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10.1. SOLUBILITY AS AN EQUILIBRIUM CONSTANT

The topic of solubility merits special attention because of its great importance in

pharmaceutical systems. We can generally anticipate that a drug must be in solution

if it is to exert its effect. Typically the type of system we encounter is a pure solid

substance (the solute) in contact with a pure liquid (the solvent). We allow

equilibrium to be achieved at fixed temperature and pressure, such that at equili-

brium the system consists of (excess) pure solid phase and liquid solution of solute

dissolved in solvent. According to Gibbs’ phase rule, P = 2 and C = 2, so

F = C — P —|— 2 = 2 degrees of freedom. These are the temperature and pressure,

which we have specified as fixed. Thus there remain n0 degrees of freedom;

the system is invariant. This means that at fixed temperature and pressure, the con-
centration of dissolved solute is fixed. We call this invariant dissolved concentration

the equilibrium solubility of the solute at this pressure and temperature. (We say

that the solution is saturated.) Our present concern is with how the equilibrium

solubility depends on the temperature and on the chemical natures of the solute
and the solvent.

Expressed as a reaction, the dissolution process is

Pure solute : solute in solution

At equilibrium the chemical potentials of the solute in the two phases are equal, or,

letting component 1 be the solvent and component 2 the solute

I12 (solid) : I12 (soln)

1 1 6
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THE IDEAL SOLUBILITY 117

Writing out the chemical potentials gives

“‘2’ (solid) + RT ln a2 (solid) : u; (soln) + RT In 612 (soln) (10.1)

where the standard state of the solid is the pure solid, and we will adopt as the

standard state of the solute in solution the Henry’s law definition on the molar

concentration scale. Rearranging Eq. (10.1) leads to

a2 (soln)
Au° : —RT In (10.2)

oz (solid)

where Aug 2 pg (soln) — u; (solid). But the solid is in its standard state, so

(12 (solid) : 1.0 by definition, and we obtain

A110 2 —RTlna2 (soln) (10.3)

We have seen that a2 (soln) is invariant—it is the activity corresponding to
the equilibrium solubility—so comparison of Eq. (10.3) with the fundamental

thermodynamic result

AG" 2 —RTan (10.4)

leads to the conclusion that a2 (soln), the activity of the solute in a saturated
solution, must have the character of an equilibrium constant. As a consequence,

we can evaluate standard free energy, enthalpy, and entropy changes for the solution

process in the usual manner (Chapter 4). These quantities are respectively called the

free energy, heat, and entropy of solution.

For nonelectrolyte solutes, particularly those of limited solubility, so that the

saturated solution is fairly dilute, it will be acceptable to approximate the activity

a2 (soln) by the equilibrium solubility concentration. This is usually in molar

concentration units, and is often symbolized s.

10.2. THE IDEAL SOLUBILITY

A thermodynamic argument can predict the equilibrium solubility of a nonelectro-

lyte, provided it dissolves to form an ideal solution. Ideal behavior does not mean

that intermolecular interactions are absent. On the contrary, solids and liquids

would not exist without the intermolecular forces of interaction. In the present

context, ideal behavior means that the energy of interaction between two solvent
molecules is identical to that between one solvent and one solute molecule, so

that a solvent molecule may be replaced with a solute molecule without altering

the intermolecular energies. (This requires that the solvent and solute molecules

have the same size, shape, and chemical nature, a demanding set of limitations.)
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1 18 SOLUBILITY

Quantitatively, an ideal solution can be defined as one having the following proper-

ties (Chapter 7):

AHmix = 0 (10.5)

AVmix = 0 (10.6)

ASmix = —R(X11I1X1 +X21I1X2) (10.7)

According to Eqs. (10.5) and (10.6), there is no heat or volume change on mixing

the solute and solvent in an ideal solution, and the entropy change is given by

Eq. (10.7). Since an +x2 = 1, the logarithmic terms are necessarily negative, so

ASmix is positive, and this constitutes the “driving force” for dissolution, because

of the relationship AG 2 AH — TAS.

If the entropy of mixing is the driving force for dissolution, what is the “resis-
tance”? It is the solute—solute interaction forces, which, for solids, lead to the

“crystal lattice energy.” These must be overcome for the solute to dissolve.

Now, the free-energy change for the dissolution process is the same no matter

what reversible mechanism (path) is taken to pass from the initial state (pure solute)

to the final state (saturated solution), so we can divide the process as follows (for a

solid solute):

Crystalline solute \— supercooled liquid solute

Pure liquid solvent \— solvent containing cavity

Supercooled liquid solute F saturated solution

+ solvent-containing cavity

Crystalline solute + pure liquid solvent ;‘ saturated solution

Since in an ideal solution the solvent—solvent interactions match the solvent—solute

interactions, the energy required to create molecule-sized cavities in the solvent is

offset by the energy recovered when the solute molecules are inserted into these

cavities. The energetic cost of the dissolution process then appears in the first

step, the melting of the solid. An equivalent viewpoint (Grant and Higuchi 1990,

p. 16) is that the enthalpy of solution is given by

AI'Isoln : AIifusion + AI'Imix

But AHmix : 0 for an ideal solution, so AHSOIn : AHfusion.

