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ABSTRACT

Rapamycins are macrocyclic lactones that possess immunosuppressive,
antitumor properties. The parent compound, rapamycin, is approved
pressive agent for preventing rejection in patients receiving orga
analogues, CCI-779 and RAD001 are currently being investigate
Rapamycins first bind a cyclophilin FKBPI 2, and this comple
function of mTOR (mammalian target of rapamycin) a serbt
with homology to phosphatidylinositol 3’ kinase. Currentl
target, this places rapamycins in a unique position o
inhibitor known. Consequently these agents haveb
role of mTOR in cellular growth, proliferation, and tumorigenesis. Increasing
evidence suggests that mTOR acts as a centra troller sensing cellular environment
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eukaryotic initiation factor 4E, and rib 70 S6 kinase pathways. Here we review
the conserved TOR signaling pathwa ceptual basis for tumor selectivity, and the

mechanisms of resistance to this clfif antitumor agent.
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ic lactone product of the soil bacteria Strrptomyce: /Jygraxcapiau,
tified as an antifungal agent in the mid-1970’s.1'3 Rapamycin
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was isolated an

 

 

 
 

 
 
 

(sirolimus) ructural analogue of the macrolide antibiotic FK506 (tacrolimus,
Prograf®) , and like FK506 was found to potently suppress the immune system.4'7

The rail for rapamycin to act as an antitumor agent was recognized early in its
devel nt when the drug demonstrated potent inhibitory activity against numerous
50 mars in the NCI screening program.8‘1° However, the drug was not developed

er due to stability and solubility problems that prevented development of a parenteral
rmulation for use in clinical trials. Also at that time in the early 1980’s, the mechanism

of action of rapamycin in blocking signal transduction was not understood.
Rapamycin (Rapamune®), as an immunosuppressive drug, was finally approved by the

Food and Drug Administration (FDA) in the USA in 1999, and the European
Commission in 2000, respectively. Results from many laboratories have demonstrated that
rapamycin, in contrast to FK506, is not only a potent immunosuppressant, but also an

active antitumor agent. Rapamycin can act as a cytostatic, slowing or arresting cells in G1
phase. Under specific conditions, or in some tumor cell lines rapamycins may induce
apoptosis in culture. To date, studies have revealed that rapamycin potently arrests growth
of cells derived from rhabdomyosarcoma, neuroblastoma and glioblastoma, small cell lung
cancer,“'17 osteoscarcoma,18 pancreatic cancer,19'2° breast and prostate cancer,21'23
murine melanoma and leukemia, and B-cell lymphoma.9’24‘26 In addition to broad
spectrum activity in vitro, rapamycin and its derivatives (designated here as rapamycins)
suppress growth of some human and murine tumor models in vivo.“'3° When combined
with other chemotherapeutic agents, rapamycins generally show at least additive antitumor
activity.1°=12’17’31 Preliminary data from clinical trials have indicated that rapamycins are
well tolerated and successfully suppress growth of various human tu.mors.52'54

The use of rapamycin as an anticancer drug is clinically impractical, because of its poor
water-solubility and stability in solution. Recently, rapamycin ester analogues (Fig. 1),
CCI-779 [rapamycin-42, 2, 2-bis(hydroxymethyl)-propionic acid] (Wyeth-Ayerst, PA,
USA) and RAD001 [everolimus, 40-O-(2—hydroxyethyl)-rapamycin] (Novartis, Basel,
Switzerland), have entered clinical trials. These analogues have improved pharmaceutical
properties. CCl—779 is being developed for both intravenous and oral administration,
whereas RAD001 is only for oral administration. The antitumor activity of these analogues
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is similar to that of rapamycin.17’21‘23’27’30 RADOOI is
in Phase I trials whereas the development of CCI—779
is more advanced with several Phase II trials completed.

Why should it be anticipated that rapamycins
could exhibit tumor—selectivity, in a manner analogous
to the activity of another kinase inhibitor, Gleevec, in
Bcr—Abl expressing chronic lymphocytic leukemia?
Accumulating evidence suggests that genetic mutations
or compensatory changes in tumor cells may affect
sensitivity to rapamycins. At least in some systems
mutations that occur frequently in malignant trans-
formations such as GL1 amplification, or mutations
that inactivate p53, and the dual specificity phos—
phatase PTEN (phosphatase and tensin homolog
deleted on chromosome ten, also known as MMACI

for mutated in multiple advanced cancers) or lead to
activation of Akt appear to determine rapamycin
sensitivity. On the other hand there may be multiple
loci that confer intrinsic or acquired resistance. This
review will summarize the current knowledge of the
role of mTOR in cellular regulation, the mechanism
of action of raparnycins, and currently understood
resistance mechanisms.

