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ABSTRACT

Rapamycins are macrocyclic lactones that possess immunosuppressive, antifungal and
antitumor properties. The parent compound, rapamycin, is approved as an immunosup-
pressive agent for preventing rejection in patients receiving organ transplantation. Two
analogues, CCI-779 and RADOO1 are currently being investigated as anticancer agents.
Rapamycinsfirst bind a cyclophilin FKBP12, and this complex binds and inhibits the
function of mTOR (mammalian target of rapamycin) a serine/threonine (Ser/Thr) kinase
with homology to phosphatidylinositol 3’ kinase. Currently, as mTORis the only identified
target, this places rapamycins in a unique position of being the most selective kinase
inhibitor known. Consequently these agents have been powerful fools in elucidating the
role of mTORin cellular growth, proliferation, survival and tumorigenesis. Increasing
evidence suggests that mTOR acts as a central controller sensing cellular environment
(nutritional status or mitogenic stimulation) and regulating translationinitiation through the
eukaryotic initiation factor 4E, and ribosomal p70 Sé6 kinase pathways. Here we review
the conserved TOR signaling pathways, conceptual basis for tumor selectivity, and the
mechanismsofresistance to this class of antitumor agent.

INTRODUCTION

Rapamycin, a macrocyclic lactone product ofthe soil bacteria Streptomyces hygroscopicus,
was isolated and identified as an antifungal agent in the mid-1970’s.'3 Rapamycin
(sirolimus), is a structural analogue of the macrolide antibiotic FK506 (tacrolimus,
Prograf®) (Fig. 1), and like FK506 was foundto potently suppress the immunesystem.*7

The potential for rapamycin to act as an antitumor agent was recognizedearly in its
development when the drug demonstrated potent inhibitory activity against numerous
solid tumors in the NCI screening program.®-!9 However, the drug was not developed
further dueto stability and solubility problems that prevented developmentof a parenteral
formulation for use in clinical trials. Also at that time in the early 1980’s, the mechanism
of action of rapamycin in blocking signal transduction was not understood.

Rapamycin (Rapamune®), as an immunosuppressive drug, was finally approved by the
Food and Drug Administration (FDA) in the USA in 1999, and the European
Commission in 2000, respectively. Results from manylaboratories have demonstrated that
rapamycin, in contrast to FK506,is not only a potent immunosuppressant, but also an
active antitumor agent. Rapamycin can actas a cytostatic, slowing or arresting cells in G,
phase. Under specific conditions, or in some tumorcell lines rapamycins may induce
apoptosis in culture. To date, studies have revealed that rapamycin potently arrests growth
ofcells derived from rhabdomyosarcoma, neuroblastomaandglioblastoma, small cell lung
cancer,!!-!7 osteoscarcoma,!® pancreatic cancer,!?2° breast and prostate cancer,2!-74
murine melanoma and leukemia, and B-cell lymphoma.?2*?6 In addition to broad
spectrum activity in vitro, rapamycin andits derivatives (designated here as rapamycins)
suppress growth of some human and murine tumor models in vivo.!!-39 When combined
with other chemotherapeutic agents, rapamycins generally showatleast additive antitumor
activity.!0:12:17:31 Preliminary data from clinical trials have indicated that rapamycins are
well tolerated and successfully suppress growth of various human tumors.3234

The use of rapamycin as an anticancer drugis clinically impractical, because ofits poor
water-solubility and stability in solution. Recently, rapamycin ester analogues (Fig. 1),
CCI-779 [rapamycin-42, 2, 2-bis(hydroxymethy])-propionic acid] (Wyeth-Ayerst, PA,
USA) and RADOO1 [everolimus, 40-O-(2-hydroxyethyl)-rapamycin] (Novartis, Basel,
Switzerland), have entered clinical trials. These analogues have improved pharmaceutical
properties. CCI-779 is being developed for both intravenous and oral administration,
whereas RADO01is only for oral administration. The antitumoractivity of these analogues
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is similar to that of rapamycin.!77!-2327-30 RADO01 is
in Phase I trials whereas the development of CCI-779
is more advancedwith several PhaseII trials completed.

Why should it be anticipated that rapamycins
could exhibit tumor-selectivity, in a manner analogous
to the activity of another kinase inhibitor, Gleevec,in
Bcr-Abl expressing chronic lymphocytic leukemia?
Accumulating evidence suggests that genetic mutations
or compensatory changes in tumorcells may affect
sensitivity to rapamycins. At least in some systems
mutations that occur frequently in malignant trans-
formations such as GLJ amplification, or mutations
that inactivate p53, and the dual specificity phos-
phatase PTEN (phosphatase and tensin homolog
deleted on chromosometen, also known as MMAC1

for mutated in multiple advanced cancers) or lead to
activation of Akt appear to determine rapamycin
sensitivity. On the other hand there may be multiple
loci that confer intrinsic or acquired resistance. This
review will summarize the current knowledge of the
role of mTORincellular regulation, the mechanism
of action of rapamycins, and currently understood
resistance mechanisms.

