CHAPTER 32

WAVES, BREAKERS AND SURF

OCEAN WAVES

3200. Introduction

Ocean waves, the most easily observed phenomenon at sea, are probably the least understood by the average seaman. More than any other single factor, ocean waves are likely to cause a navigator to change course or speed to avoid damage to ship and cargo. Wind-generated ocean waves have been measured at more than 100 feet high, and tsunamis, caused by earthquakes, far higher. A mariner with knowledge of basic facts concerning waves is able to use them to his advantage, avoid hazardous conditions, and operate with a minimum of danger if such conditions cannot be avoided. See Chapter 37, Weather Routing, for details on how to avoid areas of severe waves.

3201. Causes of Waves

Waves on the surface of the sea are caused principally by wind, but other factors, such as submarine earthquakes, volcanic eruptions, and the tide, also cause waves. If a breeze of less than 2 knots starts to blow across smooth water, small wavelets called ripples form almost instantaneously. When the breeze dies, the ripples disappear as suddenly as they formed, the level surface being restored by surface tension of the water. If the wind speed exceeds 2 knots, more stable gravity waves gradually form, and progress with the wind.

While the generating wind blows, the resulting waves may be referred to as sea. When the wind stops or changes direction, waves that continue on without relation to local winds are called swell.

Unlike wind and current, waves are not deflected appreciably by the rotation of the Earth, but move in the direction in which the generating wind blows. When this wind ceases, friction and spreading cause the waves to be reduced in height, or attenuated, as they move. However, the reduction takes place so slowly that swell often continues until it reaches some obstruction, such as a shore.

The Fleet Numerical Meteorology and Oceanography Center produces synoptic analyses and predictions of ocean wave heights using a spectral numerical model. The wave information consists of heights and directions for different periods and wavelengths. Verification of projected data has proven the model to be very good. Information from the model is provided to the U.S. Navy on a routine basis and is a vital input to the Optimum Track Ship Routing program.

3202. Wave Characteristics

Ocean waves are very nearly in the shape of an inverted cycloid, the figure formed by a point inside the rim of a wheel rolling along a level surface. This shape is shown in Figure 3202a. The highest parts of waves are called crests, and the intervening lowest parts, troughs. Since the crests are steeper and narrower than the troughs, the mean or still water level is a little lower than halfway between the crests and troughs. The vertical distance between trough and crest is called wave height, labeled H in Figure 3202a. The horizontal distance between successive crests, measured in the direction of travel, is called wavelength, labeled L. The time interval between passage of successive crests at a stationary point is called wave period (P). Wave height, length, and period depend upon a number of factors, such as the wind speed, the length of time it has blown, and its fetch (the straight distance it has traveled over the surface). Table 3202 indicates the relationship between wind speed, fetch, length of time the wind blows, wave height, and wave period in deep water.

Figure 3202a. A typical sea wave.
If the water is deeper than one-half the wavelength (L), this length in feet is theoretically related to period (P) in seconds by the formula:

$$
\mathrm{L}=5.12 \mathrm{P}^{2}
$$

The actual value has been found to be a little less than this for swell, and about two-thirds the length determined by this formula for sea. When the waves leave the generating area and continue as free waves, the wavelength and period continue to increase, while the height decreases. The rate of change gradually decreases.

The speed (S) of a free wave in deep water is nearly independent of its height or steepness. For swell, its

	$\begin{aligned} & \text { U } \\ & 0.0 \\ & \text { I } \end{aligned}$		으슈앙ㅅㅇ	8요88	$\text { 엉 } 8.8$	가 88 NतNNल	Mey io			$\begin{array}{ll} \hline 8 \text { B } \\ \infty & \text { o } \\ \hline \end{array}$
	च	0	$\begin{array}{ll} 0 \Omega m \pi \\ \text { inion } \end{array}$	$n \underset{\sim}{n}$	$\begin{array}{llll} \infty & \cdots & 0 & 0 \\ \cdots & \cdots \\ \infty & \sigma & \sigma & 0 \\ 0 & 0 \end{array}$			Narnvo	$\left\lvert\, \begin{array}{ll} N O N \infty \\ m \dot{J} \dot{J} \dot{J} \end{array}\right.$	
		工	$\begin{array}{lll} 0 & 0 \infty & \infty \\ 0 & 0 & 0 \\ 0 & \text { N } \end{array}$			$\begin{aligned} & n o n i n o \\ & \text { goisin } \end{aligned}$	ooono 	$\left\lvert\, \begin{aligned} & \text { no in } \\ & 0 \\ & \text { in } \end{aligned}\right.$	$\left\|\begin{array}{lllll} 0 & 0 & 0 & n & 0 \\ 0 & i & i & 0 \\ i n & 8 & 0 & 0 & 0 \end{array}\right\|$	$\begin{array}{llll} n & n & 0 & 0 \\ i & \text { in si si } \\ 0 \end{array}$
		F	∞	$\left\lvert\, \begin{array}{llll} 0 & \infty & 6 & n \\ \cdots & \cdots & \infty & 0 \\ n & 0 \end{array}\right.$	$\begin{aligned} & n 0 n 0- \\ & =\operatorname{mon} 0 \end{aligned}$		$\left\lvert\, \begin{aligned} & n n o r a \\ & \dot{\sim} \text { NiN } \\ & \text { No } \end{aligned}\right.$			
	으	\sim	$\begin{array}{lll} \text { NNOM } \\ \text { tin } & 0 \\ 0 & 0 & 0 \end{array}$	0	$\begin{gathered} +\infty \\ \infty \\ \infty \\ \infty \\ \sigma^{\prime} \\ 0 \end{gathered}$	$\begin{array}{llll} -0 & 0 & 0 \\ 000 & 0 & \end{array}$				
		工	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 \\ 0 & \infty \\ \hline \end{array}$		$\begin{aligned} & \text { ninono } \\ & \text { minn on } \\ & \text { min } \end{aligned}$				$\begin{array}{\|l} 000 n 0 \\ \text { in in in } \end{array}$	$\begin{aligned} & \text { n } 0000 \\ & \text { in in in in } \end{aligned}$
		F								$\begin{aligned} & \text { on on } \\ & \text { in in in } \end{aligned}$
	a	\sim	$\begin{aligned} & \text { Fong } \\ & \text { } \sin \text { in } \end{aligned}$	$\begin{array}{lll} n \infty & N \\ 0 & 0 & \sim \\ 0 \end{array}$	a Mrond	$\begin{array}{llll} \infty & \infty & \cdots & r \\ \sigma^{\prime} & 0 & 0 \\ 0 \end{array}$	$0 \infty 0$			$\begin{array}{lll} n & \infty \\ m & 0 & j \end{array}$
		エ		$\left\lvert\, \begin{array}{lll} 0 & n & 0 \\ \text { in Ni } & n & n \\ \text { N } \end{array}\right.$	$\begin{aligned} & n o m i n \\ & \text { iois in } \\ & \text { nim } \end{aligned}$		$\left\|\begin{array}{llll} n & 0 & 0 & 0 \\ n & 0 & 0 & - \\ m & n & \end{array}\right\|$	$\begin{array}{lll} n & n & n \\ n & 0 \\ n_{n} & \cdots & \cdots \\ \hline \end{array}$		$\begin{array}{lll} 0 & 0 \\ \dot{q} \dot{q} \dot{q} \end{array}$
		F		$\left\lvert\, \begin{array}{cccc} 0 & 0 & 0 & 0 \\ \infty & 0 & 0 & 0 \\ \hline & 0 & =1 \end{array}\right.$	$\begin{array}{llll} -\infty & + & 0 & \infty \\ \cdots & \dot{0} & \infty & 0 \end{array}$					
	∞	0	$\begin{aligned} & 9+0 \quad 0 \\ & \text { mitising } \end{aligned}$	$\mid ⿸ 丆 口$	$\left[\begin{array}{llll} n & 0 & 0 & m \\ \cdots & \sim & \infty & \infty \end{array}\right)$	∞	$\begin{array}{llll} 0 & \infty & 0 & 0 \\ \sigma_{0} & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lllll} \cdots & + & 0 & \infty & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$		$\begin{aligned} & \mathrm{m} \\ & \mathrm{y} \end{aligned}$
		工			noonn ন̇N்ベN		$\left\|\begin{array}{cccc} 0 & 0 & 0 & n \\ n & 0 & 0 \\ n & \cdots & n & 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} n & 0 n \\ 0 & \cdots \\ \cdots & N \\ \cdots \end{array}\right.$		$\begin{aligned} & n \\ & \end{aligned}$
		F	mannत ヘウision		$\left.\begin{array}{llll} n & 0 & 0 & n \\ \pm & 0 & \infty & 0 \\ 0 & i n \end{array} \right\rvert\,$	$\begin{array}{\|l\|l\|} \alpha+0 N O \\ \text { NiviN } \end{array}$		$\left\|\begin{array}{lll} a & -i & 0 \\ 0 & \infty & \\ m_{0} & 0 & j \\ j \end{array}\right\|$		$\begin{gathered} \text { N } \\ \text { in } \end{gathered}$
	\checkmark	0		in on on	$\begin{aligned} & \text { Nomns } \\ & \text { onNin } \end{aligned}$	0 NJ～n ∞ ∞ $\infty$$\infty$	$\left\lvert\, \begin{array}{ccc} a & 0 & \text { min } \\ \infty & \text { ajo } \\ \hline \end{array}\right.$		$\begin{aligned} & m n i \\ & 000 \\ & 000 \end{aligned}$	
		エ	$\begin{array}{lll} 0 & 0 & \cdots \\ 0 & \cdots & N \\ 0 & 0 \\ \hline \end{array}$	$\begin{aligned} & N a n 0 n \\ & m \times i n \end{aligned}$	$\begin{aligned} & 0 \text { ninon } \\ & 000 \text { ond } \end{aligned}$	00000	$\left\lvert\, \begin{array}{cccc} 0 & 0 & \cdots & + \\ \infty & \infty & \infty & \dot{\infty} \\ \hline \end{array}\right.$	$\left(\begin{array}{llll} \infty & 0 & 0 & -1 \\ \infty & \infty & 0 & 0 \\ 0 & 0 \end{array}\right.$	$\begin{aligned} & n \infty \infty \\ & \alpha^{\wedge} \sigma^{\circ} \dot{0} \end{aligned}$	
		F				$\begin{array}{llll} 0 & \infty & 0 & n \\ n & n \\ n & \infty \\ \text { Nan } \end{array}$	$\left\lvert\, \begin{array}{ccc} 0 & N \sim \\ \text { M M N N M } \\ \hline \end{array}\right.$		$\begin{aligned} & n \\ & \infty \\ & \infty \end{aligned} 0$	
	\bigcirc	Q				$\begin{aligned} & \text { Nmino } \\ & \text { Mrin } \end{aligned}$	Nのナに $\infty \infty \infty \infty$	$\begin{array}{llll} N & \infty & 0 & 0 \\ \infty & \infty & \infty & \infty \\ \hline \end{array}$	an	
		工	$\begin{array}{lll} 0 & 0 & 0 \\ \text { in } & \infty \\ \text { in } \end{array}$				$\begin{array}{lll} m & \sigma & \sigma n \\ m & \dot{m} & \dot{m} \\ \hline \end{array}$	$\begin{aligned} & 0 \wedge N \dot{N} \\ & \text { ning } \end{aligned}$	$\begin{array}{ll} \infty & \infty \\ \cdots & n \\ n \end{array}$	
		F							$\begin{array}{\|cc} \hline 00 \\ n i o \\ n i n \end{array}$	
	in	0	$\begin{aligned} & \infty \text { mत } \vec{r} \\ & \text { imn } \dot{r} \end{aligned}$			$\begin{array}{llll} 0 & 0 & 0 \\ 0 & 0 & 0 & n \\ 0 \end{array}$	$\begin{gathered} n m a n s \\ n-n \\ n \end{gathered}$	$\left\|\begin{array}{ccccc} \infty & 0 & 0 & - & N \\ \cdots & \sim & \infty & \infty & \infty \\ \cdots & \infty & \infty \end{array}\right\|$		
		I			$\begin{array}{llll} \infty & 9 & 0 & 0 \\ \sim & \sim & \cdots & \infty \\ \hline \end{array}$	00000 $\infty \infty \dot{\infty} \dot{o}^{\circ} \dot{0}$	00000 $\infty \infty \infty \infty$	00000 $\infty \infty \infty \infty$		
		F	$\begin{aligned} & N+N O O \\ & \min \infty \end{aligned}$	$\begin{aligned} & 0 n 0 \ln n \\ & \text { anin } 0 \end{aligned}$	$\begin{aligned} & 0 \text { nnoo } \\ & \text { NNAN ṄN } \end{aligned}$					
	ナ	Q	ナのmo i ivimi							
		士	い Noのo iviniri		$\begin{array}{ll} \mathrm{W} N M m \\ \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \end{array}$					
		F	Nmm－ $\cdots 0^{\circ} \infty \dot{O}$	$\left\|\begin{array}{lll} 0 \infty & 0 \infty \\ \dot{1} & 0 \\ 0 & 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & +\infty+\infty n \\ & \text { in in } \dot{\infty} \dot{m} \end{aligned}$					
	m	\sim		$\begin{aligned} & n \wedge \infty \quad 0 \\ & \text { minimit } \end{aligned}$	$\begin{array}{ll} N \ln g \\ \dot{\gamma} \dot{\gamma} \dot{\gamma} \end{array}$					
		エ		$\left\lvert\, \begin{array}{\|ccc} 0000 \\ \text { NiNiNiNa } \end{array}\right.$	0000 i i i i					
		F								
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				8앙ㅇㅇㅇ	$\text { 억 } O \therefore Q_{1}$	$$			$\begin{array}{ll} \hline i \operatorname{lig} \\ \text { in } \\ \hline \end{array}$	

Table 3202．Minimum Time (T) in hours that wind must blow to form waves of H significant height（in feet）and P period（in seconds）．Fetch in nautical miles．

IPR2017－00946

Figure 3202b. Relationship between speed, length, and period of waves in deep water, based upon the theoretical relationship between period and length.
relationship in knots to the period (P) in seconds is given by the formula

$$
\mathrm{S}=3.03 \mathrm{P}
$$

The relationship for sea is not known.
The theoretical relationship between speed, wavelength, and period is shown in Figure 3202b. As waves continue on beyond the generating area, the period, wavelength, and speed remain the same. Because the waves of each period have different speeds they tend to sort themselves by periods as they move away from the generating area. The longer period waves move at a greater speed and move ahead. At great enough distances from a storm area the waves will have sorted themselves into sets based on period.

All waves are attenuated as they propagate but the short period waves attenuate faster, so that far from a storm only the longer waves remain.

The time needed for a wave system to travel a given distance is double that which would be indicated by the speed of individual waves. This is because each leading wave in succession gradually disappears and transfers its energy to following wave. The process occurs such that the whole wave system advances at a speed which is just half that of each individual wave. This process can easily be seen in the bow wave of a vessel. The speed at which the wave system advances is called group velocity.

Because of the existence of many independent wave

Figure 3202c. Interference. The upper part of A shows two waves of equal height and nearly equal length traveling in the same direction. The lower part of A shows the resulting wave pattern. In B similar information is shown for short waves and long swell.
systems at the same time, the sea surface acquires a complex and irregular pattern. Since the longer waves overrun the shorter ones, the resulting interference adds to the complexity of the pattern. The process of interference, illustrated in Figure 3202c, is duplicated many times in the sea; it is the principal reason that successive waves are not of the same height. The irregularity of the surface may be further accentuated by the presence of wave systems crossing at an angle to each other, producing peak-like rises.

In reporting average wave heights, the mariner has a tendency to neglect the lower ones. It has been found that the reported value is about the average for the highest onethird. This is sometimes called the "significant" wave height. The approximate relationship between this height and others, is as follows:

Wave	Relative height
Average	0.64
Significant	1.00
Highest 10 percent	1.29
Highest	1.87

3203. Path of Water Particles in a Wave

As shown in Figure 3203, a particle of water on the surface of the ocean follows a somewhat circular orbit as a wave passes, but moves very little in the direction of motion of the wave. The common wave producing this action is called an oscillatory wave. As the crest passes, the particle moves forward, giving the water the appearance of moving with the wave. As the trough passes, the motion is in the opposite direction. The radius of the circular orbit decreases with depth, approaching zero at a depth equal to about half the wavelength. In shallower water the orbits become more elliptical, and in very shallow water the vertical motion disappears almost completely.

Figure 3203. Orbital motion and displacement, s, of a particle on the surface of deep water during two wave periods.

Since the speed is greater at the top of the orbit than at the bottom, the particle is not at exactly its original point following passage of a wave, but has moved slightly in the wave's direction of motion. However, since this advance is small in relation to the vertical displacement, a floating object is raised and lowered by passage of a wave, but moved little from its original position. If this were not so, a slow moving vessel might experience considerable difficulty in making way against a wave train. In Figure 3203 the forward displacement is greatly exaggerated.

3204. Effects of Current and Ice on Waves

A following current increases wavelengths and decreases wave heights. An opposing current has the opposite effect, decreasing the length and increasing the height. This effect can be dangerous in certain areas of the world where a stream current opposes waves generated by severe weather. An example of this effect is off the coast of South Africa, where the Agulhas current is often opposed by westerly storms, creating steep, dangerous seas. A strong opposing current may cause the waves to break, as in the case of overfalls in tidal currents. The extent of wave alteration is dependent upon the ratio of the still-water wave speed to the speed of the current.

Moderate ocean currents running at oblique angles to wave directions appear to have little effect, but strong tidal currents perpendicular to a system of waves have been observed to completely destroy them in a short period of time.

When ice crystals form in seawater, internal friction is greatly increased. This results in smoothing of the sea surface. The effect of pack ice is even more pronounced. A vessel following a lead through such ice may be in smooth water even when a gale is blowing and heavy seas are beating against the outer edge of the pack. Hail or torrential rain is also effective in flattening the sea, even in a high wind.

3205. Waves and Shallow Water

When a wave encounters shallow water, the movement of the water is restricted by the bottom, resulting in reduced wave speed. In deep water wave speed is a function of period. In shallow water, the wave speed becomes a function of depth. The shallower the water, the slower the wave speed. As the wave speed slows, the period remains the same, so the wavelength becomes shorter. Since the energy in the waves remains the same, the shortening of wavelengths results in increased heights. This process is called shoaling. If the wave approaches a shallow area at an angle, each part is slowed successively as the depth decreases. This causes a change in direction of motion, or refraction, the wave tending to change direction parallel to the depth curves. The effect is similar to the refraction of light and other forms of radiant energy.

As each wave slows, the next wave behind it, in deeper water, tends to catch up. As the wavelength decreases, the height generally becomes greater. The lower part of a wave, being nearest the bottom, is slowed more than the top. This may cause the wave to become unstable, the faster-moving top falling forward or breaking. Such a wave is called a breaker, and a series of breakers is surf.

Swell passing over a shoal but not breaking undergoes a decrease in wavelength and speed, and an increase in height, which may be sudden and dramatic, depending on the steepness of the seafloor's slope. This ground swell

Figure 3205. Alteration of the characteristics of waves crossing a shoal.
may cause heavy rolling if it is on the beam and its period is the same as the period of roll of a vessel, even though the sea may appear relatively calm. It may also cause a rage sea, when the swell waves encounter water shoal enough to make them break. Rage seas are dangerous to small craft, particularly approaching from seaward, as the vessel can be overwhelmed by enormous breakers in perfectly calm weather. The swell waves, of course, may have been generated hundreds of miles away. In the open ocean they are almost unnoticed due to their very long period and wavelength. Figure 3205 illustrates the approximate alteration of the characteristics of waves as they cross a shoal.

3206. Energy Of Waves

The potential energy of a wave is related to the vertical distance of each particle from its still-water position. Therefore potential energy moves with the wave. In contrast, the kinetic energy of a wave is related to the speed of the particles, distributed evenly along the entire wave.

The amount of kinetic energy in a wave is tremendous. A 4 -foot, 10 -second wave striking a coast expends more than 35,000 horsepower per mile of beach. For each 56 miles of coast, the energy expended equals the power generated at Hoover Dam. An increase in temperature of the water in the relatively narrow surf zone in which this energy is expended would seem to be indicated, but no pronounced increase has been measured. Apparently, any heat that may be generated is dissipated to the deeper water beyond the surf zone.

3207. Wave Measurement Aboard Ship

With suitable equipment and adequate training, reliable measurements of the height, length, period, and
speed of waves can be made. However, the mariner's estimates of height and length often contain relatively large errors. There is a tendency to underestimate the heights of low waves, and overestimate the heights of high ones. There are numerous accounts of waves 75 to 80 feet high, or even higher, although waves more than 55 feet high are very rare. Wavelength is usually underestimated. The motions of the vessel from which measurements are made contribute to such errors.

Height. Measurement of wave height is particularly difficult. A microbarograph can be used if the wave is long enough or the vessel small enough to permit the vessel to ride from crest to trough. If the waves are approaching from dead ahead or dead astern, this requires a wavelength at least twice the length of the vessel. For most accurate results the instrument should be placed at the center of roll and pitch, to minimize the effects of these motions. Wave height can often be estimated with reasonable accuracy by comparing it with freeboard of the vessel. This is less accurate as wave height and vessel motion increase. If a point of observation can be found at which the top of a wave is in line with the horizon when the observer is in the trough, the wave height is equal to height of eye. However, if the vessel is rolling or pitching, this height at the moment of observation may be difficult to determine. The highest wave ever reliably reported was 112 feet observed from the USS Ramapo in 1933.

Length. The dimensions of the vessel can be used to determine wavelength. Errors are introduced by perspective and disturbance of the wave pattern by the vessel. These errors are minimized if observations are made from maximum height. Best results are obtained if the sea is from dead ahead or dead astern.

Period. If allowance is made for the motion of the vessel, wave period can be determined by measuring the
interval between passages of wave crests past the observer. The relative motion of the vessel can be eliminated by timing the passage of successive wave crests past a patch of foam or a floating object at some distance from the vessel. Accuracy of results can be improved by averaging several observations.

Speed. Speed can be determined by timing the passage of the wave between measured points along the side of the ship, if corrections are applied for the direction of travel for the wave and the speed of the ship.

The length, period, and speed of waves are interrelated by the relationships indicated previously. There is no definite mathematical relationship between wave height and length, period, or speed.

3208. Tsunamis

A Tsunami is an ocean wave produced by sudden, large-scale motion of a portion of the ocean floor or the shore, such as a volcanic eruption, earthquake (sometimes called seaquake if it occurs at sea), or landslide. If they are caused by a submarine earthquake, they are usually called seismic sea waves. The point directly above the disturbance, at which the waves originate, is called the epicenter. Either a tsunami or a storm tide that overflows the land is popularly called a tidal wave, although it bears no relation to the tide.

If a volcanic eruption occurs below the surface of the sea, the escaping gases cause a quantity of water to be pushed upward in the shape of a dome. The same effect is caused by the sudden rising of a portion of the bottom. As this water settles back, it creates a wave which travels at high speed across the surface of the ocean.

Tsunamis are a series of waves. Near the epicenter, the first wave may be the highest. At greater distances, the highest wave usually occurs later in the series, commonly between the third and the eighth wave. Following the maximum, they again become smaller, but the tsunami may be detectable for several days.

In deep water the wave height of a tsunami is probably never greater than 2 or 3 feet. Since the wavelength is usually considerably more than 100 miles, the wave is not conspicuous at sea. In the Pacific, where most tsunamis occur, the wave period varies between about 15 and 60 minutes, and the speed in deep water is more than 400 knots. The approximate speed can be computed by the formula:

$$
\mathrm{S}=0.6 \sqrt{\mathrm{gd}}=3.4 \sqrt{\mathrm{~d}}
$$

where S is the speed in knots, g is the acceleration due to gravity (32.2 feet per second per second), and d is the depth of water in feet. This formula is applicable to any wave in water having a depth of less than half the wavelength. For most ocean waves it applies only in shallow water, because of the relatively short wavelength.

When a tsunami enters shoal water, it undergoes the same changes as other waves. The formula indicates that
speed is proportional to depth of water. Because of the great speed of a tsunami when it is in relatively deep water, the slowing is relatively much greater than that of an ordinary wave crested by wind. Therefore, the increase in height is also much greater. The size of the wave depends upon the nature and intensity of the disturbance. The height and destructiveness of the wave arriving at any place depends upon its distance from the epicenter, topography of the ocean floor, and the coastline. The angle at which the wave arrives, the shape of the coastline, and the topography along the coast and offshore, all have an effect. The position of the shore is also a factor, as it may be sheltered by intervening land, or be in a position where waves have a tendency to converge, either because of refraction or reflection, or both.

Tsunamis 50 feet in height or higher have reached the shore, inflicting widespread damage. On April 1, 1946, seismic sea waves originating at an epicenter near the Aleutians spread over the entire Pacific. Scotch Cap Light on Unimak Island, 57 feet above sea level, was completely destroyed and its keepers killed. Traveling at an average speed of 490 miles per hour, the waves reached the Hawaiian Islands in 4 hours and 34 minutes, where they arrived as waves 50 feet above the high water level, and flooded a strip of coast more than 1,000 feet wide at some places. They left a death toll of 173 and property damage of $\$ 25$ million. Less destructive waves reached the shores of North and South America, as well as Australia, 6,700 miles from the epicenter.

After this disaster, a tsunami warning system was set up in the Pacific, even though destructive waves are relatively rare (averaging about one in 20 years in the Hawaiian Islands). This system monitors seismic disturbances throughout the Pacific basin and predicts times and heights of tsunamis. Warnings are immediately sent out if a disturbance is detected.

In addition to seismic sea waves, earthquakes below the surface of the sea may produce a longitudinal pressure wave that travels upward at the speed of sound. When a ship encounters such a wave, it is felt as a sudden shock which may be so severe that the crew thinks the vessel has struck bottom.

3209. Storm Tides

In relatively tideless seas like the Baltic and Mediterranean, winds cause the chief fluctuations in sea level. Elsewhere, the astronomical tide usually masks these variations. However, under exceptional conditions, either severe extra-tropical storms or tropical cyclones can produce changes in sea level that exceed the normal range of tide. Low sea level is of little concern except to coastal shipping, but a rise above ordinary high-water mark, particularly when it is accompanied by high waves, can result in a catastrophe.

Although, like tsunamis, these storm tides or storm surges are popularly called tidal waves, they are not associated with the tide. They consist of a single wave crest
and hence have no period or wavelength.
Three effects in a storm induce a rise in sea level. The first is wind stress on the sea surface, which results in a piling-up of water (sometimes called "wind set-up"). The second effect is the convergence of wind-driven currents, which elevates the sea surface along the convergence line. In shallow water, bottom friction and the effects of local topography cause this elevation to persist and may even intensify it. The low atmospheric pressure that accompanies severe storms causes the third effect, which is sometimes referred to as the "inverted barometer" as the sea surface rises into the low pressure area. An inch of mercury is equivalent to about 13.6 inches of water, and the adjustment of the sea surface to the reduced pressure can amount to several feet at equilibrium.

All three of these causes act independently, and if they happen to occur simultaneously, their effects are additive. In addition, the wave can be intensified or amplified by the effects of local topography. Storm tides may reach heights of 20 feet or more, and it is estimated that they cause threefourths of the deaths attributed to hurricanes.

3210. Standing Waves and Seiches

Previous articles in this chapter have dealt with progressive waves which appear to move regularly with time. When two systems of progressive waves having the same period travel in opposite directions across the same area, a series of standing waves may form. These appear to remain stationary.

Another type of standing wave, called a seiche, sometimes occurs in a confined body of water. It is a long wave, usually having its crest at one end of the confined space, and its trough at the other. Its period may be anything from a few minutes to an hour or more, but somewhat less than the tidal period. Seiches are usually attributed to strong winds or sudden changes in atmospheric pressure.

3211. Tide-Generated Waves

There are, in general, two regions of high tide separated by two regions of low tide, and these regions move progressively westward around the Earth as the moon revolves in its orbit. The high tides are the crests of these tide waves, and the low tides are the troughs. The wave is not noticeable at sea, but becomes apparent along the coasts, particularly in funnelshaped estuaries. In certain river mouths, or estuaries of particular configuration, the incoming wave of high water overtakes the preceding low tide, resulting in a steep, breaking wave which progresses upstream in a surge called a bore.

3212. Internal Waves

Thus far, the discussion has been confined to waves on the surface of the sea, the boundary between air and water. Internal waves, or boundary waves, are created below the surface, at the boundaries between water strata of different densities. The
density differences between adjacent water strata in the sea are considerably less than that between sea and air. Consequently, internal waves are much more easily formed than surface waves, and they are often much larger. The maximum height of wind waves on the surface is about 60 feet, but internal wave heights as great as 300 feet have been encountered.

Internal waves are detected by a number of observations of the vertical temperature distribution, using recording devices such as the bathythermograph. They have periods as short as a few minutes, and as long as 12 or 24 hours, these greater periods being associated with the tides.

A slow-moving ship, operating in a freshwater layer having a depth approximating the draft of the vessel, may produce short-period internal waves. This may occur off rivers emptying into the sea, or in polar regions in the vicinity of melting ice. Under suitable conditions, the normal propulsion energy of the ship is expended in generating and maintaining these internal waves and the ship appears to "stick" in the water, becoming sluggish and making little headway. The phenomenon, known as dead water, disappears when speed is increased by a few knots.

The full significance of internal waves has not yet been determined, but it is known that they may cause submarines to rise and fall like a ship at the surface, and they may also affect sound transmission in the sea.

3213. Waves and Ships

The effects of waves on a ship vary considerably with the type of ship, its course and speed, and the condition of the sea. A short vessel has a tendency to ride up one side of a wave and down the other side, while a larger vessel may tend to ride through the waves on an even keel. If the waves are of such length that the bow and stern of a vessel are alternately riding in successive crests and troughs, the vessel is subject to heavy sagging and hogging stresses, and under extreme conditions may break in two. A change of heading may reduce the danger. Because of the danger from sagging and hogging, a small vessel is sometimes better able to ride out a storm than a large one.

If successive waves strike the side of a vessel at the same phase of successive rolls, relatively small waves can cause heavy rolling. The same effect, if applied to the bow or stern in time with the natural period of pitch, can cause heavy pitching. A change of either heading or speed can quickly reduce the effect.

A wave having a length twice that of a ship places that ship in danger of falling off into the trough of the sea, particularly if it is a slow-moving vessel. The effect is especially pronounced if the sea is broad on the bow or broad on the quarter. An increase in speed reduces the hazard.

3214. Using Oil to Calm Breaking Waves

Historically oil was used to calm breaking waves, and was useful to vessels when lowering or hoisting boats in
rough weather. Its effect was greatest in deep water, where a small quantity sufficed if the oil were made to spread to
windward of the vessel. Oil increases the surface tension of the water, lessening the tendency for waves to break.

BREAKERS AND SURF

3215. Refraction

As explained previously, waves are slowed in shallow water, causing refraction if the waves approach the beach at an angle. Along a perfectly straight beach, with uniform shoaling, the wave fronts tend to become parallel to the shore. Any irregularities in the coastline or bottom contours, however, affect the refraction, causing irregularities. In the case of a ridge perpendicular to the beach, for instance, the shoaling is more rapid, causing greater refraction towards the ridge. The waves tend to align themselves with the bottom contours. Waves on both sides of the ridge have a component of motion toward the ridge. This convergence of wave energy toward the ridge causes an increase in wave or breaker height. A submarine canyon or valley perpendicular to the beach, on the other hand, produces divergence, with a decrease in wave or breaker height. These effects are illustrated in Figure 3215. Bends in the coast line have a similar effect, convergence occurring at a point, and divergence if the coast is concave to the sea. Points act as focal areas for wave energy and experience large breakers. Concave bays have small breakers because the energy is spread out as the waves approach the beach.

Under suitable conditions, currents also cause refraction. This is of particular importance at entrances of tidal estuaries. When waves encounter a current running in the opposite direction, they become higher and shorter.

This results in a choppy sea, often with breakers. When waves move in the same direction as current, they decrease in height, and become longer. Refraction occurs when waves encounter a current at an angle.

Refraction diagrams, useful in planning amphibious operations, can be prepared with the aid of nautical charts or aerial photographs. When computer facilities are available, computer programs can be used to produce refraction diagrams quickly and accurately.

3216. Classes Of Breakers

In deep water, swell generally moves across the surface as somewhat regular, smooth undulations. When shoal water is reached, the wave period remains the same, but the speed decreases. The amount of decrease is negligible until the depth of water becomes about one-half the wavelength, when the waves begin to "feel" bottom. There is a slight decrease in wave height, followed by a rapid increase, if the waves are traveling perpendicular to a straight coast with a uniformly sloping bottom. As the waves become higher and shorter, they also become steeper, and the crest narrows. When the speed of the crest becomes greater than that of the wave, the front face of the wave becomes steeper than the rear face. This process continues at an accelerating rate as the depth of water decreases. If the wave becomes too unstable, it topples forward to form a breaker.

Figure 3215. The effect of bottom topography in causing wave convergence and wave divergence. Courtesy of Robert L. Wiegel, Council on Wave Research, University of California.

Figure 3216. The three types of breakers.
Courtesy of Robert L. Wiegel, Council on Wave Research, University of California.

There are three general classes of breakers. A spilling breaker breaks gradually over a considerable distance. A plunging breaker tends to curl over and break with a single crash. A surging breaker peaks up, but surges up the beach without spilling or plunging. It is classed as a breaker even though it does not actually break. The type of breaker which forms is determined by the steepness of the beach and the steepness of the wave before it reaches shallow water, as illustrated in Figure 3216.

Long waves break in deeper water, and have a greater breaker height. A steep beach also increases breaker height. The height of breakers is less if the waves approach the beach at an acute angle. With a steeper beach slope there is
greater tendency of the breakers to plunge or surge. Following the uprush of water onto a beach after the breaking of a wave, the seaward backrush occurs. The returning water is called backwash. It tends to further slow the bottom of a wave, thus increasing its tendency to break. This effect is greater as either the speed or depth of the backwash increases. The still water depth at the point of breaking is approximately 1.3 times the average breaker height.

Surf varies with both position along the beach and time. A change in position often means a change in bottom contour, with the refraction effects discussed before. At the same point, the height and period of waves vary consid-
erably from wave to wave. A group of high waves is usually followed by several lower ones. Therefore, passage through surf can usually be made most easily immediately following a series of higher waves.

Since surf conditions are directly related to height of the waves approaching a beach, and to the configuration of the bottom, the state of the surf at any time can be predicted if one has the necessary information and knowledge of the principles involved. Height of the sea and swell can be predicted from wind data, and information on bottom configuration can sometimes be obtained from the largest scale nautical chart. In addition, the area of lightest surf along a beach can be predicted if details of the bottom configuration are available. Surf predictions may, however, be significantly in error due to the presence of swell from unknown storms hundreds of miles away.

3217. Currents in the Surf Zone

In and adjacent to the surf zone, currents are generated by waves approaching the bottom contours at an angle, and by irregularities in the bottom.

Waves approaching at an angle produce a longshore current parallel to the beach, inside of the surf zone. Longshore currents are most common along straight beaches. Their speeds increase with increasing breaker height, decreasing wave period, increasing angle of breaker line with the beach, and increasing beach slope. Speed seldom exceeds 1 knot, but sustained speeds as high as 3 knots have been recorded. Longshore currents are usually constant in direction. They increase the danger of landing craft broaching to.

Where the bottom is sandy a good distance offshore, one or more sand bars typically form. The innermost bar will break in even small waves, and will isolate the longshore current. The second bar, if one forms, will break only in heavier weather, and the third, if present, only in storms. It is possible to move parallel to the coast in small
craft in relatively deep water in the area between these bars, between the lines of breakers.

3218. Rip Currents

As explained previously, wave fronts advancing over nonparallel bottom contours are refracted to cause convergence or divergence of the energy of the waves. Energy concentrations in areas of convergence form barriers to the returning backwash, which is deflected along the beach to areas of less resistance. Backwash accumulates at weak points, and returns seaward in concentrations, forming rip currents through the surf. At these points the large volume of returning water has an easily seen retarding effect upon the incoming waves, thus adding to the condition causing the rip current. The waves on one or both sides of the rip, having greater energy and not being retarded by the concentration of backwash, advance faster and farther up the beach. From here, they move along the beach as feeder currents. At some point of low resistance, the water flows seaward through the surf, forming the neck of the rip current. Outside the breaker line the current widens and slackens, forming the head. The various parts of a rip current are shown in Figure 3218.

Rip currents may also be caused by irregularities in the beach face. If a beach indentation causes an uprush to advance farther than the average, the backrush is delayed and this in turn retards the next incoming foam line (the front of a wave as it advances shoreward after breaking) at that point. The foam line on each side of the retarded point continues in its advance, however, and tends to fill in the retarded area, producing a rip current.

Rip currents are dangerous for swimmers, but may provide a clear path to the beach for small craft, as they tend to scour out the bottom and break through any sand bars that have formed. Rip currents also change location over time as conditions change.

Figure 3218. A rip current (left) and a diagram of its parts (right). Courtesy of Robert L. Wiegel, Council on Wave Research, University of California.

3219. Beach Sediments

In the surf zone, large amounts of sediment are suspended in the water. When the water's motion decreases, the sediments settle to the bottom. The water motion can be either waves or currents. Promontories or points are rocky because the large breakers scour the points and small sediments are suspended in the water and carried away. Bays tend to have sandy beaches because of the smaller waves.

In the winter when storms create large breakers and surf, the waves erode beaches and carry the particles offshore
where offshore sand bars form; sandy beaches tend to be narrower in stormy seasons. In the summer the waves gradually move the sand back to the beaches and the offshore sand bars decrease; then sandy beaches tend to be wider.

Longshore currents move large amounts of sand along the coast. These currents deposit sand on the upcurrent side of a jetty or pier, and erode the beach on the downcurrent side. Groins are sometimes built to impede the longshore flow of sediments and preserve beaches for recreational use. As with jetties, the downcurrent side of each groin will have the best water for approaching the beach.

CHAPTER 33

ICE NAVIGATION

INTRODUCTION

3300. Ice and the Navigator

Sea ice has posed a problem to the navigator since antiquity. During a voyage from the Mediterranean to England and Norway sometime between 350 B.C. and 300 B.C., Pytheas of Massalia sighted a strange substance which he described as "neither land nor air nor water" floating upon and covering the northern sea over which the summer Sun barely set. Pytheas named this lonely region Thule, hence Ultima Thule (farthest north or land's end). Thus began over 20 centuries of polar exploration.

Ice is of direct concern to the navigator because it restricts and sometimes controls his movements; it affects his dead reckoning by forcing frequent changes of course and speed; it affects piloting by altering the appearance or obliterating the features of landmarks; it hinders the establishment and maintenance of aids to navigation; it affects the use of electronic equipment by affecting propagation of radio waves; it produces changes in surface features and in radar returns from these features; it affects celestial navigation by altering the refraction and obscuring the horizon and celestial bodies either directly or by the weather it influences, and it affects charts by introducing several plotting problems.

Because of his direct concern with ice, the prospective polar navigator must acquaint himself with its nature and extent in the area he expects to navigate. In addition to this volume, books, articles, and reports of previous polar operations and expeditions will help acquaint the polar navigator with the unique conditions at the ends of the Earth

3301. Formation of Ice

As it cools, water contracts until the temperature of maximum density is reached. Further cooling results in expansion. The maximum density of fresh water occurs at a temperature of $4.0^{\circ} \mathrm{C}$, and freezing takes place at $0^{\circ} \mathrm{C}$. The addition of salt lowers both the temperature of maximum density and, to a lesser extent, that of freezing. These relationships are shown in Figure 3301. The two lines meet at a salinity of 24.7 parts per thousand, at which maximum density occurs at the freezing temperature of $-1.3^{\circ} \mathrm{C}$. At this and greater salinities, the temperature of maximum density of sea water is coincident with the freezing point temperature, i. e., the density increases as the temperature gets colder. At a salinity of 35 parts per thousand, the approxi-
mate average for the oceans, the freezing point is $-1.88^{\circ} \mathrm{C}$.
As the density of surface seawater increases with decreasing temperature, convective density-driven currents are induced bringing warmer, less dense water to the surface. If the polar seas consisted of water with constant salinity, the entire water column would have to be cooled to the freezing point in this manner before ice would begin to form. This is not the case, however, in the polar regions where the vertical salinity distribution is such that the surface waters are underlain at shallow depth by waters of higher salinity. In this instance density currents form a shallow mixed layer which subsequently cannot mix with the deep layer of warmer but saltier water. Ice will then begin forming at the water surface when density currents cease and the surface water reaches its freezing point. In shoal water, however, the mixing process can be sufficient to extend the freezing temperature from the surface to the bottom. Ice crystals can, therefore, form at any depth in this case. Because of their decreased density, they tend to rise to the surface, unless they form at the bottom and attach themselves there. This ice, called anchor ice, may continue to grow as additional ice freezes to that already formed.

3302. Land Ice

Ice of land origin is formed on land by the freezing of freshwater or the compacting of snow as layer upon layer adds to the pressure on that beneath.

Under great pressure, ice becomes slightly plastic, and is forced downward along an inclined surface. If a large area is relatively flat, as on the Antarctic plateau, or if the outward flow is obstructed, as on Greenland, an ice cap forms and remains essentially permanent. The thickness of these ice caps ranges from nearly 1 kilometer on Greenland to as much as 4.5 kilometers on the Antarctic Continent. Where ravines or mountain passes permit flow of the ice, a glacier is formed. This is a mass of snow and ice which continuously flows to lower levels, exhibiting many of the characteristics of rivers of water. The flow may be more than 30 meters per day, but is generally much less. When a glacier reaches a comparatively level area, it spreads out. When a glacier flows into the sea, the buoyant force of the water breaks off pieces from time to time, and these float away as icebergs. Icebergs may be described as dome shaped, sloping or pinnacled (Figure 3302a), tabular (Figure 3302b), glacier, or weathered.

Figure 3301. Relationship between temperature of maximum density and freezing point for water of varying salinity.

A floating iceberg seldom melts uniformly because of lack of uniformity in the ice itself, differences in the temperature above and below the waterline, exposure of one side to the Sun, strains, cracks, mechanical erosion, etc. The inclusion of rocks, silt, and other foreign matter further accentuates the differences. As a result, changes in equilibrium take place, which may cause the berg to periodically tilt or capsize. Parts of it may break off or calve, forming separate smaller bergs. A relatively large piece of floating ice, generally extending 1 to 5 meters above the sea surface and normally about 100 to 300 square meters in area, is called a bergy bit. A smaller piece of ice large enough to inflict serious damage to a vessel is called a growler because of the noise it sometimes makes as it bobs up and down in the sea. Growlers extend less than 1 meter above the sea surface and normally occupy an area of about 20 square meters. Bergy bits and growlers are usually pieces calved from icebergs, but they may be the remains of a mostly melted iceberg.

One danger from icebergs is their tendency to break or capsize. Soon after a berg is calved, while remaining in far northern waters, $60-80 \%$ of its bulk is submerged. But as the berg drifts into warmer waters, the underside can sometimes melt faster than the exposed portion, especially in very cold weather. As the mass of the submerged portion deteriorates,
the berg becomes increasingly unstable, and it may eventually roll over. Icebergs that have not yet capsized have a jagged and possibly dirty appearance. A recently capsized berg will be smooth, clean, and curved in appearance. Previous waterlines at odd angles can sometimes be seen after one or more capsizings.

The stability of a berg can sometimes be noted by its reaction to ocean swells. The livelier the berg, the more unstable it is. It is extremely dangerous for a vessel to approach an iceberg closely, even one which appears stable, because in addition to the danger from capsizing, unseen cracks can cause icebergs to split in two or calve off large chunks.

Another danger is from underwater extensions, called rams, which are usually formed due to melting or erosion above the waterline at a faster rate than below. Rams may also extend from a vertical ice cliff, also known as an ice front, which forms the seaward face of a massive ice sheet or floating glacier; or from an ice wall, which is the ice cliff forming the seaward margin of a glacier which is aground. In addition to rams, large portions of an iceberg may extend well beyond the waterline at greater depths.

Strangely, icebergs may be helpful to the mariner in some ways. The melt water found on the surface of icebergs is a source of freshwater, and in the past some daring sea-

Figure 3302a. Pinnacled iceberg.

Figure 3302b. A tabular iceberg.
men have made their vessels fast to icebergs which, because they are affected more by currents than the wind, have proceeded to tow them out of the ice pack.

Icebergs can be used as a navigational aid in extreme latitudes where charted depths may be in doubt or non-existent. Since an iceberg (except a large tabular berg) must be at least as deep in the water as it is high to remain upright, a grounded berg can provide an estimate of the minimum water depth at its location. Water depth will be at
least equal to the exposed height of the grounded iceberg. Grounded bergs remain stationary while current and wind move sea ice past them. Drifting ice may pile up against the upcurrent side of a grounded berg.

3303. Sea Ice

Sea ice forms by the freezing of seawater and accounts for 95 percent of all ice encountered. The first indication of
the formation of new sea ice (up to 10 centimeters in thickness) is the development of small individual, needle-like crystals of ice, called spicules, which become suspended in the top few centimeters of seawater. These spicules, also known as frazil ice, give the sea surface an oily appearance. Grease ice is formed when the spicules coagulate to form a soupy layer on the surface, giving the sea a matte appearance. The next stage in sea ice formation occurs when shuga, an accumulation of spongy white ice lumps a few centimeters across, develops from grease ice. Upon further freezing, and depending upon wind exposure, seas, and salinity, shuga and grease ice develop into nilas, an elastic crust of high salinity, up to 10 centimeters in thickness, with a matte surface, or into ice rind, a brittle, shiny crust of low salinity with a thickness up to approximately 5 centimeters. A layer of 5 centimeters of freshwater ice is brittle but strong enough to support the weight of a heavy man. In contrast, the same thickness of newly formed sea ice will support not more than about 10 percent of this weight, although its strength varies with the temperatures at which it is formed; very cold ice supports a greater weight than warmer ice. As it ages, sea ice becomes harder and more brittle.

New ice may also develop from slush which is formed when snow falls into seawater which is near its freezing point, but colder than the melting point of snow. The snow does not melt, but floats on the surface, drifting with the wind into beds. If the temperature then drops below the freezing point of the seawater, the slush freezes quickly into a soft ice similar to shuga.

Sea ice is exposed to several forces, including currents, waves, tides, wind, and temperature variations. In its early stages, its plasticity permits it to conform readily to virtually any shape required by the forces acting upon it. As it becomes older, thicker, more brittle, and exposed to the influence of wind and wave action, new ice usually separates into circular pieces from 30 centimeters to 3 meters in diameter and up to approximately 10 centimeters in thickness with raised edges due to individual pieces striking against each other. These circular pieces of ice are called pancake ice (Figure 3303) and may break into smaller pieces with strong wave motion. Any single piece of relatively flat sea ice less than 20 meters across is called an ice cake. With continued low temperatures, individual ice cakes and pancake ice will, depending on wind or wave motion, either freeze together to form a continuous sheet or unite into pieces of ice 20 meters or more across. These larger pieces are then called ice floes, which may further freeze together to form an ice covered area greater than 10 kilometers across known as an ice field. In wind sheltered areas thickening ice usually forms a continuous sheet before it can develop into the characteristic ice cake form. When sea ice reaches a thickness of between 10 to 30 centimeters it is referred to as gray and gray-white ice, or collectively as young ice, and is the transition stage between nilas and first-year ice. First-year ice usually attains a thickness of

Figure 3303. Pancake ice, with an iceberg in the background.
between 30 centimeters and 2 meters in its first winter's growth.

Sea ice may grow to a thickness of 10 to 13 centimeters within 48 hours, after which it acts as an insulator between the ocean and the atmosphere progressively slowing its further growth. However, sea ice may grow to a thickness of between 2 to 3 meters in its first winter. Ice which has survived at least one summer's melt is classified as old ice. If it has survived only one summer's melt it may be referred to as second-year ice, but this term is seldom used today. Old ice which has attained a thickness of 3 meters or more and has survived at least two summers' melt is known as multiyear ice and is almost salt free. This term is increasingly used to refer to any ice more than one season old. Old ice can be recognized by a bluish tone to its surface color in contrast to the greenish tint of first-year ice, but it is often covered with snow. Another sign of old ice is a smoother, more rounded appearance due to melting/refreezing and weathering.

Greater thicknesses in both first and multiyear ice are attained through the deformation of the ice resulting from the movement and interaction of individual floes. Deformation processes occur after the development of new and young ice and are the direct consequence of the effects of winds, tides, and currents. These processes transform a relatively flat sheet of ice into pressure ice which has a rough surface. Bending, which is the first stage in the formation of pressure ice, is the upward or downward motion of thin and very plastic ice. Rarely, tenting occurs when bending produces an upward displacement of ice forming a flat sided arch with a cavity beneath. More frequently, however, rafting takes place as one piece of ice overrides another. When pieces of first-year ice are piled haphazardly over one another forming a wall or line of broken ice, referred to as a ridge, the process is known as ridging. Pressure ice with topography consisting of
numerous mounds or hillocks is called hummocked ice, each mound being called a hummock.

The motion of adjacent floes is seldom equal. The rougher the surface, the greater is the effect of wind, since each piece extending above the surface acts as a sail. Some ice floes are in rotary motion as they tend to trim themselves into the wind. Since ridges extend below as well as above the surface, the deeper ones are influenced more by deep water currents. When a strong wind blows in the same direction for a considerable period, each floe exerts pressure on the next one, and as the distance increases, the pressure becomes tremendous. Ridges on sea ice are generally about 1 meter high and 5 meters deep, but under considerable pressure may attain heights of 20 meters and depths of 50 meters in extreme cases.

The alternate melting and growth of sea ice, combined with the continual motion of various floes that results in separation as well as consolidation, causes widely varying conditions within the ice cover itself. The mean areal density, or concentration, of pack ice in any given area is expressed in tenths. Concentrations range from:

> Open water (total concentration of all ice is < one tenth) Very open pack $(1-3$ tenths concentration)
> Open pack $(4-6$ tenths concentration)
> Close pack $(7-8$ tenths concentration $)$
> Very close pack $(9-10$ to <10-10 concentration)
> Compact or consolidated pack $(100 \%$ coverage $)$

The extent to which an ice cover of varying concentrations can be penetrated by a vessel varies from place to place and with changing weather conditions. With a concentration of 1 to 3 tenths in a given area, an unreinforced vessel can generally navigate safely, but the danger of receiving heavy damage is always present. When the concentration increases to between 3 and 5 tenths, the area becomes only occasionally accessible to an unreinforced vessel, depending upon the wind and current. With concentrations of 5 to 7 tenths, the area becomes accessible only to ice strengthened vessels, which on occasion will require icebreaker assistance. Navigation in areas with concentrations of 7 tenths or more should only be attempted by icebreakers.

Within the ice cover, openings may develop resulting from a number of deformation processes. Long, jagged cracks may appear first in the ice cover or through a single floe. When these cracks part and reach lengths of a few meters to many kilometers, they are referred to as fractures. If they widen further to permit passage of a ship, they are called leads. In winter, a thin coating of new ice may cover the water within a lead, but in summer the water usually remains ice-free until a shift in the movement forces the two sides together again. A lead ending in a pressure ridge or other impenetrable barrier is a blind lead.

A lead between pack ice and shore is a shore lead, and one between pack and fast ice is a flaw lead. Navigation in
these two types of leads is dangerous, because if the pack ice closes with the fast ice, the ship can be caught between the two, and driven aground or caught in the shear zone between.

Before a lead refreezes, lateral motion generally occurs between the floes, so that they no longer fit and unless the pressure is extreme, numerous large patches of open water remain. These nonlinear shaped openings enclosed in ice are called polynyas. Polynyas may contain small fragments of floating ice and may be covered with miles of new and young ice. Recurring polynyas occur in areas where upwelling of relatively warmer water occurs periodically. These areas are often the site of historical native settlements, where the polynyas permit fishing and hunting at times before regular seasonal ice breakup. Thule, Greenland, is an example.

Sea ice which is formed in situ from seawater or by the freezing of pack ice of any age to the shore and which remains attached to the coast, to an ice wall, to an ice front, or between shoals is called fast ice. The width of this fast ice varies considerably and may extend for a few meters or several hundred kilometers. In bays and other sheltered areas, fast ice, often augmented by annual snow accumulations and the seaward extension of land ice, may attain a thickness of over 2 meters above the sea surface. When a floating sheet of ice grows to this or a greater thickness and extends over a great horizontal distance, it is called an ice shelf. Massive ice shelves, where the ice thickness reaches several hundred meters, are found in both the Arctic and Antarctic.

The majority of the icebergs found in the Antarctic do not originate from glaciers, as do those found in the Arctic, but are calved from the outer edges of broad expanses of shelf ice. Icebergs formed in this manner are called tabular icebergs, having a box like shape with horizontal dimensions measured in kilometers, and heights above the sea surface approaching 60 meters. See Figure 3302b. The largest Antarctic ice shelves are found in the Ross and Weddell Seas. The expression "tabular iceberg" is not applied to bergs which break off from Arctic ice shelves; similar formations there are called ice islands. These originate when shelf ice, such as that found on the northern coast of Greenland and in the bays of Ellesmere Island, breaks up. As a rule, Arctic ice islands are not as large as the tabular icebergs found in the Antarctic. They attain a thickness of up to 55 meters and on the average extend 5 to 7 meters above the sea surface. Both tabular icebergs and ice islands possess a gently rolling surface. Because of their deep draft, they are influenced much more by current than wind. Arctic ice islands have been used as floating scientific platforms from which polar research has been conducted.

3304. Thickness of Sea Ice

Sea ice has been observed to grow to a thickness of almost

Figure 3304a. Relationship between accumulated frost degree days and theoretical ice thickness at Point Barrow, Alaska.

3 meters during its first year. However, the thickness of firstyear ice that has not undergone deformation does not generally exceed 2 meters. In coastal areas where the melting rate is less than the freezing rate, the thickness may increase during succeeding winters, being augmented by compacted and frozen snow, until a maximum thickness of about 3.5 to 4.5 meters may eventually be reached. Old sea ice may also attain a thickness of over 4 meters in this manner, or when summer melt
water from its surface or from snow cover runs off into the sea and refreezes under the ice where the seawater temperature is below the freezing point of the fresher melt water.

The growth of sea ice is dependent upon a number of meteorological and oceanographic parameters. Such parameters include air temperature, initial ice thickness, snow depth, wind speed, seawater salinity and density, and the specific heats of sea ice and seawater. Investigations, how-

Figure 3304b. Relationship between accumulated frost degree days (${ }^{\circ} \mathrm{C}$) and ice thickness (cm).
ever, have shown that the most influential parameters affecting sea ice growth are air temperature, wind speed, snow depth and initial ice thickness. Many complex equations have been formulated to predict ice growth using these four parameters. However, except for the first two, these parameters are not routinely observed for remote polar locations.

Field measurements suggest that reasonable growth estimates can be obtained from air temperature data alone.Various empirical formulae have been developed based on this premise. All appear to perform better under thin ice conditions when the temperature gradient through the ice is linear, generally true for ice less than 100 centimeters thick. Differences in predicted thicknesses between models generally reflect differences in environmental parameters (snowfall, heat content of the underlying water column, etc.) at the measurement site. As a result, such equations must be considered partially site specific and their general use approached with caution. For example, applying an equation derived from central Arctic data to coastal conditions or to Antarctic conditions could lead to substantial errors. For this reason Zubov's formula is widely cited as it represents an average of many years of observations from the Russian Arctic:

$$
h^{2}+50 h=8 \phi
$$

where h is the ice thickness in centimeters for a given day and ϕ is the cumulative number of frost degree days in degrees Celsius since the beginning of the freezing season.

A frost degree day is defined as a day with a mean temperature of 1° below an arbitrary base. The base most
commonly used is the freezing point of freshwater $\left(0^{\circ} \mathrm{C}\right)$. If, for example, the mean temperature on a given day is 5° below freezing, then five frost degree days are noted for that day. These frost degree days are then added to those noted the next day to obtain an accumulated value, which is then added to those noted the following day. This process is repeated daily throughout the ice growing season. Temperatures usually fluctuate above and below freezing for several days before remaining below freezing. Therefore, frost degree day accumulations are initiated on the first day of the period when temperatures remain below freezing. The relationship between frost degree day accumulations and theoretical ice growth curves at Point Barrow, Alaska is shown in Figure 3304a. Similar curves for other Arctic stations are contained in publications available from the U.S. Naval Oceanographic Office and the National Ice Center. Figure 3304b graphically depicts the relationship between accumulated frost degree days $\left({ }^{\circ} \mathrm{C}\right)$ and ice thickness in centimeters.

During winter, the ice usually becomes covered with snow, which insulates the ice beneath and tends to slow down its rate of growth. This thickness of snow cover varies considerably from region to region as a result of differing climatic conditions. Its depth may also vary widely within very short distances in response to variable winds and ice topography. While this snow cover persists, about 80 to 85 percent of the incoming radiation is reflected back to space. Eventually, however, the snow begins to melt, as the air temperature rises above $0^{\circ} \mathrm{C}$ in early summer and the resulting freshwater forms puddles on the surface. These puddles absorb about 90 percent of the incoming radiation
and rapidly enlarge as they melt the surrounding snow or ice. Eventually the puddles penetrate to the bottom surface of the floes forming thawholes. This slow process is characteristic of ice in the Arctic Ocean and seas where movement is restricted by the coastline or islands. Where ice is free to drift into warmer waters (e.g., the Antarctic, East Greenland, and the Labrador Sea), decay is accelerated in response to wave erosion as well as warmer air and sea temperatures.

3305. Salinity of Sea Ice

Sea ice forms first as salt-free crystals near the surface of the sea. As the process continues, these crystals are joined together and, as they do so, small quantities of brine are trapped within the ice. On the average, new ice 15 centimeters thick contains 5 to 10 parts of salt per thousand. With lower temperatures, freezing takes place faster. With faster freezing, a greater amount of salt is trapped in the ice.

Depending upon the temperature, the trapped brine may either freeze or remain liquid, but because its density is greater than that of the pure ice, it tends to settle down through the pure ice. As it does so, the ice gradually freshens, becoming clearer, stronger, and more brittle. At an age of 1 year, sea ice is sufficiently fresh that its melt water, if found in puddles of sufficient size, and not contaminated by spray from the sea, can be used to replenish the freshwater supply of a ship. However, ponds of sufficient size to water ships are seldom found except in ice of great age, and then much of the meltwater is from snow which has accumulated on the surface of the ice. When sea ice reaches an age of about 2 years, virtually all of the salt has been eliminated. Icebergs, having formed from precipitation, contain no salt, and uncontaminated melt water obtained from them is fresh.

The settling out of the brine gives sea ice a honeycomb structure which greatly hastens its disintegration when the temperature rises above freezing. In this state, when it is called rotten ice, much more surface is exposed to warm air and water, and the rate of melting is increased. In a day's time, a floe of apparently solid ice several inches thick may disappear completely.

3306. Density of Ice

The density of freshwater ice at its freezing point is $0.917 \mathrm{gm} / \mathrm{cm}^{3}$. Newly formed sea ice, due to its salt content, is more dense, $0.925 \mathrm{gm} / \mathrm{cm}^{3}$ being a representative value. The density decreases as the ice freshens. By the time it has shed most of its salt, sea ice is less dense than freshwater ice, because ice formed in the sea contains more air bubbles. Ice having no salt but containing air to the extent of 8 percent by volume (an approximately maximum value for sea ice) has a density of $0.845 \mathrm{gm} / \mathrm{cm}^{3}$.

The density of land ice varies over even wider limits. That formed by freezing of freshwater has a density of $0.917 \mathrm{gm} / \mathrm{cm}^{3}$, as stated above. Much of the land ice,
however, is formed by compacting of snow. This results in the entrapping of relatively large quantities of air. Névé, a snow which has become coarse grained and compact through temperature change, forming the transition stage to glacier ice, may have an air content of as much as 50 percent by volume. By the time the ice of a glacier reaches the sea, its density approaches that of freshwater ice. A sample taken from an iceberg on the Grand Banks had a density of $0.899 \mathrm{gm} / \mathrm{cm}^{3}$.

When ice floats, part of it is above water and part is below the surface. The percentage of the mass below the surface can be found by dividing the average density of the ice by the density of the water in which it floats. Thus, if an iceberg of density 0.920 floats in water of density 1.028 (corresponding to a salinity of 35 parts per thousand and a temperature of $-1^{\circ} \mathrm{C}$), 89.5 percent of its mass will be below the surface.

The height to draft ratio for a blocky or tabular iceberg probably varies fairly closely about $1: 5$. This average ratio was computed for icebergs south of Newfoundland by considering density values and a few actual measurements, and by seismic means at a number of locations along the edge of the Ross Ice Shelf near Little America Station. It was also substantiated by density measurements taken in a nearby hole drilled through the 256 -meter thick ice shelf. The height to draft ratios of icebergs become significant when determining their drift.

3307. Drift of Sea Ice

Although surface currents have some affect upon the drift of pack ice, the principal factor is wind. Due to Coriolis force, ice does not drift in the direction of the wind, but varies from approximately 18° to as much as 90° from this direction, depending upon the force of the surface wind and the ice thickness. In the Northern Hemisphere, this drift is to the right of the direction toward which the wind blows, and in the Southern Hemisphere it is toward the left. Although early investigators computed average angles of approximately 28° or 29° for the drift of close multiyear pack ice, large drift angles were usually observed with low, rather than high, wind speeds. The relationship between surface wind speed, ice thickness, and drift angle was derived theoretically for the drift of consolidated pack under equilibrium (a balance of forces acting on the ice) conditions, and shows that the drift angle increases with increasing ice thickness and decreasing surface wind speed. See Figure 3307. A slight increase also occurs with higher latitude.

Since the cross-isobar deflection of the surface wind over the oceans is approximately 20°, the deflection of the ice varies, from approximately along the isobars to as much as 70° to the right of the isobars, with low pressure on the left and high pressure on the right in the Northern Hemisphere. The positions of the low and high pressure areas are, of course, reversed in the Southern Hemisphere.

The rate of drift depends upon the roughness of the sur-

Figure 3307. Ice drift direction for varying wind speed and ice thickness.
face and the concentration of the ice. Percentages vary from approximately 0.25 percent to almost 8 percent of the surface wind speed as measured approximately 6 meters above the ice surface. Low concentrations of heavily ridged or hummocked floes drift faster than high concentrations of lightly ridged or hummocked floes with the same wind speed. Sea ice of 8 to 9 tenths concentrations and six tenths hummocking or close multiyear ice will drift at approximately 2 percent of the surface wind speed. Additionally, the response factors of 1 and 5 tenths ice concentrations, respectively, are approximately three times and twice the magnitude of the response factor for 9 tenths ice concentrations with the same extent of surface roughness. Isolated ice floes have been observed to drift as fast as 10 percent to 12 percent of strong surface winds.

The rates at which sea ice drifts have been quantified through empirical observation. The drift angle, however, has been determined theoretically for 10 tenths ice concentration. This relationship presently is extended to the drift of all ice concentrations, due to the lack of basic knowledge of the dynamic forces that act upon, and result in redistribution of sea ice, in the polar regions.

3308. Iceberg Drift

Icebergs extend a considerable distance below the surface and have relatively small "sail areas" compared to their subsurface mass. Therefore, the near-surface current is thought to be primarily responsible for drift; however, observations have shown that wind can be the dominant force that governs iceberg drift at a particular location or time. Also, the current and wind may contribute nearly equally to the resultant drift.

Two other major forces which act on a drifting iceberg are the Coriolis force and, to a lesser extent, the pressure gradient force which is caused by gravity owing to a tilt of the sea surface, and is important only for iceberg drift in a major current. Near-surface currents are generated by a variety of factors such as horizontal pressure gradients owing to density variations in the water, rotation of the Earth, gravitational attraction of the Moon, and slope of the sea surface. Not only does wind act directly on an iceberg, it also acts indirectly by generating waves and a surface current in about the same direction as the wind. Because of inertia, an iceberg may continue to move from the influence of wind for some time after the wind stops or changes direction.

The relative influence of currents and winds on the

Blocky or tabular
Rounded or domed
Picturesque or Greenland (sloping)
Pinnacled or ridged
Horned, winged, dry dock, or spired (weathered)

1:5
$1: 5$
$1: 4$
1:3
1:2
1:1

Table 3308a. Height to draft ratios for various types of icebergs.

Table 3308b. Drift of iceberg as percentage of wind speed.
drift of an iceberg varies according to the direction and magnitude of the forces acting on its sail area and subsurface cross-sectional area. The resultant force therefore involves the proportions of the iceberg above and below the sea surface in relation to the velocity and depth of the current, and the velocity and duration of the wind. Studies tend to show that, generally, where strong currents prevail, the current is dominant. In regions of weak currents, however, winds that blow for a number of hours in a steady direction materially affect the drift of icebergs. Generally, it can be stated that currents tend to have a greater effect on deepdraft icebergs, while winds tend to have a greater effect on shallow-draft icebergs.

As icebergs waste through melting, erosion, and calving, observations indicate the height to draft ratio may approach $1: 1$ during their last stage of decay, when they are referred to as a dry dock, winged, horned, or pinnacle icebergs. The height to draft ratios found for icebergs in their various stages are presented in Table 3308a. Since wind tends to have a greater effect on shallow than on deep-draft icebergs, the wind can be expected to exert increasing influence on iceberg drift as wastage increases.

Simple equations which precisely define iceberg drift cannot be formulated at present because of the uncertainty in the water and air drag coefficients associated with iceberg motion. Values for these parameters not only vary from iceberg to iceberg, but they probably change for the same iceberg over its period of wastage.

Present investigations utilize an analytical approach, facilitated by computer calculations, in which the air and water drag coefficients are varied within reasonable limits. Combinations of these drag values are then used in several increasingly complex water models that try to duplicate observed iceberg trajectories. The results indicate that with a wind-generated current, Coriolis force, and a uniform wind, but without a gradient current, small and medium icebergs will drift with the percentages of the wind as given in Table 3308b. The drift will be to the right in the Northern Hemisphere and to the left in the Southern Hemisphere.

When gradient currents are introduced, trajectories vary considerably depending on the magnitude of the wind and current, and whether they are in the same or opposite direction. When a 1 -knot current and wind are in the same direction, drift is to the right of both wind and current with drift angles increasing linearly from approximately 5° at 10 knots to 22° at 60 knots. When the wind and a $1-$ knot current are in opposite directions, drift is to the left of the current, with the angle increasing from approximately 3° at 10 knots, to 20° at 30 knots, and to 73° at 60 knots. As a limiting case for increasing wind speeds, drift may be approximately normal (to the right) to the wind direction. This indicates that the wind driven current is clearly dominating the drift. In general, the various models used demonstrated that a combination of the wind and current was responsible for the drift of icebergs.

3309. Extent of Ice in the Sea

When an area of sea ice, no matter what form it takes or how it is disposed, is described, it is referred to as pack ice. In both polar regions the pack ice is a very dynamic feature, with wide deviations in its extent dependent upon changing oceanographic and meteorological phenomena. In winter the Arctic pack extends over the entire Arctic Ocean, and for a varying distance outward from it; the limits recede considerably during the warmer summer months. The average positions of the seasonal absolute and mean maximum and minimum extents of sea ice in the Arctic region are plotted in Figure 3309a. Each year a large portion of the ice from the Arctic Ocean moves outward between Greenland and Spitsbergen (Fram Strait) into the North Atlantic Ocean and is replaced by new ice. Because of this constant annual removal and replacement of sea ice, relatively little of the Arctic pack ice is more than 10 years old.

Ice covers a large portion of the Antarctic waters and is probably the greatest single factor contributing to the isolation of the Antarctic Continent. During the austral

Figure 3309a. Average maximum and minimum extent of Arctic sea ice.
winter (June through September), ice completely surrounds the continent, forming an almost impassable barrier that extends northward on the average to about $54^{\circ} \mathrm{S}$ in the Atlantic and to about $62^{\circ} \mathrm{S}$ in the Pacific. Disintegration of the pack ice during the austral summer months of December through March allows the limits of the ice edge to recede considerably, opening some coastal areas of the Antarctic to navigation. The seasonal absolute and mean maximum and minimum positions of the Antarctic ice limit are shown in Figure 3309b.

Historical information on sea ice conditions for specific localities and time periods can be found in publications of the Naval Ice Center/National Ice Center and the National Imagery and Mapping Agency (NIMA). National Ice Center (NIC) publications include sea ice annual atlases (1972 to present for Eastern Arctic, Western Arctic and Antarctica), sea ice climatologies, and forecasting guides. NIC sea ice annual atlases include years 1972 to the present for all Arctic and Antarctic seas. NIC ice climatologies describe multiyear statistics for ice extent and coverage. NIC forecasting guides cover procedures for the production of short-term (daily, weekly), monthly, and seasonal predictions. NIMA publications include sailing directions, which describe localized ice conditions and the effect of ice on polar
navigation.

3310. Icebergs in the North Atlantic

Sea level glaciers exist on a number of landmasses bordering the northern seas, including Alaska, Greenland, Svalbard (Spitsbergen), Zemlya Frantsa-Iosifa (Franz Josef Land), Novaya Zemlya, and Severnaya Zemlya (Nicholas II Land). Except in Greenland and Franz Josef Land, the rate of calving is relatively slow, and the few icebergs produced melt near their points of formation. Many of those produced along the western coast of Greenland, however, are eventually carried into the shipping lanes of the North Atlantic, where they constitute a major menace to ships. Those calved from Franz Josef Land glaciers drift southwest in the Barents Sea to the vicinity of Bear Island

Generally the majority of icebergs produced along the east coast of Greenland remain near their source. However, a small number of bergy bits, growlers, and small icebergs are transported south from this region by the East Greenland Current around Kap Farvel at the southern tip of Greenland and then northward by the West Greenland Current into Davis Strait to the vicinity of $67^{\circ} \mathrm{N}$. Relatively few of these icebergs menace shipping, but some are carried

Figure 3309b. Average maximum and minimum extent of Antarctic sea ice.
to the south and southeast of Kap Farvel by a counterclockwise current gyre centered near $57^{\circ} \mathrm{N}$ and $43^{\circ} \mathrm{W}$.

The main source of the icebergs encountered in the North Atlantic is the west coast of Greenland between $67^{\circ} \mathrm{N}$ and $76^{\circ} \mathrm{N}$, where approximately $10,000-15,000$ icebergs are calved each year. In this area there are about 100 lowlying coastal glaciers, 20 of them being the principal producers of icebergs. Of these 20 major glaciers, 2 located in Disko Bugt between $69^{\circ} \mathrm{N}$ and $70^{\circ} \mathrm{N}$ are estimated to contribute 28 percent of all icebergs appearing in Baffin Bay and the Labrador Sea. The West Greenland Current carries icebergs from this area northward and then westward until they encounter the south flowing Labrador Current. West Greenland icebergs generally spend their first winter locked in the Baffin Bay pack ice; however, a large number can also be found within the sea ice extending along the entire Labrador coast by late winter.

During the next spring and summer they are transported farther southward by the Labrador Current. The general drift patterns of icebergs that are prevalent in the eastern portion of the North American Arctic are shown in Figure 3310a. Observations over a 101-year period show that an
average of 479 icebergs per year reach latitudes south of $48^{\circ} \mathrm{N}$, with approximately 10 percent of this total carried south of the Grand Banks $\left(43^{\circ} \mathrm{N}\right)$ before they melt. Icebergs may be encountered during any part of the year, but in the Grand Banks area they are most numerous during spring. The maximum monthly average of iceberg sightings below $48^{\circ} \mathrm{N}$ occurs during April, May and June, with May having the highest average of 147 .

It has been suggested that the distribution of the Davis Strait-Labrador Sea pack ice influences the melt rate of the icebergs as they drift south. Sea ice will decrease iceberg erosion by damping waves and holding surface water temperatures below $0^{\circ} \mathrm{C}$, so as the areal extent of the sea ice increases the icebergs will tend to survive longer. Stronger than average northerly or northeasterly winds during late winter and spring will enhance sea ice drift to the south, which also may lengthen iceberg lifetimes. There are also large inter-annual variations in the number of icebergs calved from Greenland's glaciers, so the problem of forecasting the length and severity of an iceberg season is exceedingly complex.

Figure 3310a. General drift patterns of icebergs in Baffin Bay, Davis Strait, and Labrador Sea.

The variation from average conditions is considerable. More than 2,202 icebergs have been sighted south of latitude $48^{\circ} \mathrm{N}$ in a single year (1984), while in 1966 not a single iceberg was encountered in this area. In the years of 1940 and 1958, only one iceberg was observed south of
$48^{\circ} \mathrm{N}$. The length of the iceberg "season" as defined by the International Ice Patrol also varies considerably, from a maximum of 203 days in 1992 to the minimum in 1999, when there was no formal ice season. The average length of the ice season is about 130 days. Although this variation has not

Figure 3310b. Average iceberg and pack ice limits during the month of May.
been fully explained, it is apparently related to wind and ocean current conditions, to the distribution of pack ice in Davis Strait, and to the amount of pack ice off Labrador.

Average iceberg and pack ice limits in this area during May are shown in Figure 3310b. Icebergs have been observed in the vicinity of Bermuda, the Azores, and within 400 to 500 kilometers of Great Britain.

Pack ice may also be found in the North Atlantic, some having been brought south by the Labrador Current and some coming through Cabot Strait after having formed in the Gulf of St. Lawrence.

3311. The International Ice Patrol

The International Ice Patrol was established in 1914 by the International Convention for the Safety of Life at Sea (SOLAS), held in 1913 as a result of the sinking of the RMS Titanic in 1912. The Titanic struck an iceberg on its maiden voyage and sank with the loss of 1,513 lives. In accordance with the agreement reached at the SOLAS conventions of

1960 and 1974, the International Ice Patrol is conducted by the U.S. Coast Guard, which is responsible for the observation and dissemination of information concerning ice conditions in the North Atlantic. Information on ice conditions for the Gulf of St. Lawrence and the coastal waters of Newfoundland and Labrador, including the Strait of Belle Isle, is provided by ECAREG Canada (Eastern Canada Traffic System), through any Coast Guard Radio Station, from the month of December through late June. Sea ice data for these areas can also be obtained from the Ice Operations Officer, located at Dartmouth, Nova Scotia, via Sydney, Halifax, or St. John's marine radio.

During the war years of 1916-18 and 1941-45, the Ice Patrol was suspended. Aircraft were added to the patrol force following World War II, and today perform the majority of the reconnaissance work. During each ice season, aerial reconnaissance surveys are made in the vicinity of the Grand Banks off Newfoundland to determine the southeastern, southern, and southwestern limit of the seaward extent of icebergs. The U.S. Coast Guard aircraft
use Side-Looking Airborne Radar (SLAR) as well as Forward-Looking Airborne Radar (FLAR) to help detect and identify icebergs in this notoriously fog-ridden area. Reports of ice sightings are also requested and collected from ships transiting the Grand Banks area. When reporting ice, vessels are requested to detail the concentration and stage of development of sea ice, number of icebergs, the bearing of the principal sea ice edge, and the present ice situation and trend over the preceding three hours. These five parameters are part of the ICE group of the ship synoptic code which is addressed in more detail in Article 3416 on ice observation. In addition to ice reports, masters who do not issue routine weather reports are urged to make sea surface temperature and weather reports to the Ice Patrol every six hours when within latitudes 40° to $52^{\circ} \mathrm{N}$ and longitudes 38° to $58^{\circ} \mathrm{W}$ (the Ice Patrol Operations Area). Ice reports may be sent at no charge using INMARSAT Code 42.

International Ice Patrol activities are directed from an Operations Center at Avery Point, Groton, Connecticut. The Ice Patrol gathers all sightings and puts them into a computer model which analyzes and predicts iceberg drift and deterioration. Due to the large size of the Ice Patrol's operating area, icebergs are usually seen only once. The model predictions are crucial to setting the limits of all known ice. The fundamental model force balance is between iceberg acceleration and accelerations due to air and water drag, the Coriolis acceleration, and a sea surface slope term. The model is driven primarily by a water current that combines a depth- and time-independent geostrophic (mean) current with a depth- and timedependent current driven by the wind (Ekman flow).

Environmental parameters for the model, including sea surface temperature, wave height and period, and wind, are obtained from the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC) in Monterey, California every 12 hours. The International Ice Patrol also deploys from 12-15 World Ocean Circulation Experiment (WOCE) drifting buoys per year, and uses the buoy drifts to alter the climatological mean (geostrophic) currents used by the model in the immediate area of the buoys. The buoy drift data have been archived at the National Oceanographic Data Center (NODC) and are available for use by researchers. Sea surface temperature, wave height and wave period are the main factors that determine the rate of iceberg deterioration. Ship observations of these variables are extremely important because the accuracy of the deterioration model depends on accurate input data.

The results from the iceberg drift and deterioration model are used to compile bulletins that are issued twice daily during the ice season by radio communications from Boston, Massachusetts; St. John's, Newfoundland; and other radio stations. Bulletins are also available over INMARSAT. When icebergs are sighted outside the known limits of ice, special safety broadcasts are issued in between
the regularly scheduled bulletins. Iceberg positions in the ice bulletins are updated for drift and deterioration at 12hour intervals. A radio-facsimile chart is also broadcast twice a day throughout the ice season. A summary of broadcast times and frequencies is found in Pub. 117, Radio Navigational Aids, and on the International Ice Patrol Web site, http://www.uscg.mil/lantarea/iip/home.html.

The Ice Patrol, in addition to patrolling possible iceberg areas, conducts oceanographic surveys, maintains up-to-date records of the currents in its area of operation to aid in predicting the drift of icebergs, and studies iceberg conditions in general.

3312. Ice Detection

Safe navigation in the polar seas depends on a number of factors, not the least of which is accurate knowledge of the location and amount of sea ice that lies between the mariner and his destination. Sophisticated electronic equipment, such as radar, sonar, and the visible, infrared, and microwave radiation sensors on board satellites, have added to our ability to detect and thus avoid ice.

As a ship proceeds into higher latitudes, the first ice encountered is likely to be in the form of icebergs, because such large pieces require a longer time to disintegrate. Icebergs can easily be avoided if detected soon enough. The distance at which an iceberg can be seen visually depends upon meteorological visibility, height of the iceberg, source and condition of lighting, and the observer. On a clear day with excellent visibility, a large iceberg might be sighted at a distance of 20 miles. With a low-lying haze around the horizon, this distance will be reduced. In light fog or drizzle this distance is further reduced, down to near zero in heavy fog.

In a dense fog an iceberg may not be perceptible until it is close aboard where it will appear in the form of a luminous, white object if the Sun is shining; or as a dark, somber mass with a narrow streak of blackness at the waterline if the Sun is not shining. If the layer of fog is not too thick, an iceberg may be sighted from aloft sooner than from a point lower on the vessel, but this does not justify omitting a bow lookout. The diffusion of light in a fog will produce a blink, or area of whiteness, above and at the sides of an iceberg which will appear to increase the apparent size of its mass.

On dark, clear nights icebergs may be seen at a distance of from 1 to 3 miles, appearing either as white or black objects with occasional light spots where waves break against it. Under such conditions of visibility growlers are a greater menace to vessels; the vessel's speed should be reduced and a sharp lookout maintained.

The Moon may either help or hinder, depending upon its phase and position relative to ship and iceberg. A full Moon in the direction of the iceberg interferes with its detection, while Moonlight from behind the observer may produce a blink which renders the iceberg visible for a greater distance, as much as 3 or more miles. A clouded sky
at night, through which the Moonlight is intermittent, also renders ice detection difficult. A night sky with heavy passing clouds may also dim or obscure any object which has been sighted, and fleecy cumulus and cumulonimbus clouds often may give the appearance of blink from icebergs.

If an iceberg is in the process of disintegration, its presence may be detected by a cracking sound as a piece breaks off, or by a thunderous roar as a large piece falls into the water. These sounds are unlikely to be heard due to shipboard noise. The appearance of small pieces of ice in the water often indicates the presence of an iceberg nearby. In calm weather these pieces may form a curved line with the parent iceberg on the concave side. Some of the pieces broken from an iceberg are themselves large enough to be a menace to ships.

As the ship moves closer towards areas known to contain sea ice, one of the most reliable signs that pack ice is being approached is the absence of swell or wave motion in a fresh breeze or a sudden flattening of the sea, especially from leeward. The observation of icebergs is not a good indication that pack ice will be encountered soon, since icebergs may be found at great distances from pack ice. If the sea ice is approached from windward, it is usually compacted and the edge will be sharply defined. However, if it is approached from leeward, the ice is likely to be loose and somewhat scattered, often in long narrow arms.

Another reliable sign of the approach of pack ice not yet in sight is the appearance of a pattern, or sky map, on the horizon or on the underside of distant, extensive cloud areas, created by the varying amounts of light reflected from different materials on the sea or Earth's surface. A bright white glare, or snow blink, will be observed above a snow covered surface. When the reflection on the underside of clouds is caused by an accumulation of distant ice, the glare is a little less bright and is referred to as an ice blink. A relatively dark pattern is reflected on the underside of clouds when it is over land that is not snow covered. This is known as a land sky. The darkest pattern will occur when the clouds are above an open water area, and is called a water sky. A mariner experienced in recognizing these sky maps will find them useful in avoiding ice or searching out openings which may permit his vessel to make progress through an ice field.

Another indication of the presence of sea ice is the formation of thick bands of fog over the ice edge, as moisture condenses from warm air when passing over the colder ice. An abrupt change in air or sea temperature or seawater salinity is not a reliable sign of the approach of icebergs or pack ice.

The presence of certain species of animals and birds can also indicate that pack ice is in close proximity. The sighting of walruses, seals, or polar bears in the Arctic should warn the mariner that pack ice is close at hand. In the Antarctic, the usual precursors of sea ice are penguins, terns, fulmars, petrels, and skuas.

Ice presents only about $1 / 60$ th of the radar return of a vessel of the same cross sectional area, and has a reflection coefficient of 0.33 . But when visibility becomes limited, radar can prove to be a valuable tool. Although many icebergs will be observed visually on clear days before there is a return on the radarscope, radar under bad weather conditions will detect the average iceberg at a range of about 8 to 10 miles.

The intensity of the return is a function of the nature of the iceberg's exposed surface (slope, surface roughness); however, it is unusual to find an iceberg which will not produce a detectable echo. Ice is not frequency-sensitive; both S- and X-band radars provide the same detectability. The detectability of ice and seawater is almost identical.

In spring in the North Atlantic, especially on the Grand Banks and just when the danger from ice is greatest, atmospheric conditions often produce subnormal radar propagation, shortening the range at which ice can be detected. Large, vertical-sided tabular icebergs of the Antarctic and Arctic ice islands are usually detected by radar at ranges of 15 to 30 miles; a range of 37 miles has been reported.

Whereas a large iceberg is almost always detected by radar in time to be avoided, a growler large enough to be a serious menace to a vessel may be lost in the sea return and escape detection. Growlers cannot usually be detected at ranges greater than four miles, and are lost in a sea greater than four feet. If an iceberg or growler is detected by radar, tracking is sometimes necessary to distinguish it from a rock, islet, or another ship.

Radar can be of great assistance to experienced radar observers. Smooth sea ice, like smooth water, returns little or no echo, but small floes of rough, hummocky sea ice capable of inflicting damage to a ship can be detected in a smooth sea at a range of about 2 to 4 miles. The return may be similar to sea return, but the same echoes appear at each sweep. A lead in smooth ice is clearly visible on a radarscope, even though a thin coating of new ice may have formed in the opening. A light covering of snow obliterating many of the features to the eye has little effect upon a radar return. The ranges at which ice can be detected by radar are somewhat dependent upon refraction, which is sometimes quite abnormal in polar regions.

Experience in interpretation is gained through comparing various radar returns with actual observations. The most effective use of radar in ice detection and navigation is constant surveillance by trained and experienced operators.

Echoes from the ship's whistle or horn may sometimes indicate the presence of icebergs and can give an indication of direction. If the time interval between the sound and its echo is measured, the distance in meters can be determined by multiplying the number of seconds by 168 . However, echoes are unreliable because only ice with a large vertical area facing the ship returns enough echo to be heard. Once

Figure 3312a. Example of satellite imagery with a resolution of 0.9 kilometer.
an echo is heard, a distinct pattern of horn blasts (not a Navigational Rules signal) should be made to confirm that the echo is not another vessel.

At relatively short ranges, sonar is sometimes helpful in locating ice. The initial detection of icebergs may be made at a distance of about 3 miles or more, but usually considerably less. Growlers may be detected at a distance of $\frac{1}{2}$ to 2 miles, and even smaller pieces may be detected in time to avoid them.

Ice in the polar regions is best detected and observed from the air, either from aircraft or by satellite. Fixedwinged aircraft have been utilized extensively for obtaining detailed aerial ice reconnaissance information since the early 1930's. Some ships, particularly icebreakers, proceeding
into high latitudes carry helicopters, which are invaluable in locating leads and determining the relative navigability of different portions of the ice pack. Ice reports from personnel at Arctic and Antarctic coastal shore stations can also prove valuable to the polar mariner.

The enormous ice reconnaissance capabilities of meteorological satellites were confirmed within hours of the launch by the National Aeronautics and Space Administration (NASA) of the first experimental meteorological satellite, TIROS I, on April 1, 1960. With the advent of the polar-orbiting meteorological satellites during the mid and late 1960's, the U.S. Navy initiated an operational satellite ice reconnaissance program which could observe ice and its

Figure 3312b. Example of satellite imagery with a resolution of 80 meters.
movement in any region of the globe on a daily basis, depending upon solar illumination. Since then, improvements in satellite sensor technology have provided a capability to make detailed global observations of ice properties under all weather and lighting conditions. The current suite of airborne and satellite sensors employed by the National Ice Center include: aerial reconnaissance including visual and Side-Looking Airborne Radar (SLAR), TIROS AVHRR visual and infrared, Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) visual and infrared, all-weather passive microwave from the DMSP Special Sensor Microwave Imager (SSM/I) and the ERS-1 Synthetic Aperture Radar (SAR). Examples of satellite imagery of ice covered waters are shown in Figure 3312a and Figure 3312b.

3313. Operations in Ice

Operations in ice-prone regions necessarily require
considerable advanced planning and many more precautionary measures than those taken prior to a typical open ocean voyage. The crew, large or small, of a polar-bound vessel should be thoroughly indoctrinated in the fundamentals of polar operations, utilizing the best information sources available. The subjects covered should include training in ship handling in ice, polar navigation, effects of low temperatures on materials and equipment, damage control procedures, communications problems inherent in polar regions, polar meteorology, sea ice terminology, ice observing and reporting procedures (including classification and codes) and polar survival. Training materials should consist of reports on previous Arctic and Antarctic voyages, sailing directions, ice atlases, training films on polar operations, and U.S. Navy service manuals detailing the recommended procedures to follow during high latitude missions. Various sources of information can be obtained from the Director, National Ice Center, 4251 Suitland Road, Washington, D.C., 20395 and
from the Office of Polar Programs, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230.

The preparation of a vessel for polar operations is of extreme importance and the considerable experience gained from previous operations should be drawn upon to bring the ship to optimum operating condition. At the very least, operations conducted in ice-infested waters require that the vessel's hull and propulsion system undergo certain modifications.

The bow and waterline of the forward part of the vessel should be heavily reinforced. Similar reinforcement should also be considered for the propulsion spaces of the vessel. Cast iron propellers and those made of a bronze alloy do not possess the strength necessary to operate safely in ice. Therefore, it is strongly recommended that propellers made of these materials be replaced by steel. Other desirable features are the absence of vertical sides, deep placement of the propellers, a blunt bow, metal guards to protect propellers from ice damage, and lifeboats for 150 percent of personnel aboard. The complete list of desirable features depends upon the area of operations, types of ice to be encountered, length of stay in the vicinity of ice, anticipated assistance by icebreakers, and possibly other factors. Strength requirements and the minimum thicknesses deemed necessary for the vessel's frames and additional plating to be used as reinforcement, as well as other procedures needed to outfit a vessel for ice operations, can be obtained from the American Bureau of Shipping. For a more definitive and complete guide to the ice strengthening of ships, the mariner may desire to consult the procedures outlined in Rules for Ice Strengthening of Ships, from the Board of Navigation, Helsinki, Finland.

Equipment necessary to meet the basic needs of the crew and to insure the successful and safe completion of the polar voyage should not be overlooked. A minimum list of essential items should consist of polar clothing and footwear, $100 \% \mathrm{u} / \mathrm{v}$ protective sunglasses, food, vitamins, medical supplies, fuel, storage batteries, antifreeze, explosives, detonators, fuses, meteorological supplies, and survival kits containing sleeping bags, trail rations, firearms, ammunition, fishing gear, emergency medical supplies, and a repair kit.

The vessel's safety depends largely upon the thoroughness of advance preparations, the alertness and skill of its crew, and their ability to make repairs if damage is incurred. Spare propellers, rudder assemblies, and patch materials, together with the equipment necessary to effect emergency repairs of structural damage should be carried. Examples of repair materials needed include quick setting cement, oakum, canvas, timbers, planks, pieces of steel of varying shapes, welding equipment, clamps, and an assortment of nuts, bolts, washers, screws, and nails.

Ice and snow accumulation on the vessel poses a definite capsize hazard. Mallets, baseball bats, ax handles, and scrapers to aid in the removal of heavy accumulations of ice, together with snow shovels and stiff brooms for snow removal should be provided. A live steam line may be
useful in removing ice from superstructures.
Navigation in polar waters is at best difficult and, during poor conditions, impossible, except using satellite or inertial systems. Environmental conditions encountered in high latitudes such as fog, storms, compass anomalies, atmospheric effects, and, of course, ice, hinder polar operations. Also, deficiencies in the reliability and detail of hydrographic and geographical information presented on polar navigation charts, coupled with a distinct lack of reliable bathymetry, current, and tidal data, add to the problems of polar navigation. Much work is being carried out in polar regions to improve the geodetic control, triangulation, and quality of hydrographic and topographic information necessary for accurate polar charts. However, until this massive task is completed, the only resource open to the polar navigator, especially during periods of poor environmental conditions, is to rely upon the basic principles of navigation and adapt them to unconventional methods when abnormal situations arise.

Upon the approach to pack ice, a careful decision is needed to determine the best action. Often it is possible to go around the ice, rather than through it. Unless the pack is quite loose, this action usually gains rather than loses time. When skirting an ice field or an iceberg, do so to windward, if a choice is available, to avoid projecting tongues of ice or individual pieces that have been blown away from the main body of ice.

When it becomes necessary to enter pack ice, a thorough examination of the distribution and extent of the ice conditions should be made beforehand from the highest possible location. Aircraft (particularly helicopters) and direct satellite readouts are of great value in determining the nature of the ice to be encountered. The most important features to be noted include the location of open water, such as leads and polynyas, which may be manifested by water sky; icebergs; and the presence or absence of both ice under pressure and rotten ice. Some protection may be offered the propeller and rudder assemblies by trimming the vessel down by the stern slightly (not more than 2-3 feet) prior to entering the ice; however, this precaution usually impairs the maneuvering characteristics of most vessels not specifically built for ice breaking.

Selecting the point of entry into the pack should be done with great care; and if the ice boundary consists of closely packed ice or ice under pressure, it is advisable to skirt the edge until a more desirable point of entry is located. Seek areas with low ice concentrations, areas of rotten ice or those containing navigable leads, and if possible enter from leeward on a course perpendicular to the ice edge. It is also advisable to take into consideration the direction and force of the wind, and the set and drift of the prevailing currents when determining the point of entry and the course followed thereafter. Due to wind induced wave action, ice floes close to the periphery of the ice pack will take on a bouncing motion which can be quite hazardous to the hull of thinskinned vessels. In addition, note that pack ice will drift
slightly to the right of the true wind in the Northern Hemisphere and to the left in the Southern Hemisphere, and that leads opened by the force of the wind will appear perpendicular to the wind direction. If a suitable entry point cannot be located due to less than favorable conditions, patience may be called for. Unfavorable conditions generally improve over a short period of time by a change in the wind, tide, or sea state.

Once in the pack, always try to work with the ice, not against it, and keep moving, but do not rush. Respect the ice but do not fear it. Proceed at slow speed at first, staying in open water or in areas of weak ice if possible. The vessel's speed may be safely increased after it has been ascertained how well it handles under the varying ice conditions encountered. It is better to make good progress in the general direction desired than to fight large thick floes in the exact direction to be made good. However, avoid the temptation to proceed far to one side of the intended track; it is almost always better to back out and seek a more penetrable area. During those situations when it becomes necessary to back, always do so with extreme caution and with the rudder amidships. If the ship is stopped by ice, the first command should be "rudder amidships," given while the screw is still turning. This will help protect the propeller when backing and prevent ice jamming between rudder and hull. If the rudder becomes ice-jammed, man after steering, establish communications, and do not give any helm commands until the rudder is clear. A quick full-ahead burst may clear it. If it does not, try going to "hard rudder" in the same direction slowly while turning full or flank speed ahead.

Ice conditions may change rapidly while a vessel is working in pack ice, necessitating quick maneuvering. Conventional vessels, even if ice strengthened, are not built for ice breaking. The vessel should be conned to first attempt to place it in leads or polynyas, giving due consideration to wind conditions. The age, thickness, and size of ice which can be navigated depends upon the type, size, hull strength, and horsepower of the vessel employed. If contact with an ice floe is unavoidable, never strike it a glancing blow. This maneuver may cause the ship to veer off in a direction which will swing the stern into the ice. If possible, seek weak spots in the floe and hit it head-on at slow speed. Unless the ice is rotten or very young, do not attempt to break through the floe, but rather make an attempt to swing it aside as speed is slowly increased. Keep clear of corners and projecting points of ice, but do so without making sharp turns which may throw the stern against the ice, resulting in a damaged propeller, propeller shaft, or rudder. The use of full rudder in non-emergency situations is not recommended because it may swing either the stern or mid-section of the vessel into the ice. This does not preclude use of alternating full rudder (swinging the rudder) aboard ice-breakers as a technique for penetrating heavy ice.

Offshore winds may open relatively ice free navigable
coastal leads, but such leads should not be entered without benefit of icebreaker escort. If it becomes necessary to enter coastal leads, narrow straits, or bays, an alert watch should be maintained since a shift in the wind may force drifting ice down upon the vessel. An increase in wind on the windward side of a prominent point, grounded iceberg, or land ice tongue extending into the sea will also endanger a vessel. It is wiser to seek out leads toward the windward side of the main body of the ice pack. In the event that the vessel is under imminent danger of being trapped close to shore by pack ice, immediately attempt to orient the vessel's bow seaward. This will help to take advantage of the little maneuvering room available in the open water areas found between ice floes. Work carefully through these areas, easing the ice floes aside while maintaining a close watch on the general movement of the ice pack.

If the vessel is completely halted by pack ice, it is best to keep the rudder amidships, and the propellers turning at slow speed. The wash of the propellers will help to clear ice away from the stern, making it possible to back down safely. When the vessel is stuck fast, an attempt first should be made to free the vessel by going full speed astern. If this maneuver proves ineffective, it may be possible to get the vessel's stern to move slightly, thereby causing the bow to shift, by quickly shifting the rudder from one side to the other while going full speed ahead. Another attempt at going astern might then free the vessel. The vessel may also be freed by either transferring water from ballast tanks, causing the vessel to list, or by alternately flooding and emptying the fore and aft tanks. A heavy weight swung out on the cargo boom might give the vessel enough list to break free. If all these methods fail, the utilization of deadmen ($2-$ to 4 -meter lengths of timber buried in holes out in the ice and to which a vessel is moored) and ice anchors (a stockless, single fluked hook embedded in the ice) may be helpful. With a deadman or ice anchors attached to the ice astern, the vessel may be warped off the ice by winching while the engines are going full astern. If all the foregoing methods fail, explosives placed in holes cut nearly to the bottom of the ice approximately 10 to 12 meters off the beam of the vessel and detonated while the engines are working full astern might succeed in freeing the vessel. A vessel may also be sawed out of the ice if the air temperature is above the freezing point of seawater.

When a vessel becomes so closely surrounded by ice that all steering control is lost and it is unable to move, it is beset. It may then be carried by the drifting pack into shallow water or areas containing thicker ice or icebergs with their accompanying dangerous underwater projections. If ice forcibly presses itself against the hull, the vessel is said to be nipped, whether or not damage is sustained. When this occurs, the gradually increasing pressure may be capable of holing the vessel's bottom or crushing the sides. When a vessel is beset or nipped, freedom may be achieved through the careful maneuvering procedures, the physical efforts of the crew, or by the use of explosives similar to those previously detailed. Under severe conditions the mariner's best ally may be patience
since there will be many times when nothing can be done to improve the vessel's plight until there is a change in meteorological conditions. It may be well to preserve fuel and perform any needed repairs to the vessel and its engines. Damage to the vessel while it is beset is usually attributable to collisions or pressure exerted between the vessel's hull, propellers, or rudder assembly, and the sharp corners of ice floes. These collisions can be minimized greatly by attempting to align the vessel in such a manner as to insure that the pressure from the surrounding pack ice is distributed as evenly as possible over the hull. This is best accomplished when medium or large ice floes encircle the vessel.

In the vicinity of icebergs, either in or outside of the pack ice, a sharp lookout should be kept and all icebergs given a wide berth. The commanding officers and masters of all vessels, irrespective of their size, should treat all icebergs with great respect. The best locations for lookouts are generally in a crow's nest, rigged in the foremast or housed in a shelter built specifically for a bow lookout in the eyes of a vessel. Telephone communications between these sites and the navigation bridge on larger vessels will prove invaluable. It is dangerous to approach close to an iceberg of any size because of the possibility of encountering underwater extensions, and because icebergs that are disintegrating may suddenly capsize or readjust their masses to new positions of equilibrium. In periods of low visibility the utmost caution is needed at all times. Vessel speed should be reduced and the watch prepared for quick maneuvering. Radar becomes an effective but not infallible tool, and does not negate the need for trained lookouts.

Since icebergs may have from eight to nine-tenths of their masses below the water surface, their drift is generally influenced more by currents than winds, particularly under light wind conditions. The drift of pack ice, on the other hand, is usually dependent upon the wind. Under these conditions, icebergs within the pack may be found moving at a different rate and in a different direction from that of the pack ice. In regions of strong currents, icebergs should always be given a wide berth because they may travel upwind under the influence of contrary currents, breaking heavy pack in their paths and endangering vessels unable to work clear. In these situations, open water will generally be found to leeward of the iceberg, with piled up pack ice to windward. Where currents are weak and a strong wind predominates, similar conditions will be observed as the wind driven ice pack overtakes an iceberg and piles up to windward with an open water area lying to leeward.

Under ice, submarine operations require knowledge of prevailing and expected sea ice conditions to ensure maximum operational efficiency and safety. The most important ice features are the frequency and extent of downward projections (bummocks and ice keels) from the underside of the ice canopy (pack ice and enclosed water areas from the point of view of the submariner), the distribution of thin ice areas through which submarines can
attempt to surface, and the probable location of the outer pack edge where submarines can remain surfaced during emergencies to rendezvous with surface ship or helicopter units.

Bummocks are the subsurface counterpart of hummocks, and ice keels are similarly related to ridges. When the physical nature of these ice features is considered, it is apparent that ice keels may have considerable horizontal extent, whereas individual bummocks can be expected to have little horizontal extent. In shallow water lanes to the Arctic Basin, such as the Bering Strait and the adjoining portions of the Bering Sea and Chukchi Sea, deep bummocks and ice keels may leave little vertical room for submarine passage. Widely separated bummocks may be circumnavigated but make for a hazardous passage. Extensive ice areas, with numerous bummocks or ice keels which cross the lane may effectively block both surface and submarine passage into the Arctic Basin.

Bummocks and ice keels may extend downward approximately five times their vertical extent above the ice surface. Therefore, observed ridges of approximately 10 meters may extend as much as 50 meters below sea level. Because of the direct relation of the frequency and vertical extent between these surface features and their subsurface counterparts, aircraft ice reconnaissance should be conducted over a planned submarine cruise track before under ice operations commence.

Skylights are thin places (usually less than 1 meter thick) in the ice canopy, and appear from below as relatively light translucent patches in dark surroundings. The undersurface of a skylight is usually flat; not having been subjected to great pressure. Skylights are called large if big enough for a submarine to attempt to surface through them; that is, have a linear extent of at least 120 meters. Skylights smaller than 120 meters are referred to as small. An ice canopy along a submarine's track that contains a number of large skylights or other features such as leads and polynyas, which permit a submarine to surface more frequently than 10 times in 30 miles, is called friendly ice. An ice canopy containing no large skylights or other features which permit a submarine to surface is called hostile ice.

3314. Great Lakes Ice

Large vessels have been navigating the Great Lakes since the early 1760 's. This large expanse of navigable water has since become one of the world's busiest waterways. Due to the northern geographical location of the Great Lakes Basin and its susceptibility to Arctic outbreaks of polar air during winter, the formation of ice plays a major disruptive role in the region's economically vital marine industry. Because of the relatively large size of the five Great Lakes, the ice cover which forms on them is affected by the wind and currents to a greater degree than on smaller lakes.

Figure 3314a. Great Lakes ice cover during a mild winter.

The Great Lakes' northern location results in a long ice growth season, which in combination with the effect of wind and current, imparts to their ice covers some of the characteristics and behavior of an Arctic ice pack.

Since the five Great Lakes extend over a distance of approximately 800 kilometers in a north-south direction, each lake is influenced differently by various meteorological phenomena. These, in combination with the fact that each lake also possesses different geographical characteristics, affect the extent and distribution of their ice covers.

The largest, deepest, and most northern of the Great Lakes is Lake Superior. Initial ice formation normally begins at the end of November or early December in harbors and bays along the north shore, in the western portion of the lake and over the shallow waters of Whitefish Bay. As the season progresses, ice forms and thickens in all coastal areas of the lake perimeter prior to extending offshore. This formation pattern can be attributed to a maximum depth in excess of 400 meters and an associated large heat storage capacity that hinders early ice formation in the center of the lake. During a normal winter, ice not under pressure ranges in thickness from 45-85 centimeters. During severe winters, maximum thicknesses are reported to approach 100 centimeters. Winds and currents acting upon the ice have been known to cause ridging with heights approaching 10
meters. During normal years, maximum ice cover extends over approximately 75% of the lake surface with heaviest ice conditions occurring by early March. This value increases to 95% coverage during severe winters and decreases to less than 20% coverage during a mild winter. Winter navigation is most difficult in the southeastern portion of the lake due to heavy ridging and compression of the ice under the influence of prevailing westerly winds. Breakup normally starts near the end of March with ice in a state of advanced deterioration by the middle of April. Under normal conditions, most of the lake is ice-free by the first week of May.

Lake Michigan extends in a north-south direction over 490 kilometers and possesses the third largest surface area of the five Great Lakes. Depths range from 280 meters in the center of the lake to 40 meters in the shipping lanes through the Straits of Mackinac, and less in passages between island groups. During average years, ice formation first occurs in the shallows of Green Bay and extends eastward along the northern coastal areas into the Straits of Mackinac during the second half of December and early January. Ice formation and accumulation proceeds southward with coastal ice found throughout the southern perimeter of the lake by late January. Normal ice thicknesses range from 10-20 centimeters in the south to $40-60$

Figure 3314b. Great Lakes ice cover during a normal winter.
centimeters in the north. During normal years, maximum ice cover extends over approximately 40% of the lake surface with heaviest conditions occurring in late February and early March. Ice coverage increases to $85-90 \%$ during a severe winter and decreases to only $10-15 \%$ during a mild year. Coverage of 100% occurs, but rarely. Throughout the winter, ice formed in mid-lake areas tends to drift eastward because of prevailing westerly winds. This movement of ice causes an area in the southern central portion of the lake to remain ice-free throughout a normal winter. Extensive ridging of ice around the island areas adjacent to the Straits of Mackinac presents the greatest hazard to year-round navigation on this lake. Due to an extensive length and northsouth orientation, ice formation and deterioration often occur simultaneously in separate regions of this lake. Ice break-up normally begins by early March in southern areas and progresses to the north by early April. Under normal conditions, only $5-10 \%$ of the lake surface is ice covered by mid-April with lingering ice in Green Bay and the Straits of Mackinac completely melting by the end of April.

Lake Huron, the second largest of the Great Lakes, has maximum depths of 230 meters in the central basin west of the Bruce peninsula and 170 meters in Georgian Bay. The pattern of ice formation in Lake Huron is similar to the north-south progression described in Lake Michigan. Initial ice formation normally begins in the North Channel and
along the eastern coast of Saginaw and Georgian Bays by mid-December. Ice rapidly expands into the western and southern coastal areas before extending out into the deeper portions of the lake by late January. Normal ice thicknesses are 45-75 centimeters. During severe winters, maximum ice thicknesses often exceed 100 centimeters with windrows of ridged ice achieving thicknesses of up to 10 meters. During normal years, maximum ice cover occurs in late February with 60% coverage in Lake Huron and nearly 95\% coverage in Georgian Bay. These values increase to $85-90 \%$ in Lake Huron and nearly 100% in Georgian Bay during severe winters. The percent of lake surface area covered by ice decreases to $20-25 \%$ for both bodies of water during mild years. During the winter, ice as a hazard to navigation is of greatest concern in the St. Mary's River/North Channel area and the Straits of Mackinac. Ice break-up normally begins in mid-March in southern coastal areas with melting conditions rapidly spreading northward by early April. A recurring threat to navigation is the southward drift and accumulation of melting ice at the entrance of the St. Clair river. Under normal conditions, the lake becomes ice free by the first week of May.

The shallowest and most southern of the Great Lakes is Lake Erie. Although the maximum depth nears 65 meters in the eastern portion of the lake, an overall mean depth of only 20 meters results in the rapid accumulation of ice over

Figure 3314c. Great Lakes ice cover during a severe winter.
a short period of time with the onset of winter. Initial ice formation begins in the very shallow western portion of the lake in mid-December with ice rapidly extending eastward by early January. The eastern portion of the lake does not normally become ice covered until late January. During a normal winter, ice thicknesses range from 25-45 centimeters in Lake Erie. During the period of rapid ice growth, prevailing winds and currents routinely move existing ice to the northeastern end of the lake. This accumulation of ice under pressure is often characterized by ridging with maximum heights of $8-10$ meters. During a severe winter, initial ice formation may begin in late November with maximum seasonal ice thicknesses exceeding 70 centimeters. Since this lake reacts rapidly to changes in air temperature, the variability of percent ice cover is the greatest of the five Great Lakes. During normal years, ice cover extends over approximately $90-95 \%$ of the lake surface by mid to late February. This value increases to nearly 100% during a severe winter and decreases to 30% ice coverage during a mild year. Lake St. Clair, on the connecting waterway to Lake Huron, is normally consolidated from the middle of January until early March. Ice break-up normally begins in the western portion of Lake Erie in early March with the lake becoming mostly ice-free by the middle of the month. The exception to this rapid deterioration is the extreme east-
ern end of the lake where ice often lingers until early May.
Lake Ontario has the smallest surface area and second greatest mean depth of the Great Lakes. Depths range from 245 meters in the southeastern portion of the lake to 55 meters in the approaches to the St. Lawrence River. Like Lake Superior, a large mean depth gives Lake Ontario a large heat storage capacity which, in combination with a small surface area, causes Lake Ontario to respond slowly to changing meteorological conditions. As a result, this lake produces the smallest amount of ice cover found on any of the Great Lakes. Initial ice formation normally begins from the middle to late December in the Bay of Quinte and extends to the western coastal shallows near the mouth of the St. Lawrence River by early January. By the first half of February, Lake Ontario is almost 20% ice covered with shore ice lining the perimeter of the lake. During normal years, ice cover extends over approximately 25% of the lake's surface by the second half of February. During this period of maximum ice coverage, ice is typically concentrated in the northeastern portion of the lake by prevailing westerly winds and currents. Ice coverage can extend over $50-60 \%$ of the lake surface during a severe winter and less than 10% during a mild year. Level lake ice thicknesses normally fall within the 20-60 centimeter range with occasional reports exceeding 70 centimeters during severe
years. Ice break-up normally begins in early March with the lake generally becoming ice-free by mid-April.

The maximum ice cover distribution attained by each of the Great lakes for mild, normal and severe winters is shown in Figure 3314a, Figure 3314b and Figure 3314c. It should be noted that although the average maximum ice cover for each lake appears on the same chart, the actual occurrence of each distribution takes place during the time periods described within the preceding narratives.

Information concerning ice analyses and forecasts for the Great Lakes can be obtained from the Director, National Ice Center, 4251 Suitland Road, Washington D.C. 20395 and the National Weather Service Forecast Office located at Cleveland Hopkins International Airport, Cleveland, Ohio, 44135. Ice climatological information can be obtained from the Great Lakes Environmental Research Laboratory, 2205 Commonwealth Blvd., Ann Arbor, Michigan, 48105 (http://www.glerl.noaa.gov).

ICE INFORMATION SERVICES

3315. Importance of Ice Information

Advance knowledge of ice conditions to be encountered and how these conditions will change over specified time periods are invaluable for both the planning and operational phases of a voyage to the polar regions. Branches of the United States Federal Government responsible for providing operational ice products and services for safety of navigation include the Departments of Defense (U.S. Navy), Commerce (NOAA), and Transportation (U.S. Coast Guard). Manpower and resources from these agencies comprise the National Ice Center (NIC), which replaced the Navy/NOAA Joint Ice Center. The NIC provides ice products and services to U.S. Government military and civilian interests. Routine and tailored ice products of the NIC shown in Table 3317 can be separated into two categories: a) analyses which describe current ice conditions and b) forecasts which define the expected changes in the existing ice cover over a specified time period.

The content of sea ice analyses is directly dependent upon the planned use of the product, the required level of detail, and the availability of on-site ice observations and/or remotely-sensed data. Ice analyses are produced by blending relatively small numbers of visual ice observations from ships, shore stations and fixed wing aircraft with increasing amounts of remotely sensed data. These data include aircraft and satellite imagery in the visual, infrared, passive microwave and radar bands. The efficient receipt and accurate interpretation of these data are critical to producing a near real-time (24-48 hour old) analysis or "picture" of the ice cover. In general, global and regional scale ice analyses depict ice edge location, ice concentrations within the pack and the ice stages of development or thickness. Local scale ice analyses emphasize the location of thin ice covered or open water leads/polynyas, areas of heavy compression, frequency of ridging, and the presence or absence of dangerous multiyear ice and/or icebergs. The parameters defined in this tactical scale analysis are considered critical to both safety of navigation and the efficient routing of ships through the sea ice cover.

3316. Ice Forecasts and Observations

Sea ice forecasts are routinely separated into four
temporal classes: short-term (24-72 hour), weekly (5-7 days), monthly ($15-30$ days) and seasonal (60-90 days) forecasts. Short-term forecasts are generally paired with local-scale ice analyses and focus on changes in the ice cover based on ice drift, ice formation and ablation, and divergent/convergent processes. Of particular importance are the predicted location of the ice edge and the presence or absence of open water polynyas and coastal/flaw leads. The accurate prediction of the location of these ice features are important for both ice avoidance and ice exploitation purposes.

Similar but with less detail, weekly ice forecasts also emphasize the change in ice edge location and concentration areas within the pack. The National Ice Center presently employs several prediction models to produce both short-term and weekly forecasts. These include empirical models which relate ice drift with geostrophic winds and a coupled dynamic/thermodynamic model called the Polar Ice Prediction System (PIPS). Unlike earlier models, the latter accounts for the effects of ice thickness, concentration, and growth on ice drift.

Monthly ice forecasts predict changes in overall ice extent and are based upon the predicted trends in air temperatures, projected paths of transiting low pressure systems, and continuity of ice conditions.

Seasonal or 90 day ice forecasts predict seasonal ice severity and the projected impact on annual shipping operations. Of particular interest to the National Ice Center are seasonal forecasts for the Alaskan North Slope, Baffin Bay for the annual resupply of Thule, Greenland, and Ross Sea/McMurdo Sound in Antarctica. Seasonal forecasts are also important to Great Lakes and St. Lawrence Seaway shipping interests.

Ice services provided to U.S. Government agencies upon request include aerial reconnaissance for polar shipping operations, ship visits for operational briefing and training, and optimum track ship routing (OTSR) recommendations through ice-infested seas. Commercial operations interested in ice products may obtain routinely produced ice products from the National Ice Center as well as ice analyses and forecasts for Alaskan waters from the National Weather Service Forecast Office in Anchorage, Alaska. Specific information on request procedures, types of ice products, ice services, methods of product dissemination
and ship weather support is contained in the publication "Environmental Services for Polar Operations" prepared and distributed by the Director, National Ice Center, 4251 Suitland Road, Washington, D.C., 20395.

The U.S. Coast Guard has an additional responsibility, separate from the National Ice Center, for providing icebreaker support for polar operations and the administration and operations of the International Ice Patrol (IIP). Inquiries for further information on these subjects should be sent to Commandant (G-OPN-1), 2100 Second Street S.W., Washington D.C. 20593.

Other countries which provide sea ice information services are as follows: Arctic - Canada, Denmark (Greenland), Japan (Seas of Okhotsk, Japan and Bo Hai), Iceland, Norway, Russia, and the United Kingdom; Antarctic - Argentina, Australia, Chile, Germany, Japan, and Russia; and Baltic - Finland, Germany, Sweden and Russia. Except for the United States, the ice information services of all countries place specific focus upon ice conditions in territorial seas or waters adjacent to claims on the Antarctic continent. The National Ice Center of the United States is the only organization which provides global ice products and services. Names and locations of foreign sea ice service organizations can be found in "Sea Ice Information Services in the World," WMO Publication No. 574.

Mariners operating in and around sea ice can contribute substantially to increasing the knowledge of synoptic ice conditions, and therefore the accuracy of subsequent ice products by routinely taking and distributing ice observations. The code normally used by personnel trained only to take meteorological observations consists of a five character group appended to the World Meteorological Organization (WMO) weather reporting code: FM 13-X SHIP -Report of Surface Observation from a Sea Station. The five digit ICE group has the following format: $\mathrm{ICE}+\mathrm{c}_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}$. In general, the symbols represent:

```
c = total concentration of sea ice.
s = stage of development of sea ice.
b = ice of land origin (number of icebergs,
    growlers and bergy bits).
D = bearing of principal ice edge.
z = present situation and trend of conditions over
    three preceding hours.
```

The complete format and tables for the code are described in the WMO publication "Manual on Codes", Volume 1, WMO No. 306. This publication is available from the Secretariat of the World Meteorological Organization, Geneva, Switzerland, or on the Web at: http://www.wmo.ch/.

A more complete and detailed reporting code (ICEOB) has been in use since 1972 by vessels reporting to the U.S. National Ice Center. 1993 revisions to this code and the procedures for use are described in the "Ice Observation

Handbook" prepared and distributed by the Director, National Ice Center, 4251 Suitland Road, Washington D.C., 20395.

All ice observation codes make use of special nomenclature which is precisely defined in several languages by the WMO publication "Sea Ice Nomenclature", WMO No. 259, TP 145. This publication, available from the Secretariat of the WMO, contains descriptive definitions along with photography of most ice features. This publication is very useful for vessels planning to submit ice observations.

3317. Distribution of Ice Products and Services

The following is intended as a brief overview of the distribution methods for NIC products and services. For detailed information the user should consult the publications discussed in Article 3316 or refer specific inquiries to Director, National Ice Center, 4251 Suitland Road, FOB \#4, Room 2301, Washington, D.C. 20395 or call (301) 763-1111 or -2000 . The Web address is http://www.natice.noaa.gov/home.htm. Facsimile inquiries can be phoned to (301) 763-1366 and will generally be answered by mail, therefore addresses must be included. NIC ice product distribution methods are as follows:

1. Autopolling: Customer originated menu-driven facsimile product distribution system. Call (301) 763-3190/3191 for menu directions or (301) 763-5972 for assignment of Personal Identification Number (PIN).
2. Autodin: Alphanumeric message transmission to U.S. Government organizations or vessels. Address is NAVICECEN Suitland MD.
3. OMNET/SCIENCENET: electronic mail and bulletin board run by OMNET, Inc. (617) 265-9230. Product request messages may be sent to mailbox NATIONAL.ICE.CTR. Ice products are routinely posted on bulletin board SEA.ICE.
4. INTERNET: Product requests may be forwarded to electronic mail address which is available by request from the NIC at (301) 763-5972.
5. Mail Subscription: For weekly Arctic and Antarctic sea ice analysis charts from the National Climatic Data Center, NESDIS, NOAA, 37 Battery Park Ave., Asheville, NC, 28801-2733. Call (704) 271-4800 with requests for ice products. The NESDIS Web address is http://www.nesdis.noaa.gov.
6. Mail: Annual ice atlases and multiyear ice climatologies are available either from the National Ice Center (if in stock) or from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA, 22161, on the Web at http://www.ntis.gov. Call (703)

487-4600 for sales service desk. Digital files (in SIGRID format) of weekly NIC ice analyses may be obtained from the National Snow and Ice Data Center, CIRES, Box 449, University of

Colorado, Boulder, Colorado 80309, on the Web at http://nsidc.org. Call (303) 492-5171 for information.

NAVAL ICE CENTER PRODUCTS

PRODUCT

GLOBAL SCALE
Eastern Arctic Analysis/Fcst
Western Arctic Analysis/Fcst Antarctic Analysis
South Ice Limit-East Arctic
South Ice Limit-West Arctic
North Ice Limit-Antarctic
30 Day Forecast-East Arctic 30 Day Forecast-West Arctic East Arctic Seasonal Outlook West Arctic Seasonal Outlook

REGIONAL SCALE

Alaska Regional Analysis Great Lakes Analysis
30 Day Forecast-Gt Lakes St. Mary's River Analysis Ross $\mathrm{Sea} / \mathrm{McMurdo}$ Sound Seasonal Outlook Gt. Lakes Seasonal Outlook

LOCAL SCALE

FREQUENCY
FORMAT

Wed
Tue
Thu
Wed
Tue
Mon
1st \& 15th of month
1 st \& 15 th of month
Annually (15 May)
Annually (15 May)
Tue \& Fri
15 Dec-01 May (Mon, Wed, Fri)
15 Nov-15 Apr (1st \& 15th of Mo.)
01 Jan-01 May (Mon, Wed, Fri)
Annually
(30 Oct)
Annually (1 Dec)

Fax Chart
Fax Chart
Fax Chart
Posted to OMNET
Posted to OMNET
Fax Chart
Fax Chart
Fax Chart
Booklet
Booklet

Fax Chart
Fax Chart
Fax Chart
Fax Chart
Booklet
Booklet
Fax Chart

Fax Chart
Table 3317. Products produced by National Ice Center.

CHAPTER 34

WEATHER ELEMENTS

GENERAL DESCRIPTION OF THE ATMOSPHERE

3400. Introduction

Weather is the state of the Earth's atmosphere with respect to temperature, humidity, precipitation, visibility, cloudiness, and other factors. Climate refers to the average long-term meteorological conditions of a place or region.

All weather may be traced to the effect of the Sun on the Earth. Most changes in weather involve large-scale horizontal motion of air. Air in motion is called wind. This motion is produced by differences of atmospheric pressure, which are attributable both to differences of temperature and the nature of the motion itself.

Weather is of vital importance to the mariner. The wind and state of the sea affect dead reckoning. Reduced visibility limits piloting. The state of the atmosphere affects electronic navigation and radio communication. If the skies are overcast, celestial observations are not available; and under certain conditions refraction and dip are disturbed. When wind was the primary motive power, knowledge of the areas of favorable winds was of great importance. Modern vessels are still affected considerably by wind and sea.

3401. The Atmosphere

The atmosphere is a relatively thin shell of air, water vapor, and suspended particulates surrounding the Earth. Air is a mixture of gases and, like any gas, is elastic and highly compressible. Although extremely light, it has a definite weight which can be measured. A cubic foot of air at standard sea-level temperature and pressure weighs 1.22 ounces, or about $1 / 817$ th the weight of an equal volume of water. Because of this weight, the atmosphere exerts a pressure upon the surface of the Earth of about 15 pounds per square inch.

As altitude increases, air pressure decreases due to the decreased weight of air above. With less pressure, the density decreases. More than three-fourths of the air is concentrated within a layer averaging about 7 statute miles thick, called the troposphere. This is the region of most "weather," as the term is commonly understood.

The top of the troposphere is marked by a thin transition zone called the tropopause, immediately above which is the stratosphere. Beyond this lie several other layers having distinctive characteristics. The average height of the tropopause ranges from about 5 miles or less at high
latitudes to about 10 miles at low latitudes.
The standard atmosphere is a conventional vertical structure of the atmosphere characterized by a standard sealevel pressure of 1013.25 hectopascals of mercury (29.92 inches) and a sea-level air temperature of $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$. The temperature decreases with height at the standard lapse rate, a uniform $2^{\circ} \mathrm{C}\left(3.6^{\circ} \mathrm{F}\right)$ per thousand feet to 11 kilometers (36,089 feet), and above that remains constant at $-56.5^{\circ} \mathrm{C}\left(-69.7^{\circ} \mathrm{F}\right)$.

The jet stream refers to relatively strong (greater than 60 knots) quasi-horizontal winds, usually concentrated within a restricted layer of the atmosphere. Research has indicated that the jet stream is important in relation to the sequence of weather. There are two commonly known jet streams. The sub-tropical jet stream (STJ) occurs in the region of $30^{\circ} \mathrm{N}$ during the northern hemisphere winter, decreasing in summer. The core of highest winds in the STJ is found at about 12 km altitude $(40,000$ feet) in the region of $70^{\circ} \mathrm{W}, 40^{\circ} \mathrm{E}$, and $150^{\circ} \mathrm{E}$, although considerable variability is common. The polar frontal jet stream (PFJ) is found in middle to upper-middle latitudes and is discontinuous and variable. Maximum jet stream winds have been measured by weather balloons at 291 knots.

3402. General Circulation Of The Atmosphere

The heat required to warm the air is supplied originally by the Sun. As radiant energy from the Sun arrives at the Earth, about 29 percent is reflected back into space by the Earth and its atmosphere, 19 percent is absorbed by the atmosphere, and the remaining 52 percent is absorbed by the surface of the Earth. Much of the Earth's absorbed heat is radiated back into space. Earth's radiation is in comparatively long waves relative to the short-wave radiation from the Sun because it emanates from a cooler body. Longwave radiation, readily absorbed by the water vapor in the air, is primarily responsible for the warmth of the atmosphere near the Earth's surface. Thus, the atmosphere acts much like the glass on the roof of a greenhouse. It allows part of the incoming solar radiation to reach the surface of the Earth but is heated by the terrestrial radiation passing outward. Over the entire Earth and for long periods of time, the total outgoing energy must be equivalent to the incoming energy (minus any converted to another form and retained), or the temperature of the Earth and its atmosphere would steadily increase or decrease. In local areas, or over
relatively short periods of time, such a balance is not required, and in fact does not exist, resulting in changes such as those occurring from one year to another, in different seasons and in different parts of the day.

The more nearly perpendicular the rays of the Sun strike the surface of the Earth, the more heat energy per unit area is received at that place. Physical measurements show that in the tropics, more heat per unit area is received than is radiated away, and that in polar regions, the opposite is true. Unless there were some process to transfer heat from the tropics to polar regions, the tropics would be much warmer than they are, and the polar regions would be much colder. Atmospheric motions bring about the required transfer of heat. The oceans also participate in the process, but to a lesser degree.

If the Earth had a uniform surface and did not rotate on its axis, with the Sun following its normal path across the sky (solar heating increasing with decreasing latitude), a simple circulation would result, as shown in Figure 3402a. However, the surface of the Earth is far from uniform, being covered with an irregular distribution of land and water. Additionally, the Earth rotates about its axis so that the portion heated by the Sun continually changes. In addition, the axis of rotation is tilted so that as the Earth moves along its orbit about the Sun, seasonal changes occur in the exposure of specific areas to the Sun's rays, resulting in variations in the heat balance of these areas. These factors, coupled with others, result in constantly changing large-
scale movements of air. For example, the rotation of the Earth exerts an apparent force, known as Coriolis force, which diverts the air from a direct path between high and low pressure areas. The diversion of the air is toward the right in the Northern Hemisphere and toward the left in the Southern Hemisphere. At some distance above the surface of the Earth, the wind tends to blow along lines connecting points of equal pressure called isobars. The wind is called a geostrophic wind if it blows parallel to the isobars. This normally occurs when the isobars are straight (great circles). However, isobars curve around highs and lows, and the air is not generally able to maintain itself parallel to these. The resulting cross-isobar flow is called a gradient wind. Near the surface of the Earth, friction tends to divert the wind from the isobars toward the center of low pressure. At sea, where friction is less than on land, the wind follows the isobars more closely.

A simplified diagram of the general circulation pattern is shown in Figure 3402b. Figure 3402c and Figure 3402d give a generalized picture of the world's pressure distribution and wind systems as actually observed.

A change in pressure with horizontal distance is called a pressure gradient. It is maximum along a normal (perpendicular) to the isobars. A force results which is called pressure gradient force and is always directed from high to low pressure. Speed of the wind is approximately proportional to this pressure gradient.

Figure 3402a. Ideal atmospheric circulation for a uniform and non-rotating Earth.

Figure 3402b. Simplified diagram of the general circulation of the atmosphere.

Figure 3402c. Generalized pattern of actual surface winds in January and February.

Figure 3402d. Generalized pattern of actual surface winds in July and August. (See key with Figure 3402c.)

MAJOR WIND PATTERNS

3403. The Doldrums

A belt of low pressure at the Earth's surface near the equator known as the doldrums occupies a position approximately midway between high pressure belts at about latitude 30° to 35° on each side. Except for significant intradiurnal changes, the atmospheric pressure along the equatorial low is almost uniform. With minimal pressure gradient, wind speeds are light and directions are variable. Hot, sultry days are common. The sky is often overcast, and showers and thundershowers are relatively frequent. In these atmospherically unstable areas, brief periods of strong wind occur.

The doldrums occupy a thin belt near the equator, the eastern part in both the Atlantic and Pacific being wider than the western part. However, both the position and extent of the belt vary with longitude and season. During all seasons in the Northern Hemisphere, the belt is centered in the eastern Atlantic and Pacific; however, there are wide excursions of the doldrum regions at longitudes with considerable landmass. On the average, the position is at $5^{\circ} \mathrm{N}$, frequently called the meteorological equator.

3404. The Trade Winds

The trade winds at the surface blow from the belts of high pressure toward the equatorial belts of low pressure. Because of the rotation of the Earth, the moving air is
deflected toward the west. Therefore, the trade winds in the Northern Hemisphere are from the northeast and are called the northeast trades, while those in the Southern Hemisphere are from the southeast and are called the southeast trades. The trade-wind directions are best defined over eastern ocean areas.

The trade winds are generally considered among the most constant of winds, blowing for days or even weeks with little change of direction or speed. However, at times they weaken or shift direction, and there are regions where the general pattern is disrupted. A notable example is found in the island groups of the South Pacific, where the trades are practically nonexistent during January and February. Their best development is attained in the South Atlantic and in the South Indian Ocean. In general, they are stronger during the winter than during the summer season.

In July and August, when the belt of equatorial low pressure moves to a position some distance north of the equator, the southeast trades blow across the equator, into the Northern Hemisphere, where the Earth's rotation diverts them toward the right, causing them to be southerly and southwesterly winds. The "southwest monsoons" of the African and Central American coasts originate partly in these diverted southeast trades.

Cyclones from the middle latitudes rarely enter the regions of the trade winds, although tropical cyclones originate within these areas.

3405. The Horse Latitudes

Along the poleward side of each trade-wind belt, and corresponding approximately with the belt of high pressure in each hemisphere, is another region with weak pressure gradients and correspondingly light, variable winds. These are called the horse latitudes, apparently so named because becalmed sailing ships threw horses overboard in this region when water supplies ran short. The weather is generally good although low clouds are common. Compared to the doldrums, periods of stagnation in the horse latitudes are less persistent. The difference is due primarily to the rising currents of warm air in the equatorial low, which carry large amounts of moisture. This moisture condenses as the air cools at higher levels, while in the horse latitudes the air is apparently descending and becoming less humid as it is warmed at lower heights.

3406. The Prevailing Westerlies

On the poleward side of the high pressure belt in each hemisphere, the atmospheric pressure again diminishes. The currents of air set in motion along these gradients toward the poles are diverted by the Earth's rotation toward the east, becoming southwesterly winds in the Northern Hemisphere and northwesterly in the Southern Hemisphere. These two wind systems are known as the prevailing westerlies of the temperate zones.

In the Northern Hemisphere this relatively simple pattern is distorted considerably by secondary wind circulations, due primarily to the presence of large landmasses. In the North Atlantic, between latitudes 40° and 50°, winds blow from some direction between south and northwest during 74 percent of the time, being somewhat more persistent in winter than in summer. They are stronger in winter, too, averaging about 25 knots (Beaufort 6) as compared with 14 knots (Beaufort 4) in the summer.

In the Southern Hemisphere the westerlies blow throughout the year with a steadiness approaching that of the trade winds. The speed, though variable, is generally between 17 and 27 knots (Beaufort 5 and 6). Latitudes $40^{\circ} \mathrm{S}$ to $50^{\circ} \mathrm{S}$, where these boisterous winds occur, are called the roaring forties. These winds are strongest at about latitude $50^{\circ} \mathrm{S}$.

The greater speed and persistence of the westerlies in the Southern Hemisphere are due to the difference in the atmospheric pressure pattern, and its variations, from the Northern Hemisphere. In the comparatively landless Southern Hemisphere, the average yearly atmospheric pressure diminishes much more rapidly on the poleward side of the high pressure belt, and has fewer irregularities due to continental interference, than in the Northern Hemisphere.

3407. Polar Winds

Partly because of the low temperatures near the geographical poles of the Earth, the surface pressure tends to remain higher than in surrounding regions, since cold air is more dense than warm air. Consequently, the winds blow outward from the poles, and are deflected westward by the rotation of the Earth, to become northeasterlies in the Arctic, and southeasterlies in the Antarctic. Where the polar easterlies meet the prevailing westerlies, near $50^{\circ} \mathrm{N}$ and $50^{\circ} \mathrm{S}$ on the average, a discontinuity in temperature and wind exists. This discontinuity is called the polar front. Here the warmer low-latitude air ascends over the colder polar air creating a zone of cloudiness and precipitation.

In the Arctic, the general circulation is greatly modified by surrounding landmasses. Winds over the Arctic Ocean are somewhat variable, and strong surface winds are rarely encountered.

In the Antarctic, on the other hand, a high central landmass is surrounded by water, a condition which augments, rather than diminishes, the general circulation. The high pressure, although weaker than in the horse latitudes, is stronger than in the Arctic, and of great persistence especially in eastern Antarctica. The cold air from the plateau areas moves outward and downward toward the sea and is deflected toward the west by the Earth's rotation. The winds remain strong throughout the year, frequently attaining hurricane force near the base of the mountains. These are some of the strongest surface winds encountered anywhere in the world, with the possible exception of those in welldeveloped tropical cyclones.

3408. Modifications of the General Circulation

The general circulation of the atmosphere is greatly modified by various conditions. The high pressure in the horse latitudes is not uniformly distributed around the belts, but tends to be accentuated at several points, as shown in Figure 3402c and Figure 3402d. These semi-permanent highs remain at about the same places with great persistence.

Semi-permanent lows also occur in various places, the most prominent ones being west of Iceland, and over the Aleutians (winter only) in the Northern Hemisphere, and in the Ross Sea and Weddell Sea in the Antarctic areas. The regions occupied by these semi-permanent lows are sometimes called the graveyards of the lows, since many lows move directly into these areas and lose their identity as they merge with and reinforce the semi-permanent lows. The low pressure in these areas is maintained largely by the migratory lows which stall there, with topography also important, especially in Antarctica.

Another modifying influence is land, which undergoes greater temperature changes than does the sea. During the

Figure 3408a. The summer monsoon.

Figure 3408b. The winter monsoon.
summer, a continent is warmer than its adjacent oceans. Therefore, low pressures tend to prevail over the land. If a climatological belt of high pressure encounters a continent, its pattern is distorted or interrupted, whereas a belt of low pressure is intensified over the same area. In winter, the opposite effect takes place, belts of high pressure being intensified over land and those of low pressure being weakened.

The most striking example of a wind system produced by the alternate heating and cooling of a landmass is the monsoon (seasonal wind) of the China Sea and Indian Ocean. A portion of this effect is shown in Figure 3408a and Figure 3408b. In the summer, low pressure prevails over the warm continent of Asia, and relatively higher pressure prevails over the adjacent, cooler sea. Between these two systems the wind blows in a nearly steady direction. The lower portion of the pattern is in the Southern Hemisphere, extending to about 10° south latitude. Here the rotation of the Earth causes a deflection to the left, resulting in southeasterly winds. As they cross the equator, the deflection is in the opposite direction, causing them to curve toward the right, becoming southwesterly winds. In the winter, the positions of high and low pressure areas are interchanged, and the direction of flow is reversed.

In the China Sea, the summer monsoon blows from the southwest, usually from May to September. The strong winds are accompanied by heavy squalls and thunderstorms, the rainfall being much heavier than during the winter monsoon. As the season advances, squalls and rain become less frequent. In some places the wind becomes a light breeze which is unsteady in direction, or stops altogether, while in other places it continues almost undiminished, with changes in direction or calms being infrequent. The winter monsoon blows from the northeast, usually from October to April. It blows with a steadiness similar to
that of the trade winds, often attaining the speed of a moderate gale (28-33 knots). Skies are generally clear during this season, and there is relatively little rain.

The general circulation is further modified by winds of cyclonic origin and various local winds. Some common local winds are listed by local name below.

Abroholos	A squall frequent from May through August between Cabo de Sao Tome and Cabo Frio on the coast of Brazil. A strong east wind at the eastern end of Java.
Bali wind	A heavy northwest squall in Manado Bay on the north coast of the island of Celebes, prevalent from December to February. A strong wind carrying damp snow or sleet and spray that freezes upon contact with objects, especially the beard and hair.
Barat	A violent wind blowing from the land on the south coast of Cuba, especially near the Bight of Bayamo.
Bayamo	An east wind on the coast of Sardinia.
Bentu de Soli	A cold, northerly wind blowing from the
Bora	Hungarian basin into the Adriatic Sea. See also FALL WIND. A thunderstorm or violent squall,
especially in the Mediterranean.	

Abroholos

Bali wind

Barat

Barber

Bayamo

Bentu de Soli

Bora

Borasco

Brisa, Briza

A squall frequent from May through August between Cabo de Sao Tome and Cabo Frio on the coast of Brazil.
A strong east wind at the eastern end of Java.

A heavy northwest squall in Manado Bay on the north coast of the island of Celebes, prevalent from December to February.
A strong wind carrying damp snow or sleet and spray that freezes upon contact with objects, especially the beard and hair.

A violent wind blowing from the land on the south coast of Cuba, especially near the Bight of Bayamo.
An east wind on the coast of Sardinia.

A cold, northerly wind blowing from the Hungarian basin into the Adriatic Sea. See also FALL WIND

A thunderstorm or violent squall,

1. A northeast wind which blows on the coast of South America or an east wind which blows on Puerto Rico during the ade wind season. 2 . The northeast monsoon in the Philippines.

Brisote	The northeast trade wind when it is blowing stronger than usual on Cuba.	Harmattan
Brubu	A name for a squall in the East Indies.	
Bull's Eye Squall	A fair weather squall characteristic of the ocean off the coast of South Africa. It is named for the peculiar appearance of the small isolated cloud marking the top of the invisible vortex of the storm.	Knik Wind Kona Storm
Cape Doctor	The strong southeast wind which blows on the South African coast. Also called the DOCTOR.	Leste
Caver, Kaver	A gentle breeze in the Hebrides.	Levanter
Chubasco	A violent squall with thunder and lightning, encountered during the rainy season along the west coast of Central America.	Levantera
Churada	A severe rain squall in the Mariana Islands during the northeast monsoon. They occur from November to April or May, especially from January through March.	Levanto Leveche
Cierzo	See MISTRAL.	
Contrastes	Winds a short distance apart blowing from opposite quadrants, frequent in the spring and fall in the western Mediterranean.	
Cordonazo	The "Lash of St. Francis." Name applied locally to southerly hurricane winds along the west coast of Mexico. It is associated with tropical cyclones in the southeastern North Pacific Ocean. These storms may occur from May to November, but ordinarily affect the coastal areas most severely near or after the Feast of St. Francis, October 4.	Maestro Matanuska Wind Mistral
Coromell	A night land breeze prevailing from November to May at La Paz, near the southern extremity of the Gulf of California.	
Doctor	1. A cooling sea breeze in the Tropics. 2. See HARMATTAN. 3. The strong SE wind which blows on the south African coast. Usually called CAPE DOCTOR.	Nashi, N'aschi
Elephanta	A strong southerly or southeasterly wind which blows on the Malabar coast of India during the months of September and October and marks the end of the southwest monsoon.	
Etesian	A refreshing northerly summer wind of the Mediterranean, especially over the Aegean Sea.	Norte
Gregale	A strong northeast wind of the central Mediterranean.	

The dry, dusty trade wind blowing off the Sahara Desert across the Gulf of Guinea and the Cape Verde Islands. Sometimes called the DOCTOR, because of its supposed healthful properties.

A strong southeast wind in the vicinity of Palmer, Alaska, most frequent in the winter.
A storm over the Hawaiian Islands, characterized by strong southerly or southwesterly winds and heavy rains.
A hot, dry, easterly wind of the Madeira and Canary Islands.
A strong easterly wind of the Mediterranean, especially in the Strait of Gibraltar, attended by cloudy, foggy, and sometimes rainy weather especially in winter.
A persistent east wind of the Adriatic, usually accompanied by cloudy weather. A hot southeasterly wind which blows over the Canary Islands.
A warm wind in Spain, either a foehn or a hot southerly wind in advance of a low pressure area moving from the Sahara Desert. Called a SIROCCO in other parts of the Mediterranean area.
A northwesterly wind with fine weather which blows, especially in summer, in the Adriatic. It is most frequent on the western shore. This wind is also found on the coasts of Corsica and Sardinia.

A strong, gusty, northeast wind which occasionally occurs during the winter in the vicinity of Palmer, Alaska.
A cold, dry wind blowing from the north over the northwest coast of the Mediterranean Sea, particularly over the Gulf of Lions. Also called CIERZO. See also FALL WIND.

A northeast wind which occurs in winter on the Iranian coast of the Persian Gulf, especially near the entrance to the gulf, and also on the Makran coast. It is probably associated with an outflow from the central Asiatic anticyclone which extends over the high land of Iran. It is similar in character but less severe than the BORA.

A strong cold northeasterly wind which blows in Mexico and on the shores of the Gulf of Mexico. It results from an outbreak of cold air from the north. It is the Mexican extension of a norther.

Papagayo	A violent northeasterly fall wind on the Pacific coast of Nicaragua and Guatemala. It consists of the cold air mass of a norte which has overridden the mountains of Central America. See also TEHUANTEPECER.
Pampero	A fall wind of the Argentine coast.
Santa Ana	A strong, hot, dry wind blowing out into San Pedro Channel from the southern California desert through Santa Ana Pass.
Shamal	A summer northwesterly wind blowing over Iraq and the Persian Gulf, often strong during the day, but decreasing at night.
Sharki	A southeasterly wind which sometimes blows in the Persian Gulf.
Sirocco	A warm wind of the Mediterranean area, either a foehn or a hot southerly wind in advance of a low pressure area moving from the Sahara or Arabian deserts. Called LEVECHE in Spain.
Squamish	A strong and often violent wind occurring in many of the fjords of British Columbia. Squamishes occur in those fjords oriented in a northeast-southwest or east-west direction where cold polar air can be funneled westward. They are notable in Jervis, Toba, and Bute inlets and in Dean Channel and Portland Canal. Squamishes lose their strength when free of the confining fjords and are not noticeable 15 to 20 miles offshore.
Suestado	A storm with southeast gales, caused by intense cyclonic activity off the coasts of Argentina and Uruguay, which affects the southern part of the coast of Brazil in the winter.

Sumatra	A squall with violent thunder, lightning, and rain, which blows at night in the Malacca Straits, especially during the southwest monsoon. It is intensified by strong mountain breezes.
Taku Wind	A strong, gusty, east-northeast wind, occurring in the vicinity of Juneau, Alaska, between October and March. At the mouth of the Taku River, after which it is named, it sometimes attains hurricane force.
Tehuantepecer	A violent squally wind from north or north-northeast in the Gulf of Tehuantepec (south of southern Mexico) in winter. It originates in the Gulf of Mexico as a norther which crosses the isthmus and blows through the gap between the Mexican and Guatamalan mountains. It may be felt up to 100 miles out to sea. See also PAPAGAYO.
Tramontana	A northeasterly or northerly winter wind off the west coast of Italy. It is a fresh wind of the fine weather mistral type.
Vardar	A cold fall wind blowing from the northwest down the Vardar valley in Greece to the Gulf of Salonica. It occurs when atmospheric pressure over eastern Europe is higher than over the Aegean Sea, as is often the case in winter. Also called VARDARAC.
Warm Braw	A foehn wind in the Schouten Islands north of New Guinea.
White Squall	A sudden, strong gust of wind coming up without warning, noted by whitecaps or white, broken water; usually seen in whirlwind form in clear weather in the tropics.
Williwaw	A sudden blast of wind descending from a mountainous coast to the sea, in the Strait of Magellan or the Aleutian Islands.

AIR MASSES

3409. Types of Air Masses

Because of large differences in physical characteristics of the Earth's surface, particularly the oceanic and continental contrasts, the air overlying these surfaces acquires differing values of temperature and moisture. The processes of radiation and convection in the lower portions of the troposphere act in differing characteristic manners for a number of well-defined regions of the Earth. The air overlying these regions acquires characteristics common to the particular area, but contrasting to those of other areas. Each distinctive part of the atmosphere, within which common characteristics prevail over a reasonably large area, is called an air mass.

Air masses are named according to their source regions. Four regions are generally recognized: (1) equatorial (E), the doldrums area between the north and south trades; (2) tropical (T), the trade wind and lower temperate regions; (3) polar (P), the higher temperate latitudes; and (4) Arctic or Antarctic (A), the north or south polar regions of ice and snow. This classification is a general indication of relative temperature, as well as latitude of origin.

Air masses are further classified as maritime (m) or continental (c), depending upon whether they form over water or land. This classification is an indication of the relative moisture content of the air mass. Tropical air might be designated maritime tropical (mT) or continental tropical (cT). Similarly, polar air may be either maritime polar (mP) or continental polar (cP). Arctic/Antarctic air, due to the predominance of landmasses and ice fields in the high latitudes, is rarely maritime Arctic (mA). Equatorial air is found exclusively over the ocean surface and is designated neither (cE) nor (mE), but simply (E).

A third classification sometimes applied to tropical and polar air masses indicates whether the air mass is warm (w) or cold (k) relative to the underlying surface. Thus, the symbol mTw indicates maritime tropical air which is warmer than the underlying surface, and cPk indicates continental polar air which is colder than the underlying surface. The w and k classifications are primarily indications of stability (i.e., change of temperature with increasing height). If the air is cold relative to the surface, the lower portion of the air mass will be heated, resulting in instability (temperature markedly decreases with increasing height) as the warmer air tends to rise by convection. Conversely, if the air is warm relative to the surface, the lower portion of the air mass is cooled, tending to remain close to the surface. This is a stable condition (temperature increases with increasing height).

Two other types of air masses are sometimes recognized. These are monsoon (M), a transitional form between cP and E ; and superior (S), a special type formed in the free atmosphere by the sinking and consequent warming of air aloft.

3410. Fronts

As air masses move within the general circulation, they travel from their source regions to other areas dominated by air having different characteristics. This leads to a zone of separation between the two air masses, called a frontal zone or front, across which temperature, humidity, and wind speed and direction change rapidly. Fronts are represented on weather maps by lines; a cold front is shown with pointed barbs, a warm front with rounded barbs, and an occluded front with both, alternating. A stationary front is shown with pointed and rounded barbs alternating and on opposite sides of the line with the pointed barbs away from the colder air. The front may take on a wave-like character, becoming a "frontal wave."

Before the formation of frontal waves, the isobars (lines of equal atmospheric pressure) tend to run parallel to the fronts. As a wave is formed, the pattern is distorted somewhat, as shown in Figure 3410a. In this illustration, colder air is north of warmer air. In Figures 3510a-3510d isobars are drawn at 4-hectopascal intervals.

The wave tends to travel in the direction of the general circulation, which in the temperate latitudes is usually in an easterly and slightly poleward direction.

Along the leading edge of the wave, warmer air is replacing colder air. This is called the warm front. The trailing edge is the cold front, where colder air is underrunning and displacing warmer air.

The warm air, being less dense, tends to ride up greatly over the colder air it is replacing. Partly because of the replacement of cold, dense air with warm, light air, the pressure decreases. Since the slope is gentle, the upper part of a warm frontal surface may be many hundreds of miles ahead of the surface portion. The decreasing pressure, indicated by a "falling barometer," is often an indication of the approach of such a wave. In a slow-moving, welldeveloped wave, the barometer may begin to fall several days before the wave arrives. Thus, the amount and nature of the change of atmospheric pressure between observations, called pressure tendency, is of assistance in predicting the approach of such a system.

The advancing cold air, being more dense, tends to ride under the warmer air at the cold front, lifting it to greater heights. The slope here is such that the upper-air portion of the cold front is behind the surface position relative to its motion. After a cold front has passed, the pressure increases, giving a rising barometer.

In the first stages, these effects are not marked, but as the wave continues to grow, they become more pronounced, as shown in Figure 3410b. As the amplitude of the wave increases, pressure near the center usually decreases, and the low is said to "deepen." As it deepens, its forward speed generally decreases.

The approach of a well-developed warm front (i.e.,

Figure 3410a. First stage in the development of a frontal wave (top view).

Figure 3410b. A fully developed frontal wave (top view).
when the warm air is mT) is usually heralded not only by falling pressure, but also by a more-or-less regular sequence of clouds. First, cirrus appear. These give way successively to cirrostratus, altostratus, altocumulus, and nimbostratus. Brief showers may precede the steady rain accompanying the nimbostratus.

As the warm front passes, the temperature rises, the wind shifts clockwise (in the Northern Hemisphere), and the steady rain stops. Drizzle may fall from low-lying stratus clouds, or there may be fog for some time after the wind shift. During passage of the warm sector between the warm front
and the cold front, there is little change in temperature or pressure. However, if the wave is still growing and the low deepening, the pressure might slowly decrease. In the warm sector the skies are generally clear or partly cloudy, with cumulus or stratocumulus clouds most frequent. The warm air is usually moist, and haze or fog may often be present.

As the faster moving, steeper cold front passes, the wind veers (shifts clockwise in the Northern Hemisphere counterclockwise in the Southern Hemisphere), the temperature falls rapidly, and there are often brief and sometimes violent squalls with showers, frequently accompanied by thunder

Figure 3410c. A frontal wave nearing occlusion (top view).

Figure 3410d. An occluded front (top view).

Figure 3410e. An occluded front (cross section).
and lightning. Clouds are usually of the convective type. A cold front usually coincides with a well-defined wind-shift line (a line along which the wind shifts abruptly from southerly or southwesterly to northerly or northwesterly in the Northern Hemisphere, and from northerly or northwesterly to southerly or southwesterly in the Southern Hemisphere). At sea a series of brief showers accompanied by strong, shifting winds may occur along or some distance (up to 200 miles) ahead of a cold front. These are called squalls (in common nautical use, the term squall may be additionally applied to any severe local storm accompanied by gusty winds, precipitation, thunder, and lightning), and the line along which they occur is called a squall line.

Because of its greater speed and steeper slope, which may approach or even exceed the vertical near the Earth's surface (due to friction), a cold front and its associated weather pass more quickly than a warm front. After a cold front passes, the pressure rises, often quite rapidly, the visibility usually improves, and the clouds tend to diminish. Clear, cool or cold air replaces the warm hazy air.

As the wave progresses and the cold front approaches the slower moving warm front, the low becomes deeper and the warm sector becomes smaller, as shown in Figure 3410c.

Finally, the faster moving cold front overtakes the warm front (Figure 3410d), resulting in an occluded front at the surface, and an upper front aloft (Figure 3410e). When the two parts of the cold air mass meet, the warmer portion tends to rise above the colder part. The warm air continues to rise until the entire frontal system dissipates.

As the warmer air is replaced by colder air, the pressure gradually rises, a process called filling. This usually occurs within a few days after an occluded front forms. Finally, there results a cold low, or simply a low pressure system across which little or no gradient in temperature and moisture can be found.

The sequence of weather associated with a low depends greatly upon the observer's location with respect to the path of the center. That described above assumes that the low center passes poleward of the observer. If the low center passes south of the observer, between the observer and the equator, the
abrupt weather changes associated with the passage of fronts are not experienced. Instead, the change from the weather characteristically found ahead of a warm front, to that behind a cold front, takes place gradually, the exact sequence dictated by distance from the center, and the severity and age of the low.

Although each low generally follows this pattern, no two are ever exactly alike. Other centers of low pressure and high pressure, and the air masses associated with them, even though they may be 1,000 miles or more away, influence the formation and motion of individual low centers and their accompanying weather. Particularly, a high stalls or diverts a low. This is true of temporary highs as well as semi-permanent highs, but not to as great a degree.

3411. Cyclones and Anticyclones

An area of relatively low pressure, generally circular, is called a cyclone. Its counterpart for high pressure is called an anticyclone. These terms are used particularly in connection with the winds associated with such centers. Wind tends to blow from an area of high pressure to one of low pressure, but due to rotation of the Earth, wind is deflected toward the right in the Northern Hemisphere and toward the left in the Southern Hemisphere.

Because of the rotation of the Earth, therefore, the circulation tends to be counterclockwise around areas of low pressure and clockwise around areas of high pressure in the Northern Hemisphere, and the speed is proportional to the spacing of isobars. In the Southern Hemisphere, the direction of circulation is reversed. Based upon this condition, a general rule, known as Buys Ballot's Law, or the Baric Wind Law, can be stated:

If an observer in the Northern Hemisphere faces away from the surface wind, the low pressure is toward his left; the high pressure is toward his right.

If an observer in the Southern Hemisphere faces away from the surface wind, the low pressure is toward his right; the high pressure is toward his left.

In a general way, these relationships apply in the case
of the general distribution of pressure, as well as to temporary local pressure systems.

The reason for the wind shift along a front is that the isobars have an abrupt change of direction along these lines. Since the direction of the wind is directly related to the direction of isobars, any change in the latter results in a shift in the wind direction.

In the Northern Hemisphere, the wind shifts toward the right (clockwise) when either a warm or cold front passes. In the Southern Hemisphere, the shift is toward the left (counterclockwise). When an observer is on the poleward side of the path of a frontal wave, wind shifts are reversed (i.e., to the left in the Northern Hemisphere and to the right in the Southern Hemisphere).

In an anticyclone, successive isobars are relatively far apart, resulting in light winds. In a cyclone, the isobars are more closely spaced. With a steeper pressure gradient, the winds are stronger.

Since an anticyclonic area is a region of outflowing winds, air is drawn into it from aloft. Descending air is warmed, and as air becomes warmer, its capacity for holding uncondensed moisture increases. Therefore, clouds tend to dissipate. Clear skies are characteristic of an anticyclone, although scattered
clouds and showers are sometimes encountered.
In contrast, a cyclonic area is one of converging winds. The resulting upward movement of air results in cooling, a condition favorable to the formation of clouds and precipitation. More or less continuous rain and generally stormy weather are usually associated with a cyclone.

Between the two hemispheric belts of high pressure associated with the horse latitudes, called subtropical anticyclones, cyclones form only occasionally over certain areas at sea, generally in summer and fall. Tropical cyclones (hurricanes and typhoons) are usually quite violent.

In the areas of the prevailing westerlies in temperate latitudes, migratory cyclones (lows) and anticyclones (highs) are a common occurrence. These are sometimes called extratropical cyclones and extratropical anticyclones to distinguish them from the more violent tropical cyclones. Formation occurs over sea and land. The lows intensify as they move poleward; the highs weaken as they move equatorward. In their early stages, cyclones are elongated, as shown in Figure 3410a, but as their life cycle proceeds, they become more nearly circular (Figure 3410b, Figure 3410c, and Figure 3410d).

LOCAL WEATHER PHENOMENA

3412. Local Winds

In addition to the winds of the general circulation and those associated with migratory cyclones and anticyclones, there are numerous local winds which influence the weather in various places.

The most common are the land and sea breezes, caused by alternate heating and cooling of land adjacent to water. The effect is similar to that which causes the monsoons, but on a much smaller scale, and over shorter periods. By day the land is warmer than the water, and by night it is cooler. This effect occurs along many coasts during the summer. Between about 0900 and 1100 local time the temperature of the land becomes greater than that of the adjacent water. The lower levels of air over the land are warmed, and the air rises, drawing in cooler air from the sea. This is the sea breeze. Late in the afternoon, when the Sun is low in the sky, the temperature of the two surfaces equalizes and the breeze stops. After sunset, as the land cools below the sea temperature, the air above it is also cooled. The contracting cool air becomes more dense, increasing the pressure near the surface. This results in an outflow of winds to the sea. This is the land breeze, which blows during the night and dies away near sunrise. Since the atmospheric pressure changes associated with this cycle are not great, the accompanying winds generally do not exceed gentle to moderate breezes. The circulation is usually of limited extent, reaching a distance of perhaps 20 miles inland, and not more than 5 or 6 miles offshore, and to a height of a few hundred feet. In the doldrums and subtropics, this process
is repeated with great regularity throughout most of the year. As the latitude increases, it becomes less prominent, being masked by winds of migratory cyclones and anticyclones. However, the effect often may be present to reinforce, retard, or deflect stronger prevailing winds.

Varying conditions of topography produce a large variety of local winds throughout the world. Winds tend to follow valleys, and to be deflected from high banks and shores. In mountain areas wind flows in response to temperature distribution and gravity. An anabolic wind is one that blows up an incline, usually as a result of surface heating. A katabatic wind is one which blows down an incline. There are two types, foehn and fall wind.

The foehn (fãn) is a warm dry wind which initiates from horizontally moving air encountering a mountain barrier. As it blows upward to clear the mountains, it is cooled below the dew point, resulting in clouds and rain on the windward side. As the air continues to rise, its rate of cooling is reduced because the condensing water vapor gives off heat to the surrounding atmosphere. After crossing the mountain barrier, the air flows downward along the leeward slope, being warmed by compression as it descends to lower levels. Since it loses less heat on the ascent than it gains during descent, and since it has lost its moisture during ascent, it arrives at the bottom of the mountains as very warm, dry air. This accounts for the warm, arid regions along the eastern side of the Rocky Mountains and in similar areas. In the Rocky Mountain region this wind is known by the name chinook. It may occur at any season of the year, at any hour of the day or
night, and have any speed from a gentle breeze to a gale. It may last for several days, or for a very short period. Its effect is most marked in winter, when it may cause the temperature to rise as much as $20^{\circ} \mathrm{F}$ to $30^{\circ} \mathrm{F}$ within 15 minutes, and cause snow and ice to melt within a few hours. On the west coast of the United States, a foehn wind, given the name Santa Ana, blows through a pass and down a valley of that name in Southern California. This wind is frequently very strong and may endanger small craft immediately off the coast.

A cold wind blowing down an incline is called a fall wind. Although it is warmed somewhat during descent, as is the foehn, it remains cold relative to the surrounding air. It occurs when cold air is dammed up in great quantity on the windward side of a mountain and then spills over suddenly, usually as an overwhelming surge down the other side. It is usually quite violent, sometimes reaching hurricane force. A different name for this type wind is given at each place where it is common. The tehuantepecer of the Mexican and Central American coast, the pampero of the Argentine coast, the mistral of the western Mediterranean, and the bora of the eastern Mediterranean are examples of this wind.

Many other local winds common to certain areas have been given distinctive names. A blizzard is a violent, intensely cold wind laden with snow mostly or entirely picked up from the ground, although the term is often used popularly to refer to any heavy snowfall accompanied by strong wind. A dust whirl is a rotating column of air about 100 to 300 feet in height, carrying dust, leaves, and other light material. This wind, which is similar to a waterspout at sea, is given various local names such as dust devil in southwestern United States and desert devil in South Africa. A gust is a sudden, brief increase in wind speed, followed by a slackening, or the violent wind or squall that
accompanies a thunderstorm. A puff of wind or a light breeze affecting a small area, such as would cause patches of ripples on the surface of water, is called a cat's paw.

3413. Waterspouts

A waterspout is a small, whirling storm over ocean or inland waters. Its chief characteristic is a tall, funnel-shaped cloud; when fully developed it is usually attached to the base of a cumulus cloud. See Figure 3413. The water in a waterspout is mostly confined to its lower portion, and may be either salt spray drawn up by the sea surface, or freshwater resulting from condensation due to the lowered pressure in the center of the vortex creating the spout. The air in waterspouts may rotate clockwise or counterclockwise, depending on the manner of formation. They are found most frequently in tropical regions, but are not uncommon in higher latitudes.

There are two types of waterspouts: those derived from violent convective storms over land moving seaward, called tornadoes, and those formed over the sea and which are associated with fair or foul weather. The latter type is most common, lasts a maximum of 1 hour, and has variable strength. Many waterspouts are no stronger than dust whirlwinds, which they resemble; at other times they are strong enough to destroy small craft or to cause damage to larger vessels, although modern ocean-going vessels have little to fear.

Waterspouts vary in diameter from a few feet to several hundred feet, and in height from a few hundred feet to several thousand feet. Sometimes they assume fantastic shapes; in early stages of development an elongated hour glass shape between cloud and sea is common. Since a waterspout is often inclined to the vertical, its actual length may be much greater than indicated by its height.

Figure 3413. Waterspouts.

3414. Deck Ice

Ships traveling through regions where the air temperature is below freezing may acquire thick deposits of ice as a result of salt spray freezing on the rigging, deckhouses, and deck areas. This accumulation of ice is called ice accretion. Also, precipitation may freeze to the superstructure and exposed areas of the vessel, increasing the load of ice. See Figure 3414.

On small vessels in heavy seas and freezing weather, deck ice may accumulate very rapidly and increase the topside weight enough to capsize the vessel. Accumulations of more than 2 cm per hour are classified as heavy freezing spray. Fishing vessels with outriggers, A-frames, and other top hamper are particularly susceptible.

Figure 3414. Deck ice.

RESTRICTED VISIBILITY

3415. Fog

Fog is a cloud whose base is at the surface of the Earth, and is composed of droplets of water or ice crystals (ice fog) formed by condensation or crystallization of water vapor in the air.

Radiation fog forms over low-lying land on clear, calm nights. As the land radiates heat and becomes cooler, it cools the air immediately above the surface. This causes a temperature inversion to form, the temperature increasing with height. If the air is cooled to its dew point, fog forms. Often, cooler and more dense air drains down surrounding slopes to heighten the effect. Radiation fog is often quite shallow, and is usually densest at the surface. After sunrise the fog may "lift" and gradually dissipate, usually being entirely gone by noon. At sea the temperature of the water undergoes little change between day and night, and so radiation fog is seldom encountered more than 10 miles from shore.

Advection fog forms when warm, moist air blows over a colder surface and is cooled below its dew point. It is most commonly encountered at sea, may be quite dense, and often persists over relatively long periods. Advection fog is common over cold ocean currents. If the wind is strong enough to thoroughly mix the air, condensation may take place at some distance above the surface of the Earth, forming low stratus clouds rather than fog.

Off the coast of California, seasonal winds create an offshore current which displaces the warm surface water, causing an upwelling of colder water. Moist Pacific air is
transported along the coast in the same wind system, and is cooled by the relatively cold water. Advection fog results. In the coastal valleys, fog is sometimes formed when moist air blown inland during the afternoon is cooled by radiation during the night.

When very cold air moves over warmer water, wisps of visible water vapor may rise from the surface as the water "steams," In extreme cases this frost smoke, or Arctic sea smoke, may rise to a height of several hundred feet, the portion near the surface constituting a dense fog which obscures the horizon and surface objects, but usually leaves the sky relatively clear.

Haze consists of fine dust or salt particles in the air, too small to be individually apparent, but in sufficient number to reduce horizontal visibility and cast a bluish or yellowish veil over the landscape, subduing its colors and making objects appear indistinct. This is sometimes called dry haze to distinguish it from damp haze, which consists of small water droplets or moist particles in the air, smaller and more scattered than light fog. In international meteorological practice, the term "haze" is used to refer to a condition of atmospheric obscurity caused by dust and smoke.

Mist is synonymous with drizzle in the United States but is often considered as intermediate between haze and fog in its properties. Heavy mist can reduce visibility to a mile or less.

A mixture of smoke and fog is called smog. Normally it is not a problem in navigation except in severe cases accompanied by an offshore wind from the source, when it may reduce visibility to $2-4$ miles.

ATMOSPHERIC EFFECTS ON LIGHT RAYS

3416. Mirage

Light is refracted as it passes through the atmosphere. When refraction is normal, objects appear slightly elevated, and the visible horizon is farther from the observer than it otherwise would be. Since the effects are uniformly progressive, they are not apparent to the observer. When refraction is not normal, some form of mirage may occur. A mirage is an optical phenomenon in which objects appear distorted, displaced (raised or lowered), magnified, multiplied, or inverted due to varying atmospheric refraction which occurs when a layer of air near the Earth's surface differs greatly in density from surrounding air. This may occur when there is a rapid and sometimes irregular change of temperature or humidity with height.

If there is a temperature inversion (increase of temperature with height), particularly if accompanied by a rapid decrease in humidity, the refraction is greater than normal. Objects appear elevated, and the visible horizon is farther away. Objects which are normally below the horizon become visible. This is called looming. If the upper portion of an object is raised much more than the bottom part, the object appears taller than usual, an effect called towering. If the lower part of an object is raised more than the upper part, the object appears shorter, an effect called stooping. When the refraction is greater than normal, a superior mirage may occur. An inverted image is seen above the object, and sometimes an erect image appears over the inverted one, with the bases of the two images touching. Greater than normal refraction usually occurs when the water is much colder than the air above it.

If the temperature decrease with height is much greater than normal, refraction is less than normal, or may even cause bending in the opposite direction. Objects appear lower than normal, and the visible horizon is closer to the observer. This is called sinking. Towering or stooping may occur if conditions are suitable. When the refraction is reversed, an inferior mirage may occur. A ship or an island appears to be floating in the air above a shimmering horizon, possibly with an inverted image beneath it. Conditions suitable to the formation of an inferior mirage occur when the surface is much warmer than the air above it. This usually requires a heated landmass, and therefore is more common near the coast than at sea.

When refraction is not uniformly progressive, objects may appear distorted, taking an almost endless variety of shapes. The Sun when near the horizon is one of the objects most noticeably affected. A fata morgana is a complex mirage characterized by marked distortion, generally in the vertical. It may cause objects to appear towering, magnified, and at times even multiplied.

3417. Sky Coloring

White light is composed of light of all colors. Color is related to wavelength, the visible spectrum varying from about 0.000038 to 0.000076 centimeters. The characteristics of each color are related to its wavelength (or frequency). The shorter the wavelength, the greater the amount of bending when light is refracted. It is this principle that permits the separation of light from celestial bodies into a spectrum ranging from red, through orange, yellow, green, and blue, to violet, with long-wave infrared being slightly outside the visible range at one end and shortwave ultraviolet being slightly outside the visible range at the other end. Light of shorter wavelength is scattered and diffracted more than that of longer wavelength.

Light from the Sun and Moon is white, containing all colors. As it enters the Earth's atmosphere, a certain amount of it is scattered. The blue and violet, being of shorter wavelength than other colors, are scattered most. Most of the violet light is absorbed in the atmosphere. Thus, the scattered blue light is most apparent, and the sky appears blue. At great heights, above most of the atmosphere, it appears black.

When the Sun is near the horizon, its light passes through more of the atmosphere than when higher in the sky, resulting in greater scattering and absorption of blue and green light, so that a larger percentage of the red and orange light penetrates to the observer. For this reason the Sun and Moon appear redder at this time, and when this light falls upon clouds, they appear colored. This accounts for the colors at sunset and sunrise. As the setting Sun approaches the horizon, the sunset colors first appear as faint tints of yellow and orange. As the Sun continues to set, the colors deepen. Contrasts occur, due principally to difference in height of clouds. As the Sun sets, the clouds become a deeper red, first the lower clouds and then the higher ones, and finally they fade to a gray.

When there is a large quantity of smoke, dust, or other material in the sky, unusual effects may be observed. If the material in the atmosphere is of suitable substance and quantity to absorb the longer wave red, orange, and yellow radiation, the sky may have a greenish tint, and even the Sun or Moon may appear green. If the green light, too, is absorbed, the Sun or Moon may appear blue. A green Moon or blue Moon is most likely to occur when the Sun is slightly below the horizon and the longer wavelength light from the Sun is absorbed, resulting in green or blue light being cast upon the atmosphere in front of the Moon. The effect is most apparent if the Moon is on the same side of the sky as the Sun.

3418. Rainbows

The rainbow, that familiar arc of concentric colored bands seen when the Sun shines on rain, mist, spray, etc., is
caused by refraction, internal reflection, and diffraction of sunlight by the drops of water. The center of the arc is a point 180° from the Sun, in the direction of a line from the Sun passing through the observer. The radius of the brightest rainbow is 42°. The colors are visible because of the difference in the amount of refraction of the different colors making up white light, the light being spread out to form a spectrum. Red is on the outer side and blue and violet on the inner side, with orange, yellow, and green between, in that order from red.

Sometimes a secondary rainbow is seen outside the primary one, at a radius of about 50°. Very rarely, a third can be seen. The order of colors of this rainbow is reversed. On rare occasions a faint rainbow is seen on the same side as the Sun. The radius of this rainbow and the order of colors are the same as those of the primary rainbow.

A similar arc formed by light from the Moon (a lunar rainbow) is called a Moonbow. The colors are usually very faint. A faint, white arc of about 39° radius is occasionally seen in fog opposite the Sun. This is called a fogbow, although its origin is controversial, some considering it a halo.

3419. Halos

Refraction, or a combination of refraction and reflection, of light by ice crystals in the atmosphere may cause a halo to appear. The most common form is a ring of light of radius 22° or 46° with the Sun or Moon at the center. Cirrostratus clouds are a common source of atmospheric ice crystals. Occasionally a faint, white circle with a radius of 90° appears around the Sun. This is called a Hevelian halo. It is probably caused by refraction and internal reflection of the Sun's light by bipyramidal ice crystals. A halo formed by refraction is usually faintly colored like a rainbow, with red nearest the celestial body, and blue farthest from it.

A brilliant rainbow-colored arc of about a quarter of a circle with its center at the zenith, and the bottom of the arc about 46° above the Sun, is called a circumzenithal arc. Red is on the outside of the arc, nearest the Sun. It is produced by the refraction and dispersion of the Sun's light striking the top of prismatic ice crystals in the atmosphere. It usually lasts for only about 5 minutes, but may be so brilliant as to be mistaken for an unusually bright rainbow. A similar arc formed 46° below the Sun, with red on the upper side, is called a circumhorizontal arc. Any arc tangent to a heliocentric halo (one surrounding the Sun) is called a tangent arc. As the Sun increases in elevation, such arcs tangent to the halo of 22° gradually bend their ends toward each other. If they meet, the elongated curve enclosing the circular halo is called a circumscribed halo. The inner edge is red.

A halo consisting of a faint, white circle through the Sun and parallel to the horizon is called a parhelic circle. A similar one through the Moon is called a paraselenic
circle. They are produced by reflection of Sunlight or Moonlight from vertical faces of ice crystals.

A parhelion (plural: parhelia) is a form of halo consisting of an image of the Sun at the same altitude and some distance from it, usually 22°, but occasionally 46°. A similar phenomenon occurring at an angular distance of 120° (sometimes 90° or 140°) from the Sun is called a paranthelion. One at an angular distance of 180°, a rare occurrence, is called an anthelion, although this term is also used to refer to a luminous, colored ring or glory sometimes seen around the shadow of one's head on a cloud or fog bank. A parhelion is popularly called a mock Sun or Sun dog. Similar phenomena in relation to the Moon are called paraselene (popularly a mock Moon or Moon dog), parantiselene, and antiselene. The term parhelion should not be confused with perihelion, the orbital point nearest the Sun when the Sun is the center of attraction.

A Sun pillar is a glittering shaft of white or reddish light occasionally seen extending above and below the Sun, usually when the Sun is near the horizon. A phenomenon similar to a Sun pillar, but observed in connection with the Moon, is called a Moon pillar. A rare form of halo in which horizontal and vertical shafts of light intersect at the Sun is called a Sun cross. It is probably due to the simultaneous occurrence of a Sun pillar and a parhelic circle.

3420. Corona

When the Sun or Moon is seen through altostratus clouds, its outline is indistinct, and it appears surrounded by a glow of light called a corona. This is somewhat similar in appearance to the corona seen around the Sun during a solar eclipse. When the effect is due to clouds, however, the glow may be accompanied by one or more rainbow-colored rings of small radii, with the celestial body at the center. These can be distinguished from a halo by their much smaller radii and also by the fact that the order of the colors is reversed, red being on the inside, nearest the body, in the case of the halo, and on the outside, away from the body, in the case of the corona.

A corona is caused by diffraction of light by tiny droplets of water. The radius of a corona is inversely proportional to the size of the water droplets. A large corona indicates small droplets. If a corona decreases in size, the water droplets are becoming larger and the air more humid. This may be an indication of an approaching rainstorm. The glow portion of a corona is called an aureole.

3421. The Green Flash

As light from the Sun passes through the atmosphere, it is refracted. Since the amount of bending is slightly different for each color, separate images of the Sun are formed in each color of the spectrum. The effect is similar to that of imperfect color printing, in which the various colors are
slightly out of register. However, the difference is so slight that the effect is not usually noticeable. At the horizon, where refraction is maximum, the greatest difference, which occurs between violet at one end of the spectrum and red at the other, is about 10 seconds of arc. At latitudes of the United States, about 0.7 second of time is needed for the Sun to change altitude by this amount when it is near the horizon. The red image, being bent least by refraction, is first to set and last to rise. The shorter wave blue and violet colors are scattered most by the atmosphere, giving it its characteristic blue color. Thus, as the Sun sets, the green image may be the last of the colored images to drop out of sight. If the red, orange, and yellow images are below the horizon, and the blue and violet light is scattered and absorbed, the upper rim of the green image is the only part seen, and the Sun appears green. This is the green flash. The shade of green varies, and occasionally the blue image is seen, either separately or following the green flash (at sunset). On rare occasions the violet image is also seen. These colors may also be seen at sunrise, but in reverse order. They are occasionally seen when the Sun disappears behind a cloud or other obstruction.

The phenomenon is not observed at each sunrise or sunset, but under suitable conditions is far more common than generally supposed. Conditions favorable to observation of the green flash are a sharp horizon, clear atmosphere, a temperature inversion, and a very attentive observer. Since these conditions are more frequently met when the horizon is formed by the sea than by land, the
phenomenon is more common at sea. With a sharp sea horizon and clear atmosphere, an attentive observer may see the green flash at as many as 50 percent of sunsets and sunrises, although a telescope may be needed for some of the observations.

Duration of the green flash (including the time of blue and violet flashes) of as long as 10 seconds has been reported, but such length is rare. Usually it lasts for a period of about $1 / 2$ to $2 \frac{1}{2}$ seconds, with about $1 \frac{1}{4}$ seconds being average. This variability is probably due primarily to changes in the index of refraction of the air near the horizon.

Under favorable conditions, a momentary green flash has been observed at the setting of Venus and Jupiter. A telescope improves the chances of seeing such a flash from a planet, but is not a necessity.

3422. Crepuscular Rays

Crepuscular rays are beams of light from the Sun passing through openings in the clouds, and made visible by illumination of dust in the atmosphere along their paths. Actually, the rays are virtually parallel, but because of perspective, appear to diverge. Those appearing to extend downward are popularly called backstays of the Sun, or the Sun drawing water. Those extending upward and across the sky, appearing to converge toward a point 180° from the Sun, are called anticrepuscular rays.

THE ATMOSPHERE AND RADIO WAVES

3423. Atmospheric Electricity

Radio waves traveling through the atmosphere exhibit many of the properties of light, being refracted, reflected, diffracted, and scattered. These effects are discussed in greater detail in Chapter 10, Radio Waves.

Various conditions induce the formation of electrical charges in the atmosphere. When this occurs, there is often a difference of electron charge between various parts of the atmosphere, and between the atmosphere and Earth or terrestrial objects. When this difference exceeds a certain minimum value, depending upon the conditions, the static electricity is discharged, resulting in phenomena such as lightning or St. Elmo's fire.

Lightning is the discharge of electricity from one part of a thundercloud to another, between different clouds, or between a cloud and the Earth or a terrestrial object.

Enormous electrical stresses build up within thunderclouds, and between such clouds and the Earth. At some point the resistance of the intervening air is overcome. At first the process is a progressive one, probably starting as a brush discharge (St. Elmo's fire), and growing by ionization. The breakdown follows an irregular path along the line of least resistance. A hundred or more individual discharges may be necessary to complete the path between points of
opposite polarity. When this "leader stroke" reaches its destination, a heavy "main stroke" immediately follows in the opposite direction. This main stroke is the visible lightning, which may be tinted any color, depending upon the nature of the gases through which it passes. The illumination is due to the high degree of ionization of the air, which causes many of the atoms to become excited and emit radiation.

Thunder, the noise that accompanies lightning, is caused by the heating and ionizing of the air by lightning, which results in rapid expansion of the air along its path and the sending out of a compression wave. Thunder may be heard at a distance of as much as 15 miles, but generally does not carry that far. The elapsed time between the flash of lightning and reception of the accompanying sound of thunder is an indication of the distance, because of the difference in travel time of light and sound. Since the former is comparatively instantaneous, and the speed of sound is about 1,117 feet per second, the approximate distance in nautical miles is equal to the elapsed time in seconds, divided by 5.5 .If the thunder accompanying lightning cannot be heard due to its distance, the lightning is called heat lightning.

St. Elmo's fire is a luminous discharge of electricity from pointed objects such as the masts and antennas of ships, lightning rods, steeples, mountain tops, blades of grass, human hair, arms, etc., when there is a considerable
difference in the electrical charge between the object and the air. It appears most frequently during a storm. An object from which St. Elmo's fire emanates is in danger of being struck by lightning, since this discharge may be the initial phase of the leader stroke. Throughout history those who have not understood St. Elmo's fire have regarded it with superstitious awe, considering it a supernatural manifestation. This view is reflected in the name corposant (from "corpo santo," meaning "body of a saint") sometimes given this phenomenon.

The aurora is a luminous glow appearing in varied forms in the thin atmosphere high above the Earth in high latitudes. It closely follows solar flare activity, and is believed caused by the excitation of atoms of oxygen and hydrogen, and molecules of nitrogen $\left(\mathrm{N}_{2}\right)$. Auroras extend across hundreds of miles of sky, in colored sheets, folds, and rays, constantly changing in form
and color. On occasion they are seen in temperate or even more southern latitudes. The maximum occurrence is at about $64-70^{\circ}$ of geomagnetic latitude. These are called the auroral zones in both northern and southern regions.

The aurora of the northern regions is the Aurora Borealis, or northern lights, and that of the southern region the Aurora Australis, or southern lights. The term polar lights is occasionally used to refer to either.

In the northern zone, there is an apparent horizontal motion to the westward in the evening and eastward in the morning; a general southward motion occurs during the course of the night.

Variation in auroral activity occurs in sequence with the 11-year Sunspot cycle, and also with the 27-day period of the Sun's synodical rotation. Daily occurrence is greatest near midnight.

WEATHER ANALYSIS AND FORECASTING

3424. Forecasting Weather

The prediction of weather at some future time is based upon an understanding of weather processes and observations of present conditions. Thus, when there is a certain sequence of cloud types, rain usually can be expected to follow. If the sky is cloudless, more heat will be received from the Sun by day, and more heat will be radiated outward from the warm Earth by night than if the sky is overcast. If the wind is from a direction that transports warm, moist air over a colder surface, fog can be expected. A falling barometer indicates the approach of a "low," probably accompanied by stormy weather. Thus, before meteorology passed from an "art" to "science," many individuals learned to interpret certain atmospheric phenomena in terms of future weather, and to make reasonably accurate forecasts for short periods into the future.

With the establishment of weather observation stations, continuous and accurate weather information became available. As observations expanded and communication techniques improved, knowledge of simultaneous conditions over wider areas became available. This made possible the collection of "synoptic" reports at civilian and military forecast centers.

Individual observations are made at stations on shore and aboard vessels at sea. Observations aboard merchant ships at sea are made and transmitted on a voluntary and cooperative basis. The various national meteorological services supply shipmasters with blank forms, printed instructions, and other materials essential to the making, recording, and interpreting of observations. Any shipmaster can render a particularly valuable service by reporting all unusual or non-normal weather occurrences.

Symbols and numbers are used to indicate on a synoptic chart, popularly called a weather map, the conditions at each observation station. Isobars are drawn through lines of equal
atmospheric pressure, fronts are located and symbolically marked (See Figure 3425), areas of precipitation and fog are indicated, etc.

Ordinarily, weather maps for surface observations are prepared every 6 (sometimes 3) hours. In addition, synoptic charts for selected heights are prepared every 12 (sometimes 6) hours. Knowledge of conditions aloft is of value in establishing the three-dimensional structure and motion of the atmosphere as input to the forecast.

With the advent of the computer, highly sophisticated numerical models have been developed to analyze and forecast weather patterns. The civil and military weather centers prepare and disseminate vast numbers of weather charts (analyses and prognoses) daily to assist local forecasters in their efforts to provide users with accurate weather forecasts. The accuracy of the forecast decreases with the length of the forecast period. A 12-hour forecast is likely to be more reliable than a 24 -hour forecast. Long term forecasts for 2 weeks or a month in advance are limited to general statements. For example, a prediction may be made about which areas will have temperatures above or below normal, and how precipitation will compare with normal, but no attempt is made to state that rainfall will occur at a certain time and place.

Forecasts are issued for various areas. The national meteorological services of most maritime nations, including the United States, issue forecasts for ocean areas and warnings of approaching storms. The efforts all nations are coordinated by the World Meteorological Organization.

3425. Weather Forecast Dissemination

Dissemination of weather information is carried out in a number of ways. Forecasts and warnings are made available by various means including television and radio broadcast, satellite broadcast, telephone, and the internet. Visual storm warnings are displayed in various ports, and
storm warnings are broadcast by radio.
The Global Maritime Distress and Safety System (GMDSS) was established to provide more effective and efficient emergency and safety communications, and to disseminate Maritime Safety Information (MSI) to all ships on the world's oceans regardless of location or atmospheric conditions. MSI includes navigational warnings, meteorological warnings and forecasts, and other urgent safety related information. GMDSS goals are defined in the International Convention for the The Safety Of Life At Sea (SOLAS), and affects vessels over 300 gross tons and passenger vessels of any size. The U.S. National Weather Service participates directly in the GMDSS by preparing meteorological forecasts and warnings for broadcast via NAVTEX and SafetyNET.

NAVTEX is an international automated medium frequency (518 kHz) direct-printing service for delivery of navigational and meteorological warnings and forecasts, as well as urgent marine safety information to ships. It was developed to provide a low-cost, simple, and automated means of receiving this information aboard ships at sea within approximately 200 nautical miles of shore. NAVTEX stations in the U.S. are operated by the U.S. Coast Guard.

Inmarsat-C SafetyNET is an internationally adopted, automated satellite system for promulgating weather forecasts and warnings, marine navigational warnings and other safety related information to all types of vessels.

Radiofax, also known as HF FAX, radiofacsimile or weatherfax, is a means of broadcasting graphic weather maps and other graphic images via HF radio. HF radiofax is also known as WEFAX, although this term is generally used to refer to the reception of weather charts and imagery via satellite. Maps are received using a dedicated radiofax receiver or a single sideband shortwave receiver connected to an external facsimile recorder or PC equipped with a radiofax interface and application software. Inexpensive internet access to weather charts at sea awaits the establishment of the bandwidth to quickly transmit large graphic files.

Information on dissemination of marine weather information may be found in NIMA Pub. 117, Radio Navigational Aids, the Admiralty List of Signals Volumes III and V, and the IMO publication, Master Plan of Shore Based Facilities for the GMDSS. Information on day and night visual storm warnings is given in the various volumes
of Sailing Directions, both Enroutes and Planning Guides.
Through the use of codes, a simplified version of synoptic weather charts is transmitted to various stations ashore and afloat. Rapid transmission of completed maps is accomplished by facsimile. This system is based upon detailed scanning, by a photoelectric detector, of illuminated black and white copy. The varying degrees of light intensity are converted to electric energy, which is transmitted to the receiver and converted back to a black and white presentation. The proliferation of both commercial and restricted computer bulletin board systems having weather information has also greatly increased the accessibility of environmental data.

Complete information on dissemination of weather information by radio is provided in Selected Worldwide Marine Weather Broadcasts, published jointly by the National Weather Service and the Naval Meteorology and Oceanography Command. This publication lists broadcast schedules and weather codes. Information on day and night visual storm warnings is given in the various volumes of Sailing Directions, both Enroutes and Planning Guides.

3426. Interpreting Weather

The factors which determine weather are numerous and varied. Ever-increasing knowledge regarding them makes possible a continually improving weather service. However, the ability to forecast is acquired through study and long practice, and therefore the services of a trained meteorologist should be utilized whenever available.

The value of a forecast is increased if one has access to the information upon which it is based, and understands the principles and processes involved. It is sometimes as important to know the various types of weather which may be experienced as it is to know which of several possibilities is most likely to occur.

At sea, reporting stations are unevenly distributed, sometimes leaving relatively large areas with incomplete reports, or none at all. Under these conditions, the locations of highs, lows, fronts, etc., are imperfectly known, and their very existence may even be in doubt. At such times the mariner who can interpret the observations made from his own vessel may be able to predict weather for the next several hours more reliably than a trained meteorologist ashore.

Figure 3425. Designation of fronts on weather maps.

CHAPTER 35

TROPICAL CYCLONES

DESCRIPTION AND CAUSES

3500. Introduction

A tropical cyclone is a cyclone originating in the tropics or subtropics. Although it generally resembles the extratropical cyclone of higher latitudes, there are important differences, the principal one being the concentration of a large amount of energy into a relatively small area. Tropical cyclones are infrequent in comparison with middle and high latitude storms, but they have a record of destruction far exceeding that of any other type of storm. Because of their fury, and because they are predominantly oceanic, they merit special attention by mariners.

A tropical storm may have a deceptively small size, and beautiful weather may be experienced only a few hundred miles from the center. The rapidity with which the weather can deteriorate with approach of the storm, and the violence of the fully developed tropical cyclone, are difficult to imagine if they have not been experienced.

On his second voyage to the New World, Columbus encountered a tropical storm. Although his vessels suffered no damage, this experience proved valuable during his fourth voyage when his ships were threatened by a fully developed hurricane. Columbus read the signs of an approaching storm from the appearance of a southeasterly swell, the direction of the high cirrus clouds, and the hazy appearance of the atmosphere. He directed his vessels to shelter. The commander of another group, who did not heed the signs, lost most of his ships and more than 500 men perished.

3501. Definitions

Tropical cyclones are classified by form and intensity as they increase in size.

A tropical disturbance is a discrete system of apparently organized convection, generally 100 to 300 miles in diameter, having a nonfrontal migratory character, and having maintained its identity for 24 hours or more. It may or may not be associated with a detectable disturbance of the wind field. It has no strong winds and no closed isobars i.e., isobars that completely enclose the low.

At its next stage of development it becomes a tropical depression. A tropical depression has one or more closed isobars and some rotary circulation at the surface. The highest sustained (1 -minute mean) surface wind speed is 33 knots.

The next stage is tropical storm. A tropical storm has
closed isobars and a distinct rotary circulation. The highest sustained (1-minute mean) surface wind speed is 34 to 63 knots.

When fully developed, a hurricane or typhoon has closed isobars, a strong and very pronounced rotary circulation, and a sustained (1-minute mean) surface wind speed of 64 knots or higher.

3502. Areas of Occurrence

Tropical cyclones occur almost entirely in six distinct areas, four in the Northern Hemisphere and two in the Southern Hemisphere, as shown in Figure 3502. The name by which the tropical cyclone is commonly known varies somewhat with the locality.

1. North Atlantic. A tropical cyclone with winds of 64 knots or greater is called a hurricane.
2. Eastern North Pacific. The name hurricane is used as in the North Atlantic.
3. Western North Pacific. A fully developed storm with winds of 64 knots or greater is called a typhoon or, locally in the Philippines, a baguio.
4. North Indian Ocean. A tropical cyclone with winds of 34 knots or greater is called a cyclonic storm.
5. South Indian Ocean. A tropical cyclone with winds of 34 knots or greater is called a cyclone.
6. Southwest Pacific and Australian Area. The name cyclone is used as in the South Indian Ocean. A severe tropical cyclone originating in the Timor Sea and moving southwest and then southeast across the interior of northwestern Australia is called a willywilly.

Tropical cyclones have not been observed in the South Atlantic or in the South Pacific east of $140^{\circ} \mathrm{W}$.

3503. Origin, Season and Frequency

See Figure 3503a and Figure 3503b. Origin, season, and frequency of occurrence of the tropical cyclones in the six areas are as follows:

North Atlantic: Tropical cyclones can affect the entire North Atlantic Ocean in any month. However, they are mostly a threat south of about $35^{\circ} \mathrm{N}$ from June through November; August, September, and October are the

Figure 3502. Areas in which tropical cyclones occur. The average number of tropical cyclones per 5° square has been analyzed for this figure. The main season for intense tropical storm activity is also shown for each major basin.
months of highest incidence. See Figure 3503b. About 9 or 10 tropical cyclones (tropical storms and hurricanes) form each season; 5 or 6 reach hurricane intensity (winds of 64 knots and higher). A few hurricanes have generated winds estimated as high as 200 knots. Early and late season storms usually develop west of $50^{\circ} \mathrm{W}$; during August and September, this spawning ground extends to the Cape Verde Islands. These storms usually move westward or west northwestward at speeds of less than 15 knots in the lower latitudes. After moving into the northern Caribbean or Greater Antilles regions, they usually either move toward the Gulf of Mexico or recurve and accelerate in the North Atlantic. Some will recurve after reaching the Gulf of Mexico, while others will continue westward to a landfall in Texas or Mexico.

Eastern North Pacific: The season is from June through October, although a storm can form in any month. An average of 15 tropical cyclones form each year with about 6 reaching hurricane strength. The most intense storms are often the early- and late-season ones; these form close to the coast and far south. Mid season storms form anywhere in a wide band from the Mexican-Central American coast to the Hawaiian Islands. August and

September are the months of highest incidence. These storms differ from their North Atlantic counterparts in that they are usually smaller in size. However, they can be just as intense.