THE RAPAMYCIN TARGET (MTOR)

The mammalian target of rapamycin, [also named
FKBPI2 and rapamycin—associated protein (FRAP),
rapamycin and FKBP12 target 1 (RAFT1), rapamycin
target I (RAPTI), or sirolimus effector protein
(SEP)], is a 289 kDa Ser/Thr kinase orthologue of
TORI and TOR2 in Sac:/mromyces cerevz'5z'ae.35’36
TOR is an atypical serine/threonine kinase highly
conserved from yeast to mammals. Human, mouse
and rat mTOR proteins share 95% identity at the amino acid

level.36‘38 Since the C—terminus ofTOR is highly homologous to the
catalytic domain of phosphatidylinositol 3' kinase (PI3K), mTOR is
considered to belong to the PI5K—related protein kinase (designated
PIKK) family, which also includes Mecl, Tell, RAD3, MEI—4I,

DNA—PK, ATM, ATR, and TRRAP3637 Recently, single TOR
homologs have also been identified in fungi (TORI in Cryptococcus
neofiirmzzm), plants (AtTOR in Aralzidopsix t/mliana), worms
(CeTOR in Caenor/aabziitis elegant), and flies (dTOR in Drosophila
memz[oga:ter).37

The domain structure of mTOR is depicted in Figure 2. The
protein consists of a catalytic kinase domain, an FKBP12—rapamycin
binding (FRB) domain and a putative auto—inhibitory domain
(“repressor domain”) near the C—terminus, and up to 20 tandemly
repeated HEAT (Huntingtin, EF3, A subunit of PPZA and TOR)
motifs at the N—terminus, as well as FAT (FRAP—ATM—TRRAP) and

FATC (FAT C—terminus) domains. HEAT motifs may serve as
protein—protein interaction parts, whereas FAT and FATC domains

Figure 2. Schematic representation at the domains at mTOR. Structural
domains of mTOR. HEAT :[huntingtin elongation Factor A subunit of PP2A
and TOR) repeats [positions 71-522 and 628-1147); FAT: (FRAP-ATM-
TRAPP) domain, which is unique to PIK-related kinases located N-terminal to
the FKBPl2-rapamycin binding domain [FRB),' the role of
FAT sequences is less clear, but they are associated with
C-terminal FAT (FATC) sequences in mTOR. Interaction
between FAT and FATC domains may Facilitate protein bind-
ing or act as a structural scatlold; CD: Catalytic domain;
RD: regulatory domain.   
www.landesbioscience.com
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Figure l. The structure of rapamycin and its analogues FK506, CCI-779 and RADOOI . The
FKBPI2 binding Face is shown by the filled bars, whereas the mTOR binding Face of
rapamycin is shown by the hatched bar.

may participate in modulation of catalytic kinase activity of
mTOR.36 The remarkable conservation of mTOR at the amino acid

level suggests that multiple domains of this protein are essential for
its cellular functions.

Tor Signaling in Yeast. In yeast, Tor kinase activity is regulated
by availability of nutrients (amino acids and glucose), whereas in
mammalian cells, mTOR is regulated also by phosphatidic acid,
ATP, and growth factors.37’39'42 The Tar signaling pathway in yeast
is depicted in Figure 3, and controls translation initiation, protein
turnover, transcription, and actin cytoskeleton organization. In yeast
these pathways have been rigorously established,37 and are at least in
part maintained in mammalian cells. The TorI/2 complex (desig-
nated TORC1) comprising Kogl (the yeast homologue of the
mammalian protein raptor) and Lst8 controls translation, protein
stability and transcription,43'45 whereas the TORC2 complex
controls actin organization. As TORC2 is not a rapamycin target it
will not be considered further. The evolutionarily conserved TORCI
complex controls translation initiation probably through activation
of eIF4E, and transcription of ribosomal genes, stress response
genes, ribosomal biogenesis and tRNA synthesis.

Tor, through the TORCI complex, controls protein turnover and
some aspects of transcription through regulation of protein phos—
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Figure 3. Nutrient signaling in yeast. (Adapted from Jacinio and Hc1||.37)

phatases. Tor positively regulates Tap42, which binds to and inacti-
vates the Sit4 and Pph protein phosphatases.46’47 Pph21 and Pph22
are calaytic subunits of PPZA, and Sit4 is the catalytic subunit of a
PP2A—related phosphatase in yeast. Nutrient deficiency or rapamycin
leads to dissociation of these phosphatases from Tap42, resulting in
increased phosphatase activity. This leads to dephosphorylation of
Nprl and Gln3 involved in protein turnover and transcription,
respectively. Control of protein turnover and some aspects of tran-
scription appear to be regulated through Tap42 binding and inactivat-
ing Sit4, whereas pathways regulated by release ofPph phosphatases are
less well defined. In the presence of nutrients Tor signaling represses
autophagy and leads to stabilization of proteins by suppressing
ubiquitin—dependent degradation.“ For example, Tor signaling
prevents ubiquitylation, vacuolar targeting and degradation of the
tryptophan transporter Tat2 by maintaining phosphorylation and
inactivation ofNpr1 a putative Tat2 kinase.49’50 Under conditions of
starvation Sit4 becomes activated leading to dephosphorylation of
Nprl and degradation ofTat2. The Tap42—Sit4 pathway also controls
the Gln3 transcription factor. Under nutrient replete conditions
Gln3 is phosphorylated and is bound to the Ure2 protein in the
cytoplasm. Inhibition of Tor by rapamycin or nitrogen starvation
leads to dephosphorylation of Gln3, its nuclear translocation and
transcription of genes required for the use of secondary nitrogen
sources.43’44 The pathway(s) downstream of Tap42 involving Pph
are less clear. Similarly, Tor negatively regulates the heterodimeric
transcription factor Rtg1—Rtg3 through an unknown mechanism.“
The Tor pathway also is important in control of stress—responses
through modulation of transcription. The TORC1 complex nega-

224
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tively controls transcription ofstress-responsive genes through the cyto-
plasmic sequestration of the general stress transcription factors Msn2
and Msn4. Although the mechanism is not fully understood this
may occur through Tor signaling promoting the binding of these
transcription factors to the 14-3-3 homologues Bmhl and Bmh2.50