The saturation solubility, we have seen, is an equilibrium constant, so the van’t

Hoff equation [Eq. (4.29)] is applicable

(11an _ AHf
dT _ RT2

 

(10.8)

where the solubility is expressed as the mole fraction simply to maintain con-

sistency with Eq. (10.7), and where AHf is the heat of fusion and T is the absolute
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temperature. We have seen above why the heat of fusion appears in a solubility

expression. (Incidentally, a dissolved solid should be viewed as possessing some

of the properties of the liquid state, consistent with the above view that fusion is

the first step in the dissolution process.) Now suppose that AHf is independent

of temperature, which is equivalent to writing, for the solute from Eq. (1.23):

ACp = €1qu — c;°“d = 0 (109)

Then integrating Eq. (10.8) from Tm to T gives

1an = —% (Tm _ T) (1010)R Tr,"

 

where Tm is the melting temperature and T is the experimental temperature.

Equation (10.10) allows us to calculate the ideal solubility.

Example 10.1. The melting point of naphthalene is 802°C, and its heat of fusion at

the melting point is 4.54 kcal mol‘l. What is the ideal solubility of naphthalene
at 20°C?

Log x2 2 —4540 cal mol‘l < 60.2 K >(2.303)(1.987 cal mol’lK’l) 353.35 K x 293.15 K
= —0.577

x2 = 0.265

Deviations from ideality will be manifested by discrepancies from the ideal solubi-

lity as calculated with Eq. (10.10). Table 10.1 lists equilibrium solubilities for

Table 10.1. Naphthalene solubility at 20°C

Solvent x2

(Ideal) 0.265
Chlorobenzene 0.256
Benzene 0.241

Toluene 0.224
Carbon tetrachloride 0.205
Hexane 0.090
Aniline 0. 130
Nitrobenzene 0.243
Acetone 0. 183

n-Butanol 0.0495
Methanol 0.0180
Acetic acid 0.0456

Water (25°C) 0.0000039
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naphthalene in many solvents. Observe that those solvents most chemically like

naphthalene, that is, aromatic and nonpolar solvents, show behavior most closely

approximating ideal behavior.

At the melting temperature Tm the solid and liquid forms of the solute are

in equilibrium, so AG,« 2 0 and we get AHf = TmASf, giving Eq. (10.11) as an

alternative form of Eq. (10.10):

mm, — T) 1.11
RT (0 )lIle = —

10.3. TEMPERATURE DEPENDENCE OF THE SOLUBILITY

Since AHf is always a positive quantity, Eq. (10.10) predicts that the solubility of

a solid will increase with temperature. Moreover, Eq. (10.10) shows that if two solid

substances have the same heat of fusion, the one with the higher melting point will

have the lower solubility. Conversely, if they have the same melting point, the one

with the lower heat of fusion will have the higher solubility. All of these inferences

from Eq. (10.10) refer to systems forming ideal solutions, so deviations from the

predictions can occur for real systems. Nevertheless, the increase of solubility

with temperature is very widely observed for solids. Even the relationship of solu-

bility to melting point can be a useful guide, though confounding phenomena can

introduce complications; for example, hydrogen-bonding or other polar interactions

may raise both the melting point and the aqueous solubility. The comparison of the

temperature dependence of solubility of solids and gases is instructive; see
Table 10.2.

Equation (10.10) can be rearranged to Eq. (10.12):

AHf AHf 10.12
RT +RTm ( )lnxz = —

Table 10.2. The contrary effects of temperature on the solubilities of solids and gases

ShdAH‘l. .dAHv
01 : 1111 w: as

q Amg

Solids Gases

Solution is the process of Solution is the process of
passing from solid to liquid passing from gas to
(fusion, AHf) liquid (condensation, AHC), which

is the reverse of vaporization (AHU)

AHf is positive, so x2 increases AH“ is positive, so AHc is negative; thus x2
as Tincreases decreases as T increases
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Inx2 
1/T

Figure 10.1. Hypothetical solubility van’t Hoff plots for polymorphs.

If AHf is essentially constant over the experimental temperature range, Eq. (10.12)

predicts that a plot of In x2 against 1 /T will be linear with a slope equal to

—AHf/R. The line should terminate at the melting point, where 1 /T = 1/Tm. Often
such lines are straight, probably because the usual range of temperatures is small.