Western North Pacific: More tropical cyclones form in the tropical western North Pacific than anywhere else in the world. More than 25 tropical storms develop each year, and about 18 become typhoons. These typhoons are the largest and most intense tropical cyclones in the world. Each year an average of five generate maximum winds over 130 knots; circulations covering more than 600 miles in diameter are not uncommon. Most of these storms form east of the Philippines, and move across the Pacific toward the Philippines, Japan, and China; a few storms form in the South China Sea. The season extends from April through December. However, tropical cyclones are more common in the off-season months in this area than anywhere else. The peak of the season is July through October, when nearly 70 percent of all typhoons develop. There is a noticeable seasonal shift in storm tracks in this region. From July through September, storms move north of the Philippines and recurve, while early- and late-season typhoons move on a more westerly track through the Philippines before recurving.

Figure 3503a. Storm tracks.The width of the arrow indicates the approximate frequency of storms; the wider the arrow the higher the frequency. Isolines on the base map show the resultant direction toward which storms moved. Data for the entire year has been summarized for this figure.

AREA AND STAGE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
NORTH ATLANTIC													
TROPICAL STORMS	*	*	*	*	0.1	0.4	0.3	1.0	1.5	1.2	0.4	*	4.2
HURRICANES	*	*	*	*	*	0.3	0.4	1.5	2.7	1.3	0.3	*	5.2
TROPICAL STORMS AND HURRICANES	*	*	*	*	0.2	0.7	0.8	2.5	4.3	2.5	0.7	0.1	9.4
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
EASTERN NORTH PACIFIC													
TROPICAL STORMS	*	*	*	*	*	1.5	2.8	2.3	2.3	1.2	0.3	*	9.3
HURRICANES	*	*	*	*	0.3	0.6	0.9	2.0	1.8	1.0	*	*	5.8
TROPICAL STORMS AND HURRICANES	*	*	*	*	0.3	2.0	3.6	4.5	4.1	2.2	0.3	*	15.2
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
WESTERN NORTH PACIFIC													
TROPICAL STORMS	0.2	0.3	0.3	0.2	0.4	0.5	1.2	1.8	1.5	1.0	0.8	0.6	7.5
TYPHOONS	0.3	0.2	0.2	0.7	0.9	1.2	2.7	4.0	4.1	3.3	2.1	0.7	17.8
TROPICAL STORMS AND TYPHOONS	0.4	0.4	0.5	0.9	1.3	1.8	3.9	5.8	5.6	4.3	2.9	1.3	25.3
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
SOUTHWEST PACIFIC AND AUSTRALIAN AREA													
TROPICAL STORMS	2.7	2.8	2.4	1.3	0.3	0.2	*	*	*	0.1	0.4	1.5	10.9
HURRICANES	0.7	1.1	1.3	0.3	*	*	0.1	0.1	*	*	0.3	0.5	3.8
TROPICAL STORMS AND HURRICANES	3.4	4.1	3.7	1.7	0.3	0.2	0.1	0.1	*	0.1	0.7	2.0	14.8
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
SOUTHWEST INDIAN OCEAN													
TROPICAL STORMS	2.0	2.2	1.7	0.6	0.2	*	*	*	*	0.3	0.3	0.8	7.4
HURRICANES	1.3	1.1	0.8	0.4	*	*	*	*	*	*	*	0.5	3.8
TROPICAL STORMS AND HURRICANES	3.2	3.3	2.5	1.1	0.2	*	*	*	*	0.3	0.4	1.4	11.2

* Less than $0.05 \quad 1$ Winds $\geq 48 \mathrm{Kts}$.
Monthly values cannot be combined because single storms overlapping two months were counted once in each month and once in the annual.

Figure 3503b. Monthly and annual average number of storms per year for each area.

AREA AND STAGE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
NORTH INDIAN OCEAN													
TROPICAL STORMS	0.1	*	*	0.1	0.3	0.5	0.5	0.4	0.4	0.6	0.5	0.3	3.5
CYCLONES ${ }^{1}$	*	*	*	0.1	0.5	0.2	0.1	*	0.1	0.4	0.6	0.2	2.2
TROPICAL STORMS AND CYCLONES ${ }^{1}$	0.1	*	0.1	0.3	0.7	0.7	0.6	0.4	0.5	1.0	1.1	0.5	5.7

* Less than $0.05 \quad 1_{\text {Winds }} \geq 48$ Kts.

Monthly values cannot be combined because single storms overlapping two months were counted once in each month and once in the annual.
Figure 3503b. Monthly and annual average number of storms per year for each area.

North Indian Ocean - Tropical cyclones develop in the Bay of Bengal and Arabian Sea during the spring and fall. Tropical cyclones in this area form between latitudes $8^{\circ} \mathrm{N}$ and $15^{\circ} \mathrm{N}$, except from June through September, when the little activity that does occur is confined north of about $15^{\circ} \mathrm{N}$. These storms are usually short-lived and weak; however, winds of 130 knots have been encountered. They often develop as disturbances along the Intertropical Convergence Zone (ITCZ); this inhibits summertime development, since the ITCZ is usually over land during this monsoon season. However, it is sometimes displaced southward, and when this occurs, storms will form over the monsoon-flooded plains of Bengal. On the average, six cyclonic storms form each year. These include two storms that generate winds of 48 knots or greater. Another 10 tropical cyclones never develop beyond tropical depressions. The Bay of Bengal is the area of highest incidence. However, it is not unusual for a storm to move across southern India and reintensify in the Arabian Sea. This is particularly true during October, the month of highest incidence during the tropical cyclone season. It is also during this period that torrential rains from these storms, dumped over already rain-soaked areas, cause disastrous floods.

South Indian Ocean-Over the waters west of $100^{\circ} \mathrm{E}$, to the east African coast, an average of 11 tropical cyclones
(tropical storms and hurricanes) form each season, and about 4 reach hurricane intensity. The season is from December through March, although it is possible for a storm to form in any month. Tropical cyclones in this region usually form south of $10^{\circ} \mathrm{S}$. The latitude of recurvature usually migrates from about $20^{\circ} \mathrm{S}$ in January to around $15^{\circ} \mathrm{S}$ in April. After crossing $30^{\circ} \mathrm{S}$, these storms sometimes become intense extratropical lows.

Southwest Pacific and Australian Area-These tropical waters spawn an annual average of 15 tropical cyclones 4 , of which reach hurricane intensity. The season extends from about December through April, although storms can form in any month. Activity is widespread in January and February, and it is in these months that tropical cyclones are most likely to affect Fiji, Samoa, and the other eastern islands. Tropical cyclones usually form in the waters from $105^{\circ} \mathrm{E}$ to $160^{\circ} \mathrm{W}$, between 5° and $20^{\circ} \mathrm{S}$. Storms affecting northern and western Australia often develop in the Timor or Arafura Sea, while those that affect the east coast form in the Coral Sea. These storms are often small, but can develop winds in excess of 130 knots. New Zealand is sometimes reached by decaying Coral Sea storms, and occasionally by an intense hurricane. In general, tropical cyclones in this region move southwestward and then recurve southeastward.

ANATOMY OF TROPICAL CYCLONES

3504. Formation

Hurricane formation was once believed to result from an intensification of convective forces which produce the towering cumulonimbus clouds of the doldrums. This view of hurricane generation held that surface heating caused warm moist air to ascend convectively to levels where condensation produced cumulonimbus clouds, which, after an inexplicable drop in atmospheric pressure, coalesced and were spun into a cyclonic motion by Coriolis force.

This hypothesis left much unexplained. Although some hurricanes develop from disturbances beginning in the doldrums, very few reach maturity in that region. Also, the high incidence of seemingly ideal convective situations does not match the low incidence of Atlantic hurricanes. Finally, the hypothesis did not explain the drop in atmospheric pressure, so essential to development of hurricane-force winds.

There is still no exact understanding of the triggering mechanism involved in hurricane generation, the balance of
conditions needed to generate hurricane circulation, and the relationships between large- and small-scale atmospheric processes. But scientists today, treating the hurricane system as an atmospheric heat engine, present a more comprehensive and convincing view.

They begin with a starter mechanism in which either internal or external forces intensify the initial disturbance. The initial disturbance becomes a region into which lowlevel air from the surrounding area begins to flow, accelerating the convection already occurring inside the disturbance. The vertical circulation becomes increasingly well organized as water vapor in the ascending moist layer is condensed (releasing large amounts of heat energy to drive the wind system), and as the system is swept into a counterclockwise cyclonic spiral. But this incipient hurricane would soon fill up because of inflow at lower levels, unless the chimney in which converging air surges upward is provided the exhaust mechanism of high-altitude winds.

Figure 3504. Pumping action of high-altitude winds.

These high-altitude winds pump ascending air out of the cyclonic system, into a high-altitude anticyclone, which transports the air well away from the disturbance, before sinking occurs. See Figure 3504. Thus, a large scale vertical circulation is set up, in which low-level air is spiraled up the cyclonic twisting of the disturbance, and, after a trajectory over the sea, returned to lower altitudes some distance from the storm. This pumping action-and the heat released by the ascending air may account for the sudden drop of atmospheric pressure at the surface, which produces the steep pressure gradient along which winds reach hurricane proportions.

It is believed that the interaction of low-level and highaltitude wind systems determines the intensity the hurricane will attain. If less air is pumped out than converges at low levels, the system will fill and die out. If more is pumped out than flows in, the circulation will be sustained and will intensify.

Scientists have found that any process which increases the rate of low-level inflow is favorable for hurricane development, provided the inflowing air carries sufficient heat and moisture to fuel the hurricane's power system. It has also been shown that air above the developing disturbance, at altitudes between 20,000 and 40,000 feet, increases 1° to $3^{\circ} \mathrm{F}$ in temperature about 24 hours before the disturbance develops into a hurricane. But it is not known whether lowlevel inflow and high-level warming cause hurricanes. They could very well be measurable symptoms of another effect which actually triggers the storm's increase to hurricane intensity.

The view of hurricanes as atmospheric engines is necessarily a general one. The exact role of each contributor is not completely understood. The engine seems to be both inefficient and unreliable; a myriad of delicate conditions must be satisfied for the atmosphere to produce a hurricane. Their relative infrequency indicates that many potential hurricanes dissipate before developing into storms.

3505. Portrait of a Hurricane

In the early life of the hurricane, the spiral covers an area averaging 100 miles in diameter with winds of 64 knots and greater, and spreads gale-force winds over a 400mile diameter. The cyclonic spiral is marked by heavy cloud bands from which torrential rains fall, separated by areas of light rain or no rain at all. These spiral bands ascend in decks of cumulus and cumulonimbus clouds to the convective limit of cloud formation, where condensing water vapor is swept off as ice-crystal wisps of cirrus clouds. See Figure 3505. Thunderstorm electrical activity is observed in these bands, both as lightning and as tiny electrostatic discharges.

In the lower few thousand feet, air flows in through the cyclone, and is drawn upward through ascending columns of air near the center. The size and intensity decrease with altitude, the cyclonic circulation being gradually replaced above 40,000 feet by an anticyclonic circulation centered hundreds of miles away, which is the exhaust system of the hurricane heat engine.

At lower levels, where the hurricane is more intense, winds on the rim of the storm follow a wide pattern, like the slower currents around the edge of a whirlpool; and, like those currents, these winds accelerate as they approach the center of the vortex. The outer band has light winds at the rim of the storm, perhaps no more than 25 knots; within 30 miles of the center, winds may have velocities exceeding 130 knots. The inner band is the region of maximum wind velocity, where the storm's worst winds are felt, and where ascending air is chimneyed upward, releasing heat to drive the storm. In most hurricanes, these winds reach 85 knots, and more than 170 knots in severe storms.

In the hurricane, winds flow toward the low pressure in the warm, comparatively calm core. There, converging air is whirled upward by convection, the mechanical thrusting of other converging air, and the pumping action of highaltitude circulations. This spiral is marked by the thick

Figure 3505. Cutaway view of a hurricane greatly exaggerated in vertical dimension. Actual hurricanes are less than 50,000 feet high and may have a diameter of several hundred miles.
cloud walls curling inward toward the storm center, releasing heavy precipitation and enormous quantities of heat energy. At the center, surrounded by a band in which this strong vertical circulation is greatest, is the eye of the hurricane.

On the average, eye diameter is about 14 miles, although diameters of 25 miles are not unusual. From the heated tower of maximum winds and cumulonimbus clouds, winds diminish rapidly to something less than 15 miles per hour in the eye; at the opposite wall, winds increase again, but come from the opposite direction because of the cyclonic circulation of the storm. This sudden transformation of storm into comparative calm, and from calm into violence from another quarter is spectacular. The eye's abrupt existence in the midst of opaque rain squalls and hurricane winds, the intermittent bursts of blue sky and sunlight through light clouds in the core of the cyclone, and the galleried walls of cumulus and cumulonimbus clouds are unforgettable.

Every hurricane is individual, and the more or less orderly circulation described here omits the extreme variability and instability within the storm system. Pressure and temperature gradients fluctuate wildly across the storm as the hurricane maintains its erratic life. If it is an August storm, its average life expectancy is 12 days; if a July or November storm, it lives an average of 8 days.

3506. Life of a Tropical Cyclone

Reports from ships in the vicinity of an easterly wave (a westward-moving trough of low pressure embedded in deep easterlies) may indicate that the atmospheric pres-
sure in the region has fallen more than 5 hectopascals (hPa) in the past 24 hours. This is cause for alarm, because in the Tropics pressure varies little; the normal diurnal pressure change is only about 3 hPa . Satellite pictures may indicate thickening middle and high clouds. Squalls are reported ahead of the easterly wave, and wind reports indicate a cyclonic circulation is forming. The former easterly wave, now classified a tropical disturbance, is moving westward at 10 knots under the canopy of a large high-pressure system aloft. Sea surface temperatures in the vicinity are in the $28^{\circ}-30^{\circ} \mathrm{C}$ range.

Within 48 hours winds increase to 25 knots near the center of definite circulation, and central pressure has dropped below 1000 hPa . The disturbance is now classified as a tropical depression. Soon the circulation extends out to 100 miles and upward to 20,000 feet. Winds near the center increase to gale force, central pressure falls below 990 hPa , and towering cumulonimbus clouds shield a developing eye; a tropical storm has developed.

Satellite photographs now reveal a tightly organized tropical cyclone, and reconnaissance reports indicate maximum winds of 80 knots around a central pressure of 980 hPa ; a hurricane has developed. A ship to the right (left in the Southern Hemisphere) of the hurricane's center (looking toward the direction of storm movement) reports 30foot seas. The hurricane is rapidly maturing as it continues westward.

A few days later the hurricane reaches its peak. The satellite photographs show a textbook picture (Figure 3506), as 120 -knot winds roar around a $940-\mathrm{hPa}$ pressure center; hurricane-force winds extend 50 miles in all directions, and seas are reported up to 40 feet. There is no

Figure 3506. Satellite photograph of a hurricane.
further deepening now, but the hurricane begins to expand. In 2 days, gales extend out to 200 miles, and hurricane winds out to 75 miles. Then the hurricane slows and begins to recurve; this turning marks the beginning of its final phase.

The hurricane accelerates, and, upon reaching temperate latitudes, it begins to lose its tropical characteristics. The circulation continues to expand, but now cold air
is intruding. (Cold air, cold water, dry air aloft, and land aid in the decay of a tropical cyclone.) The winds gradually abate as the concentrated storm disintegrates. The warm core survives for a few more days before the transformation to a large extratropical low-pressure system is complete.

Not all tropical cyclones follow this average pattern. Most falter in the early stages, some dissipate over land, and others remain potent for several weeks.

FORECASTING AND PREDICTING TROPICAL CYCLONES

3507. Weather Broadcasts and Radiofacsimile

The marine weather broadcast and radiofacsimile weather maps are the most important tools for avoiding tropical cyclones. These broadcasts, covering all tropical areas, provide information about the tropical cyclone's location, maximum winds and seas, and future conditions expected.

The U S. Navy, the National Oceanic and Atmospheric Administration, and the U.S. Air Force have developed a highly effective surveillance system for the tropical cyclone-prone areas of the world. Routine and special weather reports enable accurate detection, location, and tracking of tropical cyclones. International cooperation is effective. These reports originate from land stations, ships at sea, aircraft, weather satellite imagery, and specially instrumented weather reconnaissance aircraft of National Oceanic and Atmospheric Administration and the U.S. Air Force. Data buoys, both moored and drifting, provide another source of information.

The tropical warning services have three principal functions:

1. Collection and analysis of data
2. Preparation of timely and accurate warnings
3. The distribution of advisories

To provide timely and accurate information and warnings regarding tropical cyclones, the oceans have been divided into overlapping geographical areas of responsibility.

For detailed information on the areas of responsibility of the countries participating in the international forecasting and warning program, and radio aids, refer to Selected Worldwide Marine Weather Broadcasts, published jointly by the Naval Meteorology and Oceanography Command and the National Weather Service.

Although the areas of forecasting responsibility are fairly well defined for the Department of Defense, the international and domestic civilian system provides many overlaps and is dependent upon qualitative factors. For example, when a tropical storm or hurricane is traveling westward and crosses $35^{\circ} \mathrm{W}$ longitude, the continued issuance of forecasts and warnings to the general public, shipping interests, etc., becomes the responsibility of the National Hurricane Center of the National Weather Service at Miami, Florida. When a tropical storm or hurricane crosses $35^{\circ} \mathrm{W}$ longitude traveling from west to east, the National Hurricane Center ceases to issue formal public advisories, but will issue marine bulletins on any dangerous tropical cyclone in the North Atlantic, if it is of importance or constitutes a threat to shipping and other interests. These advisories are included in National Weather Service Marine Bulletins broadcast to ships over radio station NAM Nor-
folk, Virginia. Special advisories may be issued at any time. In the Atlantic Ocean, Department of Defense responsibility rests with the Naval Atlantic Meteorology and Oceanography Center in Norfolk, Virginia.

In the eastern Pacific east of longitude $140^{\circ} \mathrm{W}$, responsibility for the issuance of tropical storm and hurricane advisories and warnings for the general public, merchant shipping, and other interests rests with the National Weather Service Eastern Pacific Hurricane Center, San Francisco, California. The Department of Defense responsibility rests with the Naval Pacific Meteorology and Oceanography Center, Pearl Harbor, Hawaii. Formal advisories and warnings are issued daily and are included in the marine bulletins broadcast by radio stations KFS, NMC, and NMQ.

In the central Pacific (between the meridian and longitude $140^{\circ} \mathrm{W}$), the civilian responsibility rests with the National Weather Service Central Pacific Hurricane Center, Honolulu, Hawaii. Department of Defense responsibility rests with the Naval Pacific Meteorology and Oceanography Center in Pearl Harbor. Formal tropical storm and hurricane advisories and warnings are issued daily and are included in the marine bulletins broadcast by radio station NMO and NRV.

Tropical cyclone messages contain position of the storm, intensity, direction and speed of movement, and a description of the area of strong winds. Included is a forecast of future movement and intensity. When the storm is likely to affect any land area, details on when and where it will be felt, and data on tides, rain, floods, and maximum winds are also included. Figure 3507 provides an example of a marine advisory issued by the National Hurricane Center.

The Naval Pacific Meteorology and Oceanography Center Center-West/Joint Typhoon Warning Center (NP-MOC-W/JTWC) in Guam is responsible for all U.S. tropical storm and typhoon advisories and warnings from the 180 th meridian westward to the mainland of Asia. A secondary area of responsibility extends westward to longitude $90^{\circ} \mathrm{E}$. Whenever a tropical cyclone is observed in the western North Pacific area, serially numbered warnings, bearing an "immediate" precedence are broadcast from the NPMOC-W/JTWC at 0000, 0600, 1200, and 1800 GMT.

The responsibility for issuing gale and storm warnings for the Indian Ocean, Arabian Sea, Bay of Bengal, Western Pacific, and South Pacific rests with many countries. In general, warnings of approaching tropical cyclones will include the following information: storm type, central pressure given in hPa , wind speed observed within the storm, storm location, speed and direction of movement, the extent of the affected area, visibility, and the state of the sea, as well as any other pertinent information received. All storm warning messages commence with the international call sign "TTT."

```
NOAA/NATIONAL HURRICANE CENTER MARINE ADVISORY NUMBER 13 HURRICANE LADY 0400Z SEPTEMBER 21 20--.
HURRICANE WARNINGS ARE DISPLAYED FROM KEY LARGO TO CAPE KENNEDY. GALE WARNINGS ARE DISPLAYED FROM KEY WEST TO JACKSONVILLE AND FROM FLORIDA BAY TO CEDAR KEY.
HURRICANE CENTER LOCATED NEAR LATITUDE 25.5 NORTH LONGITUDE 78.5 WEST AT 21/0400Z. POSITION EXCELLENT ACCURATE WITHIN 10 MILES BASED ON AIR FORCE RECONNAISSANCE AND SYNOPTIC REPORTS.
```

PRESENT MOVEMENT TOWARD THE WEST NORTHWEST OR 285 DEGREES AT 10 KT. MAX SUSTAINED WINDS OF 100 KT NEAR CENTER WITH GUSTS TO 160 KT. MAX WINDS OVER INLAND AREAS 35 KT.
RAD OF 65 KT WINDS 90 NE 60 SE 80 SW 90 NW QUAD.
RAD OF 50 KT WINDS 120 NE 70 SE 90 SW 120 NW QUAD.
RAD OF 30 KT WINDS 210 NE 210 SE 210 SW 210 NW QUAD.
REPEAT CENTER LOCATED 25.5N 78.3W AT 21/0400Z.

```
12 HOUR FORECAST VALID 21/1600Z LATITUDE 26.0N LONGI-
TUDE 80.5W.
MAX WINDS OF 100 KT NEAR CENTER WITH GUSTS TO 160 KT.
MAX WINDS OVER INLAND AREAS 65 KT.
RADIUS OF 50 KT WINDS 120 NE 70 SE 90 SW 120 NW QUAD.
24 HOUR FORECAST VALID 22/0400Z LATITUDE 26.0N
LONGITUDE 83.0W.
MAX WINDS OF 75 KT NEAR CENTER WITH GUSTS TO 120 KT.
MAX WINDS OVER INLAND AREAS 45 KT.
RADIUS OF 50 KT WINDS 120 NE 120 SE 120 SW 120 NW QUAD.
STORM TIDE OF 9 TO 12 FT SOUTHEAST FLA COAST GREATER
MIAMI AREA TO THE PALM BEACHES.
```

NEXT ADVISORY AT 21/1000Z.
Figure 3507. Example of marine advisory issued by the National Hurricane Center.

These warnings are broadcast on specified radio frequency bands immediately upon receipt of the information and at specific intervals thereafter. Generally, the broadcast interval is every 6 to 8 hours, depending upon receipt of
new information.
Bulletins and forecasts are excellent guides to the present and future behavior of the tropical cyclone, and a plot should be kept of all positions.

AVOIDING TROPICAL CYCLONES

3508. Approach and Passage of a Tropical Cyclone

An early indication of the approach of a tropical cyclone is the presence of a long swell. In the absence of a tropical cyclone, the crests of swell in the deep waters of the Atlantic pass at the rate of perhaps eight per minute. Swell generated by a hurricane is about twice as long, the crests passing at the rate of perhaps four per minute. Swell may be observed several days before arrival of the storm.

When the storm center is 500 to 1,000 miles away, the barometer usually rises a little, and the skies are relatively clear. Cumulus clouds, if present at all, are few in number and their vertical development appears suppressed. The
barometer usually appears restless, pumping up and down a few hundredths of an inch.

As the tropical cyclone comes nearer, a cloud sequence begins which resembles that associated with the approach of a warm front in middle latitudes. Snow-white, fibrous "mare's tails" (cirrus) appear when the storm is about 300 to 600 miles away. Usually these seem to converge, more or less, in the direction from which the storm is approaching. This convergence is particularly apparent at about the time of sunrise and sunset.

Shortly after the cirrus appears, but sometimes before, the barometer starts a long, slow fall. At first the fall is so gradual that it only appears to alter somewhat the normal

Figure 3508. Typical hurricane cloud formations.
daily cycle (two maxima and two minima in the Tropics). As the rate of fall increases, the daily pattern is completely lost in the more or less steady fall.

The cirrus becomes more confused and tangled, and then gradually gives way to a continuous veil of cirrostratus. Below this veil, altostratus forms, and then stratocumulus. These clouds gradually become more dense, and as they do so, the weather becomes unsettled. A fine, mist-like rain begins to fall, interrupted from time to time by rain showers. The barometer has fallen perhaps a tenth of an inch.

As the fall becomes more rapid, the wind increases in gustiness, and its speed becomes greater, reaching perhaps 22 to 40 knots (Beaufort 6-8). On the horizon appears a dark wall of heavy cumulonimbus, called the bar of the storm. This is the heavy bank of clouds comprising the main mass of the cyclone. Portions of this heavy cloud become detached from time to time, and drift across the sky, accompanied by rain squalls and wind of increasing speed. Between squalls, the cirrostratus can be seen through breaks in the stratocumulus.

As the bar approaches, the barometer falls more rapidly and wind speed increases. The seas, which have been gradually mounting, become tempestuous. Squall lines, one after the other, sweep past in ever increasing number and intensity.

With the arrival of the bar, the day becomes very dark, squalls become virtually continuous, and the barometer falls precipitously, with a rapid increase in wind speed. The center may still be 100 to 200 miles away in a fully developed tropical cyclone. As the center of the storm comes closer, the ever-stronger wind shrieks through the rigging, and about the superstructure of the vessel. As the center approaches, rain falls in torrents. The wind fury
increases. The seas become mountainous. The tops of huge waves are blown off to mingle with the rain and fill the air with water. Visibility is virtually zero in blinding rain and spray. Even the largest and most seaworthy vessels become virtually unmanageable, and may sustain heavy damage. Less sturdy vessels may not survive. Navigation virtually stops as safety of the vessel becomes the only consideration. The awesome fury of this condition can only be experienced. Words are inadequate to describe it.

If the eye of the storm passes over the vessel, the winds suddenly drop to a breeze as the wall of the eye passes. The rain stops, and the skies clear sufficiently to permit the Sun or stars to shine through holes in the comparatively thin cloud cover. Visibility improves. Mountainous seas approach from all sides in complete confusion. The barometer reaches its lowest point, which may be $1 \frac{1}{2}$ or 2 inches below normal in fully developed tropical cyclones. As the wall on the opposite side of the eye arrives, the full fury of the wind strikes as suddenly as it ceased, but from the opposite direction. The sequence of conditions that occurred during approach of the storm is reversed, and passes more quickly, as the various parts of the storm are not as wide in the rear of a storm as on its forward side.

Typical cloud formations associated with a hurricane are shown in Figure 3508.

3509. Locating the Center of a Tropical Cyclone

If intelligent action is to be taken to avoid the full fury of a tropical cyclone, early determination of its location and direction of travel relative to the vessel is essential. The bulletins and forecasts are an excellent general guide, but they are not infallible, and may be sufficiently in error to induce

Figure 3509a. Approximate relationship of wind to isobars and storm center in the Northern Hemisphere.
a mariner in a critical position to alter course so as to unwittingly increase the danger to his vessel. Often it is possible, using only those observations made aboard ship, to obtain a sufficiently close approximation to enable the vessel to maneuver to the best advantage.

The presence of an exceptionally long swell is usually the first visible indication of the existence of a tropical cyclone. In deep water it approaches from the general direction of origin (the position of the storm center when the swell was generated). However, in shoaling water this is a less reliable indication because the direction is changed by refraction, the crests being more nearly parallel to the bottom contours.

When the cirrus clouds appear, their point of convergence provides an indication of the direction of the storm center. If the storm is to pass well to one side of the observer, the point of convergence shifts slowly in the direction of storm movement. If the storm center will pass near the observer, this point remains steady. When the bar becomes visible, it appears to rest upon the horizon for several hours. The darkest part of this cloud is in the
direction of the storm center. If the storm is to pass to one side, the bar appears to drift slowly along the horizon. If the storm is heading directly toward the observer, the position of the bar remains fixed. Once within the area of the dense, low clouds, one should observe their direction of movement, which is almost exactly along the isobars, with the center of the storm being 90° from the direction of cloud movement (left of direction of movement in the Northern Hemisphere, and right in the Southern Hemisphere).
The winds are probably the best guide to the direction of the center of a tropical cyclone. The circulation is cyclonic, but because of the steep pressure gradient near the center, the winds there blow with greater violence and are more nearly circular than in extratropical cyclones.

According to Buys Ballot's law, an observer whose back is to the wind has the low pressure on his left in the Northern Hemisphere, and on his right in the Southern Hemisphere. If the wind followed circular isobars exactly, the center would be exactly 90° from behind when facing away from the wind. However, the track of the wind is usually inclined somewhat toward the center, so that the angle from

Figure 3509b. Radar PPI presentation of a tropical cyclone.
dead astern varies between perhaps 90° to 135°. The inclination varies in different parts of the same storm. It is least in front of the storm, and greatest in the rear, since the actual wind is the vector sum of the pressure gradient and the motion of the storm along the track. A good average is perhaps 110° in front, and $120-135^{\circ}$ in the rear. These values apply when the storm center is still several hundred miles away. Closer to the center, the wind blows more nearly along the isobars, the inclination being reduced by one or two points at the wall of the eye. Since wind direction usually shifts temporarily during a squall, its direction at this time should not be used for determining the position of the center. The approximate relationship of wind to isobars and storm center in the Northern Hemisphere is shown in Figure 3509a.

When the center is within radar range, it will probably be visible on the scope. However, since the radar return is predominantly from the rain, results can be deceptive, and other indications should not be neglected. Figure 3509b shows a radar PPI presentation of a tropical cyclone. If the eye is out of range, the spiral bands (Figure 3509b) may indicate its direction from the vessel. Tracking the eye or upwind portion of the spiral bands enables determining the direction and speed of movement; this should be done for at least 1 hour because the eye tends to oscillate. The tracking of individual cells, which tend to move tangentially around the eye, for 15 minutes or more, either at the end of the band or between bands, will provide an indication of the wind speed in that area of the storm.

Distance from the storm center is more difficult to determine than direction. Radar is perhaps the best guide. However, the rate of fall of the barometer is some indication.

3510. Statistical Analysis of Barometric Pressure

The lowest-sea-level pressure ever recorded was 877
hPa in typhoon Ida, on September 24, 1958. The observation was taken by a reconnaissance aircraft dropsonde, some 750 miles east of Luzon, Philippines. This observation was obtained again in typhoon Nora on October 6, 1973. The lowest barometric reading of record for the United States is 892.3 hPa , obtained during a hurricane at Lower Matecumbe Key, Florida, in September 1935. In hurricane Camille in 1969, a 905 hPa pressure was measured by reconnaissance aircraft. During a 1927 typhoon, the S.S. Sapoeroea recorded a pressure of 886.6 hPa , the lowest sea-level pressure reported from a ship. Pressure has been observed to drop more than 33 hPa per hour, with a pressure gradient amounting to a change of 3.7 hPa per mile.

A method for alerting the mariner to possible tropical cyclone formation involves a statistical comparison of observed weather parameters with the climatology (30 year averaged conditions) for those parameters. Significant fluctuations away from these average conditions could mean the onset of severe weather. One such statistical method involves a comparison of mean surface pressure in the tropics with the standard deviation (s.d.) of surface pressure. Any significant deviation from the norm could indicate proximity to a tropical cyclone. Analysis shows that surface pressure can be expected to be lower than the mean minus $1 \mathrm{~s} . \mathrm{d}$. less than 16% of the time, lower than the mean minus 1.5 s.d. less than 7% of the time, and lower than the mean minus 2 s.d. less than 3% of the time. Comparison of the observed pressure with the mean will indicate how unusual the present conditions are.

As an example, assume the mean surface pressure in the South China Sea to be about 1005 mb during August with a s.d. of about 2 mb . Therefore, surface pressure can be expected to fall below 1003 mb about 16% of the time and below 1000 mb about 7% of the time. Ambient pressure any lower than that would alert the mariner to the possible onset of heavy weather. Charts showing the mean surface pressure and the s.d. of surface pressure for various global regions can be found in the U.S. Navy Marine Climatic Atlas of the World.

3511. Maneuvering to Avoid the Storm Center

The safest procedure with respect to tropical cyclones is to avoid them. If action is taken sufficiently early, this is simply a matter of setting a course that will take the vessel well to one side of the probable track of the storm, and then continuing to plot the positions of the storm center as given in the weather bulletins, revising the course as needed.

However, this is not always possible. If the ship is found to be within the storm area, the proper action to take depends in part upon its position relative to the storm center and its direction of travel. It is customary to divide the circular area of the storm into two parts.

In the Northern Hemisphere, that part to the right of the storm track (facing in the direction toward which the storm is moving) is called the dangerous semicircle. It is considered dangerous because (1) the actual wind speed is
greater than that due to the pressure gradient alone, since it is augmented by the forward motion of the storm, and (2) the direction of the wind and sea is such as to carry a vessel into the path of the storm (in the forward part of the semicircle).

The part to the left of the storm track is called the less dangerous semicircle, or navigable semicircle. In this part, the wind is decreased by the forward motion of the storm, and the wind blows vessels away from the storm track (in the forward part). Because of the greater wind speed in the dangerous semicircle, the seas are higher than in the less dangerous semicircle. In the Southern Hemisphere, the dangerous semicircle is to the left of the storm track, and the less dangerous semicircle is to the right of the storm track.

A plot of successive positions of the storm center should indicate the semicircle in which a vessel is located. However, if this is based upon weather bulletins, it may not be a reliable guide because of the lag between the observations upon which the bulletin is based and the time of reception of the bulletin, with the ever-present possibility of a change in the direction of the storm. The use of radar eliminates this lag at short range, but the return may not be a true indication of the center. Perhaps the most reliable guide is the wind. Within the cyclonic circulation, a wind shifting to the right in the northern hemisphere and to the left in the southern hemisphere indicates the vessel is probably in the dangerous semicircle. A steady wind shift opposite to this indicates the vessel is probably in the less dangerous semicircle.

However, if a vessel is underway, its own motion should be considered. If it is outrunning the storm or pulling rapidly toward one side (which is not difficult during the early stages of a storm, when its speed is low), the opposite effect occurs. This should usually be accompanied by a rise in atmospheric pressure, but if motion of the vessel is nearly along an isobar, this may not be a reliable indication. If in doubt, the safest action is usually to stop long enough to define the proper semicircle. The loss in time may be more than offset by the minimizing of the possibility of taking the wrong action, increasing the danger to the vessel. If the wind direction remains steady (for a vessel which is stopped), with increasing speed and falling barometer, the vessel is in or near the path of the storm. If it remains steady with decreasing speed and rising barometer, the vessel is near the storm track, behind the center.

The first action to take if the ship is within the cyclonic circulation is to determine the position of his vessel with respect to the storm center. While the vessel can still make considerable way through the water, a course should be selected to take it as far as possible from the center. If the vessel can move faster than the storm, it is a relatively simple matter to outrun the storm if sea room permits. But when the storm is faster, the solution is not as simple. In this case, the vessel, if ahead of the storm, will approach nearer to the center. The problem is to select a course that will produce the greatest possible minimum distance. This is
best determined by means of a relative movement plot, as shown in the following example solved on a maneuvering board.

Example: A tropical cyclone is estimated to be moving in direction 320° at 19 knots. Its center bears 170°, at an estimated distance of 200 miles from a vessel which has a maximum speed of 12 knots.

Required:

(1) The course to steer at 12 knots to produce the greatest possible minimum distance between the vessel and the storm center.
(2) The distance to the center at nearest approach.
(3) Elapsed time until nearest approach.

Solution: (Figure 3511) Consider the vessel remaining at the center of the plot throughout the solution, as on a radar PPI.
(1) To locate the position of the storm center relative to the vessel, plot point C at a distance of 200 miles (scale 20:1) in direction 170° from the center of the diagram. From the center of the diagram, draw RA, the speed vector of the storm center, in direction 320°, speed 19 knots (scale 2:1). From A draw a line tangent to the 12-knot speed circle (labeled 6 at scale 2:1) on the side opposite the storm center. From the center of the diagram, draw a perpendicular to this tangent line, locating point B. The line RB is the required speed vector for the vessel. Its direction, 011°, is the required course.
(2) The path of the storm center relative to the vessel will be along a line from C in the direction BA, if both storm and vessel maintain course and speed. The point of nearest approach will be at D, the foot of a perpendicular from the center of the diagram. This distance, at scale 20:1, is 187 miles.
(3) The length of the vector BA (14.8 knots) is the speed of the storm with respect to the vessel. Mark this on the lowest scale of the nomogram at the bottom of the diagram. The relative distance CD is 72 miles, by measurement. Mark this (scale 10:1) on the middle scale at the bottom of the diagram. Draw a line between the two points and extend it to intersect the top scale at 29.2 (292 at 10:1 scale). The elapsed time is therefore 292 minutes, or 4 hours 52 minutes.

Answers: (1) C 011°, (2) D 187 mi., (3) $4^{h} 52^{m}$.
The storm center will be dead astern at its nearest approach.

As a general rule, for a vessel in the Northern Hemisphere, safety lies in placing the wind on the starboard bow in the dangerous semicircle and on the starboard quarter in the less dangerous semicircle. If on the storm track ahead of the storm, the wind should be put about 160° on the starboard quarter until the vessel is well within the less dangerous semicircle, and the rule for that semicircle then followed. In the Southern Hemisphere the same rules

Figure 3511. Determining the course to avoid the storm center.
hold, but with respect to the port side. With a faster than average vessel, the wind can be brought a little farther aft in each case. However, as the speed of the storm increases along its track, the wind should be brought farther forward. If land interferes with what would otherwise be the best maneuver, the solution should be altered to fit the circumstances.

If the vessel is faster than the storm, it is possible to overtake it. In this case, the only action usually needed is to slow enough to let the storm pull ahead.

In all cases, one should be alert to changes in the direction of movement of the storm center, particularly in the area where the track normally curves toward the pole. If the storm maintains its direction and speed, the ship's course should be maintained as the wind shifts.

If it becomes necessary for a vessel to heave to, the characteristics of the vessel should be considered. A power vessel is concerned primarily with damage by direct action of the sea. A good general rule is to heave to with head to the sea in the dangerous semicircle, or stern to the sea in the
less dangerous semicircle. This will result in greatest amount of headway away from the storm center, and least amount of leeway toward it. If a vessel handles better with the sea astern or on the quarter, it may be placed in this position in the less dangerous semicircle or in the rear half of the dangerous semicircle, but never in the forward half of the dangerous semicircle. It has been reported that when the wind reaches hurricane speed and the seas become confused, some ships ride out the storm best if the engines are stopped, and the vessel is left to seek its own position, or lie ahull. In this way, it is said, the ship rides with the storm instead of fighting against it.

In a sailing vessel attempting to avoid a storm center, one should steer courses as near as possible to those prescribed above for power vessels. However, if it becomes necessary for such a vessel to heave to, the wind is of greater concern than the sea. A good general rule always is to heave to on whichever tack permits the shifting wind to draw aft. In the Northern Hemisphere, this is the starboard tack in the dangerous semicircle, and
the port tack in the less dangerous semicircle. In the Southern Hemisphere these are reversed.

While each storm requires its own analysis, and frequent or continual resurvey of the situation, the general rules for a steamer may be summarized as follows:

Northern Hemisphere

Right or dangerous semicircle: Bring the wind on the starboard bow (045° relative), hold course and make as much way as possible. If necessary, heave to with head to the sea.
Left or less dangerous semicircle: Bring the wind on the starboard quarter (135° relative), hold course and make as much way as possible. If necessary, heave to with stern to the sea.
On storm track, ahead of center: Bring the wind 2 points on the starboard quarter (about 160° relative), hold course and make as much way as possible. When well within the less dangerous semicircle, maneuver as indicated above.
On storm track, behind center: Avoid the center by the best practicable course, keeping in mind the tendency of tropical cyclones to curve northward and eastward.

Southern Hemisphere

Left or dangerous semicircle: Bring the wind on the port bow (315° relative), hold course and make as
much way as possible. If necessary, heave to with head to the sea.
Right or less dangerous semicircle: Bring the wind on the port quarter (225° relative), hold course and make as much way as possible. If necessary, heave to with stern to the sea.
On storm track, ahead of center: Bring the wind about 200° relative, hold course and make as much way as possible. When well within the less dangerous semicircle, maneuver as indicated above.
On storm track, behind center: Avoid the center by the best practicable course, keeping in mind the tendency of tropical cyclones to curve southward and eastward.

It is possible, particularly in temperate latitudes after the storm has recurved, that the dangerous semicircle is the left one in the Northern Hemisphere (right one in the Southern Hemisphere). This can occur if a large high lies north of the storm and causes a tightening of the pressure gradient in the region.

The Typhoon Havens Handbook for the Western Pacific and Indian Oceans is published by the Naval Oceanographic and Atmospheric Research Lab (NOARL) Monterey, California, as an aid to captains and commanding officers of ships in evaluating a typhoon situation, and to assist them in deciding whether to sortie, to evade, to remain in port, or to head for the shelter of a specific harbor.

CONSEQUENCES OF TROPICAL CYCLONES

3512. High Winds and Flooding

The high winds of a tropical cyclone inflict widespread damage when such a storm leaves the ocean and crosses land. Aids to navigation may be blown out of position or destroyed. Craft in harbors, often lifted by the storm surge, break moorings or drag anchor and are blown ashore and against obstructions. Ashore, trees are blown over, houses are damaged, power lines are blown down, etc. The greatest damage usually occurs in the dangerous semicircle a short distance from the center, where the strongest winds occur. As the storm continues on across land, its fury subsides faster than it would if it had remained over water.

Wind instruments are usually incapable of measuring the 175 to 200 knot winds of the more intense hurricanes. Even if the instrument holds up, often the supporting structure is destroyed. Doppler radar may be effective in determining wind speeds, but may also be blown away.

Wind gusts, which are usually 30 to 50 percent higher than sustained winds, add significantly to the destructiveness of the tropical cyclone. Many tropical cyclones that reach hurricane intensity develop winds of more than 90 knots sometime during their lives, but few develop
winds of more than 130 knots.
Tropical cyclones have produced some of the world's heaviest rainfalls. While average amounts range from 6 to 10 inches, totals near 100 inches over a 4-day period have been observed. A 24-hour world's record of 73.62 inches fell at Reunion Island during a tropical cyclone in 1952. Forward movement of the storm and land topography have a considerable influence on rainfall totals. Torrential rains can occur when a storm moves against a mountain range; this is common in the Philippines and Japan, where even weak tropical depressions produce considerable rainfall. A 24-hour total of 46 inches was recorded in the Philippines during a typhoon in 1911. As hurricane Camille crossed southern Virginia's Blue Ridge Mountains in August of 1969, there was nearly 30 inches of rain in about 8 hours. This caused some of the most disastrous floods in the state's history.

Flooding is an extremely destructive by-product of the tropical cyclone's torrential rains. Whether an area will be flooded depends on the physical characteristics of the drainage basin, rate and accumulation of precipitation, and river stages at the time the rains begin. When heavy rains fall over flat terrain, the countryside may lie under water for
a month or so, and while buildings, furnishings, and underground power lines may be damaged, there are usually few fatalities. In mountainous or hill country, disastrous floods develop rapidly and can cause a great loss of life.

There have been occasional reports in tropical cyclones of waves greater than 40 feet in height, and numerous reports in the 30 - to 40 -foot category. However, in tropical cyclones, strong winds rarely persist for a sufficiently long time or over a large enough area to permit enormous wave heights to develop. The direction and speed of the wind changes more rapidly in tropical cyclones than in extratropical storms. Thus, the maximum duration and fetch for any wind condition is often less in tropical cyclones than in extratropical storms, and the waves accompanying any given local wind conditions are generally not so high as those expected, with similar local wind conditions, in the high-latitude storms. In hurricane Camille, significant waves of 43 feet were recorded; an extreme wave height reached 72 feet.

Exceptional conditions may arise when waves of certain dimensions travel within the storm at a speed equal to the storm's speed, thus, in effect, extending the duration and fetch of the wave and significantly increasing its height. This occurs most often to the right of the track in the Northern Hemisphere (left of the track in the Southern Hemisphere). Another condition that may give rise to exceptional wave heights is the intersection of waves from two or more distinct directions. This may lead to a zone of confused seas in which the heights of some waves will equal the sums of each individual wave train. This process can occur in any quadrant of the storm, so it should not be assumed that the highest waves will always be encountered to the right of the storm track in the Northern Hemisphere (left of the track in the Southern Hemisphere).

When these waves move beyond the influence of the generating winds, they become known as swell. They are recognized by their smooth, undulating form, in contrast to the steep, ragged crests of wind waves. This swell, particularly that generated by the right side of the storm, can travel a thousand miles or more and may produce tides 3 or 4 feet above normal along several hundred miles of coastline. It may also produce tremendous surf over offshore reefs which normally are calm.

When a tropical cyclone moves close to a coast, wind often causes a rapid rise in water level, and along with the falling pressure may produce a storm surge. This surge is usually confined to the right of the track in the Northern Hemisphere (left of the track in the Southern Hemisphere) and to a relatively small section of the coastline. It most often occurs with the approach of the storm, but in some cases, where a surge moves into a long channel, the effect may be delayed. Occasionally, the greatest rise in water is observed on the opposite side of the track, when northerly winds funnel into a partially landlocked harbor. The surge could be 3 feet or less, or it could be 20 feet or more, depending on the combination of factors involved.

There have been reports of a "hurricane wave," described as a "wall of water," which moves rapidly toward the coastline. Authenticated cases are rare, but some of the world's greatest natural disasters have occurred as a result of this wave, which may be a rapidly rising and abnormally high storm surge. In India, such a disaster occurred in 1876, between Calcutta and Chittagong, and drowned more than 100,000 persons.

Along the coast, greater damage may be inflicted by water than by the wind. There are at least four sources of water damage. First, the unusually high seas generated by the storm winds pound against shore installations and craft in their way. Second, the continued blowing of the wind toward land causes the water level to increase perhaps 3 to 10 feet above its normal level. This storm tide, which may begin when the storm center is 500 miles or even farther from the shore, gradually increases until the storm passes. The highest storm tides are caused by a slow-moving tropical cyclone of large diameter, because both of these effects result in greater duration of wind in the same direction. The effect is greatest in a partly enclosed body of water, such as the Gulf of Mexico, where the concave coastline does not readily permit the escape of water. It is least on small islands, which present little obstruction to the flow of water. Third, the furious winds which blow around the wall of the eye create a ridge of water called a storm wave, which strikes the coast and often inflicts heavy damage. The effect is similar to that of a seismic sea wave, caused by an earthquake in the ocean floor. Both of these waves are popularly called tidal waves. Storm waves of 20 feet or more have occurred. About 3 or 4 feet of this wave might be due to the decrease in atmospheric pressure as the sea surface is drawn up into the low pressure area, and the rest to winds. Like the damage caused by wind, damage due to high seas, the storm surge and tide, and the storm wave is greatest in the dangerous semicircle, near the center. The fourth source of water damage is the heavy rain that accompanies a tropical cyclone. This causes floods that add to the damage caused in other ways.

There have been many instances of tornadoes occurring within the circulation of tropical cyclones. Most of these have been associated with tropical cyclones of the North Atlantic Ocean and have occurred in the West Indies and along the gulf and Atlantic coasts of the United States. They are usually observed in the forward semicircle or along the advancing periphery of the storm. These tornadoes are usually short-lived and less intense than those that occur in the midwestern United States.

When proceeding along a shore recently visited by a tropical cyclone, a navigator should remember that time is required to restore aids to navigation which have been blown out of position or destroyed. In some instances the aid may remain but its light, sound apparatus, or radiobeacon may be inoperative. Landmarks may have been damaged or destroyed, and in some instances the coastline and hydrography may be changed.

CHAPTER 36

WEATHER OBSERVATIONS

BASIC WEATHER OBSERVATIONS

3600. Introduction

Weather forecasts are based upon information acquired by observations made at a large number of stations. Ashore, these stations are located so as to provide adequate coverage of the area of interest. The observations at sea are made by mariners, buoys, and satellites. Since the number of observations at sea is small compared to the number ashore, marine observations are of great importance. Data recorded by designated vessels are sent by radio or satellite to national meteorological centers ashore, where they are calculated into the computer forecast models for the development of synoptic charts, which are then used to prepare local and global forecasts. The complete set of weather data gathered at sea is then sent to the appropriate meteorological services for use in the preparation of weather atlases and in marine climatological studies.

Weather observations are normally taken on the major synoptic hours ($0000,0600,1200$, and 1800 UTC), but three-hourly intermediate observations are necessary on the Great Lakes, within 200 nautical miles from the United States or Canadian coastline, or within 300 nautical miles of a named tropical cyclone. Even with satellite imagery, actual reports are needed to confirm developing patterns and provide accurate temperature, pressure, and other measurements. Forecasts can be no better than the data received.

3601. Atmospheric Pressure

The sea of air surrounding the Earth exerts a pressure of about 14.7 pounds per square inch on the surface of the Earth. This atmospheric pressure, sometimes called barometric pressure, varies from place to place, and at the same place it varies over time.

Atmospheric pressure is one of the most basic elements of a meteorological observation. When the pressure at each station is plotted on a synoptic chart, lines of equal atmospheric pressure, called isobars, indicate the areas of high and low pressure. These are useful in making weather predictions, because certain types of weather are characteristic of each type of area, and the wind patterns over large areas can be deduced from the isobars.

Atmospheric pressure is measured with a barometer. The earliest known barometer was the mercurial
barometer, invented by Evangelista Torricelli in 1643. In its simplest form, it consists of a glass tube a little more than 30 inches in length and of uniform internal diameter. With one end closed, the tube is filled with mercury, and inverted into a cup of mercury. The mercury in the tube falls until the column is just supported by the pressure of the atmosphere on the open cup, leaving a vacuum at the upper end of the tube. The height of the column indicates atmospheric pressure, with greater pressures supporting higher columns of mercury.

The aneroid barometer has a partly evacuated, thin metal cell which is compressed by atmospheric pressure. Slight changes in air pressure cause the cell to expand or contract, while a system of levers magnifies and converts this motion to a reading on a gauge or recorder.

The early mercurial barometers were calibrated to indicate the height, usually in inches or millimeters, of the column of mercury needed to balance the column of air above the point of measurement. While units of inches and millimeters are still widely used, many modern barometers are calibrated to indicate the centimeter-gram-second unit of pressure, the hectopascal ($\mathbf{h P a}$), formerly known as the millibar. The hectopascal is equal to 1,000 dynes per square centimeter. A dyne is the force required to accelerate a mass of one gram at the rate of one centimeter per second per second. $1,000 \mathrm{hPa}=100,000 \mathrm{Pascal}=14.50$ pounds per square inch $=750.0 \mathrm{~mm} \mathrm{Hg}=0.9869$ atmosphere. A reading in any of the three units of measurement can be converted to the equivalent reading in any of the other units by using Table 34 or the conversion factors. However, the pressure reading should always be reported in hPa .

3602. The Aneroid Barometer

The aneroid barometer (Figure 3602) measures the force exerted by atmospheric pressure on a partly evacuated, thin metal element called a sylphon cell (aneroid capsule). A small spring is used, either internally or externally, to partly counteract the tendency of the atmospheric pressure to crush the cell. Atmospheric pressure is indicated directly by a scale and a pointer connected to the cell by a combination of levers. The linkage provides considerable magnification of the slight motion of the cell, to permit readings to higher precision than could be obtained without it. An aneroid barometer should be mounted permanently. Prior to installation, the barometer should be carefully set.

Figure 3602. An aneroid barometer.
U.S. ships of the Voluntary Observation Ship (VOS) program are set to sea level pressure. Other vessels may be set to station pressure and corrected for height as necessary. An adjustment screw is provided for this purpose. The error of the instrument is determined by comparison with a mercurial barometer, Digiquartz barometer, or a standard precision aneroid barometer. If a qualified meteorologist is not available to make this adjustment, adjust by first removing only one half the apparent error. Then tap the case gently to assist the linkage to adjust itself, and repeat the adjustment. If the remaining error is not more than half a hPa (0.015 inch), no attempt should be made to remove it by further adjustment. Instead, a correction should be applied to the readings. The accuracy of this correction should be checked from time to time.

3603. The Barograph

The barograph (Figure 3603) is a recording barometer. In principle it is the same as a non-recording aneroid barometer except that the pointer carries a pen at its outer end, and a slowly rotating cylinder around which a chart is wrapped replaces the scale. A clock mechanism inside the cylinder rotates it so that a continuous line is traced on the chart to indicate the pressure at any time. The barograph is usually mounted on a shelf or desk in a room open to the atmosphere, in a location which minimizes the
effect of the ship's vibration. Shock absorbing material such as sponge rubber may be placed under the instrument to minimize vibration. The pen should be checked and the inkwell filled each time the chart is changed.

A marine microbarograph is a precision barograph using greater magnification and an expanded chart. It is designed to maintain its precision through the conditions encountered aboard ship. Two sylphon cells are used, one mounted over the other in tandem. Minor fluctuations due to shocks or vibrations are eliminated by damping. Since oil filled dashpots are used for this purpose, the instrument should never be inverted. The dashpots of the marine microbarograph should be kept filled with dashpot oil to within three-eighths inch of the top. The marine microbarograph is fitted with a valve so it can be vented to the outside for more accurate pressure readings.

Ship motions are compensated by damping and spring loading which make it possible for the microbarograph to be tilted up to 22° without varying more than 0.3 hPa from the true reading. Microbarographs have been almost entirely replaced by standard barographs.

Both instruments require checking from time to time to insure correct indication of pressure. The position of the pen is adjusted by a small knob provided for this purpose. The adjustment should be made in stages, eliminating half the apparent error, tapping the case to insure linkage adjustment to the new setting, and then repeating the process.

Figure 3603. A marine barograph

3604. Adjusting Barometer Readings

Atmospheric pressure as indicated by a barometer or barograph may be subject to several errors.

Instrument error: Inaccuracy due to imperfection or incorrect adjustment can be determined by comparison with a standard precision instrument. The National Weather Service provides a comparison service. In major U.S. ports, a Port Meteorological Officer (PMO) carries a portable precision aneroid barometer or a digital barometer for barometer comparisons on board ships which participate in the VOS program. The portable barometer is compared with station barometers before and after a ship visit. If a barometer is taken to a National Weather Service shore station, the comparison can be made there. The correct sea level pressure can also be obtained by telephone. The shipboard barometer should be corrected for height, as explained below, before comparison with this value. If there is reason to believe that the barometer is in error, it should be compared with a standard, and if an error is found, the barometer should be adjusted to the correct reading, or a correction applied to all readings.

Height error: The atmospheric pressure reading at the height of the barometer is called the station pressure and is subject to a height correction in order to correct it to sea level. Isobars adequately reflect wind conditions and geographic distribution of pressure only when they are drawn for pressure at constant height (or the varying height at which a constant pressure exists). On synoptic charts it is
customary to show the equivalent pressure at sea level, called sea level pressure. This is found by applying a correction to station pressure. The correction depends upon the height of the barometer and the average temperature of the air between this height and the surface. The outside air temperature taken aboard ship is sufficiently accurate for this purpose. This is an important correction that should be applied to all readings of any type of barometer. See Table 31 for this correction. Of special note on the Great Lakes, each Lake is at a different height above sea level, so an additional correction is needed.

Temperature error: Barometers are calibrated at a standard temperature of 32° F.Modern aneroid barometers compensate for temperature changes by using different metals having unequal coefficients of linear expansion.

3605. Temperature

Temperature is a measure of heat energy, measured in degrees. Several different temperature scales are in use.

On the Fahrenheit (F) scale, pure water freezes at 32° and boils at 212°.

On the Celsius (C) scale, commonly used with the metric system, the freezing point of pure water is 0° and the boiling point is 100°.This scale has been known by various names in different countries. In the United States it was formerly called the centigrade scale. The Ninth General Conference of Weights and Measures, held in France in 1948, adopted the name Celsius to be consistent with the
naming of other temperature scales after their inventors, and to avoid the use of different names in different countries. On the original Celsius scale, invented in 1742 by a Swedish astronomer named Anders Celsius, numbering was the reverse of the modern scale, 0° representing the boiling point of water, and 100° its freezing point.

Temperature of one scale can be easily converted to another because of the linear mathematical relationship between them. Note that the sequence of calculation is slightly different; algebraic rules must be followed.

$$
\begin{array}{ll}
\mathrm{C}=\frac{5}{9}(\mathrm{~F}-32), \text { or } & \mathrm{C}=\frac{\mathrm{F}-32}{1.8} \\
\mathrm{~F}=\frac{9}{5} \mathrm{C}+32, \text { or } & \mathrm{F}=1.8 \mathrm{C}+32 \\
\mathrm{~K}=\mathrm{C}+273.15 \\
\mathrm{R}=\mathrm{F}+459.69
\end{array}
$$

A temperature of -40° is the same by either the Celsius or Fahrenheit scale. Similar formulas can be made for conversion of other temperature scale readings. The Conversion Table for Thermometer Scales (Table 29) gives the equivalent values of Fahrenheit, Celsius, and Kelvin temperatures.

The intensity or degree of heat (temperature) should not be confused with the amount of heat. If the temperature of air or some other substance is to be increased by a given number of degrees, the amount of heat that must be added depends on the mass of the substance. Also, because of differences in their specific heat, equal amounts of different substances require the addition of unequal amounts of heat to raise their temperatures by equal amounts. The units used for measurement of heat are the British thermal unit (BTU, the amount of heat needed to raise the temperature of 1 pound of water 1° Fahrenheit), and the calorie (the amount of heat needed to raise the temperature of 1 gram of water 1° Celsius).

3606. Temperature Measurement

Temperature is measured with a thermometer. Most thermometers are based upon the principle that materials expand with an increase of temperature, and contract as temperature decreases. In its most common form, a thermometer consists of a bulb filled with mercury or a glycol based fluid, which is connected to a tube of very small cross sectional area. The fluid only partly fills the tube. In the remainder is a vacuum. Air is driven out by boiling the fluid, and the top of the tube is then sealed. As the fluid expands or contracts with changing temperature, the length of the fluid column in the tube changes.

Sea surface temperature observations are used in the forecasting of fog, and furnish important information about the development and movement of tropical cyclones. Commercial fishermen are interested in the sea surface
temperature as an aid in locating certain species of fish. There are several methods of determining seawater temperature. These include engine room intake readings, condenser intake readings, thermistor probes attached to the hull, and readings from buckets recovered from over the side. Although the condenser intake method is not a true measure of surface water temperature, the error is generally small.

If the surface temperature is desired, a sample should be obtained by bucket, preferably made of canvas, from a forward position well clear of any discharge lines. The sample should be taken immediately to a place where it is sheltered from wind and Sun. The water should then be stirred with the thermometer, keeping the bulb submerged, until a constant reading is obtained.

A considerable variation in sea surface temperature can be experienced in a relatively short distance of travel. This is especially true when crossing major ocean currents such as the Gulf Stream and the Kuroshio Current. Significant variations also occur where large quantities of fresh water are discharged from rivers. A clever navigator will note these changes as an indication of when to allow for set and drift in dead reckoning.

3607. Humidity

Humidity is a measure of the atmosphere's water vapor content. Relative humidity is the ratio, stated as a percentage, of the pressure of water vapor present in the atmosphere to the saturation vapor pressure at the same temperature.

As air temperature decreases, the relative humidity increases. At some point, saturation takes place, and any further cooling results in condensation of some of the moisture. The temperature at which this occurs is called the dew point, and the moisture deposited upon objects is called dew if it forms in the liquid state, or frost if it forms as ice crystals.

The same process causes moisture to form on the outside of a container of cold liquid, the liquid cooling the air in the immediate vicinity of the container until it reaches the dew point. When moisture is deposited on man-made objects, it is sometimes called sweat. It occurs whenever the temperature of a surface is lower than the dew point of air in contact with it. It is of particular concern to the mariner because of its effect upon instruments, and possible damage to ship or cargo. Lenses of optical instruments may sweat, usually with such small droplets that the surface has a "frosted" appearance. When this occurs, the instrument is said to "fog" or "fog up," and is useless until the moisture is removed. Damage is often caused by corrosion or direct water damage when pipes sweat and drip, or when the inside of the shell plates of a vessel sweat. Cargo may sweat if it is cooler than the dew point of the air.

Clouds and fog form from condensation of water on minute particles of dust, salt, and other material in the air.

Each particle forms a nucleus around which a droplet of water forms. If air is completely free from solid particles on which water vapor may condense, the extra moisture remains vaporized, and the air is said to be supersaturated.

Relative humidity and dew point are measured with a hygrometer. The most common type, called a psychrometer, consists of two thermometers mounted together on a single strip of material. One of the thermometers is mounted a little lower than the other, and has its bulb covered with muslin. When the muslin covering is thoroughly moistened and the thermometer well ventilated, evaporation cools the bulb of the thermometer, causing it to indicate a lower reading than the other. A sling psychrometer is ventilated by whirling the thermometers. The difference between the dry-bulb and wet-bulb temperatures is used to enter psychrometric tables (Table 35 and Table 36) to find the relative humidity and dew point. If the wet-bulb temperature is above freezing, reasonably accurate results can be obtained by a psychrometer consisting of dry- and wetbulb thermometers mounted so that air can circulate freely around them without special ventilation. This type of installation is common aboard ship.

Example: The dry-bulb temperature is $65^{\circ} \mathrm{F}$, and the wet-bulb temperature is $61^{\circ} \mathrm{F}$.

Required: (1) Relative humidity, (2) dew point.
Solution: The difference between readings is 4°. Entering Table 35 with this value, and a dry-bulb temperature of 65°, the relative humidity is found to be 80 percent. From Table 36 the dew point is 58°.

Answers: (1) Relative humidity 80 percent, (2) dew point 58°.

Also in use aboard many ships is the electric psychrometer. This is a hand held, battery operated instrument with two mercury thermometers for obtaining dry- and wet-bulb temperature readings. It consists of a plastic housing that holds the thermometers, batteries, motor, and fan.

3608. Wind Measurement

Wind measurement consists of determination of the direction and speed of the wind. Direction is measured by a wind vane, and speed by an anemometer. Several types of wind speed and direction sensors are available, using vanes to indicate wind direction and rotating cups or propellers for speed sensing. Many ships have reliable wind instruments installed, and inexpensive wind instruments are available for even the smallest yacht. If no anemometer is available, wind speed can be estimated by its effect upon the sea and nearby objects. The direction can be computed accurately, even on a fast moving vessel, by maneuvering board or Table 30 .

3609. True and Apparent Wind

An observer aboard a vessel proceeding through still air experiences an apparent wind which is from dead ahead and has an apparent speed equal to the speed of the vessel. Thus, if the actual or true wind is zero and the speed of the vessel is 10 knots, the apparent wind is from dead ahead at 10 knots. If the true wind is from dead ahead at 15 knots, and the speed of the vessel is 10 knots, the apparent wind is $15+10=25$ knots from dead ahead. If the vessel reverses course, the apparent wind is $15-10=$ 5 knots, from dead astern.

The apparent wind is the vector sum of the true wind and the reciprocal of the vessel's course and speed vector. Since wind vanes and anemometers measure apparent wind, the usual problem aboard a vessel equipped with an anemometer is to convert apparent wind to true wind. There are several ways of doing this. Perhaps the simplest is by the graphical solution illustrated in the following example:

Example 1: A ship is proceeding on course 240° at a speed of 18 knots. The apparent wind is from 040° relative at 30 knots.

Required: The direction and speed of the true wind.
Solution: (Figure 3609) First starting from the center of a maneuvering board, plot the ship's vector "er," at 240°, length 18 knots (using the 3-1 scale). Next plot the relative wind's vector from r, in a direction of 100° (the reciprocal of 280°) length 30 knots. The true wind is from the center to the end of this vector or line "ew."

Alternatively, you can plot the ship's vector from the center, then plot the relative wind's vector toward the center, and see the true wind's vector from the end of this line to the end of the ship's vector. Use parallel rulers to transfer the wind vector to the center for an accurate reading.

Answer: True wind is from 315° at 20 knots.
On a moving ship, the direction of the true wind is always on the same side and aft of the direction of the apparent wind. The faster the ship moves, the more the apparent wind draws ahead of the true wind.

A solution can also be made in the following manner without plotting: On a maneuvering board, label the circles 5, $10,15,20$, etc., from the center, and draw vertical lines tangent to these circles. Cut out the 5:1 scale and discard that part having graduations greater than the maximum speed of the vessel. Keep this sheet for all solutions. (For durability, the two parts can be mounted on cardboard or other suitable material.) To find true wind, spot in point 1 by eye. Place the zero of the $5: 1$ scale on this point and align the scale (inverted) using the vertical lines. Locate point 2 at the speed of the vessel as indicated on the $5: 1$ scale. It is always vertically below point 1 . Read the relative direction and the speed of the true wind, using eye interpolation if needed.

Figure 3609. Finding true wind by Maneuvering Board.

A tabular solution can be made using Table 30, Direction and Speed of True Wind in Units of Ship's Speed. The entering values for this table are the apparent wind speed in units of ship's speed, and the difference between the heading and the apparent wind direction. The values taken from the table are the relative direction (right or left) of the true wind, and the speed of the true wind in units of ship's speed. If a vessel is proceeding at 12 knots, 6 knots constitutes one-half (0.5) unit, 12 knots one unit, 18 knots 1.5 units, 24 knots two units, etc.

Example 2: A ship is proceeding on course 270° at a speed of 10 knots. The apparent wind is from 10° off the port bow, speed 30 knots.

Required: The relative direction, true direction, and speed of the true wind by table.

Solution: The apparent wind speed is

$$
\frac{30}{10}=3.0 \text { ships speed units }
$$

Enter Table 30 with 3.0 and 10° and find the relative direction of the true wind to be 15° off the port bow $\left(345^{\circ}\right.$ relative), and the speed to be 2.02 times the ship's speed, or 20 knots, approximately. The true direction is $345^{\circ}+270^{\circ}(-360)$ $=255^{\circ}$.

Answers: True wind from 345° relative $=255^{\circ}$ true, at 20 knots.

One can also find apparent wind from the true wind, course or speed required to produce an apparent wind from a given direction or speed, or course and speed to produce an apparent wind of a given speed from a given direction.

Such problems often arise in aircraft carrier operations and in some rescue situations. See Pub. 1310, The Radar Navigation and Maneuvering Board Manual, for more detailed information.

When wind speed and direction are determined by the appearance of the sea, the result is true speed and direction.

Waves move in the same direction as the generating wind, and are not deflected by Earth's rotation. If a wind vane is used, the direction of the apparent wind thus determined can be used with the speed of the true wind to determine the direction of the true wind by vector diagram.

WIND AND WAVES

3610. Effects of Wind on the Sea

There is a direct relationship between the speed of the wind and the state of the sea. This is useful in predicting the sea conditions to be anticipated when future wind speed forecasts are available. It can also be used to estimate the speed of the wind, which may be necessary when an anemometer is not available.

Wind speeds are usually grouped in accordance with the Beaufort Scale of Wind Force, devised in 1806 by English Admiral Sir Francis Beaufort (1774-1857). As adopted in 1838, Beaufort numbers ranged from 0 (calm) to 12 (hurricane). The Beaufort wind scale and sea state photographs at the end of this chapter can be used to estimate wind speed. These pictures (courtesy of the Meteorological Service of Canada) represent the results of a project carried out on board the Canadian Ocean Weather Ships VANCOUVER and QUADRA at Ocean Weather Station PAPA (50° N., $145^{\circ} \mathrm{W}$), between April 1976 and May 1981. The aim of the project was to collect color photographs of the sea surface as it appears under the influence of the various ranges of wind speed, as defined by The Beaufort Scale. The photographs represent as closely as possible steady state sea conditions over many hours for each Beaufort wind force. They were taken from heights ranging from 12-17 meters above the sea surface; anemometer height was 28 meters.

3611. Estimating the Wind at Sea

When there is not a functioning anemometer, observers on board ships will usually determine the speed of the wind by estimating Beaufort force. Through experience, ships' officers have developed various methods of estimating this force. The effect of the wind on the observer himself, the ship's rigging, flags, etc., is used as a guide, but estimates based on these indications give the relative wind which must be corrected for the motion of the ship before an estimate of the true wind speed can be obtained.

The most common method involves the appearance of the sea surface. The state of the sea disturbance, i.e. the dimensions of the waves, the presence of white caps, foam, or spray, depends principally on three factors:

1. The wind speed. The higher the speed of the wind, the greater is the sea disturbance.
2. The wind's duration. At any point on the sea, the
disturbance will increase the longer the wind blows at a given speed, until a maximum state of disturbance is reached.
3. The fetch. This is the length of the stretch of water over which the wind acts on the sea surface from the same direction.

For a given wind speed and duration, the longer the fetch, the greater is the sea disturbance. If the fetch is short, such as a few miles, the disturbance will be relatively small no matter how great the wind speed is or how long it has been blowing.

Swell waves are not considered when estimating wind speed and direction. Only those waves raised by the wind blowing at the time are of any significance.

A wind of a given Beaufort force will, therefore, produce a characteristic appearance of the sea surface provided that it has been blowing for a sufficient length of time, and over a sufficiently long fetch.

In practice, the mariner observes the sea surface, noting the size of the waves, the white caps, spindrift, etc., and then finds the criterion which best describes the sea surface as observed. This criterion is associated with a Beaufort number, for which a corresponding mean wind speed and range in knots are given. Since meteorological reports require that wind speeds be reported in knots, the mean speed for the Beaufort number may be reported, or an experienced observer may judge that the sea disturbance is such that a higher or lower speed within the range for the force is more accurate.

This method should be used with caution. The sea conditions described for each Beaufort force are "steady-state" conditions; i.e. the conditions which result when the wind has been blowing for a relatively long time, and over a great stretch of water. However, at any particular time at sea the duration of the wind or the fetch, or both, may not have been great enough to produce these "steady-state" conditions. When a high wind springs up suddenly after previously calm or near calm conditions, it will require some hours, depending on the strength of the wind, to generate waves of maximum height. The height of the waves increases rapidly in the first few hours after the commencement of the blow, but increases at a much slower rate later on.

At the beginning of the fetch (such as at a coastline when the wind is offshore) after the wind has been blowing for a long time, the waves are quite small near shore, and in-

Beaufort force of wind.	Theoretical maximum wave height ft) unlimited duration and fetch.	Duration of winds (hours), with unlimited fetch, to produce percent of maxi- mum wave height indicated.	Fetch (nautical miles), with unlimited duration of blow, to produce percent of maximum wave height indicated.			
		50%	75%	90%	50%	75%

Table 3611. Duration of winds and length of fetches required for various wind forces.
crease in height rapidly over the first 50 miles or so of the fetch. Farther offshore, the rate of increase in height with distance slows down, and after 500 miles or so from the beginning of the fetch, there is little or no increase in height.

Table 3611 illustrates the duration of winds and the length of fetches required for various wind forces to build seas to 50 percent, 75 percent, and 90 percent of their theoretical maximum heights.

The theoretical maximum wave heights represent the average heights of the highest third of the waves, as these waves are most significant.

It is clear that winds of force 5 or less can build seas to 90 percent of their maximum height in less than 12 hours, provided the fetch is long enough. Higher winds require a much greater time, force 11 winds requiring 32 hours to build waves to 90 percent of their maximum height. The times given in Table 3611 represent those required to build waves starting from initially calm sea conditions. If waves are already present at the onset of the blow, the times would be somewhat less, depending on the initial wave heights and their direction relative to the direction of the wind which has sprung up.

The first consideration when using the sea criterion to estimate wind speed, therefore, is to decide whether the wind has been blowing long enough from the same direction to produce a steady state sea condition. If not, then it is possible that the wind speed may be underestimated.

Experience has shown that the appearance of whitecaps, foam, spindrift, etc. reaches a steady state condition before the height of the waves attain their maximum value. It is a safe assumption that the appearance of the sea (such as white-caps, etc.) will reach a steady state in the time required to build the waves to $50-75$ percent of their maximum height. Thus, from Table 3611 it is seen that a force 5 wind could require 8 hours at most to produce a characteristic appearance of the sea surface.

A second consideration when using the sea criteria is the amount of the fetch over which the wind has been blowing to
produce the present state of the sea. On the open sea, unless the mariner has the latest synoptic weather map available, the length of the fetch will not be known. It will be seen from Table 3611 though, that only relatively short fetches are required for the lower wind forces to generate their characteristic seas. On the open sea, the fetches associated with most storms and other weather systems are usually long enough so that even winds up to force 9 can build seas up to 90 percent or more of their maximum height, providing the wind blows from the same direction long enough.

When navigating close to a coast or in restricted waters, however, it may be necessary to make allowances for the shorter stretches of water over which the wind blows. For example, referring to Table 3611 , if the ship is 22 miles from a coast, and an offshore wind with an actual speed of force 7 is blowing, the waves at the ship will never attain more than 50 percent of their maximum height for this speed no matter how long the wind blows. Hence, if the sea criteria were used under these conditions without consideration of the short fetch, the wind speed would be underestimated. With an offshore wind, the sea criteria may be used with confidence if the distance to the coast is greater than the values given in the extreme right-hand column of Table 3611, provided that the wind has been blowing offshore for a sufficient length of time.

3612. Wind Speed Calculating Factors

Tidal and Other Currents: A wind blowing against the tide or a strong non-tidal current causes higher, steeper waves having a shorter period than normal, which may result in an overestimate of the wind speed if the estimation is made by wave height alone. On the other hand, a wind blowing in the same direction as a tide or strong current causes less sea disturbance than normal, with longer period waves, which may result in underestimating the wind speed.

Shallow Water: Waves running from deep water into
shallow water increase in steepness, hence their tendency to break. Therefore, with an onshore wind there will naturally be more whitecaps over shallow waters than over the deeper water farther offshore. It is only over relatively deep water that the sea criteria can be used with confidence.

Swell: Swell is the name given to waves, generally of considerable length, which were raised in some distant area and which have moved into the vicinity of the ship, or to waves raised nearby that continue after the wind has abated or changed direction. The direction of swell waves is usually different from the direction of the wind and the sea waves. Swell waves are not considered when estimating wind speed and direction. Only those waves raised by the wind blowing at the time are used for estimation. The winddriven waves show a greater tendency to break when superimposed on the crests of swell, and hence, more whitecaps may be formed than if the swell were absent. Under these conditions, the use of the sea criteria may result in a slight overestimate of the wind speed.

Precipitation: Heavy rain has a damping or smoothing effect on the sea surface that is mechanical in character. Since the sea surface will therefore appear less disturbed than would be the case without the rain, the wind speed may be underestimated unless the smoothing effect is taken into account.

Ice: Even small concentrations of ice floating on the sea surface will dampen waves considerably, and concentrations averaging greater than about seven-tenths will eliminate waves altogether. Young sea ice, which in the early stages of formation has a thick soupy consistency and later takes on a rubbery appearance, is very effective in
dampening waves. Consequently, the sea criteria cannot be used with any degree of confidence when sea ice is present. In higher latitudes, the presence of an ice field some distance to windward of the ship may be suspected if, when the ship is not close to any coast, the wind is relatively strong but the seas abnormally underdeveloped. The edge of the ice field acts like a coastline, and the short fetch between the ice and the ship is not sufficient for the wind to fully develop the seas.

Wind Shifts: Following a rapid change in the direction of the wind, as occurs at the passage of a cold front, the new wind will flatten out to a great extent the waves which were present before the wind shift. This happens because the direction of the wind after the shift may differ by 90° or more from the direction of the waves, which does not change. Hence, the wind may oppose the progress of the waves and quickly dampen them out. At the same time, the new wind begins to generate its own waves on top of this dissipating swell, and it is not long before the cross pattern of waves gives the sea a "choppy" or confused appearance. It is during the first few hours following the wind shift that the appearance of the sea surface may not provide a reliable indication of wind speed. The wind is normally stronger than the sea would indicate, as old waves are being flattened out, and the new wave pattern develops.

Night Observations: On a dark night, when it is impossible to see the sea clearly, the observer may estimate the apparent wind from its effect on the ship's rigging, flags, etc., or simply the "feel" of the wind.

CLOUDS

3613. Cloud Formation

Clouds consist of innumerable tiny droplets of water, or ice crystals, formed by condensation of water vapor around microscopic particles in the air. Fog is a cloud in contact with the surface of the Earth.

The shape, size, height, thickness, and nature of a cloud all depend upon the conditions under which it is formed. Therefore, clouds are indicators of various processes occurring in the atmosphere. The ability to recognize different
types, and a knowledge of the conditions associated with them, are useful in predicting future weather.

Although the variety of clouds is virtually endless, they may be classified by type. Clouds are grouped into three families according to common characteristics and the altitude of their bases. The families are High, Middle, and Low clouds. As shown in Table 3613, the altitudes of the cloud bases vary depending on the latitude in which they are located. Large temperature changes cause most of this latitudinal variation.

Cloud Group	Tropical Regions	Temperate Regions	Polar Regions
High	6,000 to $18,000 \mathrm{~m}$	5,000 to $13,000 \mathrm{~m}$	3,000 to $8,000 \mathrm{~m}$ $(20,000$ to $60,000 \mathrm{ft})$
$(16,000$ to $43,000 \mathrm{ft})$	$(10,000$ to $26,000 \mathrm{ft})$		
Middle	2,000 to $8,000 \mathrm{~m}$	2,000 to $7,000 \mathrm{~m}$	2,000 to $4,000 \mathrm{~m}$
	$(6,500$ to $26,000 \mathrm{ft})$	$(6,500$ to $23,000 \mathrm{ft})$	$(6,500$ to $13,000 \mathrm{ft})$
Low	surface to $2,000 \mathrm{~m}$	surface to $2,000 \mathrm{~m}$	surface to $2,000 \mathrm{~m}$
	(0 to $6,500 \mathrm{ft})$	$(0$ to $6,500 \mathrm{ft})$	$(0$ to $6,500 \mathrm{ft})$

Table 3613. Approximate height of cloud bases above the surface for various locations

High clouds are composed principally of ice crystals. As shown in Table 3613, the air temperatures in the tropic regions that are low enough to freeze all liquid water usually occur above 6000 meters, but in the polar regions these temperatures are found at altitudes as low as 3000 meters. Middle clouds are composed largely of water droplets, although the higher ones have a tendency toward ice particles. Low clouds are composed entirely of water droplets. Clouds types cannot be sufficiently distinguished just by their base altitudes, so within these 3 families are 10 principal cloud types. The names of these are composed of various combinations and forms of the following basic words, all from Latin:

Cirrus, meaning "curl, lock, or tuft of hair."
Cumulus, meaning "heap, a pile, an accumulation."
Stratus, meaning "spread out, flatten, cover with a layer."
Alto, meaning "high, upper air."
Nimbus, meaning "rainy cloud."
Individual cloud types recognize certain characteristics, variations, or combinations of these. The 10 principal cloud types and their commonly used symbols are:

3614. High Clouds

Cirrus (Ci) (Figure 3614a through Figure 3614f) are detached high clouds of delicate and fibrous appearance, without shading, generally white in color, often of a silky appearance. Their fibrous and feathery appearance is caused by their composition of ice crystals. Cirrus appear in varied forms, such as isolated tufts; long, thin lines across the sky; branching, featherlike plumes; curved wisps which may end in tufts, and other shapes. These clouds may be arranged in parallel bands which cross the sky in great circles, and appear to converge toward a point on the horizon. This may indicate the general direction of a low pressure area. Cirrus may be brilliantly colored at sunrise and sunset. Because of their height, they become illuminated before other clouds in the morning, and remain lighted after others at sunset. Cirrus are generally associated with fair weather, but if they are followed by lower and thicker clouds, they are often the forerunner of rain or snow.

Figure 3614a. Dense Cirrus in patches or sheaves, not increasing, or Cirrus like cumuliform tufts.

Figure 3614b. Cirrus filaments, strands, hooks, not expanding.

Figure 3614c. Cirrus filaments, strands, hooks, not expanding.

Figure 3614d. Dense Cirrus in patches or sheaves, not increasing, or Cirrus like cumuliform tufts.

Figure 3614e. Dense Cirrus, often the anvil remaining from Cumulonimbus.

Figure 3614f. Dense Cirrus, often the anvil remaining from Cumulonimbus.

Cirrostratus (Cs) (Figure 3614g through Figure 3614p) are thin, whitish, high clouds sometimes covering the sky completely and giving it a milky appearance and at other times presenting, more or less distinctly, a formation like a tangled web. The thin veil is not sufficiently dense to blur the outline of the Sun or Moon. However, the ice crystals of which the cloud is composed refract the light passing through to form halos with the Sun or Moon at the center. As cirrus begins to thicken, it will change into cirrostratus. In this form it is popularly known as "mares' tails." If it continues to thicken and lower, with the ice crystals melting to form water droplets, the cloud formation is known as altostratus. When this occurs, rain may normally be expected within 24 hours. The more brush-like the cirrus when the sky appears, the stronger the wind at the level of the cloud.

Figure 3614 g. Cirrus hooks or filaments, increasing and becoming denser.

Figure 3614i. Cirrus bands and/or Cirrostratus, increasing, growing denser, veil below 45 .

Figure 3614h. Cirrus hooks or filaments, increasing and becoming denser.

Figure 3614j. Cirrus bands and/or Cirrostratus, increasing, growing denser, veil below 45.

Figure 3614k. Cirrus bands and/or Cirrostratus, increasing, growing denser, veil below 45.

Figure 3614l. Cirrus bands and/or Cirrostratus, increasing, growing denser, veil below 45 .

Figure 3614 m. Cirrostratus covering the whole sky.

Figure 3614n. Cirrostratus covering the whole sky.

Figure 36140. Cirrostratus, not increasing, not covering the whole sky.

Figure 3614p. Cirrostratus, not increasing, not covering the whole sky.

Cirrocumulus (Cc) (Figure 3614q and Figure 3614r) are high clouds composed of small white flakes or scales, or of very small globular masses, usually without shadows and arranged in groups of lines, or more often in ripples resembling sand on the seashore. One form of cirrocumulus is popularly known as "mackerel sky" because the pattern resembles the scales on the back of a mackerel. Like cirrus, cirrocumulus are composed of ice crystals and are generally associated with fair weather, but may precede a storm if they thicken and lower. They may turn gray and appear hard before thickening.

Figure 3614q. Cirrocumulus alone, and/or Cirrus and Cirrostratus.

Figure 3614r. Cirrocumulus alone, and/or Cirrus and Cirrostratus.

3615. Middle Level Clouds

Altostratus (As) (Figure 3615a through Figure 3615d) are middle level clouds having the appearance of a grayish or bluish, fibrous veil or sheet. The Sun or Moon, when seen through these clouds, appears as if it were shining through ground glass with a corona around it. Halos are not formed. If these clouds thicken and lower, or if low, ragged "scud" or rain clouds (nimbostratus) form below them, continuous rain or snow may be expected within a few hours.

Figure 3615a. Altostratus, semitransparent, Sun or Moon dimly visible.

Figure 3615b. Altostratus, semitransparent, Sun or Moon dimly visible.

Figure 3615c. Altostratus, dense enough to hide Sun or Moon, or nimbostratus.

Figure 3615d. Altostratus, dense enough to hide Sun or Moon, or nimbostratus

Altocumulus (Ac) (Figure 3615e through Figure $3615 r$) are middle level clouds consisting of a layer of large, ball-like masses that tend to merge together. The balls or patches may vary in thickness and color from dazzling white to dark gray, but they are more or less regularly arranged. They may appear as distinct patches similar to cirrocumulus, but can be distinguished by having individual patches which are generally larger, showing distinct shadows in some places. They are often mistaken for stratocumulus. If altocumulus thickens and lowers, it may produce thundery weather and showers,
but it does not bring prolonged bad weather. Sometimes the patches merge to form a series of big rolls resembling ocean waves, with streaks of blue sky between. Because of perspective, the rolls appear to run together near the horizon. These regular parallel bands differ from cirrocumulus because they occur in larger masses with shadows. Altocumulus move in the direction of the short dimension of the rolls, like ocean waves. Sometimes altocumulus appear briefly in the form shown in Figure 3615 o and Figure 3615p, sometimes before a thunderstorm. They are generally arranged in a line with a flat horizontal base, giving the impression of turrets on a castle. The turreted tops may look like miniature cumulus and possess considerable depth and great length. These clouds usually indicate a change to chaotic, thundery skies.

Figure 3615e. Altocumulus, semitransparent, cloud elements change slowly, one level.

Figure 3615f. Altocumulus, semitransparent, cloud elements change slowly, one level.

Figure 3615 g . Altocumulus patches, semitransparent, multilevel, cloud elements changing, also Altocumulus Lenticular

Figure 3615h. Altocumulus patches, semitransparent, multilevel, cloud elements changing, also Altocumulus Lenticular

Figure 3615i. Altocumulus, one or more bands or layers, expanding, thickening.

Figure 3615j. Altocumulus, one or more bands or layers, expanding, thickening.

Figure 3615k. Altocumulus from the spreading of Cumulus or Cumulonimbus.

Figure 3615l. Altocumulus from the spreading of Cumulus or Cumulonimbus.

Figure 3615 m. Altocumulus, one or more layers, mainly opaque, not expanding, or Altocumulus with Altostratus or Nimbostratus.

Figure 3615n. Altocumulus, one or more layers, mainly opaque, not expanding, or Altocumulus with Altostratus or Nimbostratus.

Figure 3615o. Altocumulus with tower or turret like sproutings.

Figure 3615p. Altocumulus with tower or turret-like sproutings.

Figure 3615q. Altocumulus of a chaotic sky, usually with heavy broken cloud sheets at different levels.

Figure 3615r. Altocumulus of a chaotic sky, usually with heavy broken cloud sheets at different levels.

3616. Low Clouds

Cumulus (Cu) (Figure 3616a through Figure 3616d) are dense clouds with vertical development formed by rising air which is cooled as it reaches greater heights. They have a horizontal base and dome-shaped upper surfaces, with protuberances extending above the dome. Cumulus appear in patches, never covering the entire sky. When vertical development is not great, the clouds resemble tufts of cotton or wool, being popularly called "woolpack" clouds. The horizontal bases of such clouds may not be noticeable. These are called "fair weather" cumulus because they commonly accompany stable air and good weather. However, they may merge with altocumulus, or may grow to cumulonimbus before a thunderstorm. Since cumulus are formed by updrafts, they are accompanied by turbulence, causing "bumpiness" in the air. The extent of turbulence is proportional to the vertical extent of the clouds. Cumulus are marked by strong contrasts of light and dark.

Figure 3616 . Cumulus with very little vertical extent.

Figure 3616b. Cumulus with very little vertical extent.

Figure 3616c. Cumulus with moderate or greater vertical extent.

Figure 3616d. Cumulus with moderate or greater vertical extent.

Stratocumulus (Sc) (Figure 3616e through Figure 3616h) are low level clouds appearing as soft, gray, rollshaped masses. They may be shaped in long, parallel rolls similar to altocumulus, moving forward with the wind. The motion is in the direction of their short dimension, like ocean waves. These clouds, which vary greatly in altitude, are the final product of the characteristic daily change taking place in cumulus clouds. They are usually followed by clear skies during the night.

Figure 3616e. Stratocumulus from the spreading out of Cumulus.

Figure 3616f. Stratocumulus from the spreading out of Cumulus.

Figure 3616 g. Stratocumulus not formed from the spreading out of Cumulus.

Figure 3616h. Stratocumulus not formed from the spreading out of Cumulus.

Stratus ($\mathbf{S t}$) (Figure 3616i through Figure 36161) is a low cloud in a uniform layer resembling fog. Often the base is not more than 1,000 feet high. A veil of thin stratus gives the sky a hazy appearance. Stratus is often quite thick, permitting so little sunlight to penetrate that it appears dark to an observer below. From above it is white. Light mist may descend from stratus. Strong wind sometimes breaks stratus into shreds called "fractostratus."

Figure 3616i. Stratus in a sheet or layer.

Figure 3616j. Stratus in a sheet or layer.

Figure 3616k. Stratus Fractus and/or Cumulus fractus of bad weather.

Figure 3616l. Stratus Fractus and/or Cumulus fractus of bad weather.

Nimbostratus (Ns) (Figure 3616m and Figure 3616n) is a low, dark, shapeless cloud layer, usually nearly uniform, but sometimes with ragged, wet-looking bases. Nimbostratus is the typical rain cloud. The precipitation which falls from this cloud is steady or intermittent, but not showery.

Figure 3616 m . Nimbostratus formed from lowering Altostratus.

Figure 3616n. Nimbostratus formed from lowering Altostratus.

Cumulonimbus (Cb) (Figure 3616o through Figure 3616 r) is a massive cloud with great vertical development, rising in mountainous towers to great heights. The upper part consists of ice crystals, and often spreads out in the shape of an anvil which may be seen at such distances that the base may be below the horizon. Cumulonimbus often produces showers of rain, snow, or hail, frequently accompanied by lightning and thunder. Because of this, the cloud is often popularly called a "thundercloud" or "thunderhead." The base is horizontal, but as showers occur it lowers and becomes ragged.

Figure 3616o. Cumulonimbus, tops not fibrous, outline not completely sharp, no anvil.

Figure 3616p. Cumulonimbus, tops not fibrous, outline not completely sharp, no anvil.

Figure 3616q. Cumulonimbus with fibrous top, often with an anvil.

Figure 3616r. Cumulonimbus with fibrous top, often with an anvil.

3617. Cloud Height Measurement

At sea, cloud heights are often determined by estimation. This is a difficult task, particularly at night.

The height of the base of clouds formed by vertical development (any form of cumulus), if formed in air that has risen from the surface of the Earth, can be determined by psychrometer. This is because the height to which the air must rise before condensation takes place is proportional to the difference between surface air temperature and the dew point. At sea, this difference multiplied by 126.3 gives the height in meters. That is, for every degree difference between surface air temperature and the dew point, the air must rise 126.3 meters before condensation will take place. Thus, if the dry-bulb temperature is $26.8^{\circ} \mathrm{C}$, and the wetbulb temperature is $25.0^{\circ} \mathrm{C}$, the dew point is $24^{\circ} \mathrm{C}$, or $2.8^{\circ} \mathrm{C}$ lower than the surface air temperature. The height of the cloud base is $2.8 \times 126.3=354$ meters.

OTHER OBSERVATIONS

3618. Visibility Measurement

Visibility is the horizontal distance at which prominent objects can be seen and identified by the unaided eye. It is usually measured directly by the human eye. Ashore, the distances of various buildings, trees, lights, and other objects can be used as a guide in estimating the visibility. At sea, however, such an estimate is difficult to make with accuracy. Other ships and the horizon may be of some assistance. See Table 12, Distance of the Horizon.

Ashore, visibility is sometimes measured by a transmissometer, a device which measures the transparency of the atmosphere by passing a beam of light over a known short distance, and comparing it with a reference light.

3619. Upper Air Observations

Upper air information provides the third dimension to the weather map. Unfortunately, the equipment necessary to obtain such information is quite expensive, and the observations are time consuming. Consequently, the network of observing stations is quite sparse compared to that for surface observations, particularly over the oceans and in isolated land areas. Where facilities exist, upper air observations are made by means of unmanned balloons, in conjunction with theodolites, radiosondes, radar, and radio direction finders.

3620. New Technologies in Weather Observing

Shipboard, upper air, buoy, radar, and satellite observations are the foundation for the development of accurate forecast computer models, both in the short and long term. New techniques such as Doppler radar, satellite analysis, and the integration of data from many different sites into complex computer algorithms provide a method of predict-
ing storm tracks with a high degree of accuracy. Tornadoes, line squalls, individual thunderstorms, and entire storm systems can be continuously tracked and their paths predicted with unprecedented accuracy. At sea, the mariner has immediate access to this data through facsimile transmission of synoptic charts and actual satellite photographs, and through radio or communications satellite contact with weather routing services, or through internet providers.

Automated weather stations and buoy systems provide regular transmissions of meteorological and oceanographic information by radio. Some of these buoys or stations can be accessed via the telephone. For further information, visit the National Data Buoy Center's web site at http:// www.ndbc.noaa.gov. These buoys and stations are generally located at isolated and relatively inaccessible locations from which weather and ocean data are of great importance. Depending on the type of system used, the elements usually measured include wind direction and speed, atmospheric pressure, air and sea surface temperature, spectral wave data, and a temperature profile from the sea surface to a predetermined depth.

Regardless of advances in the technology of observing and forecasting, the shipboard weather report remains the cornerstone upon which the accuracy of many forecasts is based.

3621. Recording Observations

Instructions for recording weather observations aboard vessels of the United States Navy are given in NAVMETOCCOMINST 3144.1 (series). For information on obtaining a copy of this instruction, visit http://cnmoc.navy.mil. Instructions for recording observations aboard merchant vessels are given in the National Weather Service Observing Handbook No. 1, Marine Surface Observations. Contact the local Port Meteorological Officer (PMO) or the VOS program lead at http://www.vos.noaa.gov.

Force 0: Wind Speed less than 1 knot.
Sea: Sea like a mirror.

Force 1: Wind Speed 1-3 knots.
Sea: Wave height 0.1 m (.25ft); Ripples with appearance of scales, no foam crests.

Force 2: Wind Speed 4-6 knots.
Sea: Wave height 0.2-0.3 m (0.5-1 ft); Small wavelets, crests of glassy appearance, not breaking.

Force 3: Wind Speed 7-10 knots.
Sea: Wave height 0.6-1m (2-3 ft); Large wavelets, crests begin to break, scattered whitecaps.

Force 4: Wind Speed 11-16 knots.
Sea: Wave height 1-1.5 m (3.5-5 ft); Small waves becoming longer, numerous whitecaps.

Force 5: Wind Speed 17-21 knots.
Sea: Wave height 2-2.5 m (6-8 ft); Moderate waves, taking longer form, many whitecaps, some spray.

Force 6: Wind Speed 22-27 knots.
Sea: Wave height 3-4 m (9.5-13 ft); Larger waves forming, whitecaps everywhere, more spray.

Force 7: Wind Speed 28-33 knots.
Sea: Wave height 4-5.5 m (13.5-19 ft); Sea heaps up, white foam from breaking waves begins to be blown in streaks along direction of wind.

Force 8: Wind Speed 34-40 knots.
Sea: Wave height 5.5-7.5 m (18-25 ft); Moderately high waves of greater length, edges of crests begin to break into spindrift, foam is blown in well marked streaks.

Force 9: Wind Speed 41-47 knots.
Sea: Wave height 7-10 m (23-32 ft); High waves, sea begins to roll, dense streaks of foam along wind direction, spray may reduce visibility.

Force 10: Wind Speed 48-55 knots (storm).
Sea: Wave height 9-12.5 m (29-41 ft); Very high waves with overhanging crests, sea takes white appearance as foam is blown in very dense streaks, rolling is heavy and shocklike, visibility is reduced.

Force 11: Wind Speed 56-63 knots.
Sea: Wave height 11.5-16 m (37-52 ft); Exceptionally high waves, sea covered with white foam patches, visibility still more reduced.

Force 12: Wind Speed 64-71 knots.
Sea: Wave height more than $16 \mathrm{~m}(52 \mathrm{ft})$; Air filled with foam, sea completely white with driving spray, visibility greatly reduced.

CHAPTER 37

WEATHER ROUTING

PRINCIPLES OF WEATHER ROUTING

3700. Introduction

Ship weather routing develops an optimum track for ocean voyages based on forecasts of weather, sea conditions, and a ship's individual characteristics for a particular transit. Within specified limits of weather and sea conditions, the term optimum is used to mean maximum safety and crew comfort, minimum fuel consumption minimum time underway, or any desired combination of these factors. The purpose of this chapter is to acquaint the mariner with the basic philosophy and procedures of ship weather routing as an aid to understanding the routing agency's recommendations.

The mariner's first resources for route planning in relation to weather are the Pilot Chart Atlases, the Sailing Directions (Planning Guides), and other climatological sources such as historical weather data tables. These publications give climatic data, such as wind speed and direction, wave height frequencies and ice limits, for the major ocean basins of the world. They may recommend specific routes based on probabilities, but not on specific conditions.

The ship routing agency, acting as an advisory service, attempts to avoid or reduce the effects of specific adverse weather and sea conditions by issuing initial route recommendations prior to sailing. It recommends track changes while underway (diversions), and weather advisories to alert the commanding officer or master about approaching unfavorable weather and sea conditions which cannot be effectively avoided by a diversion. Adverse weather and sea conditions are defined as those conditions which will cause damage, significant speed reduction, or time loss.

The initial route recommendation is based on a survey of weather and sea forecasts between the point of departure and the destination. It takes into account the type of vessel, hull type, speed capability, safety considerations, cargo, and loading conditions. The vessel's progress is continually monitored, and if adverse weather and sea conditions are forecast along the vessel's current track, a recommendation for a diversion or a weather advisory is transmitted. By this process of initial route selection and continued monitoring of progress for possible changes in the forecast weather and sea conditions along a route, it is possible to maximize both speed and safety.

In providing for optimum sailing conditions, the
advisory service also attempts to reduce transit time by avoiding the adverse conditions which may be encountered on a shorter route, or if the forecasts permit, diverting to a shorter track to take advantage of favorable weather and sea conditions. A significant advantage of weather routing accrues when: (1) the passage is relatively long, about 1,500 miles or more; (2) the waters are navigationally unrestricted, so that there is a choice of routes; and (3) weather is a factor in determining the route to be followed.

Use of this advisory service in no way relieves the commanding officer or master of responsibility for prudent seamanship and safe navigation. There is no intent by the routing agency to inhibit the exercise of professional judgment and prerogatives of commanding officers and masters.

The techniques of ship routing and access to the advice are increasingly less expensive, and are thus being made available to coastal vessels, smaller commercial craft, and even yachts.

3701. Historical Perspective

The advent of extended range forecasting and the development of selective climatology, along with powerful computer modeling techniques, have made ship routing systems possible. The ability to effectively advise ships to take advantage of favorable weather was hampered previously by forecast limitations and the lack of an effective communications system.

Development work in the area of data accumulation and climatology has a long history. Benjamin Franklin, as deputy postmaster general of the British Colonies in North America, produced a chart of the Gulf Stream from information supplied by masters of New England whaling ships. This first mapping of the Gulf Stream helped improve the mail packet service between the British Colonies and England. In some passages the sailing time was reduced by as much as 14 days over routes previously sailed.

In the mid-19th century, Matthew Fontaine Maury compiled large amounts of atmospheric and oceanographic data from ships' log books. For the first time, a climatology of ocean weather and currents of the world was available to the mariner. This information was used by Maury to develop seasonally recommended routes for sailing ships and early steam powered vessels in the latter half of the 19th century. In many cases, Maury's charts were proved correct by the savings in transit
time. Average transit time on the New York to California via Cape Horn route was reduced from 183 days to 139 days with the use of his recommended seasonal routes.

In the 1950's the concept of ship weather routing was put into operation by several private meteorological groups and by the U.S. Navy. By applying the available surface and upper air forecasts to transoceanic shipping, it was possible to effectively avoid much heavy weather while generally sailing shorter routes than previously. The development of computers, the internet and communications technology has made weather routing available to nearly everyone afloat.

3702. System Types

Optimum Track Ship Routing (OTSR), the ship routing service of the U.S. Navy, utilizes short range and extended range forecasting techniques in route selection and surveillance procedures. The short range dynamic forecasts of 3 to 5 days are derived from meteorological equations. These forecasts are computed at least twice daily from a data base of northern hemisphere surface and upper air observations, and include surface pressure, upper air constant pressure heights, and the spectral wave values. A significant increase in data input, particularly from satellite information over ocean areas, can extend the time period for which these forecasts are useful.

Selective climatology has been effective in predicting average conditions months in advance during such events as El Nino and La Nina. Such predictions do not represent forecasting, but can indicate the likelihood of certain conditions prevailing.

For extended range forecasting, generally 3 to 14 days, a computer searches a library of historical northern hemisphere surface pressure and 500 hPa analyses for an analogous weather pattern. This is an attempt at selective climatology by matching the current weather pattern with past weather patterns and providing a logical sequence-ofevents forecast for the 10 to 14 day period following the dynamic forecast. It is performed for both the Atlantic and Pacific Oceans using climatological data for the entire period of data stored in the computer. For longer ocean transits, monthly values of wind, seas, fog, and ocean currents are used to further extend the time range.

Aviation was first in applying the principle of minimum time tracks (MTT) to a changing wind field. But the problem of finding an MTT for a specific flight is much simpler than for a transoceanic ship passage because an aircraft's transit time is much shorter than a ship's. Thus, marine minimum time tracks require significantly longer range forecasts to develop an optimum route.

Automation has enabled ship routing agencies to develop realistic minimum time tracks. Computation of minimum time tracks makes use of:

1. A navigation system to compute route distance, time enroute, estimated times of arrival (ETA's),
and to provide 6 hourly DR synoptic positions for the range of the dynamic forecasts for the ship's current track.
2. A surveillance system to survey wind, seas, fog, and ocean currents obtained from the dynamic and climatological fields.
3. An environmental constraint system imposed as part of the route selection and surveillance process. Constraints are the upper limits of wind and seas desired for the transit. They are determined by the ship's loading, speed capability, and vulnerability. The constraint system is an important part of the route selection process and acts as a warning system when the weather and sea forecast along the present track exceeds predetermined limits.
4. Ship speed characteristics used to approximate ship's speed of advance (SOA) while transiting the forecast sea states.

Criteria for route selection reflect a balance between the captain's desired levels of speed, safety, comfort, and consideration of operations such as fleet maneuvers, fishing, towing, etc.

Ship weather routing services are being offered by many nations. These include Japan, United Kingdom, Russia, Netherlands, Germany, and the United States. Also, several private firms provide routing services to shipping industry clients. Several PC-based software applications have become available, making weather routing available to virtually everyone at sea.

There are two general types of routing services available. The first uses techniques similar to the Navy's OTSR system to forecast conditions and compute routing recommendations, which are then broadcast to the vessel. The second assembles and processes weather and sea condition data and transmits this to ships at sea for on-board processing and generation of route recommendations. The former system allows for greater computer power to be applied to the routing task because powerful computers are available ashore. The latter system allows greater flexibility to the ship's master in changing parameters, evaluating various scenarios, selecting routes, and displaying data.

3703. Ship and Cargo Considerations

Ship and cargo characteristics have a significant influence on the application of ship weather routing. Ship size, speed capability, and type of cargo are important considerations in the route selection process prior to sailing and the surveillance procedure while underway. A ship's characteristics identify its vulnerability to adverse conditions and its ability to avoid them.

Generally, ships with higher speed capability and lighter loads will have shorter routes and be better able to maintain near normal SOA's than ships with lower speed capability or heavy cargoes. Some routes are unique be-

Figure 3703. Performance curves for head, beam, and following seas.
cause of the type of ship or cargo. Avoiding one element of weather to reduce pounding or rolling may be of prime importance. For example, a 20 knot ship with a heavy deck cargo may be severely hampered in its ability to maintain a 20 knot SOA in any seas exceeding moderate head or beam seas because of the possibility of damage resulting from the deck load's characteristics. A similar ship with a stable cargo under the deck is not as vulnerable and may be able to maintain the 20 knot SOA in conditions which would drastically slow the deck-loaded vessel. In towing operations, a tug is more vulnerable to adverse weather and sea conditions, not only in consideration of the tow, but also because of its already limited speed capability. Its slow speed adds to the difficulty of avoiding adverse weather and sea conditions.

Ship performance curves (speed curves) are used to estimate the ship's SOA while transiting the forecast sea states. The curves indicate the effect of head, beam, and following seas of various significant wave heights on the ship's speed. Figure 3703 is a performance curve prepared for a commercial 18 -knot vessel. Each vessel will have its own performance curves, which vary widely according to hull type, length, beam, shape, power, and tonnage. Recommendations for sailing vessels must account for wind speed, wind angle, and vessel speed.

With the speed curves it is possible to determine just how costly a diversion will be in terms of the required distance and time. A diversion may not be necessary where the duration of the adverse conditions is limited. In this case, it may be better to ride out the weather and seas knowing that a diversion, even if able to maintain the normal SOA, will not overcome the increased distance and
time required.
At other times, the diversion track is less costly because it avoids an area of adverse weather and sea conditions, while being able to maintain normal SOA even though the distance to destination is increased. Based on input data for environmental conditions and ship's behavior, route selection and surveillance techniques seek to achieve the optimum balance between time, distance, and acceptable environmental and seakeeping conditions. Although speed performance curves are an aid to the ship routing agency, the response by mariners to deteriorating weather and sea conditions is not uniform. Some reduce speed voluntarily or change heading sooner than others when unfavorable conditions are encountered. Certain waves with characteristics such that the ship's bow and stern are in successive crests and troughs present special problems for the mariner. Being nearly equal to the ship's length, such wavelengths may induce very dangerous stresses. The degree of hogging and sagging and the associated danger may be more apparent to the mariner than to the ship routing agency. Therefore, adjustment in course and speed for a more favorable ride must be initiated by the commanding officer or master when this situation is encountered.

3704. Environmental Factors

Environmental factors of importance to ship weather routing are those elements of the atmosphere and ocean that may produce a change in the status of a ship transit. In ship routing, consideration is given to wind, seas, fog, ice, and ocean currents. While all of the environmental factors are
important for route selection and surveillance, optimum routing is normally considered attained if the effects of wind and seas can be optimized.

Wind: The effect of wind speed on ship performance is difficult to determine. In light winds (less than 20-knots), ships lose speed in headwinds and gain speed slightly in following winds. For higher wind speeds, ship speed is reduced in both head and following winds. This is due to the increased wave action, which even in following seas results in increased drag from steering corrections, and indicates the importance of sea conditions in determining ship performance. In dealing with wind, it is also necessary to know the ship's sail area. High winds will have a greater adverse effect on a large, fully loaded container ship or car carrier than a fully loaded tanker of similar length. This effect is most noticeable when docking, but the effect of beam winds over several days at sea can also be considerable. For sailing vessels, the wind is critical and accurate forecasts are vital to a successful voyage.

Wave Height: Wave height is the major factor affecting ship performance. Wave action is responsible for ship motions which reduce propeller thrust and cause increased drag from steering corrections. The relationship of ship speed to wave direction and height is similar to that of wind. Head seas reduce ship speed, while following seas increase ship speed slightly to a certain point, beyond which they retard it. In heavy seas, exact performance may be difficult to predict because of the adjustments to course and speed for shiphandling and comfort. Although the effect of sea and swell is much greater for large commercial vessels than is wind speed and direction, it is difficult to separate the two in ship routing.

In an effort to provide a more detailed description of the actual and forecast sea state, the U.S. Navy Fleet Numerical Meteorology and Oceanography Center, Monterey, California, produces the Global Spectral Ocean Wave Model (GSOWM) for use by the U.S. Navy's Optimum Track Ship Routing (OTSR) service. This model provides energy values from 12 different directions (30° sectors) and 15 frequency bands for wave periods from 6 to 26 seconds with the total wave energy propagated throughout the grid system as a function of direction and frequency. It is based on the analyzed and forecast planetary boundary layer model wind fields, and is produced for both the Northern and Southern Hemispheres out to 72 hours. For OTSR purposes, primary and secondary waves are derived from the spectral wave program, where the primary wave train has the principal energy (direction and frequency), and the secondary has to be 20 percent of the primary.

Fog: Fog, while not directly affecting ship performance, should be avoided as much as feasible, in order to maintain normal speed in safe conditions. Extensive areas of fog during summertime can be avoided by selecting a lower latitude route than one based solely upon wind and seas. Although the route may be longer, transit time may
be less due to not having to reduce speed in reduced visibility. In addition, crew fatigue due to increased watchkeeping vigilance can be reduced.

North Wall Effect: During the Northern Hemisphere fall and winter, the waters to the north of the Gulf Stream in the North Atlantic are at their coldest, while the Gulf Stream itself remains at a constant relatively warm temperature. After passage of a strong cold front or behind a developing coastal low pressure system, Arctic air is sometimes drawn off the Mid-Atlantic coast of the United States and out over the warm waters of the Gulf Stream by northerly winds. This cold air is warmed as it passes over the Gulf Stream, resulting in rapid and intense deepening of the low pressure system and higher than normal surface winds. Higher waves and confused seas result from these winds. When these winds oppose the northeast set of the current, the result is increased wave heights and a shortening of the wave period. If the opposing current is sufficiently strong, the waves will break. These phenomena are collectively called the "North Wall Effect," referring to the region of most dramatic temperature change between the cold water to the north and the warm Gulf Stream water to the south. The most dangerous aspect of this phenomenon is that the strong winds and extremely high, steep waves occur in a limited area and may develop without warning. Thus, a ship that is laboring in near-gale force northerly winds and rough seas, proceeding on a northerly course, can suddenly encounter storm force winds and dangerously high breaking seas. Numerous ships have foundered off the North American coast in the approximate position of the Gulf Stream's North Wall. A similar phenomenon occurs in the North Pacific near the Kuroshio Current and off the Southeast African coast near the Agulhas Current.

Ocean Currents: Ocean currents do not present a significant routing problem, but they can be a determining factor in route selection and diversion. This is especially true when the points of departure and destination are at relatively low latitudes. The important considerations to be evaluated are the difference in distance between a great-circle route and a route selected for optimum current, with the expected increase in SOA from the following current, and the decreased probability of a diversion for weather and seas at the lower latitude. For example, it has proven beneficial to remain equatorward of approximately $22^{\circ} \mathrm{N}$ for westbound passages between the Canal Zone and southwest Pacific ports. For eastbound passages, if the maximum latitude on a greatcircle track from the southwest Pacific to the Canal Zone is below $24^{\circ} \mathrm{N}$, a route passing near the axis of the Equatorial Countercurrent is practical because the increased distance is offset by favorable current. Direction and speed of ocean currents are more predictable than wind and seas, but some variability can be expected. Major ocean currents can be disrupted for several days by very intense weather systems such as hurricanes and by
global phenomena such as El Nino.
Ice: The problem of ice is twofold: floating ice (icebergs) and deck ice. If possible, areas of icebergs or pack ice should be avoided because of the difficulty of detection and the potential for collision. Deck ice may be more difficult to contend with from a ship routing point of view because it is caused by freezing weather associated with a large weather system. While mostly a nuisance factor on large ships, it causes significant problems with the stability of small ships.

Latitude: Generally, the higher the latitude of a route, even in the summer, the greater are the problems with the environment. Certain operations should benefit from seasonal planning as well as optimum routing. For example, towing operations north of about 40° latitude should be avoided in non-summer months if possible.

3705. Synoptic Weather Considerations

A ship routing agency should direct its forecasting skills to avoiding or limiting the effect of weather and seas associated with extratropical low pressure systems in the mid and higher latitudes and the tropical systems in low latitude. Seasonal or monsoon weather is also a factor in route selection and diversion in certain areas.

Despite the amount of attention and publicity given to tropical cyclones, mid-latitude low pressure systems generally present more difficult problems to a ship routing agency. This is primarily due to the fact that major ship traffic is sailing in the latitudes of the migrating low pressure systems, and the amount of potential exposure to intense weather systems, especially in winter, is much greater.

Low pressure systems weaker than gale intensity (winds less than 34 knots) are not a severe problem for most ships. However, a relatively weak system may generate prolonged periods of rough seas which may hamper normal work aboard ship. Ship weather routing can frequently limit rough conditions to short periods of time and provide more favorable conditions for most of the transit. Relatively small vessels, tugs with tows, low powered ships, yachts, and ships with sensitive cargoes can be significantly affected by weather systems weaker than gale intensity. Using a routing agency can enhance both safety and efficiency.

Gales (winds 34 to 47 knots) and storms (winds greater than 48 knots) in the open sea can generate very rough or high seas, particularly when an adverse current such as the Gulf Stream is involved. This can force a reduction in speed in order to gain a more comfortable and safe ride. Because of the extensive geographic area covered by a well developed low pressure system, once ship's speed is reduced the ability to improve the ship's situation is severely hampered. Thus, exposure to potential damage and danger is greatly increased. The vessel in such conditions may be forced to slow down just when it is necessary to speed up to avoid even worse conditions.

A recommendation for a diversion by a routing agency
well in advance of the intense weather and associated seas will limit the duration of exposure of the vessel. If effective, ship speed will not be reduced and satisfactory progress will be maintained even though the remaining distance to destination is increased. Overall transit time is usually shorter than if no track change had been made and the ship had remained in heavy weather. In some cases diversions are made to avoid adverse weather conditions and shorten the track at the same time. Significant savings in time and costs can result.

In very intense low pressure systems, with high winds and long duration over a long fetch, seas will be generated and propagated as swell over considerable distances. Even on a diversion, it is difficult to effectively avoid all unfavorable conditions. Generally, original routes for transoceanic passages, issued by the U.S. Navy's ship routing service, are equatorward of the 10% frequency isoline for gale force winds for the month of transit, as interpreted from the U.S. Navy's Marine Climatic Atlas of the World. These are shown in Figure 3705a and Figure 3705 b for the Pacific. To avoid the area of significant gale activity in the Atlantic from October to April, the latitude of transit is generally in the lower thirties.

The areas, seasons, and the probability of development of tropical cyclones are fairly well defined in climatological publications. In long range planning, considerable benefit can be gained by limiting the exposure to the potential hazards of tropical systems.

In the North Pacific, avoid areas with the greatest probability of tropical cyclone formation. Avoiding existing tropical cyclones with a history of 24 hours or more of 6hourly warnings is in most cases relatively straightforward. However, when transiting the tropical cyclone generating area, the ship under routing may provide the first report of environmental conditions indicating that a new disturbance is developing. In the eastern North Pacific the generating area for a high percentage of tropical cyclones is relatively compact (Figure 3705c). Remain south of a line from lat. $9^{\circ} \mathrm{N}$, long. $90^{\circ} \mathrm{W}$ to lat. $14^{\circ} \mathrm{N}$, long. $115^{\circ} \mathrm{W}$. In the western North Pacific it is advisable to hold north of $22^{\circ} \mathrm{N}$ when no tropical systems are known to exist. See Figure 3705d.

In the Atlantic, sail near the axis of the Bermuda high or northward to avoid the area of formation of tropical cyclones. Of course, avoiding an existing tropical cyclone takes precedence over avoiding a general area of potential development.

It has proven equally beneficial to employ similar considerations for routing in the monsoon areas of the Indian Ocean and the South China Sea. This is accomplished by providing routes and diversions that generally avoid the areas of high frequency of gale force winds and associated heavy seas, as much as feasible. Ships can then remain in satisfactory conditions with limited increases in route distance.

Depending upon the points of departure and destination, there are many combinations of routes that can be used when

Figure 3705a. Generalized 10\% frequency isolines of gale force winds for October through January.

Figure 3705b. Generalized 10\% frequency isolines of gale force winds for January through April.

Figure 3705c. Area of initial detection of high percentage of tropical cyclones which later developed to tropical storm or typhoon intensity, 1957-1974.

Figure 3705d. Area of initial detection of high percentage of tropical cyclones which later developed to tropical storm or typhoon intensity, 1946-1973.
transiting the northern Indian Ocean (Arabian Sea, Bay of Bengal) and the South China Sea. For example, in the Arabian Sea during the summer monsoon, routes to and from the Red Sea, the western Pacific, and the eastern Indian Ocean should hold equatorward. Ships proceeding to the Persian Gulf during this period are held farther south and west to put the heaviest seas on the quarter or stern when transiting the Arabian Sea. Eastbound ships departing the Persian Gulf may proceed generally east southeast toward the Indian sub-continent, then south, to pass north and east of the highest southwesterly seas in the Arabian Sea. Westbound ships out of the Persian Gulf for the Cape of Good Hope appear to have little choice in routes unless considerable distance is added to the transit by passing east of the highest seas. In the winter monsoon, routes to or from the Red Sea for the western Pacific and the Indian Ocean are held farther north in the Arabian Sea to avoid the highest seas. Ships proceeding to the Persian Gulf from the western Pacific and eastern Indian Ocean may hold more eastward when proceeding north in the Arabian Sea. Ships departing the Persian Gulf area will have considerably less difficulty than during the summer monsoon. Similar considerations can be given when routing ships proceeding to and from the Bay of Bengal.

In the South China Sea, transits via the Palawan Passage are recommended when strong, opposing wind and seas are forecast. This is especially true during the winter monsoon. During periods when the major monsoon flow is slack, ships can use the shortest track as conditions permit.

3706. Special Weather and Environmental Considerations

In addition to the synoptic weather considerations in ship weather routing, there are special environmental problems that can be avoided by following recommendations and advisories of ship routing agencies. These problems generally cover a smaller geographic area and are seasonal in nature, but are still important to ship routing.

In the North Atlantic, because of heavy shipping traffic, frequent poor visibility in rain or fog, and restricted navigation, particularly east of Dover Strait, some mariners prefer to transit to or from the North Sea via Pentland Firth, passing north of the British Isles rather than via the English Channel.

Weather routed ships generally avoid the area of dense fog with low visibility in the vicinity of the Grand Banks off Newfoundland and the area east of Japan north of $35^{\circ} \mathrm{N}$. Fishing vessels in these two areas provide an added hazard to safe navigation. This condition exists primarily from June through September. Arctic supply ships en route from the U.S. east coast to the Davis Strait-Baffin Bay area in the summer frequently transit via Cabot Strait and the Strait of Belle Isle, where navigation aids are available and icebergs are generally grounded.

Icebergs are a definite hazard in the North Atlantic from
late February through June, and occasionally later. The hazard of floating ice is frequently combined with restricted visibility in fog. International Ice Patrol reports and warnings are incorporated into the planning of routes to safely avoid dangerous iceberg areas. It is usually necessary to hold south of at least $45^{\circ} \mathrm{N}$ until well southeast of Newfoundland. The U.S. Navy ship routing office at the Naval Atlantic Meteorology and Oceanography Center in Norfolk maintains a safety margin of at least 100 miles from icebergs reported by the International Ice Patrol. Also, in a severe winter, the Denmark Strait may be closed by ice.

In the northern hemisphere winter, a strong high pressure system moving southeast out of the Rocky Mountains brings cold air down across Central America and the western Gulf of Mexico producing gale force winds in the Gulf of Tehuantepec. This fall wind is similar to the pampero, mistral, and bora of other areas of the world. An adjustment to ship's track can successfully avoid the highest seas associated with the "Tehuantepecer." For transits between the Canal Zone and northwest Pacific ports, little additional distance is required to avoid this area (in winter) by remaining south of at least $12^{\circ} \mathrm{N}$ when crossing $97^{\circ} \mathrm{W}$. While avoiding the highest seas, some unfavorable swell conditions may be encountered south of this line. Ships transiting between the Panama Canal and North American west coast ports can stay close along the coast of the Gulf of Tehuantepec to avoid heavy seas during gale conditions, but may still encounter high offshore winds.

In the summer, the semi-permanent high pressure systems over the world's oceans produce strong equatorward flow along the west coasts of continents. This feature is most pronounced off the coast of California and Portugal in the Northern Hemisphere and along Chile, western Australia, and southwest Africa in the Southern Hemisphere. Very rough seas are generated and are considered a definite factor in route selection or diversion when transiting these areas.

3707. Types of Recommendations and Advisories

An initial route recommendation is issued to a ship or routing authority normally 48 to 72 hours prior to sailing, and the process of surveillance begins. Surveillance is a continuous process, maintained until the ship arrives at its destination. Initial route recommendations are a composite representation of experience, climatology, weather and sea state forecasts, the vessel's mission and operational concerns, and the vessel's seagoing characteristics. A planning route provides a best estimate of a realistic route for a specific transit period. Such routes are provided when estimated dates of departure (EDD's) are given to the routing agency well in advance of departure, usually a week to several months. Long range planning routes are based more on seasonal and climatological expectations than the current weather situation. While planning routes are an attempt to make extended range (more than a week) or long range (more than a month) forecasts, these recommendations are likely to
be revised near the time of departure to reflect the current weather pattern. An initial route recommendation is more closely related to the current weather patterns by using the latest dynamic forecasts than are the planning route recommendations. These, too, are subject to revision prior to sailing, if weather and sea conditions warrant.

Adjustment of departure time is a recommendation for delay in departure, or early departure if feasible, and is intended to avoid or significantly reduce the adverse weather and seas forecast on the first portion of the route, if sailing on the original EDD. The initial route is not revised, only the timing of the ship's transit through an area with currently unfavorable weather conditions. Adjusting the departure time is an effective method of avoiding a potentially hazardous situation where there is no optimum route for sailing at the originally scheduled time. A go/no go recommendation may be made to vessels engaged in special missions such as speed record attempts or heavy-lift voyages.

A diversion is an underway adjustment in track and is intended to avoid or limit the effect of adverse weather conditions forecast to be encountered along the ship's current track, or to take advantage of favorable conditions along another route. Ship's speed is expected to be reduced by the encounter with the heavy weather. In most cases the distance to destination is increased in attempting to avoid the adverse weather, but this is partially overcome by being able to maintain a nearly normal SOA.

Adjustment of SOA is a recommendation for slowing or increasing the ship's speed as much as practicable, in an attempt to avoid an adverse weather situation by adjusting the timing of the encounter. This is also an effective means of maintaining maximum ship operating efficiency, while not diverting from the present ship's track. By adjusting the SOA, a major weather system can sometimes be avoided with no increase in distance. The development of fast ships (SOA greater than 30 knots) gives the ship routing agency the potential to "make the ship's weather" by adjusting the ship's speed and track for encounter with favorable weather conditions.

Evasion is a recommendation to the vessel to take independent action to avoid, as much as possible, a potentially dangerous weather system. The ship routing meteorologist may recommend a general direction for safe evasion but does not specify an exact track. The recommendation for evasion is an indication that the weather and sea conditions have deteriorated to a point where shiphandling and safety are the primary considerations and progress toward destination has been temporarily suspended, or is at least of secondary consideration.

A weather advisory is a transmission sent to the ship advising the commanding officer or master of expected adverse conditions, their duration, and geographic extent. It is initiated by the ship routing agency as a service and an aid to the ship. The best example of a situation for which a forecast is helpful is when the ship is currently in good
weather but adverse weather is expected within 24 hours for which a diversion has not been recommended, or a diversion where adverse weather conditions are still expected. This type of advisory may include a synoptic weather discussion, and a wind, seas, or fog forecast.

The ability of the routing agency to achieve optimum conditions for the ship is aided by the commanding officer or master adjusting course and speed where necessary for an efficient and safe ride. At times, the local sea conditions may dictate that the commanding officer or master take independent action.

3708. Southern Hemisphere Routing

Available data on which to base analyses and forecasts is generally very limited in the Southern Hemisphere, although this situation is improving with the increasing availability of remotely sensed data. Weather and other environmental information obtained from satellites is contributing greatly to an improvement in southern hemisphere forecast products.

Passages south of the Cape of Good Hope and Cape Horn should be timed to avoid heavy weather as much as possible, since intense and frequent low pressure systems are common in these areas. In particular, near the southeast coasts of Africa and South America, intense low pressure systems form in the lee of relatively high terrain near the coasts of both continents. Winter transits south of Cape Horn are difficult, since the time required for transit is longer than the typical interval between storms. Remaining equatorward of about $35^{\circ} \mathrm{S}$ as much as practicable will limit exposure to adverse conditions. If the frequency of lows passing these areas is once every three or four days, the probability of encountering heavy weather is high.

Tropical cyclones in the Southern Hemisphere present a significant problem because of the sparse surface and upper air observations from which forecasts can be made. Satellites provide the most reliable means by which to obtain accurate positions of tropical systems, and also give the first indication of tropical cyclone formation.

In the Southern Hemisphere, OTSR and other ship weather routing services are available, but are hampered by sparse data reports from which reliable short and extended range forecasts can be produced. Strong climatological consideration is usually given to any proposed southern hemisphere transit, but satellite data is increasingly available to enhance short and extended range forecasts. OTSR procedures for the Northern Hemisphere can be instituted in the Southern Hemisphere whenever justified by basic data input and available forecast models.

3709. Communications

A vital part of a ship routing service is communication between the ship and the routing agency. Reports from the ship show the progress and ability to proceed in existing
conditions. Weather reports from the ship enrich the basic data on which analyses are based and forecasts derived, assisting both the reporting ship and others in the vicinity.

Despite all efforts to achieve the best forecasts possible, the quality of forecasts does not always warrant maintaining the route selected. In the U.S. Navy's ship routing program, experience shows that one-third of the ships using OTSR receive some operational or weather-dependent change while underway.

The routing agency needs reports of the ship's position and the ability to transmit recommendations for track change or weather advisories to the ship. The ship needs both send and receive capability for the required information. Information on seakeeping changes initiated by the ship is desirable in a coordinated effort to provide optimum transit conditions. New satellite communications services are making possible the transmission of larger amounts of data than possible through traditional radio messages, a development which supports systems using on-board analysis to generate routes.

3710. Benefits

The benefits of ship weather routing services are primarily in time and cost reductions and increased safety. The savings in operating costs are derived from reductions in transit time, heavy weather encounters, fuel consumption, cargo and hull damage, and more efficient scheduling of dockside activities. The savings are further increased by fewer emergency repairs, more efficient use of personnel, improved topside working conditions, lower insurance rates as preferred risks under weather routing, and ultimately, extended ship operating life.

An effective routing service maximizes safety by greatly reducing the probability of severe or catastrophic damage to the ship, and injury of crew members. The efficiency and health of the crew is also enhanced by avoiding heavy weather. This is especially important on modern, automated ships with reduced crews and smaller craft such as fishing vessels and yachts.

3711. Conclusion

The success of ship weather routing depends upon the validity of forecasts and the routing agency's ability to
make appropriate route recommendations and diversions. Anticipated improvements in a routing agency's recommendations will come from advancements in meteorology, technology, and the application of ocean wave forecast models. Advancements in mathematical meteorology, coupled with the continued application of forecast computer models, will extend the time range and accuracy of the dynamic and statistical forecasts. Additionally, a better understanding of the problems encountered by the mariner and their implications while offshore will assist the routing agency in making appropriate recommendations.

Technological advancements in the areas of satellite and automated communications and onboard ship response systems will increase the amount and type of information to and from the ship with fewer delays. Mariners will have a better quality of meteorological information, and the meteorologists will have a better understanding of the problems, constraints, and priorities of the vessel's masters. Ship response and performance data included with the ship's weather report will provide the routing agency with real-time information with which to ascertain the actual state of the ship. Being able to predict a ship's response in most weather and sea conditions will result in improved routing procedures.

Shipboard and anchored wave measuring devices contribute to the development of ocean wave analysis and forecast models. Shipboard seakeeping instrumentation, with input of measured wave conditions and predetermined ship response data for the particular hull, enables a master or commanding officer to adjust course and speed for actual conditions.

Modern ship designs, exotic cargoes, and sophisticated transport methods require individual attention to each ship's areas of vulnerability. Any improvement in the description of sea conditions by ocean wave models will improve the output from ship routing and seakeeping systems.

Advanced planning of a proposed transit, combined with the study of expected weather conditions, both before and during the voyage, as is done by ship routing agencies, and careful on board attention to seakeeping (with instrumentation if available) provide the greatest opportunity to achieve the goal of optimum environmental conditions for ocean transit.

EXPLANATION OF NAVIGATION TABLES

Mathematical Tables

Table 1. Logarithms of Numbers - The first page of this table gives the complete common logarithm (characteristic and mantissa) of numbers 1 through 250. Succeeding pages give the mantissa only of the common logarithm of any number. Values are given for four significant digits of entering values, the first three being in the left-hand column, and the fourth at the heading of one of the other columns. Thus, the mantissa of a threedigit number is given in the column headed 0 , on the line with the given number; while the mantissa of a four-digit number is given in the column headed by the fourth digit, on the line with the first three digits. As an example, the mantissa of 328 is 51587 , while that of 3.284 is 51640 . For additional digits, interpolation should be used. The difference between each tabulated mantissa and the next larger tabulated mantissa is given in the "d" column to the right of the smaller mantissa. This difference can be used to enter the appropriate proportional parts ("Prop. parts") auxiliary table to interpolate for the fifth digit of the given number. If an accuracy of more than five significant digits is to be preserved in a computation, a table of logarithms to additional decimal places should be used. For a number of one or two digits, use the first page of the table or add zeros to make three digits. That is, the mantissa of 3,30 , and 300 is the same, 47712 . Interpolation on the first page of the table is not recommended. The second part should be used for values not listed on the first page.

Table 2. Natural Trigonometric Functions - This table gives the values of natural sines, cosecants, tangents, cotangents, secants, and cosines of angles from 0° to 180°, at intervals of 1^{\prime}. For angles between 0° and 45° use the column labels at the top and the minutes at the left; for angles between 45° and 90° use the column labels at the bottom and the minutes at the right; for angles between 90° and 135° use the column labels at the bottom and the minutes at the left; and for angles between 135° and 180° use the column labels at the top and the minutes at the right. These combinations are indicated by the arrows accompanying the figures representing the number of degrees. For angles between 180° and 360°, subtract 180° and proceed as indicated above to obtain the numerical values of the various functions.

Differences between consecutive entries are shown in the "Diff. 1"" column to the right of each column of values of a trigonometric function, as an aid to interpolation. These differences are one-half line out of step with the numbers to which they apply, as in a critical table. Each difference ap-
plies to the values half a line above and half a line below. To determine the correction to apply to the value for the smaller entering angle, multiply the difference by the number of tenths of a minute (or seconds $\div 60$) of the entering angle. Note whether the function is increasing or decreasing, and add or subtract the correction as appropriate, so that the interpolated value lies between the two values between which interpolation is made.

Table 3. Logarithms of Trigonometric Functions This table gives the common logarithms (+10) of sines, cosecants, tangents, cotangents, secants, and cosines of angles from 0° to 180°, at intervals of 1^{\prime}. For angles between 0° and 45° use the column labels at the top and the minutes at the left; for angles between 45° and 90° use the column labels at the bottom and the minutes at the right; for angles between 90° and 135° use the column labels at the bottom and the minutes at the left; and for angles between 135° and 180° use the column labels at the top and the minutes at the right. These combinations are indicated by the arrows accompanying the figures representing the number of degrees. For angles between 180° and 360°, subtract 180° and proceed as indicated above to obtain the numerical values of the various functions.

Differences between consecutive entries are shown in the "Diff. 1'" columns, except that one difference column is used for both sines and cosecants, another for both tangents and cotangents, and a third for both secants and cosines. These differences, given as an aid to interpolation, are onehalf line out of step with the numbers to which they apply, as in a critical table. Each difference applies to the values half a line above and half a line below. To determine the correction to apply to the value for the smaller entering angle, multiply the difference by the number of tenths of a minute (or seconds $\div 60$) of the entering angle. Note whether the function is increasing or decreasing, and add or subtract the correction as appropriate, so that the interpolated value lies between the two values between which interpolation is made.

Table 4. Traverse Table - This table can be used in the solution of any of the sailings except great-circle and composite. In providing the values of the difference of latitude and departure corresponding to distances up to 600 miles and for courses for every degree of the compass, Table 4 is essentially a tabulation of the solutions of plane right triangles. Since the solutions are for integral values of the acute angle and the distance, interpolation for intermediate values may be required. Through appropriate interchanges of the headings of the
columns, solutions for other than plane sailings can be made. The interchanges of the headings of the different columns are summarized at the foot of each table opening.

The distance, difference of latitude, and departure columns are labeled Dist., D. Lat., and Dep., respectively.

For solution of a plane right triangle, any number N in the distance column is the hypotenuse; the number opposite in the difference of latitude column is N times the cosine of the acute angle; and the other number opposite in the departure column is N times the sine of the acute angle. Or, the number in the column labeled D. Lat. is the value of the side adjacent and the number in the column labeled Dep. is the value of the side opposite the acute angle.

Cartographic Tables

Table 5. Natural and Numerical Chart Scales This table gives the numerical scale equivalents for various natural or fractional chart scales. The scale of a chart is the ratio of a given distance on the chart to the actual distance which it represents on the earth. The scale may be expressed as a simple ratio or fraction, known as the natural scale. For example, 1:80,000 or $\frac{1}{80000}$ means that one unit (such as an inch) on the chart represents 80,000 of the same unit on the surface of the earth. The scale may also be expressed as a statement of that distance on the earth shown as one unit (usually an inch) on the chart, or vice versa. This is the numerical scale.

The table was computed using $72,913.39$ inches per nautical mile and 63,360 inches per statute mile.

Table 6. Meridional Parts - In this table the meridional parts used in the construction of Mercator charts and in Mercator sailing are tabulated to one decimal place for each minute of latitude from the equator to the poles.

The table was computed using the formula:

$$
\begin{aligned}
M= & a \log _{e} 10 \log \tan \left(45+\frac{L}{2}\right)-a\left(e^{2} \sin L+\frac{e^{4}}{3} \sin ^{3} L+\right. \\
& \left.\frac{e^{6}}{5} \sin ^{5} L+\ldots\right),
\end{aligned}
$$

in which M is the number of meridional parts between the equator and the given latitude, a is the equatorial radius of the earth, expressed in minutes of arc of the equator, or

$$
a=\frac{21600}{2 \pi}=3437.74677078(\log =3.5362739)
$$

$\log _{\mathrm{e}}$ is the natural (Naperian) logarithm, using the base $e=2.71828182846$,

$$
\log _{\mathrm{e}} 10=2.3025851 \quad(\log =0.36221569)
$$

L is the latitude,
e is eccentricity of the earth, or $\sqrt{2 \mathrm{f}-\mathrm{f}^{2}}=0.0818188$ ($\log =8.087146894-10)$
f is earth's flattening, or $\mathrm{f}=\frac{1}{298.26}=0.00335278(\log$
$=7.4745949-10$)
Using these values,

$$
\begin{aligned}
& \mathrm{a} \log _{\mathrm{e}} 10=7915.704468(\log =3.8984896) \\
& \mathrm{ae}^{2}=23.01336332(\log =1.3619801) \\
& \frac{\mathrm{ae}^{4}}{3}=0.05135291(\log =8.28943495-10) \\
& \frac{\mathrm{ae}^{6}}{5}=0.00020626(\log =6.6855774-10)
\end{aligned}
$$

Hence, the formula becomes

$$
\begin{aligned}
\mathrm{M}= & 7915.704468 \log \tan \left(45^{\circ}+\frac{\mathrm{L}}{2}\right)-23.0133633 \\
& \sin \mathrm{~L}-0.051353 \sin ^{3} \mathrm{~L}-0.000206 \sin ^{5} \mathrm{~L} \ldots
\end{aligned}
$$

The constants used in this derivation and in the table are based upon the World Geodetic System (WGS) ellipsoid of 1972.

Table 7. Length of a Degree of Latitude and Longitude - This table gives the length of one degree of latitude and longitude at intervals of 1° from the equator to the poles. In the case of latitude, the values given are the lengths of the arcs extending half a degree on each side of the tabulated latitudes. Lengths are given in nautical miles, statute miles, feet, and meters.

The values were computed in meters, using the World Geodetic System ellipsoid of 1972, and converted to other units. The following formulas were used:

$$
\begin{aligned}
& \mathrm{M}=111,132.92-559.82 \cos 2 \mathrm{~L}+1.175 \cos 4 \mathrm{~L}- \\
& \quad 0.0023 \cos 6 \mathrm{~L}+\ldots \\
& \mathrm{P}=111,412.84 \cos \mathrm{~L}-93.5 \cos 3 \mathrm{~L}+0.118 \cos 5 \mathrm{~L}-\ldots
\end{aligned}
$$

in which M is the length of 1° of the meridian (latitude), L is the latitude, and P is the length of 1° of the parallel (longitude).

Piloting Tables

Table 8. Conversion Table for Meters, Feet, and

Fathoms - The number of feet and fathoms corresponding to a given number of meters, and vice versa, can be taken directly from this table for any value of the entering argument from 1 to 120 . The entering value can be multiplied by any power of 10 , including negative powers, if the corresponding values of the other units are multiplied by the same power. Thus, 420 meters are equivalent to 1378.0 feet, and 11.2 fathoms are equivalent to 20.483 meters.

The table was computed by means of the relationships:
1 meter $=39.370079$ inches,
1 foot = 12 inches,
1 fathom $=6$ feet.
Table 9. Conversion Table for Nautical and Statute Miles - This table gives the number of statute miles corresponding to any whole number of nautical miles from 1 to 100 , and the number of nautical miles corresponding to any whole number of statute miles within the same range. The entering value can be multiplied by any power of 10 , including negative powers, if the corresponding value of the other unit is multiplied by the same power. Thus, 2,700 nautical miles are equivalent to $3,107.1$ statute miles, and 0.3 statute mile is equivalent to 0.2607 nautical mile.

The table was computed using the conversion factors:
1 nautical mile $=1.15077945$ statute miles,
1 statute mile $=0.86897624$ nautical mile .
Table 10. Speed Table for Measured Mile - To find the speed of a vessel on a measured nautical mile in a given number of minutes and seconds of time, enter this table at the top or bottom with the number of minutes, and at either side with the number of seconds. The number taken from the table is speed in knots. Accurate results can be obtained by interpolating to the nearest 0.1 second.

This table was computed by means of the formula: $S=\frac{3600}{T}$, in which S is speed in knots, and T is elapsed time in seconds.

Table 11. Speed, Time, and Distance Table - To find the distance steamed at any given speed between 0.5 and 40 knots in any given number of minutes from 1 to 60 , enter this table at the top with the speed, and at the left with the number of minutes. The number taken from the table is the distance in nautical miles. If hours are substituted for minutes, the tabulated distance should be multiplied by 60 ; if seconds are substituted for minutes, the tabulated distance should be divided by 60 .

The table was computed by means of the formula: $D=\frac{S T}{60}$, in which D is distance in nautical miles,
S is speed in knots, and T is elapsed time in minutes.

Table 12. Distance of the Horizon - This table gives the distance in nautical and statute miles of the visible sea horizon for various heights of eye in feet and meters. The actual distance varies somewhat as refraction changes. However, the error is generally less than that introduced by nonstandard atmospheric conditions. Also the formula used contains an approximation which introduces a small error at the greatest heights tabulated.
The table was computed using the formula:

$$
\mathrm{D}=\sqrt{\frac{2 \mathrm{r}_{\mathrm{o}} \mathrm{~h}_{\mathrm{f}}}{6076.1 \beta_{\mathrm{o}}}}
$$

in which D is the distance to the horizon in nautical miles; ro is the mean radius of the earth, 3440.1 nautical miles; h_{f} is the height of eye in feet; and $\beta_{\mathrm{o}}(0.8279)$ accounts for terrestrial refraction.

This formula simplifies to: $\mathrm{D}(\mathrm{nm})=1.169 \sqrt{\mathrm{~h}_{\mathrm{f}}}$

$$
(\text { statute miles })=1.345 \sqrt{\mathrm{~h}_{\mathrm{f}}}
$$

Table 13. Geographic Range - This table gives the geographic range or the maximum distance at which the curvature of the earth permits a light to be seen from a particular height of eye without regard to the luminous intensity of the light. The geographic range depends upon the height of both the light and the eye of the observer.

The table was computed using the formula:

$$
\mathrm{D}=1.17 \sqrt{\mathrm{H}}+1.17 \sqrt{\mathrm{~h}}
$$

in which D is the geographic range in nautical miles, H is the height in feet of the light above sea level, and h is the height in feet of the eye of the observer above sea level.

Table 14. Dip of the Sea Short of the Horizon - If land, another vessel, or other obstruction is between the observer and the sea horizon, use the waterline of the obstruction as the horizontal reference for altitude measurements, and substitute dip from this table for the dip of the horizon (height of eye correction) given in the Nautical Almanac. The values below the bold rules are for normal dip, the visible horizon being between the observer and the obstruction.

The table was computed with the formula:

$$
\mathrm{D}_{\mathrm{s}}=60 \tan ^{-1}\left(\frac{\mathrm{~h}_{\mathrm{f}}}{6076.1 \mathrm{~d}_{\mathrm{s}}}+\frac{\beta_{\mathrm{o}} \mathrm{~d}_{\mathrm{s}}}{2 \mathrm{r}_{\mathrm{o}}}\right)
$$

in which D_{s} is the dip short of the sea horizon, in minutes of arc; h_{f} is the height of eye of the observer above sea level in feet; $\beta_{0}(0.8321)$ accounts for terrestrial refraction; r_{o} is the mean radius of the earth, 3440.1 nautical miles; and d_{s} is the
distance to the waterline of the obstruction in nautical miles.

Table 15. Distance by Vertical Angle Measured Between Sea Horizon and Top of Object Beyond Sea Horizon - This table tabulates the distance to an object of known height above sea level when the object lies beyond the horizon. The vertical angle between the top of the object and the visible horizon is measured with a sextant and corrected for index error and dip only. The table is entered with the difference in the height of the object and the height of eye of the observer and the corrected vertical angle; and the distance in nautical miles is taken directly from the table. An error may be introduced if refraction differs from the standard value used in the computation of the table.

The table was computed using the formula:

$$
\mathrm{D}=\sqrt{\left(\frac{\tan \alpha}{0.0002419}\right)^{2}}+\frac{\mathrm{H}-\mathrm{h}}{0.7349}-\frac{\tan \alpha}{0.0002419}
$$

in which D is the distance in nautical miles, α is the corrected vertical angle, H is the height of the top of the object above sea level in feet, and h is the height of eye of the observer above sea level in feet. The constants 0.0002419 and 0.7349 account for terrestrial refraction.

Table 16. Distance by Vertical Angle Measured Between Waterline at Object and Top of Object - This table tabulates the angle subtended by an object of known height lying at a particular distance within the observer's visible horizon or vice versa.

The table provides the solution of a plane right triangle having its right angle at the base of the observed object and its altitude coincident with the vertical dimension of the observed object. The solutions are based upon the following simplifying assumptions: (1) the eye of the observer is at sea level, (2) the sea surface between the observer and the object is flat, (3) atmospheric refraction is negligible, and (4) the waterline at the object is vertically below the peak of the object. The error due to the height of eye of the observer does not exceed 3 percent of the distance-off for sextant angles less than 20° and heights of eye less than one-third of the object height. The error due to the waterline not being below the peak of the object does not exceed 3 percent of the distance-off when the height of eye is less than one-third of the object height and the offset of the waterline from the base of the object is less than one-tenth of the distance-off. Errors due to earth's curvature and atmospheric refraction are negligible for cases of practical interest.

Table 17. Distance by Vertical Angle Measured Between Waterline at Object and Sea Horizon Beyond Object - This table tabulates the distance to an object lying within or short of the horizon when the height of eye of the observer is known. The vertical angle between the water-
line at the object and the visible (sea) horizon beyond is measured and corrected for index error. The table is entered with the corrected vertical angle and the height of eye of the observer in nautical miles; the distance in yards is taken directly from the table

The table was computed from the formula:

$$
\begin{aligned}
& \tan h_{s}=(A-B) \div(1+A B) \text { where } \\
& A=\frac{h}{d_{s}}+\frac{\beta_{0} d_{s}}{2 r_{o}} \text { and } \\
& B=\sqrt{2 \beta_{o} h / r_{o}}
\end{aligned}
$$

in which $\beta_{0}(0.8279)$ accounts for terrestrial refraction, r_{0} is the mean radius of the earth, 3440.1 nautical miles; h is the height of eye of the observer in feet; h_{S} is the observed vertical angle corrected for index error; and d_{s} is the distance to the waterline of the object in nautical miles.

Table 18. Distance of an Object by Two Bearings To determine the distance of an object as a vessel on a steady course passes it, observe the difference between the course and two bearings of the object, and note the time interval between bearings. Enter this table with the two differences. Multiply the distance run between bearings by the number in the first column to find the distance of the object at the time of the second bearing, and by the number in the second column to find the distance when abeam.

The table was computed by solving plane oblique and right triangles.

Celestial Navigation Tables

Table 19. Table of Offsets - This table gives the corrections to the straight line of position (LOP) as drawn on a chart or plotting sheet to provide a closer approximation to the arc of the circle of equal altitude, a small circle of radius equal to the zenith distance.

In adjusting the straight LOP to obtain a closer approximation of the arc of the circle of equal altitude, points on the LOP are offset at right angles to the LOP in the direction of the celestial body. The arguments for entering the table are the distance from the DR to the foot of the perpendicular and the altitude of the body.

The table was computed using the formulas:

$$
\begin{aligned}
& \mathrm{R}=3438^{\prime} \cot \mathrm{h} \\
& \sin \theta=\mathrm{D} / \mathrm{R} \\
& X=\mathrm{R}(1-\cos \theta),
\end{aligned}
$$

in which X is the offset, R is the radius of a circle of equal
altitude for altitude h , and D is the distance from the intercept to the point on the LOP to be offset.

Table 20. Meridian Angle and Altitude of a Body on the Prime Vertical Circle - A celestial body having a declination of contrary name to the latitude does not cross the prime vertical above the celestial horizon, its nearest approach being at rising or setting.

If the declination and latitude are of the same name, and the declination is numerically greater, the body does not cross the prime vertical, but makes its nearest approach (in azimuth) when its meridian angle, east or west, and altitude are as shown in this table, these values being given in italics above the heavy line. At this time the body is stationary in azimuth.

If the declination and latitude are of the same name and numerically equal, the body passes through the zenith as it crosses both the celestial meridian and the prime vertical, as shown in the table.

If the declination and latitude are of the same name, and the declination is numerically less, the body crosses the prime vertical when its meridian angle, east or west, and altitude are as tabulated in vertical type below the heavy line.

The table is entered with declination of the celestial body and the latitude of the observer. Computed altitudes are given, with no allowance made for refraction, dip, parallax, etc. The tabulated values apply to any celestial body, but values are not given for declination greater than 23° because the tabulated information is generally desired for the sun only.

The table was computed using the following formulas, derived by Napier's rules:

Nearest approach (in azimuth) to the prime vertical:

$$
\csc \mathrm{h}=\sin \mathrm{d} \csc \mathrm{~L}
$$

$\sec \mathrm{t}=\tan \mathrm{d} \cot \mathrm{L}$
On the prime vertical:

$$
\sin h=\sin d \csc L
$$

$\cos \mathrm{t}=\tan \mathrm{d} \cot \mathrm{L}$
In these formulas, h is the altitude, d is the declination, L is the latitude, t is the meridian angle.

Table 21. Latitude and Longitude Factors - The latitude obtained by an ex-meridian sight is inaccurate if the longitude used in determining the meridian angle is incorrect. Similarly , the longitude obtained by solution of a time sight is inaccurate if the latitude used in the solution is incorrect, unless the celestial body is on the prime vertical. This table gives the errors resulting from unit errors in the assumed values used in the computations. There are two columns for each tabulated value of latitude. The first gives the latitude factor, f , which is the error in minutes of latitude for a one-minute error of longitude. The second gives the
longitude factor, F , which is the error in minutes of longitude for a one-minute error of latitude. In each case, the total error is the factor multiplied by the number of minutes error in the assumed value. Although the factors were originally intended for use in correcting ex-meridian altitudes and time-sight longitudes, they have other uses as well.

The azimuth angle used for entering the table can be measured from either the north or south, through 90°; or it may be measured from the elevated pole, through 180°. If the celestial body is in the southeast $\left(090^{\circ}-180^{\circ}\right)$ or northwest $\left(270^{\circ}-360^{\circ}\right)$ quadrant, the f correction is applied to the northward if the correct longitude is east of that used in the solution, and to the southward if the correct longitude is west of that used; while the F correction is applied to the eastward if the correct latitude is north of that used in the solution, and to the westward if the correct latitude is south of that used. If the body is in the northeast $\left(000^{\circ}-090^{\circ}\right)$ or southwest $\left(180^{\circ}-270^{\circ}\right)$ quadrant, the correction is applied in the opposite direction. These rules apply in both north and south latitude.

The table was computed using the formulas:

$$
\begin{aligned}
& \mathrm{f}=\cos \mathrm{L} \tan \mathrm{Z}=\frac{1}{\sec L \cot Z}=\frac{1}{\mathrm{~F}} \\
& \mathrm{~F}=\sec \mathrm{L} \cot Z=\frac{1}{\cos L \tan Z}=\frac{1}{f}
\end{aligned}
$$

in which f is the tabulated latitude factor, L is the latitude, Z is the azimuth angle, and F is the tabulated longitude factor.

Table 22. Amplitudes - This table lists amplitudes of celestial bodies at rising and setting. Enter with the declination of the body and the latitude of the observer. The value taken from the table is the amplitude when the center of the body is on the celestial horizon. For the sun, this occurs when the lower limb is a little more than half a diameter above the visible horizon. For the moon it occurs when the upper limb is about on the horizon. Use the prefix E if the body is rising, and W if it is setting; use the suffix N or S to agree with the declination of the body. Table 23 can be used with reversed sign to correct the tabulations to the values for the visible horizon.

The table was computed using the following formula, derived by Napier's rules:

$$
\sin \mathrm{A}=\sec \mathrm{L} \sin \mathrm{~d}
$$

in which A is the amplitude, L is the latitude of the observer, and d is the declination of the celestial body.

Table 23. Correction of Amplitude Observed on the Visible Horizon - This table contains a correction to be applied to the amplitude observed when the center of a celestial body is on the visible horizon, to obtain the corresponding amplitude when the center of the body is on the celestial horizon. For the sun, a planet, or a star, apply
the correction in the direction away from the elevated pole, thus increasing the azimuth angle. For the moon apply half the correction toward the elevated pole. This correction can be applied in the opposite direction to a value taken from Table 22 to find the corresponding amplitude when the center of a celestial body is on the visible horizon. The table was computed for a height of eye of 41 feet. For other heights normally encountered, the error is too small to be of practical significance in ordinary navigation.

The values in the table were determined by computing the azimuth angle when the center of the celestial body is on the visible horizon, converting this to amplitude, and determining the difference between this value and the corresponding value from Table 22. Computation of azimuth angle was made for an altitude of (-)0 $0^{\circ} 42.0^{\prime}$ determined as follows:

Azimuth angle was computed by means of the formula:

$$
\cos Z=\frac{\sin d-\sin h \sin L}{\cosh \cos L}
$$

in which Z is the azimuth angle, d is the declination of the celestial body, h is the altitude $\left(-0^{\circ} 42.0^{\prime}\right)$, and L is the latitude of the observer.

Table 24. Altitude Factors - In one minute of time from meridian transit the altitude of a celestial body changes by the amount shown in this table if the altitude is between 6° and 86°, the latitude is not more than 60°, and the declination is not more than 63°. The values taken from this table are used to enter Table 25 for solving reduction to the meridian (ex-meridian) problems.

For upper transit, use the left-hand pages if the declination and latitude are of the same name (both north or both south) and the right-hand pages if of contrary name. For lower transit, use the values below the heavy lines on the last three contrary-name pages. When a factor is taken from this part of the table, the correction from table 25 is subtracted from the observed altitude to obtain the corresponding meridian altitude. All other corrections are added.

The table was computed using the formula:

$$
a=1.9635^{\prime \prime} \cos L \cos d \csc (L \sim d)
$$

in which a is the change of altitude in one minute from meridian transit (the tabulated value), L is the latitude of the observer, and d is the declination of the celestial body.

This formula can be used to compute values outside the limits of the table, but is not accurate if the altitude is greater than 86°.

Table 25. Change of Altitude in Given Time from Meridian Transit - Enter this table with the altitude factor from table 24 and the meridian angle, in either arc or time
units, and take out the difference between the altitude at the given time and the altitude at meridian transit. Enter the table separately with whole numbers and tenths of a, interpolating for t if necessary, and add the two values to obtain the total difference. This total can be applied as a correction to observed altitude to obtain the corresponding meridian altitude, adding for upper transit and subtracting for lower transit.

The table was computed using the formulas:

$$
\mathrm{C}=\frac{\mathrm{at}^{2}}{60}
$$

in which C is the tabulated difference to be used as a correction to observed altitude in minutes of arc; a is the altitude factor from table 24 in seconds of arc; and t is the meridian angle in minutes of time.

This formula should not be used for determining values beyond the limits of the table unless reduced accuracy is acceptable.

Table 26. Time Zones, Descriptions, and Suffixes The zone description and the single letter of the alphabet designating a time zone and sometimes used as a suffix to zone time for all time zones are given in this table.

Table 27. Altitude Correction for Air Temperature - This table provides a correction to be applied to the altitude of a celestial body when the air temperature varies from the $50^{\circ} \mathrm{F}$ used for determining mean refraction with the Nautical Almanac. For maximum accuracy, apply index correction and dip to sextant altitude first, obtaining apparent (rectified) altitude for use in entering this table. Enter the table with altitude and air temperature in degrees Fahrenheit. Apply the correction in accordance with its tabulated sign to altitude.

The table was computed using formula:

$$
\text { Correction }=\mathrm{R}_{\mathrm{m}}\left(1-\frac{510}{460+\mathrm{T}}\right)
$$

in which R_{m} is mean refraction and T is temperature in degrees Fahrenheit.

Table 28. Altitude Correction for Atmospheric Pressure - This table provides a correction to be applied to the altitude of a celestial body when the atmospheric pressure varies from the 29.83 inches (1010 millibars) used for determining mean refraction using the Nautical Almanac. For most accurate results, apply index correction and dip to sextant altitude first, obtaining apparent (rectified) altitude for use in entering this table. Enter the table with altitude and atmospheric pressure. Apply the correction to altitude, adding if the pressure is less than 29.83 inches and subtracting if it is more than 29.83 inches. The table was computed by means of the formula:

$$
\text { Correction }=\mathrm{R}_{\mathrm{m}}\left(1-\frac{\mathrm{P}}{29.83}\right)
$$

in which R_{m} is mean refraction and P is atmospheric pressure in inches of mercury.

Meteorological Tables

Table 29. Conversion Table for Thermometer Scales - Enter this table with temperature Fahrenheit, F; Celsius (centigrade), C; or Kelvin, K; and take out the corresponding readings on the other two temperature scales.

On the Fahrenheit scale, the freezing temperature of pure water at standard sea level pressure is 32°, and the boiling point under the same conditions is 212°. The corresponding temperatures are 0° and 100° on the Celsius scale and 273.15° and 373.15°, respectively, on the Kelvin scale. The value of (-) $273.15^{\circ} \mathrm{C}$ for absolute zero, the starting point of the Kelvin scale, is the value recognized officially by the National Institute of Standards and Technology (NIST).

The formulas are:

$$
\begin{aligned}
& \mathrm{C}=5 / 9\left(\mathrm{~F} \times 32^{\circ}\right)=\mathrm{K}-273.15^{\circ} \\
& \mathrm{F}=9 / 5 \mathrm{C}+32^{\circ}=9 / 5 \mathrm{~K}-459.67^{\circ} \\
& \mathrm{K}=5 / 9\left(\mathrm{~F}-459.67^{\circ}\right)=\mathrm{C}+273.15^{\circ}
\end{aligned}
$$

Table 30. Direction and Speed of True Wind - This table converts apparent wind to true wind. To use the table, divide the apparent wind in knots by the vessel's speed in knots. This gives the apparent wind speed in units of ship's speed. Enter the table with this value and the difference between the heading and the apparent wind direction. The values taken from the table are (1) the difference between the heading and the true wind direction, and (2) the speed of the true wind in units of ship's speed. The true wind is on the same side as the apparent wind, and from a point farther aft.

To convert wind speed in units of ship's speed to speed in knots, multiply by the vessel's speed in knots. The steadiness of the wind and the accuracy of its measurement are seldom sufficient to warrant interpolation in this table. If speed of the true wind and relative direction of the apparent wind are known, enter the column for direction of the apparent wind, and find the speed of the true wind in units of ship's speed. The number to the left is the relative direction of the true wind. The number on the same line in the side columns is the speed of the apparent wind in units of ship's speed. Two solutions are possible if speed of the true wind is less than ship's speed.

The table was computed by solving the triangle in-
volved in a graphical solution, using the formulas:

$$
\begin{aligned}
& \tan \alpha=\frac{\sin \mathrm{B}_{\mathrm{A}}}{\mathrm{~S}_{\mathrm{A}}-\cos \mathrm{B}_{\mathrm{A}}} \\
& \mathrm{~B}_{\mathrm{T}}=\mathrm{B}_{\mathrm{A}}+\alpha \\
& \mathrm{S}_{\mathrm{T}}=\frac{\sin \mathrm{B}_{\mathrm{A}}}{\sin \alpha}
\end{aligned}
$$

in which α is an auxiliary angle, B_{A} is the difference between the heading and the apparent wind direction, S_{A} is the speed of the apparent wind in units of ship's speed, B_{T} is the difference between the heading and the true wind direction, and S_{T} is the speed of the true wind in units of ship's speed.

Table 31. Correction of Barometer Reading for Height Above Sea Level - If simultaneous barometer readings at different heights are to be of maximum value in weather analysis, they should be converted to the corresponding readings at a standard height, usually sea level. To convert the observed barometer reading to this level, enter this table with the outside temperature and the height of the barometer above sea level. The height of a barometer is the height of its sensitive element; in the case of a mercurial barometer, this is the height of the free surface of mercury in the cistern. The correction taken from this table applies to the readings of any type barometer, and is always added to the observed readings, unless the barometer is below sea level.

The table was computed using the formula:

$$
\mathrm{C}=29.92126\left(1-\frac{1}{\operatorname{antilog}\left(\frac{0.0081350 \mathrm{H}}{\mathrm{~T}+0.00178308 \mathrm{H}}\right)}\right)
$$

in which C is the correction in inches of mercury, H is the height of the barometer above sea level in feet, and T is the mean temperature, in degrees Rankine (degrees Fahrenheit plus 459.67°), of the air between the barometer and sea level. At sea the outside air temperature is sufficiently accurate for this purpose.

Table 32. Correction of Barometer Reading for Gravity - The height of the column of a mercury barometer is affected by the force of gravity, which changes with latitude and is approximately equal along any parallel of latitude. The average gravitational force at latitude $45^{\circ} 32^{\prime} 40^{\prime \prime}$ is used as the standard for calibration. This table provides a correction to convert the observed reading at any other latitude to the corresponding value at latitude $45^{\circ} 32^{\prime} 40^{\prime \prime}$. Enter the table with the latitude, take out the correction, and apply in accordance with the sign given. This correction does not apply to aneroid barometers.

The correction was computed using the formula:

$$
\begin{aligned}
\mathrm{C}= & \mathrm{B}\left(-0.002637 \cos 2 \mathrm{~L}+0.000006 \cos ^{2} 2 \mathrm{~L}\right. \\
& -0.000050) .
\end{aligned}
$$

in which C is the correction in inches, B is the observed reading of the barometer (corrected for temperature and instrumental errors) in inches of mercury, and L is the latitude. This table was computed for a standard height of 30 inches.

Table 33. Correction of Barometer Reading for Temperature - Because of the difference in expansion of the mercury column of a mercurial barometer and that of the brass scale by which the height is measured, a correction should be applied to the reading when the temperature differs from the standard used for calibration of the instrument. To find the correction, enter this table with the temperature in degrees Fahrenheit and the barometer reading. Apply the correction in accordance with the sign given. This correction does not apply to aneroid barometers.

The standard temperature used for calibration is $32^{\circ} \mathrm{F}$ for the mercury, and $62^{\circ} \mathrm{F}$ for the brass. The correction was computed using the formula:

$$
C=-B \frac{\mathrm{~m}\left(\mathrm{~T}-32^{\circ}\right)-1\left(\mathrm{~T}-62^{\circ}\right)}{1+\mathrm{m}\left(\mathrm{~T}-32^{\circ}\right)}
$$

in which C is the correction in inches, B is the observed reading of the barometer in inches of mercury, m is the coefficient of cubical expansion of mercury $=0.0001010$ cubic inches per degree $F, 1$ is the coefficient of linear expansion of brass $=0.0000102$ inches per degree F, and T is the temperature of the attached thermometer in degrees F. Substituting the values for m and 1 and simplifying:

$$
\mathrm{C}=-\mathrm{B} \frac{\mathrm{~T}-28.630^{\circ}}{1.1123 \mathrm{~T}+10978^{\circ}}
$$

The minus sign before B indicates that the correction is negative if the temperature is more than 28.630°.

Table 34. Conversion Table for hecto-Pascals (Millibars), Inches of Mercury, and Millimeters of Mercury

- The reading of a barometer in inches or millimeters of mercury corresponding to a given reading in hecto-Pascals can be found directly from this table.

The formula for the pressure in hecto-Pascals is:

$$
\mathrm{P}=\frac{\mathrm{B}_{\mathrm{m}} \mathrm{D}_{\mathrm{g}}}{1000}
$$

in which P is the atmospheric pressure in hecto-Pascals, B_{m} is the height of the column of mercury in millimeters, D is
the density of mercury $=13.5951$ grams per cubic centimeter, and g is the standard value of gravity $=980.665$ dynes. Substituting numerical values:

$$
\begin{aligned}
& \mathrm{P}=1.33322 \mathrm{~B}_{\mathrm{m}} \text {, and } \\
& \mathrm{B}_{\mathrm{m}}=\frac{\mathrm{P}}{1.33322}=0.750064 \mathrm{P}
\end{aligned}
$$

Since one millimeter $=0.750064$ inches

$$
\mathrm{B}_{\mathrm{i}}=\frac{0.03937 \mathrm{P}}{1.33322}=0.0295300 \mathrm{P}
$$

in which B_{i} is the height of the column of mercury in inches.

Table 35. Relative Humidity - To determine the relative humidity of the atmosphere, enter this table with the dry-bulb (air) temperature (F), and the difference between the dry-bulb and wet-bulb temperatures (F). The value taken from the table is the approximate percentage of relative humidity. If the dry-bulb and wet-bulb temperatures are the same, relative humidity is 100 percent.

The table was computed using the formula:

$$
\mathrm{R}=\frac{100_{\mathrm{e}}}{\mathrm{e}_{\mathrm{w}}}
$$

in which R is the approximate relative humidity in percent, e is the ambient vapor pressure, and e_{w} is the saturation vapor pressure over water at dry-bulb temperature. Professor Ferrel's psychrometric formula was used for computation of e:

$$
\mathrm{e}^{\prime}-\left(0.000367 \mathrm{P}\left(\mathrm{t}-\mathrm{t}^{\prime}\right)\left(1+\frac{\mathrm{t}-32^{\circ}}{1571}\right)\right)
$$

in which e is the ambient vapor pressure in millibars, e^{\prime} is the saturation vapor pressure in millibars at wet-bulb temperature with respect to water, P is the atmospheric pressure (the millibar equivalent of 30 inches of mercury is used for this table), t is the dry-bulb temperature in degrees Fahrenheit, and t^{\prime} is the wet-bulb temperature in degrees Fahrenheit.

The values of e_{w} were taken from the International Meteorological Organization Publication Number 79, 1951, table 2, pages 82-83.

Table 36. Dew Point - To determine the dew point, enter this table with the dry-bulb (air) temperature (F), and the difference between the dry-bulb and wet-bulb temperatures (F). The value taken from the table is the dew point in degrees Fahrenheit. If the dry-bulb and wet-bulb temperatures are the same, the air is at or below the dew point.