Proximal Signaling in Mammalian Cells. In mammalian cells,
mTOR is regulated not only by nutrients but also by growth fac-
tors.37’39‘42 It appears that growth factors regulate mTOR signaling
through both I’I3K and Akt pathways, whereas proximal activators
regulated by nutrients and ATP are less well characterized. In mam-
malian cells mTOR is activated as a consequence of ligand binding
to various growth factor receptors that result in activation of PI3K,
Figure 4. Activated PI3K catalyzes the conversion of phostidylinosi—
tol (4,5)—bisphosphate (PIP2) to phosphatidylinositol—3,4,5—trispho-
sphate (PIP3). This pathway is negatively regulated by a dual—speci—
flcity protein and lipid phosphatase PTEN. Full activation of Akt,
downstream of PI3K requires binding of PIP3 to the pleckstrin
homology domain ofAkt, and phosphorylation by phosphoinositide—
dependent kinases 1/2 (PDK1/2) and other unidentified kinases.
Pharmacological studies with albeit relatively non—specif1c inhibitors
of PI3K (wortmannin and LY294002) indicate that mTOR is down-

stream of PI3K. How mTOR is regulated by I’I3K or Akt, however,
is still not well understood. Akt can phosphorylate mTOR
(Ser2448) directly, although the significance remains to be deter-
mined.37’38 Recent studies have placed the tuberous sclerosis
(TSC1/2) complex as a modulator between PI3K/Akt and mTOR.52‘54
The TSC1/2 complex comprises harmartin (TSC1) and tuberin
(TSC2). These proteins form a physical and functional complex in
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Figure 4. Growth Factor signaling in mammalian cells.

Vivo, which binds and inhibits mTOR.52‘54 Loss of TSC1/2 results

in mTOR—dependent increase of ribosomal p70 S6 kinase (S6K1)
activity, and confers resistance of cells to amino acid starvation.53
Conversely co—expression of TSC1 and TSC2 inhibits amino

acid—induced activation of S6K1 in nutrient—deprived cells.“
Mitogenic stimuli, such as insulin or serum, activate Akt which can
directly phosphorylate TSC2 on multiple sites in vitro and in
vivo.52’55’56 Phosphorylation of TSC2 at Ser939 and Thr1462 is
PI3K-dependent.52’56 Akt—mediated phosphorylation of TSC2
destabilizes TSC2 and thereby inhibits the formation of TSCI/2
complex, leading to de—repression of mTOR, and consequently
increasing the kinase activity of mTOR. By contrast, treatment with
rapamycin does not influence the phosphorylation of TSC2,52 and
together with other data,5354 suggests that mTOR lies downstream
of TSC2. Other results5758 imply that the TSC1/2 complex may
mediate S6K1 activation through a pathway parallel to mTOR.
However, further studies will be required to address the relationship
of mTOR and TSC1/2.

mTOR Associated Proteins. mTOR forms a scaffold complex
with other proteins, such as raptor (regulatory associated protein of
mTOR) and mLST8,59'60 which are the mammalian counterparts of
yeast Kogl (kontroller of growth 1) and Lst8,61 respectively. The
exact role of raptor remains unclear.38’59‘61 Raptor may act as a scaffold
protein linking mTOR to S6K1 and 4E—BP1.60 Alternatively, it may
have a dual function, inhibiting mTOR under nutrient—def1cient
conditions and stimulating mTOR in a nutrient—replete environment.”

wwvv.landesbioscience.com Cancer Biology 8: Therapy

Thus TSC1/2, raptor and possibly mLST8 act as potential modulators
of mTOR function in response to availability of nutrients.

Signaling Distal to mTOR. mTOR controls translation initiation
through two pathways, S6Kl and eukaryotic initiation factor 4E
(eIF4E) binding proteins (4E-BPS). mTOR either directly phospho-
rylates Thr389 of S6K1, or suppresses a phosphatase responsible for
maintaining the hypophosphoryalted state of this residue. Activation
of S6K1 enhances translation of mRNAs bearing a 5’ terminal

oligopyrimidine tract (5’ TOP).62’63 Inactivation of S6K1 decreases
synthesis of ribosomal proteins and translation factors.62’63
Activation of S6K1 is complex. The process involves interplay
between four different domains and at least seven specific sites medi-
ated by multiple upstream kinases.64 At least 12 sites (Serl7,
Thr229, Thr367, Thr371, Thr389, Ser404, Ser411, Ser418, Tr421,

Ser424, Ser429, and Thr447) can be phosphorylated in response to

serum stimulation.“ However, the responsible kinases have not been
fully characterized. Phosphoinositide—dependent protein kinase 1

(PDK1) phosphorylates Thr229 in vitro and in vivo.66 Atypical
PKC isoforms and the Rho family of small G proteins (cdc42 and
Racl) may contribute to phosphorylation of S6K1,65 although the
specific sites regulated by these kinases remain to be determined. In
vitro, mTOR phosphorylates only Thr389 in the regulatory
domain.67'69 However, whether this phosphorylation is directly or
indirectly regulated by mTOR is in question, since recent data suggest
that mTOR may regulate S6K1 activation by inhibiting phos-
phatases rather than directly phosphorylating S6K1.64’70