THE RAPAMYCIN TARGET (MTOR)

The mammaliantarget of rapamycin, [also named
FKBP12 and rapamycin-associated protein (FRAP),
rapamycin and FKBP12 target 1 (RAFT 1), rapamycin
target 1 (RAPT1), or sirolimus effector protein
(SEP)], is a 289 kDa Ser/Thr kinase orthologue of
TORI and TOR2 in Saccharomyces cerevisiae.>>*6
TORis an atypical serine/threonine kinase highly
conserved from yeast to mammals. Human, mouse
and rat mTORproteins share 95%identity at the amino acid
level.3°38 Since the C-terminus ofTORis highly homologousto the
catalytic domain of phosphatidylinositol 3’ kinase (PI3K), mTORis
considered to belong to the PI3K-related protein kinase (designated
PIKK) family, which also includes Mecl, Tell, RAD3, MEI-41,
DNA-PK, ATM, ATR, and TRRAP?°37 Recently, single TOR
homologshave also been identified in fungi (TOR1 in Cryptococcus
neoformans), plants (AtTOR in Arabidopsis thaliana), worms
(CeTORin Caenorhabditis elegans), and flies (ATOR in Drosophila
menalogaster).”

The domain structure of mTORis depicted in Figure 2. The
protein consists of a catalytic kinase domain, an FKBP12-rapamycin
binding (FRB) domain and a putative auto-inhibitory domain
(“repressor domain”) near the C-terminus, and up to 20 tandemly
repeated HEAT (Huntingtin, EF3, A subunit of PP2A and TOR)
motifs at the N-terminus, as well as FAT (FRAP-ATM-TRRAP)and
FATC (FAT C-terminus) domains. HEAT motifs may serve as
protein-protein interaction parts, whereas FAT and FATC domains

Figure 2. Schematic representation of the domains of mTOR. Structural
domains of mTOR. HEAT :(huntingtin elongation factor A subunit of PP2A
and TOR) repeats (positions 71-522 and 628-1147); FAT: (FRAP-ATM-
TRAPP) domain, which is unique to PlK-related kinases located N-terminal to
the FKBP12-rapamycin binding domain (FRB); the role of
FAT sequencesis less clear, but they are associated with
C+erminal FAT (FATC) sequences in mTOR. Interaction
between FAT and FATC domains mayfacilitate protein bind-
ing or act asastructural scaffold; CD: Catalytic domain;
RD: regulatory domain.
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Figure 1. The structure of rapamycin and its analogues FK506, CCI-779 and RADOO1. The
FKBP12 binding face is shown by thefilled bars, whereas the mTOR binding face of
rapamycin is shownby the hatched bar.

may participate in modulation of catalytic kinase activity of
mTOR.°*® The remarkable conservation of mTORatthe aminoacid

level suggests that multiple domainsof this protein are essential for
its cellular functions.

Tor Signaling in Yeast. In yeast, Tor kinase activity is regulated
by availability of nutrients (amino acids and glucose), whereas in
mammalian cells, mTOR is regulated also by phosphatidic acid,
ATP, and growth factors.3”39*? The Tor signaling pathway in yeast
is depicted in Figure 3, and controls translation initiation, protein
turnover, transcription, andactin cytoskeleton organization. In yeast
these pathwayshave been rigorously established,*” andareat least in
part maintained in mammalian cells. The Torl/2 complex (desig-
nated TORC1) comprising Kogl (the yeast homologue of the
mammalian protein raptor) and Lst8 controls translation, protein
stability and transcription,#3“> whereas the TORC2 complex
controls actin organization. As TORC2is not a rapamycin targetit
will not be considered further. The evolutionarily conserved TORC1
complex controls translation initiation probably through activation
of eIF4E, and transcription of ribosomal genes, stress response
genes, ribosomal biogenesis and tRNAsynthesis.

Tor, through the TORC1 complex,controls protein turnover and
some aspects of transcription through regulation of protein phos-
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Figure 3. Nutrient signaling in yeast. (Adapted from Jacinto and Hall.37)

phatases. Tor positively regulates Tap42, which binds to and inacti-
vates the Sit4 and Pphprotein phosphatases.464” Pph21 and Pph22
are calaytic subunits of PP2A,andSit4 is the catalytic subunit of a
PP2A-related phosphatase in yeast. Nutrient deficiency or rapamycin
leads to dissociation of these phosphatases from Tap42,resulting in
increased phosphatase activity. This leads to dephosphorylation of
Nprl and Gln3 involved in protein turnover and transcription,
respectively. Control of protein turnover and someaspects of tran-
scription appearto be regulated through Tap42 binding andinactivat-
ing Sit4, whereas pathwaysregulated byrelease ofPph phosphatases are
less well defined. In the presence ofnutrients Tor signaling represses
autophagy andleads to stabilization of proteins by suppressing
ubiquitin-dependent degradation.4® For example, Tor signaling
prevents ubiquitylation, vacuolar targeting and degradation of the
tryptophan transporter Tat2 by maintaining phosphorylation and
inactivation ofNprl a putative Tat2 kinase.4?>° Under conditions of
starvation Sit4 becomesactivated leading to dephosphorylation of
Npr1 and degradation ofTat2. The Tap42-Sit4 pathwayalso controls
the Gln3 transcription factor. Under nutrient replete conditions
Gln3 is phosphorylated and is bound to the Ure2 protein in the
cytoplasm. Inhibition of Tor by rapamycin or nitrogen starvation
leads to dephosphorylation of Gln3, its nuclear translocation and
transcription of genes required for the use of secondary nitrogen
sources.*94 The pathway(s) downstream of Tap42 involving Pph
are less clear. Similarly, Tor negatively regulates the heterodimeric
transcription factor Rtgl-Rtg3 through an unknown mechanism.>!
The Tor pathway also is important in control of stress-responses
through modulation of transcription. The TORC1 complex nega-
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tively controls transcription ofstress-responsive genes through the cyto-
plasmic sequestration of the general stress transcription factors Msn2
and Msn4. Although the mechanism is not fully understood this
may occur through Tor signaling promoting the binding of these
transcription factors to the 14-3-3 homologues Bmh1 and Bmh2.°°