	86888			－amoño゙no －Nmtinorma				 ＋oNVOCNONO 	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}\right.$							
				\％${ }^{\text {m }}$	7 q	¢\％	－	－	¢	¢ ${ }_{\text {d }}$	\％	¢্লু		－	－	
		a													$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\infty}{\triangle} \\ & \end{aligned}$	
		\bigcirc		子 7×7 \％	子 ${ }^{\text {g ¢ ¢ }}$	\％om ${ }^{\circ}$		\cdots			Mr	－	＂	－	－	0
		∞													$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{\infty}{\triangle} \end{aligned}$	
		\checkmark		子 \％\％\％	7 \％号年	유유융N	¢ ¢ ¢ ¢ ¢	－			\cdots	－		－	${ }^{\text {a }}$	0
		\wedge					$\begin{aligned} & \text { M. } \begin{array}{c} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \\ & \hline \end{aligned}$								$\underset{\sim}{\underset{\sim}{\infty}}$	
		\checkmark		9\％97	7979\％	\％os．	的墭的年	\bigcirc		¢			앋	－	$\stackrel{\text { a }}{ }$	
		\bigcirc													$\underset{\sim}{\infty}$	
		\checkmark		子 7 子 7	7 7 号尔	웅 $\square^{\infty} \times$	\cdots	¢ M M M M			¢	－		－	${ }_{\sim}^{\sim}$	O
		n													$\begin{aligned} & \underset{\sim}{\underset{N}{N}} \\ & \stackrel{n}{n} \end{aligned}$	
					7 7 于 ${ }^{\text {为 }}$	\bigcirc	的 \times 的的盛	－ 0			\cdots	－			त	
		\checkmark													$\begin{aligned} & \text { N } \\ & \end{aligned}$	
		\checkmark		9\％\％\％\％		$\stackrel{\sim}{\circ}$ \％${ }^{\circ}$	\％¢ ¢ ¢	\bigcirc			示寺	－	＂$\vec{m} \vec{m}$			
		m													$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{=} \end{aligned}$	
		\checkmark		子学学年7	子779 子		\cdots			な $\begin{gathered}\text { ¢ } \\ \text { d }\end{gathered}$				－	$\stackrel{\text { a }}{ }$	O
		\sim													骨	
		\square		ま \％\％\％\％	7 ¢ ¢ ¢ ¢		的而的的的			＋	\cdots	－			A	O
		－								$\begin{aligned} & 0 \text { Nn n } \\ & \text { io } \\ & 0.0 \\ & \hline \end{aligned}$					－	
		\checkmark		子 ${ }^{\text {尔 }}$ 子 7	子小す戸「		为	\％		\％ry		\％		－	d	0
		－													枵	\bigcirc
		\％		Sosす	능 0_{0}°	さのさ	へ	ลูત̃̃				¢	すきすきす	ぞ゚さがす	$\stackrel{8}{n}$	$\stackrel{\circ}{8}$

																	－＝	－＝	\bigcirc	\bigcirc	\bigcirc				n n	それそさ	\underline{n}	\checkmark
																a												の
																\checkmark	こここご	さソ，	－＝¢－－	ニ－¢－¢－	－－¢－！	－！－¢ ！		ツ！べ，そ	いさヅさ	ざ気気	\pm	
																∞											$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{子}{\infty} \\ & \hline \end{aligned}$	∞
																\checkmark	$\underline{\underline{0} \text { ¢ }}$	ざさ	ェニさ－＝	－上	－－！¢ ¢－	そ－！！¢	－い い い ！	ヅいいそ	ざ気い		$\stackrel{n}{2}$	O
																\wedge											$\begin{array}{\|c} \hline \infty \\ \infty \\ \dot{\sim} \\ \hline \end{array}$	
																\checkmark	ミこのさち	ミ上゚こさ		－－¢－－	－－¢ ¢－	－－－¢ ¢		い そ い	ぞいざ			0
																\bigcirc											$\begin{array}{\|c} \underset{\lambda}{2} \\ \stackrel{y}{7} \end{array}$	\bigcirc
																\checkmark	上ニッ 5	「ござ	$\underline{-}$－$=$－		$\bigcirc \underline{-}$	－ッ ¢ ¢ ¢	－ッ ¢ ¢		いいざさ	ざ，	$\stackrel{n}{n}$	O
																in											$\stackrel{+}{\stackrel{\infty}{+}}$	n
																\square	※こここち	こ「こさ	ᄃ－	¢ ¢ ¢－－	－－¢－¢	－こ こ こ ！		－そ に そ	ぞにぞ		\pm	
																\checkmark											$\stackrel{\stackrel{\rightharpoonup}{\lambda}}{\underset{子}{7}}$	＋
																\square		ここここ上		－¢ ¢－¢	－－－－¢	¢－¢ ¢－	－ッ ワ ！		ぞ吅		\pm	\bigcirc
																m											$\begin{array}{\|l} \hline \stackrel{\circ}{2} \\ \stackrel{y}{7} \\ \hline \end{array}$	n
																\checkmark	こここの，	こここ゚さ	－＝こ－5	ニセ ¢－¢	－－¢－¢	－¢－と	ヅッ	ツ！！！！		さささ さ	$\underline{\sim}$	\bigcirc
																\sim											$\underset{~ \underset{~}{7}}{\underset{子}{\prime}}$	N
																\checkmark		こ上こさ゚	上ㅇำ	－こ－¢		－に－¢	－－－！！	ツツソヅ	ヅッささ	ツソツソさ	－	O
																－											$\frac{\grave{N}}{\stackrel{\rightharpoonup}{J}}$	
																\checkmark	へツ」ここ	こここさ	こ こ こ こ	－¢ ¢ こ ¢	－¢ ¢－¢	－¢ ¢ ¢ ¢	ヅッぞ	－ツ ツ そ	いッツゾ	ど さ さ ！	$\underline{\square}$	O
																－											$\stackrel{\text { N }}{\stackrel{\text { N }}{\text { a }}}$	\bigcirc
																亿				亿ి心.0	尺તતતતNતતતN	べำかっ NतNतN	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$			8	Ż

	$\begin{aligned} & 8 \\ & \vdots \\ & \vdots \\ & 0.0 \\ & \hline 0 \end{aligned}$	霆			－mant	nomos				－n＋m	－nores			$=-\infty m+\infty$	－$\times 1000$		－nmat	＋norm	
											Bee eig								
														䇫			$\underline{=-5}$		
		\cdots								达			噱			${ }^{1}$	${ }_{\text {\％}}$		
																	\％	28	
		－																	
		玄	${ }_{5}$		合品吕			－			\％rana				－\％\％\％		等吉学き	－\％\％\％ix	

	88$i=1$8$i 8$$i 8$		$\begin{aligned} & 9- \text {-Nmナnorma } \\ &- \text {-Nmナnorma } \end{aligned}$											
				のロッのロ	ののの号	こ゚ ¢のの	ののののの	ののの号の	\bigcirc	のの	のののの	，	$\stackrel{ }{ }$	\bigcirc
		a	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { Nod } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$										$$	a
		\square	－のの은	－ののㅇa	－¢－，	のののの？						¢のの 0		－
		∞											$\begin{aligned} & \hline 0.0 \\ & \hline 0 \\ & \hline 6 \\ & \hline \end{aligned}$	∞
		\checkmark	のㅇo	のㅇoのㄴ	のののの禹	ののの号の	Oのの吅	ののののの	ののののの	ののの	¢のののの	ののかの的	∞	J
		\checkmark											$$	－
		$\bar{\square}$	－¢ ¢－	－のの？の	－aの？	－－¢ の	の？	のํoのa	ののののの	ののののの	のののかの	のかののの	\bigcirc	\bigcirc
		\bigcirc											$$	\bigcirc
		\square	－aのの过	の응	の느a	ののののの	ののののの	ののののa	－9の	のののの年	¢	析		\square
		in											$\begin{array}{\|c} 9 \\ \hline 0 \\ 0 \\ 0 \end{array}$	n
		\checkmark	の응a	Oのの응	のののの？		のののの戥	のののの可	のののの禹	のomon		ののゃのの	－	\bigcirc
		\checkmark											$\begin{aligned} & \underset{\sim}{N} \\ & \underset{o}{6} \end{aligned}$	\checkmark
		\checkmark	－のののこ	の으の	－¢¢っの	－ののこの	このののの	ののののの	ののののの	ののののか	ののののの	ののののの	\bigcirc	\checkmark
		\cdots												m
		\checkmark	の○○○の	こののの？	ののののの	のこ゚のの	のののこの	ののののの	ののののの	ののののの	ののののの	のかののの	\bigcirc	\square
		\sim											$\stackrel{ \pm}{\square}$	\sim
		$\overline{0}$	－¢응	の응	Oのの	ののののの	のこ゚のの	ののののの	ののののか	のかののの	のののかの	ののの ${ }^{\text {a }}$	∞	\checkmark
		－											$\begin{array}{\|c} \hline 0 \\ \text { Q2 } \\ 0 \end{array}$	－
		－	○のののの	－！のの！	の○！のの	○ののの？	のの大の戥	こののの吅	のののの戥	ののののの	ののかの	－¢ ¢ の	\bigcirc	\checkmark
		－											N	－
		\％	号守年㜽缶			ぞも ¢ ¢ ¢ ¢ ¢	号守年年寺	会守守冓守	¢	¢	身可気夺夺		$\stackrel{\circ}{6}$	亿

					－Nmすいもかのo							$\begin{aligned} & -ー N N m+\operatorname{tnn} \\ & -N m+n \sigma r \infty a \end{aligned}$		
			$\rightarrow \infty \times r \infty$	－rrrr	－$-1+\infty$	－－r	－rrrr	－rrrr	－－－－	－rrra	－rrrr	－6「00	\cdots	\checkmark
		a											$\stackrel{\rightharpoonup}{\sim}$	a
		\square		$\cdots \times \sim$	「	－	－	\bigcirc	へrrrr	「r－	－	－		0
		∞											$\stackrel{\sim}{\text { ¢ }}$	∞
		\square	rrrrr	－¢rr	－rrrr	へrrr	rrrrr	－rrrr	へーrr	－	－r•	へrへrィ		τ
		－											$\underset{\sim}{\infty}$	－
		\checkmark	－	「rr•	－「	－	－	－rr1	－	－6「へr	－rr6r	－6060		0
		\bigcirc											区	\bigcirc
		\checkmark	¢ヶヶrr	の「へ「「	「「「が	「「rar	「八rrr	入rr66	－rrrr	6rrrr	－6rrr	－rrra		τ
		n												n
		\bigcirc	$\infty \infty \times \infty$	「rorr	¢ヶヶr	「rrra	－	ヶrrrr	个rrrr	－r＾r	－「6ヶ6	「rrrィ		σ
		＋											$\stackrel{\infty}{\frac{\infty}{m}}$	\pm
		\square	へ「ハの	「rrrr		人rrrr	「rrrr	「「6「斤	「6八rr	「rrar	「八rィr	－－		\checkmark
		\cdots											$\underset{\sim}{\bar{m}}$	m
		\square	「rrrr	「r「rr	「rrrr	「rrrr	「rrrr	「rrrr	へヶヶヶ6	－ 666	6r＾6r	「6rrr		τ
		\sim											殅	\sim
		\square	のヶrrr	「かヶrr	「rrrr	「rrrr	「rrrr	「rrrr	へ－6rr	－6ヶrr	－6八rr	－rrrr		\checkmark
		－											－	－
		\square	－¢rr	「rrm「	rrrrr	「rrrr	「ヶrrr	rrrrr	ヶrrrr	rrrrr	－	「ヶror		τ
		－											$\underset{\sim}{\text { à }}$	－
		ż	\％ठig oion		$\frac{0}{6}-\frac{1}{6} \frac{9}{6}$	$\frac{n}{6} \frac{1}{6} \frac{\infty}{6} \frac{0}{6}$	⿹్ర－	N్ర勺6	－శ్రై				\％	Ż

IPR2017-00946 Garmin EX2001 Page 581

	8$\stackrel{0}{0}$$\stackrel{1}{1}$$i$			－－－anm	ntam								ancmata	
														\bigcirc
						Na								\bigcirc
			\bigcirc	\cdots	－	\bigcirc								
														－
				－										
		\bigcirc									Conczeq			\bigcirc
		\bigcirc		－						－			－	
		n	\checkmark			Oex								
		＋												＋
				\cdots										
													Cog ex eig in	
									Fだ					\sim
							¢\％			－	－7 75 \％	同	No	－
		$\stackrel{\circ}{8}$	$\stackrel{\circ}{\circ}$			\％¢ ¢ ¢	2\％\％\％	RECNE		戸ぁめ゙めす	2\％¢ ¢ \％	\＆よずす		$\stackrel{\circ}{8}$

	88888810													
			，	戌わnmm						いいといm	＋nnm	nomm	－	0
		a											$\begin{aligned} & \infty \\ & \substack{\infty \\ 4 \\ \\ \hline \\ \hline} \end{aligned}$	\square
		\bigcirc	的幺小的 6	いいいいい	いいいいの		のnmわn	いいいいい		＋小大mm	のいいい	mamかt	m	\bigcirc
		∞											$\begin{aligned} & \text { Not } \\ & \substack{4 \\ \\ \hline} \end{aligned}$	∞
		\checkmark	mいnnm	いいいが	mわれmn	いいろmい	いいいいn	＋んわらい	mわnnn	－		いいいいか		0
		－											$\begin{array}{\|c} \infty \\ \substack{\infty \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \hline} \end{array}$	
		\checkmark	mun6m	いい6mn	のnのmn	的mmm	nntmn	的以心mt	m¢m＋n	いいろいい	いいいいn	いいいず	－	\bigcirc
		\bigcirc											$\begin{aligned} & \mathbf{n} \\ & \substack{2 \\ 6 \\ \\ \hline} \end{aligned}$	\bigcirc
		\bigcirc	n	N	为以的	nnmmn	いnmmm		m¢mmm	いいろmt	いいいいn	＋のmらm	n	\bigcirc
		n											－	n
		\square	mmmmn	いいいが	m6nnm	nnmmm	mbmmm	nmmmn	nn tnn		＋nn + n	いい + n	＋	O
		＋				$\begin{aligned} & \text { NNNNN } \\ & \text { NiN Noñ } \\ & \text { NNONN } \end{aligned}$							$\xrightarrow{ \pm}$	\checkmark
		\checkmark	nnmmn	－	mnmmn	－	mmmmm	nnmmm	mnmmn	nnmm	のnnmm	mmmmm	n	0
		m											容	m
		\square	mmmmn	いいいが	mわmmn	nnmmm	いいいいの	いいいが	mmmmn	いいいいか	い大nが	mいいいt	m	\bigcirc
		\sim											$\begin{aligned} & \pm \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	\sim
		\checkmark	nnmい	の6mmn	mmmmn	nnmmn	nnmmn	いいmいn	$n+m n n$	いいいいの	がnn＋	n＋mmn	－	\checkmark
		－											－	－
		\checkmark	mいnmm	いいが的	約いい		nnmいn	いいいいn	nnmmn	いいいいい		いいい＋6	－	\checkmark
		\bigcirc											－	\bigcirc
		亿̇			O－	No	$\stackrel{\circ}{\infty} \mathbb{N}_{\infty}^{N} \underset{\infty}{\infty}$	$\cdots \underset{\infty}{n} \begin{aligned} & \text { N } \\ & \infty \\ & \infty\end{aligned}$	$\underset{\infty}{\infty} \underset{\infty}{\infty} \underset{\infty}{\infty} \infty_{\infty}^{\infty} \underset{\infty}{+}$	$\omega_{\infty}^{\infty}{ }_{\infty}^{\infty} \underbrace{\infty}_{\infty} \infty$	O-	ño	\％	خ

			＋$+\infty$
			5
	容		言 $=$
	\because		$\stackrel{8}{8}$
	言－		坛
	亏		E
	者		坛二
	포즤		＂
	容		坛
	8		\％
	容－		过－
	気		$\xrightarrow{8}$
	\bigcirc		$+\stackrel{\circ}{2}$

	\％		5
	容		云－
	8		$\stackrel{4}{3}$
	坛		云－
	を		5
	㝘		苭
	E		$\stackrel{\square}{8}$
	容		坛－
	8		$\stackrel{\square}{\square}$
	言	वेন	訨
			8
	$\stackrel{1}{\sim}$		＋九ั欠

			$\stackrel{\sim}{\infty}$
	$\stackrel{\square}{8}$		\cdots
	迷－		首
	$\ddot{\square}$		$\stackrel{8}{8}$
	言		言
	を		E
	违－		云
	E		$\stackrel{\square}{8}$
	年		詨
	8		$\stackrel{\square}{6}$
	言－		言
	\％		$\stackrel{8}{4}$
			$\stackrel{\circ}{\circ}$

IPR2017-00946 Garmin EX2001 Page 592

IPR2017-00946 Garmin EX2001 Page 594

IPR2017-00946 Garmin EX2001 Page 596

IPR2017-00946 Garmin EX2001 Page 600

IPR2017-00946 Garmin EX2001 Page 602

IPR2017-00946 Garmin EX2001 Page 604

IPR2017-00946 Garmin EX2001 Page 606

	$\begin{array}{\|c} \hline \stackrel{\infty}{2} \\ \underset{\sim}{2} \\ \downarrow \\ z \\ 8 \end{array}$	 							勺さ	¿ことこも				$+\infty$ $+\infty$ + $=$
	辰	000－0000－00－000－000－00－00－00－00－00－00－00－00－0－00－0－00－0－0－00												言－
	\because											No		8
	亏													픋
	言－													容
	E													¢
	8										notozaz			\％
	家													示－
														$\frac{8}{8}$$+\frac{4}{\square}$
			－の	のコこのさ	nセこのの			－	mimem	なち尔年	なが守号		inisincost	

			 Bib											
		0000000000000000－00000000000－0000000－000000－00000－0000－0000－												言－
	$\ddot{\square}$													8
	$\stackrel{\square}{\square}$													플
	容													言
	E	（1）												$\stackrel{\square}{8}$
	4								0			N		$\stackrel{\square}{0}$
	会													言－
	$\stackrel{y}{5}$									$\begin{aligned} & x \\ & 0 \end{aligned}$				8
			のしroの9	¢コさのさ	のここのの	ロ̇त̇	入さacai			なテダダ	なが枵年			$\stackrel{\circ}{6}$

IPR2017－00946
Garmin EX2001 Page 608

	\mid	 												
	宗二												－－－－－	言二
	\＃													8
	¢													픠
	运													言二
	E													¢
	¢													\＃
	运二	¢্ণী												言二
	寻									$\begin{aligned} & n \\ & \infty \end{aligned}$				¢
			いいイかの		の 0 この 2	ลิลत̃ส			ぶ¢				的识的的的8	\％

			 											$+\infty$ $+\infty$ + \vdots
	标													誫－
	\％									Co ex ex				8
	＂													E
	詨													\％－
	포즤										$\mathfrak{c c o c}$			亏ั
	8					lan						$0 \begin{aligned} & 0 \\ & 0 \end{aligned}$		\％
	詺－													訨
	F													8
		－ーのツサ	norma	－ニェのさ	nここのの					なデ年す				$\stackrel{+}{\square}$

IPR2017－00946

		Bonnin				タががが								
	$\begin{array}{\|c} \text { 这 } \\ \hline \\ \vdots \end{array}$													浐二
														5
	亏													İ
	皆													栜二
	⿹ㅢ													¢
	4													\％
	完													這二
	$\underset{\sim}{c}+\stackrel{y}{a}$													8
			いいフのの	のニさ	にもへのの	ลิสสัส			¢m¢	子テ尔等ま	ぞチ「ますか	为的的的志的	in in in in $^{\text {a }} 8$	＋

	\mid	8 动的活										$\left\|\frac{20 \infty}{\mid O}\right\|$		$+\infty$ + \downarrow \vdots
	首二													㝘二
	\％													4
	है													E
	运													边
	E	잉												¢
	¢													\pm
	发二													言二
	$\frac{\pi}{G}$						$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$							8
			いしイかの		のソこのの				¢immme	子すぎ等年	などながす	号に的心岕		0

		$\frac{\text { - onning }}{\text { notong }}$			$\frac{\text { 子まずす }}{\text { 子 }}$									$+\frac{0}{\infty}$ + $\stackrel{y}{6}$
	誫	－तのलの－	－											云－
	$\ddot{\square}$			$\begin{aligned} & \text { 筞寺等筞管客 } \end{aligned}$						$\begin{aligned} & 2 \\ & y_{0} \\ & \text { den } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{ll} \infty & 0 \\ 0 & 0 \end{array}$	$\stackrel{\square}{8}$
	亏													I
	标													容－
	포즤						AO O							¢
	8										0			\％
	标													誫
	\％							$0 \begin{aligned} & \text { Rog } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						8
		－－－－mt	norma	のニさのさ	nセニッの				がmmo	ますチ年		砢的的年		$\stackrel{\circ}{\circ}$

IPR2017-00946

		－のがにが 	がすがら 						ウオホホオ ain 웅 					－
	0													
	\＃			ne eabe	Nex									$\stackrel{\square}{6}$
	¢									$\begin{aligned} & 20 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				E
	告													這－
	플				$\mathfrak{c c c}$								Concon on	亏
	\％					$\begin{aligned} & 5 \\ & 0 \end{aligned}$								\％
	言二													開
														\％
					こ゚ニセの					ます尔す	なが年年き			\hat{O}

	$\xrightarrow{\stackrel{\circ}{6}} \stackrel{\square}{\square}$	Bのがから 	が永がら											
	言－													言
	\because				Re lay		$\begin{aligned} & 0-m \\ & 0 \end{aligned}$	0						\％
	¢													¢
	－													言
	토즤		若							R				$\stackrel{\square}{8}$
	4		$\left\{\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$		0									\％
	云－													标
										$\mathfrak{c c c o s}$				$\stackrel{8}{8}$
				のニさのさ	nセこのの					ず笛等年			的的的号为	N

IPR2017－00946

IPR2017-00946

			 				¢\％	¢ocan		®こロニ゚				N
	言，													言－
	$\ddot{\square}$				Red					0		0		8
	＂													E
	答－													云
	E													亏
	\％											0		\because
	云													言
														8
		－nのす！		ロニェのさ	nセこのの	ন̇ন্নঞ				なテ尔ま	なが枵夺			$+0$

		Bのがから 												$+\stackrel{1}{\sim}$ + + ¢
	言－													言－
	\％				$\begin{array}{ll} 1 & \infty \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$				$\begin{array}{lll} l & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$					$\stackrel{8}{8}$
	亏ี													I
	－													嗸
	E													亏ั
	8													\％
	－													誫
														8
				こニッのさ	のセこのの	¢নत入入	セicacai		¢mbmp	なデ年年	なが号す			$\stackrel{\circ}{-}$

IPR2017－00946

IPR2017-00946

	－	Bormin		枵孚なか	なま年年を			¢onconco	ウさかべ	のこのさ゚				8
	8													5
	容													
	\％						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							\％
	亏													E
	言－													－
	프즤													亏
	\％		$\begin{aligned} & \text { monga } \\ & \text { 等等寺寺 } \end{aligned}$											8
	言	¢ゥゥ												过
														$\stackrel{8}{8}$
				のコさのさ	nセこのの	वッオオ			ウゅらめが	なテ年ず		約的が寺	inn的的品	\cdots

		$\frac{-8 \sin \text { in }}{\text { A. }}$												
	玄													言－
	$\ddot{\%}$			 －	$\begin{array}{ll} \text { Nos } \\ 0 & 0 \\ 0 & 6 \\ 0 & 0 \\ 0 \end{array}$									8
	¢													I
	－													容
	E										ann mon		مin mom	亏ั
	8													\％
	誫													言
				$\mathfrak{N}_{\infty}^{2}$ $\begin{aligned} & \text { nompon mon } \\ & \text { nomp } \end{aligned}$										$\stackrel{8}{8}$
				ロニッのさ	セッニロの	®নतูへ			¢nがmemo	なテ年年				을

IPR2017－00946

	$\left\lvert\, \begin{gathered} 0 \\ i \\ \vdots \\ \downarrow \\ 8 \\ 8 \end{gathered} \rightarrow\right.$		活出がに			子omero								$\left[\begin{array}{c} +0 \\ \downarrow \\ \vdots \\ \vdots \end{array}\right.$
	云													答二
	\％						$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$							5
	亏ٌ													프즤
	发－													边
	E													¢
	4													\％
	完：													這二
														8
		－－Nmす	いいイかの	のニさ		ลิล สสホ		¢্লিলুলু	¢¢¢	子テブ等		为的的的志的	in in in ${ }_{\text {c }}$	\cdots

		Boin in		号車がな	そま ダブ		ぶmmべ		べへべ入	へのパニ	のさツさコ	Oのかへ○	いすのN－O	
	$\stackrel{a}{8}$													E
	云－	n	いいいかっか	のにい	Onnmin	0			ninom	no	\bigcirc	nonno	nnomin	告二
	U													\％
	＂													E
	这													边
	E													¢
	4													\＃
	這－													穴
														$\stackrel{8}{8}$
			いしトかの		のヒこのの	ลิลत̃ホ				子デ年等	子゚「号夺	隹ら的的寺		를

IPR2017－00946

		Bonnin 						moñ					 	¢ \downarrow ¢
	言－	0000000000000000000000000000000000100000000000r000000r00												
	\％													$\%$
	훌													E
	答－													－
	E													亏
	\％													\％
	家													标
		Ra 뭉												$\stackrel{8}{8}$
		－nलすい		Oこのツさ	ことこのの	वラオホの	がaかかへ			なテ年ま	なとな害年	砢的枵古		\square

	$\begin{gathered} i n \\ \stackrel{n}{\eta} \\ \downarrow \\ \stackrel{n}{8} \end{gathered}$												だきまの～が 	＋in
	言－	onouncor	0n6on	いーに，	ーッロット	n600n6	－			0 ロ606	吅	00 nob	0000 n	言－
	$\ddot{\%}$	$\begin{aligned} & \text { Aon on } \\ & \text { on on } \\ & 0 \\ & 0 \end{aligned}$												8
	¢													E
	言－	すよさ												容－
	気													亏
	\％													\because
	－													言－
		?	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 6 \\ & 0 \end{aligned}$		0				$\begin{aligned} & \text { An or rer } \\ & \hline \end{aligned}$	$\begin{aligned} 4 \\ 0 \end{aligned}$	8
				〇ニェのさ		でনポへ	ボ®ancon			なテす年年	なとながす			\pm

IPR2017－00946

	$\left\|\begin{array}{c} \stackrel{0}{1} \\ \stackrel{n}{2} \\ \vdots \\ \vdots \\ 8 \end{array}\right\|$					すがからか								$\left[\begin{array}{c} +\stackrel{\circ}{\sigma} \\ \downarrow \\ \vdots \end{array}\right.$
	首											ORN	Nornr	边
					$\begin{aligned} & a n d 2 n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$									\％
	を													E
	這													边
	E					\mathfrak{l}								＂
	\％													\％
	耍：													這二
	$\begin{gathered} \stackrel{E}{a} \\ \stackrel{4}{\wedge} \\ \stackrel{\rightharpoonup}{N} \end{gathered}$													8
		－－Nmす	いもイかの	のニさのさ	こニニのの	ลลสู入		がलলmさ	inommen	ますぎ孚す			inisin mind	

		8 的禹的的		号すがす	ぞ年ブす		ぶらल゙̄		ベへボ入	のこのペ	こさのさニ	ののかへ・	いナmN－0	$+\underset{0}{2}$
	告二													边
	\％		$\begin{aligned} & \text { n } \\ & \text { or } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$											4
	¢													E
	速													容－
														¢
	\％													\＃
	发二													云：
						$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								8
			no	$\bigcirc こ さ ワ さ$	のッこのの				min mom	子すぎ等析	なもながす	为的的的㟧	沙的乐的吕	$\underline{\square}$

IPR2017－00946

														$+\begin{gathered} +8 \\ + \\ + \\ \vdots \end{gathered}$
	云－													\％
	\％					$\begin{aligned} & 200 \\ & 0 \\ & 0 \end{aligned}$				$\left\{\begin{array}{l} 20 \\ 0 \\ 0 \\ 0 \end{array}\right)$				\％
	亏¢											Oo		E
	－													标
	E			0								\|loll		$\stackrel{\square}{8}$
	\％		an									orrrror		8
	－													云
							Ia							8
				9	nセこのの	¢तオ				なテ年年す	子どなが	吅らからず	的湤品号8	E

	$\left[\begin{array}{c} \stackrel{0}{n} \\ \stackrel{n}{\downarrow} \\ \stackrel{n}{8} \end{array}\right.$	 	ジからいが 											+ + + + -5
	－													云－
	$\ddot{\%}$				$\begin{aligned} & \text { nn wr } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ne no } \\ & 0 \end{aligned}$				8
	亏\％	तुव̣त̣त्व												픋
	－													辰－
	気	bo or od					0							亏
	8													\％
	言													誫
	5				$\begin{aligned} & n \\ & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					0				＋
		－ーッツナい	の	Oこののさ	ことこのの			戸ーがmさ	¢ゅ¢めが	なよす年ま	なとながす	砢何动		

IPR2017－00946

IPR2017-00946

	$\xrightarrow{\circ} \mathrm{O} \rightarrow$	Bon为的品 	ジ治がに 万人											in + + $i=1$
	0													
	\％											$\begin{aligned} & \text { non on } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		8
	¢		$\left\{\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$						$\begin{array}{ll} 2 & 0 \\ A=A & 0 \\ 0 & 0 \end{array}$					E
	O													－
	E	Nan							Br fror				No	亏
	4			$\begin{aligned} & 2 \\ & 20 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Cole ex ed ed	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								\％
	云													标
			NMMMA							$\mathfrak{c c o s}$				$\stackrel{8}{8}$
					nセこのの	ন্যのぶ	毋゙¢	¢－लからさ		なテ尔ま		号ら的が古	的的的品8	A

													to	
	标													\％
	$\mathscr{*}$		20 m				Nr							8
	¢													E
	云													告
	E													亏
	8					$\begin{array}{ll} \text { An } \\ \text { An } \\ \text { An } \\ 0 \end{array}$	$\begin{aligned} & \infty \\ & 0 \end{aligned}$							\％
	言													令－
										 				$\stackrel{8}{8}$
				ロニェッさ	のセニのの					なテ年年	など枵が	がら的が寺	的的的的号	${ }_{\text {N }}$

	$\left\|\begin{array}{c} \stackrel{\circ}{寸} \\ \stackrel{7}{t} \\ \stackrel{8}{8} \end{array}\right\|$													$-\begin{gathered} +\frac{0}{1} \\ \downarrow \\ \stackrel{z}{\sigma} \end{gathered}$
	訄二	かのののの	ののの	のののの	のののののの	$の \infty$	ののののの	ののののの○	Oのの	の	ののの○	ののののの	Oのののの	云二
	\％	$\begin{aligned} & \text { Bo } \\ & 0 \\ & 0 \end{aligned}$												¢
	亏													E
	发													边
	픚	ぞ												＂
	ك													\％
	云二													言
	$\begin{gathered} E \\ n \\ \stackrel{n}{4} \\ \stackrel{i n}{n} \rightarrow \end{gathered}$													है
		－－Nmす	in	こニさのさ	のレニのの				ふ＜＜mem	子テブ等ま			的法的乐的8	$\xrightarrow{\sim}$

	$\left\|\begin{array}{c} \frac{i n}{\square} \\ \underset{\downarrow}{2} \\ \stackrel{n}{8} \end{array}\right\|$	Bininin in	活示が的に n 											$+i n$ + \downarrow \square
	容－		の 0 の	の⿻⿱一冂山⿰丨丨丁口	のの	の	ののかのの	0∞			のののの	のののの	a	浐
	U									$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				4
	＂								$\left\{\begin{array}{l} n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$					E
	发二													衰二
	E													¢
	4						$\begin{array}{llll} 0 \\ 0 & 0 \\ \hline \end{array}$							\％
	芸二	のの												首
	$\left\|\begin{array}{c} E \\ v_{1} \\ \stackrel{\uparrow}{+} \\ \stackrel{\rightharpoonup}{m} \end{array}\right\|$													8
			いいヘかの	Oニさッさ	ごッペの	¢ิत入べへ		¢－mলm	ぶ¢	ますブが等	なすなが，	ジらのぶす	nin in mind	N

IPR2017－00946

	¢	Braminim		枵李な年		¢onemio	¢ぁmmm	¢จãaç		のこロニ゚	こさヘのニ			＋
	8													5
	云													
	\％							$\begin{aligned} & \text { now } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0			$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\ddot{\square}$
	5				風					0				E
	耍													－
	E	ミがきた －					$\left\{\begin{array}{l} \infty \\ \infty \end{array}\right.$						 	亏
	\％													\％
	家													詺
														$\stackrel{\square}{8}$
		－－amtrn		Oニさのさ	のロニーの	なーオふさ		প্লুからさ	ヵッゥめが	なテ尔ます				측

								$\frac{\infty \times \infty}{\infty}$					Cor zan	
	云－													言－
	$\check{\square}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$											8
	を							$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$						E
	詺													言－
	포즤							Coy						亏
	8								Alo					$\ddot{\square}$
	誫													誫
	$\begin{gathered} 5 \\ 5 \\ \hat{5} \\ 0 \\ e \end{gathered}$			Noctor	Wo en									$\stackrel{4}{8}$
		－－－＋＋	no		nここのの	¢̇নतが			ウゥ¢めが	ます年ます	など枵年	が的が寺	的的的枵号	（1）

IPR2017－00946

	$\begin{array}{\|c} \hline \stackrel{\circ}{寸} \\ \underset{\downarrow}{\downarrow} \\ \stackrel{6}{8} \end{array}$	Bininini 웅영융영영 	 						$\infty_{\infty}^{\infty} \infty \infty$			$\begin{array}{\|l\|l\|} \hline 0 & 0 \\ \hline \end{array}$		
	边－													宗－
	\％										\mathfrak{c}			\％
	亏亏													E
	运													管－
	픋													$\stackrel{\square}{8}$
	\％													8
	容二													容
														है
		－O－Nmさ	いもイかの	－こさのさ	のニレのの	¢スベへさ			Nimemen	なデ年す	なもな甼枵		inin的乐的8	ते

		8的禹的㶽 $\stackrel{\circ}{\circ}$												$-\begin{gathered} +\frac{0}{10} \\ \downarrow \\ \frac{5}{5} \end{gathered}$
	首													言二
	\％						$\left\lvert\, \begin{array}{lll} n & n & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}\right.$							5
	है													İ
	這													言－
	紅													\％
	\％													\＃
	竞－													袞こ
														8
		OーNのナ	いしトかの	$\bigcirc こ さ$ のさ	のセこのの					子テブ年す	ぞチ「がす			－

IPR2017－00946

	－													－
	$\ddot{\square}$	nor 0 0		$\begin{array}{lll} \text { 区 } \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$						Con on	Boca eq ed ed		$\begin{gathered} 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	¢
	\％	$\begin{aligned} & \text { a } 600 \\ & 0 \\ & 0 \end{aligned}$												프즤
	言－													言－
	E									Cox co mo				亏
	8	$\begin{aligned} & 2 \infty \\ & 020 \\ & 0 \end{aligned}$												$\stackrel{\square}{4}$
	㦴－													标
										\mathfrak{c}				8
			のレイかの	きニ の	のロこのの	¢̇オポ						号ららがす。		$\stackrel{\sim}{2}$

														$\underset{+}{+i}$
	答		$\simeq \Upsilon \simeq=$	E \simeq	I	I	\simeq	I	\simeq	$\mathfrak{\sim} \simeq \simeq$	$\simeq 9 \simeq ワ$	$\simeq \simeq \simeq \simeq 9$		這二
	\％													¢
	亏										$\begin{array}{lll} 0 & 0 & n \\ 0 & 0 \\ \infty & 0 & A \\ \infty & \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$			프즤
	安													边
	E						$\left.\begin{array}{ll} \infty & \text { to } \\ 0 & 0 \end{array}\right)$							＂
	\％									$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				\pm
	容：													言二
	$\begin{gathered} E \\ \bar{n} \\ \stackrel{\uparrow}{7} \\ \stackrel{\rightharpoonup}{7} \end{gathered}$													8
		－	い6イmの	〇ニさ	ワ゚ニのの	ถิล สสオ			¢memem	子デ等す	ぞチ「がす	品的的的的	inisis mind	\cdots

IPR2017－00946

IPR2017-00946

IPR2017-00946 Garmin EX2001 Page 632

IPR2017-00946

IPR2017-00946 Garmin EX2001 Page 634

	¢ ¢ ¢			minininininin	iningigigiog			$\stackrel{\stackrel{\rightharpoonup}{3}}{\substack{\text { a }}}$	
$\stackrel{\circ}{\circ}$	$\stackrel{\text { 号 }}{\substack{0}}$	0000000000 	0000000909 	のののののののののの 	$00000 \infty \infty \infty \infty \infty$ 	$\infty \infty \infty \infty \infty \infty \infty \infty \infty$ in in in $\infty_{n}^{\infty} \infty_{n}^{\infty} \infty_{n} \infty \infty_{n}$	 	$\stackrel{\text { ¢ }}{\substack{1 \\ 1}}$	$\stackrel{+}{\circ}$
$\stackrel{\circ}{0}$	家		－incuininining						
	$\grave{\Delta}$					 	nininininionio	苟	
	㗊	ナナナммммммм 	мलмलмलмलм๓ 	 7 Finninumin	พฺฺฺฺฺฺฺฺฺฺฺฺ 	inconincminchin	かioncimioin 	$\stackrel{\dot{\Delta}}{\circ}$	
	音							$\stackrel{\square}{\hat{4}}$	
	$\stackrel{\text { ¢ }}{\circ}$						quqquqquisi	－	
$\underset{\sim}{14}$	苟	 	0000000000 		 	 	 	$\stackrel{\dot{\Delta}}{\circ}$	$\stackrel{\circ}{+}$
$\begin{aligned} & \stackrel{8}{0} \\ & \stackrel{0}{0} \\ & \overbrace{4}^{4} \end{aligned}$	$\stackrel{\square}{0}$							$\stackrel{\square}{\square}$	
	¢ั்	－				の○ームmみn6 0 の 	0-ヘn+noroa 	－	¢
	浆	0000000000 roio ing in ioio io mummmmmme	 	かのののののコのロの $\infty \underset{\sim}{\infty} \dot{\infty} \infty \infty \infty \infty \infty \infty$ мммммммммलм	$\rightarrow \sigma \infty \infty \infty \infty \infty \infty \infty \infty$ mmmmmmmmm	$\infty \infty \infty, \infty, \infty, \infty, \infty$ 		$\stackrel{\text { ¢ }}{\circ}$	
	家		－				ヲさッざッへのので	荷	
$\stackrel{\circ}{\circ}$	$\stackrel{\dot{\text { ® }}}{ }$	 				miniompo io o		$\begin{aligned} & \stackrel{\rightharpoonup}{\breve{y}} \\ & \stackrel{1}{\dot{0}} \\ & \hline \end{aligned}$	
$\stackrel{\circ}{\circ}$	$$	$\nabla ल m ल m ल m ल$ તiodidininiond		 	 		－ーーー－00000 Goinnivirio	㐫	$\dot{\theta}$
	$\stackrel{\dot{n}}{0}$				－ললmminminmo		Finminininimis	$\stackrel{\stackrel{y y}{0}}{\dot{\Delta}}$	

$\frac{8}{8}$	玄						dinorocoo mid	\％	
	$\stackrel{\text { ¢ै }}{\text { ¢ }}$								
	－							$\stackrel{\text { gr }}{ }$	
	－							岸	
					वัतニतनतनतनत			๕	
								咅	$\stackrel{\circ}{\infty}$
		－				－			
						－6すo	－－ 0000000	\％	
	㐫							$\stackrel{\rightharpoonup}{n}$	
	¢	thbromor－in？				0		3	
			－					\％	
	咅		スヘベさn゚トャックロ	－¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢			ここのざここのの只	$\stackrel{\text { 合 }}{ }$	$\not \partial_{0}^{\circ}$
	¢ ¢		－m			M	Mrinuraing	$\stackrel{\text { ¹ }}{\substack{3}}$	
					$\infty \infty, \infty, \infty, \infty, \infty, \infty$ 			会	只茂萑
	咅	＋nいかのo	ここのざもこのので					咅	

IPR2017-00946 Garmin EX2001 Page 637

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& ¢ \& \& \& \& \& － \& \& J \& \\
\hline \[
8
\] \& \(\stackrel{3}{3}\) \& \begin{tabular}{l}
－000060060 \\

\end{tabular} \& \& \& なのmmmmmm \& \& \& \％ \& \\
\hline \multirow[t]{5}{*}{¢} \& 薜 \& \& \& す్ర \& \& \& \& 咅 \& \multirow[t]{2}{*}{} \\
\hline \& － \& \& \& \& \& \& \& 㟧 \& \\
\hline \& \[
\stackrel{y}{3}
\] \& \& \& \& \& \& \& \％ \& \\
\hline \& 咅 \& \& \& \& ごさのざ， \& \& \& 葂 \& \multirow[t]{3}{*}{\(\square\)

\％

¢}

\hline \& \％ \& － \& N¢ん \& \& \& \& \& 岢 \&

\hline \multirow[t]{5}{*}{|r} \& $\stackrel{3}{3}$ \& \& \& \& \& － \& ORENMJMoic \& － \&

\hline \& 莬 \& \& \& \& \& \& \& 咅 \&

\hline \& $\stackrel{\square}{2}$ \& \& \& \& \& － \& 小¢ \& $\stackrel{3}{3}$ \&

\hline \& $\stackrel{3}{3}$ \& \& mmmmmanay \& \& \& \& \& － \&

\hline \& 宸 \& \& \& あかめぁめめかめめめの \& \& \& ここのざヒこののく \& 荷 \&

\hline $$
8
$$ \& 安 \& －M． $000 \times \infty$ \& － \& \& \& \& － \& \multicolumn{2}{|r|}{辰}

\hline \[
\stackrel{\substack{\infty
 \sim}}{\substack{x}}

\] \& － \& \& \& \& \& \& | |
| :--- |
| | \& $\stackrel{\text { ¢ }}{\square}$ \& iod

\hline \& 菏 \& \& ここのざッこのので \& \& \& \& \& 菏 \&

\hline
\end{tabular}

IPR2017-00946

	㐫	－				－		J	
\circ	$\stackrel{3}{3}$				 			¢	\％
为象运	－			す্রర⿰亻弋				$\frac{\square}{\square}$	
	$\stackrel{\square}{\circ}$					mom mom on o dopo		$\stackrel{\sim}{3}$	
	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{y}{3} \\ & \hline \end{aligned}$		－					ถั	
	莅							$\frac{\square}{\square}$	\％
	$\stackrel{\square}{\circ}$						त्रंक्लंक्लंक्लंक्लंल	ป	
	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{3}{\circ} \\ & \hline \end{aligned}$	O－a				0 0 0 0 0		\％	
	咅							$\frac{\square}{6}$	
	$\stackrel{\circ}{\circ}$	－					M	$\stackrel{3}{3}$	
	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{3}{\circ} \\ & \hline \end{aligned}$	-100000000 	－		－ouounnnのn 			¢	
	咅	－					シーツざ吅こののて	$\frac{\square}{2}$	
名	¢		－iciciocicommm					$\stackrel{\text { a゙d }}{\substack{3 \\ 0}}$	\％
$\stackrel{\circ}{\infty}$	$\begin{aligned} & \stackrel{y}{3} \\ & \stackrel{3}{3} \\ & \hline \end{aligned}$							¢	Ad
	咅	－ヘかの过	ここのざここのので			子等すなもながすく		砣	

IPR2017-00946 Garmin EX2001 Page 641

IPR2017-00946 Garmin EX2001 Page 642

IPR2017-00946 Garmin EX2001 Page 643

IPR2017-00946 Garmin EX2001 Page 645

IPR2017-00946

IPR2017-00946 Garmin EX2001 Page 649

	\％	－						${ }_{\text {a }}^{\text {a }}$		
$8{ }^{\circ}$	S	Fmma					Rininion io	¢	O	
晾唇	立							咅	术发	
	\％	运家家家家家家它	arememer	Eスざgurug	ざロEERO゚EEE	Cuogeogeam				
	${ }^{4}$						－	¢		
	20				ここのさnローかの方			咅		
	㐫			－			ごぁ	$\xrightarrow{3}$		
								$\stackrel{\square}{\circ}$		
	立	त，${ }^{\text {anckm }}$				す̧acta88か88R				
	㐫				－			$\stackrel{\text { ar }}{\substack{3 \\ 0}}$		
	${ }^{3}$				 －ivinmmin	NF		玄		
	2						すこのさnセさめのロ	咅	$-\frac{1}{3}$	
题道	立		－		Noog	Boor oooroor	Cig igax	哥		
管言	运	Coin dio io m do				TV．		¢	妾	
	析							落		

IPR2017-00946 Garmin EX2001 Page 651

IPR2017-00946 Garmin EX2001 Page 653

	咅	－	Fatamation	（ex	－				
${ }^{8}$						－ $\bar{\sim}$		玄	\％
－	咅		－	すర్రర	－				${ }^{\text {a }}$
	咅								
	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 0 \\ 0 \\ \hline \end{array}$				（ex	－	－	仡	
	音	あぁめめめめめめ			ここのざロニーロの				
		Noordomejo ${ }^{\text {a }}$	Nrongon			No Mr－Mo dxo			
		$\stackrel{\rightharpoonup}{0} \dot{\sim}$				－－－－		狊	8
		నim				す̧actibっcior		咅	
	京			Ofoco					\mid
	$\left.\begin{array}{\|l\|l\|} \hline \frac{4}{3} \\ 0 \end{array} \right\rvert\,$			－		－	Rem	京	
	咅					す̧̧ర8をと8588こ	まこのさワロこめのを	硣	
虽	京								
號	－			NAT			तom		
				ন্లী				教	

	¢ ¢ ¢							－	
	$\stackrel{\text { ¢ }}{\substack{3 \\ 0}}$	мN－0のめைNon 	－nN－0のonもn 		い $ナ m N-O の \infty \infty N$ へooinidiciv 	○のナMN－0のめN 	 	¢ ¢	
	$\stackrel{\square}{4}$		－nimisinininind					守	
	$\dot{\circ}$		 					岢	
	$\stackrel{\text { 哥 }}{\text {－}}$			 	 	 	NN－0のかんものJ 	$\stackrel{\circ}{\circ}$	
	令				デフのさにもへのので		－	$\stackrel{\ddot{\partial}}{\square}$	
	$\stackrel{\text { ¢ }}{\circ}$							$\stackrel{\rightharpoonup}{3}$	
	$\stackrel{\text { 哥 }}{\text { ¢ }}$	○ntmN－000nt． $\dot{\sim} \infty \infty \infty \infty \infty \infty \infty$ mмmмmmmmм	 			 	 	$\stackrel{\text { ¢ }}{\circ}$	10
	令		－	ますがなとなが枵				$\stackrel{\rightharpoonup}{\Delta}$	
	$\dot{\Delta}$				-i ó ó			$\stackrel{\text { 号 }}{\substack{0 \\ 0}}$	－
	菏	Noogoorniom 		MN－OODNOON出 \ddagger	がmmmmmime	なッN゙ースかの moinionoobin	のなのNーOのが 	$\stackrel{\text { ¢ }}{\circ}$	
	\％								
ing in	¢ ¢							岢	
nin in	$\stackrel{\stackrel{\rightharpoonup}{3}}{3}$	orontmn－0．0． 	 		obodidiondombond		 	$\dot{\text { ¢́ }}$	
	会	－					minnuninining	$\stackrel{\rightharpoonup}{0}$	

	$\stackrel{\circ}{\circ}$							岢	
资乐		ルニสสสสสสสส	いJのN－Oの ananadanad	いn サ～NてOOON तनतNतNतNA	ontmN－OOOM 	 	 	¢ ¢ ¢	
	$\stackrel{\rightharpoonup}{\Delta}$			－		$\underset{\sim}{\infty} \infty \infty \infty$		$\stackrel{\rightharpoonup}{\hat{\circ}}$	
	$\stackrel{\dot{\circ}}{\circ}$				 			岢	
	－	－ののローロッサツN 	－Oのがもいなtm ベざががかがか		 	 		$\stackrel{\text { ¢ }}{\substack{\text { ® }}}$	
								$\frac{\stackrel{y y}{0}}{0}$	io
	㐫		ininioninininion					岢	
$\stackrel{\sim}{\sim}$	$\stackrel{\stackrel{3}{3}}{\stackrel{3}{\circ}}$			 			ninninno	¢	
	$\stackrel{\rightharpoonup}{\Delta}$		－					$\stackrel{H}{\square}$	
	¢่̊							$\stackrel{\text { ¢ }}{\substack{3 \\ 0}}$	
	菏	nininininio ico	mलN－o oonon		ゆめかめめからかのタ்	 	 	¢	
	$\stackrel{\square}{0}$				すごのすべの大のo゚タ				
ing	¢								
$\stackrel{i}{\infty} \mid \stackrel{i r}{c}$	$\stackrel{\stackrel{\rightharpoonup}{3}}{\stackrel{3}{\circ}}$	 	○○ニンヅージーか	$00 \infty \infty$ ron tm 	－000かわいすmm 	 	N－0の 	¢ ¢	inf in
	荷	－nmanormao	ここのざーべッの8				シinuminininc	菏	

IPR2017－00946 Garmin EX2001 Page 655

	$\stackrel{\text { ¢ }}{\substack{\circ}}$								
	$\stackrel{3}{3}$					imチMーO 		号	
$\stackrel{\circ}{\infty}$	咅							蓸	
	京			－				$\stackrel{3}{3}$	
								¢ ¢	
	畜	\pm			ここのざヒこののく			咅	
	克							$\stackrel{5}{4}$	
	$\left\|\begin{array}{c} \stackrel{a}{a} \\ \stackrel{a}{\dot{0}} \end{array}\right\|$	 						玄	\％
	咅							$\frac{\square}{\square}$	
	$\stackrel{\square}{\circ}$			no．om				－	
	$\stackrel{3}{3}$							¢ ¢	
	咅					すぐすむと\＆5か8つ	Jーツざッこのの穴	荟	
兑等	¢	－ommone	－					㟧	
	$\stackrel{3}{3}$							¿	Bo
	咅	－amtiormag	こさのざもさのので	－ananuancoim				菩	

IPR2017-00946 Garmin EX2001 Page 657

	®̀̇	－		－\％	\％\％				
\％${ }_{\square}^{\text {co }}$	O				フoabronco				¢88）
	咅								－\％
	$\stackrel{\text { ® }}{ }$	－							
	咅	可めぁぁぁんめんめめめる			ここのさにツさめの				
	玄			Kio		O			
		－Niminione ie		まेळ					®
	立	¢is							
	玄	नo		gmock					
	${ }_{3}$		Mangomer momominamon	－					
	咅			あ			すこのさワロロェのタ		
						－	莞		
				No no io m dis		－a			
			このペさnセこロので						

IPR2017-00946 Garmin EX2001 Page 659

	¢̀̇̀			Mon Mon	Nobon	anono				
里发				－					80	
－	咅								矿保	
	\％̀̀				ぞ			㻤		
							anormata	交		
	咅	¢ ${ }_{\text {¢ }} \times$						咅		
	荌			Mnonornormo						
			REVE					$\stackrel{\circ}{\circ}$		
F		す寸ন				す̧̧çabebeta				
			2．							
				－i ion ion faime						
	咅	－	Eanさniciciz				すこのさnセさめの天			
						honononono	Vononono			
				\％onの						
			ここのさnセさめロのて							

	$\stackrel{\text { ̇̀ }}{\circ}$		Momomodotod						
	令							拷	
	咅					$\underset{\sim}{\infty} \infty \infty \pm \infty \pm \infty \infty$ ¢		$\frac{\square}{\partial}$	
	\％							－	
	$\stackrel{\rightharpoonup}{3}$	FO			－			¢	
	立				ここのざヒこののタ			䓂	in
	－							状	
	$\stackrel{\stackrel{\rightharpoonup}{3}}{\overrightarrow{3}}$							㐫	
	咅					すぐすずもらか8゚		岦	
	$\stackrel{\text { ® }}{\substack{\text { a }}}$							$\stackrel{\text { a }}{\substack{3 \\ 0}}$	
	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{3} \\ \stackrel{3}{\circ} \end{array}\right\|$						－⿵人一⿰⺝刂	－	
	咅	－6\％dibibebi					ここのざもこののダ	咅	
佥全	京		तriorincommen	－	Ononon－o－			㟧	
$\stackrel{e}{\infty} \mid$	$\stackrel{\rightharpoonup}{3}$			－0000	 		ーロナのーロのにもす 	¢	
	咅	－nmtinuroas	ニัのざセこのので					䒾	

IPR2017－00946 Garmin EX2001 Page 661

	立	な．		Mancon	dion -itungo					
\％${ }_{\text {coz }}$	名	－		（eay		－			\％${ }_{6}$ d	
\％¢ ${ }_{\text {\％}}$	咅									
	ถั่	－				－	Nox	蚵		
								立		
	咅	$\overline{\text { ¢ }}$ ¢						咅		
	㐫	d	－					$\stackrel{\text { 觘 }}{ }$		
		Rono						$\stackrel{\infty}{8}$		
	咅									
	－	すこののタののロのロ								
				－		－		玄		
	离						－の8	咅		
\％${ }_{\text {a }}$	立				Tonch－o．	－				
\％${ }_{\sim}^{\text {a }}$	永			ন			ANa	咅		
			ここのさnセさめロのて							

IPR2017-00946 Garmin EX2001 Page 663

IPR2017-00946 Garmin EX2001 Page 665

IPR2017-00946 Garmin EX2001 Page 667

	京			－				$\stackrel{\text { ² }}{\substack{3}}$	
	$\stackrel{3}{3}$			下ncome 					
	咅							荟	
	$\stackrel{\text { ® }}{\text { ® }}$					oronjooxdo		$\stackrel{\text { ax }}{ }$	
								¢	
	咅				ここのざ，	－		荷	$\stackrel{\circ}{\text { in }}$
	克		$\dot{\infty} \dot{\infty} \dot{\infty} \infty$		Cơococigon	Radobodor			
	获							\％	
	立							$\stackrel{\rightharpoonup}{4}$	
	$\stackrel{\square}{\square}$				obman－moo		MOBCoJCOMの	$\stackrel{3}{3}$	
	$\left\lvert\, \begin{gathered} \dot{a} \\ \stackrel{3}{\circ} \\ \hline \end{gathered}\right.$	$-00+4000+\mathrm{C}$ 	aing-aniogo				nलometnool 	－	
	咅					すరかする85880		荷	
$\frac{\stackrel{\circ}{\circ} \left\lvert\, \frac{1}{2}\right.}{\stackrel{\sim}{c} / \frac{\infty}{\alpha}}$	¢̀	－	－				广．	$\stackrel{\text { 31 }}{3}$	
	$\left\|\begin{array}{l} \stackrel{a}{3} \\ \dot{a} \end{array}\right\|$					Mーのトncoobt 		¢	
	立	－nmずursag						莅	

	$\stackrel{\text { ® }}{\circ}$		мलмलmलmलmल	ммmмmмmмmm		mмmmmmmmmm		－	
$\stackrel{\infty}{\circ}$			 		ますますがますまずか			$\stackrel{\circ}{\circ}$	
$\stackrel{\circ}{\bar{m}} \stackrel{\rightharpoonup}{\sim}$	荷							$\stackrel{\square}{0}$	
	$\stackrel{\text { ® }}{\circ}$							亗	
	$\stackrel{\text { 哥 }}{\substack{\circ}}$	かもすーのトnNO ぶかんがかかioi 	$\infty \times \infty \infty$ mल	みーのヘnतooum 	－のトnNoかもm－ 	のヘサッOめOMーの 		$\stackrel{\circ}{\circ}$	
	会							$\stackrel{\ddot{\partial}}{\square}$	
	$\stackrel{\text { ¢ }}{\circ}$		いのい $-\infty+0$ omo הतNतNतNतNत					－	
	$\stackrel{\rightharpoonup}{3}$	yornm－oot tr mmmmmmmmm	0．ang 		nलo oot tuan minnmminninim		$0 \infty 0$－ 0 －Nno 	$\stackrel{\text { ®̀ }}{\circ}$	
	会		－					$\stackrel{\square}{\square}$	
	$\dot{\circ}$							$\stackrel{\text { ¢ }}{\substack{\text { a } \\ 0 \\ 0}}$	
	$\begin{array}{\|l\|l\|} \stackrel{3}{3} \\ \stackrel{\circ}{0} \\ \hline \end{array}$	nल－のnナ サOon 	mーの人－Noonm かion ioñ indini	－OO サ NO O n m－ NतNतNmmmm	 		みतONのm－0 0 t мmलmmmmmmm	$\stackrel{\text { ®i }}{\circ}$	
	会			$\bar{\sim}$				$\stackrel{\square}{\square}$	\cdots
号守	$\stackrel{\text { ®̀ }}{\text { ® }}$		$\dot{\sigma} \circ \dot{\circ}$					－	
$\stackrel{\circ}{\circ} \mid \stackrel{\rightharpoonup}{\sim}$	$\begin{array}{\|l\|l\|} \hline \stackrel{y}{3} \\ \stackrel{\circ}{\circ} \\ \hline \end{array}$	 	 	い Nooumーのヘn 	 जNतNतNतNAN	 	 	$\stackrel{\text { ¢ }}{\circ}$	
	\％		ごさッさにもこのこて				mincuininimis	菏	

IPR2017－00946 Garmin EX2001 Page 669

	立				简					
管年	宕							立	过运	
\％\％	咅								为禹	
	\％	－			－	－				
	淾				すべorivox			克		
	免	$\bar{\square}$						咅		
	亯	对案						$\stackrel{\text { ar }}{\substack{3}}$		
						Fiof ionciniome	ormon io io	$\stackrel{1}{8}$		
	克									
		ค								
					aio		\ddagger	\| 部		
	离	－					¢98		$\frac{5}{3}$	
毠全	－ì			No．		－${ }^{\infty}{ }^{\infty}$	శ్สส สi			
\％	－							亯		
			ここのさnセさめロの							

	－¢ ¢							$\stackrel{\text { a }}{3}$	
家家	等		Nowom－ov＊					む́	
¿్లి	a	示年まなますがすく						免	
	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$							$\stackrel{\text { a }}{\substack{3 \\ 0}}$	
	$\stackrel{\text { a }}{\text { ¢ }}$			－	－Trarnaomin －すoo eotooboo	（ex	－	¿์	
	莅				নワのさnセさロので	ন্বনत		妾	
	\％							$\stackrel{3}{3}$	
$\frac{111}{2}$	\mid	 						\％	$\stackrel{\circ}{18}$
	咅							蔎	
	¢							$\stackrel{3}{3}$	
	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \dot{a} \\ & \hline \end{aligned}\right.$							¢	
	莅						シーツさnセこのので	蓸	
型金	¢	$\bigcirc{ }_{\text {OMa }}^{\text {－}}$	Fiocoomogog					$\stackrel{\text { 31 }}{\text { ¢ }}$	它运
言唐	获		＋～ormmomom		「ツmoobm－006 			㐫	¢
	咅	－nmtionoas	ここのざもこののダ			子年村なまなが号		咹	

IPR2017－00946

	－¢		－i 0	ミニニニニニニニスニ				岢	
号				－Nn Momnom 	nnoonm－onm 		สสสสสสสสส	¢ ¢	
$\stackrel{a}{\infty}$	$\stackrel{\rightharpoonup}{\Delta}$			－		$\underset{\sim}{\infty} \infty \infty \infty$			
	$\dot{\circ}$						ツNのいNがいが 	岢	
	－	 		rnnorncorn 	NOonmomno ヘioioiovioivio	 	 	$\stackrel{\text { ¢ }}{\substack{1}}$	
								$\stackrel{\text { 令 }}{0}$	$\stackrel{\circ}{+}$
	会	$\underset{\sim}{\infty} \dot{\infty} \infty \infty \infty \infty$	ふめ		Gigo osgigin	ㅇoㅇo		岢	
$\underset{\sim}{\underset{y}{4}} \underset{\sim}{7}$	$\stackrel{\stackrel{3}{3}}{\stackrel{3}{\circ}}$	 		みッのトサッのヘnッ 	－Nncyonncoo 	nmoonnoonm 		¢ิ	
	$\stackrel{\Delta}{\Delta}$		－					$\stackrel{\stackrel{\rightharpoonup}{\hat{u}}}{\underline{0}}$	
	¢ ¢	Onのobmómの				Maongnconc		$\stackrel{\text { 岢 }}{\substack{0}}$	
	菏	$0 \infty n m-\infty .0 m-\infty$ 	 		ヘサッのトnconの タロロロスベッボざ	NONnNomnmo． 	∞ n $m 0 \infty$ n $0-\infty$ ． 	¢	
	萢								
$\stackrel{\circ}{t}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	－							守
$\stackrel{\vdots}{m}$	$\stackrel{\rightharpoonup}{\mathrm{x}}$	onnomnnomn 		 	 	arnnornctor 	n Moonmoonn 	¢ ¢	\cdots
	咅	－nmanormao	ここのざーべッの8				シinuminininc	菏	

IPR2017－00946 Garmin EX2001 Page 671

	ั̀̇	Cidn	隹			－	边		
¢\％	S			－¢0¢				迢	管光
\pm	交		－			あ		咅	\％
	立			－		OMobmolio		，	
	${ }^{3}$						－	2	
	2							会	
	㐫	x_{1}			ond	on			
			MonMo				－	ถ̀	¢
	立					す̧actue8biçR		咅	
	\％		Co．					－	
						ax aiob idd an if		ถ̀	
	2					示ぐさと85\％88		咅	
枵道	玄	－		ond	－	สが		${ }_{3}^{\text {a }}$	
\&	通							\％	妾
	析		ここのざロロミロのタ					荷	

IPR2017－00946 Garmin EX2001 Page 672

IPR2017-00946 Garmin EX2001 Page 673

	¢ ¢	min				－				
串禹	唇							立	等过	
哏呩	咅			－					$\left.{ }^{4}\right)^{\circ}$	
	\％							哿		
	淾	边	Novi－min	何－xinor		ond		言		
	免	$\bar{\square}$ ¢						咅		
	玄	Cox				त్లn		唇		
					TVa゙			\％		
	咅									
				dive iex ex ene	OMorforno					
					－	が				
	离						98			
串遂	\％									
免有			TVAn					¢	\％	
			ここのさnセさめロの							

IPR2017－00946 Garmin EX2001 Page 674

IPR2017-00946 Garmin EX2001 Page 675

		 	氙
		 	晾岂岂
	誉	 	
		 	¢
			－

	岢	－－－तmtin		のニッ	のレこのの					なテチかす		－nらいろin		，
		$00-7 \mathrm{Nm}$	mm＋ナn	n6orr	∞ の日の0		m＋ナnn	borrol	の0007		＋nnob	－10のの		
	$\stackrel{\square}{\square}$	$\underset{\sim}{\text { anininion }}$		すíbiofo	Ogicindy	\mid		$\infty_{-}^{\infty} \infty \infty \infty \infty^{\infty} 0^{\circ}$				©io 0		\bigcirc
		－	のナーのn	－brrr	$\infty \infty$ の吅		m＠＋大n	nnobr	$\sim_{0}^{\infty} \times 0$.	00－－N	のmm＋t	nnoor	$\sim_{0}^{\infty} 0$ のo	
	$\stackrel{\square}{\square}$				－0808	ごェ゙べへ	$\underset{Z}{\infty} 9 \dot{A}$		प्च inim			\mathfrak{y}		\bigcirc
		borrro	－				brro		OO－－N	のmmat				
	\therefore		Nowimin		dicucto	O゙ロージウ	Coninin			Qincia	答			$\stackrel{\square}{\square}$
		－	06015	$\bigcirc \sim_{0} \times \infty$	の， 000	－－－NN	mmm才才	－nnno	－イrro	$\infty \times 0$ のo	00－－7	तrmmm	－+ ninno	
	$\stackrel{\square}{\square}$			NiNャがめ				Socoog	రimずが	$x_{0}^{\circ} \circ 0^{\circ}$				$\stackrel{\square}{\circ}$
	in	in		∞	2000－			－thnr	6061	－$+\infty \times 0$	ののの00			
		すूं						๗ूळimが				かinnioi		in
		$\frac{\dot{\infty}}{\infty} \underset{\infty}{\text { cig }}$	かocisin			－		${\underset{\infty}{\infty}}_{\infty}^{\infty} \text { nivi }$		$x_{\infty}^{\infty} \infty \infty$	\|-NC	+ivoigio		\ddagger
		borrr	$\cdots r^{\infty}$	$\infty \times \infty$	のの， 00	00	－－NTN	Nammm		nhnnu	0660 r	－r－mod	$\infty \times \infty$	
	\because	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\dot{\sim} \times \infty \underbrace{\circ} \dot{\infty}$	スignoigi		Cixẏu゙	－0ioioj				－icincm			$\stackrel{\circ}{\square}$
		n00060	－6n	「「ヘ「	，$\infty_{0, \infty}$ ，	－ののののの	00000		NTN	त，	のツナナナ	－－－	nnnobo	
	®	ธั่ส่ส่ญั			ふiべからか	$\dot{t} \mid \dot{q} \dot{子} \dot{q} \dot{q}$			vininio		－i¢\％ัช่			$\stackrel{\square}{\square}$
				－ 0 ののの		00000	00－7－7							
	$=$				divix	®iciosmi	$\mathscr{O}_{6} \infty \infty \infty$					Oジツず		\bigcirc
				Nanco	ancam		mmmmy	－JJ才t		nんmわn	nninob	00606	orrrri	
	\bigcirc	¢izosisid	すincoio		すin						ずなどますく	giminim	すininmo	$\stackrel{\square}{\circ}$
	चّ	－－nma	－いへのの	ロニさツ	のニニロの		ぞくへへべ		¢¢べゃが	子す等ます				Э

	Ј	－－तmt	norma	Oニこのさ	このこのの	वतล	ぞincoi	¢लল্লm	m¢¢mめ	なテす	それな字き	in	nininins	ปู
	®	bobr	「rrra	rrar		かinioiog			NiNからi	$x_{n}^{\infty} x=\infty \quad \infty \quad \infty$		novin		\％
	∞	（	（ers							$n_{n}^{\infty} \text { ocidig }$				\therefore
	\therefore	$\underset{子}{\infty} \Omega \dot{A} \text { ה் }$				mmmmm		まずロージ		nosis	mmmmm			\％
	－			かoల oiziスi			$\infty_{\infty}^{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$		－${ }^{\text {chand }}$	oiodiodis	Nonso		$\pm \dot{\sim}=\frac{\infty}{7}$	$\stackrel{\square}{\circ}$
	in	Nood								$\infty_{\text {con }}^{\infty}$			历ixninim	in
	－				N్N゙からin	かioisiod					がぁかゅか	かocio்ன்		\％
	in			がめัの்ズ			mrrrar	rrrri	Nrヘrat	$: \begin{gathered} c \\ \alpha \\ \alpha \end{gathered}$				in
	$\stackrel{\sim}{\sim}$		ざがかべか	NN－－		O－	－¢aço	－ 00000	00000	－ 00000	－0の日の	の日の日の		－
	\bigcirc	$\begin{aligned} & 66060 \\ & 08.680 \\ & 080 \end{aligned}$	\|ণ ஸ்ં		trioisi	スis $\infty \times \infty$			（1）	mmmmm	mmmmm	mmmmm		\bigcirc
	\％	$\begin{aligned} & 0.0000 \\ & \text {-ijugi } \\ & \text {-ig } \end{aligned}$			$\begin{aligned} & \text { のaののの } \\ & \dot{j} \dot{0}=0 \end{aligned}$		（ex			－rイスr		$\text { qininin } \mid$	060606 ずら゙かinion	\％
	哥			Oニこの	ことこのの		N゙くへへへべ	戸ललらल゙	¢ゥめmか	子デすぎ				ゴ1

	岢	OーNのナレ	いしへのの	〇ニさツさ	のヒニ の	¢スヘ̃ベ	NતNべべ	¢্লmmm	minimm	チチプす	ダけかの	号らへべい	的的ining	岢
	$\stackrel{\circ}{9}$													$\stackrel{\circ}{\text { ® }}$
	$\underset{\sim}{\infty}$	$-m 00$ mininin minn												$\stackrel{\circ}{\infty}$
	${ }^{\circ}$													$\stackrel{\circ}{\text { in }}$
	$\stackrel{\circ}{\circ}$			$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \infty \\ & \cdots \\ & \cdots \end{aligned}$										¢
	$\stackrel{i}{\text { in }}$													$\stackrel{\circ}{\mathrm{m}}$
	$\stackrel{\circ}{\text { ¢ }}$									$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \infty \\ & \text { din } \\ & \text { on } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { a-min } \\ & \text { d in } \\ & \text { A } \end{aligned}$			$\stackrel{\circ}{\text { m }}$
	\dot{m}_{m}	かion												m
	d											$\begin{aligned} & - \text { min } \\ & \text { no } \\ & \text { in in } \\ & \text { N } \end{aligned}$		$\stackrel{\sim}{\text { ® }}$
	$\stackrel{\circ}{\mathrm{m}}$	$\dot{\sigma}$												$\stackrel{\circ}{m}$
	\bigcirc			$\begin{aligned} & +n \wedge \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$								$\begin{aligned} & \text { oroon } \\ & \text { mision } \\ & 2 \end{aligned}$		－${ }_{\text {¢ }}$
	告	OーNのナに	いしへのの	Oニさツさ	のニへのの				mimimem	ダブボ	かも「がか		的认沙法8	－

	㗊	O－nmtin	い	〇ニさッさ	へこへのの					ダブッ寸	ぞ守が禹		inininio	$\stackrel{\text { J }}{ }$
	$\stackrel{\text { à }}{ }$					$\begin{aligned} & \text { - Nmn } \\ & \text { - inm in } \\ & \infty \end{aligned}$								$\stackrel{\text { ® }}{ }$
	$\stackrel{\infty}{\sim}$													$\stackrel{\sim}{\sim}$
	$\stackrel{̊}{\mathrm{~N}}$		$\begin{array}{lll} 6 & \infty & 0 \\ \infty & 0 & -1 \\ \infty & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \infty & \infty \\ 0 & \infty & \infty \end{array}$					$\begin{array}{llll} 0 & \infty & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & =1 \end{array}$						へ
	$\stackrel{\sim}{\sim}$													i
	$\stackrel{i n}{\sim}$							$$		$\left.\left\lvert\, \begin{array}{lll} m+n & 0 \\ \dot{-} & \omega & 0 \\ \infty \\ \infty & \infty & \infty \\ \infty \end{array}\right.\right)$		$\begin{aligned} & m+n o r \\ & n \\ & n \\ & n \\ & n \\ & n \end{aligned}$		$\stackrel{i}{\sim}$
	$\stackrel{\text {－}}{\sim}$									$\begin{aligned} & m+n o n \\ & \infty \rightarrow 0 \sim N \\ & n \\ & n \end{aligned}$				－
	$\underset{\sim}{\sim}$													\cdots
	ત̀		けいor品シinim			$\begin{array}{lll} n & r & \infty \\ 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$			$\begin{array}{lll} \wedge & \infty & 0 \\ \dot{\sim} & \infty & 0 \\ \infty \\ \infty & \infty & \infty \\ \infty & \infty & \dot{c} \\ \hline \end{array}$					त̇
	$\stackrel{\circ}{\mathrm{N}}$					$\left\|\begin{array}{l} \text { mmみn } \\ \text { ing ing } \\ \underset{\sim}{m} \end{array}\right\|$								$\stackrel{\circ}{\sim}$
	$\stackrel{\sim}{\circ}$													$\stackrel{\sim}{\sim}$
	馬	のサい	いいイかの	○ニさのさ	こもへのの	べニત゙̃さ	べへへべべ		minimem	ダブブす			nincind	謌

IPR2017－00946 Garmin EX2001 Page 678

	亗	－－nलす		ロコニ	ミ	¢নत入入ন	ぞતへへへ			ず㭙す	¢大きがす		ヶinning	5
	子												Bining	¢
	$\stackrel{\circ}{\circ}$					Cosisios		Moicinind					nobo	$\stackrel{\square}{\circ}$
	\％			$\begin{aligned} & n o \\ & 0.0 \\ & 0.0 \end{aligned}$		j		ब्रें	$\begin{aligned} & m \times d \\ & \dot{q-q} \dot{q} \end{aligned}$	「Nイ－b	－6－60	n	＋	\％
	¢											0	∞	\％
	is													年
	\ddagger						Cocieci	$\begin{aligned} & \text { namr } \\ & \text { =idit } \\ & \text { and } \end{aligned}$		No io				q
	\％				$\begin{aligned} & \text { aroom } \\ & \text { Cosicicici } \end{aligned}$									\％
	\％				ゅம்ळ்ன்	Nơño					Cocionc			¢
	7			aidinis								$\begin{aligned} & \text { arco } \\ & \text { intin } \\ & \text { ninn } \end{aligned}$		\square
	¢				$\begin{aligned} & \text { Aromo } \\ & \text { Coidem } \\ & \text { Cocicion } \end{aligned}$				$4 \operatorname{cin}_{i}$				$\bar{\infty} \infty \infty \infty$	\％
	，	－－तmat		\bigcirc	－	वสス̃	¢iacoun	¢户লুল		ダブす	な「号夺			，

IPR2017-00946

	！	－ダチがす	号に的的男	絡的乐洔	OちNo		ロスペ゙	パトペス	$\bigcirc \infty$	$\sim \infty$
cos	䒾			정응 in						aninm-
									合的证	
		$\dot{q} \dot{子} \dot{寸} \dot{f} \dot{q}$		する 득～M かimicim			 			
	哥			 						
	$\stackrel{\square}{ \pm}$								$\left\lvert\, \begin{aligned} & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$	
			$\begin{aligned} & n \\ & \underset{\sim}{\sim} \\ & 0 \\ & 0 \end{aligned}$	$\underset{0}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$						
	嶌	－゙¢チかな す	号らべべく		8 O No	ジイ ¢ ¢ ${ }^{\circ}$	ロスNベ	ミ゚トペスペ	$\infty \infty \infty$	$\infty \times \infty$

	ジ	－－－m＊	nor	Oニこのさ	のヒこのの					
	苞	ヨヨヨヨコ	のさその守俞 읔ㅇㅇ응	응으으응	오으ํㅡํㄹ	 				
			各ざ合権 		 			志志合名多 	 	ふi in in in ơ
			ஜぁかった 	可す领会管 	野的动的的					
	穊	을		5						
		©	ざ ©্ల		 $\stackrel{\circ}{\circ}$	厄్ల	 扁	 \％		
						$\begin{array}{ll} \infty & n \\ \infty \\ \infty & \infty \\ \infty & \infty \\ \infty & 0 \\ \infty \end{array}$				
			$\begin{aligned} & \text { 옫NNNN } \\ & \text { in } \end{aligned}$				in			
0.	－	m +	no		のソこのの	वतत̃ã			ふinmm	

	年		R～～～～～ 							に思へて が		8が程の 	オ人 8 O6
	䪰	－¢ Obす		スヘッざ	ㄴNㅅํo	－$\square_{\infty} \infty$		ごNのず寺				に	
	$\frac{\frac{y}{2}}{\frac{0}{2}}$									かっす。品 ざャ	चno o f からからのー・		
		ーNのナい	ート 0 の	ニッツざ					mimmof	な			Pin \sim_{n} in 8
	$\frac{\frac{x}{2}}{\frac{0}{2}}$		걱nc	ずかべぺ 			নiNom が じへべへ	さすべもる べか 뚜 $\dot{\sim} \dot{\sim}$	$\stackrel{\rightharpoonup}{n} \hat{N}_{\infty}^{\infty} \xrightarrow{\infty}$ సìi ते om		$\bar{m} \sigma \tilde{N}$ 		
	宸		－6：\％8	スヘッホN	2Nペロ	$\bar{\infty} \infty \infty \pm \infty$	¢ $\infty \times \infty$				응ㅇㅇㅇㅡㅡㄹ	シこコさに	こミロゴ枵
	$\begin{aligned} & \frac{\frac{y}{0}}{2} \\ & \frac{0}{2} \end{aligned}$								へi～～～の ごニシ こ さ				こえこへ
	\％	－	Oイかの	ニこのさに	ソミの 2 て	スベへざ			¢ल	ブず枵			为in $\sim_{\text {in }}$ i
	$\begin{aligned} & \text { 膏 } \\ & \text { 倉 } \end{aligned}$												
	范												
	号	－ $0^{\text {cod }}$ O	붕ํํํ	スヘNさへ	ㄴNㅅำか	－\sim_{∞}^{∞} ¢ \ddagger	¢ $<\infty \times \infty$ ¢					Nのさに	
	部管								 	ダがった તંતં ત゙ ત゙ ボ		ה்ત	
	菏										Now o o oning		
4	䢒	－Nのナい	いイッの○	ニコツざ	ำ～ので	สส̃べへ		戸へべがい		キプまず年			inis $\cos ^{\text {a }}$ \％

			－－NmJ	の	Qニさのざ	ごースのの		べへべべへ	¢लলmm゙		ずず村			inininimb	¢
	$\stackrel{\otimes}{y}$	\sim	nomoran												\simeq
		च		rivinisin	ぶった。 nininimin	nininisin	 	nininivin	충№． ninivini	かNㅜ웅 ininininin		nivininin	ninininin	Nỡ ninvinimin	च
		\bigcirc		侯ずふズス 	rininisin	 	 	inivininin	nirinirin	O्రO： 	 	nininirin	かo 	 	\bigcirc
		の			的式O －6． 6				míñoñ － $0 \cdot 0$－					앵엉융응융 	a
		∞			べベベr								－0．0．	刘둑 	∞
		\wedge			$\infty \infty \infty^{\circ} \infty^{\circ} \infty^{\circ}$	눙ㅇㅇ $\infty^{\infty} \infty_{0} \infty^{\circ} \infty^{\circ}$		动答がo $\infty \infty^{\circ} \infty^{\circ}$		NiNO べでベが	oond	ya			\wedge
		\bigcirc									会ががぶす $\sigma^{\circ} \omega_{\infty} \infty$		$\infty \infty \infty$	$\infty \infty \infty+\infty$	\bigcirc
		in		葻ひ	mo n N						$\begin{aligned} & \text { mino } \\ & \text { ning } \\ & \text { ning } \end{aligned}$ $0 \circ \circ \circ \circ$			অN 00000	n
		＋							ジツ்ற்ற			Nombin ช่ง่ง่			\checkmark
		m			$\propto \infty$	Nisdion $\infty \infty \infty \infty$							Nすべが ninini		m
		\sim		 	તヘતべળ			ざボざざ	ป்ற்ற்ற்ற			シंतंत்	응융ㅇㅇ ন்テ்icio	प்त्त்i्त்	\sim
		－	$\begin{aligned} & \text { nongo } \\ & \text { Bob } \\ & \text { onininin } \end{aligned}$												－
0			－－Nmナ	いしイかの	Qニさのさ	にもこのの		તતへત̃	¢্লুল゙ু	mimime			为的的的示的	inininind	$\stackrel{8}{\sim}$

	家	－Nのナno	9	$コ さ ツ さ に$						子 フ 寸 ホ			
				inNnへo		$\begin{array}{lll} 0 & 9 & -7 \\ n & \text { in } & 0 \\ 0 & 0 & 0 \end{array}$							のいのヘo ざがい。
							sonncon	$: \begin{array}{ccccc} 0 & \text { M } & \infty & 0 & 0 \\ \infty & \infty & \infty & \infty & \infty \\ \hline \end{array}$					いへONn ざがい
				$\infty 0$ Nい तथm mim			$\begin{array}{lll} n \\ 0 & 0 & n \\ 0 & 0 & i \end{array}$	$: \begin{array}{lllll} \infty & 0 & N & n & \infty \\ \cdots & \infty & \infty & \infty & \infty \\ \cdots & \infty \end{array}$	$\left\{\begin{array}{cccc} 0 & n & \infty & 0 \\ \sigma_{1} & 0 & 0 & 0 \\ 0 \end{array}\right)$	$\left\lvert\, \begin{array}{lll} N & \infty & 0 \\ \cdots & N \\ 0 & 0 & 0 \\ = & = & =1 \end{array}\right.$			
				－のーナー तंब लंल		－mo 0部部的 0	$\left\{\begin{array}{lll} n & n & \infty \\ 0 & 0 & 0 \\ 0 & 0 & i \end{array}\right.$	nronin $\sim \wedge \infty \infty \infty$		のतナのの $\sigma \circ \circ 90$			$n \infty<\infty$ ベベざざさ
				○ 0 mに入i入ウゥ m			$\begin{aligned} & -m n \infty 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\infty \infty \infty \quad \circ$	$\begin{array}{lll} 0 & \infty & 0 \\ 0 & m & n \\ a_{0} & 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$			
			$\left\lvert\, \begin{array}{llll} -\infty & \infty & 0 & N \\ -i-i & \cdots \end{array}\right.$	いトのハJ 									
			$\left\|\begin{array}{ccc} m n r o r \\ -i-i & i \end{array}\right\|$	$\forall 6 \infty 0$ N入iतiल m			－ $0 \times$ con	0			$\begin{array}{llll} 0 & \sim & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	－mい	
					$\begin{aligned} & m i r \\ & m i m \end{aligned}$			0		$\left.\left\lvert\, \begin{array}{cccc} n & \infty & 0 & n \\ \infty \\ \infty & \infty & \sigma & \sigma \\ \hline \end{array}\right.\right)$	$\begin{array}{llll} 0 & \infty & 0 & N \\ \sigma_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & N \\ 0 & 0 & = \\ 0 & =1 \end{array}$	
				－ i i i i m				$\left\{\begin{array}{llll} n & - & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$	$\stackrel{\sim}{\sim}$	$\left\|\begin{array}{ccccc} N & + & 0 & \infty & 0 \\ \infty & \infty & \infty & \infty & 0 \end{array}\right\|$			
				$\vec{i}{ }^{m} \text { in } i$		ONJO					$\begin{array}{lllll} \infty & 0 & 1 & \cdots & 0 \\ \infty & 0 & 0 & \sigma & \sigma \\ \hline \end{array}$	$\begin{array}{llll} \infty & 0 & \cdots & \cdots \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}$	
			$\stackrel{\infty}{\circ}$	i i i i N							$\left\|\begin{array}{cccc} + & 0 & \infty & 0 \\ \infty \\ \infty & \infty & \infty & \alpha \\ \hline \end{array}\right\|$		
		$\begin{array}{llll} \text { Nan } \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	∞	$a-m+o$ NNC	बल ल ल ल ल				$\left.\left\lvert\, \begin{array}{llll} \substack{n \\ 0} & \infty & \infty & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.\right)$	いすんへの	$\left\|\begin{array}{ccccc} 0 & N & + & 0 & \infty \\ \infty & \infty & \infty & \infty & \infty \end{array}\right\|$		$\begin{array}{lll} \infty & 0 & n \min \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
		$\begin{aligned} & \text { NmnNo } \\ & 00000 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \infty \quad \text { Nm } n \\ & -i \text { i i i i } \end{aligned}$			$\begin{aligned} & m \text { n } \sim \infty \\ & \dot{r} \dot{r} \dot{r}+\dot{r} \end{aligned}$	$\text { NMin } \begin{aligned} & \text { NM } \\ & \text { nin in in } \end{aligned}$			$\begin{array}{\|cccc} \sim & \infty & 0 & N \\ \sim & \sim & \infty \\ \sim & \infty & \infty & \infty \\ \hline \end{array}$	$\left\{\begin{array}{lll} n & \cdots & 0 \\ \infty \\ \infty & \infty & \infty \\ \hline \end{array}\right)$	
		$\begin{aligned} & \text { nonnocos} \\ & 0 \\ & 0 \end{aligned}$	－－m＋o	$\underset{i}{i}-\underset{i}{i}$		$\begin{array}{llll} m n c \infty \\ m \times m i m & 0 \end{array}$			初的o ó	$\left\|\begin{array}{ll} 0 & \infty \\ 0 & 0 \\ 0 & 0 \\ 0 & -r \end{array}\right\|$		$\left\lvert\, \begin{array}{llll} -N & + & 0 & \\ \infty & \infty & \infty & \infty \\ \infty \end{array}\right.$	
			$00.7 n$	$\begin{array}{ll} 0 & \infty \quad 0-N \\ -i \\ -i & i \\ i \end{array}$	ナnへ i i i i m			$: \begin{array}{lll} \infty & \infty & 0 \\ \forall & -r & N \\ \forall & \dot{r} & \text { rin } \\ \text { in } & \text { in } \end{array}$	的部的		$\begin{aligned} & \text { orncin } \\ & \text { oricinct } \end{aligned}$	$\left.: \begin{array}{lll} 0 & \infty & 0 \\ \sim & - & N \\ \sim & \sim & \infty \\ \infty & \infty \\ \infty \end{array}\right]$	かっ「のo $\infty \infty \infty \infty$
			a.o.m t						－Nすへ 	$\begin{array}{llll} \infty & 0 & - & N \\ n_{i} & -0 & 0 & - \\ 0 \end{array}$	$\begin{array}{lll} n & \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ \hline \end{array}$		
	家	－Nmナn	－へかの○	$コ さ$ のざ	¢		¢్స入へ	がら		プます			

		ナ	ト 0 の	さのさに	へ \rightarrow－			戸लmmm					in in min
		気が大nへ			i i \ll i i								$0 \text { rao }$
			$\begin{array}{lllll} \infty & 0 & 0 & - & N \\ 0 & 0 & -i & - & -1 \end{array}$	$\text { tin } 0 \infty 0$	$\left\|\begin{array}{cccc} 0 & - & \mathrm{N} & \text { r } \\ i & \text { i } & \text { i } \end{array}\right\|$		$\left\|\begin{array}{cccc} N & \sigma & n & 0 \\ m & \cdots & \cdots & \cdots \\ m & m & m \end{array}\right\|$		$\left.\left\lvert\, \begin{array}{llll} n & 0 & \infty & 0 \end{array}\right.\right)$	$\left\lvert\, \begin{array}{llll} -\mathrm{N} & \operatorname{tin} & 0 \\ \text { in } & \text { in } & \text { in } \end{array}\right.$	$\begin{array}{lllll} \infty & 9 & 0 & -1 \\ n \\ n & \text { in } & 0 & 0 & 0 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{lll} \forall & n & 0 \\ 0 & \infty & 0 \\ 0 & 0 & 0 \end{array}\right.$	
			$\left\|\begin{array}{lllll} 1 & \infty & 0 & 0 \\ 0 & 0 & 0 & - & -1 \end{array}\right\|$	$m+n 0 \infty$	$\left\lvert\, \begin{array}{lll} 0 & 0 & - \\ -i & \text { i } \end{array}\right.$			$\begin{array}{ll} 0 \wedge \infty & 0 \\ \text { rim } & = \end{array}$			\|n in in in in	$\left\lvert\, \begin{array}{ccccc} 0 & -1 & \cdots & \text { r } \\ 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$	$\begin{array}{lll} n & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
			$\begin{array}{llll} 0 & \infty & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 \end{array}$	Nm+u	$\left\|\begin{array}{cccc} -\infty & 0 & -1 \\ -i-i & i \\ -i \end{array}\right\|$	mナnor 						$n 0 \wedge \infty$ 的in in in	
			$\left.\begin{array}{llll} 0 & \cdots & \infty & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right]$	Frm	$\left.\begin{array}{llll} 0 & \cdots & 0 & 0 \\ -i-i \\ -i & i \end{array}\right)$		ート 0 の 					$\begin{aligned} & -\mathrm{N} M \mathrm{t} \\ & \mathrm{n} \text { in in in } \end{aligned}$	○イ 0 のo
			$\left\lvert\, \begin{array}{llll} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right.$	－－	noors		$\left\|\begin{array}{llll} \forall & n & 0 & \wedge \\ i & i & i & i \end{array}\right\|$	∞ の一～～ i त ल் m m	$\left\lvert\, \begin{array}{lll} m & \pi & 0 \\ m i n & n & 0 \end{array}\right.$	$\begin{array}{lllll} \infty & \infty & 0 & 0 & -\vec{l} \\ \dot{m} & \mathrm{~m} & \dot{m} & \dot{\gamma} & \dot{\gamma} \end{array}$			－Nのナn が \boldsymbol{r} in in
			$\left\|\begin{array}{lllll} n & 0 & \times & \infty & \infty \\ 0 & 0 & 0 & 0 & 0 \end{array}\right\|$	9		- i i i	$\left\lvert\,\right.$	－ i i i i i					
		$\left\|\begin{array}{ccc} -1 & N M M \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\|$	$\left\|\begin{array}{ccc} A n & 0 & r^{\infty} \\ 0 & 0 & 0 \\ 0 & 0 \end{array}\right\|$	－		\bigcirc	$\left\|\begin{array}{ccc} 0 & 0 & -N \\ i & i & N \\ i & i \end{array}\right\|$	$\begin{aligned} & m \text { r n o } \\ & \text { i i i i i i } \end{aligned}$	－ウ～～		$\begin{aligned} & \text { Gnor } \\ & \text { mimi } \end{aligned}$		
		$\left\lvert\, \begin{array}{ccc} \text { an } \\ 0.0 & 0 & 0 \\ 0 & 0 \end{array}\right.$	000000	$\begin{array}{lll} N_{0} & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$				ส i त	i i i i તi i	へ ∞ のの○ i i i im	लं लं लं	ヴ m m	へ \quad ののo
			$\left.\left\lvert\, \begin{array}{cccc} \begin{array}{r} -1 \end{array} & n & n & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.\right)$	$\begin{array}{lllll} 0 & x_{0} & \infty \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	900－N		い 0 －	$\infty 9000$	－तNmm i i i i i i	－ナno i i i i i i	へト i i i i i		$\cdots \dot{m}$
			$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ m & A & A & A \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & \wedge \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$	crccco	\bigcirc		$000 r^{\infty}$	$\infty \infty 000$	i i i i i		60ヶへ i i i i i	$\infty \infty 00$ i i i mंल
				0.0000	$\begin{array}{rll} \wedge_{\infty} & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	90000				－∞ 回	a000－	$\left\|\begin{array}{\|ccc\|} \hline i ~ N ~ N ~ N ~ N ~ & \text { N } \end{array}\right\|$	$\cdots i \text { i in }$
			$\begin{array}{cccc} \text { N NMM } \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$		$\left\|\begin{array}{llll} n & 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}\right\|$	$\begin{array}{llll} \wedge & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	909000	－－－－N	\cdots	すか大のn	n6 6	$\infty \times$	$\begin{aligned} & 99000 \\ & -i-i N \end{aligned}$
			$\begin{array}{llll} 1 & N & N & N \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$			$\left.\begin{array}{\|cccc} n & 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array} \right\rvert\,$	$\begin{array}{llll} 0 & \wedge & \wedge & \infty \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllll} \infty & \infty & \infty & \infty & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0900 \\ 000 & 0 \end{array}$	－0－－－	nNand	のmのナ	＋すかいい
			$\left\lvert\, \begin{array}{llll} -0 & -0 & n & N \\ 0 & 0 & 0 \end{array}\right.$	$\begin{array}{llll} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lllll} \text { m} & \text { n } & \text { n } & \text { m } \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 7 A & A & A \end{array}$	$\begin{array}{cccc} A & \pi & n & n \\ -0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{lllll} n & n & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\left.\left\lvert\, \begin{array}{lllll} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right.\right)$	$\begin{array}{\|cccc} \wedge & \wedge & \wedge & \infty \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}$	$\left\lvert\, \begin{array}{lllll} \infty & \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$	$\begin{array}{llll} \infty & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	00000
		$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 \end{array}$	0	0.0000	$\begin{array}{ccc}0-5 & 0 \\ 0 & 0 & 0 \\ 0\end{array}$	$\begin{array}{llll} 1 & N & N & N \\ 0 & 0 & 0 & 0 \end{array}$	$\left\|\begin{array}{lll} 1 & N & N \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}\right\|$	$\begin{array}{lll} \text { mmmm } \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \text { m m m m } \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$		$\begin{array}{llll} 7 & A & A & A \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$		$\begin{aligned} & n n n m n \\ & 0 \\ & 0 \end{aligned} 0$
0	三家	－Nのナに	00	すに	のoid				－mmo	テブず枵			in in min

	彦								－mpong	子等ます			
		名	crommb			व下mom			TRmmm			व下ommer	Tancor
		nob－	ça	－ 0		－o－	－さ	－¢だと	－ 2 －	－ᄌdg		へらめ	Tatan
									$\bigcirc-6$－				
								－mom	－－－${ }^{\text {com }}$	－		－	－
		通			－ixoso	－	がきます		号 $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$	टंतन त̇		पें	
		年omo	Ono	nio		nonon	Ononor	成为on			Onono	nonom	－
		nono										－0－	
		\％		的的	－かんのの号		¢ ¢ ¢ ¢ ¢					－¢ \％¢ ¢	
		年0－－		minco	Fososol	－		－	＋o $+\infty$.	－${ }_{\text {amom }}$			－
				ar ${ }^{\text {a }}$	－0 ${ }^{\text {a }}$								
					9	－9®ご	－igncia						
		名		隹的	「为为のo	\bigcirc	－						－
				ono									
						－	－	－	－－－－	－	－तda	－	กत
		－0．		rim	－	のojo		さまずに	－		－	－	
		－mo	no						－${ }^{\text {mom }}$				
												－${ }^{2}$	－
		边	－¢ ¢ ¢ ¢ ¢	す仿的		のの㦴ご	二̇̇ ${ }^{\text {c }}$	べべさ	－		－®ंतं		
		－+ m				O－		Nootar					
						－	－	－	－+0	－	－	－	0，
				＋rin的	Or	かocosó	－$=$			－nomo			com
		$\text { 毞 } 0 .$	Bacror	$\begin{aligned} -n g m a \\ \text { fan } \end{aligned}$								－-c	
							－						的的的颔

	言总				10，		¢ 人			子年ずタ			
		这							$10^{\circ} \times$	d	仡	＋\times Coo	－${ }^{\text {a }} \times$
		－					－			－	－		スสสสฐさ
									ざざらの			वेत्वंतेत	
		－		Cor	－ng				W No	¢	－0，		
			ci	－\ddagger	60	－$\infty \times \infty$	－i¢ -2	－ig	－¢ す す			のうの	
			cicomat	$\stackrel{+}{+\rightarrow+}$	的边	－$-\cos ^{+\infty}$	のoios		のレロのm			$\chi^{\infty} \boldsymbol{0}$	9 moo
						\％							
		\％			的6	－$\chi^{\circ} 0^{\circ}$	ののここも	ごごら					－
		名 ${ }^{\text {¢ }}$		－\times－	¢0\％	－	のoうo ${ }^{\text {cos }}$	－	Oomb	＋10	－${ }_{\text {－man }}$	$\infty^{\infty} \infty$	
								\bigcirc					
		㧞					のうの日	－̇ご	－ $\mathrm{y}_{\text {¢ }}^{\text {g }}$	ざざも			
		䇣 05			为号	Omromply	Fom「o		O	「om「	（\％om		「0m「0
								＋10	－	moom	OMOOC	－anbo	mo
				のめで大	いn	0	かめののの发	－2ロ＝	ごさu	－－さ ざ	ぞックロロ	－¢ニニさ	
			－वinch	的め－J	隹的的它	bomir			＋rotr	－mbo		60¢0	
		年mognm		＋ro						－		－mbo	
				のッヂ	的の		$\infty \times \infty$	ののこの时	ごニのさの	二ッチェッ	或ささきに		
		边 $000-1$		meary		\％ 60		Moonno	－				
		离			$\stackrel{\circ}{\square}$		－oのn		No－		－+ －	がらの	－
		－	－\lll	－mmb	＋¢ ¢ ¢ inim	¢60	「ro	からのうの	$\underline{0}$ O－	ごごの		ざら	－
		䢒								－			
	言筸						¢ ¢			年まずタ	年与学夺号		

		$\stackrel{\square}{4}$		omrom	－¢สส\％	\％		\％id						\％2\％
	麌			O－nma	norma	Q＝さロさ	こここのこの		¢んがすか	号ちそざ	めかっでる		¢จํํํํ	శ్సెఫ
		\％	$\overline{\text { a }}$				9anro			（\％）	－Ma cied		勺itamor	
					ますツro					－	¢0．0．ar	－	minorme	
		－		\％		の9690		－íơoid	¢			－	¢ionion	－－－¢ ¢ ¢ ¢
		\％			べすきロ゚	ワiomiob		－	－					
		：		边	¢0ざ吅		वranro	9\％ano		and		－0．00¢		
		\％	\bigcirc		－	9n－${ }^{\text {cot }}$	－		－		－${ }_{\text {ancon }}$	「－	N－ovor	
		\％				grno	－		－			－	－	
		\div		\％ 9	ornho	まロック	－	＋amス	ทn9 ${ }^{\text {ancia }}$		anob－	त్mis	F6＋－9	
		7	f		¢	－\ddagger ¢0mb	－909						nomber	
		$\%$				Ơす	ワ－	¢				Minncm	－	へ－
				＋		のコニ9さ	ワこここの		¢\％かする	的もち゚！	めんがごす	웅웅운은		
	苞				－ธสัสํา			ชさス\％\％					He\％	

		苂		－mrom	－®\％ส¢\％	\％	$7{ }^{7}$	¢¢ズロス				或号	宽		
							こニさのさ	こここのの	वন্নী			めぁ⿱口内口		ర్రిఇఃఃః్ర	¢ స్jat
									为		－	สis			
				－	$\pm{ }^{\text {¢ }}$	「「がすく					व⿵冂人）	－		angon	
				ano	F－o	－¢		9mbay	－0．00\％			－		的侖守孚	
				¢oçig	¢9090		すき¢	Voさtay				वᄌa			
					Mo．	O	\cdots	－6\％	N＂0000	Morio		¢		－－－	
				$\stackrel{1}{\square}$	\bigcirc	वing ${ }^{\text {che }}$	$\stackrel{+}{+}$				ずすべ「				
						$\stackrel{+}{+}$						¢icaja		－innopy	
				\％99mad	のnnoco	9\％n9			¢		ส゙゙̇さ	¢icis		「io．	
				－	－¢oのから	＋「「0゚̇								的的成等	
						$\stackrel{\infty}{\infty}$	？			\％ond	－̇ं		बंलेल लंल		
	年					\bigcirc	－				¢めように	웅웅우잉	－0ํํํํ이	¢ ¢్ন	
0	5	\％			บลสสํ		Fonno	¢กズロの							

IPR2017－00946

		\＃		－mram		がmory	Fin in in	8ลス\％ス			¢్రntiodem			
	秡			$0-$	norma	Oニこのさ	ワもこのの	¢สべoco	からずさ		かんの日の	이웅우ㄱㅜㅢ	이용잉	－ন্রী
		$\stackrel{ }{2}$										（encor	$\begin{aligned} & \begin{array}{c} \text { nomon } \\ \text { mog fy } \end{array} \end{aligned}$	－
		$\stackrel{\circ}{\circ}$		\％¢ ¢ ¢ ¢ ¢			$\infty 0$ moo	－noto 				$\infty \infty \infty$ ぶかんが		
		๕			－60才	－oxosom	－ $0 \times 0 \times 0$		－¢		man－	Mơがが	Nomer	－
		\％		\％Nocy	万゙う						-omeg		かoonoty	
		¢			－	－								
		\pm		$\stackrel{\infty}{\infty}$	\mathfrak{n}					ndigan	Me.o.jo			$\begin{aligned} & \text { neogn equan } \\ & \text { jog } \end{aligned}$
		\％		\％	Noncor	స						かom下゙		
		：			－				－	－mich		Cobiy		
		$\stackrel{\leftarrow}{\sim}$			－＋	व゚べへの－					－iocmoj			
		\approx			－	－ 0 －					$\begin{aligned} & \text { ancol } \\ & \text { ancieme } \end{aligned}$			
	$\stackrel{\square}{\text { a }}$				norma	○このヘさ	nこへのの	वNतCom	かんずざ		めんのに゙る	O이욱ํn	이굥유	
	皆	\％		－mトロッ		menem？	Fintins	ロホズoz	がごべがす	\％ิ⿹弋工二⿰习习		す్ల入－		Nixinot

IPR2017－00946

	部号		－	－	－$\sim_{-1} \times$		iंतं वल			す年学年年		noroin	
	\％							2o		\pm	\pm	－	
	2 20				mom			－			－	No 0 ¢	
	$2{ }^{\text {感 }}$		为						或気年		－icicic ic in	nound	のigatge
		Nす\％							きますき゚	¢		Onex	
	为	－${ }^{\circ} \mathrm{O}$	合号它守				2			－${ }^{\circ}$	∞		
			－			Fiociote		－운ํㅜㅇ		9	Foxe		
				の					－$\sim_{\sim}^{\infty}=$	$\stackrel{+1}{ }$			
	洮	\％		－	－	＋0		\pm	$\because 9$				－
	จ ${ }^{\text {x }}$	－${ }^{\text {cose }}$			\％		－¢		${ }^{2}$				Orntan
	：							－	¢ٌき	－¢	だらすく	ご号寺	
	部毞		8			A				年年ずき		nomorn	oinono

			8									cigorim	cososige
	\％${ }_{\text {® }}^{\text {® }}$				－	－	$\stackrel{\circ}{\circ}$						\％2898
	\％	¢0¢			－	－	20		－ 0	スrioro	－	O6\％ 0 ¢	92980
	＋$\stackrel{\text { ¢ }}{\text { d }}$	Nơbiting			－			$\underbrace{\circ}_{\infty}+$		ズステ゚かo	（ex		¢0．076
			20	¢	－	Ơơoget		R	（0）	2080	वृ¢	0	的的的的的
	为			－		：	6	\％${ }^{\circ}$	9680 60		枵		ciscosin
			－1			？	109 0	的	－＋¢		促砣	号がa	ますがa
	碇 \approx	－\sim_{0}^{∞}										7988	子孚孚孚
	29				¢ixionm		子孚年年を				$\operatorname{lic}_{\infty \times \infty}^{\infty} \times \infty \times \infty$	－$\times \infty \times \infty$	$\cos _{\infty \times \infty}^{\infty} \times \infty \times \infty$
	$\stackrel{\circ}{\circ}$								\％			नलंलन－ल	
	＂${ }^{\text {g }}$	す				व̇d	Ci वतन						
O．	部雨						¢icicici	－			¢ ¢ ¢ ¢ ¢ ¢ ¢	nator	cinovo

IPR2017－00946 Garmin EX2001 Page 692

	$\begin{aligned} & \frac{0}{60} \\ & \stackrel{y}{4} \end{aligned}$		$\begin{array}{llll} 8 & 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\left\|\begin{array}{lllll} n & 8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{llll} 0 & = & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.\right)$	$\begin{array}{llll} n & 8 & n \\ 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\left.\left\lvert\, \begin{array}{llll} n & g & n & 8 \\ j & n \\ 0 & 0 & 0 & 0 \end{array}\right.\right)$	8우웅̇	8isimg NNmm寸ナ	$\begin{aligned} & 88888 \\ & \text { in ormo } \end{aligned}$
										$\begin{array}{llll} \infty & 1 & 0 & n \\ 0 & 0 & 0 & 0 \end{array}$
						$\begin{aligned} & n n o \sigma \\ & =\sigma_{0} \infty \dot{\theta} \end{aligned}$		へ Nonno m゙ mi તi તi ત		$\begin{array}{llll} \infty & 0 & n & n \\ 0 & 0 & 0 & 0 \end{array}$
						\dot{m}		N ∞ ナ NO ヴ i i i i－		$\begin{array}{lll} & n \\ 0 & 0 & 0 \end{array}$
								$\begin{array}{lll} \infty \\ \infty \\ \text { i i } \\ \text { i } \end{array}$	$\begin{aligned} & +=0 \infty \text { 人 } \\ & -0.0 \\ & -1000 \end{aligned}$	$\begin{array}{ll} 0 & n \\ 0 & 0 \end{array}$
					$\left.\left\lvert\, \begin{array}{lll} 0 & n & 0 \\ 0 & n \\ 0 & 0 & 0 \\ \infty \end{array}\right.\right)$		のナーかに 		Nのかへもい $-0^{\circ} 0^{\circ} 0^{\circ}$	$\begin{aligned} & n \\ & 0 \end{aligned}$
				$\begin{aligned} & n \infty-n o \\ & =0-0 \cdot \infty \end{aligned}$			$\left.\begin{array}{\|lll\|} \hline-\infty & n & N \\ m i & 0 \\ m i & i & i \end{array} \right\rvert\,$		$\begin{array}{llll} 0 & \infty & 0 & n \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	
				$\begin{array}{llll} \infty & 0 & +\infty \\ 0 & 0 & N \\ 0 & \sigma & \infty & \infty \end{array}$			∞ n No ヘ ハ ત તー	べ	$\begin{array}{lll} \infty & \wedge & n \\ 0 & 0 & 0 \\ 0 \end{array}$	
				anoon ajosion $\sigma \sigma \infty \infty$	$\left\|\begin{array}{ccccc} 0 & 0 & N & 0 & 0 \\ 1 & 0 & 0 & \text { in } & \text { in } \end{array}\right\|$	$\begin{gathered} m \times r a \\ n \\ n \\ \forall \end{gathered}$	n NO O 	$\begin{aligned} & n m=0 \\ & -10 \infty \\ & -100 \end{aligned}$	$\begin{array}{lll} \infty & 0 & n \\ 0 & 0 & 0 \end{array}$	
								M－0 000×1	$\begin{array}{ll} 1 & n \\ 0 & 0 \end{array}$	
								$\begin{aligned} & -0 \infty \infty \times 0 \\ & -1000 \\ & -1000 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 0 & n \\ 0 & 0 \end{array}\right.$	
				$\begin{gathered} -n 0 \\ \text { ron } \\ \text { ion } \end{gathered}$			O＋＋－	$\begin{array}{llll} 0 \infty & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	
	\％		$\begin{array}{llll} 8 & 0 & 1 & 0 \\ 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	in $60_{0}^{\circ} 8$ 00000	$\left\lvert\, \begin{array}{lll} 0 & =1 & \pi \\ 0 & 0 & 0 \\ 0 \end{array}\right.$	$\left\lvert\, \begin{array}{llll} n & 8 & n & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.$	m夕孚in in 00000	8우우우		$\begin{aligned} & 88888 \\ & n 6 r m 0 \end{aligned}$

		$\frac{0}{\text { ¢0，}}$		$\left\|\begin{array}{llll} n & 2 & n & 0 \\ 0 & n & M \end{array}\right\|$	$\left.\begin{array}{llll} g_{4} & \sin & 8 \\ 0 & 0 & 0 & 0 \end{array}\right)$		8にがと NतNNM		$\begin{array}{\|ccc\|} \hline 8 & 8 & 8 \\ i n & 8 \\ i n & i n & 0 \\ \hline \end{array}$		
							$\begin{array}{llll} f & \text { O. } & 0 & m \\ 0 & 0 & 0 & 0 \end{array}$		$\left.\begin{array}{\|cccc} \substack{1 \\ 1} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$		$\begin{array}{llll} & = & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$
		sin			¢				$\left(\begin{array}{lll} \infty & 0 & n \\ -1 & 0 & n \\ 0 & 0 & 0 \end{array}\right)$	$\begin{array}{lllll} \square & m & \cdots & \cong & N \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lll} = & =0 \\ 0 & 0 & 0 \end{array}$
		に\％				$\left\lvert\, \begin{array}{llll} 1 & 6 & 8 & 4 \\ 0 & 9 & 9 \\ 0 & 0 & 0 & 0 \end{array}\right.$	$\left\lvert\, \begin{array}{lllll} f & 0 & n & m & n \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$		$0 \begin{array}{llll} \infty & \ddots & n & 4 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$		$\begin{aligned} & -0 \\ & 0 \\ & 0 \end{aligned}$
				ming n f $\operatorname{min--\|}$		$\left\lvert\, \begin{array}{llll} n & 4 & n & 0 \\ & 0 & n & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.$					\because
								オヘベN． 00000°		$\begin{array}{llll} 1 & = & =0 \\ 0 & 0 & 0 & 0 \end{array}$	
		$\dot{\Phi}_{\underset{\sim}{\top}}^{\ddagger}$								$\begin{aligned} & =0 \\ & 0 \\ & 0 \end{aligned}$	
		rad						$\begin{array}{llll} -1 & \infty & 0 & n \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$		$=0$	
		R ${ }_{\text {a }}^{\text {a }}$			$\left\|\begin{array}{cccc} 2 & \infty & n & N \\ 0 & 8 & 8 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|cccc\|} \hline n & q & g & 0 \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$		$\begin{array}{lllll} 2 & \infty & 0 & n & 4 \\ 0 & -1 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{\|ccccc} 2 & 1 & 1 & =0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$		
		$\because \stackrel{\infty}{\square}$		\mid				$0 \begin{array}{llll} -\infty & \ddots & \pm & n \\ \hdashline & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{llll} 2 & = & = \\ 0 & 0 & 0 & 0 \end{array}$		
		$\mathrm{B}_{\sim}^{\infty} \underset{\sim}{\infty}$			がN 00000				$\begin{aligned} & =0 \\ & 000 \\ & 000 \end{aligned}$		
		\％ \％ 4		$\left\|\begin{array}{llll} n & 0 & n & 0 \\ 0 & n \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} 9 & n & i n \\ y_{3} & \text { in } \\ 0 & 0 & 0 \\ 0 \end{array}\right.$		$8 \text { non } 8$ MスベN		 		

		\％		$\left.\left\lvert\, \begin{array}{llll} n & 2 & n & 0 \\ 0 & m \\ 0 & 0 & 0 & 0 \end{array}\right.\right)$	$\left\|\begin{array}{llll} 9 & \text { in } & \text { in } \\ 0 & 0 & 0 & 0 \end{array}\right\|$	우우웅	8n욱 $\|\mathrm{NvNNm}\|$		
		in in $_{\text {® }}^{\text {® }}$	$\begin{aligned} & =\infty \operatorname{mon} \\ & \text { minidid } \\ & \text { mind } \end{aligned}$		may $00^{\circ} 0^{\circ} 0^{\circ}$				0
		的令				$\left\lvert\, \begin{array}{cccc} q_{n} & -\infty & \infty & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.$			
		H ¢ ¢ ¢			ずらいま タ $00^{\circ} 0^{\circ}$	$0^{\circ} 0^{\circ} 0^{\circ}$	$\begin{array}{lll} 2 & = & \pm \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 2 & \sim & =0 \\ 0 & 0 & 0 \\ 0 \end{array}$	
		\％${ }^{\text {a }}$					$\begin{array}{llll} 0 & \ddots & \ddots & m \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & -0 \\ & 00 \\ & \hline 0 \end{aligned}$	
		me				ベベヘำー $00^{\circ} 0^{\circ}$	$\begin{array}{cccc} -1 & n & \cdots & = \\ \hdashline & 0 & 0 & 0 \\ 0 \end{array}$	0	
		लेके		$\left[\begin{array}{llll} \infty & n & x_{1} & 1 \\ -\infty & 0 & 7 \\ -0 & 0 & 0 & 0 \\ \hline \end{array}\right.$			$\begin{array}{lcc} \square & =0 \\ 0 & 0 & 0 \\ 0 \end{array}$		
		¢ ${ }_{\sim}^{\circ}$				$\left\lvert\, \begin{array}{cccc} 2 & \infty & 0 & \pm \\ 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right.$	$\begin{array}{ll} 1 & 0 \\ -1 & 0 \\ \hline \end{array}$		
		तิ⿵冂丅⿵冂𠃍冖		$\left\lvert\,\right.$		$\left\lvert\, \begin{array}{cccc} -1 & \pm & n & =0 \\ 0 & -0 & 0 & 0 \\ 0 \end{array}\right.$			
		\cdots		$\left\lvert\, \begin{array}{llll} 1 & 1 & 4 & \infty \\ 7 & 0 & n \\ 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$	$\begin{array}{\|l\|l\|} \hline-\cos \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	$0=8$			
		${ }^{\circ} \mathrm{C}$			$\begin{aligned} & \pm \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$				
	$\frac{0}{600}$		$\begin{aligned} & -\quad \therefore=1007 \\ & -00000 \end{aligned}$	$\left\|\begin{array}{llll} n & a & \cdots & 0 \\ 0 & M & m \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{lll} 9 & \text { rin } \\ 0 & \text { in } \\ 0 & 0 & 0 \end{array}\right.\right)$	－2icor		$\begin{array}{llll} \mathrm{C} & 8 & 8 & \mathrm{O} \\ \mathrm{~m} M \mathrm{~A} & \mathrm{t} \end{array}$	

	$\frac{\square}{\text { 晨 }}$	$\begin{aligned} & n \\ & 0 \text { nigen } \\ & 00000= \end{aligned}=$	$\left\|\begin{array}{lllll} 0 & \text { 子 } & \text { in } \\ 0 & 0 & 0 & 0 \end{array}\right\|$	우유웅			$8 \text { 898 } 8$					
		צ゙		フォ 0 O	\ddagger			8			নָ	
		走			On Cota	（1）		\％${ }^{\circ}$		ป	20	Onさ
		戚 大			为			W－M．		तৈact	¢	¢ M M \％F
		发	¢oxincos	Oin ¢ ¢ ¢	OすM下ス		7 ¢ 号mm	00000		0	0	$\begin{array}{llll} 2 & y & =1 & 0 \\ 0 & 0 & 0 & 0 \end{array} 0$
				O¢\％¢ ¢ ¢			mincmom		00000		J J m m a	F－3
			がそうすが	$\infty \times \infty$		hinl		¢0	त̇̇̃	0	$\begin{array}{llll} 4 & 9 & 9 & 9 \\ 0 & 0 & 9 & 0 \\ 0 \end{array}$	0
			Comozat				Mn mo an	\％da d A A	ana		$: \begin{array}{llll} 0 & n & 9 & 1 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{array}$	08
		気 ${ }_{\text {¢ }}^{\text {¢ }}$	\％Or	于	$\left\lvert\, \begin{array}{llll} 0 & n & 0 & 0 \\ 0 & n \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right.$					0		0
			mosomer		$\left\lvert\, \begin{array}{llll} \infty & 0 & 0 & 0 \\ 0 & 0 & n \\ 0 & 0 & 0 & 0 \end{array}\right.$				$1 \begin{array}{lll} 9 & 9 & 0 \\ 0 & 0 & \ddots \\ 0 & 0 & 0 \\ 0 \end{array}$		$0 \begin{array}{ll} 10 & 0 \\ 0 & 0 \end{array}$	
		䫆				17	0	TAT0	\mathfrak{x}	50	－$=3 \begin{aligned} & 3 \\ & 0 \\ & 0\end{aligned}$	
		00000			8ッが守8		\|8৪子8 nのnoo					$\left\{\begin{array}{l} 88888 \\ 0 \therefore \infty 98 \end{array}\right.$

	$\stackrel{\circ}{\text { ¢0，}}$	$\begin{aligned} & O=\simeq 9 \pm \\ & 00000 \end{aligned}$	nandmg	grining $0000-1 .$	－8，只禹	8ニが守8		88ํㄱ8i	¢88タ8	¢¢ ¢ 8 ¢ ¢		$\begin{cases}888 \\ n=9\end{cases}$
		旌	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{n} \underset{\sim}{x} \bar{c}$	のoneno	Aotamed	cren		तit	dतa			F＝3
		号	$\underset{\sim}{\text { chogn }}$	$\underset{\sim}{2} \underset{\sim}{2}$	－	Exing fos	才anmem			0		$\begin{aligned} & =9 \\ & 000 \\ & 0.0 \end{aligned}$
		忽				$\begin{array}{ll}\infty & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$			0	$\mathfrak{l l l l l}$	$0 \begin{array}{llll} 9 & 9 & = & =7 \end{array}$	\cong
							fon mon con		¢	$0 \begin{array}{lll} 2 n & n & 4 \\ 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{lllll} 1 & 9 & = & -2 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	
		范							0×10	na		
		急					Nomm		0	$\mathfrak{l l l l l}$		
		兔					M Mr cran	オสন̃	$\begin{array}{llll} \infty & n & n & n \\ 0 & - & 0 & n \\ 0 \end{array}$			
		烉		R				तָ तु	$\begin{cases}0 & 0 \\ 0 & 0\end{cases}$		－${ }_{0}^{0}$	
				Sņo					$0 \begin{array}{cc} 6 \\ 0 \\ 0 & 0 \\ 0 \end{array}$	$5 \begin{array}{ll} 2 & 27 \\ 0 & 7 \\ 0 & 0 \end{array}$	0	
		気			$\left\lvert\, \begin{array}{lllll} 2 & \infty & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right.$	No		$\begin{array}{llll} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	0	$\begin{array}{lllll} 1 & 1 & = & = & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$		
	$\stackrel{\text { ¢ }}{\text { 晨 }}$		n in તimp	子ゲダ的80		8にがど						

	\％	sol	$\begin{array}{rrrr} 8 \\ \hline 8 & 8 & 8 & 8 \\ \hline \end{array}$	$\left\|\begin{array}{llll} 8 & 8 & 8 & 8 \\ -1 & 8 \\ -1 & 0 & 7 & 0 \\ -1 & -1 & -1 & -1 \end{array}\right\|$	$\left\|\begin{array}{lll} 8 & 8 & 8 \\ 0 & 8 & 8 \\ 0 & 0 \\ 0 & 0 & 0 \\ -i & -1 & - \\ i \end{array}\right\|$	तivi iN	Z 88.880 तiरiतल	$\left\lvert\, \begin{array}{lll} 8 & 8 & 8 \\ -1 & 8 & 8 \\ \hline \end{array}\right.$ nलm nल			
			すおさがな $ल \mathrm{~N} \rightarrow-$			ぞ	๗लల్ల入入	かへべへべへ	べন入でつ	のロッへへ	
		NBNNत への的 t	notsor $N \sim N-\quad-$	onnas	$\begin{aligned} & n \\ & n_{n} \\ & 0 \\ & 0 \end{aligned}$	か q－im心n	mঁ ¢ 入入入		Nス®ののロ	－ニミロー	このささの
			$\left\|\begin{array}{lllll} \underset{\sim}{*} & \infty & \circ & \circ & \forall \\ N & N & N & - & - \end{array}\right\|$	$n=0 \text { n }$	ががが壬 －		－¢		へิのコこ゚へ		$\pm \pm ツ$ の
			$m o m$ $\mathrm{N}-\infty-$		べすがかか		べペへべ		のロミニ	このこささ	のッさささ
			$\mathrm{N} \rightarrow-\operatorname{li}$	$$	かも年がm	NmN	べへべ		－ニーロック	$へ さ \pm ツ$ の	さワニコニ
		 の○ナmN	ごかへの				オオતส入	へのロッニー	ぺいささ		ニニニ
			$\begin{aligned} & 8 \text { FN N } \\ & N-\sim \sim \end{aligned}$			¢べべい	สสส®a	$\propto \sim$－	こささッツニ	さ さニコニ	\bigcirc
			nin in is	$\begin{aligned} & 8 i n \\ & 8 \\ & -0 \end{aligned}$		かへべへべ	スての ${ }^{\circ}$	へ 0 の \ddagger	さ の さ	ニニ $=\bigcirc \bigcirc$	
			Fলの	\mid			ののロヘ	のにさの	さ こコニコ	\bigcirc	
				if 눈…	mionicin	สสス®̊の	－こ こ さ	$\pm ツ$ の さ＝	二ニ		
	\％	$\text { B88 } 8$	8		B8 ৪ $\rightarrow=\therefore \text { तid }$	－ 8 i तं तं तi	त त तं त ल		O लंलmiri		Bo $\dot{子}$

	号			$\begin{array}{ccc} 8 & 8 & 8 \\ 0 & 8 & 8 \\ \hline \end{array}$		$\left\|\begin{array}{cccc\|c} 8 & 8 & 8 & 8 & 8 \\ 0 & 0 & 0 & 0 \\ \hdashline-1 & - & - & i \end{array}\right\|$		8 NiNiN mi	
		in			子 チべれべへ	へิべさへべへ	へでのパ	このさむの	へこニコ
		\％					－ニ ¢ に		$=$ ㅇ
		¢		$\begin{aligned} & 0 \text { inn } \\ & -0 \\ & -0 \end{aligned}$			－さ の の	フニニ	
		m			ふべへべへへへへ		$\pm ツ$ こニコ	\bigcirc	
		앙		$\underset{\sim}{n} \neq \infty \times m$	べさへべへ	ごさのさ	ニニ		
		ล		がらへさ	スのペッペ	ワニコニ			
		$\stackrel{\sim}{\square}$		せべさへご	このさへこ〇	\bigcirc			
		\cdots		へへペ さ	ここの				
		\bigcirc	- Nが心ncis	\bigcirc ソニ					
		n	$-\frac{n}{-i n}=\cong a$						
	类			0					－ ल゙ल゙ゥल

	\％	sol	$\begin{array}{rrrr} 8 \\ \hline 8 & 8 & 8 & 8 \\ \hline \end{array}$	$\left\|\begin{array}{llll} 8 & 8 & 8 & 8 \\ -1 & 8 \\ -1 & 0 & 7 & 0 \\ -1 & -1 & -1 & -1 \end{array}\right\|$	$\left\|\begin{array}{lll} 8 & 8 & 8 \\ 0 & 8 & 8 \\ 0 & 0 \\ 0 & 0 & 0 \\ -i & -1 & - \\ i \end{array}\right\|$	तivi iN	Z 88.880 तiरiतल	$\left\lvert\, \begin{array}{lll} 8 & 8 & 8 \\ -1 & 8 & 8 \\ \hline \end{array}\right.$ nलm nल			
			すおさがな $ल \mathrm{~N} \rightarrow-$			ぞ	๗लల్ల入入	かへべへべへ	べন入でつ	のロッへへ	
		NBNNत への的 t	notsor $N \sim N-\quad-$	onnas	$\begin{aligned} & n \\ & n_{n} \\ & 0 \\ & 0 \end{aligned}$	か q－im心n	mঁ ¢ 入入入		Nス®ののロ	－ニミロー	このささの
			$\left\|\begin{array}{lllll} \underset{\sim}{*} & \infty & \circ & \circ & \forall \\ N & N & N & - & - \end{array}\right\|$	$n=0 \text { n }$	ががが壬 －		－¢		へิのコこ゚へ		$\pm \pm ツ$ の
			$m o m$ $\mathrm{N}-\infty-$		べすがかか		べペへべ		のロミニ	このこささ	のッさささ
			$\mathrm{N} \rightarrow-\operatorname{li}$	$$	かも年がm	NmN	べへべ		－ニーロック	$へ さ \pm ツ$ の	さワニコニ
		 の○ナmN	ごかへの				オオતส入	へのロッニー	ぺいささ		ニニニ
			$\begin{aligned} & 8 \text { FN N } \\ & N-\sim \sim \end{aligned}$			¢べべい	สสส®a	$\propto \sim$－	こささッツニ	さ さニコニ	\bigcirc
			nin in is	$\begin{aligned} & 8 i n \\ & 8 \\ & -0 \end{aligned}$		かへべへべ	スての ${ }^{\circ}$	へ 0 の \ddagger	さ の さ	ニニ $=\bigcirc \bigcirc$	
			Fলの	\mid			ののロヘ	のにさの	さ こコニコ	\bigcirc	
				if 눈…	mionicin	สสス®̊の	－こ こ さ	$\pm ツ$ の さ＝	二ニ		
	\％	$\text { B88 } 8$	8		B8 ৪ $\rightarrow=\therefore \text { तid }$	－ 8 i तं तं तi	O안 त त तं त ल		O लंलmiri		Bo $\dot{子}$

	\％		$\text { 果 } 8880$	$\begin{array}{ccc} 8 & 8 & 8 \\ 0 & 8 & 8 \\ \hline \end{array}$		$\left\|\begin{array}{llll} 8 & 8 & 8 & 8 \\ 0 & 8 & 0 \\ 0 & 0 & 0 \\ \hdashline-1 & -1 & - & i \end{array}\right\|$	O Ni Ni in	तi त त त m	80888
		in				スิへべさべへ	へでのハこ	－こ さ の	へへここの
		\％					のニセに	\pm ヘッニ	二？
		¢		$\begin{aligned} & 0 \text { in } \\ & -0 \\ & -0 \end{aligned}$		ベプへへ	このさのツワ	こニコ	
		\cdots		$\begin{aligned} & 1 \\ & 0 \\ & \text { n m } \\ & -0 \end{aligned}$		へのペに	\pm のソここ0	\bigcirc	
		－		$\begin{array}{lll} n \\ n \\ 0 & \infty \\ m & m \\ 0 \end{array}$	ㄴNNN․	ミこさのコニ	二ニ，		
		n		がいへさ	このさもに	ヘニコニ			
		－		むべさへこ	このさへこ	0			
		\cdots		N入ペニさ	ここの				
		\bigcirc							
		n	- in						
	皆			O			i तi त त त	तंतर तल	ल゙ल゙ゥल゙

		\％			mido	－	｜rata	Rat．a．	O－0．0．n	为的m			formen		¢0¢
				$\begin{aligned} & \text { Bingad } \\ & \text { cincid } \end{aligned}$	Eng	no		$\begin{array}{lll} 6.6 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	Cober	Shunn			$\begin{aligned} & \text { Nan } \\ & 0 \end{aligned}$	leninaly	O．Ơすだ 00000°
		\％		R－J			Nr	A cobl				9 ${ }^{\text {a }}$	armer		Binc icind di
						$8 よ \infty$		Re	$\begin{aligned} & \text { wingnd } \\ & 000 \\ & 0 \end{aligned}$		hnghing	hinging	जnञng	Ninvin	monco
		$\stackrel{\sim}{\sim}$		fox on				Vinving							
					nnsod	$\begin{aligned} & 2,0.0 x \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5		$\begin{aligned} & n n m a n \\ & 0 \\ & 0 \end{aligned}$		－ 0		\％\times cold	$\begin{array}{ll} \text { nnnmy } \\ 0 & y \\ 0 \end{array}$	
		$\stackrel{\circ}{\circ}$			$\begin{aligned} & \text { Navmra } \\ & 0.0000 \end{aligned}$	Obod		nnmon	$\begin{aligned} & 9 \\ & 9 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	fos fof	F F G Mom		N-लল্লে	Brocicin	
						風々ス	y_{0}^{6}	Annma		に					Nすもん 000000
		$\stackrel{\square}{\sim}$		$\begin{array}{lll} n \infty & \infty \\ 0 & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	Rebd		fonn	Reff	Fq?	F\％ 9		Crom		Brice ch	
			Nood	forooz			$\begin{aligned} & \text { ninncing } \\ & 0000 \\ & 000 \end{aligned}$		0.00				50000	He tro	$\begin{aligned} & \text { phning } \\ & 0 \text { andos } \\ & 0 \end{aligned}$
		ત̃	dobrd		6inn	ning	flytor fix		li foলm mom	porcmon	RMr Prmy				
				No8,		Som	Sl				Bron mex				
		¢		Tombr	Na	OUT:	ATF Focis		Nonc mer				Ro Act	Thy d An	
					on memy	0		Mom ल⿵冂人	$\begin{aligned} & \text { Wencm } \\ & 0-0 \\ & 0 \end{aligned}$	himmor min		mancory	Nommen	0	fly fole
n．			- পললমচ্লু		ロッが品8	8 8 $0_{6}^{4} 8$	Rスざロッが	0	スかす\＆\％	BO				景夺ます。	或ごすくが号

IPR2017-00946

IPR2017-00946

			$\stackrel{i}{i}$	○op in in	8 Not ${ }^{\circ}$	セスNバ	セ゚トペス		nonon Nかふがよ	onono に に \＆\＆人	no no $\widehat{\infty} \infty \infty$
		if	$\underset{T}{n}$	$\begin{array}{llll} 0 & N & m & + \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}$	いい○ト $\circ \circ \circ \circ \circ$	かのの○○ $000-1$	－N M＋¢	$\underset{\rightarrow}{\infty} 0 \text { o }$	$N+\sigma \infty-$ ヘ ่ ヘ ่ ๗	$\begin{array}{lll} \forall \infty \\ \dot{m} & m & a r \\ \dot{r} & \dot{r} & \text { in } \end{array}$	
		¢		$\begin{array}{cccc} 0 & -1 & m & m \\ 00 & 0 & 0 & 0 \end{array}$	$\begin{array}{lll} \forall & \forall n & n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\circ \wedge \wedge \infty \infty$ $00^{\circ} 0^{\circ} 0^{\circ}$		n + n o	$\begin{array}{lrl} \infty & 0 & \text { N } \\ -i & i \end{array}$		
		in		$\begin{array}{cccc} 0 & -1 & 1 & m \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{llll} m & n & t \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	nいい 0 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	$\wedge \wedge \infty \infty$ $\circ 0^{\circ} 000$	$\stackrel{\sim}{\circ} \underset{-}{\sim}$	$\begin{aligned} & +n \\ & \rightarrow-i \\ & -i \\ & -i \end{aligned}$	－m ○の 	$\overrightarrow{\mathrm{N}} \mathrm{i} \mathrm{H}$
		－		$\left\lvert\, \begin{array}{cccc} 0 & -1 & 1 & N \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}\right.$	N Nmmm $0 \cdot 0 \cdot 0$	$\begin{array}{lll} \forall & A & \pi \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	いい 0 の $\circ 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	$\wedge \infty \infty$ の $\circ 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	$\bigcirc \underset{-}{\circ} \underset{-}{\sim} \underset{-}{\top}$		
		in		$\begin{array}{cccc} 0 & -\vec{a} & \overrightarrow{0} & - \\ 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lll} n & n & n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	Nmmmm 000000	$\begin{array}{cccc} n & + & + & n \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	nn obo $0 \cdot 0 \cdot 0 \cdot 0$	へ $\wedge \infty$ の $\dot{0} 000-$	$0 \text { м min }$ $\therefore-\therefore-\therefore$	－ त $\dot{\sim} \dot{m}$
		$\stackrel{\text { c }}{ }$		$\begin{array}{cccc} 0 & 0 & - & - \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\overrightarrow{0} \cdot \overrightarrow{0} \cdot \overrightarrow{0} \cdot \overrightarrow{0}$	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 \\ n & n & n \end{array}$	N～MMM $\circ 0^{\circ} 00^{\circ} 0$	$\begin{array}{lllll} m & m & t & H \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & \operatorname{tin} n n o \\ & 000 \\ & 0 \end{aligned}$	$\wedge \wedge \infty \quad$－ $000-1$	$\begin{gathered} n \\ \rightarrow \\ \rightarrow \\ i \end{gathered}$
		in		$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\overrightarrow{0} \cdot \overrightarrow{0} \cdot \overrightarrow{0} \cdot \overrightarrow{0}$	$\vec{o} \cdot \overrightarrow{0} \cdot \overrightarrow{0} \cdot \overrightarrow{0}$	$\overline{0} \cdot 0_{0}^{0} 00$	N N N N N 000000	Nmmmm 00000	$\begin{aligned} & \forall \pi n \\ & 000 \\ & 0 \end{aligned}$	$\begin{array}{cccc} \infty & 0 & m \\ 0 & 0 & \ddots \\ - \end{array}$
		$\stackrel{\circ}{\circ}$		$\left\lvert\, \begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right.$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\vec{o} \cdot \vec{o} \cdot \overrightarrow{0} \cdot \overrightarrow{0}$	$\overrightarrow{0} \cdot \overrightarrow{0} \cdot \overrightarrow{0} \cdot \overrightarrow{0}$	$\vec{o} \cdot \overrightarrow{0} \cdot \overrightarrow{0} \dot{0}$	$\begin{array}{cccc} \text { N N N } & \text { N } \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{lll} m & \pm & \infty \\ 0 & 0 & 0 \end{array}$
		is		$\left\lvert\, \begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right.$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 \end{array}$	00000 $\circ 0^{\circ} 0^{\circ} 0^{\circ}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 & \overrightarrow{0} \\ 0 & 0 & \overrightarrow{0} \\ \hline \end{array}$	$\overrightarrow{0} \cdot \overrightarrow{0} 00$
		$\stackrel{\circ}{8}$		$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	00000 $00^{\circ} 0^{\circ} 0^{\circ}$	00000 $00^{\circ} 0^{\circ} 0^{\circ}$	00000 00000	00000 $\circ \circ \circ \circ \circ$	00000 00000	00000 $\circ \circ \circ \circ \circ \circ$	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$
			$\stackrel{\mathrm{Y}}{\mathrm{Y}}$	Oof in in	8 No ${ }_{0}$	ャスNバ	セトペンス		no non $\underset{\infty}{\infty} \underset{\infty}{+} \dot{+}$	$\begin{array}{lll} 0 & n & 0 \\ \cdots & \ddots & 0 \\ \infty & \infty & \infty \end{array}$	$\begin{array}{lll} n & 0 & n \\ \cdots & 0 \\ \infty & \infty & \infty \\ \infty & \infty \end{array}$

IPR2017-00946

IPR2017-00946 Garmin EX2001 Page 708

	$\stackrel{\square}{3}$	－－ロで入		ずすます			৪ Ј $0_{\text {cod }}$	onono ஸ்シ்ல்	nonon 	onono マダズスベ	nonon ヘベベざざ	onono ベップロド
		－0N＋mm			のmrar						守孚をずら	
								Na かicioi		ウiகime io		in ininiog
			$\begin{aligned} & \text { Nomoo } \\ & \dot{i} \underset{\sim}{m} \underset{\sim}{m} \dot{J} \end{aligned}$	$\begin{aligned} & +0 . \\ & \text { jます } \end{aligned}$	$\check{\wedge}=\dot{\alpha} \dot{\alpha} \dot{\alpha} \underline{\infty}$			$\infty+06 \mathrm{~N}$ ஷiતતion		のののo－ 		no－mo子手ジが
		－ 0 － 0						ジષ்ંતત゙	－$-\infty$－ ๙ तेतेल ल			ますóvív
			\ddot{y}	$\begin{aligned} & \text { Mono } \\ & \text { mimju } \end{aligned}$					obmor तへべते ${ }^{\infty}$			
			$\begin{aligned} & 0 \mathrm{~N} \\ & =1 \\ & =1 \end{aligned}$		$\begin{aligned} & \text { anogm } \\ & \text { jining } \end{aligned}$	（encor	mの6m－	onano 				
					さますが							
		－n6oror								－mono ベかへべか		
		－ $0-$ min						い00みの 		－0mon 	今心o तَ त̊	
					$=\dot{y} \dot{q} \dot{d}$			$\dot{\sim} \dot{\sim} \dot{q} \dot{\sigma}$				$\begin{aligned} & m+r o n \\ & \dot{m}-\dot{m} \dot{m} \dot{m} \times m \end{aligned}$
		－		$\alpha \sigma \sigma O O$	$\dot{O}=シ ் ்$							
		noran ¢000			$\begin{aligned} & -06 \infty- \\ & 0.000=1 \end{aligned}$							
		－060	の－rictico			$\dot{O}=\dot{O}$						ジオジウジへ
	学	－ロッが		ずすます	号的的心岕		8－¢̊\％	onono ஸ்ஸ்ல்	$\begin{aligned} & \text { nonor } \\ & 0 \text { osoo } \end{aligned}$	onono ミ゙ロスジ	nonon さベベざざ	onono ベッ゙がミ

	妾	－○○にが寺		がすもか			B－0 ${ }^{\text {cod }}$	onono ベロロ゚ロ゚	nonon โ웅웅염	onono ミ゚ダズズ	nonon ベベベざざ	onono
		（ ${ }^{0-N+0}$		$\begin{array}{\|l\|} \hline \end{array}$								
		－norarat		N大オ，							$\begin{aligned} & 0-r m o \\ & \dot{\infty} \sigma \dot{\sigma} \dot{\sim} \dot{\sim} \dot{N} \end{aligned}$	
		－Orivirinion		nronm boricir crinn		rockr cosoco a	$\begin{aligned} & 0 m r-n \\ & \therefore \dot{O}= \pm=1 \end{aligned}$			$\begin{aligned} & \infty-n a t \\ & \text { よ ning } \end{aligned}$		
			Notor									
				NT6000	（						$\left\|\begin{array}{l} \underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\dot{\sim}} \underset{\sim}{\dot{m}} \end{array}\right\|$	
		－mimerima	－	$\begin{aligned} & \text { brgor } \\ & \text { frifinin } \end{aligned}$	$\begin{aligned} & +0 \wedge_{\infty} 0 \\ & \text { rivininio } \end{aligned}$		$\begin{aligned} & 0 N i n r o \\ & \text { ricico } \end{aligned}$	$\begin{array}{lllll} \min & 0 & \infty & 0 \\ \infty & \infty & \infty & \infty & 0 \end{array}$				$\begin{aligned} & 0-6 N r \\ & m \dot{G} \dot{d} \dot{n} \end{aligned}$
		- miminm						$\begin{aligned} & \text { monN } \\ & \text { NNNN } \end{aligned}$			$O O O O=$	
			$\begin{array}{\|c\|} \hline \text { gのoーin } \\ \text { i imimi } \end{array}$	$\begin{aligned} & m \forall n \dot{ }+\infty \\ & m \dot{m} \dot{m} \end{aligned}$	$\begin{aligned} & a 0-N m \\ & \dot{j} \dot{\dot{j}} \dot{\dot{r}} \end{aligned}$					$\begin{aligned} & \text { manaz } \\ & \text { incinio } \end{aligned}$	$$	$\dot{\sigma O O O}=1$
		－＜idicici	m大オーn						dminor			
			$\stackrel{+\infty}{\sim}$			$0 \wedge \infty \infty a$ NヘヘNN	$\begin{gathered} 0-N M J \\ \text { min min } \end{gathered}$	$0 \wedge \infty \infty$ rim mi				
		－00．う	$\underset{\sim}{\sim}$		\bigcirc			＋オのno icicici			manor	
		nnmmo 00000 0000	$\begin{array}{\|ccc\|} 00 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{\|c\|c\|c\|c\|} \hat{1} \hat{0} \\ 000000 \end{array}$	$\begin{aligned} & \infty \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned} 0_{0}^{\circ} 0$	$\begin{gathered} 90900 \\ 00000 \end{gathered}$	00－－－	$\stackrel{+}{+}$	＋	nnnoo		－ivicuid
		（ 00000	00000 00000	00000 00000	00000 000000	00000 00000 0.0	00000 000000	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	000000	00000 000000	－ 00000	000000 000000
\cdots		－－ロッでへ	¢がうがが	ダすずか					nonon 	onono ダダズス	nonon ざベベざざ	onono

IPR2017－00946

$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { n } \\ & \text { n } \\ & H \end{aligned}$	哿	－ooncin		ダブチ寸		的に的的志	的的的乐的	$\left\lvert\, \begin{array}{ll} 0 & n \\ 0 & 0 \\ 80 & -1 \\ 0 & 0 \\ \text { in } \end{array}\right.$		$\begin{array}{rl} 0 n o n o \\ \text { nis on } \\ 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & n o n o n \\ & \dot{b} \text { go oo on } \end{aligned}$	
			－ハーフー તiかioiom			$\begin{aligned} & m m m n \infty \\ & \dot{m} \dot{q} \dot{q} \dot{q} \dot{q} \\ & \text { mig } \end{aligned}$		－Nono我活淂	$\begin{aligned} & \text { ror } \\ & \text { on in o } \end{aligned}$	$\begin{aligned} & N \infty \\ & \underset{\sim}{\infty} \infty \\ & \sim \end{aligned}$		
		nのみが	－ONの તiか்તiか		$\begin{aligned} & \text { mosol } \\ & \text { min mion } \end{aligned}$	mのナn 		isin				
			がーのヘ તべがぶ		いNONO 			$\begin{aligned} & \text { Jnion } \\ & \text { in in minis } \end{aligned}$	$\begin{aligned} & \infty-0 \sim \\ & \text { in in mi } \end{aligned}$	いかのい。 べミベペ்		
			N min－ シ்べぶべ	$\begin{aligned} & \text { inoor } \\ & \text { in in - }-\vec{j} \end{aligned}$		いいすい。 	$\begin{aligned} & \text { aNONO } \\ & \dot{G} \dot{子} \dot{G} \dot{G} \dot{G} \dot{子} \end{aligned}$	$\begin{aligned} & \text { ao-mo } \\ & \text { ginnini } \end{aligned}$	$\begin{aligned} & 0 n-\infty \times \\ & \text { in in } \\ & \text { in } \end{aligned}$	のmNत＋ ずべヘベャ்	$\begin{aligned} & 0 \\ & \dot{Q} \\ & \dot{2} \end{aligned}$	
			－NのO 		$00 \mathrm{mon}$ 	もいいい。 ぶゃべが			$\begin{aligned} & \text { No-N } \\ & \text { winino } \end{aligned}$		$\begin{aligned} & N O \\ & \underset{\sim}{\infty} \dot{\sim} \\ & \sim \end{aligned}$	
			－0NのN ウ่ウ்ウ்ベ	－－－－－ ヘiતiતioi		かったい。 			いかへへナ 			
				のm×mの 		のペい。 ল゙ボがが		$\begin{aligned} & \infty \wedge \wedge \wedge \infty \\ & \dot{q} \dot{q} \hat{q} \dot{q} \dot{q} \end{aligned}$	のーナ 	$\begin{aligned} & \infty \infty \\ & \infty 0 \\ & \infty \\ & \infty 0 \\ & i \text { If } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n-go } \\ & \text { omisi } \end{aligned}$	
				NO－6－ べべশNㅓ				$\begin{aligned} & n m m \sim N \\ & \dot{G} \dot{q} \dot{q} \underset{y}{c} \dot{子} \end{aligned}$	$\begin{aligned} & m n r o d \\ & \text { ginn mid } \end{aligned}$			
				いのナのサ ウ்તતતか	のにート শ্র̀ సiom m	$-9 \wedge 60$ 	○イのNo がべゅが手		かの○の子守新的	$0 \vee \mathrm{~N} \rightarrow$ 	mののロー 	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
			ヘットナー ત゙ベベボボ	かんNて 	Nトのの○ Niかicio		$\begin{aligned} & \text { orm-t } \\ & \text { mencing } \end{aligned}$			NoNor 		$$
			－ーート 		ナのに一⿻ べત்ત்		－0ヶのN 		$\infty \infty$ の－ 			$\begin{aligned} & \left\lvert\, \begin{array}{ll} \text { NNO } \\ \text { AN } \end{array} .\right. \end{aligned}$
			non－r તંત่ત่તં	いのmへ～ ボボベどべ	ヘNへのの ベべべが	－mon 	06000 	$\begin{aligned} & \dot{q}-\dot{a} \dot{n} \\ & \dot{m} \dot{q} \dot{q} \dot{q} \end{aligned}$		へのツーツ ががられ	$\begin{aligned} & \text { onomo } \\ & \text { in in ig } \end{aligned}$	
				∞ Noor 	のナのに一 ウ்ஸ்べべ		onora ल゙ল゙がぶ				$\begin{aligned} & \text { aoino } \\ & \text { nininiol } \end{aligned}$	
		－ooncin		ダずすき	ぶ¢ ¢ ¢ ¢	的ららべさ		onono 	nonon 	onono 	nonon bio oio 0°	$\left\lvert\, \begin{aligned} & \text { onono } \\ & \text { BRER } \end{aligned}\right.$

	号	－－ロッでへ		ダ年年	なもな枵夺			8－6̊すd	onono 	nonon ธ우웅웅	onono ミ゚ミズス	nonon ざッジざ
		－OMN～の							$\dot{y} \dot{y}$	nininio		
								\dot{m}	字字大守家	シinninio	605%	$\begin{aligned} & 0 \dot{0} \\ & \dot{8} \end{aligned}$
			-亏्वंत்		$\begin{aligned} & \text { +a才のn } \\ & \text { fon } \end{aligned}$			min mo	$\cdots \infty$ まずなよが			$\begin{array}{\|l\|l} n o \\ \text { no } \end{array}$
		－		かーいのm －－icicm		Nonnの		$\dot{\sim} \dot{\sim} \dot{\sim}$	NのM+			$\begin{aligned} & \infty \times 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$
		－ 0 － 0 －					m	nooto	「ヘイトの			
		の下ーいて	－\rightarrow°	$+\infty$	－	－	¢	mの	N－－－	のn	\checkmark	－－
				वेंतंतंबत				வimimimim		す守守守守	的的的的合	
		ning ég			$\begin{array}{ll} n g \infty \\ 0 \end{array}$	べざさ	∞ ○ナNN ค⿵人天		∞ onn ふがのテ	さヴデか	いかに「の 	
		－	con	ごのヘ	「－n	のナ－0	のソJN－	－－N以		ののーmo	－ $0 \times$ ¢	＋ommin
		ざずへ		のัの穴家			ウicicicoun		¢incommo		子守穴的㐌	¢imbiob
		ざざまず		$\begin{aligned} & \forall \wedge \dot{O} \wedge \\ & \dot{\infty} \dot{\alpha} \dot{\sigma} \dot{\sigma} \end{aligned}$	$0+\infty$ वेत்तन		のロナの すとがか	ののロतに 			$0 \text { orn }$ 字守守守	やoナ寸の nin in－8
							ont－o ボべびへ			0000∞ 	孚齐寽守	
			givo							$\dot{\sim}$		
		n「o	$\begin{aligned} & n \infty \\ & \pm \pm y \\ & \pm \end{aligned}$		$\stackrel{\alpha}{\infty} \underset{\sim}{\infty} \dot{q}$		$\cdots \infty ナ \rightarrow \infty$ スヘ̃ボ	ષ્તતત્તં		$\dot{m} \dot{m}$		守守夺动守
		on $+\infty$ m 				$\begin{aligned} & \text { amrNr } \\ & \infty \dot{\sigma} \alpha \dot{\alpha} \dot{A} \end{aligned}$						
	厨	－ロロロ゙		が年ま	なもなが守			8－¢ ¢ d	onono ஸ்ં்ંઠ	nonom 	onono ジダズオ	nonon ベベベざざ

	言毞	－ーNmすい	いいイかの	○ニこのざ	ごニへの	¢̇ה入べ	Nicka		¢゙memem	ダブタます			的的的禹的 6	寅認
	$\stackrel{\circ}{\square}$	$=-\begin{array}{ccc} -\infty \\ =-\infty & 0 & 0 \\ 0 \end{array}$	$\left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ \hdashline & 0 & 0 & 0 \\ 0 & \text { in } \end{array}\right.$			ntmor 	00∞ ○ लi ici i	いいすのm ini iN						$\stackrel{\square}{\square}$
	$\stackrel{\circ}{\circ}$	$=\overrightarrow{-c o s i c}$		6 mo o 		いいすのN ल゙लェゥल゙	mini ivi	いいい \downarrow m 	NNーーO 					
	\|o			いの 0 mo 		かontm ヴゥェゥゥ	$-0 \rightarrow \infty$ mini તi	へoによみ NiNiN i	man－o	i_{i}^{0}				$\bigcirc \bigcirc$
	$\left.\left\lvert\, \begin{array}{l} \circ \\ 0 \\ 0 \\ 0 \end{array}\right.\right)$			$0 \cdot \begin{gathered} 0.0 \\ 0 \\ 0 \end{gathered}$		のペに， мimini		－ 0 ont Ni N Ni N						
	$\left.\left\lvert\, \begin{array}{l} 5 \\ 0 \\ 0 \end{array}\right.\right)$		$\begin{array}{ll} m & 0 \end{array}$	$\begin{array}{\|cccc} 0 & N & 0 & 0 \\ 0 & 0 & n & n \end{array}$		－のペーに －ヴゥヴゥ		$\begin{aligned} & 0 \text { nn } \\ & \text { isi } \end{aligned}$	$\stackrel{\rightharpoonup}{i}$					$\therefore \begin{gathered}\text {－} \\ \sim\end{gathered}$
	Bo						\rightarrow のNーO 	an 0 に ヘ ત ત ત ત		idic ic				－${ }^{\text {a }}$
	On				inNOM 	$\dot{f} \forall \forall \dot{\sim} \dot{m}$	लेल लंल	－のかに ल゙ iviत	いすmのN ネ i i Ni					in
	$\stackrel{\circ}{\circ}$ \％		にNNのレ ́̇ $\dot{O} 0^{\circ} \infty$		min Or からいがよ			－のかべ micicici	innt	N－O				\％${ }^{\circ} \frac{\stackrel{\rightharpoonup}{9}}{9}$
	3 m	ーナヘO ベતポ	onnतm ざさニ்の		－- n Na 		$i \infty$	－oのor ल゙ल்तiतi	○に $ナ 寸$ の ヘiN તi Ni					
	등	$\underset{\sim}{\infty} \text { Ni }$	0	$\dot{y m}$			$f=0$	$\mathrm{NTO}-0 \infty$ ल゙m்ici	ペーが					¿
	$\left\lvert\,\right.$			－mのの Oのかべへ	$\left\lvert\, \begin{array}{ll} 0 n-r & t \\ 0 & 0 \end{array}\right.$									
	\therefore	－			$\begin{array}{llll} \infty & \infty & 0 \\ & 0 & 0 & 0 \end{array}$			लिल mini	がものす i i N i i i	$\begin{array}{rl} i \\ m & m \\ i & n \\ i & i \end{array}$			N	\％
	咅皆	－o－nmon	いいイかの		∞ の				¢nemem	子テブず枵	ですがか			考皆

	京毞	－○ーへのす	いしかのの	$\bigcirc こ さ$ ご	のーペーの				¢ ¢ ¢ ¢ m mo	ずブずす	年も「がす		ininin ${ }^{\text {and }}$	言告
	$\stackrel{+}{\sim}$				かへしかの ふi iNiN	ナナmmN ヘ i i i i							$\begin{array}{llll} -0 & 0 & 0 & 0 \\ -i & -i & 0 & 0 \end{array}$	$\stackrel{\circ}{\text { ¢ }}$
	$\stackrel{\sim}{n}$	$0+m-0$	$\infty \text { Nont }$	$m N-00$	$\infty \infty$ かo	$n+\sigma_{m}$		009∞	00	－nn＋+	－mmm		－00090	$\stackrel{\sim}{0}$
	$\stackrel{\text { ® }}{ } \stackrel{\text { ® }}{ }$	のヘnm－	ognon	－m－O	の 0∞ ro	¢－Jtom	MN－TO	0000∞	かットペ	Qninnt		のヘNー－	00009	
		$=\overrightarrow{-a r n m}$		い $+m \mathrm{~N}$－ लं लं लं लं	－の $\infty \infty$ ト लiતi i તi i	obnt + 	mmNー－ NiNiNi			00.			$\begin{array}{llll} -0 & 0 & 0 & 0 \\ -i & -i & 0 \end{array}$	－
	－			いのナmN ヴलェゥल゙		ヘ6onす 	$+\mathrm{mNN}-$ NiNiNi			\bigcirc			－0000	$\stackrel{\sim}{2}$
	厥	へナ～のヘ らがらず		－${ }_{\text {con }}$	N－O～の	crern		－－000	の	ペon		mNNN－	－0009	
	\pm	Ornतo		のかんにす	mN－OQ	amron		N－－00	$0 \rightarrow \infty$	No60い		mmNNN	－000	∞
	\because	$\forall-\infty$ n		－0，「い	－m N－O	$\rightarrow \infty \times$ ro		NN－${ }^{\text {ara }}$	000∞	Nペo		のMN	\bigcirc	
			NOMOT	$\cdots \rightarrow 0 \infty \times$		$00 \infty 00$	Onntmm	mNN－O	0000∞	$0 \cdot$				\bigcirc
		＝ 000 or				mi i i	－		－ののかっ				－	$\stackrel{\circ}{-\frac{3}{9}}$
	㖪	$=\begin{gathered} m a n-\infty \\ =0 \\ i=0 \\ 0 \end{gathered}$	nの○かっ ヴ		へいナのN 	－○の $\infty \infty$ 	ヘonn 			－			0	
	O	のサのnN ＂Nricosin	∞ no 0 		かんにナの 		ヘペのみ NiN i Ni		－0009		ついのが		－00	吅
	$\left.\right\|_{\stackrel{\rightharpoonup}{0}} ^{\circ}$	natan	Nobmo		のornd	$m N-00$	かへトもの		－のa		－		00	을
	$\stackrel{\text { ¢ }}{ }$	Ningto	nNaOm	OmbrN		－mN－O		andmma	N－000		Oいの＊		NN－TOO	$\stackrel{\text { ® }}{ }$
	咅鞄					でনヘ̃		－¢～べが	¢in mom	子नブずす				产

	言皆			こニ	ニ®の					のデ年相	などすが夺	伿的的寺	的的的的的这	言苞
		$\stackrel{+}{+}$			－よ				Sor					＋
					ncrum		$\text { -m- } \underset{\sim}{x}$	（ex	－non		¢ncor		のがったの	
			$\left.\begin{array}{llll} 1 & 0 & n & n \\ 0 & 0 & 0 & n \\ 0 & \infty & \infty \end{array}\right)$				$\dot{i} \dot{\sim} \dot{\sim} \dot{\sim}$	$\begin{array}{lll} m o l & 0 & m \\ -0.0 & \infty & 0 \end{array}$			m-aco	$i n$		\％${ }^{\text {a }}$
		－－riviramo			anc				Nicmá			－		－${ }^{\circ}$
			－$-1-\infty$ min						∞		$:-\infty x^{\infty}$		－ony	\％
		「0\％		ござざぐへ		nin		＋						
		－	$\infty \sigma^{\circ}=$					（	（rabo					\bigcirc
				$\begin{aligned} & N o-N \\ & n=-\dot{N} \end{aligned}$		－onす		（		「ゥm－	matar		いのさ	\bigcirc
				$\begin{aligned} & \text { nomn } \\ & =\text { nice } \end{aligned}$						$\bigcirc+\mathrm{NOO}$	montma		号の大寸	$\stackrel{\circ}{9}$
		Mor－a	$\left.\begin{array}{l} a-m+a \\ 0-2 m i n \end{array}\right)$			$\mathfrak{y c}$	のローナの	＋o	nmoso	＋m－0	－			in
							OMnOt	$06 i$	の	moo	$0 n+m$			$\stackrel{\circ}{\circ}$
					Nのm		\％					－0の	吅す	$\stackrel{\square}{\square}$
					$\begin{aligned} & n=i n a \\ & \dot{c}=1 \end{aligned}$									$\stackrel{\square}{\square}$
								がलハウか	๗लらめか				的的的的迷	立苞

IPR2017－00946

	京毞	－O－NmJ	いしへかの	－こさのざ					niminm				in in in min	产毞
			mmNNN ヘ i i i i	$--000$ NiNiNi	90.0∞					NNNNN	$: J$		成 0×0	$\stackrel{\circ}{\text { i }}$
		$\begin{gathered} \text { Nobinn } \\ =\text { i i i i i i } \end{gathered}$	ナナmmN 				0000nn	nいの $\begin{gathered}\text { n } \\ \text {－} \\ \text {－} \\ \text {－}\end{gathered}$		mNNNN				$\stackrel{\circ}{\circ}$
		かnのon ＝ג ivi i	い $+寸 m m$ i Ni Ni Ni	NNN－ Ni N તi i	00090 i તi ત ત- -i	の $\infty \times \infty$ 「	－000	いいいい +	－寸すmm	mmanN	のーーーー			\cdots
			onnt＋ 	mm N N－ 	－0000 		ヘヘペー	Oいのいの				$=$		（1）
	关	－ののが ＝misicici	Nonのす i i i i i	－mmNN i N N N તi	－－－ 00 N તi i i i	ののの 0∞	かへへへー	ounnm	い + ＋	のn		$\begin{aligned} & -0 \\ & -0 \end{aligned}$		응
		$=\overrightarrow{-r m e n c i c}$	かかもの NiતiNi	い $+m m m$ Ni Ni Ni	$\left\lvert\, \begin{array}{ccc} \text { N } \\ \text { incico } \end{array}\right.$			000nn	いい + ＋			0		¢
	淢	$=\begin{array}{cccc} \text { mNMm } \\ \text { mind } \end{array}$	のかへー 	いい + ナm 	$m \cap N-\quad$ ヘ i i તi	－0006ald	$\infty \infty$	N0000		－mmmm	N	$\begin{aligned} & -00 \\ & -10 \end{aligned}$		\cdots
	－		－のかへト ふi i i i i	○のによ 	mmNN－ ネ i i i i	－000000	0∞	000	いいいのか	－＋mmm	\sim	－－－00		\％
	$\left\lvert\, \begin{gathered} \ddot{0} \\ \vdots \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$n+m \sim N$ mimin	－○の ∞ लंल் i i त	Noont 	－mmNN Niતi iN	inino 	$0 \rightarrow 0 \infty \infty$	－ 0	onnの	－	mNTNT	－－－000	0	¢
	$\underset{\sim}{\infty}$	へもいすm ＝$\dot{m} \dot{m} \dot{m} \dot{m}$	N-o	∞ かon 	ntmmN N N N N i			かへへぺ	oonnn	－+ －mm	m	－	00	$\stackrel{\sim}{\sim}$
	－	のヘbい 		のかヘペ ㅅN N N ત	いい $ナ ナ$ の ヘ i i Ni ત				ooonn	n	ल	N－－－0	000	录
	\|o	－のかった $=\gamma \dot{m} m \dot{m}$		－のかスト mi i ivi	つのnかt NiN Ni i	mman	－ocoso		ounn				0000	
	$\stackrel{i}{\sim}$		－+ m N－ ल゙ल்ற்ற	－Oのかに 	Nonnt ヘ i i i i	\ddagger mmNN N N N N N	－－000 N Niતi－	$0 \infty \infty$	Nooun	n	N	\sim	00000	$\stackrel{i}{i}$
	京导	－－Nmナ	いいイかの	$\bigcirc=さ$ の	このニのの	でへホ̃	તัતべへべ			子 フ 寸 ず	なとながす			沯

	彦䍓	NMJ	いいかのの	こニさのす	セソこのの8					なテすが年				言号
		－						$\stackrel{\square}{-3}$				－ $0 \times \infty \times \infty$	$0 \cdot$	\％
			Cin	nnすかす		\cdots					09 00000 000	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0\end{aligned} 0 \times \infty \times \infty$	mrarar 0.0000 0.000	
			－060000	$\operatorname{nonnmod}_{-1}$					-				（emrrr	－$\square_{\text {¢ }}^{\square}$
		$=\infty^{\infty} \infty \infty \infty$	¢	00nnn					Z-					\bigcirc
				－000m					シごこ					－${ }^{\circ}$
		－のののか		6	onnmい			and	－ごご					
		：000ののの ヘヘヘ－－	∞	\bigcirc	0	nnすJ才						ancom		
			$\cdots \infty$		0060 m	のいのか大	＋寸寸mm		のNのN－	$\because=$				年
				∞	\bigcirc	0		のmmmm	तNand	$=$			（ex	
			$\begin{array}{ll} 0 \\ \text { intig } \end{array}$	$\xrightarrow{\circ} \times \infty \times \infty \times \infty$	\bigcirc	－								
		$\begin{aligned} & \text { mmmNN } \\ & \text { NNN } \end{aligned}$				－600n								\％${ }^{\text {b }}$
		$\forall \forall m m i$ iaicicid		－0ののの		－6\％orn	のnのnの							¢
		nnさtmm incicicid		$\text { -o o a } 9$ 							$:$			®
	言易			$\bigcirc=$	9				minmmon					言号

$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	言弐	－O－nm＋	－イトののの	こニさのさ	ワニこのの		Coincoid		めめめmが	ます尔ま	などが夺	吅的が寺	的的的晹夈	㖪苞
	\％												$6 \text { inf } f$	$\stackrel{\circ}{\circ}$
	年	0					वо－Nm				2n	$\begin{gathered} -\underset{i}{-i} \\ =-\infty \end{gathered}$	－rivitat	\％
		$=\stackrel{\infty}{\infty}+\infty \times 000$			matino	Orcoror		Moomintity	$\begin{aligned} & \text { n-inon } \\ & \text { fand } \\ & \text { thin } \end{aligned}$			¢－才	Nmbober Ontitrimi	\％$\stackrel{\text { \％}}{\text { \％}}$
		0	－		i＜icici	－	\％	\bigcirc				gntin		号
	怉哭	anooor	－নi NतN	mmオオn	－		のincoraj		ar					\％$\%$ \％
		－	入入入入入						OnOCm		$\mathfrak{m} \mid \leq$	00	0	
	¢	＝0－－nco	のmmみが	nour	－のo－d	のサのいか	の－mわか	－＋	－am「o	n		－mのす		of
		－－ram	のナナnn	Orroa	OO－Nm	norao	N＋6an	いの＋の号	nnool		000	onr	\bigcirc	\bigcirc
		הत			のツmmのm	のmmmす			－${ }^{\text {a }}$－		さこの			
	皆		ici＜	icicico	Mrimimim				$\begin{gathered} \infty, m+n \\ i=0=0 \end{gathered}$			－ 6 in ${ }^{\text {ar }}$	$+-\infty$	㕺 ${ }^{\frac{3}{z}}$
	管号		nobr	∞	$\left\|\begin{array}{ccc} m+i n & r \\ n i m i n c m i \end{array}\right\|$		ONumN0		$\dot{s} \dot{\infty}$				marn	\bigcirc
	为第号	$\begin{aligned} & \text { matino } \\ & \text { iniciciand } \end{aligned}$		O-rimmin	Trim		moll							
	$\stackrel{\circ}{\mathrm{m}}$	－ $\begin{aligned} & \text { Jmnor } \\ & \text { incicial }\end{aligned}$		－rimen				$\therefore \begin{array}{ll} n+\infty \\ \infty \\ \infty & 0 \\ 0 \end{array}$	E				－	$\stackrel{\text { ¢ }}{\text { ¢ }}$
	$\stackrel{\circ}{<}$	noor icici					cring			nob ஸ்ற்		$\infty \times 0$	－00なのー minतiल	®
	言弟			きニさのさ	－こニ 2 の				がmmo	ず年年年	ながながす			咢皆

IPR2017－00946

	寅牮	－OーNのサ	いい	○ニさのさ	にソこののて					子チブダす				产告
		$\begin{array}{llll} 0000 & 0 \\ -i-1 & -1 \end{array}$	0000090	ののののの $00^{\circ} 0^{\circ} 0^{\circ}$	のaののa $00^{\circ} 0^{\circ} 0^{\circ}$	$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		－ 0 N	$\left\lvert\, \begin{array}{ccc} \wedge & \text { Nr } \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$	$0 \begin{array}{lll} 1 & \sim & \hat{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	ハトロo6 $0^{\circ} 0^{\circ} 0^{\circ}$	$0 \begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} 0$	0600に年 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	\％
		－0000	00000	－OOの日	ののののの 0.00°	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$			$\infty \infty$ ハート 0.000°	へートヘト $00^{\circ} 0^{\circ}$	ヘヘヘト゚ $00^{\circ} 0^{\circ}$	00060 $00^{\circ} 0^{\circ}$	－0000 $0^{\circ} 0^{\circ} 0^{\circ}$	O
			000000	00000	$\begin{array}{llll} 0 & 9 & 0 & 0 \\ -0 & 0 & 0 \\ -0 & 0 & 0 & 0 \end{array}$	のののの 0000			$\left\|\begin{array}{lll} \infty & \infty & \infty \\ 0_{0} & \infty \\ -0 & 0 & 0 \\ 0 & 0 \end{array}\right\|$	$: \begin{array}{lll} \infty & n & - \\ 0 & 0 & n \\ 0 & 0 & 0 \\ 0 \end{array}$	Srarrald	$\left\lvert\, \begin{array}{llll} 1 & n & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} 0\right.$	いいいい $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	$\bigcirc \frac{\circ}{6} \frac{3}{\square}$
			－－0	00000	$\left\|\begin{array}{llll} 0 & 0 & 0 & 0 \end{array}\right\|$	$\left\|\begin{array}{cccc} a & a & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right\|$				$: \begin{array}{llll} \infty & \infty & \infty & n \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{lll} \text { NrAN } \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\left\lvert\, \begin{array}{ccc} 1 & n & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} 0\right.$	いいいい $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	\bigcirc
				－－－00	000000	－009a，				$\left\lvert\, \begin{array}{llll} \infty & \infty & \infty & \infty \\ 0 & \infty \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right.$	$\begin{array}{lll} 0 \times N & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 1 \times r & 0 \\ 0 & 0 & 0 \end{array} 0$	－00606 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	的
			N		－00000	－ 000000	$\begin{aligned} & 0 \\ & -0 \\ & -0 \end{aligned}$		$\left[\begin{array}{l} \infty \\ \infty \\ 0 \end{array}\right.$	$\infty \infty \infty \infty \infty$ $0^{\circ} 0^{\circ} 0^{\circ}$	$$	ヘヘヘトヘ $00^{\circ} 0^{\circ} 0^{\circ}$	No6060 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	$\cdots \stackrel{\text { con }}{\sim}$
			NaNNT	－－．－．	－－0 0	00000	$0<0$			$\left\lvert\, \begin{array}{lllll} \infty & \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 & 0 \\ 0 \end{array}\right.$	$\begin{array}{lll} 0 & \infty & \infty \\ 0 & 1 & n \\ 0 & 0 & 0 \end{array} 0$	$0 \begin{array}{lll} 1 & \wedge & \wedge \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	Nト0006 $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	哯
		$\underset{-i}{\text { mmmm }}$	manco	NN0	－J－	－000	0000			$\begin{aligned} & \infty \infty \infty \infty \infty \infty \\ & 0-\infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lllll} \infty & \infty & \infty & \infty & \pi \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}$	$\left\|\begin{array}{lll} 1 & \cdots & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\|$	ハヘトーo $00^{\circ} 0^{\circ} 0^{\circ}$	呺
			のツのツへへ	NnNuN		O	00000			$\left\lvert\, \begin{array}{cccc}-\infty & \infty & \infty \\ 0 & 0 & 0 & 0 \\ 0\end{array}\right.$	$\begin{array}{lllll}\infty & \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$		Nイトイレ	in ${ }_{\text {in }}$
			mmmmmの	－ $\mathrm{NTN}_{\substack{\text { a }}}$	NNT－	きこき	－000	0		$\left\lvert\, \begin{array}{ll} 9000 \\ 000 & 0 \end{array}\right.$	$\begin{array}{llll} \infty & \infty & \infty & \infty \\ 0 & \infty \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{llll} \infty & \infty & \text { スヘス } \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	ハヘヘッ6。 $00^{\circ} 0^{\circ} 0^{\circ}$	过
			－寸－ mm	mmmm		\bigcirc	－	$\begin{aligned} & 00 \\ & -1 \end{aligned}$		00	$\begin{array}{lllll} \infty & \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{llll} \infty & \infty & \infty & \text { r } \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\begin{array}{rrrr} n-0 \\ 000 & 0 & 0 \end{array}$	in ${ }^{\text {in }}$
		いいいいい ーーシージー－	寸寸寸才寸	＋のツのm	mmancor	NN		000			$\left\lvert\, \begin{array}{ccc} 9 & 0 & \infty \\ 0 & \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$	$\begin{array}{llll} \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	Nrrar 0000 0.0	
			いいか大	－寸－mm	mod	Nanco		I			$\text { gの } \sigma \infty \infty$ $100^{\circ} 0^{\circ} 0^{\circ} 0$	$\left[\begin{array}{lllll} \infty & \infty & \infty & \infty & \infty \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$	rirar	$\stackrel{\circ}{n}$
	雨皆	－OーNmみ	い6イma	ニニさツさ	9		べતNが		べかべからす	子テブず				霏

	=			$=\begin{array}{ccccc} -\quad & N & n & \ddots & n \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$	$\left\|\begin{array}{lllll} 0 & \wedge & \infty & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right\|$	$\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ \text { in mir } & +1 & 0 \end{array}$	$\left\|\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ i & \infty & 0 & 0 & 1 \end{array}\right\|$		$\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & \infty & 0 & 0 \\ \hline \end{array}$	000000
		$\begin{aligned} & \text { ¿े } \\ & \text { iे } \end{aligned}$		$\begin{array}{lccc} \hline-0 & \pi & 0 & N \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\left\lvert\, \begin{array}{ll} a 0 N m \\ 0-i & 0 \end{array}\right.$		$\begin{array}{llll} N & 0 & - & n \\ 0 \\ 0 & = & m & \dot{d} \\ 0 \end{array}$		$\begin{aligned} & \mathrm{N} \\ & \dot{\sim} \dot{\sim} \end{aligned}$	
		$\begin{aligned} & \text { in } \\ & \text { ì } \end{aligned}$	\％	$\begin{array}{lccc} -\cdots & \pi & n \\ 0.0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lllll} \infty & 0 & -1 & n & + \\ 0 & 0 & -i & -1 & -i \end{array}$		$\left\lvert\, \begin{array}{llll} \forall \infty & N & n & \infty \\ \dot{0} & \dot{y} & \cdots & \dot{d} \end{array}\right.$	$\begin{array}{llll} N 0 & 0 & 0 \\ 0 & \infty \\ 0 & \infty & -1 \end{array}$	$\begin{aligned} & 0 \mathrm{~m} \\ & \text { Ni } \end{aligned}$	
		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \vdots \end{aligned}$	$$	$\begin{array}{llll} \infty & 0 & 0 & -m \\ 0 & 0 & -i & - \\ \hline \end{array}$	n $\infty 0$ mい ヘ м •••	$\left\lvert\,\right.$		$\begin{aligned} & m n \infty \\ & \dot{\sim} N \underset{N}{n} \end{aligned}$	
		$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{y}{\infty} \end{aligned}$	－Nmいo $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	$\left\lvert\, \begin{array}{lllll} 1 & \infty & 0 & 0 & N \\ 0 & 0 & 0 & - & - \end{array}\right.$	$\begin{array}{llll} m & n & 0 & \infty \\ \text { in } \\ \text { in } & \dot{r} & \text { in } & 0 \end{array}$			$\begin{aligned} & \text { No } \\ & \underset{\sim}{\infty} \text { N N N N } \end{aligned}$	
		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { iे } \end{aligned}$	$\begin{aligned} & \text { §̀ } \\ & \vdots \end{aligned}$	$\text { - }$	$\begin{array}{lccc} 0 \wedge & 0 \\ 0 & 0 & 0 & -1 \end{array}$		$\begin{array}{lll} n & n & 0 \wedge \\ \cdots & 0 & 0 \\ i \end{array}$			
		$\begin{aligned} & \text { in } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { ¿ } \\ & \text { § } \end{aligned}$		$\left.\begin{array}{lllll} 0 & \wedge & \infty & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{array} \right\rvert\,$		$\left\|\begin{array}{lllll} a & \infty & \infty & \infty & \infty \\ 0 & \wedge & \infty & \alpha & 0 \end{array}\right\|$	$\begin{aligned} & \infty \wedge \wedge N \\ & =\dot{y} \dot{y} \dot{\sim} \end{aligned}$	$\left\|\begin{array}{lllll} \hat{r} & 0 & 0 & 0 & 0 \\ \dot{0} & \hat{1} & \infty & 0 & 0 \\ 0 & 0 & 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & \text { N } \end{aligned}$
		$\begin{aligned} & \text { iे } \\ & \text { 은 } \end{aligned}$	$\begin{gathered} \text { ले } \\ \text { ミ̄ } \end{gathered}$	$\begin{array}{lccc} -1 & n & + & n \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$\left\|\begin{array}{lllll} n & 0 & r & \infty & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right\|$		$\left\|\begin{array}{cccc} m & n & - & 0 \\ 0 & a \\ 0 & \infty & a & 0 \end{array}\right\|$		$\begin{aligned} & N-0 \\ & n-0 \\ & n \\ & \sim \end{aligned}$	$\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 0 & -1 \end{array}$
		$\begin{aligned} & \text { if } \\ & \stackrel{0}{\circ} \end{aligned}$	O	－NNMナ $00^{\circ} 000$	$\begin{array}{llll} n & 0 & \wedge & \wedge \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$					$\begin{array}{lll} 0 & \infty & 0 \\ \infty & \infty \\ \infty & 0 \\ 0 \end{array}$
		$\begin{aligned} & \stackrel{+}{4} \\ & \stackrel{1}{2} \end{aligned}$		－$\quad .000 \pm$	$\begin{array}{\|ccc} \forall n & 0 & \wedge \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & \text { n Nor } \\ & \text { in mir } \end{aligned}$		$\begin{array}{lll} 0 & 0 & \ddots \\ \infty & 0 & 0 \\ \infty & = \end{array}$		$\begin{array}{ll} m o \infty n m o \\ 0 & n \\ =10 & 0 \\ 0 \end{array}$
		$\begin{aligned} & \text { in } \\ & \stackrel{0}{-} \end{aligned}$	$\begin{aligned} & \text { Nे } \\ & \text { ĒO } \end{aligned}$	－ $\begin{gathered}\text {－NoM } \\ 0\end{gathered}$	$\left.\begin{array}{llll} \forall & n & n & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & \text { mormo } \\ & \text { in in } \end{aligned}$	$\begin{array}{llll} \wedge & m & 0 & r \\ \dot{r} & \text { in } & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lll} 0 & +0 \\ \infty & \circ \\ \infty & \dot{O} & 0 \\ \hline \end{array}$		
		$\begin{aligned} & \text { ì } \\ & \stackrel{\circ}{-} \end{aligned}$	है		$\left\|\begin{array}{cccc} \forall & * & n & n \\ 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}\right\|$		$\left\|\begin{array}{lllll} N & \infty & \ddots & 0 & 0 \\ \dot{r} & \dot{r} & \text { in } & 0 & 0 \\ 0 \end{array}\right\|$	$\begin{array}{llll} N & \infty & \sigma \\ \sim & \sim \\ \sim & \infty & 0 & 0 \end{array}$		
		$\begin{aligned} & \text { in } \\ & 0 \end{aligned}$	¢ ¢ E		$\begin{array}{llll} n & \forall & \forall & n \\ 0 & 0 & n \\ 0 & 0 & 0 & 0 \end{array}$	－6－N～ $\rightarrow-$ ン ハ ウ		$\begin{aligned} & +0 \ln 0 \\ & 0 \wedge \uparrow \infty \infty \\ & 0 \times \infty \end{aligned}$		
			c̀ En	$\begin{array}{cccc} 0 & -1 & N & N \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}$	$\begin{array}{lllll} m & m & \ddots & \ddots & n \\ 0 & 0 & 0 & 0 & 0 \end{array}$				$\left.\begin{array}{ccccc} -n & 0 & n & 0 \\ \infty & \infty & \sigma & a & 0 \end{array} \right\rvert\,$	
		in	合	$\begin{array}{cccc} 0 & -1 & N & N \\ 0 & 0 & 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ccccc} N & m & m & \ddots & + \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$					$\begin{array}{lllll} N & 0 & 0 & +\infty & N \\ \alpha & \sigma & 0 & 0 & 0 \\ =1 & 1 \end{array}$
	$=\stackrel{\substack{0}}{\mathbb{O}} \underset{\sim}{T}$			$=\begin{array}{cccc} -1 & n & m & \ddots \\ 0.0 & 0 & 0 & 0 \\ 0 \end{array}$	○ へ \quad の $00^{\circ} 0 \cdot-$	$\begin{array}{cccc} 0 & 0 & 0 \\ \text { i mivio } \end{array}$	$\left.\left\lvert\, \begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ i & \infty & 0 & 0 & 1 \end{array}\right.\right]$		$\left\|\begin{array}{cccc} 0 & 0 & 0 & 0 \\ i & 0 & 0 \\ & 0 & 0 & \dot{N} \\ \cdots & \dot{N} \end{array}\right\|$	000000

[^0]IPR2017－00946 Garmin EX2001 Page 718

				ーNのサに $\circ 0^{\circ} 0^{\circ}$	○トかの○ $00^{\circ} 0^{\circ}-$	00000 	00000 $\stackrel{\sim}{\circ} \circ \circ=$	$\left\lvert\, \begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ \dot{y} & m & j & 0 & 0 \\ \hline \end{array}\right.$		-			$\begin{array}{lllll} \\ -1 & n & \pi & n \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$	いへかのoo $0000-i$	$\begin{array}{cccc} 00 & 0 & 0 & 0 \\ m i t i n & 0 & 0 \end{array}$	丞
			\％								¢	－			No	
			\％	mbanoo $000-1$	のいい 0 － －i i i i m		$\begin{array}{lll} \infty & 0 \\ \text { à } \\ \vec{N} & \dot{\sim} \end{array}$			$\begin{aligned} & \text { in } \\ & \stackrel{y}{+} \end{aligned}$		－				㖪
			$\begin{aligned} & \text { co } \\ & \stackrel{c}{n} \end{aligned}$	$\begin{array}{ll} \text { mognn } \\ 0.0 & 0 \\ 0 & -1 \end{array}$	$\infty-ナ \wedge 0$ - i i ત					$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \dot{\sigma} \end{aligned}$		－				景
			$\begin{aligned} & \stackrel{8}{6} \\ & \stackrel{y}{6} \end{aligned}$							$\begin{aligned} & \text { in } \\ & \text { i } \end{aligned}$	－	－			$\begin{aligned} & \infty \\ & 0 \\ & \overbrace{i} \\ & 0 \\ & 0 \end{aligned}$	㑕
				$\begin{aligned} & \text { mn n } \\ & 000-3 \\ & 0 \end{aligned}$	¢の－Jへ					$\begin{aligned} & \stackrel{\rightharpoonup}{\prime} \\ & \text { oे } \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{\text { N }}{ } \\ \text { In } \\ \hline \end{array}$	－	$\left\|\begin{array}{llll} n & n & 0 & n \\ 0 & -i & -i & n \end{array}\right\|$	$\left\lvert\, \begin{array}{ccc} 0 & n & 0 \\ m_{i} & 0 & 0 \\ \hline \end{array}\right.$	$\begin{array}{ccc} 0 & 0 \\ \text { ni in di } \end{array}$	
			$\begin{aligned} & \text { त̀ } \\ & \text { 訁َ } \end{aligned}$	mn ∞ O m $000-1$	\cdots	no				$\begin{aligned} & \text { in } \\ & \text { or } \end{aligned}$		－				\％
				$\begin{aligned} & \text { Nuront } \\ & \text { oncoi- } \end{aligned}$	＋					$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{2} \end{aligned}$		－	n	i/i लं लं	$\begin{aligned} & n-\infty \\ & \infty \\ & \underset{\sim}{\infty} \underset{\sim}{n} \end{aligned}$	
			$\begin{aligned} & \text { Y } \\ & \text { 兰 } \end{aligned}$	$\begin{gathered} n n \wedge a z \\ 0 \\ 0 \end{gathered}$	＋ 0 oom					$\begin{aligned} & \text { in } \\ & \text { of } \end{aligned}$		－		$1 ヶ-60+9 \mathrm{~m}$		会
					mいへの－			$\begin{array}{ll} N_{\infty} & 0 \\ \hat{N} & 0 \\ \hline \end{array}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{8}{8} \\ \stackrel{B}{0} \end{array}$	－				－
			\％	त $\sigma \infty 0$ $00^{\circ} 0^{\circ}$	$\stackrel{+}{\sim}$	$\begin{array}{lll} 0 & 0 & -\vec{c} \\ \dot{\sigma} & \dot{\infty} & 0 \\ \hline \end{array}$		$\underset{\sim}{\text { No }}$		$\begin{aligned} & \text { in } \\ & i \\ & i \\ & \hline \end{aligned}$		－			$\left\lvert\, \begin{array}{ccc} m & n \\ \vdots-i & \dot{N} \end{array}\right.$	宕
			$\begin{aligned} & \stackrel{3}{4} \\ & \vdots \\ & \hline \end{aligned}$	＋＋oma－	－	－へont				$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{y}{c} \\ \vdots \\ \stackrel{y}{n} \end{array}$	－		－ 		毞
			$$		－$+0 \rightarrow$					$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{8} \\ & \text { 言 } \end{aligned}$	－		N60『⿻⿱一⿱日一丨一力刂 		哮
			\％	$\begin{array}{cccc} \text { Nonn } & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	\bigcirc		$=\dot{\sim} \dot{n} \dot{\sim} \dot{0}$	$\dot{\mathrm{a}} \dot{\mathrm{y}} \dot{\mathrm{~N}} \dot{\mathrm{~N}} \dot{\sim}$		$\begin{aligned} & \stackrel{\text { b}}{1} \\ & \text { in } \\ & \hline \end{aligned}$		，		i i iल लiri		
			－	$\begin{array}{ccc\|} \hline \text { nminomer } \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		のい○ー－ べゴベ			$\begin{aligned} & i n \\ & i n \\ & i n \end{aligned}$		－	$\begin{array}{ll} m \\ 0 \\ 0 & 0 \end{array}$	i i तimio		－
				ーNのナに $00^{\circ} 000$	$\left.\begin{array}{llll} 0 & \infty & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$	00000 へウナージー	$\begin{array}{rlllll} 0 & 0 & 0 & 0 & 0 \\ i x & \infty & 0 & 0 & 0 & =1 \\ j \end{array}$			=			$\left\lvert\, \begin{array}{ccc} -r & m & \pi \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$	いト 0 のo $0000-i$	000000 	苞

		\because	$\begin{gathered} -9000 \\ -00000 \\ 1 \\ 1 \\ 1 \end{gathered}$		$\begin{aligned} & \begin{array}{l} 88 \\ m \\ n m+n o \\ + \end{array} \end{aligned}$	$+\infty$	$\begin{array}{rr} \text { Ni 요요 } \\ + & + \\ \hline \end{array}$	等		$\begin{gathered} 08000 \\ -0.000 \\ 1000 \\ 1 \end{gathered}$		$\begin{aligned} & \mathrm{m} 8 \\ & \mathrm{mm+no} \\ & + \end{aligned}$		
		$\stackrel{+}{+}$			$\left\lvert\, \begin{array}{llll} 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right.$		10.00000		\circ +		$\left\lvert\, \begin{array}{lll} \infty & \infty \\ \underset{i}{i} \\ + \\ + \end{array}\right.$		$\left[\begin{array}{llll} \infty & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ + & & 0 & 0 \end{array}\right.$	$\left\lvert\, \begin{array}{lllll} m & n & 0 & 0 \\ 0 \\ + & 0 & 0 & 0 & 0 \\ \hline \end{array}\right.$
		$\begin{aligned} & \text { ते } \\ & + \end{aligned}$			$\begin{array}{lll} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 \end{array}$		$\begin{array}{llll} 1 & -0 & 0 & 0 \\ 0 \\ 1 & 0 & 0 & 0 \end{array} 0$		$\stackrel{\circ}{+}$			$\underset{+}{+} \underset{-}{+}=0.0$	$\left[\begin{array}{llll} 1 & 0 & n & n \\ 0 & 0 & 0 & 0 \\ + & 0 & 0 \end{array}\right.$	
		$\stackrel{\circ}{+}$				$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ccc} 1 & -1 & -0 \\ 0 \\ 1 & 0 & 0 \\ \hline \end{array}$		$\begin{aligned} & \circ \\ & + \end{aligned}$				$\left[\begin{array}{llll} n & n & t & 7 \\ 0 & 0 & 0 & 0 \\ + & 0 & 0 & 0 \end{array}\right.$	
		\bigcirc		ObTッo ।		$\begin{array}{llll}\infty \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0\end{array}$			$\begin{aligned} & \infty \\ & + \\ & + \end{aligned}$		$\underset{+}{n} \underset{\sim}{\text { n N }} \underset{-}{-}=\underset{-}{O}$	$\begin{array}{llll} 2 & \infty & 1 & 0 \\ 0 & 0 & 0 \\ + & 0 & 0 & 0 \end{array}$		$\begin{array}{llll} -1 & -0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ + \end{array}$
		$\stackrel{\circ}{1}$				$\operatorname{O}_{1}^{0} 0_{0}^{\infty} 0_{0}^{n}$	$\begin{array}{ccccc} \text { mal } & -1 & -0 & -0 \\ 1 & 0 & 0 & 0 \\ \hline \end{array}$		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & + \end{aligned}$			$\begin{array}{llll} 0 & n & J & 0 \\ 0 & 0 & 0 & 0 \\ + & 0 & 0 & 0 \end{array}$		$\begin{array}{llll} -7 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ + \end{array}$
		$\underset{\text { İ }}{1}$	$-\operatorname{ing}_{1}^{\infty}$						$\begin{aligned} & 8 \\ & + \end{aligned}$		$\begin{array}{lllll} n & n & t & j \\ 0 & 0 & 0 & 0 \\ + & 0 & 0 & 0 \end{array}$		$\begin{aligned} & 1-\overrightarrow{0} \\ & 0 \\ & + \\ & + \end{aligned}$	$\begin{array}{llll} -0 & 0 & 0 & 0 \\ 0 . & 0 & 0 & 0 \\ + & 0 & 0 \end{array}$
		$\stackrel{8}{1}$			$\underset{1}{0} \underset{i}{i} \underset{\sim}{\mathrm{i}} \underset{\sim}{\infty} \xrightarrow{\infty}$		$\begin{array}{lllll} n & n & -1 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$		$\begin{aligned} & \text { in } \\ & + \end{aligned}$	- 00000000	0.000000	0.00000.	0.00000	0.00000
		\bigcirc					$\begin{array}{llll} 0 & J & N & 0 \\ 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$		¢ +		$\ln _{1}^{n} 0_{0}$		0.0000	$\begin{array}{lll} -0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \hline \end{array}$
0		\%	$\left\lvert\, \begin{gathered} 08080 \\ 00000 \\ 1 \\ 1 \end{gathered}\right.$		$\begin{aligned} & \begin{array}{l} 88 \\ n m+n o \\ + \end{array} \end{aligned}$	$\mathrm{r}_{+}^{\infty} \operatorname{lon}$		d		$\begin{gathered} 08000 \\ -08010 \\ 0000 \\ 1+ \end{gathered}$				$\begin{array}{rr} \text { त } \\ + & \text { in } \\ + & + \\ \hline \end{array}$

	\cup				N～NNN ∞ がが ।	$\left\lvert\, \begin{array}{cccc} N & N & N & N \\ \infty \\ M & i & -1 & 0 \\ 1 & & 1 & + \\ \hline \end{array}\right.$		$\begin{array}{lllll} \infty & \infty & \infty & \infty & \infty \\ 0 & \sim & \infty & 0 & 0 \\ + & & & & \end{array}$	$\left[\begin{array}{l} \infty \\ \infty \\ \dot{\sim} \\ \dot{\sim} \\ + \\ \hline \end{array}\right.$		$\infty \infty \infty \infty$ ત̇ ત่ ત゙ ત゙ $+$	$\infty \infty \infty \infty \infty$ 서성 $+$	
		へのーツい がペーン	$\left\lvert\, \begin{array}{ll} N-a r & 0 \\ 0-i \\ 1+ \end{array}\right.$		$\begin{aligned} & m-a n \\ & \underset{\sim}{m} \dot{\sim} \dot{\sim} N \dot{N} \\ & + \\ & \hline \end{aligned}$			$\begin{aligned} & m-a n i n \\ & \dot{G} \dot{G} \dot{寸} \dot{寸} \dot{n} \\ & + \end{aligned}$	$\begin{aligned} & m-0 n \\ & m i n \\ & n_{i} i n \\ & + \\ & \hline \end{aligned}$				
			に ヘิก ำฟ	O Five NतNत	in to o o $\cdots \cdots \cdots \cdots$	N太N心N	のレペの Nへへへ		$\sim_{\infty}^{\infty} \hat{\infty}_{\infty}^{\infty}$ $\sim_{\mathrm{N}}^{\infty} \mathrm{N}^{\infty} \underset{\mathrm{N}}{\infty} \underset{\mathrm{N}}{\infty}$		\cdots		
						$\left\|\right\|$							
	山			$\left\|\begin{array}{ccccc} 0 & \infty & 0 & \forall & N \\ i & 0 & 0 & 0 \\ + & 0 & 0 & 0 & \vdots \end{array}\right\|$	$\begin{aligned} & 0 \\ & \infty \\ & \dot{J} \\ & + \\ & + \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & i n \\ & i n \\ & i n \\ & \text { in } \\ & + \end{aligned}$	$\left\lvert\, \begin{array}{ccccc} 0 & \infty & 0 & + & N \\ i & 0 & \text { i } \\ i & 0 & 0 \\ + & 0 & & \end{array}\right.$	$$	$\left\lvert\,\right.$	
	\cup	- તi NNNNて	$\underset{1}{\infty} \Omega \underset{\sim}{\circ}$	$\because \pm M \cong=$	$0 a \infty \wedge 0$	$\left\lvert\, \begin{gathered} n \\ 1 \end{gathered}\right.$	$O_{+}^{-N m+}$	$\begin{array}{lll} n & \circ & \infty \\ + \end{array}$	$\underset{+}{O}=\simeq M \pm$	$\frac{n}{+}-\infty=9$			
	\checkmark	－N N ∞ $\stackrel{\sim}{\infty} \infty{ }^{\circ}$ તૂતૂતે			のにO6N 	へ $\quad \infty$ ーの $\sim_{N}^{\infty}{ }_{N}^{\infty}$	no onr						
	\cup	ナOーーN $\dot{\top} \dot{\circ} \dot{\circ}$ $+$		$$		$\begin{aligned} & 0-N \sim \infty \\ & 0-0 \cdot N \\ & + \\ & + \end{aligned}$	$\begin{array}{llll} m & + & 0 & 0 \\ \infty & \infty & 0 & 0 \\ + & - & 0 \\ \hline \end{array}$	－\sim N ∞ 	$\begin{array}{lllll} 0 & +0 & 0 & - \\ \dot{n} & \dot{\sim} & \dot{n} & \dot{n} & \dot{0} \\ + & N & N \end{array}$	$\dot{\sim} \dot{N} \dot{N}{ }^{\infty}$ $+$		N ∞ mの $+$	
			\mid	$\begin{aligned} & \text { inn } \\ & + \\ & + \end{aligned}$			$\begin{aligned} & n \\ & + \\ & + \\ & + \\ & \hline \end{aligned}$	RスNNさ		$\left\lvert\, \begin{array}{llll} \infty & \infty & \infty & \infty \\ + & \infty & \infty \\ \hline \end{array}\right.$	\mid	$\left\lvert\, \begin{aligned} & \text { Q নুুのず } \\ & + \end{aligned}\right.$	
	\Downarrow		－ 0 NNM オホオオ		－N へ m 	ナのno o ni o 人 ลฟ へへへ	Nトの ∞ ナ $\infty \infty^{\infty} 0^{\circ} \dot{0}$ กฟ Nへ N N	のno N 		noonr $0_{0}^{\circ} 0_{0}^{0} 0_{0}^{\circ} 0_{0}^{\circ}$ लतNतN		○ーNへの N N ババざ సิへへへ	がのに○。
	\cup	のm ∞ NN 셋N 성	－ 00 ナa Nin in ત்	$m \infty$ Nト ベતホ่ ત่ 1				$\begin{array}{llll} N & 0 & 0 \\ \mathcal{N} & = & 0 & 0 \\ 1 & = & 0 \end{array}$		${ }_{1}^{0}$ on in +	$\begin{array}{ccc} a & \infty & \infty \\ \text { min in in } \\ 1 \end{array}$	$\left\|\begin{array}{cccc} -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 1 & & & + \end{array}\right\|$	
	L	$\underset{1}{2} \underset{\sim}{2}$	$\because \pm M \simeq=$	$\underset{1}{0} 0 \infty \wedge \infty$	$+\infty \mathrm{N}_{\mathrm{l}}$	$O_{+}^{-N m \forall}$	$\ln _{+} \text {○ } \infty$	$\underset{+}{O}=\simeq \cong \pm$	$\frac{n}{+}=\infty \Omega$		$\underset{+}{\infty} \underset{\sim}{N} \text { N }$	\mid	

		$\begin{aligned} & 0-N m t i n \\ & 0.0000 \\ & 0 \end{aligned}$	$\begin{array}{lll} n & 0 & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$			onono in imimi	no 00000 サウமかかの		$0-0.004$ 00000	norma 00000			onono Niल゙mチ	no00000
		85さ ${ }^{\text {8 }}$		88.	aney		궁ํํㅜㅇㄷ6 	－	৪유앙	0，88888	80880 inici		88	0,888888
		－원중	d으의		句すがすき	さますす			－$\otimes_{0}^{\infty} \dot{\sim}$	$\square_{0} \otimes \otimes \otimes$		$\square_{0}^{\sim} \otimes$	$\underline{\sim}$	Q
							からからすむす －ウinioncóo	－	89					$\begin{aligned} & \text { Fのgのgのo } \\ & \text { Fingrion } \end{aligned}$
		－2゙こらすす。	b	〇かすすき	すきす				－ $20 \times \infty$	E080n	ぞざさささ	\pm	ミNad	ごさスさスลス
		$8 \pm \%$				ic c	子ヴーべかの白	\％	889					
		－	かっこうすき	きますきが					－¢ ¢ 三n	8	구으ㅇㅜㅜ	－	－	す¢0¢
		8288			icid	mbon incimit	 	－						
		－	Van	${ }^{\circ}$		すくへごごき	ごここ゚さこもき				¢	－		
		8880∞			20			。						
			べきますが边			＋			－¢ ¢ ミざさも	ごすさす。	Oonがに	ジらいさ	どごって	すぎきますすぎ
		0.00000				onono incimy	n000000 サウivioの		$0-004$ 00000	norma 00000			$\begin{aligned} & \text { onomoly } \\ & \text { incmint } \end{aligned}$	

IPR2017－00946

	宕	
	哿	－$\because \infty \sim \infty$
		$\begin{array}{llllll}\square & 0 & 0 & \pm & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ + & + & + & + & +\end{array}$
		－in in 0 ¢
	或	
	鹪	－べ
	㤉	－ 0 ¢ 2 a

IPR2017-00946

			$\stackrel{+}{+}$				$\left.\right\|_{\infty} ^{\infty} \times \infty$						＋	
	\％						∞ Oこさ			\％	$\overbrace{}^{\circ}$			－
	－					$\min 0$		－तֹされべ	\％	$\stackrel{\square}{7}$	0			$-\mathrm{c}$
								व̃べすくへべ	坒	¢	0°			N＋
						$m 6 \infty=m$ n	こニのลत̇ス		旁	$\stackrel{\circ}{8}$	\％			a＋m
						いのこさもの			䨪	$\stackrel{\circ}{\circ}$	0°			athr
						のつさものス			号	¢	0			－mbra
	－					ごこのさ			号	$\stackrel{\circ}{\circ}$	0°			－mわrag
	－				$\cdots \bigcirc \xlongequal{\sim}$				－	in	8		－	mのraqu
					ニさ \because			めんのが年	\％	$\stackrel{\square}{\text { ¢ }}$	¢		－m	い入のこささ
	或边			a	ざニ				号	앙	¢		－min	へのこささに
	\bigcirc			mrog			Wemomof	子 す寸な゙な	O	$\stackrel{\sim}{\mathrm{m}}$	0		－mmr	のここさこへ
	\because			こさ	シ®añà					$\stackrel{\circ}{\sim}$	$\overbrace{}^{\circ}$		のnヶの	このさ゚ニの
	\bigcirc			の 2 の	オさ	¢＋¢ ¢ ¢ ¢ ¢ 寸				$\stackrel{\text { ® }}{ }$	8		のいかのこ	のロッロのを
	in		N「	－さニでのカ	¢o iomp					¢	0		のn「Oこの	
							$\left\lvert\, \begin{array}{llll} \infty \\ + & \infty \\ + & \pm & \infty & \infty \\ \hline \end{array}\right.$						＋	

IPR2017－00946 Garmin EX2001 Page 726

			$\underset{1}{\infty} \stackrel{\bullet}{\sim}$		$\bigcirc \underset{+}{\text {＋}}+\infty$	$\frac{0}{+} \sim \pm \div \infty$	－	－	¢ ¢ 寸 ¢ ¢	O ${ }_{7}$		คNさせ゚か	$\underset{+}{\infty} \sim \infty$	
		$\stackrel{\circ}{\square}$							ते $=\uparrow$	かニースべ	－	ぞからい	－	
		$\stackrel{i}{\sim}$	。						のペー！	$\underset{+}{n} ニ \text { Nへへ }$		耳 隹乐的的	¢ ¢ ¢ ¢ ¢ ¢	Nさぺ
		$\stackrel{\square}{7}$	。					¢	－イッべ	$\underset{+}{n} \text { N N Non }$	$\underset{\sim}{\infty} \underset{\sim}{\infty} \text { F寸 }$	ず分的的	¢	¢
		\because	。					¢ \pm	† ${ }_{\text {¢ }}$			示寺的的ち		
		$\stackrel{\square}{\circ}$	。					¢N二N	\ddagger ¢ ${ }^{\text {a }}$ N	－		min ${ }_{\text {min }}^{\sim}$		
		\bigcirc	－						$\text { Fnの } \begin{array}{r} \mathrm{d} \\ \hline \end{array}$			¢		
		\therefore	。					\％サ～N					－¢ ¢ ¢ へ	$\underset{+}{\sim}$
		\therefore	－				∞	で気こ			Finctin			
		\％	。				$\dagger \ddagger$	ㅇㅡㅝ	＋	ぺブダす			Nさせ＋	
		in	。				$\pm \infty$	Fn	त̇¢				のnへスか	＋
		$\stackrel{\circ}{\circ}$	。			ずさご何	べ゚OOの	$\frac{\square}{+}$ のNべ	Oeminn ${ }_{+}$		min ${ }_{4}$	to ${ }_{+}^{+}$	＋	
		in	－		すֹูत入		$\sim_{+\infty}^{\infty}$ こさへ		ぶッらも			\％\％¢ ¢ ¢	$\xrightarrow[+]{\sim}$	
		i		そimm		がなナー			¢		云的 6030	べロスベ		
		\bigcirc		ブッポッ	T ${ }_{1}$			त－	mo y		mo	Oニベット		
0		1	${ }^{\circ} \underset{1}{\infty} \underset{\sim}{\infty}=$	$\frac{0}{1} \infty$	$\bigcirc \mathrm{C}+6 \infty$	$\frac{0}{+} \simeq \pm \bullet \infty$	がNホNべ	－	¢ ¢ 寸 ¢ ¢			$\underset{+}{2} \underset{\sim}{2}+\underset{\sim}{\wedge}$	$\underset{+\infty}{\infty} \infty+\infty \infty$	

IPR2017－00946

GLOSSARY OF
 MARINE NAVIGATION

A

abaft., $a d v$. In a direction farther aft in a ship than a specified reference position, such as abaft the mast. See also ABAFT THE BEAM, AFT, ASTERN.
abaft the beam. . Any direction between broad on the beam and astern. See also FORWARD OF THE BEAM.
abampere. , n. The unit of current in the centimeter gram-second electromagnetic system. The abampere is 10 amperes.
abeam. , $a d v$. In a line approximately at right angle to the ship's keelopposite the waist or middle part of a ship. See also BROAD ON THE BEAM.
aberration. , n. 1. The apparent displacement of a celestial body in the direction of motion of the earth in its orbit caused by the motion of the earth combined with the finite velocity of light. When, in addition to the combined effect of the velocity of light and the motion of the earth, account is taken of the motion of the celestial body in space during the interval that the light is traveling to the earth from the luminous body, as in the case of planets, the phenomenon is termed planetary aberration. The aberration due to the rotation of the earth on its axis is termed diurnal aberration or daily aberration. The aberration due to the revolution of the earth about the sun is termed annual aberration. The aberration due to the motion of the center of mass of the solar system in space is termed secular aberration but is not taken into account in practical astronomy. See also CONSTANT OF ABERRATION. 2. The convergence to different foci, by a lens or mirror, of parallel rays of light. In a single lens having spherical surfaces, aberration may be caused by differences in the focal lengths of the various parts of the lens: rays passing through the outer part of the lens come to a focus nearer the lens than do rays passing through its central part. This is termed spherical aberration and, being due to the faulty figure of the lens, is eliminated by correcting that figure. A lens so corrected is called an aplanatic lens. Aberration may also result from differences in the wavelengths of light of different colors: light of the shorter wavelengths (violet end of the spectrum) comes to a focus nearer the lens than light of the longer wavelengths (red end of the spectrum). This is termed chromatic aberration, and is practically eliminated over a moderate range of wavelengths by using a composite lens, called an achromatic lens, composed of parts having different dispersive powers.
aberration constant. . See CONSTANT OF ABERRATION.
ablation. , n. Wasting of snow or ice by melting or evaporation.
abnormal. , adj. Deviating from normal.
abrasion. , n. Rubbing or wearing away, or the result of such action.
abroholos. , n. A squall frequent from May through August between Cabo de Sao Tome and Cabo Frio on the coast of Brazil.
abrupt. , $a d v$. Steep, precipitous. See also BOLD.
abscissa. , n. The horizontal coordinate of a set of rectangular coordinates. Also used in a similar sense in connection with oblique coordinates.
absolute. . Pertaining to measurement relative to a universal constant or natural datum.
absolute accuracy. . The ability of a navigation or positioning system to define an exact location in relation to a coordinate system.
absolute gain. . See ISOTROPIC GAIN (of an antenna).
absolute humidity. . The mass of water vapor per unit volume of air.
absolute motion. . Motion relative to a fixed point. If the earth were stationary in space, any change in the position of another body, relative to the earth, would be due only to the motion of that body. This would be absolute motion, or motion relative to a fixed point. Actual motion is motion of an object relative to the earth.
absolute temperature. .Temperature measured from absolute zero which is zero on the Kelvin scale, $273.16^{\circ} \mathrm{C}$ on the Celsius scale, and $459.69^{\circ} \mathrm{F}$ on the Fahrenheit scale. The sizes of the Kelvin and Celsius degree are equal. The size of a degree on the Fahrenheit scale equals that on the Rankine scale.
absolute value. . The value of a real number without regard to sign. Thus, the absolute value of +8 or -8 is $|8|$. Vertical lines on each side of a number indicate that its absolute value is intended.
absorption. . The process by which radiant energy is absorbed and converted to other forms of energy. See ATTENUATION.
absolute zero. . The theoretical temperature at which molecular motion ceases, $459.69^{\circ} \mathrm{F}$ or $-273.16^{\circ} \mathrm{C}$.
abyss. , n. A very deep area of the ocean. The term is used to refer to a particular deep part of the ocean, or to any part below 300 fathoms.
abyssal plain. . See under PLAIN.
accelerate., $v ., t$. To move or cause to move with increasing velocity.
acceleration. , n. 1. The rate of change of velocity. 2. The act or process of accelerating, or the state of being accelerated. Negative acceleration is called DECELERATION.
acceleration error. . The error resulting from change in velocity (either speed or direction); specifically, deflection of the apparent vertical, as indicated by an artificial horizon, due to acceleration. Also called BUBBLE ACCELERATION ERROR when applied to an instrument using a bubble as an artificial horizon.
accelerometer. , n. A device used to measure the accelerations of a craft, resulting from the craft's acceleration with respect to the earth, acceleration of gravity, and Coriolis acceleration.
accidental error. . See RANDOM ERROR. An error of accidental nature. (Not to be confused with MISTAKE.)
accretion. , n. Accumulation of material on the surface of an object.
accuracy., n. 1. In navigation, a measure of the difference between the position indicated by measurement and the true position. Some expressions of accuracy are defined in terms of probability. 2. A measure of how close the outcome of a series of observations or measurements approaches the true value of a desired quantity. The degree of exactness with which the true value of the quantity is determined from observations is limited by the presence of both systematic and random errors. Accuracy should not be confused with PRECISION, which is a measure of the repeatability of the observations. Observations may be of high precision due to the quality of the observing instrument, the skill of the observer and the resulting small random errors, but inaccurate due to the presence of large systematic errors. Accuracy implies precision, but precision does not imply accuracy. See also ERROR, RADIAL ERROR, ABSOLUTE ACCURACY, PREDICTABLE ACCURACY, RELATIVE ACCURACY, REPEATABLE ACCURACY.
achromatic lens. . See under ABERRATION, definition 2.
aclinal. , adj. Without dip; horizontal.
aclinic. , adj. Without magnetic dip.
aclinic line. . The magnetic equator; the line on the surface of the earth connecting all points of zero magnetic dip.
acoustic depth finder. . See ECHO SOUNDER.
acoustic navigation. . See SONIC NAVIGATION.
acoustics. , n. 1. That branch of physics dealing with sound. 2. The sound characteristics of a room, auditorium, etc., which determine its quality with respect to distinct hearing.
acoustic sounding. . See ECHO SOUNDING.
acquisition., n. The selection of those targets or satellites requiring a tracking procedure and the initiation of their tracking.
acre. , n. A unit of area equal to 43,560 square feet.
across-the-scope echo. . See CLASSIFICATION OF RADAR ECHOES. active satellite. . 1. An artificial satellite which transmits an electromagnetic signal. A satellite with the capability to transmit, repeat, or retransmit electromagnetic information, as contrasted with PASSIVE SATELLITE. 2. As defined by International Telecommunications Union (ITU), an earth satellite carrying a station intended to transmit or re transmit radio communication signals.
active tracking system. A satellite tracking system which operates by transmission of signals to and receipt of responses from the satelfie.
actual motion. . Motion of an object relative to the earth. See also MOTION.
acute angle. An angle less than 90°.
additional secondary phase factor correction. A correction in addition to the secondary phase factor correction for the additional time (or phase delay) for transmission of a low frequency signal over a composite land-water path when the signal transit time is based on the free-space velocity.
ADF reversal. . The swinging of the needle on the direction indicator of an automatic direction finder through 180°, indicating that the station to which the direction finder is tuned has been passed.
adiabatic., $a d j$. Referring to a thermodynamic change of state of a system in which there is no transfer of heat or mass across the boundaries of the system. In an adiabatic process, compression causes warming, expansion causes cooling.
adjacent angles. . Two angles having a common vertex and lying at opposite ends of a common side.
adjustment., n. The determination and application of corrections to observations, for the purpose of reducing errors or removing internal inconsistencies in derived results.
admiralty. . Pertaining to the body of law that governs maritime affairs.
adrift. , adj. \& $a d v$. Afloat and unattached to the shore or the sea bottom, and without propulsive power. See also UNDERWAY.
advance., n. 1 . The distance a vessel moves in its initial direction from the point where the rudder is started over until the heading has changed 90°. 2. The distance a vessel moves in the initial direction for heading changes of less than 90°. See also TRANSFER.
advance., v., t. \& i. To move forward, as to move a line of position forward, parallel to itself, along a course line to obtain a line of position at a later time. The opposite is RETIRE.
advanced line of position. . A line of position which has been moved forward along the course line to allow for the run since the line was established. The opposite is RETIRED LINE OF POSITION.
advection. , n. Transport of atmospheric properties solely by mass motion of the atmosphere. WIND refers to air motion, while ADVECTION refers more specifically to the transfer of any property of the atmosphere (temperature, humidity, etc.) from one area to another.
advection fog. . A type of fog caused by the advection of moist air over a cold surface, and the consequent cooling of that air to below its dew point. SEA FOG is a very common advection fog that is caused by moist air in transport over a cold body of water.
aero light. . Short for AERONAUTICAL LIGHT.
aeromarine light. . A marine light having part of its beam deflected to an angle of 10° to 15° above the horizon for use by aircraft.
aeromarine radiobeacon. . A radiobeacon established for use by both mariners and airmen.
aeronautical. , $a d j$. Of or pertaining to the operation or navigation of aircraft.
aeronautical beacon. . A visual aid to navigation, displaying flashes of white or colored light or both, used to indicate the location of airports, landmarks, and certain points of the Federal airways in mountainous terrain and to mark hazards.
aeronautical chart. . See under CHART.
aeronautical light. . A luminous or lighted aid to navigation intended primarily for air navigation. Often shortened to AERO LIGHT.
aeronautical radiobeacon. . A radiobeacon whose service is intended primarily for aircraft.
aestival., adj. Pertaining to summer. The corresponding adjectives for fall, winter, and spring are autumnal, hibernal and vernal.
affluent. , n. A stream flowing into a larger stream or lake; a tributary.
afloat., $a d j$. \& $a d v$. Floating on the water; water-borne. See also SURFACED, UNCOVERED, AGROUND, ASHORE.
aft., $a d v$. Near, toward, or at the stern of a craft. See also ABAFT, ASTERN.
afterglow., n. 1. The slowly decaying luminescence of the screen of the cathode-ray tube after excitation by an electron beam has ceased. See also PERSISTENCE. 2. A broad, high arch of radiance or glow seen occasionally in the western sky above the highest clouds in deepening twilight, caused by the scattering effect of very fine particles of dust suspended in the upper atmosphere.
aged ridge. . A ridge of ice forced up by pressure which has undergone considerable weathering.
age of diurnal inequality. . The time interval between the maximum semimonthly north or south declination of the moon and the maximum effect of the declination upon the range of tide or the speed of the tidal current; this effect is manifested chiefly by an increase in the height or speed difference between the two high (low) waters or flood (ebb) currents during the day. The tides occurring at this time are called TROPIC TIDES. Also called DIURNAL AGE.
age of parallax inequality. . The time interval between perigee of the moon and the maximum effect of parallax upon the range of tide or the speed of the tidal current. See also PARALLAX INEQUALITY.
age of phase inequality. . The time interval between new or full moon and the maximum effect of these phases upon the range of tide or the speed of the tidal current. Also called AGE OF TIDE.
age of the moon. . The elapsed time, usually expressed in days, since the last new moon. See also PHASES OF THE MOON.
age of tide. . See AGE OF PHASE INEQUALITY.
Ageton. .n.1. A divided triangle method of sight reduction in which a perpendicular is dropped from the GP of the body to the meridian of the observer. 2. Rear Admiral Arthur A. Ageton, USN, inventor of the Ageton method.
agger. , n. See DOUBLE TIDE.
agonic line. . A line joining points of no magnetic variation, a special case of an isogonic line.
agravic. , $a d j$. Of or pertaining to a condition of no gravitation.
aground. , adj. \& $a d v$. Resting or lodged on the bottom.
Agulhas Current. . A generally southwestward flowing ocean current of the Indian Ocean, one of the swiftest ocean currents. To the south of latitude $30^{\circ} \mathrm{S}$ the Agulhas Current is a well-defined and narrow current that extends less than 100 km from the coast of South Africa. To the south of South Africa the greatest volume of its water bends sharply to the south and then toward the east, thus returning to the Indian Ocean.
ahead. , $a d v$. Bearing approximately 000° relative. The term is often used loosely for DEAD AHEAD or bearing exactly 000° relative. The opposite is ASTERN.
ahead reach. . The distance traveled by a vessel proceeding ahead at full power from the time the engines are reversed until she is at full stop.
ahull. . The condition of a vessel making no way in a storm, allowing wind and sea to determine the position of the ship. Sailing vessels lying ahull lash the helm alee, and may carry storm sails.
aid. , n. Short for AID TO NAVIGATION.
aid to navigation. A device or structure external to a craft, designed to assist in determination of position, to define a safe course, or to warn of dangers or obstructions. If the information is transmitted by light waves, the device is called a visual aid to navigation; if by sound waves, an audible aid to navigation; if by radio waves; a radio aid to navigation. Any aid to navigation using electronic equipment, whether or not radio waves are involved, may be called an electronic aid to navigation. Compare with NAVIGATIONAL AID, meaning an instrument, device, chart, method, etc., intended to assist in the navigation of a craft.
air. , n. 1. The mixture of gases comprising the earth's atmosphere. It is composed of about 78% nitrogen, 21% oxygen, 1% other gases, and a variable amount of impurities such as water vapor, suspended dust particles, smoke, etc. See also ATMOSPHERE. 2. Wind of force 1 (1-3 knots or 1-3 miles per hour) on the Beaufort wind scale, called LIGHT AIR.
air almanac. . 1. A periodical publication of astronomical data designed primarily for air navigation, but often used in marine navigation. See also ALMANAC FOR COMPUTERS. 2. Air Almanac, a joint publication of the U.S. Naval Observatory and H. M. Nautical Almanac Office, Royal Greenwich Observatory, designed primarily for air navigation. In general the information is similar to that
of the Nautical Almanac, but is given to a precision of 1^{\prime} of arc and 1 s of time, at intervals of 10 m (values for the sun and Aries are given to a precision of 0.1').
air defense identification zone (ADIZ). . Airspace of defined dimensions within which the ready identification location, and control of aircraft are required.
air mass. . An extensive body of air with fairly uniform (horizontal) physical properties, especially temperature and humidity. In its incipient stage the properties of the air mass are determined by the characteristics of the region in which it forms. It is a cold or warm air mass if it is colder or warmer than the surrounding air.
air-mass classification. . Air masses are classified according to their source regions. Four such regions are generally recognized- (1) equatorial (E), the doldrum area between the north and south trades; (2) tropical (T), the trade wind and lower temperate regions, (3) polar (P), the higher temperate latitudes; and (4) Arctic or Antarctic (A), the north or south polar regions of ice and snow. This classification is a general indication of relative temperature, as well as latitude of origin. Air masses are further classified as maritime (m) or continental (c), depending upon whether they form over water or land. This classification is an indication of the relative moisture content of the air mass. A third classification sometimes applied to tropical and polar air masses indicates whether the air mass is warm (w) or cold (k) relative to the underlying surface. The w and k classifications are primarily indications of stability, cold air being more stable.
air temperature correction. . A correction due to nonstandard air temperature, particularly the sextant altitude correction due to changes in refraction caused by difference between the actual temperature and the standard temperature used in the computation of the refraction table. The Nautical Almanac refraction table is based upon an air temperature of $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ at the surface of the earth. Refraction is greater at lower temperatures, and less at higher temperatures. The correction for air temperature varies with the temperature of the air and the altitude of the celestial body, and applies to all celestial bodies, regardless of the method of observation. It is not applied in normal navigation.
Alaska Current. . A North Pacific Ocean current flowing counterclockwise in the Gulf of Alaska. It is the northward flowing division of the Aleutian Current.
Alaska-Hawaii standard time. . See STANDARD TIME.
albedo., n. The ratio of radiant energy reflected to that received by a surface, usually expressed as a percentage; reflectivity. The term generally refers to energy within a specific frequency range, as the visible spectrum. Its most frequent application in navigation is to the light reflected by a celestial body.
alert. , n. See ALERT TIME CALCULATIONS.
alert time calculations. . Computations of times and-altitudes of available satellite passes in a given period of time at a given location, based on orbital data transmitted from satellite memory. Sometimes called ALERT.
Aleutian Current. . An eastward flowing North Pacific Ocean current which lies north of the North Pacific Current. As it approaches the coast of North America it divides to form the northward-flowing ALASKA CURRENT, and the southward-flowing CALIFORNIA CURRENT. Also called SUBARCTIC CURRENT.
alga. (pl. algae), n. A plant of simple structure which grows chiefly in water, such as the various forms of seaweed. It ranges in size from a microscopic plant, large numbers of which sometimes cause discoloration of water, to the giant kelp which may extend for more than 600 feet in length. The Red Sea owes its name to red algae, as does the "red tide."
algorithm. . A defined procedure or routine used for solving a specific mathematical problem.
alidade. , n. The part of an optical measuring instrument comprising the optical system, indicator, vernier, etc. In modern practice the term is used principally in connection with a bearing circle fitted with a telescope to facilitate observation of bearings. Also called TELESCOPIC ALIDADE.
align. , $v ., t$. To place objects in line.
alignment. , n. 1. The placing of objects in a line. 2. The process of orienting the measuring axes of the inertial components of inertial navigation equipment with respect to the coordinate system in which the equipment is to be used.

