.870407 (4.8859) solaris.38196 > slip.discard: udp 650 (frag 47942:552@0+)
6 9.960056 (0.0896) solaris > slip: (frag 47942:106@552)
7 14.940338 (4.9803) solaris.38196 > slip.discard: udp 650 (DF)
8 14.944466 (0.0041) bsdi > solaris: icmp:
slip unreachable - need to frag, mtu = 0 (DF)
9 19.890015 (4.9455) solaris.38196 > slip.discard: udp 650 (frag 47944:552@0+)
10 19.950463 (0.0604) solaris > slip: (frag 47944:106@552)
11 24.870401 (4.9199) solaris.38196 > slip.discard: udp 650 (frag 47945:552@0+)
12 24.960038 (0.0896) solaris > slip: (frag 47945:1068@552)
13 29.880182 (4.9201) solaris.38196 > slip.discard: udp 650 (frag 47946:55200+)
14 29.940498 (0.0603) solaris > slip: (frag 47946:1066552)
15 34.860607 (4.9201) solaris.38196 > slip.discard: udp 650 (frag 47947:552Q0+)
16 34.950051 (0.0894) solaris > slip: (frag 47947:106@552)
17 39.870216 (4.9202) solaris.38196 > slip.discard: udp 650 (frag 47948:552Q0+)
18 39.930443 (0.0602) solaris > slip: (frag 47948:106@552)
19 44.940485 (5.0100) solaris.38196 > slip.discard: udp 650 (DF)
20 44.944432 (0.0039) bsdi > solaris: icmp:

slip unreachable - need to frag, mtu

Figure 11.14 Path MTU discovery using UDP.

= 0 (DF)

do the fragmentation. Since the ICMP “can’t fragment” message didn't specify the
next-hop MTU, it appears that IP guesses that an MTU of 576 is OK. The first fragment
(line 5) contains 544 bytes of UDP data, the 8-byte UDP header, and the 20-byte IP
header, for a total IP datagram size of 572 bytes. The second fragment (line 6) contains
the remaining 106 bytes of UDP data and a 20-byte IP header.

Unfortunately the next datagram, line 7, has its DF bit set, so it’s discarded by bsdi

and the ICMP error returned. What has happened here is that an IP timer has expired
telling IP to see if the path MTU has increased by setting the DF bit again. We see this
happen again on lines 19 and 20. Comparing the times on lines 7 and 19 it appears that
IP turns on the DF bit, to see if the path MTU has increased, every 30 seconds.

This 30-second timer value is way too small. REC 1191 recommends a value of 10 minutes, It
can be changed by modifying the parameter ip ire pathmtu interval (Section E.4).
Also there is no way in Solaris 2.2 to turn off this path MTU discovery for a single UDP appli-
cation or for all UDP applications. It can only be enabled or disabled on a systemwide basis by
changing the parameter ip path mtu_discovery. As we can see from this example,
enabling path MTU discovery when UDP applications write datagrams that will probably be
fragmented can cause datagrams to be discarded.

Viptela, Inc. - Exhibit 1007

Page 176



Section 11.9 : Interaction Between UDP and ARP 157

11.9

The maximum datagram size assumed by the IP layer on solaris (576 bytes) is
not right. In Figure 11.13 we see that the real MTU is 296 bytes. This means the frag-
ments generated by solaris will be fragmented again by bsdi. Figure 11.15 shows
the tcpdump output collected on the destination host (s1ip) for the first datagram that
arrives (lines 5 and 6 from Figure 11.14).

1 0.0 solaris.38196 > slip.discard: udp 650 (frag 47942:272Q@0+)
2 0.304513 (0.3045) solaris > slip: (frag 47942:272@272+)

3 0.334651 (0.0301) solaris > slip: (frag 47942:8@544+)

4 0.466642 (0.1320) solaris > slip: (frag 47942:106@552)

Figure 11.15 First datagram arriving at host s1ip from solaris.

In this example the host solaris should not fragment the outgoing datagrams but
should turn off the DF bit and let the router with the smaller MTU do the fragmenta-
tion.

Now we'll run the same example but modify the router bsdi to return the next-hop
MTU in the ICMP “can’t fragment” error. Figure 11.16 shows the first six lines of the
tepdump output.

1 0.0 solaris.37974 > slip.discard: udp 650 (DF)
2 0.004199 (0.0042) bsdi > solaris: icmp:
slip unreachable - need to frag, mtu = 296 (DF)
3 4.950193 (4.9460) solaris.37974 > slip.discard: udp 650 (DF)
4 4.,954325 (0.0041) bsdi > solaris: icmp:
slip unreachable -~ need to frag, mtu = 296 (DF)

5 9,779855 (4.8255) solaris.37974 > slip.discard: udp 650 (frag 35278:272@0+)
6 9.930018 (0.1502) solaris > slip: (frag 35278:272@272+)
7 9.990170 (0.0602) solaris > slip: (frag 35278:114@544)

Figure 11.16 Path MTU discovery using UDP.

Again, the first two datagrams are sent with the DF bit set, and both elicit the ICMP
error. The ICMP error now specifies the next-hop MTU of 296.

In lines 5, 6, and 7 we see the source host perform fragmentation, similar to Fig-
ure 11.14. But knowing the next-hop MTU, only three fragments are generated, com-
pared to the four fragments generated by the router bsdi in Figure 11.15.

Interaction Between UDP and ARP

Using UDP we can see an interesting (and often unmentioned) interaction with UDP
and typical implementations of ARP.

We use our sock program to generate a single UDP datagram with 8192 bytes of
data. We expect this to generate six fragments on an Ethernet (see Exercise 11.3). We
also assure that the ARP cache is empty before running the program, so that an ARP
request and reply must be exchanged before the first fragment is sent.

Viptela, Inc. - Exhibit 1007
Page 177



158 UDP: User Datagram Protocol Chapter 11

bsdi % arp -a verify ARP cache is empty
bsdi % sock -~u -i ~nl -w8192 svr4 discard

We expect the first fragment to cause an ARP request to be sent. Five more fragments
are generated by IP and this presents two timing questions that we’ll need to use
tepdump to answer: are the remaining fragments ready to be sent before the ARP reply
is received, and if so, what does ARP do with multiple packets to a given destination
when it’s waiting for an ARP reply? Figure 11.17 shows the t cpdump output.

1 0.0 arp who-has svrd4 tell bsdi

2 0.001234 (0.0012) arp who-has svr4 tell bsdi

3 0.001941 (0.0007) arp who-has svr4d tell bsdi

4 0.002775 (0.0008) arp who~has svr4 tell bsdi

5 0.003495 (0.0007) arp who-has svr4d tell bsdi

6 0.004319 (0.0008) arp who-has svr4 tell bsdi

7 0.008772 (0.0045) arp reply svrd is-at 0:0:c0:¢2:9b:26
8 0.009911 (0.0011) arp reply svrd is-at 0:0:c0:c2:9b:26
9 0.011127 (0.0012) bsdi > svr4: (frag 10863:800@7400)
10 0.011255 (0.0001) arp reply svr4d is—at 0:0:c0:¢2:9b:26
11 0.012562 (0.0013) arp reply svrd is—at 0:0:c0:c2:9b:26
12 0.013458 (0.0009) arp reply svrd is-at 0:0:c0:c2:9b:26
13 0.014526 (0.0011) arp reply svrd is-at 0:0:c0:c2:9b:26
14 0.015583 (0.0011) arp reply svrd is—-at 0:0:c0:c2:9b:26

Figure 11.17 Packet exchange when an 8192-byte UDP datagram is sent on an Ethernet.

There are a few surprises in this output. First, six ARP requests are generated
before the first ARP reply is returned. What we guess is happening is that IP generates
the six fragments rapidly, and each one causes an ARP request.

Next, when the first ARP reply is received (line 7) only the last fragment is sent (line
9)! It appears that the first five fragments have been discarded. Indeed, this is the nor-
mal operation of ARP. Most implementations keep only the last packet sent to a given
destination while waiting for an ARP reply.

The Host Requirements RFC requires an implementation to prevent this type of ARP flooding
(repeatedly sending an ARP request for the same IP address at a high rate). The recommended
maximum rate is one per second. Here we see six ARP requests in 4.3 ms.

The Host Requirements RFC states that ARP should save at least one packet, and this should
be the latest packet. That's what we see here.

Another unexplained anomaly in this output is that svr4 sends back seven ARP
replies, not six. ‘

The final point worth mentioning is that tcpdump was left to run for 5 minutes
after the final ARP reply was returned, waiting to see if svr4 sent back an ICMP “time
exceeded during reassembly” error. The ICMP error was never sent. (We showed the
format of this message in Figure 8.2. A code of 1 indicates that the time was exceeded
during the reassembly of a datagram.)

The IP layer must start a timer when the first fragment of a datagram appears. Here
“first” means the first arrival of any fragment for a given datagram, not the first frag-
ment (with a fragment offset of 0). A normal timeout value is 30 or 60 seconds. If all the

Viptela, Inc. - Exhibit 1007
Page 178



Section 11.10 Maximum UDP Datagram Size 159

11.10

fragments for this datagram have not arrived when the timer expires, all these frag-
ments are discarded. If this were not done, fragments that never arrive (as we see in
this example) could eventually cause the receiver to run out of buffers.

There are two reasons we don't see the ICMP message here. First, most Berkeley-
derived implementations never generate this error! These implementations do set a
timer, and do discard all fragments when the timer expires, but the ICMP error is never
generated. Second, the first fragment—the one with an offset of 0 containing the UDP
header—was never received. (It was the first of the five packets discarded by ARP.) An
implementation is not required to generate the ICMP error unless this first fragment has
been received. The reason is that the receiver of the ICMP error couldn’t tell which user
process sent the datagram that was discarded, because the transport layer header is not
available. It's assumed that the upper layer (either TCP or the application using UDP)
will eventually time out and retransmit.

In this section we've used IP fragmentation to see this interaction between UDP and
ARP. We can also see this interaction if the sender quickly transmits multiple UDP data-
grams. We chose to use fragmentation because the packets get generated quickly by IP,
faster than multiple datagrams can be generated by a user process.

As unlikely as this example might seem, it occurs regularly. NFS sends UDP data-
grams whose length just exceeds 8192 bytes. On an Ethernet these are fragmented as
we’ve indicated, and if the appropriate ARP cache entry times out, you can see what
we’ve shown here. NFS will time out and retransmit, but the first IP datagram can still
be discarded because of ARP’s limited queue.

Maximum UDP Datagram Size

Theoretically, the maximum size of an IP datagram is 65535 bytes, imposed by the 16-bit
total length field in the IP header (Figure 3.1). With an IP header of 20 bytes and a UDP
header of 8 bytes, this leaves a maximum of 65507 bytes of user data in a UDP data-
gram. Most implementations, however, provide less than this maximum.

There are two limits we can encounter. First the application program may be lim-
ited by its programming interface. The sockets API (Section 1.15) provides a function
that the application can call to set the size of the receive buffer and the send buffer. For
a UDP socket, this size is directly related to the maximum size UDP datagram the appli-
cation can read or write. Most systems today provide a default of just over 8192 bytes
for the maximum size of a UDP datagram that can be read or written. (This default is
because 8192 is the amount of user data that NFS reads and writes by default.)

The next limitation comes from the kernel’s implementation of TCP/IP. There may
be implementation features (or bugs) that limit the size of an IP datagram to less than
65535 bytes.

The author experimented with various UDP datagram sizes, using the sock program. Using
the loopback interface under SunOS 4.1.3, the maximum size IP datagram was 32767 bytes.
All higher values failed. But going across an Ethernet from BSD/386 to SunOS 4.1.3, the maxi-
mum size IP datagram the Sun could accept was 32786 (that is, 32758 bytes of user data).
Using the loopback interface under Solaris 2.2, the maximum 65535-byte IP datagram could be
sent and received. From Solaris 2.2 to AIX 3.2.2, the maximum 65535-byte IP datagram could
be transferred. Obviously this limit depends on the source and destination implementations.

Viptela, Inc. - Exhibit 1007
Page 179



160

UDP: User Datagram Protocol Chapter 11

We mentioned in Section 3.2 that a host is required to receive at least a 576-byte IP
datagram. Many UDP applications are designed to restrict their application data to 512
bytes or less, to stay below this limit. We saw this in Section 10.4, for example, where
the Routing Information Protocol always sent less than 512 bytes of data per datagram.
We'll encounter this same limit with other UDP applications: the DNS (Chapter 14),
TETP (Chapter 15), BOOTP (Chapter 16), and SNMP (Chapter 25).

Datagram Truncation

11.11

Just because IP is capable of sending and receiving a datagram of a given size doesn’t
mean the receiving application is prepared to read that size. UDP programming inter-
faces allow the application to specify the maximum number of bytes to return each
time. What happens if the received datagram exceeds the size the application is pre-
pared to deal with?

Unfortunately the answer depends on the programming interface and the imple-
mentation.

The traditional Berkeley version of the sockets API truncates the datagram, discarding any
excess data. Whether the application is notified depends on the version. (4.3BSD Reno and
later can notify the application that the datagram was truncated.)

The sockets APT under SVR4 (including Solaris 2.x) does not truncate the datagram. Any
excess data is returned in subsequent reads. The application is not notified that multiple reads
are being fulfilled from a single UDP datagram.

The TLI API does not discard the data. Instead a flag is returned indicating that more data is
available, and subsequent reads by the application return the rest of the datagram.

When we discuss TCP we’ll see that it provides a continuous stream of bytes to the
application, without any message boundaries. TCP passes the data to the application in
whatever size reads the application asks for—there is never any data loss across this
interface.

ICMP Source Quench Error

Using UDP we are also able to generate the ICMP “source quench” error. This is an
error that may be generated by a system (router or host) when it receives datagrams at a
rate that is too fast to be processed. Note the qualifier “may.” A system is not required
to send a source quench, even if it runs out of buffers and throws datagrams away.

Figure 11.18 shows the format of the ICMP source quench error. We have a perfect
scenario with our test network for generating this error. We can send datagrams from
bsdi to the router sun across the Ethernet that must be routed across the dialup SLIP
link. Since the SLIP link is about 1000 times slower than the Ethernet, we should easily
be able to overrun its buffer space. The following command sends 100 1024-byte data-
grams from the host bsdi through the router sun to solaris. We send the datagrams
to the standard discard service, where they’ll be ignored:

bsdi % sock ~u -i ~wl024 -nl100 solaris discard

Viptela, Inc. - Exhibit 1007
Page 180



Section 11,11 ICMP Source Quench Error 161

0 78 15 16 31
type (4) code (0) checksum T
8 bytes
Unused (must be 0) i‘
/ IP header (including options) + first 8 bytes of original IP datagram data /

Figure 11.18 ICMP source quench error.

Figure 11.19 shows the tecpdump output corresponding to this command.

1 0.0 bsdi.1403 > solaris.discard: udp 1024
26 lines that we don't show

27 0.10 (0.00) bsdi.1403 > solaris.discard: udp 1024
28 0.11 (0.01) sun > bsdi: icmp: source quench

29 0.11 (0.00) bsdi.1403 > solaris.discard: udp 1024
30 0.11 (0.00) sun > bsdi: icmp: source quench
142 lines that we don't show

173 0.71 (0.06) bsdi.1403 > solaris.discard: udp 1024
174 0.71 (0.00) sun > bsdi: icmp: source quench

Figure 11.19 ICMP source quench from the router sun.

We have removed lots of lines from this output; there is a pattern. The first 26 data-
grams are received without an error; we show the output only for the first. Starting
with our 27th datagram, however, every time we send a datagram, we receive a source
quench in return. There are a total of 26 + (74 x 2) = 174 lines of output.

From our serial line throughput calculations in Section 2.10, it takes just over 1 sec-
ond to transfer a 1024-byte datagram at 9600 bits/sec. (In our example it should take
longer than this since the 20 + 8 + 1024 byte datagram will be fragmented because the
MTU of the SLIP link from sun to netb is 552 bytes.) But we can see from the timing in
Figure 11.19 that the router sun receives all 100 datagrams in less than 1 second, before
the first one is through the SLIP link. It’s not surprising that we used up many of its
buffers.

Although RFC 1009 [Braden and Postel 1987] requires a router to generate source quenches
when it runs out of buffers, the new Router Requirements RFC [Almquist 1993] changes this
and says that a router must not originate source quench errors. The current feeling is to depre-
cate the source quench error, since it consumes network bandwidth and is an ineffective and
unfair fix for congestion,

Another point to make regarding this example is that our sock program either
never received a notification that the source quenches were being received, or if it did, it

Viptela, Inc. - Exhibit 1007
Page 181



162

UDP: User Datagram Protocol Chapter 11

11.12

Client

appears to have ignored them. It turns out that BSD implementations normally ignore
received source quenches if the protocol is UDP. (TCP is notified, and slows down the
data transfer on the connection that generated the source quench, as we discuss in Sec-
tion 21.10.) Part of the problem is that the process that generated the data that caused
the source quench may have already terminated when the source quench is received.
Indeed, if we use the Unix time program to measure how long our sock program takes
to run, it only executes for about 0.5 seconds. But from Figure 11.19 we see that some of
the source quenches are received 0.71 seconds after the first datagram was sent, after the
process has terminated. What is happening is that our program writes 100 datagrams
and terminates. But not all 100 datagrams have been sent—some are queued for
output.

This example reiterates that UDP is an unreliable protocol and illustrates the value
of end-to-end flow control. Even though our sock program successfully wrote 100
datagrams to its network, only 26 were really sent to the destination. The other 74 were
probably discarded by the intermediate router. Unless we build some form of acknowl-
edgment into the application, the sender has no idea whether the receiver really got the
data.

UDP Server Design

There are some implications in using UDP that affect the design and implementation of
a server. The design and implementation of clients is usually easier than that of servers,
which is why we talk about server design and not client design. Servers typically inter-
act with the operating system and most servers need a way to handle multiple clients at
the same time.

Normally a client starts, immediately communicates with a single server, and is
done. Servers, on the other hand, start and then go to sleep, waiting for a client’s
request to arrive. In the case of UDP, the server wakes up when a client’s datagram
arrives, probably containing a request message of some form from the client.

Our interest here is not in the programming aspects of clients and servers ([Stevens
1990] covers all those details), but in the protocol features of UDP that affect the design
and implementation of a server using UDP. (We examine the details of TCP server
design in Section 18.11.) Although some of the features we describe depend on the
implementation of UDP being used, the features are common to most implementations.

IP Address and Port Number

What arrives from the client is a UDP datagram. The IP header contains the source and
destination IP addresses, and the UDP header contains the source and destination UDP
port numbers. When an application receives a UDP datagram, it must be told by the
operating system who sent the message—the source IP address and port number.

This feature allows an iterative UDP server to handle multiple clients. Each reply is
sent back to the client that sent the request.

Viptela, Inc. - Exhibit 1007
Page 182



Section 11.12 UDP Server Design 163

Destination IP Address

Some applications need to know who the datagram was sent to, that is, the destination
IP address. For example, the Host Requirements RFC states that a TFTP server should
ignore received datagrams that are sent to a broadcast address. (We describe broadcast-
ing in Chapter 12 and TFTP in Chapter 15.)

This requires the operating system fo pass the destination IP address from the
received UDP datagram to the application. Unfortunately, not all implementations pro-
vide this capability.

The sockets API provides this capability with the TP_RECVDSTADDR socket option. Of the sys-
tems used in the text, only BSD/386, 4.4BSD, and AIX 3.2.2 support this option. SVR4, SunOS
4.x, and Solaris 2.x don’t support it.

UDP Input Queue

We said in Section 1.8 that most UDP servers are iterative servers. This means a single
server process handles all the client requests on a single UDP port (the server’s well-
known port).

Normally there is a limited size input queue associated with each UDP port that an
application is using. This means that requests that arrive at about the same time from
different clients are automatically queued by UDP. The received UDP datagrams are
passed to the application (when it asks for the next one) in the order they were received.

It is possible, however, for this queue to overflow, causing the kernel’s UDP module
to discard incoming datagrams. We can see this with the following experiment. We
start our sock program on the host bsdi running as a UDP server:

bsdi % sock -g -u -v -E -R256 -r256 -P30 6666
from 140.252.13.33, to 140.252.13.63: 1111111111 from sun, to broadcast address
from 140.252.13.34, to 140.252.13.35: 4444444444444 from svr4, to unicast address

We specify the following flags: -s to run as a server, —u for UDP, -v to print the client’s
IP address, and -E to print the destination IP address (which is supported by this sys-
tem). Additionally we set the UDP receive buffer for this port to 256 bytes (-R), along
with the size of each application read (-r). The flag ~P30 tells it to pause for 30 seconds
after creating the UDP port, before reading the first datagram. This gives us time to
start the clients on two other hosts, send some datagrams, and see how the receive
queueing works.

Once the server is started, and is in its 30-second pause, we start one client on the
host sun and send three datagrams:

sun % sock -u -v 140.252.13.63 6666 to Ethernet broadcast address
connected on 140.252.13.33.1252 to 140.252.13.63.6666
1111111111 11 bytes of data (with newline)

222222222 10 bytes of data (with newline)

33333333333 12 bytes of data (with newline)

The destination address is the broadcast address (140.252.13.63). We also start a second
client on the host svr4 and send another three datagrams:

Viptela, Inc. - Exhibit 1007
Page 183



164  UDP: User Datagram Protocol Chapter 11

svrd % sock —u -v bsdi 6666
connected on 0.0.0.0.1042 to 140.252.13.35.6666

4444444444444 14 bytes of data (with newline)
555555555555555 16 bytes of data (with newline)
66666666 9 bytes of data (with newline)

The first thing we notice in the interactive output shown earlier on bsdi is that only
two datagrams were received by the application: the first one from sun with all 1s, and
the first one from svr4 with all 4s. The other four datagrams appear to have been
thrown away.

The tcpdump output in Figure 11.20 shows that all six datagrams were delivered to
the destination host. The datagrams were typed on the two clients in alternating order:
first from sun, then from svr4, and so on. We can also see that all six were delivered in
about 12 seconds, within the 30-second period while the server was sleeping.

1 0.0 sun.1252 > 140.252.13.63.6666: udp 11
2 2.499184 (2.4992) svrd.1042 > bsdi.6666: udp 14

3 4.959166 (2.4600) sun.1252 > 140.252,13.63.6666: udp 10
4 7.607149 (2.6480) svr4.1042 > bsdi.6666: udp 16

5 10.079059 (2.4719) sun.1252 > 140.252.13.63.6666: udp 12
6 12.415943 (2.3369) svrd.1042 > bsdi.6666: udp 9

Figure 11.20 tcpdump for UDP datagrams sent by two clients.

We can also see the server’s —E option lets it know the destination IP address of
each datagram. If it wanted to, it could choose what to do with the first datagram it
receives, which was sent to a broadcast address.