Proximal Signaling in Mammalian Cells. In mammaliancells,
mTORis regulated not only by nutrients but also by growth fac-
tors.3”39-42 Tt appears that growth factors regulate mTORsignaling
through both PI3K and Akt pathways, whereas proximal activators
regulated by nutrients and ATPare less well characterized. In mam-
malian cells mTORis activated as a consequenceofligand binding
to various growth factorreceptors that result in activation of PI3K,
Figure 4. Activated PI3K catalyzes the conversion ofphostidylinosi-
tol (4,5)-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-trispho-
sphate (PIP3). This pathwayis negatively regulated by a dual-speci-
ficity protein andlipid phosphatase PTEN. Full activation of Akt,
downstream of PI3K requires binding of PIP3 to the pleckstrin
homology domain ofAkt, and phosphorylation by phosphoinositide-
dependent kinases 1/2 (PDK1/2) and other unidentified kinases.
Pharmacological studies with albeit relatively non-specific inhibitors
of PI3K (wortmannin and LY294002) indicate that mTORis down-
stream of PI3K. How mTORisregulated by PI3K or Akt, however,
is still not well understood. Akt can phosphorylate mTOR
(Ser2448) directly, although the significance remains to be deter-
mined.3738 Recent studies have placed the tuberous sclerosis
(TSC1/2) complex as a modulator between PI3K/Akt and mTOR.>?>4
The TSC1/2 complex comprises harmartin (TSC1) and tuberin
(TSC2). These proteins form a physical and functional complex in
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Figure 4. Growth factor signaling in mammaliancells.

vivo, which binds and inhibits mTOR.52-54 Loss of TSC1/2 results
in mTOR-dependent increase of ribosomal p70 S6 kinase (S6K1)
activity, and confers resistance of cells to amino acid starvation.
Conversely co-expression of TSC1 and TSC2 inhibits amino
acid-induced activation of SGK1 in nutrient-deprived cells.>4
Mitogenic stimuli, such as insulin or serum, activate Akt which can
directly phosphorylate TSC2 on multiple sites in vitro and in
vivo.>25556 Phosphorylation of TSC2 at Ser939 and Thr1462is
PI3K-dependent.°2>° Akt-mediated phosphorylation of TSC2
destabilizes TSC2 and thereby inhibits the formation of TSC1/2
complex, leading to de-repression of mTOR, and consequently
increasing the kinase activity of mTOR. By contrast, treatment with
rapamycin does notinfluence the phosphorylation of TSC2,°? and
together with other data,>>4 suggests that mTORlies downstream
of TSC2. Other results?”°* imply that the TSC1/2 complex may
mediate S6K1 activation through a pathway parallel to mTOR.
However, further studies will be required to address the relationship
of mTORand TSC1/2.

mTORAssociated Proteins. mTOR forms a scaffold complex
with other proteins, such as raptor (regulatory associated protein of
mTOR) and mLST8,°™© which are the mammalian counterparts of
yeast Kog] (kontroller of growth 1) and Lst8,°! respectively. The
exactrole ofraptor remainsunclear.>8°?-6! Raptor mayactas a scaffold
protein linking mTORto SGK1and 4E-BP1.°Alternatively, it may
have a dual function, inhibiting mTOR under nutrient-deficient
conditions andstimulating mTORina nutrient-replete environment.>?

www.landesbioscience.com Cancer Biology & Therapy

Thus TSC1/2, raptor and possibly mLST$8actas potential modulators
of mTORfunction in responseto availability of nutrients.

Signaling Distal to mTOR. mTORcontrols translation initiation
through two pathways, S6K1 and eukaryotic initiation factor 4E
(eIF4E) binding proteins (4E-BPs). mTOReitherdirectly phospho-
rylates Thr389 of S6K1, or suppresses a phosphatase responsible for
maintaining the hypophosphoryaltedstate ofthis residue. Activation
of S6K1 enhances translation of mRNAs bearing a 5’ terminal
oligopyrimidine tract (5’ TOP).Inactivation of S6K1 decreases
synthesis of ribosomal proteins and translation factors.°%
Activation of S6K1 is complex. The process involves interplay
between fourdifferent domainsandat least seven specific sites medi-
ated by multiple upstream kinases.°4 At least 12 sites (Serl7,
Thr229, Thr367, Thr371, Thr389, Ser404, Ser411, Ser418, Tr421,