Allard's law. . A formula relating the illuminance produced on a normal surface at a given distance from a point source of light, the intensity of the light, and the degree of transparency of the atmosphere, assumed to be uniform. See OMNIDIRECTIONAL LIGHT.
all-weather., adj. Designed or equipped to perform by day or night under any weather conditions.
almanac., n. A periodical publication of ephemeral astronomical data. If information is given in a form and to a precision suitable for marine navigation, it is called a nautical almanac. See also nautical almanac; if designed primarily for air navigation, it is called an air almanac. See also EPHEMERIS, ASTRONOMICAL ALMANAC.
almucantar. , n. A small circle on the celestial sphere paralleled to the horizon. Also called CIRCLE OF EQUAL ALTITUDE, PARALLEL OF ALTITUDE.
almucantar staff. . An ancient instrument formerly used for amplitude observations.
alnico. , n. An alloy composed principally of aluminum, nickel, cobalt, and iron; used for permanent magnets.
aloft. . Up in the rigging of a ship.
alongshore current. . See LONGSHORE CURRENT.
alphanumeric. . Referring to a set of computer characters consisting of alphabetic and numeric symbols.
alphanumeric grid. . See ATLAS GRID.
alternate blanking. . See under DUAL-RATE BLANKING.
alternating current. . An electric current that continually changes in magnitude and periodically reverses polarity.
alternating. . Referring to periodic changes in color of a lighted aid to navigation.
alternating fixed and flashing light. . A fixed light varied at regular intervals by a single flash of greater luminous intensity, with color variations in either the fixed light or flash, or both. See ALTERNATING LIGHT.
alternating fixed and group flashing light. . A fixed light varied at regular intervals by a group of two or more flashes of greater luminous intensity, with color variations in either the fixed light or flashes or both.
alternating flashing light. . A light showing a single flash with color variations at regular intervals, the duration of light being shorter than that of darkness. See also FLASHING LIGHT.
alternating group flashing light. . A group flashing light which shows periodic color change.
alternating group occulting light. . A group occulting light which shows periodic color change.
alternating occulting light. . A light totally eclipsed at regular intervals, the duration of light always being longer than the duration of darkness, which shows periodic color change. See also ALTERNATING LIGHT.
alternating light. . A light showing different colors alternately.
altitude., n. Angular distance above the horizon; the arc of a vertical circle between the horizon and a point on the celestial sphere, measured upward from the horizon. Angular distance below the horizon is called negative altitude or depression. Altitude indicated by a sextant is called sextant altitude. Sextant altitude corrected only for inaccuracies in the reading (instrument, index, and personal errors, as applicable) and inaccuracies in the reference level (principally dip) is called apparent or rectified altitude. After all corrections are applied, it is called corrected sextant altitude or observed altitude. An altitude taken directly from a table, before interpolation, is called tabulated altitude. After interpolation, or if determined by calculation, mechanical device, or graphics, it is called computed altitude. If the altitude of a celestial body is computed before observation, and sextant altitude corrections are applied with reversed sign, the result is called precomputed altitude. The difference between computed and observed altitudes (corrected sextant altitudes), or between precomputed and sextant altitudes, is called altitude intercept or altitude difference. An altitude determined by inexact means, as by estimation or star finder, is called an approximate altitude. The altitude of a celestial body on the celestial meridian is called meridian altitude. The expression exmeridian altitude is applied to the altitude of a celestial body near the celestial meridian, to which a correction is to be applied to determine the meridian altitude. A parallel of altitude is a circle of the celestial sphere parallel to the horizon, connecting all points of equal altitude. See also EQUAL ALTITUDES.
altitude azimuth. . An azimuth determined by solution of the navigational triangle with altitude, declination, and latitude given. A time azimuth is computed with meridian angle, declination, and latitude given. A time and altitude azimuth is computed with meridian angle, declination, and altitude given.
altitude circle. . See PARALLEL OF ALTITUDE.
altitude difference. . 1. See ALTITUDE INTERCEPT. 2. The change in the altitude of a celestial body occurring with change in declination, latitude, or hour angle, for example the first difference between successive tabulations of altitude in a latitude column of Pub.No. 229, Sight Reduction Tables for Marine Navigation.
altitude intercept. . The difference in minutes of arc between the computed and the observed altitude (corrected sextant altitude), or between precomputed and sextant altitudes. It is labeled T (toward) or A (away) as the observed (or sextant) altitude is greater or smaller than the computed (or precomputed) altitude. Also called ALTITUDE DIFFERENCE, INTERCEPT.
altitude intercept method. . See ST. HILAIRE METHOD.
altitude of the apogee. . As defined by the International Telecommunication Union (ITU), the altitude of the apogee above a specified reference surface serving to represent the surface of the earth.
altitude of the perigee. . As defined by the International Telecommunication Union (ITU), the altitude of the perigee above a specified reference surface serving to represent the surface of the earth.
altitude tints. . See HYPSOMETRIC TINTING.
alto-. . A prefix used in cloud classification to indicate the middle level. See also CIRRO-.
altocumulus., n. Clouds within the middle level (mean height 6,500$20,000 \mathrm{ft}$.) composed of flattened globular masses, the smallest elements of the regularly arranged layers being fairly thin, with or without shading. These elements are arranged in groups, in lines, or waves, following one or two directions, and are sometimes so close together that their edges join. See also CLOUD CLASSIFICATION.
altostratus., n. A sheet of gray or bluish cloud within the middle level (mean height 6,500-20,000 ft.). Sometimes the sheet is composed of a compact mass of dark, thick, gray clouds of fibrous structure; at other times the sheet is thin and through it the sun or moon can be seen dimly. See also CLOUD CLASSIFICATION.
A.M. . Abbreviation for Ante Meridian; before noon in zone time.
ambient temperature. . The temperature of the air or other medium surrounding an object. See also FREE-AIR TEMPERATURE.
ambiguity. , n. In navigation, the condition obtained when a given set of observations defines more than one point, direction, line of position, or surface of position.
ambiguous., $a d j$. Having two or more possible meanings or values.
American Ephemeris and Nautical Almanac. . See ASTRONOMICAL ALMANAC.
American Practical Navigator, The. . A navigational text and reference book published by the National Imagery and Mapping Agency (NIMA); originally by Nathaniel Bowditch (1773-1838). Popularly called BOWDITCH.
amidships. , $a d v$. At, near, or toward the middle of a ship.
ampere., n. The base unit of electric current in the International System of Units; it is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length.
ampere per meter. . The derived unit of magnetic field strength in the International System of Units.
amphidromic point. . Point on a tidal chart where the cotidal lines meet.
amphidromic region. . An area surrounding a no-tide point from which the radiating cotidal lines progress through all hours of the tidal cycle.
amplification. , n. 1. An increase in signal magnitude from one point to another, or the process causing this increase. 2. Of a transducer, the scalar ratio of the signal output to the signal input.
amplifier., n. A device which enables an input signal to control power from a source independent of the signal and thus be capable of delivering an output which is greater than the input signal.
amplitude. , n. 1 . Angular distance of a celestial body north or south of the prime vertical circle; the arc of the horizon or the angle at the zenith between the prime vertical circle and a vertical circle through the celestial body measured north or south from the prime vertical to the vertical circle. The term is customarily used only with reference to bodies whose centers are on the celestial horizon, and is prefixed E or W, as the body is rising or setting, respectively; and suffixed N or S to agree with the declination. The prefix indicates the origin and the suffix the direction of measurement. Amplitude is designated as true, magnetic, compass, or grid as the reference direction is true, magnetic, compass, or grid east or west, respectively. 2. The maximum value of the displacement of a wave, or other periodic phenomenon, from the zero position. 3. One-half the range of a constituent tide. By analogy, it may be applied also to the maximum speed of a constituent current.
amplitude compass. . A compass intended primarily for measuring amplitude. It is graduated from 0° at east and west to 90° at north and south. Seldom used on modern vessels.
amplitude distortion. . Distortion occurring in an amplifier or other device when the output amplitude is not a linear function of the input amplitude.
amplitude modulation. . The process of changing the amplitude of a carrier wave in accordance with the variations of a modulating wave. See also MODULATION.
Amver System. . Operated by the U.S. Coast Guard, the Amver System is a maritime mutual-assistance program that aids coordination of search and rescue efforts by maintaining a worldwide computerized DR plot of participating vessels.
anabatic wind. Any wind blowing up an incline. A KATABATIC WIND blows down an incline.
analemma., n. A graduated scale of the declination of the sun and the equation of time for each day of the year located in the Torrid Zone on the terrestrial globe.
analog., adj. Referring to the processing and/or transfer of information via physical means such as waves, fluids, or mechanical devices.
analog computer. A computer in which quantities are represented by physical variables. Problem parameters are translated into equivalent mechanical or electrical circuits as an analog for the physical phenomenon being investigated without the use of a machine language. An analog computer measures continuously; a digital computer counts discretely. See DIGITAL.
anchorage. , n. An area where vessels may anchor, either because of suitability or designation.
anchorage buoy. . A buoy which marks the limits of an anchorage, not to be confused with a MOORING BUOY.
anchorage chart. . A nautical chart showing prescribed or recommended anchorages.
anchorage mark. . A navigation mark which indicates an anchorage area or defines its limits.
anchor. , n. A device used to secure a ship to the sea floor.
anchor. , v, t. To use the anchor to secure a ship to the sea floor. If more than one anchor is used the ship is moored.
anchor buoy. . A buoy marking the position of an anchor on the bottom, usually painted green for the starboard anchor and red for the port anchor, and secured to the crown of the anchor by a buoy rope.
anchor ice. . Submerged ice attached or anchored to the bottom, irrespective of the nature of its formation.
anchor light. . A light shown from a vessel or aircraft to indicate its position when riding at anchor. Also called RIDING LIGHT.
anemometer. , n. An instrument for measuring the speed of the wind. Some instruments also indicate the direction from which it is blowing. See also VANE, definition 1; WIND INDICATOR.
aneroid barometer. . An instrument which determines atmospheric pressure by the effect of such pressure on a thin-metal cylinder from which the air has been partly exhausted. See also MERCURIAL BAROMETER.
angel. . A radar echo caused by a physical phenomenon which cannot be seen.
angle. , n. The inclination to each other of two intersecting lines, measured by the arc of a circle intercepted between the two lines forming the angle, the center of the circle being the point of intersection. An acute angle is less than 90°; a right angle, 90° an obtuse angle, more than 90° but less than 180° - a straight angle 180°; a reflex angle, more than 180° but less than 360°; a perigon, 360°. Any angle not a multiple of 90 is an oblique angle. If the sum of two angles is 90°,
they are complementary angles; if 180°, supplementary angles; if 360°, explementary angles. Two adjacent angles have a common vertex and lie on opposite sides of a common side. A dihedral angle is the angle between two intersecting planes. A spherical angle is the angle between two intersecting great circles.
angle of cut. . The smaller angular difference of two bearings or lines of position.
angle of depression. .The angle in a vertical plane between the horizontal and a descending line. Also called DEPRESSION ANGLE. See ANGLE OF ELEVATION.
angle of deviation. . The angle through which a ray is bent by refraction.
angle of elevation. . The angle in a vertical plane between the horizontal and an ascending line, as from an observer to an object. A negative angle of elevation is usually called an ANGLE OF DEPRESSION. Also called ELEVATION ANGLE.
angle of incidence. The angle between the line of motion of a ray of radiant energy and the perpendicular to a surface, at the point of impingement. This angle is numerically equal to the ANGLE OF REFLECTION.
angle of reflection. . The angle between the line of motion of a ray of reflected radiant energy and the perpendicular to a surface, at the point of reflection. This angle is numerically equal to the ANGLE OF INCIDENCE.
angle of refraction. . The angle between a refracted ray and the perpendicular to the refracting surface.
angle of roll. . The angle between the transverse axis of a craft and the horizontal. Also called ROLL ANGLE.
angle of uncertainty. . The horizontal angle of the region of indefinite characteristic near the boundaries of a sector of a sector light. Also called ARC OF UNCERTAINTY.
angstrom. , n. A unit of length, used especially in expressing the length of light waves, equal to one ten-thousandth of a micron or one hundred millionth of a centimeter.
angular. , $a d j$. Of or pertaining to an angle or angles.
angular distance. . 1. The angular difference between two directions, numerically equal to the angle between two lines extending in the given directions. 2. The arc of the great circle joining two points, expressed in angular units. 3. Distance between two points, expressed in angular units of a specified frequency. It is equal to the number of waves between the points multiplied by 2π if expressed in radians, or multiplied by 360° if measured in degrees.
angular distortion. . Distortion in a map projection because of non-conformity.
angular momentum. . The quantity obtained by multiplying the moment of inertia of a body by its angular speed.
angular rate. . See ANGULAR SPEED.
angular rate of the earth's rotation. . Time rate of change of angular displacement of the earth relative to the fixed stars equal to 0.729211×10^{-4} radian per second.
angular resolution. . See BEARING RESOLUTION.
angular speed. . Change of direction per unit time. Also called ANGULAR RATE. See also LINEAR SPEED.
anneal. , v., t. To heat to a high temperature and then allow to cool slowly, for the purpose of softening, making less brittle, or removing permanent magnetism. When Flinders bars or quadrantal correctors acquire permanent magnetism which decreases their effectiveness as compass correctors, they are annealed.
annotation., n. Any marking on illustrative material for the purpose of clarification such as numbers, letters, symbols, and signs.
annual. , adj. Of or pertaining to a year; yearly.
annual aberration. . See under ABERRATION, definition 1.
annual inequality. . Seasonal variation in water level or tidal current speed, more or less periodic due chiefly to meteorological causes.
annual parallax. . See HELIOCENTRIC PARALLAX.
annular. , adj. Ring-shaped.
annular eclipse. . An eclipse in which a thin ring of the source of light appears around the obscuring body. Annular solar eclipses occur, but never annular lunar eclipses.
annulus. , n. A ring-shaped band.
anode. , n. 1. A positive electrode; the plate of a vacuum tube; the electrode of an electron tube through which a principal stream of electrons leaves the inter-electrode space. 2. The positive electrode of an electrochemical device, such as a primary or secondary cell, toward which the negative ions are drawn. See also CATHODE.
anomalistic., adj. Pertaining to the periodic return of the moon to its perigee, or of the earth to its perihelion.
anomalistic month. . The average period of revolution of the moon from perigee to perigee, a period of 27 days, 13 hours, 18 minutes, and 33.2 seconds in 1900. The secular variation does not exceed a few hundredths of a second per century. anomalistic period. The interval between two successive passes of a satellite through perigee. Also called PERIGEE-TO-PERIGEE PERIOD RADIAL PERIOD. See also ORBITAL PERIOD.
anomalistic year. . The period of one revolution of the earth around the sun, from perihelion to perihelion, averaging 365 days, 6 hours, 13 minutes, 53.0 seconds in 1900 , and increasing at the rate of 0.26 second per century.
anomaly., n. 1. Departure from the strict characteristics of the type, pattern, scheme, etc. 2. An angle used in the mathematical description of the orbit of one body about another. It is the angle between the radius vector of the body and the line of apsides and is measured from pericenter in the direction of motion. When the radius vector is from the center of the primary to the orbiting body, the angle is called true anomaly. When the radius vector is from the center of the primary to a fictitious body moving with a uniform angular velocity in such a way that its period is equal to that of the actual body, the angle is called mean anomaly. When the radius vector is from the center of the elliptical orbit to the point of intersection of the circle defined by the semimajor axis with the line perpendicular to the semimajor axis and passing through the orbiting body, the angle is called eccentric anomaly or eccentric angle. 3. Departure of the local mean value of a meteorological element from the mean value for the latitude. See also MAGNETIC ANOMALY.
antarctic., adj. referring to the Antarctic region.
Antarctic., n. The region within the Antarctic Circle, or, loosely, the extreme southern regions of the earth.
antarctic air. . A type of air whose characteristics are developed in an Antarctic region. Antarctic air appears to be colder at the surface in all seasons, and at all levels in fall and winter, than ARCTIC AIR.
Antarctic Circle. . The parallel of latitude at about $66^{\circ} 33^{\prime} \mathrm{S}$, marking the northern limit of the south Frigid Zone. This latitude is the complement of the sun's greatest southerly declination, and marks the approximate northern limit at which the sun becomes circumpolar. The actual limit is extended somewhat by the combined effect of refraction, semidiameter of the sun, parallax, and the height of the observer's eye above the surface of the earth. A similar circle marking the southern limit of the north Frigid Zone is called ARCTIC or NORTH POLAR CIRCLE. Also called SOUTH POLAR CIRCLE.
Antarctic Circumpolar Current. . See WEST WIND DRIFT.
antarctic front. . The semi-permanent, semi-continuous front between the Antarctic air of the Antarctic Continent and the polar air of the southern oceans; generally comparable to the arctic front of the Northern Hemisphere.
antarctic whiteout. . The obliteration of contrast between surface features in the Antarctic when a covering of snow obscuring all landmarks is accompanied by an overcast sky, resulting in an absence of shadows and an unrelieved expanse of white, the earth and sky blending so that the horizon is not distinguishable. A similar occurrence in the Arctic is called ARCTIC WHITEOUT.
ante meridian (AM). . Before noon, or the period of time between midnight (0000) and noon (1200). The period between noon and midnight is called POST MERIDIAN.
antenna. , n. A structure or device used to collect or radiate electromagnetic waves.
antenna array. . A combination of antennas with suitable spacing and with all elements excited to make the radiated fields from the individual elements add in the desired direction, i.e., to obtain directional characteristics.
antenna assembly. . The complete equipment associated with an antenna, including, in addition to the antenna, the base, switches, lead-in wires, revolving mechanism, etc.
antenna bearing. . The generated bearing of the antenna of a radar set, as delivered to the indicator.
antenna coupler. . 1. A radio-frequency transformer used to connect an antenna to a transmission line or to connect a transmission line to a radio receiver. 2. A radio-frequency transformer, link circuit, or tuned line used to transfer radio-frequency energy from the final plate-tank circuit of a transmitter to the transmitter to the transmission line feeding the antenna.
antenna directivity diagram. . See DIRECTIVITY DIAGRAM.
antenna effect. . A spurious effect, in a loop antenna, resulting from the capacitance of the loop to ground.
antenna feed. . The component of an antenna of mirror or lens type that irradiates, or receives energy from, the mirror or lens. See also HORN ANTENNA.
antenna radiation pattern. . See RADIATION PATTERN.
anthelion. , n. A rare kind of halo, which appears as a bright spot at the same altitude as the sun and 180° from it in azimuth. See also PARHELION.
anti-clutter gain control. . See SENSITIVITY TIME CONTROL.
anti-clutter rain. . See FAST TIME CONSTANT CIRCUIT.
anti-clutter sea. . See SENSITIVITY TIME CONTROL.
anticorona., n. A diffraction phenomenon very similar to but complementary to the corona, appearing at a point directly opposite to the sun or moon from the observer. Also called BROKEN BOW, GLORY.
anticrepuscular arch. . See ANTITWILIGHT.
anti-crepuscular rays. . Extensions of crepuscular rays, converging toward a point 180° from the sun.
anticyclone., n. An approximately circular portion of the atmosphere, having relatively high atmospheric pressure and winds which blow clockwise around the center in the Northern Hemisphere and counterclockwise in the Southern Hemisphere. An anticyclone is characterized by good weather. Also called HIGH. See also CYCLONE.
anticyclonic winds. . The winds associated with a high pressure area and constituting part of an anticyclone.
Antilles Current. . This current originates in the vicinity of the Leeward Islands as part of the Atlantic North Equatorial Current. It flows along the northern side of the Greater Antilles. The Antilles Current eventually joins the Florida Current (north of Grand Bahama Island) to form the Gulf Stream.
antilogarithm. , n. The number corresponding to a given logarithm. Also called INVERSE LOGARITHM.
antinode. , n. Either of the two points on an orbit where a line in the orbit plane, perpendicular to the line of nodes, and passing through the focus, intersects the orbit.
antipodal effects. . See as LONG PATH INTERFERENCE under MULTIPATH ERROR.
antipode., n. Anything exactly opposite to something else. Particularly, that point on the earth 180° from a given place.
antisolar point. . The point on the celestial sphere 180° from the sun.
antitrades. , $n ., p l$. The prevailing western winds which blow over and in the opposite direction to the trade winds. Also called COUNTERTRADES.
anti-TR tube. . See TR TUBE.
antitwilight., n. The pink or purplish zone of illumination bordering the shadow of the earth in the dark part of the sky opposite the sun after sunset or before sunrise. Also called ANTI CREPUSCULAR ARCH.
anvil cloud. . Heavy cumulus or cumulonimbus having an anvil-like upper part.
apastron. , n. The point of the orbit of one member of a double star system at which the stars are farthest apart. That point at which they are nearest together is called PERIASTRON.
aperiodic. , adj. Without a period; of irregular occurrence.
aperiodic compass. . Literally "a compass without a period," or a compass that, after being deflected, returns by one direct movement to its proper reading without oscillation. Also called DEADBEAT COMPASS.
aperture., n. 1. An opening; particularly, the opening in the front of a camera through which light rays pass when a picture is taken. 2. The diameter of the objective of a telescope or other optical instrument, usually expressed in inches, but sometimes as the angle between lines from the principal focus to opposite ends of a diameter of the
objective. 3. Of a directional antenna, that portion of nearby plane surface that is perpendicular to the direction of maximum radiation and through which the major part of the radiation passes.
aperture antenna. . An antenna in which the beam width is determined by the dimensions of a horn, lens, or reflector.
aperture ratio. . The ratio of the diameter of the objective to the focal length of an optical instrument.
apex. , n. The highest point of something, as of a cone or triangle, or the maximum latitude (vertex) of a great circle.
aphelion., n. That point in the elliptical orbit of a body about the sun farthest from the sun. That point nearest the sun is called PERIHELION.
aphylactic map projection. A map projection which is neither conformal nor equal area. Also called ARBITRARY MAP PROJECTION.
aplanatic lens. . See under ABERRATION, definition 2.
apoapsis. , n. See APOCENTER.
apocenter., n. In an elliptical orbit, the point in the orbit which is the farthest distance from the focus, where the attracting mass is located. The apocenter is at one end of the major axis of the orbital ellipse. The opposite is PERICENTER, PERIFOCUS, PERIAPSIS. Also called APOAPSIS, APOFOCUS.
apofocus. , n. See APOCENTER.
apogean range. . The average semidiurnal range of the tide occurring at the time of apogean tides. It is smaller than the mean range, where the type of tide is either semidiurnal or mixed, and is of no practical significance where the type of tide is diurnal.
apogean tidal currents. . Tidal currents of decreased speed occurring monthly as the result of the moon being at apogee (farthest from the earth).
apogean tides. . Tides of decreased range occurring monthly as the result of the moon being at apogee (farthest from the earth).
apogee., n. That orbital point of a non-circular orbit farthest from the center of attraction. Opposite is PERIGEE. See APOCENTER, PERICENTER.
apparent altitude. . Sextant altitude corrected for inaccuracies in the reading (instrument, index, and personal errors) and inaccuracies in the reference level (principally dip or Coriolis/acceleration), but not for other errors. Apparent altitude is used in obtaining a more accurate refraction correction than would be obtained with an uncorrected sextant altitude. Also called RECTIFIED ALTITUDE. See also OBSERVED ALTITUDE, SEXTANT ALTITUDE.
apparent horizon. . See VISIBLE HORIZON.
apparent motion. . Motion relative to a specified or implied reference point which may itself be in motion. The expression usually refers to movement of celestial bodies as observed from the earth. Usually called RELATIVE MOVEMENT when applied to the motion of one vessel relative to that of another. Also called RELATIVE MOTION.
apparent noon. . Twelve o'clock apparent time, or the instant the apparent sun is over the upper branch of the meridian. Apparent noon may be either local or Greenwich depending upon the reference meridian. High noon is local apparent noon.
apparent place. . The position on the celestial sphere at which a celestial body would be seen if the effects of refraction, diurnal aberration, and geocentric parallax were removed; the position at which the object would actually be seen from the center of the earth. Also called APPARENT POSITION.
apparent position. . See APPARENT PLACE.
apparent precession. . Apparent change in the direction of the axis of rotation of a spinning body, such as a gyroscope, due to rotation of the earth. As a result of gyroscopic inertia or rigidity in space, to an observer on the rotating earth a gyroscope appears to turn or precess.
apparent secular trend. . The non-periodic tendency of sea level to rise, fall and/or remain stationary with time. Technically, it is frequently defined as the slope of a least-squares line of regression through a relatively long series of yearly mean sea level values. The word apparent is used since it is often not possible to know whether a trend is truly non periodic or merely a segment of a very long oscillation.
apparent shoreline. . A line drawn on the chart in lieu of the mean high water line or the mean water level line in areas where either may be obscured by marsh, mangrove, cypress, or other marine vegetation.

This line represents the intersection of the appropriate datum with the outer limits of vegetation and appears to the navigator as the shoreline.
apparent sidereal time. . See under SIDEREAL TIME.
apparent solar day. . The duration of one rotation of the earth on its axis, with respect to the apparent sun. It is measured by successive transits of the apparent sun over the lower branch of a meridian. The length of the apparent solar day is 24 hours of apparent time and averages the length of the mean solar day, but varies somewhat from day to day.
apparent sun. . The actual sun as it appears in the sky. Also called TRUE SUN. See also MEAN SUN, DYNAMICAL MEAN SUN.
apparent time. . Time based upon the rotation of the earth relative to the apparent or true sun. This is the time shown by a sun dial. Apparent time may be designated as either local or Greenwich, as the local or Greenwich meridian is used as the reference. Also called TRUE SOLAR TIME. See also EQUATION OF TIME.
apparent wind. The speed and true direction from which the wind appears to blow with reference to a moving point. Sometimes called RELATIVE WIND. See also TRUE WIND.
application program. . A computer program designed to do a specific task or group of tasks.
approach chart. . A chart used to approach a harbor. See CHART CLASSIFICATION BY SCALE.
approximate altitude. An altitude determined by inexact means, as by estimation or by a star finder or star chart.
approximate coefficients. .The six coefficients used in the analysis of the magnetic properties of a vessel in the course of magnetic compass adjustment. The values of these coefficients are determined from deviations of an unadjusted compass. See also COEFFICIENT A, COEFFICIENT B, COEFFICIENT C, COEFFICIENT D, COEFFICIENT E, COEFFICIENT J.
appulse. , n. 1. The near approach of one celestial body to another on the celestial sphere, as in occultation, conjunction, etc. 2. The penumbral eclipse of the moon.
apron., n. 1. On the sea floor a gentle slope, with a generally smooth surface, particularly as found around groups of islands or sea mounts. Sometimes called ARCHIPELAGIC APRON. 2. The area of wharf or quay for handling cargo. 3. A sloping underwater extension of an iceberg. 4. An outwash plain along the front of a glacier.
apse line. . See LINE OF APSIDES.
apsis. (pl.apsides), n. Either of the two orbital points nearest or farthest from the center of attraction, the perihelion and aphelion in the case of an orbit about the sun, and the perigee and apogee in the case of an orbit about the earth. The line connecting these two points is called LINE OF APSIDES.
aqueduct. , n. A conduit or artificial channel for the conveyance of water, often elevated, especially one for the conveyance of a large quantity of water that flows by gravitation.
arbitrary map projection. . See APHYLACTIC MAP PROJECTION.
arc. , n. 1. A part of a curved line, as of a circle. See also ANGULAR DISTANCE. 2. The semi-circular graduated scale of an instrument for measuring angles. See also EXCESS OF ARC.
arched squall. . A squall which is relatively high in the center, tapering off on both sides.
archipelagic apron. . See APRON, definition 1.
archipelago., n. 1. A sea or broad expanse of water containing many islands or groups of islands. 2. A group of such islands.
arc of uncertainty. . See ANGLE OF UNCERTAINTY.
arc of visibility. . The arc of a light sector, designated by its limiting bearings as observed from seaward.
Arcs of Lowitz. . Oblique, rare, downward extensions of the parhelia of 22°, concave toward the sun, and with red inner borders. They are formed by refraction by ice crystals oscillating about the vertical, such as with snowflakes.
arctic. , adj. Of or pertaining to the arctic, or intense cold.
Arctic., n. The region within the Arctic Circle, or, loosely, northern regions in general, characterized by very low temperatures.
arctic air. A type of air which develops mostly in winter over the arctic. Arctic air is cold aloft and extends to great heights, but the surface temperatures are often higher than those of POLAR AIR. For 2 or

3 months in summer arctic air masses are shallow and rapidly lose the characteristics as they move southward. See also ANTARCTIC AIR.
Arctic Circle. . The parallel of latitude at about $66^{\circ} 33^{\prime} \mathrm{N}$, marking the southern limit of the north Frigid Zone. This latitude is the complement of the sun's greatest northerly declination and marks the approximate southern limit at which the sun becomes circumpolar. The actual limit is extended somewhat by the combined effect of refraction, semidiameter of the sun, parallax, and the height of the observer's eye above the surface of the earth. A similar circle marking the northern limit of the south Frigid Zone is called ANTARCTIC or SOUTH POLAR CIRCLE. Also called NORTH POLAR CIRCLE.
arctic front. . The semi-permanent, semi-continuous front between the deep, cold arctic air and the shallower, generally less cold polar air of northern latitudes; generally comparable to the ANTARCTIC FRONT of the Southern Hemisphere.
arctic sea smoke. . Steam fog, but often specifically applied to steam fog rising from small areas of open water within sea ice. See also FROST SMOKE.
arctic smoke. . See STEAM FOG.
arctic whiteout. . The obliteration of contrast between surface features in the Arctic when a covering of snow obscuring all landmarks is accompanied by an overcast sky, resulting in an absence of shadows and an unrelieved expanse of white, the earth and sky blending so that the horizon is not distinguishable. A similar occurrence in the Antarctic is called ANTARCTIC WHITEOUT.
arc to chord correction. . See CONVERSION ANGLE.
areal feature. . A topographic feature, such as sand, swamp, vegetation, etc., which extends over an area. It is represented on the published map or chart by a solid or screened color, by a prepared pattern of symbols, or by a delimiting line.
area to be avoided. . A ship routing measure comprising an area with defined limits which should be avoided by all ships, or certain classes of ships; instituted to protect natural features or to define a particularly hazardous area for navigation. See also PRECAUTIONARY AREA, ROUTING SYSTEM.
argument. , n. One of the values used for entering a table or diagram.
argument of latitude. . The angular distance measured in the orbital plane from the ascending node to the orbiting body; the sum of the argument of pericenter and the true anomaly.
argument of pericenter. . The angle at the center of attraction from the ascending node to the pericenter point, measured in the direction of motion of the orbiting body. Also called ARGUMENT OF PERIFOCUS.
argument of perifocus. . See ARGUMENT OF PERICENTER.
argument of perigee. . The angle at the center of attraction from the ascending node to the perigee point, measured in the direction of motion of the orbiting body.
Aries. , n. 1. Vernal equinox. Also called FIRST POINT OF ARIES. 2. The first sign of the zodiac.
arithmetic mean. See MEAN.
arm. , v., t. To place tallow or other substance in the recess at the lower end of a sounding lead for obtaining a sample of the bottom.
Armco. , n. The registered trade name for a high purity, low carbon iron, used for Flinders bars, quadrantal correctors, etc., to correct magnetic compass errors resulting from induced magnetism.
arming. , n. Tallow or other substance placed in the recess at the lower end of a sounding lead, for obtaining a sample of the bottom.
array., n. See as ANTENNA ARRAY.
articulated light. . An offshore aid to navigation consisting of a pipe attached to a mooring by a pivoting or universal joint; more accurate in position than a buoy but less than a fixed light.
artificial antenna. . See DUMMY ANTENNA.
artificial asteroid. . A man-made object placed in orbit about the sun.
artificial earth satellite. A man-made earth satellite, as distinguished from the moon. Often shortened to ARTIFICIAL SATELLITE.
artificial harbor. . A harbor where the desired protection from wind and sea is obtained from breakwaters, moles, jetties, or other man-made works. See also NATURAL HARBOR.
artificial horizon. . A device for indicating the horizontal, such as a bubble, gyroscope, pendulum, or the surface of a liquid.
artificial magnet. . A magnet produced by artificial means, either by placing magnetic material in the field of another magnet or by means of an electric current, as contrasted with a NATURAL MAGNET occurring in nature.
artificial range. . A range formed by two objects such as buildings, towers, etc., not designed as aids to navigation. See also NATURAL RANGE.
artificial satellite. . See ARTIFICIAL EARTH SATELLITE.
ascending node. . That point at which a planet, planetoid, or comet crosses the ecliptic from south to north, or a satellite crosses the plane of the equator of its primary from south to north. Also called NORTHBOUND NODE. The opposite is called DESCENDING NODE.
ASCII. . Acronym for American Standard Code for Information Interchange, a standard method of representing alphanumeric characters with numbers in a computer.
ash breeze. . Expression referring to rowing a sailing vessel in a calm, usually from ship's boats which tow the ship. (Oars are commonly made of ash wood.)
ashore. , $a d j$. \& $a d v$. On the shore; on land; aground. See also AFLOAT.
aspect. , n. The relative bearing of own ship from the target ship, measured 0° to 180° port (red) or starboard (green). See also TARGET ANGLE.
aspects. , n., pl. The apparent positions of celestial bodies relative to one another; particularly the apparent positions of the moon or a planet relative to the sun.
assigned frequency. . The center of the frequency band assigned to a radio station. Sometimes called CHANNEL FREQUENCY, CENTER FREQUENCY.
assigned frequency band. . The frequency band whose center coincides with the frequency assigned to the station and whose width equals the necessary bandwidth plus twice the absolute value of the frequency tolerance.
assumed latitude. . The latitude at which an observer is assumed to be located for an observation or computation, as the latitude of an assumed position or the latitude used for determining the longitude of time sight. Also called CHOSEN LATITUDE.
assumed longitude. . The longitude at which an observer is assumed to be located for an observation or computation, as the longitude of an assumed position or the longitude used for determining the latitude by meridian altitude. Also called CHOSEN LONGITUDE.
assumed position. . A point at which a craft is assumed to be located, particularly one used as a preliminary to establishing certain navigational data, as that point on the surface of the earth for which the computed altitude is determined in the solution of a celestial observation, also called CHOSEN POSITION.
astern. , $a d v$. Bearing approximately 180° relative. The term is often used loosely for DEAD ASTERN, or bearing exactly 180° relative. The opposite is AHEAD.
asteroid., n. A minor planet, one of the many small celestial bodies revolving around the sun, most of the orbits being between those of Mars and Jupiter. Also called PLANETOID, MINOR PLANET. See under PLANET.
astigmatism. , n. A defect of a lens which causes the image of a point to appear as a line, rather than a point.
astigmatizer., n. A lens which introduces astigmatism into an optical system. Such a lens is so arranged that it can be placed in or removed from the optical path at will. In a sextant, an astigmatizer may be used to elongate the image of a celestial body into a horizontal line.
astre fictif. . Any of several fictitious stars which are assumed to move along the celestial equator at uniform rates corresponding to the speeds of the several harmonic constituents of the tide producing force. Each astre fictif crosses the meridian at a time corresponding to the maximum of the constituent that it represents.
astro. . A prefix meaning star or stars and, by extension, sometimes used as the equivalent of celestial.
astrodynamics., n. The practical application of celestial mechanics, astroballistics, propulsion theory, and allied fields to the problem of planning and directing the trajectories of space vehicles.
astrograph., n. A device for projecting a set of precomputed altitude curves onto a chart or plotting sheet, the curves moving with time such that if they are properly adjusted, they will remain in the correct position on the chart or plotting sheet.
astrolabe. , n. An instrument which measures altitudes of celestial bodies, used for determining an accurate astronomical position, usually while ashore in survey work. Originally, the astrolabe consisted of a disk with an arm pivoted at the center, the whole instrument being hung by a ring at the top to establish the vertical.
astrometry., n. The branch of astronomy dealing with the geometrical relations of the celestial bodies and their real and apparent motions.
astronomical. , adj. Of or pertaining to astronomy.
Astronomical Almanac, The. . An annual publication prepared jointly by the Nautical Almanac Office, U.S. Naval Observatory, and H.M. Nautical Almanac Office, Royal Greenwich Observatory. With the exception of certain introductory pages, the publication as printed in the United Kingdom is identical to that printed in the United States. This ephemeris gives high precision, detailed information on a large number of celestial bodies. It is arranged to suit the convenience of the astronomer for whom it is primarily intended and is not intended for ordinary purposes of navigation. But it does contain some information of general interest to the navigator, such as various astronomical constants, details of eclipses, information on planetary configurations, and miscellaneous phenomena. Prior to 1981 this publication was entitled American Ephemeris and Nautical Almanac. See also NAUTICAL ALMANAC.
astronomical day. . Prior to January 1, 1925, a mean solar day which began at mean noon, 12 hours later than the beginning of the calendar day of the same date. Since 1925 the astronomical day agrees with the civil day.
astronomical equator. . A line connecting points having 0° astronomical latitude. Because the deflection of the vertical varies from point to point, the astronomical equator is not a plane curve. But since the verticals through all points on it are parallel, the zenith at any point on the astronomical equator lies in the plane of the celestial equator. When the astronomical equator is corrected for station error, it becomes the GEODETIC EQUATOR. Sometimes called TERRESTRIAL EQUATOR.
astronomical latitude. . Angular distance between the plumb line at a station and the plane of the celestial equator It is the latitude which results directly from observations of celestial bodies, uncorrected for deflection of the vertical which, in the United States, may amount to as much as $25^{\prime \prime}$. Astronomical latitude applies only to positions on the earth, and is reckoned from the astronomical equator $\left(0^{\circ}\right)$, north and south through 90°. Also called ASTRONOMIC LATITUDE and sometimes GEOGRAPHIC LATITUDE. See also GEODETIC LATITUDE.
astronomical longitude. . Angular distance between the plane of the celestial meridian at a station and the plane of the celestial meridian at Greenwich. It is the longitude which results directly from observations of celestial bodies, uncorrected for deflection of the vertical, the prime vertical component of which, in the United States, may amount to more than $18^{\prime \prime}$. Astronomical longitude applies only to positions on the earth, and is reckoned from the Greenwich meridian $\left(0^{\circ}\right)$ east and west through 180°. Also called ASTRONOMIC LONGITUDE and sometimes GEOGRAPHIC LONGITUDE. See also GEODETIC LONGITUDE.
astronomical mean sun. . See MEAN SUN.
astronomical meridian. . A line connecting points having the same astronomical longitude. Because the deflection of the vertical (station error) varies from point to point, the astronomical meridian is not a plane curve. When the astronomical meridian is corrected for station error, it becomes the GEODETIC MERIDIAN. Also called TERRESTRIAL MERIDIAN and sometimes called GEOGRAPHIC MERIDIAN.
astronomical parallel. . A line connecting points having the same astronomical latitude. Because the deflection of the vertical varies from point to point, the astronomical parallel is an irregular line not lying in a single plane. When the astronomical parallel is corrected for station error, it becomes the GEODETIC PARALLEL. Sometimes called GEOGRAPHIC PARALLEL.
astronomical position. . 1. A point on the earth whose coordinates have been determined as a result of observation of celestial bodies. The expression is usually used in connection with positions on land determined with great accuracy for survey purposes. 2. A point on
astronomical refraction. . Atmospheric refraction of a ray of radiant energy passing through the atmosphere from outer space, as contrasted with TERRESTRIAL REFRACTION of a ray emanating from a point on or near the surface of the earth. See also REFRACTION.
astronomical tide. . The tide without constituents having their origin in the daily or seasonal variations in weather conditions which may occur with some degree of periodicity. See also METEOROLOGICAL TIDES.
astronomical time. . Time used with the astronomical day which prior to 1926 began at noon of the civil day of same date. The hours of the day were numbered consecutively from 0 (noon) to 23 (11 AM of the following morning).
astronomical triangle. . The navigational triangle either terrestrial or celestial, used in the solution of celestial observations.
astronomical twilight. . The period of incomplete darkness when the center of the sun is more than 12° but not more than 18° below the celestial horizon. See also CIVIL TWILIGHT, NAUTICAL TWILIGHT.
astronomical unit. . 1. The mean distance between the earth and the sun, approximately $92,960,000$ miles. 2 . The astronomical unit is often used as a unit of measurement for distances within the solar system. In the system of astronomical constants of the International Astronomical Union the adopted value for it is $1 \mathrm{AU}=149,600 \times 10^{6}$ meters.
astronomical year. . See TROPICAL YEAR.
astronomic latitude. . See ASTRONOMICAL LATITUDE.
astronomic longitude. . See ASTRONOMICAL LONGITUDE.
astronomy., n. The science which deals with the size, constitution, motions, relative position, etc. of celestial bodies, including the earth. That part of astronomy of direct use to a navigator, comprising principally celestial coordinates, time, and the apparent motions of celestial bodies is called navigational or nautical astronomy.
astro-tracker. . A navigation equipment which automatically acquires and continuously tracks a celestial body in azimuth and altitude.
asymmetrical. , adj. Not symmetrical.
asymptote. , n. A straight line or curve which a curve of infinite length approaches but never quite reaches.
Atlantic Equatorial Counter Current. . An ocean current that flows eastward between the westward flowing Atlantic North and South Equatorial Currents. The counter current is most prominent during August and September, when it extends from about $52^{\circ} \mathrm{W}$ to $10^{\circ} \mathrm{W}$ and joins the GUINEA CURRENT. In October it narrows and separates into two parts at about latitude $7^{\circ} \mathrm{N}$, longitude $35^{\circ} \mathrm{W}$. The western part, which appears to be a region where the counter current probably sinks and flows eastward beneath the equatorial currents, gradually diminishes in size to the west-northwest, while the eastern part diminishes to the east-southeast. The greatest separation occurs during March; during April the western part of the counter current disappears, but in May it reappears in the vicinity of latitude 0°, longitude $40^{\circ} \mathrm{W}$. The two segments progress westnorthwestward without much change in size. They merge at about latitude $6^{\circ} \mathrm{N}$, longitude $43^{\circ} \mathrm{W}$ during August and continue their flow eastward uninterrupted through September.
Atlantic North Equatorial Current. . A broad, slow, westward flowing ocean current generated mainly by the northeast trade winds. The current originates near longitude $26^{\circ} \mathrm{W}$ between about latitude 15° N and $30^{\circ} \mathrm{N}$ and flows across the ocean past longitude $60^{\circ} \mathrm{W}$. It forms the ANTILLES CURRENT in the vicinity of the Leeward Islands. The part of the current between $12^{\circ} \mathrm{N}$ and $15^{\circ} \mathrm{N}$ joins the Guiana Current and forms the CARIBBEAN CURRENT.
Atlantic South Equatorial Current. . The major part of this westward flowing ocean current is located south of the equator, the central portion extending to about latitude $20^{\circ} \mathrm{S}$. The northern part expands northward during January, February, and March when the Atlantic Equatorial Counter current dissipates and is least evident. On approaching the coast of South America one part turns northwestward as the GUIANA CURRENT; the other part turns below Natal and flows southwestward along the coast of Brazil as the BRAZIL CURRENT. Of the two equatorial currents in the Atlantic, the Atlantic South Equatorial Current is the stronger and more extensive.

Atlantic standard time. . See STANDARD TIME.
atlas. , n. A collection of charts or maps kept loose or bound in a volume. atlas grid. A reference system that permits the designation of the location of a point or an area on a map, photograph, or other graphic in terms of numbers and letters. Also called ALPHANUMERIC GRID.
atmosphere. , n. 1. The envelope of air surrounding the earth and bound to it more or less permanently by gravity. The earth's atmosphere extends from the surface of the earth to an indefinite height, its density asymptotically approaching that of interplanetary space. At heights of the order of 80 kilometers (50 miles) the atmosphere is barely dense enough to scatter sunlight to a visible degree. The atmosphere may be subdivided vertically into a number of atmospheric layers, but the most common basic subdivision is that which recognizes a troposphere from the surface to about 10 kilometers, a stratosphere from about 10 kilometers to about 80 kilometers, and an ionosphere above 80 kilometers. See also STANDARD ATMOSPHERE. 2. The gaseous envelope surrounding any celestial body, including the Earth.
atmospheric absorption. . The loss of power in transmission of radiant energy by dissipation in the atmosphere.
atmospheric drag. . A major cause of perturbations of close artificial satellite orbits caused by the resistance of the atmosphere. The secular effects are decreasing magnitudes of eccentricity, major axis, and period. Sometimes shortened to DRAG.
atmospheric noise. . See ATMOSPHERIC RADIO NOISE.
atmospheric pressure. The pressure exerted by the weight of the earth's atmosphere, about 14.7 pounds per square inch. See also STANDARD ATMOSPHERE, definition 1 ; BAROMETRIC PRESSURE.
atmospheric radio noise. . In radio reception noise or static due to natural causes such as thunderstorm activity. Sometimes shortened to ATMOSPHERIC NOISE. See also MAN-MADE NOISE, RADIO INTERFERENCE.
atmospheric refraction. . Refraction resulting when a ray of radiant energy passes obliquely through the atmosphere. It may be called astronomical refraction if the ray enters the atmosphere from outer space, or terrestrial refraction if it emanates from a point on or near the surface of the earth.
atoll. , n. A ring-shaped coral reef which has closely spaced islands or islets on it enclosing a central area or lagoon. The diameter may vary from less than a mile to 80 or more.
atollon. , n. A large reef ring in the Maldive Islands consisting of many smaller reef rings. The word ATOLL was derived from this name.
atomic clock. . A precision clock that depends for its operation upon an electrical oscillator regulated by an atomic system. The basic principle of the clock is that electromagnetic waves of a particular frequency are emitted when an atomic transition occurs.
atomic second. . See SECOND, definition 1.
Atomic Time. . A fundamental kind of time based on transitions in the atom. International Atomic Time (TAI) is the time reference coordinate established by the Bureau International de l'Heure (BIH) on the basis of the readings of atomic clocks functioning in various establishments in accordance with the definition of the atomic second, the unit of time in the International System of Units (SI). The Atomic Time scales maintained in the United States by the National Institute of Standards and Technology and the U.S. Naval Observatory constitute approximately $371 / 2$ percent of the stable reference information used in maintaining a stable TAI scale by the BIH.
A-trace. . The first trace of an oscilloscope having more than one displayed.
ATR tube. . See ANTI-TR TUBE.
attenuation., n. 1. A lessening in amount, particularly the reduction of the amplitude of a wave with distance from the origin. 2. The decrease in the strength of a radar wave resulting from absorption, scattering, and reflection by the medium through which it passes (wave guide, atmosphere) and by obstructions in its path. Also attenuation of the wave may be the result of artificial means, such as the inclusion of an attenuator in the circuitry or by placing an absorbing device in the path of the wave.
attitude. , n. The position of a body as determined by the inclination of the axes to some other frame of reference. If not otherwise specified, this frame of reference is fixed to the earth.
atto-. . A prefix meaning one-quintillionth (10^{-18}).
audible. , adj. Capable of being translated into sound by the human ear. audible aid to navigation. . An aid to navigation which uses sound waves.
audio frequency. . A frequency within the audible range, about 20 to 20,000 hertz. Also called SONIC FREQUENCY.
augmentation., n. The apparent increase in the semidiameter of a celestial body as its altitude increases, due to the reduced distance from the observer. The term is used principally in reference to the moon.
augmentation correction. . A correction due to augmentation, particularly that sextant altitude correction due to the apparent increase in the semidiameter of a celestial body as its altitude increases.
augmenting factor. . A factor used in connection with the harmonic analysis of tides or tidal currents to allow for the difference between the times of hourly tabulation and the corresponding constituent hours.
aural. , adj. Of or pertaining to the ear or sense of hearing.
aural null. . A null detected by listening for the minimum or the absence of an audible signal.
aureole., n. A poorly developed corona, characterized by a bluish-white disk immediately around the luminary and a reddish-brown outer edge. An aureole, rather than a corona, is produced when the cloud responsible for this diffraction effect is composed of droplets distributed over a wide size-range. The diffracted rays approach the observer from a wide variety of angles, in contrast to the relative uniform diffraction produced by a cloud of more limited drop-size range. In as much as most clouds exhibit rather broad drop-size distributions, aureoles are observed much more frequently than coronas.
aurora., n. A luminous phenomenon due to electrical discharges in the atmosphere, probably confined to the thin air high above the surface of the earth It is most commonly seen in high latitudes where it is most frequent during periods of greatest sunspot activity. If it occurs in the Northern Hemisphere, it is called aurora borealis or northern lights; and if in the Southern, aurora Australis.
aurora Australis. . The aurora in the Southern Hemisphere.
aurora borealis. . The aurora in the Northern Hemisphere. Also called NORTHERN LIGHTS.
auroral zone. . The area of maximum auroral activity. Two such areas exist, each being a 10° wide annulus centered at an average distance of 23° from a geomagnetic pole.
aurora polaris. . A high latitude aurora borealis.
austral., adj. Of or pertaining to south.
authalic map projection. . See EQUAL-AREA MAP PROJECTION.
Automated Mutual-assistance Vessel Rescue System. . Operated by the United States Coast Guard, the AMVER System is a maritime mutual assistance program that aids coordination of search and rescue efforts in the oceans of the world, by maintaining a computerized worldwide merchant vessel plot.
automatic direction finder. . A radio direction finder in which the bearing to the transmitter is indicated automatically and continuously, in contrast with a MANUAL RADIO DIRECTION FINDER which requires manual operation. Also called AUTOMATIC RADIO DIRECTION FINDER (ADF).
automatic frequency control. . The technique of automatically maintaining, or a circuit or device which automatically maintains, the frequency of a receiver within specified limits.
automatic gain control. . A feature involving special circuitry designed to maintain the output of a radio, radar, or television receiver essentially constant, or to prevent its exceeding certain limits, regardless of variations in the strength of the incoming signal.
automatic radar plotting aid. . A computer-assisted radar data processing system which generates predicted ship vectors based on the recent plotted positions. For such a system to meet the specifications of the Inter Governmental Maritime Consultative Organization (IMCO), it must satisfy requirements with respect to detection, acquisition, tracking, display, warnings, data display, and trial maneuvers.
automatic radio direction finder. . See AUTOMATIC DIRECTION FINDER.
automatic tide gage. . An instrument that automatically registers the rise and fall of the tide. In some instruments, the registration is accomplished by recording the heights at regular intervals in digital format, in others by a continuous graph in which the height versus corresponding time is recorded.
auto pilot. , n. A device which steers a vessel unattended along a given bearing. See GYRO PILOT.
autumn., n. The season between summer and winter. In the Northern Hemisphere autumn begins astronomically at the autumnal equinox and ends at the winter solstice. In the Southern Hemisphere the limits are the vernal equinox and the summer solstice. The meteorological limits vary with the locality and the year. Also called FALL.
autumnal. , adj. Pertaining to fall (autumn). The corresponding adjectives for winter, spring, and summer are hibernal, vernal, and aestival.
autumnal equinox. . 1. That point of intersection of the ecliptic and the celestial equator occupied by the sun as it changes from north to south declination, on or about September 23. Also called SEPTEMBER EQUINOX, FIRST POINT OF LIBRA. 2. The instant the sun reaches the point of zero declination when crossing the celestial equator from north to south.
auxiliary lights. . See under VERTICAL LIGHTS
average. , adj. Equaling or approximating a mean.
average., n. See MEAN.
average. , $v ., t$. To determine a mean.
avoirdupois pound. . See POUND.
avulsion. , n. The rapid erosion of shore land by waves during a storm.
awash., $a d j . \& a d v$. Situated so that the top is intermittently washed by waves or tidal action. The term applies both to fixed objects such as rocks, and to floating objects with their tops flush with or slightly above the surface of the water. See also ROCK AWASH, SUBMERGED, UNCOVERED.
axial. , adj. Of or pertaining to an axis.
axis. , n. (pl.axes). 1. A straight line about which a body rotates, or around which a plane figure may rotate to produce a solid; a line of symmetry. A polar axis is the straight line connecting the poles of a body. The major axis of an ellipse or ellipsoid is its longest diameter; the minor axis, its shortest diameter. 2. One of a set of reference lines for certain systems of coordinates. 3. The principal line about which anything may extend, as the axis of a channel or compass card axis. 4. A straight line connecting two related points.
axis of freedom. . An axis about which the gimbal of a gyro provides a degree-of-freedom of movement.
azimuth. , n. The horizontal direction or bearing of a celestial point from a terrestrial point, expressed as the angular distance from a reference direction. It is usually measured from 000° at the reference direction clockwise through 360°. An azimuth is often designated as true, magnetic, compass grid, or relative as the reference direction is true, magnetic, compass, or grid north, or heading, respectively. Unless otherwise specified, the term is generally understood to apply to true azimuth, which may be further defined as the arc of the horizon, or the angle at the zenith, between the north part of the celestial meridian or principal vertical circle and a vertical circle, measured from 000° at the north part of the principal vertical circle clockwise through 360°. Azimuth taken directly from a table, before interpolation, is called tabulated azimuth. After interpolation, or, if determined by calculation, mechanical device, or graphics, it is called computed azimuth. When the angle is measured in either direction from north or south, and labeled accordingly, it is properly called azimuth angle; when measured either direction from east or west, and labeled accordingly, it is called amplitude. An azimuth determined by solution of the navigational triangle with altitude, declination, and latitude then is called an altitude azimuth; if meridian angle, declination, and latitude are given, it is called a time azimuth; if meridian angle, declination and altitude are given, it is called a time and altitude azimuth. See also BACK AZIMUTH, BEARING.
azimuthal., adj. Of or pertaining to azimuth.
azimuthal chart. . A chart on an azimuthal map projection. Also called ZENITHAL CHART.
azimuthal equidistant chart. . A chart on the azimuthal equidistant map projection.
azimuthal equidistant map projection. . An azimuthal map projection on which straight lines radiating from the center or pole of projection represent great circles in their true azimuths from that center,
azimuthal map projection. A map projection on which the azimuths or directions of all lines radiating from a central point or pole are the same as the azimuths or directions of the corresponding lines on the ellipsoid. This classification includes the gnomonic, stereographic, orthographic, and the azimuthal equidistant map projections. Also called ZENITHAL MAP PROJECTION.
azimuthal orthomorphic projection. . See STEREOGRAPHIC MAP PROJECTION.
azimuth angle. . Azimuth measured from 0° at the north or south reference direction clockwise or counterclockwise through 90° or 180 ". It is labeled with the reference direction as a prefix and the direction of measurement from the reference direction as a suffix. When azimuth angle is measured through 180°, it is labeled N or S to agree with the latitude and E or W to agree with the meridian angle.
azimuth bar. . An instrument for measuring azimuths, particularly a device consisting of a slender bar with a vane at each end, and designed to fit over a central pivot in the glass cover of a magnetic compass. See also BEARING BAR.
azimuth circle. . A ring designed to fit snugly over a compass or compass repeater, and provided with means for observing compass bearings and azimuths. A similar ring without the means for observing azimuths of the sun is called a BEARING CIRCLE.
azimuth instrument. . An instrument for measuring azimuths, particularly a device which fits over a central pivot in the glass cover of a magnetic compass.
azimuth stabilized display. . See as STABILIZED IN AZIMUTH under STABILIZATION OF RADARSCOPE DISPLAY.
azimuth tables. . Publications providing tabulated azimuths or azimuth angles of celestial bodies for various combinations of declination, latitude and hour angle. Great circle course angles can also be obtained by substitution of values.
Azores Current. . A slow but fairly constant southeast branch of the North Atlantic Current and part of the Gulf Stream System. Its mean speed is only 0.4 knot, and the mean maximum speed computed from all observations above 1 knot in the prevailing direction is 1.3 knots. There is no discernible seasonal fluctuation. The speed and direction of the current is easily influenced for short periods by changing winds. The Azores Current is an inner part of the general clockwise oceanic circulation of the North Atlantic Ocean. Also called SOUTHEAST DRIFT CURRENT.

B

back. , adj. Reciprocal.
back. , $v ., i$. 1 . A change in wind direction in reverse of the normal pattern, or counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. Change in the opposite direction is called veer. See also HAUL. 2. To go stern first, or to operate the engines in reverse. 3. To brace the yard of a square sail so as to bring the wind on the forward side.
back azimuth. . An azimuth 180° from a given azimuth.
back echo. . The effect on a radar display produced by a back lobe of a radar antenna. See also SIDE ECHO.
backlash. , n. 1. The amount which a gear or other part of a machine, instrument, etc., can be moved without moving an adjoining part, resulting from loose fit. See also LOST MOTION. 2. The tangle resulting when a reel of line or cable revolves faster than line is being stripped off.
back lobe. . The lobe of the radiation pattern of a directional antenna which makes an angle of approximately 180° with the direction of the axis of the main lobe.
back range. . A range observed astern, particularly one used as guidance for a craft moving away from the objects forming the range.
backrush. , n. The seaward return of water following the uprush onto the foreshore. See also RIP CURRENT, UNDERTOW.
backshore., n. That part of a beach which is usually dry, being reached only by the highest tides, and by extension, a narrow strip of relatively flat coast bordering the sea. See also FORESHORE.
back sight. . A marine sextant observation of a celestial body made by facing away from the body, measuring an angle of more than 90°.
backstaff., n. A forerunner of the sextant, consisting essentially of a graduated arc and a single mirror. To use the instrument it was necessary to face away from the body being observed. Also called QUADRANT WITH TWO ARCS, SEA QUADRANT.
backstays of the sun. . Crepuscular rays extending downward toward the horizon.
backwash. , n. Water or waves thrown back by an obstruction such as a seaward, breakwater, cliff, etc.
backwater. , n. Water held back from the main flow, as that which overflows the land and collects in low places or that forming an inlet approximately parallel to the main body and connected thereto by a narrow outlet.
bad-bearing sector. . Relative to a radio direction finder station or radiobeacon, a sector within which bearings are known to be liable to significant errors of unknown magnitudes.
baguio. , n. Local term in the Philippines for a tropical cyclone.
balancer., n. A device used with a radio direction finder to balance out antenna effect and thus produce a sharper reading.
balancing., n. The process of neutralizing antenna effect in order to improve the definition of the observed bearing. See also BALANCER.
Bali wind. . A strong east wind at the eastern end of Java.
ball. , n. 1. A spherical identifying mark placed at the top of a perch. 2. A time ball.
ballast ground. . A designated area for discharging solid ballast before entering harbor.
ballistic damping error. . A temporary oscillatory error of a gyrocompass introduced during changes of course or speed as a result of the means used to damp the oscillations of the spin axis.
ballistic deflection error. A temporary oscillatory error of a gyrocompass introduced when the north-south component of the speed changes, as by speed or course change. An accelerating force acts upon the compass, causing a surge of mercury from one part of the system to another in the case of the non pendulous compass, or a deflection (along the meridian) of a mass in the case of a pendulous compass. In either case, a precessing force introduces a temporary ballistic deflection error in the reading of the compass unless it is corrected.
band. , n. A specific section or range of anything. See also FREQUENCY BAND.
band of error. . An area either side of a line of position, within which, for a stated level of probability, the true position is considered to lie.
bandwidth. , n. 1. The range of frequencies of a device within which its performance, in respect to some characteristic, conforms to a specified standard. 2. The range within the limits of a frequency band.
bank. , n. 1. An elevation of the sea floor typically located on a shelf, over which the depth of water is relatively shallow. Reefs or shoals, dangerous to surface navigation, may rise above the general depths of a bank. 2. A shallow area of shifting sand, gravel, mud, etc., such as a sand bank, mud bank, etc. 3. A ridge of any material such as earth, rock, snow, etc., or anything resembling such a ridge, as a fog bank or cloud bank. 4. The edge of a cut or fill. 5 . The margin of a watercourse. 6. A number of similar devices connected so as to be used as a single device in common.
bank cushion. . In a restricted channel, especially one with steep banks, bank cushion tends to force the bow away from the bank due to the increase in the bow wave on the near side.
bank suction. . The bodily movement of a ship toward the near bank due to a decrease in pressure as a result of increased velocity of flow of water past the hull in a restricted channel.
banner cloud. . A banner like cloud streaming off from a mountain peak in a strong wind. See also CAP CLOUD.
bar. , n. 1. A ridge or mound of sand, gravel, or other unconsolidated material below the high water level, especially at the mouth of a river or estuary, or lying a short distance from and usually parallel to the beach, and which may obstruct navigation. 2. A unit accepted temporarily for use with the International System of Units; 1 bar is equal to 100,000 pascals.
barat. , n. A heavy northwest squall in Manado Bay on the north coast of the island of Celebes, prevalent from December to February.
barber. , n.1. A strong wind carrying damp snow or sleet and spray that freezes upon contact with objects, especially the beard and hair. 2 . See FROST SMOKE, definition 2.
bar buoy. . A buoy marking the location of a bar at the mouth of a river on approach to a harbor.
bare ice. . Ice without snow cover.
bare rock. . A rock that extends above the mean high water datum in tidal areas or above the low water datum in the Great Lakes. See also ROCK AWASH, SUBMERGED ROCK.
barogram. , n. The record made by a barograph.
barograph. , n. A recording barometer. A highly sensitive barograph may be called a microbarograph.
barometer., n. An instrument for measuring atmospheric pressure. A mercurial barometer employs a column of mercury supported by the atmosphere. An aneroid barometer has a partly exhausted, thin metal cylinder somewhat compressed by atmospheric pressure.
barometric pressure. Atmospheric pressure as indicated by a barometer.
barometric pressure correction. . A correction due to nonstandard barometric pressure, particularly the sextant altitude correction due to changes in refraction caused by difference between the actual barometric pressure and the standard barometric pressure used in the computation of the refraction table.
barometric tendency. . See PRESSURE TENDENCY.
barothermogram., n. The record made by a barothermograph.
barothermograph., n. An instrument which automatically records pressure and temperature.
barothermohygrogram., n. The record made by a barothermohygrograph.
barothermohygrograph. , n. An instrument which automatically records pressure, temperature and humidity of the atmosphere.
barrel., n. A unit of volume or weight, the U.S. petroleum value being 42 U.S. gallons.
barrel buoy. . A buoy having the shape of a barrel or cylinder floating horizontally, usually for special purposes, including mooring.
barrier beach. . A bar essentially parallel to the shore, the crest of which is above high water.
barrier reef. . A coral reef which roughly parallels land but is some distance offshore, with deeper water adjacent to the land, as contrasted with a FRINGING REEF closely attached to the shore.
bar scale. . A line or series of lines on a chart, subdivided and labeled with the distances represented on the chart. Also called GRAPHIC SCALE. See also SCALE.
barycenter., n. The center of mass of a system of masses; the common point about which two or more celestial bodies revolve.
base chart. . See BASE MAP.
base course up. . One of the three basic orientations of display of relative or true motion on a radarscope. In the BASE COURSE UP orientation, the target pips are painted at their measured distances and in their directions relative to a preset base course of own ship maintained UP in relation to the display. This orientation is most often used with automated radar plotting systems. Also called COURSE UP. See also HEAD UP, NORTH UP.
base line. . 1. The reference used to position limits of the territorial sea and the contiguous zone. 2. One side of a series of connected survey triangles, the length of which is measured with prescribed accuracy and precision, and from which the lengths of the other triangle sides are obtained by computation. Important factors in the accuracy and precision of base measurements are the use of standardized invar tapes, controlled conditions of support and tension, and corrections for temperatures, inclination, and alignment. Base lines in triangulation are classified according to the character of the work they are intended to control, and the instruments and methods used in their measurement are such that prescribed probable errors for each class are not exceeded. These probable errors, expressed in terms of the lengths, are as follows: first order, 1 part in $1,000,000$; second order, 1 part in 500,000 ; and third order, 1 part in 250,000 . 3. The line along the surface of the earth between two radio navigation stations operating in conjunction for the determination of a line of position.
baseline delay. . The time interval needed for the signal from a master station of a hyperbolic radionavigation system to travel the length of the baseline, introduced as a delay between transmission of the master and slave (or secondary) signals to make it possible to distinguish between the signals and to permit measurement of time differences.
baseline extension. . The extension of the baseline in both directions beyond the transmitters of a pair of radio stations operating in conjunction for determination of a line of position.
base map. . 1. A map or chart showing certain fundamental information, used as a base upon which additional data of specialized nature are compiled or overprinted. 2. A map containing all the information from which maps showing specialized information can be prepared. Also called BASE CHART in nautical charting.
base map symbol. . A symbol used on a base map or chart as opposed to one used on an overprint to the base map or chart. Also called BASE SYMBOL.
base symbol. . See BASE MAP SYMBOL.
base units. . See under INTERNATIONAL SYSTEM OF UNITS.
basin. , n. 1. A depression of the sea floor approximately equidimensional in plan view and of variable extent. 2. An area of water surrounded by quay walls, usually created or enlarged by excavation, large enough to receive one or more ships for a specific purpose. See also GRAVING DOCK, HALF. TIDE BASIN, NON-TIDAL BASIN, SCOURING BASIN, TIDAL BASIN, TURNING BASIN. 3. An area of land which drains into a lake or sea through a river and its tributaries. 4. A nearly land-locked area of water leading off an inlet, firth, or sound.
bathyal. , adj. Pertaining to ocean depths between 100 and 2,000 fathoms; also to the ocean bottom between those depths, sometimes identical with the continental slope environment.
bathymeter., n. An instrument for measuring depths of water.
bathymetric., adj. Of or pertaining to bathymetry.
bathymetric chart. . A topographic chart of the seabed of a body of water, or a part of it. Generally, bathymetric charts show depths by contour lines and gradient tints.
bathymetry., n. The science of measuring water depths (usually in the ocean) in order to determine bottom topography.
bathysphere., n. A spherical chamber in which persons are lowered for observation and study of ocean depths.
bathythermogram. , n. The record made by a bathythermograph.
bathythermograph., n. An instrument which automatically draws a graph showing temperature as a function of depth when lowered in the sea.
batture., n. An elevation of the bed of a river under the surface of the water; sometimes used to signify the same elevation when it has risen above the surface.
baud. . A measure of the speed of computer data transmission in bits per second.
bay., n. A recess in the shore, on an inlet of a sea or lake between two capes or headlands, that may vary greatly in size but is usually smaller than a gulf but larger than a cove.
bayamo., n. A violent blast of wind, accompanied by vivid lightning, blowing from the land on the south coast of Cuba, especially near the Bight of Bayamo.
Bayer's letter. . The Greek (or Roman) letter used in a Bayer's name.
Bayer's name. . The Greek (or Roman) letter and the possessive form of the Latin name of a constellation, used as a star name.
baymouth bar. . A bar extending partially or entirely across the mouth of a bay.
bayou. , n. A minor, sluggish waterway or estuaries creek, generally tidal or with a slow or imperceptible current, and with its course generally through lowlands or swamps, tributary to or connecting with other bodies of water. Various specific meanings have been implied in different parts of the southern United States. Sometimes called SLOUGH.
beach., n. The zone of unconsolidated material that extends landward from the low water line to the place where there is a marked change in material or physiographic form, or to the line of permanent vegetation (usually the effective limit of storm waves). A beach includes foreshore and backshore. The beach along the margin of the sea may be called SEABEACH. Also called STRAND, especially when the beach is composed of sand. See also TIDELAND.
beach. , v., t. \& i. To intentionally run a craft ashore.
beach berm. . See BERM
beach erosion. . The carrying away of beach materials by wave action, tidal or littoral currents, or wind.
beacon. , n. A fixed artificial navigation mark. See also MARK, definition 1; DAYBEACON; DAYMARK; LIGHTED BEACON; RADIOBEACON.
beaconage., n. A system of fixed aids to navigation comprised of beacons and minor lights. See also BUOYAGE.
beacon buoy. . See PILLAR BUOY.
beacon tower. . A beacon which is a major structure, having a support as distinctive as the topmark. See also LATTICE BEACON, REFUGE BEACON.
beam., n. 1. A directed flow of electromagnetic radiation from an antenna. See also MAIN BEAM under LOBE, BEAM WIDTH. 2. A group of nearly parallel rays, as a light beam.
beam compass. . Compass for drawing circles of large diameter. In its usual form it consists of a bar with sliding holders for points, pencils, or pens which can be set at any desired position.
beam sea. Waves moving in a direction approximately 90° from the vessel's heading. Those moving in a direction approximately opposite to the heading are called HEAD SEA, those moving in the general direction of the heading are called FOLLOWING SEA, and those moving in a direction approximately 45° from the heading (striking the quarter) are called QUARTERING SEA. See also CROSS SEA.
beam tide. . A tidal current setting in a direction approximately 90° from the heading of a vessel One setting in a direction approximately 90° from the course is called a CROSS TIDE. In common usage these two expressions are usually used synonymously. One setting in a direction approximately opposite to the heading is called a HEAD TIDE. One setting in such a direction as to increase the speed of a vessel is called a FAIR TIDE.
beam width. . The angular measure of the transverse section of a beam (usually in the main lobe) Lying within directions corresponding to specified values of field strength relative to the maximum (e.g., half field strength beam width and half power beam width). The beam width is usually measured in one or more specified planes containing the axis of the beam. See also HORIZONTAL BEAM WIDTH, VERTICAL BEAM WIDTH.
beam-width error. . An azimuth or bearing distortion on a radar display caused by the width of the radar beam. See also BEAM WIDTH, PULSE LENGTH ERROR.
beam wind. . Wind blowing in a direction approximately 90° from the heading. One blowing in a direction approximately 90° from the course is called a CROSS WIND. In common usage these two expressions are usually used synonymously, BEAM WIND being favored by mariners, and CROSS WIND by aviators. One blowing from ahead is called a HEAD WIND. One blowing from astern is called a FOLLOWING WIND by mariners and a TAIL WIND by aviators. See also FAIR WIND, FAVORABLE WIND, UNFAVORABLE WIND.
bear., v., i. To be situated as to direction, as, the light bears 165°.
bear down. . To approach from windward.
bearing. , n. The horizontal direction of one terrestrial point from another, expressed as the angular distance from a reference direction. It is usually measured from 000° at the reference direction clockwise through 360°. The terms BEARING and AZIMUTH are sometimes used interchangeably, but in navigation the former customarily applies to terrestrial objects and the latter to the direction of a point on the celestial sphere from a point on the earth. A bearing is often designated as true, magnetic, compass, grid, or relative as the reference direction is true, magnetic, compass, or grid north, or heading, respectively. The angular distance between a reference direction and the initial direction of a great circle through two terrestrial points is called great-circle bearing. The angular distance between a reference direction and the rhumb line through two terrestrial points is called rhumb or Mercator bearing. A bearing differing by 180°, or one measured in the opposite direction, from a given bearing is called a reciprocal bearing. The maximum or minimum bearing of a point for safe passage of an off-lying danger is called a danger bearing. A relative bearing of 045° or 315° is sometimes called a four-point bearing. Successive relative bearings (right or left) of 45° and 90° taken on a fixed object to obtain a running fix
are often called bow and beam bearings. Two or more bearings used as intersecting lines of position for fixing the position of a craft are called cross bearings. The bearing of a radio transmitter from a receiver, as determined by a radio direction finder, is called a radio bearing. A bearing obtained by radar is called a radar bearing. A bearing obtained by visual observation is called a visual bearing. A constant bearing maintained while the distance between two craft is decreasing is called a collision bearing. See also CURVE OF EQUAL BEARING.
bearing angle. . Bearing measured from 0° at the reference direction clockwise or counterclockwise through 90° or 180°. It is labeled with the reference direction as a prefix and the direction of measurement from the reference direction as a suffix. Thus, bearing angle $\mathrm{N} 37^{\circ} \mathrm{W}$ is 37° west of north, or true bearing 323°.
bearing bar. . An instrument for measuring bearings, particularly a device consisting of a slender bar with a vane at each end, and designed to fit over a central pivot in the glass cover of a magnetic compass. See also AZIMUTH BAR.
bearing book. A log for the recording of visual bearings.
bearing calibration. . The determination of bearing corrections of a radiodirection finder by observations of a radiobeacon, particularly a calibration radiobeacon, of known visual bearing, observations being taken over 360° of swing of the observing vessel.
bearing circle. . A ring designed to fit snugly over a compass or compass repeater, and provided with vanes for observing compass bearings. A similar ring provided with means for observing azimuths of the sun is called an AZIMUTH CIRCLE.
bearing compass. . A compass intended primarily for use in observing bearings.
bearing cursor. . The radial line on a radar set inscribed on a transparent disk which can be rotated manually about an axis coincident with the center of the PPI. It is used for bearing determination. Also called MECHANICAL BEARING CURSOR.
bearing light. . A navigation light using two superimposed optical systems which provides an approximate bearing without the use of a compass.
bearing line. . A line extending in the direction of a bearing.
bearing repeater. . A compass repeater used primarily for observing bearings.
bearing resolution. . See as RESOLUTION IN BEARING under RESOLUTION, definition 2. Also called ANGULAR RESOLUTION.
beat frequency. . Either of the two additional frequencies obtained when signals of two frequencies are combined, equal to the sum or difference, respectively, of the original frequencies.
Beaufort wind scale. . A numerical scale for indicating wind speed, devised by Admiral Sir Francis Beaufort in 1805. Beaufort numbers (or forces) range from force 0 (calm) to force 12 (hurricane).
bed. , n. The ground upon which a body of water rests. The term is usually used with a modifier to indicate the type of water body, as river bed or sea bed. See also BOTTOM.
before the wind. . In the direction of the wind. The expression applies particularly to a sailing vessel having the wind well aft. See also DOWNWIND.
bell. , n. A device for producing a distinctive sound by the vibration of a hollow, cup-shaped metallic vessel which gives forth a ringing sound when struck.
bell book. . The log of ordered engine speeds and directions.
bell buoy. . A buoy with a skeleton tower in which a bell is fixed.
belt. , n. A band of pack ice from 1 km to more than 100 km in width.
bench. , n. On the sea floor, a small terrace.
bench mark. . A fixed physical object used as reference for a vertical datum. A tidal bench mark is one near a tide station to which the tide staff and tidal datums are referred. A primary tidal bench mark is the principal (or only) mark of a group of tidal bench marks to which the tide staff and tidal datum's are referred. A geodetic bench mark identifies a surveyed point in the National Geodetic Vertical Network. Geodetic bench mark disks contain the inscription VERTICAL CONTROL MARK, NATIONAL GEODETIC SURVEY with other individual identifying information. Bench mark disks of either type may, on occasion, serve simultaneously to reference both tidal and geodetic datum's. Numerous bench marks, both tidal and geodetic, still bear the inscription U.S. COAST \& GEODETIC SURVEY.
beneaped. , adj. See NEAPED.
Benguela Current. . A slow-moving ocean current flowing generally northwestward along the west coast of Africa. It is caused mainly by the prevailing southeast trade winds. Near the equator the current flows westward and becomes the ATLANTIC SOUTH EQUATORIAL CURRENT.
bentu de soli. . An east wind on the coast of Sardinia.
berg. , n. Short for ICEBERG.
bergy bit. . A large piece of floating glacier ice, generally showing less than 5 meters above sea level but more than 1 meter and normally about 100 to 300 square meters in area. It is smaller than an ICEBERG but larger than a GROWLER. A typical bergy bit is about the size of a small house.
Bering Current. . A northward flowing current through the eastern half of the Bering Sea, through Bering Strait, and in the eastern Chukchi Sea. The current speed in the Bering Sea is estimated to be usually 0.5 knot or less but at times as high as 1.0 knot. In the Bering Strait, current speeds frequently reach 2 knots. However, in the eastern half of the strait, currents are even stronger and usually range between 1.0 and 2.5 knots. Strong southerly winds may increase current speeds in the strait to 3 knots, and up to 4 knots in the eastern part. Persistent, strong northerly winds during autumn may cause the current to reverse direction for short periods. During winter a southward flow may occur in the western part of the strait. After flowing through Bering Strait, the current widens, and part continues toward Point Barrow, where it turns northwestward. Along the Alaska coast, current t speeds have been observed to range between 0.1 and 1.5 knots and increase to 2.0 or 2.5 knots with southerly winds. In the western part of the Chukchi Sea, currents are considerably weaker and do not usually exceed 0.5 knot.
berm. , n. A nearly horizontal portion of a beach or backshore having an abrupt fall and formed by wave deposition of material and marking the limit of ordinary high tides. Also called BEACH BERM.
berm crest. . The seaward limit of a berm. Also called BERM EDGE.
berm edge. . See BERM CREST.
berth. , n., v., t. 1. A place for securing a vessel. 2. To secure a vessel at a berth. See also FOUL BERTH, MUD BERTH.
beset. , adj. State of a vessel surrounded by ice and unable to move. If the ice forcibly squeezes the hull, the vessel is said to be NIPPED.
Bessel ellipsoid of 1841. . The reference ellipsoid of which the semimajor axis is $6,377,397.155$ meters, the semiminor axis is $6,356,078.963$ meters and the flattening or ellipticity equals $1 / 299.1528$. Also called BESSEL SPHEROID OF 1841.
Besselian year. . See FICTITIOUS YEAR.
Bessel spheroid of 1841. See BESSEL ELLIPSOID OF 1841.

bias error. . See CONSTANT ERROR.

bifurcation. , n. A division into two branches.
bifurcation buoy. . A buoy which indicates the place at which a channel divides into two. See also JUNCTION BUOY.
bifurcation mark. . A navigation mark which indicates the place at which the channel divides into two. See also JUNCTION MARK.
big floe. . See under FLOE.
bight. , n. 1. A long and gradual bend or recess in the coastline which forms a large open receding bay. 2. A bend in a river or mountain range. 3. An extensive crescent-shaped indentation in the ice edge.
bill., n. A narrow promontory.
bi-margin format. . The format of a map or chart on which the cartographic detail is extended to two edges of the sheet, thus leaving only two margins. See also BLEED.
binary notation. . Referring to a system of numbers with a base of 2 ; used extensively in computers, which use electronic on-off storage devices to represent the numbers 0 and 1 .
binary star. . A system of two stars that revolve about their common center of mass. See also DOUBLE STAR.
binnacle., n. The stand in which a compass is mounted. For a magnetic compass it is usually provided with means of mounting various correctors for adjustment and compensation of the compass.
binocular. , $n ., a d j$. 1. An optical instrument for use with both eyes simultaneously. 2. Referring to vision with two eyes.
bioluminescence., n. The production of light by living organisms in the sea. Generally, these displays are stimulated by surface wave action, ship movement, subsurface waves, up welling, eddies, physical changes in sea water, surfs, and rip tides.
bisect. , v., t. To divide into two equal parts.
bit. (from binary digit). The smallest unit of information in a computer. Bits are grouped together into bytes, which represent characters or other information.
bit-map. . A type of computerized display which consists of a single layer of data; individual elements cannot be manipulated. See VECTOR, RASTER.
bivariate error distribution. . A two-dimensional error distribution.
blackbody., n. An ideal emitter which radiates energy at the maximum possible rate per unit area at each wavelength for any given temperature. A blackbody also absorbs all the radiant energy in the near visible spectrum incident upon it. No actual substance behaves as a true blackbody.
black light. . Ultraviolet or infrared radiant energy. It is neither black nor light.
blanket. , v, t. To blank out or obscure weak radio signals by a stronger signal.
blanketing., n. The blanking out or obscuring of weak radio signals by a stronger signal.
blanking., n. See as DUAL-RATE BLANKING.
blank tube. . A marine sextant accessory consisting of a tubular sighting vane, the function of which is to keep the line of vision parallel to the frame of the instrument when observing horizontal sextant angles.
blather., n. Very wet mud of such nature that a weight will rapidly sink into it. See also QUICKSAND.
bleed., n. The edge of a map or chart on which cartographic detail is extended to the edge of the sheet. Also called BLEEDING EDGE.
bleeding edge. . See BLEED.
blind lead. . A lead with only one outlet.
blind pilotage. . British terminology. The task of conducting the passage of a ship in pilot waters using means available to the navigator in low visibility.
blind rollers. . Long, high swells which have increased in height, almost to the breaking point, as they pass over shoals or run in shoaling water. Also called BLIND SEAS.
blind seas. . See BLIND ROLLERS.
blind sector. . A sector on the radarscope in which radar echoes cannot be received because of an obstruction near the antenna. See also SHADOW SECTOR.
blink., n. A glare on the underside of extensive cloud areas, created by light reflected from snow or ice-covered surfaces.
snow blink. . Blink caused by a snow-covered surface, which is whitish and brighter than the yellowish-white glare of ice blink. See also LAND SKY, WATER SKY, SKY MAP.
blinking., n. A means of providing information in radionavigation systems of the pulse type by modifying the signal at its source so that the signal presentation alternately appears and disappears or shifts along the time base. In Loran, blinking is used to indicate that a station is malfunctioning.
blip. , n. On a radarscope, a deflection or spot of contrasting luminescence caused by an echo, i.e., the radar signal reflected back to the antenna by an object. Also called PIP, ECHO, RETURN.
blip scan ratio. . The ratio of the number of paints from a target to the maximum possible number of paints for a given number of revolutions of the radar antenna. The maximum number of paints is usually equivalent to the number of revolutions of the antenna.
blister. , n. See BORDER BREAK.
blizzard., n. A severe weather condition characterized by low temperatures and by strong winds bearing a great amount of snow (mostly fine, dry snow picked up from the ground). The National Weather Service specifies the following conditions for a blizzard: a wind of 32 miles per hour or higher, low temperatures, and sufficient snow in the air to reduce visibility to less than 500 feet; for a severe blizzard, it specifies wind speeds exceeding 45 miles per hour, temperature near or below $10^{\circ} \mathrm{F}$, and visibility reduced by snow to near zero. In popular usage in the United States, the term is often used for any heavy snowstorm accompanied by strong winds.
block., n. See CHARTLET, definition 2.
block correction. . See CHARTLET, definition 2.
blocky iceberg. . An iceberg with steep sides and a flat top. The length-toheight ratio is less than 5:1. See also TABULAR ICEBERG.
Blondel-Rey effect. . The effect that the flashing of a light has on reducing its apparent intensity as compared to the intensity of the same light when operated continuously or fixed.
blooming. , n. Expansion of the spot produced by a beam of electrons striking the face of a cathode-ray indicator, caused by maladjustment.
blowing snow. . Snow raised from the ground and carried by the wind to such a height that both vertical and horizontal visibility are considerably reduced. The expression DRIFTING SNOW is used when only the horizontal visibility is reduced.
blue ice. . The oldest and hardest form of glacier ice, distinguished by a slightly bluish or greenish color.
blue magnetism. . The magnetism displayed by the south-seeking end of a freely suspended magnet. This is the magnetism of the earth's north magnetic pole.
bluff. , n. A headland or stretch of cliff having a broad nearly perpendicular face. See also CLIFF.
blunder. , n. See MISTAKE.
Board of Geographic Names. . An agency of the U.S Government, first established by Executive Order in 1890 and currently functioning under Public Law 242-80, 25 July 1947. Twelve departments and agencies have Board membership. The board provides for "uniformity in geographic nomenclature and orthography throughout the Federal Government." It develops policies and romanization systems under which names are derived and it standardizes geographic names for use on maps and in textual materials.
boat. , n. A small vessel. The term is often modified to indicate the means of propulsion, such as motorboat, rowboat, steamboat, sailboat, and sometimes to indicate the intended use, such as lifeboat, fishing boat, etc. See also SHIP.
boat compass. . A small compass mounted in a box for small craft. use.
boat harbor. . A sheltered area in a harbor set aside for the use of boats, usually with docks, moorings, etc.
boat sheet. . The work sheet used in the field for plotting details of a hydrographic survey as it progresses.
bobbing a light. . Quickly lowering the height of eye and raising it again when a navigational light is first sighted to determine if the observer is at the geographic range of the light.
bold. , adj. Rising steeply from the sea; as a bold coast. See also ABRUPT.
bolide., n. A meteor having a magnitude brighter than 4 magnitude. Bolides are observed with much less frequency than shooting stars. Light bursts, spark showers, or splitting of the luminous trail are sometimes seen along their trails. The luminous trails persist for minutes and may persist up to an hour in exceptional cases. Also called FIREBALL. See also METEOR.
bollard. , n. A post (usually steel or reinforced concrete) firmly secured on a wharf, quay, etc., for mooring vessels with lines.
bombing range. . An area of land or water, and the air space above, designated for use as a bombing practice area.
boom. , n. A floating barrier used for security, shelter, or environmental cleanup.
boot. . To start a computer, which initiates a series of internal checks and programs which ready the computer for use.
bora. , n. A cold, northerly wind blowing from the Hungarian basin into the Adriatic Sea. See also FALL WIND.
borasco. , n. A thunderstorm or violent squall, especially in the Mediterranean.
border break. . A cartographic technique used when it is required to extend cartographic detail of a map or chart beyond the neatline into the margin, which eliminates the necessity of producing an additional sheet. Also called BLISTER.
borderland. , n. A region bordering a continent, normally occupied by or bordering a shelf that is highly irregular with depths well in excess of those typical of a shelf.
bore. , n. See TIDAL BORE.
boring. , n. Forcing a vessel under power through ice, by breaking a lead. borrow., $v ., t$. To approach closer to the shore or wind.
bottom. , n. The ground under a body of water. The terms FLOOR, and BOTTOM have nearly the same meaning, but BED refers more specifically to the whole hollowed area supporting a body of water, FLOOR refers to the essential horizontal surface constituting the principal level of the ground under a body of water, and BOTTOM refers to any ground covered with water.
bottom characteristics. . Designations used on surveys and nautical charts to indicate the consistency, color, and classification of the sea bottom. Also called NATURE OF THE BOTTOM, CHARACTER OF THE BOTTOM.
bottom contour chart. . A chart designed for surface and sub-surface bathymetric navigation seaward of the 10 fathom contour. Bottom configuration is portrayed by depth contours and selected soundings.
bottom sample. . A portion of the material forming the bottom, brought up for inspection.
bottom sampler. . A device for obtaining a portion of the bottom for inspection.
Bouguer's halo. . An infrequently observed, faint, white. circular arc or complete ring of light which has a radius of about 39°, and is centered on the antisolar point. When observed, it usually is in the form of a separate outer ring around an anticorona. Also called ULLOA'S RING. See also FOGBOW.
boulder. , n. A detached water-rounded stone more than 256 millimeters in diameter, i.e., larger than a man's head. See also COBBLE.
boundary disclaimer. . A statement on a map or chart that the status and/or alignment of international or administrative boundaries is not necessarily recognized by the government of the publishing nation.
boundary lines of inland waters. . Lines dividing the high seas from rivers, harbors, and inland waters. The waters inshore of the lines are "inland waters" and upon them the Inland Rules of the Road or Pilot Rules apply. The waters outside of the lines are the high seas and upon them the International Rules apply.
boundary monument. . A material object placed on or near a boundary line to preserve and identify the location of the boundary line on the ground.
bow. , n. The forward part of a ship, craft, aircraft, or float.
bow and beam bearings. . Successive relative bearings (right or left) of 45° and 90° taken on a fixed object to obtain a running fix. The length of the run between such bearings is equal to the distance of the craft from the object at the time the object is broad on the beam., neglecting current.
Bowditch. , n. Popular title for Pub. No. 9, The American Practical Navigator.
bow wave. . 1. The wave set up by the bow of a vessel moving through the water. Also called WAVE OF DISPLACEMENT. 2. A shock wave in front of a body such as an airfoil.
boxing the compass. . Stating in order the names of the points (and sometimes the half and quarter points) of the compass.
brackish. , adj. Containing salt to a moderate degree, such as sea water which has been diluted by fresh water, such as near the mouth of a river. The salinity values of brackish water range from approximately 0.50 to 17.00 parts per thousand.
branch. , n. 1. A creek or brook, as used locally in the southern U.S. 2. One of the bifurcations of a stream.
brash ice. . Accumulations of floating ice made up of fragments not more than 2 meters across, the wreckage of other forms of ice.
brave west winds. . The strong, often stormy, winds from the west-northwest and northwest which blow at all seasons of the year between latitudes $40^{\circ} \mathrm{S}$ and $60^{\circ} \mathrm{S}$. See also ROARING FORTIES.
Brazil Current. . The ocean current flowing southwestward along the Brazilian coast. Its origin is in the westward flowing Atlantic South Equatorial Current, part of which turns south-and flows along the South American coast as the Brazil Current. The mean speed of the current along its entire length is about 0.6 knot. Off Uruguay at about $35^{\circ} \mathrm{S}$, it meets the Falkland Current, the two turning eastward to join the South Atlantic Current.
break-circuit chronometer. . A chronometer equipped with an electrical contact assembly and program wheel which automatically makes or breaks an electric circuit at precise intervals, the sequence and duration of circuit-open circuit closed conditions being recorded on a chronograph. The program sequence is controlled by the design of the program wheel installed. Various programs of make or break sequence, up to 60 seconds, are possible. In some chronometers the breaks occur every other second, on the even seconds, and a break occurs also on the 59th second to identify the beginning of the minute; in other chronometers, breaks occur every second except at the beginning of the minute. By recording the occurrence of events (such as star transits) on a chronograph sheet along with the chronometer breaks, the chronometer times of those occurrences are obtained.
breaker., n. A wave which breaks, either because it becomes unstable, usually when it reaches shallow water, or because it dashes against an obstacle. Instability is caused by an increase in wave height and a decrease in the speed of the trough of the wave in shallow water. The momentum of the crest, often aided by the wind, causes the upper part of the wave to move forward faster than the lower part. The crest of a wave which becomes unstable in deep water and topples over or "breaks" is called a WHITECAP.
breakwater. , n. A line of rocks, concrete, pilings, or other material which breaks the force of the sea at a particular place, forming a protected area. Often an artificial embankment built to protect the entrance to a harbor or to form an artificial harbor. See also JETTY.
breasting float. . See CAMEL.
breeze. , n. 1. Wind of force 2 to 6 (4-31 miles per hour or 4-27 knots) on the Beaufort wind scale. Wind of force 2 (4-7 miles per hour or 4-6 knots) is classified as a light breeze; wind of force 3 (8-12 miles per hour or 7-10 knots), a gentle breeze; wind of force 4 (13-18 miles per hour or 11-16 knots), a moderate breeze; wind, of force 5 (1924 miles per hour or 17-21 knots), a fresh breeze; and wind of force 6 (25-31 miles per hour or 22-27 knots), a strong breeze. See also LIGHT AIR. 2. Any light wind.
bridge. , n. 1. An elevated structure extending across or over the weather deck of a vessel, or part of such a structure. The term is sometimes modified to indicate the intended use, such as navigating bridge or signal bridge. 2. A structure erected over a depression or an obstacle such as a body of water, railroad, etc. to provide a roadway for vehicles or pedestrians. See also CAUSEWAY, VIADUCT.
bridge resource management. The study of the resources available to the navigator and the exploitation of them in order to achieve the goal of safe and efficient voyages.
Briggsian logarithm. . See COMMON LOGARITHM.
bright display. . A radar display capable of being used under relatively high ambient light levels.
brisa, briza., n. 1. A northeast wind which blows on the coast of South America or an east wind which blows on Puerto Rico during the trade wind season. 2. The northeast monsoon in the Philippines.
brisote., n. The northeast trade wind when it is blowing stronger than usual on Cuba.
Broadcast Notice to Mariners. . Notices to mariners disseminated by radio broadcast, generally of immediate interest to navigators.
broad on the beam. . Bearing 090° relative (broad on the starboard beam) or 270° relative (broad on the port beam). If the bearings are approximate, the expression ON THE BEAM or ABEAM should be used.
broad on the bow. . Bearing 045° relative (broad on the starboard bow) or 315° relative (broad on the port bow). If the bearings are approximate, the expression ON THE BOW should be used.
broad on the quarter. . Bearing 135° relative (broad on the starboard quarter) or 225° relative (broad on the port quarter). If the bearings are approximate, the expression ON THE QUARTER should be used.
broadside on. . Beam on, such as to the wind or sea.
broad tuning. . Low selectivity, usually resulting in simultaneous reception of signals of different frequencies (spill-over). The opposite is SHARP TUNING.
Broken bow. . See ANTICORONA.
broken water. . An area of small waves and eddies occurring in what otherwise is a calm sea.
brook., n. A very small natural stream; a rivulet. Also called RUN, RUNNEL. See also CREEK, definition 2.
brubu. , n. A name for a squall in the East Indies.

B-trace. . The second trace of an oscilloscope having more than one displayed.
bubble acceleration error. . The error of a bubble sextant observation caused by displacement of the bubble by acceleration or deceleration resulting from motion of a craft. Also called ACCELERATION ERROR.
bubble horizon. . An artificial horizon parallel to the celestial horizon, established by means of a bubble level.
bubble sextant. . A sextant with a bubble or spirit level to indicate the horizontal.
bucket temperature. . Temperature of surface sea water trapped and measured in a bucket or similar receptacle.
buffer. . In computers, a temporary storage area used when incoming data cannot be processed as fast as it is transmitted.
building. , n. A label on a nautical chart which is used when the entire structure is the landmark, rather than an individual feature of it. Also labeled HOUSE.
bull's eye squall. . A squall forming in fair weather, characteristic of the ocean off the coast of South Africa. It is named for the peculiar appearance of the small isolated cloud marking the top of the invisible vortex of the storm.
bull the buoy. . To bump into a buoy.
bummock. , n. A downward projection from the underside of an ice field; the counterpart of a HUMMOCK.
bund., n. An embankment or embanked thoroughfare along a body of water. The term is used particularly for such structures in the Far East.
buoy. , n. An unmanned floating device moored or anchored to the bottom as an aid to navigation. Buoys may be classified according to shape, as spar, cylindrical or can, conical, nun, spherical, barrel, or pillar buoy. They may also be classified according to the color scheme as a red, green, striped, banded, or checkered buoy. A buoy fitted with a characteristic shape at the top to aid in its identification is called a topmark buoy. A sound buoy is one equipped with a characteristic sound signal, and may be further classified according to the manner in which the sound is produced, as a bell, gong, horn, trumpet, or whistle buoy. A lighted buoy is one with a light having definite characteristics for detection and identification during darkness. A buoy equipped with a marker radiobeacon is called a radiobeacon buoy. A buoy with equipment for automatically transmitting a radio signal when triggered by an underwater sound signal is called a sonobuoy. A combination buoy has more than one means of conveying information; it may be called a lighted sound buoy if it is a lighted buoy provided with a sound signal. Buoys may be classified according to location, as channel mid channel, middle ground, turning, fairway junction, junction, or sea buoy. A bar buoy marks the location of a bar. A buoy marking a hazard to navigation may be classified according to the nature of the hazard, such as obstruction, wreck, telegraph, cable, fish net, dredging, or spoil ground buoys. Buoys used for particular purposes may be classified according to their use, as anchor, anchorage, quarantine, mooring, marker, station, watch, or position buoy. A light-weight buoy especially designed to withstand strong currents is called a river buoy. An ice buoy is a sturdy one used to replace a more easily damaged buoy during a period when heavy ice is anticipated.
buoyage. , n. A system of buoys. One in which the buoys are assigned shape, color, and number distinction in accordance with location relative to the nearest obstruction is called a cardinal system. One in which buoys are assigned shape, color, and number distinction as a means of indicating navigable waters is called a lateral system. See also IALA MARITIME BUOYAGE SYSTEM.
buoy station. . The established (charted) location of a buoy.
buoy tender. . A vessel designed for, and engaged in, servicing aids to navigation, particularly buoys.
butte. , n. An isolated flat-topped hill, similar to but smaller than a MESA.
Buys Ballot's law. . A rule useful in locating the center of cyclones and anticyclones. It states that, facing away from the wind in the northern hemisphere, the low pressure lies to the left. Facing away from the wind in the southern hemisphere, it is to the right; named after Dutch meteorologist C. H. D. Buys Ballot, who published it in 1857.
byte. . Basic unit of measurement of computer memory. A byte usually consists of 8 BITS; each ASCII character is represented by 1 byte.
by the head. . See DOWN BY THE HEAD.
by the stern. . See DOWN BY THE STERN.

C/A code. , n. The coarse acquisition, or "civilian code," modulated on the GPS L1 signal.
cable. , n. 1. A unit of distance equal to one-tenth of a sea mile. Sometimes called CABLE LENGTH. 2. A chain or very strong fiber or wire rope used to anchor or moor vessels or buoys. 3. A stranded conductor or an assembly of two or more electric conductors insulated from each other, but laid up together with a strong, waterproof covering. A coaxial cable consists of two concentric conductors insulated from each other.
cable buoy. . 1. A buoy used to mark one end of a cable being worked by a cable ship. 2. A floating support of a submarine cable.
cable length. . See CABLE, definition 1.
cage. , n. The upper part of the buoy built on top of the body of the buoy and used as a daymark or part thereof, usually to support a light, topmark and/or radar reflector. Also called SUPERSTRUCTURE.
cage. , v., t. To erect a gyro or lock it in place by means of a caging mechanism.
caging mechanism. . A device for erecting a gyroscope or locking it in position.
cairn. , n. A mound of rough stones or concrete, particularly one intended to serve as a landmark or message location. The stones are customarily piled in a pyramidal or beehive shape.
caisson. , n. A watertight gate for a lock, basin, etc.
calcareous. , adj. Containing or composed of calcium or one of its compounds.
calculated altitude. . See under COMPUTED ALTITUDE.
calculator. . A device for mathematical computations; originally mechanical, modern ones are exclusively electronic, and able to run simple programs. A navigational calculator contains ephemeral data and algorithms for the solution of navigation problems. Compare with computers, which can be used for many other applications and run complex programs.
caldera. , n. A volcanic crater.
calendar. , n. A graphic or printed record of time, usually of days, weeks, months, etc., used to refer to future events. The Gregorian calendar is in common use today. See also JULIAN DAY.
calendar day. . The period from midnight to midnight. The calendar day is 24 hours of mean solar time in length and coincides with the civil day unless a time change occurs during a day.
calendar line. . British terminology. See DATE LINE.
calendar month. . The month of the calendar, varying from 28 to 31 days in length.
calendar year. . The year of the calendar. Common years have 365 days and leap years 366 days. Each year exactly divisible by 4 is a leap year, except century years (1800,1900 , etc.), which must be exactly divisible by 400 (2000,2400 , etc.) to be leap years. The calendar year is based on the tropical year. Also called CIVIL YEAR.
calibrate., n. To determine or rectify the scale graduations of an instrument.
calibration card. . See under CALIBRATION TABLE.
calibration correction. The value to be added to or subtracted from the reading of an instrument to obtain the correct reading.
calibration error. . The error in an instrument due to imperfection of calibration or maladjustment of its parts. Also called SCALE ERROR.
calibration radiobeacon. . A special radiobeacon operated primarily for calibrating shipboard radio direction finders. These radiobeacons transmit either continuously during scheduled hours or upon request.
calibration table. . A list of calibration corrections or calibrated values. A card having such a table on it is called a CALIBRATION CARD.
California Current. . A North Pacific Ocean current flowing southeastward along the west coast of North America from a point west of Vancouver Island to the west of Baja (Lower) California where it gradually widens and curves southward and southwestward, to continue as the westerly flowing PACIFIC NORTH EQUATORIAL CURRENT. The California Current is the southern branch of
the Aleutian Current, augmented by the North Pacific Current, and forms the eastern part of the general clockwise oceanic circulation of the North Pacific Ocean. Although usually described as a permanent ocean current, the California Current is actually a poorly defined and variable flow easily influenced by the winds. See also MEXICO CURRENT.
California Norther. . See NORTHER.
Callipic cycle. . A period of four Meteoric cycles equal to 76 Julian years of 27759 days. Devised by Callipus, a Greek astronomer, about 350 B.C., as a suggested improvement on the Meteoric cycle for a period in which new and full moon would recur on the same day of the year. Taking the length of the synodical month as 29.530588 days, there are 940 lunations in the Callipic cycle with about 0.25 day remaining.
calm. , adj. In a state of calm; without motion.
calm. , n. 1. Absence of appreciable wind; specifically, force 0 (less than 1 knot or 1 mile per hour) on the Beaufort wind scale. 2. The state of the sea when there are no waves.
calm belt. . 1. The doldrum sides of the trade winds, called calms of Cancer and calms of Capricorn, respectively.
calving. , n. The breaking away of a mass of ice from an ice wall, ice front, or iceberg.
camanchaca. , n. See GARUA.
camel. , n. A float used as a fender. Also called BREASTING FLOAT.
canal., n. 1. An artificial waterway for navigation. 2. A long, fairly straight natural channel with steep sloping sides. 3. Any watercourse or channel. 4. A sluggish coastal stream, as used locally on the Atlantic coast of the U.S.
Canary Current. . The southern branch of the North Atlantic Current (which divides on the eastern side of the ocean); it moves south past Spain and southwestward along the Northwest coast of Africa and past the Canary islands. In the vicinity of the Cape Verde Islands, it divides into two branches, the western branch augmenting the Atlantic North Equatorial Current and the Eastern branch curving southward and continuing as the GUINEA CURRENT. The Canary Current forms the southeastern part of the general clockwise oceanic circulation of the North Atlantic Ocean. Also called the Canaries Current.
can buoy. . An unlighted buoy of which the upper part of the body (above the waterline), or the larger part of the superstructure has the shape of a cylinder or nearly so. Also called CYLINDRICAL BUOY.
candela., n. The base unit of luminous intensity in the International System of Units (SI). It is the luminous intensity, in the perpendicular direction, of a surface of $1 / 600,000$ square meter of a blackbody at the temperature of freezing platinum, under a pressure of 101,325 newtons per square meter. The definition was adopted by the Thirteenth General Conference on Weights and Measures (1967).
candela per square meter. . The derived unit of luminance in the International System of Units.
candlepower. , n. Luminous intensity expressed in candelas.
canyon. , n. On the sea floor, a relatively narrow, deep depression with steep sides, the bottom of which generally has a continuous slope.
cap cloud. . 1. A cloud resting on the top of an isolated mountain peak. The cloud appears stationary, but actually is being continually formed to windward and dissipated to leeward. A similar cloud over a mountain ridge is called a CREST CLOUD. See also BANNER CLOUD. 2. False cirrus over a towering cumulus, in the form of a cap or hood. See also SCARF CLOUD.
cape. , n. A relatively extensive land area jutting seaward from a continent, or large island, which prominently marks a change in or interrupts notably the coastal trend.
Cape Breton Current. . Originating in the Gulf of St. Lawrence, the Cape Brenton Current flows southeastward in the southwestern half of Cabot Strait, and merges with the Labrador Current Extension. It may be augmented by a branch of the constant but tide influenced Gaspe' Current to the northwest.
cape doctor. . The strong southeast wind which blows on the South African coast. Also called DOCTOR.

Cape Horn Current. . An ocean current that flows continuously eastward close to the tip of South America. It enters Drake Passage, at about longitude $70^{\circ} \mathrm{W}$, in a 150 -mile-wide band, with observed surface speeds to 2.4 knots. The current veers north-northeastward; when it crosses longitude $65^{\circ} \mathrm{W}$, the current has narrowed to a width of about 85 miles, and its speed has decreased considerably. The current continues as the FALKLAND CURRENT.
card. . An element of a computer consisting of the hard surface on which components are mounted. A completed card performs one or more specific functions, such as graphics.
cardinal heading. . A heading in the direction of any of the cardinal points of the compass. See also INTERCARDINAL HEADING.
cardinal mark. . An IALA aid to navigation intended to show the location of a danger to navigation based on its position relative to the danger. Its distinguishing features are black double-cone topmarks and black and yellow horizontal bands.
cardinal point. . Any of the four principal directions; north, east, south, or west. Directions midway between cardinal points are called INTERCARDINAL POINTS.
cardinal system. . A system of aids to navigation in which the shape, color, and number distinction are assigned in accordance with location relative to the nearest obstruction. The cardinal points delineate the sectors for aid location. The cardinal system is particularly applicable to a region having numerous small islands and isolated dangers. In the LATERAL SYSTEM, used in United States waters, the aids are assigned shape, color, and number distinction as a means of indicating navigable waters.
cardioid., n. The figure traced by a point on a circle which rolls around an equal fixed circle.
cargo transfer area. . See under CARGO TRANSSHIPMENT AREAS.
cargo transshipment area. . An area generally outside port limits that is specifically designated as suitable for the transshipment of oil or other materials from large ships to smaller ones. As the purpose of transshipment is usually to reduce the draft of the larger vessel to allow her to proceed to port, the operation is often known as lightening and the area may be called lightening area or cargo transfer area.

Caribbean Current. . An ocean current flowing westward through the Caribbean Sea to the Yucatan Channel. It is formed by the comingling of part of the waters of the Atlantic North Equatorial Current with those of the Guiana Current.
carrier. , n. 1. A radio wave having at least one characteristic which may be varied from a known reference value by modulation. 2 . The part of a modulated wave that corresponds in a specified manner to the unmodulated wave. 3 . In a frequency stabilized system, the sinusoidal component of a modulated wave; or the output of a transmitter when the modulating wave is made zero; or a wave generated at a point in the transmitting system and subsequently modulated by the signal; or a wave generated locally at the receiving terminal which, when combined with the sidebands in a suitable detector, produces the modulating wave. Also called CARRIER WAVE.
carrier frequency. . 1. The frequency of the unmodulated fundamental output of a radio transmitter. 2. In a periodic carrier, the reciprocal of its period. The frequency of a periodic pulse carrier often is called PULSE REPETITION FREQUENCY.
carrier power. . See under POWER (OF A RADIO TRANSMITTER). carrier wave. . See CARRIER.
cartesian coordinates. . Magnitudes defining a point relative to two intersecting lines, called AXES. The magnitudes indicate the distance from each axis, measured along a parallel to the other axis. If the axes are perpendicular, the coordinates are rectangular; if not perpendicular, they are oblique coordinates.
cartographer., n. One who designs and constructs charts or maps.
cartographic feature. . A natural or cultural object shown on a map or chart by a symbol or line. See also TOPOGRAPHY.
cartography., n. The art and science of making charts or maps.
cartometer. , n. A device consisting of a small wheel and a calibrated dial used to measure distances on a map by following the desired route.
cartouche. , n. A panel of a map, often with decoration, enclosing the title, scale, publishing information, and other notes.
cask buoy. . A buoy in the shape of a cask.

Cassegrainian telescope. . A reflecting telescope in which the incoming light is reflected from the primary mirror onto a secondary mirror and back through a small central aperture in the primary mirror. See also NEWTONIAN TELESCOPE
cast. , $n ., t$. 1. To turn a ship in her own length. 2. To turn a ship to a desired direction without gaining headway or sternway. 3. To take a sounding with the lead.
catamaran. , n.1. A double-hulled vessel. 2. A raft consisting of a rectangular frame attached to two parallel cylindrical floats and which may be used for working alongside a ship. See also CAMEL.
catenary., n. The curve formed by a uniform cable supported only at its ends. Navigators are concerned with the catenary of overhead cables which determines clearance underneath, and the catenary of the anchor rode, which in part determines holding power and swing circle.
cathode. , n. 1. The electrode through which a primary stream of electrons enters the interelectrode space. 2. The general term for a negative electrode. See also ANODE.
cathode ray. . A stream of electrons emitted from the cathode of any vacuum tube, but normally used in reference to special purpose tubes designed to provide a visual display.
cathode-ray tube (CRT). . A vacuum tube in which the instantaneous position of a sharply focused electron beam, deflected by means of electrostatic or electromagnetic fields, is indicated by a spot of light produced by impact of the electrons on a fluorescent screen at the end of the tube opposite the cathode. Used in radar displays.
catoptric light. . A light concentrated into a parallel beam by means of one or more reflectors. One so concentrated by means of refracting lens or prisms is a DIOPTRIC LIGHT.
cat's paw. . A puff of wind; a light breeze affecting a small area, as one that causes patches of ripples on the surface the water.
causeway. , n. A raised earthen road across wet ground or water. See also BRIDGE definition 2; VIADUCT.
cautionary characteristic. . Of a light, a unique characteristic which can be recognized as imparting a special cautionary significance e.g., a quick flashing characteristic phase indicating a sharp turn in a channel.
cautionary note. . Information calling special attention to some fact, usually a danger area, shown on a map or chart.
caver, kaver. , n. A gentle breeze in the Hebrides.
cavitation. . The formation of bubbles in a liquid which occurs when the static pressure becomes less than the fluid vapor pressure; it usually occurs from rotating propellers and is acoustically very noisy.
cay, kay. , n. A low, flat, tropical or sub-tropical island of sand and coral built up on a reef lying slightly above high water. Also called KEY.
C-band. . A radiofrequency band of 3,900 to 6,200 megahertz. This band overlaps the S - and X-bands. See also FREQUENCY
ceiling. , n. The height above the earth's surface of the lowest layer of generally solid clouds, not classified as thin or partial.
celestial. , adj. Of or pertaining to the heavens.
celestial body. . Any aggregation of matter in space constituting a unit for astronomical study, as the sun, moon, a planet, comet, star, nebula, etc. Also called HEAVENLY BODY.
celestial concave. . See CELESTIAL SPHERE
celestial coordinates. Any set of coordinates used to define a point on the celestial sphere. The horizon, celestial equator, and the ecliptic systems of celestial coordinates are based on the celestial horizon, celestial equator, and the ecliptic, respectively, as the primary great circle.
celestial equator. The primary great circle of the celestial sphere, everywhere 90° from the celestial poles; the intersection of the extended plane of the equator and the celestial sphere. Also called EQUINOCTIAL.
celestial equator system of coordinates. . A set of celestial coordinates based on the celestial equator as the primary great circle. Also called EQUINOCTIAL SYSTEM OF COORDINATES.
celestial fix. . A fix established by means of two or more celestial bodies. celestial globe. . See STAR GLOBE.
celestial horizon. . That circle of the celestial sphere formed by the intersection of the celestial sphere and a plane through the center of the earth and perpendicular to the zenith-nadir line. Also called RATIONAL HORIZON. See also HORIZON.
celestial latitude. . Angular distance north or south of the ecliptic; the arc of a circle of latitude between the ecliptic and a point on the celestial sphere, measured northward or southward from the ecliptic through 90°, and labeled N or S indicate the direction of measurement.
celestial line of position. A line of position determined by means of a celestial body.
celestial longitude. . Angular distance east of the vernal equinox, along the ecliptic; the arc of the ecliptic or the angle at the ecliptic pole between the circle of latitude of the vernal equinox at the circle of latitude of a point on the celestial sphere, measured eastward from the circle of latitude of the vernal equinox, through 360°.
celestial mechanics. . The study of the motions of celestial bodies under the influence of gravitational fields.
celestial meridian. . A great circle of the celestial sphere, through the celestial poles and the zenith. The expression usually refers to the upper branch, that half from pole to pole which passes through the zenith; the other half being called the lower branch. The celestial meridian coincides with the hour circle through the zenith and the vertical circle through the elevated pole.
celestial navigation. . Navigation by celestial bodies.
celestial observation. . Observation of celestial phenomena. The expression is applied in navigation principally to the measurement of the altitude of a celestial body, and sometimes to measurement of azimuth, or to both altitude azimuth. The expression may also be applied to the data obtained by such measurement. Also called SIGHT in navigation usage.
celestial parallel. . See PARALLEL OF DECLINATION.
celestial pole. . Either of the two points of intersection section of the celestial sphere and the extended axis of the earth, labeled N or S to indicate whether the north celestial pole or the south celestial pole.
celestial sphere. . An imaginary sphere of infinite radius concentric with the earth, on which all celestial bodies except the earth are imagined to be projected.
celestial triangle. . A spherical triangle on the celestial sphere, especially the navigational triangle.
Celsius temperature. . The designation given to the temperature measured on the International Practical Temperature Scale with the zero taken as 0.01° below the triple point of water. Normally called CENTIGRADE TEMPERATURE, but the Ninth General Conference of Weights and Measures, held in October 1948, adopted the name Celsius in preference to centigrade, to be consistent with naming other temperature scales after their inventors, and to avoid the use of different names in different countries. On the original Celsius scale, invented in 1742 by a Swedish astronomer named Andres Celsius, the numbering was the reverse of the modern scale, $0^{\circ} \mathrm{C}$ representing the boiling point of water, and $100^{\circ} \mathrm{C}$ its freezing point.
center frequency. . See ASSIGNED FREQUENCY.
centering control. . On a radar indicator, a control used to place the sweep origin at the center of the plan position indicator.
centering error. . Error in an instrument due to inaccurate pivoting of a moving part, as the index arm of a marine sextant. Also called ECCENTRIC ERROR.
center line. . 1. The locus of points equidistant from two reference points or lines. 2. (Usually centerline) The line separating the port and starboard sides of a vessel, center of buoyancy. The geometric center of the immersed portion of the hull and appendages of a floating vessel All buoyant forces may be resolved into one resultant force acting upwards at this point.
center of gravity. . The point in any body at which the force of gravity may be considered to be concentrated. Same as CENTER OF MASS in a uniform gravitational field.
center of mass. . The point at which all the given mass of a body or bodies may be regarded as being concentrated as far as motion is concerned. Commonly called CENTER OF GRAVITY.
centi-. . A prefix meaning one-hundredth.
centibar. , n. One-hundredth of a bar; 10 millibars.
centigrade temperature. . See under CELSIUS TEMPERATURE.
centimeter. , n. One-hundredth of a meter.
centimeter-gram-second system. . A system of units based on the centimeter as the unit of length, the gram as the unit of mass, and the mean solar second as the unit of time. Its units with special names include the erg, the dyne, the gauss, and the oersted. See also INTERNATIONAL SYSTEM OF UNITS.
centimetric wave. . A super high frequency radio wave, approximately 0.01 to 0.1 meter in length (3 to 30 gigaHertz). See also ULTRA SHORT WAVE.
central force. . A force which for purposes of computation can be considered to be concentrated at one central point with its intensity at any other point being a function of the distance from the central point. Gravitation is considered as a central force in celestial mechanics.
central force field. . The spatial distribution of the influence of a central force.
central force orbit. . The theoretical orbit achieved by a particle of negligible mass moving in the vicinity of a point mass with no other forces acting; an unperturbed orbit.
central processing unit (CPU). . The computer chip which is the brain of a computer, which runs PROGRAMS and processes DATA; also the container in which the CPU is located, along with many other associated devices such as the power supply, disk drives, etc., distinct from the MONITOR and other peripherals.
central standard time. . See STANDARD TIME.
centrifugal force. . The force acting on a body or part of a body moving under constraint along a curved path, tending to force it outward from the center of revolution or rotation. The opposite is CENTRIPETAL FORCE.
centripetal force. . The force directed toward the center of curvature, which constrains a body to move in a curved path. The opposite is CENTRIFUGAL FORCE.
chain. , n. A group of associated stations of a radionavigation system. A Loran C chain consists of a master station and two to four secondary stations.
chains. . The platform or station from which soundings are taken with a hand lead.
chain signature. . See under GROUP REPETITION INTERVAL.
chalk., n. Soft earthy sandstone of marine origin, composed chiefly of minute shells. It is white, gray, or buff in color. Part of the ocean bed and shores and composed of chalk, notably the "white cliffs of Dover," England.
challenge. , n. A signal transmitted by a interrogator.
challenge. , v. t. To cause an interrogator to transmit a signal which puts a transponder into operation.
challenger. , n. See INTERROGATOR.
chance error. . See RANDOM ERROR.
change of the moon. . The time of new moon. See also PHASES OF THE MOON.
change of tide. . A reversal of the direction of motion (rising or falling) of a tide. The expression is also sometimes applied somewhat loosely to a reversal in the set of a tidal current. Also called TURN OF THE TIDE.
channel. , n. 1. The part of a body of water deep enough for navigation through an area otherwise not suitable. It is usually marked by a single or double line of buoys and sometimes by ranges. 2 . The deepest part of a stream, bay, or strait, through which the main current flows. 3. A name given to certain large straits, such as the English Channel. 4. A hollow bed through which water may run. 5. A band of radio frequencies within which a radio station must maintain its modulated carrier frequency to prevent interference with stations on adjacent channels. Also called FREQUENCY CHANNEL.
channel buoy. . A buoy marking a channel.
channel light. . A light either on a fixed support or on a buoy, marking the limit of a navigable channel. In French, the term FEU DE RIVE is commonly used for a channel light on a fixed support.
characteristic., n. 1. The color and shape of a daymark or buoy or the color and period of a light used for identifying the aid. See also CHARACTERISTIC COLOR, CHARACTERISTIC PHASE. 2. The identifying signal transmitted by a radiobeacon. 3 . That part of a logarithm (base 10) to the left of the decimal point. That part of a logarithm (base 10) to the right of the decimal point is called the MANTISSA. 4. A quality, attribute, or distinguishing property of anything.
characteristic color. . The unique identifying color of a light.
characteristic frequency. . A frequency which can be easily identified and measured in a given emission.
characteristic phase. . Of a light, the sequence and length of light and dark periods by which a navigational light is identified, i.e., whether fixed, flashing, interrupted quick flashing, etc. See also CAUTIONARY CHARACTERISTIC.
characteristics of a light. . The sequence and length of light and dark periods and the color or colors by which a navigational light is identified.
character of the bottom. . See BOTTOM CHARACTERISTICS.
chart. , n. A map intended primarily for navigational use by aircraft or vessels.
chart amendment patch. . See CHARTLET, definition 2.
chart catalog. . A list or enumeration of navigational charts, sometimes with index charts indicating the extent of coverage of the various navigational charts.
chart classification by scale. . 1. Charts are constructed on many different scales, ranging from about $1: 2,500$ to $1: 14,000,000$ (and even smaller for some world charts). Small-scale charts are used for voyage planning and offshore navigation. Charts of larger scale are used as the vessel approaches land. Several methods of classifying charts according to scale are in use in various nations. The following classifications of nautical charts are those used by the National Ocean Survey: Sailing charts are the smallest scale charts used for planning, fixing position at sea, and for plotting while proceeding on a long voyage. The scale is generally smaller than 1:600,000. The shoreline and topography are generalized and only offshore soundings, the principal navigational lights, outer buoys, and landmarks visible at considerable distances are shown. General charts are intended for coastwise navigation outside of outlying reefs and shoals. The scales range from about $1: 150,000$ to $1: 600,000$. Coast (coastal) charts are intended for inshore coastwise navigation where the course may lie inside outlying reefs and shoals, for entering or leaving bays and harbors of considerable width, and for navigating large inland waterways. The scales range from about $1: 50,000$ to $1: 150,000$. Harbor charts are intended for navigation and anchorage in harbors and small waterways. The scale is generally larger than $1: 50,000.2$. The classification system used by the National Imagery and Mapping Agency differs from the system in definition 1 above in that the sailing charts are incorporated in the general charts classification (smaller than about $1: 150,000$); those coast charts especially useful for approaching more confined waters (bays, harbors) are classified as approach charts.
chart comparison unit. . An optical device used to superimpose the plan position indicator radar picture on a navigational chart.
chart convergence. . Convergence of the meridians as shown on a chart. chart datum. . See CHART SOUNDING DATUM.
chart desk. . A flat surface on which charts are spread out, usually with stowage space for charts and other navigating equipment below the plotting surface. One without stowage space is called a CHART TABLE.
charted depth. . The vertical distance from the chart sounding datum to the bottom.
charthouse. . A room, usually adjacent to or on the bridge, where charts and other navigational equipment are stored, and where navigational computations, plots, etc., may be made. Also called CHARTROOM.
chartlet. , n. 1. A corrected reproduction of a small area of a nautical chart which is pasted to the chart for which it is issued. These chartlets are disseminated in Notice to Mariners when the corrections are too numerous or of such detail as not to be feasible in printed form. Also called BLOCK, BLOCK CORRECTION, CHART AMENDMENT PATCH.
chart portfolio. . A systematic grouping of nautical charts covering a specific geographical area.
chart projection. . See MAP PROJECTION.
chart reading. . Interpretation of the symbols, lines, abbreviations, and terms appearing on charts. May be called MAP READING when applied to maps generally.
chartroom. , n. See CHARTHOUSE.
chart scale. . The ratio between a distance on a chart and the corresponding distance represented as a ratio such as $1: 80,000$ (natural scale), or 30 miles to an inch (numerical scale). May be called MAP SCALE when applied to any map. See also REPRESENTATIVE FRACTION.
chart sounding datum. . The tidal datum to which soundings and drying heights on a chart are referred. It is usually taken to correspond to a low water stage of the tide. Often shortened to CHART DATUM, especially when it is clear that reference is not being made to a geodetic datum.
chart symbol. . A character, letter, or similar graphic representation used on a chart to indicate some object, characteristic, etc. May be called MAP SYMBOL when applied to any map.
chart table. . A flat surface on which charts are spread out, particularly one without stowage space below the plotting surface. One provided with stowage space is usually called a CHART DESK.
Charybdis. , n. See GALOFARO.
chasm. , n. A deep breach in the earth's surface; an abyss; a gorge; a deep canyon.
check bearing. . An additional bearing, using a charted object other than those used to fix the position, observed and plotted in order to insure that the fix is not the result of a blunder.
cheese antenna. . An antenna consisting of a mirror in the shape of part of a parabolic cylinder bounded by two parallel plates normal to the cylinder axis, and of an antenna feed placed on or near the focal point.
Chile Current. . See under PERU CURRENT.
chimney., n. A label on a nautical chart which indicates a relatively small smokestack.
chip. , n. 1. An integrated circuit. 2. The length of time to transmit a " 0 " or " 1 " in a binary pulse code.
chip log. A historical speed measuring device consisting of a weighted wooden quadrant (quarter of a circle) attached to a bridle in such a manner that it will float in a vertical position, and a line with equally spaced knots, usually each 47 feet 3 inches apart. Speed is measured by casting the quadrant overboard and counting the number of knots paid out in a unit of time, usually 28 seconds.
chip rate., n. The number of chips per second. See CHIP.
chopped response. . See CHOPPING.
chopping. , n. The rapid and regular on and off switching of a transponder, for recognition purposes.
choppy. , adj. description of short, breaking waves.
chord. , n. A straight line connecting two points on a curve.
chromatic aberration. . See under ABERRATION, definition 2.
chromosphere., n. A thin layer of relatively transparent gases above the photosphere of the sun.
chromospheric eruption. . See SOLAR FLARE.
chronograph. , n. An instrument for producing a graphical record of time as shown by a clock or other device. The chronograph produces a double record: the first is made by the associated clock and forms a continuous time scale with significant marks indicating periodic beats of the time keepers; the second is made by some external agency, human or mechanical, and records the occurrence of an event or a series of events. The time interval of such occurrences are read on the time scale made by the clock. See also BREAKCIRCUIT CHRONOMETER.
chronogram. , n. The record of a chronograph.
chronometer., n. A timepiece with a nearly constant rate. It is customarily used for comparison of watches and clocks to determine their errors. A chronometer is usually set approximately to Greenwich mean time and not reset as the craft changes time zones. A hack chronometer is one which has failed to meet the exacting requirements of a standard chronometer, and is used for timing observations of celestial bodies. Hack chronometers are seldom used in modern practice, any chronometer failing to meet the requirements being rejected. See also CHRONOMETER WATCH.
chronometer correction. . The amount that must be added algebraically to the chronometer time to obtain the correct time. Chronometer correction is numerically equal to the chronometer error, but of opposite sign.
chronometer error. . The amount by which chronometer time differs from the correct time to which it was set, usually Greenwich mean time. It is usually expressed to an accuracy of 1s and labeled fast (F) or slow (S) as the chronometer time is later or earlier, respectively, than the correct time. CHRONOMETER ERROR and CHRONOMETER CORRECTION are numerically the same, but of opposite sign. See also WATCH ERROR.
chronometer rate. . The amount gained or lost by a chronometer in a unit of time. It is usually expressed in seconds per 24 hours, to an accuracy of 0.1 s , and labeled gaining or losing, as appropriate, when it is sometimes called DAILY RATE.
chronometer time. The hour of the day as indicated by a chronometer. Shipboard chronometers are generally set to Greenwich mean time. Unless the chronometer has a 24 -hour dial, chronometer time is usually expressed on a 12 -hour cycle and labeled AM or PM.
chronometer watch. . A small chronometer, especially one with an enlarged watch-type movement.
chubasco., n. A very violent wind and rain squall attended by thunder and vivid lightning often encountered during the rainy season along the west coast of Central America.
churada. , n. A severe rain squall in the Mariana Islands during the northeast monsoon. They occur from November to April or May, especially from January through March.
cierzo. , n. See MISTRAL.
cinders. , n., pl. See SCORIAE.
circle. , n. 1. A plane closed curve all points of which are equidistant from a point within, called the center. A great circle is the intersection of a sphere and a plane through its center; it is the largest circle that can be drawn on a sphere. A small circle is the intersection of a sphere and a plane which does not pass through its center. See also PARALLEL OF ALTITUDE, PARALLEL OF DECLINATION, PARALLEL OF LATITUDE; AZIMUTH CIRCLE, BEARING CIRCLE, DIURNAL CIRCLE, EQUATOR, HOUR CIRCLE, PARASELENIC CIRCLES, POSITION CIRCLE, SPEED CIRCLE, VERTICAL CIRCLE. 2. A section of a plane, bounded by a curve all points of which are equidistant from a point within, called the center.
circle of declination. . See HOUR CIRCLE.
circle of equal altitude. . A circle on the surface of the earth, on every point of which the altitude of a given celestial body is the same at a given instant. The center of this circle is the geographical position of the body, and the great circle distance from this pole to the circle is the zenith distance of the body. See PARALLEL OF ALTITUDE.
circle of equal declination. . See PARALLEL OF DECLINATION.
circle of equivalent probability. . A circle with the same center as an error ellipse of specified probability and of such radius that the probability of being located within the circle is the same as the probability of being located within the ellipse. See also CIRCULAR ERROR PROBABLE.
circle of latitude. . A great circle of the celestial sphere through the ecliptic poles and along which celestial latitude is measured.
circle of longitude. . See PARALLEL OF LATITUDE, definition 2.
circle of perpetual apparition. . The circle of the celestial sphere, centered on the polar axis and having a polar distance from the elevated pole approximately equal to the latitude of the observer, within which celestial bodies do not set. The circle within which bodies do not rise is called the CIRCLE OF PERPETUAL OCCULTATION.
circle of perpetual occultation. . The circle of the celestial sphere, centered on the polar axis and having a polar distance from the depressed pole approximately equal to the latitude of the observer, within which celestial bodies do not rise. The circle within which bodies do not set Is called the CIRCLE OF PERPETUAL APPARITION.
circle of position. . A circular line of position. The expression is most frequently used with reference to the circle of equal altitude surrounding the geographical position of a celestial body. Also called POSITION CIRCLE.
circle of right ascension. . See HOUR CIRCLE.
circle of uncertainty. . A circle having as its center a given position and as its radius the maximum likely error of the position-a circle within which a vessel is considered to be located. See also CIRCLE OF EQUAL PROBABILITY, CIRCLE OF POSITION, POSITION CIRCLE.
circle of visibility. . The circle surrounding an aid to navigation in which the aid is visible. See also VISUAL RANGE (OF A LIGHT).
circle sheet. . A chart with curves enabling a graphical solution of the three-point problem rather than using a three-arm protractor. Also called SEXTANT CHART, STANDARD CIRCLE SHEET.
circuit. , n. 1. An electrical path between two or more points. 2. Conductors connected together for the purpose of carrying an electric current. 3. A connected assemblage of electrical components, such as resistors, capacitors, and inductors.
circular error probable. . 1. In a circular normal distribution (the magnitudes of the two one-dimensional input errors are equal and the angle of cut is 90°), the radius of the circle containing 50 percent of the individual measurements being made, or the radius of the circle inside of which there is a 50 percent probability of being located. 2 . The radius of a circle inside of which there is a 50 percent probability of being located even though the actual error figure is an ellipse. That is, it is the radius of a circle of equivalent probability when the probability is specified as 50 percent. See also ERROR ELLIPSE, CIRCLE OF EQUIVALENT PROBABILITY. Also called CIRCULAR PROBABLE ERROR.
circular fix. . The designation of any one of the erroneous fix positions obtained with a revolver or swinger.
circularly polarized wave. . An electromagnetic wave which can be resolved into two plane polarized waves which are perpendicular to each other and which propagate in the same direction. The amplitudes of the two waves are equal and in time-phase quadrature. The tip of the component of the electric field vector in the plane normal to the direction of propagation describes a circle. See also ELLIPTICALLY POLARIZED WAVE.
circular normal distribution. . A two-dimensional error distribution defined by two equal single axis normal distributions, the axes being perpendicular. The error figure is a circle.
circular probable error. . See CIRCULAR ERROR PROBABLE.
circular radiobeacon. . See under RADIOBEACON.
circular velocity. . The magnitude of the velocity required of a body at a given point in a gravitational field which will result in the body following a circular orbital path about the center of the field. With respect to circular velocities characteristic of the major bodies of the solar system, this is defined for a circular orbit at the surface of the body in question. Circular velocity equals escape velocity divided by the square root of 2 .
circumference., n. 1. The boundary line of a circle or other closed plane curve or the outer limits of a sphere or other round body. 2. The length of the boundary line of a circle or closed plane curve or of the outer limits of a sphere or other rounded body. The circumference of a sphere is the circumference of any great circle on the sphere.
circumlunar. , adj. Around the moon, generally applied to trajectories. circummeridian altitude. . See EX-MERIDIAN ALTITUDE.
circumpolar., adj. Revolving about the elevated pole without setting. A celestial body is circumpolar when its polar distance is approximately equal to or less than the latitude of the observer. The actual limit is extended somewhat by the combined effect of refraction, semidiameter parallax, and the height of the observer's eye above the horizon.
circumscribed halo. . A halo formed by the junction of the upper and lower tangent arcs of the halo of 22°.
circumzenithal arc. . A brilliant rainbow-colored arc of about a quarter of a circle with its center at the zenith and about 46° above the sun. It is produced by refraction and dispersion of the sun's light striking the top of prismatic ice crystals in the atmosphere. It usually lasts for only a few minutes. See also HALO.
cirriform., adj. Like cirrus; more generally, descriptive of clouds composed of small particles, mostly ice crystals, which are fairly widely dispersed, usually resulting in relative transparency and whiteness, and often producing halo phenomena not observed with other cloud forms. Irisation may also be observed. Cirriform clouds are high clouds. As a result, when near the horizon, their reflected light traverses a sufficient thickness of air to cause them often to take on a yellow or orange tint even during the midday period. On the other hand, cirriform clouds near the zenith always appear whiter than any other clouds in that part of the sky. With the sun on the horizon, this type of cloud is whitish, while other clouds may be tinted with yellow or orange; when the sun sets a little below the horizon, cirriform clouds become yellow, then pink or red- and when the sun is well below the horizon, they are gray. All species and varieties of cirrus, cirrocumulus, and cirrostratus clouds are cirriform in nature. See also CUMULIFORM, STRATIFORM.
cirro-. . A prefix used in cloud classification to indicate the highest of three levels generally recognized. See also ALTO-.
cirrocumulus., n. A principal cloud type (cloud genus), appearing as a thin, white patch of cloud without shadows, composed of very small elements in the form of grains, ripples, etc. The elements may be merged or separate, and more or less regularly arranged; they subtend an angle of less than 1° when observed at an angle of more than 30° above the horizon. Holes or rifts often occur in a sheet of cirrocumulus. Cirrocumulus may be composed of highly super cooled water droplets, as well as small ice crystals, or a mixture of both; usually, the droplets are rapidly replaced by ice crystals. Sometimes corona or irisation may be observed. Mamma may appear. Small virga may fall, particularly from cirrocumulus castellanus and floccus. Cirrocumulus, as well as altocumulus, often forms in a layer of cirrus and/or cirrostratus. In middle and high latitudes, cirrocumulus is usually associated in space and time with cirrus and/or cirrostratus; this association occurs less often in low latitudes. Cirrocumulus differs from these other cirriform clouds in that it is not on the whole fibrous, or both silky and smooth; rather, it is rippled and subdivided into little cloudlets. Cirrocumulus is most often confused with altocumulus. It differs primarily in that its constituent elements are very small and are without shadows. The term cirrocumulus is not used for incompletely developed small elements such as those on the margin of a sheet of altocumulus, or in separate patches at that level. See also CIRRIFORM, CLOUD CLASSIFICATION.
cirrostratus., n. A principal cloud type (cloud genus), appearing as a whitish veil, usually fibrous but sometimes smooth, which may totally cover the sky, and which often produces halo phenomena, either partial or complete. Sometimes a banded aspect may appear, but the intervals between the bands are filled with thinner cloud veil. The edge of a veil of cirrostratus may be straight and clear-cut, but more often it is irregular and fringed with cirrus. Some of the ice crystals which comprise the cloud are large enough to fall, and thereby produce a fibrous aspect. Cirrostratus occasionally may be so thin and transparent as to render it nearly indiscernible, especially through haze or at night. At such times, the existence of a halo may be the only revealing feature. The angle of incidence of illumination upon a cirrostratus layer is an important consideration in evaluating the identifying characteristics. When the sun is high (generally above 50° altitude), cirrostratus never prevents the casting of shadows by terrestrial objects, and a halo might be completely circular. At progressively lower altitudes of the sun, halos become fragmentary and light intensity noticeably decreases. Cirrostratus may be produced by the merging of elements of cirrus; from cirrocumulus; from the thinning of altostratus; or from the anvil of cumulonimbus. Since cirrostratus and altostratus form from each other, it frequently is difficult to delineate between the two. In general, altostratus does not cause halo phenomena, is thicker than cirrostratus, appears to move more rapidly, and has a more even optical thickness. When near the horizon, cirrostratus may be impossible to distinguish from cirrus. See also CIRRIFORM, CLOUD CLASSIFICATION.
cirrus. , n. A principal cloud type (cloud genus) composed of detached cirriform elements in the form of delicate filaments or white (or mostly white) patches, or of narrow bands. These clouds have a fibrous aspect and/or a silky sheen. Many of the ice crystal particles of cirrus are sufficiently large to acquire an appreciable speed of fall; therefore, the cloud elements have a considerable vertical extent. Wind shear and variations in particle size usually cause these fibrous trails to be slanted or irregularly curved. For this reason, cirrus does not usually tend, as do other clouds, to appear horizontal when near the horizon. Because cirrus elements are too narrow, they do not produce a complete circular halo. Cirrus often evolves from virga of cirrocumulus or altocumulus, or from the upper part of cumulonimbus. Cirrus may also result from the transformation of cirrostratus of uneven optical thickness, the thinner parts of which dissipate. It may be difficult at times to distinguish cirrus from cirrostratus (often impossible when near the horizon); cirrostratus has a much more continuous structure, and if subdivided, its bands are wider. Thick cirrus (usually cirrus spissatus) is differentiated from patches of altostratus by its lesser extension and white color. The term cirrus is frequently used for all types of cirriform clouds. See also CIRRIFORM, CLOUD CLASSIFICATION.
cirrus spissatus. . See FALSE CIRRUS.
cislunar. , adj. Of or pertaining to phenomena, projects, or activity in the space between the earth and moon, or between the earth and the moon's orbit.
civil day. . A mean solar day beginning at midnight. See also CALENDAR DAY
civil noon. . United States terminology from 1925 through 1952. See MEAN NOON.
civil time. . United States terminology from 1925 through 1952. See MEAN TIME.
civil twilight. . The period of incomplete darkness when the upper limb of the sun is below the visible horizon, and the center of the sun is not more than 6° below the celestial horizon.
civil year. . A year of the Gregorian calendar of 365 days in common years, or 366 days in leap years.
clamp screw. . A screw for holding a moving part in place, as during an observation or reading, particularly such a device used in connection with the tangent screw of a marine sextant.
clamp screw sextant. . A marine sextant having a clamp screw for controlling the position of the tangent screw.
clapper. , n. A heavy pendulum suspended inside a bell which sounds the bell by striking it.
Clarke ellipsoid of 1866. . The reference ellipsoid adopted by the U.S. Coast and Geodetic Survey in 1880 for charting North America. This ellipsoid is not to be confused with the Clarke ellipsoid of 1880, which was the estimate of the size and shape of the earth at that time by the English geodesist A. R. Clarke. For the Clarke ellipsoid of 1866 , the semimajor axis is $6,378,206.4$ meters, the semiminor axis is $6,356,583.8$ meters, and the flattening or ellipticity is 1/294.98. Also called CLARKE SPHEROID OF 1866.
Clarke ellipsoid of 1880. . The reference ellipsoid of which the semimajor axis is $6,378,249.145$ meters, the semiminor axis is $6,356,514.870$ meters and the flattening or ellipticity is $1 / 293.65$. This ellipsoid should not be confused with the CLARKE ELLIPSOID OF 1866. Also called CLARKE SPHEROID OF 1880.
Clarke spheroid of 1866. . See CLARKE ELLIPSOID OF 1866.
Clarke spheroid of 1880. . See CLARKE ELLIPSOID OF 1880.
classification of radar echoes. . When observing a radarscope having a stabilized relative motion display, the echoes (targets) may be classified as follows as an aid in rapid predictions of effects of evasive action on the compass direction of relative movement: an up-thescope echo is an echo whose direction of relative movement differs by less than 90° from own ship's heading; a down-the-scope echo is an echo whose direction of relative movement differs by more than 90° from own ship's heading; an across-the scope (limbo) echo is an echo whose direction of relative movement differs by 90° from own ship's heading, i.e., the echo's tail is perpendicular to own ship's heading flasher.
clay. , n. See under MUD.
clean. , adj. Free from obstructions, unevenness, imperfections, as a clean anchorage.
clear. , v., t. To leave port or pass safely by an obstruction.
clearance., n. The clear space between two objects, such as the nearest approach of a vessel to a navigational light, hazard to navigation, or other vessel.
clear berth. . A berth in which a vessel may swing at anchor without striking or fouling another vessel or an obstruction. See also FOUL BERTH.
cliff. , n. Land arising abruptly for a considerable distance above water or surrounding land. See also BLUFF.
climate. , n. The prevalent or characteristic meteorological conditions of a place or region, in contrast with weather, the state of the atmosphere at any time. A marine climate is characteristic of coastal areas, islands, and the oceans, the distinctive features being small annual and daily temperature range and high relative humidity, in contrast with continental climate, which is characteristic of the interior of a large land mass, and the distinctive features of which are large annual and daily temperature range and dry air with few clouds.
climatology., n. 1. The study of climate. 2. An account of the climate of a particular place or region.
clinometer., n. An instrument for indicating the degree of the angle of heel, roll, or pitch of a vessel; may be of the pivot arm or bubble type, usually indicating in whole degrees.
clock., n. A timepiece not meant to be carried on the person. See also CHRONOMETER.
clock speed. . The speed with which a computer performs operations, commonly measured in mega- or gigaHertz.
clockwise. , $a d v$. In the direction of rotation of the hands of a clock.
close. , $v ., i$. To move or appear to move together. An order is sometimes given by a flagship for a vessel to close to yards, or miles. When a craft moves onto a range, the objects forming the range appear to move closer together or close. The opposite is OPEN.
close aboard. . Very near.
closed. , adj. Said of a manned aid to navigation that has been temporarily discontinued for the winter season. See also COMMISSIONED, WITHDRAWN.
closed sea. . 1. A part of the ocean enclosed by headlands, within narrow straits, etc. 2. A part of the ocean within the territorial jurisdiction of a country. The opposite is OPEN SEA. See also HIGH SEAS, INLAND SEA.
close pack ice. . Pack ice in which the concentration is $7 / 10$ to $8 / 10$, composed of floes mostly in contact.
closest approach. . 1. The event that occurs when two planets or other bodies are nearest to each other as they orbit about the primary body. 2. The place or time of the event in definition 1.3. The time or place where an orbiting earth satellite is closest to the observer. Also called CLOSEST POINT OF APPROACH.
cloud. , n. 1. A hydrometeor consisting of a visible aggregate of minute water and/or ice particles in the atmosphere above the earth's surface. Cloud differs from fog only in that the latter is, by definition, in contact with the earth's surface. Clouds form in the free atmosphere as a result of condensation of water vapor in rising currents of air, or by the evaporation of the lowest stratum of fog. For condensation to occur at the point of saturation or a low degree of supersaturation, there must be an abundance of condensation nuclei for water clouds, or ice nuclei for ice-crystal clouds. The size of cloud drops varies from one cloud to another, and within any given cloud there always exists a finite range of sizes. In general, cloud drops range between 1 and 100 microns in diameter and hence are very much smaller than rain drops. See also CLOUD CLASSIFICATION. 2. Any collection of particulate matter in the atmosphere dense enough to be perceptible to the eye, such as a dust cloud or smoke cloud.
cloud bank. . A fairly well defined mass of clouds observed at a distance; it covers an appreciable portion of the horizon sky, but does not extend overhead.
cloud base. . For a given cloud or cloud layer, that lowest level in the atmosphere at which the air contains a perceptible quantity of cloud particles.
cloudburst. , n. In popular terminology, any sudden and heavy fall of rain. An unofficial criterion sometimes used specifies a rate of fall equal to or greater than 100 millimeters (3.94 inches) per hour. Also called RAIN GUSH, RAIN GUST.
cloud classification. . 1. A scheme of distinguishing and grouping clouds according to their appearance and, where possible, to their process of formation. The one in general use, based on a classification system introduced by Luke Howard in 1803, is that adopted by the World Meteorological Organization and published in the International Cloud Atlas (1956). This classification is based on the determination of (a) genera, the main characteristic forms of clouds; (b) species, the peculiarities in shape and differences in internal structure of clouds; (c) varieties, special characteristics of arrangement and transparency of clouds; (d) supplementary features and accessory clouds, appended and associated minor clouds forms; and (e) mother-clouds, the origin of clouds if formed from other clouds. The ten cloud genera are cirrus, cirrocumulus, cirrostratus, altocumulus, altostratus, nimbostratus, stratocumulus, stratus, cumulus, and cumulonimbus. The fourteen cloud species are fibratus, uncinus, spissatus, castellanus, floccus, stratiformis, nebulous, lenticularis, fractus, humilis, mediocris, congestus, calvus, and capillatus. The nine cloud varieties are intortus, vertebratus, undulatus, radiatus, lacunosis, duplicatus, translucidus, perlucidus, and opacus. The nine supplementary features and accessory clouds are inclus, mamma, virga, praecipitatio, arcus, tuba, pileus, velum, and pannus. Note that although these are Latin words, it is proper convention to use only the singular endings, e.g., more than one cirrus cloud are, collectively, cirrus, not cirri. 2. A scheme of classifying clouds according to their usual altitudes. Three classes are distin-
guished: high, middle, and low. High clouds include cirrus, cirrocumulus, cirrostratus, occasionally altostratus and the tops of cumulonimbus. The middle clouds are altocumulus, altostratus, nimbostratus, and portions of cumulus and cumulonimbus. The low clouds are stratocumulus, stratus, most cumulus and cumulonimbus bases, and sometimes nimbostratus. 3. A scheme of classifying clouds according to their particulate composition; namely water clouds, ice-crystal clouds, and mixed clouds. The first are composed entirely of water droplets (ordinary and/or super cooled), the second entirely of ice crystals, and the third a combination of the first two. Of the cloud genera, only cirrostratus and cirrus are always ice-crystal clouds; cirrocumulus can also be mixed; and only cumulonimbus is always mixed. Altostratus nearly always is mixed, but occasionally can be ice crystal. All the rest of the genera are usually water clouds, occasionally mixed: altocumulus, cumulus, nimbostratus and stratocumulus.
cloud cover. . That portion of the sky cover which is attributed to clouds, usually measured in tenths of sky covered.
cloud deck. . The upper surface of a cloud.
cloud height. . In weather observations, the height of the cloud base above local terrain.
cloud layer. . An array of clouds, not necessarily all of the same type, whose bases are at approximately the same level. It may be either continuous or composed of detached elements.
club., $v ., i$. To drift in a current with an anchor dragging to provide control. Usually used with the word down, ie. club down.
clutter., n. Unwanted radar echoes reflected from heavy rain, snow, waves, etc., which may obscure relatively large areas on the radarscope. See also RAIN CLUTTER, SEA RETURN.
co-. . A prefix meaning 90° minus the value with which it is used. Thus, if the latitude is 30° the colatitude is $90^{\circ}-30^{\circ}=60^{\circ}$. The cofunction of an angle is the function of its complement.
coalsack., n. Any of several dark areas in the Milky Way, especially, when capitalized, a prominent one near the Southern Cross.
coaltitude., n. Ninety degrees minus the altitude. The term has significance only when used in connection with altitude measured from the celestial horizon, when it is synonymous with ZENITH DISTANCE.
coast. , n. The general region of indefinite width that extends from the sea inland to the first major change in terrain features. Sometimes called SEACOAST. See also SEABOARD.
coastal aid. . See COASTAL MARK.
coastal area. . The land and sea area bordering the shoreline.
coastal boundary. . A general term for the boundary defined as the line (or measured from the line or points thereon) used to depict the intersection of the ocean surface and the land at an elevation of a particular datum, excluding one established by treaty or by the U.S. Congress.
coastal chart. . See under CHART CLASSIFICATION BY SCALE.
coastal current. . An ocean current flowing roughly parallel to a coast, outside the surf zone. See also LONGSHORE CURRENT.
coastal mark. . A navigation mark placed on the coast to assist coastal navigation. Particularly used with reference to marks placed on a long straight coastline devoid of many natural landmarks. Also called COASTAL AID.
coastal marsh. . An area of salt-tolerant vegetation in brackish and/or salt-water habitats subject to tidal inundation.
coastal plain. . Any plain which has its margin on the shore of a large body of water, particularly the sea, and generally represents a strip of recently emerged sea bottom.
coastal refraction. . The bending of the wave front of a radio wave traveling parallel to a coastline or crossing it at an acute angle due to the differences in the conducting and reflective properties of the land and water over which the wave travels. This refraction affects the accuracy of medium frequency radio direction finding systems. Also called COAST REFRACTION.
Coast and Geodetic Survey. . Mapping, charting, and surveying arm of the National Ocean Service (NOS), a component of the National Oceanic and Atmospheric Administration (NOAA). The organization was known as: The Survey of the Coast from its founding in 1807 to 1836, Coast Survey from 1836 to 1878, and Coast and Geodetic Survey from 1878 to 1970, when it became the Office of Charting and Geodetic Services under the newly formed NOAA. In 1991 the name Coast and Geodetic Survey was reinstated.

Coast Earth Station (CES). . A station which receives communications from an earth orbiting satellite for retransmission via landlines, and vice versa.
coast chart. . See under CHART CLASSIFICATION BY SCALE.
coasting. , n. Proceeding approximately parallel to a coastline (headland to headland) in sight of land, or sufficiently often in sight of land to fix the ship's position by observations of land features.
coasting lead. . A light deep sea lead (30 to 50 pounds), used for sounding in water 20 to 60 fathoms.
coastline., n. The configuration made by the meeting of land and sea.
Coast Pilot. . See UNITED STATES COAST PILOT.
coast refraction. . See COASTAL REFRACTION.
coastwise., $a d v . \& a d j$. By way of the coast; moving along the coast. coastwise navigation. Navigation in the vicinity of a coast, in contrast with OFFSHORE NAVIGATION at a distance from a coast. See also COASTING.
coaxial cable. .A transmission cable consisting of two concentric conductors insulated from each other.
cobble. , n. A stone particle between 64 and 256 millimeters (about 2.5 to 10 inches) in diameter. See also STONE.
cocked hat. . Error triangle formed by lines of position which do not cross at a common point.
cockeyed bob. . A colloquial term in western Australia for a squall, associated with thunder, on the northwest coast in Southern Hemisphere summer.
code beacon. . A beacon that flashes a characteristic signal by which it may be recognized.
codeclination., n. Ninety degrees minus the declination. When the declination and latitude are of the same name, codeclination is the same as POLAR DISTANCE measured from the elevated pole.
coding delay. . An arbitrary time delay in the transmission of pulse signals. In hyperbolic radionavigation systems of the pulse type, the coding delay is inserted between the transmission of the master and slave (or secondary) signals to prevent zero or small readings, and thus aid in distinguishing between master and slave (or secondary) station signals.
coefficient. , n. 1. A number indicating the amount of some change under certain specified conditions, often expressed as a ratio. For example, the coefficient of linear expansion of a substance is the ratio of its change in length to the original length for a unit change of temperature, from a standard. 2. A constant in an algebraic equation. 3. One of several parts which combine to make a whole, as the maximum deviation produced by each of several causes. See also APPROXIMATE COEFFICIENTS.
coefficient A. A component of magnetic compass deviation of constant value with compass heading resulting from mistakes in calculations, compass and pelorus misalignment, and unsymmetrical arrangements of horizontal soft iron. See also APPROXIMATE COEFFICIENTS.
coefficient B. . A component of magnetic compass deviation, varying with the sine function of the compass heading, resulting from the fore-and-aft component of the craft's permanent magnetic field and induced magnetism in unsymmetrical vertical iron forward or abaft the compass. See also APPROXIMATE COEFFICIENTS.
coefficient C. . A component of magnetic compass deviation, varying with the cosine function of the compass heading, resulting from the athwartship component of the craft's permanent magnetic field and induced magnetism in unsymmetrical vertical iron port or starboard of the compass. See also APPROXIMATE COEFFICIENTS.
coefficient D. . A component of magnetic compass deviation, varying with the sine function of twice the compass heading, resulting from induced magnetism in all symmetrical arrangements of the craft's horizontal soft iron. See also APPROXIMATE COEFFICIENTS.
coefficient E. . A component of magnetic compass deviation varying with the cosine function of twice the compass heading, resulting from induced magnetism in all unsymmetrical arrangements of the craft's horizontal soft iron. See also APPROXIMATE COEFFICIENTS.
coefficient J. . A change in magnetic compass deviation, varying with the cosine function of the compass heading for a given value of J , where J is the change of deviation for a heel of 1° on compass heading 000°. See also APPROXIMATE COEFFICIENTS.
coercive force. The opposing magnetic intensity that must be applied to a magnetic substance to remove the residual magnetism.
COGARD., n. Acronym for U.S. Coast Guard usually used in radio messages.
coherence. , n. The state of there being correlation between the phases of two or more waves, as is necessary in making phase comparisons in radionavigation.
coincidence. , n. The condition of occupying the same position as regards location, time, etc.
col. , n. 1. A neck of relative low pressure between two anticyclones. 2. A depression in the summit line of a mountain range. Also called PASS.
colatitude., n. Ninety degrees minus the latitude, the angle between the polar axis and the radius vector locating a point.
cold air mass. . An air mass that is colder than surrounding air. The expression implies that the air mass is colder than the surface over which it is moving.
cold front. . Any non-occluded front, or portion thereof, that moves so that the colder air replaces the warmer air, i.e., the leading edge of a relatively cold air mass. While some occluded fronts exhibit this characteristic, they are more properly called COLD OCCLUSIONS.
cold occlusion. . See under OCCLUDED FRONT.
cold wave. . Unseasonably low temperatures extending over a period of a day or longer, particularly during the cold season of the year.
collada., n. A strong wind (35 to 50 miles per hour or stronger) blowing from the north or northwest in the northern part of the Gulf of California and from the northeast in the southern part of the Gulf of California.
collimate., $v ., t$. 1. To render parallel, as rays of light. 2. To adjust the line of sight of an optical instrument, such as a theodolite, in proper relation to other parts of the instrument.
collimation error. . The angle by which the line of sight of an optical instrument differs from its collimation axis. Also called ERROR OF COLLIMATION.
collimator., n. An optical device which renders rays of light parallel. One of the principal navigational uses of a collimator is to determine the index error of a bubble sextant.
collision bearing. . A constant bearing maintained while the distance between two craft is decreasing.
collision course. . A course which, if followed, will bring two craft together.
cologarithm. , n. The logarithm of the reciprocal of a number, or the negative logarithm. The sum of the logarithm and cologarithm of the same number is zero. The addition of a cologarithm accomplishes the same result as the subtraction of a logarithm.
colored light. . An aid to navigation exhibiting a light of a color other than white.
color gradients. . See HYPSOMETRIC TINTING.
COLREGS. , n. Acronym for International Regulations for Prevention of Collisions at Sea.
COLREGS Demarcation Lines. . Lines delineating the waters upon which mariners must comply with the International Regulations for Preventing Collisions at Sea 1972 (72 COLREGS) and those waters upon which mariners must comply with the Navigation Rules for Harbors, Rivers, and Inland Waters (Inland Rules). The waters outside the lines are COLREGS waters. For specifics concerning COLREGS Demarcation Lines see U.S. Code of Federal Regulations, Title 33, Navigation and Navigable Waters; Part 82, COLREGS Demarcation Lines.
column., n. A vertical line of anything, such as a column of air, a column of figures in a table, etc.
colure., n. A great circle of the celestial sphere through the celestial poles and either the equinoxes or solstices, called, respectively, the equinoctial colure or the solstitial colure.
coma. , n. The foggy envelope surrounding the nucleus of a comet.
combat chart. . A special-purpose chart of a land-sea area using the characteristics of a map to represent the land area and a chart to represent the sea area, with special features to make the chart useful in naval operations, particularly amphibious operations. Also called MAP CHART.
comber., n. A deep water wave whose crest is pushed forward by a strong wind and is much larger than a whitecap. A long spilling breaker. See ROLLER.
comet., n. A luminous member of the solar system composed of a head or coma, at the center of which a nucleus of many small solid particles is sometimes situated, and often with a spectacular gaseous tail extending a great distance from the head. The orbits of comets are highly elliptical and present no regularity as to their angle to the plane of the ecliptic.
command and control. . The facilities, equipment, communications, procedures, and personnel essential to a commander for planning, locating, directing, and controlling operations of assigned forces pursuant to the missions assigned. In many cases, a locating or position fixing capability exists in, or as a by-product to, command and control systems.
commissioned., adj. Officially placed in operation. In navigation, most commonly used to describe seasonal aids to navigation, which are decommissioned in the fall or winter, commissioned in spring.
common establishment. . See under ESTABLISHMENT OF THE PORT.
common logarithm. . A logarithm to the base 10. Also called BRIGGSIAN LOGARITHM.
common-user., adj. Having the characteristics of being planned, operated or used to provide services for both military and civil applications. The availability of a system having such characteristics is not dependent on tactical military operations or use.
common year. . A calendar year of 365 days. One of 366 days is called a LEAP YEAR.
communication., n. The transfer of intelligence between points. If by wire, radio, or other electromagnetic means, it may be called telecommunication; if by radio, radiocommunication.
commutation. , n. A method by means of which the transmissions from a number of stations of a radionavigation system are time shared on the same frequency.
compact disk. . A type of computer storage media which records data using bubbles melted into the surface of a disk. It cannot be erased and is therefore called Read Only Memory (ROM).
compacted ice edge. . A close, clear-cut ice edge compacted by wind or current. It is usually on the windward side of an area of pack ice.
compacting., $a d j$. Pieces of sea ice are said to be compacting when they are subjected to a converging motion, which increases ice concentration and/or produces stresses which may result in ice deformations.
compact pack ice. . Pack ice in which the concentration is $10 / 10$ and no water is visible.
comparing watch. A watch used for timing observations of celestial bodies. Generally its error is determined by comparison with a chronometer, hence its name. A comparing watch normally has a large sweep second hand to facilitate reading time to the nearest second. Sometimes called HACK WATCH. See also SPLITSECOND TIMER.
comparison frequency. . In the Decca Navigator System, the common frequency to which the incoming signals are converted in order that their phase relationships may be compared.
comparison of simultaneous observations. . A reduction process in which a short series of tide or tidal current observations at any place is compared with simultaneous observations at a control station where tidal or tidal current constants have previously been determined from a long series of observations. For tides, it is usually used to adjust constants from a subordinate station to the equivalent of that which would be obtained from a 19-year series.
compass. , adj. Of or pertaining to a compass or related to compass north.
compass. , n. An instrument for indicating a horizontal reference direction relative to the earth. Compasses used for navigation are equipped with a graduated compass card for direct indication of any horizontal direction. A magnetic compass depends for its directive force upon the attraction of the magnetism of the earth for a magnet free to turn in any horizontal direction. A compass having one or more gyroscopes as the directive element, and tending to indicate true north is called a gyrocompass. A compass intended primarily for use in observing bearings is called a bearing compass; one intended primarily for measuring amplitudes, an amplitude compass. A directional gyro is a gyroscopic device used to indicate a selected
horizontal direction for a limited time. A remote-indicating compass is equipped with one or more indicators, called compass repeaters, to repeat at a distance the readings of a master compass. A compass designated as the standard for a vessel is called a standard compass; one by which a craft is steered is called a steering compass. A liquid, wet, or spirit compass is a magnetic compass having a bowl completely filled with liquid; a magnetic compass without liquid is called a dry compass. An aperiodic or deadbeat compass, after being deflected, returns by one direct movement to its proper reading, without oscillation. A small compass mounted in a box for convenient use in small water craft is called a boat compass. A pelorus is sometimes called a dumb compass. A radio direction finder was formerly called a radio compass.
compass adjustment. . The process of neutralizing undesired magnetic effects on a magnetic compass. Permanent magnets and soft iron correctors are arranged about the binnacle so that their effects are about equal and opposite to the magnetic material in the craft, thus reducing the deviations and eliminating the sectors of sluggishness and unsteadiness. See also COMPASS COMPENSATION.
compass adjustment buoy. . See SWINGING BUOY.
compass amplitude. . Amplitude relative to compass east or west.
compass azimuth. Azimuth relative to compass north.
compass bearing. . Bearing relative to compass north.
compass bowl. . The housing in which the compass card is mounted, usually filled with liquid.
compass card. . The part of a compass on which the direction graduations are placed. It is usually in the form of a thin disk or annulus graduated in degrees, clockwise from 0° at the reference direction to 360°, and sometimes also in compass points. A similar card on a pelorus is called a PELORUS CARD.
compass card axis. . The line joining 0° and 180° on a compass card. Extended, this line is sometimes called COMPASS MERIDIAN.
compass compensation. . The process of neutralizing the effects of degaussing currents on a marine magnetic compass. The process of neutralizing the magnetic effects the vessel itself exerts on a magnetic compass is properly called COMPASS ADJUSTMENT, but the expression COMPASS COMPENSATION is often used for this process, too.
compass course. . Course relative to compass north.
compass direction. . Horizontal direction expressed as angular distance from compass north.
compass error. . The angle by which a compass direction differs from the true direction; the algebraic sum of variation and deviation; the angle between the true meridian and the axis of the compass card, expressed in degrees east or west to indicate the direction of compass north with respect to true north. See also ACCELERATION ERROR, GAUSSIN ERROR, GYRO ERROR, HEELING ERROR, LUBBER'S LINE ERROR, QUADRANTAL ERROR, RETENTIVE ERROR, SWIRL ERROR.
compasses., n. An instrument for drawing circles. In its most common form it consists of two legs joined by a pivot, one leg carrying a pen or pencil and the other leg being pointed. An instrument for drawing circles of large diameter, usually consisting of a bar with sliding holders for points, pencils, or pens is called beam compasses. If both legs are pointed, the instrument is called DIVIDERS and is used principally for measuring distances or coordinates.
compass heading. . Heading relative to compass north.
compass meridian. . A line through the north-south points of a magnetic compass. The COMPASS CARD AXIS lies in the compass meridian.
compass north. . The direction north as indicated by a magnetic compass; the reference direction for measurement of compass directions.
compass points. . The 32 divisions of a compass, at intervals of $111 / 4^{\circ}$. Each division is further divided into quarter points. Stating in order the names of the points (and sometimes the half and quarter points) is called BOXING THE COMPASS.
compass prime vertical. . The vertical circle through the compass east and west points of the horizon.
compass repeater. . That part of a remote-indicating compass system which repeats at a distance the indications of the master compass. One used primarily for observing bearings may be called a bearing repeater. Also called REPEATER COMPASS. See also GYRO REPEATER.
compass rose. . A circle graduated in degrees, clockwise from 0° at the reference direction to 360°, and sometimes also in compass points. Compass roses are placed at convenient locations on the Mercator chart or plotting sheet to facilitate measurement of direction. See also PROTRACTOR.
compass track. . The direction of the track relative to compass north.
compass transmitter. . The part of a remote-indicating compass system which sends the direction indications to the repeaters.
compensate. , v., t. To counteract an error; to counterbalance.
compensated loop radio direction finder. . A loop antenna radio direction finder for bearing determination, which incorporates a second antenna system designed to reduce the effect of polarization and radiation error.
compensating coils. . The coils placed near a magnetic compass to neutralize the effect of the vessel's degaussing system on the compass. See also COMPASS COMPENSATION.
compensating error. An error that tends to offset a companion error and thus obscure or reduce the effect of each.
compensator., n. 1 . A corrector used in the compensation of a magnetic compass. 2. The part of a radio direction finder which applies all or part of the necessary correction to the direction indication.
compile. . To assemble various elements of a system into a whole.
compiler. . 1. One who compiles. 2. Computer software which translates programs into machine language which a computer can use.
complement., n. An angle equal to 90° minus a given angle. See also EXPLEMENT, SUPPLEMENT.
complementary angles. . Two angles whose sum is 90°.
component. , n. 1. See CONSTITUENT. 2. The part of a tidal force of tidal current velocity which, by resolution into orthogonal vectors, is found to act in a specified direction. 3. One of the parts into which a vector quantity can be divided. For example, the earth's magnetic force at any point can be divided into horizontal and vertical components.
composite., adj. Composed of two or more separate parts.
composite group flashing light. . A light similar to a group flashing light except that successive groups in a single period have different numbers of flashes.
composite group occulting light. . A group occulting light in which the occultations are combined in successive groups of different numbers of occultations.
composite sailing. . A modification of great-circle sailing used when it is desired to limit the highest latitude. The composite track consists of a great circle from the point of departure and tangent to the limiting parallel, a course line along the parallel, and a great circle tangent to the limiting parallel to the destination. Composite sailing applies only when the vertex lies between the point of departure and destination.
composite track. A modified great-circle track consisting of an initial great circle track from the point of departure with its vertex on a limiting parallel of latitude, a parallel-sailing track from this vertex along the limiting parallel to the vertex of a final great-circle track to the destination.

composition of vectors. . See VECTOR ADDITION.

compound harmonic motion. . The projection of two or more uniform circular motions on a diameter of the circle of such motion. The projection of a simple uniform circular motion is called SIMPLE HARMONIC MOTION.
compound tide. . A tidal constituent with a speed equal to the sum or difference of the speeds of two or more elementary constituents. Compound tides are usually the result of shallow water.
compressed-air horn. . See DIAPHRAGM HORN.
compression. , n. See FLATTENING.
computed altitude. . 1. Tabulated altitude interpolated for increments of latitude, declination, or hour angle. If no interpolation is required, the tabulated altitude and computed altitude are identical. 2. Altitude determined by computation, table, mechanical computer, or graphics, particularly such an altitude of the center of a celestial body measured as an arc on a vertical circle of the celestial sphere from the celestial horizon. Also called CALCULATED ALTITUDE.
computed azimuth. . Azimuth determined by computation, table, mechanical device, or graphics for a given place and time. See also TABULATED AZIMUTH.
computed azimuth angle. . Azimuth angle determined by computation, table, mechanical device, or graphics for a given place and time. See also TABULATED AZIMUTH ANGLE.
computed point. . In the construction of the line of position by the Marcq St. Hilaire method, the foot of the perpendicular from the assumed position to the line of position. Also called SUMNER POINT.
concave. , adj. Curving and hollow, such as the inside of a circle or sphere. The opposite is CONVEX.
concave. , n. A concave line or surface.
concentration., n. The ratio, expressed in tenths, of the sea surface actually covered by ice to the total area of sea surface, both icecovered and ice-free, at a specific location or over a defined area.
concentration boundary. . The transition between two areas of pack ice with distinctly different concentrations.
concentric. , adj. Having the same center. The opposite is ECCENTRIC.
concurrent line. A line on a map or chart passing through places having the same current hour.
condensation., n. The physical process by which a vapor becomes a liquid or solid. The opposite is EVAPORATION.
conduction. , n. Transmission of electricity, heat, or other form of energy from one point to another along a conductor, or transference of heat from particle to particle through a substance, such as air, without any obvious motion. Heat is also transferred by CONVECTION and RADIATION.
conductivity., n. The ability to transmit, as electricity, heat, sound, etc. Conductivity is the opposite of RESISTIVITY.
conductor., n. A substance which transmits electricity, heat, sound, etc.
cone. , n. 1. A solid having a plane base bounded by a closed curve and a surface formed by lines from every point on the circumference of the base to a common point or APEX. 2. A surface generated by a straight line of indefinite length, one point of which is fixed and another point of which follows a fixed curve. Also called a CONICAL SURFACE.
configuration., n. 1. The position or disposition of various parts, or the figure or pattern so formed. 2. A geometric figure, usually consisting principally of points and connecting lines.
conformal. , adj. Having correct angular representation.
conformal chart. A chart using a conformal projection; also called orthomorphic chart.
conformal map projection. . A map projection in which all angles around any point are correctly represented, In such a projection the scale is the same in all directions about any point. Very small shapes are correctly represented, resulting in an orthomorphic projection. The terms conformal and orthomorphic are used synonymously since neither characteristic can exist without the other.
confusion region. . The region surrounding a radar target within which the radar echo from the target cannot be distinguished from other echoes.
conic. , adj. Pertaining to a cone.
conical buoy. . See NUN BUOY.
conical surface. . See CONE, definition 2 .
conic chart. . A chart on a conic projection.
conic chart with two standard parallels. A chart on the conic projection with two standard parallels. Also called SECANT CONIC CHART. See also LAMBERT CONFORMAL CHART.
conic map projection. A map projection in which the surface of a sphere or spheroid, such as the earth, is conceived as projected onto a tangent or secant cone which is then developed into a plane. In a simple conic map projection the cone is tangent to the sphere or spheroid, in a conic map projection with two standard parallels the cone intersects the sphere or spheroid along two chosen parallels, and in a polyconic map projection a series of cones are tangent to the sphere or spheroid. See also LAMBERT CONFORMAL CONIC MAP PROJECTION, MODIFIED LAMBERT CONFORMAL MAP PROJECTION.
conic map projection with two standard parallels. . A conic map projection in which the surface of a sphere or spheroid is conceived as developed on a cone which intersects the sphere or spheroid along two standard parallels, the cone being spread out to form a plane. The Lambert conformal map projection is an example. Also called SECANT CONIC MAP PROJECTION.
conic section. . Any plane curve which is the locus of a point which moves so that the ratio of its distance from a fixed point to its distance from a fixed line is constant. The ratio is called the eccentricity; the fixed point is the focus; the fixed line is the directrix. When the eccentricity is equal to unity, the conic section is a parabola; when less than unity an ellipse; and when greater than unity, a hyperbola. They are so called because they are formed by the intersection of a plane and a right circular cone.
conjunction., n. The situation of two celestial bodies having either the same celestial longitude or the same sidereal hour angle. A planet is at superior conjunction if the sun is between it and the earth; at inferior conjunction if it is between the sun and the earth. The situation of two celestial bodies having either celestial longitudes or sidereal hour angles differing by 180° is called OPPOSITION.
conn., v., t. 1. To direct the course and speed of a vessel. The person giving orders to the helmsman (not just relaying orders) is said to have the conn or to be conning the ship. 2.n. Control of the maneuvering of a ship.
Consol., n. A long range, obsolete azimuthal radionavigation system of low accuracy operated primarily for air navigation.
console., n. The housing of the main operating unit of electronic equipment, in which indicators and general controls are located. The term is popularly limited to large housings resting directly on the deck, as contrasted with smaller cabinets such as rack or bracketmounted units.
consolidated pack ice. . Pack ice in which the concentration is $10 / 10$ and the floes are frozen together.
consolidated ridge. . A ridge (a line or wall of ice forced up by pressure) in which the base has frozen together.
Consol station. . A short baseline directional antenna system used to generate Consol signals.
constant. , n. A fixed quantity; one that does not change.
constant bearing, decreasing range. See STEADY BEARING.
constant deviation. . Deviation which is the same on any heading, as that which may result from certain arrangements of asymmetrical horizontal soft iron.
constant error. . A systematic error of unchanging magnitude and sign throughout a given series of observations. Also called BIAS ERROR.
constant of aberration. . The measure of the maximum angle between the true direction and the apparent direction of a celestial body as observed from earth due to aberration. It has a value of 20.496 seconds of arc. The aberration angle depends upon the ratio of the velocity of the earth in its orbit and the velocity of light in addition to the angle between the direction of the light and the direction of motion of the observing telescope. The maximum value is obtained when the celestial body is at the pole of the ecliptic. Also called ABERRATION CONSTANT.
constant of the cone. . The chart convergence factor for a conic projection. See also CONVERGENCE FACTOR.
constant-pressure chart. . The synoptic chart for any constant-pressure surface, usually containing plotted data and analyses of the distribution of, e.g., height of the surface, wind, temperature, and humidity. Constant-pressure charts are most commonly known by their pressure value; for example the 1000-millibar chart. Also called ISOBARIC CHART.
constant-pressure surface. . In meteorology, an imaginary surface along which the atmospheric pressure is everywhere equal at a given instant. Also called ISOBARIC SURFACE.
constellation. , n. A group of stars which appear close together, regardless of actual distances, particularly if the group forms a striking configuration. Among astronomers a constellation is now considered a region of the sky having precise boundaries so arranged that all of the sky is covered, without overlap. The ancient Greeks recognized 48 constellations covering only certain groups of stars. Modern astronomers recognize 88 constellations.
constituent. , n. One of the harmonic elements in a mathematical expression for the tide-producing force and in corresponding formulas for the tide or tidal current. Each constituent represents a periodic change or variation in the relative positions of the earth, moon, and sun. Also called HARMONIC CONSTITUENT, TIDAL CONSTITUENT, COMPONENT.
constituent day. . The duration of one rotation of the earth on its axis, with respect to an astre fictif, a fictitious star representing one of the periodic elements in tidal forces. It approximates the length of a lunar or solar day. The expression is not applicable to a long period.
constituent, constituent hour. . One twenty-fourth part of a constituent day.
contact., n. Any echo detected on the radarscope and not evaluated as clutter or as a false echo. Although the term contact is often used interchangeably with target, the latter term specifically indicates that the echo is from an object about which information is being sought.
conterminous. . U.S. Forty-eight states and the District of Columbia, i.e., the United States before January 3, 1959 (excluding Alaska and Hawaii).
contiguous zone. . The band of water outside or beyond the territorial sea in which a coastal nation may exercise customs control and enforce public health and other regulations.
continent., n. An expanse of continuous land constituting one of the major divisions of the land surface of the earth.
continental borderland. . A region adjacent to a continent, normally occupied by or bordering a shelf, that is highly irregular with depths well in excess of those typical of a shelf. See also INSULAR BORDERLAND.
continental climate. The type of climate characteristic of the interior of a large land mass, the distinctive features of which are large annual and daily temperature range and dry air with few clouds, in contrast with MARINE CLIMATE.
continental polar air. . See under AIR-MASS CLASSIFICATION.
continental rise. . A gentle slope rising from oceanic depths toward the foot of a continental slope.
continental shelf. . A zone adjacent to a continent that extends from the low water line to a depth at which there is usually a marked increase of slope towards oceanic depths. See also INSULAR SHELF.
continental tropical air. . See under AIR-MASS CLASSIFICATION.
Continental United States. . United States territory, including the adjacent territorial waters, located within the North American continent between Canada and Mexico. See also CONTERMINOUS U.S.
continuous carrier radiobeacon. . A radiobeacon whose carrier wave is unbroken but which is modulated with the identification signal. The continuous carrier wave signal is not audible to the operator of an aural null direction finder not having a beat frequency oscillator. The use of the continuous carrier wave improves the performance of automatic direction finders. The marine radiobeacons on the Atlantic and Pacific coasts of the U.S. are of this type. See also DUAL CARRIER RADIOBEACON.
continuous quick light. . A quick flashing light (flashing 50-80 times per minute) which operates continuously with no eclipses.
continuous system. A classification of a navigation system with respect to availability. A continuous system gives the capability to determine position at any time.
continuous ultra quick light. . An ultra quick light (flashing not less than 160 flashes per minute) with no eclipses.
continuous very quick light. . A very quick light (flashing 80-160 times per minute) with no eclipses.
continuous wave. . 1. Electromagnetic radiation of a constant amplitude and frequency. 2. Radio waves, the successive sinusoidal oscillations of which are identical under steady-state conditions.
contour., n. The imaginary line on the ground, all points of which are at the same elevation above or below a specified datum.
contour interval. . The difference in elevation between two adjacent contours.
contour line. . A line connecting points of equal elevation or equal depth. One connecting points of equal depth is usually called a depth contour, but if depth is expressed in fathoms, it may be called a fathom curve or fathom line. See also FORM LINES.
contour map. . A topographic map showing relief by means of contour lines.
contrary name. . A name opposite or contrary to that possessed by something else, as declination has a name contrary to that of latitude if one is north and the other south. If both are north or both are south, they are said to be of SAME NAME.
contrastes., n., pl. Winds a short distance apart blowing from opposite quadrants, frequent in the spring and fall in the western Mediterranean.
contrast threshold. . The minimum contrast at the eye of a given observer at which an object can be detected. The contrast threshold is a property of the eye of the individual observer. See METEOROLOGICAL VISIBILITY, VISUAL RANGE.
control., n. 1. The coordinated and correlated dimensional data used in geodesy and cartography to determine the positions and elevations of points on the earth's surface or on a cartographic representation of that surface. 2. A collective term for a system of marks or objects on the earth or on a map or a photograph, whose positions and/or elevations have been or will be determined.
control current station. . A current station at which continuous velocity observations have been made over a minimum of 29 days. Its purpose is to provide data for computing accepted values of the harmonic and nonharmonic constants essential to tidal current predictions and circulatory studies. The data series from this station serves as the control for the reduction of relatively short series from subordinate current stations through the method of comparison of simultaneous observations. See also CURRENT STATION, SUBORDINATE CURRENT STATION.
controlled air space. . An airspace of defined dimensions within which air traffic control service is provided.
controlling depth. . 1. The least depth in the approach or channel to an area, such as a port or anchorage, governing the maximum draft of vessels that can enter. 2. The least depth within the limits of a channel; it restricts the safe use of the channel to drafts of less than that depth. The centerline controlling depth of a channel applies only to the channel centerline; lesser depths may exist in the remainder of the channel. The mid-channel controlling depth of a channel is the controlling depth of only the middle half of the channel. See also FEDERAL PROJECT DEPTH.
control station. . See PRIMARY CONTROL TIDE STATION, SECONDARY CONTROL TIDE STATION, CONTROL CURRENT STATION.
convection. , n. Circulation in a fluid of nonuniform temperature, due to the differences in density and the action of gravity. In the atmosphere, convection takes place on a large scale. It is essential to the formation of many clouds, especially those of the cumulus type. Heat is transferred by CONVECTION and also by ADVECTION, CONDUCTION, and RADIATION.
convention., n. A body of regulations adopted by the IMO which regulate one aspect of maritime affairs. See also GEOGRAPHIC SIGN CONVENTIONS.
conventional direction of buoyage. . 1. The general direction taken by the mariner when approaching a harbor, river, estuary or other waterway from seaward, or 2 . The direction determined by the proper authority. In general it follows a clockwise direction around land masses.
converge., $v ., i$. To tend to come together.
converged beam. . See under FAN BEAM.
convergence constant. . The angle at a given latitude between meridians 1° apart. Sometimes loosely called CONVERGENCY. On a map or chart having a convergence constant of 1.0 , the true direction of a straight line on the map or chart changes 1° for each 1° of longitude that the line crosses; the true direction of a straight line on a map or chart having a convergence constant of 0.785 changes 0.785° for each 1° of longitude the line crosses. Also called CONVERGENCE FACTOR. See also CONVERGENCE OF MERIDIANS.
convergence factor.. See CONVERGENCE CONSTANT.
convergence of meridians. . The angular drawing together of the geographic meridians in passing from the Equator to the poles, At the Equator all meridians are mutually parallel; passing from the Equator, they converge until they meet at the poles, intersecting at angles that are equal to their differences of longitude. See also CONVERGENCE CONSTANT.
convergency., n. See under CONVERGENCE CONSTANT.
conversion. , n. Determination of the rhumb line direction of one point from another when the initial great circle direction is known, or vice versa. The difference between the two directions is the conversion angle, and is used in great circle sailing.
conversion angle. . The angle between the rhumb line and the great circle between two points. Also called ARC TO CHORD CORRECTION. See also HALF-CONVERGENCY.
conversion scale. . A scale for the conversion of units of one measurement to equivalent units of another measurement. See NOMOGRAM.
conversion table. . A table for the conversion of units of one measurement to equivalent units of another measurement. See NOMOGRAM.
convex. , adj. Curving away from, such as the outside of a circle or sphere. The opposite is CONCAVE.
convex. , n. A convex line or surface.
coordinate. , n. One of a set of magnitudes defining a point in space. If the point is known to be on a given line, only one coordinate is needed; if on a surface, two are required; if in space, three. Cartesian coordinates define a point relative to two intersecting lines, called AXES. If the axes are perpendicular, the coordinates are rectangular; if not perpendicular, they are oblique coordinates. A threedimensional system of Cartesian coordinates is called space coordinates. Polar coordinates define a point by its distance and direction from a fixed point called the POLE. Direction is given as the angle between a reference radius vector and a radius vector to the point. If three dimensions are involved, two angles are used to locate the radius vector. Space-polar coordinates define a point on the surface of a sphere by (1) its distance from a fixed point at the center, called the POLE (2) the COLATITUDE or angle between the POLAR AXIS (a reference line through the pole) and the RADIUS VECTOR (a straight line connecting the pole and the point)- and (3) the LONGITUDE or angle between a reference plane through the polar axis and a plane through the radius vector and the polar axis. Spherical coordinates define a point on a sphere or spheroid by its angular distances from a primary great circle and from a reference secondary great circle. Geographical or terrestrial coordinates define a point on the surface of the earth. Celestial coordinates define a point on the celestial sphere. The horizon, celestial equator and the ecliptic systems of celestial coordinates are based on the celestial horizon, celestial equator, and the ecliptic, respectively, as the primary great circle.
coordinate conversion. . Changing the coordinate values from one system to those of another.
Coordinated Universal Time (UTC). . The time scale that is available from most broadcast time signals. It differs from International Atomic Time (TAI) by an integral number of seconds. UTC is maintained within 1 second of UT1 by the introduction of 1 -second steps (leap seconds) when necessary, normally at the end of December. DUT1, an approximation to the difference UT1 minus UTC, is transmitted in code on broadcast time signals.
coordinate paper. . Paper ruled with lines to aid in the plotting of coordinates. In its most common form, it has two sets of parallel lines, usually at right angles to each other, when it is also called CROSSSECTION PAPER. A type ruled with two sets of mutually-perpendicular, parallel lines spaced according to the logarithms of consecutive numbers is called logarithmic coordinate papa or semilogarithmic coordinate paper as both or only one set of lines is spaced logarithmically. A type ruled with concentric circles and radial lines from the common center is called polar coordinate paper. Also called GRAPH PAPER.
coplanar. , adj. Lying in the same plane.
coprocessor. . A microprocessor chip which performs numerical functions for the CPU, freeing it for other tasks.
coral. , n. The hard skeleton of certain tiny sea animals; or the stony, solidified mass of a number of such skeletons.
coral head. . A large mushroom or pillar shaped coral growth.
coral reef. . A reef made up of coral, fragments of coral and other organisms, and the limestone resulting from their consolidation. Coral may constitute less than half of the reef material.
corange line. . A line passing through places of equal tidal range.
cordillera. , n. On the sea floor, an entire mountain system including all the subordinate ranges, interior plateaus, and basins.
cordonazo. , n. The "Lash of St. Francis." Name applied locally to southerly hurricane winds along the west coast of Mexico. The cordonazo is associated with tropical cyclones in the southeastern North Pacific Ocean. These storms may occur from May to November, but ordinarily affect the coastal areas most severely near or after the Feast of St. Francis, October 4.

