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10.1. SOLUBILITY AS AN EQUILIBRIUM CONSTANT

The topic of solubility merits special attention because of its great importance in
pharmaceutical systems. We can generally anticipate that a drug mustbe in solution
if it is to exert its effect. Typically the type of system we encounteris a pure solid
substance (the solute) in contact with a pure liquid (the solvent). We allow
equilibrium to be achieved at fixed temperature and pressure, such that at equili-
brium the system consists of (excess) pure solid phase and liquid solution of solute
dissolved in solvent. According to Gibbs’ phase rule, P=2 and C=2, so
F=C—P+2=2 degrees of freedom. These are the temperature and pressure,
which we have specified as fixed. Thus there remain no degrees of freedom;
the system is invariant. This meansthat at fixed temperature and pressure, the con-
centration of dissolved solute is fixed. Wecall this invariant dissolved concentration

the equilibrium solubility of the solute at this pressure and temperature. (We say
that the solution is saturated.) Our present concern is with how the equilibrium
solubility depends on the temperature and on the chemical natures of the solute
and the solvent.

Expressed as a reaction, the dissolution process is

Pure solute = solute in solution

At equilibrium the chemical potentials of the solute in the two phases are equal,or,
letting component | be the solvent and component2 the solute

Ly (solid) = pL, (soln)

116
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THE IDEAL SOLUBILITY 117

Writing out the chemical potentials gives

Ls (solid) + RT In ap (solid) = p5 (soln) + RT In ap (soln) (10.1)

where the standard state of the solid is the pure solid, and we will adopt as the
standard state of the solute in solution the Henry’s law definition on the molar
concentration scale. Rearranging Eq. (10.1) leads to

ay (soln)Au? = —RT In 280?
A "an(solid) (10.2)

where Au = 5 (soln) — p15 (solid). But the solid is in its standard state, so
ay (solid) = 1.0 by definition, and we obtain

Ap? = —RTIn az(soln) (10.3)

We have seen that a(soln) is invariant—it is the activity corresponding to
the equilibrium solubility—so comparison of Eq. (10.3) with the fundamental
thermodynamicresult

AG° = —RTInK (10.4)

leads to the conclusion that a2 (soln), the activity of the solute in a saturated
solution, must have the character of an equilibrium constant. As a consequence,
we can evaluate standard free energy, enthalpy, and entropy changesfor the solution
processin the usual manner (Chapter 4). These quantities are respectively called the
free energy, heat, and entropy of solution.

For nonelectrolyte solutes, particularly those of limited solubility, so that the
saturated solution is fairly dilute, it will be acceptable to approximate the activity
ay (soln) by the equilibrium solubility concentration. This is usually in molar
concentration units, and is often symbolizeds.

10.2. THE IDEAL SOLUBILITY

A thermodynamic argumentcan predict the equilibrium solubility of a nonelectro-
lyte, provided it dissolves to form an ideal solution. Ideal behavior does not mean
that intermolecular interactions are absent. On the contrary, solids and liquids
would not exist without the intermolecular forces of interaction. In the present
context, ideal behavior meansthat the energy of interaction between two solvent
molecules is identical to that between one solvent and one solute molecule, so

that a solvent molecule may be replaced with a solute molecule without altering
the intermolecular energies. (This requires that the solvent and solute molecules
have the same size, shape, and chemical nature, a demanding set of limitations.)
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118 SOLUBILITY

Quantitatively, an ideal solution can be defined as one having the following proper-
ties (Chapter 7):

AHmix = 0 (10.5)

AVmix = 0 (10.6)

ASmix = —R(x; In x, + X2 In x2) (10.7)

According to Eqs. (10.5) and (10.6), there is no heat or volume change on mixing
the solute and solvent in an ideal solution, and the entropy change is given by
Eq. (10.7). Since x; + x2 = 1, the logarithmic terms are necessarily negative, so
ASwnix is positive, and this constitutes the “‘driving force’’ for dissolution, because
of the relationship AG = AH — T AS.

If the entropy of mixing is the driving force for dissolution, whatis the “‘resis-
tance’’? It is the solute—solute interaction forces, which, for solids, lead to the

“crystal lattice energy.’ These must be overcome for the solute to dissolve.
Now, the free-energy change for the dissolution process is the same no matter
whatreversible mechanism (path) is taken to pass from the initial state (pure solute)
to the final state (saturated solution), so we can divide the process as follows (for a
solid solute):