Ser424, Ser429, and Thr447) can be phosphorylated in response to
serum stimulation.© However, the responsible kinases have not been
fully characterized. Phosphoinositide-dependent protein kinase 1
(PDK1) phosphorylates Thr229 in vitro and in vivo.% Atypical
PKC isoforms and the Rho family of small G proteins (cdc42 and
Racl) maycontribute to phosphorylation of S6K1,©although the
specific sites regulated by these kinases remain to be determined. In
vitro, mTOR phosphorylates only Thr389 in the regulatory
domain.®”-However, whether this phosphorylation is directly or
indirectly regulated by mTORis in question, since recent data suggest
that mTOR may regulate S6K1 activation by inhibiting phos-
phatases rather than directly phosphorylating S6K1.°7°
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mTOR phosphorylates and inactivates the 4E-BP suppressor
proteins causing their dissociation from the RNA cap-binding
protein eIF4E. In response to mitogens, six sites (Thr37, Thr46,
Ser65, Thr70, Ser83, and Ser112) of4E-BP1 can be phosphorylated.©
So far, only mTORand ATM havebeen identified to be involved in
phosphorylation of 4E-BP1.7!-74 Other kinases that phosphorylate
4E-BP1 remainto be characterized. ATM phosphorylates 4E-BP1 at
Serl12,”4 however the physiological significance of this remains to
be elucidated. In vitro mTOR phosphorylates 4E-BP1 at twosites
(Thr37, Thr46) and possibly at two additional Ser/Thr residues
(Thr70 and Ser65) in the N-terminal region.”*7° Phosphorylation
is a hierarchical process.’3”>’7 Phosphorylation of Thr37/Thr46is
followed by Thr70 phosphorylation. Ser65 is phosphorylated last”7
and is dependent on phosphorylation ofall three Thr/Prosites.”>»”°
Mutation ofThr37 and/or Thr46 toalanine(s) prevents phosphory-
lation of Ser65 and Thr70, indicating that phosphorylation of
Thr37 and Thr46serves as a requisite “priming” event.>° Single
phosphorylation of these residues is not sufficient to dissociate
4E-BP1 from elF4E, indicating the requirement of combined
phosphorylation of at least Thr37, Thr46, Ser65, and Thr70 in
4E-BP1 to suppress association with eIF4E.9%78 Inhibition of
mTORleads to rapid hypophosphorylation of 4E-BP1 which then
tightly binds to eIF4E. This prevents formation of elF4F complex
that contains eIF4E, eIF4G, eIF4A and elIF3, and inhibits

cap-dependenttranslation initiation.>° Once 4E-BP1 is hyperphos-
phorylated, it releases eIF4E,facilitating e[F4F complex formation
and promoting cap-dependentprotein synthesis.>° Overall inhibition
of mTORby rapamycin leads to a decrease in protein synthesis of
15 to 20 percent. However, as the elF4E pathway is required for
translation of mRNA’s encoding cyclin D1,7%°° and ornithine
decarboxylase®! inhibition of mTORleads to slowing or arrest of
cells in G, phase ofthe cell cycle. However, the exact mechanism(s)
by which mTORregulatescell cycle progression are complex, poor-
ly understood, and potentially context specific. Although
rapamycins are highly specific inhibitors, the TOR pathway regu-
lates multiple cellular processes. The mTOR pathwayregulates trans-
lation initiation of survival factors such as c-MYC®* and

hypoxia-inducible factor 1a, and consequently vascular endothelial
growth factor.8384 In addition, mTORis involved in the regulation
of cyclin A, cyclin dependent kinases (cdk1/2), cdk inhibitors
(p21C'P! and p27KiP!), retinoblastoma protein, RNA polymerase
I/II/I1-transcription and translation of rRNA and tRNA,protein
phosphatases (PP2A, PP4 and PP6), and CLIP-170.337.85-91

TUMORSELECTIVITY OF RAPAMYCINS

To date there are noreports suggesting that activating mutations
of mTOR,or overexpression occur as primary events in malignant
transformation. However, activation of signaling pathways both
proximal anddistal to mTORappearto occur frequently in human
cancer. Loss of the phosphatase PTEN by deletion, silencing or
mutation leads to constitutive activation of Akt,2%3%9? and upregu-
lation of mTOR-dependent pathways. In PTEN-deficient tumor
cells or mouse embryofibroblasts (MEFs), activated Akt is associat-
ed with enhanced activity of S6K1 and hyperphosphorylation of
4E-BP1,?9° or increased levels of c-MYC.”It is speculated that
Akt-activated cells become dependent on upregulated mTOR
signaling for proliferation, hence become more susceptible to
rapamycin or CCI-779. Increased sensitivity to rapamycins has been
demonstrated in a panel of brain, prostate, and breast cancercells,
multiple myelomacells and in MEFs.?39 The association of PTEN
deficiency andsensitivity to rapamycinis further supported by the
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activity of CCI-779 against the growth of human tumors implanted
in athymic nude mice.2339 There are, however, some exceptions;
cells with functional PTEN and low constitutive activation of Akt

are equally sensitive to inhibition of proliferation by rapamycins.
Consequently the role of PTEN as an independentvariable predicting
for rapamycinsensitivity remains to be demonstrated. Disruption of
the TSC1 or TSC2 gene leads to the development of tumors in
multiple organs, notably kidney brain heart and lung. Even low
doses of rapamycin causes apoptosis and necrosis of spontaneous
renal tumors in Eker rats with germline mutation in TSC2 and
results in tumor regression.?> These studies suggest that tumors
developing in patients with tuberous sclerosis may besensitive to
rapamycins. Oncogeneexpression mayalso regulate the response to
rapamycin. For example, in RK3Ecells transformed with c-MYC or
Ras rapamycin treatmentincreased global protein synthesis. In contrast
rapamycin inhibited global protein synthesis and turnover in GLI
transformed isogeniclines leading to inhibition ofproliferation.™4