Coriolis acceleration. . An acceleration of a body in motion in a relative (moving) coordinate system. The total acceleration of the body, as measured in an inertial coordinate system, may be expressed as the sum of the acceleration within the relative system, the acceleration of the relative system itself, and the Coriolis acceleration. In the case of the earth, moving with angular velocity Ω, a body moving relative to the earth with velocity V has the Coriolis acceleration $252 \times \Omega$. If Newton's laws are to be applied in the relative system, the Coriolis acceleration and the acceleration of the relative system must be treated as forces. See also CORIOLIS FORCE.
Coriolis correction. . 1. A correction applied to an assumed position, celestial line of position, celestial fix, or to a computed or observed altitude to allow for Coriolis acceleration. 2. In inertial navigation equipment, an acceleration correction which must be applied to measurements of acceleration with respect to a coordinate system in translation to compensate for the effect of any angular motion of the coordinate system with respect to inertial space.
Coriolis force. . An inertial force acting on a body in motion, due to rotation of the earth, causing deflection to the right in the Northern Hemisphere and to the left in the Southern Hemisphere. It affects air (wind), water (current), etc. and introduces an error in bubble sextant observations made from a moving craft due to the liquid in the bubble being deflected, the effect increasing with higher latitude and greater speed of the craft.
corner reflector. . A radar reflector consisting of three mutually perpendicular flat reflecting surfaces designed to return incident electromagnetic radiation toward its source. The reflector is used to render objects such as buoys and sailboats more conspicuous to radar observations. Since maximum effectiveness is obtained when the incident beam coincides with the axis of symmetry of the reflector, clusters of reflectors are sometimes used to insure that the object will be a good reflector in all directions. See also RADAR REFLECTOR. Also called TRIHEDRAL REFLECTOR.
coromell. , n. A night land breeze prevailing from November to May at La Paz, near the southern extremity of the Gulf of California.
corona. , n. 1 . The luminous envelope surrounding the sun but visible only during a total eclipse. 2. A luminous discharge due to ionization of the air surrounding an electric conductor. 3. A set of one or more rainbow-colored rings of small radii surrounding the sun, moon, or other source of light covered by a thin cloud veil. It is caused by diffraction of the light by tiny droplets in the atmosphere, and hence the colors are in the reverse order to those of a HALO caused by refraction. 4. A circle of light occasionally formed by the apparent convergency of the beams of the aurora.
corona discharge. . Luminous and often audible discharge of electricity intermediate between a spark and a point discharge. See ST. ELMO'S FIRE.
corposant. , n. See CORONA DISCHARGE, ST. ELMO'S FIRE.
corrasion., n. The wearing away of the earth's surface by the abrasive action of material transported by glacier, water, or air; a process of erosion.
corrected compass course. Compass course with deviation applied; magnetic course.
corrected compass heading. . Compass heading with deviation applied; magnetic heading.
corrected current. . A relatively short series of current observations from a subordinate station to which a factor is applied to adjust the current to a more representative value, based on a relatively long series from a nearby control station. See also CURRENT, definition 1; TOTAL CURRENT.
corrected establishment. . See under ESTABLISHMENT OF THE PORT.
corrected sextant altitude. . Sextant altitude corrected for index error, height of eye, parallax, refraction, etc. Also called OBSERVED ALTITUDE, TRUE ALTITUDE.
correcting., n. The process of applying corrections, particularly the process of converting compass to magnetic direction, or compass, magnetic, or gyro to true direction. The opposite is UNCORRECTING.
correction. , n. That which is added to or subtracted from a reading, as of an instrument, to eliminate the effect of an error, or to reduce an observation to an arbitrary standard.
correction of soundings. . The adjustment of soundings for any departure from true depth because of the method of sounding or any fault in the measuring apparatus. See also REDUCTION OF SOUNDINGS.
corrector. , n. A magnet, piece of soft iron, or device used in the adjustment of a magnetic compass. See also FLINDERS BAR, HEELING MAGNET, QUADRANTAL CORRECTORS.
corrosion. , n. The wearing or wasting away by chemical action, usually by oxidation. A distinction is usually made between CORROSION and EROSION, the latter referring to the wearing away of the earth's surface primarily by non-chemical action. See also CORRASION.
cosecant. , n. The ratio of the hypotenuse of a plane right triangle to the side opposite one of the acute angles of the triangle, equal to $1 / \mathrm{sin}$. The expression NATURAL COSECANT is sometimes used to distinguish the cosecant from its logarithm (called LOGARITHMIC COSECANT).
cosine. , n. The ratio of the side adjacent to an acute angle of a plane right triangle to the hypotenuse. The expression NATURAL COSINE is sometimes used to distinguish the cosine from its logarithm (called LOGARITHMIC COSINE).
COSPAS/SARSAT. . A cooperative search and rescue satellite system operated by the U.S. and Russia which provides worldwide coverage by sensing the signals of Emergency Position Indicating Radiobeacons (EPIRB's).
cotangent. , n. The ratio of the shorter side adjacent to an acute angle of a plane right triangle to the side opposite the same angle, equal to $1 / \tan$. The expression NATURAL COTANGENT is sometimes used to distinguish the cotangent from its logarithm (called LOGARITHMIC COTANGENT).
cotidal. , adj. Having tides occurring at the same time.
cotidal chart. . A chart showing cotidal lines.
cotidal hour. . The average interval between the moon's transit over the meridian of Greenwich and the time of the following high water at any place, expressed in either mean solar or lunar time units. When expressed in solar time, it is the same as the Greenwich high water interval. When expressed in lunar time, it is equal to the Greenwich high water interval multiplied by the factor 0.966 .
cotidal line. . A line on a map or chart passing through places having the same cotidal hour.
coulomb. , n. A derived unit of quantity of electricity in the International System of Units; it is the quantity of electricity carried in 1 second by a current of 1 ampere.
counterclockwise. , $a d v$. In a direction of rotation opposite to that of the hands of a clock.
countercurrent., n. A current usually setting in a direction opposite to that of a main current.
counterglow. , n. See GEGENSCHEIN.
countertrades. , n., pl. See ANTITRADES.
coupler., n. See as ANTENNA COUPLER.
course. , n. The direction in which a vessel is steered or intended to be steered, expressed as angular distance from north, usually from 000° at north, clockwise through 360°. Strictly, the term applies to direction through the water, not the direction intended to be made good over the ground. The course is often designated as true, magnetic, compass, or grid as the reference direction is true, magnetic compass, or grid north, respectively. TRACK MADE GOOD is the single resultant direction from the point of departure to point of arrival at any given time. The use of this term to indicate a single resultant direction is preferred to the use of the misnomer course made good. A course line is a line, as drawn on a chart, extending in the direction of a course. See also COURSE ANGLE, COURSE OF ADVANCE, COURSE OVER GROUND. HEADING. TRACK.
course angle. . Course measured from 0° at the reference direction clockwise or counterclockwise through 90° or 180°. It is labeled with the reference direction as a prefix and the direction of measurement from the reference direction as a suffix.
course beacon. . A directional radiobeacon which gives an "on course" signal in the receiver of a vessel which is on, or in close proximity to, the prescribed course line and "off course" signals in sectors adjacent to this line.
course board. . A board located on the navigation bridge used to display the course to steer, track, drift angle, leeway angle, compass error, etc.
course line. . 1. The graphic representation of a ship's course, usually with respect to true north. 2. A line of position approximately parallel to the course line (definition 1), thus providing a check as to deviating left or right of the track. See also SPEED LINE.
course made good. . A misnomer indicating the resultant direction from a point of departure to a point of arrival at any given time. See also COURSE, COURSE OVER GROUND, TRACK MADE GOOD.
course of advance. An expression sometimes used to indicate the direction intended to be made good over the ground. The preferred term is TRACK, definition 1. This is a misnomer in that courses are directions steered or intended to be steered through the water with respect to a reference meridian. See also COURSE, COURSE OVER GROUND.
course over ground. . The direction of the path over the ground actually followed by a vessel. The preferred term is TRACK, definition 1. It is normally a somewhat irregular line. This is a misnomer in that courses are directions steered or intended to be steered through the water with respect to a reference meridian. See also COURSE, COURSE MADE GOOD.
course recorder. . A device which makes an automatic graphic record of the headings of a vessel vs. time. See also DEAD RECKONING TRACER.
course up. . See BASE COURSE UP.
cove. , n. A small sheltered recess or indentation in a shore or coast, generally inside a larger embayment.
coverage diagram. . A chart which depicts the area serviced by a radionavigation system.
crab. , v., t. To drift sideways while in forward motion.
crack line., n. Any fracture (in ice) which has not parted.
creek. , n. 1. A stream of less volume than a river but larger than a brook. 2. A small tidal channel through a coastal marsh. 3. A wide arm of a river or bay, as used locally in Maryland and Virginia.
crepuscular rays. . Literally, "twilight rays," alternating lighter and darker bands (rays and shadows) which appear to diverge in fanlike array from the sun's position at about twilight. This term is applied to two quite different phenomena: a. It refers to shadows cast across the purple light, a true twilight phenomenon, by cloud tops that are high enough and far enough away from the observer to intercept some of the sunlight that would ordinarily produce the purple light. b. A more common occurrence is that of shadows and rays made visible by haze in the lower atmosphere. Towering clouds produce this effect also, but they may be fairly close to the observer and the sun need not be below the horizon. The apparent divergence of crepuscular rays is merely a perspective effect. When they continue across the sky to the antisolar point, these extensions are called ANTICREPUSCULAR RAYS. Also called SHADOW BANDS.
crescent. , adj. Bounded by a convex and a concave curve. Originally, the term applied only to the "increasing" moon, from which the word was derived. By extension, it is now generally applied to the moon between last quarter and new as well as between new and first quarter, and to any other celestial body presenting a similar appearance, or any similarly shaped object. See also PHASES OF THE MOON.
crest., n. The highest part of a wave or swell; or terrestrially, a hill or ridge.
crest cloud. . A type of cloud over a mountain ridge, similar to a cap cloud over an isolated peak. The cloud is apparently stationary, but actually is continually being formed to windward and dissipated to leeward.
crevasse., n. A deep fissure or rift in a glacier.
critical angle. . 1. The maximum angle at which a radio wave may be emitted from an antenna, in respect to the plane of the earth, and still be returned to the earth by refraction or reflection by an ionospheric layer. 2. The angle at which radiation, about to pass from a medium of greater density into one of lesser density, is refracted along the surface of the denser medium.
critical table. . A single entering argument table in which values of the quantity to be found are tabulated for limiting values of the entering argument. In such a table interpolation is avoided through dividing the argument into intervals so chosen that successive intervals correspond to successive values of the required quantity, called the respondent. For any value of the argument within these intervals, the respondent can be extracted from the table without interpola-
tion. The lower and upper limits (critical values) of the argument correspond to half-way values of the respondent and, by convention, are chosen so that when the argument is equal to one of the critical values, the respondent corresponding to the preceding (upper) interval is to be used.
critical temperature. . The temperature above which a substance cannot exist in the liquid state, regardless of pressure.
cross-band Racon. . A Racon which transmits at a frequency not within the marine radar frequency band. To be able to use this type of Racon, the ship's radar receiver must be capable of being tuned to the frequency of the crossband Racon or special accessory equipment is required. In either case, normal radar echoes will not be painted on the radarscope. This is an experimental type of Racon. See also INBAND RACON.
cross-band transponder. . A transponder which responds on a frequency different from that of the interrogating signal.
cross bearings. . Two or more bearings used as intersecting lines of position for fixing the position of a craft.
cross hair. . A hair, thread, or wire constituting part of a reticle.
cross sea. . A series of waves imposed across the prevailing waves. It is called CROSS SWELL when the imposed waves are the longer swell waves.
cross-section paper. . Paper ruled with two sets of parallel lines, useful as an aid in plotting Cartesian coordinates. Usually, the two sets are mutually perpendicular. See also COORDINATE PAPER.
cross-staff., n. A forerunner of the modern sextant used for measuring altitudes of celestial bodies, consisting of a wooden rod with one or more perpendicular cross pieces free to slide along the main rod. Also called FORESTAFF, JACOB'S STAFF.
cross swell. . See under CROSS SEA.
cross tide. A tidal current setting in a direction approximately 90° from the course of a vessel One setting in a direction approximately 90° from the heading is called a BEAM TIDE. In common usage these two expressions are usually used synonymously. One setting from ahead is called a HEAD TIDE. One setting from aft is called a FAIR TIDE.
cross wind. . See under BEAM WIND.
cruising radius. . The distance a craft can travel at cruising speed without refueling. Also called CRUISING RANGE.
cruising range. . See CRUISING RADIUS.
cryogenics., n. 1 . The study of the methods of producing very low temperatures. 2. The study of the behavior of materials and processes at cryogenic temperatures.
cryogenic temperature. In general, a temperature range below the boiling point of nitrogen $\left(-195^{\circ} \mathrm{C}\right)$; more particularly, temperatures within a few degrees of absolute zero.
crystal. , n. A crystalline substance which allows electric current to pass in only one direction.
crystal clock. . See QUARTZ CRYSTAL CLOCK.
cube. , n. 1. A solid bounded by six equal square sides. 2 . The third power of a quantity.
cubic meter. . The derived unit of volume in the International System of Units.
cul-de-sac. , n. An inlet with a single small opening.
culmination., n. See MERIDIAN TRANSIT.
culture. , n. 1. The man-made features of a map or chart, including roads, rails, cables, etc.; boundary lines, latitude and longitude lines, isogonic lines, etc. are also properly classified as culture.
cumuliform. , adj. Like cumulus; generally descriptive of all clouds, the principal characteristic of which is vertical development in the form of rising mounds, domes, or towers. This is the contrasting form to the horizontally extended STRATIFORM types. See also CIRRIFORM.
cumulonimbus. , n. An exceptionally dense cloud of great vertical development, occurring either as an isolated cloud or one of a line or wall of clouds with separated upper portions. These clouds appear as mountains or huge towers, at least a part of the upper portions of which are usually smooth, fibrous, striated, and almost flattened. This part often spreads out in the form of an anvil or plume. Under the base of cumulonimbus, which often is very dark, there frequently exists virga, precipitation, and low, ragged clouds, either merged with it or not. Its precipitation is often heavy and always of a showery nature. The usual occurrence of lightning and thunder within or from this cloud leads to its being popularly called THUN-

DERCLOUD and THUNDERHEAD. The latter term usually refers to only the upper portion of the cloud. See also CLOUD CLASSIFICATION.
cumulus., n. A cloud type in the form of individual, detached elements which are generally dense and possess sharp non-fibrous outlines. These elements develop vertically, appearing as rising mounds, domes, or towers, the upper parts of which often resemble a cauliflower. The sunlit parts of these clouds are mostly brilliant white; their bases are relatively dark and nearly horizontal. Near the horizon the vertical development of cumulus often causes the individual clouds to appear merged. If precipitation occurs, it is usually of a showery nature. Various effects of wind, illumination, etc. may modify many of the above characteristics. Strong winds may shred the clouds, often tearing away the cumulus tops to form the species fractus. See also CLOUD CLASSIFICATION.
cupola., n. A label on a nautical chart which indicates a small domeshaped tower or turret rising from a building.
current. , n. 1. A horizontal movement of water. Currents may be classified as tidal and nontidal. Tidal currents are caused by gravitational interactions between the sun, moon, and earth and are a part of the same general movement of the sea that is manifested in the vertical rise and fall, called TIDE. Tidal currents are periodic with a net velocity of zero over the tidal cycle. Nontidal currents include the permanent currents in the general circulatory systems of the sea as well as temporary currents arising from more pronounced meteorological variability. The SET of a current is the direction toward which it flows; the DRIFT is its speed. In British usage, tidal current is called TIDAL STREAM, and nontidal current is called CURRENT.
current chart. . A chart on which current data are graphically depicted. See also TIDAL CURRENT CHARTS.
current constants. . Tidal current relations that remain practically constant for any particular locality. Current constants are classified as harmonic and nonharmonic. The harmonic constants consist of the amplitudes and epochs of the harmonic constituents, and the nonharmonic constants include the velocities and intervals derived directly from the current observations.
current curve. . A graphic representation of the flow of the current. In the reversing type of tidal current, the curve is referred to rectangular coordinates with time represented by the abscissas and the speed of the current by the ordinates, the flood speeds being considered as positive' and the ebb speeds as negative. In general, the current curve for a reversing tidal current approximates a cosine curve.
current cycle. . A complete set of tidal current conditions, as those occurring during a tidal day, lunar month, or Metonic cycle.
current diagram. . A graphic table showing the speeds of the flood and ebb currents and the times of slack and strength over a considerable stretch of the channel of a tidal waterway, the times being referred to tide or tidal current phases at some reference station.
current difference. The difference between the time of slack water (or minimum current) or strength of current in any locality and the time of the corresponding phase of the tidal current at a reference station, for which predictions are given in the Tidal Current Tables.
current direction. . The direction toward which a current is flowing, called the SET of the current.
current ellipse. . A graphic representation of a rotary current in which the velocity of the current at different hours of the tidal cycle is represented by radius vectors and vectorial angles. A line joining the extremities of the radius vectors will form a curve roughly approximating an ellipse. The cycle is completed in one half tidal day or in a whole tidal day according to whether the tidal current is of the semidiurnal or the diurnal type. A current of the mixed type will give a curve of two unequal loops each tidal day.
current hour. . The mean interval between the transit of the moon over the meridian of Greenwich and the time of strength of flood, modified by the times of slack water (or minimum current) and strength of ebb. In computing the mean current hour an average is obtained of the intervals for the following phases: flood strength, slack (or minimum) before flood increased by 3.10 hours (onefourth of tidal cycle), slack (or minimum) after flood decreased by
3.10 hours, and ebb strength increased or decreased by 6.21 hours (one-half of tidal cycle). Before taking the average, the four phases are made comparable by the addition or rejection of such multiples of 12.42 hours as may be necessary. The current hour is usually expressed in solar time, but if the use of lunar time is desired the solar hour should be multiplied by the factor 0.966 .
current line. . A graduated line attached to a CURRENT POLE, used in measuring the velocity of the current. The line is marked so that the speed of the current, expressed in knots and tenths, is indicated directly by the length of line carried out by the current pole in a specified interval of time. When marked for a 60 second run, the principal divisions for the whole knots are spaced 101.33 feet and the subdivisions for tenths of knots are spaced at 10.13 feet. Also called LOG LINE.
current meter. . An instrument for measuring the speed and direction or just speed of a current. The measurements are usually Eulerian since the meter is most often fixed or moored at a specific location.
current pole. . A pole used in observing the velocity of the current. In use, the pole, which is weighted at one end so as to float upright, is attached to the current line but separated from the graduated portion by an ungraduated section of approximately 100 feet, known as the stray line. As the pole is carried out from an observing vessel by the current, the amount of line passing from the vessel during a specific time interval indicates the speed of the current. The set is obtained from a bearing from the vessel to the pole.
current rips. . See RIPS.
current sailing. . The process of allowing for current when predicting the track to be made good or of determining the effect of a current on the direction of motion of a vessel. The expression is better avoided, as the process is not strictly a sailing.
current station. . The geographic location at which current observations are conducted. Also, the facilities used to make current observations. These may include a buoy, ground tackle, current meters, recording mechanism, and radio transmitter. See also CONTROL CURRENT STATION, SUBORDINATE CURRENT STATION.
current tables. . See TIDAL CURRENT TABLES.
cursor. , n. A device used with an instrument to provide a moveable reference. A symbol indicating the location in a file of the data entry point of a computer.
curve of constant bearing. . See CURVE OF EQUAL BEARING.
curve of equal bearing. . A curve connecting all points at which the great-circle bearing of a given point is the same. Also called CURVE OF CONSTANT BEARING.
curvilinear. , adj. Consisting of or bounded by a curve.
curvilinear triangle. A closed figure having three curves as sides.
cusp. , n. One of the horns or pointed ends of the crescent moon or other luminary.
cut. , n. 1. A notch or depression produced by excavation or erosion. 2. The intersection of lines of position, constituting a fix, with particular reference to the angle of intersection.
cut in. . To observe and plot lines of position locating an object or craft, particularly by bearings.
cut-off. , n. 1. A new and relatively short channel formed when a stream cuts through the neck of an oxbow or horseshoe bend. 2. An artificial straightening or short-cut in a channel.
Cyclan. , n. The designation of Loran C in its earliest stage of development but later superseded by the term CYTAC.
cycle. , n. One complete train of events or phenomena that recur sequentially. When used in connection with sound or radio the term refers to one complete wave, or to a frequency of one wave per second. See also KILOCYCLE, MEGACYCLE, CALLIPPIC CYCLE, CURRENT CYCLE, DUTY CYCLE, LUNAR CYCLE, METONIC CYCLE, TIDAL CYCLE.
cycle match. . In Loran C, the comparison, in time difference, between corresponding carrier cycles contained in the rise times of a master and secondary station pulse. The comparison is refined to a determination of the phase difference between these two cycles. See also ENVELOPE MATCH.
cyclic. , adj. Of or pertaining to a cycle or cycles.
cyclogenesis. , n. A development or strengthening of cyclonic circulation in the atmosphere. The opposite is CYCLOLYSIS. The term is applied to the development of cyclonic circulation where previously it did not exist, as well as to the intensification of existing cyclonic flow. While cyclogenesis usually occurs with a deepening (a decrease in atmospheric pressure), the two terms should not be used synonymously.
cyclolysis. , n. Any weakening of cyclonic circulation in the atmosphere. The opposite is CYCLOGENESIS. While cyclolysis usually occurs with a filling (an increase in atmospheric pressure), the two terms should not be used synonymously.
cyclone. , n. 1. A meteorological phenomena characterized by relatively low atmospheric pressure and winds which blow counterclockwise around the center in the Northern Hemisphere and clockwise in the Southern Hemisphere. 2. The name by which a tropical storm having winds of 34 knots or greater is known in the South Indian Ocean. See TROPICAL CYCLONE.
cyclonic storm. . See under TROPICAL CYCLONE.
cyclonic winds. . The winds associated with a low pressure area and constituting part of a cyclone.
cylinder. , n. 1. A solid figure having two parallel plane bases bounded by closed congruent curves, and a surface formed by parallel lines connecting similar points on the two curves. 2 . A surface formed by a straight line moving parallel to itself and constantly intersecting a curve. Also called CYLINDRICAL SURFACE.
cylindrical. , adj. Of or pertaining to a cylinder.
cylindrical buoy. . See CAN BUOY.
cylindrical chart. . A chart on a cylindrical map projection.
cylindrical map projection. . A map projection in which the surface of a sphere or spheroid, such as the earth, is conceived as developed on a tangent cylinder, which is then spread out to form a plane. See also MERCATOR MAP PROJECTION, RECTANGULAR MAP PROJECTION, EQUATORIAL MAP PROJECTION, OBLIQUE MAP PROJECTION, OBLIQUE MERCATOR MAP PROJECTION, TRANSVERSE MAP PROJECTION.
cylindrical surface. . A surface formed by a straight line moving parallel to itself and constantly intersecting a curve. Also called a CYLINDER.
Cytac. , n. The designation of Loran C in an earlier stage of development. See also CYCLAN.

D

daily aberration. . See under ABERRATION, definition 1.
Daily Memorandum. . An electronic file of the National Imagery and Mapping Agency's Maritime Safety Information System web site, containing HYDROLANTS, HYDROPACS, and NAVAREA Warnings from NAVAREAS IV and XII. The HYDROLANTS, HYDROPACS, and NAVAREA Warnings are broadcast messages restricted to the more important marine incidents or navigational changes for which a delay in disseminating the information to mariners would adversely affect navigational safety.
daily rate. . See CHRONOMETER RATE, WATCH RATE.
dale. , n. A vale or small valley.
dam. , n. A barrier to check or confine anything in motion; particularly a bank of earth, masonry, etc., across a watercourse to keep back moving water.
damped wave. . 1. A wave such that, at every point, the amplitude of each sinusoidal component is a decreasing function of time. 2. A wave in which the amplitudes of successive peaks (crests) progressively diminish.
damp haze. . See under HAZE.
damping., n. 1. The reduction of energy in a mechanical or electrical system by absorption or radiation. 2 . The act of reducing the amplitude of the oscillations of an oscillatory system; hindering or preventing oscillation or vibration; diminishing the sharpness of resonance of the natural frequency of a system.
damping error. . See as BALLISTIC DAMPING ERROR.
dan buoy. . A buoy consisting of a ballasted float carrying a staff which supports a flag or light. Dan buoys are used principally in minesweeping, and by fisherman to mark the position of deepsea fishing lines or nets.
danger angle. . The maximum (or minimum) angle between two points, as observed from a craft indicating the limit of safe approach to an offlying danger. A horizontal danger angle is measured between points shown on the chart. A vertical danger angle is measured between the top and bottom of an object of known height.
danger area. . A specified area above, below, or within which there may exist potential danger. See also PROHIBITED AREA, RESTRICTED AREA.
danger bearing. . The maximum or minimum bearing of a point for safe passage of an off-lying danger. As a vessel proceeds along a coast, the bearing of a fixed point on shore, such as a lighthouse, is measured frequently. As long as the bearing does not exceed the limit of the predetermined danger bearing, the vessel is on a safe course.
danger buoy. . A buoy marking an isolated danger to navigation, such as a rock, shoal or sunken wreck.
danger line. . 1. A line drawn on a chart to indicate the limits of safe navigation for a vessel of specific draft. 2. A line of small dots used to draw the navigator's attention to a danger which would not stand out clearly enough if it were represented on the chart solely by the specific symbols. This line of small dots is also used to delimit areas containing numerous dangers, through which it is unsafe to navigate.
dangerous semicircle. . The half of a cyclonic Storm in which the rotary and forward motions of the storm reinforce each other and the winds tend to blow a vessel into the storm track. In the Northern Hemisphere this is to the right of the storm center (when facing the direction the storm is moving) and in the Southern Hemisphere it is to the left. The opposite is the LESS DANGEROUS or NAVIGABLE SEMICIRCLE.
danger sounding. . A minimum sounding chosen for a vessel of specific draft in a given area to indicate the limit of safe navigation.
dark nilas. . Nilas which is under 5 centimeters in thickness and is very dark in color.
dark-trace tube. . A cathode-ray tube having a specially coated screen which changes color but does not necessarily luminesce when struck by the electron beam. It shows a dark trace on a bright background.
data. . Factual information.
data-acquisition station. . A ground station used for performing the various functions necessary to control satellite operations and to obtain data from the satellite.
data base. . A uniform, organized set of data.
data processing. . Changing data from one form or format to another by application of specified routines or algorithms.
data reduction. . The process of transforming raw data into more ordered data.
data smoothing. . The process of fitting dispersed data points to a smooth or uniform curve or line.
date. , n. A designated mark or point on a time scale.
date line. . The line coinciding approximately with the 180th meridian, at which each calendar day first begins; the boundary between the - 12 and +12 time zones. The date on each side of this line differs by 1 day, but the time is the same in these two zones. When crossing this line on a westerly course, the date must be advanced 1 day; when crossing on an easterly course, the date must be put back 1 day. Sometimes called INTERNATIONAL DATE LINE.
datum. , n. Any numerical or geometrical quantity or set of such quantities which may serve as reference or base for other quantities. In navigation two types of datums are used: horizontal and vertical. See also HORIZONTAL GEODETIC DATUM, VERTICAL GEODETIC DATUM. CHART SOUNDING DATUM, VERTICAL DATUM.
datum-centered ellipsoid. . The reference ellipsoid that gives the best fit to the astrogeodetic network of a particular datum, and hence does not necessarily have its center at the center of the earth.
datum plane. . A misnomer for collection of datums used in mapping, charting, and geodesy which are not strictly planar. This term should not be used.
datum transformation. . The systematic elimination of discrepancies between adjoining or overlapping triangulation networks from different datums by moving the origins, rotating, and stretching the networks to fit each other.
Davidson Current. . A seasonal North Pacific Ocean countercurrent flowing northwestward along the west coast of North America from north of $32^{\circ} \mathrm{N}$ to at least latitude $48^{\circ} \mathrm{N}$, inshore of the southeast-erly-flowing California Current. This current occurs generally between November and April, but is best established in January. Strong opposing winds may cause the current to reverse. Also called WINTER COASTAL COUNTERCURRENT.
Davidson Inshore Current. . See DAVIDSON CURRENT.
dawn. , n. The first appearance of light in the eastern sky before sunrise; daybreak. See also DUSK, TWILIGHT.
day. , n. 1. The duration of one rotation of a celestial body on its axis. It is measured by successive transits of a reference point on the celestial sphere over the meridian, and each type takes its name from the reference used. Thus, for a solar day on earth the reference is the sun; a mean solar day uses the mean sun; and an apparent solar day uses the apparent sun. For a lunar day the reference is the moon; for a sidereal day the vernal equinox; for a constituent day an astre fictif or fictitious star representing one of the periodic elements in the tidal forces. The expression lunar day refers also to the duration of one rotation of the moon with respect to the sun. A Julian day begins at Greenwich mean noon and the days are consecutively numbered from January 1, 4713 B.C. 2. A period of 24 hours beginning at a specified time, as the civil day beginning at midnight, or the astronomical day beginning at noon, which was used up to 1925 by astronomers. 3. A specified time or period, usually of approximately 24 -hours duration. A calendar day extends from midnight to midnight, and is of 24-hours duration unless a time change occurs during the day. A tidal day is either the same as a lunar day (on the earth), or the period of the daily cycle of the tides, differing slightly from the lunar day because of priming and lagging. 4. The period of daylight, as distinguished from night.
daybeacon., n. An unlighted beacon. A daybeacon is identified by its color and the color, shape and number of its daymark. The simplest form of daybeacon consists of a single pile with a daymark affixed at or near its top. See also DAYMARK.
daybreak., n. See DAWN.
daylight control. . A photoelectric device that automatically lights and extinguishes a navigation light, usually lighting it at or about sunset and extinguishing it at or about sunrise. Also called SUN RELAY, SUN SWITCH, SUN VALVE.
daylight saving meridian. . The meridian used for reckoning daylight saving time. This is generally 15° east of the ZONE or STANDARD MERIDIAN.
daylight saving noon. . Twelve o'clock daylight saving time, or the instant the mean sun is over the upper branch of the daylight saving meridian. Also called SUMMER NOON, especially in Europe. See also MEAN NOON.
daylight saving time. . A variation of standard time in order to make better use of daylight. In the United States the "Uniform Time Act of 1966" (Public Law 99-359 Sect. 2) establishes the annual advancement and retardation of standard time by 1 hour at 2 AM on the first Sunday of April and last Sunday of October, respectively, except in those states which have by law exempted themselves from the observance of daylight saving time. Also called SUMMER TIME, especially in Europe.
daylight signal light. . A signal light exhibited by day and also, usually with reduced intensity by night. The reduction of intensity is made in order to avoid glare. Daylight signals may be used to indicate whether or not the entrance to a lock is free.
daymark., n. 1 . The daytime identifying characteristics of an aid to navigation. See also DAYBEACON. 2. An unlighted navigation mark. 3. The shaped signals used to identify vessels engaged in special operations during daytime, more properly known as day shapes.
day's run. . The distance traveled by a vessel in 1 day, usually reckoned from noon to noon.
dead ahead. . Bearing 000° relative. If the bearing is approximate, the term AHEAD should be used.
dead astern. . Bearing 180° relative. If the bearing is approximate, the term ASTERN should be used. Also called RIGHT ASTERN.
deadbeat. , adj. Aperiodic, or without a period.
deadbeat compass. . See APERIODIC COMPASS.
deadhead. , n. 1. A block of wood used as an anchor buoy. 2. A bollard, particularly one of wood set in the ground.
deadman. . Timber or other long sturdy object buried in ice or ground to which ship's mooring lines are attached.
dead reckoning. . Determining the position of a vessel by adding to the last fix the ship's course and speed for a given time. The position so obtained is called a DEAD RECKONING POSITION. Comparison of the dead reckoning position with the fix for the same time indicates the sum of currents, winds, and other forces acting on the vessel during the intervening period.
Dead Reckoning Altitude and Azimuth Table. . See H.O. PUB. NO. 211. dead reckoning equipment. . A device that continuously indicates the dead reckoning position of a vessel. It may also provide, on a dead reckoning tracer, a graphical record of the dead reckoning. See also COURSE RECORDER.
dead reckoning plot. . The graphic plot of the dead reckoning, suitably labeled with time, direction, and speed. See also NAVIGATIONAL PLOT.
dead reckoning position. . See under DEAD RECKONING.
dead reckoning tracer. . A device that automatically provides a graphic record of the dead reckoning. It may be part of dead reckoning equipment. See also COURSE RECORDER.
dead water. . The water carried along with a ship as it moves through the water. It is maximum at the waterline and decreases with depth. It increases in a direction towards the stern.
deca-. . A prefix meaning ten.
decameter. , n. Ten meters.
Decca., n. See as DECCA NAVIGATOR SYSTEM.
Decca chain. . A group of associated stations of the Decca Navigator System. A Decca chain normally consists of one master and three slave stations. Each slave station is called by the color of associated pattern of hyperbolic lines as printed on the chart, i.e., red slave, green slave, purple slave. See also CHAIN.
Decca Navigator System. . A short to medium range low frequency (70130 kHz) radionavigation system which yields a hyperbolic line of position of high accuracy. The system is an arrangement of fixed, phase locked, continuous wave transmitters operating on harmonically related frequencies and special receiving and display equipment carried on a vessel or other craft. The operation of the system depends on phase comparison of the signals from the transmitters brought to a common comparison frequency within the receiver.
decelerate. , v., t. To cause to more slower. v. i. To decrease speed.
deceleration. , n. Negative acceleration.
December solstice. . Winter solstice in the Northern Hemisphere.
deci-. . A prefix meaning one-tenth. decibar, n. One-tenth of a bar; 100 millibars.
decibel., n. A dimensionless unit used for expressing the ratio between widely different powers. It is 10 times the logarithm to the base 10 of the power ratio.
decimeter., n. One-tenth of a meter.
deck log. . See LOG, definition 2.
declination. , n. 1. Angular distance north or south of the celestial equator; the arc of an hour circle between the celestial equator and a point on the celestial sphere, measured northward or southward from the celestial equator through 90°, and labeled N or $\mathrm{S}(+$ or -) to indicate the direction of measurement. 2. Short for MAGNETIC DECLINATION.
declinational inequality. . See DIURNAL INEQUALITY.
declinational reduction. . A processing of observed high and low waters or flood and ebb tidal currents to obtain quantities depending upon changes in the declination of the moon; such as tropic ranges or speeds, height or speed inequalities, and tropic intervals.
declination difference. . The difference between two declinations, particularly between the declination of a celestial body and the value used as an argument for entering a table.
declinometer., n. An instrument for measuring magnetic declination. See also MAGNETOMETER.
Decometer. , n. A phase meter used in the Decca Navigator System.
decrement. , n. 1. A decrease in the value of a variable. 2.v. To decrease a variable in steps. See also INCREMENT.
deep. , n. 1. An unmarked fathom point on a lead line. 2. A relatively small area of exceptional depth found in a depression of the ocean floor. The term is generally restricted to depths greater than 3,000 fathoms. If it is very limited in area, it is referred to as a HOLE. 3. A relatively deep channel in a strait or estuary.
deepening., n. Decrease in atmospheric pressure, particularly within a low. Increase in pressure is called FILLING. See also CYCLOGENESIS.
deep sea lead. A heavy sounding lead (about 30 to 100 pounds), usually having a line 100 fathoms or more in length. A light deep sea lead is sometimes called a COASTING LEAD. Sometimes called DIPSEY LEAD.
deep water route. . A route for deep draft vessels within defined limits which has been accurately surveyed for clearance of sea bottom and submerged obstacles as indicated on the chart. See also ROUTING SYSTEM.
definition., n. The clarity and fidelity of the detail of radar images on the radarscope. A combination of good resolution and focus is required for good definition.
definitive orbit. . An orbit that is defined in a highly precise manner with due regard taken for accurate constants and observational data, and precision computational techniques including perturbations.
deflection of the plumb line. . See under DEFLECTION OF THE VERTICAL.
deflection of the vertical. . The angular difference at any place, between the direction of a plumb line (the vertical) and the perpendicular to the reference ellipsoid. This difference seldom exceeds 30". Often expressed in two components, meridian and prime vertical. Also called STATION ERROR.
deflection of the vertical correction. . The correction due to deflection of the vertical resulting from irregularities in the density and form of the earth. Deflection of the vertical affects the accuracy of sextant altitudes.
deflector., n. An instrument for measuring the directive force acting on a magnetic compass. It is used for adjusting a compass when ordinary methods of determining deviation are not available, and operates on the theory that when the directive force is the same on all cardinal headings, the compass is approximately adjusted.
deformed ice. . A general term for ice which has been squeezed together and in places forced forwards (and downwards). Subdivisions are RAFTED ICE, RIDGED ICE, and HUMMOCKED ICE.
degaussing. , n. Neutralization of the strength of the magnetic field of a vessel, using electric coils permanently installed in the vessel. See also DEPERMING.
degaussing cable. . A cable carrying an electric current for degaussing a vessel.
degaussing range. An area for determining magnetic signatures of ships and other marine craft. Such signatures are used to determine required degaussing coil current settings and other required corrective actions. Sensing instruments and cables are installed on the sea bed in the range, and there are cables leading from the range to a control position ashore.
degree., n. 1. A unit of circular measure equal to $1 / 360$ th of a circle. 2. A unit of measurement of temperature.
degree-of-freedom. . The number of orthogonal axes of a gyroscope about which the spin axis is free to rotate, the spin axis freedom not being counted. This is not a universal convention. For example, the free gyro is frequently referred to as a three-degree-of-freedom gyro, the spin axis being counted.
deka-. . A prefix meaning ten (10).
delayed plan position indicator. A plan position indicator on which the start of the sweep is delayed so that the center represents a selected range. This allows distant targets to be displayed on a larger-scale presentation.
delayed sweep. . Short for DELAYED TIME BASE SWEEP.
delayed time base. . Short for DELAYED TIME BASE SWEEP.
delayed time base sweep. A sweep, the start of which is delayed, usually to provide an expanded scale for a particular part. Usually shortened to DELAYED SWEEP, and sometimes to DELAYED TIME BASE.
delta., n. 1. The low alluvial land, deposited in a more or less triangular form, as the Greek letter delta, at the mouth of a river, which is often cut by several distributaries of the main stream. 2 . A change in a variable quantity, such as a change in the value of the declination of a celestial body.
demagnetize., v., t. To remove magnetism. The opposite is MAGNETIZE.
demodulation., n. The process of obtaining a modulating wave from a modulated carrier. The opposite is MODULATION.
departure., n. 1. The distance between two meridians at any given parallel of latitude, expressed in linear units, usually nautical miles; the distance to the east or west made good by a craft in proceeding from one point to another. 2. The point at which reckoning of a voyage begins. It is usually established by bearings of prominent landmarks as the vessel clears a harbor and proceeds to sea. When a navigator establishes this point, he is said to take departure. Also called POINT OF DEPARTURE. 3. Act of departing or leaving. 4. The amount by which the value of a meteorological element differs from the normal value.
dependent surveillance. . Position determination requiring the cooperation of the tracked craft.
deperming., n. The process of changing the magnetic condition of a vessel by wrapping a large conductor around it a number of times in a vertical plane, athwartships, and energizing the coil thus formed. If a single coil is placed horizontally around the vessel and energized, the process is called FLASHING if the coil remains stationary, and WIPING if it is moved up and down. See also DEGAUSSING.
depressed pole. . The celestial pole below the horizon, of opposite name to the latitude. The celestial pole above the horizon is called ELEVATED POLE.
depression., n. 1. See NEGATIVE ALTITUDE. 2. A developing cyclonic area, or low pressure area.
depression angle. . See ANGLE OF DEPRESSION.
depth. , n. The vertical distance from a given water level to the sea bottom. The charted depth is the vertical distance from the tidal datum to the bottom. The least depth in the approach or channel to an area, such as a port or anchorage, governing the maximum draft of vessels that can enter is called the controlling depth. See also CHART SOUNDING DATUM.
depth contour. . A line connecting points of equal depth below the sounding datum. It may be called FATHOM CURVE or FATHOM LINE if depth is expressed in fathoms. Also called DEPTH CURVE, ISOBATH.
depth curve. . See DEPTH CONTOUR.
depth finder. . See ECHO SOUNDER.
depth of water. The vertical distance from the surface of the water to the bottom. See also SOUNDING.
depth perception. . The ability to estimate depth or distance between points in the field of vision.
derelict. , n. Any property abandoned at sea, often large enough to constitute a menace to navigation; especially an abandoned vessel. See also JETTISON, WRECK.
derived units. . See under INTERNATIONAL SYSTEM OF UNITS.
descending node. . The point at which a planet, planetoid, or comet crosses the ecliptic from north to south, or a satellite crosses the plane of the equator of its primary from north to south. Also called SOUTHBOUND NODE. The opposite is ASCENDING NODE.
destination. , n. The port of intended arrival. Also called POINT OF DESTINATION. See also POINT OF ARRIVAL.
detection., n. 1. The process of extracting information from an electromagnetic wave. 2. In the use of radar, the recognition of the presence of a target.
detritus. , n. An accumulation of the fragments resulting from the disintegration of rocks.
developable., adj. Capable of being flattened without distortion. The opposite is UNDEVELOPABLE.
developable surface. . A curved surface that can be spread out in a plane without distortion, e.g., the cone and the cylinder.
deviascope. , n. A device for demonstration of various forms of deviation and compass adjustment, or compass compensation.
deviation. , n. 1 . The angle between the magnetic meridian and the axis of a compass card, expressed in degrees east or west to indicate the direction in which the northern end of the compass card is offset from magnetic north. Deviation is caused by disturbing magnetic influences in the immediate vicinity of the compass. Semicircular deviation changes sign (E or W) approximately each 180° change of heading; quadrantal deviation changes sign approximately each 90° change of heading; constant deviation is the same on any heading. Deviation of a magnetic compass after adjustment or compensation is RESIDUAL DEVIATION. Called MAGNETIC DEVIATION when a distinction is needed to prevent possible ambiguity. 2. Given a series of observations or measurements of a given quantity, the deviation of a single observation is the algebraic difference between the single observation and the mean or average value of the series of observations. See also RANDOM ERROR.
deviation table. . A table of the deviation of a magnetic compass on various headings, magnetic or compass. Also called MAGNETIC COMPASS TABLE. See also NAPIER DIAGRAM.
dew point. . The temperature to which air must be cooled at constant pressure and constant water vapor content to reach saturation. Any further cooling usually results in the formation of dew or frost.
DGPS. . Differential Global Positioning System; a method of increasing the accuracy of GPS positions by transmitting corrections generated by precisely surveyed reference stations.
diagram on the plane of the celestial equator. . See TIME DIAGRAM.
diagram on the plane of the celestial meridian. . A theoretical orthographic view of the celestial sphere from a point outside the sphere and over the celestial equator. The great circle appearing as the outer limit is the local celestial meridian; other celestial meridians appear as ellipses. The celestial equator appears as a diameter 90° from the poles. Parallels of declination appear as straight lines parallel to the equator. The celestial horizon appears as a diameter 90° from the zenith.
diagram on the plane of the equinoctial. . See TIME DIAGRAM.
diameter. , n. Any chord passing through the center of a figure, as a circle, ellipse, sphere, etc., or the length of such chord. See also RADIUS.
diaphone., n. A sound signal emitter operating on the principle of periodic release of compressed air controlled by the reciprocating motion of a piston operated by compressed air. The diaphone usually emits a powerful sound of low pitch which often concludes with a brief sound of lowered pitch called the GRUNT. The emitted signal of a TWO-TONE DIAPHONE consists of two tones of different pitch, in which case the second tone is of lower pitch.
diaphragm horn. . A sound signal emitter comprising a resonant horn excited at its throat by impulsive emissions of compressed air regulated by an elastic diaphragm. Duplex or triplex horn units of different pitch produce a chime signal. Also called COMPRESSEDAIR HORN.
diatom., n. A microscopic alga with an external skeleton of silica, found in both fresh and salt water. Part of the ocean bed is composed of a sedimentary ooze consisting principally of large collections of the skeletal remains of diatoms.
dichroic mirror. A glass surface coated with a special metallic film that permits some colors of light to pass through the glass while reflecting certain other colors of light. Also called SEMIREFLECTING MIRROR.
dichroism. , n. The optical property of exhibiting two colors, as one color in transmitted light and another in reflected light. See also DICHROIC MIRROR.
dielectric reflector. . A device composed of dielectric material which returns the greater part of the incident electromagnetic waves parallel to the direction of incidence. See also RADAR REFLECTOR.
difference of latitude. . The shorter arc of any meridian between the parallels of two places, expressed in angular measure.
difference of longitude. . The smaller angle at the pole or the shorter arc of a parallel between the meridians of two places, expressed in angular measure.
difference of meridional parts. . See MERIDIONAL DIFFERENCE.
differential. . Relating to the technology of increasing the accuracy of an electronic navigation system by monitoring the system error from a known, fixed location and transmitting corrections to vessels using the system. Differential GPS is in operation. Differential Loran has been in an experimental phase.
differentiator. , n. See FAST TIME CONSTANT CIRCUIT.
diffraction., n. 1. The bending of the rays of radiant energy around the edges of an obstacle or when passing near the edges of an opening, or through a small hole or slit, resulting in the formation of a spectrum. See also REFLECTION REFRACTION. 2. The bending of a wave as it passes an obstruction.
diffuse ice edge. . A poorly defined ice edge limiting an area of dispersed ice. It is usually on the leeward side of an area of pack ice.
diffuse reflection. . A reflection process in which the reflected radiation is sent out in many directions usually bearing no simple relationship to the angle of incidence. It results from reflection from a rough surface with small irregularities. See also SPECULAR REFLECTION.
diffusion. , n. See DIFFUSE REFLECTION.
digit. , n. A single character representing an integer.
digital. . Referring to the use of discreet expressions to represent variables. See ANALOG.
digital calculator. . In navigation, a small electronic device which does arithmetical calculations by applying mathematical formulas (ALGORITHMS) to user-entered values. A navigational calculator has preloaded programs to solve navigational problems.
digital computer. . An electronic device larger and more sophisticated than a calculator which can operate a variety of software programs. In navigation, computers are used to run celestial sight reduction programs, tide computing programs, electronic chart programs, ECDIS, and for a number of other tasks in ship management.
digital nautical chart (DNC). . The electronic chart data base used in the U.S. Navy's NAVSSI.
digital selective calling (DSC). . A communications technique using coded digitized signals which allows transmitters and receivers to manage message traffic, accepting or rejecting messages according to certain variables.
digital tide gage. . See AUTOMATIC TIDE GAGE.
digitize. To convert analog data to digital data.
dihedral angle. . The angle between two intersecting planes.
dihedral reflector. . A radar reflector consisting of two flat surfaces intersecting mutually at right angles. Incident radar waves entering the aperture so formed with a direction of incidence perpendicular to the edge, are returned parallel to their direction of incidence. Also called RIGHT ANGLE REFLECTOR.
dike., n. A bank of earth or stone used to form a barrier, which restrains water outside of an area that is normally flooded. See LEVEE.
dioptric light. . A light concentrated into a parallel beam by means of refracting lenses or prisms. One so concentrated by means of a reflector is a CATOPTRIC LIGHT.
dip. , $n .1$. The vertical angle, at the eye of an observer, between the horizontal and the line of sight to the visible horizon. Altitudes of celestial bodies measured from the visible sea horizon as a reference are too great by the amount of dip. Since dip arises from and varies with the elevation of the eye of the observer above the surface of the earth, the correction for dip is sometimes called HEIGHT OF EYE CORRECTION. Dip is smaller than GEOMETRICAL DIP by the amount of terrestrial refraction. Also called DIP OF THE HORIZON. 2. The angle between the horizontal and the lines of force of the earth's magnetic field at any point. Also called MAGNETIC DIP, MAGNETIC LATITUDE, MAGNETIC INCLINATION. 3. The first detectable decrease in the altitude of a celestial body after reaching its maximum altitude on or near meridian transit.
dip. , $v ., i$. To begin to descend in altitude after reaching a maximum on or near meridian transit.
dip circle. . An instrument for measuring magnetic dip. It consists of a DIP NEEDLE, or magnetic needle, suspended in such manner as to be free to rotate about a horizontal axis.
dip correction. . The correction to sextant altitude due to dip of the horizon. Also called HEIGHT OF EYE CORRECTION.
dip needle. . A magnetic needle suspended so as to be free to rotate about a horizontal axis. An instrument using such a needle to measure magnetic dip is called a DIP CIRCLE. A dip needle with a sliding weight that can be moved along one of its arms to balance the magnetic force is called a HEELING ADJUSTER.
dip of the horizon. . See DIP, n., definition 1 .
dipole antenna. , n. A straight center-fed one-half wavelength antenna. Horizontally polarized it produces a figure eight radiation pattern, with maximum radiation at right angles to the plane of the antenna. Also called DOUBLET ANTENNA.
dip pole. . See as MAGNETIC DIP POLE.
dipsey lead. (led). See DEEP SEA LEAD.
direct indicating compass. . A compass in which the dial, scale, or index is carried on the sensing element.
direction., n. The position of one point in space relative to another without reference to the distance between them. Direction may be either three-dimensional or two-dimensional, the horizontal being the usual plane of the latter. Direction is not an angle but is often indicated in terms of its angular distance from a REFERENCE DIRECTION. Thus, a horizontal direction may be specified as compass, magnetic, true, grid or relative. A Mercator or rhumb direction is the horizontal direction of a rhumb line, expressed as angular distance from a reference direction, while great circle direction is the horizontal direction of a great circle, similarly expressed. See also CURRENT DIRECTION, SWELL DIRECTION, WAVE DIRECTION, WIND DIRECTION.
directional antenna. . An antenna designed so that the radiation pattern is largely concentrated in a single lobe.
directional gyro. . A gyroscopic device used to indicate a selected horizontal direction for a limited time.
directional gyro mode. . The mode of operation of a gyrocompass in which the compass operates as a free gyro with the spin axis oriented to grid north.
directional radiobeacon. . See under RADIOBEACON. Also see as COURSE BEACON.
direction finder. . See RADIO DIRECTION FINDER.
direction finder deviation. . The angular difference between a bearing observed by a radio direction finder and the correct bearing, caused by disturbances due to the characteristics of the receiving craft or station.
direction finder station. See RADIO DIRECTION FINDER STATION.
direction light. A light illuminating a sector of very narrow angle and intended to mark a direction to be followed. A direction light bounded by other sectors of different characteristics which define its margins with small angles of uncertainty is called a SINGLE STATION RANGE LIGHT.
direction of current. . The direction toward which a current is flowing, called the SET of the current.
direction of force of gravity. . The direction indicated by a plumb line. It is perpendicular (normal) to the surface of the geoid. Also called DIRECTION OF GRAVITY.
direction of gravity. . See DIRECTION OF FORCE OF GRAVITY.
direction of relative movement. . The direction of motion relative to a reference point, itself usually in motion.
direction of waves or swell. . The direction from which waves or swell are moving.
direction of wind. . The direction from which a wind is blowing.
directive force. . The force tending to cause the directive element of a compass to line up with the reference direction. Also, the value of this force. Of a magnetic compass, it is the intensity of the horizontal component of the earth's magnetic field.
directive gain. Four times the ratio of the radiation intensity of an antenna for a given direction to the total power radiated by the antenna. Also called GAIN FUNCTION.
directivity. , n. 1. The characteristic of an antenna which makes it radiate or receive more efficiently in some directions than in others. 2. An expression of the value of the directive gain of an antenna in the direction of its maximum gain. Also called POWER GAIN (OF AN ANTENNA).
directivity diagram. . See RADIATION PATTERN.
direct motion. . The apparent motion of a planet eastward among the stars. Apparent motion westward is called RETROGRADE MOTION. The usual motion of planets is direct.
directory. . A list of files in a computer.
direct wave., 1. A radio wave that travels directly from the transmitting to the receiving antenna without reflections from any object or layer of the ionosphere. The path may be curved as a result of refraction. 2. A radio wave that is propagated directly through space; it is not influenced by the ground. Also called SPACE WAVE.
discontinued., $a d j$. Said of a previously authorized aid to navigation that has been removed from operation (permanent or temporary).
discontinuity., n. 1. A zone of the atmosphere within which there is a comparatively rapid transition of any meteorological element. 2. A break in sequence of continuity of anything.
discrepancy., $n .1$. Failure of an aid to navigation to maintain its position or function exactly as prescribed in the Light List. 2. The difference between two or more observations or measurements of a given quantity.
discrepancy buoy. . An easily transportable buoy used to temporarily replace a buoy missing, damaged or otherwise not watching properly.
disk. A type of computer data storage which consists of a plastic or metallic disk which rotates to provide access to the stored data. Data is stored in discreet areas of the disk known as tracks and sectors.
Disk Operating System (DOS). . A collection of computer programs which enables an operator to use a computer.
dismal. , n. A swamp bordering on, or near the sea. Also called POCOSIN.
dispersion., n. The separation of light into its component colors by its passage through a diffraction grating or by refraction such as that provided by a prism.
display., n. 1 . The visual presentation of radar echoes or electronic charts. 2. The equipment for the visual display.
disposal area. Area designated by the Corps of Engineers for depositing dredged material where existing depths indicate that the intent is not to cause sufficient shoaling to create a danger to surface navigation. Disposal areas are shown on nautical charts. See also DUMPING GROUND, DUMP SITE, SPOIL AREA.
disposition of lights. . The arrangement, order, etc., of navigational lights in an area.
distance circles. . Circles concentric to the center of a formation of ships, designated by their radii in thousands of yards.
distance finding station. . An attended light station or lightship emitting simultaneous radio and sound signals as a means of determining distance from the source of sound, by measuring the difference in the time of reception of the signals. The sound may be transmitted through either air or water or both and either from the same location as the radio signal or a location remote from it. Very few remain in use.
distance of relative movement. . The distance traveled relative to a reference point, itself usually in motion.
distance resolution. . See RANGE RESOLUTION.
Distances Between Ports. . See PUB. 151.
Distances Between United States Ports. . A publication of the National Ocean Survey providing calculated distances in nautical miles over water areas between United States ports. A similar publication published by NIMA for foreign waters is entitled Distances Between Ports.
dithering., n. The introduction of digital noise intended to slightly degrade the accuracy of the civilian code in order to apply Selective Availability (SA).
diurnal., $a d j$. Having a period or cycle of approximately 1 day. The tide is said to be diurnal when only one high water and one low water occur during a tidal day, and the tidal current is said to be diurnal when there is a single flood and single ebb period in the tidal day. A rotary current is diurnal if it changes its direction through 360° once each tidal day. A diurnal constituent is one which has a single period in the constituent day. See also STATIONARY WAVE THEORY, TYPE OF TIDE.
diurnal aberration. See under ABERRATION definition 1.
diurnal age. . See AGE OF DIURNAL INEQUALITY.
diurnal circle. . The apparent daily path of a celestial body, approximating a PARALLEL OF DECLINATION.
diurnal current. Tidal current in which the tidal day current cycle consists of one flood current and one ebb current, separated by slack water; or a change in direction of 360° of a rotary current. A SEMIDIURNAL CURRENT is one in which two floods and two ebbs, or two changes of 360°, occur each tidal day.
diurnal inequality. . The difference in height of the two high waters or of the two low waters of each tidal day; the difference in speed between the two flood tidal currents or the two ebb tidal currents of each tidal day. The difference changes with the declination of the moon and to a lesser extent with declination of the sun. In general, the inequality tends to increase with an increasing declination, either north or south. Mean diurnal high water inequality is one-half
the average difference between the two high waters of each day observed over a specific 19-year Metonic cycle (the National Tidal Datum Epoch). It is obtained by subtracting the mean of all high waters from the mean of the higher high waters. Mean diurnal low water inequality is one-half the average difference between the two low waters of each day observed over a specific 19-year Metonic cycle (the National Tidal Datum Epoch). It is obtained by subtracting the mean of the lower low waters from the mean of all low waters. Tropic high water inequality is the average difference between the two high waters of the day at the times of the tropic tides. Tropic low water inequality is the average difference between the two low waters of the day at the times of the tropic tides. Mean and tropic inequalities as defined above are applicable only when the type of tide is either semidiurnal or mixed. Sometimes called DECLINATIONAL INEQUALITY.
diurnal motion. . The apparent daily motion of a celestial body.
diurnal parallax. . See GEOCENTRIC PARALLAX.
diurnal range. . See GREAT DIURNAL RANGE.
diurnal tide. . See under TYPE OF TIDE; DIURNAL, adj.
dive. , n. Submergence with one end foremost.
dive., $v ., i$. To submerge with one end foremost.
diverged beam. . See under FAN BEAM.
dividers. , n. An instrument consisting two pointed legs joined by a pivot, used principally for measuring distances or coordinates on charts. If the legs are pointed at both ends and provided with an adjustable pivot in the middle of the legs, the instrument is called proportional dividers. An instrument having one pointed leg and one leg carrying a pen or pencil is called COMPASSES.
D-layer. , n. The lowest of the ionized layers in the upper atmosphere, or ionosphere. It is present only during daylight hours, and its density is proportional to the altitude of the sun. The D-layer's only significant effect upon radio waves is its tendency to absorb their energy, particularly at frequencies below 3 megahertz. High angle radiation and signals of a frequency greater than 3 megahertz may penetrate the D-layer and be refracted or reflected by the somewhat higher Elayer.
dock. , n. 1. The slip or waterway between two piers, or cut into the land for the berthing of ships. A PIER is sometimes erroneously called a DOCK. Also called SLIP. See also JETTY; LANDING, definition 1; QUAY; WHARF. 2. A basin or enclosure for reception of vessels, provided with means for controlling the water level. A wet dock is one in which water can be maintained at various levels by closing a gate when the water is at the desired level. A dry dock is a dock providing support for a ship, and means of removing the water so that the bottom of the ship can be exposed. A dry dock consisting of an artificial basin is called a graving dock; one consisting of a floating structure is called a floating dock. 3. Used in the plural, a term used to describe area of the docks, wharves, basins, quays, etc.
dock. , $v ., t$. To place in a dock.
docking signals. . See TRAFFIC CONTROL SIGNALS.
dock sill. . The foundation at the bottom of the entrance to a dry dock or lock against which the caisson or gates close. The depth of water controlling the use of the dock or lock is measured from the sill to the surface.
dockyard. , n. British terminology. Shipyard.
doctor. , n. 1. A cooling sea breeze in the Tropics. 2. See HARMATTAN. 3. The strong southeast wind which blows on the south African coast. Usually called CAPE DOCTOR.
dog days. . The period of greatest heat in the summer.
doldrums. , n., pl. The equatorial belt of calms or light variable winds, lying between the two trade wind belts. Also called EQUATORIAL CALM S.
dolphin., n. A post or group of posts, used for mooring or warping a vessel. The dolphin may be in the water, on a wharf, or on the beach. See PILE DOLPHIN.
dome., n. A label on a nautical chart which indicates a large, rounded, hemispherical structure rising from a building or a roof.
dome-shaped iceberg. . A solid type iceberg with a large, round, smooth top.
doppler effect. . First described by Christian Johann Doppler in 1842, an effect observed as a frequency shift which results from relative motion between a transmitter and receiver or reflector of acoustic or electromagnetic energy. The effect on electromagnetic energy is used in doppler satellite navigation to determine an observer's position relative to a satellite. The effect on ultrasonic energy is used in doppler sonar speed logs to measure the relative motion between the vessel and the reflective sea bottom (for bottom return mode) or suspended particulate matter in the seawater itself (for volume reverberation mode). The velocity so obtained and integrated with respect to time is used in doppler sonar navigators to determine position with respect to a start point. The doppler effect is also used in docking aids which provide precise speed measurements. Also called DOPPLER SHIFT.
doppler navigation. . The use of the doppler effect in navigation. See also DOPPLER SONAR NAVIGATION, DOPPLER SATELLITE NAVIGATION.
doppler radar. . Any form of radar which detects radial motion of a distant object relative to a radar apparatus by means of the change of the radio frequency of the echo signal due to motion.
doppler satellite navigation. . The use of a navigation system which determines positions based on the doppler effect of signals received from an artificial satellite.
doppler shift. . See DOPPLER EFFECT.
doppler sonar navigation. . The use of the doppler effect observed as a frequency shift resulting from relative motion between a transmitter and receiver of ultrasonic energy to measure the relative motion between the vessel and the reflective sea bottom (for bottom return mode) or suspended particulate matter in the seawater itself (for volume reverberation mode) to determine the vessel's velocity. The velocity so obtained by a doppler sonar speed log may be integrated with respect to time to determine distance traveled. This integration of velocity with time is correlated with direction of travel in a doppler sonar navigator to determine position with respect to a start point. The doppler effect is also used in docking aids to provide precise speed measurements.
double., v., t. To travel around with a near reversal of course. See also ROUND.
double altitudes. . See EQUAL ALTITUDES.
double ebb. . An ebb tidal current having two maxima of speed separated by a lesser ebb speed.
double flood. . A flood tidal current having two maxima of speed separated by a lesser flood speed.
double interpolation. . Interpolation when there are two arguments or variables.
double sextant. . A sextant designed to enable the observer to simultaneously measure the left and right horizontal sextant angles of the three-point problem.
double stabilization. . See under STABILIZATION Of RADARSCOPE DISPLAY.
double star. . Two stars appearing close together. If they appear close because they are in nearly the same line of sight but differ greatly in distance from the observer, they are called an optical double star; if in nearly the same line of sight and at approximately the same distance from the observer, they are called a physical double star. If they revolve about their common center of mass, they are called a binary star.
double summer time. . See under SUMMER TIME.
doublet antenna. . See DIPOLE ANTENNA.
double tide. A high water consisting of two maxima of nearly the same height separated by a relatively small depression, or a low water consisting of two minima separated by a relatively small elevation. Sometimes called AGGER. See also GULDER.
doubling the angle on the bow. . A method of obtaining a running fix by measuring the distance a vessel travels on a steady course while the relative bearing (right or left) of a fixed object doubles. The distance from the object at the time of the second bearing is equal to the run between bearings, neglecting drift.
doubly stabilized. . See under STABILIZATION OF RADARSCOPE DISPLAY.
doubtful. , adj. Of questionable accuracy. APPROXIMATE or SECOND CLASS may be used with the same meaning.
doubtful sounding. . Of uncertain depth. The expression, as abbreviated, is used principally on charts to indicate a position where the depth may be less than indicated, the position not being in doubt.
down. , n. 1. See DUNE. 2. An area of high, treeless ground, usually undulating and covered with grass.
down by the head. . Having greater draft at the bow than at the stern. The opposite is DOWN BY THE STERN or BY THE STERN. Also called BY THE HEAD.
down by the stern. . Having greater draft at the stern than at the bow. The opposite is DOWN BY THE HEAD or BY THE HEAD. Also called BY THE STERN. See DRAG n., definition 3.
downstream. , adj. \& $a d v$. In the direction of flow of a current or stream. The opposite is UPSTREAM.
down-the-scope echo. . See CLASSIFICATION OF RADAR ECHOES.
downwind., $a d j$. \& $a d v$. In the direction toward which the wind is blowing. The term applies particularly to the situation of moving in this direction, whether desired or not. BEFORE THE WIND implies assistance from the wind in making progress in a desired direction. LEEWARD applies to the direction toward which the wind blows, without implying motion. The opposite is UPWIND.
draft. , n. The depth to which a vessel is submerged. Draft is customarily indicated by numerals called DRAFT MARKS at the bow and stern. It may also be determined by means of a DRAFT GAUGE.
draft gauge. . A hydrostatic instrument installed in the side of a vessel, below the light load line, to indicate the depth to which a vessel is submerged.
drafting machine. . See PARALLEL MOTION PROTRACTOR.
draft marks. . Numerals placed on the sides of a vessel, customarily at the bow and stern, to indicate the depth to which a vessel is submerged.
drag., n. 1. See SEA ANCHOR. 2. Short for WIRE DRAG. 3. The designed difference between the draft forward and aft when a vessel is down by the stern. See also TRIM, definition 1.4. The retardation of a ship when in shallow water. 5. Short for ATMOSPHERIC DRAG.
drag. , $v ., t$. 1 . To tow a line or object below the surface, to determine the least depth in an area or to insure that a given area is free from navigational dangers to a certain depth. DRAG and SWEEP have nearly the same meanings. DRAG refers particularly to the location of obstructions, or the determination that obstructions do not exist. SWEEP may include, additionally, the removal of any obstructions located. 2. To pull along the bottom, as in dragging anchor.
dragging. , n. 1. The process of towing a wire or horizontally set bar below the surface, to determine the least depth in an area or to insure that a given area is free from navigational dangers to a certain depth. 2 . The process of pulling along the bottom, as in dragging anchor.
draw., v., i. 1. To be immersed to a specified draft. 2. To change relative bearing forward or aft, or to port or starboard.
dredge., n. A vessel used to dredge an area.
dredge. , v., t. To remove solid matter from the bottom of a water area.
dredging area. . An area where dredging vessels may be encountered dredging material for construction. Channels dredged to provide an adequate depth of water for navigation are not considered as dredging areas.
dredging buoy. . A buoy marking the limit of an area where dredging is being performed. See also SPOIL GROUND BUOY.
dried ice. . Sea ice from the surface of which meltwater has disappeared after the formation of cracks and thaw holes. During the period of drying, the surface whitens.
drift. , n. 1. The speed of a current as defined in CURRENT, definition 1. 2. The speed of the current as defined in CURRENT, definition 2. 3. The distance a craft is moved by current and wind. 4. Downwind or downcurrent motion of airborne or waterborne objects due to wind or current. 5. Material moved from one place and deposited in another, as sand by a river, rocks by a glacier, material washed ashore and left stranded, snow or sand piled up by wind. Rock material deposited by a glacier is also called ERRATIC. 6. The horizontal component of real precession or apparent precession, or the algebraic sum of the two. When it is desired to differentiate between the sum and its components, the sum is called total drift.
drift. , $v ., i$. To move by action of wind or current without control. drift angle. 1. The angle between the tangent-to the turning circle and the centerline of the vessel during a turn. 2. The angular difference between a vessel's ground track and the water track. See also LEEWAY ANGLE.
drift axis. . On a gyroscope, the axis about which drift occurs. In a directional gyro with the spin axis mounted horizontally the drift axis is the vertical axis. See also SPIN AXIS, TOPPLE AXIS.
drift bottle. . An identifiable float allowed to drift with ocean currents to determine their sets and drifts.
drift current. . A wide, slow-moving ocean current principally caused by prevailing winds.
drifting snow. . Snow raised from the ground and carried by the wind to such a height that the horizontal visibility is considerably reduced but the vertical visibility is not materially diminished. The expression BLOWING SNOW is used when both the horizontal and vertical visibility are considerably reduced.
drift lead. . A lead placed on the bottom to indicate movement of a vessel. At anchor the lead line is usually secured to the rail with a little slack and if the ship drags anchor, the line tends forward. A drift lead is also used to indicate when a vessel coming to anchor is dead in the water or when it is moving astern. A drift lead can be used to indicate current if a ship is dead in the water.
drilling rig. . A term used solely to indicate a mobile drilling structure. A drilling rig is not charted except in the rare cases where it is converted to a permanent production platform.
drizzle., n. Very small, numerous, and uniformly dispersed water drops that may appear to float while following air currents. Unlike fog droplets, drizzle falls to the ground. It usually falls from low stratus clouds and is frequently accompanied by low visibility and fog. See also MIST.
drogue., n. 1. See SEA ANCHOR. 2. A current measuring assembly consisting of a weighted parachute and an attached surface buoy.
drought., n. A protracted period of dry weather.
droxtal. , n. A very small ice particle (about 10 to 20 microns in diameter) formed by the direct freezing of supercooled water droplets at temperatures below $-30^{\circ} \mathrm{C}$. Droxtals cause most of the restriction to visibility in ice fog.
dry-bulb temperature. . The temperature of the air, as indicated by the dry-bulb thermometer of a psychrometer.
dry-bulb thermometer. . A thermometer with an uncovered bulb, used with a wet-bulb thermometer to determine atmosphere humidity. The two thermometers constitute the essential parts of a PSYCHROMETER.
dry compass. . A compass without a liquid-filled bowl, particularly a magnetic compass having a very light compass card. Such a magnetic compass is seldom, if ever, used in marine applications. See also LIQUID COMPASS.
dry dock. A dock providing support for a vessel, and means for removing the water so that the bottom of the vessel can be exposed. A dry dock consisting of an artificial basin is called a graving dock; one consisting of a floating structure is called a floating dock. See also MARINE RAILWAY.
dry-dock. , $v ., t$. To place in a dry dock.
drydock iceberg. . An iceberg eroded in such manner that a large U shaped slot is formed with twin columns. The slot extends into or near the waterline.
dry fog. . A fog that does not moisten exposed surfaces.
dry harbor. . A small harbor which either dries at low water or has insufficient depths to keep vessels afloat during all states of the tide. Vessels using it must be prepared to take the ground on the falling tide.
dry haze. . See under HAZE.
drying heights. . Heights above chart sounding datum of those features which are periodically covered and exposed by the rise and fall of the tide.
dual-carrier radiobeacon. . A continuous carrier radiobeacon in which identification is accomplished by means of a keyed second carrier. The frequency difference between the two carriers is made equal to the desired audio frequency. The object of the system is to reduce the bandwidth of the transmission.
dual-rate blanking. . To provide continuous service from one Loran C chain to the next, some stations are operated as members of two chains and radiate signals at both rates. Such a station is faced periodically with an impossible requirement to radiate two overlapping pulse groups at the same time. During the time of overlap, the subordinate signal is blanked or suppressed. Blanking is accomplished in one of two ways: priority blanking in which case one rate is always superior or alternate blanking in which case the two rates alternate in the superior and subordinate roll.
duct. , n. See as TROPOSPHERIC RADIO DUCT.
dumb compass. . See PELORUS.
dummy antenna. . A substantially non-radiating device used to simulate an antenna with respect to input impedance over some specified range of frequencies. Also called ARTIFICIAL ANTENNA.
dumping ground. . An area used for the disposal of dredge spoil. Although shown on nautical charts as dumping grounds in United States waters, the Federal regulations for these areas have been revoked and their use for dumping discontinued. These areas will continue to be shown on nautical charts until they are no longer considered to be a danger to navigation. See also DUMP SITE, SPOIL AREA, DISPOSAL AREA.
dump site. . Area established by Federal regulation in which dumping of dredged and fill material and other nonbuoyant objects is allowed with the issuance of a permit. Dump sites are shown on nautical charts. See also DISPOSAL AREA, DUMPING GROUND, SPOIL AREA.
dune., n. A mound ridge, or hill of sand piled up by the wind on the shore or in a desert. Also called SAND DUNE.
duplex. . Concurrent transmission and reception of radio signals, electronic data, or other information.
duplexer., n. A device which permits a single antenna system to be used for both transmitting and receiving.
duration of flood, duration of ebb. . Duration of flood is the interval of time in which a tidal current is flooding, and the duration of ebb is the interval in which it is ebbing; these intervals being reckoned from the middle of the intervening slack waters or minimum currents. Together they cover, on an average, a period of 12.42 hours for a semidiurnal tidal current or a period of 24.84 hours for a diurnal current. In a normal semidiurnal tidal current, the duration of flood and duration of ebb will each be approximately equal to 6.21 hours, but the times may be modified greatly by the presence of a nontidal flow. In a river the duration of ebb is usually longer than the duration of flood because of the fresh water discharge, especially during the spring months when snow and ice melt are the predominant influences. See also DURATION OF RISE, DURATION OF FALL.
duration of rise, duration of fall. . Duration of rise is the interval from low water to high water, and duration of fall is the interval from high water to low water. Together they cover, on an average, a period of 12.42 hours for a semidiurnal tide or a period of 24.84 hours for a diurnal tide. In a normal semidiurnal tide, the duration of' rise and duration of fall will each be approximately equal to 6.21 hours, but in shallow waters and in rivers there is a tendency for a decrease in the duration of rise and a corresponding increase in the duration of fall. See also DURATION OF FLOOD, DURATION OF EBB.
dusk., n. The darker part of twilight; that part of twilight between complete darkness and the darker limit of civil twilight, both morning and evening.
dust devil. . A well-developed dust whirl, a small but vigorous whirlwind, usually of short duration, rendered visible by dust, sand, and debris picked up from the ground. Diameters of dust devils range from about 10 feet to greater than 100 feet; their average height is about 600 feet, but a few have been observed as high as several thousand feet. They have been observed to rotate anticyclonically as well as cyclonically. Dust devils are best developed on a hot, calm afternoon with clear skies, in a dry region when intense surface heating causes a very steep lapse rate of temperature in the lower few hundred feet of the atmosphere.
dust storm. , n. An unusual, frequently severe weather condition characterized by strong winds and dust-filled air over an extensive area. Prerequisite to a dust storm is a period of drought over an area of normally arable land, thus providing very fine particles of dust which distinguish it from the much more common SANDSTORM.
dust whirl. . A rapidly rotating column of air (whirlwind) over a dry and dusty or sandy area, carrying dust, leaves, and other light material picked up from the ground. When well developed it is called DUST DEVIL.
Dutchman's log. . A buoyant object thrown overboard to determine the speed of a vessel. The time required for a known length of the vessel to pass the object is measured.
duty cycle. . An expression of the fraction of the total time of pulse radar that radio-frequency energy is radiated. It is the ratio of pulse length to pulse repetition time.
dynamical mean sun. . A fictitious sun conceived to move eastward along the ecliptic at the average rate of the apparent sun. The dynamical mean sun and the apparent sun occupy the same position when the earth is at perihelion in January. See also MEAN SUN.
dyne. , n. A force which imparts an acceleration of 1 centimeter per second to a mass of 1 gram. The dyne is the unit of force in the centimeter-gram-second system. It corresponds to 10^{-5} newton in the International System of Units.

E

earth-centered ellipsoid. . A reference ellipsoid whose geometric center coincides with the earth's center of gravity and whose semiminor axis coincides with the earth's rotational axis.
earth-fixed coordinate system. . Any coordinate system in which the axes are stationary with respect to the earth. See also INERTIAL COORDINATE SYSTEM.
earthlight., n. The faint illumination of the dark part of the moon by sunlight reflected from the earth. Also called EARTHSHINE.
earth rate. . The angular velocity or rate of the earth's rotation. See also EARTH-RATE CORRECTION, HORIZONTAL EARTH RATE, VERTICAL EARTH RATE.
earth-rate correction. . A rate applied to a gyroscope to compensate for the apparent precession of the spin axis caused by the rotation of the earth. See also EARTH RATE, HORIZONTAL EARTH RATE, VERTICAL EARTH RATE.
earth satellite. . A body that orbits about the earth. See also ARTIFICIAL EARTH SATELLITE.
earthshine. , n. See EARTHLIGHT.
earth tide. .Periodic movement of the earth's crust caused by the gravitational interactions between the sun, moon, and earth.
east. , n. The direction 90° to the right of north. See also CARDINAL POINT.
East Africa Coastal Current. . An Indian Ocean current which originates mainly from the part of the Indian South Equatorial Current which turns northward off the northeast coast of Africa in the vicinity of latitude $10^{\circ} \mathrm{S}$. The current appears to vary considerably in speed and direction from month to month. The greatest changes coincide with the period of the opposing northeast monsoon during November through March. This coastal current is most persistent in a north or northeast direction and strongest during the southwest monsoon from May through September, particularly during August. Speed and frequency begin to decrease during the transition month of October. In November at about latitude $4^{\circ} \mathrm{N}$ a part of the current begins to reverse; this part expands northward and southward until February. The region of reverse flow begins to diminish in March and disappear in April, when the northward set again predominates. Also called SOMALI CURRENT. See also MONSOON.
East Australia Current. . A South Pacific Ocean current flowing southward along the east coast of Australia, from the Coral Sea to a point northeast of Tasmania, where it turns to join the northeastward flow through the Tasman Sea. It is formed by that part of the Pacific South Equatorial Current that turns south east of Australia. In the southern hemisphere summer, a small part of this current flows westward along the south coast of Australia into the Indian Ocean. The East Australia Current forms the western part of the general counterclockwise oceanic circulation of the South Pacific Ocean.
eastern standard time. . See STANDARD TIME.

East Greenland Current. . An ocean current flowing southward along the east coast of Greenland carrying water of low salinity and low temperature. The East Greenland Current is joined by most of the water of the Irminger Current. The greater part of the current continues through Denmark Strait between Iceland and Greenland, but one branch turns to the east and forms a portion of the counterclockwise circulation in the southern part of the Norwegian Sea. Some of the East Greenland Current curves to the right around the tip of Greenland, flowing northward into Davis Strait as the WEST GREENLAND CURRENT. The main discharge of the Arctic Ocean is via the East Greenland Current.
easting. , n. The distance a craft makes good to the east. The opposite is WESTING.
East Siberian Coastal Current. . An ocean current in the Chukchi Sea which joins the northward flowing Bering Current north of East Cape.
ebb. , n. Tidal current moving away from land or down a tidal stream. The opposite is FLOOD. Sometimes the terms EBB and FLOOD are also used with reference to vertical tidal movement, but for this vertical movement the expressions FALLING TIDE and RISING TIDE are preferable. Also called EBB CURRENT.
ebb axis. . The average direction of current at strength of ebb.
ebb current. . The movement of a tidal current away from shore or down a tidal river or estuary. In the mixed type of reversing tidal current, the terms greater ebb and lesser ebb are applied respectively to the ebb tidal currents of greater and lesser speed of each day. The terms maximum $e b b$ and minimum $e b b$ are applied to the maximum and minimum speeds of a current running continuously. The expression maximum ebb is also applicable to any ebb current at the time of greatest speed. The opposite is FLOOD CURRENT.
ebb interval. . Short for STRENGTH OF EBB INTERVAL. The interval between the transit of the moon over the meridian of a place and the time of the following strength of ebb. See also LUNICURRENT INTERVAL
ebb strength. . Phase of the ebb tidal current at the time of maximum velocity. Also, the velocity at this time. Also called STRENGTH OF EBB.
eccentric. , adj. Not having the same center. The opposite is CONCENTRIC.
eccentric angle. . See under ANOMALY, definition 2.
eccentric anomaly. . See under ANOMALY, definition 2.
eccentric error. . See CENTERING ERROR.
eccentricity. , n. 1. Degree of deviating from a center. 2. The ratio of the distance between foci of an ellipse to the length of the major axis, or the ratio of the distance between the center and a focus to the length of the semimajor axis. 3. The ratio of the distances from any point of a conic section to a focus and the corresponding directrix.
eccentricity component. . That part of the equation of time due to the ellipticity of the orbit and known as the eccentricity component is the difference, in mean solar time units, between the hour angles of the apparent (true) sun and the dynamical mean sun. It is also the difference in the right ascensions of these two suns.
echo. , n. 1. A wave which has been reflected or otherwise returned with sufficient magnitude and delay to be perceived. 2 . A signal reflected by a target to a radar antenna. Also called RETURN. 3 . The deflection or indication on a radarscope representing a target. Also called PIP, BLIP, RETURN.
echo box. . A resonant cavity, energized by part of the transmitted pulse of a radar set, which produces an artificial target signal for tuning or testing the overall performance of a radar set. Also called PHANTOM TARGET.
echo box performance monitor. . See under PERFORMANCE MONITOR.
echogram., n. A graphic record of depth measurements obtained by an echo sounder. See also FATHOGRAM.
echo ranging. . The determination of distance by measuring the time interval between transmission of a radiant energy signal and the return of its echo. Since echo ranging equipment is usually provided with means for determining direction as well as distance, both functions are generally implied. The expression is customarily applied only to ranging by utilization of the travel of sonic or ultrasonic signals through water. See also RADIO ACOUSTIC RANGING, SONAR.
echo sounder. . An instrument used to determine water depth by measuring the time interval for sound waves to go from a source of sound near the surface to the bottom and back again. Also called DEPTH FINDER, ACOUSTIC DEPTH FINDER.
echo sounding. . Determination of the depth of water by measuring the time interval between emission of a sonic or ultrasonic signal and the return of its echo from the bottom. The instrument used for this purpose is called an ECHO SOUNDER. Also called ACOUSTIC SOUNDING.
eclipse. , n. 1. Obscuring of a source of light by the intervention of an object. When the moon passes between the earth and the sun, casting a shadow on the earth, a solar eclipse takes place within the shadow. When the moon enters the earth's shadow, a lunar eclipse occurs. When the moon enters only the penumbra of the earth's shadow, a penumbral lunar eclipse occurs. A solar eclipse is partial if the sun is partly obscured and total if the entire surface is obscured; or annular if a thin ring of the sun's surface appears around the obscuring body. A lunar eclipse can be either total or partial. 2. An interval of darkness between flashes of a navigation light.
eclipse year. . The interval between two successive conjunctions of the sun with the same node of the moon's orbit, averaging 346 days, 14 hours, 52 minutes 50.7 seconds in 1900, and increasing at the rate of 2.8 seconds per century.
ecliptic. , n. The apparent annual path of the sun among the stars; the intersection of the plane of the earth's orbit with the celestial sphere. This is a great circle of the celestial sphere inclined at an angle of about $23^{\circ} 27^{\prime}$ to the celestial equator. See also ZODIAC.
ecliptic diagram. . A diagram of the zodiac, indicating the positions of certain celestial bodies in this region.
ecliptic pole. . On the celestial sphere, either of the two points 90° from the ecliptic.
ecliptic system of coordinates. . A set of celestial coordinates based on the ecliptic as the primary great circle; celestial latitude and celestial longitude.
eddy., n. A quasi-circular movement of water whose area is relatively small in comparison to the current with which it is associated. Eddies may be formed between two adjacent currents flowing counter to each other and where currents pass obstructions, especially on the downstream side. See also WHIRLPOOL.
effective radiated power. . The power supplied to the antenna multiplied by the relative gain of the antenna in a given direction.
effective radius of the earth. . The radius of a hypothetical earth for which the distance to the radio horizon, assuming rectilinear propagation, is the same as that for the actual earth with an assumed uniform vertical gradient of a refractive index. For the standard atmosphere, the effective radius is $4 / 3$ that of the actual earth.
Ekman spiral. . A logarithmic spiral (when projected on a horizontal plane) formed by current velocity vectors at increasing depth intervals. The current vectors become progressively smaller with depth. They spiral to the right (looking in the direction of flow) in the Northern Hemisphere and to the left in the Southern with increasing depth. Theoretically, the surface current vector sets 45° from the direction toward which the wind is blowing. Flow opposite to the surface current occurs at the depth of frictional resistance. The phenomenon occurs in wind drift currents in which only the Coriolis and frictional forces are significant. Named for Vagn Walfrid Ekman who, assuming a constant eddy viscosity, steady wind stress, and unlimited depth and extent, published the effect in 1905.
E-layer. , n. From the standpoint of its effect upon radio wave propagation, the lowest useful layer of the Kennelly-Heaviside radiation region. Its average height is about 70 miles, and its density is greatest about local apparent noon. For practical purposes, the layer disappears during the hours of darkness.
elbow. , n. A sharp change in direction of a coast line, a channel, river, etc. electrical distance. . A distance expressed in terms of the duration of travel of an electromagnetic wave in a given medium between two points.
electrically suspended gyro. . A gyroscope in which the main rotating element is suspended by a magnetic field or any other similar electrical phenomenon. See also GYRO, ELECTROSTATIC GYRO.
electrical storm. . See THUNDERSTORM.
electric field. . That region in space which surrounds an electrically charged object and in which the forces due to this charge are detectable. See also ELECTRIC VECTOR.
electric tape gage. . A tide gage consisting of a monel metal tape on a metal reel (with supporting frame), voltmeter, and battery. The tape is graduated with numbers increasing toward the unattached end. Tidal heights can be measured directly by unreeling the tape into its stilling well. When contact is made with the water's surface, the circuit is completed and the voltmeter needle moves. At that moment, the length of tape is read against an index mark, the mark having a known elevation relative to the tidal bench marks. Used at many long term control stations in place of the tide staff.
electric vector. . The component of the electromagnetic field associated with electromagnetic radiation which is of the nature of an electric field. The electric vector is considered to coexist with, but to act at right angles to, the magnetic vector.
electrode., n. A terminal at which electricity passes from one medium into another. The positive electrode is called the anode; the negative electrode is called the cathode.
electromagnetic., $a d j$. Of, pertaining to, or produced by electromagnetism.
electromagnetic energy. . All forms of radiant energy, such as radio waves, light waves, X-rays, heat waves, gamma rays, and cosmic rays.
electromagnetic field. . 1. The field of influence which an electric current produces around the conductor through which it flows. 2. A rapidly moving electric field and its associated magnetic field located at right angles to both electric lines of force and to their direction of motion. 3. The magnetic field resulting from the flow of electricity.
electromagnetic log. . A log containing an electromagnetic sensing element extended below the hull of the vessel, which produces a voltage directly proportional to speed through the water.
electromagnetic waves. . Waves of associated electric and magnetic fields characterized by variations of the fields. The electric and magnetic fields are at right angles to each other and to the direction of propagation. The waves are propagated at the speed of light and are known as radio (Hertzian) waves, infrared rays, light, ultraviolet rays, X-rays, etc., depending on their frequencies.
electromagnetism. , n. 1. Magnetism produced by an electric current. 2. The science dealing with the physical relations between electricity and magnetism.
electron. , n. A negatively-charged particle of matter constituting a part of an atom. Its electric charge is the most elementary unit of negative electricity.
electron gun. . A group of electrodes which produces an electron beam of controllable intensity. By extension, the expression is often used to include, also, the elements which focus and deflect the beam.
electronic aid to navigation. . An aid to navigation using electronic equipment. If the navigational information is transmitted by radio waves, the device may be called a RADIO AID TO NAVIGATION.
electronic bearing cursor. . The bright rotatable radial line on the display of a marine radar set, used for bearing determination.
electronic chart (EC). . A chart displayed on a video terminal, usually integrated with other navigational aids.
electronic chart data base (ECDB). . The master electronic chart data base for the electronic navigation chart held in digital form by the hydrographic authority.
electronic chart display and information system (ECDIS). . An electronic chart system which complies with IMO guidelines and is the legal equivalent of a paper chart.
electronic navigation chart (ENC). . The standardized electronic data base, a subset of the ECDB, issued by a hydrographic authority for use with an ECDIS.
electronic cursor. . Short for ELECTRONIC BEARING CURSOR.
electronic distance measuring devices. . Instruments that measure the phase differences between transmitted and reflected or retransmitted electromagnetic waves of known frequency, or that measure the round-trip transit time of a pulsed signal, from which distance is computed.
electronic navigation. . Navigation by means of electronic equipment. The expression ELECTRONIC NAVIGATION is more inclusive than RADIONAVIGATION, since it includes navigation involving any electronic device or instrument.
electronics. , n. The science and technology relating to the emission, flow, and effects of electrons in a vacuum or through a semiconductor such as a gas, and to systems using devices in which this action takes place.
electronic telemeter. . An electronic device that measures the phase difference or transit time between a transmitted electromagnetic impulse of known frequency and speed and its return.
electrostatic gyro. . A gyroscope in which a small ball rotor is electrically suspended within an array of electrodes in a vacuum inside a ceramic envelope. See also GYRO, ELECTRICALLY SUSPENDED GYRO.
elements of a fix. . The specific values of the coordinates used to define a position.
elephanta. , n. A strong southerly or southeasterly wind which blows on the Malabar coast of India during the months of September and October and marks the end of the southwest monsoon.
elevated duct. . A tropospheric radio duct of which the lower boundary is above the surface of the earth.
elevated pole. . The celestial pole above the horizon, agreeing in name with the latitude. The celestial pole below the horizon is called DEPRESSED POLE.
elevation. , n. 1. Vertical distance of a point above a datum, usually mean sea level. Elevation usually applies to a point on the surface of the earth. The term HEIGHT is used for points on or above the surface. See also SPOT ELEVATION. 2. An area higher than its surroundings, as a hill.
elevation angle. . See ANGLE OF ELEVATION.
elevation tints. . See HYPSOMETRIC TINTING.
elimination., n. One of the final processes in the harmonic analysis of tides in which preliminary values of the harmonic constants of a number of constituents are cleared of residual effects of each other.
E-link. . A bracket attached to one of the arms of a binnacle to permit the mounting of a quadrantal corrector in an intermediate position between the fore-and-aft and athwartship lines through a magnetic compass.
ellipse., n. A plane curve constituting the locus of all points the sum of whose distances from two fixed points called FOCI is constant; an elongated circle. The orbits of planets, satellites, planetoids, and comets are ellipses with the center of attraction at one focus. See also CONIC SECTION, CURRENT ELLIPSE.
ellipsoid., n. A surface whose plane sections (cross-sections) are all ellipses or circles, or the solid enclosed by such a surface. Also called ELLIPSOID OF REVOLUTION, SPHEROID.
ellipsoidal height. . The height above the reference ellipsoid, measured along the ellipsoidal outer normal through the point in question. Also called GEODETIC HEIGHT.
ellipsoid of reference. . See REFERENCE ELLIPSOID.
ellipsoid of revolution. . A term used for an ellipsoid which can be formed by revolving an ellipse about one of its axes. Also called ELLIPSOID OF ROTATION.
ellipsoid of rotation. . See ELLIPSOID OF REVOLUTION.
elliptically polarized wave. . An electromagnetic wave which can be resolved into two plane polarized waves which are perpendicular to each other and which propagate in the same direction. The amplitudes of the waves may be equal or unequal and of arbitrary timephase. The tip of the component of the electric field vector in the plane normal to the direction of propagation describes an ellipse. See also CIRCULARLY POLARIZED WAVE.
ellipticity., n. The amount by which a spheroid differs from a sphere or an ellipse differs from a circle, found by dividing the difference in the lengths of the semiaxes of the ellipse by the length of the semimajor axis. See also FLATTENING.
elongation., n. The angular distance of a body of the solar system from the sun; the angle at the earth between lines to the sun and another celestial body of the solar system. The greatest elongation is the maximum angular distance of an inferior planet from the sun before it starts back toward conjunction. The direction of the body east or west of the sun is usually specified, as greatest elongation east (or west).
embayed., $a d j$. 1 . Formed into or having bays. 2. Unable to put to sea safely because of wind, current, or sea conditions.
embayment., n. Any indentation of a coast regardless of width at the entrance or depth of penetration into the land. See also ESTUARY.
emergency light. . A light put into service in an emergency when the permanent or standby light has failed. It often provides reduced service in comparison with the permanent light.
Emergency Position Indicating Radiobeacon. . A small portable radiobeacon carried by vessels and aircraft which transmits radio signals which can be used by search and rescue authorities to locate a marine emergency.
emergency position indicating radiobeacon station. . As defined by the International Telecommunication Union (ITU), a station in the mobile service whose emissions are intended to facilitate search and rescue operations.
emission delay. . 1. A delay in the transmission of a pulse signal from a slave (or secondary) station of a hyperbolic radionavigation system, introduced as an aid in distinguishing between master and slave (or secondary) station signals. 2. In Loran C the time interval between the master station's transmission and the secondary station's transmission in the same group repetition interval (GRI). The GRI is selected of sufficient duration to provide time for each station to transmit its pulse group and additional time between each pulse group so that signals from two or more stations cannot overlap in time anywhere within the coverage area. In general, emission delays are kept as small as possible to allow the use of the smallest GRI.
empirical. , $a d j$. Derived by observation or experience rather than by rules or laws.
endless tangent screw. . A tangent screw which can be moved over its entire range without resetting.
endless tangent screw sextant. . A marine sextant having an endless tangent screw for controlling the position of the index arm and the vernier or micrometer drum. The index arm may be moved over the entire arc without resetting, by means of the endless tangent screw.
enhanced group call (EGC). . A global automated satellite communications service capable of addressing messages to specific areas or specific groups of vessels.
entrance., n. The seaward end of channel, harbor, etc.
entrance lock. . A lock between the tideway and an enclosed basin when their water levels vary. By means of the lock, which has two sets of gates vessels can pass either way at all states of the tide. Also called TIDAL LOCK. See also NONTIDAL BASIN.
envelope match. . In Loran C, the comparison, in time difference, between the leading edges of the demodulated and filtered pulses from a master and secondary station. The pulses are superimposed and matched manually or automatically. See also CYCLE MATCH.
envelope to cycle difference. . The time relationship between the phase of the Loran C carrier and the time origin of the envelope waveform. Zero envelope to cycle difference (ECD) is defined as the signal condition occurring when the 30 microsecond point of the Loran C pulse envelope is in time coincidence with the third positive-going zero crossing of the 100 kHz carrier.
envelope to cycle discrepancy. . An error in a Loran C time difference measurement which results from upsetting the precise relationship between the shape of the pulse envelope and the phase of the carrier wave necessary for an accurate measurement due to some of the large number of frequencies $(90-110 \mathrm{kHz})$ governing the envelope shape being transmitted more readily than others because of the medium over which the groundwave propagates.
ephemeris.(pl. ephemerides), n. 1. A periodical publication tabulating the predicted positions of celestial bodies at regular intervals, such as daily, and containing other data of interest to astronomers and navigators. The Astronomical Almanac is an ephemeris. See also ALMANAC. 2. A statement, not necessarily in a publication, presenting a correlation of time and position of celestial bodies or artificial satellites.
ephemeris day. . See under EPHEMERIS SECOND.
ephemeris second. The ephemeris second is defined as $1 / 31,556,925.9747$ of the tropical year for 1900 January $0^{d} 12^{h}$ ET. The ephemeris day is 86,400 ephemeris seconds. See also EPHEMERIS TIME.
Ephemeris Time. . The time scale used by astronomers as the tabular argument of the precise fundamental ephemerides of the sun, moon and planets. It is the independent variable in the gravitational
theories of the solar system. It is determined in arrears from astronomical observations and extrapolated into the future, based on International Atomic Time.
epicenter. , n. The point on the earth's surface directly above the focus of an earthquake.
epoch. , n. 1. A particular instant of time or a date for which values of data, which vary with time, are given. 2. A given period of time during which a series of related acts or events takes place. 3. Angular retardation of the maximum of a constituent of the observed tide behind the corresponding maximum of the same constituent of the hypothetical equilibrium. Also called PHASE LAG, TIDAL EPOCH. 4. As used in tidal datum determinations, a 19-year Metonic cycle over which tidal height observations are meaned in order to establish the various datums.
equal altitudes. . Two altitudes numerically the same. The expression applies particularly to the practice of determining the instant of local apparent noon by observing the altitude of the sun a short time before it reaches the meridian and again at the same altitude after transit, the time of local apparent noon being midway between the times of the two observations, if the second is corrected as necessary for the run of the ship. Also called DOUBLE ALTITUDES.
equal-area map projection. . A map projection having a constant area scale. Such a projection is not conformal and is not used for navigation. Also called AUTHALIC MAP PROJECTION, EQUIVALENT MAP PROJECTION.
equal interval light. . A navigation light having equal periods of light and darkness. Also called ISOPHASE LIGHT.
equation of time. . The difference at any instant between apparent time and local mean time. It is a measure of the difference of the hour angles of the apparent (true) sun and the mean (fictitious) sun. The curve drawn for the equation of time during a year has two maxima: February $12\left(+14.3^{\mathrm{m}}\right)$ and July $27\left(+6.3^{\mathrm{m}}\right)$ and two minima: May $15\left(-3.7^{\mathrm{m}}\right)$ and November $4\left(-16.4^{\mathrm{m}}\right)$. The curve crosses the zero line on April 15, June 14, September 1, and December 24. The equation of time is tabulated in the Nautical Almanac, without sign, for 00^{h} and 12^{h} GMT on each day. To obtain apparent time, apply the equation of time to mean time with a positive sign when GHA sun at 00^{h} GMT exceeds 180°, or at 12^{h} exceeds 0°, corresponding to a meridian passage of the sun before $12^{\mathrm{h}} \mathrm{GMT}$; otherwise apply with a negative sign.
equator., n. The primary great circle of a sphere or spheroid, such as the earth, perpendicular to the polar axis, or a line resembling or approximating such a circle. The terrestrial equator is 90° from the earth's geographical poles, the celestial equator or equinoctial is 90° from the celestial poles. The astronomical equator is a line connecting points having 0° astronomical latitude, the geodetic equator connects points having 0° geodetic latitude. The expression terrestrial equator is sometimes applied to the astronomical equator. The equator shown on charts is the geodetic equator. A fictitious equator is a reference line serving as the origin for measurement of fictitious latitude. A transverse or inverse equator is a meridian the plane of which is perpendicular to the axis of a transverse projection. An oblique equator is a great circle the plane of which is perpendicular to the axis of an oblique projection. A grid equator is a line perpendicular to a prime grid meridian at the origin. The magnetic equator or aclinic line is the line on the surface of the earth connecting all points at which the magnetic dip is zero. The geomagnetic equator is the great circle 90° from the geomagnetic poles of the earth.
equatorial., $a d j$. Of or pertaining to the equator.
equatorial air. . See under AIR-MASS CLASSIFICATION.
equatorial bulge. . The excess of the earth's equatorial diameter over the polar diameter.
equatorial calms. . See DOLDRUMS.
equatorial chart. . 1. A chart of equatorial areas. 2. A chart on an equatorial map projection.
equatorial countercurrent. . An oceanic current flowing between and counter to the EQUATORIAL CURRENTS. See ATLANTIC EQUATORIAL COUNTERCURRENT, PACIFIC EQUATORIAL COUNTERCURRENT, INDIAN EQUATORIAL COUNTERCURRENT.
equatorial current. . See NORTH EQUATORIAL CURRENT, SOUTH EQUATORIAL CURRENT.
equatorial cylindrical orthomorphic chart. . See MERCATOR CHART.
equatorial cylindrical orthomorphic map projection. . See MERCATOR MAP PROJECTION.
equatorial gravity value. The mean acceleration of gravity at the equator, approximately equal to 978.03 centimeters per second per second.
equatorial map projection. A map projection centered on the equator.
equatorial node. . Either of the two points where the orbit of the satellite intersects the equatorial plane of its primary.
equatorial satellite. . A satellite whose orbital plane coincides, or almost coincides, with the earth's equatorial plane.
equatorial tidal currents. . Tidal currents occurring semimonthly as a result of the moon being over the equator. At these times the tendency of the moon to produce a diurnal inequality in the tidal current is at a minimum.
equatorial tides. . Tides occurring semimonthly as the result of the moon being over the equator. At these times the tendency of the moon to produce a diurnal inequality in the tide is at a minimum.
equiangular., adj. Having equal angles.
equilateral., adj. Having equal sides.
equilateral triangle. . A triangle having all of its sides equal. An equilateral triangle is necessarily equiangular.
equilibrium. , n. A state of balance between forces. A body is said to be in equilibrium when the vector sum or all forces acting upon it is zero.
equilibrium argument. . The theoretical phase of a constituent of the equilibrium tide.
equilibrium theory. . A model under which it is assumed that the waters covering the face of the earth instantly respond to the tide-producing forces of the moon and sun, and form a surface of equilibrium under the action of these forces. The model disregards friction and inertia and the irregular distribution of the land masses of the earth. The theoretical tide formed under these conditions is called EQUILIBRIUM TIDE.
equilibrium tide. . Hypothetical tide due to the tide producing forces under the equilibrium theory. Also called GRAVITATIONAL TIDE.
equinoctial. , adj. Of or pertaining to an equinox or the equinoxes.
equinoctial., n. See CELESTIAL EQUATOR.
equinoctial colure. The great circle of the celestial sphere through the celestial poles and the equinoxes; the hour circle of the vernal equinox. See also SOLSTITIAL COLURE.
equinoctial point. . One of the two points of intersection of the ecliptic and the celestial equator. Also called EQUINOX.
equinoctial system of coordinates. . See CELESTIAL EQUATOR SYSTEM OF COORDINATES.
equinoctial tides. . Tides occurring near the times of the equinoxes, when the spring range is greater than average.
equinoctial year. . See TROPICAL YEAR.
equinox. , n. 1. One of the two points of intersection of the ecliptic and celestial equator, occupied by the sun when its declination is 0°. The point occupied on or about March 21, when the sun's declination changes from south to north, is called vernal equinox, March equinox, or first point of Aries; the point occupied on or about September 23, when the declination changes from north to south, is called autumnal equinox, September equinox, or first point of Libra. Also called EQUINOCTIAL POINT. 2. The instant the sun occupies one of the equinoctial points.
equiphase zone. . The region in space within which there is no difference in phase between two radio signals.
equipotential surface. . A surface having the same potential of gravity at every point. See also GEOID.
equisignal., adj. Pertaining to two signals of equal intensity.
equisignal., n. See under CONSOL STATION.
equisignal zone. . The region in space within which the difference in amplitude of two radio signals (usually emitted by a signal station) is indistinguishable.
equivalent echoing area. . See RADAR CROSS SECTION.
equivalent map projection. . See EQUAL-AREA MAP PROJECTION. erect image. . See under IMAGE, definition 1 .
erecting telescope. . A telescope with which the observer sees objects right side up as opposed to the upside down view provided by the INVERTING TELESCOPE. The eyepiece in the optical system of an erecting telescope usually has four lenses, and the eyepiece in the optical system of an inverting telescope has two lenses.
erg. , n. The work performed by a force of 1 dyne acting through a distance of 1 centimeter. The erg is the unit of energy or work in the centi-meter-gram-second system. It corresponds to 10^{-7} joule in the International System of Units.
ergonomics. . The science of making mechanical and electronic devices easily usable by humans; human factors engineering.
error. , n. The difference between the value of a quantity determined by observation, measurement or calculation and the true, correct, accepted, adopted or standard value of that quantity. Usually, the true value of the quantity cannot be determined with exactness due to insufficient knowledge of the errors encountered in the observations. Exceptions occur (1) when the value is mathematically determinable, or (2) when the value is an adopted or standard value established by authority. In order to analyze the exactness with which the true value of a quantity has been determined from observations, errors are classified into two categories, random and systematic errors. For the purpose of error analysis, blunders or mistakes are not classified as errors. The significant difference between the two categories is that random errors must be treated by means of statistical and probability methods due to their accidental or chance nature whereas systematic errors are usually expressible in terms of a unique mathematical formula representing some physical law or phenomenon. See also ACCURACY.
error budget. . A correlated set of individual major error sources with statements of the percentage of the total system error contributed by each source.
error ellipse. . The contour of equal probability density centered on the intersection of two straight lines of position which results from the one-dimensional normal error distribution associated with each line. For the 50 percent error ellipse, there is a 50 percent probability that a fix will lie within such ellipse. If the angle of cut is 90° and the standard deviations are equal, the error figure is a circle.
error of collimation. . See COLLIMATION ERROR.
error of perpendicularity. . That error in the reading of a marine sextant due to non-perpendicularity of the index mirror to the frame.
escape velocity., n. The minimum velocity required of a body at a given point in a gravitational field which will permit the body to escape from the field. The orbit followed is a parabola and the body arrives at an infinite distance from the center of the field with zero velocity. With respect to escape velocities characteristic of the major bodies of the solar system, this is defined as escape from the body's gravitational field from the surface of the body in question. Escape velocity equals circular velocity times the square root of 2 . Also called PARABOLIC VELOCITY.
escarpment. , n. An elongated and comparatively steep slope separating flat or gently sloping areas. Also called SCARP.
established direction of traffic flow. . A traffic flow pattern indicating the directional movement of traffic as established within a traffic separation scheme. See also RECOMMENDED DIRECTION OF TRAFFIC FLOW.
establishment of the port. . Average high water interval on days of the new and full moon. This interval is also sometimes called the COMMON or VULGAR ESTABLISHMENT to distinguish it from the CORRECTED ESTABLISHMENT, the latter being the mean of all high water intervals. The latter is usually 10 to 15 minutes less than the common establishment. Also called HIGH WATER FULL AND CHANGE.
estimate. , $v ., t$. To determine roughly or with incomplete information.
estimated position. . The most probable position of a craft determined from incomplete data or data of questionable accuracy. Such a position might be determined by applying a correction to the dead reckoning position, as for estimated current; by plotting a line of soundings; or by plotting lines of position of questionable accuracy. If no better information is available, a dead reckoning position is an estimated position, but the expression estimated position is not customarily used in this case. The distinction between an estimated position and a fix or running fix is a matter of judgment. See also MOST PROBABLE POSITION.
estimated time of arrival. . The predicted time of reaching a destination or waypoint.
estimated time of departure. . The predicted time of leaving a place.
estimation. , n. A mathematical method or technique of making a decision concerning the approximate value of a desired quantity when the decision is weighted or influenced by all available information.
estuarine sanctuary. . A research area which may include any part or all of an estuary, adjoining transitional areas, and adjacent uplands, constituting to the extent feasible a natural unit, set aside to provide scientists and students the opportunity to examine over a period of time the ecological relationships within the area. See also MARINE SANCTUARY.
estuary., n. 1. An embayment of the coast in which fresh river water entering at its head mixes with the relatively saline ocean water. When tidal action is the dominant mixing agent, it is usually called TIDAL ESTUARY. 2. the lower reaches and mouth of a river emptying directly into the sea where tidal mixing takes place. Sometimes called RIVER ESTUARY. 3. A drowned river mouth due to sinking of the land near the coast.
etesian. , n. A refreshing northerly summer wind of the Mediterranean, especially over the Aegean Sea.
Eulerian current measurement. . The direct observation of the current speed or direction, or both, during a period of time as it flows past a recording instrument such as the Ekman or Roberts current meter. See also LAGRANGIAN CURRENT MEASUREMENT.
Eulerian motion. . A slight wobbling of the earth about its axis of rotation, often called polar motion, and sometimes wandering of the poles. This motion which does not exceed 40 feet from the mean position, produces slight variation of latitude and longitude of places on the earth.
European Datum. . The origin of this datum is at Potsdam, Germany. Numerous national systems have been joined in a large datum based upon the International Ellipsoid 1924 which was oriented by a modified astrogeodetic method. European, African, and Asian triangulation chains were connected. African arc measurements from Cairo to Cape Town were completed. Thus, all Europe, Africa, and Asia are molded into one great system. Through common survey stations, it was possible to convert data from the Russian Pulkova 1932 system to the European Datum, and as a result the European Datum includes triangulation as far east as the 84th meridian. Additional ties across the Middle East have permitted connection of the Indian and European Datums.
evaporation. , n. The physical process by which a liquid or solid is transformed to the gaseous state. The opposite is CONDENSATION. In meteorology, the term evaporation is usually restricted in use to the change of water vapor from liquid to gas, while SUBLIMATION is used for the change from solid to gas as well as from gas to solid. Energy is lost by an evaporating liquid, and when no heat is added externally, the liquid always cools. The heat thus removed is called LATENT HEAT OF VAPORIZATION.
evection., n. A perturbation of the moon depending upon the alternate increase or decrease of the eccentricity of its orbit, which is always a maximum when the sun is passing the moon's line of apsides and at minimum when the sun is at right angles to it.
evening star. . The brightest planet appearing in the western sky during evening twilight.
evening twilight. . The period of time between sunset and darkness
everglade. , n. 1. A tract of swampy land covered mostly with tall grass. 2. A swamp or inundated tract of low land, as used locally in the southern U.S.
excess of arc. . That part of a sextant arc beginning at zero and extending in the direction opposite to that part usually considered positive. See also ARC, definition 2.
existence doubtful. . Of uncertain existence. The expression is used principally on charts to indicate the possible existence of a rock, shoal, etc., the actual existence of which has not been established. See also VIGIA.
ex-meridian altitude. . An altitude of a celestial body near the celestial meridian of the observer to which a correction must be applied to determine the meridian altitude. Also called CIRCUM-MERIDIAN ALTITUDE.
ex-meridian observation. . Measurement of the altitude of a celestial body near the celestial meridian of the observer, for conversion to a meridian altitude; or the altitude so measured.
expanded center PPI display. . A plan position indicator display on which zero range corresponds to a ring around the center of the display. expanded sweep. Short for EXPANDED TIME BASE SWEEP.
expanded time base. . A time base having a selected part of increased speed. Particularly an EXPANDED TIME BASE SWEEP.
expanded time base sweep. . A sweep in which the sweep speed is increased during a selected part of the cycle. Usually shortened to EXPANDED SWEEP, and sometimes to EXPANDED TIME BASE.
explement., n. An angle equal to 360° minus a given angle. See also COMPLEMENT, SUPPLEMENT.
explementary angles. . Two angles whose sum is 360°.
explosive fog signal. . A fog signal consisting of short reports produced by detonating explosive charges.
exponent., n. A number which indicates the power to which another number is to be raised.
external noise. . In radio reception, atmospheric radio noise and manmade noise, singly or in combination. Internal noise is produced in the receiver circuits.
extragalactic nebula. . An aggregation of matter beyond our galaxy, large enough to occupy a perceptible area but which has not been resolved into individual stars.
extrapolation., n. The process of estimating the value of a quantity beyond the limits of known values by assuming that the rate or system of change between the last few known values continues.
extratropical cyclone. . Any cyclonic-scale storm that is not a tropical cyclone, usually referring only to the migratory frontal cyclones of middle and high latitudes. Also called EXTRATROPICAL LOW.
extratropical low. . See EXTRATROPICAL CYCLONE.
extreme high water. . The highest elevation reached by the sea as recorded by a tide gage during a given period. The National Ocean Survey routinely documents monthly and yearly extreme high waters for its control stations. See also EXTREME LOW WATER
extreme low water. . The lowest elevation reached by the sea as recorded by a tide gage during a given period. The National Ocean Survey routinely documents monthly and yearly extreme low water for its control stations. See also EXTREME HIGH WATER.
extremely high frequency. . Radio frequency of 30,000 to 300,000 megahertz.
eye guard. . A guard or shield on an eyepiece of an optical system, to protect the eye from stray light, wind, etc., and to maintain proper eye distance. Also called EYE SHIELD, EYE SHADE, SHADE.
eye of the storm. . The center of a tropical cyclone marked by relatively light winds, confused seas, rising temperature, lowered relative humidity, and often by clear skies. The general area of lowest atmospheric pressure of a cyclone is called STORM CENTER.
eye of the wind. . Directly into the wind; the point or direction from which the wind is blowing. See also IN THE WIND.
eyepiece. , n. In an optical device, the lens group which is nearest the eye and with which the image formed by the preceding elements is viewed.
eye shade. . See EYE GUARD.
eye shield. . See EYE GUARD.

F

facsimile. , n. The process of transmission of images electronically. The hard-copy result of a facsimile transmission.
fading. , n. The fluctuation in intensity or relative phase of any or all of the frequency components of a received radio signal due to changes in the characteristics of the propagation path. See also SELECTIVE FADING.
Fahrenheit temperature. . Temperature based on a scale in which, under standard atmospheric pressure, water freezes at 32° and boils at 212° above zero.
fair. , adj. Not stormy; good; fine; clear.
fair tide. A tidal current setting in such a direction as to increase the speed of a vessel. One setting in a direction approximately opposite to the heading is called a HEAD TIDE. One abeam is called a BEAM TIDE. One approximately 90° from the course is called a CROSS TIDE.
fairway., n. 1 . The main thoroughfare of shipping in a harbor or channel. 2. The middle of a channel.
fairway buoy. . A buoy marking a fairway, with safe water on either side. Its color is red and white vertical stripes. Also called MIDCHANNEL BUOY.
fair wind. . A wind which aids a craft in making progress in a desired direction. Used chiefly in connection with sailing vessels, when it refers to a wind which permits the vessel to proceed in the desired direction without tacking. See also FOLLOWING WIND.
Falkland Current. . Originating mainly from the Cape Horn Current in the north part of Drake Passage, the Falkland Current flows northward between the continent and the Falkland Islands after passing through the strait. The current follows the coast of South America until it joins the BRAZIL CURRENT at about latitude $36^{\circ} \mathrm{S}$ near the entrance to Rio de la Plata. Also called MALVIN CURRENT.
fall. , n. 1. See AUTUMN. 2. Decrease in a value, such as a fall of temperature. 3. Sinking, subsidence, etc., as the rise and fall of the sea due to tidal action or when waves or swell are present. See also WATERFALL.
fall equinox. . See AUTUMNAL EQUINOX.
falling star. . See METEOR.
falling tide. . The portion of the tide cycle between high water and the following low water in which the depth of water is decreasing. Sometimes the term EBB is used as an equivalent, but since ebb refers primarily to horizontal rather than vertical movement, falling tide is considered more appropriate. The opposite is RISING TIDE.
fall streaks. . See VIRGA.
fall wind. . A cold wind blowing down a mountain slope. It is warmed by its descent, but is still cool relative to surrounding air. A warm wind blowing down a mountain slope is called a FOEHN. The bora, mistral, papagayo, and vardar are examples of fall winds. See also KATABATIC WIND.
false cirrus. . A cloud species unique to the genus cirrus, of such optical thickness as to appear grayish on the side away from the sun, and to veil the sun, conceal its outline, or even hide it. These often originate from the upper part of a cumulonimbus, and are often so dense that they suggest clouds of the middle level. Also called THUNDERSTORM CIRRUS, CIRRUS SPISSATUS.
false echo. . See INDIRECT ECHO, PHANTOM TARGET.
false horizon. A line resembling the VISIBLE HORIZON but above or below it.
false light. . A light which is unavoidably exhibited by an aid to navigation and which is not intended to be a part of the proper characteristic of the light. Reflections from storm panes come under this category.
false relative motion. . False indications of the movement of a target relative to own ship on a radar display that is unstabilized in azimuth due to continuous reorientation of the display as own ship's heading changes. See also STABILIZATION OF RADARSCOPE DISPLAY.
fan. , n. On the sea floor, a relatively smooth feature normally sloping away from the lower termination of a canyon or canyon system.
fan beam. . A beam in which the radiant energy is concentrated in and about a single plane. The angular spread in the plane of concentration may be any amount to 360°. This type beam is most widely used for navigational lights. A converged beam is a fan beam in which the angular spread is decreased laterally to increase the intensity of the remaining beam over all or part of its arc; a diverged beam is a fan beam formed by increasing the divergence of a pencil beam in one plane only.
farad., n. A derived unit of capacitance in the International System of Units; it is the capacitance of a capacitor between the plates of which there appears a potential difference of 1 volt when it is charged by a quantity of electricity of 1 coulomb.
far vane. . That instrument sighting vane on the opposite side of the instrument from the observer's eye. The opposite is NEAR VANE.
fast ice. . Sea ice which forms and remains attached to the shore, to an ice wall, to an ice front, between shoals or grounded icebergs. Vertical fluctuations may be observed during changes of sea level. Fast ice may be formed in situ from the sea water or by freezing of pack ice of any age to the shore, and it may extend a few meters or several hundred kilometers from the coast. Fast ice may be more than 1 year
old and may then be prefixed with the appropriate age category (old, second-year or multi-year). If it is thicker than about 2 meters above sea level, it is called an ICE SHELF.
fast-ice boundary. . The ice boundary at any given time between fast ice and pack ice.
fast-ice edge. . The demarcation at any given time between fast ice and open water.
fast-sweep racon. . See under SWEPT-FREQUENCY RACON.
fast time constant circuit. . A type of coupling circuit, with high pass frequency characteristics used in radar receivers to permit discrimination against received pulses of duration longer than the transmitted pulse. With the fast time constant (FTC) circuit in operation, only the leading edge of an echo having a long time duration is displayed on the radarscope. The use of this circuit tends to reduce saturation of the scope which could be caused by clutter. Also called ANTICLUTTER, RAIN, DIFFERENTIATOR.
fata morgana. . A complex mirage, characterized by marked distortion, generally in the vertical. It may cause objects to appear towering, magnified, and at times even multiplied.
fathogram. , n. A graphic record of depth measurements obtained by a fathometer. See also ECHOGRAM.
fathom. , n. A unit of length equal to 6 feet. This unit of measure is used principally as a measure of depth of water and the length of lead lines, anchor chains, and cordage. See also CABLE, definition 1.
fathom curve, fathom line. . A depth contour, with depths expressed in fathoms.
Fathometer., n. The registered trade name for a widely-used echo sounder.
favorable current. . A current flowing in such a direction as to increase the speed of a vessel over the ground. The opposite is UNFAVORABLE CURRENT.
favorable wind. . A wind which aids a craft in making progress in a desired direction. Usually used in connection with sailing vessels. A wind which delays the progress of a craft is called an UNFAVORABLE WIND. Also called FAIR WIND. See also FOLLOWING WIND.
feasibility orbit. . An orbit that can be rapidly and inexpensively computed on the basis of simplifying assumptions (e.g., two-body motion, circular orbit, rectilinear orbit, three-body motion approximated by two two-body orbits, etc.) and yields an indication of the general feasibility of a system based upon the orbit without having to carry out a full-blown definitive orbit computation.
federal project depth. . The design dredging depth of a channel constructed by the Corps of Engineers, U.S. Army; the project depth may or may not be the goal of maintenance dredging after completion of the channel. For this reason federal project depth must not be confused with CONTROLLING DEPTH.
feel the bottom. . The effect on a ship underway in shallow water which tends to reduce her speed, make her slow in answering the helm, and often make her sheer off course. The speed reduction is largely due to increased wave making resistance resulting from higher pressure differences due to restriction of flow around the hull. The increased velocity of the water flowing past the hull results in an increase in squat. Also called SMELL THE BOTTOM.
femto-. . A prefix meaning one-quadrillionth $\left(10^{-15}\right)$
fen. , n. A low-lying tract of land, wholly or partly covered with water at times.
fetch. , n. 1 . An area of the sea surface over which seas are generated by a wind having a constant direction and speed. Also called GENERATING AREA. 2. The length of the fetch area, measured in the direction of the wind, in which the seas are generated.
fictitious equator. . A reference line serving as the origin for measurement of fictitious latitude. A transverse or inverse equator is a meridian the plane of which is perpendicular to the axis of a transverse map projection. An oblique equator is a great circle the plane of which is perpendicular to the axis of an oblique map projection. A grid equator is a line perpendicular to a prime grid meridian, at the origin.
fictitious graticule. . The network of lines representing fictitious parallels and fictitious meridians on a map, chart, or plotting sheet. It may be either a transverse graticule or an oblique graticule depending upon the kind of projection; a fictitious graticule may also be a GRID. See also OBLIQUE GRATICULE, TRANSVERSE GRATICULE.
fictitious latitude. . Angular distance from a fictitious equator. It may be called transverse, oblique, or grid latitude depending upon the type of fictitious equator.
fictitious longitude. . The arc of the fictitious equator between the prime fictitious meridian and any given fictitious meridian. It may be called transverse, oblique, or grid longitude depending upon the type of fictitious meridian.
fictitious loxodrome. . See FICTITIOUS RHUMB LINE.
fictitious loxodromic curve. . See FICTITIOUS RHUMB LINE.
fictitious meridian. . One of a series of great circles or lines used in place of a meridian for certain purposes. A transverse meridian is a great circle perpendicular to a transverse equator; an oblique meridian is a great circle perpendicular to an oblique equator; a grid meridian is one of the grid lines extending in a grid north-south direction. The reference meridian (real or fictitious) used as the origin for measurement of fictitious longitude is called prime fictitious meridian.
fictitious parallel. . A circle or line parallel to a fictitious equator, connecting all points of equal fictitious latitude. It may be called transverse, oblique, or grid parallel depending upon the type of fictitious equator.
fictitious pole. . One of the two points 90° from a fictitious equator. It may be called the transverse or oblique pole depending upon the type of fictitious equator.
fictitious rhumb. . See FICTITIOUS RHUMB LINE.
fictitious rhumb line. . A line making the same oblique angle with all fictitious meridians. It may be called transverse, oblique, or grid rhumb line depending upon the type of fictitious meridian. The expression OBLIQUE RHUMB LINE applies also to any rhumb line, real or fictitious, which makes an oblique angle with its meridians; as distinguished from parallels and meridians real or fictitious, which may be consider special cases of the rhumb line. Also called FICTITIOUS RHUMB, FICTITIOUS LOXODROME, FICTITIOUS LOXODROMIC CURVE.
fictitious ship. . An imaginary craft used in the solution of certain maneuvering problems, as when a ship to be intercepted is expected to change course or speed during the interception run.
fictitious sun. . An imaginary sun conceived to move eastward along the celestial equator at a rate equal to the average rate of the apparent sun or to move eastward along the ecliptic at the average rate of the apparent sun. See also DYNAMICAL MEAN SUN, MEAN SUN.
fictitious year. The period between successive returns of the sun to a sidereal hour angle of 80° (about January 1). The length of the fictitious year is the same as that of the tropical year, since both are based upon the position of the sun with respect to the vernal equinox. Also called BESSELIAN YEAR.
fidelity. , n. The accuracy to which an electrical system, such as a radio, reproduces at its output the essential characteristics of its input signal.
field glass. . A telescopic binocular.
field lens. . A lens at or near the plane of a real image, to collect and redirect the rays into another part of the optical system; particularly, the eyepiece lens nearest the object, to direct the rays into the eye lens.
field of view. . The maximum angle of vision, particularly of an optical instrument.
figure of the earth. . See GEOID.
filling., n. Increase in atmospheric pressure, particularly within a low. Decrease in pressure is called DEEPENING.
final diameter. . The diameter of the circle traversed by a vessel after turning through 360° and maintaining the same speed and rudder angle. This diameter is always less than the tactical diameter. It is measured perpendicular to the original course and between the tangents at the points where 180° and 360° of the turn have been completed.
final great circle course. . The direction, at the destination, of the great circle through that point and the point of departure, expressed as the angular distance from a reference direction, usually north, to that part of the great circle extending beyond the destination. See also INITIAL GREAT CIRCLE COURSE.
finger rafted ice. . The type of rafted ice in which floes thrust "fingers" alternately over and under the other.
finger rafting. . A type of rafting whereby interlocking thrusts are formed, each floe thrusting "fingers" alternately over and under the other. Finger rafting is common in NILAS and GRAY ICE.
finite. , adj. Having limits. The opposite is INFINITE.
fireball. , n. See BOLIDE.
firn. , n. Old snow which has recrystallized into a dense material. Unlike snow, the particles are to some extent joined together; but, unlike ice, the air spaces in it still connect with each other.
first estimate-second estimate method. . The process of determining the value of a variable quantity by trial and error. The expression applies particularly to the method of determining time of meridian transit (especially local apparent noon) at a moving craft. The time of transit is computed for an estimated longitude of the craft, the longitude estimate is then revised to agree with the time determined by the first estimate, and a second computation is made. The process is repeated as many times as necessary to obtain an answer of the desired precision.
first light. . The beginning of morning nautical twilight, i.e., when the center of the morning sun is 12° below the horizon.
first point of Aries. . See VERNAL EQUINOX.
first point of Cancer. . See SUMMER SOLSTICE.
first point of Capricornus. . See WINTER SOLSTICE.
first point of Libra. . See AUTUMNAL EQUINOX.
first quarter. The phase of the moon when it is near east quadrature, when the western half of it is visible to an observer on the earth. See also PHASES OF THE MOON.
first-year ice. Sea ice of not more than one winter's growth, developing from young ice, with a thickness of 30 centimeters to 2 meters. First-year ice may be subdivided into THIN FIRST YEAR ICE, WHITE ICE, MEDIUM FIRST YEAR ICE, and THICK FIRST YEAR ICE.
firth. , n. A long, narrow arm of the sea.
Fischer ellipsoid of $\mathbf{1 9 6 0}$. . The reference ellipsoid of which the semimajor axis is $6,378,166.000$ meters, the semiminor axis is $6,356,784.298$ meters, and the flattening or ellipticity is $1 / 298.3$. Also called FISCHER SPHEROID OF 1960.
Fischer ellipsoid of 1968. . The reference ellipsoid of which the semimajor axis is $6,378,150$ meters, the semiminor axis is $6,356,768.337$ meters, and the flattening or ellipticity is $1 / 298.3$. Also called FISCHER SPHEROID OF 1968.
Fischer spheroid of 1960. . See FISCHER ELLIPSOID OF 1960.
Fischer spheroid of 1968. . See FISCHER ELLIPSOID OF 1968.
fish. , n. Any towed sensing device.
fishery conservation zone. . See under FISHING ZONE.
fish havens. . Areas established by private interests, usually sport fishermen, to simulate natural reefs and wrecks that attract fish. The reefs are constructed by dumping assorted junk in areas which may be of very small extent or may stretch a considerable distance along a depth contour. Fish havens are outlined and labeled on charts. Also called FISHERY REEFS.
fishing zone. . The offshore zone in which exclusive fishing rights and management are held by the coastal nation. The U.S. fishing zone, known as the fishery conservation zone, is defined under P.L. 94265. The law states, "The inner boundary of the fishery conservation zone is a line conterminous with the seaward boundary of catch of the coastal states, and the outer boundary of such zone is a line drawn in such manner that each point on it is 200 nautical miles from the baseline from which the territorial sea is measured."
fish lead. . A type of sounding lead used without removal from the water between soundings.
fish stakes. . Poles or stakes placed in shallow water to outline fishing grounds or to catch fish.
fish trap areas. . Areas established by the Corps of Engineers in which traps may be built and maintained according to established regulations. The fish stakes which may exist in these areas are obstructions to navigation and may be dangerous. The limits of fish trap areas and a cautionary note are usually charted.
fix. , n. A position determined without reference to any former position; the common intersection of two or more lines of position obtained from simultaneous observations. Fixes obtained from electronic systems are often given as lat./long. coordinates determined by algorithms in the system software. See also RUNNING FIX.
fixed. . A light which is continuously on.
fixed and flashing light. . A light in which a fixed light is combined with a flashing light of higher luminous intensity. The aeronautical light equivalent is called UNDULATING LIGHT.
fixed and group flashing light. . A fixed light varied at regular intervals by a group of two or more flashes of greater intensity.
fixed and variable parameters of satellite orbit. . The fixed parameters are those parameters which describe a satellite's approximate orbit and which are used over a period of hours. The variable parameters describe the fine structure of the orbit as a function of time and are correct only for the time at which they are transmitted by the satellite.
fixed antenna radio direction finder. . A radio direction finder whose use does not require the rotation of the antenna system.
fixed light. . A light which appears continuous and steady. The term is sometimes loosely used for a light supported on a fixed structure, as distinct from a light on a floating support.
fixed mark. . A navigation mark fixed in position.
fixed satellite. . See GEOSTATIONARY SATELLITE.
fixed star. . A star whose apparent position relative to surrounding stars appears to be unvarying or fixed for long periods of time.
fjord. , n. A long, deep, narrow arm of the sea between high land. A fjord often has a relatively shallow sill across its entrance.
flag alarm. A semaphore-type flag in the indicator of an instrument, to serve as a signal, usually to warn that the indications are unreliable.
flagpole. , n. A label on a nautical chart which indicates a single pole from which flags are displayed. The term is used when the pole is not attached to a building. The label flagstaff is used for a flagpole rising from a building.
flagstaff. , n. See under FLAGPOLE.
Flamsteed's number. . A number sometimes used with the possessive form of the Latin name of the constellation to identify a star.
flash. , n. A relatively brief appearance of a light, in comparison with the longest interval of darkness in the period of the light. See also OCCULTATION.
flasher. , n. An electrical device which controls the characteristic of a lighted aid to navigation by regulating power to the lamp according to a certain pattern.
flashing. , n. The process of reducing the amount of permanent magnetism in a vessel by placing a single coil horizontally around the vessel and energizing it. If the energized coil is moved up and down along the sides of the vessel, the process is called WIPING. See also DEPERMING.
flashing light. . A navigation light in which the total duration of light in a cycle is shorter than the total duration of darkness. The term is commonly used for a SINGLE-FLASHING LIGHT, a flashing light in which a flash is regularly repeated at a rate of less then 50 flashes per minute. See also GROUP-FLASHING LIGHT, COMPOSITE GROUP-FLASHING LIGHT LONG-FLASHING LIGHT, QUICK LIGHT.
flat. ,n. 1. A large flat area attached to the shore consisting usually of mud, but sometimes of sand and rock. Also called TIDAL FLATS. See also SALT MARSH, SLOUGH, TIDAL MARSH. 2. On the sea floor, a small level or nearly level area.
flattening. , n. The ratio of the difference between the equatorial and polar radii of the earth to its equatorial radius. The flattening of the earth is the ellipticity of the spheroid. The magnitude of the flattening is sometimes expressed as the numerical value of the reciprocal of the flattening. Also called COMPRESSION.
flaw. , n. A narrow separation zone between pack ice and fast ice, where the pieces of ice are in a chaotic state. The flaw forms when pack ice shears under the effect of a strong wind or current along the fastice boundary. See also SHEARING.
flaw lead. . A passage-way between pack ice and fast ice which is navigable by surface vessels.
flaw polynya. . A polynya between pack ice and fast ice.
F-layer., n. The second principal layer of ionization in the KennellyHeaviside region (the E-layer is the first principal layer; the D-layer is of minor significance except for a tendency to absorb energy from radio waves in the medium frequency range). Situated about 175
miles above the earth's surface, the F-layer exists as a single layer only during the hours of darkness. It divides into two separate layers during daylight hours.
F1-layer. , n. The lower of the two layers into which the F-layer divides during daylight hours. Situated about 140 miles above the earth's surface, it reaches its maximum density at noon. Since its density varies with the extent of the sun's radiation, it is subject to daily and seasonal variations. It may disappear completely at some point during the winter months.
F2-layer. , n. The higher of the two layers into which the F-layer divides during daylight hours. It reaches its maximum density at noon and, over the continental U.S., varies in height from about 185 miles in winter to 250 miles in the summer. The F2-layer normally has a greater influence on radio wave propagation than the F1-layer.
FleetNET. . INMARSAT broadcast service for commercial traffic.
Fleet Guide. . One of a series of port information booklets for United States naval bases prepared for U.S. Navy use only.
Flinders bar. . A bar of soft unmagnetized iron placed vertically near a magnetic compass to counteract deviation caused by magnetic induction in vertical soft iron of the craft.
float chamber. . A sealed, hollow part attached to the compass card of a magnetic compass as part of the compass card assembly, to provide buoyancy to reduce the friction on the pivot bearing.
floating aid. . A buoy serving as an aid to navigation secured in its charted position by a mooring.
floating breakwater. . A moored assembly of floating objects used for protection of vessels riding at anchor.
floating dock. . A form of dry dock consisting of a floating structure of one or more sections, which can be partly submerged by controlled flooding to receive a vessel, then raised by pumping out the water so that the vessel's bottom can be exposed. See also GRAVING DOCK.
floating ice. . Any form of ice found floating in water. The principal kinds of floating ice are lake ice, river ice and sea ice which form by the freezing of water at the surface, and glacier ice (ice of land origin) formed on land or in an ice shelf. The concept includes ice that is stranded or grounded.
floating mark. . A navigation mark carried on a floating body such as a lightship or buoy.
float pipe. . A pipe used as a float well.
float well. . A vertical pipe or box with a relatively small opening (orifice) in the bottom. It is used as a tide gage installation to dampen the wind waves while freely admitting the tide to actuate a float which, in turn, operates the gage. Also called STILLING WELL.
floe. , n. Any relatively flat piece of sea ice 20 meters or more across. Floes are subdivided according to horizontal extent. A giant flow is over 5.4 nautical miles across; a vast floe is 1.1 to 5.4 nautical miles across; a big floe is 500 to 2000 meters across; a medium floe is 100 to 500 meters across; and a small floe is 20 to 100 meters across.
floeberg., n. A massive piece of sea ice composed of a hummock, or a group of hummocks frozen together, and separated from any ice surroundings. It may float showing up to 5 meters above sea level.
flood., n. Tidal current moving toward land or up a tidal stream. The opposite is EBB. Also called FLOOD CURRENT.
flood axis. . Average direction of tidal current at strength of flood.
flood current. . The movement of a tidal current toward the shore or up a tidal river or estuary. In the mixed type of reversing current, the terms greater flood and lesser flood are applied respectively to the flood currents of greater and lesser speed of each day. The terms maximum flood and minimum flood are applied to the maximum and minimum speeds of a flood current, the speed of which alternately increases and decreases without coming to a slack or reversing. The expression maximum flood is also applicable to any flood current at the time of greatest velocity. The opposite is EBB CURRENT.
flooded ice. . Sea ice which has been flooded by melt-water or river water and is heavily loaded by water and wet snow.
floodgate., n. A gate for shutting out, admitting, or releasing a body of water, a sluice.
flood interval. . Short for STRENGTH OF FLOOD INTERVAL. The interval between the transit of the moon over the meridian of a place and the time of the following strength of flood. See also LUNICURRENT INTERVAL.
flood plain. . The belt of low flat ground bordering a stream or river channel that is flooded when runoff exceeds the capacity of the stream channel.
flood strength. . Phase of the flood current at time of maximum speed. Also, the speed at this time. Also called STRENGTH OF FLOOD.
floor. , n. The ground under a body of water. See also BOTTOM.
floppy disk. . A type of magnetic computer data storage media consisting of a thin circular plastic disk enclosed in a rigid or semi-rigid housing.
Florida Current. . A swift ocean current that flows through the Straits of Florida from the Gulf of Mexico to the Atlantic Ocean. It shows a gradual increase in speed and persistency as it flows northeastward and then northward along the Florida coast. In summer, the part of the surface current south of latitude $25^{\circ} \mathrm{N}$ moves farther south of its mean position, with a mean speed of 2.0 knots and a maximum speed of about 6.0 knots; the part of the current north of latitude 25° N moves farther west of its mean position, with a mean speed of 2.9 knots and a maximum speed of 6.5 knots. In winter the shift of position is in the opposite direction, and speeds are somewhat less by about 0.2 to 0.5 knot. The flow prevails throughout the year, with no significant changes in direction; the speed, however, varies slightly from one season to another. North of Grand Bahama Island, it merges with the Antilles Current to form the GULF STREAM. The Florida Current is part of the GULF STREAM SYSTEM.
flotsam. . n. Floating articles, particularly those that are thrown overboard to lighten a vessel in distress. See also JETSAM, JETTISON, LAGAN.
flow. , n. British terminology. Total current or the combination of tidal current and nontidal current. In British usage, tidal current is called TIDAL STREAM and nontidal current is called CURRENT.
fluorescence. , n. Emission of light or other radiant energy as a result of and only during absorption of radiation from some other source.
fluorescent chart. . A chart reproduced with fluorescent ink or on fluorescent paper, which enables the user to read the chart under ultraviolet light.
flurry., n. See SNOW FLURRY.
flux-gate. . The magnetic direction-sensitive element of a flux-gate compass. Also called FLUX VALVE.
fluxmeter., n. An instrument for measuring the intensity of a magnetic field.
flux valve. . See FLUX GATE.
focal length. . The distance between the optical center of a lens, or the surface of a mirror, and its focus.
focal plane. . A plane parallel to the plane of a lens or mirror and passing through the focus.
focal point. . See FOCUS.
focus. (pl.foci), n. 1. The point at which parallel rays of light meet after being refracted by a lens or reflected by a mirror. Also called FOCAL PO-I NT. 2. A point having specific significance relative to a geometrical figure. See under ELLIPSE, HYPERBOLA, PARABOLA. 3. The true center of an earthquake, within which the strain energy is first converted to elastic wave energy.
focus., $v ., t$. The process of adjusting an optical instrument, projector, cathode-ray tube, etc., to produce a clear and well-defined image.
foehn., n. A warm, dry, wind blowing down the leeward slope of a mountain and across a valley floor or plain.
fog. , n. A visible accumulation of tiny droplets of water, formed by condensation of water vapor in the air, with the base at the surface of the earth. It reduces visibility below 1 kilometer (0.54 nautical mile). If this is primarily the result of movement of air over a surface of lower temperature, it is called advection fog; if primarily the result of cooling of the surface of the earth and the adjacent layer of atmosphere by radiational cooling, it is called radiation fog. An advection fog occurring as monsoon circulation transports warm moist air over a colder surface is called a monsoon fog. A fog that hides less than six-tenths of the sky, and does not extend to the base of any clouds is called a ground fog. Fog formed at sea, usually when air from a warm-water surface moves to a cold-water surface, is called sea fog. Fog produced by apparent steaming of a relatively warm sea in the presence of very cold air is called steam fog, steam mist, frost smoke, sea smoke, arctic sea smoke, arctic smoke, or water smoke. Fog composed of suspended particles of ice, partly ice crystals 20 to 100 microns in diameter but chiefly, especially when
dense, droxtals 12 to 20 microns in diameter is called ice fog. A rare simulation of true fog by anomalous atmospheric refraction is called mock fog. A dry fog is a fog that does not moisten exposed surfaces.
fog bank. A well defined mass of fog observed at a distance, most commonly at sea.
fogbound. , adj. Surrounded by fog. The term is used particularly with reference to vessels which are unable to proceed because of the fog.
fogbow., n. A faintly colored circular arc similar to a RAINBOW but formed on fog layers containing drops whose diameters are of the order of 100 microns or less. See also BOUGUER'S HALO.
fog detector. . A device used to automatically determine conditions of visibility which warrant sounding a fog signal.
fog signal. . See under SOUND SIGNAL.
following sea. . A sea in which the waves move in the general direction of the heading. The opposite is HEAD SEA. Those moving in a direction approximately 90° from the heading are called BEAM SEA, and those moving in a direction approximately 45° from the heading (striking the quarter) are called QUARTERING SEA.
following wind. . Wind blowing in the general direction of a vessel's course. The equivalent aeronautical expression is TAIL Wind. Wind blowing in the opposite direction is called a HEAD WIND. Wind blowing in a direction approximately 90° from the heading is called a BEAM WIND. One blowing in a direction approximately 90° from the course is called a CROSS WIND. See also FAIR WIND, FAVORABLE WIND, UNFAVORABLE WIND.
foot. , n. Twelve inches or 30.48 centimeters. The latter value was adopted in 1959 by Australia, Canada, New Zealand, South Africa, the United Kingdom, and the United States. See also U.S. SURVEY FOOT. 2. The bottom of a slope, grade, or declivity.
foraminifera., $n ., p l$. Small, single-cell, jellylike marine animals with hard shells of many chambers. In some areas the shells of dead foraminifera are so numerous they cover the ocean bottom.
Forbes log. . A log consisting of a small rotator in a tube projecting below the bottom of a vessel, and suitable registering devices.
forced wave. . A wave generated and maintained by a continuous force, in contrast with a FREE WAVE that continues to exist after the generating force has ceased to act.
foreland. , n. See PROMONTORY, HEADLAND.
foreshore. , n. That part of the shore or beach which lies between the low water mark and the upper limit of normal wave action. See also BACKSHORE.
forestaff. , n. See CROSS-STAFF.
fork. , n. On the sea floor, a branch of a canyon or valley.
format., v., t. To prepare a computer disk for data storage; formatting defines tracks and sectors, sets up a directory, and performs other functions before a new disk can be used.
form lines. . Broken lines resembling contour lines but representing no actual elevations, which have been sketched from visual observation or from inadequate or unreliable map sources, to show collectively the shape of the terrain rather than the elevation.
formation axis. . An arbitrarily selected direction within a formation of ships from which all bearings used designation of station are measured; bearings are always expressed in true direction from the center.
formation center. . An arbitrary point around which a formation of ships is centered, designated "station zero."
formation guide. . A ship designated by the OTC as the reference vessel upon which all ships in a formation maintain position.
forward., adj. In a direction towards the bow of a vessel. See also AHEAD, ABAFT.
forward of the beam. . Any direction between broad on the beam and ahead. See also ABAFT THE BEAM.
foul berth. A berth in which a vessel cannot swing to her anchor or moorings without fouling another vessel or striking an obstruction. See also FOUL GROUND, CLEAR BERTH.
foul bottom. . A term used to describe the bottom of a vessel when encrusted with marine growth.
foul ground. . An area unsuitable for anchoring or fishing due to rocks, boulders, coral or other obstructions. See also FOUL BERTH.
four-point bearing. . A relative bearing of 045° or 315°. See also BOW AND BEAM BEARINGS.
fractional scale. . See REPRESENTATIVE FRACTION.
fracto-. . A prefix used with the name of a basic cloud form to indicate a torn, ragged, and scattered appearance caused by strong winds. See also SCUD.
fracture., n. A break or rupture through very close pack ice, compact pack ice, consolidated pack ice, fast ice, or a single floe resulting from deformation processes. Fractures may contain brash ice and/or be covered with nilas and/or young ice. The length of a fracture may vary from a few meters to many miles. A large fracture is more than 500 meters wide- a medium fracture is 200 to 500 meters wide- a small fracture is 50 to 200 meters wide, and a very small fracture is 0 to 50 meters wide.
fracture zone. . 1. An extensive linear zone of irregular topography of the sea floor characterized by steep-sided or asymmetrical ridges, troughs, or escarpments. 2. An ice area which has a great number of fractures. See also FRACTURE.
fracturing., n. The pressure process whereby ice is permanently deformed, and rupture occurs. The term is most commonly used to describe breaking across very close pack ice, compact pack ice, and consolidated pack ice.
Franklin continuous radar plot technique. . A method of providing continuous correlation of a small fixed radar-conspicuous object with own ship's position and movement relative to a planned track. Named for QMCM Byron Franklin, USN.
Franklin piloting technique. . A method of finding the most probable position of a ship from three lines of position which do not intersect in a point.
frazil ice. . Fine spicules or plates of ice, suspended in water.
free-air temperature. . Temperature of the atmosphere, obtained by a thermometer located so as to avoid as completely as practicable the effects of extraneous heating. See also AMBIENT TEMPERATURE, WET-BULB TEMPERATURE.
freeboard. , n. The vertical distance from the uppermost complete, watertight deck of a vessel to the surface of the water, usually measured amidships. Minimum permissible freeboards may be indicated by LOAD LINE MARKS.
free gyro. . A two-degree-of-freedom gyro or a gyro the spin axis of which may be oriented in any specified altitude. The rotor of this gyro has freedom to spin on its axis, freedom to tilt about its horizontal axis, and freedom to turn about its vertical axis. Also called FREE GYROSCOPE. See also DEGREE-OF-FREEDOM.
free gyroscope. . See FREE GYRO.
free wave. . A wave that continues to exist after the generating force has ceased to act, in contrast with a FORCED WAVE that is generated and maintained by a continuous force.
freezing drizzle. . Drizzle that falls in liquid form but freezes upon impact to form a coating of glaze upon the ground and exposed objects.
freezing fog. A fog whose droplets freeze upon contact with exposed objects and form a coating of rime and/or glaze. See also FREEZING PRECIPITATION.
freezing precipitation. . Precipitation which falls to the earth in a liquid state and then freezes to exposed surfaces. Such precipitation is called freezing rain if it consists of relatively large drops of water, and freezing drizzle if of smaller drops. See also GLAZE.
freezing rain. . Rain that falls in liquid form but freezes upon impact to form a coating of ice on the ground and exposed objects.
frequency., n. The rate at which a cycle is repeated. See also AUDIO FREQUENCY, RADIO FREQUENCY.
frequency band. . 1. A specified segment of the frequency spectrum. 2 . One of two or more segments of the total frequency coverage of a radio receiver or transmitter, each segment being selectable by means of a band change switch. 3. Any range of frequencies extending from a specified lower to a specified upper limit.
frequency channel. . The assigned frequency band commonly referred to by number, letter, symbol, or some salient frequency within the band.
frequency-modulated radar. . A type of radar in which the radiated wave is frequency modulated and the frequency of an echo is compared with the frequency of the transmitted wave at the instant of reception, thus enabling range to be measured.
frequency modulation. . Angle modulation of a sinewave carrier in which the instantaneous frequency of the modulated wave differs from the carrier frequency by an amount proportional to the instantaneous value of the modulating.
frequency tolerance. . The maximum permissible departure by the center frequency of the frequency band occupied by an emission from the assigned frequency, or by the characteristic frequency of an emission from the reference frequency. The frequency tolerance is expressed in parts in 106 or in hertz.
fresh breeze. . Wind of force 5 (17 to 21 knots or 19 to 24 miles per hour) on the Beaufort wind scale.
freshen. , v., i. To become stronger applied particularly to wind.
freshet. ,n. A sudden increased flow of fresh water, as from a flood, emptying from a river into a larger body of salt or brackish water.
fresh gale. A term once used by seamen to what is now called GALE on the Beaufort wind scale.
fresh-water marsh. . A tract of low wet ground, usually miry and covered with rank vegetation.
friction., n. Resistance to motion due to interaction between the surface of a body and anything in contact with it.
friction error. . The error of an instrument reading due to friction in the moving parts of the instrument.
friction layer. . See SURFACE BOUNDARY LAYER.
friendly ice. . From the point of view of the submariner, an ice canopy containing many large skylights or other features which permit a submarine to surface. There must be more than 10 such features per 30 nautical miles along the submarine's track.
frigid zones. . Either of the two zones between the polar circles and the poles, called the north frigid zone and the south frigid zone.
fringing reef. . A reef attached directly to the shore of an island or continental landmass. Its outer margin is submerged and often consists of algal limestone, coral rock, and living coral. See also BARRIER REEF.
front., n. Generally, the interface or transition zone between two air masses of different density. Since the temperature distribution is the most important regulator of atmospheric density, a front almost invariably separates air masses of different temperature. Along with the basic density criterion and the common temperature criterion, many other features may distinguish a front, such as a pressure trough, a change in wind direction, a moisture discontinuity, and certain characteristic cloud and precipitation forms. The term front is used ambiguously for: frontal zone, the three-dimensional zone or layer of large horizontal density gradient, bounded by frontal surfaces across which the horizontal density gradient is discontinuous (frontal surface usually refers specifically to the warmer side of the frontal zone); and surface front, the line of intersection of a frontal surface or frontal zone with the earth's surface or less frequently, with a specified constant-pressure surface. See also POLAR FRONT, ARCTIC FRONT, COLD FRONT, WARM FRONT, OCCLUDED FRONT.
frontal. , adj. Of or pertaining to a front.
frontal cyclone. . In general, any cyclone associated with a front; often used synonymously with WAVE CYCLONE or with EXTRATROPICAL CYCLONE (as opposed to tropical cyclones, which are non-frontal).
frontal occlusion. . See OCCLUDED Front; OCCLUSION, definition 2.
frontal surface. . See under FRONT.
frontal zone. . See under FRONT.
front light. . The closer of two range lights. It is the lowest of the lights of an established range. Also called LOW LIGHT.
frontogenesis. , n. 1. The initial formation of a front or frontal zone. 2. In general, an increase in the horizontal gradient of an air mass property, principally density, and the development of the accompanying features of the wind field that characterize a front.
frontolysis. , n. 1 The dissipation of a front or frontal zone. 2. In general, a decrease in the horizontal gradient of an air mass property, principally density, and the dissipation of the accompanying features of the wind field.
frost. , n. 1. A deposit of interlocking ice crystals formed by direct sublimation on objects, usually those of small diameter freely exposed to the air. The deposition is similar to the process in which dew is formed, except that the temperature of the object must be below freezing. It forms when air with a dew point below freezing is brought to saturation by cooling. It is more fluffy and feathery than rime which in turn is lighter than glaze. Also called HOAR, HOARFROST. 2. The condition which exists when the temperature of the earth's surface and earthbound objects falls below $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$. Temperatures below the freezing point of water are sometimes expressed as "degrees of frost."
frost smoke. . 1. Fog-like clouds due to contact of cold air with relatively warm water, which can appear over openings in the ice, or leeward of the ice edge, and which may persist while ice is forming. 2. A rare type of fog formed in the same manner as a steam fog but at lower temperatures. It is composed of ice particles or droxtals instead of liquid water as is steam fog. Thus, it is a type of ice fog. Sometimes called BARBER. 3. See STEAM FOG
frozen precipitation. . Any form of precipitation that reaches the ground in frozen form; i.e., snow, snow pellets, snow grains, ice crystals, ice pellets, and hail.
frustum, frustrum. , n. That part of a solid figure between the base and a parallel intersecting plane; or between any two intersecting planes, generally parallel.
full depiction of detail. . Since even on charts of the largest scale full depiction of detail is impossible because all features are symbolized to an extent which is partly determined by scale and partly by the conventions of charting practice, the term full depiction of detail is used to indicate that over the greater part of a chart nothing essential to navigation is omitted. See also GENERALIZATION OF DETAIL, MINIMAL DEPICTION OF DETAIL.
full moon. . The moon at opposition, when it appears as a round disk to an observer on the earth because the illuminated side is toward him. See also PHASES OF THE MOON.
function., n. A magnitude so related to another magnitude that for any value of one there is a corresponding value of the other. See also TRIGONOMETRIC FUNCTIONS.
fundamental circle. . See PRIMARY GREAT CIRCLE.
fundamental frequency. . In the Decca Navigator System, the frequency from which other frequencies in a chain are derived by harmonic multiplication.
fundamental star places. . The apparent right ascensions and declinations of 1,535 standard comparison stars obtained by leading observatories and published annually under the auspices of the International Astronomical Union.
funnel cloud. . A cloud column or inverted cloud cone, pendant from a cloud base. This supplementary feature occurs mostly with cumulus and cumulonimbus; when it reaches the earth's surface, it constitutes a tornado or waterspout. Also called TUBA, TORNADO CLOUD.
furrow., n. On the sea floor, a closed, linear, narrow, shallow depression.
fusion., n. The phase transition of a substance passing from the solid to the liquid state; melting. In meteorology, fusion is almost always understood to refer to the melting of ice, which, if the ice is pure and subjected to 1 standard atmosphere of pressure, takes place at the ice point of $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$. Additional heat at the melting point is required to fuse any substance. This quantity of heat is called LATENT HEAT OF FUSION; in the case of ice, it is approximately 80 calories per gram.

G

G. , n. An acceleration equal to the acceleration of gravity, approximately 32.2 feet per second per second at sea level.
gain. , n. The ratio of output voltage, current, or power to input voltage, current, or power in electronic instruments.
gain control. . See RECEIVER GAIN CONTROL.
gain function. . See DIRECTIVE GAIN.
gain of an antenna. . An expression of radiation effectiveness, it is the ratio of the power required at the input of a reference antenna to the power supplied to the input of the given antenna to produce, in a given direction, the same field at the same distance. When not specified otherwise, the figure expressing the gain of an antenna refers to the gain in the direction of the radiation main lobe. In services using scattering modes of propagation, the full gain of an antenna may not be realizable in practice and the apparent gain may vary with time.
gain referred to a short vertical antenna. . The gain of an antenna in given direction when the reference antenna is a perfect vertical antenna, much shorter than one quarter of the wavelength, placed on the surface of a perfectly conducting plane earth.
gal. , n. A special unit employed in geodesy and geophysics to express the acceleration due to gravity. The gal is a unit accepted temporarily for use with the International System of Units; 1 gal is equal to 1 centimeter per second, per second.
galactic nebula. . An aggregation of matter within our galaxy but beyond the solar system, large enough to occupy a perceptible area but which has not been resolved into individual stars.
galaxy. , n. A vast assemblage of stars, planets, nebulae, and other bodies composing a distinct group in the universe. The sun and its family of planets is part of a galaxy commonly called the MILKY WAY.
gale. , n. Wind of force 8 on the Beaufort wind scale (34 to 40 knots or 39 to 46 miles per hour) is classified as a gale. Wind of force 9 (41 to 47 knots or 47 to 54 miles per hour) is classified as a strong gale. Wind of force 7 (28 to 33 knots or 32 to 38 miles per hour) is classified as a near gale. See also MODERATE GALE, FRESH GALE WHOLE GALE.
gallon. , n. A unit of volume equal to 4 quarts or 231 cubic inches.
Galofaro., n. A whirlpool in the Strait of Messina; formerly called CHARYBDIS.
galvanometer. , n. An instrument for measuring the magnitude of a small electric current or for detecting the presence or direction of such a current by means of motion of an indicator in a magnetic field.
gap. , n. On the sea floor, a narrow break in a ridge or rise.
garua. , n. A thick, damp fog on the coasts of Ecuador, Peru, and Chile. Also called CAMANCHACA.
gas. , n. A fluid without shape or volume, which tends to expand indefinitely, or to completely fill a closed container of any size.
gas buoy. . A buoy having a gas light. See also LIGHTED BUOY.
gat. ,n. A natural or artificial passage or channel extending inland through shoals or steep banks. See also OPENING.
gather way. . To begin to move.
gauge, gage. , n. An instrument for measuring the size or state of anything.
gauge, gage., $v ., t$. To determine the size or state of anything.
gauss. , n. The centimeter-gram-second electromagnetic unit of magnetic induction. It corresponds to 10^{-4} tesla in the International System.
Gaussian distribution. . See normal DISTRIBUTION.
Gaussin error. . Deviation of a magnetic compass due to transient magnetism caused by eddy currents set up by a changing number of lines of force through soft iron as the ship changes heading. Due to these eddy currents, the induced magnetism on a given heading does not arrive at its normal value until about 2 minutes after change to the heading. This error should not be confused with RETENTIVE ERROR.
gazeteer. , n. An alphabetical list of place names giving geographic coordinates.
Gegenschein. , n. A faint light area of the sky always opposite the position of the sun on the celestial sphere. It is believed to be the reflection of sunlight from particles moving beyond the earth's orbit. Also called COUNTERGLOW.
general chart. . See CHART CLASSIFICATION BY SCALE.
generalization. . The process of selectively removing less important features of charts as scale becomes smaller, to avoid over-crowding charts. See also FULL DEPICTION OF DETAIL, MINIMAL DEPICTION OF DETAIL.
general precession. . The resultant motion of the components causing precession of the equinoxes westward along the ecliptic at the rate of about 50.3" per year, completing the cycle in about 25,800 years. The effect of the sun and moon, called lunisolar precession, is to produce a westward motion of the equinoxes along the ecliptic. The effect of other planets, called planetary precession, tends to produce a much smaller motion eastward along the ecliptic. The component t of general precession along the celestial equator, called precession in right ascension, is about 46.1" per year; and the component along a celestial meridian, called precession in declination, is about $20.0^{\prime \prime}$ per year.

General Prudential Rule. . Rule 2(b) of the International Rules and Inland Rules. Rule 2(b) states "In construing and complying with these Rules due regard shall be had to all dangers of navigation and collision and to any special circumstances, including the limitations of the vessels involved, which may make a departure from these Rules necessary to avoid immediate danger."
generating area. . The area in which ocean waves are generated by the wind. Also called FETCH.
gentle breeze. . Wind of force 3 (7 to 10 knots or 8 to 12 miles per hour) on the Beaufort wind scale.
geo. , n. A narrow coastal inlet bordered by steep cliffs. Also called GIO.
geo-. . A prefix meaning earth.
geocentric., adj. Relative to the earth as a center; measured from the center of the earth.
geocentric latitude. . The angle at the center of the reference ellipsoid between the celestial equator and a radius vector to a point on the ellipsoid. This differs from the geographic latitude by a maximum of 11.6^{\prime} of arc at Lat. 45°.
geocentric parallax. . The difference in apparent direction of a celestial body from a point on the surface of the earth and from the center of the earth. This difference varies with the body's altitude and distance from the earth. Also called DIURNAL PARALLAX. See also HELIOCENTRIC PARALLAX.
geodesic. , adj. Of or pertaining to geodesy; geodetic.
geodesic. , n. See GEODESIC LINE.
geodesic line. . A line of shortest distance between any two points on any mathematically defined surface. A geodesic line is a line of double curvature and usually lies between the two normal section lines which the two points determine. If the two terminal points are in nearly the same latitude, the geodesic line may cross one of the normal section lines It should be noted that, except along the equator and along the meridians, the geodesic line is not a plane curve and cannot be sighted over directly. Also called GEODESIC, GEODETIC LINE.
geodesy., n. The science of the determination of the size and shape of the earth.
geodetic. , adj. Of or pertaining to geodesy; geodesic.
geodetic bench mark. . See under BENCH MARK.
geodetic datum. . See DATUM, HORIZONTAL GEODETIC DATUM, VERTICAL GEODETIC DATUM.
geodetic equator. . The line of zero geodetic latitude; the great circle described by the semimajor axis of the reference ellipsoid as it is rotated about the minor axis. See also ASTRONOMICAL EQUATOR.
geodetic height. . See ELLIPSOIDAL HEIGHT.
geodetic latitude. . The angle which the normal to the ellipsoid at a station makes with the plane of the geodetic equator. It differs from the corresponding astronomical latitude by the amount of the meridional component of the local deflection of the vertical. Also called TOPOGRAPHICAL LATITUDE and sometimes GEOGRAPHIC LATITUDE.
geodetic line. . See GEODESIC LINE.
geodetic longitude. . The angle between the plane of the geodetic meridian at a station and the plane of the geodetic meridian at Greenwich. A geodetic longitude differs from the corresponding astronomical longitude by the amount of the prime vertical component of the local deflection of the vertical divided by the cosine of the latitude. Sometimes called GEOGRAPHIC LONGITUDE.
geodetic meridian. . A line on a reference ellipsoid which has the same geodetic longitude at every point. Sometimes called GEOGRAPHIC MERIDIAN.
geodetic parallel. . A line on a reference ellipsoid which has the same geodetic latitude of every point. A geodetic parallel, other than the equator, is not a geodesic line. In form, it is a small circle whose plane is parallel with the plane of the geodetic equator. See also ASTRONOMICAL PARALLEL.
geodetic position. . A position of a point on the surface of the earth expressed in terms of geodetic latitude and geodetic longitude. A geodetic position implies an adopted geodetic datum.
geodetic satellite. . Any satellite whose orbit and payload render it useful for geodetic purposes.
geodetic survey. . A survey that takes into account the shape and size of the earth. It is applicable for large areas and long lines and is used for the precise location of basic points suitable for controlling other surveys.
geographic, geographical. , adj. Of or pertaining to geography.
geographical coordinates. . Spherical coordinates defining a point on the surface of the earth, usually latitude and longitude. Also called TERRESTRIAL COORDINATES.
geographical mile. . The length of 1 minute of arc of the equator, or $6,087.08$ feet. This approximates the length of the nautical mile.
geographical plot. . A plot of the movements of one or more craft relative to the surface of the earth. Also called TRUE PLOT. See also NAVIGATIONAL PLOT.
geographical pole. . Either of the two points of intersection of the surface of the earth with its axis, where all meridians meet, labeled N or S to indicate whether the north geographical pole or the south geographical pole.
geographical position. . 1. That point on the earth at which a given celestial body is in the zenith at a specified time. The geographical position of the sun is also called the sub solar point, of the moon the sublunar point, and of a star the substellar or subastral point. 2. Any position on the earth defined by means of its geographical coordinates either astronomical or geodetic.
geographic graticule. . The system of coordinates of latitude and longitude used to define the position of a point on the surface of the earth with respect to the reference ellipsoid.
geographic latitude. . A general term applying to astronomic and geodetic latitudes.
geographic longitude. . A general term applying to astronomic and geodetic longitudes.
geographic meridian. . A general term applying to astronomical and geodetic meridians.
geographic number. . The number assigned to an aid to navigation for identification purposes in accordance with the lateral system of numbering.
geographic parallel. . A general term applying to astronomical and geodetic parallels.
geographic range. . The maximum distance at which the curvature of the earth and terrestrial refraction permit an aid to navigation to be seen from a particular height of eye without regard to the luminous intensity of the light. The geographic range sometimes printed on charts or tabulated in light lists is the maximum distance at which the curvature of the earth and terrestrial refraction permit a light to be seen from a height of eye of 15 feet above the water when the elevation of the light is taken above the height datum of the largest scale chart of the locality. Therefore, this range is a nominal geographic range. See also VISUAL RANGE (OF A LIGHT).
geographic sign conventions. . In mapping, charting, and geodesy, the inconsistent application of algebraic sign to geographical references and the angular reference of azimuthal systems is a potential trouble area in scientific data collection. The following conventions have wide use in the standardization of scientific notation: Longitude references are positive eastward of the Greenwich meridian to 180°, and negative westward of Greenwich. Latitude references are positive to the north of the equator and negative to the south. Azimuths are measured clockwise, using South as the origin and continuing to 360°. Bearings are measured clockwise, using North as the origin and continuing to 360°. Tabulated coordinates, or individual coordinates, are annotated $\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$, as appropriate.
geoid. , n. The equipotential surface in the gravity field of the earth; the surface to which the oceans would conform over the entire earth if free to adjust to the combined effect of the earth's mass attraction and the centrifugal force of the earth's rotation. As a result of the uneven distribution of the earth's mass, the geoidal surface is irregular. The geoid is a surface along which the gravity potential is everywhere equal (equipotential surface) and to which the direction of gravity is always perpendicular. Also called FIGURE OF THE EARTH.
geoidal height. . The distance of the geoid above (positive) or below (negative) the mathematical reference ellipsoid. Also called GEOIDAL SEPARATION, GEOIDAL UNDULATION, UNDULATION OF THE GEOID.
geoidal horizon. . The circle of the celestial sphere formed by the intersection of the celestial sphere and a plane through a point on the sea level surface of the earth, and perpendicular to the zenith-nadir line. See also HORIZON.
geoidal separation. . See GEOIDAL HEIGHT.
geoidal undulation. . See GEOIDAL HEIGHT.
geological oceanography. . The study of the floors and margins of the oceans, including description of submarine relief features, chemical and physical composition of bottom materials, interaction of sediments and rocks with air and seawater, and action of various forms of wave energy in the submarine crust of the earth.
geomagnetic. , adj. Of or pertaining to geomagnetism.
geomagnetic equator. . The terrestrial great circle everywhere 90° from the geomagnetic poles. GEOMAGNETIC EQUATOR is not the same as the MAGNETIC EQUATOR, the line connecting all points of zero magnetic dip.
geomagnetic latitude. . Angular distance from the geomagnetic equator, measured northward or southward on the geomagnetic meridian through 90° and labeled N or S to indicate the direction of measurement. GEOMAGNETIC LATITUDE should not be confused with MAGNETIC LATITUDE.
geomagnetic pole. . Either of two antipodal points marking the intersection of the earth's surface with the extended axis of a bar magnet assumed to be located at the center of the earth and approximating the source of the actual magnetic field of the earth. The pole in the Northern Hemisphere (at about lat. $78.5^{\circ} \mathrm{N}$, long. $69^{\circ} \mathrm{W}$) is designated north geomagnetic pole, and the pole in the Southern Hemisphere (at about lat. $78^{\circ} \mathrm{S}$, long. $111^{\circ} \mathrm{E}$) is designated south.
geomagnetic pole. . The great circle midway between these poles is called GEOMAGNETIC EQUATOR. The expression GEOMAGNETIC POLE should not be confused with MAGNETIC POLE, which relates to the actual magnetic field of the earth. See also GEOMAGNETIC LATITUDE.
geomagnetism. , n. Magnetic phenomena, collectively considered, exhibited by the earth and its atmosphere. Also called TERRESTRIAL MAGNETISM.
geometrical dip. . The vertical angle between the horizontal and a straight line tangent to the surface of the earth. It is larger than DIP by the amount of terrestrial refraction.
geometrical horizon. . Originally, the celestial horizon; now more commonly the intersection of the celestial sphere and an infinite number of straight lines tangent to the earth's surface, and radiating from the eye of the observer. If there were no terrestrial refraction, GEOMETRICAL and VISIBLE HORIZONS would coincide. See also RADIO HORIZON.
geometric dilution. . See GEOMETRIC DILUTION OF PRECISION.
geometric dilution of precision. . All geometric factors that degrade the accuracy of position fixes derived from externally referenced navigation systems. Often shortened to GEOMETRIC DILUTION.
geometric map projection. . See PERSPECTIVE MAP PROJECTION.
geometric projection. . See PERSPECTIVE PROJECTION.
geomorphology. , n. A branch of both geography and geology that deals with the form of the earth, the general configuration of its surface, and the changes that take place in the evolution of land forms.
geo-navigation. , n. Navigation by means of reference points on the earth. The term is obsolete.
geophysics. , n. The study of the composition and physical phenomena of the earth and its liquid and gaseous envelopes; it embraces the study of terrestrial magnetism, atmospheric electricity, and gravity; and it includes seismology, volcanology, oceanography, meteorology, and related sciences.
geopotential. , n. The gravity potential of the actual earth. It is the sum of the gravitational (attraction) potential and the potential of the centrifugal force.
Georef. , n. See WORLD GEOGRAPHIC REFERENCE SYSTEM.
geosphere. , n. The portion of the earth, including land (lithosphere) and water (hydrosphere), but excluding the atmosphere.
geostationary satellite. An earth satellite moving eastward in an equatorial, circular orbit at an altitude (approximately 35,900 kilometers) such that its period of revolution is exactly equal to and synchronous with the rotational period of the earth. Such a satellite will remain fixed over a point on the earth's equator. Although geosta-
tionary satellites are frequently called GEOSYNCHRONOUS or SYNCHRONOUS SATELLITES, the orbit of an eastward moving synchronous satellite must be equatorial if the satellite is to remain fixed over a point on the equator. Otherwise, the satellite moves daily in a figure eight pattern relative to the earth. Also called FIXED SATELLITE. See also STATIONARY ORBIT.
geostrophic wind. . The horizontal wind velocity for which the Coriolis force exactly balances the horizontal pressure force. See also GRADIENT WIND.
geosynchronous satellite. An earth satellite whose period of rotation is equal to the period of rotation of the earth about its axis. The orbit of a geosynchronous satellite must be equatorial if the satellite is to remain fixed over a point on the earth's equator. Also called TWENTY-FOUR HOUR SATELLITE. See also SYNCHRONOUS SATELLITE, GEOSTATIONARY SATELLITE.
ghost. , n. 1. An unwanted image appearing on a radarscope caused by echoes which experience multiple reflections before reaching the receiver. See also SECOND-TRACE ECHO, MULTIPLE ECHOES, INDIRECT ECHO. 2. An image appearing on a radarscope the origin of which cannot readily be determined.
giant floe. . See under FLOE.
gibbous., adj. Bounded by convex curves. The term is used particularly in reference to the moon when it is between first quarter and full or between full and last quarter, or to other celestial bodies when they present a similar appearance. See also PHASES OF THE MOON.
giga-. . A prefix meaning one billion $\left(10^{9}\right)$.
gigahertz. , n. One thousand megahertz, or one billion cycles per second.
gimbal freedom. . The maximum angular displacement of a gyro about the output axis of a gimbal.
gimballess inertial navigation equipment. . See STRAPPED-DOWN INERTIAL NAVIGATION EQUIPMENT.
gimballing error. . That error introduced in a gyro-compass by the tilting of the gimbal mounting system of the compass due to horizontal acceleration caused by motion of the vessel, such as rolling.
gimbal lock. . A condition of a two-degree-of-freedom gyro wherein the alignment of the spin axis with an axis of freedom deprives the gyro of a degree-of-freedom and therefore its useful properties.
gimbals. , n., pl. A device for supporting anything, such as an instrument, in such a manner that it will remain horizontal when the support tilts. It consists of a ring inside which the instrument is supported at two points 180° apart, the ring being similarly supported at two points 90° from the instrument supports.
gio. , n. See GEO.
glacial. , adj. Of or pertaining to a glacier.
glacier. , n. A mass of snow and ice continuously moving from higher to lower ground or, if afloat, continuously spreading. The principal forms of glacier are INLAND ICE SHEETS, ICE SHELVES, ICE STREAMS, ICE CAPS, ICE PIEDMONTS, CIRQUE GLACIERS, and various types of mountain (valley) glaciers.
glacier berg. . An irregularly shaped iceberg. Also called WEATHERED BERG.
glacier ice. . Ice in, or originating from, a glacier, whether on land or floating on the sea as icebergs, bergy bits, or growlers.
glacier tongue. . The seaward projecting extension of a glacier, usually afloat. In the Antarctic, glacier tongues may extend many tens of kilo-meters.
glare., n. Dazzling brightness of the atmosphere caused by excessive reflection and scattering of light by particles in the line of sight.
glaze. , n. A coating of ice, generally clear and smooth but usually containing some air pockets, formed on exposed objects by the freezing of a film of super cooled water deposited by rain, drizzle, fog, or possibly condensed from super cooled water vapor. Glaze is denser, harder and more transparent than either rime or hoarfrost Also called GLAZE ICE, GLAZED FROST VERGLAS.
glazed frost. . See GLAZE.
glaze ice. . See GLAZE.
glint., n. The pulse-to-pulse variation in amplitude of reflected radar signals due to rapid change of the reflecting surface, as in the case of the propeller of an aircraft in flight.
Global Positioning System. . See as NAVSTAR GLOBAL POSITIONING SYSTEM.
globigerina - (pl. globlgerinae), n. A very small marine animal of the foraminifera order, with a chambered shell; or the shell of such an animal. In large areas of the ocean the calcareous shells of these animals are very numerous, being the principal constituent of a soft mud or globigerina ooze forming the ocean bed.
GLONASS. . A satellite navigation system operated by Russia, analogous to the U.S. Global Positioning System (GPS).
gloom. , n. The condition existing when daylight is very much reduced by dense cloud or smoke accumulation above the surface, the surface visibility not being materially reduced.
glory., n. See ANTICORONA.
gnomon. , n. Any object the shadow of which serves as an indicator, as the SHADOW PIN on a sun.
gnomonic. , adj. Of or pertaining to a gnomon.
gnomonic chart. . A chart constructed on the gnomonic projection and often used as an adjunct for transferring a great circle to a Mercator chart. Commonly called GREAT CIRCLE CHART.
gnomonic map projection. . A perspective azimuthal map projection in which points on the surface of a sphere or spheroid, such as the earth, are conceived as projected by radials from the center to a tangent plane. Great circles project as straight lines. For this reason the projection is used principally for charts for great circle sailing. The projection is neither conformal nor equal area.
gong., n. A sound signal producing a sound by the vibration of a resonant disc struck by a clapper.
gong buoy. . A buoy fitted with a group of saucer shaped bells of different tones as an audible signal.
goniometer., 1. An instrument for measuring angles. 2. A pick-up coil which eliminates the necessity of having to rotate a radio direction finder antenna to determine direction.
gore., n. A lune-shaped map which may be fitted to the surface of a globe with a negligible amount of distortion.
gorge., n. 1. A narrow opening between mountains, especially one with steep, rocky walls. 2. A collection of solid matter obstructing a channel, river, etc., as ice gorge.
GPS. , n. Global Positioning System; the US Department of Defenseoperated world-wide satellite positioning system.
gradient. , n. 1. A rate of rise or fall of a quantity against horizontal distance expressed as a ratio, decimal, fraction, percentage, or the tangent of the angle of inclination. 2. The rate of increase or decrease of one quantity with respect to another. 3. A term used in radionavigation to refer to the spacing between consecutive hyperbolas of a family of hyperbolas per unit time difference. If the gradient is high, a relatively small time-difference error in determining a hyperbolic line of position will result in a relatively high position error. See also GEOMETRIC DILUTION OF PRECISION.
gradient current. . An ocean current associated with horizontal pressure gradients in the ocean and determined by the condition that the pressure force due to the distribution of mass balances the Coriolis force due to the earth's rotation. See also OCEAN CURRENT.
gradient tints. . See HYPSOMETRIC TINTING.
gradient wind. . Any horizontal wind velocity tangent to the contour line of a constant pressure surface (or to the isobar of a geopotential surface) at the point in question. At such points where the wind is gradient, the Coriolis force and the centrifugal force together exactly balance the horizontal pressure force. See also GEOSTROPHIC WIND.
graduation error. . Inaccuracy in the graduations of the scale of an instrument.
graduations. , n., pl. The marks on a scale.
grain noise. . See SNOW, definition 2.
gram. , n. One one-thousandth of a kilogram.
granular snow. . See SNOW GRAINS.
graph., n. A diagram indicating the relationship between two or more variables.
graph. , $v ., t$. To represent by a graph.
graphic scale. . See BAR SCALE.
graticule., n. 1. The network of lines representing parallels and meridians on a map, chart, or plotting sheet. A fictitious graticule represents fictitious parallels and fictitious meridians. See also GRID, n. 2. A scale at the focal plane of an optical instrument to aid in the measurement of objects. See also RETICULE.
graupel. , n. See SNOW PELLETS.
gravel., n. See under STONES.
graving dock. . A form of dry dock consisting of an artificial basin fitted with a gate or caisson, into which vessels can be floated and the water pumped out to expose the vessels' bottoms. The term is derived from the term used to describe the process of burning barnacles and other accretions from a ship's bottom. See also FLOATING DOCK.
gravisphere. , n. The spherical extent in which the force of a given celestial body's gravity is predominant in relation to that of other celestial bodies.
gravitation. , n. 1. The force of attraction between two bodies. According to Newton, gravitation is directly proportional to the product of the masses of two bodies and inversely proportional to the square of the distance between them. 2. The acceleration produced by the mutual attraction of two masses, directed along the line joining their centers of mass, and of magnitude inversely proportional to the square of the distance between the two centers of mass.
gravitational disturbance. . See GRAVITY DISTURBANCE.
gravitational gradient. . The change in the gravitational acceleration per unit distance.
gravitational perturbations. . Perturbations caused by body forces due to nonspherical terrestrial effects, lunisolar effect, tides, and the effect of relativity.
gravitational tide. . See EQUILIBRIUM TIDE.
gravity. , n. The force of attraction of the earth, or another body, on nearby objects.
gravity anomaly. . The difference between the observed gravity value properly reduced to sea level and the theoretical gravity obtained from gravity formula. Also called OBSERVED GRAVITY ANOMALY.
gravity anomaly map. . A map showing the positions and magnitudes of gravity anomalies. Also, a map on which contour lines are used to represent points at which the gravity anomalies are equal.
gravity data. . Information concerning that acceleration which attracts bodies and is expressed as observations or in the form of gravity anomaly charts or spherical harmonics for spatial representation of the earth and other celestial bodies.
gravity disturbance. . The difference between the observed gravity and the normal gravity at the same point (the vertical gradient of the disturbing potential) as opposed to GRAVITY ANOMALY which uses corresponding points on two different surfaces. Because the centrifugal force is the same when both are taken at the same point, it can also be called GRAVITATIONAL DISTURBANCE.
gravity field of the earth. . The field of force arising from a combination of the mass attraction and rotation of the earth. The field is normally expressed in terms of point values, mean area values, and/or series expansion for the potential of the field.
gravity network. A network of gravity stations.
gravity reduction. . A combination of gravity corrections to obtain reduced gravity on the geoid.
gravity reference stations. . Stations which serve as reference values for a gravity survey, i.e., with respect to which the differences at the other stations are determined in a relative survey. The absolute value of gravity may or may not be known at the reference stations.
gravity station. . A station at which observations are made to determine the value of gravity.
gravity wind. . A wind blowing down an incline. Also called KATABATIC WIND.
grease ice. . Ice at that stage of freezing when the crystals have coagulated to form a soupy layer on the surface. Grease ice is at a later stage of freezing than frazil ice and reflects little light, giving the sea a matte appearance.
great circle. . The intersection of a sphere and a plane through its center. The intersection of a sphere and a plane which does not pass through its center is called a small circle. Also called ORTHODROME, ORTHODROMIC CURVE.
great circle bearing. . The initial direction of a great circle through two terrestrial points, expressed as angular distance from a reference direction. It is usually measured from 000° at the reference direction clockwise through 360°. Bearings obtained by any form of radiant energy are great circle bearings.
great circle chart. . A chart on which a great circle appears as a straight line or approximately so, particularly a chart on the gnomonic map projection.
great circle course. . The direction of the great circle through the point of departure and the destination, expressed as the angular distance from a reference direction, usually north, to the direction of the great circle. The angle varies from point to point along the great circle. At the point of departure it is called initial great circle course; at the destination it is called final great circle course.
great circle direction. . Horizontal direction of a great circle, expressed as angular distance from a reference direction.
great circle distance. . The length of the shorter arc of the great circle joining two points. It is usually expressed in nautical miles.
great circle sailing. . Any method of solving the various problems involving courses, distance, etc., as they are related to a great circle track.
great circle track. . The track of a vessel following a great circle, or a great circle which it is intended that a vessel follow approximately.
great diurnal range. . The difference in height between mean higher high water and mean lower low water. Often shortened to DIURNAL RANGE. The difference in height between mean lower high water and mean higher low water is called SMALL DIURNAL RANGE.
greater ebb. . See under EBB CURRENT.
greater flood. See under FLOOD CURRENT.
greatest elongation. . The maximum angular distance of an inferior planet from the sun before it starts back toward conjunction, as observed from the earth. The direction of the body east or west of the sun is usually specified, as greatest elongation east (or west). See also ELONGATION.
great tropic range. . The difference in height between tropic higher high water and tropic lower low water. Often shortened to TROPIC RANGE. See also MEAN TROPIC RANGE, SMALL TROPIC RANGE.
great year. . The period of one complete cycle of the equinoxes around the ecliptic, about 25,800 years. Also called PLATONIC YEAR. See also PRECESSION OF THE EQUINOXES.
green flash. . A brilliant green coloring of the upper edge of the sun as it appears at sunrise or disappears at sunset when there is a clear, distinct horizon. It is due to refraction by the atmosphere, which disperses the first (or last) spot of light into a spectrum and causes the colors to appear (or disappear) in the order of refrangibility. The green is bent more than red or yellow and hence is visible sooner at sunrise and later at sunset.
green house effect. . The heating phenomenon due to shorter wavelengths of insolation passing through the atmosphere to the earth, which radiates longer wavelength infrared radiation that is trapped by the atmosphere. Some of this trapped radiation is reradiated to the earth. This causes a higher earth temperature than would occur from direct insolation alone.
Greenwich apparent noon. . Local apparent noon at the Greenwich meridian; 12 o'clock Greenwich apparent time, or the instant the apparent sun is over the upper branch of the Greenwich meridian.
Greenwich apparent time. . Local apparent time at the Greenwich meridian; the arc of the celestial equator, or the angle at the celestial pole between the lower branch of the Greenwich celestial meridian and the hour circle of the apparent or true sun, measured westward from the lower branch of the Greenwich celestial meridian through 24 hours, Greenwich hour angle of the apparent or true sun, expressed in time units, plus 12 hours.
Greenwich civil time. . United States terminology from 1925 through 1952. See GREENWICH MEAN TIME.

Greenwich hour angle. . Angular distance west of the Greenwich celestial meridian; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of the Greenwich celestial meridian and the hour circle of a point on the celestial sphere, measured westward from the Greenwich celestial meridian through 360°; local hour angle at the Greenwich meridian.
Greenwich interval. . An interval based on the moon's transit of the Greenwich celestial meridian, as distinguished from a local interval based on the moon's transit of the local celestial meridian.
Greenwich lunar time. . Local lunar time at the Greenwich meridian; the arc of the celestial equator, or the angle at the celestial pole, between the lower branch of the Greenwich celestial meridian and the hour circle of the moon, measured westward from the lower branch of the Greenwich celestial meridian through 24 hours; Greenwich hour angle of the moon expressed in time units, plus 12 hours.

Greenwich mean noon. . Local mean noon at the Greenwich meridian, 12 o'clock Greenwich mean time, or the instant the mean sun is over the upper branch of the Greenwich meridian.
Greenwich mean time. . Local mean time at the Greenwich meridian; the arc of the celestial equator, or the angle at the celestial pole, between the lower branch of the Greenwich celestial meridian and the hour circle of the mean sun, measured westward from the lower branch of the Greenwich celestial meridian through 24 hours; Greenwich hour angle of the mean sun expressed in time units, plus 12 hours. Also called UNIVERSAL TIME, ZULU TIME.
Greenwich meridian. . The meridian through Greenwich, England, serving as the reference for Greenwich time, in contrast with LOCAL MERIDIAN. It is accepted almost universally as the PRIME MERIDIAN, or the origin of measurement of longitude.
Greenwich noon. . Noon at the Greenwich meridian.
Greenwich sidereal noon. . Local sidereal noon at the Greenwich meridian; zero hours Greenwich sidereal time, or the instant the vernal equinox is over the upper branch of the Greenwich meridian.
Greenwich sidereal time. . Local sidereal time at the Greenwich meridian; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of the Greenwich celestial meridian and the hour circle of the vernal equinox, measured westward from the upper branch of the Greenwich celestial meridian through 24 hours; Greenwich hour angle of the vernal equinox expressed in time units.
Greenwich time. . Time based upon the Greenwich meridian as reference. gregale., n. A strong northeast wind of the central Mediterranean.
Gregorian calendar. . The calendar now in almost universal use for civil purposes in which each year has 365 days, except leap years which have 366 days. Leap years are those years which are divisible by 4 , and in the case of centurial years, those years divisible by 400 . This calendar, a modification of the Julian calendar, was not adopted in Great Britain and the English colonies in North America until 1752. The calendar was instituted in 1582 by Pope Gregory XIII to keep calendar days in adjustment with the tropical year for the purpose of regulating the date of Easter and the civil and ecclesiastical calendars.
gray ice. . A subdivision of YOUNG ICE 10 to 15 centimeters thick. Gray ice is less elastic than nilas and breaks in swells. It usually rafts under pressure.
gray-white ice. . A subdivision of YOUNG ICE 15 to 30 centimeters thick. Gray-white ice under pressure is more likely to ridge than to raft.
grid., $a d j$. Pertaining to a grid or related to grid north.
grid., n. 1. A series of lines, usually straight and parallel, superimposed on a chart or plotting sheet to serve as a directional reference for navigation. See also FlCTITlOUS GRATICULE, GRATICULE, definition 1.2. Two sets of mutually perpendicular lines dividing a map or chart into squares or rectangles to permit location of any point by a system of rectangular coordinates. Also called REFERENCE GRID. See also MILITARY GRID, UNIVERSAL POLAR STENOGRAPHIC GRID, UNIVERSAL TRANSVERSE MERCATOR GRID, WORLD GEOGRAPHIC REFERENCING SYSTEM.
grid amplitude. . Amplitude relative to grid east or west.
grid azimuth. . Azimuth relative to grid north.
grid bearing. . Bearing relative to grid north.
grid convergence. . The angular difference in direction between grid north and true north. It is measured east or west from true north.
grid course. . Course relative to grid north.
grid declination. . The angular difference between grid north and true north.
grid direction. . Horizontal direction expressed as angular distance from grid north. Grid direction is measured from grid north, clockwise through 360°.
grid equator. . A line perpendicular to a prime grid meridian, at the origin. For the usual orientation in polar regions the grid equator is the $90^{\circ} \mathrm{W}-90^{\circ} \mathrm{E}$ meridian forming the basic grid parallel, from which grid latitude is measured. See also FICTITIOUS EQUATOR.
grid heading. . Heading relative to grid north.
grid latitude. . Angular distance from a grid equator. See also FICTITIOUS LATITUDE.
grid line. . One of the lines of a grid.
grid longitude. . Angular distance between a prime grid meridian and any given grid meridian. See also FICTITIOUS LONGITUDE.
grid magnetic angle. . Angular difference in direction between grid north and magnetic north. It is measured east or west from grid north. Grid magnetic angle is sometimes called GRID VARIATION or GRIVATION.
grid meridian. . One of the grid lines extending in a grid north-south direction. The reference grid meridian is called prime grid meridian. In polar regions the prime grid meridian is usually the $180^{\circ}-0^{\circ}$ geographic meridian. See also FICTITIOUS MERIDIAN.
grid navigation. . Navigation by the use of grid directions.
grid north. . 1. An arbitrary reference direction used with grid navigation. The direction of the 180th geographical meridian from the north pole is used almost universally as grid north. 2. The northerly or zero direction indicated by the grid datum of directional reference.
grid parallel. . A line parallel to a grid equator, connecting all points of equal grid latitude. See also FICTITIOUS PARALLEL.
grid prime vertical. . The vertical circle through the grid east and west points of the horizon.
grid rhumb line. . A line making the same oblique angle with all grid meridians. Grid parallels and meridians may be considered special cases of the grid rhumb line. See also FICTITIOUS RHUMB LINE.
grid track. . The direction of the track relative to grid north.
grid variation. . See GRID MAGNETIC ANGLE.
grivation. , n. See GRID MAGNETIC ANGLE.
groin. , n. A structure (usually one of a group) extending approximately perpendicular from a shore to protect the shore from erosion by tides currents, or waves or to trap sand for making a beach. See also JETTY, definition 1.
ground. , n. A conducting connection between an electric circuit and the earth or some other conducting body of zero potential with respect to the earth.
ground. , $v ., t$. \& i. To touch bottom or run aground. $v ., t$. To connect an electric circuit with the earth or some other conducting body, such that the earth or body serves as part of the circuit.
ground absorption. . The dissipation of energy in radio waves because of absorption by the ground over which the waves are transmitted.
ground-based duct. . See SURFACE DUCT.
ground chain. . Heavy chain used with permanent moorings and connecting the various legs or bridles.
grounded hummock. . Hummocked grounded ice formation. There are single grounded hummocks and lines (or chains) of grounded hummocks.
grounded ice. . Floating ice which is aground in shoal water. See also STRANDED ICE, FLOATING ICE.
ground fog. . A fog that obscures less than six tenths of the sky, and does not extend to the base of any clouds.
grounding. , n. The touching of the bottom by a vessel. A serious grounding is called a stranding.
ground log. . A device for determining the course and speed over the ground in shallow water consisting of a lead or weight attached to a line. The lead is thrown overboard and allowed to rest on the bottom. The course over ground is indicated by the direction the line tends and the speed by the amount of line paid out in a unit of time.
ground swell. . A long, deep swell or undulation of the ocean often caused by a long-continued gale and sometimes a seismic disturbance and felt even at a remote distance. In shallow water the swell rises to a prominent height. See SWELL definition 1.
ground tackle. . The anchors, anchor chains, fittings etc., used for anchoring a vessel.
ground track. . 1. See under TRACK, definition 2. 2. See under TRUE TRACK OF TARGET.
groundwave. . A radio wave that is propagated over the earth and is ordinarily influenced by the presence of the ground and the troposphere. Except for ionospheric and tropospheric waves, the groundwave includes all components of a radio wave.
group flashing light. A flashing light in which the flashes are combined in groups, each group having the same number of flashes, and in which the groups are repeated at regular intervals. The eclipses separating the flashes within each group are of equal duration and this duration is clearly shorter than the duration of the eclipse between two successive groups.
group occulting light. . An occulting light in which the occultations are combined in groups, each group including the same number of occultations, and in which the groups are repeated at regular intervals. The intervals of light separating the occultations within each group are of equal duration and this duration is clearly shorter than the duration of the interval of light between two successive groups.
group quick light. . A quick flashing light in which a specified group of flashes is regularly repeated. See also CONTINUOUS QUICK LIGHT, INTERRUPTED QUICK LIGHT.
group repetition interval. . The specified time interval of a Loran C chain for all stations of the chain to transmit their pulse groups. For each chain a minimum group repetition interval (GRI) is selected of sufficient duration to provide time for each station to transmit its pulse group and additional time between each pulse group so that signals from two or more stations cannot overlap in time anywhere within the coverage area. The GRI is normally stated in terms of tens of microseconds; i.e., the GRI having a duration of 79,900 microseconds is stated as 7900 .
group repetition interval code. . The group repetition interval in microseconds divided by 10 .
group very quick light. . A very quick flashing light in which a specified group of flashes is regularly repeated. See also CONTINUOUS VERY QUICK LIGHT, INTERRUPTED VERY QUICK LIGHT.
growler. , n. A piece of ice smaller than a BERGY BIT or FLOEBERG, often transparent but appearing green or almost black in color. It extends less than 1 meter above the sea surface and its length is less than 20 feet (6 meters). A growler is large enough to be a hazard to shipping but small enough that it may escape visual or radar detection.
grunt. , n. See under DIAPHONE.
Guiana Current. . An ocean current flowing northwestward along the northeast coast of South America. The Guiana Current is an extension of the Atlantic South Equatorial Current, which crosses the equator and approaches the coast of South America. Eventually, it is joined by part of the Atlantic North Equatorial Current and becomes, successively, the CARIBBEAN ISLANDS, and the FLORIDA CURRENT. Also called NORTH BRAZIL CURRENT.
Guinea Current. . A North Atlantic Ocean current flowing eastward along the south coast of northwest Africa into the Gulf of Guinea. The Guinea Current is the continuation of the Atlantic Equatorial Countercurrent augmented by the eastern branch of the Canary Current.
gulder. , n. Local name given to double low water occurring on the south coast of England. See DOUBLE TIDE.
gulf. , n. A major indentation of the sea into the land, usually larger than a bay.
Gulf Coast Low Water Datum. . Gulf Coast Low Water Datum (GCLWD) is defined as mean lower low water when the type of tide is mixed, and mean low water when the type of tide is diurnal. GCLWD was used as chart tidal datum from November 14, 1977, to November 28, 1980, for the coastal waters of the gulf coast of the United States.
Gulf Stream. . A warm, well defined, swift, relatively narrow ocean current which originates where the Florida Current and the Antilles Current meet north of Grand Bahama Island. It gains its impetus from the large volume of water that flows through the Straits of Florida. Near the edge of the Grand Banks of Newfoundland extensions of the Gulf Stream and the Labrador Current continue as the NORTH ATLANTIC CURRENT, which fans outward and widens in a northeastward to eastward flow across the ocean. The Florida Current, the Gulf Stream, and the North Atlantic Current together form the GULF STREAM SYSTEM. Sometimes the entire system is referred to as the Gulf Stream The Gulf Stream forms the western and northwestern part of the general clockwise oceanic circulation of the North Atlantic Ocean.
Gulf Stream System. . A system of ocean currents comprised of the Florida Current, the Gulf Stream, and the North Atlantic Current.
gulfweed. , n. See SARGASSUM.
gully. , n. 1. A small ravine, especially one cut by running water, but through which water flows only after a rain. 2 . On the sea floor, a small valley-like feature.
gust. , $n .1$. A sudden brief increase in the speed of the wind of more transient character than a squall, and followed by a lull or slackening of the wind. 2. The violet wind or squall that accompanies a thunderstorm.
gut. , n. A narrow passage or contracted strait connecting two bodies of water.
guyot., n. See TABLEMOUNT.
gyre. , n. A closed circulatory system, but larger than a whirlpool or eddy. gyro. , n. Short for GYROSCOPE.
gyrocompass. , n. A compass having one or more gyroscopes as the directive element, and which is north-seeking. Its operation depends upon four natural phenomena, namely gyroscopic inertia, gyroscopic precession, the earth's rotation, and gravity. When such a compass controls remote indicators, called GYRO REPEATERS, it is called a master gyrocompass. See also DIRECTIONAL GYRO MODE.
gyro error. . The error in the reading of the gyrocompass, expressed in degrees east or west to indicate the direction in which the axis of the compass is offset from true north. See also BALLISTIC DAMPING ERROR, BALLISTIC DEFLECTION ERROR, COMPASS ERROR, GIMBALLING ERROR, INTERCARDINAL ROLLING ERROR, LUBBER'S LINE ERROR SPEED ERROR.
gyro log. A written record of the performance of a gyrocompass.
gyropilot., n. An automatic device for steering a vessel by means of control signals received from a gyrocompass. Also called AUTOPILOT.
gyro repeater. . A device which displays at a different location the indications of the master gyrocompass. See also COMPASS REPEATER.
gyroscope. , n. A rapidly rotating mass free to move about one or both axes perpendicular to the axis of rotation and to each other. It is characterized by GYROSCOPIC INERTIA and PRECESSION. Usually shortened to GYRO. The term also refers colloquially to the GYROCOMPASS. See also DIRECTIONAL GYRO, FREE GYRO.
gyroscopic drift. . The horizontal rotation of the spin axis of a gyroscope about the vertical axis.
gyroscopic inertia. . The property of a gyroscope of resisting any force which tends to change its axis of rotation. A gyroscope tends to maintain the direction of its axis of rotation in space. Also called RIGIDITY IN SPACE.
gyro sextant. . A sextant provided with a gyroscope to indicate the horizontal.