—

Crystalline solute = supercooled liquid solute—

Pure liquid solvent = solvent containing cavity

Supercooled liquid solute = saturated solution

+ solvent-containing cavity

Crystalline solute + pure liquid solvent = saturated solution

Since in an ideal solution the solvent-solvent interactions match the solvent—solute

interactions, the energy required to create molecule-sized cavities in the solvent is
offset by the energy recovered whenthe solute molecules are inserted into these
cavities. The energetic cost of the dissolution process then appears in the first
step, the melting of the solid. An equivalent viewpoint (Grant and Higuchi 1990,
p. 16) is that the enthalpy of solution is given by

AAgon = AFiiusion =F ARmix

But AAnix = 0 for an ideal solution, so AHgoin = AHfusion-

The saturation solubility, we have seen, is an equilibrium constant, so the van’t
Hoff equation [Eq. (4.29)] is applicable

dlnx> _ AH;
dT RT

 

(10.8)

where the solubility is expressed as the mole fraction simply to maintain con-
sistency with Eq. (10.7), and where AH;is the heat of fusion and T is the absolute
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temperature. We have seen above why the heat of fusion appears in a solubility
expression. (Incidentally, a dissolved solid should be viewed as possessing some
of the properties of the liquid state, consistent with the above view that fusion is
the first step in the dissolution process.) Now suppose that AH; is independent
of temperature, which is equivalent to writing, for the solute from Eq. (1.23):

Ac, = CM — cml = 0 (10.9)

Then integrating Eq. (10.8) from Ty, to T gives

Inx, = _ Al (= — *) (10.10)R\TT

 

where 7,, is the melting temperature and T is the experimental temperature.
Equation (10.10) allows us to calculate the ideal solubility.

Example 10.1. The melting point of naphthaleneis 80.2°C,andits heat of fusion at
the melting point is 4.54 kcal mol'. What is the ideal solubility of naphthalene
at 20°C?

Lae —4540 cal mol! ( 60.2 K )(2.303) (1.987 cal mol~'K~!) \353.35K x 293.15 K
= —0.577

x) = 0.265

Deviations from ideality will be manifested by discrepancies from the ideal solubi-
lity as calculated with Eq. (10.10). Table 10.1 lists equilibrium solubilities for

Table 10.1. Naphthalene solubility at 20°C

Solvent x2

(Ideal) 0.265
Chlorobenzene 0.256
Benzene 0.241

Toluene 0.224
Carbon tetrachloride 0.205
Hexane 0.090
Aniline 0.130
Nitrobenzene 0.243
Acetone 0.183

n-Butanol 0.0495
Methanol 0.0180
Acetic acid 0.0456

Water (25°C) 0.0000039
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naphthalene in many solvents. Observe that those solvents most chemically like
naphthalene, that is, aromatic and nonpolar solvents, show behavior most closely
approximating ideal behavior.

At the melting temperature 7,, the solid and liquid forms of the solute are
in equilibrium, so AG; = 0 and we get AH; = T,,AS;, giving Eq. (10.11) as an
alternative form of Eq. (10.10):

ASi(Tm — T) 10.11Rr (10.11)Inx =—

10.3. TEMPERATURE DEPENDENCEOF THE SOLUBILITY

Since AH; is always a positive quantity, Eq. (10.10) predicts that the solubility of
a solid will increase with temperature. Moreover, Eq. (10.10) showsthat if two solid
substances have the sameheat of fusion, the one with the higher melting point will
have the lower solubility. Conversely, if they have the same melting point, the one
with the lower heat of fusion will have the higher solubility. All of these inferences
from Eq. (10.10) refer to systems forming ideal solutions, so deviations from the
predictions can occur for real systems. Nevertheless, the increase of solubility
with temperature is very widely observed for solids. Even the relationship of solu-
bility to melting point can be a useful guide, though confounding phenomena can
introduce complications; for example, hydrogen-bondingor other polar interactions
may raise both the melting point and the aqueoussolubility. The comparison of the
temperature dependence of solubility of solids and gases is instructive; see
Table 10.2.

Equation (10.10) can be rearranged to Eq. (10.12):

AH; AH;
- (10.12)

RT RTm
In x2 =

Table 10.2. The contrary effects of temperature on the solubilities of solids and gases

Solid Ii iatOlid = liquid — gas
q an

Solids Gases

Solution is the process of Solution is the process of
passing from solid to liquid passing from gas to
(fusion, AH;) liquid (condensation, AH,), which

is the reverse of vaporization (AH,)

AGF;is positive, so x2 increases AH,is positive, so AH, is negative; thus x2
as T increases decreases as T increases
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INXo 
1/T

Figure 10.1. Hypothetical solubility van’t Hoff plots for polymorphs.

If AH; is essentially constant over the experimental temperature range, Eq. (10.12)
predicts that a plot of In x, against 1/T will be linear with a slope equal to
—AH,;/R. The line should terminate at the melting point, where 1/T = 1/T. Often
such lines are straight, probably because the usual range of temperatures is small.
The slope gives AH; in principle, but in actuality the quantity evaluated from the
slope is not precisely AH; because the solution is seldom ideal, and instead the
quantity found in this way is termed the heat of solution.