Although generally considered to be cytostatic agents, rapamycins
can induce apoptosis in some cell systems. Rapamycins induce
apoptosisofB-cells, rhabdomyosarcomacells, renal tubular cells and
dendritic cells.1%9>°” Rapamycin enhances transforming growth
factor-B induced cell cycle arrest,98 and through blocking survival
factor signaling”? rapamycins enhancecell death. Ourresults suggest
that the functional status of the p53 tumor suppressor may dictate
the cellular fate of rapamycin treated cells, as depicted in Figure 5.
For example, under serum free conditions, the response to
rapamycin in cells lacking functional p53 is apoptosis, suggesting
that only in the absence of p53/p21 inhibition of mTOR becomes
lethal (so-called synthetic lethality). Ectopic expression of p53 or
p21! protects cells from rapamycin-induced apoptosis. The
implication is that rapamycins may have potential tumor-selective
therapeutic effects.!® Recent results show that inhibition of mTOR
by rapamycin inducesa cellular stress response characterized by rapid
andsustained activation ofASK1 (apoptosis signal-regulating kinase
1) signaling in p53-mutantcells.!°° This leads to sustained phos-
phorylation of c-JUN (Ser63) that appears to be responsible for
inducing apoptosis. Rapamycin-inducedstress appears distinct from
that inducedbyultra violet radiation in that MEKK1is notactivated,
and from cytotoxic agents such as DNA damaging agents where
other stress pathways (p38 or ERK1/2) are also activated.!0!:!0? In
contrast, cells expressing wild type p53, (or constitutive p21@P!
expression) there is only transient activation of ASK1,!°
Suppression of ASK1 is associated with binding of p21@P! in
rapamycin treated cells, and protection from apoptosis. Since the
rapamycin-induced apoptosis is specifically prevented by insulin-like
growthfactors (IGF-I/II) and insulin,®© combination of IGF receptor
inhibitors with rapamycins maybeselectively cytotoxic and induce
regression of tumors with p53 mutations. Whether such anticipation
is justified requires vigoroustesting.

MECHANISMS OF RESISTANCE TO RAPAMYCINS

Intrinsic sensitivity to rapamycins betweencell lines may vary by
several orders of magnitude. For example, rhabdomyosarcomacells
in vitro are very sensitive (concentration for 50% inhibition (IC50)
of proliferation ~ 1 nM) comparedto colon carcinomacells (IC50 >
5000 nM).!! Mechanismsofintrinsic and acquired resistance may
have either a genetic or epigenetic basis.

Mutations in FKBP12 and mTOR.Rapamycinsfirst bind to the
cyclophilin FKBP12 in mammalian cells, forming the FKBP-
rapamycin complex. This complex then interacts with the FRB
domain in mTOR(Fig. 2), and inhibits the function of mTOR.
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Rapamycin resistance may be conferred by
mutations in FKBP12 that prevent the forma-
tion of FKBP-rapamycin complex,or mutations
in the FRB domain of mTORthatblock binding
of FKBP-rapamycin complex to mTOR. Such
mutations werefirst identified in budding yeast
S. cerevisiae in which treatment with rapamycin
irreversibly arrests cells in the G, phase. In the
yeast S. cerevisiae, deletion of the RBPI gene, a
homologue of mammalian FKBP-12,results in a
recessive rapamycin resistance, whereas expres-
sion of RBPI restores rapamycin sensitivity.!°4
This observation has been further confirmed by
RBP1 disruption experiments using the patho-
genic yeast Candida albicans. Wild-type
RBP1/RBP1 parental strain and the rbp1/RBP1
heterozygous mutantweresensitive to rapamycin
inhibition, whereas rbp1/rbp1 homozygous
mutantwas rapamycin resistant.!In addition, in
S. cerevisiae mutation ofa specific residue (Tyr89)
which is conserved in RBPJ or FKBPs, also

resulted in decreased binding of rapamycin and
conferred a recessive resistance phenotype.!° In
murine mastcells, two distinct point mutations
in FKBP12 confer resistance. By altering a
hydrophobic residue within the drug-binding
pocket (Trp59Leu) or changing a charged. sur-
face residue (Arg49>Gln), the bindingaffinity for
rapamycin decreases substantially.!6

A genetic screen identified rapamycin-resist-
ant alleles with mutations in genes designated
TORI and TOR2. Strains with mutatedto tor]-1

(Ser1972>Arg) and tor2-1 (Ser1975>Arg), were
completely resistant to the growth- inhibitory
effect of rapamycin. Theseresistantalleles encode mutantTorproteins
that do not bind the FKBP-rapamycin complex.!03:107-111 This
result suggests that a conserved serine residue (Ser1972 in Torl;
Ser1975 in Tor2) in Tor proteinsis critical for FKBP-rapamycin
binding. In mammalian cells mutations in the FRB domain confer
a dominantresistant phenotype consistent with decreased affinity
for binding of the FKBP- rapamycin complex.'!! Expression of a
mutant mTOR(Ser2035lle), having greatly reduced bindingaffin-
ity for the FKBP-rapamycin complex, confers high level resist-
ance, 14112,113