225
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mTOR phosphorylates and inactivates the 4E—BP suppressor
proteins causing their dissociation from the RNA cap—binding
protein eIF4E. In response to mitogens, six sites (Thr37, Thr46,
Ser65, Thr70, Ser83, and Ser112) of4E—BP1 can be phosphorylated.“
So far, only mTOR and ATM have been identified to be involved in
phosphorylation of 4E—BP1.71‘74 Other kinases that phosphorylate
4E—BP1 remain to be characterized. ATM phosphorylates 4E—BP1 at
Ser112,74 however the physiological significance of this remains to
be elucidated. In vitro mTOR phosphorylates 4E—BP1 at two sites
(Thr37, Thr46) and possibly at two additional Ser/Thr residues
(Thr70 and Ser65) in the N—terminal region.73’75 Phosphorylation
is a hierarchical process.73’75'77 Phosphorylation of Thr37/Thr46 is
followed by Thr70 phosphorylation. Ser65 is phosphorylated last77
and is dependent on phosphorylation of all three Thr/Pro sites.75’76
Mutation ofThr37 and/or Thr46 to alanine(s) prevents phosphory—
lation of Ser65 and Thr70, indicating that phosphorylation of
Thr37 and Thr46 serves as a requisite “priming” event.36 Single
phosphorylation of these residues is not sufficient to dissociate
4E—BP1 from eIF4E, indicating the requirement of combined
phosphorylation of at least Thr37, Thr46, Ser65, and Thr70 in
4E—BP1 to suppress association with eIF4E.36’78 Inhibition of
mTOR leads to rapid hypophosphorylation of 4E—BP1 which then
tightly binds to eIF4E. This prevents formation of eIF4F complex
that contains eIF4E, eIF4G, eIF4A and eIF3, and inhibits

cap—dependent translation initiation.36 Once 4E—BP1 is hyperphos—
phorylated, it releases eIF4E, facilitating eIF4F complex formation
and promoting cap—dependent protein synthesis.36 Overall inhibition
of mTOR by rapamycin leads to a decrease in protein synthesis of
15 to 20 percent. However, as the eIF4E pathway is required for
translation of mRNA’s encoding cyclin D1,79’80 and ornithine
decarboxylase81 inhibition of mTOR leads to slowing or arrest of
cells in G1 phase of the cell cycle. However, the exact mechanism(s)
by which mTOR regulates cell cycle progression are complex, poor-
ly understood, and potentially context specific. Although
rapamycins are highly specific inhibitors, the TOR pathway regu-
lates multiple cellular processes. The mTOR pathway regulates trans-
lation initiation of survival factors such as c—MYC82 and

hypoxia—inducible factor 10., and consequently vascular endothelial

growth factor.83’84 In addition, mTOR is involved in the regulation
of cyclin A, cyclin dependent kinases (cdkl/2), cdk inhibitors
(p21CiP1 and p27KiP1), retinoblastoma protein, RNA polymerase
I/II/III—transcription and translation of rRNA and tRNA, protein
phosphatases (PPZA, PP4 and PP6), and CLIP—170.36’37v85‘91

TUMOR SELECTIVITY OF RAPAMYCINS

To date there are no reports suggesting that activating mutations
of mTOR, or overexpression occur as primary events in malignant
transformation. However, activation of signaling pathways both
proximal and distal to mTOR appear to occur frequently in human
cancer. Loss of the phosphatase PTEN by deletion, silencing or
mutation leads to constitutive activation of Akt,29’30’92 and upregu—
lation of mTOR—dependent pathways. In PTEN—deficient tumor
cells or mouse embryo fibroblasts (MEFS), activated Akt is associat-
ed with enhanced activity of S6K1 and hyperphosphorylation of
4E—BP1,29’30 or increased levels of c—MYC.92 It is speculated that
Akt—activated cells become dependent on upregulated mTOR
signaling for proliferation, hence become more susceptible to
rapamycin or CCI—779. Increased sensitivity to rapamycins has been
demonstrated in a panel of brain, prostate, and breast cancer cells,
multiple myeloma cells and in MEFs.25’29 The association of PTEN
deficiency and sensitivity to rapamycin is further supported by the

226 Cancer Biology 8: Therapy

activity of CCI—779 against the growth of human tumors implanted
in athymic nude mice.23’3° There are, however, some exceptions;
cells with functional PTEN and low constitutive activation of Akt

are equally sensitive to inhibition of proliferation by rapamycins.
Consequently the role of PTEN as an independent variable predicting
for rapamycin sensitivity remains to be demonstrated. Disruption of
the TSC1 or TSC2 gene leads to the development of tumors in
multiple organs, notably kidney brain heart and lung. Even low
doses of rapamycin causes apoptosis and necrosis of spontaneous
renal tumors in Eker rats with germline mutation in TSC2 and
results in tumor regression.93 These studies suggest that rumors
developing in patients with tuberous sclerosis may be sensitive to
rapamycins. Oncogene expression may also regulate the response to
rapamycin. For example, in RKSE cells transformed with c—MYC or
Ras rapamycin treatment increased global protein synthesis. In contrast
rapamycin inhibited global protein synthesis and turnover in GLI
transformed isogenic lines leading to inhibition of proliferation.”