Throughout this discussion we have been assumingthat the solid phase consists
of the pure solid and not a solid solution. Another possible complication arises if
the solid substance can exist in two crystalline forms (polymorphs; Chapter 6),
which interconvert at transition temperature 7T,. The van’t Hoff plot can resemble
Fig. 10.1a or Fig. 10.1b depending primarily on the kinetics of the transformation.
In Fig. 10.la, the two forms are sufficiently stable that their solubilities can be
separately measured at the same temperatures, which are below the transition
temperature. Nevertheless, the crystal form having the higher solubility (at a given
temperature) is thermodynamically unstable (it is said to be metastable, since its
kinetics of transformation permit it to exist for some period during which it acts
as if it were stable), and will ultimately be converted to the stable form. Extrapola-
tion of the lines to the transition temperature may bepossible. Sulfathiazole in 95%
ethanol showsthe Fig. 10.la behavior (Milosovich 1964; Carstensen 1977, p. 7).

In Fig. 10.1b, one form exists in one temperature range, the other form in a
temperature range on the other side of T;. The melting point observed will be that
of the higher-melting polymorph. Carbon tetrabromide exemplifies this behavior
(Hildebrandet al. 1970, p. 23).
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Let us return to the assumption that the change in heat capacities, AC,, is zero,
for all the subsequent discussion was based on this assumption. If AHin fact is a
function of temperature, then AC, is not zero. Suppose we make the more reason-
able assumption that AC, is a nonzero constant, and write AH; as

AH; = AH™ — AC,(Tm —T) (10.13)

where AH" is the heat of fusion at T,,. Equation (10.13) is inserted into Eq. (10.8),
which can be rearranged andintegrated to give Eq. (10.14):

_  —AHP (Tp — T Tm — T TmInx5at ) 4A ( ) _ AG In (10.14)
    

R T Tn R T R T

This equation is useful for assessing the error that may be introduced by making the

simple assumption AC, = 0. Suppose, for example, that the experimental tempera-
ture is 25°C and the melting point is 100°C. Thenthe last two termsin Eq. (10.14)
become equal to 0.25AC,/R — 0.22 AC,/R =0.03AC,/R. Thus considerable
compensation can take place, making the approximation AC, = 0 more acceptable
than it might have seemed.

Example 10.2. These are solubility data for nitrofurantoin in water (Chen etal.
1976). Analyze the data to obtain the heat of solution.

t(°C) 10°x»

24 6.01

30 8.57

37 13.16

45 18.99

The data are manipulated as required to make the van’t Hoff plot according to
Eq. (10.12):

T (10°K) log x2

3.37 522

3.30 —5.06

3.23 —4.88

3.14 —4.72

Theplot is shownin Fig. 10.2. It is possible that the points describe a curve, but this
is uncertain with the data as given, for conceivably the scatter is a consequence of
experimental random error. A straight line has therefore been drawn. Its slope is
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logXp

34 3.2 3.3 3.4

10°7/T

Figure 10.2. van’t Hoff plot for nitrofurantoin solubility.

—2300 K, so we calculate

AHoin = (2300 K)(1.987 cal mol”! K')
= 4570 cal mol!

= 4.57kcal mol!

= 19.1kJ mol"!

Note that the enthalpy change is labeled AHgoin to indicate explicitly that this is a
heat of solution.

10.4. SOLUBILITY OF SLIGHTLY SOLUBLE SALTS

Many salts exhibit very low solubilities in water. Silver chloride is an example;
if aqueous solutions of silver nitrate and sodium chloride are mixed, solid silver
chloride precipitates. It is conventional to describe this process as the reverse of
the precipitation reaction, namely, as the dissolution of the salt. Let us begin
with the simplest case of a 1:1 sparingly soluble salt MX. The solid crystalline
form is ionic. When it dissolves in water the ions dissociate, and no ion pairs are
detectable. We therefore write the equilibrium as

MX(s) = M* + X~ (10.15)

Proceeding as we have done for several earlier processes, we equate the chemical
potentials of the solid and the dissolved solute at equilibrium:

(s) = u(soln)

000010



000011

124 SOLUBILITY

Expanding these gives

w°(s) + RTIna(s) = ph. + RT Ina,
+p +RTIna_

and collecting terms (and noting that a(s) = 1 by our standard state definition),

Ap? = —RT Ina,a_ (10.16)

where Ap? = pS. + p° — p°(s). Evidently then [compare with Eq. (10.4)], the
product a,a_ is an equilibrium constant. By Eq. (8.23a) we see that a, a_ = a,
where a+ is the mean ionic activity, and since a= Vic, Eq. (10.16) can be
written