H

haar. , n. A wet sea fog or very fine drizzle which drifts in from the sea in coastal districts of eastern Scotland and northeast England, especially in summer.
habitat sanctuary. . A marine sanctuary established for the preservation, protection and management of essential or specialized habitats representative of important marine systems. See also MARINE SANCTUARY.
hachules., n. pl. 1. Short lines on topographic maps or nautical charts to indicate the slope of the ground or the submarine bottom. They usually follow the direction of the slope. 2 . Inward-pointing short lines or "ticks" around the circumference of a closed contour indicating a depression or a minimum.
hack., n. A chronometer which has failed to meet the exacting requirements of a standard chronometer, and is used for timing observations of celestial bodies, regulating ship's clocks, etc. A comparing watch, which may be of high quality, is normally used for timing celestial observations, the watch being compared with the chronometer, preferably both before and after observations. Sometimes called HACK CHRONOMETER.
hack chronometer. . See HACK.
hack watch. . See COMPARING WATCH.
hail. , n. Frozen precipitation consisting of ice balls or irregular lumps of ice of varying size, ranging from that of a raindrop to an inch or considerably more. They are composed of clear ice or of alternate layers of ice and snow, and may fall detached or frozen together into irregular lumps. Hail is usually associated with thunderstorms. A hailstone is a single unit of hail. Small hail consists of snow pellets surrounded by a very thin ice covering. See also SNOW PELLETS.
hailstone., n. See under HAIL.
hail storm. . See under STORM, definition 2.
half-power points. . Power ratios used to define the angular width of a radar beam. One convention defines beam width as the angular width between points at which the field strength is 71 percent of its maximum value. Expressed in terms of power ratio, this convention defines beam width as the angular width between half-power points. A second convention defines beam width as the angular width between points at which the field strength is 50 percent of its maximum value. Expressed in terms of power ratio, the latter convention defines beam width as the angular width between quarterpower points.
half tide. . The condition or time of the tide when midway between high and low.
half-tide basin. . A lock of very large size and usually of irregular shape, the gates of which are kept open for several hours after high tide so that vessels may enter as long as there is sufficient depth over the sill. Vessels remain in the half-tide basin until the ensuing flood tide before they may pass through the gate to the inner harbor. If entry to the inner harbor is required before this time, water must be admitted to the half-tide basin from some external source. See also TIDAL BASIN, NON-TIDAL BASIN.
half-tide level. . A tidal datum midway between mean high water and mean low water. Mean sea level may coincide with half-tide level, but seldom does; the variation is generally about 3 centimeters and rarely exceeds 6 centimeters. Also called MEAN TIDE LEVEL. See also MID-EXTREME TIDE.
halo. , n. Any of a group of optical phenomena caused by refraction or reflection of light by ice crystals in the atmosphere. The most common form is a ring of light of radius 22° or 46° around the sun or moon. See also CORONA, PARHELION, CIRCUMSCRIBED HALO, PARHELIC CIRCLE, SUN CROSS, SUN PILLAR, CIRCUMZENITHAL ARC, ANTHELION, PARANTHELION, HAVELIAN HALO, TANGENT ARC.
halving. , n. The process of adjusting magnetic compass correctors so as to remove half of the deviation on the opposite cardinal or adjacent intercardinal headings to those on which adjustment was originally made when all deviation was removed. This is done to equalize the error on opposite headings.
Handbook of Magnetic Compass Adjustment. . See PUB. NO. 226. (No longer in print)
hand lead. . A light sounding lead (7 to 14 pounds), usually having a line of not more than 25 fathoms.
hanging compass. . See INVERTED COMPASS.
harbor. , n. 1. A body of water providing protection for vessels and, generally, anchorage and docking facilities. 2. A haven or space of deep water so sheltered by the adjacent land as to afford a safe anchorage for ships. See also NATURAL HARBOR, ARTIFICIAL HARBOR.
harbor chart. . See under CHART CLASSIFICATION BY SCALE.
harbor line. . The line beyond which wharves and other structures cannot be extended.
harbor reach. . See under REACH.
hard beach. . A portion of a beach especially prepared with a hard surface extending into the water, employed for the purpose of loading or unloading directly into landing ships or landing craft.
hard disk. . Rigid computer data storage in disk form.
hard iron. . Iron or steel which is not readily magnetized by induction, but which retains a high percentage of the magnetism acquired. The opposite is SOFT IRON.
hardware. . The physical parts of a computer system; compare with SOFTWARE, the programs which accomplish work.
harmattan. , n. The dry, dusty trade wind blowing off the Sahara Desert across the Gulf of Guinea and the Cape Verde Islands. Sometimes called the DOCTOR, because of its supposed healthful properties.
harmful interference. . Any emission, radiation or induction which endangers the functioning of a radionavigation service or of other safety services or seriously degrades, obstructs or repeatedly interrupts a radio-communication service operating in accordance with the International Telecommunications Union Regulations.
harmonic. , n. 1. A sinusoidal quantity having a frequency that is an integral multiple of the frequency of a periodic quantity to which it is related. 2. A signal having a frequency which is an integral multiple of the fundamental frequency.
harmonic analysis. . The process by which the observed tide or tidal current at any place is separated into basic harmonic constituents. Also called HARMONIC REDUCTION.
harmonic analyzer. . A machine designed for the resolution of a periodic curve into its harmonic constituents. Now performed by computer.
harmonic component. . Any of the simple sinusoidal components into which a periodic quantity may be resolved.
harmonic constants. . The amplitudes and epochs of the harmonic constituents of the tide or tidal current at any place.
harmonic constituent. . See CONSTITUENT.
harmonic expressions. . Trigonometric terms of an infinite series used to approximate irregular curves in two or three dimensions.
harmonic function. . Any real function that satisfies a certain equation. In its simplest form, as used in tide and tidal current predictions, it is a quantity that varies as the cosine of an angle that increases uniformly with time.
harmonic motion. . The projection of circular motion on a diameter of the circle of such motion. Simple harmonic motion is produced if the circular motion is of constant speed. The combination of two or more simple harmonic motions results in compound harmonic motion.
harmonic prediction. (tidal). Method of predicting tides and tidal currents by combining the harmonic constituents into a single tide curve, usually performed by computer.
harmonic reduction. . See HARMONIC ANALYSIS.
harmonic tide plane. . See INDIAN SPRING LOW WATER.
harpoon log. . A log which consists of a rotator and distance registering device combined in a single unit, which is towed through the water. The TAFFRAIL LOG is similar except that the registering device is located at the taffrail, with only the rotator in the water.
harvest moon. . The full moon occurring nearest the autumnal equinox. See also PHASES OF THE MOON.
haul. , v., i. 1. A counterclockwise change in direction of the wind. 2. A shift in the direction of the wind forward. The opposite is to VEER. 2. v., t. To change the course of a sailing vessel to bring the wind farther forward, usually used with up, such as haul up.
haven. , n. A place of safety for vessels.
haze. , n. Fine dust or salt particles in the air, too small to be individually apparent but in sufficient number to reduce horizontal visibility and give the atmosphere a characteristic hazy appearance which casts a bluish or yellowish veil over the landscape, subduing its colors. This is sometimes called a dry haze to distinguish it from damp haze, small water droplets or very hygroscopic particles in the air, smaller and more scattered than light fog.
head. , n. See HEADLAND.
heading., n. The horizontal direction in which a ship actually points or heads at any instant, expressed in angular units from a reference direction, usually from 000° at the reference direction clockwise through 360°. Heading is often designated as true, magnetic, compass, or grid. Heading should not be confused with COURSE, which is the intended direction of movement through the water. At a specific instant the heading may or may not coincide with the course. The heading of a ship is also called SHIP'S HEAD.
heading angle. . Heading measured from 0° at the reference direction clockwise or counterclockwise through 90° or 180°. It is labeled with the reference direction as a prefix and the direction of measurement from the reference direction as a suffix.
heading flasher. . An illuminated radial line on the radar for indicating own ship's heading on the bearing dial. Also called HEADING MARKER.
heading line. . The line extending in the direction of a heading.
heading marker. . See HEADING FLASHER.
headland., n. A comparatively high promontory having a steep face. Usually called HEAD when coupled with a specific name. Also called FORELAND.
head sea. . A sea in which the waves move in a direction approximately opposite to the heading. The opposite is FOLLOWING SEA.
head tide. . A tidal current setting in a direction approximately opposite to the heading of a vessel. One setting in such a direction as to increase the speed of a vessel is called a FAIR TIDE. One abeam is called a BEAM TIDE. One approximately 90° from the course is called a CROSS TIDE.
head up, heading upward. . One of the three basic orientations of display of relative or true motion on a radarscope. In the HEAD UP orientation, the target pips are painted at their measured distances and in their directions relative to own ship's heading maintained UP in relation to the display and so indicated by the HEADING FLASHER. See also NORTH UP, BASE COURSE UP.
headwaters. , n., pl. The source of a stream or river.
headway. , n. Motion in a forward direction. Motion in the opposite direction is called STERNWAY.
head wind. . Wind from ahead of the vessel.
heat lightning. . A flash of light from an electric discharge, without thunder, believed to be the reflection by haze or clouds of a distant flash of lightning, too far away for the thunder to be audible.
heat wave. . Unseasonably high temperatures extending over a period of a day or longer, particularly during the warm season of the year.
heave. , n. The oscillatory vertical rise and fall, due to the entire hull being lifted by the force of the sea. Also called HEAVING. See also SHIP MOTIONS.
heavenly body. . See CELESTIAL BODY.
heave the lead. . To take a sounding with a lead.
heaving. , n. See HEAVE.
Heaviside layer. . See under KENNELLY-HEAVISIDE REGION.
hecto-. . A prefix meaning one hundred $\left(10^{2}\right)$.
hectometer. , n. One hundred meters.
heel. , n. Lateral inclination of a vessel. See also LIST, n.
heel. , $v ., t ., i$. To incline or be inclined to one side. See also LIST, n.
heeling adjuster. . A dip needle with a sliding weight that can be moved along one of its arms to balance magnetic force, used to determine the correct position of a heeling magnet. Also called HEELING ERROR INSTRUMENT, VERTICAL FORCE INSTRUMENT. See also HEELING ERROR.
heeling error. . The change in the deviation of a magnetic compass when a craft heels, due to the change in the position of the magnetic influences of the craft relative to the earth's magnetic field and to the compass.
heeling error instrument. . Heeling adjuster. Also called VERTICAL FORCE INSTRUMENT.
heeling magnet. . A permanent magnet placed vertically in a tube under the center of a marine magnetic compass, to correct for heeling error.
height. , n. Vertical distance above a datum.
height of eye correction. . The correction to sextant altitude due to dip of the horizon. Also called DIP CORRECTION.
height of tide. . Vertical distance from the chart sounding datum to the water surface at any stage of the tide. It is positive if the water level is higher than the chart sounding datum. The vertical distance from the chart sounding datum to a high water datum is called RISE OF TIDE.
heliocentric. , adj. Relative to the sun as a center.
heliocentric parallax. . The difference in the apparent direction or positions of a celestial body outside the solar system, as observed from the earth and sun. Also called STELLAR PARALLAX, ANNUAL PARALLAX. See also GEOCENTRIC PARALLAX.
helm. , n. The apparatus by which a vessel is steered; the tiller or wheel.
hemisphere. , n. Half of a sphere.
henry., n. A derived unit of electric inductance in the International System of Units; it is the inductance of a closed circuit in which an electromotive force of 1 volt is produced when the electric current in the circuit varies uniformly at a rate of 1 ampere per second.
hertz. , n. The special name for the derived unit of frequency in the International System of Units, it is one cycle per second.
Hertzian waves. . See RADIO WAVES.
heterodyne reception. . Radio reception in which an audio frequency is derived by beating the signal frequency with that produced by a local oscillator, followed by detection. Also called BEAT RECEPTION.

Hevelian halo. . A faint white halo consisting of a ring occasionally seen 90° from the sun, and probably caused by the refraction and internal reflection of the sun's light by bi-pyramidal ice crystals.
hexagon. , n. A closed plane figure having six sides.
hibernal., adj. Pertaining to winter. The corresponding adjectives for spring, summer, and fall are vernal, aestival, and autumnal.
high. , n. An area of high pressure. Since a high is, on a synoptic chart, always associated with anticyclonic circulation, the term is used interchangeably with ANTICYCLONE. See also LOW.
high altitude method. . The establishing of a circular line of position from the observation of the altitude of a celestial body by means of the geographical position and zenith distance of the body. The line of position is a circle having the geographical position as its center and a radius equal to the zenith distance. The method is normally used only for bodies at high altitudes having small zenith distances. See also ST. HILAIRE METHOD, SUMNER METHOD LONGITUDE METHOD.
high clouds. . Types of clouds the mean lower level of which is above 20,000 feet. The principal clouds in this group are cirrus, cirrocumulus, and cirrostratus.
higher high water. . The higher of the two high waters of any tidal day. higher high water interval. . See under LUNITIDAL INTERVAL.
higher lower water. . The higher of the two low waters of any tidal day.
higher low water interval. . See under LUNITIDAL INTERVAL.
high fidelity. . The ability to reproduce modulating waves at various audio frequencies without serious distortion.
high focal plane buoy. . A type of lighted buoy in which the light is mounted exceptionally high above the surface of the sea.
high frequency. . Radio frequency of 3 to 30 megahertz.
high light. . The rear light of a lighted range. See REAR LIGHT.
high noon. . See LOCAL APPARENT NOON.
high sea, high seas. . All water beyond the outer limit of the territorial sea. Although the high seas are in part coextensive with the waters of the contiguous zone, the fishing zone, and those over the continental shelf, freedom of the seas is not invalidated by the zonal overlap.
high tide. . See under HIGH WATER.
high water. . The maximum height reached by a rising tide. The height may be due solely to the periodic tidal forces or it may have superimposed upon it the effects of prevailing meteorological conditions. Use of the synonymous term HIGH TIDE is discouraged.
high water full and change. . See ESTABLISHMENT OF THE PORT.
high water inequality. . The difference between the heights of the two high waters during a tidal day. See under DIURNAL INEQUALITY.
high water interval. . See under LUNITIDAL INTERVAL.
high water line. . 1. The intersection of the land with the water surface at an elevation of high water. 2 . The line along the shore to which the waters normally reach at high water.
high water mark. . A line or mark left upon tide flats, beach, or alongshore objects indicating the elevation of the intrusion of high water. It should not be confused with the MEAN HIGH WATER LINE or MEAN HIGHER HIGH WATER LINE.
high water neaps. . See under NEAP TIDES.
high water springs. . Short for MEAN HIGH WATER SPRINGS.
high water stand. . The condition at high water when there is no sensible change in the height of the water. A similar condition at low water is called LOW WATER STAND. See also STAND.
hill. , n. 1. A relatively low, rounded elevation of the earth's surface. 2. On the sea floor, an elevation rising generally less than 500 meters.
hillock. , n. A small hill.
hoar. , n. See FROST, definition 1.
hoarfrost. , n. See FROST, definition 1.
holding ground. . The bottom ground of an anchorage. The expression is usually used with a modifying adjective to indicate the quality of the holding power of the material constituting the bottom.
hole. , n. 1. A small depression of the sea floor. 2. An opening through a piece of sea ice, or an open space between ice cakes. 3. A small bay, particularly in New England.
homing., n. Navigation toward a point by following a signal from that point. Radiobeacons are commonly used for homing.
homogenous. , adj. Uniform throughout, or composed of parts which are similar in every detail.
hood. , n. A shield placed over a radarscope, to eliminate extraneous light and thus make the radar picture appear clearly.
hook., n. A feature resembling a hook in shape, particularly, a. a spit or narrow cape of sand or gravel which turns landward at the outer end; or b. a sharp bend or curve, as in a stream.
hooked spit. . See RECURVED SPIT.
hop. , n. Travel of a radio wave to the ionosphere and back to earth. The number of hops a radio signal has experienced is usually designated by the expression one-hop, two-hop, multihop, etc.
H.O. Pub. No. 208. ., Navigation Tables for Mariners and Aviators; a sight reduction table first published in 1928 by the U.S. Navy Hydrographic Office but discontinued on 31 December 1970 by the successor, the U.S. Naval Oceanographic Office. The method was devised by Lieutenant Commander J. Y. Dreisonstok USN. It is based upon a navigational triangle divided by dropping a perpendicular from the zenith The table has been published commercially. Popularly called DREISONSTOK.
H.O.Pub.No.211. . Dead Reckoning Altitude and Azimuth Table; a sight reduction table first published by the U.S. Navy Hydrographic Office in 1931 but discontinued as a separate publication on 31 December 1972 by the successor, the Defense Mapping Agency Hydrographic/Topographic Center. The method was devised by Lieutenant Arthur A. Ageton, USN. It is based upon a navigational triangle divided by dropping a perpendicular from the GP of the body. The table was republished in 1975 by the Defense Mapping Agency Hydrographic/Topographic Center as table 35 of Volume II: American Practical Navigator, but is no longer included. Popularly called the AGETON method.
H.O. Pub. No. 214. . Tables of Computed Altitude and Azimuth; a ninevolume set of sight reduction tables of the inspection type published between 1936 and 1946 by the U.S. Navy Hydrographic Office, and reprinted from time to time until discontinued on 31 December 1973. These tables were superseded by Pub. No. 229, Sight Reduction Tables for Marine Navigation.
horizon., n. The great circle of the celestial sphere midway between the zenith and nadir, or a line resembling or approximating such a circle. The line where earth and sky appear to meet, and the projection of this line upon the celestial sphere, is called the visible or apparent horizon. A line resembling the visible horizon but above or below it is called a false horizon. The circle of the celestial sphere-formed by the intersection of the celestial sphere and a plane perpendicular to the zenith-nadir line is called sensible horizon if the plane is through any point, such as the eye of an observer; geoidal horizon if through any sea-level point; and celestial or rational horizon if through the center of the earth. The geometrical horizon was originally considered identical with the celestial horizon, but the expression is now more commonly used to refer to the intersection of the celestial sphere and an infinite number of straight lines tangent to the earth's surface, and radiating from the eye of the observer. If there were no terrestrial refraction, GEOMETRICAL AND VISIBLE HORIZONS would coincide. An artificial horizon is a device for indicating the horizontal. A radio horizon is the line at which direct rays from a transmitting antenna become tangent to the earth's surface. A radar horizon is the radio horizon of a radar antenna.
horizon glass. . The glass of a marine sextant, attached to the frame, through which the horizon is observed. The half of this glass nearer the frame is silvered to form the HORIZON MIRROR for reflecting the image of a celestial body; the other half is clear.
horizon mirror. The mirror part of the horizon glass. The expression is sometimes used somewhat loosely to refer to the horizon glass.
horizon prism. . A prism which can be inserted in the optical path of an instrument, such as a bubble sextant, to permit observation of the visible horizon.
horizon system of coordinates. . A set of celestial coordinates based on the celestial horizon as the primary great circle; usually altitude and azimuth or azimuth angle.
horizontal. , adj. Parallel to the plane of the horizon; perpendicular to the direction of gravity.
horizontal., n. A horizontal line, plane, etc. horizontal beam width. The beam width measured in a horizontal plane.
horizontal control datum. . See HORIZONTAL GEODETIC DATUM. horizontal danger angle. . The maximum or minimum angle between two points on a chart, as observed from a vessel, indicating the limit of safe approach to an off-lying danger. See also DANGER ANGLE.
horizontal datum. . See HORIZONTAL GEODETIC DATUM.
horizontal earth rate. . The rate at which the spin axis of a gyroscope must be tilted about the horizontal axis to remain parallel to the earth's surface. Horizontal earth rate is maximum at the equator, zero at the poles, and varies as the cosine of the latitude. See also EARTH RATE, VERTICAL EARTH RATE.
horizontal force instrument. . An instrument used to make a comparison between the intensity of the horizontal component of the earth's magnetic field and the magnetic field at the compass location on board. Basically, it consists of a magnetized needle pivoted in a horizontal plane, as a dry card compass. It will settle in some position which will indicate the direction of the resultant magnetic field. If the needle is started swinging, it will be damped down with a certain period of oscillation dependent upon the strength of the magnetic field. Also called HORIZONTAL VIBRATING NEEDLE. See also DEFLECTOR.
horizontal geodetic datum. . The basis for computations of horizontal control surveys in which the curvature of the earth is considered It consists of the astronomical and geodetic latitude and the astronomical and geodetic longitude of an initial point (origin); an azimuth of a line from this point; the parameters (radius and flattening) of the reference ellipsoid; and the geoidal separation at the origin. A change in any of these quantities affects every point on the datum. For this reason, while positions within a system are directly and accurately relatable, those points from different datums must be transformed to a common datum for consistency. The horizontal geodetic datum may extend over a continent or be limited to a small area. See also DATUM. Also called HORIZONTAL DATUM, HORIZONTAL CONTROL DATUM.
horizontal intensity of the earth's magnetic field. . The strength of the horizontal component of the earth's magnetic field.
horizontally polarized wave. . A plane polarized electromagnetic wave in which the electric field vector is in a horizontal plane.
horizontal parallax. . The geocentric parallax when a body is on the horizon. The expression is usually used only in connection with the moon, for which the tabulated horizontal parallax is given for an observer on the equator. The parallax at any altitude is called PARALLAX IN ALTITUDE.
horizontal vibrating needle. . See HORIZONTAL FORCE INSTRUMENT.
horn. , n. 1. A flared tube designed to match the acoustic impedance to the impedance of the atmosphere; it can behave as a resonator and can influence the directivity; the narrow end is called the throat and the large end the mouth. Also called TRUMPET. 2. See HORN ANTENNA.
horn antenna. . An antenna consisting of a waveguide the cross-sectional area of which increases toward the open end. Often shortened to HORN.
horse latitudes. . The regions of calms and variable winds coinciding with the subtropical high pressure belts on the poleward sides of the trade winds. The expression is generally applied only to the northern of these two regions in the North Atlantic Ocean, or to the portion of it near Bermuda.
hostile ice. . An ice canopy containing no large sky lights or other features which permit a submarine to surface.
hour., n. 1. A 24th part of a day. 2. A specified interval. See also COTIDAL HOUR, CURRENT HOUR.
hour angle. . Angular distance west of a celestial meridian or hour circle; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of a celestial meridian or hour circle and the hour circle of a celestial body or the vernal equinox, measured westward through 360°. It is usually further designated as local, Greenwich, or sidereal as the origin of measurement is the local or Greenwich celestial meridian or the hour circle of the vernal equinox. See also MERIDIAN ANGLE.
hour angle difference. . See MERIDIAN ANGLE DIFFERENCE.
hour circle. . On the celestial sphere, a great circle through the celestial poles. An hour circle through the zenith is called a celestial meridian Also called CIRCLE OF DECLINATION, CIRCLE OF RIGHT ASCENSION.
hour-glass effect. . A radarscope phenomenon which appears as a constriction or expansion of the display near the center of the plan position indicator, which can be caused by a nonlinear time base or
the sweep plot starting on the radar indicator at the same instant as the transmission of the pulse. The phenomenon is most apparent when in narrow rivers or close to shore.
hug. , $v ., t$. To remain close to, as to hug the land.
Humboldt Current. . See PERU CURRENT.
humidity. , n. The amount of water vapor in the air. The mass of water vapor per unit volume of air is called absolute humidity. The mass of water vapor per unit mass of moist air is called specific humidity. The ratio of the actual vapor pressure to the vapor pressure corresponding to saturation at the prevailing temperature is called relative humidity.
hummock. , n. 1. A hillock of broken ice which has been forced upwards by pressure. It may be fresh or weathered. The submerged volume of broken ice under the hummocks, forced downwards by pressure, is called a BUMMOCK; 2. A natural elevation of the earth's surface resembling a hillock, but smaller and lower.
hummocked ice. . Sea ice piled haphazardly one piece over another to form an uneven surface. When weathered, hummocked ice has the appearance of smooth hillocks.
hummocking. , n. The pressure process by which sea ice is forced into hummocks. When the floes rotate in the process, it is called SCREWING.
hunter's moon. . The full moon next following the harvest moon. See also PHASES OF THE MOON.
hunting. , n. Fluctuation about a mid-point due to instability, as oscillations of the needle of an instrument about the zero point.
hurricane., n. 1 . See under TROPICAL CYCLONE. 2. Wind of force 12 (64 knots and higher or 73 miles per hour and higher) on the Beaufort wind scale.
hydraulic current. . A current in a channel caused by a difference in the surface level at the two ends. Such a current may be expected in a strait connecting two bodies of water in which the tides differ in time or range. The current in the East River, N.Y., connecting Long Island Sound and New York Harbor, is an example.
hydrographer. , n. One who studies and practices the science of hydrography.
hydrographic. , adj. Of or pertaining to hydrography.
hydrographic datum. . A datum used for referencing depths of water or the heights of predicted tides. See also DATUM.
hydrographic sextant. . A surveying sextant similar to those used for celestial navigation but smaller and lighter, constructed so that the maximum angle that can be read on it is slightly greater than that on the navigating sextant. Usually the angles can be read only to the nearest minute by means of a vernier. It is fitted with a telescope with a large object glass and field of view. Although the ordinary navigating sextant may be used in place of the hydrographic sextant, it is not entirely satisfactory for use in observing objects ashore which are difficult to see. Hydrographic sextants are either not provided with shade glasses or they are removed before use. Also called SOUNDING SEXTANT, SURVEYING SEXTANT.
hydrographic survey. . The survey of a water area, with particular reference to submarine relief, and any adjacent land. See also OCEANOGRAPHIC SURVEY.
hydrography., n. The science that deals with the measurement and description of the physical features of the oceans, seas, lakes, rivers, and their adjoining coastal areas, with particular reference to their use for navigation.
HYDROLANT., n. A radio message disseminated by the National Imagery and Mapping Agency and restricted to important marine incidents or navigational changes which affect navigational safety. The HYDROLANT broadcast covers those water areas outside and eastward of NAVAREA IV in the Atlantic Ocean. HYDROLANTS constitute part of the U.S. long range radio navigational warning system. The text of HYDROLANTS issued during a week which are in effect are available through NAVINFONET and are printed in the weekly Notice to Mariners.
hydrology., n. The scientific study of the waters of the earth, especially with relation to the effects of precipitation and evaporation upon the occurrence and character of ground water.
hydrometeor. , n. Any product of the condensation or sublimation of atmospheric water vapor whether formed in the free atmosphere or at the earth's surface, also any water particles blown by the wind from the earth s surface. See also LITHOMETEOR.

HYDROPAC. . A radio message disseminated by the National Imagery and mapping Agency and restricted to important marine incidents or navigational changes which affect navigational safety. The HYDROPAC broadcast covers those water areas outside of NAVAREA XII in the Pacific Ocean. HYDROPACS constitute part of the U.S. long range radio navigational warning system. The text of HYDROPACS issued during a week which is in effect are available through NAVINFONET and are printed in the weekly Notice to Mariners.
hydrophone. , n. A listening device for receiving underwater sounds.
hydrosphere., n. The water portion of the earth as distinguished from the solid part, called the LITHOSPHERE, and from the gaseous outer envelope, called the ATMOSPHERE.
hyetal. , adj. Of or pertaining to rain.
hygrometer. , n. An instrument for measuring the humidity of the air. The most common type is a psychrometer consisting of drybulb and wet-bulb thermometers.
hygroscope., n. An instrument which indicates variation in atmospheric moisture.
hygroscopic. , adj. Able to absorb moisture.
hyperbola. , n. An open curve with two parts, all points of which have a constant difference in distance from two fixed points called FOCI.
hyperbolic. , adj. Of or pertaining to a hyperbola.
hyperbolic lattice. . A pattern formed by two or more families of intersecting hyperbolas.
hyperbolic line of position. . A line of position in the shape of a hyperbola, determined by measuring the difference in distance to two fixed points. Loran C lines of position are an example.
hyperbolic navigation. . Radionavigation based on the measurement of the time differences in the reception of signals from several pairs of synchronized transmitters. For each pair of transmitters the isochrones are substantially hyperbolic. The combination of isochrones for two or more pairs of transmitters forms a hyperbolic lattice within which position can be determined according to the measured time differences.
hypersonic. , adj. Of or pertaining to high supersonic speed, of the order of five times the speed of sound, or greater.
hypotenuse., n. The side of a plane right triangle opposite the right angle; the longest side of a plane right triangle.
hypsographic detail. . The features pertaining to relief or elevation of terrain.
hypsographic map. . A map showing land or submarine bottom relief in terms of height above, or below, a datum by any method, such as contours, hachures, shading, or hypsometric tinting. Also called HYPSOMETRIC MAP, RELIEF MAP.
hypsography., n. 1. The science or art of describing elevations of land surfaces with reference to a datum, usually sea level. 2. That part of topography dealing with relief or elevation of terrain.
hypsometer., n. An instrument for measuring height by determining the boiling temperature of a liquid. Its operation depends on the principle that boiling temperature is dependent on pressure, which normally varies with height.
hypsometric map. . See HYPSOGRAPHIC MAP.
hypsometric tinting. . A method of showing relief on maps and charts by coloring, in different shades, those parts which lie between different levels. Also called ALTITUDE TINTS, COLOR GRADIENTS, ELEVATION TINTS, GRADIENT TINTS, LAYER TINTS. See also HYPSOMETRIC TINT SCALE.
hypsometric tint scale. . A graphic scale in the margin of maps and charts which indicates heights or depths by graduated shades of color. See also HYPSOMETRIC TINTING.
hysteresis. , n. The lagging of the effect caused by change of a force acting on anything.
hysteresis error. . That error in the reading of an instrument due to hysteresis.

IALA Maritime Buoyage System. . A uniform system of maritime buoyage which is now implemented by most maritime nations. Within the single system there are two buoyage regions, designated as Region A and Region B, where lateral marks differ only in the colors of port and starboard hand marks. In Region A, red is to port on entering; in Region B, red is to starboard on entering. The system is a combined cardinal and lateral system, and applies to all fixed and floating marks, other than lighthouses, sector lights, leading lights and marks, lightships and large navigational buoys.
ice. , n. Frozen water, the solid form of $\mathrm{H}_{2} \mathrm{O}$.
ice anchor. . An anchor designed for securing a vessel to ice.
ice atlas. . A publication containing a series of ice charts showing geographic distribution of ice, usually by seasons or months.
iceberg., n. A massive piece of ice greatly varying in shape, showing more than 5 meters above the sea surface, which has broken away from a glacier, and which may be afloat or aground. Icebergs may be described as tabular, dome shaped, pinnacled, drydock, glacier or weathered, blocky, tilted blocky, or drydock icebergs. For reports to the International Ice Patrol they are described with respect to size as small, medium, or large icebergs.
iceberg tongue. . A major accumulation of icebergs projecting from the coast, held in place by grounding and joined together by fast ice.
ice-blink. A whitish glare on low clouds above an accumulation of distant ice.
ice-bound. , adj. Pertaining to a harbor, inlet, etc. when entry or exit is prevented by ice, except possibly with the assistance of an icebreaker.
ice boundary. . The demarcation at any given time between fast ice and pack ice or between areas of pack ice of different concentrations. See also ICE EDGE.
ice breccia. . Ice pieces of different age frozen together.
ice bridge. , n. 1. Surface river ice of sufficient thickness to impede or prevent navigation. 2. An area of fast ice between the mainland and nearby inhabited islands used in winter as a means of travel.
ice buoy. . A sturdy buoy, usually a metal spar, used to replace a more easily damaged buoy during a period when heavy ice is anticipated.
ice cake. Any relatively flat piece of sea ice less than 20 meters across. See also SMALL ICE CAKE.
ice canopy. . From the point of view of the submariner, PACK ICE.
ice-cap. A perennial cover of ice and snow over an extensive portion of the earth's surface. The largest ice caps are those in Antarctica and Greenland. Arctic Ocean ice is seasonal and in motion, and is not considered an ice cap.
ice cover. . The ratio, expressed in tenths, of the amount of ice to the total area of sea surface in a defined area; this locale may be global, hemispheric, or a specific geographic entity.
ice crystal. . Any one of a number of macroscopic crystalline forms in which ice appears.
ice-crystal haze. . A type of very light ice fog composed only of ice crystals (no droxtals). It is usually associated with precipitation of ice crystals.
ice crystals. . A type of precipitation composed of slowly falling, very small, unbranched crystals of ice which often seem to float in the air. It may fall from a cloud or from a cloudless sky. It is visible only in direct sunlight or in an artificial light beam, and does not appreciably reduce visibility. The latter quality helps to distinguish it from ice fog, which is composed largely of droxtals.
ice edge. . The demarcation at any given time between the open sea and sea ice of any kind, whether fast or drifting. See also COMPACTED ICE EDGE, DIFFUSE ICE EDGE, ICE BOUNDARY.
ice field. . An area of pack ice consisting of floes of any size, which is greater than 10 kilometers (5.4 nautical miles) across. Ice fields are subdivided according to areal extent. A large ice field is over 11 nautical miles across; a medium ice field is 8 to 11 nautical miles across; a small ice field is 5.4 to 8 nautical miles across.
ice fog. . Fog composed of suspended particles of ice, partly ice crystals 20 to 100 microns in diameter but chiefly, especially when dense, droxtals 12 to 20 microns in diameter. It occurs at very low temperatures, and usually in clear, calm weather in high latitudes. The sun is usually visible and may cause halo phenomena. Ice fog is rare at temperatures warmer than $-30^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{F}$. Also called RIME FOG. See also FREEZING FOG.
icefoot., n. A narrow fringe of ice attached to the coast, unmoved by tides and remaining after the fast ice has moved away.
ice-free. , adj. Referring to a locale with no sea ice; there may be some ice of land origin present.
ice front. . The vertical cliff forming the seaward face of an ice shelf or other floating glacier varying in height from 2 to 50 meters above sea level. See also ICE WALL.
ice island. . A large piece of floating ice showing about 5 meters above the sea surface, which has broken away from an ice shelf, having a thickness of 30 to 50 meters and an area of from a few thousand square meters to 150 square nautical miles or more; usually characterized by a regularly undulating surface which gives it a ribbed appearance from the air.
ice jam. . An accumulation of broken river ice or sea ice caught in a narrow channel.
ice keel. . A downward projecting ridge on the underside of the ICE CANOPY, the counterpart of a RIDGE. An ice keel may extend as much as 50 meters below sea level.
ice limit. . The climatological term referring to the extreme minimum or extreme maximum extent of the ice edge in any given month or period based on observations over a number of years. The term should be preceded by minimum or maximum, as appropriate. See also MEAN ICE EDGE.
ice massif. . A concentration of sea ice covering an area of hundreds of kilometers, which is found in the same region every summer.
ice needle. . A long, thin ice crystal whose cross-section is typically hexagonal. The expression ICE NEEDLE should not be confused with NEEDLE ICE.
ice of land origin. . Ice formed on land or in an ice shelf, found floating in water, including ice that is stranded or grounded.
ice patch. An area of pack ice less than 5.4 nautical miles (10 kilometers) across.
ice pellets. . A type of precipitation consisting of transparent or translucent pellets of ice, 5 millimeters or less in diameter. The pellets may be spherical, irregular, or (rarely) conical in shape. They usually bounce when hitting hard ground, and make a sound upon impact. Ice pellets includes two basically different types of precipitation, those which are known in the United States as SLEET and SMALL HAIL. Sleet is generally transparent, globular, solid grains of ice which have formed from the freezing of raindrops or the refreezing of largely melted snowflakes when falling through a below-freezing layer of air near the earth's surface. Small hail is generally translucent particles, consisting of snow pellets encased in a thin layer of ice. The ice layer may form either by the accretion of droplets upon the snow pellet, or by the melting and refreezing of the surface of the snow pellet.
ice port. . An embayment in an ice front, often of a temporary nature, where ships can moor alongside and unload directly onto the ice shelf.
ice rind. . A brittle shiny crust of ice formed on a quiet surface by direct freezing or from grease ice, usually in water of low salinity. Of thickness to about 5 centimeters, ice rind is easily broken by wind or swell, commonly breaking into rectangular pieces.
ice sheet. . Continuous ice overlaying a large land area.
ice shelf. . A floating ice sheet attached to the coast and of considerable thickness, showing 20 to 50 meters or more above sea level. Usually of great horizontal extent and with a level or gently undulating surface, the ice shelf is augmented by annual snow accumulation and often also by the seaward extension of land glaciers. Limited areas of the ice shelf may be aground. The seaward edge is called ICE FRONT.
ice storm. A storm characterized by a fall of freezing precipitation with significant buildup of ice on exposed surfaces.
ice stream. . The part of an inland ice sheet in which the ice flows more rapidly and not necessarily in the same direction as the surrounding ice. The margins are sometimes clearly marked by a change in direction of the surface slope, but may be indistinct.
ice under pressure. . Ice in which deformation processes are actively occurring; hence the ice is a potential impediment or danger to shipping.
ice wall. . An ice cliff forming the seaward margin of a glacier which is not afloat. An ice wall is aground with the underlying land at or below sea level. See also ICE FRONT.
ice-worn. , adj. Abraded by ice.
icicle., n. A hanging mass of ice, usually conical, formed by the freezing of dripping water.
illuminance., n. The luminous flux per unit of area. The derived unit of illuminance in the International System of Units is the LUX.
image. , $n .1$. The optical counterpart of an object. A real image is actually produced and is capable of being shown on a surface, as in a camera; while a virtual image cannot be shown on a surface, but is visible, as in a mirror. 2. A visual representation, as on a radarscope.
improved channels. . Dredged channels under the jurisdiction of the U.S Army Corps of Engineers, and maintained to provide an assigned CONTROLLING DEPTH. Symbolized on National Ocean Survey charts by black, broken lines to represent side limits, with the controlling depth and date of the survey given together with a tabulation of more detailed information.
impulse train. . See PULSE TRAIN.
in-band racon. . A racon which transmits in the marine radar frequency band. There are two types of in-band racons, swept-frequency racons and experimental fixed-frequency racons. The transmitter of the swept-frequency racon sweeps through a range of frequencies within the band to insure that a radar receiver tuned to a particular frequency within the band will be able to detect the signal. The fixed-frequency racon transmits on a fixed frequency at the band edge. It is therefore necessary that the radar set be tuned to the racon's transmitting frequency or that auxiliary receiving equipment be used. When the radar is tuned to the fixed-frequency racon, normal radar echoes are not painted on the radarscope. See also CROSS-BAND RACON.
incandescence., n. Emission of light due to high temperature. Any other emission of light is called LUMINESCENCE.
inch. , n. A unit of length equal to one-twelfth of foot, or 2.54 centimeters.
incidence. , n. 1. Partial coincidence, as a circle and a tangent line. 2. The impingement of a ray on a surface.
incident ray. . A ray impinging on a surface.
incineration area. . An officially designated offshore area for the burning of chemical waste by specially equipped vessels. The depiction of incineration areas on charts (in conjunction with radio warnings) is necessary to insure that passing vessels do not mistake the burning of waste for a vessel on fire.
inclination. , n. 1. The angle which a line or surface makes with the vertical, horizontal, or with another line or surface. 2. One of the orbital elements (parameters) that specifies the orientation of an orbit. It is the angle between the orbital plane and a reference plane, the plane of the celestial equator for geocentric orbits and the ecliptic for heliocentric orbits. See also ORBITAL ELEMENTS, ORBITAL PARAMETERS OF ARTIFICIAL EARTH SATELLITE.
inclination of an orbit. . 1. See INCLINATION, definition 2. 2. As defined by the International Telecommunication Union (ITU), the angle determined by the plane containing an orbit and the plane of the earth's equator.
increment. , n. A change in the value of a variable. A negative increment is also called DECREMENT.
independent surveillance., Position determination by means requiring no cooperation from the craft or vehicle.
index. (pl. indices or indexes), n. 1 . A mark on the scale of an instrument, diagram, etc., to indicate the origin of measurement 2. A pointer or part of an instrument which points to a value, like the needle of a gage. 3. A list or diagram serving as a guide to a book, set of charts, etc. 4. A ratio or value used as a basis for comparison of other values.
index arm. . A slender bar carrying an index; particularly the bar which pivots at the center of curvature of the arc of a marine sextant and carries the index and the vernier or micrometer.
index chart. . An outline chart showing the limits and identifying designations of navigational charts, volumes of sailing directions, etc.
index correction. . The correction due to index error.
index error. . The error in the reading of an instrument equal to the difference between the zero of the scale and the zero of the index. In a marine sextant it is due primarily to lack of parallelism of the index mirror and the horizon glass at zero reading.
index glass. . See INDEX MIRROR.
index mirror. . The mirror attached to the index arm of a marine sextant. The bubble or pendulum sextant counterpart is called INDEX PRISM. Also called INDEX GLASS.
index prism. . A sextant prism which can be rotated to any angle corresponding to altitudes between established limits. It is the bubble or pendulum sextant counterpart of the INDEX MIRROR of a marine sextant.
Indian Equatorial Countercurrent. . A complex Indian Ocean current which is influenced by the monsoons and the circulations of the Arabian Sea and the Bay of Bengal. At times it is easily distinguishable; at other times it is not evident. During December through March, the countercurrent has a marked tendency to migrate southward and to become narrower. In December the northern and southern boundaries are at $2^{\circ} \mathrm{N}$ and $4^{\circ} \mathrm{S}$, respectively, moving southward to $3^{\circ} \mathrm{S}$ and $6^{\circ} \mathrm{S}$ by February. The northern boundary of Indian Equatorial Countercurrent is easily discernible at this time due to the generally westward current flow in the region immediately north. During May through July the cell, within which the Indian Equatorial Countercurrent and the Monsoon Drift flow clockwise, moves toward the west side of the region. In June and July the southeastward flowing currents prevail in the region between the Bay of Bengal and the Indian South Equatorial Current; only traces of the countercurrent remain. During August through November eastward flowing currents prevail north of the Indian Equatorial Countercurrent. As a result, the northern boundary of the countercurrent is difficult to distinguish from the eastward drift currents. See also MONSOON.
Indian South Equatorial Current. . An Indian Ocean current that flows westward throughout the year, controlled by the southeast trade winds. Its northern and southern boundaries are at approximately $10^{\circ} \mathrm{S}$ and $25^{\circ} \mathrm{S}$, respectively. The northern boundary of the current fluctuates seasonally between $9^{\circ} \mathrm{S}$ and $11^{\circ} \mathrm{S}$, being at its northernmost limit during the southwest monsoon and at its southernmost limit during the northeast monsoon. The current flows westward toward the east coast of Madagascar to the vicinity of Tamatave and Ile Sainte-Marie, where it divides; one part turns northward, flows past the northern tip of the island with speeds up to 3.3 knots, and then flows westward and northwestward toward the African coast. The northern branch of the current divides upon reaching the coast of Africa near Cabo Delgado; one part turns and flows northward, the other turns and flows southward in the western part of the Mozambique Channel and forms the AGULHAS CURRENT. See also MONSOON.
Indian spring low water. . A tidal datum originated by G.H. Darwin when investigating the tides of India. It is an elevation depressed below mean sea level by an amount equal to the sum of the amplitudes of certain constituents as given in the Tide and Current Glossary published by the National Ocean Survey. Also called INDIAN TIDE PLANE, HARMONIC TIDE PLANE.
Indian summer. . An indefinite and irregular period of mild, calm, hazy weather often occurring in autumn or early winter, especially in the United States and Canada.
Indian tide plane. . See INDIAN SPRING LOW WATER.
indicator., n. See RADAR INDICATOR.
indirect echo. . A radar echo which is caused by the electromagnetic energy being transmitted to the target by an indirect path and returned as an echo along the same path. An indirect echo may appear on the radar display when the main lobe of the radar beam is reflected off part of the structure of the ship (the stack for example) from which it is reflected to the target. Returning to own ship by the same indirect path, the echo appears on the PPI at the bearing of the reflecting surface. Assuming that the additional distance by the indirect path is negligible, the indirect echo appears on the PPI at the same range as the direct echo received. Also called FALSE ECHO.
indirect wave. . A radio wave which reaches a given reception point by a path from the transmitting point other than the direct line path between the two. An example is the SKYWAVE received after reflection from one of the layers of the ionosphere.
induced magnetism. . The magnetism acquired by soft iron while it is in a magnetic field. Soft iron will lose its induced magnetism when it is removed from a magnetic field. The strength and polarity of the induced magnetism will alter immediately as its magnetic latitude, or its orientation in a magnetic field, is changed. The induced magnetism has an immediate effect upon the magnetic compass as the magnetic latitude or heading of a craft changes. See also PERMANENT MAGNETISM, SUBPERMANENT MAGNETISM.
induced precession. . See REAL PRECESSION.
inequality. (tidal), n. A systematic departure from the mean value of a tidal quantity.
inertia. , n. The tendency of a body at rest to remain at rest and of a body in motion to remain in motion, unless acted upon by another force. See also GYROSCOPIC INERTIA.
inertial alignment. . The process of orienting the measuring axes of the inertial components of inertial navigation equipment with respect to the coordinate system in which the equipment is to be used.
inertial coordinate system. . A coordinate system in which the axes do not rotate with respect to the "fixed stars" and in which dynamic behavior can be described using Newton's laws of motion. See also EARTH-FIXED COORDINATE.
inertial force. . A force in a given coordinate system arising from the inertia of a mass moving with respect to another coordinate system.
inertial navigation. .The process of measuring a craft's velocity, attitude, and displacement from a known start point through sensing the accelerations acting on it in known directions using devices that mechanize Newton's laws of motion. Inertial navigation is described as self-contained because it is independent of external aids to navigation, and passive because no energy is emitted to obtain information. The basic principle of inertial navigation is the measurement of the accelerations acting on a craft, other than those not associated with its orientation or motion with respect to the earth, and the double integration of these accelerations along known directions to obtain the displacement from the start point. Due to increasing position errors with time, an inertial system must be reset from time to time using another navigation system.
in extremis. . Condition in which either course or speed changes or both are required on the part of both ships if the ships are to avoid collision.
inferior conjunction. . The conjunction of an inferior planet and the sun when the planet is between the earth and the sun.
inferior planets. . The planets with orbits smaller than that of the earth; Mercury and Venus. See also PLANET.
inferior transit. . See LOWER TRANSIT.
infinite. , $a d j$. Without limits. The opposite is FINITE.
infinitesimal., adj. 1. Immeasurably small. 2. Approaching zero as a limit.
infinity., n. Beyond finite limits. In navigation, a source of light is regarded as at infinity if it is at such a great distance that rays from it can be considered parallel. The sun, planets, and stars can be considered at infinity without serious error. See also PARALLAX.
inflection, inflexion., n. Reversal of direction of curvature. A point at which reversal takes place is called POINT OF INFLECTION.
infrared. , adj. Having a frequency immediately beyond the red end of the visible spectrum; rays of longer wavelength than visible light, but shorter than radio waves.
infrasonic., adj. Having a frequency below the audible range. Frequencies above the audible range are called ULTRASONIC.
initial great circle course. .The direction, at the point of departure, of the great circle through that point and the destination, expressed as the angular distance from a reference direction, usually north, to that part of the great circle extending toward the designation. Also called INITIAL GREAT CIRCLE DIRECTION. See also FINAL GREAT CIRCLE COURSE.
initial great circle direction. . See INITIAL GREAT CIRCLE COURSE.
injection messages. . Messages periodically transmitted to artificial satellites for storage in satellite memory.

Inland Rules of the Road. . Officially the Inland Navigation Rules; Rules to be followed by all vessels while navigating upon certain defined inland waters of the United States. See also COLREGS DEMARCATION LINES, RULES OF THE ROAD.
inland sea. . A body of water nearly or completely surrounded by land, especially if very large or composed of salt water. If completely surrounded by land, it is usually called a LAKE. This should not be confused with CLOSED SEA, that part of the ocean enclosed by headlands, within narrow straits, etc., or within the territorial jurisdiction of a country.
inlet. , n. A narrow body of water extending into the land from a larger body of water. A long, narrow inlet with gradually decreasing depth inward is called a ria. Also called ARM, TONGUE.
inner harbor. . The part of a harbor most remote from the sea, as contrasted with the OUTER HARBOR. These expressions are usually used only in a harbor that is clearly divided into two parts by a narrow passageway or man-made structures.
inner planets. . The four planets nearest the sun; Mercury, Venus, Earth, and Mars.
inoperative., adj. Said of a sound signal or radionavigation aid out of service due to a malfunction.
in phase. . The condition of two or more cyclic motions which are at the same part of their cycles at the same instant. Two or more cyclic motions which are not at the same part of their cycles at the same instant are said to be OUT OF PHASE.
input axis. . The axis of applied torque of a gyroscope. See also OUTPUT AXIS, PRECESSION.
inshore., adj., adv. Near or toward the shore.
inshore., n. The zone of variable width between the shore face and the seaward limit of the breaker zone.
inshore traffic zone. . A routing measure comprising a designated area between the landward boundary of a traffic separation scheme and the adjacent coast, intended for local traffic.
in situ. . A Latin term meaning "in place"; in the natural or original position.
insolation., n. Solar radiation received, or the rate of delivery of such radiation.
instability. , n. The state or property of submitting to change or of tending to increase the departure from original conditions after being disturbed. The opposite is STABILITY.
instability line. Any non-frontal line or band of convective activity in the atmosphere. This is the general term and includes the developing, mature, and dissipating stages. However, when the mature stage consists of a line of active thunderstorms, it is properly called SQUALL LINE; therefore, in practice, instability line often refers only to the less active phases. Instability lines are usually hundreds of miles long (not necessarily continuous), 10 to 50 miles wide, and are most often formed in the warm sectors of wave cyclones. Unlike true fronts, they are transitory in character, ordinarily developing to maximum intensity in less than 12 hours and then dissipating in about the same time. Maximum intensity is usually attained in late afternoon.
instrument correction. . That correction due to instrument error.
instrument error. . The inaccuracy of an instrument due to imperfections within the instrument. See CALIBRATION ERROR, CENTERING ERROR, FRICTION ERROR, GRADUATION ERROR, HYSTERESIS ERROR, LAG ERROR, PRISMATIC ERROR, SECULAR ERROR, TEMPERATURE ERROR, VERNIER ERROR.
instrument shelter. . A cage or screen in which a thermometer and sometimes other instrument are placed to shield them from the direct rays of the sun and from other conditions that would interfere with registration of true conditions. It is usually a small wooden structure with louvered sides.
insular. , adj. Of or pertaining to an island or islands.
insular borderland. . A region around an island normally occupied by or bordering a shelf, that is highly irregular with depths well in excess of those typical of a shelf. See also CONTINENTAL BORDERLAND.
insular shelf. . A zone around an island that extends from the low water line to a depth at which there is usually a marked increase of slope towards oceanic depths. See also CONTINENTAL SHELF.
insulate. , $v ., t$. To separate or isolate a conducting body from its surroundings, by means of a nonconductor, as to prevent transfer of electricity, heat, or sound.
insulator. , n. A non conducting substance or one offering high resistance to passage of energy.
integer., n. A whole number; a number that is not a fraction.
integral. , adj. Of or pertaining to an integer.
integral Doppler navigation. . Navigation by means of integrating the Doppler frequency shift that occurs over a specific interval of time as the distance between a navigational satellite and navigator is changing to determine the time rate of change of range of the satellite from the navigator for the same interval. See also DOPPLER SATELLITE NAVIGATION BASIC PRINCIPLES, NAVY NAVIGATION SATELLITE SYSTEM.
integrated navigation system. . A navigation system which comprises two or more positioning systems combined in such manner as to achieve performance better than each constituent system.
integrating accelerometer. An instrument which senses the component of specific acceleration along an axis known as the sensitive axis of the accelerometer, and produces an output equal to the time integral of that quantity. Also called VELOCITY METER.
intended track. . See TRACK, definition 2.
intercalary day. . A day inserted or introduced among others in a calendar, such as February 29 during leap years.
intercardinal heading. . A heading in the direction of any of the intercardinal points. See also CARDINAL HEADING.
intercardinal point. Any of the four directions midway between the cardinal points; northeast, southeast, southwest, or northwest. Also called QUADRANTAL POINT.
intercardinal rolling error. . See under QUADRANTAL ERROR.
intercept. , n. See ALTITUDE INTERCEPT, ALTITUDE INTERCEPT METHOD.
interference. , n. 1. Unwanted and confusing signals or patterns produced by nearby electrical equipment or machinery, or by atmospheric phenomena. 2. The variation of wave amplitude with distance or time, caused by superposition of two or more waves. Sometimes called WAVE INTERFERENCE.
interferometer. , n. An apparatus used to produce and measure interference from two or more coherent wave trains from the same source. Used to measure wavelengths, to measure angular width of sources, to determine the angular position of sources (as in satellite tracking), and for other purposes. See also RADIO INTERFEROMETER.
interlaced. . Referring to a computer monitor which displays data by scanning alternate lines instead of each line sequentially.
intermediate frequency. . In super heterodyne reception, the frequency which is derived by mixing the signal-carrying frequency with the local oscillator frequency. If there are more than one such mixing process, the successive intermediate frequencies are known as the first, second, etc. intermediate frequency.
intermediate light. . The middle light of the three-light range.
intermediate orbit. . A central force orbit that is tangent to the real (or disturbed) orbit at some point. A fictitious satellite traveling in the intermediate orbit would have the same position, but not the same velocity, as the real satellite at the point of tangency.
internal noise. . In radio reception, the noise which is produced in the receiver circuits. Internal noise is in addition to external noise.
internal tide. . A tidal wave propagating along a sharp density discontinuity, such as at a thermocline, or in an area of gradual changing density (vertically).
International Atomic Time. . See under ATOMIC TIME.
International Bureau of Weights and Measures. . The International Bureau of Weights and Measures (BIPM) insures worldwide unification of physical measurements. It is responsible for establishing the fundamental standards and scales for measurement of the principal physical quantities and maintaining the international prototypes, carrying out comparisons of national and international standards insuring coordination of corresponding measuring techniques; and carrying out and coordinating the determinations relating to the fundamental physical constants.
international call sign. . An alpha-numeric symbol assigned in accordance with the provisions of the International Telecommunications Union to identify a radio station. The nationality or the radio station is identified by the first three characters; also referred to as call letters or signal letters.
international chart. . One of a coordinated series of small-scale charts for planning and long range navigation. The charts are prepared and published by different Member States of the International Hydrographic Organization using the same specifications.
Intentional Code of Signals., See PUB. 102.
international date line. . See DATE LINE.
International ellipsoid of reference. . The reference ellipsoid of which the semimajor axis is $6,378388.0$ meters, the semiminor axis is $6,356911.9$ meters, and the flattening or ellipticity is $1 / 297$. Also called INTERNATIONAL SPHEROID OF REFERENCE.
International Great Lakes Datum (1955). . Mean water level at Pointe-au-Pere, Quebec, on the Gulf of St. Lawrence over the period 19411956, from which dynamic elevations throughout the Great Lakes region are measured. The term is often used to mean the entire system of dynamic elevations rather than just the referenced water level.
International Hydrographic Bulletin. . A publication, published monthly by the International Hydrographic Bureau for the International Hydrographic Organization, which contains information of current hydrographic interest.
International Hydrographic Bureau. . The Directors and administrative staff of the International Hydrographic Organization, based in Monaco.
International Hydrographic Organization. . An institution formed in 1921, consisting of representatives of maritime nations organized for the purpose of coordinating the hydrographic work of the participating governments.
international low water. . A hydrographic datum originally suggested for international use at the International Hydrographic Conference in London in 1919 and later discussed at the Monaco Conference in 1926. The proposed datum, which has not yet been generally adopted, was to be "a plane so low that the tide will but seldom fall below it." This datum was the subject of the International Hydrographic Bureau's Special Publications No. 5 (March 1925) and No. 10 (January 1926), reproduced in the Hydrographic Reviews for May 1925 and July 1926.
International Maritime Organization (IMO). . A Specialized Agency of the United Nations responsible for maritime safety and efficiency of navigation. The IMO provides for cooperation among governments in the field of governmental regulations and practices relating to technical matters of all kinds affecting shipping engaged in international trade: to encourage the general adoption of the highest practicable standards in matters concerning maritime safety, efficiency of navigation, and the prevention and control of marine pollution from ships, and to deal with legal matters related to the purposes set out in Article 1 of the Convention.
International Nautical Mile. . A unit of length equal to 1,852 meters, exactly. See also NAUTICAL MILE.
international number. . The number of a navigational light, assigned in accordance with the Resolution adopted at the Fifth International Hydrographic Conference in 1949 by Member Nations of the International Hydrographic Bureau (now the International Hydrographic Organization). This number is in italic type and under the light list number in the light list.
International spheroid of reference. . See INTERNATIONAL ELLIPSOID OF REFERENCE.
International System of Units. . A modern form of the metric system adopted in 1960 by the General Conference of Weights and Measures (CGPM). The units of the International System of Units (SI) are divided into three classes. The first class of SI units are the base units or the seven well defined units which by convention are regarded as dimensionally independent: the meter the kilogram, the second, the ampere, the kelvin, the mole, and the candela. The second class of SI units are the derived units, i.e., the units that can be formed by combining base units according to the algebraic relations linking the corresponding quantities. Several of these algebraic expressions in terms of base units can be replaced by special names and symbols which can themselves be used to form other derived units. The third class of SI units are the supplementary
units, those units not yet classified by the CGPM as either base units or derived units. In 1969 the International Committee of Weights and Measures (CIPM) recognized that users of SI units will wish to employ with it certain units not part of SI, but which are important and ale widely used. These are the minute, the hour, the day, the degree of arc, the minute of arc, the second of arc, the liter, and the tonne. Outside the International System are some other units useful in specialized fields. Their value expressed in SI units must be obtained by experiment, and are therefore not known exactly These are the electron-volt, the unified atomic mass unit, the astronomical unit, and the parsec. Other temporary units are the nautical mile, the knot, the angstrom, the arc, the hectare, the barn, the bar, the standard atmosphere, the gal, the curie, the röntgen, and the rod.
interpolation., n. The process of determining intermediate values between given values in accordance with some known or assumed rate or system of change. Linear interpolation assumes that changes of tabulated values are proportional to changes in entering arguments. Interpolation is designated as single, double, or triple if there are one, two, or three arguments or variables respectively. The extension of the process of interpolation beyond the limits of known value is called EXTRAPOLATION.
interpolation table. . An auxiliary table used for interpolating. See also PROPORTIONAL PART.
interrogating signal. . The signal emitted by interrogator to trigger a transponder.
interrogation. , n. The transmission of a radio frequency pulse, or combination of pulses, intended to trigger a transponder or group of transponder.
interrogator. , n. A radar transmitter which sends out a pulse that triggers a transponder. An interrogator may be combined in a single unit with a responsor, which receives the reply from a transponder and produces an output suitable for feeding a display system; the combined unit is called INTERROGATOR-RESPONDER. Also called CHALLENGER.
interrogator-responder., n. A radar transmitter and receiver combined to interrogate a transponder and display the resulting replies. Often shortened to INTERROGATOR and sometimes called CHALLENGER.
interrupted quick flashing light. . A quick flashing light (50-80 flashes per minute) is interrupted at regular intervals by eclipses of long duration. See also QUICK FLASHING LIGHT, VERY QUICK FLASHING LIGHT.
interrupted quick light. . A quick light in which the sequence of flashes is interrupted by regularly repeated eclipses of constant and long duration. See also CONTINUOUS QUICK LIGHT, GROUP QUICK LIGHT.
interrupted very quick light. . A very quick light (80-160 flashes per minute) in which the sequence of flashes is interrupted by regularly repeated eclipses of long duration. See also CONTINUOUS VERY QUICK LIGHT, GROUP VERY QUICK LIGHT.
interscan., n. See INTER-TRACE DISPLAY.
intersect. , v., t. \& i. To cut or cross. For example, two non parallel lines in a plane intersect in a point, and a plane intersects a sphere in a circle.
inter-trace display. . A technique for presenting additional information, in the form of alphanumerics, markers, cursors, etc., on a radar display, by using the intervals between the normal presentation scans. Also called INTER-SCAN.
Intracoastal Waterway. . An inside protected route for small craft and small commercial vessels extending through New Jersey; from Norfolk, Virginia to Key West, Florida; across Florida from St. Lucie Inlet to Fort Myers, Charlotte Harbor, Tampa Bay, and Tarpon Springs; and from Carabelle, Florida, to Brownsville, Texas. Some portions are in exposed waters; some portions are very limited in depth.
Invar. , n. The registered trade name for an alloy of nickel and iron, containing about 36% nickel. Its coefficient of expansion is extremely small over a wide range of temperature.
inverse chart. . See TRANSVERSE CHART.
inverse cylindrical orthomorphic chart. . See TRANSVERSE MERCATOR CHART.
inverse cylindrical orthomorphic map projection. . See TRANSVERSE MERCATOR MAP Projection.
inverse equator. . See TRANSVERSE EQUATOR.
inverse latitude. . See TRANSVERSE LATITUDE.
inverse logarithm. . See ANTILOGARITHM.
inverse longitude. . See TRANSVERSE LONGITUDE.
inverse Mercator chart. . See TRANSVERSE MERCATOR CHART.
inverse Mercator map projection. . See TRANSVERSE MERCATOR MAP PROJECTION.
inverse meridian. . See TRANSVERSE MERIDIAN.
inverse parallel. . See TRANSVERSE PARALLEL.
inverse rhumb line. . See TRANSVERSE RHUMB LINE.
inversion., n. In meteorology, a departure from the usual decrease or increase with altitude of the value of an atmospheric property. This term is almost always used to refer to a temperature inversion, an atmospheric condition in which the temperature increases with increasing altitude.
inverted compass. . A marine magnetic compass designed and installed for observation from below the compass card. Frequently used as a telltale compass. Also called HANGING COMPASS, OVERHEAD COMPASS.
inverted image. . An image that appears upside down in relation to the object.
inverter. , n. A device for changing direct current to alternating current. A device for changing alternating current to direct current is called a CONVERTER if a rotary device and a RECTIFIER if a static device.
inverting telescope. . An instrument with the optics so arranged that the light rays entering the objective of the lens meet at the crosshairs and appear inverted when viewed through the eyepiece without altering the orientation of the image. See also ERECTING TELESCOPE.
inward bound. . Heading toward the land or up a harbor away from the open sea. The opposite is OUTWARD BOUND.
ion., n. An atom or group of atoms which has become electrically charged, either positively or negatively, by the loss or gain of one or more electrons.
ionization., n. The process by which neutral atoms or groups of atoms become electrically charged either positively or negatively, by the loss or gain of electrons; or the state of a substance whose atoms or groups of atoms have become thus charged.
ionized layers. . Layers of charged particles existing in the upper reaches of the atmosphere as a result of solar radiation.
ionosphere. , n. 1 . The region of the atmosphere extending from about 40 to 250 miles above the earth's surface, in which there is appreciable ionization. The presence of charged particles in this region profoundly affects the propagation of certain electromagnetic radiation. 2. A region composed of highly ionized layers at varying heights above the surface of the earth which may cause the return to the earth of radio waves originating below these layers. See also DLAYER, E-LAYER, F-LAYER, F1-LAYER, F2-LAYER.
ionospheric correction. . A correction for ionospheric refraction, a major potential source of error in all satellite radionavigation systems. Navigation errors can result from the effect of refraction on the measurement of the doppler shift and from the errors in the satellite's orbit if refraction is not accurately accounted for in the satellite tracking. The refraction contribution can be eliminated by the proper mixing of the received Doppler shift from two harmonically related frequencies to yield an accurate estimate of the vacuum doppler shift. Also called REFRACTION CORRECTION.
ionospheric delay. . The delay experienced by a wave or signal as it passes through the ionosphere.
ionospheric disturbance. . A sudden outburst of ultraviolet light on the sun, known as a SOLAR FLARE or CHROMOSPHERIC ERUPTION, which produces abnormally high ionization in the region of the D-layer. The result is a sudden increase in radio wave absorption, with particular severity in the upper medium frequencies and lower high frequencies. It has negligible effects on the heights of the reflecting/refracting layers and, consequently, upon critical frequencies, but enormous transmission losses may occur. See also SUDDEN IONOSPHERIC DISTURBANCE.
ionospheric error. . The total systematic and random error resulting from the reception of a navigation signal after ionospheric reflections. It may be due to variations in transmission paths, non-uniform height of the ionosphere, or non-uniform propagation within the ionosphere. Also called IONOSPHERIC-PATH ERROR, SKYWAVE ERROR.
ionospheric-path error. . See IONOSPHERIC ERROR.
ionospheric storm. . An ionospheric disturbance characterized by wide variations from normal in the state of the ionosphere, such as turbulence in the F-region, absorption increase, height increase, and ionization density decreases. The effects are most marked in high magnetic latitudes and are associated with abnormal solar activity.
ionospheric refraction. . Change in the propagation speed of a signal as it passes through the ionosphere.
ionospheric wave. . See SKYWAVE.
iridescence. , n. Changing-color appearance, such as of a soap bubble, caused by interference of colors in a thin film or by diffraction.
iridescent clouds. . Ice-crystal clouds which exhibit brilliant spots or borders of colors, usually red and green, observed up to about 30° from the sun.
irisation. , n. The coloration exhibited by iridescent clouds.
Irminger Current. . A North Atlantic Ocean current, one of the terminal branches of the Gulf Stream System (part of the northern branch of the North Atlantic Current); it flows toward the west off the southwest coast of Iceland. A small portion of the water of the Irminger Current bends around the west coast of Iceland but the greater amount turns south and becomes more or less mixed with the water of the East Greenland Current.
ironbound. , adj. Rugged, rocky, as an ironbound coast.
irradiation., n. The apparent enlargement of a bright surface against a darker background.
irradiation correction. . A correction due to irradiation, particularly that sextant altitude correction caused by the apparent enlargement of the bright surface of a celestial body against the darker background of the sky.
irregular error. . See RANDOM ERROR.
irregular iceberg. . See PINNACLE ICEBERG.
isallobar., n. A line of equal change in atmospheric pressure during a specified time interval.
isallotherm. , n. A line connecting points having the same anomalies of temperature, pressure, etc.
isanomal., n. A line connecting points of equal variations from a normal value.
island., n. An area of land not a continent, surrounded by water.
islet. , n. A very small and minor island.
iso-. .A prefix meaning equal.
isobar., n. A line connecting points having the same atmospheric pressure reduced to a common datum, usually sea level.
isobaric. , adj. Having the same pressure.
isobaric chart. . See CONSTANT-PRESSURE CHART.
isobaric surface. . See CONSTANT PRESSURE SURFACE.
isobath. , n. See DEPTH CONTOUR.
isobathic. , adj. Having equal depth.
isobathytherm., n. A line on the earth's surface connecting points at which the same temperature occurs at some specified depth.
isobront. , n. A line connecting points at which some specified phase of a thunderstorm occurs at the same time.
isoceraunic, isokeraunic., $a d j$. Indicating or having equal frequency or intensity of thunderstorms.
isochasm. , n. A line connecting points having the same average frequency of auroras.
isochronal. , adj. Of equal time; recurring at equal intervals of time. Also called ISOCHRONOUS.
isochrone., n. A line connecting points having the same time or time difference relationship, as a line representing all points having the same time difference in the reception of signals from two radio stations such as the master and slave stations of a Loran rate.
isochronize., $v ., t$. To render isochronal.
isochronon., n. A clock designed to keep very accurate time.
isochronous. , adj. See ISOCHRONAL.
isoclinal., adj. Of or pertaining to equal magnetic dip.
isoclinal. , n. See ISOCLINIC LINE.
isoclinal chart. . See ISOCLINIC CHART.
isoclinic chart. . A chart of which the chief feature is a system of isoclinic lines. Also called ISOCLINAL CHART.
isoclinic line. . A line drawn through all points on the earth's surface having the same magnetic dip. The particular isoclinic line drawn through points of zero dip is called ACLINIC LINE. Also called ISOCLINAL.
isodynamic chart. . A chart showing isodynamic lines. See also MAGNETIC CHART.
isodynamic line. . A line connecting points of equal magnetic intensity, either the total or any component.
isogonal. , adj. Having equal angles; isogonic.
isogonic. , adj. Having equal angles; isogonal.
isogonic., n. A line connecting points of equal magnetic variation. Also called ISOGONIC LINE, ISOGONAL.
isogonic chart. A chart showing magnetic variation with isogonic lines and the annual rate of change in variation with isoporic lines. See also MAGNETIC CHART.
isogonic line. . See ISOGONIC, n.
isogram. , n. That line, on a chart or diagram, connecting points of equal value of some phenomenon.
isogriv. , n. A line drawn on a map or chart joining points of equal grivation.
isogriv chart. . A chart showing isogrivs. See also MAGNETIC CHART.
isohaline, isohalsine., n. A line connecting points of equal salinity in the ocean.
isolated danger mark (or buoy). . An IALA navigation aid marking a danger with clear water all around; it has a double ball topmark and is black with at least one red band. If lighted its characteristic is $\mathrm{Fl}(2)$.
isosceles. , adj. Having two equal sides.
isosceles triangle. . A triangle having two of its sides equal.
isomagnetic. , adj;. Of or pertaining to lines connecting points of equality in some magnetic element t.
isomagnetic., n. A line connecting points of equality in some magnetic element. Also called ISOMAGNETIC LINE.
isomagnetic chart. A chart showing isomagnetics. See also MAGNETIC CHART.
isomagnetic line. . See ISOMAGNETIC, n.
isometric. , n. Of or pertaining to equal measure.
isophase. , adj. Referring to a light having a characteristic of equal intervals of light and darkness.
isopleth., n. 1. An isogram indicating the variation of an element with respect to two variables, one of which is usually the time of year. The other may be time of day, altitude, or some other variable. 2. A line on a map depicting points of constant value of a variable. Examples are contours, isobars, and isogons.
isopor. , n. See ISOPORIC LINE.
isoporic chart. . A chart with lines connecting points of equal annual rate of change of any magnetic element. See also ISOPORIC LINE.
isoporic line. . A line connecting points of equal annual rate of change of any magnetic element. Also called ISOPOR. See also ISOGONIC.
isostasy., n. A supposed equality existing in vertical sections of the earth, whereby the weight of any column from the surface of the earth to a constant depth is approximately the same as that of any other column of equal area, the equilibrium being maintained by plastic flow of material from one part of the earth to another.
isotropic antenna. . A hypothetical antenna which radiates or receives equally well in all directions. Although such an antenna does not physically exist, it provides a convenient reference for expressing the directional properties of actual antennas. Also called UNIPOLE.
isotropic gain of an antenna. . The gain of an antenna in a given direction when the reference antenna is an isotropic antenna isolated in space. Also called ABSOLUTE GAIN OF AN ANTENNA.
isthmus. , n. A narrow strip of land connecting two larger portions of land. A submarine elevation joining two land areas and separating two basins or depressions by a depth less than that of the basins is called a submarine isthmus.
jamming. , n. Intentional transmission or re-radiation of radio signals in such a way as to interfere with reception of desired signals by the intended receiver.
Janus configuration. . A term describing orientations of the beams of acoustic or electromagnetic energy employed with doppler navigation systems. The Janus configuration normally used with doppler sonar speed logs, navigators, and docking aids employs four beams of ultrasonic energy, displaced laterally 90° from each other, and each directed obliquely (30° from the vertical) from the ship's bottom, to obtain true ground speed in the fore and aft and athwartship directions. These speeds are measured as doppler frequency shifts in the reflected beams. Certain errors in data extracted from one beam tend to cancel the errors associated with the oppositely directed beam.
Japan Current. . See KUROSHIO.
jetsam. , n. Articles that sink when thrown overboard, particularly those jettisoned for the purpose of lightening a vessel in distress. See also FLOTSAM, JETTISON, LAGAN.
jet stream. . Relatively strong winds (50 knots or greater) concentrated in a narrow stream in the atmosphere. It usually refers only to a quasihorizontal stream of maximum winds imbedded in the middle latitude westerlies, and concentrated in the high troposphere.
jettison., n. To throw objects overboard, especially to lighten a craft in distress. Jettisoned objects that float are termed FLOTSAM; those that sink JETSAM; and heavy articles that are buoyed for future recovery, LAGAN. See also DERELICT.
jetty., n. A structure built out into the water to restrain or direct currents, usually to protect a river mouth or harbor entrance from silting, etc. See also GROIN; MOLE, definition 1.
jitter. , n. A term used to describe the short-time instability of a signal. The instability may be in amplitude, phase, or both. The term is applied especially to signals reproduced on the screen of a cathode-ray tube.
joule. , n. A derived unit of energy of work in the International System of Units; it is the work done when the point of application of 1 newton (that force which gives to a mass of 1 kilogram an acceleration of 1 meter per second, per second) moves a distance of 1 meter in the direction of the force.
Julian calendar. . A revision of the ancient calendar of the city of Rome, instituted in the Roman Empire by Julius Caesar in 46 BC, which reached its final form in about 8 A.D. It consisted of years of 365 days, with an intercalary day every fourth year. The current Gregorian calendar is the same as the Julian calendar except that October 5,1582 , of the Julian calendar became October 15,1582 of the Gregorian calendar and of the centurial years, only those divisible by 400 are leap years.
Julian day. . The number of each day, as reckoned consecutively since the beginning of the present Julian period on January 1, 4713 BC. It is used primarily by astronomers to avoid confusion due to the use of different calendars at different times and places. The Julian day begins at noon, 12 hours later than the corresponding civil day. The day beginning at noon January 1, 1968, was Julian day 2,439,857.
junction buoy. . A buoy which, when viewed from a vessel approaching from the open sea or in the same direction as the main stream of flood current, or in the direction established by appropriate authority, indicates the place at which two channels meet. See also BIFURCATION BUOY.
junction mark. . A navigation mark which, when viewed from a vessel approaching from the open sea or in the same direction as the main stream of flood current, or in the direction established by appropriate authority, indicates the place at which two channels meet. See also BIFURCATION MARK.
June solstice. . Summer solstice in the Northern Hemisphere.
Jupiter., n. The navigational planet whose orbit lies between those of Mars and Saturn. Largest of the known planets.
Jutland Current. . A narrow and localized nontidal current off the coast of Denmark between longitudes $8^{\circ} 30^{\prime} \mathrm{E}$ and $10^{\circ} 30^{\prime} \mathrm{E}$. It originates partly from the resultant counterclockwise flow in the tidal North Sea. The main cause, however, appears to be the winds which prevail from south through west to northwest over 50 percent of the time throughout the year and the transverse flows from the English coast toward the Skaggerak. The current retains the characteristics of a major nontidal current and flows northeastward along the northwest coast of Denmark at speeds ranging between 1.5 to 2.0 knots 75 to 100 percent of the time.

Jacob's staff. . See CROSS-STAFF.

K

Kaléma., n. A very heavy surf breaking on the Guinea coast during the winter, even when there is no wind.
Kalman filtering. . A statistical method for estimating the parameters of a dynamic system, using recursive techniques of estimation, measurement, weighting, and correction. Weighting is based on variances of the measurements and of the estimates. The filter acts to reduce the variance of the estimate with each measurement cycle. In navigation, the technique is used to refine the positions given by one or more electronic systems.
katabatic wind. . Any wind blowing down an incline. If the wind is warm, it is called a foehn; if cold, a fall wind. An ANABATIC WIND blows up an incline. Also called GRAVITY WIND.
kaver. , n. See CAVER.
kay. , n. See CAY.
K-band. . A radio-frequency band of 10,900 to 36,000 megahertz. See also FREQUENCY, FREQUENCY BAND.
kedge. , $v ., t$. To move a vessel by carrying out an anchor, letting it go, and winching the ship to the anchor. See also WARP.
keeper. , n. A piece of magnetic material placed across the poles of a permanent magnet to assist in the maintenance of magnetic strength.
kelp. , n. 1. A family of seaweed found in cool to cold waters along rocky coasts, characterized by its extreme length. 2. Any large seaweed. 3. The ashes of seaweed.
kelvin. , n. The base unit of thermodynamic temperature in the International System of Units; it is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water, which is $-273.16 \mathrm{~K}^{\circ}$.
Kelvin temperature. . Temperature based upon a thermodynamic scale with its zero point at absolute zero $\left(-273.16^{\circ} \mathrm{C}\right)$ and using Celsius degrees. Rankine temperature is based upon the Rankine scale starting at absolute zero $\left(-459.69^{\circ} \mathrm{F}\right)$ and using Fahrenheit degrees.
Kennelly-Heaviside layer. . See under KENNELLY-HEAVISIDE REGION.
Kennelly-Heaviside region. . The region of the ionosphere, extending from approximately 40 to 250 miles above the earth's surface within which ionized layers form which may affect radio wave propagation. The E-layer, which is the lowest useful layer from the standpoint of wave propagation, is sometimes called KENNELLYHEAVISIDE LAYER or, in some instances, simply the HEAVISIDE LAYER.
Kepler's laws. . The three empirical laws describing the motions of the planets in their orbits. These are: (1) The orbits of the planets are ellipses, with the sun at a common focus; (2) As a planet moves in its orbit, the line joining the planet and sun sweeps over equal areas in equal intervals of time; (3) The squares of the periods of revolution of any two planets are proportional to the cubes of their mean distances from the sun. Also called KEPLER'S PLANETARY LAWS.
Kepler's planetary laws. . See KEPLER'S LAWS.
key. , n. See CAY.
kick. , n. 1. The distance a ship moves sidewise from the original course away from the direction of turn after the rudder is first put over. 2. The swirl of water toward the inside of the turn when the rudder is put over to begin the turn.
kilo-. . A prefix meaning one thousand $\left(10^{3}\right)$.
kilobyte. . One thousand bytes of information in a computer.
kilocycle., n. One thousand cycles, the term is often used as the equivalent of one thousand cycles per second.
kilogram., n. 1. The base unit of mass in the International System of Units; it is equal to the mass of the international prototype of the kilogram, which is made of platinum-iridium and kept at the International Bureau of Weights and Measures. 2. One thousand grams exactly, or 2.204623 pounds, approximately.
kilometer. , n. One thousand meters; about 0.54 nautical mile, 0.62 U.S. Survey mile, or 3,281 feet.
kinetic energy. . Energy possessed by a body by virtue of its motion, in contrast with POTENTIAL ENERGY, that possessed by virtue of its position.
klaxon. , n. A diaphragm horn similar to a nautophone, but smaller, and sometimes operated by hand.
knik wind. . A strong southeast wind in the vicinity of Palmer, Alaska, most frequent in the winter.
knoll., n. 1 . On the sea floor, an elevation rising generally more than 500 meters and less than 1,000 meters and of limited extent across the summit. 2. A small rounded hill.
knot. , n. A unit of speed equal to 1 nautical mile per hour.
kona storm. . A storm over the Hawaiian Islands, characterized by strong southerly or southwesterly winds and heavy rains.
Krassowski ellipsoid of 1938. . A reference ellipsoid of which the semimajor axis is $6,378,245$ meters and the flattening of ellipticity equals $1 / 298.3$.
Kuroshio. , n. A North Pacific Ocean current flowing northeastward from Taiwan to the Ryukyu Islands and close to the coast of Japan. The Kuroshio is the northward flowing part of the Pacific North Equatorial Current (which divides east of the Philippines). The Kuroshio divides near Yaku Shima, the weaker branch flowing northward through the Korea Strait and the stronger branch flowing through Tokara Kaikyo and then along the south coast of Shikoku. There are light seasonal variations in speed; the Kuroshio is usually strongest in summer, weakens in autumn, strengthens in winter, and weakens in spring. Strong winds can accelerate or retard the current but seldom change its direction. Beyond latitude $35^{\circ} \mathrm{N}$ on the east coast of Japan, the current turns east-northeastward to form the transitional KUROSHIO EXTENSION. The Kuroshio is part of the KUROSHIO SYSTEM. Also called JAPAN CURRENT.
Kuroshio Extension. . The transitional, eastward flowing ocean current that connects the Kuroshio and the North Pacific Current.
Kuroshio System. . A system of ocean currents which includes part of the Pacific North Equatorial Current, the Tsushima Current, the Kuroshio, and the Kuroshio Extension.
kymatology. , n. The science of waves and wave motion.

L

L-1 Signal. , The primary L-band signal transmitted by each GPS satellite at 1572.42 MHz . It is modulated with the C / A and P codes and the navigation message.
L-2 Signal. , The second L-band signal of the GPS satellite, transmitted at 1227.60 MHz , modulated with the P-code and navigation message.
labor. , $v ., i$. To pitch and roll heavily under conditions which subject the ship to unusually heavy stresses caused by confused or turbulent seas or unstable stowage of cargo.
Labrador Current. . Originating from cold arctic water flowing southeastward through Davis Strait at speeds of 0.2 to 0.5 knot and from a westward branching of the warmer West Greenland Current, the Labrador Current flows south eastward along the shelf of the Canadian coast. Part of the current flows into Hudson Strait along its north shore. The outflow of fresh water along the south shore of the strait augments the part of the current flowing along the Labrador coast. The current also appears to be influenced by surface outflow from inlets and fjords along the Labrador coast. The mean speed is about 0.5 knot, but current speed at times may reach 1.5 to 2.0 knots.

Labrador Current Extension. . A name sometimes given to the nontidal current flowing southwestward along the northeast coast of the United States. This coastal current originates from part of the Labrador Current flowing clockwise around the southeastern tip of Newfoundland. Its speeds are fairly constant throughout the year and average about 0.6 knot. The greatest seasonal fluctuation appears to be in the width of the current. The current is widest during winter between Newfoundland and Cape Cod. Southwest of Cape Cod to Cape Hatteras the current shows very little seasonal change. The current narrows considerably during summer and flows closest to shore in the vicinity of Cape Sable, Nova Scotia and between Cape Cod and Long Island in July and August. The current in some places encroaches on tidal regions.
lagan., n. A heavy object thrown overboard and buoyed to mark its location for future recovery. See also JETTISON.
lag error. . Error in the reading of an instrument due to lag.
lagging of tide. . The periodic retardation in the time of occurrence of high and low water due to changes in the relative positions of the moon and the sun. See also PRIMING OF TIDE.
lagoon. , n. 1. A shallow sound, pond, or lake generally separated from the open sea. 2 . A body of water enclosed by the reefs and islands of an atoll.
Lagrangian current measurement. . The direct observation of the current speed or direction, or both, by a recording device such as a parachute drogue which follows the movement of a water mass through the ocean. See also EULERIAN CURRENT MEASUREMENT.
lake., n. 1. A standing body of inland water, generally of considerable size. There are exceptions such as the lakes in Louisiana which are open to or connect with the Gulf of Mexico. Occasionally a lake is called a SEA, especially if very large and composed of salt water. 2. An expanded part of a river.

lake ice. . Ice formed on a lake.

Lambert conformal chart. A chart on the Lambert conformal projection. See also CONIC CHART WITH TWO STANDARD PARALLELS, MODIFIED LAMBERT CONFORMAL CHART.
Lambert conformal map projection. . A conformal map projection of the conic type, on which all geographic meridians are represented by straight lines which meet in a common point outside the limits of the map, and the geographic parallels are represented by a series of arcs of circles having this common point for a center. Meridians and parallels intersect at right angles, and angles on the earth are correctly represented on the projection. This projection may have one standard parallel along which the scale is held exact; or there may be two such standard parallels, both maintaining exact scale. At any point on the map, the scale is the same in every direction. The scale changes along the meridians and is constant along each parallel. Where there are two standard parallels, the scale between those parallels is too small; beyond them, too large. Also called LAMBERT CONFORMAL MAP PROJECTION. See also MODIFIED LAMBERT CONFORMAL MAP PROJECTION.
laminar flow. . See under STREAMLINE FLOW.
land. , v., t \& i. To bring a vessel to a landing.
land breeze. . A breeze blowing from the land to the sea. It usually blows by night, when the sea is warmer than the land, and alternates with a SEA BREEZE, which blows in the opposite direction by day. See also OFFSHORE WIND.
landfall., n. The first sighting of land when approached from seaward. By extension, the term is sometimes used to refer to the first contact with land by any means, as by radar.
landfall buoy. . See SEA BUOY.
landfall light. . See PRIMARY SEACOAST LIGHT.
landing., n. 1. A place where boats receive or discharge passengers, freight, etc. See also LANDING STAGE, WHARF. 2. Bringing of a vessel to a landing.
landing compass. . A compass taken ashore so as to be unaffected by deviation. If reciprocal bearings of the landing compass and the magnetic compass on board are observed, the deviation of the latter can be determined.
landing stage. . A platform attached to the shore for landing or embarking passengers or cargo. In some cases the outer end of the landing stage is floating. Ships can moor alongside larger landing stages.
landmark., n. A conspicuous artificial feature on land, other than an established aid to navigation, which can be used as an aid to navigation. See also SEA MARK.
land mile. . See U.S. SURVEY MILE.
land sky. . Dark streaks or patches or a grayness on the underside of extensive cloud areas, due to the absence of reflected light from bare ground. Land sky is not as dark as WATER SKY. The clouds above ice or snow covered surfaces have a white or yellowish white glare called ICE BLINK. See also SKY MAP.
lane. , n. In any continuous wave phase comparison system, the distance between two successive equiphase lines, taken as $0^{\circ}-360^{\circ}$, in a system of hyperbolic or circular coordinates.
lane count. . An automatic method of counting and totaling the number of hyperbolic or circular lanes traversed by a moving vessel.
language. . A set of characters and rules which allow human interface with the computer, allowing PROGRAMS to be written.
lapse rate. . The rate of decrease of temperature in the atmosphere with height, or, sometimes, the rate of change of any meteorological element with height.
large fracture. . See under FRACTURE.
large iceberg. . For reports to the International Ice Patrol, an iceberg that extends more than 150 feet (45 meters) above the sea surface and which has a length of more than 400 feet (122 meters). See also SMALL ICEBERG, MEDIUM ICEBERG.
large ice field. . See under ICE FIELD.
large navigational buoy (LNB). . A large buoy designed to take the place of a lightship where construction of an offshore light station is not feasible. These buoys may show secondary lights from heights of about 30-40 feet above the water. In addition to the light, they may mount a radiobeacon and provide sound signals. A station buoy may be moored nearby.
large scale. A scale involving a relatively small reduction in size. A large-scale chart is one covering a small area. The opposite is SMALL SCALE. See also REPRESENTATIVE FRACTION.
large-scale chart. . See under CHART. See also LARGE SCALE.
last quarter. . The phase of the moon when it is near west quadrature, when the eastern half of it is visible to an observer on the earth. See also PHASES OF THE MOON.
latent heat of fusion. . See under FUSION.
latent heat of vaporization. . See under EVAPORATION.
lateral. , adj. Of or pertaining to the side, such as lateral motion.
lateral drifting. . See SWAY.
lateral mark. . A navigation aid intended to mark the sides of a channel or waterway. See CARDINAL MARKS.
lateral sensitivity. . The property of a range which determines the rapidity with which the two lights of the range open up as a vessel moves laterally from the range line, indicating to the mariner that he is off the center line.
lateral system. . A system of aids to navigation in which the shape, color, and number are assigned in accordance with their location relative to navigable waters. When used to mark a channel, they are assigned colors to indicate the side they mark and numbers to indicate their sequence along the channel. In the CARDINAL SYSTEM the aids are assigned shape, color, and number distinction in accordance with location relative to obstructions.
latitude. , n. Angular distance from a primary great circle or plane. Terrestrial latitude is angular distance from the equator, measured northward or southward through 90° and labeled N or S to indicate the direction of measurement; astronomical latitude at a station is angular distance between the plumb line and the plane of the celestial equator; geodetic or topographical latitude at a station is angular distance between the plane of the geodetic equator and a normal to the ellipsoid; geocentric latitude is the angle at the center of the reference ellipsoid between the celestial equator and a radius vector to a point on the ellipsoid. Geodetic and sometimes astronomical latitude are also called geographic latitude. Geodetic latitude is used for charts. Assumed (or chosen) latitude is the latitude at which an observer is assumed to be located for an observation or computation. Observed latitude is determined by one or more lines of position extending in a generally east-west direction. Fictitious latitude is angular distance from a fictitious equator. Grid latitude is angular distance from a grid equator. Transverse or inverse latitude is angular distance from a transverse equator. Oblique latitude is angular distance from an oblique equator. Middle or mid latitude is the latitude at which the arc length of the parallel separating the meridians passing through two specific points is exactly equal to the departure in proceeding from one point to the other by middlelatitude sailing. Mean latitude is half the arithmetical sum of the latitude of two places on the same side of the equator. The mean latitude is usually used in middle-latitude sailing for want of a practical means of determining middle latitude. Difference of latitude is the shorter arc of any meridian between the parallels of two places, expressed in angular measure. Magnetic latitude, magnetic inclination, or magnetic dip is angular distance between the horizontal and the direction of a line of force of the earth's magnetic field at any point. Geomagnetic latitude is angular distance from the geomagnetic equator. A parallel of latitude is a circle (or approximation of
a circle) of the earth, parallel to the equator, and connecting points of equal latitude- or a circle of the celestial sphere, parallel to the ecliptic. Celestial latitude is angular distance north or south of the ecliptic. See also VARIATION OF LATITUDE.
latitude factor. . The change in latitude along a celestial line of position per 1' change in longitude. The change in longitude for a 1 ' change in latitude is called LONGITUDE FACTOR.
latitude line. . A line of position extending in a generally east-west direction. Sometimes called OBSERVED LATITUDE. See also LONGITUDE LINE; COURSE LINE, definition 2; SPEED LINE.
lattice. , n. A pattern formed by two or more families of intersecting lines, such as that pattern formed by two or more families of hyperbolas representing, for example, curves of equal time difference associated with a hyperbolic radionavigation system. Sometimes the term pattern is used to indicate curves of equal time difference, with the term lattice being used to indicate its representation on the chart. See also PATTERN, definition 2.
lattice beacon. . A beacon or daymark in the form of a lattice. See also BEACON TOWER, REFUGE BEACON.
laurence. , n. A shimmering seen over a hot surface on a calm, cloudless day, caused by the unequal refraction of light by innumerable convective air columns of different temperatures and densities.
lava., n. Rock in the fluid state, or such material after it has solidified. Lava is formed at very high temperature and issues from the earth through volcanoes. Part of the ocean bed is composed of lava.
law of equal areas. . Kepler's second law.
layer tints. . See HYPSOMETRIC TINTING.
L-band. . A radio-frequency band of 390 to 1,550 megahertz. See also FREQUENCY, FREQUENCY BAND.
lead., n. A fracture or passage-way through ice which is navigable by surface vessels.
lead. , n. A weight attached to a line. A sounding lead is used for determining depth of water. A hand lead is a light sounding lead (7 to 14 pounds), usually having a line of not more than 25 fathoms. A deep sea lead is a heavy sounding lead (about 30 to 100 pounds), usually having a line 100 fathoms or more in length. A light deep sea lead (30 to 50 pounds), used for sounding depths of 20 to 60 fathoms is called a coasting lead. A type of sounding lead used without removal from the water between soundings is called a fish lead. A drift lead is one placed on the bottom to indicate movement of a vessel.
leader cable. . A cable carrying an electric current, signals from or the magnetic influence of which indicates the path to be followed by a craft equipped with suitable instruments.
leading lights. . See RANGE LIGHTS.
leading line. . On a nautical chart, a straight line, drawn through leading marks. A ship moving along such line will clear certain dangers or remain in the best channel. See also CLEARING LINE, RANGE, definition 1 .
leading marks. . See RANGE, n. definition 1 .
lead line. . A line, graduated with attached marks and fastened to a sounding lead, used for determining the depth of water when making soundings by hand. The lead line is usually used in depths of less than 25 fathoms. Also called SOUNDING LINE.
leadsman., n. A person using a sounding lead to determine depth of water.
leap second. . A step adjustment to Coordinated Universal Time (UTC) to maintain it within $0.95^{\text {S }}$ of UT1. The 1 second adjustments, when necessary, are normally made at the end of June or December. Because of the variations in the rate of rotation of the earth, the occurrences of the leap second adjustments are not predictable in detail.
leap year. . A calendar year having 366 days as opposed to the COMMON YEAR having 365 days. Each year exactly divisible by 4 is a leap year, except century years $(1800,1900$, etc.) which must be exactly divisible by $400(2000,2400$, etc.) to be leap years.
least squares adjustment. . A statistical method of adjusting observations in which the sum of the squares of all the deviations or residuals derived in fitting the observations to a mathematical model is made a minimum.
ledge., n. On the sea floor, a rocky, projection or datum outcrop, commonly linear and near shore.
lee. , $a d j$. Referring to the downwind, or sheltered side of an object.
lee. , n. The sheltered area on the downwind side of an object.
lee shore. As observed from a ship, the shore towards which the wind is blowing. See also WEATHER SHORE.
lee side. . That side of a craft which is away from the wind and therefore sheltered.
lee tide. . See LEEWARD TIDAL CURRENT.
leeward., $a d j$. \& $a d v$. Toward the lee, or in the general direction toward which the wind is blowing. The opposite is WINDWARD.
leeward. , n. The lee side. The opposite is WINDWARD.
leeward tidal current. . A tidal current setting in the same direction as that in which the wind is blowing. Also called LEE TIDE, LEEWARD TIDE.
leeward tide. . See LEEWARD TIDAL CURRENT.
leeway., n. The leeward motion of a vessel due to wind. See also LEEWAY ANGLE.
leeway angle. . The angular difference between a vessel's course and the track due to the effect of wind in moving a vessel bodily to leeward. See also DRIFT ANGLE, definition 2.
left bank. . The bank of a stream or river on the left of an observer facing downstream.
leg. , n. A part of a ship's track line that can be represented by a single course line.
legend. , n. A title or explanation on a chart, diagram, illustration, etc.
lens. , n. A piece of glass or transparent material with plane, convex, or concave surfaces adapted for changing the direction of light rays to enlarge or reduce the apparent size of objects. See also EYEPIECE; FIELD LENS MENISCUS, definition 2, OBJECTIVE.
lenticular, lenticularis., adj. In the shape of a lens, used to refer to an apparently stationary cloud resembling a lens, being broad in its middle and tapering at the ends and having a smooth appearance. Actually, the cloud continually forms to windward and dissipates to leeward.
lesser ebb. . See under EBB CURRENT.
lesser flood. . See under FLOOD CURRENT.
leste. , n. A hot, dry, easterly wind of the Madeira and Canary Islands.
levanter. , n. A strong easterly wind of the Mediterranean, especially in the Strait of Gibraltar, attended by cloudy, foggy, and sometimes rainy weather especially in winter.
levantera. , n. A persistent east wind of the Adriatic, usually accompanied by cloudy weather.
levanto., n. A hot southeasterly wind which blows over the Canary Islands.
leveche. , n. A warm wind in Spain, either a foehn or a hot southerly wind in advance of a low pressure area moving from the Sahara Desert. Called a SIROCCO in other parts of the Mediterranean area.
levee., n. 1. An artificial bank confining a stream channel or limiting adjacent areas subject to flooding. 2. on the sea floor, an embankment bordering a canyon, valley, or sea channel.
level ice. . Sea ice which is unaffected by deformation.
leveling., n. A survey operation in which heights of objects are determined relative to a specified datum.
libration., n. A real or apparent oscillatory motion, particularly the apparent oscillation of the moon, which results in more than half of the moon's surface being revealed to an observer on the earth, even though the same side of the moon is always toward the earth because of the moon's periods of rotation and revolution are the same.
light. , adj. 1. Of or pertaining to low speed, such as light air, force 1 (1-3 miles per hour or 1-3 knots) on the Beaufort scale or light breeze, force 2 (4-7 miles per hour or 4-6 knots) on the Beaufort scale. 2. Of or pertaining to low intensity, as light rain, light fog, etc.
light. , n. 1. Luminous energy. 2. An apparatus emitting light of distinctive character for use as an aid to navigation.
light air. . Wind of force 1 (1 to 3 knots or 1 to 3 miles per hour) on the Beaufort wind scale.
light attendant station. . A shore unit established for the purpose of servicing minor aids to navigation within an assigned area.
light-beacon. , n. See LIGHTED BEACON.
light breeze. . Wind of force 2 (4 to 6 knots or 4 to 7 miles per hour) on the Beaufort wind scale.
lighted beacon. . A beacon exhibiting a light. Also called LIGHTBEACON.
lighted buoy. . A buoy exhibiting a light.
lighted sound buoy. . See under SOUND BUOY.
lightering area. . An area designated for handling ship's cargo by barge or lighter.
light-float. , n. A buoy having a boat-shaped body. Light-floats are usually unmanned and are used instead of smaller lighted buoys in waters where strong currents are experienced.
lighthouse., n. A distinctive structure exhibiting a major navigation light.
light list. . 1. A publication giving detailed information regarding lighted navigational aids and fog signals. In the United States, light lists are published by the U.S. Coast Guard as USCG Light Lists and by the National Imagery and Mapping Agency as List of Lights.
light list number. . The sequential number used to identify a navigational light in the light list. This may or may not be the same as the INTERNATIONAL NUMBER, which is an identifying number assigned by the International Hydrographic Organization. The international number is in italic type and is located under the light list number in the list.
light nilas. Nilas which is more than 5 centimeters in thickness and somewhat lighter in color than dark nilas.
light sector. As defined by bearings from seaward, the sector in which a navigational light is visible or in which it has a distinctive color different from that of adjoining sectors, or in which it is obscured. See also SECTOR LIGHT.
lightship. , n. A distinctively marked vessel providing aids to navigation services similar to a light station, i.e., a light of high intensity and reliability, sound signal, and radiobeacon, and moored at a station where erection of a fixed structure is not feasible. Most lightships are anchored to a very long scope of chain and, as a result, the radius of their swinging circle is considerable. The chart symbol represents the approximate location of the anchor. Also called LIGHT VESSEL. See also LIGHT-FLOAT.
lights in line. . Two or more lights so situated that when observed in transit they define the alignment of a submarine cable, the limit of an area, an alignment for use in anchoring, etc. Not to be confused with RANGE LIGHTS which mark a direction to be followed. See also RANGE, definition 1.
light station. . A manned station providing a light usually of high intensity and reliability. It may also provide sound signal and radiobeacon services.
light valve. . See SUN VALVE.
light vessel. . See LIGHTSHIP.
light-year. , n. A unit of length equal to the distance light travels in 1 year, equal to about 5.88×10^{12} miles. This unit is used as a measure of stellar distances.
liman. , n. A shallow coastal lagoon or embayment with a muddy bottom; also a region of mud or slime deposited near a stream mouth.
Liman Current. . Formed by part of the Tsushima Current and river discharge in Tatar Strait, the coastal Liman Current flows southward in the western part of the Sea of Japan. During winter, it may reach as far south as 35° N. See also under TSUSHIMA CURRENT.
limb., n. 1. The graduated curved part of an instrument for measuring angles, such as the part of a marine sextant carrying the altitude scale, or ARC. 2. The circular outer edge of a celestial body, usually referred to with the designation upper or lower.
limbo echo. . See CLASSIFICATION OF RADAR ECHOES.
line. , n. 1. A series of related points, the path of a moving point. A line has only one dimension; length. 2. A row of letters, numbers, etc. 3. A mark of division or demarcation, as a boundary line.
linear. , adj. 1. Of or pertaining to a line. 2. Having a relation such that a change in one quantity is accompanied by an exactly proportional change in a related quantity.
linear interpolation. . Interpolation in which changes of tabulated values are assumed to be proportional to changes in entering arguments.
linear light. . A luminous signal having perceptible length, as contrasted with a POINT LIGHT, which does not have perceptible length.
linearly polarized wave. . A transverse electromagnetic wave the electric field vector of which lies along a fixed line at all times.
linear scale. . A scale graduated at uniform intervals.
linear speed. . Rate of motion in a straight line. See also ANGULAR RATE.
linear sweep. . Short for LINEAR TIME BASE SWEEP.
linear time base. . A time base having a constant speed, particularly a linear time base sweep.
linear time base sweep. . A sweep having a constant sweep speed before retrace. Usually shortened to LINEAR SWEEP, and sometimes to LINEAR TIME BASE.
line blow. . A strong wind on the equator side of an anticyclone, probably so called because there is little shifting of wind direction during the blow, as contrasted with the marked shifting which occurs with a cyclonic windstorm.
line of apsides. . The line connecting the two points of an orbit that are nearest and farthest from the center of attraction, such as the perigee and apogee of the moon or the perihelion and aphelion of a planet. Also called APSE LINE.
line of force. A line indicating the direction in which a force acts, as in a magnetic field.
line of nodes. . The straight line connecting the two points of intersection of the orbit of a planet, planetoid, or comet and the ecliptic; or the line of intersection of the planes of the orbits of a satellite and the equator of its primary.
line of position. . A plotted line on which a vessel is located, determined by observation or measurement. Also called POSITION LINE.
line of sight. . The straight line between two points, which does not follow the curvature of the earth.
line of soundings. . A series of soundings obtained by a vessel underway, usually at regular intervals. In piloting, this information may be used to determine an estimated position, by recording the soundings at appropriate intervals (to the scale of the chart) along a line drawn on transparent paper or plastic, to represent the track, and then fitting the plot to the chart, by trial and error. A vessel obtaining soundings along a course line, for use in making or improving a chart, is said to run a line of soundings.
line of total force. . The direction of a freely suspended magnetic needle when acted upon by the earth's magnetic field alone.
line squall. . A squall that occurs along a squall line.
lipper. , n. 1. Slight ruffling or roughness on a water surface. 2. Light spray from small waves.
liquid compass. . A magnetic compass of which the bowl mounting the compass card is completely filled with liquid. Nearly all modern magnetic compasses are of this type. An older liquid compass using a solution of alcohol and water is sometimes called a SPIRIT COMPASS. Also called WET COMPASS. See also DRY COMPASS.
list. , n. Inclination to one side. LIST generally implies equilibrium in an inclined condition caused by uneven distribution of mass aboard the vessel itself, while HEEL implies either a continuing or momentary inclination caused by an outside force, such as the wind. The term ROLL refers to the oscillatory motion of a vessel rather than its inclined condition.
list. , v., t \& i. To incline or be inclined to one side.
lithometeor., n. The general term for dry atmospheric suspensoids, including dust, haze, smoke, and sand. See also HYDROMETEOR.
little brother. . A secondary tropical cyclone sometimes following a more severe disturbance.
littoral. , adj. \& n. 1. A littoral region. 2. The marine environment influenced by a land mass. 3. Of or pertaining to a shore, especially a seashore. See also SEABOARD.
load line marks. .Markings stamped and painted amidships on the side of a vessel, to indicate the minimum permissible freeboard. Also called PLIMSOLL MARKS. See also DRAFT MARKS.
lobe. , n. 1. The portion of the overall radiation pattern of a directional antenna which is contained within a region bounded by adjacent minima. The main beam is the beam in the lobe containing the direction of maximum radiation (main lobe) lying within specified values of field strength relative to the maximum field strength. See also BACK LOBE, SIDE LOBE, BEAM WIDTH 2. The radiation within the region of definition 1.
local apparent noon. Twelve o'clock local apparent time, or the instant the apparent sun is over the upper branch of the local meridian. Local apparent noon at the Greenwich meridian is called Greenwich apparent noon. Sometimes called HIGH NOON.
local apparent time. The arc of the celestial equator, or the angle at the celestial pole, between the lower branch of the local celestial meridian and the hour circle of the apparent or true sun, measured westward from the lower branch of the local celestial meridian through 24 hours; local hour angle of the apparent or true sun, expressed in time units, plus 12 hours. Local apparent time at the Greenwich meridian is called Greenwich apparent time.
local attraction. See LOCAL MAGNETIC DISTURBANCE.
local civil noon. United States terminology from 1925 through 1952. See LOCAL MEAN NOON.
local civil time. United States terminology from 1925 through 1952. See LOCAL MEAN TIME.
local hour angle (LHA). Angular distance west of the local celestial meridian; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of the local celestial meridian and the hour circle of a point on the celestial sphere, measured westward from the local celestial meridian through 360°. The local hour angle at longitude 0° is called Greenwich hour angle.
local knowledge. The term applied to specialized, detailed knowledge of a port, harbor, or other navigable water considered necessary for safe navigation. Local knowledge extends beyond that available in charts and publications, being more detailed, intimate, and current.
local lunar time. The arc of the celestial equator, or the angle at the celestial pole, between the lower branch of the local celestial meridian and the hour circle of the moon, measured westward from the lower branch of the local celestial meridian through 24 hours; local hour angle of the moon, expressed in time units, plus 12 hours. Local lunar time at the Greenwich meridian is called Greenwich lunar time.
local magnetic disturbance. An anomaly of the magnetic field of the earth, extending over a relatively small area, due to local magnetic influences. Also called LOCAL ATTRACTION, MAGNETIC ANOMALY.
local mean noon. Twelve o'clock local mean time, or the instant the mean sun is over the upper branch of the local meridian. Local mean noon at the Greenwich meridian is called Greenwich mean noon.
local mean time. The arc of the celestial equator, or the angle at the celestial pole, between the lower branch of the local celestial meridian and the hour circle of the mean sun, measured westward from the lower branch of the local celestial meridian through 24 hours; local hour angle of the mean sun, expressed in time units, plus 12 hours. Local mean time at the Greenwich meridian is called Greenwich mean time, or Universal Time.
local meridian. The meridian through any particular place of observer, serving as the reference for local time, in contrast with GREENWICH MERIDIAN.
local noon. Noon at the local meridian.
Local Notice to Mariners. A notice issued by each U.S. Coast Guard District to disseminate important information affecting navigational safety within the District. The Local Notice reports changes to and deficiencies in aids to navigation maintained by and under the authority of the U.S. Coast Guard. Other information includes channel depths, new charts, naval operations, regattas, etc. Since temporary information, known or expected to be of short duration, is not included in the weekly Notice to Mariners published by the Defense Mapping Agency Hydrographic/ Topographic Center, the appropriate Local Notice to Mariners may be the only source of such information. Much of the information contained in the Local Notice to Mariners is included in the weekly Notice to Mariners. The Local Notice to Mariners is published as often as required; usually weekly. It may be obtained, free of charge, the appropriate Coast Guard District Commander.
local oscillator. An oscillator used to drive an intermediate frequency by beating with the signal carrying frequency in superheterodyne reception.
local sidereal noon. Zero hours local sidereal time, or the instant the vernal equinox is over the upper branch of the local meridian. Local sidereal noon at the Greenwich meridian is called Greenwich sidereal noon.
local sidereal time. Local hour angle of the vernal equinox, expressed in time units; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of the local celestial meridian and the hour circle of the vernal equinox, measured westward from the upper branch of the local celestial meridian through 24 hours. Local sidereal time at the Greenwich meridian is called Greenwich sidereal time.
local time. 1. Time based upon the local meridian as reference, as contrasted with that based upon a standard meridian. Local time was in general use in the United States until 1883, when standard time was adopted. 2. Any time kept locally.
local vertical. The direction of the acceleration of gravity as opposed to the normal to the reference ellipsoid. It is in the direction of the resultant of the gravitational and centrifugal accelerations of the earth at the location of the observer. Also called PLUMB-BOB VERTICAL. See also MASS ATTRACTION VERTICAL.
loch, n. 1. A lake. 2. An arm of the sea, especially when nearly landlocked.
lock, n. 1. A basin in a waterway with caissons or gates at each end by means of which vessels are passed from one water level to another.
lock, v. . To pass through a lock, referred to as locking through.
lock on. To identify and begin to continuously track a target in one or more coordinates (e.g., range, bearing, elevation).
locus, n. All possible positions of a point or curve satisfying stated conditions.
$\log , n .1$. An instrument for measuring the speed or distance or both traveled by a vessel. A chip log (ancient) consists essentially of a weighted wooden quadrant (quarter of a circle) attached to a bridle in such a manner that it will float in a vertical position, and a line with equally spaced knots. A mechanical means of determining speed or distance is called a patent log. A harpoon \log consists essentially of a combined rotator and distance registering device towed through the water. This has been largely replaced by the taffrail log, a somewhat similar device but with the registering unit secured at the taffrail. A Pitometer log consists essentially of a Pitot tube projecting into the water, and suitable registering devices. An electromagnetic log consists of suitable registering devices and an electromagnetic sensing element, extended below the hull of a vessel, which produces a voltage directly proportional to speed through the water. A Forbes \log consists of a small rotator in a tube projecting below the bottom of the vessel, and suitable registering devices. A Dutchman's log is a buoyant object thrown overboard, the speed of a vessel being determined by noting the time required for a known length of the vessel to pass the object. 2. A written record of the movements of a craft, with regard to courses, speeds, positions, and other information of interest to navigators, and of important happenings aboard the craft. The book in which the log is kept is called a LOG BOOK. Also called DECK LOG. See also NIGHT ORDER BOOK 3. A written record of specific related information, as that concerning performance of an instrument. See GYRO LOG.
logarithm, n. The power to which a fixed number, called the base, usually 10 or $e(2.7182818)$, must be raised to produce the value to which the logarithm corresponds. A logarithm (base 10) consists of two parts: the characteristic is that part to the left of the decimal point and the mantissa is that part to the right of the decimal point. An ANTILOGARITHM or INVERSE LOGARITHM is the value corresponding to a given logarithm. Logarithms are used to multiply or divide numbers, the sum or difference of the logarithms of two numbers being the logarithm of the product or quotient, respectively, of the two numbers. A COLOGARITHM is the logarithm of the reciprocal of a number. Logarithms to the base 10 are called common or Briggsian and those to the base e are called natural or Napierian logarithms.
logarithmic, adj. Having to do with a logarithm, used with the name of a trigonometric function to indicate that the value given is the logarithm of that function, rather than the function itself which is called the natural trigonometric function.
logarithmic coordinate paper. Paper ruled with two sets of mutuallyperpendicular, parallel lines spaced according to the logarithms of consecutive numbers, rather than the numbers themselves. On SEMILOGARITHMIC COORDINATE PAPER one set of lines is
logarithmic scale. A scale graduated in the logarithms of uniformlyspaced consecutive numbers.
logarithmic tangent. See under TANGENT, definition 1.
logarithmic trigonometric function. See under TRIGONOMETRIC FUNCTIONS.
log book. See LOG, definition 2.
\log chip. The wooden quadrant forming part of a chip log. Also called LOG SHIP.
\log glass. A small hour glass used to time a chip log. The period most frequently used is 28 seconds.
\log line. 1. A graduated line used to measure the speed of a vessel through the water or to measure the speed of a current, the line may be called a CURRENT LINE. 2. The line secured to a log.
long flashing light. A navigation light with a duration of flash of not less than 2 seconds.
longitude, n. Angular distance, along a primary great circle, from the adopted reference point. Terrestrial longitude is the arc of a parallel, or the angle at the pole, between the prime meridian and the meridian of a point on the earth measured eastward or westward from the prime meridian through 180°, and labeled E or W to indicate the direction of measurement. Astronomical longitude is the angle between the plane of the prime meridian and the plane of the celestial meridian; geodetic longitude is the angle between the plane of the geodetic meridian and a station and the plane of the geodetic meridian at Greenwich. Geodetic and sometimes astronomical longitude are also called geographic longitude. Geodetic longitude is used in charting. Assumed longitude is the longitude at which an observer is assumed to be located for an observation or computation. Observed longitude is determined by one or more lines of position extending in a generally north-south direction. Difference of longitude is the smaller angle at the pole or the shorter arc of a parallel between the meridians of two places, expressed in angular measure. Fictitious longitude is the arc of the fictitious equator between the prime fictitious meridian and any given fictitious meridian. Grid longitude is angular distance between a prime grid meridian and any given grid meridian. Oblique longitude is angular distance between a prime oblique meridian and any given oblique meridian. Transverse or inverse longitude is angular distance between a prime transverse meridian and any given meridian. Celestial longitude is angular distance east of the vernal equinox, along the ecliptic.
longitude factor. The change in longitude along a celestial line of position per 1' change in latitude. The change in latitude for a 1' change in longitude is called LATITUDE FACTOR.
longitude line. A line of position extending in a generally north-south direction. Sometimes called OBSERVED LONGITUDE. See also LATITUDE LINE; COURSE LINE, definition 2; SPEED LINE.
longitude method. The establishing of a line of position from the observation of the latitude of a celestial body by assuming a latitude (or longitude), and calculating the longitude (or latitude) through which the line of position passes, and the azimuth. The line of position is drawn through the point thus found, perpendicular to the azimuth. See also ST. HILAIRE METHOD, SUMNER METHOD, HIGH ALTITUDE METHOD.
longitude of Greenwich at time of perigee. See RIGHT ASCENSION OF GREENWICH AT TIME OF PERIGEE.
longitude of pericenter. An orbital element that specifies the orientation of an orbit; it is a broken angle consisting of the angular distance in the ecliptic from the vernal equinox to the ascending node of the orbit plus the angular distance in the orbital plane from the ascending node to the pericenter, i.e. the sum of the longitude of the ascending node and the argument of pericenter.
longitude of the ascending node. 1. The angular distance in the ecliptic from the vernal equinox to the ascending node of the orbit. See also LONGITUDE OF PERICENTER, RIGHT ASCENSION OF THE ASCENDING NODE. 2. The angular distance, always measured eastward, in the plane of the celestial equator from Greenwich through 360°.
longitude of the moon's nodes. The angular distance along the ecliptic of the moon's nodes from the vernal equinox; the nodes have a retrograde motion, and complete a cycle of 360° in approximately 19 years.
longitudinal axis. The fore-and-aft line through the center of gravity of a craft, around which it rolls.
longitudinal wave. A wave in which the vibration is in the direction of propagation, as in sound waves. This is in contrast with a TRANSVERSE WAVE, in which the vibration is perpendicular to the direction of propagation.
long path interference. See under MULTIPATH ERROR.
long period constituent. A tidal or tidal current constituent with a period that is independent of the rotation of the earth but which depends upon the orbital movement of the moon or of the earth. The principal lunar long period constituents have periods approximating the month and half-month, and the principal solar long period constituents have periods approximating the year and half-year.
long period perturbations. Periodic eccentricities in the orbit of a planet or satellite which require more than one orbital period to execute one complete periodic variation.
long range systems. Radionavigation systems providing positioning capability on the high seas. Loran C is an example. See also SHORT RANGE SYSTEMS.
longshore current. A current paralleling the shore largely within the surf zone. It is caused by the excess water brought to the zone by the small net mass transport of wind waves. Longshore currents feed into rip currents.
look angles. The elevation and azimuth at which a particular satellite is predicted to be found at a specified time.
lookout station. A label on a nautical chart which indicates a tower surmounted by a small house from which a watch is kept regularly.
loom, n. The diffused glow observed from a light below the horizon, due to atmospheric scattering.
looming, n. 1. An apparent elevation of distant terrestrial objects by abnormal atmospheric refraction. Because of looming, objects below the horizon are sometimes visible. The opposite is SINKING. 2. The appearance indistinctly of an object during a period of low visibility.
loop antenna. A closed circuit antenna in the form of a loop, lying in the same plane, or of several loops lying in parallel planes.
loop of stationary wave. See under STATIONARY WAVE.
Loran, n. The general designation of a type of radionavigation system by which a hyperbolic line of position is determined through measuring the difference in the times of reception of synchronized signals from two fixed transmitters. The name Loran is derived from the words long range navigation.
Loran A, n. A long range medium frequency (1850 to 1950 kHz) radionavigation system by which a hyperbolic line of position of medium accuracy was obtained. System operation in U.S. waters was terminated on 31 December 1980. See also LORAN, HYPERBOLIC NAVIGATION.
Loran C, n. A long range, low frequency $(90-110 \mathrm{kHz})$ radionavigation system by which a hyperbolic line of position of high accuracy is obtained by measuring the difference in the times of arrival of signals radiated by a pair of synchronized transmitters (master station and secondary station) which are separated by several hundred miles. See also LORAN, HYPERBOLIC NAVIGATION.
Loran C plotting chart. See under Plotting CHART.
Loran C reliability diagram. One of a series of charts which depict the following data for the area covered: (1) for each station of the chain, predicted maximum usable groundwave signal limits for signal-tonoise ratios of 1:3 and 1:10, and (2) contours which indicate the regions within which positions can be fixed with repeatable accuracies of 500,750 , or 1500 feet or better on a 95 percent probability basis. See also COVERAGE DIAGRAM.
Loran C Table. See PUB. 221. LORAN C TABLE.
Loran rate. See RATE, definition 2.
Lorhumb line. A line along which the rates of change of the values of two families of hyperbolae are constants.
lost motion. Mechanical motion which is not transmitted to connected or related parts, due to loose fit. See also BACKLASH.
low, n. Short for area of low pressure. Since a low is, on a synoptic chart, always associated with cyclonic circulation, the term is used interchangeably with CYCLONE. See also HIGH.
low clouds. Types of clouds the mean level of which is between the surface and 6,500 feet. The principal clouds in this group are stratocumulus, stratus, and nimbostratus.
lower branch. The half of a meridian or celestial meridian from pole to pole which passes through the antipode or nadir of a place. See also UPPER BRANCH.
lower culmination. See LOWER TRANSIT.
lower high water. The lower of the two high waters of any tidal day.
lower high water interval. See under LUNITIDAL INTERVAL.
lower limb. The lower edge (closest to the horizon) of a celestial body having measurable diameter; opposite is the UPPER LIMB, or the upper edge.
lower low water. The lower of the two low waters of any tidal day.
lower low water datum. An approximation of mean lower low water that has been adopted as a standard reference for a limited area, and is retained for an indefinite period regardless of the fact that it may differ slightly from a better determination of mean lower low water from a subsequent series of observations. Used primarily for river and harbor engineering purposes. Columbia River lower low water datum is an example.
lower low water interval. See under LUNITIDAL INTERVAL.
lower transit. Transit of the lower branch of the celestial meridian. Transit of the upper branch is called UPPER TRANSIT. Also called INFERIOR TRANSIT, LOWER CULMINATION.
low frequency. Radio frequency of 30 to 300 kilohertz.
low light. See FRONT LIGHT.
low tide. See under LOW WATER.
low water. The minimum height reached by a falling tide. The height may be due solely to the periodic tidal forces or it may have superimposed upon it the effects of meteorological conditions.
low water datum. 1. The dynamic elevation for each of the Great Lakes, Lake St. Clair, and the corresponding sloping surfaces of the St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence Rivers to which are referred the depths shown on the navigation charts and the authorized depths for navigation improvement projects. Elevations of these planes are referred to International Great Lakes Datum (1955) and are: Lake Superior - 600.0 feet, Lakes Michigan and Huron - 576.8 feet, Lake St. Clair - 571.7 feet, Lake Erie - 568.6 feet, and Lake Ontario- 242.8 feet. 2. An approximation of mean low water that has been adopted as a standard reference for a limited area and is retained for an indefinite period regardless of the fact that it may differ slightly from a better determination of mean low water from a subsequent series of observations. Used primarily for river and harbor engineering purposes.
low water equinoctial springs. Low water spring tides near the times of the equinoxes. Expressed in terms of the harmonic constituents, it is an elevation depressed below mean sea level by an amount equal to the sum of the amplitudes of certain constituents as given in the Tide and Current Glossary published by the National Ocean Survey.
low water inequality. See under DIURNAL INEQUALITY.
low water interval. See under LUNITIDAL INTERVAL.
low water line. The intersection of the land with the water surface at an elevation of low water.
low water neaps. See under NEAP TIDES.
low water springs. Short for MEAN LOW WATER SPRINGS.
low water stand. The condition at low water when there is no sensible change in the height of the tide. A similar condition at high water is called HIGH WATER STAND. See also STAND.
loxodrome, n. See RHUMB LINE. See also ORTHODROME.
loxodromic curve. See RHUMB LINE.
lubber's line. A reference line on a compass marking the reading which coincides with the heading.
lubber's line error. The angular difference between the heading as indicated by a lubber's line, and the actual heading; the horizontal angle, at the center of an instrument, between a line through the lubber's line and one parallel to the keel.
lull, n. A momentary decrease in the speed of the wind.
lumen, n. The derived unit of luminous flux in the International System of Units; it is the luminous flux emitted within unit solid angle (1 steradian) by a point source having a uniform luminous intensity of 1 candela.
luminance, n. In a given direction, at a point on the surface of a source or receptor, or at a point on the path of a beam, the quotient of the luminous flux leaving, arriving at, or passing through an element of surface at this point and propagated in directions defined by an elementary cone containing the given directions, by the product of the solid angle of the cone and the area of the orthogonal projection of the element of surface on a plane perpendicular to the given direction. The derived unit of luminance in the International System of Units is the CANDELA PER SQUARE METER.
luminescence, n. Emission of light other than incandescence, as in bioluminescence; emission as a result of and only during absorption of radiation from some other source is called FLUORESCENCE; continued emission after absorption of radiation has ceased is called PHOSPHORESCENCE.
luminous, adj. Emitting or reflecting light.
luminous flux. The quantity characteristic of radiant flux which expresses its capacity to produce a luminous sensation, evaluated according to the values of spectral luminous efficiency. Unless otherwise indicated, the luminous flux relates to photopic vision, and is connected with the radiant flux in accordance with the formula adopted in 1948 by the International Commission on Illumination. The derived unit of luminous flux in the International System of Units is the LUMEN.
luminous range. See under VISUAL RANGE (OF A LIGHT).
luminous Range Diagram. A diagram used to convert the nominal range of a light to its luminous range under existing conditions.
lunar, $a d j$. Of or pertaining to the moon.
Iunar cycle. An ambiguous expression which has been applied to various cycles associated with the moon's motion, including CALLIPPIC CYCLE, METONIC CYCLE, NODE CYCLE, SYNODICAL MONTH or LUNATION.
lunar day. 1. The duration of one rotation of the earth on its axis, with respect to the moon. Its average length is about $24^{\mathrm{h}} 50^{\mathrm{m}}$ of mean solar time. Also called TIDAL DAY. 2. The duration of one rotation of the moon on its axis, with respect to the sun.
lunar distance. The angle, at an observer on the earth, between the moon and another celestial body. This was the basis of a method formerly used to determine longitude at sea.
lunar eclipse. An eclipse of the moon. When the moon enters the shadow of the earth, it appears eclipsed to an observer on the earth. A lunar eclipse is penumbral when it enters only the penumbra of the earth's shadow, partial when part of its surface enters the umbra of the earth's shadow, and total if its entire surface is obscured by the umbra.
lunar inequality. 1. Variation in the moon's motion in its orbit, due to attraction by other bodies of the solar system. See also EVECTION, PERTURBATIONS. 2. A minute fluctuation of a magnetic needle from its mean position, caused by the moon.
lunar interval. The difference in time between the transit of the moon over the Greenwich meridian and a local meridian. The lunar interval equals the difference between the Greenwich and local intervals of a tide or current phase.
lunar month. The period of revolution of the moon about the earth, especially a synodical month.
lunar node. A node of the moon's orbit. See also LINE OF NODES.
lunar noon. The instant at which the sun is over the upper branch of any meridian of the moon.
lunar parallax. Parallax of the moon.
lunar rainbow. See MOON BOW.
lunar tide. That part of the tide due solely to the tide-producing force of the moon. That part due to the tide-producing force of the sun is called SOLAR TIDE.
lunar time. Time based upon the rotation of the earth relative to the moon. Lunar time may be designated as local or Greenwich according to whether the local or Greenwich meridian is used as the reference.
lunation, n. See SYNODICAL MONTH.
lune, n. The part of the surface of a sphere bounded by halves of two great circles.
lunicurrent internal. The interval between the moon's transit (upper or lower) over the local or Greenwich meridian and a specified phase of the tidal current following the transit. Examples are strength of flood interval and strength of ebb interval, which may be abbreviated to flood interval and ebb interval, respectively. The interval is described as local or Greenwich according to whether the reference
is to the moon's transit over the local or Greenwich meridian. When not otherwise specified, the reference is assumed to be local. See also LUNITIDAL INTERVAL.
lunisolar effect. Gravitational effects caused by the attractions of the moon and of the sun.
lunisolar perturbation. Perturbations of the orbits of artificial earth satellites due to the attractions of the sun and the moon. The most important effects are secular variations in the mean anomaly, in the right ascension of the ascending node, and in the argument of perigee.
lunisolar precession. That component of general precession caused by the combined effect of the sun and moon on the equatorial protuberance of the earth, producing a westward motion of the equinoxes along the ecliptic. See also PRECESSION OF THE EQUINOXES.
lunitidal interval. The interval between the moon's transit (upper or lower) over the local or Greenwich meridian and the following high or low water. The average of all high water intervals for all phases of the moon is known as mean high water lunitidal interval and is abbreviated to high water interval. Similarly the mean low water lunitidal interval is abbreviated to low water interval. The interval is described as local or Greenwich according to whether the reference is to the transit over the local or Greenwich meridian. When not otherwise specified, the reference is assumed to be local. When there is considerable diurnal inequality in the tide separate intervals may be obtained for the higher high waters, the lower high waters, the higher low waters and the lower low waters. These are designated respectively as higher high water interval, lower high water interval higher low water interval, and lower low water interval. In such cases, and also when the tide is diurnal, it is necessary to distinguish between the upper and lower transit of the moon with reference to its declination.
lux, n. The derived unit of illuminance in the International System of Units; it is equal to 1 lumen per square meter.

M

mackerel sky. An area of sky with a formation of rounded and isolated cirrocumulus or altocumulus resembling the pattern of scales on the back of a mackerel.
macroscopic, $a d j$. Large enough to be seen by the unaided eye.
madrepore, n. A branching or stag-horn coral, or any perforated stone coral.
maelstrom, n. A whirlpool similar to the Maelstrom off the west coast of Norway.
maestro, n. A northwesterly wind with fine weather which blows, especially in summer, in the Adriatic. It is most frequent on the western shore. This wind is also found on the coasts of Corsica and Sardinia.
magnet, n. A body which produces a magnetic field around itself. It has the property of attracting certain materials capable of being magnetized. A magnet occurring in nature is called a natural magnet in contrast with a man-made artificial magnet. See also HEELING MAGNET, KEEPER.
magnetic, $a d j$. Of or pertaining to a magnet or related to magnetic north. magnetic amplitude. Amplitude relative to magnetic east or west.
magnetic annual change. The amount of secular change in the earth's magnetic field which occurs in 1 year. magnetic annual variation; the small systematic temporal variation in the earth's magnetic field which occurs after the trend for secular change has been removed from the average monthly values.
magnetic anomaly. See LOCAL MAGNETIC DISTURBANCE.
magnetic azimuth. Azimuth relative to magnetic north.
magnetic bay. A small magnetic disturbance whose magnetograph resembles an indentation of a coastline. On earth, magnetic bays occur mainly in the polar regions and have duration of a few hours.
magnetic bearing. Bearing relative to magnetic north; compass bearing corrected for deviation.
magnetic chart. A chart showing magnetic information. If it shows lines of equality in one or more magnetic elements, it may be called an isomagnetic chart. It is an isoclinal or isoclinic chart if it shows lines of equal magnetic dip, an isodynamic chart if it shows lines of equal magnetic intensity, an isogonic chart if it shows lines of equal magnetic variation, an isogriv chart if it shows lines of equal grid variation, an isoporic chart if it shows lines of equal rate or change of a magnetic element.
magnetic circle. A sphere of specified radius about the magnetic compass location to be kept free of any magnetic or electrical equipment which would interfere with the compass.
magnetic compass. A compass depending for its directive force upon the attraction of the horizontal component of the earth's magnetic field for a magnetized needle or sensing element free to turn in a horizontal direction.
magnetic course. Course relative to magnetic north; compass course corrected for deviation. magnetic daily variation. See MAGNETIC DIURNAL VARIATION.
magnetic declination. See VARIATION, definition 1.
magnetic deviation. See DEVIATION, definition 1.
magnetic dip. Angular distance between the horizontal and the direction of a line of force of the earth's magnetic field at any point. Also called DIP, MAGNETIC INCLINATION.
magnetic dip pole. See MAGNETIC POLE, definition 1.
magnetic direction. Horizontal direction expressed as angular distance from magnetic north. magnetic diurnal variation. Oscillations of the earth's magnetic field which have a periodicity of about a day and which depend to a close approximation only on local time and geographic latitude. Also called MAGNETIC DAILY VARIATION.
magnetic element. 1. Variation, dip, or magnetic intensity. 2. The part of an instrument producing or influenced by magnetism.
magnetic equator. The line on the surface of the earth connecting all points at which the magnetic dip is zero. Also called ACLINIC LINE. See also GEOMAGNETIC EQUATOR.
magnetic field. Any space or region in which magnetic forces are present, as in the earth's magnetic field, or in or about a magnet, or in or about an electric current. See also MAGNETIC VECTOR.
magnetic force. The strength of a magnetic field. Also called MAGNETIC INTENSITY.
magnetic heading. Heading relative to magnetic north; compass heading corrected for deviation.
magnetic inclination. See MAGNETIC DIP.
magnetic induction. The act or process by which material becomes magnetized when placed in a magnetic field.
magnetic intensity. The strength of a magnetic field. Also called MAGNETIC FORCE.
magnetic latitude. Angular distance north or south of the magnetic equator. The angle is equal to an angle, the tangent of which is equal to half the tangent of the magnetic dip at the point.
magnetic lines of force. Closed lines indicating by their direction the direction of magnetic influence.
magnetic meridian. A line of horizontal magnetic force of the earth. A compass needle without deviation lies in the magnetic meridian.
magnetic moment. The quantity obtained by multiplying the distance between two magnetic poles by the average strength of the poles.
magnetic needle. A small, slender, magnetized bar which tends to align itself with magnetic lines of force.
magnetic north. The direction indicated by the north seeking pole of a freely suspended magnetic needle, influenced only by the earth's magnetic field.
magnetic observation. Measurement of any of the magnetic elements.
magnetic parallel. An isoclinal; a line connecting points of equal magnetic dip.
magnetic pole. 1. Either of the two places on the surface of the earth where the magnetic dip is 90°, that in the Northern Hemisphere being designated north magnetic pole, and that in the Southern Hemisphere being designated south magnetic pole. Also called MAGNETIC DIP POLE. See also MAGNETIC LATITUDE, GEOMAGNETIC POLE, MAGNETIC LATITUDE. 2. Either of those two points of a magnet where the magnetic force is greatest.
magnetic prime vertical. The vertical circle through the magnetic east and west points of the horizon.
magnetic range. A range oriented in a given magnetic direction and used to assist in the determination of the deviation of a magnetic compass.
magnetic retentivity. The ability to retain magnetism after removal of the magnetizing force.
magnetic secular change. The gradual variation in the value of a magnetic element which occurs over a period of years.
magnetic storm. A disturbance in the earth's magnetic field, associated with abnormal solar activity, and capable of seriously affecting both radio and wire transmission.
magnetic temporal variation. Any change in the earth's magnetic field which is a function of time.
magnetic track. The direction of the track relative to magnetic north.
magnetic variation. See VARIATION, definition 1.
magnetic vector. The component of the electromagnetic field associated with electromagnetic radiation which is of the nature of a magnetic field. The magnetic vector is considered to coexist with, but to act at right angles to, the electric vector.
magnetism, n. The phenomena associated with magnetic fields and their effects upon magnetic materials, notably iron and steel. The magnetism of the north-seeking end of a freely suspended magnet is called red magnetism; the magnetism of the south-seeking end is called blue magnetism. Magnetism acquired by a piece of magnetic material while it is in a magnetic field is called induced magnetism. Permanent magnetism is retained for long periods without appreciable reduction, unless the magnet is subjected to a demagnetizing force. The magnetism in the intermediate iron of a ship which tends to change as the result of vibration, aging, or cruising in the same direction for a long period but does not alter immediately so as to be properly termed induced magnetism is called sub permanent magnetism. Magnetism which remains after removal of the magnetizing force may be called residual magnetism. The magnetism of the earth is called terrestrial magnetism or geomagnetism.
magnetize, $v ., t$. To produce magnetic properties. The opposite is DEMAGNETIZE.
magnetometer, n. An instrument for measuring the intensity and direction of the earth's magnetic field. See also DECLINOMETER.
magnetron, n. An electron tube characterized by the interaction of electrons with the electric field of circuit element in crossed steady electric and magnetic fields to produce an alternating current power output. It is used to generate high power output in the ultra-high and super-high frequency bands.
magnification, n. The apparent enlargement of anything.
magnifying power. The ratio of the apparent length of a linear dimension as seen through an optical instrument to that seen by the unaided eye. See POWER.
magnitude, n. 1. Relative brightness of a celestial body. The smaller (algebraically) the number indicating magnitude, the brighter the body. The expression first magnitude is often used somewhat loosely to refer to all bodies of magnitude 1.5 or brighter, including negative magnitudes. 2. Amount; size; greatness.
magnitude ratio. The ratio of relative brightness of two celestial bodies differing in magnitude by 1.0 . This ratio is 2.512 , the 5 th root of 100. A body of magnitude 1.0 is 2.512 times as bright as a body of magnitude 2.0 , etc.
main beam. See under LOBE.
mainland, n. The principal portion of a large land area. The term is used loosely to contrast a principal land mass from outlying islands and sometimes peninsulas.
main light. The principal light of two or more lights situated on the same support or neighboring supports.
main lobe. The lobe of the radiation pattern of a directional antenna which contains the direction of maximum radiation.
major axis. The longest diameter of an ellipse or ellipsoid. Opposite is MINOR AXIS.
major datum. See PREFERRED DATUM.
major light. A light of high intensity and reliability exhibited from a fixed structure or on marine site (except range lights). Major lights include primary seacoast lights and secondary lights. See also MINOR LIGHT.
major planets. See under PLANET.
make the land. To sight and approach or reach land from seaward.
make way. To progress through the water.
making way. Progressing through the water. See also UNDERWAY.
Malvin Current. See FALKLAND CURRENT.
mamma, n. Hanging protuberances, like pouches on the under surface of a cloud. This supplementary cloud feature occurs mostly with cirrus, cirrocumulus, altocumulus, altostratus. stratocumulus, and cumulonimbus; in the case of cumulonimbus, mamma generally appear on the under side of the anvil.
mammatus, n. See MAMMA.
maneuvering board. A polar coordinate plotting sheet devised to facilitate solution of problems involving relative movement.
Maneuvering Board Manual. See PUB. NO. 217.
man-made noise. In radio reception, noise due entirely to unwanted transmissions from electrical or electronic apparatus, which has been insufficiently suppressed.
manned light. A light which is operated and maintained by full-time resident personnel.
mantissa, n. The part of a logarithm (base 10) to the right of the decimal point. The part of a logarithm (base 10) to the left of the decimal point is called the CHARACTERISTIC.
manual, $a d j$. By hand, in contrast with AUTOMATIC.
manual radio direction finder. A radio direction finder which requires manual operation of the antenna and determination of the aural null by speaker or headphones.
map, n. A representation, usually on a plane surface, of all or part of the surface of the earth, celestial sphere, or other area; showing relative size and position, according to a given projection, of the features represented. Such a representation intended primarily for navigational use is called a chart. A planimetric map indicates only the horizontal positions of features; a topographic map both horizontal and vertical positions. The pattern on the underside of extensive cloud areas, created by the varying amounts of light reflected from the earth's surface, is called a sky map. A chart which shows the distribution of meteorological conditions over an area at a given moment may be called a weather map.
map accuracy standards. See UNITED STATES NATIONAL MAP ACCURACY STANDARDS.
map chart. See COMBAT CHART.
mapping, charting and geodesy. The collection, transformation, generation, dissemination, and storing of geodetic, geomagnetic, gravimetric, aeronautical, topographic, hydrographic, cultural, and toponymic data. These data may be used for military planning, training, and operations including aeronautical, nautical, and land navigation, as well as for weapon orientation and target positioning. Mapping, charting and geodesy (MC\&G) also includes the evaluation of topographic, hydrographic, or aeronautical features for their effect on military operations or intelligence. The data may be presented in the form of topographic, planimetric, relief, or thematic maps and graphics; nautical and aeronautical charts and publications, and in simulated, photographic, digital, or computerized formats.
map projection. A systematic drawing of lines on a plane surface to represent the parallels of latitude and the meridians of longitude of the earth or a section of the earth. A map projection may be established by analytical computation or may be constructed geometrically.
map symbol. A character, letter, or similar graphic representation used on a map to indicate some object, characteristic, etc. May be called a CHART SYMBOL when applied to a chart.
March equinox. See VERNAL EQUINOX.
mare's tails. Long, slender, well-defined streaks of cirrus cloud which resemble horse's tails.
marigram, n. A graphic record of the rise and fall of the tide. The record is in the form of a curve, in which time is generally represented on the abscissa and the height of the tide on the ordinate.
marina, n. A harbor facility for small boats, yachts, etc., where supplies, repairs, and various services are available.
marine, $a d j$. Of or pertaining to the sea. See also NAUTICAL.
marine chart. See NAUTICAL CHART.
marine climate. The type of climate characteristic of coastal areas, islands, and the oceans, the distinctive features of which are small annual and daily temperature range and high relative humidity in contrast with CONTINENTAL CLIMATE, which is characteristic of the interior of a large landmass, and the distinctive features of which are large annual and daily temperature range and dry air with few clouds.
marine light. A luminous or lighted aid to navigation intended primarily for marine navigation. One intended primarily for air navigation is called an AERONAUTICAL LIGHT.
marine parade. See MARINE REGATTA.
marine radiobeacon. A radiobeacon whose service is intended primarily for the benefit of ships.
marine railway. A track, a wheeled cradle, and winching mechanism for hauling vessels out of the water so that the bottom can be exposed.
marine regatta. An organized race or other public water event, conducted according to a prearranged schedule, noted in the Local Notice to Mariners. Also called MARINE PARADE.
marine sanctuary. An area established under provisions of the Marine Protection, Research, and Sanctuaries Act of 1972, Public Law 92532 (86 Stat. 1052), for the preservation and restoration of its conservation, recreational, ecological, or esthetic values. Such an area may lie in ocean waters as far seaward as the outer edge of the continental shelf, in coastal waters where the tide ebbs and flows, or in the Great Lakes and connecting waters, and may be classified as a habitat, species, research, recreational and esthetic, or unique area.
marine sextant. A sextant designed primarily for marine navigation. On a clamp screw sextant the position of the tangent screw is controlled by a clamp screw; on an endless tangent screw sextant the position of the index arm and the vernier or micrometer drum is controlled by an endless tangent screw. A vernier sextant provides a precise reading by means of a vernier used directly with the arc, and may have either a clamp screw or an endless tangent screw for controlling the position of the tangent screw or the index arm. A micrometer drum sextant provides a precise reading by means of a micrometer drum attached to the index arm, and has an endless tangent screw for controlling the position of the index arm. See also SEXTANT.
maritime, $a d j$. Bordering on, concerned with, or related to the sea. See also NAUTICAL.
maritime polar air. See under AIR-MASS CLASSIFICATION.
maritime position. The location of a seaport or other point along a coast.
Maritime Safety Information (MSI). Designation of the IHO/IMO referring to navigational information of immediate importance to mariners, affecting the safety of life and/or property at sea.
maritime tropical air. See under AIR-MASS CLASSIFICATION.
mark, n. 1 . An artificial or natural object of easily recognizable shape or color, or both, situated in such a position that it may be identified on a chart. A fixed artificial navigation mark is often called a BEACON. This may be lighted or unlighted. Also called NAVIGATION MARK; SEAMARK. See also CLEARING MARKS. 2. A major design or redesign of an instrument, denoted by a number. Minor changes are designated MODIFICATIONS. 3. One of the bits of leather, cloth, etc., indicating a specified length of a lead line. 4. An indication intended as a datum or reference, such as a bench mark.
mark, $v ., i$. "Now" or "at this moment." A call used when simultaneous observations are being made, to indicate to the second person the moment a reading is to be made, as when the time of a celestial observation is to be noted; or the moment a reading is a prescribed value, as when the heading of a vessel is exactly a desired value.
marker beacon. 1. See MARKER RADIOBEACON. 2. As defined by the International Telecommunication Union (ITU), a transmitter in the aeronautical radionavigation service which radiates vertically a distinctive pattern for providing position information to aircraft.
marker buoy. A small, brightly painted moored float used to temporarily mark a location on the water while placing a buoy on station.
marker radiobeacon. A low powered radiobeacon used primarily to mark a specific location such as the end of a jetty. Usually used primarily for homing bearings. Also called MARKER BEACON.
marl, n. A crumbling, earthy deposit, particularly one of clay mixed with sand, lime, decomposed shells, etc. Sometimes a layer of marl becomes quite compact.
Mars, n. The navigational planet whose orbit lies between the orbits of the Earth and Jupiter.
marsh, n. An area of soft wet land. Flat land periodically flooded by salt water is called a salt marsh. Sometimes called SLOUGH.
mascaret, n. See TIDAL BORE.
mass, n. The measure of a body's inertia, or the amount of material it contains. This term should not be confused with WEIGHT.
mass attraction vertical. The normal to any surface of constant geopotential. On the earth this vertical is a function only of the distribution of mass and is unaffected by forces resulting from the motions of the earth.
master, n. Short for MASTER STATION.
master compass. The main part of a remote-indicating compass system which determines direction for transmission to various repeaters.
master gyrocompass. See under GYROCOMPASS.
master station. In a radionavigation system, the station of a chain which provides a reference by which the emissions of other (slave or secondary) stations are controlled.
masthead light. A fixed running light placed on the centerline of a vessel showing an unbroken white light over an arc of the horizon from dead ahead to 22.5° abaft the beam on either side of the vessel.
Matanuska wind. A strong, gusty, northeast wind which occasionally occurs during the winter in the vicinity of Palmer, Alaska.
maximum ebb. See under EBB CURRENT.
maximum flood. See under FLOOD CURRENT.
maximum thermometer. A thermometer which automatically registers the highest temperature occurring since its last setting. One which registers the lowest temperature is called a MINIMUM THERMOMETER.
mean, adj. Occupying a middle position.
mean, n. The average of a number of quantities, obtained by adding the values and dividing the sum by the number of quantities involved. Also called AVERAGE, ARITHMETIC MEAN. See also MEDIAN.
mean anomaly. See under ANOMALY, definition 2.
mean diurnal high water inequality. See under DIURNAL INEQUALITY.
mean diurnal low water inequality. See under DIURNAL INEQUALITY.
mean elements. Elements of an adopted reference orbit that approximates the actual, perturbed orbit. Mean elements serve as the basis for calculating perturbations. See also ORBITAL ELEMENTS.
mean higher high water. A tidal datum that is the average of the highest high water height of each tidal day observed over the National Tidal Datum Epoch. For stations with shorter series, simultaneous observational comparisons are made with a control tide station in order to derive the equivalent of a 19 -year datum. See also HIGH WATER.
mean higher high water line. The intersection of the land with the water surface at the elevation of mean higher high water.
mean high tide. See under MEAN HIGH WATER.
mean high water. A tidal datum, the average of all the high water heights observed over the National Tidal Datum Epoch. For stations with shorter series, simultaneous observational comparisons are made with a control tide station in order to derive the equivalent of a 19year datum. See also HIGH WATER.
mean high water line. The intersection of the land with the water surface at the elevation of mean high water. See also SHORELINE.
mean high water lunitidal interval. See under LUNITIDAL INTERVAL. mean high water neaps. See as NEAP HIGH WATER or HIGH WATER NEAPS under NEAP TIDES.
mean high water springs. See under SPRING TIDES.
mean ice edge. The average position of the ice edge in any given month or period based on observations over a number of years. Other terms which may be used are mean maximum ice edge and mean minimum ice edge. See also ICE LIMIT.
mean latitude. Half the arithmetical sum of the latitudes of two places on the same side of the equator. Mean latitude is labeled N or S to indicate whether it is north or south of the equator. The expression is occasionally used with reference to two places on opposite sides of the equator, but this usage is misleading as it lacks the significance usually associated with the expression. When the places are on opposite sides of the equator, two mean latitudes are generally used, the mean of each latitude north and south of the equator. The mean latitude is usually used in middle-latitude sailing for want of a practicable means of determining the middle latitude. See also MIDDLE LATITUDE, MIDDLE-LATITUDE SAILING.
mean lower low water. A tidal datum that is the average of the lowest low water height of each tidal day observed over the National Tidal Datum Epoch. For station with shorter series, simultaneous observational comparisons are made with a control tide station in order to derive the equivalent of a 19-year datum. See also LOW WATER.
mean lower low water line. The intersection of the land with the water surface at the elevation of mean lower low water.
mean low water. A tidal datum that is the average of all the low water heights observed over the National Tidal Datum Epoch. For stations with shorter series, simultaneous observational comparisons are made with a control tide station in order to derive the equivalent of a 19-year datum. See also LOW WATER.
mean low water line. The intersection of the land with the water surface at the elevation of mean low water.
mean low water lunitidal interval. See under LUNITIDAL INTERVAL.
mean low water neaps. See as NEAP LOW WATER or LOW WATER NEAPS under NEAP TIDES.
mean low water springs. 1. A tidal datum that is the arithmetic mean of the low waters occurring at the time of the spring tides observed over a specific 19-year Metonic cycle (the National Tidal Datum Epoch). It is usually derived by taking an elevation depressed below the halftide level by an amount equal to one-half the spring range of tide, necessary corrections being applied to reduce the result to a mean value. This datum is used, to a considerable extent, for hydrographic work outside of the United States and is the level of reference for the Pacific approaches to the Panama Canal. Often shortened to SPRING LOW WATER. See also DATUM. 2. See under SPRING TIDES.
mean motion. In undisturbed elliptic motion, the constant angular speed required for a body of a specified mass to complete one revolution in an orbit of a specified semimajor axis.
mean noon. Twelve o'clock mean time, or the instant the mean sun is over the upper branch of the meridian. Mean noon may be either local or Greenwich depending upon the reference meridian. Zone, standard, daylight saving or summer noon are also forms of mean noon, the mean sun being over the upper branch of the zone, standard, daylight saving or summer reference meridian, respectively.
mean power. See under POWER (OF A RADIO TRANSMITTER).
mean range. The average difference in the extreme values of a variable quantity, as the mean range of tide.
mean range of tide. The difference in height between mean high water and mean low water.
mean rise interval. The average interval between the meridian transit of the moon and the middle of the period of the rise of the tide. It may be computed by adding the half of the duration of rise to the mean low water interval, rejecting the semidiurnal tidal period of 12.42 hours when greater than this amount. The mean rise interval may be either local or Greenwich according to whether it is referred to the local or Greenwich meridian.
mean rise of tide. The height of mean high water above the reference or chart sounding datum.
mean river level. A tidal datum that is the average height of the surface of a tidal river at any point for all stages of the tide observed over a 19year Metonic cycle (the National Tidal Datum Epoch) usually determined from hourly height readings. In rivers subject to occasional freshets, the river level may undergo wide variations, and for practical purposes certain months of the year may be excluded in the determination of tidal datums. For charting purposes, tidal datums for rivers are usually based on observations during selected periods when the river is at or near low water state. See also DATUM.
mean sea level. A tidal datum that is the arithmetic mean of hourly water elevations observed over a specific 19-year Metonic cycle (the National Tidal Datum Epoch). Shorter series are specified in the name, e.g., monthly mean sea level and yearly mean sea level. See also DATUM; EPOCH, definition 2.
mean sidereal time. See under SIDEREAL TIME.
mean solar day. The duration of one rotation of the earth on its axis, with respect to the mean sun. The length of the mean solar day is 24 hours of mean solar time or $24^{\mathrm{h}} 03^{\mathrm{m}} 56.555^{\mathrm{S}}$ of mean sidereal time. See also CALENDAR DAY.
mean solar time. See MEAN TIME, the term usually used.
mean sun. A fictitious sun conceived to move eastward along the celestial equator at a rate that provides a uniform measure of time equal to the average apparent time. It is used as a reference for reckoning mean time, zone time, etc. Also called ASTRONOMICAL MEAN SUN. See also DYNAMICAL MEAN SUN.
mean tide level. See HALF-TIDE LEVEL.
mean time. Time based upon the rotation of the earth relative to the mean sun. Mean time may be designated as local or Greenwich as the local or Greenwich meridian is the reference. Greenwich mean time is also called UNIVERSAL TIME. Zone, standard, daylight saving or summer time are also variations of mean time, specified meridians being used as the reference. See also EQUATION OF TIME, MEAN SIDEREAL TIME.
mean tropic range. The mean between the great tropic tidal range and the small tropic range. The small tropic range and the mean tropic range are applicable only when the type of tide is semidiurnal or mixed. See also GREAT TROPIC RANGE.
mean water level. The mean surface elevation as determined by averaging the heights of the water at equal intervals of time, usually hourly.
mean water level line. The line formed by the intersection of the land with the water surface at an elevation of mean water level.
measured mile. A length of 1 nautical mile, the limits of which have been accurately measured and are indicated by ranges ashore. It is used by vessels to calibrate logs, engine revolution counters, etc., and to determine speed.
measured-mile buoy. A buoy marking the end of a measured mile.
mechanical scanning. Scanning effected by moving all or part of the antenna.
median, n. A value in a group of quantities below and above which fall an equal number of quantities. Of the group $60,75,80,95$, and 100 , the median is 80 . If there is no middle quantity in the group, the median is the value interpolated between the two middle quantities. The median of the group $6,10,20$, and 31 is 15 . See also MEAN.
median valley. The axial depression of the midoceanic ridge system.
medium. A method of electronic data storage and physical transfer, commonly relying on the properties of electromagnetic coatings on tape, disks, or other surfaces, or on the effects of laser light on lightsensitive surfaces.
medium first-year ice. First-year ice 70 to 120 centimeters thick.
medium floe. See under FLOE.
medium fracture. See under FRACTURE.
medium frequency. Radio frequency of 300 to 3,000 kilohertz.
medium iceberg. For reports to the International Ice Patrol, an iceberg that extends 51 to 150 feet (16 to 45 meters) above the sea surface and which has a length of 201 to 400 feet (61 to 122 meters). See also SMALL ICEBERG, LARGE ICEBERG.
medium ice field. See under ICE FIELD.
medium range systems. Those radionavigation systems providing positioning capability beyond the range of short range systems, but their use is generally limited to ranges permitting reliable positioning for about 1 day prior to making landfall; Decca is an example.
mega-. A prefix meaning one million $\left(10^{6}\right)$.
megabyte. One million bytes of information in a computer.
megacycle, n. One million cycles; one thousand kilocycles. The term is often used as the equivalent of one million cycles per second.
megahertz, n. One million hertz or one million cycles per second.
megaripple, n. See SAND WAVE.
meniscus, n. 1 . The curved upper surface of a liquid in a tube. 2. A type of lens.
mensuration, n. 1. The act, process, or art of measuring. 2. That branch of mathematics dealing with determination of length, area, or volume.
Mentor Current. Originating mainly from the easternmost extension of the South Pacific Current at about latitude $40^{\circ} \mathrm{S}$, longitude $90^{\circ} \mathrm{W}$, the Mentor Current flows first northward and then northwestward. It has the characteristic features of a WIND DRIFT in that it is a broad, slow-moving flow that extends about 900 miles westward from the Peru Current to about longitude $90^{\circ} \mathrm{W}$ at its widest section and tends to be easily influenced by winds. It joins the westward flowing Pacific South Equatorial Current and forms the eastern part of the general counterclockwise oceanic circulation of the South Pacific Ocean. The speed in the central part of the current at about latitude $26^{\circ} \mathrm{S}$, longitude $80^{\circ} \mathrm{W}$, may at times reach about 0.9 knot. Also called PERU OCEANIC CURRENT.

Mercator bearing. See RHUMB BEARING.
Mercator chart. A chart on the Mercator projection. This is the chart commonly used for marine navigation. Also called EQUATORIAL CYLINDRICAL ORTHOMORPHIC CHART.

Mercator course. See RHUMB-LINE COURSE.

Mercator direction. Horizontal direction of a rhumb line, expressed as angular distance from a reference direction. Also called RHUMB DIRECTION.
Mercator map projection. A conformal cylindrical map projection in which the surface of a sphere or spheroid, such as the earth, is developed on a cylinder tangent along the equator. Meridians appear as equally spaced vertical lines and parallels as horizontal lines drawn farther apart as the latitude increases, such that the correct relationship between latitude and longitude scales at any point is maintained. The expansion at any point is equal to the secant of the latitude of that point, with a small correction for the ellipticity of the earth. The Mercator is not a perspective projection. Since rhumb lines appear as straight lines and directions can be measured directly, this projection is widely used in navigation. If the cylinder is tangent along a meridian. a transverse Mercator map projection results; if the cylinder is tangent along an oblique great circle, an oblique Mercator map projection results. Also called EQUATORIAL CYLINDRICAL ORTHOMORPHIC MAP PROJECTION.
Mercator sailing. A method of solving the various problems involving course, distance, difference of latitude, difference of longitude, and departure by considering them in the relation in which they are plotted on a Mercator chart. It is similar to plane sailing, but uses meridional difference and difference of longitude in place of difference of latitude and departure, respectively.
mercurial barometer. An instrument which determines atmospheric pressure by measuring the height of a column of mercury which the atmosphere will support. See also ANEROID BAROMETER.
mercury ballistic. A system of reservoirs and connecting tubes containing mercury used with a type of non-pendulous gyrocompass. The action of gravity on this system provides the torques and resultant precessions required to convert the gyroscope into a compass.
meridian, n. A north-south reference line, particularly a great circle through the geographical poles of the earth. The term usually refers to the upper branch, the half, from pole to pole, which passes through a given place; the other half being called the lower branch. An astronomical (terrestrial) meridian is a line connecting points having the same astronomical longitude. A geodetic meridian is a line connecting points of equal geodetic longitude. Geodetic and sometime astronomical meridians are also called geographic meridians. Geodetic meridians are shown on charts. The prime meridian passes through longitude 0°. Sometimes designated TRUE MERIDIAN to distinguish it from magnetic meridian, compass meridian, or grid meridian, the north-south lines relative to magnetic, compass, or grid direction, respectively. A fictitious meridian is one of a series of great circles or lines used in place of a meridian for certain purposes. A transverse or inverse meridian is a great circle perpendicular to a transverse equator. An oblique meridian is a great circle perpendicular to an oblique equator. Any meridian used as a reference for reckoning time is called a time meridian. The meridian used for reckoning standard zone, daylight saving, or war time is called standard, zone, daylight saving, or war meridian respectively. The meridian through any particular place or observer, serving as the reference for local time, is called local meridian, in contrast with the Greenwich meridian, the reference for Greenwich time. A celestial meridian is a great circle of the celestial sphere, through the celestial poles and the zenith. Also called CIRCLE OF LATITUDE. See also ANTE MERIDIAN, POST MERIDIAN.
meridian altitude. The altitude of a celestial body when it is on the celestial meridian of the observer, bearing 000° or 180° true.
meridian angle. Angular distance east or west of the local celestial meridian; the arc of the celestial equator, or the angle at the celestial pole, between the upper branch of the local celestial meridian and the hour circle of a celestial body measured eastward or westward from the local celestial meridian through 180°, and labeled E or W to indicate the direction of measurement. See also HOUR ANGLE.
meridian angle difference. The difference between two meridian angles, particularly between the meridian angle of a celestial body and the value used as an argument for entering a table. Also called HOUR ANGLE DIFFERENCE.
meridian observation. Measurement of the altitude of a celestial body on the celestial meridian of the observer, or the altitude so measured.
meridian passage. See MERIDIAN TRANSIT.
meridian sailing. Following a true course of 000° or 180°, sailing along a meridian. Under these conditions the dead reckoning latitude is assumed to change 1 minute for each mile run and the dead reckoning longitude remains unchanged.
meridian transit. The passage of a celestial body across a celestial meridian. Upper transit, the crossing of the upper branch of the celestial meridian, is understood unless lower transit, the crossing of the lower branch, is specified. Also called TRANSIT, MERIDIAN PASSAGE, CULMINATION.
meridional difference. The difference between the meridional parts of any two given parallels. This difference is found by subtraction if the two parallels are on the same side of the equator and by addition if on opposite sides. Also called DIFFERENCE OF MERIDIONAL PARTS.
meridional parts. The length of the arc of a meridian between the equator and a given parallel on a Mercator chart, expressed in units of 1 minute of longitude at the equator.
metacenter, n. For small angles of inclination of a ship, the instantaneous center of a very small increment of the curved path of the center of buoyancy locus. Or, for small angles of inclination, the point of intersection of the lines of action of the buoyant force and the original vertical through the center of buoyancy.
meteor, n. The phenomenon occurring when a solid particle from space enters the earth's atmosphere and is heated to incandescence by friction of the air. A meteor whose brightness does not exceed that of Venus (magnitude -4) is popularly called SHOOTING STAR or FALLING STAR. A shooting star results from the entrance into the atmosphere of a particle having a diameter between a few centimeters and just visible to the naked eye. Shooting stars are observed first as a light source, similar to a star, which suddenly appears in the sky and moves along a long or short path to a point where it just as suddenly disappears. The brighter shooting stars may leave a trail which remains luminous for a short time. Meteors brighter than magnitude -4 are called BOLIDES or FIREBALLS. Light bursts, spark showers, or splitting of the trail are sometimes seen along their luminous trails which persist for minutes and for an hour in exceptional cases. The intensity of any meteor is dependent upon the size of the particle which enters the atmosphere. A particle 10 centimeters in diameter can produce a bolide as bright as the full moon. See also METEORITE.
meteorite, n. 1. The solid particle which causes the phenomenon known as a METEOR. 2. The remnant of the solid particle, causing the meteor, which reaches the earth.
meteorological optical range. The length of path in the atmosphere required to reduce the luminous flux in a collimated beam from an incandescent lamp at a color temperature of $2,700^{\circ} \mathrm{K}$ to 0.05 of its original value, the luminous flux being evaluated by means of the curve of spectral luminous efficiencies for photopic vision given by the International Commission on Illumination. The quantity so defined corresponds approximately to the distance in the atmosphere required to reduce the contrast of an object against its background to 5 percent of the value it would have at zero distance, for daytime observation. See also METEOROLOGICAL VISIBILITY.
Meteorological Optical Range Table. A table from the International Visibility Code which gives the code number of meteorological visibility and the meteorological visibility for several weather conditions.
meteorological tide. A change in water level caused by local meteorological conditions, in contrast to an ASTRONOMICAL TIDE, caused by the attractions of the sun and moon. See also SEICHE, STORM SURGE.
meteorological tides. Tidal constituents having origin in the daily or seasonal variations in weather conditions which may occur with some degree of periodicity. See also STORM SURGE.
meteorological visibility. The greatest distance at which a black object of suitable dimensions can be seen and recognized by day against the horizon sky, or, in the case of night observations, could be seen and recognized if the general illumination were raised to the normal daylight level. It has been established that the object may be seen and recognized if the contrast threshold is 0.05 or higher. The term may express the visibility in a single direction or the prevailing visibility in all directions. See also VISIBILITY, METEOROLOGICAL OPTICAL RANGE, CONTRAST THRESHOLD.
meteor swarm. The scattered remains of comets that have broken up.
meter, n. 1. The base unit of length in the International System of Units, equal to $1,650,763.73$ wavelengths in vacuum of the radiation corresponding to the transition between the levels $2 \mathrm{p}_{10}$ and $5 \mathrm{p}_{5}$ of the krypton-86 atom. It is equal to 39.37008 inches, approximately, or approximately one ten-millionth of the distance from the equator to the North or South Pole. The old international prototype of the meter is still kept at the International Bureau of Weights and Measures under the conditions specified in 1889. 2. A device for measuring, and usually indicating, some quantity.
method of bisectors. As applied to celestial lines of position, the movement of each of three or four intersecting lines of position an equal amount, in the same direction toward or away from the celestial bodies, so as to bring them as nearly as possible to a common intersection. When there are more than four lines of position, the lines of position in the same general direction are combined to reduce the data to not more than four lines of position. See also OUTSIDE FIX.
Metonic cycle. A period of 19 years or 235 lunations, devised by Meton, an Athenian astronomer who lived in the fifth century B.C., for the purpose of obtaining a period in which new and full moon would recur on the same day of the year. Taking the Julian year of 365.25 days and the synodic month as 29.53058 days, we have the 19-year period of 6939.75 days as compared with the 235 lunations of 6939.69 days, a difference of only 0.06 days. See also CALLIPPIC CYCLE.
meter per second. The derived unit of speed in the International System of Units.
meter per second squared. The derived unit of acceleration in the International System of Units.
metric system. A decimal system of weights and measures based on the meter as the unit of length and the kilogram as a unit mass. See also INTERNATIONAL SYSTEM OF UNITS.
Mexico Current. From late October through April an extension of the California Current, known as the Mexico Current, flows southeastward along the coast to the vicinity of longitude $95^{\circ} \mathrm{W}$ where it usually turns west, but at times extends southward as far as Honduras with speeds from 0.5 to 1 knot. During the remainder of the year, this current flows northwestward along the Mexican coast as far as Cabo Corrientes, where it turns westward and becomes a part of the Pacific North Equatorial Current.
micro-. A prefix meaning one-millionth $\left(10^{-6}\right)$.
micrometer, n. An auxiliary device to provide measurement of very small angles or dimensions by an instrument such as a telescope.
micrometer drum. A cylinder carrying an auxiliary scale and sometimes a vernier, for precise measurement, as in certain type sextants.
micrometer drum sextant. A marine sextant providing a precise reading by means of a micrometer drum attached to the index arm, and having an endless tangent screw for controlling the position of the index arm. The micrometer drum may include a vernier to enable a more precise reading. On a vernier sextant the vernier is directly on the arc.
micron, n. A unit of length equal to one-millionth of a meter.
microprocessor. An integrated circuit in a computer which executes machine-language instructions.
microsecond, n. One-millionth of a second.
microwave, n. A very short electromagnetic wave, usually considered to be about 30 centimeters to 1 millimeter in length. While the limits are not clearly defined, it is generally considered as the wavelength of radar operation.
microwave frequency. Radio frequency of 1,000 to 300,000 megahertz, having wavelengths of 30 centimeters to 1 millimeter.
mid-channel buoy. See FAIRWAY BUOY.
mid-channel mark. A navigation mark serving to indicate the middle of a channel, which can be passed on either side safely.
middle clouds. Types of clouds the mean level of which is between 6,500 and 20,000 feet. The principal clouds in this group are altocumulus and altostratus.
middle ground. A shoal in a fairway having a channel on either side.
middle ground buoy. One of the buoys placed at each end of a middle ground. See BIFURCATION BUOY, JUNCTION BUOY.
middle latitude. The latitude at which the arc length of the parallel separating the meridians passing through two specific points is exactly equal to the departure in proceeding from one point to the other by middle-latitude sailing. Also called MID-LATITUDE. See also MEAN LATITUDE, MIDDLE-LATITUDE SAILING.
middle-latitude sailing. A method that combines plane sailing and parallel sailing. Plane sailing is used to find difference of latitude and departure when course and distance are known, or vice versa. Parallel sailing is used to inter-convert departure and difference of longitude. The mean latitude is normally used for want of a practicable means of determining the middle latitude, the latitude at which the arc length of the parallel separating the meridians passing through two specific points is exactly equal to the departure in proceeding from one point to the other. See also MEAN LATITUDE.
mid-extreme tide. An elevation midway between the extreme high water and the extreme low water occurring in any locality. See also HALFTIDE LEVEL.
mid-latitude. See MIDDLE LATITUDE.
midnight, n. Twelve hours from noon, or the instant the time reference crosses the lower branch of the reference celestial meridian.
midnight sun. The sun when it is visible at midnight. This occurs during the summer in high latitudes, poleward of the circle at which the latitude is approximately equal to the polar distance of the sun.
mill, n. 1. A unit of angular measurement equal to an angle having a tangent of 0.001 . 2. A unit of angular measurement equal to an angle subtended by an arc equal to $1 / 6,400$ th part of the circumference of a circle.
mile, n. A unit of distance. The nautical mile, or sea mile, is used primarily in navigation. Nearly all maritime nations have adopted the International Nautical Mile of 1,852 meters proposed in 1929 by the International Hydrographic Bureau. The U.S. Departments of Defense and Commerce adopted this value on July 1, 1954. Using the yardmeter conversion factor effective July 1, 1959, (1 yard $=0.9144$ meter, exactly) the International Nautical Mile is equivalent to 6076.11549 feet, approximately. The geographical mile is the length of 1 minute of arc of the equator considered to be $6,087.08$ feet. The U.S. Survey mile or land mile (5,280 feet in the United States) is commonly used for navigation on rivers and lakes, notably the Great Lakes of North America. See also CABLE, MEASURED MILE.
mileage number. A number assigned to aids to navigation which gives the distance in sailing miles along the river from a reference point to the aid. The number is used principally in the Mississippi and other river systems.
miles of relative movement. The distance, in miles, traveled relative to a reference point which is usually in motion.
military grid. Two sets of parallel lines intersecting at right angles and forming squares; the grid is superimposed on maps, charts, and other similar representations of the earth's surface in an accurate and consistent manner to permit identification of ground locations with respect to other locations and the computation of direction and distance to other points. See also MILITARY GRID REFERENCE SYSTEM, UNIVERSAL POLAR STEREOGRAPHIC GRID, UNIVERSAL TRANSVERSE MERCATOR GRID, WORLD GEOGRAPHIC REFERENCE SYSTEM.
military grid reference system. A system which uses a standard-scaled grid square, based on a point of origin on a map projection of the earth's surface in an accurate and consistent manner to permit either position referencing or the computation of direction and distance between grid positions. See also MILITARY GRID.
Milky Way. The galaxy of which the sun and its family of planets are a part. It appears as an irregular band of misty light across the sky. Through a telescope, it is seen to be composed of numerous individual stars. See also COALSACK.
milli-. A prefix meaning one-thousandth.
millibar, n. A unit of pressure equal to 1,000 dynes per square centimeter, or $1 / 1,000$ th of a bar. The millibar is used as a unit of measure of atmospheric pressure, a standard atmosphere being equal to $1,013.25$ millibars or 29.92 inches of mercury.
milligal, n. A unit of acceleration equal to $1 / 1,000$ th of a gal, or $1 / 1,000$ centimeter per second per second. This unit is used in gravity measurements, being approximately one-millionth of the average gravity at the earth's surface.
millimeter, n. One thousandth of a meter- one tenth of a centimeter;, 03937008 inch.
millisecond, n. One-thousandth of a second.
minaret, n. A tall, slender tower attached to a mosque and surrounded by one or more projecting balconies; frequently charted as landmarks.
minimal depiction of detail. A term used to indicate the extreme case of generalization of detail on a chart. In the extreme case most features are omitted even through there is space to show at least some of them. The practice is most frequently used for semi-enclosed areas such as estuaries and harbors on smaller-scale charts, where use of a larger scale chart is essential.
minimum distance (of a navigational system). The minimum distance at which a navigational system will function within its prescribed tolerances.
minimum ebb. See under EBB CURRENT.

minimum flood. See under FLOOD CURRENT.

minimum signal. The smallest signal capable of satisfactorily operating an equipment, e.g., the smallest signal capable of triggering a racon.
minimum thermometer. A thermometer which automatically registers the lowest temperature occurring since its last setting. One which registers the highest temperature is called a MAXIMUM THERMOMETER.
minor axis. The shortest diameter of an ellipse or ellipsoid.
minor light. An automatic unmanned light on a fixed structure usually showing low to moderate intensity. Minor lights are established in harbors, along channels, along rivers, and in isolated locations. See also MAJOR LIGHT.
minor planets. See under PLANET.
minute, $n .1$. The sixtieth part of a degree of arc. 2. The sixtieth part of an hour.
mirage, n. An optical phenomenon in which objects appear distorted, displaced (raised or lowered), magnified, multiplied, or inverted due to varying atmospheric refraction when a layer of air near the earth's surface differs greatly in density from surrounding air. See also TOWERING, STOOPING, LOOMING, SINKING, FATA MORGANA.
mirror reelection. See SPECULAR REFLECTION.
missing, adj. Said of a floating aid to navigation which is not on station with its whereabouts unknown.
mist, n. An aggregate of very small water droplets suspended in the atmosphere. It produces a thin, grayish veil over the landscape. It reduces visibility to a lesser extent than fog. The relative humidity with mist is often less than 95 percent. Mist is intermediate in all respects between haze (particularly damp haze) and fog. See also DRIZZLE.
mistake, n. The result of carelessness or of a mistake. For the purpose of error analysis, a mistake is not classified as an error. Also called BLUNDER.
mistral, n. A cold, dry wind blowing from the north over the northwest coast of the Mediterranean Sea, particularly over the Gulf of Lions. Also called CIERZO. See also FALL WIND.
mixed current. Type of tidal current characterized by a conspicuous speed difference between the two floods and/or ebbs usually occurring each tidal day. See also TYPE OF TIDE.
mixed tide. Type of tide with a large inequality in either the high and/or low water heights, with two high waters and two low waters usually occurring each tidal day. All tides are mixed, but the name is usually applied to the tides intermediate to those predominantly semidiurnal and those predominantly diurnal. See also TYPE OF TIDE.
moat, n. An annular depression that may not be continuous, located at the base of many sea mounts, islands, and other isolated elevations of the sea floor, analogous to the moat around a castle.
mobile service. As defined by the International Telecommunication Union (ITU), a service of radiocommunication between mobile and land stations, or between mobile stations.
mobile offshore drilling unit (MODU). A movable drilling platform used in offshore oil exploration and production. It is kept stationary by vertically movable legs or by mooring with several anchors. After drilling for oil it may be replaced by a production platform or a submerged structure.
mock fog. A rare simulation of true fog by anomalous atmospheric refraction.
mock moon. See PARASALENE.
mock sun. See PARHELION.
mock-sun ring. See PARHELIC CIRCLE.
modal interference. Omega signals propagate in the earth-ionosphere wave guide. This waveguide can support many different electromagnetic field configurations, each of which can be regarded as an identifiable signal component or mode having the same signal frequency, but with slightly different phase velocity. Modal interference is a special form of signal interference wherein two or more waveguide modes interfere with each other and irregularities appear in the phase pattern. This type of interference occurs predominantly under nighttime conditions when most of the propagation path is not illuminated and the boundary conditions of the waveguide are unstable. It is most severe for signals originating at stations located close to the geomagnetic equator. During all daylight path conditions, the only region of modal interference is a more-less circular area of radius $500-1000$ kilometers immediately surrounding a transmitting station.
model atmosphere. Any theoretical representation of the atmosphere, particularly of vertical temperature distribution. See also STANDARD ATMOSPHERE.
modem. An electronic device which converts digital information to analog signals and vice-versa, used in computer file transfer over telephone lines; derived from MOdulator-DEModulator.
moderate breeze. Wind of force 4 (11 to 16 knots or 13 to 18 miles per hour) on the Beaufort wind scale.
moderate gale. A term once used by seamen for what is now called NEAR GALE on the Beaufort wind scale.
modification, n. An instrument design resulting from a minor change, and indicated by number. A design resulting from a major change is called a MARK.
modified Julian day. An abbreviated form of the Julian day which requires fewer digits and translates the beginning of each day from Greenwich noon to Greenwich midnight; obtained by subtracting 2400000.5 from Julian days.
modified Lambert conformal chart. A chart on the modified Lambert conformal map projection. Also called NEY'S CHART.
modified Lambert conformal map projection. A modification of the Lambert conformal projection for use in polar regions, one of the standard parallels being at latitude $89^{\circ} 59^{\prime} 58^{\prime \prime}$ and the other at latitude 71° or 74°, and the parallels being expanded slightly to form complete concentric circles. Also called NEY'S MAP PROJECTION.
modified refractive index. For a given height above sea level, the sum of the refractive index of the air at this height and the ratio of the height to the radius of the earth.
modulated wave. A wave which varies in some characteristic in accordance with the variations of a modulating wave. See also CONTINUOUS WAVE.
modulating wave. A wave which modulates a carrier wave.
modulation, n. A variation of some characteristic of a radio wave, called the CARRIER WAVE in accordance with instantaneous values of another wave called the MODULATING WAVE. These variations can be amplitude, frequency, phase, or pulse.
modulator, n. The component in pulse radar which generates a succession of short pulses of energy which in turn cause a transmitter tube to oscillate during each pulse.
mole, n. 1. A structure, usually massive, on the seaward side of a harbor for its protection against current and wave action, drift ice, wind, etc. Sometimes it may be suitable for the berthing of ships. See also JETTY, definition 1; QUAY. 2. The base unit of amount of substance in the International System of Units; it is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon atom 12. When the
mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
moment, n. The tendency or degree of tendency to produce motion about an axis. Numerically it is the quantity obtained by multiplying the force, speed, or mass by the distance from the point of application or center of gravity to the axis. See also MAGNETIC MOMENT.
moment of inertia. The quantity obtained by multiplying the mass of each small part of a body by the square of its distance from an axis, and adding all the results.
momentum, n. The quantity of motion. Linear momentum is the quantity obtained by multiplying the mass of a body by its linear speed. Angular momentum is the quantity obtained by multiplying the moment of inertia of a body by its angular speed.
monitor, $v . t$. In radionavigation, to receive the signals of a system in order to check its operation and performance.
monitor, n. The video display portion of a computer system.
monitoring, n. In radionavigation, the checking of the operation and performance of a system through reception of its signals.
monsoon, n. A name for seasonal winds first applied to the winds over the Arabian Sea, which blow for 6 months from the northeast (northeast monsoon) and for 6 months from the southwest (southwest monsoon). The primary cause is the much greater annual variation of temperature over large land areas compared with the neighboring ocean surfaces, causing an excess of pressure over the continents in winter and a deficit in summer, but other factors such as the relief features of the land have a considerable effect. In India the term is popularly applied chiefly to the southwest monsoon and by extension, to the rain which it brings.
monsoon current. A seasonal wind-driven current occurring in the northern part of the Indian Ocean and the northwest Pacific Ocean. See also MONSOON DRIFT.
Monsoon Drift. A drift current of the northeast Indian Ocean located north of the Indian Equatorial Countercurrent and south of the Bay of Bengal. During February and March when the northeast monsoon decreases in intensity, the monsoon drift is formed from the outflow of the Strait of Malacca and a small amount of northwestward flow along the upper southwest coast of Sumatra. Off the southwest coast of Sumatra, a current generally sets southeast during all months. It is strongest during October through April. The monsoon drift broadens as it flows westward and divides off the east coast of Sri Lanka, part joining the circulation of the Bay of Bengal and part joining the flow from the Arabian Sea. During April, the transition period between monsoons, the monsoon drift is ill-defined. A counterclockwise circulation exists between Sumatra and Sri Lanka. During May through October, the monsoon drift flows east to southeast. During November and December part of the monsoon drift is deflected into the Bay of Bengal and the remainder turns clockwise and flows southeastward. See also MONSOON.
monsoon fog. An advection fog occurring as a monsoon circulation transports warm moist air over a colder surface.
month, $n .1$. The period of the revolution of the moon around the earth. The month is designated as sidereal, tropical, anomalistic, nodical or synodical, according to whether the revolution is relative to the stars, the vernal equinox, the perigee, the ascending node, or the sun. 2 . The calendar month, which is a rough approximation to the synodical month.
month of the phases. See SYNODICAL MONTH.
moon, n. The astronomical satellite of the earth.
moonbow, n. A rainbow formed by light from the moon. Colors in a moonbow are usually very difficult to detect. Also called LUNAR RAINBOW.
moon dog. See PARASELENE.
moonrise, n. The crossing of the visible horizon by the upper limb of the ascending moon.
moonset, n. The crossing of the visible horizon by the upper limb of the descending moon.
moor, $v ., t$. To secure a vessel to land by tying to a pier, wharf or other land-based structure, or to anchor with two or more anchors.
mooring, n. 1 . The act of securing a craft to the ground, a wharf, pier, quay, etc., other than anchoring with a single anchor. 2 . The place where a craft may be moored. 3. Chains, bridles, anchors, etc. used in securing a craft to the ground.
mooring buoy. A buoy secured to the bottom by permanent moorings and provided with means for mooring a vessel by use of its anchor chain or mooring lines.
morning star. The brightest planet appearing in the eastern sky during morning twilight.
morning twilight. The period of time between darkness and sunrise.
Morse code light. A navigation light which flashes one or more characters in Morse code.
motion, n. The act, process, or instance of change of position. Absolute motion is motion relative to a fixed point. Actual motion is motion of an object relative to the earth. Apparent or relative motion is change of position as observed from a reference point which may itself be in motion. Diurnal motion is the apparent daily motion of a celestial body. Direct motion is the apparent motion of a planet eastward among the stars; retrograde motion, the apparent motion westward among the stars. Motion of a celestial body through space is called space motion, which is composed of two components: proper motion, that component perpendicular to the line of sight; and radial motion, that component in the direction of the line of sight. Also called MOVEMENT, especially when used in connection with problems involving the motion of one vessel relative to another.
mound, n. On the sea floor, a low, isolated, rounded hill.
mountain breeze. A breeze that blows down a mountain slope due to the gravitational flow of cooled air. See also KATABATIC WIND, VALLEY BREEZE.
mountains, $n ., p l$. On the sea floor, a well delineated subdivision of a large and complex positive feature, generally part of a cordillera.
movement, n. See MOTION.
moving havens. Moving restricted areas established to prevent mutual interference of Naval vessels in transit.
moving target indication. A radar presentation in which stationary targets are wholly or partially suppressed.
Mozambique Current. The part of the Indian South Equatorial Current that turns and flows along the African coast in the Mozambique Channel. It is considered part of the AGULHAS CURRENT.
mud, n. A general term applied to mixtures of sediments in water. Where the grains are less than 0.002 millimeter in diameter, the mixture is called clay. Where the grains are between 0.002 and 0.0625 millimeter in diameter, the mixture is called silt. See also SAND; STONES; ROCK, definition 2.
mud berth. A berth where a vessel rests on the bottom at low water.
mud flat. A tidal flat composed of mud.
mud pilot. A person who pilots a vessel by visually observing changes in the color of the water as the depth of the water increases or decreases.
multihop transmission. See MULTIPLE-HOP TRANSMISSION.
multipath error. Interference between radio waves which have traveled between the transmitter and the receiver by two paths of different lengths, which may cause fading or phase changes at the receiving point due to the vector addition of the signals, making it difficult to obtain accurate information.
multipath propagation. Radio propagation from the transmitter to the receiver by two or more paths simultaneously. Also called MULTIPATH TRANSMISSION.
multipath transmission. See MULTIPATH PROPAGATION.
multiple echoes. Radar echoes which may occur when a strong echo is received from another ship at close range. A second or third or more echoes may be observed on the radarscope at double triple, or other multiples of the actual range of the radar target, resulting from the echo's being reflected by own ship back to the target and received once again as an echo at a multiple of the preceding range to the target. This term should not be confused with MULTIPLE-TRACE ECHO. See also SECOND-TRACE ECHO.
multiple-hop transmission. Radio wave transmission in which the waves traveling between transmitter and receiver undergo multiple reflections and refractions between the earth and ionosphere. Also called MULTIHOP TRANSMISSION.
multiple ranges. A group of two ranges, having one of the range marks (either front or rear) in common.
multiple star. A group of three or more stars so close together that they appear as a single star, whether through physical closeness or as a result of lying in approximately the same direction. See also STAR CLUSTER.
multiple tide staff. A succession of tide staffs on a sloping shore so placed that the vertical graduations on the several staffs will form a continuous scale referred to the same datum.
multiple-trace echo. See SECOND-TRACE ECHO.
multi-year ice. Old ice up to 3 meters or more thick which has survived at least two summer's melt. Hummocks are even smoother than in second-year ice. The ice is almost salt-free. The color, where bare, is usually blue. The melt pattern consists of large interconnecting irregular puddles and a well-developed drainage system.
Mumetal, n. The registered trade name for an alloy of about 75% nickel and 25% iron, having high magnetic permeability and low hysteresis.

N

nadir, n. The point on the celestial sphere vertically below the observer, or 180° from the zenith.
name, n. The label of a numerical value, used particularly to refer to the N (north) or S (south) label of latitude and declination. When latitude and declination are both N or both S, they are said to be of same name, but if one is N and the other S , they are said to be of contrary name.
nano-. A prefix meaning one-billionth $\left(10^{-9}\right)$.
nanosecond, n. One-billionth of a second.
Napier diagram. A diagram on which compass deviation is plotted for various headings, and the points connected by a smooth curve, permitting deviation problems to be solved quickly without interpolation. It consists of a vertical line, usually in two parts, each part being graduated for 180° of heading, and two additional sets of lines at an angle of 60° to each other and to the vertical lines. See also DEVIATION TABLE.
Napierian logarithm. A logarithm to the base e (2.7182818). Also called NATURAL LOGARITHM. See also COMMON LOGARITHM.
narrows, n. A navigable narrow part of a bay, strait, river, etc.
nashi, n'aschi, n. A northeast wind which occurs in winter on the Iranian coast of the Persian Gulf, especially near the entrance to the gulf, and also on the Makran coast. It is probably associated with an outflow from the central Asiatic anticyclone which extends over the high land of Iran. It is similar in character but less severe than the BORA.
National Geodetic Vertical Datum. A fixed reference once adopted as a standard geodetic datum for heights in the United States. The geodetic datum now in use in the United States is the North American Vertical Datum of 1988. The geodetic datum is fixed and does not take into account the changing stands of sea level. Because there are many variables affecting sea level, and because the geodetic datum represents a best fit over a broad area, the relationship between the geodetic datum and local mean sea level is not consistent from one location to another in either time or space. For this reason the National Geodetic Vertical Datum should not be confused with MEAN SEA LEVEL.
National Tidal Datum Epoch. The specific 19-year cycle adopted by the National Ocean Survey as the official time segment over which tide observations are taken and reduced to obtain mean values (e.g., mean lower low water, etc.) for tidal datums. It is necessary for standardization because of apparent periodic and apparent secular trends in sea level. The present National Tidal Datum Epoch is 1960 through 1978.