Although generally considered to be cytostatic agents, rapamycins
can induce apoptosis in some cell systems. Rapamycins induce
apoptosis of B—cells, rhabdomyosarcoma cells, renal tubular cells and
dendritic cells.16’95'97 Rapamycin enhances transforming growth
factor—[3 induced cell cycle arrest,98 and through blocking survival
factor signaling” rapamycins enhance cell death. Our results suggest
that the functional status of the p53 tumor suppressor may dictate
the cellular fate of rapamycin treated cells, as depicted in Figure 5.
For example, under serum free conditions, the response to
rapamycin in cells lacking functional p53 is apoptosis, suggesting
that only in the absence of p53/p21 inhibition of mTOR becomes
lethal (so—called synthetic lethality). Ectopic expression of p53 or
p21CiP1 protects cells from rapamycin-induced apoptosis. The
implication is that rapamycins may have potential tumor—selective
therapeutic effects.“ Recent results show that inhibition of mTOR
by rapamycin induces a cellular stress response characterized by rapid
and sustained activation ofASK1 (apoptosis signal—regulating kinase
1) signaling in p53—mutant cells.100 This leads to sustained phos-
phorylation of c—]UN (Ser63) that appears to be responsible for
inducing apoptosis. Rapamycin—induced stress appears distinct from
that induced by ultra violet radiation in that MEKK1 is not activated,
and from cytotoxic agents such as DNA damaging agents where
other stress pathways (p38 or ERK1/2) are also activated.1°1*1°2 In
contrast, cells expressing wild type p53, (or constitutive p21CiP1
expression) there is only transient activation of ASK1.100
Suppression of ASK1 is associated with binding of p21CiP1 in
rapamycin treated cells, and protection from apoptosis. Since the
rapamycin-induced apoptosis is specifically prevented by insulin—like
growth factors (IGF—I/II) and insulin,96 combination of IGF receptor
inhibitors with rapamycins may be selectively cytotoxic and induce
regression of tumors with p53 mutations. VVhether such anticipation
is justified requires vigorous testing.

MECHANISMS OF RESISTANCE T0 RAPAMYCINS

Intrinsic sensitivity to rapamycins between cell lines may vary by
several orders of magnitude. For example, rhabdomyosarcoma cells
in vitro are very sensitive (concentration for 50% inhibition (ICSO)
of proliferation ~ 1 nM) compared to colon carcinoma cells (IC50 >
5000 nM).“ Mechanisms of intrinsic and acquired resistance may
have either a genetic or epigenetic basis.

Mutations in FKBPIZ and mTOR. Rapamycins first bind to the
cyclophilin FKBP12 in mammalian cells, forming the FKBP—
rapamycin complex. This complex then interacts with the FRB
domain in mTOR (Fig. 2), and inhibits the function of mTOR.

2003; Vol. 2 Issue 3
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Rapamycin resistance may be conferred by
mutations in FKBP12 that prevent the forma-
tion of FKBP—rapamycin complex, or mutations
in the FRB domain of mTOR that block binding
of FKBP—rapamycin complex to mTOR. Such
mutations were first identified in budding yeast
5. cerevixiae in which treatment with rapamycin

irreversibly arrests cells in the G1 phase. In the
yeast 3. caret/iriae, deletion of the RBPI gene, a
homologue of mammalian FKBP—12, results in a
recessive rapamycin resistance, whereas expres-
sion of RBPI restores rapamycin sensitivity.103
This observation has been further confirmed by
RBPI disruption experiments using the patho-
genic yeast Czzndida at/Means. Wild—type
RBP1/RBPI parental strain and the rbpl/RBPI
heterozygous mutant were sensitive to rapamycin
inhibition, whereas rbpl/rbpl homozygous
mutant was rapamycin resistant.104 In addition, in
S. cerevisiae mutation of a specific residue (Tyr89)
which is conserved in RBPI or FKBPs, also

resulted in decreased binding of rapamycin and
conferred a recessive resistance pl1eI10type.105 In
murine mast cells, two distinct point mutations
in FKBP12 confer resistance. By altering a
hydrophobic residue within the drug—binding
pocket (Trp599Leu) or changing a charged sur-
face residue (Arg49-)Gln), the binding aflinity for

p53+.l+

Rapatnytiril

Atiue

Synthetic lethality
a genetic defect alters ceilular response to drug action

p53~‘-

Rapamycinl

 =‘:.5ti..'
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+ Rap 11]!)
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Figure 5. Loss of p53 function alters cellular response to rapamycin from cytostasis to apoptosis
rapamycin decreases substantially_106 in murine embryo fibroblasts (MEFs). Left: schematic representation of synthetic lethality. Right:

A genetic screen identified rapamycin—resist-
ant alleles with mutations in genes designated
TORI and TORZ. Strains with mutated to torl-1

(Ser19729Arg) and t0r2—I (Ser19759Arg), were
completely resistant to the growth— inhibitory
effect of rapamycin. These resistant alleles encode mutant Tor proteins
that do not bind the FKBP—rapamycin complex.103’107'1“ This
result suggests that a conserved serine residue (Ser1972 in Torl;
Ser1975 in Tor2) in Tor proteins is critical for FKBP—rapamycin
binding. In mammalian cells mutations in the FRB domain confer
a dominant resistant phenotype consistent with decreased affinity
for binding of the FKBP— rapamycin complex.1” Expression of a
mutant mTOR (Ser2035-)Ile), having greatly reduced binding affin-
ity for the FKBP—rapamycin complex, confers high level resist-
anCe_14,112,113