We can see several points in this example. First, the application is not told when its
input queue overflows. The excess datagrams are just discarded by UDP. Also, from
the tcpdump output we see that nothing is sent back to the client to tell it that its data-
gram was discarded. There is nothing like an ICMP source quench sent back to the
sender. Finally, it appears that the UDP input queue is FIFO (first-in, first-out), whereas
we saw that the ARP input queue in Section 11.9 was LIFO (last-in, first-out).

Restricting Local IP Address

Most UDP servers wildcard their local IP address when they create a UDP end point.
This means that an incoming UDP datagram destined for the server’s port will be
accepted on any local interface. For example, we can start a UDP server on port 7777:

sun % sock -u -s 7777

We then use the net stat command to see the state of the end point:

sun % netstat —-a —-n ~f inet

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 *.77717 * *

We have deleted many lines of output other than the one in which we're interested. The
~a flag reports on all network end points. The ~n flag prints IP addresses as dotted-

Viptela, Inc. - Exhibit 1007
Page 184



Section 11.12 UDP Server Design 165

decimal numbers, instead of trying to use the DNS to convert the address to a name,
and prints numeric port numbers instead of service names. The —-f inet option reports
only TCP and UDP end points. ‘

The local address is printed as *.7777 where the asterisk means the local IP
address has been wildcarded.

When the server creates its end point it can specify one of the host’s local IP
addresses, including one of its broadcast addresses, as the local IP address for the end
point. Incoming UDP datagrams will then be passed to this end point only if the desti-
nation IP address matches the specified local address. With our sock program, if we
specify an IP address before the port number, that IP address becomes the local IP
address for the end point. For example,

sun % sock -u -s 140.252.1.29 7777

restricts the server to datagrams arriving on the SLIP interface (140.252.1.29). The
netstat output shows this:

Proto Recv-Q Send—-Q Local’ Address Foreign Address (state)
udp 0 0 140.252.1.29.7777 * L%

If we try to send this server a datagram from a host on the Ethernet, bsdi at address
140.252.13.35, an ICMP port unreachable is returned. The server never sees the data-
gram. Figure 11.21 shows this scenario.

1 0.0 bsdi.1723 > sun.7777: udp 13
2 0.000822 (0.0008) sun > bsdi: icmp: sun udp port 7777 unreachable

Figure 11.21 Rejection of UDP datagram caused by server’s local address binding,

It is possible to start different servers at the same port, each with a different local IP
address. Normally, however, the system must be told by the application that it is OK to
reuse the same port number.

With the sockets API the SO REUSEADDR socket option must be specified. This is done by our
sock program by specifying the —A option.

On our host sun we can start five different servers on the same UDP port (8888):

sun % sock -u -s 140.252.1.29 8888 for SLIP link

sun % sock -u —-s -A 140.252.13.33 8888 for Ethernet

sun % sock -u ~-s -A 127.0.0.1 8888 Sfor loopback interface

sun % sock -u —s —A 140.252.13.63 8888 for Ethernet broadcasts

sun % sock -u -s -A 8888 everything else (wildcard IP address)

All except the first of the servers must be started with the ~A flag, telling the system that
it’s OK to reuse the same port number. The netstat output shows the five servers:

Proto Recv-Q Send—-Q Local Address Foreign Address (state)
udp 0 0 *.8888 LK
udp 0 0 140.252.13.63.8888 * K
udp 0 0 127.0.0.1.8888 kLK
udp 0 0 140.252.13.33.8888 *,k
udp 0 0 140.252.1.29.8888 L

Viptela, Inc. - Exhibit 1007
Page 185



166  UDP: User Datagram Protocol Chapter 11

In this scenario, the only datagrams that will go to the server with the wildcarded local
IP address are those destined to 140.252.1.255, because the other four servers cover all
other possibilities.

There is a priority implied when an end point with a wildcard address exists. An
end point with a specific IP address that matches the destination IP address is always
chosen over a wildcard. The wildcard end point is used only when a specific match is
not found.

Restricting Foreign IP Address

In all the netstat output that we showed earlier, the foreign IP address and foreign
port number are shown as *.* meaning the end point will accept an incoming UDP
datagram from any IP address and any port number. Most implementations allow a
UDP end point to restrict the foreign address.

This means the end point will only receive UDP datagrams from that specific IP
address and port number. Our sock program uses the ~f option to specify the foreign
IP address and port number:

sun % sock -u —-s —f 140.252.13.35.4444 5555

This sets the foreign IP address to 140.252.13.35 (our host bsdi) and the foreign port
number to 4444. The server’s well-known port is 5555. If we run netstat we see that
the local IP address has also been set, even though we didn’t specify it:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 140.252.13.33.5555 140.252.13.35.4444

This is a side effect of specifying the foreign IP address and foreign port on Berkeley-
derived systems: if the local address has not been chosen when the foreign address is
specified, the local address is chosen automatically. Its value becomes the IP address of
the interface chosen by IP routing to reach the specified foreign IP address. Indeed, in
this example the IP address on sun for the Ethernet that is connected to the foreign

address is 140.252.13.33,
Figure 11.22 summarizes the three types of address bindings that a UDP server can
establish for itself.
Local Address | Foreign Address Description
locallIP. Iport foreignIP. fport | restricted to one client
localIP. Iport * % restricted to datagrams arriving on one local interface: localIP
*, Iport * ok receives all datagrams sent to lport

Figure 11.22 Specification of local and foreign IP addresses and port number for UDP server.

In all cases, Iport is the server’s well-known port and locallP must be the IP address of a
local interface. The ordering of the three rows in the table is the order that the UDP
module applies when trying to determine which local end point receives an incoming
datagram. The most specific binding (the first row) is tried first, and the least specific
(the last row with both IP addresses wildcarded) is tried last.

Viptela, Inc. - Exhibit 1007
Page 186



Section 11.13 Summary 167

Multiple Recipients per Port

Although it’s not specified in the RFCs, most implementations allow only one applica-
tion end point at a time to be associated with any one local IP address and UDP port
number. When a UDP datagram arrives at a host destined for that IP address and port
number, one copy is delivered to that single end point. The IP address of the end point
can be the wildcard, as shown earlier.

For example, under SunOS 4.1.3 we start one server on port 9999 with a wildcarded
local IP address:

23

sun % sock —-u -s 9999

If we then try to start another server with the same wildcarded local address and the
same port, it doesn’t work, even if we specify the -A option:

sun % sock —u -s 9999 we expect this to fail
can’'t bind local address: Address already in use

sun % sock ~u ~s -A 9999 so we try -A flng this time
can’t bind local address: Address already in use

On systems that support multicasting (Chapter 12), this changes. Multiple end
points can use the same local IP address and UDP port number, although the applica-
tion normally must tell the API that this is OK (ie, our -A flag to specify the
SO_REUSEADDR socket option).

4.4BSD, which supports multicasting, requires the application to set a different socket option
(SO_REUSEPORT) to allow multiple end points to share the same port. Furthermore each end
point must specify this option, including the first one to use the port.

When a UDP datagram arrives whose destination IP address is a broadcast or
multicast address, and there are multiple end points at the destination IP address and
port number, one copy of the incoming datagram is passed to each end point. (The end
point’s local IP address can be the wildcard, which matches any destination IP address.)
But if a UDP datagram arrives whose destination IP address is a unicast address, only a
single copy of the datagram is delivered to one of the end points. Which end point gets
the unicast datagram is implementation dependent.

11.13 Summary

UDP is a simple protocol. Its official specification, REC 768 [Postel 1980], requires only
three pages. The services it provides to a user process, above and beyond IP, are port
numbers and an optional checksum. We used UDP to examine this checksum and to
see how fragmentation is performed.

We then examined the ICMP unreachable error that is part of the new path MTU
discovery feature (Section 2.9). We watched path MTU discovery using Traceroute and
UDP. We also looked at the interaction between UDP and ARP whereby most ARP
implementations only retain the most recently transmitted datagram to a given destina-
tion, while waiting for an ARP reply.

Viptela, Inc. - Exhibit 1007
Page 187



168 UDP: User Datagram Protocol Chapter 11

The ICMP source quench error can be sent by a system that is receiving IP data-
grams faster than they can be processed. It is easy to generate these ICMP errors using
UDP.

Exercises

11.1  In Section 11.5 we caused fragmentation on an Ethernet by writing a UDP datagram with
1473 bytes of user data. What is the smallest amount of user data that causes fragmenta-
tion on an Ethernet if IEEE 802 encapsulation (Section 2.2) is used instead?

11.2  Read RFEC 791 [Postel 1981a] to determine why all fragments other than the last must have
a length that is a multiple of 8 bytes.

11.3  Assume an Ethernet and a UDP datagram with 8192 bytes of user data. How many frag-
ments are transmitted and what is the offset and length of each fragment?

11.4 Continue the previous exercise, assuming these fragments then traverse a SLIP link with
an MTU of 552. You also need to remember that the amount of data in each fragment (i.e,,
everything other than the IP header) must be a multiple of 8 bytes. How many fragments
are transmitted and what is the offset and length of each fragment?

11.5 An application using UDP sends a datagram that gets fragmented into four pieces.
Assume that fragments 1 and 2 make it to the destination, with fragments 3 and 4 being
lost. The application then times out and retransmits the UDP datagram 10 seconds later
and this datagram is fragmented identically to the first transmission (i.e., same offsets and
lengths). Assume that this time fragments 1 and 2 are lost but fragments 3 and 4 make it to
the destination. Also assume that the reassembly timer on the receiving host is 60 seconds,
so when fragments 3 and 4 of the retransmission make it to the destination, fragments 1
and 2 from the first transmission have not been discarded. Can the receiver reassemble the
IP datagram from the four fragments it now has?

11.6 How do you know that the fragments in Figure 11.15 really correspond to lines 5 and 6 in
Figure 11.147

11.7  After the host gemini had been up for 33 days, the netstat program showed that 129 IP
datagrams out of 48 million had been dropped because of a bad header checksum, and 20
TCP segments out of 30 million had been dropped because of a bad TCP checksum. Not a
single UDP datagram was dropped, however, because of a UDP checksum error, out of the
approximately 18 million UDP datagrams. Give two reasons why. (Hint: See Figure 11.4.)

11.8 In our discussion of fragmentation we never said what happens to IP options in the IP
header—are they copied as part of the IP header in each fragment, or left in the first frag-
ment only? We've described the following IP options: record route (Section 7.3), time-
stamp (Section 7.4), strict and loose source routing (Section 8.5). How would you expect
fragmentation to handle these options? Check your answer with RFC 791,

119 In Figure 1.8 (p. 11) we said that incoming UDP datagrams are demultiplexed based on the
destination UDP port number. Is that correct?

Viptela, Inc. - Exhibit 1007
Page 188



12.1

12

Broadcasting and Mulficasting

Introduction

We mentioned in Chapter 1 that there are three kinds of IP addresses: unicast, broadcast,
and multicast. In this chapter we discuss broadcasting and multicasting in more detail.

Broadcasting and multicasting only apply to UDP, where it makes sense for an
application to send a single message to multiple recipients. TCP is a connection-
oriented protocol that implies a connection between two hosts (specified by IP
addresses) and one process on each host (specified by port numbers).

Consider a set of hosts on a shared network such as an Ethernet. Fach Ethernet
frame contains the source and destination Ethernet addresses (48-bit values). Normally
each Ethernet frame is destined for a single host. The destination address specifies a
single interface—called a unicast. In this way communication between any two hosts
doesn’t bother any of the remaining hosts on the cable (except for possible contention
for the shared media).

There are times, however, when a host wants to send a frame to every other host on
the cable—called a broadcast. We saw this with ARP and RARP. Multicasting fits
between unicasting and broadcasting: the frame should be delivered to a set of hosts
that belong to a multicast group.

To understand broadcasting and multicasting we need to understand that filtering
takes place on each host, each time a frame passes by on the cable. Figure 12.1 shows a
picture of this.

First, the interface card sees every frame that passes by on the cable and makes a
decision whether to receive the frame and deliver it to the device driver. Normally the
interface card receives only those frames whose destination address is either the hard-
ware address of the interface or the broadcast address. Additionally, most interfaces
can be placed into a promiscuous mode whereby they receive a copy of every frame.
This mode is used by t cpdump, for example.

169
Viptela, Inc. - Exhibit 1007
Page 189



170

Broadcasting and Multicasting Chapter 12

Tdeliver

UDP | discard

A

deliver

P - discard

\
deliver

device
driver

L

= discard

deliver

interface
card

|

= discard

Figure 12,1 Filtering that takes place up the protocol stack when a frame is received.

Today most interfaces can also be configured to receive frames whose destination
address is a multicast address, or some subset of multicast addresses. On an Ethernet, a
multicast address has the low-order bit of the high-order byte turned on. In hexadeci-
mal this bit looks like 01:00:00:00:00:00. (We can consider the Ethernet broadcast
address, ff: ££: F£: ££: ££: £F as a special case of the Ethernet multicast address.)

If the interface card receives the frame, it is passed to the device driver. (One reason
the interface card might discard the frame is if the Ethernet checksum is incorrect.)
Additional filtering is performed by the device driver. First, the frame type must spec-
ify a protocol that is supported (IP, ARP, etc.). Second, additional multicast filtering
may be performed, to check whether the host belongs to the addressed multicast group.

The device driver then passes the frame to the next layer, such as IP, if the frame
type specifies an IP datagram. IP performs more filtering, based on the source and des-
tination IP addresses, and passes the datagram up to the next layer (such as TCP or
UDP) if all is well.

Each time UDP receives a datagram from IP, it performs filtering based on the desti-
nation port number, and sometimes the source port number too. If no process is cur-
rently using the destination port number, the datagram is discarded and an ICMP port
unreachable message is normally generated. (TCP performs similar filtering based on
its port numbers.) If the UDP datagram has a checksum error, UDP silently discards it.

The problem with broadcasting is the processing load that it places on hosts that
aren't interested in the broadcasts. Consider an application that is designed to use UDP

Viptela, Inc. - Exhibit 1007
Page 190



Section 12.2 Broadcasting 171

12.2

broadcasts. If there are 50 hosts on the cable, but only 20 are participating in the appli-
cation, every time one of the 20 sends a UDP broadcast, the other 30 hosts have to pro-
cess the broadcast, all the way up through the UDP layer, before the UDP datagram is
discarded. The UDP datagram is discarded by these 30 hosts because the destination
port number is not in use.

The intent of multicasting is to reduce this load on hosts with no interest in the
application. With multicasting a host specifically joins one or more multicast groups. If
possible, the interface card is told which multicast groups the host belongs to, and only
those multicast frames are received.

Broadcasting

In Figure 3.9 we showed four different forms of IP broadcast addresses. We now
describe them in more detail.

Limited Broadcast

The limited broadcast address is 255.255.255.255. This can be used as the destination
address of an IP datagram during the host configuration process, when the host might
not know its subnet mask or even its IP address.

A datagram destined for the limited broadcast address is never forwarded by a
router under any circumstance. It only appears on the local cable.

An unanswered question is: if a host is multihomed and a process sends a datagram
to the limited broadcast address, should the datagram be sent out each connected inter-
face that supports broadcasting? If not, an application that wants to broadcast out all
interfaces must determine all the interfaces on the host that support broadcasting, and
send a copy out each interface.

Most BSD systems treat 255.255.255.255 as an alias for the broadcast address of the
first interface that was configured, and don’t provide any way to send a datagram out
all attached, broadcast-capable interfaces. Indeed, two applications that send UDP
datagrams out every interface are routed (Section 10.3) and rwhod (the server for the
BSD rwho client). Both of these applications go through a similar start-up procedure to
determine all the interfaces on the host, and which ones are capable of broadcasting.
The net-directed broadcast address corresponding to that interface is then used as the
destination address for datagrams sent out the interface.

The Host Requirements RFC takes no stand on the issue of whether a multihomed host should
send a limited broadcast out all its interfaces.

Net-directed Broadcast

The net-directed broadcast address has a host ID of all one bits. A class A net-directed
broadcast address is netid.255.255.255, where netid is the class A network ID.

A router must forward a net-directed broadcast by default, but it must also have an
option to disable this forwarding.

Viptela, Inc. - Exhibit 1007
Page 191



172

Broadcasting and Multicasting Chapter 12

Subnet-direcied Broadcast

The subnet-directed broadcast address has a host ID of all one bits but a specific subnet ID.
Classification of an IP address as a subnet-directed broadcast address requires knowl-
edge of the subnet mask. For example, if a router receives a datagram destined for
128.1.2.255, this is a subnet-directed broadcast if the class B network 128.1 has a subnet
mask of 255.255.255.0, but it is not a broadcast if the subnet mask is 255.255.254.0
(OxEE£££F00).

All-subnets-directed Broadcast

12.3

An all-subnets-directed brondcast address also requires knowledge of the destination net-
work’s subnet mask, to differentiate this broadcast address from a net-directed broad-
cast address. Both the subnet ID and the host ID are all one bits. For example, if the
destination’s subnet mask is 255.255.255.0, then the class B IP address 128.1.255.255 is an
all-subnets-directed broadcast. But if the network is not subnetted, then this is a net-
directed broadcast.

Current feeling [Almquist 1993] is that this type of broadcast is obsolete. It is better
to use multicasting than an all-subnets-directed broadcast.

[Almquist 1993] notes that REC 922 requires that an all-subnets-directed broadcast be sent to
all subnets, but no current routers do so. This is fortunate since a host that has been misconfig-
ured without its subnet mask sends all its “local” broadcasts to all subnets. For example, if the
host with IP address 128.1.2.3 doesn’t set a subnet mask, then its broadcast address normally
defaults to 128.1.255.255. But if the subnet mask should have been set to 255.255.255.0, then
broadcasts from this misconfigured host appear directed to all subnets.

The first widespread implementation of TCP/IF, the 4.2BSD system in 1983, used a host ID of
all zero bits for the broadcast address. One of the earliest references to the broadcast IP
address is IEN 212 [Gurwitz and Hinden 1982], and it proposed to define the IP broadcast
address as a host ID of one bits. (IENs are the Internet Experiment Notes, basically predecessors
to the RFCs.) REC 894 [Hotnig 1984] commented that 4.2BSD used a nonstandard broadcast
address, but RFC 906 [Finlayson 1984] noted that there was no Internet standard for the broad-
cast address. The RFC editor added a footnote to RFC 906 acknowledging the lack of a stan-
dard broadcast address, but strongly recommended that a host ID of all one bits be used as the
broadcast address. Although Berkeley adopted the use of all one bits for the broadcast address
with 4.3BSD in 1986, some operating systems (notably SunOS 4.x) continued to use the non-
standard broadcast address through the early 1990s.

Broadcasting Examples

How are broadcasts sent and what do routers and hosts do with broadcasts? Unfortu-
nately this is a hard question to answer because it depends on the type of broadcast
address, the application, the TCP/IP implementation, and possible configuration
switches.

First, the application must support broadcasting. If we execute

sun % ping 255.255.255.255
/usr/etc/ping: unknown host 255.255.255.255

Viptela, Inc. - Exhibit 1007
Page 192



Section 12.3 Broadcasting Examples 173

intending to send a broadcast on the local cable, it doesn’t work. But the problem here
is a programming problem in the application (ping). Most applications that accept
either a dotted-decimal IP address or a hostname call the function inet_addr(3) to
convert the dotted-decimal character string to its 32-bit binary IP address, and if this
fails, assume the character string is a hostname. Unfortunately this library function
returns -1 to indicate an error (such as a character other than a digit or decimal point in
the string), but the limited broadcast address (255.255.255.255) also converts into 1.
Most programs then assume that the character string is a hostname, look it up using the
DNS (Chapter 14), and end up printing an error such as “unknown host.”

If we fix this programming shortfall in the ping program, however, the results are
often not what we expect. On six different systems tested by the author, only one han-
dled this as expected and generated a broadcast packet on the local cable. Most looked
up the IP address 255.255.255.255 in the routing table, applied the default route, and
sent a unicast packet to the default router. Eventually the packet was thrown away.

A subnet-directed broadcast is what we should be using. Indeed, in Section 6.3 we
sent datagrams to the IP address 140.252.13.63 for the bottom Ethernet in our test net-
work (inside front cover), and got replies from all the hosts on the Ethernet. The sub-
net-directed broadcast address associated with each interface is the value used with the
ifconfig command (Section 3.8). If we ping that address, the result is what we
expect:

sun % arp -a ARP cache is empty

sun % ping 140.252.13.63

PING 140.252.13.63: 56 data bytes

64 bytes from sun (140.252.13.33): icmp_seqg=0. time=4. ms

64 bytes from bsdi (140.252.13.35): icmp_seq=0. time=172. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=0. time=192. ms

64 bytes from sun (140.252.13.33): icmp seq=1l. time=l. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=1l. time=52. ms
64 bytes from svrd (140.252.13.34): icmp seg=1. time=90. ms

"7 type interrupt key to stop
--——140.252,13.63 PING Statistics————

2 packets transmitted, 6 packets received, -200% packet loss
round-trip (ms) min/avg/max = 1/85/192

sun % arp -a check ARP cache again
svrd (140.252.13.34) at 0:0:c¢0:c2:9b:26
bsdi (140.252.13.35) at 0:0:c0:6£:2d:40

IP looks at the destination address (140.252.13.63), determines that it is the subnet-
directed broadcast address, and sends the datagram to the link-layer broadcast address.

We mentioned in Section 6.3 that this type of broadcast means all the hosts on the
local network, including the sender. We see here that we do get a reply from the send-
ing host (sun) in addition to the other hosts on the cable.

In this example we’ve also shown the ARP cache before and after the ping of the
broadcast address. This is to show the interaction between broadcasting and ARP. The
ARP cache is empty before we execute ping, but full afterward. (That is, there is one
entry for every other host on the cable that responded to the echo request.) How did

Viptela, Inc. - Exhibit 1007
Page 193



174 Broadcasting and Multicasting Chapter 12

this happen when we said that the Ethernet frame is sent to the link-layer broadcast
address (0x££E£E£££££)? The sending of these frames by sun does not require ARP.

If we watch ping using tcpdump, we see that it is the recipients of the broadcast
frames that generate an ARP request to sun, before they can send their reply. This is
because the reply is unicast. We said in Section 4.5 that the receiver of an ARP request
(sun in this example) normally adds the requestor’s IP address and hardware address
to its ARP cache, in addition to sending an ARP reply. This is on the assumption that if
the requestor is about to send us a packet, we’ll probably want to send something back.

