Filed: November 8, 2017

UPDATED EXHIBIT LIST – IPR2017-01104

EX	Description
2001	Declaration of Nicholas A. Peppas, Sc.D.
	In Support of Patent Owner's Preliminary Response
2002	Frye, D. K., Taxane Chemotherapy–Advances in Treatment for Breast
	Cancer. US Oncological Disease. 2006; 1(1):40–41
2003	Paclitaxel (Taxol®) Formulation and Prodrugs: The Chemistry and
	Pharmacology of Taxol® and its Derivatives, Elsevier B.V. 1995; 103–130
2004	Gelderblom et al., Cremophor EL: the drawbacks and advantages of
	vehicle selection for drug formulation. Eur J Cancer 2001; 37:1590–1598
2005	Desai et al., US 5,916,596, "Protein Stabilized Pharmacologically Active
	Agents, Methods for the Preparation Thereof and Methods for the Use
	Thereof" (issued Jun. 29,1999)
2006	FDA News. "Phase III Trial of Tocosol Paclitaxel Does Not Meet Primary
	Endpoint" (published 2017)
2007	Paz-Ares et al., Phase III trial comparing paclitaxel poliglumex vs
	docetaxel in the second-line treatment of non-small-cell lung cancer. Brit J
	Cancer. 2008; 98:1608–1613
2008	Langer et al., Phase III Trial Comparing Paclitaxel Poliglumex (CT-2103,
	PPX) in Combination with Carboplatin Versus Standard Paclitaxel and
	Carboplatin in the Treatment of PS 2 Patients with Chemotherapy-Naïve
	Advanced Non-small Cell Lung Cancer. J Thorac Oncol. 2008; 3:623–630
2009	Hamaguchi et al., NK105, a paclitaxel-incorporating micellar nanoparticle
	formulation, can extend in vivo antitumour activity and reduce the
	neurotoxicity of paclitaxel, Brit J Cancer. 2005; 92:1240–1246
2010	FirstWord Pharma, "Results of Phase III study of NK105, a novel
	macromolecular micelle encapsulating an anticancer drug" (created July
	12, 2016)
2011	Full Prescribing Information, Abraxane®, revised July 2015
2012	Schnitzer et al., Albondin-mediated Capillary Permeability to Albumin. J
	Biol Chem. 1994; 269(8):6072–6082
2013	Schnitzer J.E., gp60 is an albumin-binding glycoprotein expressed by
	continuous endothelium involved in albumin transcytosis. Am J Physiol.

Filed: November 8 2017

Filed:	November 8, 2017
	1992; 262:H246–H254
2014	John <i>et al.</i> , Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol-Lung C. 2003;
	284:L187–L196
2015	Laino, C., June 3, 2009, "Abraxane Beats Standard Breast Cancer
	Treatment" www.webmd.com/breast-cancer/news/20090609/breast-
	cancer-drug-abraxane-is-effective
2016	Blum et al., Phase II Study of Weekly Albumin-Bound Paclitaxel for
	Patients with Metastatic Breast Cancer Heavily Pretreated with Taxanes.
	Clin Breast Cancer. 2007; 7(11):850–856
2017	Gradishar et al., Phase III Trial of Nanoparticle Albumin-Bound Paclitaxel
	Compared with Polyethylated Castor Oil-Based Paclitaxel in Women with
	Breast Cancer. J Clin Oncol. 2005; 23(31):7794–7803
2018	Zhang et al., Nab-Paclitaxel is an Active Drug in Preclinical Model of
2010	Pediatric Solid Tumors. Clin Cancer Res. 2013; 19(21):5972–5983
2019	Irizarry <i>et al.</i> , Cremophor EL-containing paclitaxel-induced anaphylaxis: a
	call to action. Community Oncology. 2009; 6(3):132–134
2020	Rajeshkumar <i>et al.</i> , Superior Therapeutic Efficacy of nab-Paclitaxel over
	Cremophor-based paclitaxel in locally advanced and metastatic models of
2021	human pancreatic cancer. Brit J Cancer. 2016; 115:442–453
2021	Wani, et al., Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J
	Am Chem Soc. 1971; 93(9):2325–7
2022	Intentionally Left Blank
2023	Chromatographic Techniques for the Characterization of Proteins: Physical
2020	Methods to Characterize Pharmaceutical Proteins, Springer Science and
	Business Media, New York, NY, 1995, Vol. 7:243–299
2024	Girard et al., Separation of Human Serum Albumin Components by RP-
	HPLC and CZE and their Characterization by ESI-MS. Chromatographia.
	1999; 49: S21–S27
2025	The Application of HPLC for Proteins, High Performance Liquid
	Chromatography: Principles and Methods in Biotechnology. John Wiley &
	Sons, Chichester, UK, 1996, 411–467
2026	Sparreboom et al., Determination of paclitaxel in human plasma using
	single solvent extraction prior to isocratic reversed-phase high-