The slope gives AHf in principle, but in actuality the quantity evaluated from the

slope is not precisely AHf because the solution is seldom ideal, and instead the

quantity found in this way is termed the heat of solution.

Throughout this discussion we have been assuming that the solid phase consists

of the pure solid and not a solid solution. Another possible complication arises if

the solid substance can exist in two crystalline forms (polymorphs; Chapter 6),

which interconvert at transition temperature T[. The van’t Hoff plot can resemble

Fig. 10.1a or Fig. 10.1b depending primarily on the kinetics of the transformation.

In Fig. 10.1a, the two forms are sufficiently stable that their solubilities can be

separately measured at the same temperatures, which are below the transition

temperature. Nevertheless, the crystal form having the higher solubility (at a given

temperature) is thermodynamically unstable (it is said to be metastable, since its

kinetics of transformation permit it to exist for some period during which it acts

as if it were stable), and will ultimately be converted to the stable form. Extrapola-

tion of the lines to the transition temperature may be possible. Sulfathiazole in 95%

ethanol shows the Fig. 10.1a behavior (Milosovich 1964; Carstensen 1977, p. 7).

In Fig. 10.1b, one form exists in one temperature range, the other form in a

temperature range on the other side of TI. The melting point observed will be that

of the higher-melting polymorph. Carbon tetrabromide exemplifies this behavior

(Hildebrand et a1. 1970, p. 23).
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Let us return to the assumption that the change in heat capacities, AC , is zero,

for all the subsequent discussion was based on this assumption. If AHf in fact is a

function of temperature, then ACI, is not zero. Suppose we make the more reason-

able assumption that ACI, is a nonzero constant, and write AHf as

AHf 2 AH?“ — AC,,(Tm — T) (1013)

where AH;n is the heat of fusion at Tm. Equation (10.13) is inserted into Eq. (10.8),
which can be rearranged and integrated to give Eq. (10.14):

. —AHm Tm — T AC Tm — T AC Tm
111x; = f + " — ”111— (10.14)

R TTm R T R T

     

This equation is useful for assessing the error that may be introduced by making the

simple assumption ACI, = 0. Suppose, for example, that the experimental tempera-
ture is 25°C and the melting point is 100°C. Then the last two terms in Eq. (10.14)

become equal to 0.25ACp/R — 0.22 ACp/R : 0.03ACp/R. Thus considerable

compensation can take place, making the approximation ACI, : 0 more acceptable
than it might have seemed.

Example 10.2. These are solubility data for nitrofurantoin in water (Chen et al.

1976). Analyze the data to obtain the heat of solution.

I (0C) 105;;2

24 6.01

30 8.57

37 13.16

45 18.99

The data are manipulated as required to make the van’t Hoff plot according to

Eq. (10.12):

T (103K) log x2

3.37 —5.22

3.30 —5.06

3.23 —4.88

3.14 —4.72

The plot is shown in Fig. 10.2. It is possible that the points describe a curve, but this

is uncertain with the data as given, for conceivably the scatter is a consequence of

experimental random error. A straight line has therefore been drawn. Its slope is
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logX2

3.1 3.2 3.3 3.4

103/ T

Figure 10.2. van’t Hoff plot for nitrofurantoin solubility.

—2300 K, so we calculate

AHsoln = (2300 K)(1.987 cal mol’l K”)

= 4570 cal mol‘l

= 4.57 kcalmol‘l

= 19.1 kJ mol’1

Note that the enthalpy change is labeled AHsoln to indicate explicitly that this is a
heat of solution.

10.4. SOLUBILITY OF SLIGHTLY SOLUBLE SALTS

Many salts exhibit very low solubilities in water. Silver chloride is an example;

if aqueous solutions of silver nitrate and sodium chloride are mixed, solid silver

chloride precipitates. It is conventional to describe this process as the reverse of

the precipitation reaction, namely, as the dissolution of the salt. Let us begin

with the simplest case of a 1 2 1 sparingly soluble salt MX. The solid crystalline

form is ionic. When it dissolves in water the ions dissociate, and no ion pairs are

detectable. We therefore write the equilibrium as

MX(s) : M+ + x— (10.15)

Proceeding as we have done for several earlier processes, we equate the chemical

potentials of the solid and the dissolved solute at equilibrium:

u<s> = u<soln>
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Expanding these gives

u°(s) + RTlna(s) = u: +RTlna+

+ u: +RTlna_

and collecting terms (and noting that a(s) = 1 by our standard state definition),

A}? 2 —RT lna+a, (10.16)

where Au" : 111+ 11‘: — u°(s). Evidently then [compare with Eq. (10.4)], the
product a+a_ is an equilibrium constant. By Eq. (8.23a) we see that a+ a_ : c122,
where a: is the mean ionic activity, and since 61?, = 721:1, Eq. (10.16) can b
written