 
     

QAp? = —RT Iny.c3 (10.17)   

If no extraneousions are present, so that the ionic strength is due solely to the ions
from the sparingly soluble salt (and hence is very low), the activity coefficient term
is essentially unity. Moreover, the molar concentrations of the cation Mt and the
anion X~ are equal, and each is numerically equal to the equilibrium molar
solubility of the salt, which is commonly denoted s. Thus Eq. (10.17) becomes

Ap? = —RT In s? (10.18)

Equation (10.17) is exact; Eq. (10.18) is usually a reasonable approximation, and
both implicitly define the equilibrium constant for Eq. (10.15). This constant is
symbolized K,, and is called the solubility product. Since solubility products are
very small numbers, it is commonto state them as pK,,, where pK, = —log Kp.
Table 10.3 lists some pK, values.

Table 10.3. Solubility products for slightly soluble salts“

Salt PKsp Salt PKsp

BaSO,4 9.96 PbCO3 13.13
CaCO; 8.54 PbS 27.9

Ca(OH)» 5.26 MgCoO;3 7.46
Ca3(PO4)2 28.7 Hg.S 47.0
Cul 11.96 HgS(red) 52.4
AuCl 12.7 HgS(black) 51.8
AuCls 24.5 AgBr 12.30
Fe(OH)> 15.1 AgCl 9.75
Fe(OH)3 37.4 Agl 16.08

“Tn the temperature range 18-25°C; water is the solvent.
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Example 10.3. Whatis the solubility of silver chloride in water? From Table 10.3,
pKy = 9.75 for AgCl, so Ky = 1.78 x 107'°. From Eq. (10.18), Ksp = 8”, so
5 = \/Ky = 1.33 x 107° M.

In the general case of the salt whose formula is M,X, the solubility productis
defined, in accordance with the usual formulation of equilibrium constants:

Ky = chuck (10.19)

The quantity that we label s then dependson the stoichiometry.

Example 10.4. What is the molar solubility of ferrous hydroxide?
From Table 10.3, pKsp = 15.1, or Ksp = 7.9 x 10~!°. The dissolution reaction is

Fe(OH), = Fe** + 20H~

so Ky = CreCOq- (The charges on the subscripts are omitted for clarity.) Since each
molecule of Fe (OH), that dissolves yields one Fe** ion, we define the solubility as
the concentration of ferrous ion, or Cre = s. The stoichiometry yields coy = 2 Cre,
so the result is’

Kp = 8 x (28) = 48°

Therefore s = 5.8 x 10-°M.

Example 10.5. What is the solubility of silver chloride in 0.02 M KCI? Assume
activity coefficients are unity.

Again we set Cag =S, the solubility. The solubility product is defined
Ksp = CagCci; however, the chloride concentration has been augmented by the
addition of potassium chloride, so we write cc; = 0.02 + s; thatis, the chloride con-
centration is the sum from two sources, the KCl and the AgCl. We therefore have
Ksp = s(0.02 +s), which is a quadratic equation that can be solved for s. Before
doing that, however, it is worth trying the approximation cq; = 0.02, which involves
neglecting the relatively small contribution from dissolution of the AgCl. Thus

Ky = 0.02s = 1.78 x 107'°
s=8.9x10°M

First note that the approximation seems well justified. More interestingly, observe
that the solubility of silver chloride has been reduced from about 1 x 107° M in
water (Example 10.3) to about 1 x 107°Min 0.02 M KCI.This is an example of
the commonion effect. The solubility of any slightly soluble salt can be reduced by
adding an excess of one of its constituent ions.

The accuracy of such calculations can be improved by making use of the Debye—
Hiickel equation to estimate the values of mean ionic activity coefficients.
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10.5. SOLUBILITIES OF NONELECTROLYTES: FURTHER ISSUES

Salt Effects. In Example 10.5 we encountered onetype ofsalt effect. There is
another type of salt effect that is observed when the solubility of a nonelectrolyte
is studied as a function of ionic strength (or of the concentration of an added
electrolyte). Compare the nonelectrolyte solubility in the absence and presence
of added salt. Since the solid solute is present in both cases

u(solid) = p(cs = 0) = p(cs)

where c, is the concentration of added salt. Therefore a(c, = 0) = a(c,), or

SOYo = SY (10.20)

where so and s are the solubilities in the two cases. Thus y/79 = so/s; and since
Yo = 1 is a reasonable assumption, y = so/s, and we have a method for measuring
nonelectrolyte activity coefficients. Moreover, it is found experimentally that the
quantity log (so/s) often varies linearly with c,, or

Log? = kes (10.21)S

If so/s > 1, then k, is positive, and the nonelectrolyte is said to be ‘‘salted out”’; if
So/s <1, then k, is negative, and the solute is “salted in.” These are called the
“‘salting-out and salting-in effects,” and the constant k, is known as the Setschenow
constant.