Our use of ping is somewhat special because the type of programming interface
that it uses (called “raw sockets” on most Unix implementations) always allows a data-
gram to be sent to the broadcast address. What if we use an application that was not
designed to support broadcasting, such as TFTP? (We cover TFIP in more detail in

Chapter 15.)
bsdi % tftp start the client
tftp> connect 140.252.13.63 specify the IP address of the server
tftp> get temp.foo and try to fetch a file from the server
tftp: sendto: Permission denied
tftp> quit terminate the client

Here we get an error immediately, and nothing is sent on the cable. What’s happening
here is that the sockets API doesn’t allow a process to send a UDP datagram to the
broadcast address unless the process specifically states that it plans to broadcast. This is
intended to prevent users from mistakenly specifying a broadcast address (as we did
here) when the application was never intended to broadcast.

With the sockets API the application must set the SO_BROADCAST socket option before send-
ing a UDP datagram to a broadcast address.

Not all systems enforce this restriction. Some implementations allow any process to broadcast
UDP datagrams, without requiring the process to say so. Others are more restrictive and
require a process to have superuser privileges to broadcast.

The next question is whether directed broadcasts are forwarded or not. Some ker-
nels and routers have an option to enable or disable this feature. (See Appendix E.)

If we enable this feature on our router bsdi and run ping from the host slip, we
can see if the subnet-directed broadcasts are forwarded by bsdi. Forwarding a directed
broadcast means the router takes the incoming unicast datagram, determines that the
destination address is the directed broadcast for one of its interfaces, and then forwards
the datagram onto the appropriate network using a link-layer broadcast.

slip % ping 140.252.13.63

PING 140.252.13.63 (140.252.13.63): 56 data bytes

64 bytes from 140.252.13.35: icmp_seqg=0 ttl=255 time=190 ms

64 bytes from 140.252.13.33: icmp_seq=0 ttl=254 time=280 ms (DUP!)
64 bytes from 140.252.13.34: icmp_seg=0 ttl=254 time=360 ms (DUP!)

64 bytes from 140.252.13.35: icmp seg=1 ttl=255 time=180 ms
64 bytes from 140.252.13.33: icmp_seg=1 ttl=254 time=270 ms (DUP!)
64 bytes from 140.252.13.34: icmp_seg=l ttl=254 time=360 ms (DUP!)

~9 type interrupt key to stop

Viptela, Inc. - Exhibit 1007
Page 194



Section 12.4 Multicasting 175

12.4

-—— 140.252.13.63 ping statistics ---
3 packets transmitted, 2 packets received, +4 duplicates, 33% packet loss
round-trip min/avg/max = 180/273/360 ms

We see that this does indeed work. We also see that the BSD ping program checks for
duplicate sequence numbers and prints DUP! when this occurs. It normally means a
packet was duplicated somewhere, but here we expect to see this, since we sent the
requests to a broadcast address.

We can also run this test from a host much farther away from the network to which
the broadcast is directed. If we run ping from the host vangogh.cs.berkeley.edu
(14 hops away from our network), it still works if the router sun is configured to for-
ward directed broadcasts. In this case the IP datagrams (carrying the ICMP echo
requests) are forwarded by every router in the path as a normal datagram. None of
them knows that it’s really a directed broadcast. The next to last router, netb, thinks
it’s for the host with an ID of 63, and forwards it to sun. It is the router sun that detects
that the destination IP address is really the broadcast address of an attached interface,
and turns the datagram into a link-layer broadcast on that network.

Broadcasting is a feature that should be used with great care. In many cases IP
multicasting will prove to be a better solution.

Multicasting
IP multicasting provides two services for an application.

1. Delivery to multiple destinations. There are many applications that deliver
information to multiple recipients: interactive conferencing and dissemination
of mail or news to multiple recipients, for example. Without multicasting these
types of services tend to use TCP today (delivering a separate copy to each des-
tination). Even with multicasting, some of these applications might continue to
use TCP for its reliability.

2. Solicitation of servers by clients. A diskless workstation, for example, needs to
locate a bootstrap server. Today this is provided using a broadcast (as we'll see
with BOOTP in Chapter 16), but a multicast solution would impose less over-
head on the hosts that don't provide the service.

In this section we’ll take a look at multicast addresses, and the next chapter looks at the
protocol used by multicasting hosts and routers (IGMP).

Multicast Group Addresses

Figure 12.2 shows the format of a class D I address.

28 bits
Class D ‘ 1 ‘ 1 ‘ 1 ‘ 0 ‘ multicast group ID

Figure 12.2 Format of a class D IP address.

Viptela, Inc. - Exhibit 1007
Page 195



176  Broadcasting and Multicasting Chapter 12

Unlike the other three classes of IP addresses (A, B, and C), which we showed in Fig-
ure 1.5, the 28 bits allocated for the multicast group ID have no further structure.

A multicast group address is the combination of the high-order 4 bits of 1110 and the
multicast group ID. These are normally written as dotted-decimal numbers and are in
the range 224.0.0.0 through 239.255.255.255.

The set of hosts listening to a particular IP multicast address is called a host group.
A host group can span multiple networks. Membership in a host group is
dynamic—hosts may join and leave host groups at will. There is no restriction on the
number of hosts in a group, and a host does not have to belong to a group to send a
message to that group.

Some multicast group addresses are assigned as well-known addresses by the
IANA (Internet Assigned Numbers Authority). These are called permanent host groups.
This is similar to the well-known TCP and UDP port numbers. Similarly, these well-
known multicast addresses are listed in the latest Assigned Numbers RFC. Notice that
it is the multicast address of the group that is permanent, not the membership of the
group.

For example, 224.0.0.1 means “all systems on this subnet,” and 224.0.0.2 means “all
routers on this subnet.” The multicast address 224.0.1.1 is for NTP, the Network Time
Protocol, 224.0.0.9 is for RIP-2 (Section 10.5), and 224.0.1.2 is for SGI’s (Silicon Graphics)
dogfight application.

Converting Multicast Group Addresses to Ethernet Addresses

The TANA owns an Ethernet address block, which in hexadecimal is 00: 00 : 5e. This is
the high-order 24 bits of the Ethernet address, meaning that this block includes
addresses in the range 00:00:5e:00:00:00 through 00:00:5e:£f:£f:££f. The
IANA allocates half of this block for multicast addresses. Given that the first byte of
any Ethernet address must be 01 to specify a multicast address, this means the Ethernet
addresses corresponding to IP multicasting are in the range 01:00:5e:00:00:00
through 01:00:5e:7£: ££: ££f.

Our notation here uses the Internet standard bit order, for a CSMA/CD or token bus network,
as the bits appear in memory. This is what most programmers and system administrators deal
with. The IEEE documentation uses the transmission order of the bits. The Assigned Num-
bers RFC gives additional details on the differences between these representations.

This allocation allows for 23 bits in the Ethernet address to correspond to the IP
multicast group ID. The mapping places the low-order 23 bits of the multicast group 1D
into these 23 bits of the Ethernet address. This is shown in Figure 12.3.

Since the upper 5 bits of the multicast group ID are ignored in this mapping, it is
not unique. Thirty-two different multicast group IDs map to each Ethernet address.
For example, the multicast addresses 224.128.64.32 (hex e0.80.40.20) and 224.0.64.32
(hexe0.00.40.20) both map into the Ethernet address 01:00:5e:00:40:20.

Since the mapping is not unique, it implies that the device driver or the IP module
in Figure 12.1 must perform filtering, since the interface card may receive multicast
frames in which the host is really not interested. Also, if the interface card doesn’t

Viptela, Inc. - Exhibit 1007
' Page 196



Section 12.4 Multicasting 177

these 5 bits in the multicast group ID are
not used to form the Ethernet address

Class DIP address: |1 110

| |

0 | 7 8 15 16 23 24 31
i
|

||1‘|‘|||||‘|||||||‘||||||1‘

L low-order 23 bits of multicast
r group ID copied to Ethernet address '}

oooooo0100000000‘01011110‘0 | ‘ 1 | ‘
48-bit Ethernet address

Figure 12.3 Mapping of a class D IP address into Ethernet multicast address.

provide adequate filtering of multicast frames, the device driver may have to receive all
multicast frames, and perform the filtering itself.

LAN interface cards tend to come in two varieties. One type performs multicast filtering
based on the hash value of the multicast hardware address, which means some unwanted
frames can always get through. The other type has a small, fixed number of multicast
addresses to listen for, meaning that when the host needs to receive more multicast addresses
than are supported, the interface must be put into a “multicast promiscuous” mode. Hence,
both types of interfaces still require that the device driver perform checking that the received
frame is really wanted.

Even if the interface performs perfect multicast filtering (based on the 48-bit hardware
address), since the mapping from a class D IP address to a 48-bit hardware address is not one-
to-one, filtering is still required.

Despite this imperfect address mapping and hardware filtering, multicasting is still better than
broadcasting.

Multicasting on a single physical network is simple. The sending process specifies a
destination IP address that is a multicast address, the device driver converts this to the
corresponding Ethernet address, and sends it. The receiving processes must notify their
IP layers that they want to receive datagrams destined for a given multicast address,
and the device driver must somehow enable reception of these multicast frames. This is
called “joining a multicast group.” (The reason we use the plural “receiving processes”
is because there are normally multiple receivers for a given multicast message, either on
the same host or on multiple hosts, which is why we're using multicasting in the first
place.) When a multicast datagram is received by a host, it must deliver a copy to all
the processes that belong to that multicast group. This is different from UDP where a
single process receives an incoming unicast UDP datagram. With multicasting it is pos-
sible for multiple processes on a given host to belong to the same multicast group.

But complications arise when we extend multicasting beyond a single physical net-
work and pass multicast packets through routers. A protocol is needed for multicast
routers to know if any hosts on a given physical network belong to a given multicast
group. This protocol is called the Infernet Group Management Protocol IGMP) and is the
topic of the next chapter.

Viptela, Inc. - Exhibit 1007
Page 197



178

Broadcasting and Multicasting _ Chapter 12

Multicasting on FDDI and Token Ring Networks

12.5

FDDI networks use the same mapping between the class D IP address and the 48-bit
FDDI address [Katz 1990]. Token ring networks normally use a different mapping,
because of limitations in most token ring controllers [Pusateri 1993].

Summary

Broadcasting is sending a packet to gl hosts on a network (usually a locally attached
network) and multicasting is sending a packet to a set of hosts on a network. Basic to
these two concepts is an understanding of the different types of filtering that occur
when a received frame passes up a protocol stack. Each layer can discard a received
packet for different reasons.

There are four types of broadcast addresses: limited, net-directed, subnet-directed,
and all-subnets-directed. The most common is subnet-directed. The limited broadcast
address is normally seen only when a system is bootstrapping.

Problems occur when trying to broadcast through routers, often because the router
may not know the subnet mask of the destination network. The results depend on
many factors: which type of broadcast address, configuration parameters, and so on.

A class D IP address is called a multicast group address. It is converted to an Ether-
net address by placing its lower 23 bits into a fixed Ethernet address. The mapping is
not unique, requiring additional filtering by one of the protocol modules.

Exercises

121 Does broadcasting increase the amount of network traffic?

12.2  Consider 50 hosts on an Ethernet: 20 running TCP/IP and 30 running some other protocol
suite. How are broadcasts from one protocol suite handled by hosts running the other
protocol suite?

12.3  You login to a Unix system that you've never used before and want to find the subnet-
directed broadcast address for all attached interfaces that support broadcasting. How can
you do this?

12.4 If we ping the broadcast address with a large packet size, as in

sun % ping 140.252.,13.63 1472

PING 140.252.13.63: 1472 data bytes

1480 bytes from sun (140.252.13.33): icmp seq=0. time=6. ms
1480 bytes from svrd (140.252.13.34): icmp_seq=0. time=84. ms
1480 bytes from bsdi (140.252.13.35): icmp_seq=0. time=128. ms

it works, but increasing the packet size by 1 byte gives us the following error:

sun % ping 140.252.13.63 1473
PING 140.252.13.63: 1473 data bytes
sendto: Message too long

What's going on?

12,5 Redo Exercise 10.6 assuming the eight RIP messages are multicast instead of broadcast
(assume RIP Version 2 is being used). What changes?

Viptela, Inc. - Exhibit 1007
- Page 198



13.1

13

IGMP: Internet Group
Management Profocol

Introduction

Section 12.4 provided an overview of IP multicasting and described how class D IP
addresses are mapped into Ethernet addresses. We briefly mentioned how multicasting
occurs on a single physical network, but said complications occur when multiple net-
works are involved and the multicast datagrams must pass through routers.

In this chapter we'll look at the Internet Group Management Protocol (IGMP), which is
used by hosts and routers that support multicasting. It lets all the systems on a physical
network know which hosts currently belong to which multicast groups. This informa-
tion is required by the multicast routers, so they know which multicast datagrams to
forward onto which interfaces. IGMP is defined in RFC 1112 [Deering 1989].

Like ICMP, IGMP is considered part of the IP layer. Also like ICMP, IGMP mes-
sages are transmitted in IP datagrams. Unlike other protocols that we’ve seen, IGMP
has a fixed-size message, with no optional data. Figure 13.1 shows the encapsulation of
an IGMP message within an IP datagram.

»47 IP datagram 4>{

P IGMP
header message
20 bytes 8 bytes

Figure 13.1 Encapsulation of an IGMP message within an IP datagram.

IGMP messages are specified in the IP datagram with a protocol value of 2.

179
Viptela, Inc. - Exhibit 1007
Page 199



180

IGMP: Internet Group Management Protocol Chapter 13

13.2

13.3

IGMP Message

Figure 13.2 shows the format of the 8-byte IGMP message.

0 34 78 15 16 31
4-bit 4-bit
IGMP IGMP (unused) 16-bit checksum
version (1) | type (1-2) 8 bytes
32-bit group address (class D IP address) i

Figure 13.2 Format of fields in IGMP message.

The IGMP version is 1. An IGMP type of 1 is a query sent by a multicast router, and 2 is a
response sent by a host. The checksum is calculated in the same manner as the ICMP
checksum.

The group address is a class D IP address. In a query the group address is set to 0,
and in a report it contains the group address being reported. We'll say more about it in
the next section when we see how IGMP operates.

IGMP Protocol

Joining a Multicast Group

Fundamental to multicasting is the concept of a process joining a multicast group on a
given interface on a host. (We use the term process to mean a program being executed
by the operating system.) Membership in a multicast group on a given interface is
dynamic—it changes over time as processes join and leave the group.

We imply here that a process must have a way of joining a multicast group on a
given interface. A process can also leave a multicast group that it previously joined.
These are required parts of any API on a host that supports multicasting. We use the
qualifier “interface” because membership in a group is associated with an interface. A
process can join the same group on multiple interfaces.

The release of IP multicasting for Berkeley Unix from Stanford University. details these changes
for the sockets API. These changes are also provided in Solaris 2.x and documented in the
ip(7) manual pages.
Implied here is that a host identifies a group by the group address and the interface.
A host must keep a table of all the groups that at least one process belongs to, and a ref-
erence count of the number of processes belonging to the group.

Viptela, Inc. - Exhibit 1007
Page 200



Section 13.3 ' IGMP Protocol 181

IGMP Reports and Queries

IGMP messages are used by multicast routers to keep track of group membership on
each of the router’s physically attached networks. The following rules apply.

1. A host sends an IGMP report when the first process joins a group. If multiple
processes on a given host join the same group, only one report is sent, the first
time a process joins that group. This report is sent out the same interface on
which the process joined the group.

2. A host does not send a report when processes leave a group, even when the last
process leaves a group. The host knows that there are no members in a given
group, so when it receives the next query (next step), it won’t report the group.

3. A multicast router sends an IGMP query at regular intervals to see if any hosts
still have processes belonging to any groups. The router must send one query
out each interface. The group address in the query is 0 since the router expects
one response from a host for every group that contains one or more members on
that host.

4. A host responds to an IGMP query by sending one IGMP report for each group
that still contains at least one process,

Using these queries and reports, a multicast router keeps a table of which of its inter-
faces have one or more hosts in a multicast group. When the router receives a multicast
datagram to forward, it forwards the datagram (using the corresponding multicast link-
layer address) only out the interfaces that still have hosts with processes belonging to
that group.

Figure 13.3 shows these two IGMP messages, reports sent by hosts, and queries sent
by routers. The router is asking each host to identify each group on that interface.

IGMP report, TTL =1, IGMP query, TTL =1,
IGMP group addr = group address - IGMP group addr =0
dest IP addr = group address dest IP addr = 224.0.0.1
src IP addr = host’s IP addr src IP addr = router’s IP addr
<_ _K _______________ _> <_ _______________ 1 - _”

multicast
router

Figure 13.3 IGMP reports and queries.

We talk about the TTL field later in this section.

Viptela, Inc. - Exhibit 1007
Page 201



182 IGMP: Internet Group Management Protocol Chapter 13

Implementation Details

There are many implementation details in this protocol that improve its efficiency. First,
when a host sends an initial IGMP report (when the first process joins a group), there’s
no guarantee that the report is delivered (since IP is used as the delivery service).
Another report is sent at a later time. This later time is chosen by the host to be a ran-
dom value between 0 and 10 seconds.

Next, when a host receives a query from a router it doesn't respond immediately,
but schedules the responses for later times. (We use the plural “responses” because the
host must send one report for each group that contains one or more members.) Since
multiple hosts can be sending a report for the same group, each schedules its response
using random delays. Also realize that all the hosts on a physical network receive all
the reports from other hosts in the same group, because the destination address of the
report in Figure 13.3 is the group’s address. This means that, if a host is scheduled to
send a report, but receives a copy of the same report from another host, the response
can be canceled. This is because a multicast router doesn’t care how many hosts belong
to the group—only whether at least one host belongs to the group. Indeed, a multicast
router doesn’t even care which host belongs to a group. It only needs to know that at
least one host belongs to a group on a given interface.

On a single physical network without any multicast routers, the only IGMP traffic is
the reports issued by the hosts that support IP multicasting, when the host joins a new

group.
Time-to-Live Field

In Figure 13.3 we noted that the TTL field of the reports and queries is set to 1. This
refers to the normal TTL field in the IP header. A multicast datagram with an initial
TTL of 0 is restricted to the same host. By default, multicast datagrams are sent with a
TTL of 1. This restricts the datagram to the same subnet. Higher TTLs can be for-
warded by multicast routers.

Recall from Section 6.2 that an ICMP error is never generated in response to a data-
gram destined to a multicast address. Multicast routers do not generate ICMP “time
exceeded” errors when the TTL reaches 0.

Normally user processes aren’t concerned with the outgoing TTL. One exception, however, is
the Traceroute program (Chapter 8), which is based on setting the TTL field. Since multicast-
ing applications must be able to set the outgoing TTL field, this implies that the programming
interface must provide this capability to user processes. l

By increasing the TTL an application can perform an expanding ring search for a par-
ticular server. The first multicast datagram is sent with a TTL of 1. If no response is
received, a TTL of 2 is tried, then 3, and so on. In this way the application locates the
closest server, in terms of hops.

The special range of addresses 224.0.0.0 through 224.0.0.255 is intended for applica-
tions that never need to multicast further than one hop. A multicast router should
never forward a datagram with one of these addresses as the destination, regardless of
the TTL.

Viptela, Inc. - Exhibit 1007
Page 202



Section 13.4 An Example 183

All-Hosts Group

13.4

In Figure 13.3 we also indicated that the router’s IGMP query is sent to the destination
IP address of 224.0.0.1. This is called the all-hosts group address. It refers to all the
multicast-capable hosts and routers on a physical network. Each host automatically
joins this multicast group on all multicast-capable interfaces, when the interface is ini-
tialized. Membership in this group is never reported.

An Example

Now that we’ve gone through some of the details of IP multicasting, let’s take a look at
the messages involved. We've added IP multicasting support to the host sun and will
use some test programs provided with the multicasting software to see what happens.

First we'll use a modified version of the netstat command that reports multicast
group membership for each interface. (We showed the standard netstat -ni output
for this host in Section 3.9.) In the following output we show the lines corresponding to
multicast groups in a bold font:

sun % netstat ~nia

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
le0 1500 140.252.13. 140.252.13.33 4370 0 4924 0 0
224.0.0.1

08:00:20:03:£6:42
01:00:5e:00:00:01

510 552 140.252.1 140.252.1.29 13587 0 15615 0 0
224.0.0.1

100 1536 127 127.0.0.1 1351 0 1351 0 0
224.0.0.1

The —n option prints IP addresses in numeric format (instead of trying to print them as
names), —i prints the interface statistics, and —a reports on all configured interfaces.

The second line of output for 1e0 (the Ethernet) shows that this interface belongs to
the multicast group 224.0.0.1 (“all hosts”), and two lines later the corresponding Ether-
net address is shown: 01:00:5e:00:00:01. This is what we expect for the Ethernet
address, given the mapping we described in Section 12.4. We also see that the other two
interfaces that support multicasting, the SLIP link s10 and the loopback interface 100,
also belong to the all-hosts group.

We must also show the IP routing table, as the normal routing table is used for
multicast datagrams. The bold entry shows that all datagrams for 224.0.0.0 are sent to
the Ethernet:

o

sun % netstat —-rn
Routing tables

Destination Gateway Flags Refent Use Interface
140.252.13.65 140.252.13.35 UGH 0 32 le0
127.0.0.1 127.0.0.1 UH 1 381 100
140.252.1.183 140.252.1.29 UH 0 6 s10
default 140.252.1.183 UG 0 328 s10
224,0.0.0 140.252.13.33 U o] 66 le0
140.252.13.32 140.252.13.33 U 8 5581 le0

Viptela, Inc. - Exhibit 1007
Page 203



184  IGMP: Internet Group Management Protocol Chapter 13

If you compare this routing table to the one shown in Section 9.2 for the router sun,
you’ll see that the multicast entry is the only change.

We now run a test program that lets us join a multicast group on an interface. (We
don’t show any output for our use of this test program.) We join the group 224.1.2.3 on
the Ethernet interface (140.252.13.33). Executing netstat shows that the kernel has
joined the group, and again the Ethernet address is what we expect. We show the
changes from the previous netstat output in a bold font:

sun % netstat -nia

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
le0 1500 140.252.13. 140.252.13.33 4374 0 4929 0 0
224.1.2.3
224.0.0.1

08:00:20:03:£6:42
01:00:5@:01:02:03
01:00:5e:00:00:01

s10 552 140.252.1 140.252.1.29 13862 0 15943 0 0
224.0.0.1

100 1536 127 127.0.0.1 1360 0 1360 0 0
224.0.0.1

We have shown the output again for the other two interfaces, s10 and 100, to reiterate
that the multicast group is joined only on one interface.
Figure 13.4 shows the tcpdump output corresponding to the process joining the
multicast group.
1 0.0 8:0:20:3:f6:42 1:0:5e:1:2:3 ip 60:
sun > 224.1.2.3: igmp report 224.1.2.3 [ttl 1]

2 6.94 (6.94) 8:0:20:3:£6:42 1:0:5e:1:2:3 ip 60:
sun > 224.1.2.3: igmp report 224.1.2.3 [ttl 1]

Figure 13.4 tcpdump output when a host joins a multicast group.