 
     

Aw = —RT1nyEc? (10.17)   

If no extraneous ions are present, so that the ionic strength is due solely to the ions

from the sparingly soluble salt (and hence is very low), the activity coefficient term

is essentially unity. Moreover, the molar concentrations of the cation M+ and the

anion X‘ are equal, and each is numerically equal to the equilibrium molar

solubility of the salt, which is commonly denoted s. Thus Eq. (10.17) becomes

Aw = —RTln 52 (10.18)

Equation (10.17) is exact; Eq. (10.18) is usually a reasonable approximation, and

both implicitly define the equilibrium constant for Eq. (10.15). This constant is

symbolized Ksp and is called the solubility product. Since solubility products are

very small numbers, it is common to state them as szp, where szp = —log Ksp.

Table 10.3 lists some szp values.

Table 10.3. Solubility products for slightly soluble salts“

Salt pK,1, Salt pKg1,

BaSO4 9.96 PbCO3 13.13
CaCO3 8.54 PbS 27.9

Ca(OH); 5 .26 MgCO3 7.46
Ca3(PO4)2 28.7 HgZS 47.0

CuI 1 1.96 HgS (red) 52.4
AuCl 12.7 HgS (black) 51.8
AuCl3 24.5 AgBr 12.30
Fe(OH)2 15.1 AgCl 9.75
Fe(OH)3 37.4 Agl 16.08

“In the temperature range 18725°C; water is the solvent.
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Example 10.3. What is the solubility of silver chloride in water? From Table 10.3,

szp = 9.75 for AgCl, so K5,, = 1.78 x 10*". From Eq. (10.18), K3,, = s2, so
5 = K5,, = 1.33 x 10-5 M.

In the general case of the salt whose formula is Mqu the solubility product is
defined, in accordance with the usual formulation of equilibrium constants:

KSp = 65:46; (10.19)

The quantity that we label s then depends on the stoichiometry.

Example 10.4. What is the molar solubility of ferrous hydroxide?

From Table 10.3, szp = 15.1, or Ksp = 7.9 X 10716. The dissolution reaction is

Fe(OH)2 : Fe2+ + 20H—

so Ksp = cFecéH. (The charges on the subscripts are omitted for clarity.) Since each
molecule of Fe (OH)2 that dissolves yields one Fe2+ ion, we define the solubility as
the concentration of ferrous ion, or CFe = s. The stoichiometry yields 601.1 2 2 cFe,
so the result is1

Ksp = s X (25)2 = 453

Therefore s = 5.8 X 10’6 M.

Example 10.5. What is the solubility of silver chloride in 0.02MKCl? Assume

activity coefficients are unity.

Again we set cAg = s, the solubility. The solubility product is defined

Ksp = cAgcCl; however, the chloride concentration has been augmented by the
addition of potassium chloride, so we write cc] = 0.02 + s; that is, the chloride con-

centration is the sum from two sources, the KCl and the AgCl. We therefore have

Ksp : s(0.02 —|— s), which is a quadratic equation that can be solved for 5. Before
doing that, however, it is worth trying the approximation CC] = 0.02, which involves

neglecting the relatively small contribution from dissolution of the AgCl. Thus

K,,, = 0.02s = 1.78 x 10—10

s = 8.9 x 10‘9M

First note that the approximation seems well justified. More interestingly, observe

that the solubility of silver chloride has been reduced from about l x 10’5 M in

water (Example 10.3) to about l x 10‘8 M in 0.02 M KCl. This is an example of
the common ion efi‘ect. The solubility of any slightly soluble salt can be reduced by

adding an excess of one of its constituent ions.

The accuracy of such calculations can be improved by making use of the Debye—

Hiickel equation to estimate the values of mean ionic activity coefficients.
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10.5. SOLUBILITIES OF NONELECTROLYTES: FURTHER ISSUES

Salt Effects. In Example 10.5 we encountered one type of salt effect. There is

another type of salt effect that is observed when the solubility of a nonelectrolyte

is studied as a function of ionic strength (or of the concentration of an added

electrolyte). Compare the nonelectrolyte solubility in the absence and presence

of added salt. Since the solid solute is present in both cases

u(solid) 2 ”(CS 2 0) = “(09

where cs is the concentration of added salt. Therefore a(cS : 0) : a(cs), or

so'yo = .97 (10.20)

where so and s are the solubilities in the two cases. Thus 7/70 = 50/5; and since

70 = l is a reasonable assumption, 7 = so/s, and we have a method for measuring

nonelectrolyte activity coefficients. Moreover, it is found experimentally that the

quantity log (so/s) often varies linearly with cs, or

Logs—0 = kscs (10.21)S

If so/s > 1, then kS is positive, and the nonelectrolyte is said to be “salted out”; if

so/s < 1, then kS is negative, and the solute is “salted in.” These are called the
“salting-out and salting-in effects,” and the constant kS is known as the Setschenow
constant.