Regular Solution Theory. We have seen that an ideal solution has thermody-
namic mixing quantities AHmix = 0 and ASmix = —R(x1 In.x, + x2 Inx2). A regular
solution is defined to be one having an ideal entropy of mixing but a nonideal
enthalpy of mixing. Recall also that the ideal solubility of a nonelectrolyte (i.e.,
the solubility when a nonelectrolyte forms an ideal solution) is given by

Inxy = Ot (Ima? (10.22)
R T Tn

  

where AC, is assumedto be zero or negligible. The molecular interpretation of an
ideal solution is that the energy of interaction of a solute molecule with a solvent
molecule is identical with the energy of interaction of two solvent molecules.

The molecular interpretation of regular solution theory is quite different; in
regular solution theory the energy of 1-2 interactions (where | is the solvent, 2
is the solute) is approximated as the geometric mean of 1—1 and 2-2 interaction
energies, or

Ujy2= (U;;Ux)'/ (10.23)
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This approximation results in regular solution theory being applicable mainly to
fairly nonpolar systems, that is, nonpolar nonelectrolytes dissolved in nonpolar
solvents. For our present interest, the essential result (Hildebrand and Scott 1964,
p. 271) of regular solution theory is embodied in Eq. (10.24), which may be
compared with Eq. (10.22):

  
(8; — 82)” (10.24)AH; (= — “) V294In x2 => -— _

R T Tn RT

where V2 is the molar volumeof solute and @, is the volumefraction concentration
of solventin the solution. The quantities 6; and 62 are the solubility parameters of the
solvent and solute. These are physical properties with the following significance.

The term AH,,,, the molar heat of vaporization,is the enthalpy requiredto effect
the transformation of one mole of liquid to its vapor state. During this processall
the solvent—solvent interactions (which are responsible for the existence of the
liquid phase) are overcome. A quantity called the cohesive energy density (CED)
is defined

AHyap — RTCED =
Vv (10.25)

where V is the molar volumeof the liquid. We anticipate, and wefind, that liquids
with strong intermolecular interactions (especially polar “‘associated’’ liquids
having the potential for strong dipole-dipole and hydrogen-bonding interactions)
have larger ced values than do nonpolar liquids. Table 10.4 lists some CEDvalues.

Because of the manner in which CED appearsin regular solution theory equa-
tions, Hildebrand (Hildebrand et al. 1970; Hildebrand and Scott 1964, p. 271)
defined the solubility parameter 5 by Eq. (10.26). Table 10.4 also gives 6 values.

8 = (CED)! (10.26)

Referring now to Eq. (10.24), note that if 5; = 62, we recover Eq. (10.22) for the
ideal solution; in other words, the condition 6; = 62 is equivalent to the condition
AAnix = 0. The greater the difference 5, — 52 (or of 52 — 6;, because the differ-
ence is squared), the greater the deviation from ideality, and, as Eq. (10.24) shows,
the lower the solubility that is predicted. This provides a guide for experimental
design; to achieve maximal solubility according to regular solution theory, strive
to equate the solubility parameters of solvent and solute. Since the solute identity
is usually established by the nature of the problem, the experimental variable is the
solvent identity. Sometimes mixed solvent systems function better than do pure sol-
vents for this reason. For example, a mixture of ether (6 = 7.4) and ethanol
(6 = 12.7) dissolves nitrocellulose (6 = 11.2), although neither pure liquid serves
as a goodsolvent for this solute.

Although the cohesive energy density, and therefore the solubility parameter, is a
well-defined physical property for any solvent, regular solution theory is limited
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Table 10.4. Cohesive energy densities and solubility parameters

Solvent CED (cal em™?) 8(cal!/? em-3/?)
n-Pentane 50.2 7.0

Cyclohexane 67.2 8.2
1,4-Dioxane 96 10.0
Benzene 84.6 9.2

Diethyl ether 59.9 74
Ethyl acetate 83.0 9.1
Acetic acid 102 10.1

n-Butyl alcohol 130.0 11.4
n Propy! alcohol 141.6 11.9
Acetone 95 9.9

Ethanol 168 12.7
Methanol 212 14.5
Acetonitrile 141.6 11.9

Dimethylformamide 146.4 12.1
Ethylene glycol 212 14.6
Glycerol 272 16.5
Dimethylsulfoxide 144 12.0
Water 547.6 23.4

(e.g., by the geometric mean approximation) to solutions of nonpolar substances.It
should therefore not be expected to apply quantitatively to polar systems such as
aqueoussolutions.