National Water Level Observation Network. (National Tidal Datum Control Network). A network composed of the primary control tide stations of the National Ocean Service. This network of coastal observation stations provides the basic tidal datums for coastal boundaries and chart datums of the United States. Tidal datums obtained at secondary control tide stations and tertiary tide stations are referenced to the Network.
natural, adj. 1. Occurring in nature; not artificial. 2. Not logarithmic-used with the name of a trigonometric function to distinguish it from its logarithm (called LOGARITHMIC TRIGONOMETRIC FUNCTION).
natural frequency. The lowest resonant frequency of a body or system.
natural harbor. A harbor where the configuration of the coast provides the necessary protection See also ARTIFICIAL HARBOR.
natural logarithm. See NAPIERIAN LOGARITHM.
natural magnet. A magnet occurring m nature, as contrasted with an ARTIFICIAL MAGNET, produced by artificial means.
natural period. The period of the natural frequency of a body or system.
natural range. A range formed by natural objects such as rocks, peaks, etc. See also ARTIFICIAL RANGE.
natural scale. See REPRESENTATIVE FRACTION.
natural tangent. See under TANGENT, definition 1.
natural trigonometric function. See under TRIGONOMETRIC FUNCTIONS.
natural year. See TROPICAL YEAR.
nature of the bottom. See BOTTOM CHARACTERISTICS.
nautical, $a d j$. Of or pertaining to ships, marine navigation, or seamen.
nautical almanac. 1. A periodical publication of astronomical data designed primarily for marine navigation. Such a publication designed primarily for air navigation is called an AIR ALMANAC. 2. Nautical Almanac; a joint annual publication of the U.S. Naval Observatory and the Nautical Almanac Office, Royal Greenwich Observatory listing the Greenwich hour angle and declination of various celestial bodies to a precision of 0.1^{\prime} at hourly intervals; time of sunrise, sunset, moon rise, moonset; and other astronomical information useful to navigators.
nautical astronomy. See NAVIGATIONAL ASTRONOMY.
nautical chart. A representation of a portion of the navigable waters of the earth and adjacent coastal areas on a specified map projection, designed specifically to meet requirements of marine navigation.
nautical day. Until January 1, 1925, a day that began at noon, 12 hours earlier than the calendar day, or 24 hours earlier than the astronomical day of the same date.
nautical mile. A unit of distance used principally in navigation. For practical consideration it is usually considered the length of 1 minute of any great circle of the earth, the meridian being the great circle most commonly used. Because of various lengths of the nautical mile in use throughout the world, due to differences in definition and the assumed size and shape of the earth, the International Hydrographic Bureau in 1929 proposed a standard length of 1,852 meters, which is known as the International Nautical Mile. This has been adopted by nearly all maritime nations. The U.S. Departments of Defense and Commerce adopted this value on July 1, 1954. With the yardmeter relationship then in use, the International Nautical Mile was equivalent to 6076.10333 feet, approximately. Using the yardmeter conversion factor effective July 1, 1959, (1 yard $=0.9144$ meter, exactly) the International Nautical Mile is equivalent to 6076.11549 feet, approximately. See also SEA MILE.
nautical twilight. The time of incomplete darkness which begins (morning) or ends (evening) when the center of the sun is 12° below the celestial horizon. The times of nautical twilight are tabulated in the Nautical Almanac; at the times given the horizon is generally not visible and it is too dark for marine sextant observations. See also FIRST LIGHT.
nautophone, n. A sound signal emitter comprising an electrically oscillated diaphragm. It emits a signal similar in power and tone to that of a REED HORN.
Naval Vessel Lights Act. Authorized departure from the rules of the road for character and position of navigation lights for certain naval ships. Such modifications are published in Notice to Mariners.
NAVAREA. A geographical subdivision of the Long Range Radio Broadcast Service.
NAVAREA Warnings. Broadcast messages containing information which may affect the safety of navigation on the high seas. In accordance with international obligations, the Defense Mapping

Agency Hydrographic/Topographic Center is responsible for disseminating navigation information for ocean areas designated as NAVAREAS IV and XII of the World Wide Navigational Warning Service. NAVAREA IV broadcasts cover the waters contiguous to North America from the Atlantic coast eastward to $35^{\circ} \mathrm{W}$ and between latitudes $7^{\circ} \mathrm{N}$ and $67^{\circ} \mathrm{N}$. NAVAREA XII broadcasts cover the waters contiguous to North America extending westward to the International Date Line and from $67^{\circ} \mathrm{N}$ to the equator east of $120^{\circ} \mathrm{W}$, south to $3^{\circ} 25^{\prime} \mathrm{S}$, thence east to the coast. Other countries are responsible for disseminating navigational information for the remaining NAVAREAS. NAVAREA Warnings may be superseded by a numbered paragraph in Notice to Mariners. The text of effective warnings for NAVAREAS IV and XII is available through NAVINFONET and is printed in the weekly Notice to Mariners.
navigable, adj. Affording passage to a craft; capable of being navigated.
navigable semicircle (less dangerous semicircle). The half of a cyclonic storm area in which the rotary and forward motions of the storm tend to counteract each other and the winds are in such a direction as to tend to blow a vessel away from the storm track. In the Northern Hemisphere this is to the left of the storm center and in the Southern Hemisphere it is to the right. The opposite is DANGEROUS SEMICIRCLE.
navigable waters. Waters usable, with or without improvements, as routes for commerce in the customary means of travel on water.
navigating sextant. A sextant designed and used for observing the altitudes of celestial bodies, as opposed to a hydrographic sextant.
navigation, n. The process of planning, recording, and controlling the movement of a craft or vehicle from one place to another. The word navigate is from the Latin navigatus, the past participle of the verb navigere, which is derived from the words navis, meaning "ship," and agere meaning "to move" or "to direct." Navigation of water craft is called marine navigation to distinguish it from navigation of aircraft, called air navigation. Navigation of a vessel on the surface is sometimes called surface navigation to distinguish it from navigation of a submarine. Navigation of vehicles across land or ice is called land navigation. The expression polar navigation refers to navigation in the regions near the geographical poles of the earth, where special techniques are employed.
navigational aid. An instrument, tool, system, device, chart, method, etc., intended to assist in navigation. This expression is not the same as AID TO NAVIGATION, which refers to devices external to a craft such as lights and buoys.
navigational astronomy. Astronomy of direct use to a navigator, comprising principally celestial coordinates, time, and the apparent motions of celestial bodies. Also called NAUTICAL ASTRONOMY.
navigational planets. The four planets commonly used for celestial observations: Venus, Mars Jupiter, and Saturn.
navigational plot. A graphic plot of the movements of a craft. A dead reckoning plot is the graphic plot of the dead reckoning, suitably labeled with respect to time, direction, and speed; a geographical plot is one relative to the surface of the earth.
navigational triangle. The spherical triangle solved in computing altitude and azimuth and great circle sailing problems. The celestial triangle is formed on the celestial sphere by the great circles connecting the elevated pole, zenith of the assumed position of the observer, and a celestial body. The terrestrial triangle is formed on the earth by the great circles connecting the pole and two places on the earth; the assumed position of the observer and geographical position of the body for celestial observations, and the point of departure and destination for great circle sailing problems. The expression astronomical triangle applies to either the celestial or terrestrial triangle used for solving celestial observations.
navigation, head of. A transshipment point at the end of a waterway where loads are transferred between water carriers and land carriers; also the point at which a river is no longer navigable due to rapids or falls.
navigation lights. Statutory, required lights shown by vessels during the hours between sunset and sunrise, in accordance with international agreements.
navigation mark. See MARK.
navigation/positioning system. A system capable of being used primarily for navigation or position fixing. It includes the equipment, its operators, the rules and procedures governing their actions and, to some extent, the environment which affects the craft or vehicle being navigated.
navigation satellite. An artificial satellite used in a system which determines positions based upon signals received from the satellite.
Navigation Sensor System Interface (NAVSSI). The U.S. Naval version of the electronic chart display and information system (ECDIS). It is integrated with command and control, weapons, and other systems.
Navigation Tables for Mariners and Aviators. See H.O. PUB. NO. 208.
navigator, n. 1. A person who navigates or is directly responsible for the navigation of a craft. 2. A book of instructions on navigation, such as the The American Practical Navigator (Bowditch).
NAVSTAR Global Positioning System. A satellite navigation system developed by the Department of Defense. The system is provides highly accurate position and velocity information in three dimensions and precise time and time interval on a global basis continuously, to an unlimited number of users. It is unaffected by weather and provides a worldwide common grid reference system. The objective of the program is to provide very precise position information for a wide spectrum of military missions. In addition, current policy calls for civil availability with a slight degradation in system accuracy required to protect U.S. national security interests.
NAVTEX. A medium frequency radiocommunications system intended for the broadcast of navigational information up to 200 miles at sea, which uses narrow band direct printing technology to print out MSI and safety messages aboard vessels, without operator monitoring.
Navy Navigation Satellite System. A satellite navigation system of the United States conceived and developed by the Applied Physics Laboratory of the Johns Hopkins University. It is an all-weather, worldwide, and passive system which provides two-dimensional positioning from low-altitude satellites in near-polar orbits. The Transit launch program ended in 1988, and the system is scheduled for termination in 1996, replaced by GPS.
neaped, $a d j$. Left aground following a spring high tide. Also called BENEAPED.
neap high water. See under NEAP TIDES.
neap low water. See under NEAP TIDES.
neap range. See under NEAP TIDES.
neap rise. The height of neap high water above the elevation of reference or datum of chart.
neap tidal currents. Tidal currents of decreased speed occurring semimonthly as the result of the moon being in quadrature. See also NEAP TIDES.
neap tides. Tides of decreased range occurring semimonthly as the result of the moon being in quadrature. The neap range of the tide is the average semidiurnal range occurring at the time of neap tides and is most conveniently computed from the harmonic constants. It is smaller than the mean range where the type of tide is either semidiurnal or mixed and is of no practical significance where the type of tide is diurnal. The average height of the high waters of the neap tides is called neap high water or high water neaps and the average height of the corresponding low waters is called neap low water or low water neaps.
nearest approach. The least distance between two objects having relative motion with respect to each other.
near gale. Wind of force 8 (28 to 33 knots or 32 to 38 miles per hour) on the Beaufort wind scale. See also GALE.
nearshore current system. The current system caused by wave action in or near the surf zone. The nearshore current system consists of four parts: the shoreward mass transport of water; longshore currents; rip currents; the longshore movement of expanding heads of rip currents.
near vane. That instrument sighting vane on the same side of the instrument as the observer's eye. The opposite is FAR VANE.
neatline, n. That border line which indicates the limit of the body of a map or chart. Also called SHEET LINE.
nebula ($p l$. nebulae), n. 1. An aggregation of matter outside the solar system, large enough to occupy a perceptible area but which has not been resolved into individual stars. One within our galaxy is called
a galactic nebula and one beyond is called an extragalactic nebula. If a nebula is resolved into numerous individual stars, it is called a STAR CLUSTER. 2. A galaxy.
necessary bandwidth. As defined by the International Telecommunication Union (ITU) for a given class of emission, the minimum value of the occupied bandwidth sufficient to ensure the transmission of information at the rate and with the quality required for the system employed, under specified conditions. Emissions useful for the good functioning of the receiving equipment as, for example, the emission corresponding to the carrier of reduced carrier systems, shall be included in the necessary bandwidth.
neck, n. 1. A narrow isthmus, cape or promontory. 2. The land areas between streams flowing into a sound or bay. 3. A narrow strip of land which connects a peninsula with the mainland. 4. A narrow body of water between two larger bodies; a strait.
negative altitude. Angular distance below the horizon. Also called DEPRESSION.
Network Coordinating Station. An INMARSAT COAST EARTH STATION (CES) equipped to process messages in the EGC SafetyNET system.
neutral occlusion. See under OCCLUDED FRONT.
new ice. A general term for recently formed ice which includes frazil ice, grease ice, slush, and shuga. These types of ice are composed of ice crystals which are only weakly frozen together (if at all) and have definite form only while they are afloat.
new moon. The moon at conjunction, when little or none of it is visible to an observer on the earth because the illuminated side is away from him. Also called CHANGE OF THE MOON. See also PHASES OF THE MOON.
new ridge. A newly formed ice ridge with sharp peaks, the slope of the sides usually being about 40°. Fragments are visible from the air at low altitude.
newton, n. The special name for the derived unit of force in the International System of Units; it is that force which gives to a mass of 1 kilogram an acceleration of 1 meter per second, per second.
Newtonian telescope. A reflecting telescope in which a small plane mirror reflects the convergent beam from the speculum to an eyepiece at one side of the telescope. After the second reflection the rays travel approximately perpendicular to the longitudinal axis of the telescope. See also CASSEGRAINIAN TELESCOPE.
newton per square meter. The derived unit of pressure in the International System of Units. See also PASCAL.
Newton's laws of motion. Universal laws governing all motion, formulated by Isaac Newton. These are: (1) Every body continues in a state of rest or of uniform motion in a straight line unless acted upon by a force; (2) When a body is acted upon by a force, its acceleration is directly proportional to the force and inversely proportional to the mass of the body, and the acceleration takes place in the direction in which the force acts; (3) To every action there is always an equal and opposite reaction; or, the mutual actions of two bodies are always equal and oppositely directed.
Ney's chart. See MODIFIED LAMBERT CONFORMAL CHART.
Ney's map projection. See MODIFIED LAMBERT CONFORMAL MAP PROJECTION.
night, n. The part of the solar day when the sun is below the visible horizon, especially the period between dusk and dawn.
night effect. See under POLARIZATION ERROR.
night error. See under POLARIZATION ERROR.
night order book. A notebook in which the commanding officer of a ship writes orders with respect to courses and speeds, any special precautions concerning the speed and navigation of the ship, and all other orders for the night for the officer of the deck.
nilas, n. A thin elastic crust of ice, easily bending on waves and swell and under pressure, thrusting in a pattern of interlocking "fingers." Nilas has a matte surface and is up to 10 centimeters in thickness. It may be subdivided into DARK NILAS and LIGHT NILAS. See also FINGER RAFTING.
nimbostratus, n. A dark, low shapeless cloud layer (mean upper level below $6,500 \mathrm{ft}$.) usually nearly uniform; the typical rain cloud. When precipitation falls from nimbostratus, it is in the form of continuous or intermittent rain or snow, as contrasted with the showery precipitation of cumulonimbus.
nimbus, n. A characteristic rain cloud. The term is not used in the international cloud classification except as a combining term, as cumulonimbus.
nipped, adj. Beset in the ice with the surrounding ice forcibly pressing against the hull.
nipping, n. The forcible closing of ice around a vessel such that it is held fast by ice under pressure. See also BESET, ICE-BOUND.
no-bottom sounding. A sounding in which the bottom is not reached.
nocturnal, n. An old navigation instrument which consisted of two arms pivoted at the enter of a disk graduated for date, time and arc. The nocturnal was used for determining time during the night and for obtaining a correction to be applied to an altitude observation of Polaris for finding latitude.
nodal, $a d j$. Related to or located at or near a node or nodes.
nodal line. A line in an oscillating body of water along which there is a minimum or no rise and fall of the tide.
nodal point. 1. See NODE, definition 1.2. The no-tide point in an amphidromic region.
node, n. 1 . One of the two points of intersection of the orbit of a planet, planetoid, or comet with the ecliptic, or of the orbit of a satellite with the plane of the orbit of its primary. That point at which the body crosses to the north side of the reference plane is called the ascending node; the other, the descending node. The line connecting the nodes is called LINE OF NODES. Also called NODAL POINT. See also REGRESSION OF THE NODES. 2. A zero point in any stationary wave system.
node cycle. The period of approximately 18.61 Julian years required for the regression of the moon's nodes to complete a circuit of 360° of longitude. It is accompanied by a corresponding cycle of changing inclination of the moon's orbit relative to the plane of the earth's equator, with resulting inequalities in the rise and fall of the tide and speed of the tidal current.
node factor. A factor depending upon the longitude of the moon's node which, when applied to the mean coefficient of a tidal constituent, will adapt the same to a particular year for which predictions are to be made.
nodical, $a d j$. Of or pertaining to astronomical nodes; measured from node to node.
nodical month. The average period of revolution of the moon about the earth with respect to the moon's ascending node, a period of 27 days, 5 hours, 5 minutes, 35.8 seconds.
nodical period. The interval between two successive passes of a satellite through the ascending node. See also ORBITAL PERIOD.
nominal orbit. The true or ideal orbit in which an artificial satellite is expected to travel. See also NORMAL ORBIT.
nominal range. See under VISUAL RANGE (OF A LIGHT).
nomogram, n. A diagram showing, to scale, the relationship between several variables in such manner that the value of one which corresponds to known values of the others can be determined graphically. Also called NOMOGRAPH.
nomograph, n. See NOMOGRAM.
non-dangerous wreck. A term used to describe a wreck having more than 20 meters of water over it. This term excludes a FOUL GROUND, which is frequently covered by the remains of a wreck and is a hazard only for anchoring, taking the ground, or bottom fishing.
nongravitational perturbations. Perturbations caused by surface forces due to mechanical drag of the atmosphere (in case of low flying satellites), electromagnetism, and solar radiation pressure.
nonharmonic constants. Tidal constants such as lunitidal intervals, ranges, and inequalities which may be derived directly from high and low water observations without regard to the harmonic constituents of the tide. Also applicable to tidal currents.
non-standard buoys. The general classification of all lighted and unlighted buoys built to specifications other than modern standard designs.
non-tidal basin. An enclosed basin separated from tidal waters by a caisson or flood gates. Ships are moved into the dock near high tide. The dock is closed when the tide begins to fall. If necessary, ships are kept afloat by pumping water into the dock to maintain the desired level. Also called WET DOCK. See also BASIN, definition 2.
nontidal current. See under CURRENT.
noon, n. The instant at which a time reference is over the upper branch of the reference meridian. Noon may be solar or sidereal as the sun or vernal equinox is over the upper branch of the reference meridian. Solar noon may be further classified as mean or apparent as the mean or apparent sun is the reference. Noon may also be classified according to the reference meridian, either the local or Greenwich meridian or additionally in the case of mean noon, a designated zone meridian. Standard, daylight saving or summer noon are variations of zone noon. The instant the sun is over the upper branch of any meridian of the moon is called lunar noon. Local apparent noon may also be called high noon.
noon constant. A predetermined value added to a meridian or ex-meridian sextant altitude to determine the latitude.
noon interval. The predicted time interval between a given instant, usually the time of a morning observation, and local apparent noon. This is used to predict the time for observing the sun on the celestial meridian.
noon sight. Measurement of the altitude of the sun at local apparent noon, or the altitude so measured.
normal, adj. Perpendicular. A line is normal to another line or a plane when it is perpendicular to it. A line is normal to a curve or curved surface when it is perpendicular to the tangent line or plane at the point of tangency.
normal, n. 1. A straight line perpendicular to a surface or to another line. 2. In geodesy, the straight line perpendicular to the surface of the reference ellipsoid. 3. The average, regular, or expected value of a quantity.
normal curve. Short for NORMAL DISTRIBUTION CURVE.
normal distribution. A mathematical law which predicts the probability that the random error of any given observation of a series of observations of a certain quantity will lie within certain bounds. The law can be derived from the following properties of random errors: (1) positive and negative errors of the same magnitude are about equal in number, (2) small errors occur more frequently than large errors, and (3) extremely large errors rarely occur. One immediate consequence of these properties is that the average or mean value of a large number of observations of a given quantity is zero. Also called GAUSSIAN DISTRIBUTION. See also SINGLE-AXIS NORMAL DISTRIBUTION, CIRCULAR NORMAL DISTRIBUTION, STANDARD DEVIATION.
normal distribution curve. The graph of the normal distribution. Often shortened to NORMAL CURVE.
normal orbit. The orbit of a spherical satellite about a spherical primary during which there are no disturbing elements present due to other celestial bodies, or to some physical phenomena. Also called UNPERTURBED ORBIT, UNDISTURBED ORBIT.
normal section line. A line on the surface of a reference ellipsoid, connecting two points on that surface, and traced by a plane containing the normal at one point and passing through the other point.
normal tide. A non technical term synonymous with tide, i.e., the rise and fall of the ocean due to the gravitational interactions of the sun, moon, and earth alone.
norte, n. A strong cold northeasterly wind which blows in Mexico and on the shores of the Gulf of Mexico. It results from an outbreak of cold air from the north. It is the Mexican extension of a norther.
north, n. The primary reference direction relative to the earth; the direction indicated by 000° in any system other than relative. True north is the direction of the north geographical pole; magnetic north the direction north as determined by the earth's magnetic compass; grid north an arbitrary reference direction used with grid navigation. See also CARDINAL POINT.
North Africa Coast Current. A nontidal current in the Mediterranean Sea that flows eastward along the African coast from the Strait of Gibraltar to the Strait of Sicily. It is the most permanent current in the Mediterranean Sea. The stability of the current is indicated by the proportion of no current observations, which averages less than 1 percent. The current is most constant just after it passes through the Strait of Gibraltar; in this region, west of longitude $3^{\circ} \mathrm{W}, 65$ percent of all observations show an eastward set, with a mean speed of 1.1 knots and a mean maximum speed of 3.5 knots. Although the current is weaker between longitudes $3^{\circ} \mathrm{W}$ and $11^{\circ} \mathrm{E}$, it remains constant, the speed averaging 0.7 knot through its length and its maximum speed being about 2.5 knots.

North American Datum of 1927. The geodetic datum the origin of which is located at Meade's Ranch, Kansas. Based on the Clarke spheroid of 1866, the geodetic position of triangulation station Meades Ranch and azimuth from that station to station Waldo are as follows: Latitude of Meades Ranch: $39^{\circ} 13^{\prime} 25.686^{\prime \prime} \mathrm{N}$; Longitude of Meades Ranch: $98^{\circ} 32^{\prime} 30.506^{\prime \prime} \mathrm{W}$ Azimuth to Waldo: 75° $28^{\prime} 09.64^{\prime \prime}$ The geoidal height at Meades Ranch is assumed to be zero.
North American Datum of 1983. The modern geodetic datum for North America; it is the functional equivalent of the World Geodetic System (WGS). It is based on the GRS 80 ellipsoid, which fits the size and shape of the earth more closely, and has its origin at the earth's center of mass.
North Atlantic Current. An ocean current which results from extensions of the Gulf Stream and the Labrador Current near the edge of the Grand Banks of Newfoundland. As the current fans outward and widens in a northeastward through eastward flow, it decreases sharply in speed and persistence. Some influence of the Gulf Stream is noticeable near the extreme southwestern boundary of the current. The North Atlantic Current is a sluggish, slow-moving flow that can easily be influenced by opposing or augmenting winds. There is some evidence that the weaker North Atlantic Current may consist of separate eddies or branches which are frequently masked by a shallow, wind-driven surface now called the NORTH ATLANTIC DRIFT. A branch of the North Atlantic Current flows along the west coasts of the British Isles at speeds up to 0.6 knot and enters the Norwegian Sea as the NORWAY CURRENT mainly through the east side of the Faeroe-Shetland Channel. A small portion of this current to the west of the Faeroe Islands mixes with part of the southeastward flow from the north coast of Iceland; these two water masses join and form a clockwise circulation around the Faeroe Islands. The very weak nontidal current in the Irish Sea, which averages only about 0.1 knot, depends on the wind. The part of the North Atlantic Current that flows eastward into the western approaches to the English Channel tends to increase or decrease the speed of the reversing tidal currents. The southern branch of the North Atlantic Current turns southward near the Azores to become the CANARY CURRENT.
North Atlantic Drift. See under NORTH ATLANTIC CURRENT.
northbound node. See ASCENDING NODE.
North Brazil Current. See GUIANA CURRENT.
North Cape Current. An Arctic Ocean current flowing northeastward and eastward around northern Norway, and curving northeastward into the Barents Sea. The North Cape Current is the continuation of the northeastern branch of the NORWAY CURRENT.
northeaster, nor'easter, n. A northeast wind, particularly a strong wind or gale associated with cold rainy weather. In the U.S., nor'easters generally occur on the north side of late-season low pressure systems which pass off the Atlantic seaboard, bringing onshore gales to the region north of the low. Combined with high tides, they can be very destructive.
northeast monsoon. See under MONSOON.
north equatorial current. See ATLANTIC NORTH EQUATORIAL CURRENT, PACIFIC NORTH EQUATORIAL CURRENT.
norther, n. A northerly wind. In the southern United States, especially in Texas (Texas norther) in the Gulf of Mexico, in the Gulf of Panama away from the coast, and in central America (the norte), the norther is a strong cold wind from the northeast to northwest. It occurs between November and April, freshening during the afternoon and decreasing at night. It is a cold air outbreak associated with the southward movement of a cold anticyclone. It is usually preceded by a warm and cloudy or rainy spell with southerly winds. The norther comes as a rushing blast and brings a sudden drop of temperature of as much as $25^{\circ} \mathrm{F}$ in 1 hour or $50^{\circ} \mathrm{F}$ in 3 hours in winter. The California norther is a strong, very dry, dusty, northerly wind which blows in late spring, summer and early fall in the valley of California or on the west coast when pressure is high over the mountains to the north. It lasts from 1 to 4 days. The dryness is due to adiabatic warming during descent. In summer it is very hot. The Portuguese norther is the beginning of the trade wind west of Portugal. The term is used for a strong north wind on the coast of Chile which blows occasionally in summer. In southeast Australia, a hot dry wind from the desert is called a norther.
northern lights. See AURORA BOREALIS.
north frigid zone. That part of the earth north o the Arctic Circle.
north geographical pole. The geographical pole in the Northern Hemisphere, at lat. $90^{\circ} \mathrm{N}$.
north geomagnetic pole. The geomagnetic pole in the Northern Hemisphere. This term should not be confused with NORTH MAGNETIC POLE. See also GEOMAGNETIC POLE.
northing, n. The distance a craft makes good to the north. The opposite is SOUTHING.
north magnetic pole. The magnetic pole in the Northern Hemisphere. This term should not be confused with NORTH GEOMAGNETIC POLE. See also GEOMAGNETIC POLE.
North Pacific Current. Flowing eastward from the eastern limit of the Kuroshio Extension (about longitude 170° E), the North Pacific Current forms the northern part of the general clockwise oceanic circulation of the North Pacific Ocean.
north polar circle. See ARCTIC CIRCLE.
North Pole. 1. The north geographical pole. See also MAGNETIC POLE GEOMAGNETIC POLE. 2. The north-seeking end of a magnet. See also RED MAGNETISM.
north temperate zone. That part of the earth between the Tropic of Cancer and the Arctic Circle.
north up, north upward. One of the three basic orientations of display of relative or true motion on a radarscope or electronic chart. In the NORTH UP orientation, the presentation is in true (gyrocompass) directions from own ship, north being maintained UP or at the top of the radarscope. See also HEAD UP, BASE COURSE UP.
northwester, nor'wester, n. A northwesterly wind.
Norway Coastal Current. Originating mainly from Oslofjord outflow, counterclockwise return flow of the Jutland Current within the Skaggerak, and outflow from the Kattegat, the Norway Coastal Current begins at about latitude $59^{\circ} \mathrm{N}$, longitude $10^{\circ} \mathrm{E}$ and follows the coast of Norway, and is about 20 miles in width. Speeds are strongest off the southeast coast of Norway, where they frequently range between 1 and 2 knots. Along the remainder of the coast the current gradually weakens. It may widen to almost 30 miles at about latitude $63^{\circ} \mathrm{N}$, where it joins the NORWAY CURRENT. South of latitude $62^{\circ} \mathrm{N}$ the current speed usually ranges between 0.4 and 0.9 knots. Speeds are generally stronger in spring and summer, when the flow is augmented by increased discharge from fjords.
Norway Current. An Atlantic Ocean current flowing northeastward along the northwest coast of Norway, and gradually branching and continuing as the SPITZBERGEN ATLANTIC CURRENT and the NORTH CAPE CURRENT. The Norway Current is the continuation of part of the northern branch of the North Atlantic Current. Also called NORWEGIAN CURRENT.
Norwegian Current. See NORWAY CURRENT.
notch filter. An arrangement of electronic components designed to attenuate or reject a specific frequency band with a sharp cut-off at either end.
notice board. A signboard used to indicate speed restrictions, cable landings, etc.
notice to mariners. A periodic publication used by the navigator to correct charts and publications.
Notice to Mariners. A weekly publication of the Defense Mapping Agency Hydrographic/Topographic Center prepared jointly with the National Ocean Survey and the U.S. Coast Guard giving information on changes in aids to navigation, dangers to navigation, selected items from the Local Notice to Mariners, important new soundings, changes in channels, harbor construction, radionavigation information, new and revised charts and publications, special warnings and notices, pertinent HYDROLANT, HYDROPAC, NAVAREA IV and XII messages and corrections to charts, manuals, catalogs, sailing directions (pilots), etc. The Notice to Mariners should be used routinely for updating the latest editions of nautical charts and related publications.
nova (pl. novae), n. A star which suddenly becomes many times brighter than previously, and then gradually fades. Novae are believed to be exploding stars.
nucleus, n. The central, massive part of anything, such as an atom or comet.
numerical scale. A statement of that distance on the earth shown in one unit (usually an inch) on the chart, or vice versa. See also REPRESENTATIVE FRACTION.
nun buoy. An unlighted buoy of which the upper part of the body (above the waterline), or the larger part of the superstructure, has a cone shape with vertex upwards.
nutation, n. Irregularities in the precessional motion of the equinoxes due chiefly to regression of the nodes.

O

object glass. See OBJECTIVE.
objective, n. The lens or combination of lenses which receives light rays from an object, and refracts them to form an image in the focal plane of the eyepiece of an optical instrument, such as a telescope. Also called OBJECT GLASS.
oblate spheroid. An ellipsoid of revolution, the shorter axis of which is the axis of revolution. An ellipsoid of revolution, the longer axis of which is the axis of revolution, is called a PROLATE SPHEROID. The earth is approximately an oblate spheroid.
oblique, adj. Neither perpendicular nor parallel; slanting.
oblique angle. Any angle not a multiple of 90°.
oblique ascension. The arc of the celestial equator, or the angle at the celestial pole, between the hour circle of the vernal equinox and the hour circle through the intersection of the celestial equator and the eastern horizon at the instant a point on the oblique sphere rises, measured eastward from the hour circle of the vernal equinox through 24 h . The expression is not used in modern navigation.
oblique chart. A chart on an oblique map projection.
oblique coordinates. Magnitudes defining a point relative to two intersecting non-perpendicular lines, called AXES. The magnitudes indicate the distance from each axis, measured along a parallel to the other axis. The horizontal distance is called the abscissa and the other distance the ordinate. This is a form of CARTESIAN COORDINATES.
oblique cylindrical orthomorphic chart. See OBLIQUE MERCATOR CHART.
oblique cylindrical orthomorphic map projection. See OBLIQUE MERCATOR MAP PROJECTION oblique equator. A great circle the plane of which is perpendicular to the axis of an oblique projection. An oblique equator serves as the origin for measurement of oblique latitude. On an oblique Mercator map projection, the oblique equator is the tangent great circle. See also FICTITIOUS EQUATOR.
oblique graticule. A fictitious graticule based upon an oblique map projection.
oblique latitude. Angular distance from an oblique equator. See also FICTITIOUS LATITUDE.
oblique longitude. Angular distance between a prime oblique meridian and any given oblique meridian. See also FICTITIOUS LONGITUDE.
oblique map projection. A map projection with an axis inclined at an oblique angle to the plane of the equator.
oblique Mercator chart. A chart on the oblique Mercator map projection. Also called OBLIQUE CYLINDRICAL ORTHOMORPHIC CHART. See also MERCATOR CHART.
oblique Mercator map projection. A conformal cylindrical map projection in which points on the surface of a sphere or spheroid, such as the earth, are developed by Mercator principles on a cylinder tangent along an oblique great circle. Also called OBLIQUE CYLINDRICAL ORTHOMORPHIC MAP PROJECTION. See also MERCATOR MAP PROJECTION.
oblique meridian. A great circle perpendicular to an oblique equator. The reference oblique meridian is called prime oblique meridian. See also FICTITIOUS MERIDIAN.
oblique parallel. A circle or line parallel to an oblique equator, connecting all points of equal oblique latitude. See also FICTITIOUS PARALLEL.
oblique pole. One of the two points 90° from an oblique equator.
oblique rhumb line. 1. A line making the same oblique angle with all fictitious meridians of an oblique Mercator map projection. Oblique parallels and meridians may be considered special cases of the oblique rhumb line. 2. Any rhumb line, real or fictitious, making an oblique angle with its meridians. In this sense the expression is used to distinguish such rhumb lines from parallels and meridians, real or fictitious, which may be included in the expression rhumb line. See also FICTITIOUS RHUMB LINE.
oblique sphere. The celestial sphere as it appears to an observer between the equator and the pole, where celestial bodies appear to rise obliquely to the horizon.
obliquity factor. A factor in an expression for a constituent tide or tidal current involving the angle of the inclination of the moon's orbit to the plane of the earth's equator.
obliquity of the ecliptic. The acute angle between the plane of the ecliptic and the plane of the celestial equator, about $23^{\circ} 27^{\prime}$.
obscuration, n. The designation for the sky cover when the sky is completely hidden by obscuring phenomena in contact with, or extending to the surface.
obscuring phenomenon. Any atmospheric phenomenon, not including clouds, which restricts the vertical or slant visibility.
observed altitude. Corrected sextant altitude; angular distance of the center of a celestial body above the celestial horizon of an observer measured along a vertical circle, through 90°. Occasionally called TRUE ALTITUDE. See also ALTITUDE INTERCEPT, APPARENT ALTITUDE, SEXTANT ALTITUDE.
observed gravity anomaly. See GRAVITY ANOMALY.
observed latitude. See LATITUDE LINE.
observed longitude. See LONGITUDE LINE.
obstruction, n. Anything that hinders or prevents movement, particularly anything that endangers or prevents passage of a vessel or aircraft. The term is usually used to refer to an isolated danger to navigation, such as a submerged rock or reef in the case of marine navigation, and a tower, tall building, mountain peak, etc., in the case of air navigation.
obstruction buoy. A buoy used to indicate a dangerous obstruction. See ISOLATED DANGER BUOY.
obstruction light. A light indicating a radio tower or other obstruction to aircraft.
obstruction mark. A navigation mark used to indicate a dangerous obstruction. See ISOLATED DANGER MARK.
obtuse angle. An angle greater than 90° and less than 180°.
occasional light. A light put into service only on demand.
occluded front. A composite of two fronts, formed when a cold front overtakes a warm front or stationary front. This is common in the late stages of wave-cyclone development, but is not limited to occurrence within a wave-cyclone. There are three basic types of occluded front, determined by the relative coldness of the air behind the original cold front to the air ahead of the warm (or stationary) front. A cold occlusion results when the coldest air is behind the cold front. The cold front undercuts the warm front and, at the earth's surface, cold air replaces less-cold air. When the coldest air lies ahead of the warm front, a warm occlusion is formed in which case the original cold front is forced aloft at the warm-front surface. At the earth's surface, cold air is replaced by less-cold air. A third and frequent type, a neutral occlusion, results when there is no appreciable temperature difference between the cold air masses of the cold and warm fronts. In this case frontal characteristics at the earth's surface consist mainly of a pressure trough, a wind-shift line, and a band of cloudiness and precipitation. Commonly called OCCLUSION. Also called FRONTAL OCCLUSION.
occlusion, n. 1. See OCCLUDED FRONT. 2. The process of formation of an occluded front. Also called FRONTAL OCCLUSION.
occultation, n. 1 . The concealment of a celestial body by another which crosses the line of view. Thus, the moon occults a star when it passes between the observer and the star. 2. The interval of darkness in the period of the light. See also FLASH.
occulting light. A light totally eclipsed at regular intervals, with the duration of light always longer than the intervals of darkness called OCCULTATIONS. The term is commonly used for a SINGLE OCCULTING LIGHT, an occulting light exhibiting only single occultations which are repeated at regular intervals.
occupied bandwidth. As defined by the International Telecommunication Union (ITU) the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. In some cases, for example multichannel frequency-division systems, the percentage of 0.5 percent may lead to certain difficulties in the practical application of the definitions of occupied and necessary bandwidth; in such cases a different percentage may prove useful.
ocean, $n .1$. The major area of salt water covering the greater part of the earth. 2. One of the major divisions of the expanse of salt water covering the earth.
ocean current. A movement of ocean water characterized by regularity, either of a cyclic nature, or as a continuous stream flowing along a definable path. Three general classes may be distinguished, by cause: (a) currents associated with horizontal pressure gradients, comprising the various types of gradient current; (b) wind-driven currents, which are those directly produced by the stress exerted by the wind upon the ocean surface; (c) currents produced by longwave motions. The latter are principally tidal currents, but may also include currents associated with internal waves, tsunamis and seiches. The major ocean currents are of continuous, stream-flow character, and are of first-order importance in the maintenance of the earth's thermodynamic balance.
oceanic, adj. Of or pertaining to the ocean.
oceanographic, adj. Of or pertaining to oceanography, or knowledge of the oceans.
oceanographic survey. The study or examination of conditions in the ocean or any part of it. with reference to zoology, chemistry, geology, or other scientific discipline. See also HYDROGRAPHIC SURVEY.
oceanography, n. The study of the sea, embracing and integrating all knowledge pertaining to the sea's physical boundaries, the chemistry and physics of sea water, and marine biology. Strictly, oceanography is the description of the marine environment, whereas OCEANOLOGY is the study of the oceans.
oceanology, n. The study of the ocean. See also OCEANOGRAPHY.
Ocean Passages for the World. A British publication relating to the planning and conduct of ocean passages. Published by the Hydrographer of the Navy, Ocean Passages for the World addresses those areas which lie mainly out side the areas covered in detail by Admiralty Sailing Directions. It is kept up-to-date by periodical supplements. The publication should not be used without reference to the latest supplement and those Notices to Mariners published to correct Sailing Directions.
ocean waters. For application to the provisions of the Marine Protection, Research, and Sanctuaries Act of 1972, those waters of the open sea lying seaward of the base line from which the territorial sea is measured.
octagon, n. A closed plane figure having 8 sides.
octahedral cluster. An arrangement of eight corner reflectors with common faces designed to give substantially uniform response in all directions. The octahedral cluster is formed by mounting three rectangular plates mutually at right angles with the geometric centers of the plates coincident. See also PENTAGONAL CLUSTER.
octant, n. A double-reflecting instrument for measuring angles, used primarily for measuring altitude of celestial bodies. It has a range of 90°, with the graduated arc subtending 45°, or $1 / 8$ of a circle, hence the term octant; a precursor of the sextant, whose arc subtends 60° or $1 / 6$ of a circle.
octant altitude. See SEXTANT ALTITUDE.
Odessey protractor. A device used in conjunction with a plotting sheet having equally spaced concentric circles (range circles) drawn about two or more stations of a radio determination system being operated in the ranging mode.
oe, n. A whirlwind off the Faeroe Islands.
oersted, n. The centimeter-gram-second electromagnetic system unit of magnetic field strength. It corresponds to $1000 / 4 \pi$ ampere per meter.
off-center PPI display. A plan position indicator display in which the center about which the sweep rotates is offset from the center of the radarscope.
offing, n. The part of the visible sea a considerable distance from the shore, or that part just beyond the limits of the area in which a pilot is needed.
offshore, $a d j$. \& $a d v$. Away from the shore.
offshore, n. The comparatively flat zone of variable width which extends from the outer margin of the rather steeply sloping shore face to the edge of the shelf.
offshore light stations. Manned light stations built on exposed marine sites to replace lightships.
offshore navigation. Navigation at a distance from a coast, in contrast with COASTWISE NAVIGATION in the vicinity of a coast.
offshore water. Water adjacent to land in which the physical properties are slightly influenced by continental conditions.
offshore wind. Wind blowing from the land toward the sea. An ONSHORE WIND blows in the opposite direction. See also LAND BREEZE.
off soundings. Navigating beyond the 100 -fathom curve. In earlier times, said of a vessel in water deeper than could be sounded with the sounding lead.
off station. Not in charted position.
ogival buoy. A buoy with a pointed-arch shaped vertical cross-section. Used in the cardinal system.
ohm, n. A derived unit of electrical resistance in the International System of Units; it is the electrical resistance between two points of a conductor when a constant potential difference of 1 volt, applied to these points, produces in the conductor a current of 1 ampere, the conductor not being the seat of an electromotive force.
old ice. Sea ice which has survived at least one summer's melt. Most topographic features are smoother than on first-year ice. Old ice may be subdivided into SECOND-YEAR ICE and MULTI YEAR ICE.
Omega Navigation System. A worldwide. continuous, radionavigation system of medium accuracy which provides hyperbolic lines of position through phase comparisons of VLF ($10-14 \mathrm{kHz}$) continuous wave signals transmitted on a common frequency on a timeshared basis. The full system is comprised of eight transmitting stations.
Omega plotting chart. See under PLOTTING CHART.
Omega Table. See PUB. 224.
omni-. A prefix meaning all.
omniazimuthal antenna. See OMNIDIRECTIONAL ANTENNA.
omnidirectional antenna. An antenna whose radiating or receiving properties at any instant are the same on all bearings. Also called OMNIAZIMUTHAL ANTENNA. See also DIRECTIONAL ANTENNA.
omnidirectional light. A light which presents the same characteristic over the whole horizon of interest to marine navigation. Also called ALL-ROUND LIGHT.
omnidirectional radiobeacon. A radiobeacon transmitting a signal in all directions. A circular radiobeacon is an omnidirectional beacon which transmits in all horizontal directions simultaneously. A rotating radiobeacon is an omnidirectional beacon with one or more beams that rotate. A DIRECTIONAL RADIOBEACON is a beacon which beams its signals in one or several prescribed directions.
onshore wind. Wind blowing from the sea towards the land. An OFFSHORE WIND blows in the opposite direction. See also SEA BREEZE.
on soundings. Navigating within the 100 -fathom curve. In earlier times, said of a vessel in water sufficiently shallow for sounding by sounding lead.
on the beam. Bearing approximately 090° relative (on the starboard beam) or 270° relative (on the port beam). The expression is often used loosely for BROAD ON THE BEAM, or bearing exactly 090° or 270° relative. Also called ABEAM.
on the bow. Bearing approximately 045° relative (on the starboard bow) or 315° relative (on the port bow). The expression is often used loosely for BROAD ON THE BOW, or bearing exactly 045° or 315° relative.
on the quarter. Bearing approximately 135° relative (on the starboard quarter) or 225° relative (on the port quarter). The expression is often used loosely for BROAD ON THE QUARTER, or bearing exactly 135° or 225° relative.
ooze, n. A soft, slimy, organic sediment covering part of the ocean bottom, composed principally of shells or other hard parts of minute organisms.
open, $v ., i$. To move or appear to move apart, such as when range lights appear to separate as the vessel moves off the channel centerline. The opposite is CLOSE.
open basin. See TIDAL BASIN.
open berth. An anchorage berth in an open roadstead.
open coast. A coast that is not sheltered from the sea.
open harbor. An unsheltered harbor exposed to the sea.
opening, n. A break in a coastline or a passage between shoals, etc. See also GAT.
open pack ice. Pack ice in which the concentration is $4 / 10$ to $6 / 10$, with many leads and polynyas, and the floes generally not in contact with one another.
open roadstead. A roadstead with relatively little protection from the sea. open sea. 1. The part of the ocean not enclosed by headlands, within narrow straits, etc. 2. The part of the ocean outside the territorial jurisdiction of any country. The opposite is CLOSED SEA. See also HIGH SEAS.
open water. A large area of freely navigable water in which sea ice is present in concentration less than $1 / 10$. When there is no sea ice present, the area should be described as ICE FREE, even though icebergs may be present.
operating area chart. A base chart with overprints of various operating areas necessary to control fleet exercise activities. Submarine Transit Lanes, Surface and Sub-surface Operating Areas, Air Space Warning Areas, Controlled Air Spaces, and other restricted areas are portrayed.
operating system. The portion of a computer's software devoted to running programs and providing for operator interface.
opposition, n. The situation of two celestial bodies having either celestial longitudes or sidereal hour angles differing by 180°. The term is usually used only in relation to the position of a superior planet or the moon with reference to the sun. The situation of two celestial bodies having either the same celestial longitude or the same sidereal hour angle is called conjunction.
optic, $a d j$. Of or pertaining to vision.
optical, $a d j$. Of or pertaining to optics or to vision.
optical double star. Two stars in nearly the same line of sight but differing greatly in distance from the observer, as distinguished from a PHYSICAL DOUBLE STAR (two stars in nearly the same line of sight and at approximately the same distance from the observer).
optical glass. Glass of which the composition and molding are carefully controlled in order to insure uniform refractive index and high transmission factor.
optical path. The path followed by a ray of light through an optical system.
optical system. A series of lenses, apertures, prisms, mirrors, etc., so arranged as to perform a definite optical function.
optics, n. The science dealing with light, lenses, etc.
Optimum Track Ship Routing. See under SHIP WEATHER ROUTING.
orbit, $n .1$. The path of a body or particle under the influence of a gravitational or other force. See also CENTRAL FORCE ORBIT, INERTIAL ORBIT, INTERMEDIATE ORBIT, NOMINAL ORBIT, NORMAL ORBIT, OSCULATING ORBIT, PERTURBED ORBIT, POLAR ORBIT, STATIONARY ORBIT.
orbital altitude. The mean altitude of the orbit of a satellite above the surface of the parent body.
orbital elements. Parameters that specify the position and motion of a body in orbit. The elliptical orbit of a satellite attracted by an exactly central gravitational force is specified by a set of six parameters as follows: Two parameters, the semimajor axis and eccentricity of the ellipse, establish the size and shape of the elliptical orbit. A third parameter, time of perifocal passage, enables determination of the location of the satellite in its orbit at any instant. The three remaining parameters establish the orientation of the orbit in space. These are the inclination of the orbital plane to a reference plane, the right ascension of the ascending node of the satellite, and the
argument of pericenter. See also ORBITAL PARAMETERS OF ARTIFICIAL SATELLITE, MEAN ELEMENTS, OSCULATING ELEMENTS.
orbital inclination. See as INCLINATION, definition 2.
orbital mode. A method for determining the position of an unknown station position when the unknown position cannot be viewed simultaneously with known positions. The arc of the satellite orbit is extrapolated from the ephemeris of the satellite determined by the known stations which permits the determination of the position of the unknown station dependent completely on the satellite's orbital parameters.
orbital motion. Continuous motion in a closed path about and as a direct result of a source of gravitational attraction.
orbital parameters of artificial earth satellite. The precessing elliptical orbit of an artificial earth satellite is unambiguously specified by the following set of parameters: semimajor axis. eccentricity, time of perigee, inclination of the orbital plane to the plane of the reference plane (celestial equator), the right ascension of the ascending node of the satellite at time of perigee, the argument of perigee at time of perigee, right ascension of Greenwich at time of perigee, mean motion (rate of change of mean anomaly), rate of change of argument of perigee, and rate of change of right ascension of the ascending node at time of perigee. With the inclination expressed as the sine and cosine of the orbital inclination, the parameters number 11. See also ORBITAL ELEMENTS.
orbital path. One of the tracks on a primary body's surface traced by the subpoint of a satellite that orbits about it several times in a direction other than normal to the primary body's axis of rotation. Each track is displaced in a direction opposite and by an amount equal to the degrees of rotation between each satellite orbit and of the nodical precession of the plane of the orbit. Also called SUBTRACK. See also WESTWARD MOTION.
orbital period. If the orbit is unchanging and ideal, the in travel between successive passages of a satellite through the same point in its orbit. If the orbit is not ideal, the point must be specified. When the perigee is specified it is called radial or anomalistic period. When the ascending node is specified, it is called nodical period. When the same geocentric right ascension is specified, it is called sidereal period. Also called PERIOD OF SATELLITE.
orbital plane. The plane of the ellipse defined by a central force orbit.
orbital velocity. The velocity of an earth satellite or other orbiting body at any given point in its orbit.
ordinary, adj. With respect to tides, the use of this non technical term has, for the most part, been determined to be synonymous with mean. The use of the term ordinary in tidal terms is discouraged.
ordinate, n. The vertical coordinate of a set of rectangular coordinates. Also used in a similar sense in connection with oblique coordinates.
orient, $v ., t$. 1 . To line up or adjust with respect to a reference. 2. To obtain a mental grasp of the existing situation.
orientability of a sound signal. The property of a sound signal by virtue of which a listener can estimate the direction of the location of the signal.
orographic rain. Rain resulting when moist air is forced upward by a mountain range.
orthodrome, n. See GREAT CIRCLE.
orthodromic curve. See GREAT CIRCLE.
orthogonal, $a d j$. Right angled, rectangular.
orthogonal map projection. See ORTHOGRAPHIC MAP PROJECTION.
orthographic, $a d j$. Of or pertaining to right angles or perpendicular lines. orthographic chart. A chart on the orthographic map projection.
orthographic map projection. A perspective azimuthal projection in which the projecting lines, emanating from a point at infinity, are perpendicular to a tangent plane. The projection is used chiefly in navigational astronomy for inter converting coordinates of the celestial equator and horizon systems. Also called ORTHOGONAL PROJECTION.
orthomorphic, $a d j$. Preserving the correct shape. See also CONFORMAL MAP PROJECTION.
orthomorphic chart. A chart on which very small shapes are correctly represented. See also CONFORMAL MAP PROJECTION.
orthomorphic map projection. A projection in which very small shapes are correctly represented. See also CONFORMAL MAP PROJECTION.
oscar satellite. A general term for one of the operational satellites of the Navy Navigation Satellite System, except for satellite 30110 called TRANSAT, placed in orbit prior to 1981. The improved satellites placed in orbit beginning in 1981 are called NOVA.
oscillation, n. 1. Fluctuation or vibration to each side of a mean value or position. 2. Half an oscillatory cycle, consisting of fluctuation or vibration in one direction; half a vibration.
oscillator, n. A sound signal emitter comprising a resonant diaphragm maintained in vibrating motion by electromagnetic action.
oscillatory wave. A wave in which only the form advances, the individual particles of the medium moving in closed orbits, as ocean waves in deep water; in contrast with a WAVE OF TRANSLATION, in which the individual particles are shifted in the direction of wave travel, as ocean waves in shoal water.
oscilloscope, n. An instrument for producing a visual representation of oscillations or changes in an electric current. The face of the cathode-ray tube used for this representation is called a SCOPE or SCREEN.
osculating elements. A set of parameters that specifies the instantaneous position and velocity of a celestial body, or artificial satellite in a perturbed orbit. Osculating elements describe the unperturbed (twobody) orbit (osculating orbit) that the body would follow if perturbations were to cease instantaneously.
osculating orbit. The ellipse that a satellite would follow after a specific time " t " (the epoch of osculation) if all forces other than central force ceased to act from " t " on. An osculating orbit is tangent to the real, perturbed, orbit and has the same velocity at the point of tangency. See also OSCULATING ELEMENTS.
outage, n. The failure of an aid to navigation to function exactly as described in the light list.
outer harbor. See under INNER HARBOR.
outfall, n. The discharge end of a narrow street sewer, drain, etc.
outfall buoy. A buoy marking the position where a sewer or other drain discharges.
outline chart. A chart with only a generally presentation of the landmass with little or no culture or relief. See also PLOT CHART.
output axis. The axis of precession of a gyroscope. See also INPUT AXIS, PRECESSION.
outside fix. A term describing the fix position determined by the method of bisectors when the lines of position result from observations of objects or celestial bodies lying within a 180° arc of the horizon. See also METHOD OF BISECTORS.
outward bound. Heading for the open sea. The opposite is INWARD BOUND. See also HOMEWARD BOUND.
overcast, adj. Pertaining to a sky cover of 95% or more.
overcast, n. A cloud cover.
overfalls, n. pl. Breaking waves caused by the meeting of currents or by waves moving against the current. See also RIPS.
overhead cable effect. A radar phenomenon which may occur in the vicinity of an overhead power cable. The echo from the cable appears on the plan position indicator as a single echo, the echo being returned from that part of cable where the radar beam is at right angles to the cable. If this phenomenon is not recognized, the echo can be wrongly identified as the echo from a ship on a steady bearing. Evasive action results in the echo remaining on a constant bearing and moving to the same side of the channel as the ship altering course. This phenomenon is particularly apparent for the power cable spanning the Straits of Messina.
overhead compass. See INVERTED COMPASS.
overhead constraints. The elevation angle limitations between which usable navigation data may be obtained from a satellite in the doppler mode.
overlay, n. A printing or drawing on a transparent or translucent medium at the same scale as a map, chart, etc., to show details not appearing on the original.
overprint, n. New material printed on a map or chart to show data of importance or special value in addition to that originally printed.
overtide, n. A harmonic tidal or tidal current constituent with a speed that is an exact multiple of the speed of one of the fundamental constituents derived from the development of the tide-producing force. The presence of overtides is usually attributed to shallow water conditions.

Oyashio, n. A cold ocean current flowing from the Bering Sea southwestward along the coast of Kamchatka, past the Kuril Islands to meet the Kuroshio off the coast of Honshu. The Oyashio turns and continues eastward, eventually joining the Aleutian Current.

P

Pacific Equatorial Countercurrent. A Pacific Ocean current that flows eastward, counter to and between the westward flowing Pacific North and South Equatorial Currents, between latitudes $3^{\circ} \mathrm{N}$ and $10^{\circ} \mathrm{N}$. East of the Philippines it is joined by the southern part of the Pacific North Equatorial Current.
Pacific North Equatorial Current. A North Pacific Ocean current that flows westward between latitudes $10^{\circ} \mathrm{N}$ and $20^{\circ} \mathrm{N}$. East of the Philippines, it divides, part turning south to join the Pacific Equatorial Counter current and part turning north to flow along the coast of Japan as the KUROSHIO.
Pacific South Equatorial Current. A Pacific Ocean current that flows westward between latitudes $3^{\circ} \mathrm{N}$ and $10^{\circ} \mathrm{S}$. In mid ocean, much of it turns south to form a large whirl. The portion that continues across the ocean divides as it approaches Australia, part flowing north toward New Guinea and part turning south along the east coast of Australia as the EAST AUSTRALIA CURRENT.
Pacific standard time. See STANDARD TIME.
pack ice. The term used in a wide sense to include any area of sea ice, other than fast ice, no matter what form it takes or how it is disposed.
pagoda, n. As a landmark, a tower having a number of stories and a characteristic architecture, used as a place of worship or as a memorial, primarily in Japan, China, and India.
paint, n. The bright area on the phosphorescent plan position indicator screen resulting from the brightening of the sweep by the echoes.
paint, $v ., t \& i$. To brighten the phosphorescent plan position indicator screen through the effects of the echoes on the sweep.
painted mark. A navigation mark formed simply by painting a cliff, wall, rock, etc.
pancake ice. Predominantly circular pieces of ice from 30 centimeters to 3 meters in diameter, and up to about 10 centimeters in thickness with raised rims due to pieces striking against one another. It may be formed on a slight swell from grease ice, shuga, or slush or as a result of the breaking of ice rind, nilas, or under severe conditions of swell or waves, of gray ice. It also sometimes forms at some depth, at an interface between water bodies of different physical characteristics, from where it floats to the surface; its appearance may rapidly cover wide areas of water.
pantograph, n. An instrument for copying maps, drawings, or other graphics at a predetermined scale.
papagayo, n. A violet northeasterly fall wind on the Pacific coast of Nicaragua and Guatemala. It consists of the cold air mass of a norte which has overridden the mountains of Central America. See also TEHUANTEPECER.
parabola, n. An open curve all points of which are equidistant from a fixed point, called the FOCUS, and a straight line. The limiting case occurs when the point is on the line, in which case the parabola becomes a straight line.
parabolic reflector. A reflecting surface having the cross section along the axis in the shape of a parabola. Parallel rays striking the reflector are brought to a focus at a point, or if the source of the rays is placed at the focus, the reflected rays are parallel. See also CORNER REFLECTION RADAR REFLECTOR, SCANNER.
parabolic velocity. See ESCAPE VELOCITY.
parallactic angle. That angle at the navigational triangle at the celestial body; the angle between a body's hour circle and its vertical circle. Also called POSITION ANGLE.
parallax, n. The difference in apparent direction or position of an object when viewed from different points. For bodies of the solar system, parallax is the difference in the direction of the body due to the displacement of the observer from the center of the earth, and is called geocentric parallax, varying with the body's altitude and distance from the earth. The geocentric parallel when a body is in the horizon is called horizontal parallax, as contrasted with the parallax at any altitude, called parallax in altitude. Parallax of the moon is called lunar parallax. In marine navigation it is customary to apply a parallax correction to sextant altitudes of the sun, moon, Venus, and Mars. For stars, parallax is the angle at the star subtended by the semimajor axis of the earth's orbit and is called heliocentric or stellar parallax, which is too small to be significant as a sextant error.
parallax correction. A correction due to parallax, particularly that sextant altitude correction due to the difference between the apparent direction from a point on the surface of the earth to celestial body and the apparent direction from the center of the earth to the same body.
parallax in altitude. Geocentric parallax of a body at any altitude. The expression is used to distinguish the parallax at the given altitude from the horizontal parallax when the body is in the horizon. See also PARALLAX.
parallax inequality. The variation in the range of tide or in the speed of a tidal current due to changes in the distance of the moon from the earth. The range of tide and speed of the current tend alternately to increase and decrease as the moon approaches its perigee and apogee, respectively, the complete cycle being the anomalistic month. There is a similar but relatively unimportant inequality due to the sun; this cycle is the anomalistic year. The parallax has little direct effect upon the lunitidal intervals but tends to modify the phase effect. When the moon is in perigee, the priming and lagging of the tide due to the phase is diminished and when in apogee the priming and lagging is increased.
parallax reduction. Processing of observed high and low waters to obtain quantities depending upon changes in the distance of the moon, such as perigean and apogean ranges.
parallel, adj. Everywhere equidistant, as of lines or surfaces.
parallel, n. See PARALLEL OF LATITUDE, definition 1.
parallel indexing. The use of rotating parallel lines overlayed on a radar display to aid in piloting.
parallel motion protractor. An instrument consisting of a protractor and one or more arms attached to a parallel motion device, so that the movement of the arms is everywhere parallel. The protractor can be rotated and set at any position so that it can be oriented to a chart. Also called DRAFTING MACHINE.
parallel of altitude. A circle of the celestial sphere parallel to the horizon, connecting all points of equal altitude. Also called ALTITUDE CIRCLE, ALMUCANTAR. See also CIRCLE OF EQUAL ALTITUDE.
parallel of declination. A circle of the celestial sphere parallel to the celestial equator. Also called CELESTIAL PARALLEL, CIRCLE OF EQUAL DECLINATION. See also DIURNAL CIRCLE.
parallel of latitude. 1. A circle (or approximation of a circle) on the surface of the earth, parallel to the equator, and connecting points of equal latitude. Also called a PARALLEL. 2. A circle of the celestial sphere, parallel to the ecliptic, and connecting points of equal celestial latitude. Also called CIRCLE OF LONGITUDE.
parallelogram, n. A four-sided figure with both pairs of opposite sides parallel. A right-angled parallelogram is a rectangle; a rectangle with sides of equal length is a square. A parallelogram with oblique angles is a rhomboid; a rhomboid with sides of equal length is a rhombus.
parallel rulers. An instrument for transferring a line parallel to itself. In its most common form it consists of two parallel bars or rulers connected in such manner that when one is held in place, the other may be moved, remaining parallel to its original position.
parallel sailing. A method of converting departure into difference of longitude, or vice versa, when the true course is 090° or 270°.
parallel sphere. The celestial sphere as it appears to an observer at the pole, where celestial bodies appear to move parallel to the horizon.
parameter, n. 1 . A quantity which remains constant within the limits of a given case or situation. 2. One of the components into which a craft's magnetic field is assumed to be resolved for the purpose of compass adjustment. The field caused by permanent magnetism is resolved into orthogonal components or parameters: Parameter P,

Parameter Q, and Parameter R. The field caused by induced magnetism is resolved into that magnetism induced in 9 imaginary soft iron bars or rods. With respect to the axis of a craft, these parameters lie in a fore-and-aft direction, an athwart ships direction, and in a vertical direction. See also ROD, definition 2 .
paranthelion, n. A phenomenon similar to a PARHELION but occurring generally at a distance of 120° (occasionally 90° or 140°) from the sun.
paraselene (pl. paraselenae), n. A form of halo consisting of an image of the moon at the same altitude as the moon and some distance from it, usually about 22°, but occasionally about 46°. Similar phenomena may occur about $90^{\circ}, 120^{\circ}, 140^{\circ}$, or 180° from the moon. A similar phenomenon in relation to the sun is called a PARHELION, SUN DOG, or MOCK SUN. Also called MOCK MOON.
paraselenic circle. A halo consisting of a faint white circle through the moon and parallel to the horizon. It is produced by reflection of moonlight from vertical faces of ice crystals. A similar circle through the sun is called a PARHELIC CIRCLE.
parhelic circle. A halo consisting of a faint white circle through the sun and parallel to the horizon. It is produced by reflection of sunlight from vertical faces of ice crystals. A similar circle through the moon is called a PARASELENIC CIRCLE. Also called MOCK SUN RING.
parhelion (pl. parhelia), n. A form of halo, consisting of an image of the sun at the same altitude as the sun and some distance from usually about 22°, but occasionally about 40°. A similar phenomenon occurring at a distance of $90^{\circ}, 120^{\circ}$, or 140° from the sun is called a PARANTHELION, and if occurring at a distance of 180° from the sun, an ANTHELION. A similar phenomenon in relation to the moon is called PARASELENE, MOON DOG, or MOCK MOON. The term PARHELION should not be confused with PERIHELION, the orbital point near the sun when the sun is the center of attraction. Also called SUN DOG, MOCK SUN.
parsec, n. The distance at which 1 astronomical unit subtends an angle of 1 second of arc. One parsec equals about 206,265 astronomical units or $30,857 \times 10^{12}$ meters or 3.26 light years. The name parsec is derived from parallax second.
partial eclipse. An eclipse in which only part of the source of light is obscured. See ECLIPSE.
pascal, n. The special name for the derived unit of pressure and stress in the International System of Units; it is 1 newton per square meter.
pass, n. 1. A navigable channel leading to a harbor or river. Sometimes called PASSAGE. 2. A break in a mountain range, permitting easier passage from one side of the range to the other; also called COL. 3. A narrow opening through a barrier reef atoll, or sand bar. 4. A single circuit of the earth by a satellite. See also ORBIT. 5. The period of time a satellite is within telemetry range of a data acquisition station.
passage, n. 1. A navigable channel, especially one through reefs or islands. Also called PASS. 2. A transit from one place to another; one leg of a voyage.
passing light. A low intensity light which may be mounted on the structure of another light to enable the mariner to keep the latter light in sight when he passes out of its beam. See also SUBSIDIARY LIGHT.
passive satellite. 1. A satellite which contains power source to augment the output signal (i.e., reflected only) as contrasted with ACTIVE SATELLITE; a satellite which is a passive reflector. 2. As defined by the International Telecommunications Union (ITU), an earth satellite intended to transmit radiocommunication signals by reflection.
passive system. A term used to describe a navigation system whose operation does not require the user to transmit a signal.
patent log. A mechanical log, particularly a TAFFRAIL LOG.
patent slip. See MARINE RAILWAY.
path, n. See as ORBITAL PATH.
pattern, n. 1. See under LATTICE. 2. In a hyperbolic radionavigation system, the family of hyperbolas associated with a single pair of stations, usually the master station and a slave (secondary) station.
P-band. A radio-frequency band of 225 to 390 megahertz. See also FREQUENCY, FREQUENCY BAND.
P-code. The precise code of the GPS signal, used by military receivers.
polar cap anomaly. See under POLAR CAP DISTURBANCE.
peak, $n .1$. On the sea floor, a prominent elevation, part of a larger feature, either pointed or of very limited extent across the summit. 2. A pointed mountain summit. 3. An individual or conspicuous mountain with a single conspicuous summit, as Pikes Peak. 4. The summit of a mountain. 5. A term sometimes used for a headland or promontory.
peak envelope power. See under POWER (OF A RADIO TRANSMITTER).
pebble, n. See under STONES.
pelorus, n. A dumb compass, or a compass card (called a PELORUS CARD) without a directive element, suitably mounted and provided with vanes to permit observation of relative bearings unless used in conjunction with a compass to give true or magnetic bearings.
pelorus card. The part of a pelorus on which the direction graduations are placed. It is usually in the form of a thin disk or annulus graduated in degrees, clockwise, from 0° at the reference direction to 360°.
pendulous gyroscope. A gyroscope with its axis of rotation constrained by a suitable weight to remain horizontal. The pendulous gyroscope is the basis of one type of gyrocompass.
peninsula, n. A section of land nearly surrounded by water. Frequently, but not necessarily, a peninsula is connected to a larger body of land by a neck or isthmus.
pentagon, n. A closed plane figure having five sides.
pentagonal cluster. An arrangement of five corner reflectors, mounted so as to give their maximum response in a horizontal direction, and equally spaced on the circumference of a circle. The response is substantially uniform in all horizontal directions. See also OCTAHEDRAL CLUSTER.
penumbra, n. 1 . That part of a shadow in which light is partly cut off by an intervening object. The penumbra surrounds the darker UMBRA in which light is completely cut off. 2. The lighter part of a sun spot, surrounding the darker UMBRA.
penumbral lunar eclipse. The eclipse of the moon when the moon passes only through the penumbra of the earth's shadow.
performance monitor. A device used to check the performance of the transmitter and receiver of a radar set. Such device does not provide any indication of performance as it might be affected by the propagation of the radar waves through the atmosphere. An echo box is used in one type of performance monitor called an echo box performance monitor.
per gyrocompass (PGC). Relating to or from the gyrocompass.
periapsis, n. See PERICENTER.
periastron, n. That point of the orbit of one member of a double star system at which the stars are nearest together. That point at which they are farthest apart is called APASTRON.
pericenter, n. In an elliptical orbit, the point in the orbit which is the nearest distance from the focus where the attracting mass is located. the pericenter is at one end of the major axis of the orbital ellipse. The opposite is APOAPSIS, APOCENTER. Also called PERIAPSIS, PERIFOCUS.
perifocus, n. See PERICENTER.
perigean range. See under PERIGEAN TIDES.
perigean tidal currents. Tidal currents of increased speed occurring monthly as the result of the moon being in perigee or nearest the earth.
perigean tides. Tides of increased range occurring monthly as the result of the moon being in perigee or nearest the earth. The perigean range of tide is the average semidiurnal range occurring at the time of perigean tides and is most conveniently computed from the harmonic constants. It is larger than the mean range where the type of tide is either semidiurnal or mixed and is of no practical significance where the type of tide is diurnal.
perigee, n. The orbital point nearest the earth when the earth is the center of attraction. The orbital point farthest from the earth is called APOGEE. See also APOCENTER, PERICENTER.
perigee-to-perigee period. See ANOMALISTIC PERIOD.
perigon, n. An angle of 360°.
perihelion, n. That orbital point nearest the sun when the sun is the center of attraction. That point farthest from the sun is called APHELION.
perimeter, n. 1. The length of a closed plane curve or the sum of the sides of a polygon. 2. The boundary of a plane figure. Also called PERIPHERY.
period, n. 1 . The interval needed to complete a cycle. See also NATURAL PERIOD, SIDEREAL PERIOD, SYNODIC PERIOD, WAVE PERIOD). 2. The interval of time between the commencement of two identical successive cycles of the characteristic of the light.
periodic, adj. Of or pertaining to a period.
periodic error. An error whose amplitude and direction vary systematically with time.
periodic perturbations. Perturbations to the orbit of a satellite which change direction in regular or periodic manner in time, such that the average effect over a long period of time is zero.
periodic terms. In the mathematical expression of the orbit of a satellite, terms which vary with time in both magnitude and direction in a periodic manner. See also SECULAR TERMS.
period of satellite. 1. See ORBITAL PERIOD. 2. As defined by the International Telecommunication Union (ITU), the time elapsing between two consecutive passages of a satellite or planet through a characteristic point on its orbit.
periphery, n. See PERIMETER.
periplus, n. The early Greek name for SAILING DIRECTIONS. The literal meaning of the term is "a sailing round."
periscope, n. An optical instrument which displaces the line of sight parallel to itself, to permit a view which may otherwise be obstructed.
periscope sextant. A sextant designed to be used in conjunction with the periscope of a submarine.
permafrost, n. Permanently frozen subsoil. Any soil or other deposit, including rock, the temperature of which has been below freezing continuously for 2 years or more is considered permafrost.
Permalloy, n. The trade name for an alloy of about 80% nickel and 20% iron, which is very easily magnetized and demagnetized.
permanent current. A current that runs fairly continuously and is independent of tides and other temporary causes.
permanent echo. An echo from an object whose position relative to the radar set is fixed.
permanent light. A light used in regular service.
permanent magnetism. The magnetism which is acquired by hard iron, which is not readily magnetized by induction, but which retains a high percentage of magnetism acquired unless subjected to a demagnetizing force. The strength and polarity of this magnetism in a craft depends upon the heading, magnetic latitude, and building stresses imposed during construction. See also INDUCED MAGNETISM, SUBPERMANENT MAGNETISM.
permeability, n. 1 . The ability to transmit magnetism; magnetic conductivity. 2. The ability to permit penetration or passage. In this sense the term is applied particularly to substances which permit penetration or passage of fluids.
perpendicular, adj. At right angles; normal.
perpendicular, n. A perpendicular line, plane, etc. A distinction is sometimes made between PERPENDICULAR and NORMAL, the former applying to a line at right angles to a straight line or plane, and the latter referring to a line at right angles to a curve or curved surface.
persistence, n. A measure of the time of decay of the luminescence of the face of the cathode ray tube after excitation by the stream of electrons has ceased. Relatively slow decay is indicative of high persistence. Persistence is the length of time during which phosphorescence takes place. See also AFTERGLOW, definition 1.
personal correction. A correction due to personal error. Also called PERSONAL EQUATION.
personal equation. A term used for both PERSONAL ERROR and PERSONAL CORRECTION.
personal error. A systematic error in the observation of a quantity due to the personal idiosyncrasies of the observer. Also called PERSONAL EQUATION.
perspective chart. A chart on a perspective map projection.
perspective map projection. A map projection produced by the direct projection of the points of the ellipsoid (used to represent the earth) by straight lines drawn through them from some given point. The projection is usually made upon a plane tangent to the ellipsoid at
the end of the diameter joining the point of projection and the center of the ellipsoid. The plane of projection is usually tangent to the ellipsoid at the center of the area being mapped. he analytical expressions that determine the elements of the projection. If the point of projection is at the center of the ellipsoid, a gnomonic map projection results; if it is at the point opposite the plane's point of tangency a stereographic map projection; and if at infinity (the projecting lines being parallel to each other), an orthographic map projection. Most map projections are not perspective. Also called GEOMETRIC MAP PROJECTION.
perspective map projection upon a tangent cylinder. A cylindrical map projection upon a cylinder tangent to the ellipsoid produced by perspective projection from the ellipsoid's center. The geographic meridians are represented by a family of equally spaced parallel straight lines, perpendicular to a second family of parallel straight lines which represent the geographic parallels of latitude. The spacing, with respect to the equator of the lines which represent the parallels of latitude, increases as the tangent function of the latitude; the line representing 90° latitude is at an infinite distance from the line which represents the equator. Not to be confused with MERCATOR MAP PROJECTION to which it bears a general resemblance.
perspective projection. The representation of a figure on a surface, either plane or curved, by means of projecting lines emanating from a single point, which may be infinity. Also called GEOMETRIC PROJECTION. See also PERSPECTIVE MAP PROJECTION.
per standard compass. Relating to the standard magnetic compass.
per steering compass. Relating to the magnetic steering compass.
perturbations, n. (pl.). In celestial mechanics differences of the actual orbit from a central force orbit, arising from some external force such as a third body attracting the other two; a resisting medium (atmosphere); failure of the parent body to act as a point mass, and so forth. Also the forces that cause differences between the actual and reference (central force) orbits. See also GRAVITATIONAL PERTURBATIONS, LONG PERIOD PERTURBATIONS, LUNISOLAR PERTURBATIONS, NONGRAVITATIONAL PERTURBATIONS, PERIODIC PERTURBATIONS, SECULAR PERTURBATIONS, SHORT PERIOD PERTURBATIONS, TERRESTRIAL PERTURBATIONS.
perturbed orbit. The orbit of a satellite differing from its normal orbit due to various disturbing effects, such as nonsymmetrical gravitational effects, atmospheric drag, radiation pressure, and so forth. See also PERTURBATIONS.
perturbing factor. In celestial mechanics, any factor that acts on an orbiting body to change its orbit from a central force orbit. Also called PERTURBING FORCE.
perturbing force. See PERTURBING FACTOR.
Peru Coastal Current. See PERU CURRENT.
Peru Current. A narrow, fairly stable ocean current that flows northward close to the South American coast. It originates off the coast of Chile at about latitude $40^{\circ} \mathrm{S}$ and flows past Peru and Ecuador to the southwest extremity of Colombia. The southern portion of the Peru Current is sometimes called the CHILE CURRENT. It has sometimes been called the HUMBOLDT CURRENT because an early record of its temperature was taken by the German scientist Alexander von Humboldt in 1802. The name Corriente del Peru was adopted by a resolution of the Ibero-American Oceanographic Conference at its Madrid-Malaga meeting in April 1935. Also called PERU COASTAL CURRENT.
Peru Oceanic Current. See MENTOR CURRENT.
phantom, n. That part of a gyrocompass carrying the compass card.
phantom bottom. A false bottom indicated by an echo sounder, some distance above the actual bottom. Such an indication, quite common in the deeper parts of the ocean, is due to large quantities of small organisms.
phantom echo. See PHANTOM TARGET.
phantom target. 1. An indication of an object on a radar display that does not correspond to the presence of an actual object at the point indicated. Also called PHANTOM ECHO. 2. See ECHO BOX.
phase, n. The amount by which a cycle has progressed from a specified origin. For most purposes it is stated in circular measure, a complete cycle being considered 360°. See also PHASES OF THE MOON.
phase angle. The angle at a celestial body between the sun and earth.
phase coding. In Loran C, the shifting in a fixed sequence of the relative phase of the carrier cycles between certain pulses of a group. This shifting facilitates automatic synchronization in identical sequence within the group of eight pulses that are transmitted during each group repetition interval. It also minimizes the effect of unusually long skywave transmissions causing one pulse to interfere with the succeeding pulse in the group received by groundwave.
phase inequality. Variations in the tides or tidal currents due to changes in the phase of the moon. At the times of new and full moon the tideproducing forces of the moon and sun act in conjunction, causing the range of tide and speed of the tidal current to be greater than the average, the tides at these times being known as spring tides. At the time of quadrature of the moon these forces are opposed to each other, causing the neap tides with diminished range and current speed.
phase lag. See EPOCH, definition 3.
phase lock. The technique whereby the phase of an oscillator signal is made to follow exactly the phase of a reference signal by first comparing the phases of the two signals and then using the resulting phase difference signal to adjust the reference oscillator frequency to eliminate phase difference when the two signals are next compared.
phase meter. An instrument for measuring the difference in phase of two waves of the same frequency.
phase modulation. The process of changing the phase of a carrier wave in accordance with the variations of a modulating wave. See also MODULATION.
phase reduction. Processing of observed high and low waters to obtain quantities depending upon the phase of the moon, such as the spring and neap ranges of tide. Formerly this process was known as SECOND REDUCTION. Also applicable to tidal currents.
phases of the moon. The various appearances of the moon during different parts of the synodical month. The cycle begins with new moon or change of the moon at conjunction. The visible part of the waxing moon increases in size during the first half of the cycle until full moon appears at opposition, after which the visible part of the waning moon decreases for the remainder of the cycle. First quarter occurs when the waxing moon is at east quadrature; last quarter when the waning moon is at west quadrature. From last quarter to new and from new to first quarter the moon is crescent; from first quarter to full and from full to last quarter it is gibbous. The elapsed time, usually expressed in days, since the last new moon is called age of the moon. The full moon occurring nearest the autumnal equinox is called harvest moon; the next full moon, hunter's moon.
phase synchronized. A term used to indicate that radio wave transmissions have the same phase at their sources at any instant of time.
phenomenon (pl. phenomena), n. 1. An occurrence or event capable of being explained scientifically, particularly one relating to the unusual. 2. A rare or unusual event.
phonetic alphabet. A list of standard words used to identify letters in a message transmitted by radio or telephone.
phosphor, n. A phosphorescent substance which emits light when excited by radiation, as on the scope of a cathode-ray tube.
phosphorescence, n. Emission of light without sensible heat, particularly as a result of but continuing after absorption of radiation from some other source. PERSISTENCE is the length of time during which phosphorescence takes place. The emission of light or other radiant energy as a result of and only during absorption of radiation from some other source is called FLUORESCENCE.
photogrammetry, n. 1 . The science of obtaining reliable measurements from photographic images. 2. The science of preparing charts and maps from aerial photographs using stereoscopic equipment and methods.
photosphere, n. The bright portion of the sun visible to the unaided eye.
physical double star. Two stars in nearly the same line of sight and at approximately the same distance from the observer, as distinguished from an OPTICAL DOUBLE STAR (two stars in nearly the same line of sight but differing greatly in distance from the observer). If they revolve about their common center of mass, they are called a binary star.
pico-. A prefix meaning one-trillionth $\left(10^{-12}\right)$.
piedmont, n. An area of hills situated at the base of a range of mountains.
pier, n. 1. A structure extending into the water from a shore or a bank which provides berthing for ships, or use as a promenade or fishing pier. See also WHARF. 2. A support for the spans of a bridge.
pierhead, n. The outer end of a pier or jetty.
pile, n. A long, heavy timber or section of steel, concrete, etc., forced into the earth to serve as a support, as for a pier, or to resist lateral pressure.
pile beacon. A beacon formed of one or more piles.
pile dolphin. A minor light structure consisting of a number of piles driven into the bottom in a circular pattern and drawn together with a light mounted at the top. Referred to in the Light List as a DOLPHIN.
pillar buoy. A buoy composed of a tall central structure mounted on a broad flat base.
pilot, n. 1. A person who directs the movement of a vessel through pilot waters, usually a person who has demonstrated extensive knowledge of channels, aids to navigation, dangers to navigation, etc., in a particular area and is licensed in that area. See also LOCAL KNOWLEDGE. 2. A book of sailing directions. For waters the United States and its possessions, They are prepared by the National Ocean Survey, and are called COAST PILOTS.
pilotage, n. 1 . The services of especially qualified navigators having local knowledge who assist in the navigation of vessels in particular areas. Also called PILOTAGE SERVICE. 2. A term loosely used for piloting.
pilotage service. See PILOTAGE, definition 1.
pilotage waters. See PILOT WATERS.
pilot boat. A small vessel used by the pilot to go or from a vessel employing his services. Also called PILOT VESSEL.
pilot chart. A chart of a major ocean area which presents in graphic form averages obtained from weather, wave, ice, and other marine data gathered over many years in meteorology and oceanography to aid the navigator in selecting the quickest and safest routes; published by the Defense Mapping Agency Hydrographic/Topographic Center from data provided by the U.S. Naval Oceanographic Office and the Environmental Data and Information Service of the National Oceanic and Atmospheric Administration.
piloting, n. Navigation involving frequent or continuous determination of position relative to observed geographical points, to a high order of accuracy; directing the movements of a vessel near a coast by means of terrestrial reference points is called coast piloting. Sometimes called PILOTAGE. See also PILOTAGE, definition 1.
pilot rules. Regulations supplementing the Inland Rules of the Road, superseded by the adoption of the Inland Navigation Rules in 1980 (1983 on the Great Lakes).
pilot station. The office or headquarters of pilots; the place where the services of a pilot may be obtained.
pilot vessel. See PILOT BOAT.
pilot waters. 1. Areas in which the services of a marine pilot are essential. 2. Waters in which navigation is by piloting. Also called PILOTAGE WATERS.
pinnacle, n. A high tower or spire-shaped pillar of rock or coral on the sea floor, alone or cresting a summit. It may or may not be a hazard to surface navigation. Due to the steep rise from the sea floor no warning is given by sounding.
pinnacled iceberg. An iceberg weathered in such manner as to produce spires or pinnacles. Also called PYRAMIDAL ICEBERG, IRREGULAR ICEBERG.
pip, n. See BLIP.
pitch, n. 1. Oscillation of a vessel about the transverse axis due to the vessel's bow and stern being raised or lowered on passing through successive crests and troughs of waves. Also called PITCHING. See also SHIP MOTIONS. 2. The distance a propeller would advance longitudinally in one revolution if there were no slip.
pitch, $v ., i$. To oscillate about the transverse axis. See also SHIP MOTIONS.
pitching, n. See PITCH, definition 1.
pivot point. The point on the centerline between the bow and the center of gravity at which the resultant of the velocities of rotation and translation is directed along the centerline, after a ship has assumed its drift angle in a turn. To an observer on board, the ship appears to rotate about this point.
pixel. The smallest area of phosphors on a video terminal that can be excited to form a picture element.
place name. See TOPONYM.
plain, n. On the sea floor, a flat, gently sloping or nearly level region. Sometimes called ABYSSAL PLAIN in very deep water.
plan, $n .1$. An orthographic drawing or view on a horizontal plane, as of an instrument, a horizontal section, or a layout. 2. A large-scale map or chart of a small area, generally showing at increased scale a portion of the chart on which it is placed.
planar, $a d j$. Lying in a plane.
plane, n. A surface without curvature, such that a straight line joining any two of its points lies wholly on the surface.
plane of polarization. With respect to a plane polarized wave, the plane containing the electric field vector and the direction of propagation.
plane polarized wave. An electromagnetic wave the electric field vector of which lies at all times in a fixed plane which contains the direction of propagation.
plane sailing. A method of solving the various problems involving a single course and distance, difference of latitude, and departure, in which the earth, or that part traversed. is considered as a plane surface.
planet, n. A celestial body of a solar system, in orbit around the sun or a star and shining by reflected light. The larger of such bodies are sometimes called major planets to distinguish them from minor planets (asteroids) which are very much smaller. Larger planets may have satellites. In the solar system an inferior planet has an orbit smaller than that of the earth; a superior planet has an orbit larger than that of the earth. The four planets commonly used for celestial observations are called navigational planets. The word planet is of Greek origin, meaning, literally, wanderer, applied because the planets appear to move relative to the stars.
planetary, adj. Of a planet or the planets; terrestrial; worldwide.
planetary aberration. See under ABERRATION definition 1.
planetary configurations. Apparent positions of the planets relative to each other and to other bodies of the solar system, as seen from the earth.
planetary precession. The component of general precession caused by the effect of other planets on the equatorial protuberance of the earth producing an eastward motion of the equinoxes along the ecliptic. See also PRECESSION OF THE EQUINOXES.
planetoid, n. See ASTEROID.
plane triangle. A closed plane figure having three straight lines as sides.
planimetric map. A map indicating only the horizontal positions of features, without regard to elevation, in contrast with a TOPOGRAPHIC MAP, which indicates both horizontal and vertical positions.
planisphere, n. A representation on a plane of the celestial sphere, especially one on a polar projection, with means provided for making certain measurements such as altitude and azimuth. See also STAR FINDER.
plankton, n. Floating, drifting, or feebly swimming plant and animal organisms of the sea. These are usually microscopic or very small, although jellyfish are included.
planning chart. A chart designed for use in planning voyages or flight operations or investigating areas of marine or aviation activities.
plan position indicator. An intensity-modulated radar display in which the radial sweep rotates on the cathode-ray tube in synchronism with the rotating antenna. The display presents a maplike representation of the positions of echo-producing objects. It is generally one of two main types: RELATIVE MOTION DISPLAY or TRUE MOTION DISPLAY.
plastic relief map. A topographic map printed on plastic and molded into a three-dimensional form.
plateau, n. On the sea floor, a comparatively flat-topped feature of considerable extent, dropping off abruptly on one or more sides.
plate glass. A fine quality sheet glass obtained by rolling, grinding, and polishing.
platform erection. In the alignment of inertial navigation equipment, the alignment of the stable platform vertical axis with the local vertical.
platform tide. See STAND.
Platonic year. See GREAT YEAR.

Plimsoll mark. A mark on a ship's side indicating how deeply she may be loaded.
plot, n. A drawing consisting of lines and points representing certain conditions graphically, as the progress of a craft. See also NAVIGATIONAL PLOT.
plot, $v ., t$. To draw lines and points to represent certain conditions graphically, as the various lines and points on a chart or plotting sheet representing the progress of a vessel, a curve of magnetic azimuths vs. time or of altitude vs. time, or a graphical solution of a problem, such as a relative motion solution.
plotter, n. An instrument used for plotting straight lines and measuring angles on a chart or plotting sheet. See also PROTRACTOR.
plotting chart. An outline chart on a specific scale and projection, usually showing a graticule and compass rose, designed to be used ancillary to a standard nautical chart, and produced either as an independent chart or part of a coordinated series. See also POSITION PLOTTING SHEET.
plotting head. See REFLECTION PLOTTER.
plumb bob. A conical device, usually of brass and suspended by a chord, by means of which a point can be projected vertically into space over relatively short distances.
plumb-bob vertical. See LOCAL VERTICAL.
plumb line. 1. A line in the direction of gravity. 2. A cord with a weight at one end for determining the direction of gravity.
pluvial, $a d j$. Of or pertaining to rain. The expression pluvial period is often used to designate an extended period or age of heavy rainfall.
P.M. Abbreviation for Post Meridian; after noon in zone time.
pocosin, n. See DISMAL.
point, n. 1. A place having position, but no extent. 2. A tapering piece of land projecting into a body of water. It is generally less prominent than a CAPE. 3. One thirty-second of a circle, or $111 / 4^{\circ}$. Also called COMPASS POINT when used in reference to compass directions. See also FOUR-POINT BEARING.
point designation grid. A system of lines, having no relation to the actual scale or orientation, drawn on a map, chart, or air photograph, dividing it into squares so that points can be more readily located.
point light. A luminous signal without perceptible length, as contrasted with a LINEAR LIGHT which has perceptible length.
point of arrival. The position at which a craft is assumed to have reached or will reach after following specified courses for specified distance from a point of departure. See also DESTINATION.
point of departure. The point from which the initial course to reach the destination begins. It is usually established by bearings of prominent landmarks as the vessel clears a harbor and proceeds to sea. When a person establishes this point, he is said to take departure. Also called the DEPARTURE.
point of destination. See DESTINATION.
point of inflection. The point at which a reverse in direction of curvature takes place.
polar, adj. Of or pertaining to a pole or the poles.
polar air. A type of air whose characteristics are developed over high latitudes, especially Within the subpolar highs. Continental polar air has low surface temperature, low moisture content, and especially in its source regions, has great stability in the lower layers. It is shallow in comparison with arctic air. Maritime polar air initially possesses similar properties to those of continental polar air, but in passing over warmer water it becomes unstable with a higher moisture content.
polar axis. 1. The straight line connecting the poles of a body 2 . A reference line for one of the spherical coordinates.
polar cap absorption. See under POLAR DISTURBANCE.
polar cap disturbance. An ionospheric disturbance (which does not refer to the ice cap in the polar regions). It is a result of the focusing effect that the earth's magnetic field has on particles released from the sun during a solar proton event. The effect concentrates high-energy particles in the region of the magnetic pole with the result that normal very low frequency Omega propagation is disrupted. The effect on radio waves is known as POLAR CAP ABSORPTION (PCA). Historically, polar cap disturbances (PCDs) produced large or total absorption of high frequency radio waves crossing the polar region, hence the term POLAR CAP ABSORPTION. A transmission path which is entirely outside the polar region is unaffected by a PCD. The PCDs, often called PCA EVENTS (PCAs), may persist for a week or more, but duration of only a few days is more common. The PCD can cause line of position errors about 6 to 8
nautical miles. The Omega Propagation Correction Tables make no allowance for this phenomenon since it is not predictable. However, the frequency of the phenomenon increases during those years of peak solar activity. See also SUDDEN IONOSPHERIC DISTURBANCE, MODAL INTERFERENCE.
polar chart. 1. A chart of polar areas. 2. A chart on a polar projection. The projections most used for polar charts are the gnomonic, stereographic, azimuthal equidistant, transverse Mercator, and modified Lambert conformal.
polar circles. The minimum latitudes, north and south, at which the sun becomes circumpolar.
polar continental air. Air of an air mass that originates over land or frozen ocean areas in polar regions. Polar continental air is characterized by low temperature, stability, low specific humidity, and shallow vertical extent.
polar coordinates. A system of coordinates defining a point by its distance and direction from a fixed point, called the POLE. Direction is given as the angle between a reference radius vector and a radius vector to the point. If three dimensions are involved, two angles are used to locate the radius vector. See also SPACEPOLAR COORDINATES.
polar distance. Angular distance from a celestial pole; the arc of an hour circle between a celestial pole, usually the elevated pole, and a point on the celestial sphere, measured from the celestial pole through 180°. See also CODECLINATION.
polar front. The semi-permanent, semi-continuous front separating air masses of tropical and polar origin. This is the major front in terms of air mass contrast and susceptibility to cyclonic disturbance.
Polaris correction. A correction to be applied to the corrected sextant altitude of Polaris to obtain latitude. This correction for the offset of Polaris from the north celestial pole varies with the local hour angle of Aries, latitude, and date. See Q-CORRECTION.
polarization, n. The attribute of an electromagnetic wave which describes the direction of the electric field vector.
polarization error. An error in a radio direction finder bearing or the course indicated by a radiobeacon because of a change in the polarization of the radio waves between the transmitter and receiver on being reflected and refracted from the ionosphere. Because the medium frequency radio direction finder normally operates with vertically polarized waves, a change to horizontal polarization in the process of reflection and refraction of the waves from the ionosphere can have a serious effect on bearing measurements. If the horizontally polarized skywaves are of higher signal strength than the vertically polarized groundwaves, the null position for the loop antenna cannot be obtained. If the skywaves are of lower signal strength than the groundwaves, the null position is made less distinct. Before the cause of the error was understood, it was called NIGHT EFFECT or NIGHT ERROR because it occurs principally during the night, and especially during twilight when rapid changes are occurring in the ionosphere.
polar map projection. A map projection centered on a pole.
polar maritime air. An air mass that originates in the polar regions and is then modified by passing over a relatively warm ocean surface. It is characterized by moderately low temperature, moderately high surface specific humidity, and a considerable degree of vertical instability. When the air is colder than the sea surface, it is further characterized by gusts and squalls, showery precipitation, variable sky, and good visibility between showers.
polar motion. See EULERIAN MOTION.
polar navigation. Navigation in polar regions, where unique considerations and techniques are applied. No definite limit for these regions is recognized but polar navigation techniques are usually used from about latitude $70^{\circ} \mathrm{N}$.
polar orbit. An earth satellite orbit that has an inclination of about 90° and, hence, passes over or near the earth's poles.
polar orthographic map projection. An orthographic map projection having the plane of the projection perpendicular to the axis of rotation of the earth, in this projection, the geographic parallels are full circles, true to scale, and the geographic meridians are straight lines.
polar regions. The regions near the geographic poles. No definite limit for these regions is recognized.
polar satellite. A satellite that passes over or near the earth's poles, i.e., a satellite whose orbital plane has an inclination of about 90° to the plane of the earth's equator.
polar stereographic map projection. A stereographic map projection having the center of the projection located at a pole of the sphere.
pole, n. 1. Either of the two points of intersection of the surface of a sphere or spheroid and its axis, labeled N or S to indicate whether the north pole or south pole. The two points of intersection of the surface of the earth with its axis are called geographical poles. The two points of intersection of the celestial sphere and the extended axis of the earth are called celestial poles. The celestial pole above the horizon is called the elevated pole; that below the horizon the depressed pole. The ecliptic poles are 90° from the ecliptic. Also, one of a pair of similar points on the surface of a sphere or spheroid, as a magnetic pole, definition 1; a geomagnetic pole; or a fictitious pole. 2. A magnetic pole, definition 2.3. The origin of measurement of distance in polar or spherical coordinates. 4. Any point around which something centers.
pole beacon. A vertical spar fixed in the ground or in the sea bed or a river bed to show as a navigation mark. Sometimes called SPINDLE BEACON or SINGLE-PILE BEACON in the United States.
polyconic, $a d j$. Consisting of or related to many cones.
polyconic chart. A chart on the polyconic map projection.
polyconic map projection. A conic map projection in which the surface of a sphere or spheroid, such as the earth, is conceived as developed on a series of tangent cones, which are then spread out to form a plane. A separate cone is used for each small zone. This projection is widely used for maps but seldom used for charts, except for survey purposes. It is not conformal.
polygon, n. A closed plane figure bounded by straight lines. See also HEXAGON, OCTAGON, PARALLELOGRAM, PENTAGON, QUADRILATERAL, RECTANGLE, SQUARE, TRAPEZOID, TRIANGLE.
polynya, n. A non-linear shaped area of water enclosed by ice. Polynyas may contain brash ice and/or be covered with new ice, nilas, or young ice; submariners refer to these as SKYLIGHTS. Sometimes the POLYNYA is limited on one side by the coast and is called a SHORE POLYNYA or by fast ice and is called a FLAW POLYNYA. If it recurs in the same position every year, it is called a RECURRING POLYNYA.
polyzoa, n., $p l$. Very small marine animals which reproduce by budding, many generations often being permanently connected by branchlike structures. These animals are often very numerous and in some areas they cover the bottom. Also called BRYOZOA.
pond, n. A relatively small body of water, usually surrounded on all sides by land. A larger body of water is called a LAKE.
pontoon, n. A float or low, flat-bottomed vessel to float machinery such as cranes, capstans, etc. or to support weights such as floating bridges boat landings, etc.
pool, n. 1. A small body of water, usually smaller than a pond, especially one that is quite deep. One left by an ebb tide is called a tide pool. 2. A small and comparatively still, deep part of a larger body of water such as a river or harbor.
poop, n. A short enclosed structure at the stern of a vessel, extending from side to side. It is covered by the poop deck, which is surrounded by the poop rail.
pooped. To have shipped a sea or wave over the stern.
pororoca, n. See TIDAL BORE.
port, n. 1. A place provided with moorings and transfer facilities for loading and discharging cargo or passengers, usually located in a harbor. 2. The left side of a craft, facing forward. The opposite is STARBOARD.
portfolio, n. A portable case for carrying papers. See also CHART PORTFOLIO.
port hand buoy. A buoy which is to be left to the port side when approaching from the open sea or proceeding in the direction of the main stream of flood current, or in the direction established by appropriate authority.
port of call. A port visited by a ship.
Portugal Current. A slow-moving current that is the prevailing southward flow off the Atlantic coasts of Spain and Portugal. Its speed averages only about 0.5 knot during both winter and summer. The maximum speed seldom exceeds 2.0 knots north of latitude $40^{\circ} \mathrm{N}$ and 2.5 knots south of $40^{\circ} \mathrm{N}$. It is easily influenced by winds.
Portuguese norther. See under NORTHER.
position, n. A point defined by stated or implied coordinates, particularly one on the surface of the earth. A fix is a relatively accurate position determined without reference to any former position. A running fix is a position determined by crossing lines of position obtained at different times and advanced or retired to a common time. An estimated position is determined from incomplete data or data of questionable accuracy. A dead reckoning position is determined by advancing a previous position for courses and distances. A most probable position is a position judged to be most accurate when an element of doubt exists as to the true position. It may be a fix, running fix, estimated position, or dead reckoning position depending upon the information upon which it is based. An assumed position is a point at which a craft is assumed to be located. A geographical position is that point on the earth at which a given celestial body is in the zenith at a specified time, or any position defined by means of its geographical coordinates. A geodetic position is a point on the earth the coordinates of which have been determined by triangulation from an accurately known initial station, or one defined in terms of geodetic latitude and longitude. An astronomical position is a point on the earth whose coordinates have been determined as a result of observation of celestial bodies, or one defined in terms of astronomical latitude and longitude. A maritime position is the location of a seaport or other point along a coast. A relative position is one defined with reference to another position, either fixed or moving. See also PINPOINT, LINE OF POSITION, BAND OF POSITION, SURFACE OF POSITION.
position angle. See PARALLACTIC ANGLE.
position approximate. Of inexact position. The expression is used principally on charts to indicate that the position of a wreck, shoal, etc., has not been accurately determined or does not remain fixed.
position buoy. An object towed astern to assist a following vessel in maintaining the desired or prescribed distance, particularly in conditions of low visibility.
position circle. 1. The chart symbol denoting the position of a buoy. 2. See CIRCLE OF POSITION.
position doubtful. Of uncertain position. The expression is used principally on charts to indicate that a wreck, shoal, etc., has been reported in various positions and not definitely determined in any. See also VIGIA.
positioning, n. The process of determining, at a particular point in time, the precise physical location of a craft, vehicle, person or site.
position line. See LINE OF POSITION.
position plotting sheet. A blank chart, usually on the Mercator projection, showing only the graticule and a compass rose. The meridians are usually unlabeled by the publisher so that they can be appropriately labeled when the chart is used in any longitude. It is designed and intended for use in conjunction with the standard nautical chart. See also SMALL AREA PLOTTING SHEET, UNIVERSAL PLOTTING SHEET, PLOTTING CHART.
post meridian (PM). After noon, or the period of time between noon (1200) and midnight (2400). The period between midnight and noon is called ANTE MERIDIAN.
potential, n. The difference in voltage at two points in a circuit.
potential energy. Energy possessed by a body by virtue of its position, in contrast with KINETIC ENERGY, that possessed by virtue of its motion.
pound, n. A unit of mass equal to 0.45359237 kilograms. Also called AVOIRDUPOIS POUND.
pound, $v ., i$. To strike oncoming waves repeatedly or heavily.
pounding, n. A series of shocks received by a pitching vessel as it repeatedly or heavily strikes the water in a heavy sea. The shocks can be felt over the entire vessel and each one is followed by a short period of vibration.
power, n. 1. Rate of doing work. 2. Luminous intensity. 3. The number of times an object is magnified by an optical system, such as a telescope. Usually called MAGNIFYING POWER. 4. The result of multiplying a number by itself a given number of times. See also EXPONENT.
power gain (of an antenna). See DIRECTIVITY, definition 2.
power gain (of a transmitter). The ratio of the output power delivered to a specified load by an amplifier to the power absorbed by its input circuit.
power (of a radio transmitter), n. The power of a radio transmitter is expressed in one of the following forms: The peak envelope power is the average power supplied to the antenna transmission line by a transmitter during one radio frequency cycle at the highest crest of the modulation envelope, taken under conditions of normal operation. The mean power is the power supplied to the antenna transmission line by a transmitter during normal operation, averaged over a time sufficiently long compared with the period of the lowest frequency encountered in the modulation. The carrier power is the average power supplied to the antenna transmission line by a transmitter during one radio frequency cycle under conditions of no modulation. This definition does not apply to pulse modulated emissions.
PPI display. See as PLAN POSITION INDICATOR.
PPI repeater. See RADAR REPEATER.
precautionary area. A routing measure comprising an area within defined limits where ships must navigate with particular caution and within which the direction of traffic flow may be recommended. See also ROUTING SYSTEM.
precession, n. The change in the direction of the axis of rotation of a spinning body, as a gyroscope, when acted upon by a torque. The direction of motion of the axis is such that it causes the direction of spin of the gyroscope to tend to coincide with that of the impressed torque. The horizontal component of precession is called drift, and the vertical component is called topple. Also called INDUCED PRECESSION, REAL PRECESSION. See also APPARENT PRECESSION, PRECESSION OF THE EQUINOXES.
precession in declination. The component of general precession along a celestial meridian, amounting to about 20.0" per year.
precession in right ascension. The component of general precession along the celestial equator, amounting to about 46.1" per year.
precession of the equinoxes. The conical motion of the earth's axis about the vertical to the plane of the ecliptic, caused by the attractive force of the sun, moon, and other planets on the equatorial protuberance of the earth. The effect of the sun and moon, called lunisolar precession, is to produce a westward motion of the equinoxes along the ecliptic. The effect of other planets, called planetary precession, tends to produce a much smaller motion eastward along the ecliptic. The resultant motion, called general precession, is westward along the ecliptic at the rate of about 50.3" per year. The component of general precession along the celestial equator, called precession in right ascension, is about $46.1^{\prime \prime}$ per year and the component along a celestial meridian, called precession in declination, is about 20.0" per year.
precipice, n. A high and very steep cliff.
precipitation, n. 1. Any or all forms of water particles, whether liquid or solid, that fall from the atmosphere and reach the ground. It is distinguished from cloud, fog, dew, rime, frost, etc., in that it must fall; and it is distinguished from cloud and virga in that it must reach the ground. Precipitation includes drizzle, rain, snow, snow pellets, snow grains, ice crystals, ice pellets, and hail. 2. The amount usually expressed in inches of liquid water depth, of the water substance that has fallen at a given point over a specified period of time.
precipitation static. A type of interference experienced in a radio receiver, during snow storms, rain storms, and dust storms, caused by the impact of dust particles against the antenna. It may also be caused by the existence of induction fields created by nearby corona discharges.
precipitation trails. See VIRGA.
precision, n. A measure of how close the outcome of a series of observations or measurement cluster about some estimated value of a desired quantity. Precision implies repeatability of the observations within some specified limit and depends upon the random errors encountered due to the quality of the observing instrument, the skill of the observer and randomly fluctuating conditions such as tem-
perature, pressure, refraction, etc. Precision should not be confused with ACCURACY. Observations may be of high precision but inaccurate due to the presence of systematic errors. For a quantity to be accurately measured, both systematic and random errors should be small. For a quantity to be known with high precision, only the random errors due to irregular effects need to be small. See ERROR.
precision graphic recorder. A device used with the standard hydrographic echo sounder in ocean depths where soundings cannot be recorded on the expanded scale of the standard recorder. It provides a sounding record with a scale expansion and high accuracy. Commonly called a PGR.
precision index. A measure of the magnitude of the random errors of a series of observations of some given quantity. If the precision index is large, most of the random errors of the observations are small. The precision index appears as a parameter in the normal (Gaussian) distribution law. While making a series of observations, the standard deviation can be calculated. The precision index is then calculated using a formula and a measure of the precision of the observing instrument is obtained. See also RANDOM ERROR, NORMAL DISTRIBUTION, PRECISION, STANDARD DEVIATION.
Precise Positioning Service. The most accurate military positioning service of the Global Positioning System.
precomputation, n. The process of making navigational solutions in advance; applied particularly to the determination of computed altitude and azimuth before making a celestial observation for a line of position. When this is done, the observation must be made at the time used for the computation, or a correction applied.
precomputed altitude. The altitude of a celestial body computed before observation, and with the sextant altitude corrections applied with reversed sign. When a precomputed altitude has been calculated, the altitude difference can be determined by comparison with the sextant altitude.
precomputed curve, A graphical representation of the azimuth or altitude of a celestial body plotted against time for a given assumed position, computed for use with celestial observations.
predictability, n. In a navigation system, the measure of the accuracy with which the system can define the position in terms of geographical coordinates. See also REPEATABILITY, definition 2.
predicable accuracy. The accuracy of predicting position with respect to precise space and surface coordinates. See also REPEATABLE ACCURACY.
predicted tides. The times and heights of the tide as given in the Tide Tables in advance of their occurrence.
predicting machine. See TIDE PREDICTING MACHINE.
preferred datum. A geodetic datum selected as a base for consolidation of local independent datums within a geographical area. Also called MAJOR DATUM.
pressure, n. Force per unit area. The pressure exerted by the weight of the earth's atmosphere is called atmospheric or, if indicated by a barometer, barometric pressure. Pressure exerted by the vapor of a liquid is called vapor pressure. The pressure exerted by a fluid as a result of its own weight or position is called static pressure. Pressure exerted by radiant energy is called radiation pressure.
pressure gage. A tide gage that is operated by the change in pressure at the bottom of a body of water due to rise and fall of the tide.
pressure tendency. The character and amount of atmospheric pressure change for a 3-hour or other specified period ending at the time of observation. Also called BAROMETRIC TENDENCY.
prevailing westerlies. The prevailing westerly winds on the poleward sides of the sub-tropical high-pressure belts.
prevailing wind. The average or characteristic wind at any place.
primary, n. See PRIMARY BODY.
primary body. The celestial body or central force field about which a satellite orbits, or from which it is escaping, or towards which it is falling. The primary body of the earth is the sun, the primary body of the moon is the earth. Usually shortened to PRIMARY.
primary circle. See PRIMARY GREAT CIRCLE.
primary control tide station. A tide station at which continuous observations have been made over a minimum of a 19-year Metonic cycle. Its purpose is to provide data for computing accepted values of the harmonic and non harmonic constants essential to tide predictions and to the determination of tidal datums for charting and coastal boundaries. The data series from this station serves as a primary
control for the reduction of relatively short series from subordinate tide stations through the method of comparisons of simultaneous observations, and for monitoring long-period sea-level trends and variations. See also TIDE STATION; SUBORDINATE TIDE STATION, definition 1; SECONDARY CONTROL TIDE STATION; TEMPORARY TIDE STATION.
primary great circle. A great circle used as the origin of measurement of a coordinate; particularly such a circle 90° from the poles of a SYSTEM of spherical coordinates, as the equator. Also called PRIMARY CIRCLE, FUNDAMENTAL CIRCLE.
primary radar. 1. Radar which transmits a SIGNAL and receives the incident energy reflected from an object to detect the object. 2. As defined by the International Telecommunications Union (ITU), a radio-determination system based on the comparison of reference signals with radio signals reflected from a position to be determined.
primary seacoast light. A light established for purpose of making landfall or coastwise past from headland to headland. Also called LAND FALL LIGHT.
primary tidal bench mark. See under BENCH MARK.
primary tide station. See PRIMARY CONTROL TIDE STATION.
prime fictitious meridian. The reference meridian (real or fictitious) used as the origin for measurement of fictitious longitude. Prime grid meridian is the reference meridian of a grid; prime transverse or prime inverse meridian is the reference meridian of a transverse graticule; prime oblique meridian is the reference fictitious meridian of an oblique graticule.
prime grid meridian. The reference meridian of a grid. In polar regions it is usually the $180^{\circ}-0^{\circ}$ geographic meridian, used as the origin for measuring grid longitude.
prime inverse meridian. See PRIME TRANSVERSE MERIDIAN.
prime meridian. The 0° meridian of longitude, used as the origin for measurement of longitude The meridian of Greenwich, England, is almost universally used for this purpose. See also PRIME FICTITIOUS MERIDIAN.
prime oblique meridian. The reference fictitious meridian of an oblique graticule.
prime transverse meridian. The reference meridian of a transverse graticule. Also called PRIME INVERSE MERIDIAN.
prime vertical. See PRIME VERTICAL CIRCLE.
prime vertical circle. The vertical circle perpendicular to the principal vertical circle. The intersections of the prime vertical circle with the horizon define the east and west points of the horizon. Often shortened to PRIME VERTICAL; Sometimes called TRUE PRIME VERTICAL to distinguish from magnetic, compass, or grid prime vertical, defined as the vertical circle passing through the magnetic, compass, or grid east and west points of the horizon, respectively.
priming of tide. The periodic acceleration in the time of occurrence of high and low waters due changes in the relative positions of the moon and the sun. Priming occurs when the moon between new and first quarter and between full and third quarter. High tide occurs before transit of the moon. Lagging occurs when the moon is between first quarter and full and between third quarter and new. High tide occurs after transit of the moon. See also LAGGING OF TIDE.
principal vertical circle. The vertical circle passing through the north and south celestial poles. The intersection of the principal vertical circle with the horizon defines the north and south points of the horizon.
priority blanking. See DUAL-RATE BLANKING.
prism, n. A solid having parallel, similar, equal, plane geometric figures as bases, and parallelograms as sides. By extension, the term is also applied to a similar solid having nonparallel bases, and trapezoids or a combination of trapezoids and parallelograms as sides. Prisms are used for changing the direction of motion of a ray of light and for forming spectra.
prismatic error. That error due to lack of parallelism of the two faces of an optical element, such as a mirror or a shade glass. See also SHADE ERROR.
private aids to navigation. In United States waters, those aids to navigation not established and maintained by the U.S. Coast Guard. Private aids include those established by other federal agencies with prior U.S. Coast Guard approval, aids to navigation on marine structures or other works which the owners are legally obligated to establish, maintain, and operate as prescribed by the U.S. Coast Guard, and those aids which are merely desired, for one reason or
another, by the individual corporation, state or local government or other body that has established the aid with U.S. Coast Guard approval.
probable error. A measure of the dispersion or spread of a series of observations about some value, usually the mean or average value of all the observations. See also CIRCULAR ERROR PROBABLE.
processor. The brain of a computer, which executes programs to do work. Also known more correctly as the CENTRAL PROCESSING UNIT (CPU).
production platform. A term used to indicate a permanent offshore structure equipped to control the flow of oil or gas. For charting purposes, the use of the term is extended to include all permanent platforms associated with oil or gas production, e.g. field terminal, drilling and accommodation platforms, and "booster" platforms sited at intervals along some pipelines. It does not include entirely submarine structures.
prognostic chart. A chart showing, principally, the expected pressure pattern of a given synoptic chart at a specified future time. Usually, positions of fronts are also included, and the forecast values of other meteorological elements may be superimposed.
program. A set of instructions which a computer executes to perform work. Programs are written in one of many LANGUAGES, which translate the instructions into MACHINE LANGUAGE used by the PROCESSOR.
progressive wave. In the ocean, a wave that advances in distance along the sea surfaces or at some intermediate depth. Although the wave form itself travels significant distances, the water particles that make up the wave merely describe circular (in relatively deep water) or elliptical (in relatively shallow water) orbits. With high, steep, wind waves, a small overlap in the orbit motion becomes significant. This overlapping gives rise to a small net transport.
prohibited area. 1. An area shown on nautical charts within which navigation and/or anchoring is prohibited except as authorized by appropriate authority. 2. A specified area within the land areas of a state or territorial waters adjacent thereto over which the flight of aircraft is prohibited. See also DANGER AREA, RESTRICTED AREA.
projection, n. The extension of lines or planes to intersect a given surface; the transfer of a point from one surface to a corresponding position on another surface by graphical or analytical means. See also MAP PROJECTION.
projector compass. A magnetic compass in which the lubber's line and compass card, or a portion thereof, are viewed as an image projected through a system of lenses upon a screen adjacent to the helmsman's position. See also REFLECTOR COMPASS.
prolate cycloid. See TROCHOID.
prolate spheroid. An ellipsoid of revolution, the longer axis of which is the axis of revolution. An ellipsoid of revolution, the shorter axis of which is the axis of REVOLUTION, is called an OBLATE SPHEROID.
promontory, n. High land extending into a large body of water beyond the line of the coast. Called HEADLAND when the promontory is comparatively high and has a steep face. Also called FORELAND.
propagation, n. The travel of waves of energy through or along a medium other than a specially constructed path such as an electrical circuit.
proper motion. The component of the space motion of a celestial body perpendicular to line of sight, resulting in the change of a stars apparent position relative to other stars. Proper motion is expressed in angular units.
proportional dividers. An instrument consisting in its simple form of two legs pointed at both ends and provided with an adjustable pivot, so that for any given pivot setting, the distance between one set of pointed ends always bears the same ratio to the distance between the other set. A change in the pivot changes the ratio. The dividers are used in transferring measurements between charts or other graphics which are not the same scale.
proportional parts. Numbers in the same proportion as a set of given numbers. Such numbers are used in an auxiliary interpolation table based on the assumption that the tabulated quantity and entering arguments differ in the same proportion. For each intermediate argument a "proportional part" or number is given to be applied the preceding tabulated value in the main table.
protractor, n. An instrument for measuring angles on a surface; an angular scale. In its most usual form it consists of a circle or part of one (usually a semicircle) graduated in degrees. See also COMPASS ROSE, THREE-ARM PROTRACTOR.
province, n. On the sea floor, a region identifiable by a group of similar physiographic features whose characteristics are markedly in contrast with surrounding areas.
pseudo-independent surveillance. Position determination that relies on craft or vehicle cooperation but is not subject to craft or vehicle navigational errors (e.g., secondary radar).
pseudo-random noise. An apparently random but reproducible sequence of binary code used in the GPS signal.
pseudo-range. Measure of distance from GPS satellite to receiver, uncorrected for synchronization errors between satellite and receiver clocks.
psychrometer, n. A type of hygrometer (an instrument for determining atmospheric humidity) consisting of dry-bulb and wet-bulb thermometers. The dry-bulb thermometer indicates the temperature of the air, and the wet bulb thermometer the lowest temperature to which air can be cooled by evaporating water into it at constant pressure. With the information obtained from a psychrometer, the humidity, dew point, and vapor pressure for any atmospheric pressure can be obtained by means of appropriate tables.
psychrometric chart. A nomogram for graphically determining relative humidity, absolute humidity, and dew point from wet- and dry-bulb thermometer readings.
pteropod (pl.pteropoda), n. A small marine animal with or without a shell and having two thin, winglike feet. These animals are often so numerous they may cover the surface of the sea for miles. In some areas, their shells cover the bottom.
Pub. No. 9. The American Practical Navigator. A publication of the Defense Mapping Agency Hydrographic/Topographic Center, originally by Nathaniel Bowditch (1773-1838) and first published in 1802, comprising a complete manual of navigation with tables for solution of navigational problems. Popularly called BOWDITCH.
Pub. No. 102. International Code of Signals. A publication of the Defense Mapping Agency Hydrographic/Topographic Center intended primarily for communication at sea in situations involving safety of life at sea and navigational safety, especially when language difficulties arise between ships or stations of different nationalities. The Code is suitable for transmission by all means of communication, including radiotelephony, radiotelegraphy, sound, flashing light, and flags.
Pub.117. Radio Navigational Aids. A publication of the Defense Mapping Agency Hydrographic/Topographic Center which contains data on radio aids to navigation services provided to mariners. Information on radio direction finder and radar stations, radio time signals, radio navigational warnings, distress signals, stations transmitting medical advice, long range radionavigation systems, emergency procedures and communications instructions, listed in text and tabular format.
Pub. 150. World Port Index. A publication of the Defense Mapping Agency Hydrographic/Topographic Center listing the location, characteristics, known facilities, and available services of ports, shipping facilities and oil terminals throughout the world. The applicable chart and Sailing Direction volume is given for each place listed. A code indicates certain types of information.
Pub.151.Distances Between Ports. A publication of the Defense Mapping Agency Hydrographic/Topographic Center providing calculated distances in nautical miles over water areas between most of the seaports of the world. A similar publication published by the National Ocean Service of United States waters is entitled Distances between United States Ports.
Pub.217. Maneuvering Board Manual. A publication of the Defense Mapping Agency Hydrographic/Topographic Center providing explanations and examples of various problems involved in maneuvering and in relative movement.

Pub.221. Loran C Table. A series of tables published by the Defense Mapping Agency Hydrographic/Topographic Center, published primarily for manufacturers who use computers to correct Loran C time differences to geographic coordinates. The tables also correct time differences for ASF.
Pub.224. Omega Tables. A series of tables published by the Defense Mapping Agency Hydrographic/Topographic Center providing the tabular counterpart of the Omega chart. With the appropriate charting coordinate or lattice table, Omega lines of position can be plotted on suitable a plotting sheet or chart having a scale large as 1:800,000. 2. Omega Propagation Correction Tables; a series of tables published by the Defense Mapping Agency Hydrographic/Topographic Center providing necessary data for correcting Omega Navigation System receiver readouts affected by the prevailing propagation conditions, to the standard conditions on which all Omega hyperbolic charts and lattice tables are based.
Pub. No. 226. Handbook of Magnetic Compass Adjustment. A publication of the Defense Mapping Agency Hydrographic/Topographic Center, providing information for adjustment of marine magnetic compasses.
Pub. No. 229. Sight Reduction Tables for Marine Navigation. A publication of the Defense Mapping Agency Hydrographic/Topographic Center, in six volumes each of which includes two 8° zones of latitude. An overlap of 1° of latitude occurs between volumes. The six volumes cover latitude bands $0^{\circ}-15^{\circ}, 15^{\circ}-30^{\circ}, 30^{\circ}-45^{\circ}, 45^{\circ}-60^{\circ}$, $60^{\circ}-75^{\circ}$, and $75^{\circ}-90^{\circ}$. For entering arguments of integral degrees of latitude, declination, and local hour angle, altitudes and their differences are tabulated to the nearest tenth of a minute, azimuth angles to the nearest tenth of a degree. The tables are designed for precise interpolation of altitude for declination only by means of interpolation tables which facilitate linear interpolation and provide additionally for the effect of second differences. The data are applicable to the solutions of sights of all celestial bodies; there are no limiting values of altitude, latitude, hour angle, or declination
Pub. No. 249. Sight Reduction Tables for Air Navigation. A publication of the Defense Mapping Agency Hydrographic/Topographic Center, in three volumes, with volume 1 containing tabulated altitudes and azimuths of selected stars, the entering arguments being latitude, local hour angle of the vernal equinox, and the name of the star; and volumes 2 and 3 containing tabulated altitudes and azimuth angles of any body within the limits of the entering arguments, which are latitude, local hour angle, and declination ($0^{\circ}-29^{\circ}$) of the body.
Pub. 1310. Radar Navigation Manual. A publication of the Defense Mapping Agency Hydrographic/Topographic Center which explains the fundamentals of shipboard radar, radar operation collision avoidance, radar navigation, and radar-assisted vessel traffic systems in the U.S.
puddles n. An accumulation of melt-water on ice, mainly due to melting snow, but in the more advanced stages also due to the melting of ice.
pulse, n. A short burst of electromagnetic energy, such as emitted by a radar.
pulse decay time. The interval of time required for the trailing edge of a pulse to decay from 90 percent to 10 percent of the pulse amplitude.
pulse duration. The time interval during which the amplitude of a pulse is at or greater than a specified value, usually stated in terms of a fraction or percentage of the maximum value
pulse duration error. A range distortion of a radar return caused by the duration of the pulse. See also SPOT-SIZE ERROR.
pulse group. See PULSE TRAIN.
pulse interval. See PULSE SPACING.
pulse length. See PULSE DURATION.
pulse-modulated radar. The type of radar generally used for shipboard navigational applications. The radio-frequency energy transmitted by a pulse-modulated radar consists of a series of equally spaced short pulses having a pulse duration of about 1 microsecond or less. The distance to the target is determined by measuring the transmit time of a pulse and its return to the source as a reflected echo. Also called PULSE RADAR.
pulse modulation. 1. The modulation of a carrier wave by a pulse train. In this sense, the term describes the process of generating carrier-frequency pulses. 2. The modulation of one or more characteristics of a pulse carrier. In this sense, the term describes methods of transmitting information on a pulse carrier.
pulse radar. See PULSE-MODULATED RADAR.
pulse repetition frequency. The pulse repetition rate of a periodic pulse train.
pulse repetition rate. The average number pulses per unit of time. See also PULSE REPETITION FREQUENCY.
pulse rise time. The interval of time required for the leading edge of a pulse to rise from 10 to 90 percent of the pulse amplitude.
pulse spacing. The interval between corresponding points on consecutive pulses. Also called PULSE INTERVAL.
pulse train. A series of pulses of similar characteristics. Also called PULSE GROUP, IMPULSE TRAIN.
pulse width. See PULSE DURATION.
pumice, n. Cooled volcanic glass with a great number of minute cavities caused by the expulsion of water vapor at high temperature, resulting in a very light rocky material.
pumping, n. Unsteadiness of the mercury in a barometer, caused by fluctuations of the air pressure produced by a gusty wind or due to the motion of a vessel.
pure sound. See PURE TONE.
pure tone. A sound produced by a sinusoidal acoustic oscillation. Also called PURE SOUND.
purple light. The faint purple glow observed on clear days over a large region of the western sky after sunset and over the eastern sky before sunrise.
put to sea. To leave a sheltered area and head out to sea.
pyramidal iceberg. See PINNACLED ICEBERG.

Q

Q-band. A radio-frequency band 36 to 46 gigahertz. See also FREQUENCY, FREQUENCY BAND.
Q-correction. The Polaris correction as tabulated in the Air Almanac.
Q signals. Conventional code signals used in radiotelegraphy, each signal of three letters beginning with Q and representing a complete sentence.
quadrant, n. 1. A quarter of a circle; either an arc of 90° or the area bounded by such an arc and two radii. 2. A double-reflecting instrument for measuring angles used primarily for measuring altitudes of celestial bodies.
quadrantal correctors. Masses of soft iron placed near a magnetic compass to correct for quadrantal deviation. Spherical quadrantal correctors are called quadrantal spheres.
quadrantal deviation. Deviation which changes its sign (E or W) approximately each 90° change of heading. It is caused by induced magnetism in horizontal soft iron.
quadrantal error. An error which changes sign (plus or minus) each 90°. Also called INTERCARDINAL ROLLING ERROR when related to a gyrocompass.
quadrantal point. See INTERCARDINAL POINT
quadrantal spheres. Two hollow spheres of soft iron placed near a magnetic compass to correct for quadrantal deviation. See also QUADRANTAL CORRECTORS.
quadrant with two arcs. See BACKSTAFF.
quadrature, n. An elongation of 90° usually specified as east or west in accordance with the direction of the body from the sun. The moon is at quadrature at first and last quarters.
quadrilateral, $a d j$. Having four sides.
quadrilateral, n. A closed plane figure having four sides. See also PARALLELOGRAM, TRAPEZOID.
quarantine anchorage. An area where a vessel anchors while satisfying quarantine regulations.
quarantine buoy. A buoy marking the location of a quarantine anchorage. In U.S. waters a quarantine buoy is yellow.
quarantine mark. A navigation mark indicating a quarantine anchorage area for shipping, or defining its limits.
quartering sea. Waves striking the vessel on the quarter, or relative bearings approximately $045^{\circ}, 135^{\circ}, 225^{\circ}$, and 315°.
quarter-power points. See under HALF-POWER POINTS.
quartz, n. Crystalline form of silica. In its most common form it is colorless and transparent, but it takes a large variety of forms of varying degrees of opaqueness and color. It is the most common solid mineral.
quartz clock. See QUARTZ CRYSTAL CLOCK.
quartz crystal clock. A precision timepiece, consisting of a current generator of constant frequency controlled by a resonator made of quartz crystal with suitable methods for producing continuous rotation to operate time-indicating and related mechanisms. See also QUARTZ CRYSTAL MARINE CHRONOMETER.
quartz crystal marine chronometer. A quartz crystal clock intended for marine use. The degree of accuracy is such that it requires no chronometer rate, but can be reset electrically if necessary.
quasi-stationary front. See STATIONARY FRONT.
quay, n. A structure of solid construction along a shore or bank which provides berthing for ships and which usually provides cargo handling facilities. A similar facility of open construction is called WHARF. See also MOLE, definition 1.
quick flashing light. A light flashing 50-80 flashes per minute. See also CONTINUOUS QUICK LIGHT, GROUP QUICK LIGHT, INTERRUPTED QUICK LIGHT.
quick light. See QUICK FLASHING LIGHT.
quicksand, n. A loose mixture of sand and water that yields to the pressure of heavy objects. Such objects are difficult to extract once they begin sinking.
quiet sun. The sun when it is free from unusual radio wave or thermal radiation such as that associated with sun spots.
quintant, n. A double-reflecting instrument for measuring angles, used primarily for measuring altitudes of celestial bodies, having an arc of 72°.

R

race, n. A rapid current or a constricted channel in which such a current flows. The term is usually used only in connection with a tidal current, when it may be called a TIDE RACE.
racon, n. As defined by the International Telecommunication Union (ITU), in the maritime radionavigation service, a receiver-transmitter device which, when triggered by a surface search radar, automatically returns a distinctive signal which can appear on the display of the triggering radar, providing range, bearing and identification information. See also IN-BAND RACON, CROSS BAND RACON, SWEPT-FREQUENCY RACON, RAMARK. Also called RADAR TRANSPONDER BEACON.
radar, n. 1. (from radio detection and ranging) A radio system which measures distance and usually direction by a comparison of reference signals with the radio signals reflected or retransmitted from the target whose position is to be determined. Pulse-modulated radar is used for shipboard navigational applications. In this type of radar the distance to the target is determined by measuring the time required for an extremely short burst or pulse of radio-frequency energy to travel to the target and return to its source as a reflected echo. Directional antennas allow determination of the direction of the target echo from the source. 2. As defined by the International Telecommunication Union (ITU) a radiodetermination system based on the comparison of reference signals with radio signals reflected, or re-transmitted, from the position to be determined.
radar beacon. A radar transmitter whose emissions enable a ship to determine its direction and frequently position relative to the transmitter using the ship's radar equipment. There are two general types of radar beacons: one type, the RACON, must be triggered by the ship's radar emissions; the other type, the RAMARK transmits continuously and provides bearings only. See also TRANSPONDER.
radar bearing. A bearing obtained by radar.
radar buoy. A buoy having corner reflectors designed into the superstructure, the characteristic shape of the buoy being maintained. This is to differentiate from a buoy on which a corner reflector is mounted.
radar conspicuous object. An object which return a strong radar echo which can be identified with a high degree of certainty.
radar cross section. The area of a plane element situated at the position of an object and normal to the direction of the radar transmitter, which would be traversed by a power such that, if the power were re-radiated equally in all directions with suitable polarization, it would give an echo of the same power as that given by the object itself. Also called EQUIVALENT ECHOING AREA.
radar echo. See ECHO, definition 3.
radar fix. A fix established by means of radar.
radar horizon. The sensible horizon of a radar antenna.
radar indicator. A unit of a radar set which provides a visual indication of radar echoes received using a cathode-ray tube or video monitor. Besides the cathode-ray tube, the radar indicator is comprised of sweep and calibration circuit; and associated power supplies. Often shortened to INDICATOR.
radar link. A means by which the information from a radar set is reproduced at a distance by use of a radio link or cable. Also called RADAR RELAY SYSTEM.
radar nautical mile. The time interval required for the electromagnetic energy of a radar pulse to travel 1 nautical mile and the echo to return; approximately 12.4 microseconds.
radar picture. See DISPLAY, definition 1.
radar range. 1 . The distance of a target as measured by radar. 2 . The maximum distance at which a radar is effective in detecting targets. Radar range depends upon variables such as the weather, transmitted power, antenna height, pulse duration, receiver sensitivity, target size, target shape, etc.
radar receiver. A unit of a radar set which demodulates received radar echoes, amplifies the echoes and delivers them to the radar indicator. A radar receiver differs from the usual superheterodyne communications receiver in that its sensitivity is much greater; it has a better signal noise ratio, and it is designed to pass a pulse-type signal.
radar reference line. A mid-channel line on a chart which corresponds to a line incorporated in harbor radar display for the purpose of providing a reference for informing a vessel of its position. In some cases the line may be coincident with the recommended track. The line may be broken into sections of specified length having assigned names or numbers.
radar reflector. A device arranged so that incident electromagnetic energy reflects back to its source. See also CORNER REFLECTOR, PENTAGONAL CLUSTER, OCTAHEDRAL CLUSTER, DIHEDRAL REFLECTOR, DIELECTRIC REFLECTOR, REFLECTOR.
radar relay system. See RADAR LINK.
radar repeater. A unit which duplicates the radar display at a location remote from the main radar indicator installation. Also called PPI REPEATER, REMOTE PPI.
radar return. See ECHO, definition 2.
radar scan. The motion of a radar beam through space in searching for an echo.
radar scanning. The process or action of directing a radar beam through a search pattern.
radarscope, n. The cathode-ray tube or video monitor in the indicator of a radar set which displays the received echo to indicate range and bearing. Often shortened to SCOPE. See also PLAN POSITION INDICATOR.
radar set. An electronic apparatus consisting of a transmitter, antenna, receiver, and indicator for sending out radio-frequency energy and receiving and displaying reflected energy so as to indicate the range and bearing of the reflecting object. See also RADAR.
radar shadow. The area shielded from radar signals because of an intervening obstruction or absorbing medium. The shadow region appears as an area void of targets.
radar target. See as TARGET.
radar transponder beacon. See RACON.
radial, $a d j$. Of or pertaining to a ray or radius; extending in a straight line outward from a center.
radial, n. A straight line extending outward from a center.
radial error. In a two-dimensional or elliptical error distribution, the measure of error as the radius of a circle of equivalent probability derived from the error ellipse. The error, expressed as $1 \mathrm{~d}_{\mathrm{rms}}$, is the square root of the sum of the error components along the major and minor axes of the probability ellipse. The use of radial error or $\mathrm{d}_{\mathrm{rms}}$ error as a measure of error is somewhat confusing because the term does not correspond to a fixed value of probability for a given value of the error measure.
radial motion. Motion along a radius, or a component in such a direction, particularly the component of space motion of a celestial body in the direction of the line of sight.
radial period. See ANOMALISTIC PERIOD.
radian, n. The supplementary unit of plane angle in the International System of Units; it is the plane angle subtended at the center of a circle by an arc equal in length to the radius of the circle. It is equal to 360 Ö 2π, or approximately $57^{\circ} 17^{\prime} 48.8^{\prime \prime}$.
radian per second. The derived unit of angular velocity in the International System of Units.
radian per second squared. The derived unit of angular acceleration in the International System of Units.
radiant, $a d j$. Of, pertaining to, or transmitted by radiation.
radiant energy. Energy consisting of electromagnetic waves.
radiate, $v ., t . \& i$. To send out in rays or straight lines from a center.
radiation, n. 1 . The process of emitting energy in the form of electromagnetic waves. 2. The energy radiated in definition 1 above.
radiational cooling. The cooling of the earth's surface and adjacent air, occurring mainly at night whenever the earth's surface suffers a net loss of heat due to terrestrial radiation.
radiational tides. Periodic variations in sea level primarily related to meteorological changes such as the semi-daily (solar) cycle in barometric pressure, daily (solar) land and sea breezes, and seasonal (annual) changes in temperature. Only changes in sea level due to meteorological changes that are random in phase are not considered radiational tides.
radiation fog. A major type of fog, produced over land when radiational cooling reduces the temperature to or below its dew point. Radiation fog is a nighttime occurrence although it may begin to form by evening twilight and often does not dissipate until aft sunrise.
radiation pattern. A curve representing, in polar or Cartesian coordinates, the relative amounts of energy radiated in various directions. Also called DIRECTIVITY DIAGRAM.
radiatus, adj. Radial. A term used to refer to clouds in parallel bands which, owing to perspective, appear to converge toward a point on the horizon, or two opposite points if the bands cross the sky.
radio, n. A general term applied to the use of radio waves.
radio acoustic ranging. Determining distance by a combination of radio and sound, the radio being used to determine the instant of transmission or reception of the sound, and distance being determined by the time of transit of sound usually in water. See also ECHO RANGING.
radio aid to navigation. An aid to navigation transmitting information by radio waves. See also ELECTRONIC AID TO NAVIGATION.
radio altimeter. As defined by the International Telecommunications Union (ITU), a radionavigation device for aircraft, which uses reflected radio waves from the ground to determine the height of the aircraft above the ground.
radiobeacon, n. A radio transmitting station which emits a distinctive or characteristic signal so a navigator can determine the direction of the source using a radio direction finder, providing a line of position. The most common type of marine radiobeacon transmits radio waves of approximately uniform strength in all directions. These omnidirectional beacons are called circular radiobeacons. A radiobeacon some or all of the emissions of which are directional so that the signal characteristic changes according to the vessel's bearing from the beacon is called a directional radiobeacon. A radiobeacon all or part of the emissions of which is concentrated in a beam which rotates is called a rotating radiobeacon. See also CONTINUOUS CARRIER RADIOBEACON, DUAL-CARRIER RADIOBEACON, SEQUENCED RADIOBEACON, ROTATING PATTERN RADIOBEACON, COURSE BEACON.
radiobeacon characteristic. The description of the complete cycle of transmission of a radiobeacon in a given period of time, inclusive of any silent period.
radiobeacon station. As defined by the International Telecommunications Union (ITU), a station in the radionavigation service the emissions of which are intended to enable a mobile station to determine its bearing or direction from the radiobeacon station.
radio bearing. The bearing of a radio transmitter from a receiver, as determined by a radio direction finder.
radio compass. The name by which the radio direction finder was formerly known.
radiodetermination, n. As defined by the International Telecommunication Union (ITU), the determination of position using propagation properties of radio waves.
radiodetermination-satellite service. As defined by the International Telecommunication Union (ITU), a radiocommunication service involving the use of radiodetermination and the use of one or more space stations.
radio direction finder. A radio receiver system used for radio direction finding. Also called DIRECTION FINDER. Formerly called RADIO COMPASS. See also AUTOMATIC DIRECTION FINDER.
radio direction finder station. A radio station equipped with special apparatus for determining the direction of radio signals transmitted by ships and other stations. The bearing taken by a radio direction finder station, and reported to a ship, is corrected for all determinable errors except conversion angle. Also called DIRECTION FINDER STATION.
radio direction finding. As defined by the International Telecommunication Union (ITU), radiodetermination using the reception of radio waves to determine the direction of a station or object.
radio direction-finding station. As defined by the International Telecommunication Union (ITU), a radiodetermination station using radio direction finding.
radio fix. A navigational position determined by radio direction finder.
radio frequency. Any electromagnetic wave occurring within that segment of the spectrum normally associated with some form of radio propagation.
radio guard. A ship, aircraft, or radio station designated to listen for and record transmissions, and to handle traffic on a designated frequency for a certain unit or units.
radio horizon. The locus of points at which direct rays from a transmitting antenna become tangent to the earth's surface, taking into account the curvature due to refraction. Its distance from the transmitting antenna is greater than that of the visible horizon, and increases with decreasing frequency.
radio interference. Interference due to unwanted signals from other radio transmitting stations operating on the same or adjacent frequencies.
radio interferometer. An interferometer operating at radio frequencies; used in radio astronomy and in satellite tracking.
radiolarian (pl. radiolaria), n. A minute sea animal with a siliceous outer shell. The skeletons of such animals are very numerous, covering the ocean bottom in certain areas, principally in the tropics.
radiolocation, n. As defined by the International Telecommunication Union (ITU), radiodetermination used for purposes other than navigation.
radio mast. A label on a nautical chart which indicates a pole or structure for elevating radio antennas, usually found in groups.
radionavigation, n. 1 . The determination of position, or the obtaining of information relating to position, for the purposes of navigation by means of the propagation properties of radio waves. 2. As defined by the International Telecommunication Union (ITU), radiodetermination used for the purposes of navigation, including obstruction warning. See also RADIODETERMINATION, RADIOLOCATION.
Radio Navigational Aids. See PUB. 117.
radio navigational warning. A radio-transmitted message affecting the safe navigation of vessels or aircraft. See also HYDROLANT, HYDROPAC, NAVAREA WARNINGS, WORLD WIDE NAVIGATIONAL WARNING SERVICE.
radionavigation-satellite service. As defined by the International Telecommunication Union (ITU) a radiodetermination-satellite service used for the same purposes as the radionavigation service; in certain cases this service includes transmission or retransmission of supplementary information necessary for the operation of radionavigation systems.
radio receiver. An electronic device connected to an antenna or other receptor of radio signals which receives and processes the signals for use.
radio silence. A period during which all or certain radio equipment capable of radiation is kept inoperative.
radio spectrum. The range of electromagnetic radiation useful for communication by radio (approximately 10 kilohertz to 300,000 megahertz).
radio station. A place equipped with one or more transmitters or receivers and accessory equipment for carrying on a radiocommunication service.
radio tower. A label on a nautical chart which indicates a tall pole or structure for elevating radio antennas
radio transmitter. Equipment for generation and modulation of radio-frequency energy for the purpose of radiocommunication.
radio wave propagation. The transfer of energy by electromagnetic radiation at radio frequencies.
radio waves. Electromagnetic waves of frequencies lower than $3,000 \mathrm{gHz}$ propagated in space without artificial guide. The practicable limits of radio frequency are approximately 10 kHz to 100 GHz . Also called HERTZIAN WAVES.
radius, n. A straight line from the center of a circle, arc, or sphere to its circumference, or the length of such a line. Also called SEMIDIAMETER for a circle or sphere. See also DIAMETER.
radius of action. The maximum distance a ship, aircraft, or vehicle can travel away from its base along a given course with normal combat load and return without refueling, allowing for all safety and operating factors.
radius vector. A straight line connecting a fixed reference point or center with a second point, which may be moving. In astronomy the expression is usually used to refer to the straight line connecting a celestial body with another which revolves around it. See also POLAR COORDINATES, SPHERICAL COORDINATES.
radome, n. A dome-shaped structure used to enclose radar apparatus.
rafted ice. A type of deformed ice formed by one piece of ice overriding another. See also FINGER RAFTING.
rain, n. Liquid precipitation consisting of drops of water larger than those which comprise DRIZZLE. Orographic rain results when moist air is forced upward by a mountain range. See also FREEZING RAIN.
rainbow, n. A circular arc of concentric spectrally colored bands formed by the refraction of light in drops of water. One seen in ocean spray is called a marine or sea rainbow. See also FOGBOW, MOONBOW.
rain clutter. Clutter on the radarscope which is the result of the radar signal being reflected by rain or other forms of precipitation.
rain gush. See CLOUDBURST.
rain gust. See CLOUDBURST.
rain shadow. The condition of diminished rainfall on the lee side of a mountain or mountain range, where the rainfall is noticeably less than on the windward side.
rain storm. See under STORM, definition 2.
raise. To cause to appear over the horizon or higher above the horizon by approaching closer.
ram, n. An underwater ice projection from an ice wall, ice front, iceberg, or floe. Its formation is usually due to a more intensive melting and erosion of the unsubmerged part.
ramark, (from radar marker) n. A radar beacon which continuously transmits a signal appearing as a radial line on the radar display, indicating the direction of the beacon from the ship. For identification purposes, the radial line may be formed by a series of dots or dashes. The radial line appears even if the beacon is outside the range for which the radar is set, as long as the radar receiver is within the power range of the beacon. Unlike the RACON, the ramark does not provide the range to the beacon.
ramming, n. In ice navigation, the act of an icebreaker at full power striking ice to break a track through it.
ramp, n. On the sea floor, a gentle slope connecting areas of different elevations.
random access memory (RAM). Type of computer memory used for temporary storage and processing of data, as opposed to permanent storage of data. RAM is volatile, meaning it is unable to store data without a constant source of power. See READ ONLY MEMORY(ROM).
random error. One of the two categories of errors of observation and measurement, the other category being systematic error. Random errors are the errors which occur when irregular, randomly occurring conditions affect the observing instrument, the observer and the environment, and the quantity being observed so that observations of the same quantity made with the same equipment and observer under the same observing conditions result in different values of the observed quantity. Random errors depend upon (1) the quality of the observing instrument. (2) the skill of the observer, particularly, the ability to estimate the fraction of the smallest division or graduation on the observing instrument, and (3) randomly fluctuating conditions such as temperature, pressure, refraction, etc. For many types of observations, random errors are characterized by the following properties: (1) positive and negative errors of the same magnitude are about equal in number, (2) small errors occur more frequently than large errors. and (3) extremely large errors rarely occur. These properties of random errors permit the use of a mathematical law called the Gaussian or normal distribution of errors to calculate the probability that the random error of any given observation of a series of observations will lie within certain limits. Random error might more properly be called deviation since mathematically, the random error of an individual observation is calculated as the difference or deviation between the actual observation and an improved or adjusted value of the observation obtained by some mathematical technique such as averaging all the observations. Also called ACCIDENTAL ERROR, CHANCE ERROR, IRREGULAR ERROR, STATISTICAL ERROR. See also ERROR, PRECISION, PRECISION INDEX, STANDARD DEVIATION.
range, n. 1. Two or more objects in line. Such objects are said to be in range. An observer having them in range is said to be on the range. Two beacons are frequently located for the specific purpose of forming a range to indicate a safe route or the centerline of a channel. See also BACK RANGE, LEADING LINE, MAGNETIC RANGE, MULTIPLE RANGES. 2. Distance in a single direction or along a great circle. 3. The extreme distance at which an object or light can be seen is called VISUAL RANGE. When the extreme distance is limited by the curvature of the earth and the heights of the object and the observer, this is called geographic range; when the range of a light is limited only by its intensity, clearness of the atmosphere, and sensitiveness of the observer's eyes, it is called luminous range. 4 . The extreme distance at which a signal can be detected or used. The maximum distance at which reliable service is provided is called operating range. The spread of ranges in which there is an element of uncertainty of interpretation is called critical range. 5 . The distance a vessel can travel at cruising speed without refueling is called CRUISING RADIUS. 6. The difference in extreme values of a variable quantity. See also RANGE OF TIDE. 7. A series of mountains or mountain ridges is called MOUNTAIN RANGE. 8. A predetermined line along which a craft moves while certain data are recorded by instruments usually placed below the line, or the entire station at which such information is determined. See also DEGAUSSING RANGE. 9. An area where practice firing of ordnance equipment is authorized is a firing range. See also BOMBING RANGE. 10. On the sea floor, a series of ridges or seamounts.
range, $v ., t .1$. To place in line. 2 To determine the distance to an object. 3 To move along or approximately parallel to something, as to range along coast.
range daymark. 1. One of a pair of unlighted structures used to mark a definite line of bearing. See also RANGE, definition 1. 2. A daymark on a range light.
range finder. An optical instrument for measuring the distance to an object. See also STADIMETER.
range lights. Two or more lights at different elevations so situated to form a range (leading line) when brought into transit. The one nearest the observer is the front light and the one farthest from the observer is the rear light. The front light is at a lower elevation than the rear light.
range marker. A visual presentation on a radar display for measuring the range or for calibrating the time base. See also VARIABLE RANGE MARKER, RANGE RING.
range (of a light). See VISUAL RANGE (OF A LIGHT).
range of tide. The difference in height between consecutive high and low waters. The mean range is the difference in height between mean high water and mean low water. The great diurnal range or diurnal range is the difference in height between mean higher high water and mean lower low water. Where the type of tide is diurnal the mean range is the same as the diurnal range. For other ranges see APOGEAN TIDES, NEAP TIDES, PERIGEAN TIDES, SPRING TIDES, TROPIC TIDES.
range-range mode. See RANGING MODE.
range rate. Rate of change in range between satellite and receiver, measured by determining the Doppler shift of the satellite carrier signal.
range resolution. See as RESOLUTION IN RANGE under RESOLUTION, definition 2. Also called DISTANCE RESOLUTION.
range ring. One of a set of equally spaced concentric rings, centered on own ship's position, providing a visual presentation of range on a radar display. See also VARIABLE RANGE MARKER.
ranging mode. A mode of operation of a radionavigation system in which the times for the radio signals to travel from each transmitting station to the receiver are measured rather than their differences as in the HYPERBOLIC MODE. Also called RHO-RHO MODE, RANGE-RANGE MODE.
Rankine temperature. Temperature based upon a scale starting at absolute zero $\left(-459.69^{\circ} \mathrm{F}\right)$ and using Fahrenheit degrees.
rapids, n. A portion of a stream in swift, disturbed motion, but without cascade or waterfall.
raster. A type of computerized display which consists of a single undifferentiated data file, analogous to a picture. See BIT-MAP, VECTOR.
ratan, n. An experimental short-range aid to navigation, not operational, in which radar harbor surveillance information is transmitted to the user by television.
rate, n. 1 . Quantity or amount per unit of something else, usually time. See also ANGULAR RATE, CHRONOMETER RATE, PULSE REPETITION RATE, REPETITION RATE, WATCH RATE. 2. With respect to Loran C, the term rate, implying the number of pulses per unit time, is used for the character designation, and also the station pair, their signals, and the resulting hyperbolic lines of position and the tables and curves by which they are represented.
rate gyro. A single-degree-of-freedom gyro having primarily elastic restraint of its spin axis about the output axis. In this gyro, an output signal is produced by gimbal angular displacement, relative to the base, which is proportional to the angular rate of the base about the input axis. See also RATE INTEGRATING GYRO.
rate integrating gyro. A single-degree-of-freedom gyro having restraint of its spin axis about the output axis. In this gyro an output signal is produced by gimbal angular displacement, relative to the base, which is proportional to the integral of the angular rate of the base about the input axis. See also RATE GYRO.
ratio, n. The relation of one magnitude to another of the same kind, the quotient obtained by dividing one magnitude by another of the same kind. See also MAGNITUDE RATIO.
rational horizon. See CELESTIAL HORIZON.
ratio of ranges. The ratio of the ranges of tide at two places. It is used in the tide tables where the times and heights of all high and low tides are given for a relatively few places, called REFERENCE STATIONS. The tides at other places called SUBORDINATE TIDE STATIONS, are found by applying corrections to the values given for the reference stations. One of these corrections is the ratio of ranges, or the ratio between the height of the tide at the subordinate station and its reference station.
ratio of rise. The ratio of the height of tide at two places.
ravine, n. 1 . A gulch; a small canyon or gorge, the sides of which have comparatively uniform slopes. 2. On the sea floor, a small canyon.
read only memory (ROM). Computer memory used for permanent storage of data. It retains the data without a source of power. See RANDOM ACCESS MEMORY (RAM).
reach, n. A comparatively straight segment of a river or channel between two bends.
reach ahead. The distance traveled from the time a new speed is ordered to the time the new speed is being made.
real image. An image actually produced and capable of being shown on a surface, as in a camera.
real precession. Precession of a gyroscope resulting from an applied torque such as that resulting from friction and dynamic unbalance as opposed to APPARENT PRECESSION. Also called INDUCED PRECESSION, PRECESSION.
rear-light. The range light which is farthest from the observer. It is the highest of the lights of an established range. Also called HIGH LIGHT.
receiver, n. A person who or a device which receives anything, particularly a radio receiver.
receiver gain control. An operating control on a radar indicator used to increase or decrease the sensitivity of the receiver. The control regulates the intensity of the echoes displayed on the radarscope.
receiver monitor. See under PERFORMANCE MONITOR.
reciprocal, adj. In a direction 180° from a given direction. Also called BACK.
reciprocal, n. 1 . A direction 180° from a given direction 2 . The quotient of 1 divided by a given number.
reciprocal bearing. A bearing differing by 180° or one measured in the opposite direction, from a given bearing.
recommended direction of traffic flow. A traffic flow pattern indicating a recommended directional movement of traffic in a routing system within which it is impractical or unnecessary to adopt an established direction of traffic flow.
recommended track. A route which has been examined to ensure that it is free of dangers and along which vessels are advised to navigate. See also ROUTING SYSTEM.
rectangle, n. A four-sided figure with its opposite sides parallel and its angles 90°, a -right-angle parallelogram.
rectangular chart. A chart on the rectangular projection.
rectangular coordinates. Magnitudes defining a point relative to two perpendicular lines, called AXES. The magnitudes indicate the perpendicular distance from each axis. The vertical distance is called the ordinate and the horizontal distance the abscissa. This is a form of CARTESIAN COORDINATES.
rectangular error. An error which results from rounding off values prior to their inclusion in table or which results from the fact that an instrument cannot be read closer than a certain value The error is so called because of the shape of its plot. For example: if the altitudes tabulated in a sight reduction table are stated to the nearest 01 ', the error in the altitude as extracted from the table might have any value from (+) 0.05^{\prime} to (-) 0.05^{\prime}, and any value within these limits is as likely to occur as another value having similar decimals. See also SIMILAR DECIMALS.
rectangular projection. A cylindrical map projection with uniform spacing of the parallels. This projection is used for the star chart in the Air Almanac.
rectified altitude. See APPARENT ALTITUDE.
rectilinear, adj. Moving in or characterized by straight line.
rectilinear current. See REVERSING CURRENT.
recurring decimal. See REPEATING DECIMAL.
recurring polynya. See under POLYNYA.
recurved spit. A hook developed when the end or spit is turned toward the shore by current deflection or by opposing action of two or more currents. Also called HOOK, HOOKED SPIT.
red magnetism. The magnetism of the northseeking end of a freely suspended magnet. This is the magnetism of the earth's south magnetic pole.
red sector. A sector of the circle of visibility of a navigational light in which a red light is exhibited. Such sectors are designated by their limiting bearings, as observed from a vessel. Red sectors are often located to warn of dangers.
red shift. In astronomy, the displacement of observed spectral lines toward the longer wavelengths of the red end of the spectrum. The red shift in the spectrum of distant galaxies has been interpreted as evidence that the universe is expanding.
red snow. Snow colored red by the presence in it either of minute algae or of red dust particles.
reduction, n. The process of substituting for an observed value one derived from it; often referring specifically to the adjustment of soundings to the selected chart datum. Usually the term reduction of soundings does not pertain to corrections other than those for height of tide. See also CORRECTION OF SOUNDINGS.
reduction of tidal current. The processing of observed tidal current data to obtain mean values of tidal current constants. See also REDUCTION OF TIDES.
reduction of tides. The processing of observed tidal data to obtain mean values of tidal constants. See also REDUCTION OF TIDAL CURRENTS.
reduction tables. See SIGHT REDUCTION TABLES.
reduction to the meridian. The process of applying a correction to an altitude observed when a body is near the celestial meridian of the observer, to find the altitude at meridian transit. The altitude at the time of such an observation is called an EX-MERIDIAN ALTITUDE.
reed, n. A steel tongue which is designed to vibrate when air is passed across its unsupported end.
reed horn. A sound signal emitter comprising a resonant horn excited by a jet of air which is modulated by a vibrating reed. The signal is a high-pitched note. See also REED, HORN.
reef, n. 1 . An offshore consolidated rock hazard to navigation with a depth of 16 fathoms (or 30 meters) or less over it. See also SHOAL. 2. Sometimes used as a term for a low rocky or coral area some of which is above water. See BARRIER REEF, CORAL REEF, FRINGING REEF.
reef flat. A flat expanse of dead reef rock which is partly or entirely dry at low tide. Shallow pools, potholes, gullies, and patches of coral debris and sand are features of the reef flat.
reference datum. A general term applied to any datum, plane, or surface used as a reference or base from which other quantities can be measured.
reference ellipsoid. A theoretical figure whose dimensions closely approach the dimensions of the geoid; the exact dimensions of the ellipsoid are determined by various considerations of the section of the earth's surface of concern. Also called REFERENCE SPHEROID, SPHEROID OF REFERENCE, ELLIPSOID OF REFERENCE.
reference frequency. A frequency having a fixed and specified position with respect to the assigned frequency. The displacement of this frequency, with respect to the assigned frequency, has the same absolute value and sign that the displacement of the characteristic frequency has with respect to the center of the frequency band occupied by the emission.
reference grid. See GRID, definition 2.
reference orbit. An orbit, usually but not exclusively, the best two-body orbit available, on the basis of which the perturbations are computed.
reference ship. The ship to which the movement of other ships is referred.

reference spheroid. See REFERENCE ELLIPSOID.

reference station. A tide or current station for which independent daily predictions are given in the Tide Tables and Tidal Current Tables, and from which corresponding predictions obtained for subordinate stations by means differences and ratios. Also called STANDARD STATION. See also SUBORDINATE CURRENT STATION, SUBORDINATE TIDE STATION.
reflecting prism. A prism that deviates a light beam by internal reflection.
reflecting telescope. A telescope which collects light by means of a concave mirror. All telescopes more than 40 inches in diameter arc of this type. See also CASSEGRAINIAN TELESCOPE, NEWTONIAN TELESCOPE.
reflection, n. The return or the change in direction of travel of radiation by a surface without change of frequency of the monochromal components of which the radiation is composed. The radiation does not enter the substance providing the reflecting surface. If reflecting surface is smooth, specular reflection occurs; if the reflecting surface is rough with small irregularities, diffuse reflection occurs.
reflection plotter. An attachment fitted to a radar display which provides a plotting surface permitting plotting without parallax errors. Marks made on the plotting surface are reflected on the radarscope directly below. Also called PLOTTING HEAD.
reflectivity, n. The ratio of the radiant energy reflected by a surface to that incident upon it.
reflector, n. A reflecting surface situated behind the primary radiator, an array of primary radiators or a feed for the purpose of increasing forward and reducing backward radiation from antenna. See also RADAR REFLECTOR.
reflector compass. A magnetic compass in which the image of the compass card is viewed by direct reflection in a mirror adjacent to helmsman's position. See also PROJECTOR COMPASS.
reflex angle. An angle greater than 180° and less than 360°.
reflex reflection. See RETRO-REFLECTION.
reflex-reflector, n. See RETRO-REFLECTOR.
refracted ray. A ray extending onward from point of refraction.
refracting prism. A prism that deviates a beam light by refraction. The angular deviation is function of the wavelength of light; therefore if the beam is composed of white light, the prism will spread the beam into a spectrum.
refracting telescope. A telescope which collects light by means of a lens or system of lenses.
refraction, n. The change in direction of motion of a ray of radiant energy as it passes obliquely from one medium into another in which the speed of propagation is different. Atmospheric refraction is caused by the atmosphere and may be further designated astronomical refraction if the ray enters from outside the atmosphere or terrestrial refraction if it emanates from a point on or near the surface of the earth. Super-refraction is greater than normal and sub-refraction is less than normal. See also DIFFRACTION, REFLECTION.
refraction correction. 1. A correction due to refraction, particularly such a correction to a sextant altitude, due to atmospheric refraction. 2 . See IONOSPHERIC CORRECTION.
refractive index. The ratio of the velocity of light in vacuum to the velocity of light in a medium. This index is equal to the ratio of the sines of the angles of incidence and refraction when a ray crosses the surface separating vacuum and medium.
refractive modulus. One million times the amount by which the modified refractive index exceeds unity.
refrangible, $a d j$. Capable of being refracted.
regelation, n. The melting of ice under pressure and the subsequent refreezing when the pressure is reduced or removed.
region. One of the major subdivisions of the earth based on the DMAHTC chart numbering system.
regression of the nodes. Precessional motion of a set of nodes. The expression is used principally with respect to the moon, the nodes of which make a complete westerly revolution in approximately 18.6 years.
regular error. See SYSTEMATIC ERROR.
regular reflection. See SPECULAR REFLECTION.
relative, adj. Having relationship. In navigation the term has several specific applications: a. related to a moving point; apparent, as relative wind, relative movement; b. related to or measured from the heading, as relative bearing; c. related or proportional to a variable, as relative humidity. See also TRUE.
relative accuracy. The accuracy with which a user can measure current position relative to that of another user of the same navigation system at the same time. Hence, a system with high relative accuracy provides good rendezvous capability for the users of the system. The correlation between the geographical coordinates and the system coordinates is not relevant. See also PREDICTABLE ACCURACY, REPEATABLE ACCURACY.
relative azimuth. Azimuth relative to heading.
relative bearing. Bearing relative to heading of a vessel, expressed as the angular difference between the heading and the direction. It is usually measured from 000° at the heading clockwise through 360°, but is sometimes measured from 0° at the heading either clockwise or counterclockwise through 180°, when it is designated right or left.
relative course. Misnomer for DIRECTION OF RELATIVE MOVEMENT.
relative direction. Horizontal direction expressed as angular distance from heading.
relative distance. Distance relative to a specified reference point, usually one in motion.
relative gain of an antenna. The gain of an antenna in a given direction when the reference antenna is a half-wave loss-free dipole isolated in space, the equatorial plane of which contains the given direction.
relative humidity. See under HUMIDITY.
relative motion. See RELATIVE MOVEMENT.
relative motion display. A type of radarscope display in which the position of own ship is fixed, usually at the center of the display, and all detected targets move relative own ship. See also TRUE MOTION DISPLAY.
relative movement. Motion of one object relative to another. The expression is usually used in connection with problems involving motion of one vessel to another, the direction such motion being called DIRECTION RELATIVE MOVEMENT and the speed of the motion being called SPEED OF RELATIVE MOVEMENT or RELATIVE SPEED. Distance relative to a specified reference point, usually one in motion, is called RELATIVE DISTANCE. Usually called APPARENT MOTION applied to the change of position of a celestial body as observed from the earth. Also called RELATIVE MOTION.
relative plot. A plot of the successive positions of a craft relative to a reference point, which is usually in motion. A line connecting successive relative positions of a maneuvering ship relative to a reference ship is called a RELATIVE MOVEMENT LINE. A relative plot includes relative movement lines and the position of the reference ship.
relative position. A point defined with reference to another position, either fixed or moving coordinates of such a point are usually between true or relative, and distance from an identified reference point.
relative speed. See SPEED OF RELATIVE MOVEMENT.
relative wind. The wind with reference to a moving point. Sometimes called APPARENT WIND. See also APPARENT WIND, TRUE WIND.
release, n. A device for holding or releasing a mechanism, particularly the device by which the tangent screw of a sextant is engaged or disengaged from the limb.
reliability diagram. See LORAN C RELIABILITY DIAGRAM.
relief, n. 1 . The elevations of a land surface; represented graphics by contours, hypsometric tints, spot elevations, hachures, etc. Similar representation of the ocean floor is called SUBMARINE RELIEF. 2. The removal of a buoy (formerly also referred to lightships) from station and provision of another buoy having the operating characteristics authorized for that station.
relief map. See HYPSOGRAPHIC MAP.
relief model. Any three-dimensional representation of an object or geographic area, modeled in any size or medium. See also PLASTIC RELIEF MAP.
relieved, adj. Said of a buoy that has been removed from a station and replaced by another having the proper operating characteristics.
relighted, adj. Said of an extinguished aid to navigation returned to its advertised light characteristic.
relocated, $a d j$. Said of aid to navigation that has been permanently moved from one position to another.
reluctance, n. Magnetic resistance.
remanence, n. Ability to retain magnetism after removal of the magnetizing force. Also See RETENTIVITY.
remote-indicating compass. A compass equipped with one or more indicators to repeat at a distance the readings of the master compass. The directive element and controls are called a master compass to distinguish this part of the system from the repeaters, or remote indicators. Most marine gyrocompass installations are of this type. Also called REMOTE-READING COMPASS.
remotely controlled light. A light which is operated by personnel at a considerable distance from the light, through electrical or radio links.
remote PPI. See RADAR REPEATER.
remote-reading compass. See REMOTE-INDICATING COMPASS.
repaired, adj. Said of a sound signal or radionavigation aid previously INOPERATIVE, placed back in operation, or of a structure previously DAMAGED, that has been restored as an effective aid to navigation.
repeatability, $n .1$. A measure of the variation in the accuracy of an instrument when identical tests are made under fixed conditions. 2. In a navigation system, the measure of the accuracy with which the system permits the user to return to a specified point as defined only in terms of the coordinates peculiar to that system. See also PREDICTABILITY.
repeatable accuracy. In a navigation system, the measure of the accuracy with which the system permits the user to return to a position as defined only in terms of the coordinates peculiar to that system. For example, the distance specified for the repeatable accuracy of a system such as Loran C is the distance between two Loran C positions established using the same stations and time-difference readings at different times. The correlation between the geographical coordinates and the system coordinates may or may not be known. See also PREDICTABLE ACCURACY, RELATIVE ACCURACY.
repeater, n. A device for repeating at a distance the indications of an instrument or device. See also COMPASS REPEATER, GYRO REPEATER, RADAR REPEATER, STEERING REPEATER.
repeating decimal. A decimal in which all the digits after a certain digit consist of a set of one or more digits repeated and infinitum. Also called RECURRING DECIMAL.
replaced, adj. Said of an aid to navigation previously OFF STATION, ADRIFT or MISSING that has been restored by another aid of the same type and characteristic.
representative fraction. The scale of a map or chart expressed as a fraction or ratio that relates unit distance on the map to distance measured in the same unit on the ground. Also called NATURAL SCALE, FRACTIONAL SCALE. See also NUMERICAL SCALE.
reradiation, n. 1 . The scattering of incident radiation. Reradiation from metallic objects in proximity to either the transmitting or receiving antennas can introduce unwanted effects. This is particularly true on a vessel having a number of metallic structures or wires in the vicinity of an antenna. Where such structures are permanent, the effects can sometimes be allowed for by calibration. Also called SECONDARY RADIATION. 2. Radiation from a radio receiver due to poor isolation between the antenna circuit and the local oscillator within the receiver, causing unwanted interference in other receivers.
research sanctuary. A marine sanctuary established for scientific research in support of management programs, and to establish ecological baselines. See also MARINE SANCTUARY.
reset, adj. Said of a floating aid to navigation previously OFF STATION, ADRIFT, or MISSING that has been returned to its station.
residual deviation. Deviation of a magnetic compass after adjustment or compensation. The values on various headings are called RESIDUALS.
residual magnetism. Magnetism which remains after removal of the magnetizing force.
residuals, n., $p l$. The remaining deviation of a magnetic compass on various headings after adjustment or compensation. See also DEVIATION TABLE.
resistance, n. Opposition, particularly to the flow of electric current.
resistivity, n. The amount of resistance in a system. Resistivity is the reciprocal of CONDUCTIVITY.
resolution, n. 1. The ability of an optical system to distinguish between individual objects; the degree of ability to make such a separation, called RESOLVING POWER, is expressed as the minimum distance between two objects that can be separated. 2. The degree of ability of a radar set to indicate separately the echoes of two targets in range, bearing, and elevation. Resolution in range is the minimum range difference between separate targets at the same bearing which will allow both to appear separately; Resolution in bearing is the minimum horizontal angular separation between two targets at the same range which will allow both to appear separately. Resolution in elevation is the minimum separation in the vertical plane between two contacts at the same range and bearing which will allow both to appear as distinct echoes.
resolution of vectors. The resolving of a vector into two or more components. The opposite is called VECTOR ADDITION.
resolving power. The degree of ability of an optical system to distinguish between objects close together. See also RESOLUTION.
resolving time. 1. The minimum time interval between two events which permits one event to be distinguishable from the other. 2 . In computers, the shortest permissible period between trigger pulses for reliable operation of a binary cell.
resonance, n. Re-enforcement or prolongation any wave motion, such as sound, radio waves etc., resulting when the natural frequency of a body or system in vibration is equal to that of an impressed vibration.
resonant frequency. Any frequency at which a body or system vibrates most readily. The lowest resonant frequency is the natural frequency of the body or system.
responsor, n. A unit which receives the response emitted by a transponder. restricted area. 1. An area (land, sea, or air) in which there are special restrictive measures employed to prevent or minimize interference between friendly forces. 2 . An area under military jurisdiction in which special security measures are employed to prevent unauthorized entry. See also DANGER AREA, PROHIBITED AREA.
restricted waters. Areas which for navigational reasons such as the presence of shoals or other dangers confine the movements of shipping within narrow limits.
resultant, n. The sum of two or more vectors.
retard, $v ., t \& i$. To delay. This term is sometimes used as the equivalent of RETIRE (meaning "to move back"), but this usage is not appropriate.
retarded line of position. See RETIRED LINE OF POSITION.
retentive error. Deviation of a magnetic compass due to the tendency of a vessel's structure to retain some of the induced magnetic effects for short periods of time. For example, a vessel on a northerly course for several days, especially if pounding in heavy seas, will tend to retain some fore-and-aft magnetism gained through induction. Although this effect is not large and generally decays within a few hours, it may cause incorrect observations or adjustments, if neglected. This error should not be confused with GAUSSIN ERROR.
retentivity, n. See REMANENCE.
reticle, n. A system of lines, wires, etc., placed in the focal plane of an optical instrument to serve as a reference. A cross hair is a hair, thread, or wire constituting part of a reticle. See also GRATICULE, definition 2.
retire, $v ., t . \& i$. To move back, as to move a line of position back, parallel to itself, along a course line to obtain a line of position at an earlier time. The term RETARD (meaning "to delay") is sometimes used as an equivalent, but the term RETIRE (meaning "to move back") is more appropriate. The opposite is ADVANCE.
retired line of position. A line of position which has been moved backward along the course line to correspond with a time previous to that at which the line was established. The opposite is ADVANCED LINE OF POSITION.
retrace, n. The path of the visible dot from the end of one sweep to the start of the next sweep across the face of a cathode-ray tube.
retract, $v ., t . \& i$. The opposite of $\mathrm{BEACH}, v ., t \& i$.
retrograde motion. The apparent motion of a planet westward among the stars. Apparent motion eastward, called DIRECT MOTION, is more common. Also called RETROGRESSION.
retrogression, n. See RETROGRADE MOTION.
retro-reflecting material. A material which produces retro-reflection over a wide range of angles of incidence of a light beam, by use of a large number of very small reflecting and refracting elements, usually very small beads.
retro-reflection, n. Reflection in which light is returned in directions close to the direction from which it came over wide variations of the direction of the incident light. Also called REFLEX REFLECTION.
retro-reflector, n. A device intended to produce retro-reflection. It may comprise one or more retro-reflecting optical units, for example, comer reflectors or special lens units of glass or plastic. Such devices may be installed generally on unlighted buoys or other aids to navigation to increase the range at which they may be seen at night. Also called REFLEX REFLECTOR.
return, n. See BLIP; ECHO, definition 2.
reverberation, n. Continuation of radiant energy, particularly sound, by multiple reflection.
reversing current. A tidal current which flows alternately in approximately opposite directions with a slack water at each reversal of direction. Currents of this type usually occur in rivers and straits where the direction of flow is somewhat restricted to certain channels. When the movement is towards the shore or up a stream the current is said to be flooding, and when in the opposite direction it is said to be ebbing. The combined flood and ebb movement including the slack water covers, on an average, 12.4. hours for the semid-
iurnal current. If unaffected by a nontidal flow, the flood and ebb movements will each last about 6 hours, but when combined with such a flow, the durations of flood and ebb may be quite unequal. During the low in each direction the speed of the current will vary from zero at the time of slack water to a maximum about midway between the slacks. Also called RECTILINEAR CURRENT.
reversing falls. Falls which flow alternately in opposite directions in a narrow channel in the St. John River, New Brunswick, Canada, due to the large range of tide and a constriction in the river. The direction of flow is upstream or downstream according to whether it is high or low water on the outside, the falls disappearing at the halftide level.
revolution, n. Circular motion about an axis usually external to the body. The terms REVOLUTION and ROTATION are often used interchangeably but, with reference to the motions of a celestial body, REVOLUTION refers to the motion in an orbit or about an axis external to the body while ROTATION refers to motion about axis within the body. Thus, the earth revolves about the sun annually and rotates about its axis daily.
revolution counter, revolution indicator. An instrument for registering the number of revolutions of a shaft, particularly a propeller shaft of a vessel (when it may be called ENGINE REVOLUTION COUNTER). This information is useful in estimating a vessel's speed through the water.
revolution table. A table listing the number of shaft revolutions corresponding to various speeds of a vessel.
revolver, n. The pair of horizontal angles between three points, as observed at any place on the circle defined by the three points. This is the only situation in which such angles do not establish a fix. Also called SWINGER.
revolving light. See ROTATING LIGHT.
revolving storm. A cyclonic storm, or one in which the wind revolves about a central low pressure area.
rheostat, n. A variable resistor for changing the amount of current in an electrical circuit.
rhomboid, n. A parallelogram with oblique angles. A rhomboid with sides of equal length is rhombus.
rhombus, n. A rhomboid with sides of equal length.
Rho-Rho mode. See RANGING MODE.
rho-theta navigation. Navigation by means measuring ranges and bearings of a known position.
rhumb, n. Short for RHUMB LINE.
rhumb bearing. The direction of a rhumb line through two terrestrial points, expressed angular distance from a reference direction. It is usually measured from 000° at the reference direction clockwise through 360°. Also called MERCATOR BEARING.
rhumb direction. See MERCATOR DIRECTION.
rhumb line. A line on the surface of the earth making the same oblique angle with all meridians; a loxodrome or loxodromic curve spirals toward the poles in a constant true direction. Parallels and meridians, which also maintain constant true directions, may be considered special cases of the rhumb line. A rhumb line is a straight line on a Mercator projection. Sometimes shortened to RHUMB. See also FICTITIOUS RHUMB LINE.
rhumb-line course. The direction of the rhumb line from the point of departure to the destination, expressed as the angular distance from a reference direction, usually north. Also called MERCATOR COURSE.
rhumb-line distance. Distance point to point along a rhumb line, usually expressed in nautical miles.
rhumb-line sailing. Any method of solving the various problems involving course, distance, difference of latitude, difference of longitude, and departure as they are related to a rhumb line.
rhythmic light. A light showing intermittently with a regular periodicity. ria, n. A long, narrow inlet with gradually decreasing depth inward.
ridge, n. 1 . On the sea floor, a long, narrow elevation with steep sides. 2 . A line or wall of broken ice forced up by pressure. The ridge may be fresh or weathered. See also AGED RIDGE. 3. In meteorology, an elongated area of relatively high atmospheric pressure, almost always associated with and most clearly identified as an area of maximum anticyclonic curvature of wind flow. The opposite of a ridge is called TROUGH. Sometimes called WEDGE.
ridged ice. Ice piled haphazardly one piece over another in the form of ridges or walls; usually found in first-year ice.
ridged-ice zone. An area in which much ridged ice with similar characteristics has formed.
ridging, n. The pressure process by which sea ice is forced into ridges. riding light. See ANCHOR LIGHT.
rift, n. An opening made by splitting; a crevasse; usually in the earth.
right angle. An angle of 90°.
right angle reflector. See DIHEDRAL REFLECTOR.
right ascension. Angular distance east of the vernal equinox; the arc of the celestial equator, or the angle at the celestial pole, between the hour circle of the vernal equinox and the hour circle of a point on the celestial sphere, measured eastward from the hour circle of the vernal equinox through 24 hours. Angular distance west of the vernal equinox, through 360°, is SIDEREAL HOUR ANGLE.
right astern. See DEAD ASTERN.
right bank. The bank of a stream or river on the right of the observer when he is facing in the direction of flow, or downstream. See also LEFT BANK.
right circular cone. A cone having a circular base perpendicular to the axis of the cone. Often shortened to RIGHT CONE.
right cone. Short for RIGHT CIRCULAR CONE.
right sphere. The celestial sphere as it appears to an observer at the equator, where celestial bodies appear to rise vertically above the horizon.
right triangle. A triangle one angle of which is 90°.
rigidity in space. See GYROSCOPIC INERTIA.
rime, n. A white or milky and opaque granular deposit of ice formed by the rapid freezing of supercooled water drops as they impinge on an exposed object. It is denser and harder than frost, but lighter, softer, and less transparent than glaze.
rime fog. See ICE FOG.
ring time. The time, reckoned from the end of pulse transmitted by a radar set, during which the output of an echo box produces a visible signal on the display.
rip current. A narrow intense current setting seaward through the surf zone. It removes excess water brought to the zone by the small net mass transport of waves, and is fed by longshore currents. Rip currents usually occur at points groins, jetties, etc., of irregular beaches, and at regular intervals along straight, uninterrupted beaches. See also RIPS.
riprap, n. Stones or broken rock thrown together without order to provide a revetment.
riprap mounds. Mounds of riprap maintained at certain light structures to protect the structures against ice damage and scouring action. Submerged portions present a hazard to vessels attempting to pass very close aboard.
rips, n. pl. Agitation of water caused by the meeting of currents or by a rapid current setting over an irregular bottom. Called TIDE RIPS when the tidal current is involved. See also OVERFALLS, RIP CURRENT.
rise, n. A broad elevation that rises gently and generally smoothly from the sea floor. See also CONTINENTAL RISE.
rise, $v ., i$. To ascend past the visible horizon. The opposite is SET.
rise of tide. Vertical distance from the chart sounding datum to a higher water datum. Mean rise of tide is the height of mean high water above the chart sounding datum. Spring rise and neap rise are the heights of spring high water and neap high water, respectively, above the chart sounding datum; while mean spring rise and mean neap rise are the heights of mean high water springs and mean high water neaps, respectively above the chart sounding datum. Also called TIDAL RISE. See also HEIGHT OF TIDE.
rising tide. A tide in which the depth of water is increasing. Sometimes the term FLOOD is used as an equivalent, but since flood refers primarily to horizontal rather than vertical movement RISING TIDE is more appropriate. The opposite is FALLING TIDE.
river, n. A natural stream of water, of greater volume than a creek or rivulet, flowing in a more or less permanent bed or channel, between defined banks or walls, with a current which may either be continuous in one direction or affected by the ebb and flow of the tidal current.
river buoy. A lightweight nun or can buoy especially designed to withstand strong currents.
river estuary. See ESTUARY, definition 2.
river ice. Ice formed on a river, regardless of observed location.
river radar. A marine radar set especially designated for river pilotage, generally characterized by high degree of resolution and a wide selection of range scales.
rivulet, n. A small stream; a brook.
road, n. An open anchorage affording less protection than a harbor. Some protection may be afforded by reefs, shoals, etc. Often used in the plural. Also called ROADSTEAD.
roadstead, n. See ROAD.
roaring forties. The area of the oceans between 40° and 50° south latitude, where strong westerly winds prevail. See also BRAVE WEST WIND.
roche moutonnée. A rock worn into a rounded shape by a glacier.
rock, n. 1 . An isolated rocky formation or single large stone, usually one constituting a danger navigation. It may be always submerged, always uncovered, or alternately covered and uncovered by the tide. A pinnacle is a sharp-pointed rock rising from the bottom. 2. The naturally occurring material that forms the firm, hard, and solid masses of the ocean floor. Also, rock is a collective term for hard material generally not smaller than 256 millimeters.
rock awash. A rock that becomes exposed, or nearly so, between chart sounding datum and mean high water. In the Great Lakes, the rock awash symbol is used on charts for rocks that are awash, or nearly so, at low water datum. See also BARE ROCK, SUBMERGED ROCK.

rocking the sextant. See SWINGING THE ARC.

rod, n. 1. A unit of length equal to 5.5 yards or 16.5 feet. Also called POLE, PERCH. 2. One of the imaginary slender soft iron bars which are assumed to be components or parameters of a craft's magnetic field caused by magnetism induced in soft iron.
roll, n. Oscillation of a craft about its longitudinal axis. Also called ROLLING. See also LIST, n. ; SHIP MOTIONS.
roll, $v ., t$ \& i. To oscillate or be oscillated about the longitudinal axis.
roll angle. See ANGLE OF ROLL.
rollers, n. Amongst the islands of the West Indies, the South Atlantic and the South Indian Ocean, swell waves which after moving into shallow water have grown to such height as to be destructive. See also COMBER.
rolling, n. See ROLL, n.
root mean square. The square root of the arithmetical mean of the squares of a group of numbers.
root mean square error. For the one-dimensional error distribution, this term has the same meaning as STANDARD DEVIATION or STANDARD ERROR. For the two-dimensional error distribution, this term has the same meaning as RADIAL ($\mathrm{d}_{\mathrm{rms}}$) ERROR. However, such use of the term is deprecated. Root mean square error is commonly called RMS ERROR.
rotary current. A tidal current that flows continually, with the direction of flow changing through 360° during the tidal period. Rotary currents are usually found offshore where the direction of flow is not restricted by any barriers. The tendency for rotation is due to the Coriolis force and, unless modified by local conditions, is clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere. The speed of the current usually varies throughout the tidal cycle, passing through the two maxima in approximately opposite directions and the two minima with the direction of the current at approximately 90° from the direction at time of maximum speed.
rotating light. A light with one or more beams that rotate. Sometimes called REVOLVING LIGHT.
rotation, n. Turning of a body about an axis within the body, such as the daily rotation of the earth. See also REVOLUTION.
rotten ice. Sea ice which has become honeycombed and is in an advanced state of disintegration.
round, $v ., t$. To pass and alter direction of travel, as a vessel ROUNDS A CAPE. If the course is nearly reversed, the term DOUBLE may be used.
roundabout, n. A routing measure comprising a separation point or circular separation zone and a circular traffic lane within defined limits. Traffic within the roundabout moves in a counterclockwise direction around the separation point or zone. See also ROUTING SYSTEM, TRAFFIC SEPARATION SCHEME.
round of bearings. A group of bearings observed together for plotting as a fix.
round of sights. A group of celestial observations made together for plotting a fix.
round wind. A wind that gradually changes direction through approximately 180° during the daylight hours. See also LAND BREEZE.
route chart. A chart showing routes between various places, usually with distances indicated.
routing system. Any system of one or more defined tracks and/or traffic control measures for reducing the risk of casualties; it includes traffic separation schemes, two-way routes, recommended tracks, areas to be avoided, inshore traffic zones, roundabouts, precautionary areas, and deep water routes.
rubble, n. 1 . Fragments of hard sea ice, roughly spherical and up to 5 feet in diameter, resulting from the disintegration of larger ice formations. When afloat, commonly called BRASH ICE. 2. Loose angular rock fragments.
Rude Star Finder. A star finder previously published by the U.S. Navy Hydrographic Office, and named for Captain Gilbert T. Rude, U.S. Coast and Geodetic Survey. This star finder preceded No. 2102-D Star Finder and Identifier.
rugged, adj. Rock-bound; craggy.
rules of navigation. Rules of the road.
rules of the road. The International Regulations for Prevention of Collisions at Sea, commonly called International Rules of the Road, and the Inland Navigation Rules, to be followed by all vessels while navigating upon certain inland waters of the United States. Also called RULES OF NAVIGATION.
run, n. 1. A brook, or small creek. 2. A small, swift watercourse. 3. The distance traveled by a craft during any given time interval, or since leaving a designated place. See also DAY'S RUN.
run a line of soundings. To obtain soundings along a course line, for use in making or improving a chart.
run before the wind. To steer a course downwind, especially under sail.
run down a coast. To sail approximately parallel with the coast.
runnel, n. The smallest of natural streams; a brook or run.
running fix. A position determined by crossing lines of position obtained at different times and advanced or retired to a common time. However in celestial navigation or when using long-range electronic aids, a position determined by crossing lines of position obtained within a few minutes is considered a FIX; the expression RUNNING FIX is applied to a position determined by advancing or retiring a line over a considerable period of time. There is no sharp dividing line between a fix and a running fix in this case.
running light. See NAVIGATION LIGHTS.
run-off, n. That portion of precipitation which is discharged from the area of fall as surface water in streams.
run of the coast. The directional trend of a coast.
run-up. The rush of water up a structure on the breaking of a wave. The amount of run-up is the vertical height above the still water level that the rush of water reaches. Also called UPRUSH.

S

saddle, n. A low part of the sea floor resembling in shape a saddle, in a ridge or between contiguous seamounts.
safety lanes. Specified sea lanes designated for use by submarines and surface ships in transit to prevent attack by friendly forces. They may be called SUBMARINE SAFETY LANES when designated for use by submarines in transit.
safe water mark. See under IALA MARITIME BUOYAGE SYSTEM.
SafetyNET. The INMARSAT broadcast service for MARITIME SAFETY INFORMATION (MSI).
sailing, n. A method of solving the various problems involving course, distance, difference of latitude, difference of longitude, and departure. The various methods are collectively spoken of as the sailings.

Plane sailing considers the earth as a plane. Traverse sailing applies the principles of plane sailing to determine the equivalent course and distance made good by a craft following a track consisting of a series of rhumb lines. Any of the sailings which considers the spherical or spheroidal shape of the earth is called spherical sailing. Middle-latitude sailing is a method of converting departure into difference of longitude, or vice versa, by assuming that such a course is steered at the middle or mean latitude; if the course is 090° or 270° true, it is called parallel sailing. Mercator sailing applies when the various elements are considered in their relation on a Mercator chart. Meridian sailing is used when the course is 000° or 180° true. Rhumb-line sailing is used when a rhumb line is involved; greatcircle sailing when a great circle track is involved. Composite sailing is a modification of great circle sailing used when it is desired to limit the highest latitude. The expression current sailing is occasionally used to refer to the process of allowing for current in determining the predicted course made good, or of determining the effect of a current on the direction of motion of a vessel.
sailing chart. See under CHART CLASSIFICATION BY SCALE.
sailing directions. 1. A descriptive book for the use of mariners, containing detailed information of coastal waters, harbor facilities, etc. of an area. For waters of the United States and its possessions, they are published by the National Ocean Survey and are called UNITED STATES COAST PILOTS. Sailing directions, as well as light lists, provide the information that cannot be shown graphically on the nautical chart and that is not readily available elsewhere. See also UNITED STATES COAST PILOT.
St. Elmo's fire. A luminous discharge of electricity from pointed objects such as the masts and arms of ships, lightning rods, steeples, etc. occurring when there is a considerable atmospheric difference in potential. Also called CORPOSANT, CORONA DISCHARGE.
St. Hilaire method. Establishing a line position from observation of the altitude of a celestial body by using an assumed position, the difference between the observed and computed altitudes, and the azimuth. The method was devised by Marcq St. Hilaire, a French naval officer, in 1874. See also SUMNER METHOD, LONGITUDE METHOD, HIGH ALTITUDE METHOD. Also see ALTITUDE INTERCEPT METHOD.
sallying ship. Producing rolling motion of a ship by having the crew run in unison from to side. This is usually done to help float a ship which is aground or to assist it to make way when it is beset by ice.
salt marsh. A flat coastal area flooded by most high tides, characterized by various species of marsh grasses and animal life.
salt-water wedge. The intrusion of a tidal estuary by sea water in the form of a wedge underneath the less dense fresh water.
same name. A name the same as that possessed by something else, as declination has the same name as latitude if both are north or both south. They are of CONTRARY NAME if one is north and the other south.
sand, n. Sediment consisting of small but distinguishable separate grains between 0.0625 and 2.0 millimeters in diameter. It is called very fine sand if the grains are between 0.0625 and 0.125 millimeter in diameter, fine sand between 0.125 and 0.25 millimeter, medium sand if between 0.25 and 0.50 millimeters, coarse sand if between 0.50 and 1.0 millimeters, and very coarse sand if between 1.0 and 2.0 millimeters. See also MUD, STONES, ROCK definition 2.
sand dune. See DUNE.
sandstorm, n. A strong wind carrying sand through the air, the diameter of most of the particles ranging from 0.08 to 1.0 millimeter. In contrast to a DUST STORM, the sand particles are mostly confined to the lowest 10 feet, and rarely rise more than 50 feet above the ground.
sandwave, n. A large wavelike sea-floor sediment feature in very shallow water and composed of sand. The wavelength may reach 100 meters, the amplitude is about 0.5 meter. Also called MEGARIPPLE.
Santa Ana. A strong, dust-laden foehn occurring in Southern California near the mouth of the Santa Ana pass and river.
Sargasso Sea. The west central region of the subtropical gyre of the North Atlantic Ocean. It is bounded by the North Atlantic, Canary, Atlantic North Equatorial, and Antilles Currents, and the Gulf Stream. It is characterized by the absence of well-marked currents and by large quantities of drifting Sargassum, or gulfweed.
sargasso weed. See SARGASSUM.
sargassum, n. A genus of brown algae characterized by a bushy form, a substantial holdfast when attached, and a yellowish brown, greenish yellow, or orange color. Species of the group have a large variety of forms and are widely distributed in warm seas as attached and free floating plants. Two species (S. fluitans and S. matans) make up 99 percent of the macroscopic vegetation in the Sargasso Sea. Also called SARGASSO WEED, GULFWEED.
Saros, n. A period of 223 synodic months corresponding approximately to 19 eclipse years or 18.03 Julian years, and is a cycle in which solar and lunar eclipses repeat themselves under approximately the same conditions.
sastrugi, (sing. sastruga), n., pl. Sharp, irregular ridges formed on a snow surface by wind erosion and deposition. On mobile floating ice, the ridges are parallel to the direction of the prevailing wind at the time they were formed.
satellite, n. 1. A body, natural or man-made, that orbits about another body, the primary body. The moon is a satellite of the earth, the primary body. 2. As defined by the International Telecommunication Union (ITU), a body which revolves around another body of preponderant mass and which has a motion primarily and permanently determined by the force of attraction of that other body. See also ACTIVE SATELLITE, EARTH SATELLITE, EQUATORIAL SATELLITE, GEODETIC SATELLITE, NAVIGATION SATELLITE, PASSIVE SATELLITE, POLAR SATELLITE, SNYCHRONOUS SATELLITE, TWENTY-FOUR HOUR SATELLITE.
satellite geodesy. The discipline which employs observations of an earth satellite to extract geodetic information.
satellite triangulation. The determination of the angular relationships between two or more stations by the simultaneous observation of an earth satellite from these stations.
satellite triangulation stations. Triangulation stations whose angular positions relative to one another are determined by the simultaneous observations of an earth satellite from two or more of them.
saturable system. A term used to describe a navigation system whose use is limited to a single user or a limited number of users on a timeshared basis.
saturation, n. Complete impregnation under given conditions, such as the condition that exists in the atmosphere when no additional water vapor can added at the prevailing temperature without condensation or supersaturation occurring.
Saturn, n. The navigational planet whose orbit lies outside that of Jupiter. santanna, n. A plain with low vegetation, especially in the sub-tropical latitudes.
S-band. A radio-frequency band of 1,550 to 5,200 megahertz. See also FREQUENCY, FREQUENCY BAND.
scalar, adj. Having magnitude only.
scalar, n. Any physical quantity whose field can be described by a single numerical value at each point in space. A scalar quantity is distinguished from a VECTOR quantity by the fact that scalar quantity possesses only magnitude, where as, a vector quantity possesses both magnitude and direction.
scale, n. 1. A series of marks or graduations at definite intervals. A linear scale is a scale graduated at uniform intervals; a logarithmic scale is graduated in the logarithms of uniformly-spaced consecutive numbers. 2. The ratio between the linear dimensions of chart, map drawing, etc. and the actual dimensions. See also CONVERSION SCALE, BAR SCALE, REPRESENTATIVE FRACTION, SMALL SCALE, LARGE SCALE.
scale error. See CALIBRATION ERROR.
scan, v., t. In the use of radar, to search or investigate an area or space by varying the direction of the radar antenna and thus the beam. Normally scanning is done by continuous rotation of the antenna.
scanner, n. 1. A unit of a radar set consisting of the antenna and drive assembly for rotating the antenna. 2. A computerized electronic device which digitizes printed images.
scarf cloud. A thin cirrus-like cloud sometimes observed above a developing cumulus. See also CAP CLOUD.
scarp, n. See ESCARPMENT.
scatter reflections. Reflections from portions of the ionosphere having different virtual height which mutually interfere and cause rapid fading.
Schuler frequency. The natural frequency of simple pendulum with a length equal to the earth's radius. The corresponding period is 84 minutes.