Regular Solution Theory. We have seen that an ideal solution has thermody-

namic mixing quantities AHmix = 0 and ASmix = —R(x1 In x1 + x2 ln x2). A regular
solution is defined to be one having an ideal entropy of mixing but a nonideal

enthalpy of mixing. Recall also that the ideal solubility of a nonelectrolyte (i.e.,

the solubility when a nonelectrolyte forms an ideal solution) is given by

lnxz = _AHf T'“ _ T (1022)
R TTm

  

where ACI, is assumed to be zero or negligible. The molecular interpretation of an
ideal solution is that the energy of interaction of a solute molecule with a solvent

molecule is identical with the energy of interaction of two solvent molecules.

The molecular interpretation of regular solution theory is quite different; in

regular solution theory the energy of 1—2 interactions (where l is the solvent, 2

is the solute) is approximated as the geometric mean of l—l and 2—2 interaction

energies, or2

U12 = (U11U22)1/2 (10.23)
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This approximation results in regular solution theory being applicable mainly to

fairly nonpolar systems, that is, nonpolar nonelectrolytes dissolved in nonpolar

solvents. For our present interest, the essential result (Hildebrand and Scott 1964,

p. 271) of regular solution theory is embodied in Eq. (10.24), which may be

compared with Eq. (10.22):

  

(231 — 52)2 (10.24)AHf (Tm — T) V20?lIle = —— —
R TTIn

where V2 is the molar volume of solute and (p1 is the volume fraction concentration

of solvent in the solution. The quantities 51 and 52 are the solubility parameters of the

solvent and solute. These are physical properties with the following significance.

The term AHvap, the molar heat of vaporization, is the enthalpy required to effect
the transformation of one mole of liquid to its vapor state. During this process all

the solvent—solvent interactions (which are responsible for the existence of the

liquid phase) are overcome. A quantity called the cohesive energy density (CED)
is defined

AHvap — RT
CED = (10.25)

where V is the molar volume of the liquid. We anticipate, and we find, that liquids

with strong intermolecular interactions (especially polar “associated” liquids

having the potential for strong dipole—dipole and hydrogen-bonding interactions)

have larger ced values than do nonpolar liquids. Table 10.4 lists some CED values.

Because of the manner in which CED appears in regular solution theory equa-

tions, Hildebrand (Hildebrand et a1. 1970; Hildebrand and Scott 1964, p. 271)

defined the solubility parameter 5 by Eq. (10.26). Table 10.4 also gives 5 values.

5 = (CED)‘/2 (1026)

Referring now to Eq. (10.24), note that if 81 = 52, we recover Eq. (10.22) for the

ideal solution; in other words, the condition 51 = 52 is equivalent to the condition

AHmix = 0. The greater the difference 51 — 52 (or of 52 — 51, because the differ-

ence is squared), the greater the deviation from ideality, and, as Eq. (10.24) shows,

the lower the solubility that is predicted. This provides a guide for experimental

design; to achieve maximal solubility according to regular solution theory, strive

to equate the solubility parameters of solvent and solute. Since the solute identity

is usually established by the nature of the problem, the experimental variable is the

solvent identity. Sometimes mixed solvent systems function better than do pure sol-

vents for this reason. For example, a mixture of ether (5 = 7.4) and ethanol

(5 = 12.7) dissolves nitrocellulose (5 = 11.2), although neither pure liquid serves

as a good solvent for this solute.3
Although the cohesive energy density, and therefore the solubility parameter, is a

well-defined physical property for any solvent, regular solution theory is limited
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Table 10.4. Cohesive energy densities and solubility parameters

Solvent CED (cal cm’3) «3(ca11/2 cm‘3/2)

n—Pentane 50.2 7.0

Cyclohexane 67.2 8.2
1,4-Dioxane 96 10.0
Benzene 84.6 9.2

Diethyl ether 59.9 7.4
Ethyl acetate 83.0 9.1
Acetic acid 102 10.1

n—Butyl alcohol 130.0 11.4
n Propyl alcohol 141.6 11.9
Acetone 95 9.9

Ethanol 168 12.7
Methanol 212 14.5
Acetonitrile 141.6 1 1.9

Dimethylformamide 146.4 12. 1
Ethylene glycol 212 14.6
Glycerol 272 16.5
Dimethylsulfoxide 144 12.0
Water 547.6 23.4

(e.g., by the geometric mean approximation) to solutions of nonpolar substances. It

should therefore not be expected to apply quantitatively to polar systems such as

aqueous solutions.