Example 10.6. Predict the solubility of naphthalene in n-hexane at 20°C. The solu-
bility parameters are 5, = 7.3 and 8) = 9.9 (both in cal!/? cm~>/?) and the molar
volumes are V; = 132 cm? mol! and V> = 123 cm? mol!. See Example 10.1 for
additional data.

Weuse Eq. (10.24), which in Example 10.1 was expressed in termsof log x2. In
that form the first term on the right had the value —0.577, which we neednotrecal-
culate. Now weconsider the second term. Welack only the quantity @,, the volume
fraction of solvent. This appears to be a dilemma, because we cannotestimate @,
until we know x, which is what we wantto calculate.

If we anticipate that the solute has a low solubility, it may be acceptable to make
the approximation @, = 1. An alternative is to take the result for an ideal solution
(Example 10.1, which gave x2 = 0.265) as a basis for estimating @,. We will do the
problem in both ways.

(a) Let o, = 1. Then from eq. (10.24),

(123 em?)(1)?(7.3 — 9.9 cal!/? em~3/?)
(2.303) (1.987 cal mol! K~!)(293.15 K)

= —0.577 — 0.620 = —1.197

x7 = 0.064

Log x2 = —0.577 —
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(b) The volume fraction is defined as follows:

nV,
= ——_ 10.27nV, + mV2 ( )|

Suppose 1; +72 = 1; from Example 10.1, x2 = 0.265, or nz = 0.265 and n, =
0.735. Using these numbers in Eq. (10.27) gives ~,; = 0.748. (Note how close
@, is to x,, because V; and V> are similar.) Repeating the calculation gives

Log x2 = —0.577 — 0.335 = —0.912

x) = 0.122

Wetherefore predict that x2 is between 0.064 and 0.122, and we might take the
average as our best estimate. The experimental result (Table 10.1) is x2 = 0.090.

Prediction of Aqueous Solubilities. Water is the preferred solvent for liquid
dosage formsbecause ofits biological compatibility, but unfortunately many drugs
are poorly soluble in water. To be able to predict the aqueous solubility of com-
pounds, even if only approximately, is a valuable capability because it can guide
or reduce experimental effort. Water is a highly polar and structured medium in
which nonideal behavior is commonly observed, so we must abandon hopethat
the ideal solubility prediction of Eq. (10.10) will be useful, and even the regular
solution theory [Eq. (10.24)] is ineffectual in solving this problem. Effective
approaches may be guided by thermodynamic concepts, but they incorporate
much empirical (i.e., experimental) content.

Although the ideal solubility equation will not suffice to predict nonelectrolyte
solubility in water, the solute—solute interactions responsible for maintaining
the crystal lattice must nevertheless be overcome, so Eq. (10.10) will still be applic-
able as a meansof estimating the solute—solute interaction. What must be done in
addition is to take account of the solvent—solvent and solvent-—solute interactions,

for these will in general not offset each other. In a paper that includes a valuable
collection of solubility data, Yalkowsky and Valvani (1980) have developed a very
useful method based on this approach. They start with Eq. (10.10), which they
transform to Eq. (10.11), repeated here:

AS¢(Tm — T)Inx)=—
Nn X2 RT (10.28)

They then carry out an analysis of experimental entropies of fusion, reaching these
conclusions:

For spherical (or nearly so) molecules: AS; = 3.5 cal mol-! K7!
For rigid molecules: AS; = 13.5 cal mol~! K7!
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For molecules having n>5 flexible chain atoms: AS; = 13.5+2.5
(n — 5) calmol”' K7!

In the following we will use only the result for rigid molecules.
Yalkowsky and Valvani then take the log P value of the solute (where P is the

1-octanol/water partition coefficient) as an empirical measure of the solution phase
nonidealities. They combine this with Eq. (10.28), convert to molar concentration,
and apply a small statistical adjustment,finally getting Eq. (10.29) for the calcula-
tion of rigid nonelectrolyte molar solubility in water at 25°C:

Log cy = —0.011(tm — 25) — log P + 0.54 (10.29)

where f,, is the solute melting point in centigrade degrees. For liquid nonelectro-
lytes t, is set to 25, so the first term vanishes. Log P may be available from
experimental studies, but it may have to be estimated by methodscited in Chapter 7.

Yalkowsky and Valvani applied Eq. (10.29) to solubility data on 167 compounds
whosesolubilities ranged over nine orders of magnitude, finding that the estimated
solubilities agreed with the observed solubilities to within 0.5 log unit for all but
eight compounds,and in no case wastheerror greater than a factor of 10. Equation
(10.29) is a very practical solution to the problem of predicting aqueoussolubilities.