Deregulation of eIF4E. mTORphosphorylates and regulates the
function of 4E-BP1, the suppressor of e[F4E.2° Recently, our group
has found that acquired resistance to rapamycin wasassociated with
decreased levels of 4E-BP1.!?! In the absenceofselective pressure
(rapamycin), resistance was unstable andcells reverted to being
sensitive to growth inhibition of rapamycin within ten weeks. In
resistant cells the levels of 4E-BP1 were reduced significantly
(-10-fold), whereas in rapamycin-sensitive revertants the 4E-BP1
levels increased to thosein wild type cells. Levels of 4E-BP1 transcripts
were unaltered in rapamycinresistant clones suggesting post-tran-
scriptional regulation. Further studies indicate that the synthesis of
4E-BP1 significantly decreased in rapamycin-resistant clones.
Whether the steady state level of 4E-BP1 is also regulated by
increased degradation remains to be determined. Thus, the changes
in 4E-BP1 levels are reminiscent of those reported for p27*P! in
rapamycin resistant BC3H cells.!!> In contrast, no consistent
changes were detectedin thelevel or activity ofS6K1 between parental
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Synthetic lethality
a genetic defect alters cellular response to drug action 
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Figure 5. Loss of p53 function alters cellular response to rapamycin from cytostasis to apoptosis
in murine embryo fibroblasts (MEFs). Left: schematic representation of synthetic lethality. Right:
Wild type, and p537 MEFs, and p537 MEFs infected withAd-p53 (MOI of 100) were grown
without or with rapamycin (100 ng/ml). Cells were harvested after 5 days and apoptosis deter-
mined by quantitative FACs analysis (ApoAlert) assay. The per cent distribution of cells in each
quadrantis presented (from Huanget al. 20014).

andresistant clones. Rapamycin also inhibited growth factor activa-
tion of S6K1 equally in parental and rapamycin-resistant clones.
Intrinsic resistance to rapamycin has been shown in glioblastoma
cells and colon adenocarcinoma that have very low 4E-BP1.!!4 For
example, 4E-BP1 is barely detected in HCT8colon carcinomacells
that are highly resistant to rapamycin (IC50 > 10,000 ng/ml). When
4E-BP1 is overexpressed, these cells becomesensitive (IC50 < 10
ng/ml) to rapamycin, Figure 6.'!4 These data suggest that low levels
of 4E-BP1 results in de-regulation of eIF4E, conferring rapamycin
resistance.

These results suggest that rapamycin-regulation of the elF4E
pathwayis crucial in inducing growth arrest. Further de-regulation
of eIF4E mayfacilitate a malignant phenotype. Of interest is that
both rapamycin-resistant and -revertant cells exhibited elevated
c-MYClevels, and increased anchorage-independent growth. That
deregulation of the e[F4E pathway is associated with increased
malignancy is supported bycertain clinical observations that dereg-
ulation of the e[F4E pathway does promote tumor progression.!1°
In addition to decreased 4E-BP1 expression, as described above,
increased eIF4E levels may also cause de-regulation of eIF4E. In
advanced head and neck carcinoma,!!7 breast carcinoma!!8 gas-
trointestinal carcinoma,!!? and peripheral carcinomaofthe lung!?°
elF4E levels are elevated. However, levels of 4E-BP1 suppressor
proteins have not been reported in a consistent manner. Potentially,
the ratio of 4E-BP:eIF4E may determine whether inhibition of
mTORelicits a biologically significant tumor response. Further
studies will be necessary to determine if this ratio has predictive
value for drug sensitivity of tumors.
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Figure 6. Overexpression of 4E-BP abrogates resistance to rapamycin. (A)
Western blot analysis of 4E-BP, elF4E, and tubulin (loading control) in cell
lines that have differentintrinsic sensitivities to rapamycin. Colon carcinoma
cell lines CaCo2, GC3/cl, HCT8, HCT29, HCT116, and VRC5/c1 are
intrinsically resistant to rapamycin, with IC50 concentrations > 1200 ng/ml.
Pediatric solid tumorlines SJ-G2 (glioblastoma) and Rh18 and Rh30 (rhab-
domyosarcoma)aresensitive to rapamycin (IC59 < 1 ng/ml). (B) Expression
of 4E-BP and elFAE in HCT8 clones stably transfected with a 4E-BP expres-
sion plasmid (pcDNA3-PHAS-I). Expression of 4E-BP was greater in clones
C2, C4, and C5 than in parental HCT8cells, but expression of wassimilar
in parental and C1 and C3 transfected clones. (C) Sensitivity to rapamycin.
Cells were plated at low density in increasing concentrations of rapamycin,
and colonies were counted after 7 days of exposure to rapamycin. Symbols:
Parental HCT8 (@) and clones C1 (OQ), C2 (m™), C3(Q), C4(A), and C5(A).
(Adapted from Dilling et al. 2002!14).
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Mutations in S6K1. Ribosomal S6K1 is the other principal
downstream effector of mTOR.Inhibition of mTOR by rapamycin
primarily inhibits phosphorylation of Thr389 in the regulatory
domain.® However, since phosphorylation of S6K1 is hierarchical
with phosphorylation ofseveral other sites dependent on phospho-
rylation ofThr389,rapamycin in vivo influences phosphorylation
ofothersites, including Thr229 in thecatalytic domain, and $404
in the regulatory domain.” Mutation ofThr389>Glu abrogates the
ability of rapamycin to inhibit S6K1 activation.o”!2! Similarly,
substitution of Thr229 by either a neutral amino acid Alanine
(Thr229>Ala) or by an acidic amino acid Glu (Thr229>Glu),
renders S6K1 insensitive to rapamycin.!?? In addition, deletion of
the 77 N-terminal codons (AN77) confers rapamycin resistance.!?4
Ofnote truncationofthe first 54 residues of N-terminus blocks the

serum-induced phosphorylation of three rapamycin-sensitive sites,
Thr229, Thr389 and Ser404, causing rapamycin insensitivity.°”
Whetherthis results in resistance to the growth inhibitory effect of
rapamycinis less clear, and maybecell context specific.