Example 10.6. Predict the solubility of naphthalene in n-hexane at 20°C. The solu-

bility parameters are 51 = 7.3 and 52 = 9.9 (both in call/2 cm_3/2), and the molar
volumes are V1 = 132 cm3 mol’1 and V2 = 123 cm3 mol’l. See Example 10.1 for
additional data.

We use Eq. (10.24), which in Example 10.1 was expressed in terms of log x2. In

that form the first term on the right had the value —0.577, which we need not recal-

culate. Now we consider the second term. We lack only the quantity (p1, the volume

fraction of solvent. This appears to be a dilemma, because we cannot estimate (p1
until we know x2, which is what we want to calculate.

If we anticipate that the solute has a low solubility, it may be acceptable to make

the approximation (p1 = 1. An alternative is to take the result for an ideal solution

(Example 10.1, which gave x2 = 0.265) as a basis for estimating (p1. We will do the

problem in both ways.

(a) Let (p1 = 1. Then from eq. (10.24),

(123 cm3)(1)2(7.3 — 9.9 call/2 mr3/2)2

(2.303)(1.987 cal mol’l K-1)(293.15 K)
= —0.577 — 0.620 = —1.197

x2 = 0.064

Log x2 = —0.577 —
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(b) The volume fraction is defined as follows:

MW2— 10.27
n1V1 + 11sz ( )(P1

Suppose n1 +n2 = 1; from Example 10.1, x2 = 0.265, or n2 2 0.265 and n1 2

0.735. Using these numbers in Eq. (10.27) gives (p1 = 0.748. (Note how close

(p1 is to am, because V1 and V2 are similar.) Repeating the calculation gives

Log x2 = —0.577 — 0.335 = —0.912

x2 = 0.122

We therefore predict that x2 is between 0.064 and 0.122, and we might take the

average as our best estimate. The experimental result (Table 10.1) is x2 = 0.090.

Prediction Of Aqueous SOIubiIities. Water is the preferred solvent for liquid

dosage forms because of its biological compatibility, but unfortunately many drugs

are poorly soluble in water. To be able to predict the aqueous solubility of com-

pounds, even if only approximately, is a valuable capability because it can guide

or reduce experimental effort. Water is a highly polar and structured medium in

which nonideal behavior is commonly observed, so we must abandon hope that

the ideal solubility prediction of Eq. (10.10) will be useful, and even the regular

solution theory [Eq. (10.24)] is ineffectual in solving this problem. Effective

approaches may be guided by thermodynamic concepts, but they incorporate

much empirical (i.e., experimental) content.

Although the ideal solubility equation will not suffice to predict nonelectrolyte

solubility in water, the solute—solute interactions responsible for maintaining

the crystal lattice must nevertheless be overcome, so Eq. (10.10) will still be applic-

able as a means of estimating the solute—solute interaction. What must be done in
addition is to take account of the solvent—solvent and solvent—solute interactions,

for these will in general not offset each other. In a paper that includes a valuable

collection of solubility data, Yalkowsky and Valvani (1980) have developed a very

useful method based on this approach. They start with Eq. (10.10), which they

transform to Eq. (10.11), repeated here:

Asfm, — T) 1.2
RT (0 8)lIlX2=—

They then carry out an analysis of experimental entropies of fusion, reaching these
conclusions:

For spherical (or nearly so) molecules: ASf = 3.5 cal mol’1 K—1

For rigid molecules: ASf = 13.5 cal mol’1 K’1
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For molecules having n > 5 flexible chain atoms: ASf = 13.5 + 2.5

(n — 5) calmol’l K—1

In the following we will use only the result for rigid molecules.

Yalkowsky and Valvani then take the log P value of the solute (where P is the

1-octanol/water partition coefficient) as an empirical measure of the solution phase

nonidealities. They combine this with Eq. (10.28), convert to molar concentration,

and apply a small statistical adjustment, finally getting Eq. (10.29) for the calcula-

tion of rigid nonelectrolyte molar solubility in water at 25°C:

Log (:2 = —o.o11(:m — 25) — log P + 0.54 (10.29)

where tm is the solute melting point in centigrade degrees. For liquid nonelectro-

lytes tIn is set to 25, so the first term vanishes. Log P may be available from

experimental studies, but it may have to be estimated by methods cited in Chapter 7.

Yalkowsky and Valvani applied Eq. (10.29) to solubility data on 167 compounds

whose solubilities ranged over nine orders of magnitude, finding that the estimated

solubilities agreed with the observed solubilities to within 0.5 log unit for all but

eight compounds, and in no case was the error greater than a factor of 10. Equation

(10.29) is a very practical solution to the problem of predicting aqueous solubilities.

Amidon and Williams (1982) refined the approach of Yalkowsky and Valvani,

achieving better accuracy but at the cost of increased complexity in the equation.