Line 1 occurs when the host joins the group. The next line is the delayed report that we
said is sent at some random time up to 10 seconds afterward.

We have shown the hardware addresses in these two lines, to verify that the Ether-
net destination address is the correct multicast address. We can also see that the source
IP address is the one corresponding to sun, and the destination IP address is the multi-
cast group address. We can also see that the reported address is that same multicast
group address. :

Finally, we note that the TTL is 1, as specified. tcpdump prints the TTL in square
brackets when its value is 0 or 1. This is because the TTL is normally greater than this.
With multicasting, however, we expect to see lots of IP datagrams with a TTL of 1.

Implied in this output is that a multicast router must receive all multicast datagrams
on all its interfaces. The router has no idea which multicast groups the hosts might join.

Viptela, Inc. - Exhibit 1007
Page 204



Section 13.4 An Example 185

Multicast Router Example

Let’s continue the previous example, but we’ll also start a multicast routing daemon on
the host sun. Our interest here is not the details of multicast routing protocols, but to
see the IGMP queries and reports that are exchanged. Even though the multicast rout-
ing daemon is running on the only host that supports multicasting (sun), all the queries
and reports are multicast on the Ethernet, so we can see them on any other system on
the Ethernet.

Before starting the routing daemon we joined another multicast group: 224.9.9.9.
Figure 13.5 shows the output.

1 0.0 sun > 224.0.0.4: igmp report 224.0.0.4
2 0.00 ( 0.00) sun > 224.0.0.1: igmp query

3 5.10 ( 5.10) sun > 224.9.9.9: igmp report 224.9.9.9
4 5.22 ( 0.12) sun > 224.0.0.1: igmp query

5 7.90 ( 2.68) sun > 224.1.2.3: igmp report 224.1.2.3
6 8.50 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4
7 11.70 { 3.20) sun > 224.9.9.9: igmp report 224.9.9.9
8 125.51 (113.81) sun > 224.0.0.1: igmp query

9 125.70 ( 0.19) sun > 224.9.9.9: igmp report 224.9.9.9
10 128.50 ( 2.80) sun > 224.1.2.3: igmp report 224.1.2.3
11 129.10 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4
12 247.82 (118.72) sun > 224.0.0.1: igmp query

13 248.09 ( 0.27) sun > 224.1.2.3: igmp report 224.1.2.3
14 248.69 ( 0.60) sun > 224.0.0.4: igmp report 224.0.0.4
15 255.29 ( 6.60) sun > 224.9.9.9: igmp report 224.9.9.9

Figure 13,5 tcpdump output while multicast routing daemon is running.

We have not included the Ethernet addresses in this output, because we’ve already veri-
fied that they are what we expect. We've also deleted the notation that the TTL equals
1, because again that’s what we expect.

Line 1 is output when the routing daemon starts. It sends a report that it has joined
the group 224.0.0.4. Multicast address 224.0.0.4 is a well-known address used by
DVMRP (Distance Vector Multicast Routing Protocol), the protocol currently used for
multicast routing. (DVMRP is defined in RFC 1075 [Waitzman, Partridge, and Deering
1988].)

When the daemon starts it also sends out a query (line 2). The destination IP
address of the query is 224.0.0.1 (all-hosts), as shown in Figure 13.3.

The first report (line 3) is received about 5 seconds later, for group 224.9.9.9. This is
the only report received before another query is sent (line 4). These two queries (lines 2
and 4) occur rapidly when the daemon starts up, as it tries to build its multicast routing
table.

Viptela, Inc. - Exhibit 1007
Page 205



186

IGMP: Internet Group Management Protocol Chapter 13

13.5

Lines 5, 6, and 7 are what we expect: one report from the host sun for each group to
which it belongs. Notice that the group 224.0.0.4 is reported, in addition to the two
groups that we explicitly joined, because as long as the routing daemon is running, it
belongs to this group.

The next query on line 8 occurs about 2 minutes after the previous query. Again it
elicits the three reports we expect (lines 9, 10, and 11). The reports are in a different
order this time, as expected, since the time between receiving the query and sending the
report should be randomized.

The final query that we show occurs about 2 minutes after the previous query, and
again we have the expected responses.

Summary

Multicasting is a way to send a message to multiple recipients. In many applications it
is better than broadcasting, since multicasting imposes less overhead on hosts that are
not participating in the communication. The simple host membership reporting proto-
col (IGMP) is the basic building block for multicasting.

Multicasting on a LAN or across closely connected LANs uses the techniques we’ve
described in this chapter. Since broadcasting is often restricted to a single LAN, multi-
casting could be used instead of broadcasting for many applications that use broadcast-
ing today. ‘

A problem that has not been completely solved, however, is multicasting across
wide area networks. [Deering and Cheriton 1990] propose extensions to common rout-
ing protocols to support multicasting. Section 9.13 of [Perlman 1992] discusses some of
the problems with multicasting across WANS.

[Casner and Deering 1992] describe the delivery of audio for an IETF meeting across
the Internet using multicasting and a virtual network called the MBONE (multicasting
backbone).

Exercises

131  We said that hosts schedule IGMP reports with random delays. How can the hosts on a
LAN try to ensure that no two hosts generate the same random delay?

13.2 In [Casner and Deering 1992] they mention that UDP lacks two features needed for send-
ing audio samples across the MBONE: detection of packet reordering and detection of
duplicate packets. How could you add these capabilities above UDP?

Viptela, Inc. - Exhibit 1007
Page 206



14.1

14

DNS: The Domain Name
System

Introduction

The Domain Name System, or DNS, is a distributed database that is used by TCP/IP
applications to map between hostnames and IP addresses, and to provide electronic
mail routing information. We use the term distributed because no single site on the Inter-
net knows all the information. Each site (university department, campus, company, or
department within a company, for example) maintains its own database of information
and runs a server program that other systems across the Internet (clients) can query.
The DNS provides the protocol that allows clients and servers to communicate with
each other.

From an application’s point of view, access to the DNS is through a resolver. On
Unix hosts the resolver is accessed primarily through two library functions,
gethostbyname(3) and gethostbyaddr(3), which are linked with the application
when the application is built. The first takes a hostname and returns an IP address, and
the second takes an IP address and looks up a hostname. The resolver contacts one or
more name servets to do the mapping.

In Figure 4.2 (p. 55) we showed that the resolver is normally part of the application.
It is not part of the operating system kernel as are the TCP/IP protocols. Another fun-
damental point from this figure is that an application must convert a hostname to an IP
address before it can ask TCP to open a connection or send a datagram using UDP. The
TCP /1P protocols within the kernel know nothing about the DNS.

In this chapter we'll take a look at how resolvers communicate with name servers
using the TCP/IP protocols (mainly UDP). We do not cover all the administrative
details of running a name server or all the options available with resolvers and servers.
These details can fill an entire book. (See [Albitz and Liu 1992] for all the details on the
care and feeding of the standard Unix resolver and name server.)

187
Viptela, Inc. - Exhibit 1007
Page 207



188  DNS: The Domain Name System : Chapter 14

RFC 1034 [Mockapetris 1987a] specifies the concepts and facilities provided by the
DNS, and REC 1035 [Mockapetris 1987b] details the implementation and specification.
The most commonly used implementation of the DNS, both resolver and name server, is
called BIND—the Berkeley Internet Name Domain server. The server is called named.
An analysis of the wide-area network traffic generated by the DNS is given in [Danzig,
Obraczka, and Kumar 1992].

14.2 DNS Basics

The DNS name space is hierarchical, similar to the Unix filesystem. Figure 14.1 shows
this hierarchical organization.

unnamed root —f- ’

top level
domains e o
United Arab Zimbabwe
second level Emirates
domains
@ @ \sm.tuc.noao.edu. cnri.reston.va.us. —¥ @
E [

6 ¥ 33.13.252.140.in-addr.arpa.

generic domains

L

| country domains |

g >

Figure 14.1 Hierarchical organization of the DNS.

Every node (circles in Figure 14.1) has a label of up to 63 characters. The root of the
tree is a special node with a null label. Any comparison of labels considers uppercase
and lowercase characters the same. The domain name of any node in the tree is the list of
labels, starting at that node, working up to the root, using a period (“dot”) to separate

Viptela, Inc. - Exhibit 1007
Page 208



Section 14.2 DNS Basics 189

the labels. (Note that this is different from the Unix filesystem, which forms a pathname
by starting at the top and going down the tree.) Every node in the tree must have a
unique domain name, but the same label can be used at different points in the tree.

A domain name that ends with a period is called an absolute domain name or a fully
qualified domain name (FQDN). An example is sun.tuc.noao.edu.. If the domain
name does not end with a period, it is assumed that the name needs to be completed.
How the name is completed depends on the DNS software being used. If the uncom-
pleted name consists of two or more labels, it might be considered to be complete; oth-
erwise a local addition might be added to the right of the name. For example, the name
sun might be completed by adding the local suffix . tuc.noao.edu..

The top-level domains are divided into three areas:

1. arpa is a special domain used for address-to-name mappings. (We describe this
in Section 14.5.)

2. The seven 3-character domains are called the generic domains. Some texts call
these the organizational domains.

3. All the 2-character domains are based on the country codes found in ISO 3166.
These are called the country domains, or the geographical domains.

Figure 14.2 lists the normal classification of the seven generic domains.

Domain Description ‘
com commercial organizations
edu educational institutions
gov other U.S. governmental organizations
int international organizations
mil U.S. military
net networks
org other organizations

Figure 14.2 The 3-character generic domains.

DNS folklore says that the 3-character generic domains are only for U.S. organiza-
tions, and the 2-character country domains for everyone else, but this is false. There are
many non-U.S. organizations in the generic domains, and many U.S. organizations in
the .us country domain. (RFC 1480 [Cooper and Postel 1993] describes the .us
domain in more detail.) The only generic domains that are restricted to the United
States are .gov and .mil. '

Many countries form second-level domains beneath their 2-character country code
similar to the generic domains: . ac.uk, for example, is for academic institutions in the
United Kingdom and . co . uk is for commercial organizations in the United Kingdom.

One important feature of the DNS that isn’t shown in figures such as Figure 14.1 is
the delegation of responsibility within the DNS. No single entity manages every label
in the tree. Instead, one entity (the NIC) maintains a portion of the tree (the top-level
domains) and delegates responsibility to others for specific zones.

Viptela, Inc. - Exhibit 1007
Page 209



190  DNS: The Domain Name System Chapter 14

A zone is a subtree of the DNS tree that is administered separately. A common zone
is a second-level domain, noao.edu, for example. Many second-level domains then
divide their zone into smaller zones. For example, a university might divide itself into
zones based on departments, and a company might divide itself into zones based on
branch offices or internal divisions.

If you are familiar with the Unix filesystem, notice that the division of the DNS tree into zones
is similar to the division of a logical Unix filesystem into physical disk partitions. Just as we
can’t tell from Figure 14.1 where the zones of authority lie, we can’t tell from a similar picture
of a Unix filesystem which directories are on which disk partitions.

Once the authority for a zone is delegated, it is up to the person responsible for the
zone to provide multiple name servers for that zone. Whenever a new system is installed
in a zone, the DNS administrator for the zone allocates a name and an IP address for the
new system and enters these into the name server’s database. This is where the need
for delegation becomes obvious. At a small university, for example, one person could
do this each time a new system was added, but in a large university the responsibility
would have to be delegated (probably by departments), since one person couldn’t keep
up with the work.

A name server is said to have authority for one zone or multiple zones. The person
responsible for a zone must provide a primary name server for that zone and one or more
secondary name servers. The primary and secondaries must be independent and redun-
dant servers so that availability of name service for the zone isn’t affected by a single
point of failure.

The main difference between a primary and secondary is that the primary loads all
the information for the zone from disk files, while the secondaries obtain all the infor-
mation from the primary. When a secondary obtains the information from its primary
we call this a zone transfer.

When a new host is added to a zone, the administrator adds the appropriate infor-
mation (name and IP address minimally) to a disk file on the system running the pri-
mary. The primary name server is then notified to reread its configuration files. The
secondaries query the primary on a regular basis (normally every 3 hours) and if the
primary contains newer data, the secondary obtains the new data using a zone transfer.

What does a name server do when it doesn’t contain the information requested? It
must contact another name server. (This is the distributed nature of the DNS.) Not every
name server, however, knows how to contact every other name server. Instead every
name server must know how to contact the root name servers. As of April 1993 there
were eight root servers and all the primary servers must know the IP address of each
root server. (These IP addresses are contained in the primary’s configuration files. The
primary servers must know the IP addresses of the root servers, not their DNS names.)
The root servers then know the name and location (i.e., the IP address) of each authori-
tative name server for all the second-level domains. This implies an iterative process:
the requesting name server must contact a root server. The root server tells the request-
ing server to contact another server, and so on. We'll look into this procedure with
some examples later in this chapter.

Viptela, Inc. - Exhibit 1007
Page 210



Section 14.3 DNS Message Format — 191

14.3

You can fetch the current list of root servers using anonymous FTP. Obtain the file
netinfo/root-servers.txt from either ftp.rs.internic.net ornic.ddn.mil.

A fundamental property of the DNS is caching. That is, when a name server
receives information about a mapping (say, the IP address of a hostname) it caches that
information so that a later query for the same mapping can use the cached result and
not result in additional queries to other servers. Section 14.7 shows an example of
caching.

DNS Message Format

There is one DNS message defined for both queries and responses. Figure 14.3 shows
the overall format of the message.

0 ' 15 16 31
identification flags
number of questions number of answer RRs 12 bytes
number of authority RRs numbei of additional RRs

/ questions f

; answers }
(variable number of resource records)

7 authority /
(variable number of resource records)

(variable number of resource records})

f additional information 7

Figure 143 General format of DNS queries and responses.

The message has a fixed 12-byte header followed by four variable-length fields.
The identification is set by the client and returned by the server. It lets the client
match responses to requests.

Viptela, Inc. - Exhibit 1007
Page 211



192

DNS: The Domain Name System Chapter 14

The 16-bit flags field is divided into numerous pieces, as shown in Figure 14.4.

\qu opcode ‘AA‘TC\IE\RA\ (zero) rcode J
1 1 1 3 I

Figure 14.4 flags field in the DNS header.

We'll start at the leftmost bit and describe each field.

QR s a 1-bit field: 0 means the message is a query, 1 means it’s a response.

opcode is a 4-bit field. The normal value is 0 (a standard query). Other values are
1 (an inverse query) and 2 (server status request).

AA is a 1-bit flag that means “authoritative answer.” The name server is author-
itative for the domain in the question section.

TC is a 1-bit field that means “truncated.” With UDP this means the total size of
the reply exceeded 512 bytes, and only the first 512 bytes of the reply was
returned.

RD is a 1-bit field that means “recursion desired.” This bit can be set in a query
and is then returned in the response, This flag tells the name server to handle
the query itself, called a recursive query. If the bit is not set, and the requested
name server doesn’t have an authoritative answer, the requested name server
returns a list of other name servers to contact for the answer. This is called an
iterative query. We'll see examples of both types of queries in later examples.

RA is a 1-bit field that means “recursion available.” This bit is set to 1 in the
response if the server supports recursion. We'll see in our examples that most
name servers provide recursion, except for some root servers.

There is a 3-bit field that must be 0.

rcode is a 4-bit field with the return code. The common values are 0 (no error)
and 3 (name error). A name error is returned only from an authoritative name
server and means the domain name specified in the query does not exist.

The next four 16-bit fields specify the number of entries in the four variable-length
fields that complete the record. For a query, the number of questions is normally 1 and
the other three counts are 0. Similarly, for a reply the number of answers is at least 1, and
the remaining two counts can be 0 or nonzero.

Question Portion of DNS Query Message

The format of each question in the question section is shown in Figure 14.5. There is nor-
mally just one question.

The query name is the name being looked up. It is a sequence of one or more labels.
Each Inbel begins with a 1-byte count that specifies the number of bytes that follow. The
name is terminated with a byte of 0, which is a label with a length of 0, which is the
label of the root. Each count byte must be in the range of 0 to 63, since labels are limited

Viptela, Inc. - Exhibit 1007
Page 212



Section 14.3 DNS Message Format 193

0 15 16 31

/ query name }

query type query class

Figure 14.5 Format of question portion of DNS query message.

to 63 bytes. (We'll see later in this section that a count byte with the two high-order bits
turned on, values 192 to 255, is used with a compression scheme.) Unlike many other
message formats that we’'ve encountered, this field is allowed to end on a boundary
other than a 32-bit boundary. No padding is used.

Figure 14.6 shows how the domain name gemini.tuc.noao.edu is stored.

(6fsleln[s]n]s]a]c]u]c]e][n]o]alo]3]ec d]u]o]

T o] ]

count count count count count

Figure 14.6 Representation of the domain name gemini.tuc.noao.edu.

Each question has a guery type and each response (called a resource record, which
we talk about below) has a fype. There are about 20 different values, some of which are
now obsolete. Figure 14.7 shows some of these values. The query type is a superset of
the type: two of the values we show can be used only in questions.

’7Name N:,J;?s;:lc Description type? {Z;/l;g
A 1 IP address e °
NS 2 name server ° °
CNAME 5 canonical name e °
PIR 12 pointer record ° °
HINFO 13 host info ° °
MX 15 mail exchange record ° o
AXFR 252 request for zone transfer e
*or ANY 255 request for all records °

Figure 14.7 type and query type values for DNS questions and responses.

The most common query type is an A type, which means an IP address is desired
for the query name. A PTR query requests the names corresponding to an IP address.
This is a pointer query that we describe in Section 14.5. We describe the other query
types in Section 14.6.

The query class is normally 1, meaning Internet address. (Some other non-IP values
are also supported at some locations.)

Viptela, Inc. - Exhibit 1007
Page 213



194  DNS: The Domain Name System Chapter 14

Resource Record Portion of DNS Response Message

The final three fields in the DNS message, the answers, authority, and additional informa-
tion fields, share a common format called a resource record or RR. Figure 14.8 shows the
format of a resource record. ’

0 15 16 31

domain name

type i class

time-to-live

resouice data length J

resource data {

Figure 14.8 Format of DNS resource record.

The domain name is the name to which the following resource data corresponds. It is
in the same format as we described earlier for the guery name field (Figure 14.6).

The type specifies one of the RR type codes. These are the same as the guery type val-
ues that we described earlier. The class is normally 1 for Internet data.

The time-to-live field is the number of seconds that the RR can be cached by the
client. RRs often have a TTL of 2 days.

The resource data length specifies the amount of resource data. The format of this data
depends on the type. For a type of 1 (an A record) the resource data is a 4-byte IP
address.

Now that we’ve described the basic format of the DNS queries and responses, we'll
see what is passed in the packets by watching some exchanges using t cpdump.

14.4 A Simple Example

Let’s start with a simple example to see the communication between a resolver and a
name server. We'll run the Telnet client on the host sun to the host gemini, connecting
to the daytime server:

Viptela, Inc. - Exhibit 1007
Page 214



Section 14.4 A Simple Example 195

o)

sun % telnet gemini daytime
Trying 140.252.1.11 .

e Sirst three lines of output are from Telnet client
Connected to gemini.tuc.noao.edu.

Escape character is ’'"]'.
Wed Mar 24 10:44:17 1993 this is the output from the daytime server
Connection closed by foreign host.  and this is from the Telnet client

For this example we direct the resolver on the host sun (where the Telnet client is run)
to use the name server on the host noao.edu (140.252.1.54). Figure 14.9 shows the
arrangement of the three systems.

name ., |daytime
noao.edu gemini
server server
1.54 \ 111 #
\ /
\ /
\ /
140.252.1
\ ’
\ /
\ /
1.29 \ ;(
Telnet
sun .
client

Figure 149 Systems being used for simple DNS example.

As we’ve mentioned before, the resolver is part of the client, and the resolver contacts a
name server to obtain the IP address before the TCP connection can be established
between Telnet and the daytime server.

In this figure we've omitted the detail that the connection between sun and the
140.252.1 Ethernet is really a SLIP link (see the figure on the inside front cover) because
that doesn’t affect the discussion. We will, however, run tcpdump on the SLIP link to
see the packets exchanged between the resolver and name server.

The file /etc/resolv.conf on the host sun tells the resolver what to do:

[

sun % cat /etc/resolv.conf
nameserver 140.252.1.54
domain tuc.noao.edu

The first line gives the IP address of the name server—the host noao.edu. Up to three
nameserver lines can be specified, to provide backup in case one is dewn or unreach-
able. The domain line specifies the default domain. If the name being looked up is not
a fully qualified domain name (it doesn’t end with a period) then the default domain
.tuc.noao.edu is appended to the name. This is why we can type telnet gemini
instead of telnet gemini.tuc.noao.edu.

Figure 14.10 shows the packet exchange between the resolver and name server.

Viptela, Inc. - Exhibit 1007
Page 215



196

DNS: The Domain Name System Chapter 14

1 0.0 140.252.,1.29.1447 > 140.252.1.54.53: 1+ A?
gemini.tuc.noao.edu. (37)

2 0.290820 (0.2908) 140.252.1.54.53 > 140.252.1.29.1447: 1* 2/0/0 A
140.252.1.11 (69)

Figure 14.10 tcpdump output for name server query of the hostname gemini.tuc.noao.edu.

We've instructed t cpdump not to print domain names for the source and destination IP
addresses of each IP datagram. Instead it prints140.252.1.29 for the client (the resolver)
and 140.252.1.54 for the name server. Port 1447 is the ephemeral port used by the client
and 53 is the well-known port for the name server. If tcpdump had tried to print names
instead of IP addresses, then it would have been contacting the same name server
(doing pointer queries), confusing the output.

Starting with line 1, the field after the colon (1+) means the identification field is 1,
and the plus sign means the RD flag (recursion desired) is set. We see that by default,
the resolver asks for recursion.

The next field, A?, means the query type is A (we want an IP address), and the
question mark indicates it’s a query (not a response). The query name is printed next:
gemini.tuc.noao.edu.. The resolver added the final period to the query name,
indicating that it’s an absolute domain name.

The length of user data in the UDP datagram is shown as 37 bytes: 12 bytes are the
fixed-size header (Figure 14.3); 21 bytes for the query name (Figure 14.6), and 4 bytes for
the query type and query class. The odd-length UDP datagram reiterates that there is
no padding in the DNS messages.

Line 2 in the tcpdump output is the response from the name server and 1# is the
identification field with the asterisk meaning the AA flag (authoritative answer) is set.
(We expect this server, the primary server for the noao . edu domain, to be authoritative
for names within its domain.)

The output 2/0/0 shows the number of resource records in the final three variable-
length fields in the response: 2 answer RRs, 0 authority RRs, and 0 additional RRs.
tcpdump only prints the first answer, which in this case has a type of A (IP address)
with a value of 140.252.1.11.