Mutations of PP2A-Related Phosphatases. The regulation of
protein phosphataseactivity is thought to be a major mechanism of
Torsignaling in yeast. Rapamycin resistance caused by mutations of
PP2A-related phosphatases was first studied in S. cerevisiae. PPH21
and PPH22 encodecatalytic-subunits of PP2A (Pph21 and Pph22),
whereas TPD3 and CDC55respectively encode the 64 kDa A-sub-
unit and 60 kDa B-subunit. Tap42 is the yeast homologue of mam-
malian a4, and Sit4 is the yeast homologue of PP6,and the catalyt-
ic subunit of a PP2A-related phosphatase in yeast. Under conditions
of abundant nitrogen Tor negatively regulates Sit4 by promoting
binding to the inhibitor protein Tap42. Under conditions of starva-
tion or rapamycin treatment Sit4 dissociates from Tap42 leading to
dephosphorylation of the Gln3 transcription factor and nuclear
localization. Strains overexpressing isogenic tap42-11 mutants were
almost completely resistant to rapamycin.*° In addition, overexpres-
sion of Sit4, but not Pph21, also resulted in weak rapamycinresist-
ance.4© The mechanism of rapamycin resistance in this caseis still
unknown. More recently a Tap42 interacting protein, Tip41, has
been demonstrated to negatively regulate the Tor signaling pathway.
Deletion of 77P41 confers rapamycin resistance, suppresses the tap42
mutation, and prevents rapamycin-induceddissociation of Sit4 from
Tap42.47 Similarly, mutations or deletion of either 7PD3 (encoding
Tpd3, A subunit) or CDC55 (encoding Cdc55, B subunit), which
regulate Pph21/22 activity, conferred rapamycin resistance. !24 These
tpd3 or cdc55 mutants encodeproteins that failed to compete with
Tor-phosphorylated Tap42 binding to Pph21/22 catalytic-subunit,
resulting in increased association ofTap42 with Pph21/22.!?4 These
findings indicate that Tap42, Sit4 and PP2A-related phosphatases
are downstream effectors of Tor proteins, and mutationor deletion
may confer rapamycin resistance.

Several Ser/Thr protein phosphatases, such as PP2A, PP4 and
PP6, have been identified as the components of mTORsignaling
pathway in mammalian cells.” Mammalian PP2A is composedof a
commoncore dimer of a 39 kDacatalytic C-subunit (PP2Ac) and a
65 kDa A-subunit associated with diverse distinct regulatory
B-subunits (50-130 kDa). Studies of mammalian cells also indicate
that association of «4, the mammalian homologue of Tap42, with
PP2A, PP4, and PP6is related to rapamycin sensitivity.!2>!76 For
example, in rapamycin-sensitive Jurkat cells, rapamycin caused
dissociation of a4 from PP2Ac, whereas in rapamycin-resistant Raji
cells, rapamycin did notaffect association of a4 with PP2Ac.!26 In
Jurkatcells overexpression of a4 conferred rapamycin resistance, !26
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further demonstrating that these PP2A-related phosphatases are
novel rapamycin-sensitive targets. Surprisingly, in contrast to results
in yeast where dissociation of Sit4 from Tap42 increases phosphatase
activity, in mammaliancells rapamycin treatmentinhibits cell pro-
liferation by decreasing PP2A activity through dissociating a4 from
PP2Ac.!26 This suggests that PP2A maypositively regulate cell pro-
liferation under certain conditions. However, other studies!2” do not
demonstrate rapamycin-induced dissociation of a4 from PP2A or
PPG. Recent data!?8 indicate that mTOR may coordinately regulate
several phosphatases in rhabdomyosarcomacells. Rapamycin treatment
causes a rapid increase in PP2A activity and a concomitantdecrease in
PP5activity. Of interest is that both events are dependent on the
expression of 4E-BP1. At this time the significance of a4 remains
controversial, howeverit is clear that in both yeast and mammalian
systemsalterations in the regulation of protein phosphatases down-
stream of Tor can confercellular resistance to rapamycin.

Defective Regulation of p27*'P!. In starved cells that are serum
stimulated the cyclin dependent kinase inhibitor p27‘?! is down-
regulated and cells progress through G, phase to enter DNArepli-
cation. Prevention of mitogen-stimulated downregulation of
p27! level by rapamycin suggests that p27‘! is involved in the
antiproliferative activity of rapamycin.!?%!30 Rapamycin resistance
linked to defective regulation of p27*P! has been described.!!5
Perhaps the most compelling evidence to link p27*iP! and
rapamycin sensitivity is the partial resistance to antiproliferative
activity of rapamycin found in p27mouse embryofibroblasts and
p27splenic T lymphocytes. Partial resistance may indicate that
there are p27-dependentand-independent pathways that determine
rapamycin sensitivity. The other association comes from cells with
acquired resistance to rapamycin. Prolonged culture of BC3H1
murine myogeniccells in the presence of rapamycin without any
induced mutagenesis resulted in rapamycin-resistant clones.
Rapamycinresistantcells exhibited abnormally low p27*'?! protein
due to a high rate of ubiquitin-independent degradation.
Importantly, p27*?! in these resistant cells could not be regulated,
since it was neither reduced in response to serum nor augmentedin
response to rapamycin. As a result, pRb phosphorylation was
blocked by rapamycin in parental MC3H1 cells but notin resistant
cells. Rapamycin inhibited proliferation or [3H]-thymidine incorpo-
ration to a greater extent in parental BC3H1 cells than in resistant
cells. However, in some mammalian cells rapamycin inhibits growth
without apparentstabilization of p27*!P!, Whether other cdk inhi-
bitors are involved in rapamycinsensitivity remains to be determined.