Grant and Higuchi (1990) describe alternative methods of calculation that are based

on different pathways from the initial to the final state.

Equation (10.10) and equations derived from it, such as Eqs. (10.28) and (10.29),

contain the difference (Tm — T), showing that a higher melting temperature is
reflecting stronger solute—solute interactions in the solid state. As a general but

not precise rule, we may anticipate that very polar molecules (or functional

groups) will conduce to strong intermolecular interactions by means of electrostatic

forces, which for certain groups may include hydrogen bonding. Thus high

molecular polarity tends to be associated with high melting temperature, and higher

melting temperatures lead to lower solubilities, at least as they are described by

Eq. (10.10).

Now consider the special case of water as a solvent. Water is a very polar solvent

and is capable of functioning as a hydrogen bond donor and acceptor. Very polar

solute molecules will tend to interact strongly with the solvent water; these are the

solvent—solute or solvation interactions that increase solubility. But we have seen

that highly polar substances tend to have high melting temperatures, so we are

led to the tentative conclusion that melting temperature may be an approximate

indicator of the extent of solvent—solute interaction. It follows (still arguing in

this approximate mode) that the opposing factors of solute—solute (crystal lattice)

and solvent—solute (solvation) interactions are both measured by, or at least

indicated by, the same quantity, namely, the melting temperature.4 Thus in some
degree we may anticipate that these two factors will compensate each other, with

the consequence that the solubility will become essentially independent of the
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melting temperature. But then the first term in Eq. (10.29) will (approximately)

vanish, leading to a dependence solely on log P.

Correlations of log c with log P are well known (Yalkowsky and Valvani 1980;

Grant and Higuchi 1990, Chapter 8). Equations (10.30a) and (10.30b) are such

correlations, based on solubility data for compounds having a considerable range

of structural features. These equations are to be judged solely by their success in

reproducing or predicting solubilities; they are purely empirical.

Log oz 2 —log P — 1.00 (for solids) (10.30a)

Log c2 = —log P + 0.27 (for liquids) (10.30b)

A comparison of the performance of Eq. (10.29) with Eqs. (10.30) indicates that

Eq. (10.29) is slightly superior, but there are some reversals. If the solute melting

point is not available, Eq. (10.30a) offers an alternative method of estimation.

Example 10.7. Estimate the aqueous solubility at 25°C of isophthalic acid, for

which log P = 1.73 and whose melting temperature is 346°C.

With Eq. (10.29), log oz 2 —4.72; with Eq. (10.30a), log C; = —2.73. The

experimental result is log oz 2 —3.40. Evidently neither Eq. (10.29) nor

Eq. (10.30a) yields a fully satisfactory answer in this case. (Although interestingly

their average is 3.73, in error by only about a factor of 2 in the solubility cz.)

Obviously there is scope for improved methods of estimation.

Solubility in Mixed Solvents. If the equilibrium solubility of a solute in water

is too low to achieve the desired “target” concentration, a preferred approach in

many instances is to incorporate an organic solvent in the aqueous solution, in

this way increasing the solubility of the solute. This organic solvent (often called

the cosolvent) must be miscible with water, at least in the proportions used, and

if the solution is to be a dosage form, the cosolvent must be physiologically accept-

able. These requirements severely limit the cosolvent selection. But beyond this

issue is the matter of the optimal cosolvent concentration in the mixed solvent sys-

tem of water and cosolvent. As in our treatment of aqueous solubility, we seek

methods that are rapid and easy to apply, even though approximate in their

accuracy, because the calculation will always be followed by laboratory studies
to confirm or refine the numerical estimate.

If the solute and solvent molecules in a solution differ greatly in size, plots of

various experimental quantities against solvent composition tend to be more sym-

metrical when solvent composition is given in volume fraction than in mole fraction

(Williamson 1967, p. 44). This observation forms the basis of a model proposed by

Yalkowsky and Rubino (1985). For these three-component systems, let water be

component 1, the cosolvent component 2, and the solute component 3. The molar

solubility of solute in water is written (C3)1 and its molar solubility in pure

cosolvent as (C3)2. In solvent of any composition the solute solubility is written
C3. Then the Yalkowsky—Rubino model becomes

L08 C3 = (P1108 (C3)1 + (P2108 (C3)2 (10.31)
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where (p1 and (p2 are the volume fractions of water and cosolvent, respectively.

Since (p1 + (p2 = 1, an equivalent form of Eq. (10.31) is

Log C3 = (P2[10g(C3)2 _ 10g (C3)1l + log (C3)1 (10.32)

This equation predicts that log C3 will be a linear function of (p2.

Equation (10.31) is a postulate. It can be described as a linear combination

model, or as a weighted average; that is, log C3 is postulated to be an average of

log (C3)1 and log (C3)2, each of these making a contribution according to (weighted
by) its volume fraction.