Why do we get two answers to our query? Because the host gemini is multi-
homed. Two IP addresses are returned. Indeed, another useful tool with the DNS is a
publicly available program named host. It lets us issue queries to a name server and
see what comes back. If we run this program we’ll see the two IP addresses for this
host:

[

sun % host gemini
gemini.tuc.noao.edu A 140.252.1.11
gemini.tuc.noao.edu A 140.252.3.54

The first answer in Figure 14.10 and the first line of output from the host command are
the IP address that shares the same subnet (140.252.1) as the requesting host. This is not
an accident. If the name server and the host issuing the query are on the same network
(or subnet), then BIND sorts the results so that addresses on common networks appear
first.

Viptela, Inc. - Exhibit 1007
Page 216



Section 14.4 A Simple Example 197

We can still access the host gemini using the other address, but it might be less efficient.
Using traceroute in this instance shows that the normal route from subnet 140.252.1 to
140.252.3 is not through the host gemini, but through another router that’s connected to both
networks. So in this case if we accessed gemini through the other IP address (140.252.3.54) all
the packets would require an additional hop. We return to this example and explore the rea-
son for the alternative route in Section 25.9, when we can use SNMP to look at a router’s rout-
ing table.

There are other programs that provide easy interactive access to the DNS. nslookup is sup-
plied with most implementations of the DNS. Chapter 10 of [Albitz and Liu 1992] provides a
detailed description of how to use this program. The dig program (“Domain Internet
Groper”) is another publicly available tool that queries DNS servers. doc (“Domain Obscenity
Control”) is a shell script that uses dig and diagnoses misbehaving domains by sending
queries to the appropriate DNS name servers, and performing simple analysis of the
responses. See Appendix F for details on how to obtain these programs.

The final detail to account for in this example is the size of the UDP data in the
reply: 69 bytes. We need to know two points to account for these bytes.

1. The question is returned in the reply.

2. There can be many repetitions of domain names in a reply, so a compression
scheme is used. Indeed, in our example, there are three occurrences of the
domain name gemini.tuc.noao.edu.

The compression scheme is simple. Anywhere the label portion of a domain
name can occur, the single count byte (which is between 0 and 63) has its two
high-order bits turned on instead. This means it is a 16-bit pointer and not an
8-bit count byte. The 14 bits that follow in the pointer specify an offset in the
DNS message of a label to continue with. (The offset of the first byte in the iden-
tification field is 0.) We purposely said that this pointer can occur wherever a
label can occur, not just where a complete domain name can-occur, since it’s pos-
sible for a pointer to form either a complete domain name or just the ending
portion of a name. (This is because the ending labels in the names from a given
domain tend to be identical.)

Figure 14.11 shows the format of the DNS reply, line 2 from Figure 14.10. We also show
the IP and UDP headers to reiterate that DNS messages are normally encapsulated in
UDP datagrams. We explicitly show the count bytes in the labels of the domain name in
the question. The two answers returned are the same, except for the different IP
addresses returned in each answer. In this example the pointer in each answer would
have a value of 12, the offset from the start of the DNS header of the complete domain
name.

The final point to note from this example is from the second line of output from the
Telnet command, which we repeat here:

sun % telnet gemini daytime we only type gemini
Trying 140.252.,1.11
Connected to gemini.tuc.noao.edu. but the Telnet client outputs FQDN

We typed just the hostname (gemini), not the FQDN, but the Telnet client output the
FQDN. What's happening is that the Telnet client looks up the name we type by calling

Viptela, Inc. - Exhibit 1007
Page 217



198

DNS: The Domain Name System Chapter 14

14.5

IP datagram

Y

v

UDP datagram

Ny

rL.-. DNS message

_\

jigd uDr DNS question answer #1 (RR)|answer #2 (RR)
header header| header (Figure 14.5) (Pigure 14.8) | (Figure 14.8)

20 bytes 8bytes 12 bytes 25 bytes 7 16 bytes ~ 16 bytes

domain name qtype|qclass ptr |type |class
(bgemini3tucdnoao3edul) @ | @ 12| @ | @

21 bytes 2 2 2 2 2 4 2 4

TTL

Figure 14.11 Format of DNS reply corresponding to line 2 of Figure 14.10.

the resolver (gethostbyname), which returns the IP addresses and the FQDN. Telnet
then prints the IP address that it’s trying to establish a TCP connection with, and when
the connection is established, it outputs the FQDN.

If there is a significant pause between typing the Telnet command and printing the
IP address, this delay is caused by the resolver contacting a name server to resolve the
name into an IP address. A pause between printing Trying and Connected to, how-
ever, is a delay caused by the establishment of the TCP connection between the client
and server, not the DNS.

Pointer Queries

A perpetual stumbling block in understanding the DNS is how pointer queries are
handled—given an IP address, return the name (or names) corresponding to that
address.

First return to Figure 14.1 (p. 188) and examine the arpa top-level domain, and the
in-addr domain beneath it. When an organization joins the Internet and obtains
authority for a portion of the DNS name space, such as noao.edu,, they also obtain
authority for a portion of the in~addr.arpa name space corresponding to their IP
address on the Internet. In the case of noao.edu it is the class B network ID 140.252.
The level of the DNS tree beneath in-addr.arpa must be the first byte of the IP
address (140 in this example), the next level is the next byte of the IP address (252), and
so on. But remember that names are written starting at the bottom of the DNS tree,
working upward. This means the DNS name for the host sun, with an IP address of
140.252.13.33,is 33.13.252.140. in-addr. arpa.

We have to write the 4 bytes of the IP address backward because authority is dele-
gated based on network IDs: the first byte of a class A address, the first and second

Viptela, Inc. - Exhibit 1007
Page 218



Section 14.5 Pointer Queries 199

bytes of a class B address, and the first, second, and third bytes of a class C address. The
first byte of the IP address must be immediately below the in-addr label, but FODNs
are written from the bottom of the tree up. If FQDNs were written from the top down,
then the DNS name for the IP address would be arpa.in-addr.140.252.13.33, but
the FQDN for the host would be edu.noao. tuc. sun.

If there was not a separate branch of the DNS tree for handling this address-to-
name translation, there would be no way to do the reverse translation other than start-
ing at the root of the tree and trying every top-level domain. This could literally take
days or weeks, given the current size of the Internet. The in-addr.arpa solution is a
clever one, although the reversed bytes of the IP address and the special domain are
confusing,.

Having to worry about the in—-addr.arpa domain and reversing the bytes of the
IP address affects us only if we're dealing directly with the DNS, using a program such
as host, or watching the packets with tcpdump. From an application’s point of view,
the normal resolver function (gethostbyaddr) takes an IP address and returns infor-
mation about the host. The reversal of the bytes and appending the domain
in-addr.arpa are done automatically by this resolver function.

Example

Let’s use the host program to do a pointer lookup and watch the packets with
tepdump. We'll use the same setup as in Figure 14.9, running the host program on the
host sun, and the name server on the host noao.edu. We specify the IP address of our
host svr4:

sun % host 140.252.13.34
Name: svrd.tuc.noao.edu
Address: 140.252.13,34

Since the only command-line argument is an IP address, the host program automati-
cally generates the pointer query. Figure 14.12 shows the t cpdump output.

1 0.0 140.252.1.29.1610 > 140.252.1.54.53: 1+ PTR?
34.13.252.140.in-addr.arpa. (44)

2 0.332288 (0.3323) 140.252.1.54.53 > 140.252.1.29.1610: 1* 1/0/0 PTR
svr4d.tuc.noao.edu. (75)

Figure 14.12 tcpdump output for a pointer query.

Line 1 shows that the identifier is 1, the recursion-desired flag is set (the plus sign), and
the query type is PTR. (Recall that the question mark means this is a query and not a
response.) The data size of 44 bytes is from the 12-byte DNS header, 28 bytes for the 7
labels in the domain name, and 4 bytes for the query type and query class.

The reply has the authoritative-answer bit set (the asterisk) and contains one
answer RR. The RR type is PTR and the resource data contains the domain name.

What is passed from the resolver to the name server for a pointer query is not a
32-bit IP address, but the domain name 34.13.252.140.in-addr.arpa.

Viptela, Inc. - Exhibit 1007
Page 219



200 DNS: The Domain Name System Chapter 14

Hostname Spoofing Check

When an IP datagram arrives at a host for a server, be it a UDP datagram or a TCP con-
nection request segment, all that's available to the server process is the client’s IP
address and port number (UDP or TCP). Some servers require the client’s IP address to
have a pointer record in the DNS. We'll see an example of this, using anonymous FTP
from an unknown IP address, in Section 27.3,

Other servers, such as the Rlogin server (Chapter 26), not only require that the
client’s IP address have a pointer record, but then ask the DNS for the IP addresses cor-
responding to the name returned in the PTR response, and require that one of the
returned addresses match the source IP address in the received datagram. This check is
because entries in the .rhosts file (Section 26.2) contain the hostname, not an IP
address, so the server wants to verify that the hostname really corresponds to the
incoming IP address.

Some vendors automatically put this check into their resolver routines, specifically
the function gethostbyaddr. This makes the check available to any program using
the resolver, instead of manually placing the check in each application.

We can see an example of this using the SunOS 4.1.3 resolver library. We have writ-
ten a simple program that performs a pointer query by calling the function
gethostbyaddr. We have also set our /etc/resolv.conf file to use the name
server on the host noao.edu, which is across the SLIP link from the host sun. Fig-
ure 14.13 shows the tcpdump output collected on the SLIP link when the function
gethostbyaddr is called to fetch the name corresponding to the IP address
140.252.1.29 (our host sun).

1 0.0 sun.1812 > noao.edu.domain: 1+ PTR?
29,1.252.140.in~addr.arpa. (43)

2 0.339091 (0.3391) noao.edu.domain > sun.1812: 1* 1/0/0 PTR
sun.tuc.noao.edu. (73)

3 0.344348 (0.0053) sun.1813 > noao.edu.domain: 2+ A?
sun.tuc.noao.edu. (33)

4 0,669022 (0.3247) noao.edu.domain > sun.1813: 2* 2/0/0 A

140.252.1.29 (69)

Figure 14,13 Calling resolver function to perform pointer query.

Line 1 is the expected pointer query, and line 2 is the expected response. But the
resolver function automatically sends an IP address query in line 3 for the name
returned in line 2. The response in line 4 contains two answer records, since the host
sun has two IP addresses. If one of the addresses does not match the argument to
gethostbyaddr, a message is sent to the system logging facility, and the function
returns an error to the application.

Viptela, Inc. - Exhibit 1007
Page 220



Section 14.6

Resource Records 201

14.6

Resource Records

We've seen a few different types of resource records (RRs) so far: an IP address has a
type of A, and PTR means a pointer query. We've also seen that RRs are what a name
server returns: answer RRs, authority RRs, and additional information RRs. There are
about 20 different types of resource records, some of which we’ll now describe. Also,
more RR types are being added over time.

A
PTR

CNAME

HINFO

MX

An A record defines an IP address. It is stored as a 32-bit binary value.

This is the pointer record used for pointer queries. The IP address is rep-
resented as a domain name (a sequence of labels) in the in-addr.arpa
domain. '

This stands for “canonical name.” It is represented as a domain name (a
sequence of labels). The domain name that has a canonical name is often
called an alins. These are used by some FTP sites to provide an easy to
remember alias for some other system.

For example, the gated server (mentioned in Section 10.3) is available
through anonymous FTP from the server gated.cornell.edu. But
there is no system named gated, this is an alias for some other system.
That other system is the canonical name for gated.cornell.edu:

sun % host -t cname gated.cornell.edu
gated.cornell.edu CNAME COMET.CIT.CORNELL.EDU

Here we use the -t option to specify one particular query type.

Host information: two arbitrary character strings specifying the CPU and
operating system. Not all sites provide HINFO records for all their sys-
tems, and the information provided may not be up to date.

sun % host -t hinfo sun
sun.tuc.noao.edu HINFO sSun-4/25 Sun4.1.3

Mail exchange records, which are used in the following scenarios: (1) A
site that is not connected to the Internet can get an Internet-connected
site to be its mail exchanger. The two sites then work out an alternative
way to exchange any mail that arrives, often using the UUCP protocol.
(2) MX records provide a way to deliver mail to an alternative host when
the destination host is not available. (3) MX records allow organizations
to provide virtual hosts that one can send mail to, such as
cs.university.edu, even if a host with that name doesn’t exist. (4)
Organizations with firewall gateways can use MX records to limit con-
nectivity to internal systems.

Viptela, Inc. - Exhibit 1007
Page 221



202  DNS: The Domain Name System Chapter 14

NS

Many sites that are not connected to the Internet have a UUCP link with
an Internet connected site such as UUNET. MX records are then pro-
vided so that electronic mail can be sent to the site using the standard
userlhost notation. For example, a fictitious domain foo.com might
have the following MX records:

sun % host -t mx foo.com
foo.com MX relayl.UU.NET
foo.com MX relay2 .UU.NET

MX records are used by mailers on hosts connected to the Internet. In
this example the other mailers are told “if you have mail to send to
user@foo.com, send the mail to relayl.uu.net or
relayZ2.uu.net.”

MX records have 16-bit integers assigned to them, called preference values.
If multiple MX records exist for a destination, they’re used in order, start-
ing with the smallest preference value.

Another example of MX records handles the case when a host is down or
unavailable, In that case the mailer uses the MX records only if it can’t
connect to the destination using TCP. In the case of the author’s primary
system, which is connected to the Internet by a SLIP connection, which is
down most of the time, we have:

sun % host —-tv mx sun

Query about sun for record types MX

Trying sun within tuc.noao.edu ...

Query done, 2 answers, authoritative status: no error
sun.tuc.noao.edu 86400 1IN MX 0 sun.tuc.noao.edu
sun.tuc.noao.edu 86400 IN MX 10 noao.edu

We also specified the -v option, to see the preference values. (This
option also causes other fields to be output.) The second field, 86400, is
the time-to-live value in seconds. This TTL is 24 hours (24 x 60 x 60). The
third column, IN, is the class (Internet). We see that direct delivery to the
host itself, the first MX record, has the lowest preference value of 0. If
that doesn’t work (i.e., the SLIP link is down), the next higher preference
is used (10) and delivery is attempted to the host noao.edu. If that
doesn’t work, the sender will time out and retry at a later time.

In Section 28.3 we show examples of SMTP mail delivery using MX
records.

Name server record. These specify the authoritative name server for a
domain. They are represented as domain names (a sequence of labels).
We'll see examples of these records in the next section.

These are the common types of RRs. We'll encounter many of them in later examples.

Viptela, Inc. - Exhibit 1007
Page 222



Section 14.7 Caching 203

14.7

Caching

To reduce the DNS traffic on the Internet, all name servers employ a cache. With the
standard Unix implementation, the cache is maintained in the server, not the resolver.
Since the resolver is part of each application, and applications come and go, putting the
cache into the program that lives the entire time the system is up (the name server)
makes sense. This makes the cache available to any applications that use the server.
Any other hosts at the site that use this name server also share the server’s cache.

In the scenario that we've used for our examples so far (Figure 14.9), we’ve run the
clients on the host sun accessing the name server across the SLIP link on the host
noao.edu. We'll change that now and run the name server on the host sun. In this
way if we monitor the DNS traffic on the SLIP link using tcpdump, we'll only see
queries that can’t be handled by the server out of its cache.

By default, the resolver looks for a name server on the local host (UDP port 53 or
TCP port 53). We delete the nameserver directive from our resolver file, leaving only
the domain directive:

)

sun % cat /etc/resolv.conf
domain tuc.noao.edu

The absence of a nameserver directive in this file causes the resolver to use the name
server on the local host.
We then use the host command to execute the following query:

)

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9

Figure 14.14 shows the t cpdump output for this query.

1 0.0 sun.tuc.noao.edu.domain > NS.NIC.DDN.MIL.domain:
2 A? ftp.uu.net. (28)

2 0.559285 ( 0.5593) NS.NIC.DDN.MIL.domain > sun.tuc.noao.edu.domain:
2- 0/5/5 (229)

3 0.564449 ( 0.0052) sun.tuc.nocao.edu.domain > ns.UU.NET.domain:
3+ A? ftp.uu.net. (28)

4 1.009476 ( 0.4450) ns.UU.NET.domain > sun.tuc.noao.edu.domain:
3* 1/0/0 A ftp .UU.NET (44)

Figure 14.14 tcpdump output for: host £tp.uu.net.

This time we've used a new option for tepdump. We collected all the data to or from UDP or
TCP ports 53 with the —w option. This saves the raw output in a file for later processing. This
prevents tcpdump from trying to call the resolver itself, to print all the names corresponding
to the IP addresses. After we ran our queries, we terminated tcpdump and reran it with the
-r option. This causes it to read the raw output file and generate its normal printed output
(which we show in Figure 14.14). This takes a few seconds, since tcpdump calls the resolver
itself.

Viptela, Inc. - Exhibit 1007
Page 223



204  DNS: The Domain Name System Chapter 14

The first thing to notice in our tcpdump output is that the identifiers are small inte-
gers (2 and 3). This is because we terminated the name server, and then restarted it, to
force the cache to be empty. When the name server starts up, it initializes the identifier
to 1.

When we type our query, looking for the IP address of the host ftp.uu.net, the
name server contacts one of the eight root servers, ns.nic.ddn.mil (line 1). This is
the normal A type query that we’ve seen before, but notice that the recursion-desired
flag is not specified. (A plus sign would have been printed after the identifier 2 if the
flag was set.) In our earlier examples we always saw the resolver set the recursion-
desired flag, but here we see that our name server doesn’t set the flag when it’s contact-
ing one of the root servers. This is because the root servers shouldn’t be asked to recur-
sively answer queries—they should be used only to find the addresses of other,
authoritative servers.

Line 2 shows that the response comes back with no answer RRs, five authority RRs,
and five additional information RRs. The minus sign following the identifier 2 means
the recursion-available (RA) flag was not set—this root server wouldn’t answer a recur-
sive query even if we asked it to.

Although tcpdump doesn’t print the 10 RRs that are returned, we can execute the
host command to see what's in the cache:

sun % host —-v ftp.uu.net

Query about ftp.uu.net for record types A

Trying ftp.uu.net ...

Query done, 1 answer, status: no error
The following answer is not authoritative:

ftp.uu.net 19109 IN A 192.48.96.9
Authoritative nameservers:

UU.NET 170308 1IN NS NS.UU.NET

UU.NET 170308 1IN NS UUNET.UU.NET

UU.NET 170308 1IN NS UUCP-GW-1.PA.DEC.COM
UU.NET 170308 1IN NS UUCP-GW-2.PA.DEC.COM
UU.NET 170308 1IN NS NS.EU.NET

Additional information:

NS.UU.NET 170347 1IN A 137.39.1.3
UUNET.UU.NET 170347 1IN A 192.48.96.2
UUCP-GW—1.PA.DEC.COM 170347 1IN A 16.1.0.18

UUCP-GW~2 .PA.DEC.CCOM 170347 1IN A 16.1.0.19

NS.EU.NET 170347 1IN A 192.16.202.11

This time we specified the —v option to see more than just the A record. This shows that
there are five authoritative name servers for the domain uu.net. The five RRs with
additional information that are returned by the root server contain the IP addresses of
these five name servers. This saves us from having to contact the root server again, to
look up the address of one of the servers. This is another implementation optimization
in the DNS.

The host command states that the answer is not authoritative. This is because the
answer was obtained from our name server’s cache, not by contacting an authoritative
server.

Returning to line 3 of Figure 14.14, our name server contacts the first of the authori-
tative servers (ns.uu.net) with the same question: What is the IP address of

Viptela, Inc. - Exhibit 1007
Page 224



Section 14.7 Caching 205

ftp.uu.net? This time our server sets the recursion-desired flag. The answer is
returned on line 4 as a response with one answer RR.
We then execute the host command again, asking for the same name:

[)

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9

This time there is no tcpdump output. This is what we expect, since the answer output
by host is returned from the server’s cache.

We execute the host command again, looking for the address of
ftp.ee.lbl.gov:

sun % host ftp.ee.lbl.gov
ftp.ee.lbl.gov CNAME = ee.lbl.gov
ee.lbl.gov A 128.3.112.20

Figure 14.15 shows the tcpdump output.

1 18.664971 (17.6555) sun.tuc.noao.edu.domain > c.nyser.net.domain:
4 A? ftp.ee.lbl.gov. (32)

2 19.429412 { 0.7644) c.nyser.net.domain > sun.tuc.noao.edu.domain:
4 0/4/4 (188)

3 19.432271 ( 0.0029) sun.tuc.noao.edu.domain > nsl.lbl.gov.domain:
5+ A? ftp.ee.lbl.gov. (32)

4 19.909242 ( 0.4770) nsl.lbl.gov.domain > sun.tuc.noao.edu.domain:
5% 2/0/0 CNAME ee.lbl.gov. (72)

Figure 14.15 tcpdump output for: host ftp.ee.1lbl.gov.

Line 1 shows that this time our server contacts another of the root servers (c.nyser.net). A
name server normally cycles through the various servers for a zone until round-trip estimates
are accumulated. The server with the smallest round-trip time is then used.

Since our server is contacting a root server, the recursion-desired flag is not set.
This root server does not clear the recursion-available flag, as we saw in line 2 in Fig-
ure 14.14. (Even so, a name server still should not ask a root server for a recursive
query)

In line 2 the response comes back with no answers, but four authority RRs and four
additional information RRs. As we can guess, the four authority RRs are the names of
the name servers for ftp.ee.lbl.gov, and the four other RRs contain the IP
addresses of these four servers.

Line 3 is the query of the name server nsl.1bl.gov (the first of the four name
servers returned in line 2). The recursion-desired flag is set.

The response in line 4 is different from previous responses. Two answer RRs are
returned and tcpdump says that the first one is a CNAME RR. The canonical name of
ftp.ee.lbl.govisee.lbl.gov.

This is a common usage of CNAME records. The FTP site for LBL always has a name begin-
ning with ftp, but it may move from one host to another over time. Users need only know
the name ftp.ee.1bl.gov and the DNS will replace this with its canonical name when refer-
enced.

Viptela, Inc. - Exhibit 1007
Page 225



206

DNS: The Domain Name System Chapter 14

14.8

14.9

Remember that when we ran host, it printed both the CNAME and the IP address
of the canonical name. This is because the response (line 4 in Figure 14.15) contained
two answer RRs. The first one is the CNAME and the second is the A record. If the A
record had not been returned with the CNAME, our server would have issued another
query, asking for the IP address of ee.lbl.gov. This is another implementation
optimization—both the CNAME and the A record of the canonical name are returned
in one response.

UDP or TCP

We've mentioned that the well-known port numbers for DNS name servers are UDP
port 53 and TCP port 53. This implies that the DNS supports both UDP and TCP. But
all the examples that we've watched with tcpdump have used UDP. When is each
protocol used and why?