Filed: November 8 2017

ed: November 8, 2017	
performance liquid chromatography with ultraviolet detection	. J.
Chromatogr B. 1998; 705:159–164	
7 Martin <i>et al.</i> , Assay of paclitaxel (Taxol) in plasma and urine	by high-
performance liquid chromatography. J. Chromatogr B. 1998;	709:281–288
8 Tian et al., Degradation of Paclitaxel and Related Compounds	in Aqueous
Solutions I: Epimerization. J Pharm Sci. 2008; 97(3):1224–12	35
9 Tian et al., Degradation of Paclitaxel and Related Compounds	in Aqueous
Solutions II: Nonepimerization Degradation Under Neutral to	Basic pH
Conditions. J Pharm Sci. 2008; 97(8):3100–3108	
Tian et al., Degradation of Paclitaxel and Related Compound	-
Solutions III: Degradation Under Acidic pH Conditions	and Overall
Kinetics. J Pharm Sci. 2010; 99(3):1288–1298	
Pillai et al., Pharmaceutical Glass Interactions: A Review of P	Possibilities. J
Pharm Sci & Res. 2016; Vol. 8(2):103–111	
2 "Sticky Containers, Vanishing Drugs"	
http://blogs.sciencemag.org/pipeline/archives/2008/08/29/sticl	ky_container
s_vanishing_drugs (August 29, 2008)	
Mani <i>et al.</i> , Delivery of paclitaxel from cobalt–chromium allo	_
without polymeric carriers. Biomaterials. 2010; 31(20):5372–3	
4 Green <i>et al.</i> , Measurement of paclitaxel and its metabolites in	
plasma using liquid chromatography/ion trap mass spectromet	-
sonic spray ionization interface. Rapid Commun Mass Sp. 200 20(14):2183–2189	96;
5 Heldman <i>et al.</i> , Paclitaxel Stent Coating Inhibits Neointimal H	Ivnernlacia
at 4 Weeks in a Porcine Model of Coronary Restenosis. Circul	
103:2289–2295	auton. 2001,
6 Fukazawa <i>et al.</i> , Reduction of non-specific adsorption of drug	s to plastic
containers used in bioassays or analyses. J Pharmacol Tox Me	-
61:329–333	,
7 Hunz et al., Plasma And Tissue Pharmacokinetics Of Epirubio	in And
Paclitaxel In Patients Receiving Neoadjuvant Chemotherapy F	
Advanced Primary Breast Cancer. Clin Pharmacol Ther. 2007	; 81(5):659–
668	
8 Pfeifer et al., Precipitation of paclitaxel during infusion by pur	mp. Am J
Hosp Pharm. 1993; 50:2518–2521	