Amidon and Williams (1982) refined the approach of Yalkowsky and Valvani,
achieving better accuracy but at the cost of increased complexity in the equation.
Grant and Higuchi (1990) describe alternative methods of calculation that are based
on different pathways from the initial to the final state.

Equation (10.10) and equations derived from it, such as Eqs. (10.28) and (10.29),
contain the difference (JT, — 7), showing that a higher melting temperature is
reflecting stronger solute—solute interactions in the solid state. As a general but
not precise rule, we may anticipate that very polar molecules (or functional
groups) will conduceto strong intermolecular interactions by meansofelectrostatic
forces, which for certain groups may include hydrogen bonding. Thus high
molecular polarity tends to be associated with high melting temperature, and higher
melting temperatures lead to lower solubilities, at least as they are described by
Eq. (10.10).

Nowconsiderthe special case of water as a solvent. Wateris a very polar solvent
and is capable of functioning as a hydrogen bond donor and acceptor. Very polar
solute molecules will tend to interact strongly with the solvent water; these are the
solvent—solute or solvation interactions that increase solubility. But we have seen
that highly polar substances tend to have high melting temperatures, so we are
led to the tentative conclusion that melting temperature may be an approximate
indicator of the extent of solvent-solute interaction. It follows (still arguing in
this approximate mode) that the opposing factors of solute—solute (crystal lattice)
and solvent-solute (solvation) interactions are both measured by, or at least
indicated by, the same quantity, namely, the melting temperature.* Thus in some
degree we mayanticipate that these two factors will compensate each other, with
the consequence that the solubility will become essentially independent of the
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melting temperature. But then the first term in Eq. (10.29) will (approximately)
vanish, leading to a dependencesolely on log P.

Correlations of log c with log P are well known (Yalkowsky and Valvani 1980;
Grant and Higuchi 1990, Chapter 8). Equations (10.30a) and (10.30b) are such
correlations, based on solubility data for compounds having a considerable range
of structural features. These equations are to be judged solely by their success in
reproducing or predicting solubilities; they are purely empirical.

Log cz = —log P — 1.00 (for solids) (10.30a)

Log cp = —log P + 0.27 (for liquids) (10.30b)

A comparison of the performance of Eq. (10.29) with Eqs. (10.30) indicates that
Eq. (10.29) is slightly superior, but there are somereversals. If the solute melting
point is not available, Eq. (10.30a) offers an alternative method of estimation.

Example 10.7. Estimate the aqueous solubility at 25°C of isophthalic acid, for
which log P = 1.73 and whose melting temperature is 346°C.

With Eq. (10.29), log cp = —4.72; with Eq. (10.30a), log cz = —2.73. The
experimental result is logc, = —3.40. Evidently neither Eq. (10.29) nor
Eq. (10.30a) yields a fully satisfactory answerin this case. (Although interestingly
their average is 3.73, in error by only about a factor of 2 in the solubility c2.)
Obviously there is scope for improved methods ofestimation.

Solubility in Mixed Solvents. If the equilibrium solubility of a solute in water
is too low to achieve the desired “target”? concentration, a preferred approach in
many instances is to incorporate an organic solvent in the aqueous solution, in
this way increasing the solubility of the solute. This organic solvent (often called
the cosolvent) must be miscible with water, at least in the proportions used, and
if the solution is to be a dosage form, the cosolvent must be physiologically accept-
able. These requirements severely limit the cosolvent selection. But beyond this
issue is the matter of the optimal cosolvent concentration in the mixed solvent sys-
tem of water and cosolvent. As in our treatment of aqueous solubility, we seek
methods that are rapid and easy to apply, even though approximate in their
accuracy, because the calculation will always be followed by laboratory studies
to confirm or refine the numerical estimate.

If the solute and solvent molecules in a solution differ greatly in size, plots of
various experimental quantities against solvent composition tend to be more sym-
metrical when solvent composition is given in volumefraction than in mole fraction
(Williamson 1967, p. 44). This observation forms the basis of a model proposed by
Yalkowsky and Rubino (1985). For these three-component systems, let water be
component 1, the cosolvent component2, and the solute component3. The molar
solubility of solute in water is written (c3), and its molar solubility in pure
cosolvent as (c3),. In solvent of any composition the solute solubility is written
c3. Then the Yalkowsky—Rubino model becomes

Log c3 = @ log (c3); + 2 log (c3), (10.31)
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where , and @, are the volume fractions of water and cosolvent, respectively.
Since @, + @, = 1, an equivalent form of Eq. (10.31) is

Logc3 = @[log (cz). — log (c3),] + log (cs), (10.32)

This equation predicts that log c3 will be a linear function of @5.
Equation (10.31) is a postulate. It can be described as a linear combination

model, or as a weighted average; that is, logc3 is postulated to be an average of
log (c3), and log (c3),, each of these making a contribution according to (weighted
by) its volume fraction.