When the resolver issues a query and the response comes back with the TC bit set
(“truncated”) it means the size of the response exceeded 512 bytes, so only the first 512
bytes were returned by the server. The resolver normally issues the request again, using
TCP. This allows more than 512 bytes to be returned. (Recall our discussion of the max-
imum UDP datagram size in Section 11.10.) Since TCP breaks up a stream of user data
into what it calls segments, it can transfer any amount of user data, using multiple
segments,

Also, when a secondary name server for a domain starts up it performs a zone
transfer from the primary name server for the domain. We also said that the secondary
queries the primary on a regular basis (often every 3 hours) to see if the primary has
had its tables updated, and if so, a zone transfer is performed. Zone transfers are done
using TCP, since there is much more data to transfer than a single query or response.

Since the DNS primarily uses UDP, both the resolver and the name server must per-
form their own timeout and retransmission. Also, unlike many other Internet applica-
tions that use UDP (TFTP, BOOTF, and SNMP), which operate mostly on local area
networks, DNS queries and responses often traverse wide area networks. The packet
loss rate and variability in round-trip times are normally higher on a WAN than a LAN,
increasing the importance of a good retransmission and timeout algorithm for DNS
clients.

Another Example

Let’s look at another example that ties together many of the DNS features that we've
described. We start an Rlogin client, connecting to an Rlogin server in some other
domain. Figure 14.16 shows the exchange of packets that takes place. The following 11
steps take place, assuming none of the information is already cached by the client or
server:

1. The client starts and calls its resolver function to convert the hostname that we
typed into an IP address. A query of type A is sent to a root server.

Viptela, Inc. - Exhibit 1007
' Page 226



Section 14.9

Another Example 207

10.

11.

Rlogin server’s
server | name server

root
name server

TCP connection

root
name server

)

Rlogin client’s
client name server

Figure 14.16 Summary of packets exchanged to start up Rlogin client and server.

The root server’s response contains the name servers for the server’s domain.

The client’s resolver reissues the query of type A to the server’s name server.
This query normally has the recursion-desired flag set.

The response comes back with the IP address of the server host.

The Rlogin client establishes a TCP connection with the Rlogin server. (Chap-
ter 18 provides all the details of this step.) Three packets are exchanged
between the client and server TCP modules.

The Rlogin server receives the connection from the client and calls its resolver
to obtain the name of the client host, given the IP address that the server
receives from its TCP. This is a PTR query issued to a root name server. This
root server can be different from the root server used by the client in step 1.

The root server’s response contains the name servers for the client’s
in-addr.arpa domain.

The server’s resolver reissues the PTR query to the client’s name server.
The PTR response contains the FQDN of the client host.

The server’s resolver issues a query of type A to the client’s name server, ask-
ing for the IP addresses corresponding to the name returned in the previous
step. This may be done automatically by the server’s gethostbyaddr func-
tion, as we described in Section 14.5, otherwise the Rlogin server does this step
explicitly. Also, the client’s name server is often the same as the client’s
in~addr.arpa name server, but this isn’t required.

The response from the client’s name server contains the A records for the client
host. The Rlogin server compares the A records with the IP address from the
client’s TCP connection request.

Caching can reduce the number of packets exchanged in this figure.

Viptela, Inc. - Exhibit 1007
Page 227



208  DNS: The Domain Name System Chapter 14

14.10 Summary

The DNS is an essential part of any host connected to the Internet, and widely used in
private internets also. The basic organization is a hierarchical tree that forms the DNS
name space.

Applications contact resolvers to convert a hostname to an IP address, and vice
versa. Resolvers then contact a local name server, and this server may contact one of the
root servers or other servers to fulfill the request.

All DNS queries and responses have the same message format. This message con-
tains questions and possibly answer resource records (RRs), authority RRs, and addi-
tional RRs. We saw numerous examples, showing the resolver configuration file and
some of the DNS optimizations: pointers to domain names (to reduce the size of mes-
sages), caching, the in-addr.arpa domain (to look up a name given an IP address),
and returning additional RRs (to save the requestor from issuing another query).

Exercises

14.1 Classify a DNS resolver and a DNS name server as either client, server, or both.
142 Account for all 75 bytes in the response in Figure 14.12,

14.3 In Section 12.3 we said that an application that accepts either a dotted-decimal IP address
or a hostname should assume the former, and if that fails, then assume a hostname. What
happens if the order of the tests is reversed?

14.4 Every UDP datagram has an associated length, A process that receives a UDP datagram is
told what its length is. When a resolver issues a query using TCP instead of UDP, since
TCP is a stream of bytes without any record markers, how does the application know how
much data is returned? Notice that there is no length field in the DNS header (Figure 14.3).
(Hint: Look at RFC 1035.)

145 We said that a name server must know the IP addresses of the root servers and that this
information is available via anonymous FTP, Unfortunately not all system administrators
update their DNS files whenever changes are made fo the list of root servers. (Changes do
occut to the list of root servers, but not frequently.) How do you think the DNS handles
this?

14.6  Fetch the file specified in Exercise 1.8 and determine who is responsible for maintaining
the root name servers. How frequently are the root servers updated?

14.7 What is a problem with maintaining the cache in the name server, and having a stateless
resolver?

14.8 In the discussion of Figure 14,10 we said that the name server sorts the A records so that
addresses on common networks appear first. Who should sort the A records, the name
server or the resolver?

Viptela, Inc. - Exhibit 1007
‘ Page 228



t

15.1

15.2

15

TFTP: Trivial File Transfer
Protocol

Introduction

TFTP is the Trivial File Transfer Protocol. It is intended to be used when bootstrapping
diskless systems (normally workstations or X terminals). Unlike the File Transfer Proto-
col (FTP), which we describe in Chapter 27 and which uses TCP, TFTP was designed to
use UDP, to make it simple and small. Implementations of TFTP (and its required UDP,
IP, and a device driver) can fit in read-only memory.

This chapter provides an overview of TFTP because we'll encounter it in the next
chapter with the Bootstrap Protocol. We also encountered TFTP in Figure 5.1 when we
bootstrapped the host sun from the network. It issued a TFTP request after obtaining
its IP address using RARP.

" REC 1350 [Sollins 1992] is the official specification of version 2 of TFTP. Chapter 12
of [Stevens 1990] provides a complete source code implementation of a TFTP client and
server, and describes some of the programming techniques used with TFTP.

Protocol

Each exchange between a client and server starts with the client asking the server to
either read a file for the client or write a file for the client. In the normal case of boot-
strapping a diskless system, the first request is a read request (RRQ). Figure 15.1 shows
the format of the five TFTP messages. (Opcodes 1 and 2 share the same format.)

The first 2 bytes of the TFTP message are an opcode. For a read request (RRQ) and
write request (WRQ) the filename specifies the file on the server that the client wants to
read from or write to. We specifically show that this filename is terminated by a byte of
0 in Figure 15.1. The mode is one of the ASCII strings netascii or octet (in any

209
Viptela, Inc. - Exhibit 1007
Page 229



210  TFTP: Trivial File Transfer Protocol Chapter 15

|[:= IP datagram >{
||4.- UDP datagram >I
}4— TFTP message |
opcode
heIaI:ler h[eJ;?iI;r (1=RRQ) filename 0 mode 0
(2=WRQ)
20 bytes 8 bytes | 2 bytes N bytes 1 Nbytes 1

| |
| i

opcode | block
(3=data) | number data
) bytes | 2bytes 0-512 bytes

| |
| |
! t
[ [
|

opcode | block
(4=ACK)| number

2 bytes

2 bytes

| 1
t [
[ [
| [

e1ror message 0
(5=error) | number &

opcode | error \

2bytes  2bytes N bytes 1

Figure 15,1 Format of the five TFTP messages.

combination of uppercase or lowercase), again terminated by a byte of 0. netascii
means the data are lines of ASCII text with each line terminated by the 2-character
sequence of a carriage return followed by a linefeed (called CR/LF). Both ends must
convert between this format and whatever the local host uses as a line delimiter. An
octet transfer treats the data as 8-bit bytes with no interpretation.

Each data packet contains a block number that is later used in an acknowledgment
packet. As an example, when reading a file the client sends a read request (RRQ) speci-
fying the filename and mode. If the file can be read by the client, the server responds
with a data packet with a block number of 1. The client sends an ACK of block number
1. The server responds with the next data packet, with a block number of 2. The client
sends an ACK of block number 2. This continues until the file is transferred. Each data
packet contains 512 bytes of data, except for the final packet, which contains 0-511
bytes of data. When the client receives a data packet with less than 512 bytes of data, it
knows it has received the final packet.

Viptela, Inc. - Exhibit 1007
. Page 230



Section 15.3 An Example 211

15.3

In the case of a write request (WRQ), the client sends the WRQ specifying the file-
name and mode. If the file can be written by the client, the server responds with an
ACK of block number 0. The client then sends the first 512 bytes of file with a block
number of 1. The server responds with an ACK of block number 1.

This type of data transmission is called a stop-and-wait protocol. It is found only in
simple protocols such as TFTP. We'll see in Section 20.3 that TCP provides a different
form of acknowledgment, which can provide higher throughput. TFTP is designed for
simplicity of implementation, not high throughput.

The final TFTP message type is the error message, with an opcode of 5. This is what
the server responds with if a read request or write request can’t be processed. Read and
write errors during file transmission also cause this message to be sent, and transmis-
sion is then terminated. The error niumber gives a numeric error code, followed by an
ASCII error message that might contain additional, operating system specific informa-
tion.

Since TFTP uses the unreliable UDP, it is up to TFTP to handle lost and duplicated
packets. Lost packets are detected with a timeout and retransmission implemented by
the sender. (Be aware of a potential problem called the “sorcerer’s apprentice syn-
drome” that can occur if both sides time out and retransmit. Section 12.2 of [Stevens
1990] shows how the problem can occur.) As with most UDP applications, there is no
checksum in the TFTP messages, which assumes any corruption of the data will be
caught by the UDP checksum (Section 11.3).

An Example

Let’s examine TFIP by watching the protocol in action. We'll run the TFTP client on the
host bsdi and fetch a text file from the host svr4:

bsdi % tftp svrd start the TFTP client
tftp> get testl.c fetch a file from the server
Received 962 bytes in 0.3 seconds
tftp> quit and terminate
bsdi % 1ls -1 testl.c how many bytes in the file we fetched?
—-rw-r—-r—-— 1 rstevens staff 914 Mar 20 11:41 testl.c
bsdi % we -1 testl.c and how many lines?
48 testl.c

The first point that catches our eye is that the file contains 914 bytes under Unix, but
TFTP transfers 962 bytes. Using the wc program we see that there are 48 lines in the file,
so the 48 Unix newline characters are expanded into 48 CR/LF pairs, since the TFTP
defaultis a netascii transfer.

Figure 15.2 shows the packet exchange that takes place.

Viptela, Inc. - Exhibit 1007
Page 231



212

TFTP: Trivial File Transfer Protocol Chapter 15

1 0.0 bsdi.1106 > svrd.tftp: 19 RRQ "testl.c"
2 0.287080 (0.2871) svr4.1077 > bsdi.1106: udp 516

3 0.291178 (0.0041) bsdi.1106 > svr4.1077: udp 4

4 0.,299446 (0.0083) svr4.1077 > bsdi.1106: udp 454

5 0.312320 (0.0129) bsdi.1106 > svrd.1077: udp 4

Figure 152 Packet exchange for TFTP of a file.

Line 1 shows the read request from the client to the server. Since the destination UDP
port is the TFTP well-known port (69), t cpdump interprets the TFTP packet and prints
RRQ and the name of the file. The length of the UDP data is printed as 19 bytes and is
accounted for as follows: 2 bytes for the opcode, 7 bytes for the filename, 1 byte of 0, 8
bytes for netascii, and another byte of 0.

The next packet is from the server (line 2) and contains 516 bytes: 2 bytes for the
opcode, 2 bytes for the block number, and 512 bytes of data. Line 3 is the acknowledg-
ment for this data: 2 bytes for the opcode and 2 bytes for the block number.

The final data packet (line 4) contains 450 bytes of data. The 512 bytes of data in
line 2 and this 450 bytes of data account for the 962 bytes of data output by the client.

Note that tcpdump doesn’t output any additional TFTIP protocol information for
lines 2-5, whereas it interpreted the TFTP message in line 1. This is because the
server’s port number changes between lines 1 and 2. The TFIP protocol requires that
the client send the first packet (the RRQ or WRQ) to the server’s well-known UDP port
(69). The server then allocates some other unused ephemeral port on the server’s host
(1077 in Figure 15.2), which is then used by the server for all further packet exchange
between this client and server. The client’s port number (1106 in this example) doesn’t
change. tcpdump has no idea that port 1077 on host svr4 is really a TFTP server.

The reason the server’s port number changes is so the server doesn't tie up the well-
known port for the amount of time required to transfer the file (which could be many
seconds or even minutes). Instead, the well-known port is left available for other TFTP
clients to send their requests to, while the current transfer is under way.

Recall from Figure 10.6 (p. 133) that when the RIP server had more than 512 bytes to
send to the client, both UDP datagrams came from the server’s well-known port. In
that example, even though the server had to write multiple datagrams to send all the
data back, the server did one write, followed by the next, both from its well-known
port. Here, with TFTP, the protocol is different since there is a longer term relationship
between the client and server (which we said could be seconds or minutes). If one
server process used the well-known port for the duration of the file transfer, it would
either have to refuse any further requests that arrived from other clients, or that one
server process would have to multiplex file transfers with multiple clients at the same
time, on the same port (69). The simplest solution is to have the server obtain a new
port after it receives the RRQ or WRQ. Naturally the client must detect this new port
when it receives the first data packet (line 2 in Figure 15.2) and then send all further
acknowledgments (lines 3 and 5) to that new port.

In Section 16.3 we'll see TFTP used when an X terminal is bootstrapped.

Viptela, Inc. - Exhibit 1007
" Page 232



Chapter 15 Exercises 213

15.4

156.5

Security

Notice in the TFTP packets (Figure 15.1) that there is no provision for a username or
password. This is a feature (i.e., “security hole”) of TFTP. Since TFTP was designed for
use during the bootstrap process it could be impossible to provide a username and
password.

This feature of TFTP was used by many crackers to obtain copies of a Unix pass-
word file and then try to guess passwords. To prevent this type of access, most TFTP
servers nowadays provide an option whereby only files in a specific directory (often
/tftpboot on Unix systems) can be accessed. This directory then contains only the
bootstrap files required by the diskless systems.

For additional security, the TFTP server on a Unix system normally sets its user ID
and group ID to values that should not be assigned to any real user. This allows access
only to files that have world-read or world-write permissions.

Summary

TFTP is a simple protocol designed to fit into read-only memory and be used only dux-
ing the bootstrap process of diskless systems. It uses only a few message formats and a
stop-and-wait protocol.

To allow multiple clients to bootstrap at the same time, a TFTP server needs to pro-
vide some form of concurrency. Because UDP does not provide a unique connection
between a client and server (as does TCP), the TFTP server provides concurrency by cre-
ating a new UDP port for each client. This allows different client input datagrams to be
demultiplexed by the server’s UDP module, based on destination port numbers, instead
of doing this in the server itself.

The TFTP protocol provides no security features. Most implementations count on
the system administrator of the TFTP server to restrict any client’s access to the files nec-
essary for bootstrapping only.

Chapter 27 covers the File Transfer Protocol (FTP), which is designed for general
purpose, high-throughput file transfer. :

Exercises

151 Read the Host Requirements RFC to see what a TFTP server should.do if it receives a
request and the destination IP address of the request is a broadcast address.

15.2 What do you think happens when the TFTP block number wraps around from 65535 to 0?
Does RFC 1350 say anything about this?

15.3 We said that the TFTP sender performs the timeout and retransmission to handle lost pack-
ets. How does this affect the use of TFTP when it’s being used as part of the bootstrap
process?

15.4 What is the limiting factor in the time required to transfer a file using TFTP?

Viptela, Inc. - Exhibit 1007
Page 233



16.1

16.2

16

BOOTP: Boofstrap Protocol

Introduction

In Chapter 5 we described how a diskless system, with no knowledge of its IP address,
can determine its IP address using RARP when it is bootstrapped. There are two prob-
lems with RARP: (1) the only thing returned is the IP address, and (2) since RARP uses a
link-layer broadcast, RARP requests are not forwarded by routers (necessitating an
RARP server on every physical network). This chapter describes an alternative method
for a diskless system to bootstrap itself, called the Bootstrap Protocol, or BOOTP.

BOOTP uses UDP and normally works in conjunction with TFTP (Chapter 15).
RFC 951 [Croft and Gilmore 1985] is the official specification for BOOTP with clarifica-
tions given in RFC 1542 [Wimer 1993].

BOOTP Packet Format

BOOTP requests and replies are encapsulated in UDP datagrams, as shown in Fig-
ure 16.1.

i

I@; IP datagram
}4— UDP datagram =J|
P UDP
header header BOOTP request/reply
20 bytes 8 bytes 300 bytes

Figure 16,1 Encapsulation of BOOTP requests and replies within a UDP datagram.

5
Viptela, Inc. - Exhibit 10(%'}
Page 234



216  BOOTP: Bootstrap Protocol Chapter 16

Figure 16.2 shows the format of the 300-byte BOOTP request and reply.

0 78 15 16 23 24 31
| Opcode hardware type hardware address hop count K
(1=request, 2=reply) (1 = Ethernet) length (6 for Ethernet) op ¢
transaction ID \
number of seconds { (unused) J
F client IP address
\ your IP address
server IP address
gateway IP address
300 bytes
! client hardware address (16 bytes) {
/ server hostname (64 bytes) /
T boot filename (128 bytes) Z
vendor-specific information (64 bytes)
N

Figure 16.2 Format of BOOTP request and reply.

Opcode is 1 for a request and 2 for a reply. The hardware type field is 1 for a 10
Mbits/sec Ethernet, the same value that is in the field of the same name in an ARP
request or reply (Figure 4.3). Similarly, the hardware address length is 6 bytes for an
Ethernet.

The hop count is set to 0 by the client, but can be used by a proxy server (described
in Section 16.5).

Viptela, Inc. - Exhibit 1007
Page 235



Section 16.2 BOOTP Packet Format 217

The transaction ID is a 32-bit integer set by the client and returned by the server.
This lets the client match a response with a request. The client should set this to a ran-
dom number for each request.

Number of seconds can be set by the client to the time since it started trying to boot-
strap. The servers can look at this value, and perhaps a secondary server for a client
won’t respond until the number of seconds has exceeded some value, implying that the
client’s primary server is down.

If the client already knows its IP address, it fills in the client IP address. Otherwise,
the client sets this to 0. In the latter case the server fills in your IP address with the
client’s IP address. The server IP address is filled in by the server. If a proxy server is
used (Section 16.5), that proxy server fills in its gateway IP address.

The client must set its client hardware address. Although this is the same value as in
the Ethernet header, by placing the field in the UDP datagram also, it is easily available
to any user process (e.g., a BOOTP server) that receives the datagram. It is normally
much harder (or impossible) for a process reading UDP datagrams to determine the
fields in the Ethernet header that carried the UDP datagram.

The server hostname is a null terminated string that is optionally filled in by the
server. The server can also fill in the boot filename with the fully qualified, null termi-
nated pathname of a file to bootstrap from.

The vendor-specific area is used for various extensions to BOOTP. Section 16.6
describes some of these extensions.

When a client is bootstrapping using BOOTP (an opcode of 1) the request is nor-
mally a link-layer broadcast and the destination IP address in the IP header is normally
255.255.255.255 (the limited broadcast, Section 12.2). The source IP address is often
0.0.0.0 since the client does not know its own IP address yet. Recall from Figure 3.9 that
0.0.0.0 is a valid source IP address when a system is bootstrapping itself.

Port Numbers

There are two well-known ports for BOOTP: 67 for the server and 68 for the client. This
means the client does not choose an unused ephemeral port, but uses 68 instead. The
reason two port numbers were chosen, instead of just one for the server, is that a
server’s reply can be (but normally isn’t) broadcast.

If the server’s reply were broadcast, and if the client were to choose an ephemeral
port number, these broadcasts would also be received by other applications on other
hosts that happen to be using the same ephemeral port number. Hence, it is considered
bad form to broadcast to a random (i.e., ephemeral) port number. h

If the client also used the server’s well-known port (67) as its port, then all servers
on the network are awakened to look at each broadcast reply. (If all the servers were
awakened, they would examine the opcode, see that it's a reply and not a request, and
go back to sleep.) Therefore the choice was made to have all clients use a single well-
known port that differs from the server’s well-known port.

If multiple clients are bootstrapping at the same time, and if the server broadcasts
the replies, each client sees the replies intended for the other clients. The clients can use
the transaction ID field in the BOOTP header to match replies with requests, or the
client can examine the returned client hardware address.

Viptela, Inc. - Exhibit 1007
Page 236



218

BOOTP: Bootstrap Protocol Chapter 16

16.3

An Example

Let’s look at an example of BOOTP when an X terminal is bootstrapped. Figure 16.3
shows the tcpdump output. (The client’s name is proteus and the server’s name is
mercury. This tcpdump output was obtained on a different network from the one
we’ve been using for all the other examples in the text.)

1 0.0 0.0.0.0.68 > 255.255.255.255.bootp:
secs:100 ether 0:0:a7:0:62:7c
2 0.355446 (0.3554) mercury.bootp > proteus.68: secs:100 Y:proteus

S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r"

3 0.355447 (0.0000) arp who-has proteus tell 0.0.0.0
4 0.851508 (0.4961) arp who-has proteus tell 0.0.0.0
5 1.371070 (0.5196) arp who—has proteus tell proteus
6 1.863226 (0.4922) proteus.68 > 255.255,255.255.bootp:

secs:100 ether 0:0:a7:0:62:7c

7 1.871038 (0.0078) mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9xr"

8 3.871038 (2.0000) proteus.68 > 255.255,255,.255.bootp:
secs:100 ether 0:0:a7:0:62:7c

9 3.878850 (0.0078) mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r"

10 5.925786 (2.0469) arp who-has mercury tell proteus
11 5.929692 (0.0039) arp reply mercury is-at 8:0:2b:28:eb:1d
12 5.929694 (0.0000) proteus.tftp > mercury.tftp: 37 RRQ

"/local/var/bootfiles/Xncdl9r"
13 5.996094 (0.0664) mercury.2352 > proteus.tftp: 516 DATA block 1
14 6.000000 (0.0039) proteus.tftp > mercury.2352: 4 ACK

many lines deleted here

15 14.980472 (8.9805) mercury.2352 > proteus.tftp: 516 DATA block 2463
16 14.984376 (0.0039) proteus.tftp > mercury.2352: 4 ACK
17 14.984377 (0.0000) mercury.2352 > proteus.tftp: 228 DATA block 2464
18 14.984378 (0.0000) proteus.tftp > mercury.2352: 4 ACK

Figure 16.3 Example of BOOTP being used to bootstrap an X terminal.