Deregulation of eIF4E. mTOR phosphorylates and regulates the
function of 4E—BP1, the suppressor of eIF4E.36 Recently, our group
has found that acquired resistance to rapamycin was associated with
decreased levels of 4E—BP1.121 In the absence of selective pressure
(rapamycin), resistance was unstable and cells reverted to being
sensitive to growth inhibition of rapamycin within ten weeks. In
resistant cells the levels of 4E—BP1 were reduced significantly
(~10—fold), whereas in rapamycin—sensitive revertants the 4E—BPI
levels increased to those in wild type cells. Levels of 4E—BP1 transcripts
were unaltered in rapamycin resistant clones suggesting post—tran—
scriptional regulation. Further studies indicate that the synthesis of
4E—BPI significantly decreased in rapamycin—resistant clones.
Whether the steady state level of 4E—BP1 is also regulated by
increased degradation remains to be determined. Thus, the changes
in 4E—BP1 levels are reminiscent of those reported for p27KiP1 in
rapamycin resistant BC5H cells.“5 In contrast, no consistent
changes were detected in the level or activity ofS6K1 between parental

www.landesbioscience.com Cancer Biology 8: Therapy

Wild type, and p53’/’MEFs, and p53’/‘ MEFs infected withAd-p53 (MOI of 100) were grown
without or with rapamycin (100 ng/ml). Cells were harvested after 5 days and apoptosis deter-
mined by quantitative FACs analysis (ApoAlert) assay. The per cent distribution of cells in each
quadrant is presented (from Huang et al. 200i '6).

and resistant clones. Rapamycin also inhibited growth factor activa-
tion of SGKI equally in parental and rapamycin—resistant clones.
Intrinsic resistance to rapamycin has been shown in glioblastoma
cells and colon adenocarcinoma that have very low 4E—BP1.“4 For
example, 4E—BP1 is barely detected in HCT8 colon carcinoma cells
that are highly resistant to rapamycin (IC50 > 10,000 ng/ml). \X/hen
4E—BP1 is overexpressed, these cells become sensitive (IC50 < 10

ng/ml) to rapamycin, Figure 6.114 These data suggest that low levels
of 4E—BPI results in de—regulation of eIF4E, conferring rapamycin
resistance.

These results suggest that rapamycin—regulation of the eIF4E
pathway is crucial in inducing growth arrest. Further de-regulation
of eIF4E may facilitate a malignant phenotype. Of interest is that
both rapamycin—resistant and —revertant cells exhibited elevated
c—MYC levels, and increased anchorage—independent growth. That
deregulation of the eIF4E pathway is associated with increased
malignancy is supported by certain clinical observations that dereg-
ulation of the eIF4E pathway does promote tumor progression.“6
In addition to decreased 4E—BP1 expression, as described above,
increased eIF4E levels may also cause de—regulation of eIF4E. In
advanced head and neck carcinoma,“7 breast carcinoma“8 gas-
trointestinal carcinoma,119 and peripheral carcinoma of the lung120
eIF4E levels are elevated. However, levels of 4E—BPI suppressor
proteins have not been reported in a consistent manner. Potentially,
the ratio of 4E—BP:eIF4E may determine whether inhibition of
mTOR elicits a biologically significant tumor response. Further
studies will be necessary to determine if this ratio has predictive
value for drug sensitivity of tumors.
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Figure 6. Overexpression of 4E-BF‘ abrogates resistance to rapamycin. (A)
Western blot analysis of 4E-BP, e|F4E, and tubulin (loading control] in cell
lines that have different intrinsic sensitivities to rapamycin. Colon carcinoma
cell lines CaCo2, GC3/cl, HCT8, HCT29, HCTi lo, and VRC5/cl are
intrinsically resistant to rapamycin, with |C5O concentrations > 1200 ng/ml.
Pediatric solid tumor lines 5J—G2 (glioblastoma) and Rhl 8 and Rh30 (rhub-
domyosarcoma) are sensitive to rapamycin (|C50 < 1 ng/ml). (B) Expression
of 4E-BP and e|F4E in HCT8 clones stably transiected with a 4E-BP expres-
sion plasmid (pcDNA3-PHAS-I). Expression of 4E-BP was greater in clones
C2, C4, and C5 than in parental HCT8 cells, but expression of was similar
in parental and Cl and C3 transfected clones. (C) Sensitivity to rapamycin.
Cells were plated at low density in increasing concentrations of rapamycin,
and colonies were counted after 7 days of exposure to rapamycin. Symbols:
Parental HCT8 (O) and clones Cl (0), C2 (I), C3(E|), C4(A), and C5(A).
(Adapted from Dilling et al. 20O2ll4).
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Mutations in S6K1. Ribosomal S6K1 is the other principal
downstream effector of mTOR. Inhibition of mTOR by rapamycin
primarily inhibits phosphorylation of Thr389 in the regulatory

domain.“ However, since phosphorylation of S6K1 is hierarchical
with phosphorylation of several other sites dependent on phospho-

rylation ofThr389,64 rapamycin in vivo influences phosphorylation
of other sites, including Thr229 in the catalytic domain, and S404
in the regulatory domain.67 Mutation ofThr3899Glu abrogates the
ability of rapamycin to inhibit S6K1 activation.67’121 Similarly,
substitution of Thr229 by either a neutral amino acid Alanine
(Thr2299Ala) or by an acidic amino acid Glu (Thr2299Glu),
renders S6K1 insensitive to rapamycin.122 In addition, deletion of
the 77 N—terminal codons (AN77) confers rapamycin resistance.123
Of note truncation of the first 54 residues of N—terminus blocks the

serum—induced phosphorylation of three rapamycin—sensitive sites,

Thr229, Thr589 and Ser404, causing rapamycin insensitivity.67
\Whether this results in resistance to the growth inhibitory effect of
rapamycin is less clear, and may be cell context specific.