The procedure for testing and using this modelis simple. On a graphical scale of

> one plots log (c3), at @, =0.0 and log(c3), at @, = 1.0. These points are
connected byastraight line, which is the graphical representation of Eq. (10.32).
A test of the model consists of plotting experimental solubilities at intermediate
values of @, to learn how well they agree with the straight-line prediction. Alter-
natively,if (as is usually the case) such data are not available, the model is assumed
to be (approximately) valid, and that value of @,is read off the line that will achieve
a desired target solubility. It is not necessary to carry this operation out graphically,
for by rearrangement of Eq. (10.32) we obtain

log c3 — log (c3),
~ Tog (c3)5 — log (cs), (10.33)Qo

With this equation the required volume fraction of cosolvent can be calculated,
according to this model.

Figure 10.3 showssolubility data for the system water (1)-ethanol (2)-naphtha-
lene (LePree et al. 1994). The straight line connecting the extreme points constitu-
tes the linear combination model, Eq. (10.32); the points are experimental.
Obviously the points do not describe a straight line, so in this sense, and for this
system, the model doesnot appear to be valid. On the other hand, as an approximate
guide to the dependenceof solubility on solvent composition it may be helpful to
the experimentalist, and it is in this sense that the model should be judged.It is not a
precise description of physicochemical behavior, but rather is a useful tool in
formulation development.

Example 10.8. Propose a water/ethanol mixed solvent composition that will
dissolve 2.5 mg mL~! of naphthalene. The solubility of naphthalene in water is
2.14 x 10-4 M,andin ethanolit is 0.675 M.

The target concentration of 2.5 mg mL! is equivalent to 2.5 gL’. The mole-
cular weight of naphthalene is 128.2, so the molar target concentration c3 is

0.0195 M, or logc3 = —1.71. From the given data we have log (c3), = —3.67
and log (c3), = —0.17. Applying Eq. (10.33), we obtain

~1.71 — (—3.67)
QO.=

—0.17 — (—3.67)
= 0.56
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logC3 
Figure 10.3. The linear combination model for naphthalene solubility in aqueous ethanolsolutions.

Thus we predict that a volume fraction of 0.56 ethanol will dissolve the target
concentration. This result could also have been obtained by reading from the
straight line of Fig. 10.3. It is interesting to note, from the experimental points
in Fig. 10.3, that a volume fraction @, = 0.51 will actually dissolve the target
concentration.

More accurate models of solvent effects are available, but these require much
experimental effort and are computationally more elaborate.

PROBLEMS

10.1. The melting point of benzoic acid is 122.4°C, and its heat of fusion is
4.44 kcal mol~'. Calculate its ideal solubility at 25°C.

10.2. From the data in Example 10.2, convert the mole fraction solubilities to molar
solubilities, construct the van’t Hoff plot, and evaluate the heat of solution.
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10.3.

10.4.

10.5.

10.6.

10.7.

SOLUBILITY

Derive an equation relating the molar solubility of calcium phosphateto its
solubility product, and calculate its molar solubility.

A solution containing NaBr, NaCl, and Nal is titrated with silver nitrate
solution. Predict the order in which the silver halides will precipitate.

Predict the solubility of iodine in carbon tetrachloride at 25°C. The melting
point of iodine is 113.6°C, its heat of fusion is 3.71 kcal mol’, its molar
volume is 59cm*, and its solubility parameter is 14.1. The solubility
parameter of carbontetrachloride is 8.6.

Predict the molar solubility of progesterone in water at 25°C. The melting
point of progesterone is 131°C and its log P value is 3.87.

The solubility of naphthalene in water at 25°C is 2.14 x 10-*M,andits
solubility in dimethylsulfoxide (DMSO) is 1.920M. Estimate the mixed
solvent composition required to dissolve 4 mg mL”! of the solute.

NOTES

1. Equationslike this one in Example 10.4 are easily solved by a logarithmic technique. We have
7.9 x 107!6 = 453, or 1.975 x 107!® = s3. Take logarithms of both sides, obtaining
—15.70 = 3 logs, or —5.235 = logs. The antilogarithm givess.

2. The arithmetic mean of two numbers is (a + b)/2; their geometric mean is (ab)
1/2

3. Asastrategy for optimizing solventselection, evidently this approach requiresan estimate of
the solubility parameter of the solute. There are several waysto obtain this. One methodis
suggested by the example; presumablythe solubility parameter of the solvent mixture that
maximizes solubility is also the solubility parameter of the solute.

4. Polarity is just one factor controlling the melting temperature. Symmetry is another; the more
symmetric the molecule, the higher the melting temperature (when comparing “‘similar”’
molecules).
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