In line 1 we see the client’s request from 0.0.0.0.68, destined for 255.255.255.255.67.
The only fields the client has filled in are the number of seconds and its Ethernet
address. We'll see that this client always sets the number of seconds to 100. The hop
count and transaction ID are both 0 since they are not output by tcpdump. (A transac-
tion ID of 0 means the client ignores the field, since it would set this field to a random
number if it was going to verify the returned value in the response.)

Line 2 is the reply from the server. The fields filled in by the server are the client’s
IP address (which tcpdump prints as the name proteus), the server’s IP address
(printed as the name mercury), the IP address of a gateway (printed as the name
mercury), and the name of a boot file.

Viptela, Inc. - Exhibit 1007
Page 237



Section 16.4 BOOTP Server Design 219

16.4

After receiving the BOOTP reply, the client immediately issues an ARP request to
see if anyone else on the network has its IP address. The name proteus following
who-has corresponds to the target IP address (Figure 4.3), and the sender’s IP address
is set to 0.0.0.0. It sends another identical ARP request 0.5 second later, and another one
0.5 second after that. In the third ARP request (line 5) it changes the sender’s IP address
to be its own IP address. This is a gratuitous ARP request (Section 4.7).

Line 6 shows that the client waits another 0.5 second and broadcasts another
BOOTP request. The only difference between this request and line 1 is that now the
client puts its own IP address in the IP header. It receives the same reply from the same
server (line 7). The client waits another 2 seconds and broadcasts yet another BOOTP
request (line 8) and receives the same reply from the same server.

The client then waits another 2 seconds and sends an ARP request for its server
mercury (line 10). The ARP reply is received and the client immediately issues a TFTP
read request for its boot file (line 12). What follows are 2464 TFTP data packets and
acknowledgments. The amount of data transferred is 512 %2463 +224 = 1,261,280
bytes. This loads the operating system into the X terminal. We have deleted most of the
TFTP lines from Figure 16.3.

One thing to notice, when comparing this TFTP exchange with Figure 15.2, is that
here the client uses the TFTP well-known port (69) for the entire transfer. Since one of
the two partners is using port 69, t cpdump knows that the packets are TFTP messages,
so it is able to interpret each packet using the TFTP protocol. This is why Figure 16.3
indicates which packets contain data, which contain acknowledgments, and what the
block number is for each packet. We didn’t get this additional information in Fig-
ure 15.2 because neither end was using TFTP’s well-known port for the data transfer.
Normally the TFTP client cannot use TFTP’s well-known port, since that port is used by
the server on a multiuser system. But here the system is being bootstrapped, so a TFTP
server is not provided, allowing the client to use the port for the duration of the transfer.
This also implies that the TFTP server on mercury doesn’t care what the client’s port
number is—it sends the data to the client’s port, whatever that happens to be.

From Figure 16.3 we see that 1,261,280 bytes are transferred in 9 seconds. This is a
rate of about 140,000 bytes per second. While this is slower than most FIP file transfers
across an Ethernet, it is not that bad for a simple stop-and-wait protocol such as TFTP.

What follows as this X terminal is bootstrapped are additional TFTP transfers of the
terminal’s font files, some DNS name server queries, and then the initialization of the X
protocol. The total time in Figure 16.3 was almost 15 seconds, and another 6 seconds is
taken for the remaining steps. This gives a total of 21 seconds to bootstrap the diskless
X terminal.

BOOTP Server Design

The BOOTP client is normally provided in read-only memory on the diskless system. It
is interesting to see how the server is normally implemented.

First, the server reads UDP datagrams from its well-known port (67). Nothing spe-
cial is required. This differs from an RARP server (Section 5.4), which we said had to
read Ethernet frames with a type field of “RARP request.” The BOOTP protocol also

Viptela, Inc. - Exhibit 1007
Page 238



220

BOOTP: Bootstrap Protocol Chapter 16

16.5

made it easy for the server to obtain the client’s hardware address, by placing it into the
BOOTP packet (Figure 16.2).

An interesting problem arises: how can the server send a response directly back to
the client? The response is a UDP datagram, and the server knows the client’s IP
address (probably read from a configuration file on the server). But if the BOOTP server
sends a UDP datagram to that IP address (the normal way UDP output is handled), the
server’s host will probably issue an ARP request for that IP address. But the client can’t
respond to the ARP request since it doesn’t know its IP address yet! (This is called the
“chicken and egg” issue in RFC 951.)

There are two solutions. The first, commonly used by Unix servers, is for the server
to issue an 1oct1(2) request to the kernel, to place an entry into the ARP cache for this
client. (This is what the arp -s command does, Section 4.8.) The server can do this
since it knows the client’s hardware address and IP address. This means that when the
server sends the UDP datagram (the BOOTP reply), the server’s ARP module will find
the client’s I address in the ARP cache.

An alternative solution is for the server to broadcast the BOOTP reply, instead of
sending it directly to the client. Since reducing the number of broadcasts on a network
is always desirable, this solution should be used only if the server cannot make an entry
into its ARP cache. Normally it requires superuser permission to make an entry into the -
ARP cache, requiring a broadcast reply if the server is nonprivileged.

BOOTP Through a Router

We said in Section 5.4 that one of the drawbacks of RARP is that it uses a link-layer
broadcast, which is normally not forwarded by a router. This required an RARP server
on each physical network. BOOTP can be used through a router, if supported by the
router. (Most major router vendors do support this feature.)

This is mainly intended for diskless routers, because if a multiuser system with a
disk is used as a router, it can probably run a BOOTP server itself. Alternatively, the
common Unix BOOTP server (Appendix F) supports this relay mode, but again, if you
can run a BOOTP server on the physical network, there’s normally no need to forward
the requests to yet another server on another network.

What happens is that the router (also called the “BOOTP relay agent”) listens for
BOOTP requests on the server’s well-known port (67). When a request is received, the
relay agent places its IP address into the gateway IP address field in the BOOTP request,
and sends the request to the real BOOTP server. (The address placed by the relay agent
into the gateway field is the IP address of the interface on which the request was
received.) The relay agent also increments the hops field by one. (This is to prevent
infinite loops in case the request is reforwarded. RFC 951 mentions that the request
should probably be thrown away if the hop count reaches 3.) Since the outgoing
request is a unicast datagram (as opposed to the original client request that was broad-
cast), it can follow any route to the real BOOTP server, passing through other routers.
The real server gets the request, forms the BOOTP reply, and sends it back to the relay
agent, not the client. The real server knows that the request has been forwarded, since
the gateway field in the request is nonzero. The relay agent receives the reply and sends
it to the client.

Viptela, Inc. - Exhibit 1007
Page 239



Section 16.6 Vendor-Specific Information 221

16.6 Vendor-Specific Information

In Figure 16.2 we showed a 64-byte vendor-specific area. RFC 1533 [Alexander and
Droms 1993] defines the format of this area. This area contains optional information for
the server to return to the client.

If information is provided, the first 4 bytes of this area are set to the IP address
99.130.83.99. This is called the magic cookie and means there is information in the area.

The rest of this area is a list of items. Each item begins with a 1-byte tag field. Two
of the items consist of just the tag field: a tag of 0 is a pad byte (to force following items
to preferred byte boundaries), and a tag of 255 marks the end of the items. Any bytes
remaining in this area after the first end byte should be set to pad bytes (0).

Other than these two 1-byte items, the remaining items consist of a single length
byte, followed by the information. Figure 16.4 shows the format of some of the items in
the vendor-specific area.

]

Pad: tag=0

1 byte
Subnet mask: tag=1 len=4 subnet mask

lbyte  1byte 4 bytes
Time offset: tag=2 len=4 time

1byte  1byte 4 bytes

—\
IP address IP address

Gateway: tag=8 | len=N of preferred gateway e of gateway

1byte  1byte 4 bytes ™~ 4 bytes

i—:: N bytes :l‘

14 other items with tags 4-17

End: tag=255
1 byte
Figure 16.4 Format of some of the items in the vendor-specific area.
The subnet mask and time value are really fixed-length items because their values

always occupy 4 bytes. The time offset is the number of seconds since midnight Jan-
uary 1, 1900, UTC.

Viptela, Inc. - Exhibit 1007
Page 240



222

BOOTP: Bootstrap Protocol Chapter 16

16.7

The gateway item is an example of a variable-length item. The length is always a
multiple of 4, and the values are the 32-bit IP addresses of one or more gateways
(routers) for the client to use. The first one returned must be the preferred gateway.

There are 14 other items defined in RFC 1533. Probably the most important is the IP
address of a DNS name server, with a tag value of 6. Other items return the IP address
of a printer server, the IP address of a time server, and so on. Refer to the RFC for all the
details.

Returning to our example in Figure 16.3, we never saw an ICMP address mask
request (Section 6.3) that would have been broadcast by the client to find its subnet
mask. Although it wasn’t output by t cpdump, we can probably assume that the client’s
subnet mask was returned in the vendor-specific area of the BOOTP reply.

The Host Requirements RFC recommends that a system using BOOTP obtain its subnet mask
using BOOTF, not ICMP.

The size of the vendor-specific area is limited to 64 bytes. This is a constraint for
some applications. A new protocol named DHCP (Dynamic Host Configuration
Protocol) is built on, but replaces, BOOTP. DHCP extends this area to 312 bytes and is
defined in RFC 1541 [Droms 1993].

Summary

BOOTP uses UDP and is intended as an alternative to RARP for bootstrapping a disk-
less system to find its IP address. BOOTP can also return additional information, such
as the IP address of a router, the client’s subnet mask, and the IP address of a name
server.

Since BOOTP is used in the bootstrap process, a diskless system needs the following
protocols implemented in read-only memory: BOOTP, TFTP, UDP, IP, and a device
driver for the local network.

The implementation of a BOOTP server is easier than an RARP server, since BOOTP
requests and replies are in UDP datagrams, not special link-layer frames. A router can
also serve as a proxy agent for a real BOOTP server, forwarding client requests to the
real server on a different network.

Exercises

16.1 We've said that one advantage of BOOTP over RARP is that BOOTP can work through
routers, whereas RARP, which is a link-layer broadcast, cannot. Yet in Section 16.5 we had
to define special ways for BOOTP to work through a router. What would happen if a capa-
bility were added to routers allowing them to forward RARP requests?

16.2  We said that a BOOTP client must use the transaction ID to match responses with requests,
in case there are multiple clients bootstrapping at the same time from a server that broad-
casts replies. But in Figure 16.3 the transaction ID is 0, implying that this client ignores the
transaction ID. How do you think this client matches the responses with its requests?

Viptela, Inc. - Exhibit 1007
Page 241



17.1

17.2

1/

TCP: Transmission Confirol
Protocol

Introduction

In this chapter we provide a description of the services provided by TCP for the applica-
tion layer. We also look at the fields in the TCP header. In the chapters that follow we
examine all of these header fields in more detail, as we see how TCP operates.

Our description of TCP starts in this chapter and continues in the next seven chap-
ters. Chapter 18 describes how a TCP connection is established and terminated, and
Chapters 19 and 20 look at the normal transfer of data, both for interactive use (remote
login) and bulk data (file transfer). Chapter 21 provides the details of TCP’s timeout
and retransmission, followed by two other TCP timers in Chapters 22 and 23. Finally
Chapter 24 takes a look at newer TCP features and TCP performance.

The original specification for TCP is RFC 793 [Postel 1981c], although some errors in
that RFC are corrected in the Host Requirements RFC.

TCP Services

Even though TCP and UDP use the same network layer (IP), TCP provides a totally dif-
ferent service to the application layer than UDP does. TCP provides a connection-
oriented, reliable, byte stream service.

The term connection-oriented means the two applications using TCP (normally con-
sidered a client and a server) must establish a TCP connection with each other before
they can exchange data. The typical analogy is dialing a telephone number, waiting for
the other party to answer the phone and say “hello,” and then saying who’s calling. In
Chapter 18 we look at how a connection is established, and disconnected some time
later when either end is done.

Viptela, Inc. - Exhibit 10%)27
Page 242



224  TCP: Transmission Control Protocol Chapter 17

There are exactly two end points communicating with each other on a TCP connec-
tion. Concepts that we talked about in Chapter 12, broadcasting and multicasting,
aren’t applicable to TCP.

TCP provides reliability by doing the following:

The application data is broken into what TCP considers the best sized chunks to
send. This is totally different from UDP, where each. write by the application
generates a UDP datagram of that size. The unit of information passed by TCP
to IP is called a segment. (See Figure 1.7, p. 10.) In Section 18.4 we'll see how
TCP decides what this segment size is.

When TCP sends a segment it maintains a timer, waiting for the other end to
acknowledge reception of the segment. If an acknowledgment isn’t received in
time, the segment is retransmitted. In Chapter 21 we'll look at TCP’s adaptive
timeout and retransmission strategy. '

When TCP receives data from the other end of the connection, it sends an
acknowledgment. This acknowledgment is not sent immediately, but normally
delayed a fraction of a second, as we discuss in Section 19.3.

TCP maintains a checksum on its header and data. This is an end-to-end check-
sum whose purpose is to detect any modification of the data in transit. If a seg-
ment arrives with an invalid checksum, TCP discards it and doesn’t
acknowledge receiving it. (It expects the sender to time out and retransmit.)

Since TCP segments are transmitted as IP datagrams, and since IP datagrams
can arrive out of order, TCP segments can arrive out of order. A receiving TCP
resequences the data if necessary, passing the received data in the correct order
to the application.

Since IP datagrams can get duplicated, a receiving TCP must discard duplicate
data.

TCP also provides flow control. Each end of a TCP connection has a finite
amount of buffer space. A receiving TCP only allows the other end to send as
much data as the receiver has buffers for. This prevents a fast host from taking
all the buffers on a slower host.

A stream of 8-bit bytes is exchanged across the TCP connection between the two
applications. There are no record markers automatically inserted by TCP. This is what
we called a byte stream service. If the application on one end writes 10 bytes, followed by
a write of 20 bytes, followed by a write of 50 bytes, the application at the other end of
the connection cannot tell what size the individual writes were. The other end may
read the 80 bytes in four reads of 20 bytes at a time. One end puts a stream of bytes into
TCP and the same, identical stream of bytes appears at the other end.

Also, TCP does not interpret the contents of the bytes at all. TCP has no idea if the
data bytes being exchanged are binary data, ASCII characters, EBCDIC characters, or
whatever. The interpretation of this byte stream is up to the applications on each end of
the connection.

Viptela, Inc. - Exhibit 1007
Page 243



Section 17.3 TCP Header 225

This treatment of the byte stream by TCP is similar to the treatment of a file by the Unix oper-
ating system. The Unix kernel does no interpretation whatsoever of the bytes that an applica-
tion reads or write—that is up to the applications. There is no distinction to the Unix kernel
between a binary file or a file containing lines of text.

17.3 TCP Header

Recall that TCP data is encapsulated in an IP datagram, as shown in Figure 17.1.

}« IP datagram =—I
}qh TCP segment 45»‘
P TCP
header header TCP data
20 bytes 20 bytes

Figure 17.1 Encapsulation of TCP data in an IP datagram.

Figure 17.2 shows the format of the TCP header. Its normal size is 20 bytes, unless
options are present,

0 15 16 31
A
16-bit source port number 16-bit destination port number
32-bit sequence number
32-bit acknowledgment number 20 bytes
. . U[A[P[R[S[F
o header rfgebri‘t’se)d R|C|S|s|Y|1 16-bit window size
e G|K[H|T|N|N
16-bit TCP checksum 16-bit urgent pointer
v
/ options (if any) {
/ data (if any)

Figure 17.2 TCP header.

Viptela, Inc. - Exhibit 1007
Page 244



226 TCP: Transmission Control Protocol Chapter 17

Each TCP segment contains the source and destination port number to identify the
sending and receiving application. These two values, along with the source and desti-
nation IP addresses in the IP header, uniquely identify each connection.

The combination of an IP address and a port number is sometimes called a socket.
This term appeared in the original TCP specification (RFC 793), and later it also became
used as the name of the Berkeley-derived programming interface (Section 1.15). It is the
socket pair (the 4-tuple consisting of the client IP address, client port number, server IP
address, and server port number) that specifies the two end points that uniquely identi-
fies each TCP connection in an internet.

The sequence number identifies the byte in the stream of data from the sending TCP
to the receiving TCP that the first byte of data in this segment represents. If we consider
the stream of bytes flowing in one direction between two applications, TCP numbers
each byte with a sequence number. This sequence number is a 32-bit unsigned number
that wraps back around to 0 after reaching 2% — 1.

When a new connection is being established, the SYN flag is turned on. The
sequence number field contains the initial sequence number (ISN) chosen by this host for this
connection. The sequence number of the first byte of data sent by this host will be the
ISN plus one because the SYN flag consumes a sequence number. (We describe addi-
tional details on exactly how a connection is established and terminated in the next
chapter where we'll see that the FIN flag consumes a sequence number also.)

Since every byte that is exchanged is numbered, the acknowledgment number contains
the next sequence number that the sender of the acknowledgment expects to receive.
This is therefore the sequence number plus 1 of the last successfully received byte of
data. This field is valid only if the ACK flag (described below) is on.

Sending an ACK costs nothing because the 32-bit acknowledgment number field is
always part of the header, as is the ACK flag. Therefore we'll see that once a connection
is established, this field is always set and the ACK flag is always on.

TCP provides a full-duplex service to the application layer. This means that data can
be flowing in each direction, independent of the other direction. Therefore, each end of
a connection must maintain a sequence number of the data flowing in each direction.

TCP can be described as a sliding-window protocol without selective or negative
acknowledgments. (The sliding window protocol used for data transmission is
described in Section 20.3.) We say that TCP lacks selective acknowledgments because
the acknowledgment number in the TCP header means that the sender has successfully
received up through but not including that byte. There is currently no way to acknowl-
edge selected pieces of the data stream. For example, if bytes 1-1024 are received OK,
and the next segment contains bytes 20493072, the receiver cannot acknowledge this
new segment. All it can send is an ACK with 1025 as the acknowledgment number.
There is no means for negatively acknowledging a segment. For example, if the seg-
ment with bytes 1025-2048 did arrive, but had a checksum error, all the receiving TCP
can send is an ACK with 1025 as the acknowledgment number. In Section 21.7 we'll see
how duplicate acknowledgments can help determine that packets have been lost.

The header length gives the length of the header in 32-bit words. This is required
because the length of the options field is variable. With a 4-bit field, TCP is limited to a
60-byte header. Without options, however, the normal size is 20 bytes.

Viptela, Inc. - Exhibit 1007
Page 245



Section 17.4 Summary 227

17.4

There are six flag bits in the TCP header. One or more of them can be turned on at
the same time. We briefly mention their use here and discuss each flag in more detail in
later chapters.

URG The urgent pointer is valid (Section 20.8).
ACK  The acknowledgment number is valid.

PSH The receiver should pass this data to the application as soon as possible (Sec-
tion 20.5).

RST  Reset the connection (Section 18.7).

SYN Synchronize sequence numbers to initiate a connection. This flag and the
next are described in Chapter 18.

FIN  The sender is finished sending data.

TCP’s flow control is provided by each end advertising a window size. This is the
number of bytes, starting with the one specified by the acknowledgment number field,
that the receiver is willing to accept. This is a 16-bit field, limiting the window to 65535
bytes. In Section 24.4 we’ll look at the new window scale option that allows this value
to be scaled, providing larger windows.

The checksum covers the TCP segment: the TCP header and the TCP data. This is a
mandatory field that must be calculated and stored by the sender, and then verified by
the receiver. The TCP checksum is calculated similar to the UDP checksum, using a
pseudo-header as described in Section 11.3.

The urgent pointer is valid only if the URG flag is set. This pointer is a positive offset
that must be added to the sequence number field of the segment to yield the sequence
number of the last byte of urgent data. TCP’s urgent mode is a way for the sender to
transmit emergency data to the other end. We'll look at this feature in Section 20.8.

The most common option field is the maximum segment size option, called the MSS.
Each end of a connection normally specifies this option on the first segment exchanged
(the one with the SYN flag set to establish the connection). It specifies the maximum
sized segment that the sender wants to receive. We describe the MSS option in more
detail in Section 18.4, and some of the other TCP options in Chapter 24.

In Figure 17.2 we note that the data portion of the TCP segment is optional. We’ll
see in Chapter 18 that when a connection is established, and when a connection is termi-
nated, segments are exchanged that contain only the TCP header with possible options.
A header without any data is also used to acknowledge received data, if there is no data
to be transmitted in that direction. There are also some cases dealing with timeouts
when a segment can be sent without any data.

Summary

TCP provides a reliable, connection-oriented, byte stream, transport layer service. We
looked briefly at all the fields in the TCP header and will examine them in detail in the
following chapters.

Viptela, Inc. - Exhibit 1007
Page 246



228 TCP: Transmission Control Protocol Chapter 17

TCP packetizes the user data into segments, sets a timeout any time it sends data,

acknowledges data received by the other end, reorders out-of-order data, discards
duplicate data, provides end-to-end flow control, and calculates and verifies a manda-
tory end-to-end checksum.

TCP is used by many of the popular applications, such as Telnet, Rlogin, FTF, and

electronic mail (SMTP).

Exercises

17.1

17.2

17.3

17.4
17.5

We've covered the following packet formats, each of which has a checksum in its corre-
sponding header: IP, ICMP, IGMP, UDP, and TCP. For each one, describe what portion of
an IP datagram the checksum covers and whether the checksum is mandatory or optional.

Why do all the Internet protocols that we’ve discussed (IP, ICMF, IGMP, UDPF, TCP) quietly
discard a packet that arrives with a checksum error?

TCP provides a byte-stream service where record boundaties are not maintained between
the sender and receiver. How can applications provide their own record markers?

Why are the source and destination port numbers at the beginning of the TCP header?

Why does the TCP header have a header length field while the UDP header (Figure 11.2,
p- 144) does not?

Viptela, Inc. - Exhibit 1007
Page 247



18.1

18.2

18

TCP Connection Establishment
and Termination

Introduction

TCP is a connection-oriented protocol. Before either end can send data to the other, a
connection must be established between them. In this chapter we take a detailed look at
how a TCP connection is established and later terminated.

This establishment of a connection between the two ends differs from a
connectionless protocol such as UDP. We saw in Chapter 11 that with UDP one end just
sends a datagram to the other end, without any preliminary handshaking.

Connection Establishment and Termination

To see what happens when a TCP connection is established and then terminated, we
type the following command on the system svr4:

svr4 % telnet bsdi discard

Trying 140.252.13.35 ...

Connected to bsdi.

Escape character is ’'"]1’.

"1 type Control, right bracket to talk to the Telnet client

telnet> quit terminate the connection

Connection closed.