Mutations of PP2A—Related Phosphatases. The regulation of
protein phosphatase activity is thought to be a major mechanism of
Tor signaling in yeast. Rapamycin resistance caused by mutations of
PP2A—related phosphatases was first studied in S. cerez/ixizze. PPHZI
and PPH22 encode catalytic—subunits of PP2A (Pp/721 and Pp};22),
whereas TPD3 and CDC55 respectively encode the 64 l<Da A-sub-
unit and 60 kDa B—subunit. Tap42 is the yeast homologue of mam—
malian 014, and Sit4 is the yeast homologue of PP6, and the catalyt-
ic subunit of a PP2A—related phosphatase in yeast. Under conditions
of abundant nitrogen Tor negatively regulates Sit4 by promoting
binding to the inhibitor protein Tap42. Under conditions of starva-
tion or rapamycin treatment Sit4 dissociates from Tap42 leading to
dephosphorylation of the Gln3 transcription factor and nuclear
localization. Strains overexpressing isogenic tap42—II mutants were
almost completely resistant to rapamycin.“ In addition, overexpres—
sion of Sit4, but not Pph21, also resulted in weak rapamycin resist-

ance.46 The mechanism of rapamycin resistance in this case is still
unknown. More recently a Tap42 interacting protein, Tip41, has
been demonstrated to negatively regulate the Tor signaling pathway.
Deletion of TIP4I confers rapamycin resistance, suppresses the 1211742
mutation, and prevents rapamycin—induced dissociation of Sit4 from
Tap42.47 Similarly, mutations or deletion of either TPD3 (encoding
Tpd3, A subunit) or CDC55 (encoding Cdc55, B subunit), which
regulate Pph21/22 activity, conferred rapamycin resistance.124 These
zpdfi or £41555 mutants encode proteins that failed to compete with
Tor—phosphorylated Tap42 binding to Pph21/22 catalytic—subunit,
resulting in increased association ofTap42 with Pph21/22.124 These
findings indicate that Tap42, Sit4 and PP2A—related phosphatases
are downstream effectors of Tor proteins, and mutation or deletion
may confer rapamycin resistance.

Several Ser/Thr protein phosphatases, such as PPZA, PP4 and
PP6, have been identified as the components of mTOR signaling
pathway in mammalian cells.73 Mammalian PP2A is composed of a
common core dimer of a 39 kDa catalytic C—subunit (PP2Ac) and a
65 kDa A-subunit associated with diverse distinct regulatory
B—subunits (50~130 kDa). Studies of mammalian cells also indicate

that association of 0L4, the mammalian homologue of Tap42, with

PPZA, PP4, and PP6 is related to rapamycin sensitivity.125’126 For
example, in rapamycin—sensitive Jurkat cells, rapamycin caused
dissociation of a4 from PP2Ac, whereas in rapamycin—resistant Raji
cells, rapamycin did not affect association of 014 with PP2Ac.126 In
Jurkat cells overexpression of (14 conferred rapamycin resistance,126
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further demonstrating that these PP2A—related phosphatases are
novel rapamycin—sensitive targets. Surprisingly, in contrast to results
in yeast where dissociation of Sit4 from Tap42 increases phosphatase
activity, in mammalian cells rapamycin treatment inhibits cell pro-
liferation by decreasing PPZA activity through dissociating 0.4 from

PP2Ac.126 This suggests that PPZA may positively regulate cell pro-
liferation under certain conditions. However, other studies127 do not

demonstrate rapamycin—induced dissociation of OL4 from PPZA or

PP6. Recent data128 indicate that mTOR may coordinately regulate
several phosphatases in rhabdomyosarcoma cells. Rapamycin treatment
causes a rapid increase in PPZA activity and a concomitant decrease in
PPS activity. Of interest is that both events are dependent on the
expression of 4E—BPl. At this time the significance of (14 remains
controversial, however it is clear that in both yeast and mammalian
systems alterations in the regulation of protein phosphatases down-
stream of Tor can confer cellular resistance to rapamycin.

Defective Regulation of p27KiP1. In starved cells that are serum
stimulated the cyclin dependent kinase inhibitor p27KiP1 is down-
regulated and cells progress through G1 phase to enter DNA repli-
cation. Prevention of mitogen-stimulated downregulation of
p27Kip1 level by rapamycin suggests that p27KiP1 is involved in the
antiproliferative activity of rapamycin.129’130 Rapamycin resistance
linked to defective regulation of p27KlP1 has been described.“5
Perhaps the most compelling evidence to link p27KlP1 and
rapamycin sensitivity is the partial resistance to antiproliferative

activity of rapamycin found in p27’/' mouse embryo fibroblasts and
p27"/‘ splenic T lymphocytes. Partial resistance may indicate that
there are p27—dependent and —independent pathways that determine
rapamycin sensitivity. The other association comes from cells with
acquired resistance to rapamycin. Prolonged culture of BC3H1
murine myogenic cells in the presence of rapamycin without any
induced mutagenesis resulted in rapamycin—resistant clones.
Rapamycin resistant cells exhibited abnormally low p27KiP1 protein
due to a high rate of ubiquitin—independent degradation.
Importantly, p27KiP1 in these resistant cells could not be regulated,
since it was neither reduced in response to serum nor augmented in
response to rapamycin. As a result, pRb phosphorylation was
blocked by rapamycin in parental MC3HI cells but not in resistant
cells. Rapamycin inhibited proliferation or [3H]—thymidine incorpo-
ration to a greater extent in parental BC3HI cells than in resistant
cells. However, in some mammalian cells rapamycin inhibits growth
without apparent stabilization of pZ7KiP1. Whether other cdk inhi-
bitors are involved in rapamycin sensitivity remains to be determined.