Filed: November 8 2017

Filed:	November 8, 2017
2039	Xu et al., Stability of paclitaxel in 5% dextrose injection or 0.9% sodium chloride injection at 4, 22, or 32 °C. Am J Hosp Pharm. 1994;51:3058–3060
2040	Trissel <i>et al.</i> , Pharmaceutical properties of paclitaxel and their effects on preparation and administration. Pharmacotherapy. 1997; 17(5 Part 2):133S–139S
2041	Kattige, Long-term physical and chemical stability of a generic paclitaxel infusion under simulated storage and clinical-use conditions. Eur J Hosp Pharm-S P. 2006; 12(6):129–134
2042	Lee <i>et al.</i> , Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharmacol Res. 2003; 20(7):1022–1030
2043	Feng, <i>et al.</i> , Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release. 2001; 71(1):53–69
2044	Vilker <i>et al.</i> , The Osmotic Pressure of Concentrated Protein Solutions: Effect of Concentration and pH in Saline Solutions of Bovine Serum Albumin. J Colloid Interf Sci. 1981; 79(2):548–566
2045	Fogh-Andersen <i>et al.</i> , Ionic Binding, Net Charge, and Donnan Effect of Human Serum Albumin as a Function of pH. Clin Chem. 1993; 39(1):48–52
2046	Curnis <i>et al.</i> , Improving Chemotherapeutic Drug Penetration in Tumors by Vascular Targeting and Barrier Alteration. J Clin Invest. 2002; 110(4):475–482
2047	Yuan, F., Transvascular Drug Delivery in Solid Tumors. Semin in Radiat Oncol. 1998; 8(3):164–175
2048	Intentionally Left Blank
2049	Intentionally Left Blank
2050	Ziller <i>et al.</i> , Control of Crystal Growth in Drug Suspension: 1) Design of a Control Unit and Application to Acteaminophen Suspensions). Drug Dev Ind Pharm. 1988; 14(15–17):2341–2370
2051	USP Monograph, Paclitaxel. 30(40):1279 http://www.pharmacopeia.cn/v29240/usp29nf24s0_m60190.html
2052	Garnett <i>et al.</i> , The effects of serum and human albumin on calcium hydroxyapatite crystal growth. Biochem J. 1990; 266:863–868

Filed: November 8, 2017

Tilou.	November 6, 2017
2053	Kommanaboyina et al., Trends in Stability Testing, with Emphasis on
	Stability During Distribution and Storage. Drug Dev Ind Pharm. 1999;
	25(7):857–868
2054	Surapaneni et al., Designing Paclitaxel Drug Delivery Systems Aimed at
	Improved Patient Outcomes: Current Status and Challenges. ISRN
	Pharmacol. 2012; 1–15
2055	Flynn, G.L., Solubility Concepts and Their Applications to the
	Formulation of Pharmaceutical Systems: Part I. Theoretical Foundations.
	PDA J Pharm Sci Tech. 1984; 38:202–209
2056	Pyo et al., Preparation and Dissolution Profiles of the Amorphous,
	Dihydrated Crystalline, and Anhydrous Crystalline Forms of Paclitaxel.
	Drying Technol. 2007; 25(10):1759–1767
2057	Steinhardt et al., Differences between Bovine and Human Serum
	Albumins: Binding Isotherms, Optical Rotatory Dispersion, Viscosity,
	Hydrogen Ion Titration, and Fluorescence Effects. Biochemistry-US.
	1971; 10(22):4005–4015
2058	U.S. Application No. 12/910,693, Notice of Allowance (mailed Dec. 27,
	2011)
2059	Diaz et al., Molecular Recognition of Taxol by Microtubules. J Biol Chem.
	2002; 275(34):26265–26276
2060	Chen et al., Albumin-bound nanoparticle (nab) paclitaxel exhibits
	enhanced paclitaxel tissue distribution and tumor penetration. Cancer
	Chemoth Pharm. 2015; 76:699–712
2061	Evangelio et al., Fluorescent Taxoids as Probes of the Microtubule
	Cytoskeleton. Cell Motil Cytoskel. 1998; 39:73–90
2062	Intentionally Left Blank
2063	Declaration of Lisamarie LoGiudice
2064	Declaration of Andrew S. Chalson in Support of Patent Owner's
	Unopposed Motion for Pro Hac Vice Admission
2065	Declaration of Daniel C. Wiesner in Support of Patent Owner's
	Unopposed Motion for Pro Hac Vice Admission

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