The telnet command establishes a TCP connection with the host bsdi on the port
corresponding to the discard service (Section 1.12). This is exactly the type of service we
need to see what happens when a connection is established and terminated, without
having the server initiate any data exchange.

Viptela, Inc. - Exhibit 1087
Page 248



230  TCP Connection Establishment and Termination Chapter 18

tepdump Output

Figure 18.1 shows the t cpdump output for the segments generated by this command.

1 0.0 svrd.1037 > bsdi.discard: S 1415531521:1415531521(0)
win 4096 <mss 1024>

2 0.002402 (0.0024) bsdi.discard > svr4.1037: S 1823083521:1823083521(0)
ack 1415531522 win 4096
<mgs 1024>

3 0.007224 (0.0048) svrd.1037 > bsdi.discard: . ack 1823083522 win 4096
4 4.155441 (4.1482) svrd.1037 > bsdi.discard: F 1415531522:1415531522(0)

‘ ack 1823083522 win 4096
5 4.156747 (0.0013) bsdi.discard > svr4.1037: . ack 1415531523 win 4096
6 4.158144 (0.0014) bsdi.discard > svr4.1037: F 1823083522:1823083522(0)

ack 1415531523 win 4096
7 4.180662 (0.0225) svr4.1037 > bsdi.discard: . ack 1823083523 win 4096

Figure 18.1 tcpdump output for TCP connection establishment and termination.

These seven TCP segments contain TCP headers only. No data is exchanged.
For TCP segments, each output line begins with

source > destination: flags

where flags represents four of the six flag bits in the TCP header (Figure 17.2). Fig-
ure 18.2 shows the five different characters that can appear in the flags output.

3-character o
fiag abbreviation Description
S SYN synchronize sequence numbers
F FIN sender is finished sending data
R RST reset connection
P PSH push data to receiving process as soon as possible
none of above four flags is on

Figure 18.2 flng characters output by tcpdump for flag bits in TCP header.

In this example we see the S, F, and period. We'll see the other two flags (R and P) later.
The other two TCP header flag bits—ACK and URG—are printed specially by
tcpdump.

It's possible for more than one of the four flag bits in Figure 18.2 to be on in a single
segment, but we normally see only one on at a time.

RFC 1025 [Postel 1987], the TCP and IP Bake Off, calls a segment with the maximum combina-
tion of allowable flag bits turned on at once (SYN, URG, PSH, FIN, and 1 byte of data) a
Kamikaze packet. It's also known as a nastygram, Christmas tree packet, and lamp test
segment.

Viptela, Inc. - Exhibit 1007
Page 249



Section 18.2 Connection Establishment and Termination 231

In line 1, the field 1415531521:1415531521 (0) means the sequence number of
the packet was 1415531521 and the number of data bytes in the segment was 0.
tcpdump displays this by printing the starting sequence number, a colon, the implied
ending sequence number, and the number of data bytes in parentheses. The advantage
of displaying both the sequence number and the implied ending sequence number is to
see what the implied ending sequence number is, when the number of bytes is greater
than 0. This field is output only if (1) the segment contains one or more bytes of data or
(2) the SYN, FIN, or RST flag was on. Lines 1, 2, 4, and 6 in Figure 18.1 display this field
because of the flag bits—we never exchange any data in this example.

In line 2 the field ack 1415531522 shows the acknowledgment number. This is
printed only if the ACK flag in the header is on.

The field win 4096 in every line of output shows the window size being advertised
by the sender. In these examples, where we are not exchanging any data, the window
size never changes from its default of 4096. (We examine TCP’s window size in Sec-
tion 20.4.)

The final field that is output in Figure 18.1, <mss 1024> shows the maximuin seg-
ment size (MSS) option specified by the sender. The sender does not want to receive TCP
segments larger than this value. This is normally to avoid fragmentation (Section 11.5).
We discuss the maximum segment size in Section 18.4, and show the format of the vari-
ous TCP options in Section 18.10.

Time Line

Figure 18.3 shows the time line for this sequence of packets. (We described some gen-
eral features of these time lines when we showed the first one in Figure 6.11, p. 80.) This
figure shows which end is sending packets. We also expand some of the tcpdump out-
put (e.g., printing SYN instead of S). In this time line we have also removed the win-
dow size values, since they add nothing to the discussion.

Connection Establishment Protocol

Now let’s return to the details of the TCP protocol that are shown in Figure 18.3. To
establish a TCP connection:

1. The requesting end (normally called the client) sends a SYN segment specifying
the port number of the server that the client wants to connect to, and the client’s
initial sequence number (ISN, 1415531521 in this example). This is segment 1.

2. The server responds with its own SYN segment containing the server’s initial
sequence number (segment 2). The server also acknowledges the client’s SYN
by ACKing the client’s ISN plus one. A SYN consumes one sequence number.

3. The client must acknowledge this SYN from the server by ACKing the server’s
ISN plus one (segment 3). ‘

These three segments complete the connection establishment. This is often called the
three-way handshake.

Viptela, Inc. - Exhibit 1007
‘ Page 250



232 TCP Connection Establishment and Termination Chapter 18
svrd, 1037 bsdi.discard
0.0 segment 1 SYN 1415531521:1415531521(0)
i <mss 1024~
.1823083521(0) segment 2
SYN 1823083521:18 o g
0.002402 (0.0024) 1415531522, <m ‘
0.007224 (0.0048) segment 3 ack 18230835797
/ /
4155441 (4.1482) segment 4 [N 1415531522:1415531522(0)
ack 1823083522
ack 1415531523 segment 5
4,156747 (0.0013) 3
141553152
TIN 1823083522:1823083522(0) ack segment 6
4.158144 (0.0014)
4.180662 (0.0225) segment 7 ack 1823083503

Figure 18,3 Time line of connection establishment and connection termination.

The side that sends the first SYN is said to perform an active open. The other side,
which receives this SYN and sends the next SYN, performs a passive open. (In Sec-
tion 18.8 we describe a simultaneous open where both sides can do an active open.)

When each end sends its SYN to establish the connection, it chooses an initial
sequence number for that connection. The ISN should change over time, so that each
connection has a different ISN. RFC 793 [Postel 1981c] specifies that the ISN should be
viewed as a 32-bit counter that increments by one every 4 microseconds. The purpose
in these sequence numbers is to prevent packets that get delayed in the network from
being delivered later and then misinterpreted as part of an existing connection.

How are the sequence numbers chosen? In 4.4BSD (and most Berkeley-derived implementa-
tions) when the system is initialized the initial send sequence number is initialized to 1. This
practice violates the Host Requirements RFC. (A comment in the code acknowledges that this
is wrong.) This variable is then incremented by 64,000 every half-second, and will cycle back
to 0 about every 9.5 hours. (This corresponds to a counter that is incremented every 8

Viptela, Inc. - Exhibit 1007

Page 251



Section 18.2 Connection Establishment and Termination 233

microseconds, not every 4 microseconds.) Additionally, each time a connection is established,
this variable is incremented by 64,000.

The 4.1-second gap between segments 3 and 4 is the time between establishing the
connection and typing the quit command to telnet to terminate the connection.

Connection Termination Protocol

While it takes three segments to establish a connection, it takes four to terminate a con-
nection. This is caused by TCP’s half-close. Since a TCP connection is full-duplex (that
is, data can be flowing in each direction independently of the other direction), each
direction must be shut down independently. The rule is that either end can send a FIN
when it is done sending data. When a TCP receives a FIN, it must notify the application
that the other end has terminated that direction of data flow. The sending of a FIN is
normally the result of the application issuing a close.

The receipt of a FIN only means there will be no more data flowing in that direction.
A TCP can still send data after receiving a FIN. While it’s possible for an application to
take advantage of this half-close, in practice few TCP applications use it. The normal
scenario is what we show in Figure 18.3. We describe the half-close in more detail in
Section 18.5.

We say that the end that first issues the close (e.g., sends the first FIN) performs the
active close and the other end (that receives this FIN) performs the passive close. Nor-
mally one end does the active close and the other does the passive close, but we'll see in
Section 18.9 how both ends can do an active close.

Segment 4 in Figure 18.3 initiates the termination of the connection and is sent when
the Telnet client closes its connection. This happens when we type quit. This causes
the client TCP to send a FIN, closing the flow of data from the client to the server.

When the server receives the FIN it sends back an ACK of the received sequence
number plus one (segment 5). A FIN consumes a sequence number, just like a SYN. At
this point the server’s TCP also delivers an end-of-file to the application (the discard
server). The server then closes its connection, causing its TCP to send a FIN (segment
6), which the client TCP must ACK by incrementing the received sequence number by
one (segment 7).

Figure 18.4 shows the typical sequence of segments that we've described for the ter-
mination of a connection. We omit the sequence numbers, In this figure sending the
FINs is caused by the applications closing their end of the connection, whereas the
ACKs of these FINs are automatically generated by the TCP software.

Connections are normally initiated by the client, with the first SYN going from the
client to the server. Either end can actively close the connection (i.e., send the first FIN).
Often, however, it is the client that determines when the connection should be termi-
nated, since client processes are often driven by an interactive user, who enters some-
thing like “quit” to terminate. In Figure 18.4 we can switch the labels at the top, calling
the left side the server and the right side the client, and everything still works fine as
shown. (The first example in Section 14.4, for example, shows the daytime server clos-
ing the connection.)

Viptela, Inc. - Exhibit 1007
Page 252



234 TCP Connection Establishment and Termination

Chapter 18

client

application close —

server

"N—h&&~—_‘_~lﬂgi_h“““——~a-

4)@/
4r—~——”"——‘dggivﬂﬂ——_——##——ﬂ

— deliver EOF to application

« application close

Figure 18.4 Normal exchange of segments during connection termination.

Normal t cpdump Qutput

Having to sort through all the huge sequence numbers is cumbersome, so the default
tecpdump output shows the complete sequence numbers only on the SYN segments,
and shows all following sequence numbers as relative offsets from the original sequence
numbers. (To generate the output for Figure 18.1 we had to specify the -5 option.) The
normal tcpdump output corresponding to Figure 18.1 is shown in Figure 18.5.

1

Ny O ™ L

0.

T - . = ]

0

.002402

.007224
.155441
.156747
.158144
.180662

(0.
(4.
.0013)

(0

(0.
.0225)

(0

.0024)

0048)
1482)

0014)

svr4.1037 > bsdi.discard: S 1415531521:1415531521 (0)

bsdi.

svrd.
svrd.
bsdi.
bsdi.

svr4

discard > svr4.1037:

1037 > bsdi.discard:
1037 > bsdi.discard:
discard > svrd.1037:
discard > svr4.1037:

.1037 > bsdi.discard:

win 4096 <mss 1024>

S 1823083521:1823083521(0)
ack 1415531522
win 4096 <mss 1024>

. ack 1 win 4096
F 1:1(0) ack 1 win 4096
. ack 2 win 4096
F 1:1(0) ack 2 win 4096
. ack 2 win 4096

Figure 18,5 Normal t cpdump output for connection establishment and termination.

Unless we need to show the complete sequence numbers, we’ll use this form of output
in all following examples.

Viptela, Inc. - Exhibit 1007
Page 253



’. Section 18.3 Timeout of Connection Establishment 235

18.3 Timeout of Connection Establishment

There are several instances when the connection cannot be established. In one example
the server host is down. To simulate this scenario we issue our telnet command after
disconnecting the Ethernet cable from the server’s host. Figure 18.6 shows the
tcpdump output,
1 0.0 bsdi.1024 > svrd.discard: S 291008001:291008001(0)

win 4096 <mss 1024>

[tos 0x10]
2 5.814797 ( 5.8148) bsdi.1024 > svrd.discard: S 291008001:291008001(0)

win 4096 <mss 1024>

) [tos 0x10]

3 29.815436 (24.0006) bsdi.1024 > svrd.discard: S 291008001:291008001(0)

win 4096 <mss 1024>

[tos 0x10]

Figure 18.6 tcpdump output for connection establishment that times out.

The interesting point in this output is how frequently the client’s TCP sends a SYN
to try to establish the connection. The second segment is sent 5.8 seconds after the first,
and the third is sent 24 seconds after the second.

As a side note, this example was run about 38 minutes after the client was rebooted. This cor-
responds with the initial sequence number of 291,008,001 (approximately 38 x 60 x 64000 x 2).
Recall earlier in this chapter we said that typical Berkeley-derived systems initialize the initial
sequence number to 1 and then increment it by 64,000 every half-second.

Also, this is the first TCP connection since the system was bootstrapped, which is why the
client’s port number is 1024.

What isn’t shown in Figure 18.6 is how long the client’s TCP keeps retransmitting
before giving up. To see this we have to time the telnet command:

bsdi % date ; telnet svr4 discard ; date

Thu Sep 24 16:24:11 MST 1992

Trying 140.252.13.34...

telnet: Unable to connect to remote host: Connection timed out
Thu Sep 24 16:25:27 MST 1992

The time difference is 76 seconds. Most Berkeley-derived systems set a time limit of 75
seconds on the establishment of a new connection. We'll see in Section 21.4 that the
third packet sent by the client would have timed out around 16:25:29, 48 seconds after it
was sent, had the client not given up after 75 seconds.

First Timeout Period

One puzzling item in Figure 18.6 is that the first timeout period, 5.8 seconds, is close to 6
seconds, but not exact, while the second period is almost exactly 24 seconds. Ten more

Viptela, Inc. - Exhibit 1007
Page 254



236

TCP Connection Establishment and Termination Chapter 18

of these tests were run and the first timeout period took on various values between 5.59
seconds and 5.93 seconds. The second timeout period, however, was always 24.00 (to
two decimal places).

What'’s happening here is that BSD implementations of TCP run a timer that goes
off every 500 ms. This 500-ms timer is used for various TCP timeouts, all of which we
cover in later chapters. When we type in the telnet command, an initial 6-second
timer is established (12 clock ticks), but it may expire anywhere between 5.5 and 6 sec-
onds in the future. Figure 18.7 shows what’s happening.

11 clock ticks x 500 ms/tick = 5.5 seconds

P
fi-

11 10 9 8 7 6 5 4 3 2 1 0

| | | | | | | | | | | |

‘ ‘ | | | | | | | | | | |

~<a %

somewhere in here e
application causes TCP Sg? ok TCP reschedules
to set timeout for 6 sec. timeout for 24 sec.
(12 ticks) in the future in the future

Figure 18,7 TCP 500-ms timer.

Although the timer is initialized to 12 ticks, the first decrement of the timer can occur
between 0 and 500 ms after it is set. From that point on the timer is decremented about
every 500 ms, but the first period can be variable. (We use the qualifier “about” because
the time when TCP gets control every 500 ms can be preempted by other interrupts
being handled by the kernel.)

When that 6-second timer expires at the tick labeled 0 in Figure 18.7, the timer is
reset for 24 seconds (48 ticks) in the future. This next timer will be close to 24 seconds,
since it was set at a time when the TCP’s 500-ms timer handler was called by the kernel.

Type-of-Service Field

18.4

In Figure 18.6, the notation [tos 0x10] appears. This is the type-of-service (TOS) field
in the IP datagram (Figure 3.2). The BSD/386 Telnet client sets the field for minimum
delay.

Maximum Segment Size

The maximum segment size (MSS) is the largest “chunk” of data that TCP will send to
the other end. When a connection is established, each end can announce its MSS. The
values we've seen have all been 1024. The resulting IP datagram is normally 40 bytes
larger: 20 bytes for the TCP header and 20 bytes for the IP header.

Some texts refer to this as a “negotiated” option. It is not negotiated in any way.
When a connection is established, each end has the option of announcing the MSS it

Viptela, Inc. - Exhibit 1007
Page 255



Section 18.4 Maximum Segment Size 237

expects to receive. (An MSS option can only appear in a SYN segment.) If one end does
not receive an MSS option from the other end, a default of 536 bytes is assumed. (This
default allows for a 20-byte IP header and a 20-byte TCP header to fit into a 576-byte IP
datagram.)

In general, the larger the MSS the better, until fragmentation occurs. (This may not
always be true. See Figures 24.3 and 24.4 for a counterexample.) A larger segment size
allows more data to be sent in each segment, amortizing the cost of the IP and TCP
headers. When TCP sends a SYN segment, either because a local application wants to
initiate a connection, or when a connection request is received from another host, it can
send an MSS value up to the outgoing interface’s MTU, minus the size of the fixed TCP
and IP headers. For an Ethernet this implies an MSS of up to 1460 bytes. Using IEEE
802.3 encapsulation (Section 2.2), the MSS could go up to 1452 bytes.

The values of 1024 that we’'ve seen in this chapter, for connections involving
BSD/386 and SVR4, are because many BSD implementations require the MSS to be a
multiple of 512. Other systems, such as SunOS 4.1.3, Solaris 2.2, and AIX 3.2.2, all
announce an MSS of 1460 when both ends are on a local Ethernet. Measurements in
[Mogul 1993] show how an MSS of 1460 provides better performance on an Ethernet
than an MSS of 1024.

If the destination IP address is “nonlocal,” the MSS normally defaults to 536. While
it’s easy to say that a destination whose IP address has the same network ID and the
same subnet 1D as ours is local, and a destination whose IP address has a totally differ-
ent network ID from ours is nonlocal, a destination with the same network ID but a dif-
ferent subnet ID could be either local or nonlocal. Most implementations provide a
configuration option (Appendix E and Figure E.1) that lets the system administrator
specify whether different subnets are local or nonlocal. The setting of this option deter-
mines whether the announced MSS is as large as possible (up to the outgoing interface’s
MTU) or the default of 536.

The MSS lets a host limit the size of datagrams that the other end sends it. When
combined with the fact that a host can also limit the size of the datagrams that it sends,
this lets a host avoid fragmentation when the host is connected to a network with a
small MTU.

Consider our host s1ip, which has a SLIP link with an MTU of 296 to the router
bsdi. Figure 18.8 shows these systems and the host sun.

MTU=1500 MTU=1500
slip SLIP bsdi sun
MTU=296 MTU=296
B SYN <mss 1460>
SYN <mss 256>

Yo
foo-

Figure 18,8 TCP connection from sun to s1ip showing MSS values.

Viptela, Inc. - Exhibit 1007
Page 256



238

TCP Connection Establishment and Termination Chapter 18

18.5

We initiate a TCP connection from sun to slip and watch the segments using
tepdump. Figure 18.9 shows only the connection establishment (with the window size
advertisements removed).

1 0.0 sun.1093 > slip.discard: S 517312000:517312000(0)
<mss 1460>
2 0.10 (0.00) slip.discard > sun.1093: S 509556225:509556225(0)

ack 517312001 <mss 256>
3 0.10 (0.00) sun.1093 > slip.discard: . ack 1

Figure 18,9 tcpdump output for connection establishment from sun to slip.

The important fact here is that sun cannot send a segment with more than 256 bytes of
data, since it received an MSS option of 256 (line 2). Furthermore, since s1lip knows
that the outgoing interface’s MTU is 296, even though sun announced an MSS of 1460,
it will never send more than 256 bytes of data, to avoid fragmentation. It's OK for a sys-
tem to send less than the MSS announced by the other end.

This avoidance of fragmentation works only if either host is directly connected to a
network with an MTU of less than 576. If both hosts are connected to Ethernets, and
both announce an MSS of 536, but an intermediate network has an MTU of 296, frag-
mentation will occur. The only way around this is to use the path MTU discovery
mechanism (Section 24.2).

TCP Half-Close

TCP provides the ability for one end of a connection to terminate its output, while still
receiving data from the other end. This is called a half-close. Few applications take
advantage of this capability, as we mentioned earlier.

To use this feature the programming interface must provide a way for the applica-
tion to say “I am done sending data, so send an end-of-file (FIN) to the other end, but I
still want to receive data from the other end, until it sends me an end-of-file (FIN).”

The sockets API supports the half-close, if the application calls shutdown with a second argu-
ment of 1, instead of calling close. Most applications, however, terminate both directions of
the connection by calling close.

Figure 18.10 shows a typical scenario for a half-close. We show the client on the left
side initiating the half-close, but either end can do this. The first two segments are the
same: a FIN by the initiator, followed by an ACK of the FIN by the recipient. But it then
changes from Figure 18.4, because the side that receives the half-close can still send
data. We show only one data segment, followed by an ACK, but any number of data
segments can be sent. (We talk more about the exchange of data segments and
acknowledgments in Chapter 19.) When the end that received the half-close is done
sending data, it closes its end of the connection, causing a FIN to be sent, and this deliv-
ers an end-of-file to the application that initiated the half-close. When this second FIN
is acknowledged, the connection is completely closed.

Viptela, Inc. - Exhibit 1007
Page 257



Section 18.5 TCP Half-Close 239

client server

application shutdown — W‘
— deliver EOF to application

ack of FIN
data < application write
application read « 4——“““’"’/

W
‘a/’FIN/” « application close
deliver EOF to application «
ack of FIN

Figure 18,10 Example of TCP’s half-close.

Why is there a half-close? One example is the Unix rsh(1l) command, which exe-
cutes a command on another system. The command

sun % rsh bsdi sort < datafile

executes the sort command on the host bsdi with standard input for the rsh com-
mand being read from the file named datafile. A TCP connection is created by rsh
between itself and the program being executed on the other host. The operation of rsh
is then simple: it copies standard input (datafile) to the connection, and copies from
the connection to standard output (our terminal). Figure 18.11 shows the setup.
(Remember that a TCP connection is full-duplex.)

host sun host bsdi
, standard
datafile tnput ~~ ‘
ron Ml TCP connection o sort
terminal ‘“‘standard st~

output

Figure 18,11 The command: rsh bsdi sort < datafile.

On the remote host bsdi the rshd server executes the sort program so that its stan-
dard input and standard output are both the TCP connection. Chapter 14 of [Stevens
1990] details the Unix process structure involved, but what concerns us here is the use
of the TCP connection and the required use of TCP’s half-close.

Viptela, Inc. - Exhibit 1007
Page 258



240

TCP Connection Establishment and Termination Chapter 18

18.6

The sort program cannot generate any output until all of its input has been read.
All the initial data across the connection is from the rsh client to the sort server, send-
ing the file to be sorted. When the end-of-file is reached on the input (datafile), the
rsh client performs a half-close on the TCP connection. The sort server then receives
an end-of-file on its standard input (the TCP connection), sorts the file, and writes the
result to its standard output (the TCP connection). The rsh client continues reading its
end of the TCP connection, copying the sorted file to its standard output.

Without a half-close, some other technique is needed to let the client tell the server
that the client is finished sending data, but still let the client receive data from the
server. Two connections could be used as an alternative, but a single connection with a
half-close is better.

TCP State Transition Diagram

We’ve described numerous rules regarding the initiation and termination of a TCP con-
nection. These rules can be summarized in a state transition diagram, which we show
in Figure 18.12.

The first thing to note in this diagram is that a subset of the state transitions is “typi-
cal.” We