Mutations of ATM. Recent studies have shown rapamycin
resistance in fibroblasts with mutation in the ataxia telangiectasia
pathway.!3! ATM (ataxia telangiectasia, mutated) is a 370-kDa
protein kinase, which is encoded by the gene mutated in the human
genetic disorder ataxia-telangiectasia (A-T) characterized by neuronal
degeneration, immunodeficiency, sterility, genomic instability, cancer
predisposition, and radiation sensitivity.!5? Like mTOR, the C-ter-
minal sequence of ATM is highly homologous to the catalytic
domainof PI3-kinase.!93:134 Three A-T cell lines were significantly
moreresistantto cell killing by rapamycin than wild type cells, but
more sensitive to the PI3-kinase inhibitor wortmannin.!4!

Mutationsat certain residues of ATM did not determine rapamycin
resistance or wortmanninsensitivity, since three A-T’ cell lines
exhibited different mutations in the ATM. Otherfindings support
rapamycin resistance in A-T' cells. Rapamycin inhibited cell cycle
progression from G1 to S phasein controlcells, but failed to prevent
cell cycle progression in A-Tcells. Consistently, rapamycin decreased

www.landesbioscience.com Cancer Biology & Therapy

phosphorylation of cdk2 and cdk2 kinase activity in wild typecells,
but did notaffect activation of cdk2 in A-T cells. Although ATM is
not the direct target of FKBP-rapamycin complex, a number of
other proteins (50-200 kDa) were augmentedin their binding to
the rapamycin-FKBP complex in the A-T cell lines.!3! The authors
proposed that increased resistance to rapamycin in A-T' cell lines
could be dueto alteration in the level of a target protein as a conse-
quenceof loss of ATM.In contrast, early passage murine embryo
fibroblasts derived from ATM“ mice are notresistant to rapamycin
relative to wild type fibroblasts (our unpublished data). Thus the
null phenotypeis distinct from the ATM mutantcells. As the ATM
cells have genetic instability it is possible that the reported resistance
to rapamycin is a consequence of additional mutations andnotrelated
directly to defects in ATM signaling.

Mutations of 14-3-3. The 14-3-3 proteins are a highly conserved
family of scaffolding and adaptor proteins, with a molecular mass
ranging from 27 to 32 kDa. 14-3-3 proteins bind to Ser/Thr-phos-
phorylated residues in a context specific manner.!9> These proteins
participatein cell cycle control, signal transduction and apoptosis by
regulating protein-protein interactions, subcellular localization of
proteins, and enzymeactivity.!3° In S. cerevisiae, Bmh1 and Bmh2
are two homologues of the mammalian 14-3-3 proteins andact as
multicopy suppressors of the growth-inhibitory phenotype caused
by rapamycin.!3” Overexpression ofBMHor BMH2 alone conferred
rapamycin resistance, whereas disruption of BMHand/or BMH2
sensitized the yeast to rapamycin.!7 Interestingly, overexpression of
three human 14-3-3 isoforms(8, Tt and 1) in the yeast also conferred
rapamycin resistance. The results suggest that the rapamycin-sensi-
tive function of 14-3-3 proteins is conserved from yeast to human
and is isoform-independent. Single or double mutations of BMH1
(Leu232>Ser and Gly55 Asp) resulted in a dominant rapamycin
resistant phenotype. The mechanism by which 14-3-3 proteins cause
rapamycin resistance is not known. However, since the yeast Tor
proteinslack consensussites for 14-3-3 binding, Tor proteins could
not directly associate with Bmh1p or Bmh2p. Thus,direct interfer-
ence by Bmh1p and Bmh2p with FKBP-rapamycin bindingto Torl
and Tor2 in the budding yeast may be excluded. Additional studies
are necessary to address whethera direct interaction between 14-3-3
proteins and a downstream effector ofTor proteins, or perhaps other
mechanismsconfer rapamycinresistance.

CONCLUSIONS

The Tor signaling pathway is highly conserved between budding
yeast and mammaliancells. In S. cerevisiae Tor acts to sense nutri-
tional status, and regulates response to starvation through well
defined pathways. In mammalian cells these pathways are less
defined. However multi-protein complexesidentified in yeast appear
conserved in mammalian cells, and some elements of downstream

signaling in yeast are recapitulated in higher eukaryotes. Yet, despite
extensive studies it remains unclear why inhibition of mTORresults
in retardation or arrest of cells in G1 phase of thecell cycle, or in
someinstances induction of apoptosis. Nor do weyetfully understand
whyloss of tumor suppressor such as PTEN orp53, or overexpression
of certain oncogenes alters the sensitivity of cells to rapamycins.
Despite these uncertainties, it is clear that mTORsignalingis critical
for proliferation of manycancercells in vitro, and for tumor growth
in vivo. Also of importance is evidence suggesting that mTOR may
control certain characteristics of malignancy, such as anchorage-
independent growth, and angiogenesis through control of HIF-1a.
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However, in this era of molecularly targeted therapies for cancer, it
will be importantto relate target inhibition to tumor response. As
reviewed here, there are several mechanisms of resistance to

rapamycin that lie downstream of mTOR. Hence,target inhibition
per se may notnecessarily relate to cellular response to rapamycins
currently underclinical evaluation.
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