Mutations of ATM. Recent studies have shown rapamycin
resistance in fibroblasts with mutation in the ataxia telangiectasia
pathway.131 ATM (ataxia telangiectasia, mutated) is a 370—kDa
protein kinase, which is encoded by the gene mutated in the human
genetic disorder ataxia—telangiectasia (A—T) characterized by neuronal
degeneration, immunodeficiency, sterility, genomic instability, cancer
predisposition, and radiation sensitivity.132 Like mTOR, the C—ter—
minal sequence of ATM is highly homologous to the catalytic
domain of PI3—kinase.133’134 Three A—T cell lines were significantly
more resistant to cell killing by rapamycin than wild type cells, but
more sensitive to the PI3—kinase inhibitor wortmannin.141

Mutations at certain residues of ATM did not determine rapamycin
resistance or wortmannin sensitivity, since three A—T cell lines
exhibited different mutations in the ATM. Other findings support
rapamycin resistance in A—T cells. Rapamycin inhibited cell cycle
progression from G1 to S phase in control cells, but failed to prevent
cell cycle progression in A—T cells. Consistently, rapamycin decreased

wvvvv.landesbioscience.com Cancer Biology 8: Therapy

phosphorylation of cdk2 and cdk2 kinase activity in wild type cells,
but did not affect activation of cdk2 in A—T cells. Although ATM is
not the direct target of FKBP—rapamycin complex, a number of
other proteins (50—200 kDa) were augmented in their binding to
the rapamycin—FKBP complex in the A—T cell lines.131 The authors
proposed that increased resistance to rapamycin in A—T cell lines
could be due to alteration in the level of a target protein as a conse-
quence of loss of ATM. In contrast, early passage murine embryo
fibroblasts derived from ATM‘/' mice are not resistant to rapamycin
relative to wild type fibroblasts (our unpublished data). Thus the
null phenotype is distinct from the ATM mutant cells. As the ATM
cells have genetic instability it is possible that the reported resistance
to rapamycin is a consequence of additional mutations and not related
directly to defects in ATM signaling.

Mutations of 14-3-3. The 14-3-3 proteins are a highly conserved
family of scaffolding and adaptor proteins, with a molecular mass
ranging from 27 to 32 kDa. 14-3-3 proteins bind to Ser/Thr—phos—
phorylated residues in a context specific manner.135 These proteins
participate in cell cycle control, signal transduction and apoptosis by
regulating protein—protein interactions, subcellular localization of

proteins, and enzyme activity.136 In S. cerevisiae, Bmhl and Bmh2
are two homologues of the mammalian 14—3—3 proteins and act as
multicopy suppressors of the growth—inhibitory phenotype caused
by rapamycin.137 Overexpression ofBMHI or BMH2 alone conferred
rapamycin resistance, whereas disruption of BMHI and/or BMH2

sensitized the yeast to rapamycin.137 Interestingly, overexpression of
three human 14—3—3 isoforms ([3, 17 and 7]) in the yeast also conferred
rapamycin resistance. The results suggest that the rapamycin—sensi—
tive function of 14-3-3 proteins is conserved from yeast to human
and is isoform—independent. Single or double mutations of BMHI
(Leu2329Ser and Gly559Asp) resulted in a dominant rapamycin
resistant phenotype. The mechanism by which 14—3—3 proteins cause
rapamycin resistance is not known. However, since the yeast Tor
proteins lack consensus sites for 14—3—3 binding, Tor proteins could
not directly associate with Bmhlp or Bmh2p. Thus, direct interfer-
ence by Bmhlp and Bmh2p with FKBP—rapamycin binding to Torl
and Tor2 in the budding yeast may be excluded. Additional studies
are necessary to address whether a direct interaction between l4—5—3
proteins and a downstream effector ofTor proteins, or perhaps other
mechanisms confer rapamycin resistance.

CONC|.USIONS

The Tor signaling pathway is highly conserved between budding
yeast and mammalian cells. In S. cerevisiae Tor acts to sense nutri-
tional status, and regulates response to starvation through well
defined pathways. In mammalian cells these pathways are less
defined. However multi—protein complexes identified in yeast appear
conserved in mammalian cells, and some elements of downstream

signaling in yeast are recapitulated in higher eukaryotes. Yet, despite
extensive studies it remains unclear why inhibition of mTOR results
in retardation or arrest of cells in G1 phase of the cell cycle, or in
some instances induction of apoptosis. Nor do we yet fully understand
why loss of tumor suppressor such as PTEN or p53, or overexpression
of certain oncogenes alters the sensitivity of cells to rapamycins.
Despite these uncertainties, it is clear that mTOR signaling is critical
for proliferation of many cancer cells in vitro, and for tumor growth
in vivo. Also of importance is evidence suggesting that mTOR may
control certain characteristics of malignancy, such as anchorage-
independent growth, and angiogenesis through control of HIF—10t.
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However, in this era of molecularly targeted therapies for cancer, it
will be important to relate target inhibition to tumor response. As
reviewed here, there are several mechanisms of resistance to

rapamycin that lie downstream of mTOR. Hence, target inhibition
per se may not necessarily relate to cellular response to rapamycins
currently under clinical evaluation.
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