The procedure for testing and using this model is simple. On a graphical scale of

(p2 one plots log (C3)1 at (p2 = 0.0 and log (C3)2 at (p2 = 1.0. These points are
connected by a straight line, which is the graphical representation of Eq. (10.32).

A test of the model consists of plotting experimental solubilities at intermediate

values of (p2 to learn how well they agree with the straight-line prediction. Alter-

natively, if (as is usually the case) such data are not available, the model is assumed

to be (approximately) valid, and that value of (p2 is read off the line that will achieve

a desired target solubility. It is not necessary to carry this operation out graphically,

for by rearrangement of Eq. (10.32) we obtain

log C3 — log (C3)1

:10g(c3)2 — 10g (C3)1 (10.33)(P2

With this equation the required volume fraction of cosolvent can be calculated,

according to this model.

Figure 10.3 shows solubility data for the system water (1)—ethanol (2)-naphtha—

lene (LePree et al. 1994). The straight line connecting the extreme points constitu-

tes the linear combination model, Eq. (10.32); the points are experimental.

Obviously the points do not describe a straight line, so in this sense, and for this

system, the model does not appear to be valid. On the other hand, as an approximate

guide to the dependence of solubility on solvent composition it may be helpful to

the experimentalist, and it is in this sense that the model should be judged. It is not a

precise description of physicochemical behavior, but rather is a useful tool in

formulation development.

Example 10.8. Propose a water/ethanol mixed solvent composition that will

dissolve 2.5 mg mL_1 of naphthalene. The solubility of naphthalene in water is
2.14 x 10‘4 M, and in ethanol it is 0.675 M.

The target concentration of 2.5 mg mL‘1 is equivalent to 2.5 gL‘l. The mole-
cular weight of naphthalene is 128.2, so the molar target concentration C3 is

0.0195 M, or log C3 = —1.71. From the given data we have log (C3)1 = —3.67

and log (C3)2 = —0.17. Applying Eq. (10.33), we obtain

—1.71—(—3.67)
(P2 :—

—0.17 — (—3.67)
= 0.56
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log03 
Figure10.3. The linear combination model for naphthalene solubility in aqueous ethanol solutions.

Thus we predict that a volume fraction of 0.56 ethanol will dissolve the target

concentration. This result could also have been obtained by reading from the

straight line of Fig. 10.3. It is interesting to note, from the experimental points

in Fig. 10.3, that a volume fraction (p2 = 0.51 will actually dissolve the target
concentration.

More accurate models of solvent effects are available, but these require much

experimental effort and are computationally more elaborate.

PROBLEMS

10.1. The melting point of benzoic acid is 122.4°C, and its heat of fusion is

4.44 kcal mol’l. Calculate its ideal solubility at 25°C.

10.2. From the data in Example 10.2, convert the mole fraction solubilities to molar

solubilities, construct the van’t Hoff plot, and evaluate the heat of solution.
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10.3. Derive an equation relating the molar solubility of calcium phosphate to its

solubility product, and calculate its molar solubility.

10.4. A solution containing NaBr, NaCl, and NaI is titrated with silver nitrate

solution. Predict the order in which the silver halides will precipitate.

10.5. Predict the solubility of iodine in carbon tetrachloride at 25°C. The melting

point of iodine is 113.6°C, its heat of fusion is 3.71 kcal mol_1, its molar
volume is 59 cm3, and its solubility parameter is 14.1. The solubility
parameter of carbon tetrachloride is 8.6.

10.6. Predict the molar solubility of progesterone in water at 25°C. The melting

point of progesterone is 131°C and its log P value is 3.87.

10.7. The solubility of naphthalene in water at 25°C is 2.14 x 10‘4 M, and its
solubility in dimethylsulfoxide (DMSO) is 1.920 M. Estimate the mixed

solvent composition required to dissolve 4 mg mL‘1 of the solute.

NOTES

1. Equations like this one in Example 10.4 are easily solved by a logarithmic technique. We have

7.9 X 10’16 = 453, or 1.975 X 10’16 = 53. Take logarithms of both sides, obtaining
—15.70 = 3 logs, or —5.235 = logs. The antilogarithm gives 5.

2. The arithmetic mean of two numbers is (a + b)/2; their geometric mean is (ab)l/2.
3. As a strategy for optimizing solvent selection, evidently this approach requires an estimate of

the solubility parameter of the solute. There are several ways to obtain this. One method is
suggested by the example; presumably the solubility parameter of the solvent mixture that
maximizes solubility is also the solubility parameter of the solute.

4. Polarity is justone factorcontrolling the melting temperature. Symmetry is another; the more
symmetric the molecule, the higher the melting temperature (when comparing “similar”
molecules).
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