Schuler loop. The portion of the inertial navigator in which the instrumental local vertical is established.
Schuler tuned. The condition wherein gyroscopic devices should be insensitive to applied accelerations. M. Schuler determined that if gyroscopic devices were not to be affected by the motions of the craft in which installed, the devices should have a natural period of oscillation of about 84.4 minutes. This period is equal to the product of 2π and the square root of the quotient: radius of the earth divided by the acceleration of gravity.
scintillation, n. Twinkling; emission of sparks or quick flashes; shimmer. scope, n. Short for RADARSCOPE.
scoria (pl. scoriae), n. Volcanic rock fragments usually of basic composition, characterized by marked vesicularity, dark color, high density and a partly crystalline structure. Scoria is a constituent of certain marine sediments.
scouring basin. A basin containing impounded water which is released at about low water in order to maintain the desired depth in the entrance channel by scouring the bottom. Also called SLUICING POND.
screen, n. The chemically coated inside surface of the large end of a cathode-ray tube which becomes luminous when struck by an electron beam.
scud, n. Shreds or small detached masses of cloud moving rapidly before the wind, often below a layer of lighter clouds. See also FRACTO.
scud, $v ., i$. To run before a storm.
sea, n. 1. A body of salt water more or less confined by continuous land or chains of islands and forming a distinct region. 2. A body of water nearly or completely surrounded by land, especially if very large or composed of salt water. Sometimes called INLAND SEA. See also LAKE. 3. Ocean areas in general, including major indentations in the coast line, such as gulfs. See also CLOSED SEA, OPEN SEA, HIGH SEA. 4. Waves generated or sustained by winds within their fetch as opposed to SWELL. 5. The character of a water surface, particularly the height, length (period), and direction of travel of waves generated locally. A smooth sea has waves no higher than ripples or small wavelets. A short sea has short, irregular, and broken waves. A confused sea has a highly disturbed surface without a single, well-defined direction of travel, as when waves from different directions meet following a sudden shift in the direction of the wind. A cross sea is a series of waves imposed across the prevailing waves. A sea may be designated as head, beam, quartering, or following. See also SWELL definition 1.
Sea Area. A defined area under the Global Maritime Distress and Safety System (GMDSS) which regulates certain safety and communication equipment necessary according to the area of the ship's operations. Sea Area A-1 is within coverage of VHF coast radio stations (25-30 miles) providing digital selective calling. Sea Area A-2 is within range of the medium frequency coast radio stations (to approximately 300 miles). Sea Area A-3 is within the footprint of the geostationary INMARSAT communications satellites, covering the rest of the open seas except the poles. Sea Area A-4 covers the rest of the earth, chiefly the polar areas. The areas do not overlap.
sea-air temperature difference correction. A correction due to a difference in the temperature of the sea and air, particularly the sextant altitude correction caused by abnormal terrestrial refraction occurring when there is a nonstandard density lapse rate in the atmosphere due to a difference in the temperature of the water and air at the surface.
sea anchor. An object towed by a vessel, usually a small one, to keep the vessel end-on to a heavy sea or surf or to reduce the drift. Also called DRAG, DROGUE.
seabeach, n. See under BEACH.
seaboard, n. The region of land bordering the sea. The terms SEABOARD, COAST, and LITTORAL have nearly the same meanings. SEABOARD is a general term used somewhat loosely to indicate a rather extensive region bordering the sea. COAST is the region of indefinite width that extends from the sea inland to the first major change in terrain features. LITTORAL applies more specifically to the various parts of a region bordering the sea, including the coast, foreshore, backshore, beach, etc.
sea breeze. A breeze blowing from the sea to adjacent land. It usually blows by day, when the land is warmer than the sea, and alternates with a LAND BREEZE, which blows in the opposite direction by night. See also ONSHORE WIND.
sea buoy. The outermost buoy marking the entrance to a channel or harbor.
seachannel, n. On the sea floor, a continuously sloping, elongated depression commonly found in fans or plains and usually bordered by levees on one or two sides.
sea clutter. See SEA RETURN.
seacoast, n. See COAST.
sea fog. A type of advection fog formed when air that has been lying over a warm water surface is transported over colder water, resulting in cooling of the lower layer of air below its dew point. See also HAAR.
sea gate. 1. A gate which serves to protect a harbor tidal basin from the sea, such as one of a pair of supplementary gates at the entrance to a tidal basin exposed to the sea. 2. A movable gate which protects the main deck of a ferry from waves and sea spray.
seagirt, adj. Surrounded by sea. Also called SEA BOUND.
sea ice. Any form of ice found at sea which has originated from the freezing of sea water.
sea-ice nomenclature. See WMO SEA-ICE NOMENCLATURE.
sea kindliness. A measure of the ease of motion of a vessel in heavy seas, particularly in regard to rolling, pitching, and shipping water. It is not to be confused with seaworthiness which implies that the vessel is able to sustain heavy rolling, pitching, etc., without structural damage or impaired stability.
sea level. Height of the surface of the sea at any time.
sea manners. Understood by seamen to mean consideration for the other vessel and the exercise of good judgment under certain condition when vessels meet.
seamark, n. See MARK, n., definition 1 .
sea mile. An approximate mean value of the nautical mile equal to 6,080 feet; the length of a minute of arc along the meridian at latitude 48°.
sea mist. See STEAM FOG.
seamount, n. On the sea floor, an elevation rising generally more than 1,000 meters and of limited extent across the summit.
sea quadrant. See BACKSTAFF.
search and rescue chart. A chart designed primarily for directing and conducting search and rescue operations.
search and rescue radar transponder (SART). An electronic device which transmits a homing signal on the radar frequency used by rescue ships and aircraft.
sea reach. The reach of a channel entering a harbor from seaward.
sea return. Clutter on the radarscope which is the result of the radar signal being reflected from the sea, especially near the ship. Also called SEA CLUTTER. See also CLUTTER.
sea room. Space in which to maneuver without danger of grounding or colliding.
seashore, n. A loose term referring to the general area in close proximity to the sea.
season, n. 1 . One of the four principal divisions of the year: spring, summer, autumn, and winter. 2. An indefinite part of the year, such as the rainy season.
seasonal current. An ocean current which changes in speed or direction due to seasonal winds.
sea-temperature difference correction. A correction due to a difference in the temperature of the sea and air, particularly the sextant altitude correction caused by abnormal terrestrial refraction occurring when there is a nonstandard density lapse rate in the atmosphere due to a difference in the temperature of the water and air at the surface.
seaward, $a d j$. In a direction away from the land; toward the sea.
seaward, $a d v$. Away from the land; toward the sea.
seaward boundary. Limits of any area or zone offshore from the mean low, or mean lower low water line and established by an act of the U.S. Congress.
seaway, n. 1. A moderately rough sea. Used chiefly in the expression in a seaway. 2 . The sea as a route of travel from one place to another; a shipping lane.
secant, $n .1$. The ratio of the hypotenuse of a plane right triangle to the side adjacent to one of the acute angles of the triangle, equal to $1 / \mathrm{cos}$. The expression NATURAL SECANT is sometimes used to distinguish the secant from its logarithm (called LOGARITHMIC SECANT). 2. A line that intersects another, especially a straight line intersecting a curve at two or more points.
secant conic chart. See CONIC CHART WITH TWO STANDARD PARALLELS.
secant conic map projection. See CONIC MAP PROJECTION WITH TWO STANDARD PARALLELS.
second, n. 1. The base unit of time in the International System of Units (SI). In 1967 the second was defined by the Thirteenth General Conference on Weights and Measures as the duration of $9,192,631,770$ periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the cesium133 atom. This value was established to agree as closely as possible with the ephemeris second. Also called ATOMIC SECOND. See also ATOMIC TIME. 2. A sixtieth part of a minute in either time or arc.
secondary, n. A small low pressure area accompanying a large or primary one. The secondary often grows at the expense of the primary, eventually replacing it.
secondary circle. See SECONDARY GREAT CIRCLE.
secondary control tide station. A tide station at which continuous observations have been made over a minimum period of 1 year but less than a 19-year Metonic cycle. The series is reduced by comparison with simultaneous observations from a primary control tide station. This station provides for a 365-day harmonic analysis including the seasonal fluctuation of sea level. See also PRIMARY CONTROL TIDE STATION; SUBORDINATE TIDE STATION, definition 1; TERTIARY TIDE STATION; TIDE STATION.
secondary great circle. A great circle perpendicular to a primary great circle, as a meridian. Also called SECONDARY CIRCLE.
secondary light. A major light, other than a primary seacoast light, established at harbor entrances and other locations where high intensity and reliability are required. See also MINOR LIGHT.
secondary phase factor correction. A correction for additional time (or phase delay) for transmission of a low frequency signal over an all seawater path when the signal transit time is based on the free-space velocity. The Loran C lattices as tabulated in tables or overprinted on the nautical chart normally include compensation for secondary phase factor. See also ADDITIONAL SECONDARY PHASE FACTOR CORRECTION.
secondary radar. 1. Radar in which the target is fitted with a transponder and in which the target retransmits automatically on the interrogating frequency, or a different frequency. The response may be coded. See also PRIMARY RADAR, RACON, RAMARK. 2. As defined by the International Telecommunication Union (ITU), a radiodetermination system based on the comparison of reference signals with radio signals re-transmitted from the position to be determined.
secondary radiation. See RERADIATION, definition 2.
secondary station. In a radionavigation system, the station of a chain whose emissions are made with reference to the emissions of a master station without being triggered by the emissions of such station, as in Loran C. See also SLAVE STATION.
secondary tide station. See as SECONDARY CONTROL TIDE STATION.
second reduction. See PHASE REDUCTION.
second-trace echo. A radar echo received from a target after the following pulse has been transmitted. Second-trace echoes are unusual except under abnormal atmospheric conditions, or conditions under which super-refraction is present, and are received from targets at actual ranges greater than the radar range scale setting. They may be recognized through changes in their position on the radarscope on changing the pulse repetition rate; their hazy, streaky or distorted shape; and their erratic movements on plotting. Also called MULTIPLE-TRACE ECHO.
second-year ice. Old ice which has survived only one summer's melt. Because it is thicker and less dense than first-year ice, it stands higher out of the water. In contrast to multi-year ice, summer melting produces a regular pattern of numerous small puddles. Bare patches and puddles are usually greenish-blue.
sector, n. 1. Part of a circle bounded by two radii and an arc. See also RED SECTOR. 2. Something resembling the sector of a circle, as a warm sector between the warm and cold fronts of a cyclone.
sector display. A radar display in which a high persistence screen is excited only when the radar beam is within a narrow sector which can be selected at will.
sector light. A light having sectors of different colors or the same color in specific sectors separated by dark sectors.
sector scanning. In the use of radar, the process of scanning within a sector as opposed to scanning around the horizon.
secular, $a d j$. Of or pertaining to a long period of time.
secular aberration. See under ABERRATION, definition 1.
secular error. That error in the reading of an instrument due to secular change within the materials of the instrument.
secular perturbations. Perturbations of the orbit of a planet or satellite that continue to act in one direction without limit, in contrast to periodic perturbations which change direction in a regular manner.
secular terms. In the mathematical expression of the orbit of a satellite, terms which are proportional to time, resulting in secular perturbations. See also PERIODIC TERMS.
secular trend. See APPARENT SECULAR TREND.
seiche, n. A stationary wave usually caused by strong winds and/or changes in barometric pressure. It is usually found in lakes and semi-enclosed bodies of water. It may also be found in areas of the open ocean. See also STANDING WAVE.
Seismic sea wave. See as TSUNAMI.
selective availability. A Department of Defense program which degrades the accuracy of the pseudorange measurement of the GPS signal by dithering the clock time and ephemerides data, providing a less accurate fix for civilian users. It can be turned on or off at will by DoD.
selective fading. 1 . Fading of the skywave in which the carrier and various sideband frequencies fade at different rates, causing audio-frequency distortion. 2. Fading that affects the different frequencies within a specified band unequally. 3 . Fading in which the variation in the received signal strength is not the same for all frequencies in the frequency band of the received signal. See also FADING.
selectivity, n. 1. The characteristic of a radio receiver which enables it to differentiate between the desired signal and those of other frequencies. 2. The ability of a receiver to reject transmissions other than the one to which tuned. 3 . The degree to which a radio receiver can accept the signals of one station while rejecting those of stations on adjacent channels. See also SENSITIVITY.
selenographic, adj. Of or pertaining to the physical geography of the moon.
semaphore, n. A device using visual signals, usually bodies of defined shapes or positions or both, by which information can be transmitted.
semi-. A prefix meaning half.
semicircle, n. Half of a circle. See also DANGEROUS SEMICIRCLE, LESS DANGEROUS SEMICIRCLE, NAVIGABLE SEMICIRCLE.
semicircular deviation. Deviation which changes sign (E or W) approximately each 180° change of heading.
semidiameter, n. 1 . Half the angle at the observer subtended by the visible disk of a celestial body. Sextant altitudes of the sun and moon should be corrected for semidiameter unless the center is observed. 2. The radius of a circle or sphere.
semidiameter correction. A correction due to semidiameter, particularly that sextant altitude correction, when applied to the observation of the upper or lower limb of a celestial body, determines the altitude of the center of that body.
semidiurnal, $a d j$. Having a period or cycle of approximately one-half of a day. The predominating type of tide throughout the world is semidiurnal, with two high waters and two low waters each tidal day. The tidal current is said to be semidiurnal when there are two flood and two ebb periods each tidal day. A semidiurnal constituent has two maxima and minima each constituent day. See also TYPE OF TIDE.
semidiurnal current. Tidal current in which tidal day current cycle consists of two flood currents and two ebb currents, separated by slack water; or two changes in direction, 360° of a rotary current. This is the most common type of tidal current throughout the world.
semidiurnal tide. See under TYPE OF TIDE, SEMIDIURNAL, adj.
semilogarithmic coordinate paper. Paper ruled with two sets of mutually-perpendicular parallel lines, one set being spaced according to the logarithms of consecutive numbers, and the other set uniformly spaced.
semimajor axis. One-half of the longest diameter of an ellipse.
semiminor axis. One-half of the shortest diameter of an ellipse.
semi-reflecting mirror. See DICHROIC MIRROR.
sense, n. The solution of the 180° ambiguity present in some radio direction finding systems.
sense antenna. An antenna used to resolve a 180° ambiguity in a directional antenna.
sense finding. The process of eliminating 180° ambiguity from the bearing indication some types of radio direction finder.
sensibility, n. The ability of a magnetic compass card to align itself with the magnetic meridian after deflection.
sensible horizon. The circle of the celestial sphere formed by the intersection of the celestial sphere and a plane through any point, such as the eye of an observer, and perpendicular to the zenith-nadir line. See also HORIZON.
sensitive axis. 1. The axis Of an accelerometer along which specific acceleration is measured. 2. See also INPUT AXIS.
sensitivity, n. The minimum input signal required to produce a specified output signal from a radio or similar device, having a specific signal-to-noise ratio. See also SELECTIVITY.
sensitivity time control. An electronic circuit designed to reduce automatically the sensitivity of the radar receiver to nearby targets. Also called SWEPT GAIN, ANTI-CLUTTER GAIN CONTROL, ANTI-CLUTTER SEA.
separation line. A line separating the traffic lanes in which ships are proceeding in opposite or nearly opposite directions, or separating a traffic lane from the adjacent inshore traffic zone. See also ROUTING SYSTEM, SEPARATION ZONE.
separation zone. A defined zone which separates traffic lanes in which ships are proceeding in opposite directions, or which separates traffic lanes from the adjacent inshore traffic zone. See also ROUTING SYSTEM, SEPARATION LINE.
September equinox. See AUTUMNAL EQUINOX.
sequenced radiobeacon. One of a group of marine radiobeacons in the same geographical area, except those operating continuously, that transmit on a single frequency. Each radiobeacon transmits for 1 minute of each period in sequence with other beacons of the group. If less than six radiobeacons are assigned to a group, one or more of the beacons may transmit during two 1 -minute periods.
sequence of current. The order of occurrence of the four tidal current strengths of a day, with special reference as to whether the greater flood immediately precedes or follows the greater ebb.
sequence of tide. The order in which the four tides of a day occur, with special reference as to whether the higher high water immediately precedes or follows the lower low water.
service area. The area within which a navigational aid is of use. This may be divided into primary and secondary service areas having different degrees of accuracy.
service area diagram. See RELIABILITY DIAGRAM.
service period. The number of days that an automatic light or buoy is expected to operate without requiring recharging.
set, n. The direction towards which a current flows.
set, $v ., i$. Of a celestial body, to cross the visible horizon while descending. The opposite is RISE.
set, $v ., t$. To establish, as to set a course.
set screw. A screw for locking a movable part of an instrument or device. setting a buoy. The act of placing a buoy on station in the water.
settled, $a d j$. Pertaining to weather, devoid of storms for a considerable period. See also UNSETTLED.
seven-eighths rule. A rule of thumb which states that the approximate distance to an object broad on the beam equals $7 / 8$ of the distance traveled by a craft while the relative bearing (right or left) changes from 30° or 60° or from 120° to 150°, neglecting current and wind.
seven seas. Figuratively, all the waters or oceans of the world. Applied generally to the seven oceans - Arctic, Antarctic, North Atlantic, South Atlantic, North Pacific, South Pacific, and Indian.
seven-tenths rule. A rule of thumb which states that the approximate distance to an object broad on the beam equals $7 / 10$ of the distance traveled by a craft while the relative bearing (right or left) changes from 22.5° to 45° or from 135° to 157.5°, neglecting current and wind.
seven-thirds rule. A rule of thumb which states that the approximate distance to an object broad on the beam equals $7 / 3$ of the distance traveled by a craft while the relative bearing (right or left) changes from 22.5° to $26.5^{\circ}, 67.5^{\circ}$ to $90^{\circ}, 90^{\circ}$ to 112.5°, or 153.5° to 157.5°, neglecting current and wind.
sexagesimal system. A system of notation by increments of 60°, such as the division of the circle into 360°, each degree into 60 minutes, and each minute into 60 seconds.
sextant, n. A double-reflecting instrument for measuring angles, primarily altitudes of celestial bodies. As originally used, the term applied only to instruments having an arc of 60°, a sixth of a circle, from which the instrument derived its name. Such an instrument had a range of 120°. In modern practice the term applies to a similar instrument, regardless of its range, very few modern instruments being sextants in the original sense. Thus, an octant, having a range of 90°; a quintant, having a range of 144°; and a quadrant, having a range of 180°, may be called sextants. A marine sextant is designed primarily for marine navigation. See also MARINE SEXTANT.
sextant adjustment. The process of checking the accuracy of a sextant and removing or reducing its error.
sextant altitude. Altitude as indicated by a sextant or similar instrument, before corrections are applied. See also OBSERVED ALTITUDE, APPARENT ALTITUDE.
sextant altitude correction. Any of several corrections applied to a sextant altitude in the process of converting it to observed altitude. See also ACCELERATION CORRECTION, AIR TEMPERATURE CORRECTION, AUGMENTATION CORRECTION, BAROMETRIC PRESSURE CORRECTION, CORIOLIS CORRECTION, DEFLECTION OF THE VERTICAL CORRECTION, DIP CORRECTION, HEIGHT OF EYE CORRECTION, INDEX CORRECTION, INSTRUMENT CORRECTION, IRRADIATION CORRECTION, PARALLAX CORRECTION, PERSONAL CORRECTION, REFRACTION CORRECTION, SEA-AIR TEMPERATURE DIFFERENCE CORRECTION, SEMI-DIAMETER CORRECTION, TIDE CORRECTION, TILT CORRECTION, WAVE HEIGHT CORRECTION.

sextant chart. See CIRCLE SHEET.

sextant error. The error in reading a sextant, due either to lack of proper adjustment or imperfection of manufacture. See CALIBRATION ERROR, CENTERING ERROR, COLLIMATION ERROR, ERROR OF PERPENDICULARITY, GRADUATION ERROR, INDEX ERROR, INSTRUMENT ERROR, PRISMATIC ERROR, SHADE ERROR, SIDE ERROR, VERNIER ERROR.
shade, n. See SHADE GLASS.
shaded relief. A cartographic technique that provides an apparent threedimensional configuration of the terrain on maps and charts by the use of graded shadows that would be cast if light were shining from the northwest. Shaded relief is usually used in combination with contours.
shade error. The error of an optical instrument due to refraction in the shade glasses. If this effect is due to lack of parallelism of the faces it is usually called PRISMATIC ERROR.
shade glass. A darkened transparent glass that can be moved into the line of sight of an optical instrument, such as a sextant, to reduce the intensity of light reaching the eye. Also called SHADE.
shadow, n. 1 . Darkness in a region, caused by an obstruction between the source of light and the region. By extension, the term is applied to similar condition when any form of radiant energy is cut off by an obstruction, as in a radar shadow. The darkest part of a shadow in which light is completely cut off is called the UMBRA; the lighter part surrounding the umbra in which the light is only partly cut off is called the PENUMBRA. 2. A region of diminished rainfall on the lee side of a mountain or mountain range, where the rainfall is noticeably less than on the windward side. Usually called RAIN SHADOW.
shadow bands. See CREPUSCULAR RAYS.
shadow bar. A rod or bar used to cast a shadow, such as on the sighting assembly of an astro compass.
shadow pin. A small rod or pin used to cast a shadow on an instrument, such as a magnetic compass or sun compass, to determine the direction of the luminary; a GNOMON.
shadow region. A region shielded from radar signals because of an intervening obstruction or absorbing medium. This region appears as an area void of targets on a radar display such as a plan position indicator. The phenomenon is called RADAR SHADOW. See also SHADOW SECTOR, BLIND SECTOR.
shadow sector. A sector on the radarscope in which the appearance of radar echoes is improbable because of an obstruction near the antenna. While both blind and shadow sectors have the same basic cause, blind sectors generally occur within the larger angles subtended by the obstruction. See also SHADOW REGION.
shallow, adj. Having little depth; shoal.
shallow, n. An area where the depth of water is relatively slight.
shallow water constituent. A short-period harmonic term introduced into the formula of tidal (or tidal current) constituents to take account of the change in the form of a tide wave resulting from shallow water conditions. Shallow water constituents include the overtides and compound tides.
shallow water wave. A wave is classified as a shallow water wave whenever the ratio of the depth (the vertical distance of the still water level from the bottom) to the wave length (the horizontal distance between crests) is less than 0.04 . Tidal waves are shallow water waves.
shamal, n. A northwesterly wind blowing over Iraq and the Persian Gulf, in summer, often strong during the day, but decreasing during the night.
sharki, n. A southeasterly wind which sometimes blows in the Persian Gulf.
shearing, n. An area of pack ice is subject to shear when the ice motion varies significantly in the direction normal to the motion, subjecting the ice to rotational forces. These forces may result in phenomena similar to a FLAW.
sheet line. See NEATLINE.
shelf, n. A zone adjacent to a continent, or around an island, that extends from the low water line to a depth at which there is usually a marked increase of slope towards oceanic depths.
shelf valley. A valley on the shelf, generally the shoreward extension of a canyon.
shield, n. A metal housing around an electrical or magnetic element to eliminate or reduce the effect of its electric or magnetic field, or to reduce the effect of an exterior field on the element.
shielding factor. The ratio of the strength of the magnetic field at a compass to the strength if there were no disturbing material nearby; usually expressed as a decimal. Because of the metal of a vessel, the strength of the earth's magnetic field is reduced somewhat at a compass location aboard ship. The shielding factor is one minus the percentage of reduction.
shimmer, $v ., i$. To appear tremulous or wavering due to varying atmospheric refraction in the line of sight.
shingle, n. See under STONES.
ship, n. Originally a sailing vessel with three or more masts, square-rigged on all. The term is now generally applied to any large, ocean-going vessel, except submarines which are called boats regardless of size.
ship earth station (SES). An INMARSAT satellite system installed aboard a vessel.
ship error. The error in radio direction finder bearings due to reradiation of radio waves by the metal of the ship.
ship motions. Surge is the bodily motion of a ship forward and backward along the longitudinal axis, caused by the force of the sea acting alternately on the bow and stern; heave is the oscillatory rise and fall due to the entire hull being lifted by the force of the sea; sway is the side-to-side bodily motion, independent of rolling caused by uniform pressure being exerted all along one side of the hull; yaw is the oscillation about a vertical axis approximately through the center of gravity of the vessel; roll is the oscillation about the longitudinal axis; and pitch is oscillation about the transverse axis, due to the bow and stern being raised or lowered on passing through successive crests and troughs of waves.
shipping lane. An established route traversed by ocean shipping.
ship's emergency transmitter. As defined by the International Telecommunication Union (ITU) a ship's transmitter to be used exclusively on a distress frequency for distress, urgency or safety purposes.
ship's head. Heading of a vessel.
ship simulator. A computerized system which uses video projection techniques to simulate navigational and shiphandling situations. A full capability system includes a completely equipped ship's bridge and can duplicate almost any aspect of ship operation; partial systems focus on a particular function, such as radar collision avoidance or nighttime navigation.
Ships' Routing. A publication of the International Maritime Organization (IMO) which describes the general provisions of ships' routing, traffic separation schemes, deep water routes and areas to be avoided, which have been adopted by IMO. All details of routing systems are promulgated through Notices to Mariners and Sailing Directions and are depicted on charts.
ship weather routing. A procedure whereby an optimum route is developed based on the forecasts of weather and seas and the ship's characteristics for a particular transit. Within specified limits of weather and sea conditions, ship weather routing seeks maximum safety and crew comfort, minimum fuel consumption, minimum time underway, or any desired combination of these factors.
shoal, adj. Shallow.
shoal, n. An offshore hazard to navigation on which there is a depth of 16 fathoms or 30 meters or less, composed of unconsolidated material. See also REEF.
shoal, $v ., i$. To become less deep.
shoal, $v ., t$. To cause to become less deep.
shoal patches. Individual and scattered elevations of the bottom, with depths of 16 fathoms (or 30 meters) or less, but composed of any material except rock or coral.
shoal water. Shallow water; water over a shoal.
shoot, $v ., t$. To observe the altitude of (a celestial body).
shooting star. See METEOR.
shore, n. That part of the land in immediate contact with a body of water including the area between high and low water lines. The term SHORE is usually used with reference to the body of water and COAST with reference to the land, as the east coast of the United States is part of the western shore of Atlantic Ocean. The term SHORE usually refers to a narrow strip of land in immediate contact with any body of water, while COAST refers to a general region in proximity to the sea. A shore bordering the sea may be called a SEASHORE. See also FORESHORE, BACKSHORE.
shoreface, n. The narrow zone seaward from the low tide shoreline, permanently covered by water, over which the beach sands and gravels actively oscillate with changing wave conditions.
shore lead. A lead between pack ice and the shore or between pack ice and an ice front.
shoreline, n. The intersection of the land with the water surface. The shoreline shown on charts represents the line of contact between the land and a selected water elevation.
shore polynya. See under POLYNYA.
short period perturbations. Periodic perturbations in the orbit of a planet or satellite which execute one complete periodic variation in the time of one orbital period or less.
short range systems. Radionavigation systems limited in their positioning capability to coastal regions, or those systems limited to making landfall. See also MEDIUM RANGE SYSTEMS, LONG RANGE SYSTEMS.
short sea. A sea in which the waves are short, irregular, and broken.
short wave. A radio wave shorter than those of the standard broadcast band. See also WAVE, definition 2.
shower, n. Precipitation from a convective cloud. Showers are characterized by the suddenness with which they start and stop, by the rapid changes of intensity, and usually by rapid changes in the appearance of the sky. In weather observing practice, showers are always reported in terms of the basic type of precipitation that is falling, i.e., rain showers, snow showers, sleet showers.
shuga, n. An accumulation of spongy white ice lumps, a few centimeters across, the lumps are formed from grease ice or slush and sometimes from anchor ice rising to the surface.
side echo. The effect on a radar display by a side lobe of a radar antenna. See also ECHO.
side error. The error in the reading of a sextant due to nonperpendicularity of horizon glass to the frame.
side lights. Running lights placed on the sides of a vessel, green to starboard and red to port, showing an unbroken light over an arc of the horizon from dead ahead to 22.5° abaft the beam.
side lobe. Any lobe of the radiation pattern of a directional antenna other than the main or lobe.
sidereal, $a d j$. Of or pertaining to the stars, though SIDEREAL generally refers to the stars and TROPICAL to the vernal equinox, sidereal time and the sidereal day are based upon position of the vernal equinox relative the meridian. The SIDEREAL YEAR is based on the stars.
sidereal day. See under SIDEREAL TIME.
sidereal hour angle. Angular distance west of the vernal equinox; the arc of the celestial equator or the angle at the celestial pole between the hour circle of the vernal equinox and the hour circle of a point on the celestial sphere, measured westward from the hour circle of the equinox through 360°. Angular distance east of the vernal equinox, through 24 hours, is RIGHT ASCENSION.
sidereal month. The average period of revolution of the moon with respect to the stars, a period of 27 days, 7 hours, 43 minutes, 11.5 seconds.
sidereal noon. See under SIDEREAL TIME.
sidereal period. 1. The length of time required for one revolution of a celestial body about a primary, with respect to the stars. 2. The interval between two successive returns of an artificial earth satellite in orbit to the same geocentric right ascension.
sidereal time. Time defined by the daily rotation of the earth with respect to the vernal equinox of the first point of Aries. Sidereal time is numerically measured by the hour angle of the equinox, which represents the position of the equinox in the daily rotation. The period of one rotation of the equinox in hour angle, between two successive upper meridian transits, is a sidereal day. It is divided into 24 sidereal hours, reckoned at upper transit which is known as sidereal noon. The true equinox is at the intersection of the true celestial equator of date with the ecliptic of date; the time measured by its daily rotation is apparent sidereal time. The position of the equinox is affected by the nutation of the axis of rotation of the earth, and the nutation consequently introduces irregular periodic inequities into the apparent sidereal time and the length of the sidereal day. The time measured by the motion of the mean equinox of date, affected only by the secular inequalities due to the precession of the axis, is mean sidereal time. The maximum difference between apparent mean sidereal times is only a little over a second and its greatest daily change is a little more than a hundredth of a second. Because of its variable rate, apparent sidereal time is used by astronomers only as a measure of epoch; it is not used for time interval. Mean sidereal time is deduced from apparent sidereal time by applying the equation of equinoxes.
sidereal year. The period of one apparent rotation of the earth around the sun, with relation to a fixed point, or a distant star devoid of proper motion, being 365 days, 6 hours, 9 days and 9.5 seconds in 1900, and increasing at a rate of rate of 0.0001 second annually. Because of the precession of the equinoxes this is about 20 minutes longer than a tropical year.
sight, n. Observation of the altitude, and sometimes also the azimuth, of a celestial body for a line of position; or the data obtained by such observation. An observation of a celestial body made by facing 180° from the azimuth of the body is called a back sight. See also NOON SIGHT, TIME SIGHT.
sighting vane. See VANE, definition 2.
sight reduction. The process of deriving from a sight the information needed for establishing a line of position.
sight reduction tables. Tables for performing sight reduction, particularly those for comparison with the observed altitude of a celestial body to determine the altitude difference for establishing a line of position.
Sight Reduction Tables for Air Navigation. See PUB. NO. 249.
Sight Reduction Tables for Marine Navigation. See PUB. NO. 229.
signal, n. 1. As applied to electronics, any transmitted electrical impulse 2. That which conveys intelligence in any form of communication, such as a time signal or a distress signal.
signal-to-noise ratio. The ratio of the magnitude of the signal to that of the noise, often expressed in decibels.
signature, n. The graphic record of the magnetic or acoustic properties of a vessel.
sign conventions. See as GEOGRAPHIC SIGN CONVENTIONS.
significant digits. Those digits of a number which have a significance, zeros at the left and sometimes those at the right being excluded.
sikussak, n. Very old ice trapped in fjords. Sikussak resembles glacier ice, since it is formed partly from snow.
sill, n. On the sea floor, the low part of a gap or saddle separating basins. See also DOCK SILL.
sill depth. The depth over a sill.
silt, n. See under MUD.
similar decimals. Decimals having the same number of decimal places, as 3.141 and 0.789 . Decimals can be made similar by adding the appropriate number of zeros. For example, 0.789 can be made similar to 3.1416 by stating it as 0.7890 . See also REPEATING DECIMAL, SIGNIFICANT DIGITS.
simple conic chart. A chart on a simple conic projection.
simple conic map projection. A conic map projection in which the surface of a sphere or spheroid, such as the earth, is conceived as developed on a tangent cone, which is then spread out to form a plane.
simple harmonic motion. The projection of uniform circular motion on a diameter of the circle of such motion. The combination of two or more simple harmonic motions results in COMPOUND HARMONIC MOTION.
simultaneous altitudes. Altitudes of two or more celestial bodies observed at the same time.
simultaneous observations (of a satellite). Observations of a satellite that are made from two or more distinct points or tracking stations at exactly the same time.
sine, n. The ratio of the side opposite an angle of a plane right triangle to the hypotenuse. The expression NATURAL SINE is used to distinguish the sine from its logarithm (called LOGARITHMIC SINE).
sine curve. Characteristic simple wave pattern; a curve which represents the plotted values of sines of angles, with the sine as the ordinate and the angle as the abscissa. The curve starts at 0 amplitude at the origin, increases to a maximum at 90°, decreases to 0 at 180°, increases negatively to a maximum negative amplitude at 270°, and returns to 0 at 360°, to repeat the cycle. Also called SINUSOID.
sine wave. A simple wave in the form of curve.
single astronomic station datum orientation. Orientation of a geodetic datum by accepting the astronomically determined coordinates of the origin and the azimuth to one other station without any correction.
single-axis normal distribution. A one-time normal distribution along an axis perpendicular to a line of position. Two single-axis normal distributions may be used to establish the error ellipse and the corresponding circle of equivalent probability when the error distribution is two-dimensional or bivariate.
single-degree-of-freedom gyro. A gyroscope, the spin axis of which is free to rotate about one of the orthogonal axes, the spin axis not being counted. See also DEGREE-FREEDOM, RATE GYRO.
single-flashing light. See under FLASHING LIGHT.
single interpolation. Interpolation with only one argument or variable.
single-occulting light. See under OCCULTING LIGHT.
single-sideband transmission. A method of transmission in which the frequencies produced by the process of modulation on one side of the carrier are transmitted and those on the other side are suppressed. The carrier frequency may either be transmitted or suppressed. With this method, less power is required for the effective signal at the receiver, a narrower frequency band can be used, and the signal is less subject to man-made interference or selective fading.
single station range light. A directional light bound by other sectors of different characteristic which define its margins with small angular uncertainty. Most commonly the bounding sectors are of different colors (red and green).
sinking, n. An apparent lowering of distant terrestrial objects by abnormal atmospheric refraction. Because of sinking, objects normally visible near the horizon sometimes disappear below the horizon. The opposite is LOOMING.
sinusoid, n. See SINE CURVE.
sinusoidal, $a d j$. Of or pertaining to a sine wave or sinusoid.
siren, n. A sound signal emitter using the periodic escape of compressed air through a rotary shutter.
sirocco, n. A warm wind of the Mediterranean area, either a foehn or a hot southerly wind in advance of a low pressure area moving from the Sahara or Arabian deserts. Called LEVECHE in Spain.
skeleton tower. A tower, usually of steel and often used for navigation aids, constructed of open legs with various horizontal and diagonal bracing members.
skip distance. The least distance from a transmitting antenna at which a skywave can normally be received at a given frequency.
skip zone. The area between the outer limit of reception of groundwaves and the inner limit of reception of skywaves, where no signal is received.
sky diagram. A diagram of the heavens, indicating the apparent position of various celestial bodies with reference to the horizon system of coordinates.
skylight, n. Thin places in the ice canopy, usually less than 1 meter thick and appearing from below as relatively light, translucent patches in dark surroundings. The under-surface of a skylight is normally flat, but may have ice keels below. Skylights are called large if big enough for a submarine to attempt to surface through them, or small if not.
sky map. The pattern on the underside of extensive cloud areas, created by the varying amounts of light reflected from the earth's surface. Snow surfaces produce a white glare (SNOW BLINK) and ice surfaces produce a yellowish-white glare (ICE BLINK). Bare land reflects relatively little light (LAND SKY) and open water even less (WATER SKY).
skywave, n. A radio wave that is propagated by way of the ionosphere. Also called IONOSPHERIC WAVE.
skywave correction. The correction to be applied to the time difference reading of signals received via the ionosphere to convert it to the equivalent groundwave reading. The correction for a particular place is established on the basis of an average height of the ionosphere.
skywave error. See IONOSPHERIC ERROR.
skywave transmission delay. The amount by which the time of transit from transmitter to receiver of a pulse carried by skywaves reflected once from the E-layer exceeds the time of transit of the same pulse carried by groundwaves.
slack water. The state of a tidal current when its speed is near zero, especially the moment when a reversing current changes direction and its speed is zero. The term is also applied to the entire period of low speed near the time of turning of the current when it is too weak to be of any practical importance in navigation. The relation of the time of slack water to the tidal phases varies in different localities. For standing tidal waves, slack water occurs near the times of high and low water, while for progressive tidal waves, slack water occurs midway between high and low water.
slant range. The line-of-sight distance between two points not at the same elevation.
slave, n. Short for SLAVE STATION.
slaved gyro magnetic compass. A directional gyro compass with an input from a flux valve to keep the gyro oriented to magnetic north.
slave station. In a radionavigation system, the station of a chain whose emissions are made with reference to the emissions of a master station, its emissions being triggered by the emissions of the master station. See also SECONDARY STATION.
sleet, n. See under ICE PELLETS; colloquially some parts of the United States, precipitation the form of a mixture of rain and snow.
slewing, n. In ice navigation, the act of forcing a ship through ice by pushing apart adjoining ice floes.
slick, n. A smooth area of water, such as one caused by the sweep of a vessel's stern during a turn, or by a film of oil on the water.
slime, n. Soft, fine, oozy mud or other substance of similar consistency.
slip, n. 1. A berthing space between two piers. Also called DOCK. 2. The difference between the distance a propeller would travel longitudinally in one revolution if operating in a solid and the distance it travels through a fluid.
slope, n. On the sea floor, the slope seaward from the shelf edge to the beginning of a continental or insular rise or the point where there is a general reduction in slope.
slot radiator. A slot in the wall of a slotted wave guide antenna which acts as a radiating element.
slotted guide antenna. See SLOTTED WAVE GUIDE ANTENNA.
slotted wave guide antenna. An antenna consisting of a metallic waveguide in the walls of which are cut one or more slot radiators.
slough (sloo), n. A minor marshland or tidal waterway which usually connects other tidal areas; often more or less equivalent to a bayou occasionally applied to the sea level portion of a creek on the U.S. West Coast.
slow-sweep racon. See under SWEPT-FREQUENCY RACON.
slue, n. A slough or swamp.
sluice, n. A floodgate. sluicing pond. See SCOURING BASIN.
slush, n. Snow which is saturated and mixed with water on land or ice surfaces, or which is viscous floating mass in water after a heavy snow fall.
small area plotting sheet. For a relatively small area, a good approximation of a Mercator position plotting sheet, constructed by the navigator by either of two methods based upon graphical solution of the secant of the latitude which approximates the expansion. A partially completed small area plotting sheet printed in advance for later rapid completion according to requirements is called UNIVERSAL PLOTTING SHEET.
small circle. The intersection of a sphere and plane which does not pass through its center.
small diurnal range. The difference in height between mean lower high water and mean higher low water. Applicable only when the type of tide is either semidiurnal or mixed. See also TROPIC RANGES.
small floe. See under FLOE.
small fracture. See under FRACTURE.
small hail. See under ICE PELLETS.
small iceberg. For reports to the International Ice Patrol, an iceberg that extends 4 to 50 feet (1 to 15 meters) above the sea surface and which has a length of 20 to 200 feet (6 to 60 meters). See also MEDIUM ICEBERG, LARGE ICEBERG.
small ice cake. A flat piece of ice less than 2 meters across.
small ice field. See under ICE FIELD.
small scale. A scale involving a relatively large reduction in size. A smallscale chart usually covers a large area. The opposite is LARGE SCALE, which covers a small area. See also REPRESENTATIVE FRACTION.
small-scale chart. See under CHART. See also SMALL SCALE.
small tropic range. The difference in height between tropic lower high water and tropic higher low water. Applicable only when the type of tide is either semidiurnal or mixed. See also MEAN TROPIC RANGE, GREAT TROPIC RANGE.
smell the bottom. See FEEL THE BOTTOM.
$\mathbf{s m o g}, n$. Originally a natural fog contaminated by industrial pollutants, or a mixture of smoke and fog. Today, smog is a common term applied to visible air pollution with or without fog.
smoke, n. Small particles of carbon and other solid matter, resulting from incomplete combustion, suspended in the air. When it settles, it is called SOOT.
smokes, n., $p l$. Dense white haze and dust clouds common in the dry season on the Guinea coast of Africa, particularly at the approach of the harmattan.
smooth sea. Sea with waves no higher than ripples or small wavelets.
snow, n. 1. Frozen precipitation consisting of translucent or white ice crystals which fall either separately or in loose clusters called snowflakes. Very fine, simple crystals, or minute branched, star-like snowflakes are called snow grains. Snow pellets are white, opaque, roundish grains which are crisp and easily compressible, and may rebound or burst when striking a hard surface. Snow is called brown, red, or yellow when it is colored by the presence of brown dust, red dust or algae, or pine or cypress pollen, respectively. See also BLOWING SNOW, DRIFTING SNOW. 2. The speckled background on the plan position indicator or video display due to electrical noise.
snow barchan. See under SNOWDRIFT.
snow blink. A white glare on the underside of extensive cloud areas, created by light reflected from snow-covered surfaces. Snow blink is brighter than the yellowish-white glare of ICE BLINK. Clouds above bare land or open water have no glare. See also LAND SKY, WATER SKY, SKY MAP.
snowdrift, n. An accumulation of wind-blown snow deposited in the lee of obstructions or heaped by wind eddies. A crescent-shaped snowdrift, with ends pointing downwind, is called a SNOW BARCHAN.
snowflake, n. A loose cluster if ice crystals, or rarely, a single crystal.
snow flurry. A popular term for SNOW SHOWER, particularly of a very light and brief nature.
snow grains. Frozen precipitation consisting of very fine, single crystals, or of minute, branched star-like snowflakes. Snow grains are the solid equivalent of drizzle. Also called GRANULAR SNOW.
snow pellets. Frozen precipitation consisting of small, white, opaque, roundish grains of snowlike structure which are crisp and easily compressible, and may rebound or burst when striking a hard surface. Also called SOFT HAIL, GRAUPEL. See also SMALL HAIL.
snow storm. See under STORM, definition 2 .
soft hail. See SNOW PELLETS.
soft iron. Iron or steel which is easily magnetized by induction, but loses its magnetism when the magnetic field is removed. The opposite is HARD IRON.
solar, adj. Of or pertaining to the sun.
solar day. 1. The duration of one rotation of the earth on its axis, with respect to the sun. This may be either a mean solar day, or an apparent solar day, as the reference is the mean or apparent sun, respectively. 2. The duration of one apparent rotation of the sun.
solar eclipse. An eclipse of the sun. When the moon passes between the sun and the earth, the sun appears eclipsed to an observer in the moon's shadow. A solar eclipse is partial if the sun is partly obscured; total if the entire surface is obscured, or annular if a thin ring of the sun's surface appears around the obscuring body.
solar flare. A bright eruption from the sun's chromosphere. Solar flares may appear within minutes and fade within an hour.
solar noon. Twelve o'clock solar time, or the instant the sun is over the upper branch of the reference meridian. Solar noon may be classified as mean if the mean sun is the reference, or as apparent if the apparent sun is the reference. It may be further classified according to the reference meridian, either the local or Greenwich meridian or additionally in the case of mean noon, a designated zone meridian. Standard, daylight saving or summer noon are variations of zone noon. Local apparent noon may also be called high noon.
solar-radiation pressure. A cause of perturbations of high flying artificial satellites of large diameter. The greater part is directly from the sun, a minor part is from the earth, which is usually divided into direct (reflected) and indirect terrestrial (radiated) radiation pressures.
solar system. The sun and other celestial bodies within its gravitational influence, including planets, planetoids, satellites, comets, and meteors.
solar tide. 1. The part of the tide that is due to the tide-producing force of the sun. See also LUNAR TIDE. 2. The observed tide in areas where the solar tide is dominant. This condition provides for phase repetition at about the same time each solar day.
solar time. Time based upon the rotation of the earth relative to the sun. Solar time may be classified as mean if the mean sun is the reference; or as apparent if the apparent sun is the reference. The difference between mean and apparent time is called EQUATION OF TIME. Solar time may be further classified according to the reference meridian, either the local or Greenwich meridian or additionally in the case of mean time, a designated zone meridian. Standard and daylight saving or summer time are variations of zone time. Time may also be designated according to the timepiece, as chronometer time or watch time, the time indicated by these instruments.
solar year. See TROPICAL YEAR.
solid color buoy. A buoy which is painted only one color above the water line.
solitary wave. A wave of translation consisting of a single crest rising above the undisturbed water level, without any accompanying trough, in contrast with a WAVE TRAIN. The rate of advance of a solitary wave depends upon the depth of water.
solstice, n. 1 . One of the two points of the ecliptic farthest from the celestial equator; one of the two points on the celestial sphere occupied by the sun at maximum declination. That in the Northern Hemisphere is called the summer solstice and that in the Southern Hemi-
sphere the winter solstice. Also called SOLSTITIAL POINT. 2. That instant at which the sun reaches one of the solstices about June 21 (summer solstice) or December 22 (winter solstice).
solstitial colure. The great circle of the celestial sphere through the celestial poles and the solstices.
solstitial point. One of the two points on the ecliptic at the greatest distance from the celestial equator. Also called SOLSTICE.
solstitial tides. Tides occurring near the times of the solstices. The tropic range may be expected to be especially large at these times.
Somali Current. See EAST AFRICA COASTAL CURRENT
sonar, n. A system which determines distance and/or direction of an underwater object by measuring the interval of time between transmission of an underwater sonic or ultrasonic signal and the return of its echo. The name sonar is derived from the words sound navigation and ranging. See also ECHO RANGING.
sonic, $a d j$. Of, or pertaining to, the speed of sound.
sonic depth finder. A direct-reading instrument which determines the depth of water by measuring the time interval between the emission of a sound and the return of its echo from the bottom. A similar instrument utilizing signals above audible range is called an ULTRASONIC DEPTH FINDER. Both instruments are also called ECHO SOUNDERS.
sonic frequency. See AUDIO FREQUENCY.
sonic navigation. Navigation by means of sound waves whether or not they are within the audible range. Also called ACOUSTIC NAVIGATION.
sonne, n. A German forerunner of the CONSOL navigation system.
sonobuoy, n. A buoy with equipment for automatically transmitting a radio signal when triggered by an underwater sound signal.
sound, n. 1. A relatively long arm of the sea or ocean forming a channel between an island and a mainland or connecting two larger bodies of water, as a sea and the ocean, or two parts of the same body but usually wider and more extensive than a strait. The term has been applied to many features which do not fit the accepted definition. Many are very large bodies of water such as Mississippi Sound and Prince William Sound, others are mere salt water ponds or small passages between islands. 2. A vibratory disturbance in air or some other elastic medium, capable of being heard by the human ear, and generally of a frequency between about 20 and 20,000 cycles per second.
sound, $v ., i$. To measure the depth of the water.
sound, $v ., t$. For a whale or other large sea mammal to dive for an extended period of time.
sound buoy. A buoy equipped with a gong, bell, whistle, or horn.
sounding, n. Measured or charted depth of water, or the measurement of such depth. A minimum sounding chosen for a vessel of specific draft in a given area to indicate the limit of safe navigation is called a danger sounding. See also ECHO SOUNDING, LINE OF SOUNDINGS.
sounding datum. Short for CHART SOUNDING DATUM.
sounding lead. See under LEAD.
sounding machine. An instrument for measuring depth of water, consisting essentially of a reel of wire to one end of which is attached a weight which carries a device for recording the depth. A crank or motor is provided for reeling in the wire.
sounding sextant. See HYDROGRAPHIC SEXTANT.
sound signal. A sound transmitted in order to convey information.
sound signal station. An attended station whose function is to operate a sound signal.
sound wave. An audio-frequency wave in any material medium, in which vibration is in the direction of travel, resulting in alternate compression and rarefaction of the medium, or, by extension, a similar wave outside the audible range.
south, n. The direction 180° from north. See also CARDINAL POINT.
South Atlantic Current. An eastward flowing current of the South Atlantic Ocean that is continuous with the northern edge of the WEST WIND DRIFT. It appears to originate mainly from the Brazil Current and partly from the northernmost flow of the West Wind Drift west of longitude $40^{\circ} \mathrm{W}$. The current is under the influence of the prevailing westerly trade winds; the constancy and
speed increase from the northern boundary to about latitude $40^{\circ} \mathrm{S}$, where the current converges with the West Wind Drift. The mean speed varies from about 0.5 to 0.7 knot.
southbound node. See DESCENDING NODE.
Southeast Drift Current. See AZORES CURRENT.
southeaster, sou'easter, n. A southeasterly wind, particularly a strong wind or gale.
south equatorial current. See ATLANTIC SOUTH EQUATORIAL CURRENT, PACIFIC SOUTH EQUATORIAL CURRENT, INDIAN SOUTH EQUATORIAL CURRENT.
south frigid zone. That part of the earth south of the Antarctic Circle.
south geographical pole. The geographical pole in the Southern Hemisphere, at lat. $90^{\circ} \mathrm{S}$.
south geomagnetic pole. The geomagnetic pole in the Southern Hemisphere. This term should not be confused with SOUTH MAGNETIC POLE. See also GEOMAGNETIC POLE.
South Indian Current. An eastward flowing current of the Indian Ocean that is continuous with the northern edge of the WEST WIND DRIFT.
southing, n. The distance a craft makes good to the south. The opposite is NORTHING.
south magnetic pole. The magnetic pole in the Southern Hemisphere. This term should not be confused with SOUTH GEOMAGNETIC POLE. See also GEOMAGNETIC POLE.
South Pacific Current. An eastward flowing current of the South Pacific Ocean that is continuous with the northern edge of the WEST WIND DRIFT.
south polar circle. See ANTARCTIC CIRCLE.
South Pole. 1. The south geographical pole. See also MAGNETIC POLE, GEOMAGNETIC POLE. 2. The south-seeking end of a magnet. See also BLUE MAGNETISM.
south temperate zone. The part of the earth between the Tropic of Capricorn and the Antarctic Circle.
southwester, sou'wester, n. A southwest wind, particularly a strong wind or gale.
southwest monsoon. See under MONSOON.
space coordinates. A three-dimensional system of Cartesian coordinates by which a point is located by three magnitudes indicating distance from three planes which intersect at a point.
spacecraft, n. Devices, manned and unmanned which are designed to be placed into an orbit about the earth or into a trajectory to another celestial body.
space motion. Motion of a celestial body through space. The component perpendicular to the line of sight is called proper motion and that component in the direction of the line of sight is called radial motion.
space-polar coordinates. A system of coordinates by which a point on the surface of a sphere is located in space by (1) its distance from a fixed point at the center, called the POLE; (2) the COLATITUDE or angle between the POLAR AXIS (a reference line through the pole) and the RADIUS VECTOR (a straight line connecting the pole and the point); and (3) the LONGITUDE or angle between a reference plane through the polar axis and a plane through the radius vector and polar axis. See also POLAR COORDINATES, SPHERICAL COORDINATES.
space wave. See DIRECT WAVE, definition 2.
spar buoy. A buoy in the shape of a spar, or tapered pole, floating nearly vertically. See also SPINDLE BUOY.
special mark. See under IALA MARITIME BUOYAGE SYSTEM.
Special Notice To Mariners. These notices contain important information of interest to all mariners such as cautions on the use of foreign charts; warning on use of floating aids; use of the Automated Mutual-Assistance Vessel Rescue (AMVER) system; rules, regulations, and proclamations issued by foreign governments; oil pollution regulations, etc. Special Notice to Mariners is published annually in Notice to Mariners No. 1 by the Defense Mapping Agency Hydrographic/Topographic Center.
special purpose buoy. A buoy used to indicate a special meaning to the mariner and having no lateral significance, such as one used to mark a quarantine or anchorage area.

Special Warnings. Messages originated by the U.S. government which promulgate official warning of dangers to navigation, generally involving political situations. They remain active until canceled, and are published in Notice to Mariners No. 1 issued by DMAHTC.
species of constituent. A classification depending upon the period of a constituent. The principal species are semidiurnal, diurnal, and long period.
species sanctuary. A sanctuary established for the conservation of marine life. See also MARINE SANCTUARY.
specific humidity. See HUMIDITY.
spectral, $a d j$. Of or pertaining to a spectrum.
spectroscope, n. An optical instrument for forming spectra, very useful in studying the characteristics of celestial bodies.
spectrum (pl. spectra), n. 1. A series of images formed when a beam of radiant energy is separated into its various wavelength components. 2. The entire range of electromagnetic radiation, or any part of it used for a specific purpose, such as the radio spectrum (10 kilohertz to 300 gigahertz).
specular reflection. Reflection without diffusion in accordance with the laws of optical reflection, such as in a mirror. Also called REGULAR REFLECTION, MIRROR REFLECTION.
speculum, n. An optical instrument reflector of polished metal or of glass with a film of metal.
speed, n. Rate of motion. The terms SPEED and VELOCITY are often used interchangeably but SPEED is a scalar, having magnitude only while VELOCITY is a vector quantity, having both magnitude and direction. Rate of motion in a straight line is called linear speed, while change of direction per unit time is called angular velocity. Subsonic, sonic, and supersonic refer to speeds respectively less than, equal to, greater than the speed of sound in standard air at sea level. Transonic speeds are those in the range in which flow patterns change from subsonic to supersonic, or vice versa.
speed circle. A circle having a radius equal to a given speed and drawn about a specified center. The expression is used chiefly in connection with relative movement problems.
speed-course-latitude error. See SPEED ERROR.
speed error. An error in both pendulous and nonpendulous type gyrocompasses resulting from movement of the gyrocompass in other than an east-west direction. The error is westerly if any component of the ship's course is north, and easterly if south. Its magnitude is proportional to the course, speed, and latitude of the ship. Sometimes called SPEED-COURSE-LATITUDE ERROR.
speed line. A line of position approximately perpendicular to the course line, thus providing a check on the speed of advance. See also COURSE LINE.
speed made good. The speed estimated by dividing the distance between the last fix and an EP by the time between the fix and the EP.
speed of advance. 1. The speed intended to be made good along the track. 2. The average speed in knots which must be maintained during a passage to arrive at a destination at an appointed time.
speed of relative movement. Speed relative to a reference point, usually itself in motion.
speed over ground. The vessel's actual speed, determined by dividing the distance between successive fixes by the time between the fixes.
speed triangle. See under VECTOR DIAGRAM.
spending beach. In a wave basin, the beach on which the entering waves spend themselves, except for the small remainder entering the inner harbor.
sphere, n. 1. A curved surface all points of which are equidistant from a fixed point within, called the center. The celestial sphere is an imaginary sphere of infinite radius concentric with the earth, on which all celestial bodies except the earth are imagined to be projected. The celestial sphere as it appears to an observer at the equator, where celestial bodies appear to rise vertically above the horizon, is called a right sphere; at the pole, where bodies appear to move parallel to the horizon, it is called a parallel sphere; between the equator and pole, where bodies appear to rise obliquely to the horizon, it is called an oblique sphere. Half a sphere is called a HEMISPHERE. 2. A body or the space bounded by a spherical surface. For most practical problems of navigation, the earth is considered a sphere, called the terrestrial sphere.
spherical, $a d j$. Of or pertaining to a sphere.
spherical aberration. See under ABERRATION, definition 2.
spherical angle. The angle between two intersecting great circles.
spherical buoy. A buoy of which the upper part of the body (above the waterline), or the larger part of the superstructure, is spherical.
spherical coordinates. A system of coordinates defining a point on a sphere or spheroid by its angular distances from a primary great circle and from a reference secondary great circle, as latitude and longitude. See also CELESTIAL COORDINATES, POLAR COORDINATES.
spherical excess. The amount by which the sum of the three angles of a spherical triangle exceeds 180°.
spherical harmonics. Trigonometric terms of an infinite series used to approximate a two- or three-dimensional function of locations on or above the earth.
spherical sailing. Any of the sailings which solve the problems of course, distance, difference of latitude, difference of longitude, and departure by considering the spherical or spheroidal shape of the earth.
spherical triangle. A closed figure having arcs of three great circles as sides.
spherical wave. A wave with a spherical wave front.
spheroid, n. An ellipsoid; a figure resembling a sphere. Also called ELLIPSOID or ELLIPSOID OF REVOLUTION, from the fact that it can be formed by revolving an ellipse about one of its axes. If the shorter axis is used as the axis of revolution, an oblate spheroid results, and if the longer axis is used, a prolate spheroid results. The earth is approximately an oblate spheroid.
spheroidal excess. The amount by which the sum of the three angles on the surface of a spheroid exceeds 180°.
spheroid of reference. See REFERENCE ELLIPSOID.
spin axis. The axis of rotation of a gyroscope.
spindle buoy. A buoy having a spindle-like shape floating nearly vertically. See also SPAR BUOY.
spire, n. A pointed structure extending above a building, often charted with the symbol of a position circle. The spire is seldom less than two-thirds of the entire height of the structure, and its tines are rarely broken by stages or other features.
spirit compass. A magnetic compass of which the bowl mounting the compass card is filled with a solution of alcohol and water.
spit, n. A small tongue of land or a long narrow shoal (usually sand) extending from the shore into a body of water. Generally the tongue of land continues in a long narrow shoal for some distance from the shore.
Spitzbergen Atlantic Current. An ocean current flowing northward and westward from a point south of Spitzbergen, and gradually merging with the EAST GREENLAND CURRENT in the Greenland Sea. The Spitzbergen Atlantic Current is the continuation of the northwestern branch of the NORWAY CURRENT. Also called SPITZBERGEN CURRENT.
Spitzbergen Current. See SPITZBERGEN ATLANTIC CURRENT.
split fix. A fix by horizontal sextant angles obtained by measuring two angles between four charted features, with no common center object observed.
split-second timer. A watch with two sweep second hands which can be started and stopped together with one push button.
spoil area. Area for the purpose of disposing dredged material, usually near dredged channels. Spoil areas are usually a hazard to navigation and navigators should avoid crossing these areas. Spoil areas are shown on nautical charts. See also DISPOSAL AREA, DUMPING GROUND DUMP SITE. Also called SPOIL GROUND.
spoil ground. See SPOIL AREA.
spoil ground buoy. A buoy which marks a spoil ground.
spoil ground mark. A navigation mark indicating an area used for deposition of dredge spoil.
sporadic E-ionization. Ionization that appears at E-layer heights, is more noticeable toward the polar regions, and is caused by particle radiation from the sun. It may occur at any time of day. A sporadic Elayer sometimes breaks away from the normal E-layer and exhibits especially erratic characteristics.
spot elevation. A point on a map or chart where height above a specified datum is noted, usually by a dot and the height value.
spot-size error. The distortion of the radar return on the radarscope caused by the diameter of the electron beam which displays the returns on the scope and the lateral radiation across the scope of part of the glow produced when the electron beam strikes the phosphorescent coating of the cathode-ray tube. See also PULSEDURATION ERROR.
spring, n. The season in the Northern Hemisphere which begins astronomically at the vernal equinox and ends at the summer solstice. In the Southern Hemisphere the limits are the autumnal equinox and the winter solstice.
spring high water. See under SPRING TIDES.
spring low water. See under SPRING TIDES.
spring range. See under SPRING TIDES.
spring tidal currents. Tidal currents of increased speed occurring semimonthly as the result of the moon being new or full. See also SPRING TIDES.
spring tides. Tides of increased range occurring semimonthly as the result of the moon being new or full. The spring range of tide is the average semidiurnal range occurring at the time of spring tides and is most conveniently computed from the harmonic constants. It is larger than the mean range where the type of tide is either semidiurnal or mixed, and is of no practical significance where the type of tide is diurnal. The average height of the high waters of the spring tides is called spring high water or mean high water springs and the average height of the corresponding low waters is called spring low water or mean low water springs. See also SPRING TIDAL CURRENTS.
spur, n. A terrestrial or bathymetric feature consisting of a subordinate elevation, ridge, or rise projecting outward from a larger feature.
spurious disk. The round image of perceptible diameter of a star as seen through a telescope, due to diffraction of light in the telescope.
spurious emission. Emission on a frequency or frequencies which are outside the necessary band, the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions and intermodulation products, but exclude emissions in the immediate vicinity of the necessary band, which are a result of the modulation process for the transmission of information.
squall, n. A wind of considerable intensity caused by atmospheric instability. It forms and dissipates relatively quickly, and is often accompanied by thunder, lightning, and precipitation, when it may be called a thundersquall. An arched squall is one relatively high in the center, tapering off on both sides. A bull's eye squall is one formed in fair weather, characteristic of the ocean off the coast of South Africa. See also GUST, LINE SQUALL, SQUALL LINE, WHITE SQUALL.
squall cloud. A small eddy cloud sometimes formed below the leading edge of a thunderstorm cloud, between the upward and downward currents.
squall line. A non-frontal line or narrow band of active thunderstorms (with or without squalls); a mature instability line.
squally, adj. Having or threatening numerous squalls.
squamish, n. A strong and often violent wind occurring in many of the fjords of British Columbia. Squamishes occur in those fjords oriented in a northeast-southwest or east-west direction where cold polar air can be funneled westward. They are notable in Jervis, Toba, and Bute inlets and in Dean Channel and Portland Canal. Squamishes lose their strength when free of the confining fjords and are not noticeable 15 to 20 miles offshore.
square, n. 1. A four-sided geometrical figure with all sides equal and all angles 90°; a rectangle or right-angled parallelogram with sides of equal length. 2 . The second power of a quantity.
square meter. The derived unit of area in the International System of Units.
squat, n. For a vessel underway, the bodily sinkage and change of trim which are caused by the pressure distribution on the hull due to the relative motion of water and hull. The effect begins to increase significantly at depth-to-draft ratios less than 2.5 . It increases rapidly with speed and is augmented in narrow channels.
stability, n. The state or property of resisting change or of tending to return to original conditions after being disturbed. The opposite is INSTABILITY.
stabilization of radarscope display. Orientation of the radar display to some reference direction. A radarscope display is said to be STABILIZED IN AZIMUTH when the orientation of the display is
fixed to an unchanging reference (usually north). The NORTH UP orientation is an example. A radarscope display is said to be UNSTABILIZED IN AZIMUTH when the orientation of the display changes with changes in own ship's heading. The HEAD UP orientation is an example. A radarscope display is said to be DOUBLY STABILIZED or to have DOUBLE STABILIZATION when the basic orientation of the display is fixed to an unchanging reference (usually north) but the radarscope is rotated to keep own ship's heading or heading flasher up on the radarscope.
stabilized in azimuth. See under STABILIZATION OF RADARSCOPE DISPLAY.
stabilized platform. A gimbal-mounted platform, usually containing gyros and accelerometers, the purpose of which is to maintain a desired orientation in inertial space independent of craft motion. Also called STABLE PLATFORM.
stable platform. See STABILIZED PLATFORM.
stack, n. A label on a nautical chart which indicates a tall smokestack or chimney. The term is used when the stack is more prominent as a landmark than the accompanying buildings.
stadimeter, n. An instrument for determining the distance to an object of known height by measuring the vertical angle subtended by the object. The instrument is graduated directly in distance. See also RANGE FINDER.
stand, n. The state of the tide at high or low water when there is no sensible change in the height of the tide. The water level is stationary at high and low water for only an instant, but the change in level near these times is so slow that it is not usually perceptible. In general, the duration of the apparent stand will depend upon the range of tide, being longer for a small range than for a large range, but where there is a tendency for a double tide the stand may last for several hours, even with a large range of tide. It may be called high water stand if it occurs at the time of high water, and low water stand if it occurs at low water. Sometimes called PLATFORM TIDE.
standard, n. 1 . Something established by custom, agreement, or authority as a basis for comparison. 2. A physical embodiment of a unit. In general it is not independent of physical conditions, and it is a true embodiment of the unit only under specified conditions.
standard acceleration of gravity. The value adopted in the International Service of Weights and Measures for the standard acceleration due to gravity is 980.665 centimeters per second, per second. See also WEIGHT.
standard atmosphere. 1. A unit accepted temporarily for use with the International System of Units; 1 standard atmosphere is equal to 101,325 pascals. 2. A hypothetical vertical distribution of atmospheric temperature, pressure, and density which is taken to be representative of the atmosphere for various purposes.
standard chronometer. See CHRONOMETER.
standard circle sheet. See CIRCLE SHEET.
standard compass. A magnetic compass designated as the standard for a vessel. It is normally located in a favorable position with respect to magnetic influences.
standard deviation. A measure of the dispersion of random errors about the mean value. If a large number of measurements or observations of the same quantity are made, the standard deviation is the square root of the sum of the squares of deviations from the mean value divided by the number of observations less one. The square of the standard deviation is called the VARIANCE. Also called RMS ERROR. See also ROOT MEAN SQUARE ERROR.
standard error. See under STANDARD DEVIATION.
standard meridian. 1. The meridian used for reckoning standard time. Throughout most of the world the standard meridians are those whose longitudes are exactly divisible by 15°. The DAYLIGHT SAVING MERIDIAN is usually 15° east of the standard meridian. 2. A meridian of a map projection, along which the scale is as stated.
standard noon. Twelve o'clock standard time, or the instant the mean sun is over the upper branch of the standard meridian. DAYLIGHT SAVING or SUMMER NOON usually occurs 1 hour later than standard noon.
standard parallel. 1. A parallel of latitude which is used as a control line in the computation of a map projection. 2. A parallel of latitude on a map or chart along which the scale is as stated for that map or chart.
standard propagation. The propagation of radio waves over a smooth spherical earth of uniform electrical characteristics, under conditions of standard refraction in the atmosphere.
standard positioning service (SPS). GPS service provided to nonmilitary users using the single-frequency C/A code. Accuracy is 100 meters 95% (2 drms) of the time with SA turned on.
standard radio atmosphere. An atmosphere having the standard refractive modulus gradient.
standard radio horizon. The radio horizon corresponding to propagation through the standard radio atmosphere.
standard refraction. The refraction which would occur in a standard atmosphere.
standard refractive modulus gradient. The uniform variation of refractive modulus with height above the earth's surface which is regarded as a standard for comparison. The gradient considered as normal has a value of 0.12 M unit per meter. The M unit is the unit in terms of which the refractive modulus is expressed.
standard station. Use of this term is discouraged. See REFERENCE STATION.
standard tactical diameter. A prescribed tactical diameter used by different types of vessels, or by vessels of the same formation in maneuvers.
standard time. The legally established time for a given zone. The United States and its possessions are, by law, divided into eight time zones. The limits of each time zone are defined by the Secretary of Transportation in Part 71, Title 49 of the Code of Federal Regulations. The standard time within each zone is the local mean time at the standard meridian that passes approximately through the center of the zone. Since the standard meridians are the same as those used with ZONE TIME, standard time conforms generally with the zone time for a given area. The standard time zone boundary may vary considerably from the zone time limits $\left(71 / 2^{\circ}\right.$ in longitude on each side of the standard meridian) to conform to political or geographic boundaries or both. The standard times used in various countries and places are tabulated in the Air Almanac and the Nautical Almanac and are displayed on Chart 76, Standard Time Zone Chart of the World.
standard type buoy. The general classification of lighted and unlighted buoys in U.S. waters built to modern (1962) specifications.
standby lamp. A lamp brought into service in the event of failure of the lamp in regular service.
standby light. A permanently installed navigation light used in the event of failure of the main light; it is usually of lesser intensity.
standing floe. A separate floe standing vertically or inclined and enclosed by rather smooth ice.
standing wave. See STATIONARY WAVE.
stand on. To proceed on the same course.
standpipe, n. A label on a nautical chart which indicates a tall cylindrical structure in a waterworks system.
star, n. A large self-luminous celestial body. Stars are generally at such great distances from the earth that they appear to the eye to be fixed in space relative to each other. Comets, meteors, and nebulae may also be self-luminous, but are much smaller. Two stars appearing close together are called a double star, an optical double star if they appear close because they are in nearly the same line of sight but differ greatly in distance from the observer, a physical double star if in nearly the same line of sight and at approximately the same distance from the observer. A system of two stars that revolve about their common center of mass is called a binary star. A group of three or more stars so close together that they appear as a single star is called a multiple star. A group of stars physically close together is called a star cluster. A variable star changes in magnitude. A star which suddenly becomes many times brighter than previously, and then gradually fades, is called a nova. The brightest planet appearing in the western sky during evening twilight is called evening star, and the brightest one appearing in the eastern sky during morning twilight is called morning star. A shooting star or meteor is a solid particle too small to be seen until it enters the earth's atmosphere, when it is heated to incandescence by friction of the air. See also GALAXY, MILKY WAY.
starboard, n. The right side of a craft, facing forward. The opposite is PORT.
starboard hand buoy. A buoy which is to be left to the starboard side when approaching from seaward or in the general direction of buoyage, or in the direction established by the appropriate authority.
star chain. A radionavigation transmitting system comprised of a master station about which three (or more) slave (secondary) stations are more or less symmetrically located.
star chart. A representation, on a flat surface, of the celestial sphere or a part of it, showing the positions of the stars and sometimes other features of the celestial sphere.
star cloud. A large number of stars close together, forming a congested part of a galaxy.
star cluster. A group of stars physically close together. See also MULTIPLE STAR.
star finder. A device to facilitate the identification of stars. Sometimes called a STAR IDENTIFIER. See also PLANISPHERE.
Star Finder and Identifier (No. 2102-D). A circular star finder and identifier formerly published by the U.S. Navy Hydrographic Office and later by the U.S. Naval Oceanographic Office. It consists of a white opaque base with an azimuthal equidistant projection of most of the celestial sphere on each side, one side having the north celestial pole at the center and the other side having the south celestial pole at the center, and a series of transparent templates, at 10° intervals of latitude, each template having a family of altitude and azimuth curves.
star globe. A small globe representing the celestial sphere, on which the apparent positions of the stars are indicated. It is usually provided with graduated arcs and a suitable mount for determining the approximate altitude and azimuth of the stars, to serve as a star finder. Star globes are more commonly used by the British than by Americans. Also called CELESTIAL GLOBE.
star identifier. See STAR FINDER.
Star Sight Reduction and Identification Table. See under STAR SIGHT REDUCTION TABLES FOR 42 STARS.
Star Sight Reduction Tables for 42 Stars. A sight reduction table which provides for the reduction of 42 selected stars by the assumed altitude method. Of the 42 stars included in the table, 21 are above the observer's horizon at any time and are so tabulated in each column for integral values of latitude and altitude. This large number of star tabulations is particularly useful when clouds make identification difficult or obscure stars. Since the tabulations are for a given epoch, provision is made for precession and nutation corrections.
star telescope. An accessory of the marine navigational sextant designed primarily for star observations. It has a large object glass to give a greater field of view and increased illumination. It is an erect telescope, i.e., the object viewed is seen erect as opposed to the inverting telescope in which the object viewed is inverted. The latter type telescope requires one less lens than the erect telescope, consequently for the same size object glass, it has greater illumination. The telescope may be used for all observations.
static, adj. Having a fixed, nonvarying condition.
static, n. 1. Radio wave interference caused by natural electrical disturbances in the atmosphere, or the electromagnetic phenomena capable of causing such interference 2 . Noise heard in a radio receiver caused by electrical disturbances in the atmosphere, such as lightning, northern lights, etc.
station, $n .1$. The authorized location of an aid to navigation. 2. One or more transmitters or receivers, or a combination of transmitters and receivers, including the accessory equipment necessary at one location, for carrying on a radiocommunication service.
stationary front. A front which is stationary or nearly so. A front which is moving at a speed less than about 5 knots is generally considered to be stationary. In synoptic chart analysis, a stationary front is one that has not moved appreciably from its position on the last previous synoptic chart (3 or 6 hours before). Also called QUASI-STATIONARY FRONT.
stationary orbit. An equatorial orbit in which the satellite revolves about the primary at the angular rate at which the primary rotates on its axis. From the primary, the satellite appears to be stationary over a point on the primary's equator. See also GEOSTATIONARY SATELLITE.
stationary wave. A wave that oscillates without progressing. One-half of such a wave may be illustrated by the oscillation of the water in a pan that has been tilted. Near the axis, which is called the node or nodal line, there is no vertical rise and fall of the water. The ends of the wave are called loops and at these places the vertical rise and fall is at a maximum. The current is maximum near the node and minimum at the loops. The period of a stationary wave depends upon the length and depth of the body of water. A stationary wave may be resolved into two progressive waves of equal amplitude and equal speeds moving in opposite directions. Also called STANDING WAVE.
stationary wave theory. An assumption that the basic tidal movement in the open ocean consists of a system of stationary wave oscillations, any progressive wave movement being of secondary importance except as the tide advances into tributary waters. The continental masses divide the sea into irregular basins, which, although not completely enclosed, are capable of sustaining oscillations which are more or less independent. The tide-producing force consists principally of two parts, a semidiurnal force with a period approximating the half-day and a diurnal force with a period of a whole day. Insofar as the free period of oscillation of any part of the ocean, as determined by its dimensions and depth, is in accord with the semidiurnal or diurnal tide producing forces, there will he built up corresponding oscillations of considerable amplitude which will be manifested in the rise and fall of the tide. The diurnal oscillations, superimposed upon the semidiurnal oscillations, cause the inequalities in the heights of the two high and the two low waters of each day. Although the tidal movement as a whole is somewhat complicated by the overlapping of oscillating areas, the theory is consistent with observational data.
station buoy. An unlighted buoy established in the vicinity of a lightship or an important lighted buoy as a reference point in case the lightship or buoy should be dragged off station. Also called WATCH BUOY.
station error. See DEFLECTION OF THE VERTICAL.

statistical error. See RANDOM ERROR

U.S. Survey mile. A unit of distance equal to 5,280 feet. This mile is generally used on land, and is sometimes called LAND MILE. It is commonly used to express navigational distances by navigators of river and lake vessels, particularly those navigating the Great Lakes.
steady bearing. A bearing line to another vessel or object, which does not change over time. An approaching or closing craft is said to be on a steady bearing if the compass bearing does not change and risk of collision therefore exists. Also called CONSTANT BEARING, DECREASING RANGE (CBDR).
steam fog. Fog formed when water vapor is added to air which is much colder than the source of the vapor. It may be formed when very cold air drifts across relatively warm water. At temperatures below about $-20^{\circ} \mathrm{F}$, ice particles or droxtals may be formed in the air producing a type of ice fog known as frost smoke. See also ARCTIC SEA SMOKE, FROST SMOKE. Also called ARCTIC SMOKE, SEA MIST, STEAM MIST, WATER SMOKE, ARCTIC SEA SMOKE, FROST SMOKE.
steam mist. See STEAM FOG.
steep-to, adj. Precipitous. The term is applied particularly to a shore, bank, or shoal that descends steeply to the sea.
steerage way, n. The condition wherein a ship has sufficient way on to respond to rudder movements to maintain a desired course.
steering compass. A compass by which a craft is steered, generally meaning the magnetic compass at the helm. See STEERING REPEATER.
steering repeater. A compass repeater by which a craft is steered. Sometimes loosely called a STEERING COMPASS.
stellar, $a d j$. Of or pertaining to stars.
stellar observation. See CELESTIAL OBSERVATION.
stellar parallax. See HELIOCENTRIC PARALLAX.
stem, $v ., t$. To make headway against a current.
steradian, n. The supplementary unit of solid angle in the International System of Units, which, having its vertex in the center of a sphere, cuts off an area on the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere.
stereographic, adj. Of or pertaining to stereography, the art of representing the forms of solid bodies on a plane.
stereographic chart. A chart on the stereographic map projection.
stereographic map projection. A perspective, conformal, azimuthal map projection in which points on the surface of a sphere or spheroid, such as the earth, are conceived as projected by radial lines from any point on the surface to a plane tangent to the antipode of the point of projection. Circles project as circles except for great circles through the point of tangency, which project as straight lines. The principal navigational use of the projection is for charts of the polar regions. Also called AZIMUTHAL ORTHOMORPHIC MAP PROJECTION.
sternboard, n. Making way through the water in a direction opposite to the heading. Also called STERNWAY, though the term STERNBOARD is sometimes used to refer to the beginning of motion astern and STERNWAY is used as the vessel picks up speed. Motion in the forward direction is called HEADWAY.
stern light. A running light placed on the centerline of a vessel showing a continuous white light from dead astern to 67.5° to either side.
sternway, n. Making way through the water in a direction opposite to the heading. Motion in the forward direction is called HEADWAY. See also STERNBOARD.
stilling well. See FLOAT WELL.
still water level. The level that the sea surface would assume in the absence of wind waves not to be confused with MEAN SEA LEVEL or HALF TIDE LEVEL.
stippling, n. Graduation of shading by numerous separate dots or marks. Shallow areas on charts, for instance, are sometimes indicated by numerous dots decreasing in density as the depth increases.
stones, $n ., p l$. A general term for rock fragments ranging in size from 2 to 256 millimeters. An individual water-rounded stone is called a cobble if between 64 to 256 millimeters (size of clenched fist to size of man's head), a pebble if between 4 and 64 millimeters (size of small pea to size of clenched fist), and gravel if between 2 and 4 millimeters (thickness of standard pencil lead to size of small pea). An aggregate of stones ranging from 16 to 256 millimeters is called shingle. See also MUD; SAND; ROCK, definition 2.
stooping, n. Apparent decrease in the vertical dimension of an object near the horizon, due to large inequality of atmospheric refraction in the line of sight to the top and bottom of the object. The opposite is TOWERING
stop watch. A watch that can be started, stopped, and reset at will, to indicate elapsed time.
storm, n. 1. Wind of force 10 (48 to 55 knots or 55 to 63 miles per hour) on the Beaufort wind scale. See also VIOLENT STORM. 2. Any disturbed state of the atmosphere implying severe weather. In synoptic meteorology, a storm is a complete individual disturbance identified on synoptic charts as a complex of pressure, wind, clouds, precipitation, etc., or identified by such means as radar. Thus, storms range in scale from tornadoes and thunderstorms, through tropical cyclones, to widespread extra tropical cyclones. From a local and special interest viewpoint, a storm is a transient occurrence identified by its most destructive or spectacular aspect. Examples are rain storms, wind storms, hail storms, snow storms, etc. Notable special cases are blizzards, ice storms, sandstorms, and dust storms. 3. A term once used by seamen for what is now called VIOLENT STORM on the Beaufort wind scale.
storm center. The area of lowest atmospheric pressure of a cyclone. This is a more general expression than EYE OF THE STORM, which refers only to the center of a well-developed tropical cyclone, in which there is a tendency of the skies to clear.
storm surge. Increase or decrease in sea level by strong winds such as those accompanying a hurricane or other intense storm. Reduced atmospheric pressure often contributes to the decrease in height during hurricanes. It is potentially catastrophic, especially in deltaic regions with onshore winds at the time of high water and extreme wind wave heights. Also called STORM TIDE, STORM WAVE, TIDAL WAVE
storm tide. See STORM SURGE.
storm track. The horizontal component of the path followed or expected to be followed by a storm CENTER
storm wave. See STORM SURGE.
straight angle. An angle of 180°.
strait, n. A relatively narrow waterway connecting two larger bodies of water.
strand, n. See BEACH.
strand, $v ., t . \& i$. To run hard aground. The term STRAND usually refers to a serious grounding, while the term GROUND refers to any grounding, however slight.
stranded ice. Ice which has been floating and has been deposited on the shore by retreating high water.
stranding, n. The grounding of a vessel so that it is not easily refloated; a serious grounding.
strapped-down inertial navigation equipment. Inertial navigation equipment in which a stable platform and gimbal system are not utilized. The inertial devices are attached or strapped directly to the carrier. A computer utilizing gyro information resolves accelerations sensed along the carrier axes and refers these accelerations to an inertial frame of reference. Also called GIMBALLESS INERTIAL NAVIGATION EQUIPMENT. See also INERTIAL NAVIGATION.
stratiform, $a d j$. Descriptive of clouds of extensive horizontal development, as contrasted to the vertically developed CUMULIFORM types. See also CIRRIFORM.
stratocumulus, n. A principal cloud type (cloud genus), predominantly stratiform, in the form of a gray and/or whitish layer or patch, which nearly always has dark parts and is non-fibrous (except for virga). Its elements are tessellated, rounded, roll-shaped, etc.; they may or may not be merged, and usually are arranged in orderly groups, lines or undulations, giving the appearance of a simple (or occasionally a cross-pattern) wave system. These elements are generally flat-topped, smooth and large; observed at an angle of more than 30° above the horizon, the individual stratocumulus element subtends an angle of greater than 5°. Stratocumulus is composed of small water droplets, sometimes accompanied by larger droplets, soft hail, and (rarely) by snowflakes. When the cloud is not very thick, the diffraction phenomena corona and irisation appear. Precipitation rarely occurs with stratocumulus. Stratocumulus frequently forms in clear air. It may also form from the rising of stratus, and by the convective or undulatory transformation of stratus, or nimbostratus, with or without change of height. Since stratocumulus may be transformed directly from or into altocumulus, stratus, and nimbostratus, all transitional stages may be observed. When the base of stratocumulus is rendered diffuse by precipitation, the cloud becomes nimbostratus. See also STRATIFORM, CLOUD CLASSIFICATION.
stratosphere, n. The atmospheric shell extending upward from the tropopause to the height where the temperature begins to increase in the 20 - to 25 -kilometer region.
stratus, n. A low cloud (mean upper level below $6,500 \mathrm{ft}$.) in a uniform layer, resembling fog but not resting on the surface.
stray line. Ungraduated portion of line connected with a current pole used in taking current observations The stray line is usually about 100 feet long and permits the pole to acquire the velocity of the current at some distance from the disturbed waters in the immediate vicinity of the observing vessel before the current velocity is read from the graduated portion of the current line.
stream, $v ., t$. To place overboard and tow, as to stream a log or stream a sea anchor.
stream current. A relatively narrow, deep, fast-moving ocean current. The opposite is DRIFT CURRENT.
streamline, n. The path followed by a particle of fluid flowing past an obstruction. The term generally excludes the path of a particle in an eddy current.
streamline flow. Fluid motion in which the fluid moves uniformly without eddies or turbulence. If it moves in thin layers, it is called laminar flow. The opposite is TURBULENT FLOW.
stream the log. To throw the log overboard and secure it in place for taking readings.
strength of current. Phase of tidal current in which the speed is a maximum; also the speed at this time.
strength of ebb. See EBB STRENGTH.
strength of ebb interval. See EBB INTERVAL. See also LUNICURRENT INTERVAL.
strength of flood. See FLOOD STRENGTH.
strength of flood interval. See FLOOD INTERVAL. See also LUNICURRENT INTERVAL.
strip, n. A long narrow area of pack ice, about 1 kilometer or less in width, usually composed of small fragments detached from the main mass of ice, and run together under the influence of wind, swell, or current.
stripes, n. In navigation terminology, stripes are vertically arranged areas of color, such as the red and white stripes on a safe-water buoy. Horizontal areas are called bands.
strong breeze. Wind of force 6 (22 to 27 knots or 25 to 31 miles per hour) on the Beaufort wind scale.
strong fix. A fix determined from horizontal sextant angles between objects so situated as to give very accurate results.
strong gale. Wind of force 9 (41 to 47 knots or 47 to 54 miles per hour) on the Beaufort wind scale See also GALE.
sub-. A prefix meaning under, less, or marginal. The opposite is SUPER-.
Subarctic Current. See ALEUTIAN CURRENT.
subastral point. See SUBSTELLAR POINT.
sublimation, n. The transition of a substance directly from the solid state to the vapor state, or vice versa, without passing through the intermediate liquid state. See also CONDENSATION, EVAPORATION, FUSION.
sublunar point. The geographical position of the moon; the point on the earth at which the moon is in the zenith.
submarine bell. See under BELL.
submarine cable. A submarine conductor or fiber-optic conduit for electric current or communications.
submarine havens. Specified sea areas for submarine operations established by the submarine commander in which no friendly ASW attack may be launched. Compare with MOVING HAVENS, which are designed to prevent collisions.
submarine relief. Variations in elevation of the sea bed, or their representation by depth contours, hypsometric tints, or soundings.
submarine safety lanes. See SAFETY LANES.
submarine site. The site of a structure when located below the surface of the water.
submerge, $v ., i$. To descend below the surface The opposite is SURFACE. See also DIVE.
submerged, $a d j$. \& $a d v$. 1. Under water. The opposite is UNCOVERED. See also AWASH. 2. Having descended below the surface. The opposite is SURFACED.
submerged breakwater. A breakwater with its top below the still water level. When this structure is struck by a wave, part of the wave energy is reflected seaward. The remaining energy is largely dissipated in a breaker, transmitted shoreward as a multiple crest system, or as a simple wave system.
submerged lands. Lands covered by water at any stage of the tide, as distinguished from tidelands which are attached to the mainland or an island and cover and uncover with the tide. Tidelands presuppose a highwater line as the upper boundary; submerged lands do not.
submerged production well. An oil or gas well that is a seabed installation only, i.e., the installation does not include a permanent production platform. See also WELLHEAD.
submerged rock. A rock covered at the chart sounding datum and considered to be potentially dangerous to navigation. See also BARE ROCK, ROCK AWASH.
submerged screw log. A type of electric log which is actuated by the flow of water past a propeller.
subordinate current station. 1. A current station from which a relatively short series of observations is reduced by comparison with simultaneous observations from a control current station. 2. A station listed in the Tidal Current Tables for which predictions are to be obtained by means of differences and ratios applied to the full predictions at a reference station. See also CURRENT STATION, CONTROL CURRENT STATION. REFERENCE STATION.
subordinate tide station. 1. A tide station from which a relatively short series of observations is reduced by comparison with simultaneous observations from a tide station with a relatively long series of observations. 2. A station listed in the Tide Tables for which predictions are to be obtained by means of differences and ratios applied to the full predictions at a reference station. See also PRIMARY CONTROL TIDE STATION, REFERENCE STATION, SECONDARY CONTROL TIDE STATION, TERTIARY TIDE STATION.
subpermanent magnetism. The magnetism in the intermediate iron of a ship which tends to change as a result of vibration, aging, or cruising in the same direction for a long period, but does not alter immediately so as to be properly termed induced magnetism. This magnetism is the principal cause of deviation changes of a magnetic compass. At any instant this magnetism is recognized as part of the ship's permanent magnetism, and consequently must be corrected as such by means of permanent magnet correctors. See also MAGNETISM.
sub-refraction, n. Less-than-normal refraction, particularly as related to the atmosphere. Greater than normal refraction is called SUPERREFRACTION.
subregion. One of the subdivisions of the earth based on the DMAHTC chart numbering system.
subsatellite point. The point at which a line from the satellite perpendicular to the ellipsoid intersects the surface of the earth.
subsidence, n. Decrease in the elevation of land without removal of surface material due to tectonic, seismic, or artificial forces.
subsidiary light. A light placed on or near the support of a main light and having a special use in navigation. See also PASSING LIGHT.
subsolar point. The geographical position of the sun; the point on the earth at which the sun is in the zenith at a specified time.
substellar point. The geographical position of a star; that point on the earth at which the star is in the zenith at a specified time. Also called SUBASTRAL POINT
substratosphere, n. A region of indefinite lower limit just below the stratosphere.
subsurface current. An underwater current which is not present at the surface. See also SURFACE CURRENT, UNDERCURRENT, UNDERTOW
subtend, $v ., t$. To be opposite, as an arc of a circle subtends an angle at the center of the circle, the angle being formed by the radii joining the ends of the arc with the center.
subtrack, n. See ORBITAL PATH.
subtropical anticyclones. High pressure belts which prevail on the poleward sides of the trade winds characterized by calms, light breezes, and dryness.
sudden ionospheric disturbances (SID's). Sudden increases in the ionization density in the lower part of the ionosphere caused by very sudden and large increases in X-ray flux emitted from the sun, usually during a solar flare. SID's also occur during flares called X-ray flares that produce large X-ray flux, but which have no components in the visible light spectrum. The effect, which is restricted to sunlit propagation paths, causes a phase advance in certain radionavigation systems and is known as a SUDDEN PHASE ANOMALY (SPA). The SID effects are related to solar zenith angle, and consequently, occur mostly in lower latitude regions. Usually there is a phase advance over a period of 5 to 10 minutes followed by a recovery over a period of 30 to 60 minutes. See also POLAR CAP DISTURBANCE, MODAL INTERFERENCE.
sudden phase anomaly. See under SUDDEN IONOSPHERIC DISTURBANCES.
Suestado, n. A storm with southeast gales, caused by intense cyclonic activity off the coasts of Argentina and Uruguay, which affects the southern part of the coast of Brazil in the winter.
sugarloaf sea. A sea characterized by waves that rise into sugarloaf (conical) shapes, with little wind, resulting from intersecting waves.
sugg, $v ., i$. To roll with the action of the sea when aground.
sumatra, n. A squall with violent thunder, lightning, and rain, which blows at night in the Malacca Straits, especially during the southwest monsoon. It is intensified by strong mountain breezes.
Summary of Corrections. A cumulative summary of corrections to charts, Sailing Directions, and United States Coast Pilots previously published in Notice to Mariners, published by the Defense Mapping Agency Hydrographic/Topographic Center.
summer, n. In the Northern Hemisphere summer begins astronomically at the summer solstice and ends at the autumnal equinox. In the Southern Hemisphere the limits are the winter solstice and the vernal equinox. The meteorological limits vary with the locality and the year. See also INDIAN SUMMER.
summer noon. Daylight saving noon. The expression applies where summer time is used, particularly in Europe.
summer solstice. 1. The point on the ecliptic occupied by the sun at maximum northerly declination. Sometimes called JUNE SOLSTICE, FIRST POINT OF CANCER. 2. That instant at which the sun reaches the point of maximum northerly declination, about June 21.
summer time. A variation of standard time in which the clocks are advanced 1 hour. The variation when the clocks are advanced 2 hours is called double summer time. The expression is used principally in Europe. See also DAYLIGHT SAVING TIME
Sumner line. A line of position established by the Sumner method or, loosely, any celestial line of position.
Sumner method. The establishing of a line of position from the observation of the altitude of a celestial body by assuming two latitudes (or longitudes) and calculating the longitudes (or latitudes) through which the line of position passes. The line of position is the straight line connecting these two points (extended if necessary). This method, discovered by Thomas H. Sumner, an American sea captain, is seldom used by modern navigators, an adaptation of it, called ST. HILAIRE METHOD, being favored. See also LONGITUDE METHOD, HIGH ALTITUDE METHOD.
Sumner point. See COMPUTED POINT.
sun, n. The luminous celestial body at the center of the solar system, around which the planets asteroids, and comets revolve. It is an average star in terms of size and age. The sun visible in the sky is called apparent or true sun. A fictitious sun conceived to move eastward along the celestial equator at a rate that provides a uniform measure of time equal to the average apparent time is called mean sun or astronomical mean sun; a fictitious sun con ceived to move eastward along the ecliptic at the average rate of the apparent sun is called dynamical mean sun. When the sun is observable at midnight, in high latitudes, it is called midnight sun.
sun cross. A rare halo phenomenon in which horizontal and vertical shafts of light intersect at the sun. It is probably due to the simultaneous occurrence of a sun pillar and a parhelic circle.
sun dog. See PARHELION
sun line, n. A line of position determined from a sextant observation of the sun.
sun pillar. A glittering shaft of light, white or reddish, extending above and below the sun, most frequently observed at sunrise or sunset. If a parhelic circle is observed at the same time, a SUN CROSS results. See also HALO
sun relay. See DAYLIGHT CONTROL.
sunrise, n. The crossing of the visible horizon by the upper limb of the rising sun.
sunset, n. The crossing of the visible horizon by the upper limb of the setting sun.
sunspot, n. Dark spots on the sun's surface. These spots are apparently magnetic in character and exert a disturbing influence on radio propagation on the earth.
sun's way. The path of the solar system through space.
sun switch. See DAYLIGHT CONTROL.
super-. A prefix meaning over, more, greater. The opposite is SUB-
super-buoy. A very large buoy, generally more than 5 meters in diameter, used for navigation, offshore mooring, or data acquisition.
superheterodyne receiver. A receiver in which the incoming radio frequency signals are normally amplified before being fed into a mixer (first detector) for conversion into a fixed, lower carrier (the intermediate frequency). The intermediate frequency signals undergo very high amplification in the intermediate frequency amplifier stages and are then fed into a detector (second detector) for demodulation. The resulting audio or video signals are then usually further amplified before use.
super high frequency. Radio frequency of 3,000 to 30,000 megahertz
superior conjunction. The conjunction of an inferior planet and the sun when the sun is between the earth and the other planet.
superior planets. The planets with orbits outside that of the Earth: Mars, Jupiter, Saturn Uranus, Neptune, and Pluto. See also PLANET.
superior transit. See UPPER TRANSIT.
super-refraction, n. Greater than normal refraction, particularly as related to the atmosphere. Less than normal refraction is called SUBREFRACTION.
supersaturation, n. Beyond the usual point of saturation. As an example, if saturated air is cooled, condensation takes place only if nuclei are present. If they are not present, the air continues to hold more water than required for saturation until the temperature is increased or until a nucleus is introduced.
supersonic, $a d j$. Faster than sound. Formerly this term was also applied to a frequency above the audible range, but in this usage it has been replaced by the term ULTRASONIC.
superstructure, n. See CAGE.
supplement, n. An angle equal to 180° minus a given angle. Two angles which equal 180° supplementary. See also COMPLEMENT, EXPLEMENT.
supplementary angles. Two angles whose sum is 180°.
supplementary units. See under INTERNATIONAL SYSTEM OF UNITS. surf, n. The region of breaking waves near a beach or over a detached reef. surface, $v ., i$. To rise to the surface. The opposite is SUBMERGE.
surface boundary layer. That thin layer of air adjacent to the earth's surface extending up to a level of about 10 to 100 meters. Within this layer the wind distribution is determined largely by the vertical temperature gradient and the nature and contours of the underlying surface; shearing stresses are approximately constant. Also called FRICTION LAYER.
surface chart. Short for SYNOPTIC SURFACE CHART.
surface current. A current which does not extend more than about 3 meters below the surface. See also SUBSURFACE CURRENT, UNDERCURRENT, UNDERTOW.
surfaced, $a d j . \& a d v$. Having come to the surface from below the water. The opposite is SUBMERGED. See also AFLOAT, UNCOVERED.
surface duct. A tropospheric radio duct in which the lower boundary is the surface of the earth. Also called GROUND-BASED DUCT.
surface front. See under FRONT.
surface of position. A surface on some point of which a craft is located. See also LINE OPPOSITION, FIX.
surface wave. A radio wave which is propagated along the boundary between two media in a manner determined by the properties of the two media in the vicinity of the boundary.
surf zone. The area between the outermost limit of breakers and the limit of wave uprush.
surge, n. 1 . The bodily motion of a vessel in a seaway forward and backward along the longitudinal axis, caused by the force of the sea acting alternately on the bow and stern. Also called SURGING. See also SHIP MOTIONS. 2. See as STORM SURGE.
surging, n. See SURGE, n., definition.
surveillance, n. The observation of an area or space for the purpose of determining the position and movements of craft or vehicles in that area or space. Surveillance can be either dependent, independent, or pseudo-independent.
surveillance radar. A primary radar installation at a land station used to display at that station the position of vessels within its range, usually for advisory purposes.
survey, n. 1 . The act or operation of making measurements for determining the relative positions of points on, above, or beneath the earth's surface. 2. The results of operations as in definition 1.3. An organization for making surveys. See also GEODETIC SURVEY, HYDROGRAPHIC SURVEY, OCEANOGRAPHIC SURVEY, TOPOGRAPHIC SURVEY.
surveying, n. The branch of applied mathematics which teaches the art of determining accurately the area of any part of the earth's surface, the lengths and directions of bounding lines, the contour of the surface, etc., and accurately delineating the whole on a map or chart for a specified datum.
surveying sextant. See HYDROGRAPHIC SEXTANT.
swamp, n. An area of spongy land saturated with water. It may have a shallow covering of water, usually with a considerable amount of vegetation appearing above the surface. Sometimes called SLOUGH.
swash, n. 1. A narrow channel or sound within a sand bank, or between a sand bank and the shore. 2. A bar over which the sea washes. 3. The rush of water up onto the beach following the breaking of a wave.
sway, n. The side-to-side bodily motion of a vessel in a seaway, independent of rolling, caused by uniform pressure being exerted all along one side of the hull. Also called LATERAL DRIFTING, SWAYING. See also SHIP MOTIONS.
swaying, n. See SWAY.
sweep, $v ., t$. To tow a line or object below the surface, to determine the least depth in an area or to insure that a given area is free from navigational dangers to a certain depth; or the removal of such dangers. See also DRAG, v., t.
sweep (of radarscope), n. As determined by the time base or range calibration, the radial movement of the stream of electrons impinging on the face of the cathode-ray tube.
sweeping, n. 1 . The process of towing a line or object below the surface, to determine whether an area is free from isolated submerged dangers to vessels and to determine the position of any dangers that exist, or to determine the least depth of an area. 2. The process of clearing an area or channel of mines or other dangers to navigation.
sweep rate. The number of times a radar radiation pattern rotates during 1 minute of time. Sometimes expressed as the duration of one complete rotation in seconds of time.
swell, n. A relatively long wind wave, or series of waves, that has traveled out of the generating area. In contrast the term SEA is applied to the waves while still in the generating area. As these waves travel away from the area in which they are formed, the shorter ones die out. The surviving waves exhibit a more regular and longer period with flatter crests. When these waves reach shoal water, they become more prominent in height and of decreased wave length and are then known as ground swell.
swell direction. The direction from which swell is moving.
swept-frequency racon. An in-band racon which sweeps through the marine radar band ($2920-3100 \mathrm{MHz}$ in the 10 -centimeter band and $9220-9500 \mathrm{MHz}$ in the 3 -centimeter band) in order that it may be triggered at the frequency of the interrogating radar transmitting at a given frequency within the band. Almost all such racons operate in the 3-centimeter band only. There are two types of swept-frequency racons: the slow-sweep racon sweeps through the 180 MHz frequency band in 10 s of seconds (1.5 to 3.0 MHz per second); the fast-sweep racon sweeps through the band in microseconds.
swept gain. See SENSITIVITY TIME CONTROL.
swinger, n. See REVOLVER.
swinging buoy. A buoy placed at a favorable location to assist a vessel to adjust its compass or swing ship. The bow of the vessel is made fast to one buoy and the vessel is swung by means of lines to a tug or to additional buoys. Also called COMPASS ADJUSTMENT BUOY.
swinging ship. The process of placing a vessel on various headings and comparing magnetic compass readings with the corresponding magnetic directions, to determine deviation. This usually follows compass adjustment or compass compensation, and is done to obtain information for making a deviation table.
swinging the arc. The process of rotating a sextant about the line of sight to the horizon to determine the foot of the vertical circle through a body being observed. Also called ROCKING THE SEXTANT.
swirl error. The additional error in the reading of a magnetic compass during a turn, due to friction in the compass liquid.
symmetrical, adj. Being equal or identical on each side of a center line or middle value. The opposite is ASYMMETRICAL.
synchronism, n. The relationship between two or more periodic quantities of the same frequency when the phase difference between them is zero or constant at a predetermined value.
synchronization error. In radionavigation, the error due to imperfect timing of two operations.
synchronize, $v ., t$. To bring into synchronization.
synchronous, $a d j$. Coincident in time, phase, rate, etc.
synchronous lights. Two or more lights the characteristics of which are in synchronism.
synchronous satellite. A satellite whose period of rotation is equal to the period of rotation of the primary about its axis. The orbit of a synchronous satellite must be equatorial if the satellite is to remain fixed over a point on the primary's equator. See also GEOSYNCHRONOUS SATELLITE, GEOSTATIONARY SATELLITE.
synodical month. The average period of revolution of the moon about the earth with respect to the sun, a period of 29 days, 12 hours, 44 minutes, 2.8 seconds. This is sometimes called the MONTH OF THE PHASES, since it extends from new moon to the next new moon. Also called LUNATION.

synodical period. See SYNODIC PERIOD.

synodic period. The interval of time between any planetary configuration of a celestial body, with respect to the sun, and the next successive same configuration of that body, as from inferior conjunction to inferior conjunction. Also called SYNODICAL PERIOD.
synoptic chart. In meteorology, any chart or map on which data and analyses are presented that describe the state of the atmosphere over a large area at a given moment of time. A synoptic surface chart is an analyzed synoptic chart of surface weather observations.
synoptic surface chart. See under SYNOPTIC CHART.
system accuracy. The expected accuracy of a navigation system expressed in $\mathrm{d}_{\text {rms }}$ units, not including errors which may be introduced by the user, or geodetic or cartographic errors.
systematic error. One of the two categories of errors of observation, measurement and calculation, the other category being random error. Systematic errors are characterized by an orderly trend, and are usually predictable once the cause is known. They are divided into three classes: (1) errors resulting from changing or nonstandard natural physical conditions, sometimes called theoretical errors, (2) personal (nonaccidental) errors, and (3) instrument errors. Also called REGULAR ERROR. See also ERROR.
system electronic navigation chart. The electronic chart data base actually accessed aboard ship for the display of electronic charts. It is developed from the ENC provided by hydrographic authorities, but is specific to the shipboard system. When corrected, it is the equivalent of a paper chart.
syzygy, n. 1. A point of the orbit of a planet or satellite at which it is in conjunction or opposition. The term is used chiefly in connection with the moon at its new and full phase. 2. A west wind on the seas between New Guinea and Australia preceding the summer northwest monsoon.

T

table, n. An orderly, condensed arrangement of numerical or other information, usually in parallel rows or columns. A table in which values of the quantity to be found are tabulated for limiting values of the entering argument is called critical table. See also CALIBRATION TABLE, CONVERSION TABLE, CURRENT TABLES, TIDE TABLES, TRAVERSE TABLE.
tablemount, n. A seamount having a comparatively smooth, flat top. Also called GUYOT.
Tables of Computed Altitude and Azimuth. See H.O. PUB. NO. 214.

tabular altitude. See TABULATED ALTITUDE.

tabular azimuth. See TABULATED AZIMUTH.
tabular azimuth angle. See TABULATED AZIMUTH ANGLE.
tabular iceberg. A flat-topped iceberg with length-to-height ratio greater than 5:1. Most tabular bergs form by calving from an ice shelf and show horizontal banding. See also ICE ISLAND, BLOCKY ICEBERG.
tabulated altitude. In navigational sight reduction tables, the altitude taken directly from a table for the entering arguments. After interpolation for argument increments, i.e., the difference between each entering argument and the actual value, it is called COMPUTED ALTITUDE. Also called TABULAR ALTITUDE.
tabulated azimuth. Azimuth taken directly from a table, before interpolation. After interpolation, it becomes COMPUTED AZIMUTH.
tabulated azimuth angle. Azimuth angle taken directly from a table, before interpolation. After interpolation, it becomes COMPUTED AZIMUTH ANGLE.
Tacan, n. An ultra high frequency aeronautical radionavigation system which provides a continuous indication of bearing and distance to a Tacan station. The term is derived from Tactical Air Navigation.
tactical diameter. The distance gained to the right or left of the original course when a turn of 180° with a constant rudder angle has been completed. See also STANDARD TACTICAL DIAMETER.
taffrail, n. The after rail at the stern of a vessel.
taffrail \log. A log consisting of a rotator towed through the water by a braided \log line attached to a distance-registering device usually secured at the taffrail. Also called PATENT LOG.
tail wind. A wind from behind the vessel. See FOLLOWING WIND.
take departure. See under DEPARTURE, definition 2.
take the ground. To become stranded by the tide.
Taku wind. A strong, gusty, east-northeast wind, occurring in the vicinity of Juneau, Alaska, between October and March. At the mouth of the Taku River, after which it is named, it sometimes attains hurricane force.
tangent, $a d j$. Touching at a single point.
tangent, n. 1 . The ratio of the side opposite an acute angle of a plane right triangle to the shorter side adjacent to the same angle. The expression NATURAL TANGENT is sometimes used to distinguish the tangent from its logarithm (called LOGARITHMIC TANGENT). 2. A straight line, curve, or surface touching a curve or surface at one point.
tangent arc. 1. An arc touching a curve or surface at one point. 2. A halo tangent to a circular halo.
tangent latitude error. On a nonpendulous gyrocompass where damping is accomplished by offsetting the point of application of the force of a mercury ballistic, the angle between the local meridian and the settling position or spin axis. Where the offset of the point of application of a mercury ballistic is to the east of the vertical axis of the gyrocompass, the settling position is to the east of the meridian in north latitudes and to the west of the meridian in south latitudes. The error is so named because it is approximately proportional to the tangent of the latitude in which the gyrocompass is operating. The tangent latitude error varies from zero at the equator to a maximum at high northern and southern latitudes
tank, n. An elevated water tank, indicated on a chart by a position circle. tape gage. See ELECTRIC TAPE GAGE.
tapper, n. A heavy pendulum suspended outside a bell which rings it.
target, n. In navigation, an object observed on a radar screen. See also CONTACT.
target angle. The relative bearing of own ship from a target vessel, measured clockwise through 360°. See also ASPECT
$\boldsymbol{t a r g e t}$ tail. The display of diminishing luminance seen to follow a target on a radar display which results from afterglow and the progress of the target between successive scans of the radar. Also called TARGET TRAIL.
target trail. See TARGET TAIL.
tehuantepecer, n. A violent squally wind from north or north-northeast in the Gulf of Tehuantepec (south of southern Mexico) in winter. It originates in the Gulf of Mexico as a norther which crosses the isthmus and blows through the gap between the Mexican and Guatamalan mountains. It may be felt up to 100 miles out to sea. See also PAPAGAYO.
telecommunication, n. Any transmission, emission, sound, or intelligence of any nature by wire, radio, or other electromagnetic system. If the transfer is by radio, it may be called radiocommunication.
telegraph buoy. A buoy used to mark the position of a submarine telegraph cable.
telemeter, n. The complete equipment for measuring any quantity, transmitting the results electrically to a distant point, and there recording the values measured.
telemetry, n. The science of measuring a quantity or quantities, transmitting the measured value to a distant station, and there interpreting, indicating, or recording the quantities measured.
telemotor, n. A device for controlling the application of power at a distance, especially one by which the steering gear of a vessel is controlled from the wheel house.
telescope, n. An optical instrument used as an aid in viewing or photographing distant objects, particularly celestial objects. A reflecting telescope collects light by means of a concave mirror; a refracting telescope by means of a lens or system of lenses. A Cassegrainian telescope is a reflecting telescope in which the immergent light is reflected from the main mirror onto a secondary mirror, where it is reflected through a hole in the main mirror to an eyepiece; a Newtonian telescope is a reflecting telescope in which the immergent beam is reflected from the main mirror onto a small plane mirror, and from there to an eyepiece at the side of the telescope.
telescopic alidade. See ALIDADE.
telescopic meteor. See under METEOR.
telltale compass. A marine magnetic compass, usually of the inverted type, frequently installed in the master's cabin for his convenience.
temperate zone. Either of the two zones between the frigid and torrid zones, called the north temperate zone and the south temperate zone.
temperature, n. Intensity or degree of heat. Fahrenheit temperature is based upon a scale in which water freezes at $32^{\circ} \mathrm{F}$ and boils at about $212^{\circ} \mathrm{F}$; Celsius temperature upon a scale in which water freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$. Absolute temperature is measured from absolute zero which is zero on the Kelvin scale, -273.16° on the Celsius scale, and $459.69^{\circ} \mathrm{F}$ on the Fahrenheit scale. Absolute temperature based upon degrees Fahrenheit is called Rankine temperature and that based upon degrees Celsius is called Kelvin temperature.
temperature error. That instrument error due to nonstandard temperature of the instrument.
temperature inversion. An atmospheric condition in which the usual lapse rate is inverted, i.e., the temperature increases with increasing altitude.
temporal, adj. Pertaining to or limited by time.
temporary light. A light put into service for a limited period.
temporary units. See under INTERNATIONAL SYSTEM OF UNITS.
tend, $v ., i$. To extend in a stated direction, as an anchor cable.
tera-. A prefix meaning one trillion $\left(10^{12}\right)$.
terdiurnal, adj. Occurring three times per day. A terdiurnal tidal constituent has three periods in a constituent day.
terminator, n. The line separating illuminated and dark portions of a non-self-luminous body, as the moon.
terrace, n. On the sea floor, a relatively flat horizontal or gently inclined surface, sometimes long and narrow, which is bounded by a steeper ascending slope on one side and by a steeper descending slope on the opposite side.
terrestrial, $a d j$. Of or pertaining to the earth.
terrestrial coordinates. See GEOGRAPHICAL COORDINATES.
terrestrial equator. 1. The earth's equator, 90° from its geographical poles. 2. See ASTRONOMICAL EQUATOR.
terrestrial latitude. Latitude on the earth; angular distance from the equator, measured northward or southward through 90° and labeled N or S to indicate the direction of measurement. See also LATITUDE.
terrestrial longitude. Longitude on the earth, the arc of a parallel, or the angle at the pole, between the prime meridian and the meridian of a point on the earth, measured eastward or westward from the prime meridian through 180°, and labeled E or W to indicate the direction of measurement. See also LONGITUDE.
terrestrial magnetism. See GEOMAGNETISM.
terrestrial meridian. See ASTRONOMICAL MERIDIAN.
terrestrial perturbations. The largest gravitational perturbations of artificial satellites which are caused by the fact that the gravity field of the earth is not spherically symmetrical.
terrestrial pole. One of the poles of the earth. See also GEOGRAPHICAL POLE, GEOMAGNETIC POLE, MAGNETIC POLE.
terrestrial radiation. The total infrared radiation emitted from the earth's surface.
terrestrial refraction. Atmospheric refraction of a ray of radiant energy emanating from a point on or near the surface of the earth, as contrasted with ASTRONOMICAL REFRACTION of a ray passing through the earth's atmosphere from outer space.
terrestrial sphere. The earth.
terrestrial triangle. A triangle on the surface of the earth, especially the navigational triangle.
territorial sea. The zone off the coast of a nation immediately seaward from a base line. Sovereignty is maintained over this coastal zone by the coastal nation, subject to the right of innocent passage to the ships of all nations. The United States recognizes this zone as extending 4.8 kilometers from the base line. See also FISHING ZONE, FISHERY CONSERVATION ZONE.
tertiary tide station. A tide station at which continuous observations have been made over a minimum period of 30 days but less than 1 year. The series is reduced by comparison with simultaneous observations from a secondary control tide station. This station provides for a 29-day harmonic analysis. See also PRIMARY CONTROL TIDE STATION; SECONDARY CONTROL TIDE STATION; SUBORDINATE TIDE STATION, definition 2; TIDE STATION.
tesla, n. The derived unit of magnetic flux density in the International System of Units; it is equal to 1 weber per square meter.
Texas norther. See under NORTHER.
thaw holes. Vertical holes in sea ice formed when surface puddles melt through to the underlying water.
thematic map. See TOPICAL MAP.
theoretical error. See under SYSTEMATIC ERROR.
thermometer, n. An instrument for measuring temperature. A maximum thermometer automatically registers the highest temperature and a minimum thermometer the lowest temperature since the last thermometer setting.
thermostat, n. A device for automatically regulating temperature or detecting temperature changes.
thick first-year ice. First-year ice over 120 centimeters thick.
thick weather. Condition of greatly reduced visibility, as by fog, snow, rain, etc.
thin first-year ice. First-year ice 30 to 70 centimeters thick. Also called WHITE ICE.
thin overcast. An overcast sky cover which is predominantly transparent.
thorofare, n. This shortened form of thoroughfare has become standard for a natural waterway in marshy areas. It is the same type of feature as a slough or bayou.
thoroughfare, n. A public waterway such as a river or strait. See also THOROFARE.
three-arm protractor. An instrument consisting of a circle graduated in degrees, to which is attached one fixed arm and two arms pivoted at the center and provided with clamps so that they can be set at any angle to the fixed arm, within the limits of the instrument. It is used for finding a ship's position when the horizontal angles between three fixed and known points are measured.
three-point problem. From the observation of two horizontal angles between three objects or points of known (charted) positions, to determine the position of the point of observation. The problem is solved graphically by means of the three-arm protractor and analytically by trigonometrical calculation.
threshold signal. The smallest signal capable of being detected above the background noise level.
threshold speed. The minimum speed of current at which a particular current meter will measure at its rated reliability.
thundercloud, n. See CUMULONIMBUS.
thunderhead, n. See CUMULONIMBUS.
thundersquall, n. Strictly, the combined occurrence of a thunderstorm and a squall, the squall usually being associated with the downrush phenomenon typical of a well-developed thunderstorm.
thunderstorm, n. A local storm invariably produced by a cumulonimbus cloud and always accompanied by lightning and thunder, usually with strong gusts of wind, heavy rain, and sometimes with hail. It is usually of short duration. Sometimes called ELECTRICAL STORM.
thunderstorm cirrus. See FALSE CIRRUS.
thundery sky. A sky with an overcast and chaotic aspect, a general absence of wind except during showers, a mammatus appearance of the lower clouds, and dense cirrostratus and altocumulus above.
tick, n. A short, audible sound or beat, as that of a clock. A time signal in the form of one or more ticks is called a TIME TICK.
tickle, n. A narrow channel, as used locally in the Arctic and Newfoundland.
tidal, adj. Of or pertaining to tides.
tidal amplitude. One-half the range of a constituent tide.
tidal basin. A basin without a caisson or gate in which the level of water rises and falls with the tides. Also called OPEN BASIN. See also TIDAL HARBOR, NON-TIDAL BASIN.
tidal bench mark. See under BENCH MARK.
tidal bench mark description. A published, concise description of the location, stamped number of designation, date established, and elevation (referred to a tidal datum) of a specific bench mark.
tidal bench mark state index map. A state map which indicates the locations for which tidal datums and tidal bench mark descriptions are available.
tidal bore. A tidal wave that propagates up a relatively shallow and sloping estuary or river in a solitary wave. The leading edge presents an abrupt rise in level, frequently with continuous breaking and often immediately followed by several large undulations. An uncommon phenomenon, the tidal bore is usually associated with very large ranges in tide as well as wedge-shaped and rapidly shoaling entrances. Also called EAGRE, EAGER, MASCARET, POROROCA, BORE.
tidal constants. Tidal relations that remain practically constant for any particular locality. Tidal constants are classified as harmonic and nonharmonic. The harmonic constants consist of the amplitudes and epochs of the harmonic constituents, and the nonharmonic constants include the ranges and intervals derived directly from the high and low water observations.
tidal constituent. See CONSTITUENT.
tidal current. A horizontal movement of the water caused by gravitational interactions between the sun, moon, and earth. The horizontal component of the particulate motion of a tidal wave. Part of the same general movement of the sea that is manifested in the vertical rise and fall, called tide. Also called TIDAL STREAM. See also CURRENT, TIDAL WAVE, TIDE.
tidal current charts. 1. Charts on which tidal current data are depicted graphically. 2. Tidal Current Chart, as published by the National Ocean Survey, part of a set of charts which depict, by means of arrows and figures, the direction and velocity of the tidal current for each hour of the tidal cycle. The charts, which may be used for any year, present a comprehensive view of the tidal current movement in the respective waterways as a whole and also supply a means for readily determining for any time the direction and velocity of the current at various localities throughout the water area covered.
tidal current constants. See CURRENT CONSTANTS.
tidal current diagrams. Monthly diagrams which are used with tidal current charts to provide a convenient method to determine the current flow on a particular day.
tidal current station. See CURRENT STATION.
tidal current tables. 1. Tables which give the predicted times of slack water and the predicted times and velocities of maximum current flood and ebb for each day of the year at a number of reference stations, together with time differences and velocity ratios for obtaining predictions at subordinate stations. 2. Tidal Current Tables, published annually by the National Ocean Survey.
tidal cycle. A complete set of tidal conditions as those occurring during a tidal day, lunar month, or Metonic cycle.
tidal datum. See VERTICAL DATUM.
tidal day. See LUNAR DAY, definition 1.
tidal difference. Difference in time or height of a high or low water at a subordinate station and at a reference station for which predictions are given in the Tide Tables. The difference, when applied according to sign to the prediction at the reference station, gives the corresponding time or height for the subordinate station.
tidal epoch. See EPOCH, definition 3.
tidal estuary. See under ESTUARY, definition 1.
tidal flats. See FLAT.
tidal harbor. A harbor affected by the tides, distinct from a harbor in which the water level is maintained by caissons or gates. See also NON-TIDAL BASIN.
tidal lights. Lights shown at the entrance of a harbor, to indicate tide and tidal current conditions within the harbor.
tidal lock. See ENTRANCE LOCK.
tidal marsh. Any marsh the surface of which is covered and uncovered by tidal flow. See also FLAT.
tidal platform ice foot. An ice foot between high and low water levels, produced by the rise and fall of the tide.
tidal quay. A quay in an open harbor or basin with sufficient depth alongside to enable ships lying alongside to remain afloat at any state of the tide.
tidal range. See RANGE OF TIDE.
tidal rise. See RISE OF TIDE.
tidal stream. See TIDAL CURRENT.
tidal water. Any water subject to tidal action. See also TIDEWATER.
tidal wave. 1. A wave caused by the gravitational interactions between the sun, moon and earth. Essentially, high water is the crest of a tidal wave and low water is the trough. Tide is the vertical component of the particulate motion and tidal current is the horizontal component. The observed tide and tidal current can be considered the result of the combination of several tidal waves, each of which may vary from nearly pure progressive to nearly pure standing and with differing periods, heights, phase relationships, and directions. 2. Any unusually high and destructive water level along a shore. It usually refers to either a storm surge or tsunami.
tide, n. The periodic rise and fall of the water resulting from gravitational interactions between the sun, moon, and earth. The vertical component of the particulate motion of a tidal wave. Although the accompanying horizontal movement of the water is part of the same phenomenon, it is preferable to designate this motion as TIDAL CURRENT. See also TIDAL WAVE definition 1.
tide-bound, $a d j$. Unable to proceed because of insufficient depth of water due to tidal action.
tide crack. A crack at the line of junction between an immovable icefoot or ice wall and fast ice the latter subject to rise and fall of the tide.
tide curve. A graphic representation of the rise and fall of the tide in which time is usually represented by the abscissa and height by the ordinate of the graph. For a normal tide the graphic representation approximates a cosine curve. See also MARIGRAM.
tide datum. See VERTICAL DATUM.
tide gage. An instrument for measuring the rise and fall of the tide. See also AUTOMATIC TIDE GAGE, ELECTRIC TAPE GAGE, PRESSURE GAGE, TIDE STAFF.
tide gate. 1. A restricted passage through which water runs with great speed due to tidal action. 2. An opening through which water may flow freely when the tide sets in one direction, but which closes automatically and prevents the water from flowing in the other direction when the direction of flow is reversed.
tidehead, n. Inland limit of water affected by a tide.
tide hole. A hole made in ice to observe the height of the tide.
tide indicator. The part of a tide gage which indicates the height of tide at any time. The indicator may be in the immediate vicinity of the tidal water or at some distance from it.
tideland, n. Land which is under water at high tide and uncovered at low tide.
tidemark, n. 1 . A high water mark left by tidal water. 2 . The highest point reached by a high tide. 3 . A mark placed to indicate the highest point reached by a high tide, or, occasionally, any specified state of tide.
tide notes. Notes included on nautical charts which give information on the mean range or the diurnal range of the tide, mean tide level, and extreme low water at key places on the chart.
tide pole. A graduated spar used for measuring the rise and fall of the tide. Also called TIDE STAFF.
tide pool. A pool left by an ebb tide.
tide predicting machine. A mechanical analog machine especially designed to handle the great quantity of constituent summations required in the harmonic method. William Ferrel's Maxima and Minima Tide Predictor was the first such machine used in the United States. Summing only 19 constituents, but giving direct readings of the predicted times and heights of the high and low waters, the Ferrel machine was used for the predictions of 1885 through 1914. A second machine was used for the predictions of 1912 through 1965. Predictions are now prepared using a computer.
tide-producing force. The part of the gravitational attraction of the moon and sun which is effective in producing the tides on the earth. The force varies approximately as the mass of the attracting body and inversely as the cube of its distance. The tide-producing force exerted by the sun is a little less than one-half as great as that of the moon.
tide producing potential. Tendency for particles on the earth to change their positions as a result of the gravitational interactions between the sun, moon, and earth. Although the gravitational attraction varies inversely as the square of the distance of the tide-producing body, the resulting potential varies inversely as the cube of the distance.
tide race. A very rapid tidal current through a comparatively narrow channel. Also called RACE.
tide rips. Small waves formed on the surface of water by the meeting of opposing tidal currents or by a tidal current crossing an irregular bottom. Vertical oscillation, rather than progressive waves, is characteristic of tide rips. See also RIPS.
tide rode. The condition of a ship at anchor heading into the tidal current. See also WIND RODE.
tide signals. Signals showing to navigators the state or change of the tide according to a prearranged code, or by direct display on a scale.
tide staff. A tide gage consisting of a vertical graduated staff from which the height of the tide can be read directly. See also ELECTRIC TAPE GAGE.
tide station. The geographic location at which tidal observations are conducted. Also, the facilities used to make tidal observations. These may include a tide house, tide gage, tide staff, and tidal bench marks. See also PRIMARY CONTROL TIDE STATION, SECONDARY CONTROL TIDE STATION, SUBORDINATE TIDE STATION, TERTIARY TIDE STATION.
tide tables. 1. Tables which give the predicted times and heights of high and low water for every day in the year for a number of reference stations, and tidal differences and ratios by which additional predictions can be obtained for subordinate stations. From these values it is possible to interpolate by a simple procedure the height of the tide at any hour of the day. See also TIDAL CURRENT TABLES.
tidewater, n. Water affected by tides or sometimes that part of it which covers the tideland. The term is sometimes used broadly to designate the seaboard. See also TIDAL WATER.
tide wave. See TIDAL WAVE, definition 1.
tideway, n. A channel through which a tidal current runs.
tilt, n. The angle which anything makes with the horizontal.
tilted blocky iceberg. A blocky iceberg which has tilted to present a triangular shape from the side.
tilt correction. The correction due to tilt error.
tilt error. The error introduced in the reading of an instrument when it is tilted, as a marine sextant held so that its frame is not perpendicular to the horizon.
time, n. 1. The interval between two events. 2. The date or other designated mark on a time scale. See also TIME SCALE, APPARENT TIME MEAN TIME, SIDEREAL TIME.
time and altitude azimuth. An azimuth determined by solution of the navigational triangle with meridian angle, declination, and altitude given. A TIME AZIMUTH is computed with meridian angle, declination, and latitude given. An ALTITUDE AZIMUTH is computed with altitude, declination, and latitude given.
time azimuth. An azimuth determined by solution of the navigational triangle, with meridian angle, declination, and latitude given. An ALTITUDE AZIMUTH is computed with altitude, declination, and latitude given. A TIME AND ALTITUDE AZIMUTH is computed with meridian angle, declination, and altitude given.
time ball. A visual time signal in the form of a ball. Before the widespread use of radio time signals, time balls were dropped, usually at local noon, from conspicuously-located masts in various ports. The accuracy of the signal was usually controlled by a telegraphic time signal from an observatory.
time base. A motion, of known but not necessarily of constant speed, used for measuring time intervals, particularly the sweep of a cathoderay tube. In a linear time base the speed is constant in an expanded time base a selected part is of increased speed, and in a delayed time base the start is delayed. See also SWEEP.
time diagram. A diagram in which the celestial equator appears as a circle, and celestial meridians and hour circles as radial lines; used to facilitate solution of time problems and others involving arcs of the celestial equator or angles at the pole, by indicating relations between various quantities involved. Conventionally the relationships are given as viewed from a point over the south pole westward direction being counterclockwise. Also called DIAGRAM ON THE PLANE OF THE CELESTIAL EQUATOR, DIAGRAM ON THE PLANE OF THE EQUINOCTIAL.
time line. A line joining the heads of two vectors which represent successive courses and speeds of a ship in passing from one point to another in a known time via a specified intermediate point.
time meridian. Any meridian used as a reference for reckoning time, particularly a zone or standard meridian.
timepiece, n. An instrument for measuring time. See also CHRONOMETER, CLOCK, WATCH.
time scale. A system of assigning dates to events. There are three fundamental scales: Ephemeris Time, time based upon the rotation of the earth, and atomic time or time obtained by counting the cycles of a signal in resonance with certain kinds of atoms. Ephemeris Time (ET), the independent variable in the gravitational theories of the solar system, is the scale used by astronomers as the tabular argument of the precise, fundamental ephemerides of the sun, moon, and planets. Universal Time (UT1), time based on the rotation of the earth, is the scale used by astronomers as the tabular argument for most other ephemerides, e.g., the Nautical Almanac. Although ET and UT1 differ in concept, both are determined in arrears from astronomical observations and are extrapolated into the future based on International Atomic Time (TAI). Coordinated Universal Time (UTC) is the scale disseminated by most broadcast time services; it differs from TAI by an integral number of seconds.
time sight. Originally, an observation of the altitude of a celestial body, made for the purpose of determining longitude. Now, the expression is applied primarily to the common method of reducing such an observation.
time signal. An accurate signal marking a specified time or time interval. It is used primarily for determining errors of timepieces; usually sent from an observatory by radio. As defined by the International Telecommunications Union (ITU), a radiocommunication service for the transmission of time signals of stated high precision, intended for general reception.
time switch. A device for lighting or extinguishing a light at predetermined times, controlled by a timing device.
time tick. A time signal consisting of one or more short audible sounds or beats.
time zone. An area in all parts of which the same time is kept. In general, each zone is 15° of longitude in width with the Greenwich meridian (0° longitude) designated as the central meridian of zone 0 and the remaining zones centered on a meridian whose longitude is exactly divisible by 15 . The zone boundary may vary considerably to conform to political and geographic boundaries. See also STANDARD TIME.
Tokyo datum. A geodetic datum that has its origin in Tokyo. It is defined in terms of the Bessel ellipsoid and is oriented by means of a single astronomic station. Using triangulation ties through Korea, the Tokyo datum is connected with the Manchurian datum. Unfortunately, since Tokyo is situated on a steep geoidal slope, the single station orientation has resulted in large systematic geoidal separations as the system is extended from its initial point.
tombolo, n. An islet and a shoal connecting it to a larger land area.
tonnage. A measure of the weight, size or capacity of a vessel. Deadweight tonnage refers to the number of tons of 2240 lbs . that a vessel will carry in salt water loaded to summer marks. It may also be considered the difference between loaded and light displacement tonnage. Displacement tonnage refers to the amount of water displaced by a vessel afloat, and is thus a measure of actual weight. Gross tonnage or gross register tonnage refers to the total measured cubic volume (100 cubic feet per ton of 2240 lbs .), based on varying formulas. Net tonnage or net registered tonnage refers to the gross tonnage minus spaces generally not used for cargo, according to varying formulas. Register tonnage is the tonnage listed on the ship's registration certificate, usually gross and/or net. Cargo tonnage refers to the weight of the cargo, independent of the vessel. Merchant ships are normally referred to by their gross or deadweight tonnage, warships by their displacement tonnage.
tongue, n. 1. A projection of the ice edge up to several kilometers in length, caused by wind or current. 2 . An elongated extension of flat sea floor into an adjacent higher feature.
topical map. A map portraying a special subject. Also called SPECIAL SUBJECT MAP, THEMATIC MAP.
topmark, n. One or more objects of characteristic shape and color placed on top of a beacon or buoy to aid in its identification.
topographical latitude. See GEODETIC LATITUDE.
topographic feature. See under TOPOGRAPHY definition 1.
topographic map. A map which presents the vertical position of features in measurable form as well as their horizontal positions.
topography, n. 1 . The configuration of the surface of the earth, including its relief and the position of features on it; the earth's natural and physical features collectively. 2. The science of delineation of natural and man-made features of a place or region especially in a way to show their positions and elevations.
toponym, n. A name applied to a physical or cultural topographic feature. For U.S. Government usage, policies and decisions governing place names on earth are established by the Board on Geographic Names. Also called PLACE NAME.
toponymy, n. 1. The study and treatment of toponyms. 2. A body of toponyms.
topple, n. 1. The vertical rotation of the spin axis of a gyroscope about the topple axis. 2. The vertical component of real precession or apparent precession, or the algebraic sum of the two. See also DRIFT, n. definition 6; TOTAL DRIFT.
topple axis. Of a gyroscope, the horizontal axis perpendicular to the horizontal spin axis, around which topple occurs. See also DRIFT AXIS, SPIN AXIS.
tornado, n. A violently rotating column of air, pendant from a cumulonimbus cloud, and nearly always observable as a funnel cloud. On a local scale, it is the most destructive of all atmospheric phenomena. Its vortex, commonly several hundreds of yards in diameter, whirls usually cyclonically with wind speeds estimated at 100 to more than 200 miles per hour. Its general direction of travel is governed by the motion of its parent cloud. Tornadoes occur on all continents, but are most common in Australia and the United States where the average number is 140 to 150 per year. They occur throughout the year and at any time of day, but are most frequent in spring and in middle and late afternoon. In the United States, tornadoes often develop several hundred miles southeast of a deep low centered in the central or north-central states. However, they may appear in any sector of the low, and/or be associated with fronts, instability lines, troughs, and even form within high-pressure ridges. A distinction sometimes is made between cyclonic tornadoes and convective tornadoes, the former occurring within the circulation of a well-developed parent cyclone, and the latter referring to all others. A tornado over water is called WATERSPOUT.
tornado cloud. See FUNNEL CLOUD.
torque, n. That which effects or tends to effect rotation or torsion and which is measured by the product of the applied force and the perpendicular distance from the line of action of the force to the axis of rotation.
torrid zone. The region of the earth between the Tropic of Cancer and the Tropic of Capricorn. Also called the TROPICS.
total current. The combination of the tidal and nontidal current. See also CURRENT.
total drift. The algebraic sum of drift due to real precession and that due to apparent precession.
total eclipse. An eclipse in which the entire source of light is obscured.
tower, n. A tall, slender structure, which may be charted with a position circle.
towering, n. Apparent increase in the vertical dimension of an object near the horizon, due to large inequality of atmospheric refraction in the line of sight to the top and bottom of the object. The opposite is STOOPING.
towing light. A yellow light having the same characteristics as a STERN LIGHT.
trace, n. The luminous line resulting from the radial movement of the points of impingement of the electron stream on the face of the cathode-ray tube of a radar indicator. See also SWEEP.
track, n. 1. The intended or desired horizontal direction of travel with respect to the earth. The track as expressed in degrees of the compass may be different from the course due to such factors as making allowance for current or sea or steering to resume the TRACK, definition 2. 2. The path of intended travel with respect to
the earth as drawn on the chart. Also called INTENDED TRACK, TRACK-LINE. 3. The actual path of a vessel over the ground, such as may be determined by tracking.
track, v., t. To follow the movements of an object such as by radar or an optical system.
track angle. See TRACK, definition 1.
track chart. A chart showing recommended, required, or established tracks, and usually indicating turning points, courses, and distances. A distinction is sometimes made between a TRACK CHART and a ROUTE CHART, the latter generally showing less specific information, and sometimes only the area for some distance each side of the great circle or rhumb line connecting two terminals.
tracking, n. In the operation of automated radar plotting aids, the process of observing the sequential changes in the position of a target to establish its motion.
track-line, n. See TRACK, definition 2.
track made good. The single resultant direction from a point of departure to a point of arrival at any given time. The use of this term to indicate a single resultant direction is preferred to the use of the misnomer course made good. See also COURSE, TRACK.
trade winds. Relatively permanent winds on each side of the equatorial doldrums, blowing from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere. See also ANTITRADES.
traffic control signals. Visual signals placed in a harbor or waterway to indicate to shipping the movements authorized or prohibited at the time at which they are shown. Also called DOCKING SIGNALS.
traffic lane. An area of defined limits in which one-way traffic is established. See also TWO-WAY ROUTE, ROUTING SYSTEM.
traffic separation scheme. A routing measure designed for separating opposing streams of traffic in congested areas by the establishment of traffic lanes, precautionary areas, and other measures. See also ROUTING SYSTEM.
train, $v ., t$. To control motion in bearing.
training wall. A wall, bank, or jetty, often submerged, built to direct or confine the flow of a river or tidal current.
tramontana, n. A northeasterly or northerly wind occurring in winter off the west coast of Italy. It is a fresh wind of the fine weather mistral type.
transceiver, n. A combination transmitter and receiver in a single housing, with some components being used by both parts. See also TRANSPONDER.
transducer, n. A device that converts one type of energy to another, such as the part of a depth sounder that changes electrical energy into acoustical energy.
transfer, n. 1. The distance a vessel moves perpendicular to its initial direction in making a turn of 90° with a constant rudder angle. 2. The distance a vessel moves perpendicular to its initial direction for turns of less than 90°. See also ADVANCE.
transit, n. 1. The passage of a celestial body across a celestial meridian, usually called MERIDIAN TRANSIT. 2. The apparent passage of a celestial body across the face of another celestial body or across any point, area, or line. 3. An instrument used by an astronomer to determine the exact instant of meridian transit of a celestial body. 4. A reversing instrument used by a surveyor for accurately measuring horizontal and vertical angles; a theodolite which can be reversed in its supports without being lifted from them.
transit, $v_{.,} t$. To cross. In navigation the term is generally used with reference to the passage of a celestial body over a meridian, across the face of another celestial body, or across the reticle of an optical instrument.
TRANSIT, n. See NAVY NAVIGATION SATELLITE SYSTEM.
transition buoy. A buoy indicating the transition between the lateral and cardinal systems of buoyage.
transition mark. A navigation mark indicating the transition between the lateral and cardinal systems of marking.
translocation, n. The determination of the relative positions of two points by simultaneous Doppler satellite observations from each point.
translunar, $a d j$. Of or pertaining to space outside the moon's orbit about the earth.
transmit-receive tube. See as TR TUBE.
transponder, n. A component of a secondary radar system capable of accepting the interrogating signal, received from a radar set or interrogator, and in response automatically transmitting a signal which enables the transponder to be identified by the interrogating station. Also called TRANSPONDER BEACON. See also RADAR BEACON, RACON.
transponder beacon. See TRANSPONDER.
transpose, $v ., t$. To change the relative place or position of, as to move a term from one side of an equation to the other with a change of sign.
transverse bar. A bar which extends approximately normal to the shoreline.
transverse chart. A chart on a transverse map projection. Also called INVERSE CHART.
transverse cylindrical orthomorphic chart. See TRANSVERSE MERCATOR CHART.
transverse cylindrical orthomorphic projection. See TRANSVERSE MERCATOR MAP PROJECTION.
transverse equator. The plane which is perpendicular to the axis of a transverse map projection. Also called INVERSE EQUATOR. See also FICTITIOUS EQUATOR.
transverse graticule. A fictitious graticule based upon a transverse map projection.
transverse latitude. Angular distance from a transverse equator. Also called INVERSE LATITUDE. See also FICTITIOUS LATITUDE.
transverse longitude. Angular distance between a prime transverse meridian and any given transverse meridian. Also called INVERSE LONGITUDE. See also FICTITIOUS LONGITUDE.
transverse map projection. A map projection with its axis in the plane of the equator.
transverse Mercator chart. A chart on the transverse Mercator projection. Also called TRANSVERSE CYLINDRICAL ORTHOMORPHIC CHART, INVERSE MERCATOR CHART, INVERSE CYLINDRICAL ORTHOMORPHIC CHART. See also MERCATOR CHART.
transverse Mercator map projection. A conformal cylindrical map projection, being in principle equivalent to the regular Mercator map projection turned (transversed) 90° in azimuth. In this projection, the central meridian is represented by a straight line, corresponding to the line which represents the equator on the regular Mercator projection. Neither the geographic meridians (except the central meridian) nor the geodetic parallels (except the equator) are represented by straight lines. Also called INVERSE MERCATOR MAP PROJECTION, TRANSVERSE CYLINDRICAL ORTHOMORPHIC MAP PROJECTION, INVERSE CYLINDRICAL ORTHOMORPHIC MAP PROJECTION. See also MERCATOR MAP PROJECTION.
transverse meridian. A great circle perpendicular to a transverse equator. The reference transverse meridian is called prime transverse meridian. Also called INVERSE MERIDIAN. See also FICTITIOUS MERIDIAN.
transverse parallel. A circle or line parallel to a transverse equator connecting all points of equal transverse latitude. Also called INVERSE PARALLEL. See also FICTITIOUS PARALLEL.
transverse pole. One of the two points 90° from a transverse equator.
transverse rhumb line. A line making the same oblique angle with all fictitious meridians of a transverse Mercator map projection. Transverse parallels and meridians may be considered special cases of the transverse rhumb line. Also called INVERSE RHUMB LINE. See also FICTITIOUS RHUMB LINE.
transverse wave. A wave in which the vibration is perpendicular to the direction of propagation, as in light waves. This is in contrast with a LONGITUDINAL WAVE, in which the vibration is in the direction of propagation.
trapezoid, n. A quadrilateral having two parallel sides and two nonparallel sides.
traverse, n. A series of directions and distances, such as when a sailing vessel beats into the wind, a steam vessel zigzags, or a surveyor makes measurements for determination of position.
traverse sailing. A method of determining the equivalent course and distance made good by a craft following a track consisting of a series of rhumb lines. The solution is usually made by means of traverse tables.
traverse table. A table giving relative values of various parts of plane right triangles, for use in solving such triangles, particularly in connection with various sailings.
TR box. See TR SWITCH.
trench, n. A long, narrow, characteristically very deep and asymmetrical depression of the sea floor, with relatively steep sides. See also TROUGH.
triad, n. Three radionavigation stations operated as a group for the determination of positions. Also called TRIPLET. See also STAR CHAIN.
triangle, n. A closed figure having three sides. The triangle is plane, spherical, or curvilinear as the sides are straight lines, arcs of great circles, or curves, respectively. See also EQUILATERAL TRIANGLE, ISOSCELES TRIANGLE, NAVIGATIONAL TRIANGLE, RIGHT TRIANGLE.
triangulation, n. A method of surveying in which the stations are points on the ground, located on the vertices of a chain or network of triangles. The angles of the triangles are measured instrumentally, and the sides are derived by computation from selected sides which are called BASE LINES, the lengths of which are obtained from direction measurements on the ground. See also TRILATERATION.
triaxial ellipsoid. A reference ellipsoid having three unequal axes; the shortest is the polar axis, and the two longer ones lie in the plane of the equator.
tributary, n. A stream that flows into another stream or a lake.
tributary. Any body of water that flows into a larger body, i.e., a creek in relation to a river, or a river in relation to a bay.
trigger, n. In a radar set, a sharp voltage pulse which is applied to the modulator tubes to fire the transmitter, applied simultaneously to the sweep generator to start the electron beam moving radially from the sweep origin to the edge of the face of the cathode-ray tube.
triggering, n. The process of causing a transponder to respond.
trigonometric functions. The ratios of the sides of a plane right triangle, as related to one of its angles. If a is the side opposite an acute angle, b the adjacent side, and c the hypotenuse the trigonometric functions are: sine $=\mathrm{a} / \mathrm{c}$, cosine $=\mathrm{b} / \mathrm{c}$, tangent $=\mathrm{a} / \mathrm{b}$, cotangent $=\mathrm{b} / \mathrm{a}$, secant $=c / b$, cosecant $=c / a$. The expression NATURAL TRIGONOMETRIC FUNCTION is sometimes used to distinguish a trigonometric function from its logarithm (called LOGARITHMIC TRIGONOMETRIC FUNCTION).
trihedral reflector. See CORNER REFLECTOR.
trilateration, n. A method of surveying wherein the lengths of the triangle sides are measured, usually by electronic methods, and the angles are computed from the measured lengths. See also TRIANGULATION.
trim, n. The relation of the draft of a vessel at the bow and stern. See also DOWN BY THE HEAD; DOWN BY THE STERN; DRAG, n., definition 3; SQUAT, n.
triple interpolation. Interpolation when there are three arguments or variables.
triples, n. See TRIAD.
trochoid, n. In relation to wave motion, a curve described by a point on a radius of a circle that rolls along a straight line. Also called PROLATE CYCLOID.
tropic, $a d j$. Of or pertaining to a tropic or the tropics.
tropic, n. Either of the two parallels of declination (north or south), approximately $23^{\circ} 27^{\prime}$ from the celestial equator, reached by the sun at its maximum declination, or the corresponding parallels on the earth. The northern of these is called the TROPIC OF CANCER and the southern, the TROPIC OF CAPRICORN. The region of the earth between these two parallels is called the TORRID ZONE, or often the TROPICS.
tropical, adj. 1. Of or pertaining to the vernal equinox. See also SIDEREAL. 2. Of or pertaining to the Tropics.
tropical air. Warm air of an air mass originating in subtropical anticyclones, further classified as tropical continental air and tropical maritime air, as it originates over land or sea, respectively.
tropical continental air. Air of an air mass originating over a land area in low latitudes, such as the Sahara desert. Tropical continental air is characterized by high surface temperature and low specific humidity.
tropical cyclone. The general term for cyclones originating in the tropics or subtropics. These cyclones are classified by form and intensity as follows: A tropical disturbance is a discrete system of apparently organized convection generally 100 to 300 miles in diameter, having a nonfrontal migratory character, having maintained its identity for 24 hours or more. It may or may not be associated with a detectable perturbation of the wind field. It has no strong winds and no closed isobars, i.e., isobars that completely enclose the low. In successive stages of intensification, the tropical cyclone are classified as tropical disturbance, tropical depression, tropical storm, and hurricane or typhoon. The tropical depression has one or more closed isobars and some rotary circulation at the surface. The highest sustained (l-minute mean) surface wind speed is 33 knots. The tropical storm has closed isobars and a distinct rotary circulation. The highest sustained (1-minute mean) surface wind speed is 34 to 63 knots. The hurricane or typhoon has closed isobars, a strong and very pronounced rotary circulation, and a sustained (1minute mean) surface wind speed of 64 knots or higher. Tropical cyclones occur almost entirely in six rather distinct areas, four in the Northern Hemisphere and two in the Southern Hemisphere. The name by which the tropical cyclone is commonly known varies somewhat with locality as follows: North Atlantic: A tropical cyclone with winds of 64 knots or greater is called a HURRICANE. Eastern North Pacific: The name HURRICANE is used as in the North Atlantic. Western North Pacific: A fully developed storm with winds of 64 knots or greater is called a TYPHOON or, locally in the Philippines, a BAGUIO. North Indian Ocean: A tropical cyclone with winds of 34 knots or greater is called a CYCLONIC STORM. South Indian Ocean: A tropical storm with winds of 34 knots or greater is called a CYCLONE. Southwest Pacific and Australian Area: The name CYCLONE is used as in the South Indian Ocean. A severe tropical cyclone originating in the Timor Sea and moving southwestward and then southeastward across the interior of northwestern Australia is called a WILLY-WILLY. Tropical cyclones have not been observed in the South Atlantic Ocean or in the South Pacific Ocean east of longitude $140^{\circ} \mathrm{W}$.

tropical depression. See under TROPICAL CYCLONE.

tropical disturbance. See under TROPICAL CYCLONE.
tropical maritime air. Air of an air mass originating over an ocean area in low latitudes. Tropical maritime air is characterized by high surface temperature and high specific humidity.
tropical month. The average period of the revolution of the moon about the earth with respect to the vernal equinox, a period of 27 days, 7 hours, 43 minutes, 4.7 seconds. This is almost the same length as the sidereal month.
tropical storm. See under TROPICAL CYCLONE.
tropical year. The period of one revolution of the earth around the sun, with respect to the vernal equinox. Because of precession of the equinoxes, this is not 360° with respect to the stars, but $50.3^{\prime \prime}$ less. A tropical year is about 20 minutes shorter than a sidereal year, averaging 365 days, 5 hours, 48 minutes, and 46 seconds in 1900, decreasing at the rate of 0.00530 second annually. Also called ASTRONOMICAL, EQUINOCTIAL, NATURAL, or SOLAR YEAR.
tropic currents. Tidal currents occurring semimonthly when the effect of the moon's maximum declination is greatest. At these times the tendency of the moon to produce a diurnal inequality in the current is at a maximum.
tropic higher high water. The higher high water of tropic tides. See also TROPIC TIDES.
tropic higher high water interval. The lunitidal interval pertaining to the higher high waters at the time of the tropic tides. See also TROPIC LOWER LOW WATER INTERVAL.
tropic higher low water. The higher low water of tropic tides. See also TROPIC TIDES.
tropic high water inequality. The average difference between the two high waters of the day at the times of the tropic tides. Applicable only when the tide is semidiurnal or mixed. See also TROPIC TIDES, TROPIC LOW WATER INEQUALITY.
tropic inequalities. See TROPIC HIGH WATER INEQUALITY, TROPIC LOW WATER INEQUALITY.
tropic intervals. See TROPIC HIGH WATER INTERVAL, TROPIC LOWER LOW WATER INTERVAL.
tropic lower high water. The lower high water of tropic tides. See also TROPIC TIDES.
tropic lower low water. The lower low water of tropic tides. See also TROPIC TIDES.
tropic lower low water interval. The lunitidal interval pertaining to the lower low waters at the time of tropic tides. See also TROPIC HIGHER HIGH WATER INTERVAL.
tropic low water inequality. The average difference between the two low waters of the day at the times of the tropic tides. Applicable only when the type of tide is semidiurnal or mixed. See also TROPIC TIDES, TROPIC HIGH WATER INEQUALITY.
Tropic of Cancer. The northern parallel of declination, approximately $23^{\circ} 27^{\prime}$ from the celestial equator, reached by the sun at its maximum northerly declination, or the corresponding parallel on the earth. It is named for the sign of the zodiac in which the sun reached its maximum northerly declination at the time the parallel was so named.
Tropic of Capricorn. The southern parallel of declination, approximately $23^{\circ} 27^{\prime}$ from the celestial equator, reached by the sun at its maximum southerly declination, or the corresponding parallel on the earth. It is named for the sign of the zodiac in which the sun reached its maximum southerly declination at the time the parallel was so named.
tropic ranges. See GREAT TROPIC RANGE, MEAN TROPIC RANGE, SMALL TROPIC RANGE.
tropics, n. See TORRID ZONE.
tropic speed. The greater flood or greater ebb speed at the time of tropic currents.
tropic tides. Tides occurring semimonthly when the effect of the moon's maximum declination is greatest. At these times there is a tendency for an increase in the diurnal range. The tidal datums pertaining to the tropic tides are designated as tropic higher high water, tropic lower high water, tropic higher low water, and tropic lower low water.
tropopause, n. The boundary between the troposphere and the stratosphere.
troposphere, n. The portion of the atmosphere from the earth's surface to the tropopause, i.e., the lowest 10 to 20 kilometers of the atmosphere. It is characterized by decreasing temperature with height, appreciable vertical wind motion, appreciable water vapor content, and variable weather.
tropospheric radio duct. A quasi-horizontal layer in the troposphere between the boundaries of which radio energy of sufficiently high frequency is substantially confined and propagated with abnormally low attenuation. The duct may be formed in the lower portion of the atmosphere when there is a marked temperature inversion or a sharp decrease in water vapor with increased height. See also SURFACE DUCT, ELEVATED DUCT.
tropospheric wave. A radio wave traveling between points on or near the surface of the earth by one or more paths lying wholly within the troposphere. The propagation of this wave is determined primarily by the distribution of the refractive index in the troposphere.
trough, n. 1. A long depression of the sea floor, characteristically flat bottomed and steep sided, and normally shallower than a trench. 2 . In meteorology, an elongated area of relatively low pressure. The opposite of a trough is called RIDGE. The term trough is commonly used to distinguish the above elongated area from the closed circulation of a low (or cyclone). But a large-scale trough may include one or more lows. 3. The lowest part of a wave between two crests.
TR switch (from transmit/receive). A switch used to automatically decouple the receiver from the antenna during transmission when there is a common transmitting and receiving antenna. Also called TR BOX.
TR tube. An electronic switch capable of rapid switching between transmit and receive functions, used to protect the receiver from damage from energy generated by the transmitter. Another device called the anti-TR tube is used to block the passage of echoes to the receiver during the relatively long periods when the transmitter is inactive. See also TR SWITCH, ATR TUBE.
true, $a d j$. 1. Related to true north. 2. Actual, as contrasted with fictitious, such as the true sun. 3. Related to a fixed point, either on the earth or in space, such as true wind, in contrast with RELATIVE, which is related to a moving point. 4. Corrected, as in the term true altitude.
true altitude. See OBSERVED ALTITUDE.
true amplitude. Amplitude relative to true east or west.
true anomaly. See under ANOMALY, definition 2 .
true azimuth. Azimuth relative to true north.
true bearing. Bearing relative to true north; compass bearing corrected for compass error.
true course. Course relative to true north.
true direction. Horizontal direction expressed as angular distance from true north.
true heading. Heading relative to true north.
true meridian. A meridian through the geographical pole; compare with MAGNETIC MERIDIAN, COMPASS MERIDIAN, or GRID MERIDIAN, the north-south lines according to magnetic, compass, or grid direction, respectively.
true motion display. A type of radarscope display in which own ship and other moving targets move on the plan position indicator in accordance with their true courses and speeds. All fixed targets appear as stationary echoes. However, uncompensated set and drift of own ship may result in some movement of the echoes of stationary targets. This display is similar to a navigational (geographical) plot. See also RELATIVE MOTION DISPLAY.
true motion radar. A radar set which provides a true motion display as opposed to the relative motion display most commonly used. The true motion radar requires own ship's speed input, either log or manual, in addition to own ship's course input.
true north. The direction of the north geographical pole; the reference direction for measurement of true directions.
true plot. See GEOGRAPHICAL PLOT.
true prime vertical. See under PRIME VERTICAL CIRCLE.
true solar time. See APPARENT TIME.
true sun. The actual sun as it appears in the sky. Usually called APPARENT SUN. See also MEAN SUN, DYNAMICAL MEAN SUN.
true track of target. The motion of a radar target on a true motion display. When the true motion display is ground stabilized, i.e., allowance is made for the set and drift of current, the motion displayed is called GROUND TRACK. Without such stabilization the motion displayed is called WATER TRACK.
true wind. Wind relative to a fixed point on the earth. Wind relative to a moving point is called APPARENT or RELATIVE WIND.
trumpet, n. See HORN.
tsunami, n. A long-period sea wave, potentially catastrophic, produced by a submarine earthquake or volcanic eruption. It may travel unnoticed across the ocean for thousands of miles from its point of origin, building up to great heights over shoal water. Also called SEISMIC SEA WAVE, TIDAL WAVE.
Tsushima Current. That part of the Kuroshio flowing northeastward through Korea Strait and along the Japanese coast in the Japan Sea; it flows strongly eastward through Tsugaru Strait at speeds to 7 knots. The Tsushima Current is strong most of the time, averaging about 1 knot; however, it may weaken somewhat during autumn. In Western Channel, between Tsushima and southeastern Korea, tidal currents retard the general northeastward flowing Tsushima Current during the southwest-setting flood and reinforce it during the northeast-setting ebb. Resultant current speeds range from $1 / 4$ knot during flood to 3 knots during ebb. In the strait between Tsushima and Kyushu, the current flows northeastward throughout the year. Current speeds in Korea Strait also are affected by the seasonal variations of the monsoons. The strongest currents usually occur from July through November. The Tsushima Current divides after flowing through Korea Strait, a small branch flowing northward along the east coast of Korea as far as Vladivostok in summer. During this season the current is strongest and overcomes the weak southward flowing, coastal Liman Current. When the current combines with the ebb current, the resultant speed may reach 2 knots. During winter this branch of the Tsushima Current is weakest and is influenced by the stronger southward flowing Liman Current which normally extends as far south as $39^{\circ} \mathrm{N}$, with speeds from $1 / 4$ to $3 / 4$ knot. The main body of the Tsushima Current flows
northeastward off the northeast coast of Honshu. In summer, after entering the Japan Sea, its speed is about $1 / 2$ to 1 knot. In winter the current is relatively weak, although near the islands and headlands speeds may exceed 1 knot, especially after northwesterly gales.
tuba, n. See FUNNEL CLOUD.
tufa, n. A porous rocky deposit formed in streams and in the ocean near the mouths of rivers.
tumble, $v ., i$. The tendency of a gyroscope to precess suddenly and to an extreme extent as a result of exceeding its operating limits of bank or pitch.
tune, $v ., t$. To adjust the frequency of a circuit or system to obtain optimum performance, commonly to adjust to resonance.
turbidity, n. A measure of the amount of suspended material in water.
turbulent, n. Agitated or disturbed fluid motion, not flowing smoothly or uniformly.
turbulent flow. Fluid motion in which random motions of parts of the fluid are superimposed upon a simple pattern of flow. All or nearly all fluid flow displays some degree of turbulence. The opposite is STREAMLINE FLOW.
turning basin. A water area, usually dredged to well-defined limits, used for turning vessels.
turning buoy. A buoy marking a turn in a channel.
turning circle. The path described by the pivot point of the vessel as it makes a turn of 360° with constant rudder and speed.
turn of the tide. See CHANGE OF TIDE.
twenty-four hour satellite. See GEOSYNCHRONOUS SATELLITE.
twilight, n. The period of incomplete darkness following sunset (evening twilight) or preceding sunrise (morning twilight). Twilight is designated as civil, nautical, or astronomical, as the darker limit occurs when the center of the sun is $6^{\circ}, 12^{\circ}$, or 18° below the celestial horizon, respectively. See also DAWN, DUSK.
twinkle, $v ., i$. To flicker randomly, or vary in intensity.
two-body orbit. The motion of a point mass in the presence of the gravitational attraction of another point mass, and in the absence of other forces. This orbit is usually an ellipse, but may be a parabola or hyperbola.
two-degree-of-freedom gyro. A gyroscope the spin axis of which is free to rotate about two orthogonal axes, not counting the spin axis. See also DEGREE-OF-FREEDOM.
two-tone diaphone. See under DIAPHONE.
two-way route. A route within defined limits in which two-way traffic is established, aimed at providing safe passage of ships through waters where navigation is difficult or dangerous. See also ROUTING SYSTEM.
tyfon, n. See TYPHON.
type of tide. A classification based on characteristic forms of a tide curve. Qualitatively, when the two high waters and two low waters of each tidal day are approximately equal in height, the tide is said to be semidiurnal; when there is a relatively large diurnal inequality in the high or low waters or both, it said to be mixed; and when there is only one high water and one low water in each tidal day, it is said to be diurnal.
typhon, n. A diaphragm horn which operates under the influence of compressed air or steam. Also called TYFON.
typhoon, n. See under TROPICAL CYCLONE.

U

Ulloa's ring. See BOUGUER'S HALO.
ultra high frequency. Radio frequency of 300 to 3,000 megahertz.
ultra quick light. A navigation light flashing at a rate of not less than 160 flashes per minute. See also CONTINUOUS ULTRA QUICK LIGHT, INTERRUPTED ULTRA QUICK LIGHT.
ultrashort wave. A radio wave shorter than 10 meters. A wave shorter than 1 meter is called a MICROWAVE. See also WAVE.
ultrasonic, $a d j$. Having a frequency above the audible range. Frequencies below the audible range are called INFRASONIC. See also SUPERSONIC.
ultrasonic depth finder. A direct-reading instrument which determines the depth of water by measuring the time interval between the emission of an ultrasonic signal and the return of its echo from the bottom. A similar instrument utilizing signals within the audible range is called a SONIC DEPTH FINDER. Both instruments are also called ECHO SOUNDERS.
umbra, n. 1 . The darkest part of a shadow in which light is completely cut off by an intervening object. A lighter part surrounding the umbra, in which the light is only partly cut off, is called the PENUMBRA. 2. The darker central portion of a sun spot, surrounded by the lighter PENUMBRA.
uncorrecting, n. The process of converting true to magnetic, compass, or gyro direction, or magnetic to compass direction. The opposite is CORRECTING.
uncovered, $a d j$. \& $a d v$. Above water. The opposite is SUBMERGED. See also AFLOAT; AWASH.
undercurrent, n. A current below the surface, particularly one flowing in a direction or at a speed differing from the surface current. See UNDERTOW, SUBSURFACE CURRENT, SURFACE CURRENT.
under the lee. To leeward.
undertow, n. Receding water below the surface of breakers on a beach. See also UNDERCURRENT, SUBSURFACE CURRENT, SURFACE CURRENT, BACKRUSH, RIP CURRENT.
underway, under way, $a d v$. Not moored or anchored. See also ADRIFT. See also MAKING WAY.
undevelopable, $a d j$. A surface not capable of being flattened without distortion. The opposite is DEVELOPABLE.
undisturbed orbit. See NORMAL ORBIT.
undulating, adj. Having the form of more or less regular waves.
undulating light. See under FIXED AND FLASHING LIGHT.
undulation of the geoid. See GEOIDAL HEIGHT.
undulatus, adj. Having undulations, referring to a cloud composed of elongated and parallel elements resembling ocean waves.
unfavorable current. A current flowing in such a direction as to decrease the speed of a vessel over the ground. The opposite is FAVORABLE CURRENT.
unfavorable wind. A wind which delays the progress of a craft in a desired direction. Usually used in plural and chiefly in connection with sailing vessels. A wind which aids the progress of a craft is called a FAIR or FAVORABLE WIND. See also FOLLOWING WIND, HEAD WIND.
Uniform State Waterway Marking System. An aids to navigation system developed jointly by the U.S. Coast Guard and state boating administrators to assist the small craft operator in inland state waters marked by states. It consists of two categories of aids to navigation. One is a system of aids to navigation, generally compatible with the Federal lateral system of buoyage, to supplement the federal system in state waters The other is a system of regulatory markers to warn the small craft operator of dangers or to provide general information and directions.
unipole antenna, n. See ISOTROPIC ANTENNA.
unique sanctuary. A marine sanctuary established to protect a unique geologic, oceanographic, or living feature. See also MARINE SANCTUARY.
unit, n. A value, quantity, or magnitude in terms of which other values, quantities, or magnitudes are expressed. In general, a unit is fixed by definition and is independent of such physical conditions as temperature. See also STANDARD, definition 2; INTERNATIONAL SYSTEM OF UNITS.
United States Coast Pilot. One of a series of SAILING DIRECTIONS published by the National Ocean Service, that cover a wide variety of information important to navigators of U.S. coastal and intracoastal waters, and waters of the Great Lakes. Most of this information cannot be shown graphically on the standard nautical charts and is not readily available elsewhere. This information includes navigation regulations, outstanding landmarks, channel and anchorage peculiarities, dangers, weather, ice, currents, and port facilities. Each Coast Pilot is corrected through the dates of Notices to Mariners shown on the title page and should not be used without reference to the Notices to Mariners issued subsequent to those dates.

United States National Map Accuracy Standards. A set of standards which define the accuracy with which features of U.S. maps are to be portrayed. 1. Horizontal accuracy: For maps at publication scales larger than $1: 20,000,90$ percent of all well-defined features, with the exception of those unavoidably displaced by exaggerated symbolization, will be located within 0.85 mm of their geographic positions as referred to the map projection; for maps at publication scales of $1: 20,000$ or smaller, 0.50 mm . 2. Vertical accuracy: 90 percent of all contours will be accurate within one-half of the basic contour interval. Discrepancies in the accuracy of contours and elevations beyond this tolerance may be decreased by assuming a horizontal displacement within 0.50 mm . Also called MAP ACCURACY STANDARDS.
universal plotting sheet. See under SMALL AREA PLOTTING SHEET.
Universal Polar Stereographic grid. A military grid system based on the polar stereographic map projection, applied to maps of the earth's polar regions north of $84^{\circ} \mathrm{N}$ and south of $80^{\circ} \mathrm{S}$.
Universal Time. Conceptually, time as determined from the apparent diurnal motion of a fictitious mean sun which moves uniformly along the celestial equator at the average rate of the apparent sun. Actually, Universal Time (UT) is related to the rotation of the earth through its definition in terms of sidereal time. Universal Time at any instant is derived from observations of the diurnal motions of the stars. The time scale determined directly from such observations is slightly dependent on the place of observation; this scale is designated UT0. By removing from UT0 the effect of the variation of the observer's meridian due to the observed motion of the geographic pole, the scale UT1 is established. A scale designated UT2 results from applying to UT1 an adopted formula for the seasonal variation in the rate of the earth's rotation. UT1 and UT2 are independent of the location of the observer. UT1 is the same as Greenwich mean time used in navigation. See also TIME SCALE.
Universal Transverse Mercator (UTM) grid. A military grid system based on the transverse Mercator map projection, applied to maps of the earth's surface extending to $84^{\circ} \mathrm{N}$ and $80^{\circ} \mathrm{S}$.
unlighted buoy. A buoy not fitted with a light, whose shape and color are the defining features; may have a sound signal.
unlighted sound buoy. See under SOUND BUOY.
unmanned light. A light which is operated automatically and may be maintained in service automatically for extended periods of time, but with routine visits for maintenance purposes. Also called UNWATCHED LIGHT.
unperturbed orbit. See NORMAL ORBIT.
unsettled, adj. Pertaining to fair weather which may at any time become rainy, cloudy, or stormy. See also SETTLED.
unstabilized display. A radarscope display in which the orientation of the relative motion presentation is set to the ship's heading and changes with it.
unstabilized in azimuth. See under STABILIZATION OF RADARSCOPE DISPLAY.
unwatched light. See UNMANNED LIGHT.
upper branch. That half of a meridian or celestial meridian from pole to pole which passes through a place or its zenith.
upper culmination. See UPPER TRANSIT.
upper limb. The upper edge of a celestial body, in contrast with the LOWER LIMB, the lower edge.
upper transit. Transit of the upper branch of the celestial meridian. Transit of the lower branch is called LOWER TRANSIT. Also called SUPERIOR TRANSIT, UPPER CULMINATION.
uprush, $n .1$. The rush of the water onto the foreshore following the breaking of a wave. 2. See RUN-UP.
upstream, adj. \& $a d v$. Toward the source of a stream. The opposite is DOWNSTREAM.
up-the-scope echo. See CLASSIFICATION OF RADAR ECHOES.
upwelling, n. The process by which water rises from a lower to a higher depth, usually as a result of divergence and offshore currents. Upwelling is most prominent where persistent wind blows parallel to a coastline so that the resultant wind-driven current sets away from the coast. Over the open ocean, upwelling occurs whenever the wind circulation is cyclonic, but is appreciable only in areas where that circulation is relatively permanent. It is also observable when the southern trade winds cross the equator.
upwind, $a d j . \& a d v$. In the direction from which the wind is blowing. The opposite is DOWNWIND.
U.S. Survey foot. The foot used by the National Ocean Service in which 1 inch is equal to 2.540005 centimeters. The foot equal to 0.3048 meter, exactly, adopted by Australia, Canada, New Zealand, South Africa, the United Kingdom, and the United States in 1959 was not adopted by the National Ocean Service because of the extensive revisions which would be necessary to their charts and measurement records.
UTC, n. See under COORDINATED UNIVERSAL TIME.
UT0, n. See under UNIVERSAL TIME.
UT1, n. See under UNIVERSAL TIME.
UT2, n. See under UNIVERSAL. TIME.

V

vacuum, n. A space containing no matter.
valley, n. On the sea floor, a relatively shallow, wide depression, the bottom of which usually has a continuous gradient. This term is generally not used for features that have canyon-like characteristics for a significant portion of their extent.
valley breeze. A gentle wind blowing up a valley or mountain slope in the absence of cyclonic or anticyclonic winds, caused by the warming of the mountainside and valley floor before the sun. See also KATABATIC WIND, MOUNTAIN BREEZE.
Van Allen Radiation Belts. Popular term for regions of high energy charged particles trapped in the earth's magnetic field. Definition of size and shape of these belts depends on selection of an arbitrary standard of radiation intensity and the predominant particle component. Belts known to exist are: a proton region centered at about 2,000 miles altitude at the geomagnetic equator; an electron region centered at about 12,000 miles altitude at the geomagnetic equator; overlapping electron and proton regions centered at about 20,000 miles altitude at the geomagnetic equator. Trapped radiation regions from artificial sources also exist. These belts were first reported by Dr. James A. Van Allen of Iowa State University.
vane, n. 1. A device to sense or indicate the direction from which the wind blows. Also called WEATHER VANE, WIND VANE. See also ANEMOMETER. 2. A sight on an instrument used for observing bearings, as on a pelorus, azimuth circle, etc. That vane nearest the observer's eye is called near vane and that on the opposite side is called far vane. Also called SIGHTING VANE. 3. In current measurements, a device to indicate the direction toward which the current flows.
vanishing tide. In a mixed tide with very large diurnal inequality, the lower high water (or higher low water) frequently becomes indistinct (or vanishes) at time of extreme declinations. During these periods the diurnal tide has such overriding dominance that the semidiurnal tide, although still present, cannot be readily seen on the tide curve.
vapor pressure. 1. The pressure exerted by the vapor of a volatile liquid. Each component of a mixed-gas vapor has its own pressure, called partial pressure.
vardar, n. A cold fall wind blowing from the northwest down the Vardar valley in Greece to the Gulf of Salonica. It occurs when atmospheric pressure over eastern Europe is higher than over the Aegean Sea, as is often the case in winter. Also called VARDARAC.
vardarac, n. See VARDAR.
variable, n. A quantity to which a number of values can be assigned.
variable parameters of satellite orbit. See under FIXED AND VARIABLE PARAMETERS OF SATELLITE ORBIT.
variable range marker. An adjustable range ring on the radar display.
variable star. A star which is not of constant magnitude.
variance, n. The square of the standard deviation.
variation, n. 1 . The angle between the magnetic and geographic meridians at any place, expressed in degrees and minutes east or west to indicate the direction of magnetic north from true north. The angle between magnetic and grid meridians is called GRID MAGNETIC ANGLE, GRID VARIATION, or GRIVATION. Called MAGNETIC VARIATION when a distinction is needed to prevent possible ambiguity. Also called MAGNETIC DECLINATION. 2. Change or difference from a given value.
variation of latitude. A small change in the astronomical latitude of points on the earth due to polar motion.
variation of the poles. See POLAR MOTION.
variometer, n. An instrument for comparing magnetic forces, especially of the earth's magnetic field.
vast floe. See under FLOE.
V-band. A radio-frequency band of 46.0 to 56.0 kilomegahertz. See also FREQUENCY, FREQUENCY BAND.
vector, n. Any quantity, such as a force, velocity, or acceleration, which has both magnitude and direction, as opposed to a SCALAR which has magnitude only. Such a quantity may be represented geometrically by an arrow of length proportional to its magnitude, pointing in the given direction.
vector, $a d j$. A type of computerized display which consists of layers of differentiated data, each with discreet features. Individual data files can be independently manipulated. See RASTER, BIT-MAP.
vector addition. The combining of two or more vectors in such manner as to determine the equivalent single vector. The opposite is RESOLUTION OF VECTORS. Also called COMPOSITION OF VECTORS.
vector diagram. A diagram of more than one vector drawn to the same scale and reference direction and in correct position relative to each other. A vector diagram composed of vectors representing the actual courses and speeds of two craft and the relative motion vector of either one in relation to the other may be called a SPEED TRIANGLE.
vector quantity. A quantity having both magnitude and direction and hence capable of being represented by a vector. A quantity having magnitude only is called a SCALAR.
veer, $v ., i$. 1 . For the wind to change direction in a clockwise direction in the Northern Hemisphere and a counterclockwise direction in the Southern Hemisphere. Change in the opposite direction is called BACK. 2. Of the wind, to shift aft. The opposite motion is to HAUL forward.
veer, $v ., t$. To pay or let out, as to veer anchor chain.
vehicle location monitoring. A service provided to maintain the orderly and safe movement of platforms or vehicles. It encompasses the systematic observation of airspace, surface, or subsurface areas by electronic, visual, and other means to locate, identify, and control the movement of vehicles.
velocity, n. A vector quantity equal to speed in a given direction.
velocity meter. See INTEGRATING ACCELEROMETER.
velocity of current. Speed and set of the current.
velocity ratio. The ratio of two speeds, particularly the ratio of the speed of tidal current at a subordinate station to the speed of the corresponding current at the reference station.
Venus, n. The planet whose orbit is next nearer the sun than that of the earth.
verglas, n. See GLAZE.
vernal, adj. Pertaining to spring. The corresponding adjectives for summer, fall, and winter are aestival, autumnal, and hibernal.
vernal equinox. 1. The point of intersection of the ecliptic and the celestial equator, occupied by the sun as it changes from south to north declination, on or about March 21. Also called MARCH EQUINOX, FIRST POINT OF ARIES. 2. That instant the sun reaches the point of zero declination when crossing the celestial equator from south to north.
vernier, n. A short, auxiliary scale situated alongside the graduated scale of an instrument, by which fractional parts of the smallest division of the primary scale can be measured with greater accuracy by a factor of ten. If 10 graduations on a vernier equal 9 graduations on the micrometer drum of a sextant, when the zero on the vernier lies one-tenth of a graduation beyond zero on the micrometer drum, the first graduation beyond zero on the vernier coincides with a graduation on the micrometer drum. Likewise, when the zero on the vernier lies five-tenths of a graduation beyond zero on the micrometer drum, the fifth graduation beyond zero on the vernier coincides with a graduation on the micrometer drum.
vernier error. Inaccuracy in the graduations of the scale of a vernier.
vernier sextant. A marine sextant providing a precise reading by means of a vernier used directly with the arc, and having either a clamp screw or an endless tangent screw for controlling the position of the index arm. The micrometer drum on a micrometer drum sextant may include a vernier to enable a more precise reading.
vertex (pl. vertices), n. The highest point. See also APEX.
vertical, $a d j$. In the direction of gravity, or perpendicular to the plane of the horizon.
vertical, n. A vertical line, plane, etc.
vertical axis. The line through the center of gravity of a craft, perpendicular to both the longitudinal and lateral axes, around which it yaws.
vertical beam width. The beam width measured in a vertical plane.
vertical circle. A great circle of the celestial sphere through the zenith and nadir. Vertical circles are perpendicular to the horizon. The prime vertical circle or prime vertical passes through the east and west points of the horizon. The principal vertical circle passes through the north and south points of the horizon and coincides with the celestial meridian.
vertical control datum. See VERTICAL GEODETIC DATUM.
vertical danger angle. The maximum or minimum angle between the top and bottom of an object of known height, as observed from a craft, indicating the limit of safe approach to an offlying danger. See also DANGER ANGLE.
vertical datum. 1. A base elevation used as a reference from which to reckon heights or depths. It is called TIDAL DATUM when defined by a certain phase of the tide. Tidal datums are local datums and should not be extended into areas which have differing topographic features without substantiating measurements. In order that they may be recovered when needed, such datums are referenced to fixed points known as bench marks. See also CHART SOUNDING DATUM. 2. See VERTICAL GEODETIC DATUM.
vertical earth rate. To compensate for the effect of earth rate, the rate at which a gyroscope must be turned about its vertical axis for the spin axis to remain in the meridian. Vertical earth rate is maximum at the poles, zero at the equator and varies as the sine of the latitude. See also EARTH RATE, HORIZONTAL EARTH RATE.
vertical force instrument. See HEELING ADJUSTER.
vertical geodetic datum. A surface derived by geodetic means and taken as a surface of reference from which to reckon geodetic elevations. See also DATUM. Also called VERTICAL DATUM, VERTICAL CONTROL DATUM.
vertical intensity of the earth's magnetic field. The strength of the vertical component of the earth's magnetic field.
vertical lights. Two or more lights disposed vertically, or geometrically to form a triangle, square or other figure. If the individual lights serve different purposes, those of lesser importance are called AUXILIARY LIGHTS.
vertically polarized wave. A plane polarized electromagnetic wave in which the electric field vector is in a vertical plane.
very close pack ice. Pack ice in which the concentration is $9 / 10$ to less than 10/10.
very high frequency. Radio frequency of 30 to 300 megahertz.
very low frequency. Radio frequency below 30 kilohertz.
very open pack ice. Pack ice in which the concentration is $1 / 10$ to $3 / 10$.
very quick flashing light. A navigation light flashing 80-160 flashes per minute. See also CONTINUOUS VERY QUICK LIGHT, GROUP VERY QUICK LIGHT, INTERRUPTED VERY QUICK LIGHT.
very small fracture. See under FRACTURE.
very weathered ridge. A ridge with tops very rounded, the slopes of the sides usually being about 20° to 30°.
vessel, n. Any type of craft which can be used for transportation on water.

Vessel Traffic Services. A system of regulations, communications, and monitoring facilities established to provide active position monitoring, collision avoidance services, and navigational advice for vessels in confined and busy waterways. There are two main types of VTS, surveilled and non-surveilled. Surveilled systems consist of one or more land-based radar sites which output their signals to a central location where operators monitor and to a certain extent control traffic flows. Non-surveilled systems consist of one or more calling-in points at which ships are required to report their identity, course, speed, and other data to the monitoring authority.
viaduct, n. A type of bridge which carries a roadway or railway across a ravine; distinct from an aquaduct, which carries water over a ravine. See also BRIDGE, definition 2; CAUSEWAY.
vibrating needle. A magnetic needle used in compass adjustment to find the relative intensity of the horizontal components of the earth's magnetic field and the magnetic field at the compass location. Also called HORIZONTAL FORCE INSTRUMENT.
vibration, n. 1. Periodic motion of an elastic body or medium in alternately opposite directions from equilibrium; oscillation. 2. The motion of a vibrating body during one complete cycle; two oscillations.
video, n. In the operation of a radar set, the demodulated receiver output that is applied to the indicator. Video contains the relevant radar information after removal of the carrier frequency.
violent storm. Wind of force 11 (56 to 63 knots or 64 to 72 miles per hour) on the Beaufort wind scale. See also STORM, definition 1.
virga, n. Wisps or streaks of water or ice particles falling out of a cloud but evaporating before reaching the earth's surface as precipitation. Virga is frequently seen trailing from altocumulus and altostratus clouds, but also is discernible below the bases of high-level cumuliform clouds from which precipitation is falling into a dry subcloud layer. It typically exhibits a hooked form in which the streaks descend nearly vertically just under the precipitation source but appear to be almost horizontal at their lower extremities. Such curvature of virga can be produced simply by effects of strong vertical windshear, but ordinarily it results from the fact that droplet or crystal evaporation decreases the particle terminal fall velocity near the ends of the streaks. Also called FALL STREAKS, PRECIPITATION TRAILS.
virtual image. An image that cannot be shown on a surface but is visible, as in a mirror.
virtual meridian. The meridian in which the spin axis of a gyrocompass will settle as a result of speed-course-latitude error.
visibility, n. A measure of the ability of an observer to see objects at a distance through the atmosphere. A measure of this property is expressed in units of distance. This term should not be confused with VISUAL RANGE. See also METEOROLOGICAL VISIBILITY.
visible horizon. The line where earth and sky appear to meet, and the projection of this line upon the celestial sphere. If there were no terrestrial refraction, VISIBLE and GEOMETRICAL HORIZONS would coincide. Also called APPARENT HORIZON.
visual aid to navigation. An aid to navigation which transmits information through its visible characteristics. It may be lighted or unlighted.
visual bearing. A bearing obtained by visual observation.
visual range. The maximum distance at which a given object can be seen, limited by the atmospheric transmission. The distance is such that the contrast of the object with its background is reduced by the atmosphere to the contrast threshold value for the observer. This term should not be confused with VISIBILITY. See also CONTRAST THRESHOLD, VISUAL RANGE OF A LIGHT.
visual range of light. The predicted range at which a light can be observed. The predicted range is the lesser of either the luminous range or the geographic range. If the luminous range is less than the geographic range, the luminous range must be taken as the limiting range. The luminous range is the maximum distance at which a light can be seen under existing visibility conditions. This luminous range takes no account of the elevation of the light, the observer's height of eye, the curvature of the earth, or interference from background lighting. The luminous range is determined from the nominal range and the existing visibility conditions, using the Luminous Range Diagram. The nominal range is the maximum distance at which a light can be seen in clear weather as defined by the International Visibility Code (meteorological visibility of 10
nautical miles). The geographic range is the maximum distance at which the curvature of the earth and terrestrial refraction permit a light to be seen from a particular height of eye without regard to the luminous intensity of the light. The geographic range sometimes printed on charts or tabulated in light lists is the maximum distance at which the curvature of the earth and refraction permit a light to be seen from a height of eye of 15 feet above the water when the elevation of the light is taken above the height datum of the largest scale chart of the locality.) See also VISUAL RANGE, CONTRAST THRESHOLD.
volcano, n. An opening in the earth from which hot gases, smoke, and molten material issue, or a hill or mountain composed of volcanic material. A volcano is characteristically conical in shape with a crater in the top.
volt, n. A derived unit of electric potential in the International System of Units, it is the difference of electric potential between two points of a conducting wire carrying a constant current of 1 ampere, when the power dissipated between these points is equal to 1 watt.
volt per meter. The derived unit of electric field strength in the International System of Units.
volume, n. 1. A measure of the amount of space contained within a solid. 2. Loudness of a sound, usually measured in decibels.
voyage, n. 1 . A trip by sea.
vulgar establishment. See under ESTABLISHMENT OF THE PORT.

W

wandering of the poles. See EULERIAN MOTION.
waning moon. The moon between full and new when its visible part is decreasing. See also PHASES OF THE MOON.
warble tone. A tone whose frequency varies periodically about a mean value.
warm air mass. An air mass that is warmer than surrounding air. The expression implies that the air mass is warmer than the surface over which it is moving.
warm braw. A foehn in the Schouten Islands north of New Guinea.
warm front. Any non-occluded front, or portion thereof, which moves in such a way that warmer air replaces colder air. While some occluded fronts exhibit this characteristic, they are more properly called WARM OCCLUSIONS.
warm occlusion. See under OCCLUDED FRONT.
warm sector. An area at the earth's surface bounded by the warm and cold fronts of a cyclone.
warning beacon. See WARNING RADIOBEACON.
warning radiobeacon. An auxiliary radiobeacon located at a lightship to warn vessels of their proximity to the lightship. It is of short range and sounds a warbling note for 1 minute immediately following the main radiobeacon on the same frequency. Also called WARNING BEACON.
warp, $v ., t$. To move, as a vessel, from one place to another by means of lines fastened to an object, such as a buoy, wharf, etc., secured to the ground. See also KEDGE.
warp, n. A heavy line used in warping or mooring.
warping buoy. A buoy located so that lines to it can be used for the movement of ships.
wash, n. The dry channel of an intermittent stream.
watch, n. A small timepiece of a size convenient to be carried on the person. A hack or comparing watch is used for timing observations of celestial bodies. A stop watch can be started, stopped, and reset at will, to indicate elapsed time. A chronometer watch is a small chronometer, especially one with an enlarged watch-type movement.
watch buoy. See STATION BUOY.
watch error. The amount by which watch time differs from the correct time. It is usually expressed to an accuracy of 1 second and labeled fast (F) or slow (S) as the watch time is later or earlier, respectively, than the correct time. See also CHRONOMETER ERROR.
watching properly. The state of an aid to navigation on charted position and exhibiting its proper characteristics.
watch rate. The amount gained or lost by a watch or clock in a unit of time. It is usually expressed in seconds per 24 hours, to an accuracy of 0.1^{s}, and labeled gaining or losing, as appropriate, when it is sometimes called DAILY RATE.
watch time. The hour of the day as indicated by a watch or clock. Watches and clocks are generally set approximately to zone time. Unless a watch or clock has a 24 -hour dial, watch time is usually expressed on a 12-hour cycle and labeled AM or PM.
watch tower. See LOOKOUT STATION.
water-borne, $a d j$. Floating on water; afloat. See also SEA-BORNE.
watercourse, n. 1. A stream of water. 2. A natural channel through which water runs. See also GULLY, WASH.
waterfall, n. A perpendicular or nearly perpendicular descent of river or stream water.
waterline, n. The line marking the junction of water and land. See also HIGH WATER LINE, LOW WATER LINE, SHORELINE.
water sky. Dark streaks on the underside of low clouds, indicating the presence of water features in the vicinity of sea ice.
water smoke. See STEAM FOG.
waterspout, n. 1. A tornado occurring over water; most common over tropical and subtropical waters. 2 . A whirlwind over water comparable in intensity to a dust devil over land.
water tower. A structure erected to store water at an elevation above the surrounding terrain; often charted with a position circle and label.
water track. 1. See under TRACK, definition 2. 2. See under TRUE TRACK OF TARGET.
waterway, n. A water area providing a means of transportation from one place to another, principally one providing a regular route for water traffic, such as a bay, channel, passage, or the regularly traveled parts of the open sea. The terms WATERWAY, FAIRWAY, and THOROUGHFARE have nearly the same meanings. WATERWAY refers particularly to the navigable part of a water area. FAIRWAY refers to the main traveled part of a waterway. A THOROUGHFARE is a public waterway. See also CANAL.
watt, n. A derived unit of power in the International System of Units; it is that power which in 1 second gives rise to energy of 1 joule.
wave, n. 1. An undulation or ridge on the surface of a fluid. See also STORM SURGE, TIDAL WAVE, TSUNAMI. 2. A disturbance propagated in such a manner that it may progress from point to point. See also ELECTROMAGNETIC WAVES, RADIO WAVES, SKYWAVE, GROUNDWAVE, DIRECT WAVE, INDIRECT WAVE, MODULATED WAVE, MICROWAVE, SPHERICAL WAVE, TRANSVERSE WAVE, LONGITUDINAL WAVE.
wave basin. A basin close to the inner entrance of a harbor in which the waves from the outer entrance are absorbed, thus reducing the size of the waves entering the inner harbor. See also WAVE TRAP.
wave crest. The highest part of a wave.
wave cyclone. A cyclone which forms and moves along a front. The circulation about the cyclone center tends to produce a wavelike deformation of the front. The wave cyclone is the most frequent form of extratropical cyclone (or low). Also called WAVE DEPRESSION. See also FRONTAL CYCLONE.
wave depression. See WAVE CYCLONE.
wave direction. The direction from which waves are coming.
waveguide, n. A transmission line for electromagnetic waves consisting of a hollow conducting tube within which electromagnetic waves may be propagated; or a solid dielectric or dielectric-filled conductor designed for the same purpose.
wave height. The distance from the trough to the crest of a wave, equal to double the amplitude, and measured perpendicular to the direction of advance.
wave height correction. A correction due to the elevation of parts of the sea surface by wave action, particularly such a correction to a sextant altitude because of altered dip.
wave interference. See INTERFERENCE, definition 2.
wavelength, n. The distance between corresponding points in consecutive cycles in a wave train, measured in the direction of propagation at any instant.
wave of translation. A wave in which the individual particles of the medium are shifted in the direction of wave travel, as ocean waves in shoal waters; in contrast with an OSCILLATORY WAVE, in which only the form advances, the individual particles moving in closed orbits, as ocean waves in deep water.
wave period. The time interval between passage of successive wave crests at a fixed point.
wave train. A series of waves moving in the same direction. See also SOLITARY WAVE.
wave trap. Breakwaters situated close within the entrance used to reduce the size of waves from sea or swell which enter a harbor before they penetrate into the harbor. See also WAVE BASIN.
wave trough. The lowest part of a wave form between successive wave crests.
waxing moon. The moon between new and full when its visible part is increasing. See also PHASES OF THE MOON.
waypoint, n. A reference point on the track.
weak fix. A fix determined from horizontal sextant angles between objects poorly located.
weather, $a d j$. Pertaining to the windward side, or the side in the direction from which the wind is blowing. LEE pertains to the leeward or sheltered side
weather, $n .1$. The state of the atmosphere as defined by various meteorological elements, such as temperature, pressure, wind speed and direction, humidity, cloudiness, precipitation, etc. This is in contrast with CLIMATE, the prevalent or characteristic meteorological conditions of a place or region. 2. Bad weather. See also THICK WEATHER.
weathered, $a d j$. Eroded by action of the weather.
weathered berg. An irregularly shaped iceberg. Also called GLACIER BERG.
weathered ridge. An ice ridge with peaks slightly rounded, the slopes of the sides usually being about 30° to 40°. Individual fragments are not discernible.
weathering, n. Processes of ablation and accumulation which gradually eliminate irregularities in an ice surface.
weather map. See under SYNOPTIC CHART.
weather shore. As observed from a vessel, the shore lying in the direction from which the wind is blowing. See also LEE SHORE.
weather side. The side of a ship exposed to the wind or weather.
weather vane. A device to indicate the direction from which the wind blows. Also called WIND DIRECTION INDICATOR, WIND VANE. See also ANEMOMETER.
weber, n. A derived unit of magnetic flux in the International System of Units; it is that magnetic flux which, linking a circuit of one turn, would produce in it an electromotive force of 1 volt if it were reduced to zero at a uniform rate in 1 second.
wedge. See RIDGE, definition 3.
weight, n. A quantity of the same nature as a force; the weight of a body is the product of its mass and the acceleration due to gravity; in particular, the standard weight of a body is the product of its mass and the standard acceleration due to gravity. The value adopted in the International Service of Weights and Measures for the standard acceleration due to gravity is 980.665 centimeters per second, per second.
weighted mean. A value obtained by multiplying each of a series of values by its assigned weight and dividing the sum of those products by the sum of the weights. See also WEIGHT OF OBSERVATION.
weight of observation. The relative value of an observation, source, or quantity when compared with other observations, sources, or quantities of the same or related quantities. The value determined by the most reliable method is assigned the greatest weight. See also WEIGHTED MEAN.
wellhead, n. A submarine structure projecting some distance above the seabed and capping a temporarily abandoned or suspended oil or gas well. See also SUBMERGED PRODUCTION WELL.
west, n. The direction 90° to the left or 270° to the right of north. See also CARDINAL POINT.
West Australia Current. An Indian Ocean current which generally first flows northward and then northwestward off the west coast of Australia. This current varies seasonally with the strength of the wind
and is most stable during November, December, and January, and least stable during May, June, and July, when it may set in any direction. North of $20^{\circ} \mathrm{S}$ the main part of this current flows northwestward into the Indian South Equatorial Current.
westerlies, n., $p l$. Winds blowing from the west on the poleward sides of the subtropical high-pressure belts.
West Greenland Current. The ocean current flowing northward along the west coast of Greenland into Davis Strait. It is a continuation of the East Greenland Current. Part of the West Greenland Current turns around when approaching the Davis Strait and joins the Labrador Current; the rest rapidly loses its character as a warm current as it continues into Baffin Bay.
westing, n. The distance a craft makes good to the west. The opposite is EASTING.
westward motion. The motion in a westerly direction of the subtrack of a satellite, including the motion due to the earth's rotation and the nodical precession of the orbital plane.
West Wind Drift. An ocean current that flows eastward through all the oceans around the Antarctic Continent, under the influence of the prevailing west winds. On its northern edge it is continuous with the South Atlantic Current, the South Pacific Current, and the South Indian Current. Also called ANTARCTIC CIRCUMPOLAR CURRENT.
wet-bulb temperature. The lowest temperature to which air can be cooled at any given time by evaporating water into it at constant pressure, when the heat required for evaporation is supplied by the cooling of the air. This temperature is indicated by a well-ventilated wet-bulb thermometer. See also FREE-AIR TEMPERATURE.
wet-bulb thermometer. A thermometer having the bulb covered with a cloth, usually muslin or cambric, saturated with water. See also PSYCHROMETER.
wet compass. See LIQUID COMPASS.
wet dock. See NON-TIDAL BASIN.
wharf, n. A structure of open pilings covered with a deck along a shore or a bank which provides berthing for ships and which generally provides cargo-handling facilities. A similar facility of solid construction is called QUAY. See also PIER, definition 1; DOCK; LANDING; MOLE, definition 1.
whirlpool, n. Water in rapid rotary motion. See also EDDY.
whirlwind, n. A general term for a small-scale, rotating column of air. More specific terms include DUST WHIRL, DUST DEVIL, WATERSPOUT, and TORNADO.
whirly, n. A small violent storm, a few yards to 100 yards or more in diameter, frequent in Antarctica near the time of the equinoxes.
whistle, n. A sound signal emitter comprising a resonator having an orifice of suitable shape such that when a jet of air is passed through the orifice the turbulence produces a sound.
whistle buoy. A sound buoy equipped with a whistle operated by wave action. The whistle makes a loud moaning sound as the buoy rises and falls in the sea.
whitecap, n. A crest of a wave which becomes unstable in deep water, toppling over or "breaking." The instability is caused by the too rapid addition of energy from a strong wind. A wave which becomes unstable due shallow water is called a BREAKER.
white ice. See THIN FIRST-YEAR ICE.
white squall. A sudden, strong gust of wind coming up without warning, noted by whitecaps or white, broken water; usually seen in whirlwind form in clear weather in the tropics.
white water. 1. Frothy water as in whitecaps or breakers. 2. Light-colored water over a shoal.
whole gale. A term once used by seamen for what is now called STORM on the Beaufort wind scale.
wide berth. A generous amount of room given to a navigational danger.
williwaw, n. A sudden blast of wind descending from a mountainous coast to the sea, especially in the vicinity of either the Strait of Magellan or the Aleutian Islands.
willy-willy, n. See under TROPICAL CYCLONE.
wind. Air in horizontal motion over the earth.
wind cone. See WIND SOCK.
wind direction. The direction from which wind blows.
wind direction indicator. See WEATHER VANE.
wind drift current. See DRIFT CURRENT.
wind driven current. A current created by the action of the wind.
wind indicator. A device to indicate the direction or speed of the wind. See also ANEMOMETER.
wind rode. A ship riding at anchor is said to be wind rode when it is heading into the wind. See also TIDE RODE.
wind rose. A diagram showing the relative frequency and sometimes the average speed of the winds blowing from different directions in a specified region.
winds aloft. Wind speeds and directions at various levels beyond the domain of surface weather observations.
wind shear. A change in wind direction or speed in a short distance, resulting in a shearing effect. It can act in a horizontal or vertical direction and, occasionally, in both. The degree of turbulence increases as the amount of wind shear increases.
wind-shift line. In meteorology, a line or narrow zone along which there is an abrupt change of wind direction.
wind sock. A tapered fabric sleeve mounted so as to catch and swing with the wind, thus indicating the wind direction. Also called WIND CONE.
wind speed. The rate of motion of air. See also ANEMOMETER.
wind storm. See under STORM, definition 2.
wind vane. See WEATHER VANE.
wind velocity. The speed and direction of wind.
windward, $a d j$. \& $a d v$. In the general direction from which the wind blows; in the wind; on the weather side. The opposite is LEEWARD.
windward, n. The weather side. The opposite is LEEWARD.
windward tide. A tidal current setting to windward. One setting in the opposite direction is called a LEEWARD TIDE or LEE TIDE.
wind wave. A wave generated by friction between wind and a fluid surface. Ocean waves are produced principally in this way.
winged headland. A seacliff with two bays or spits, one on either side.
winter, n. The coldest season of the year. In the Northern Hemisphere, winter begins astronomically at the winter solstice and ends at the vernal equinox. In the Southern Hemisphere the limits are the summer solstice and the autumnal equinox. The meteorological limits vary with the locality and the year.
winter buoy. An unlighted buoy which is maintained in certain areas during winter months when other aids to navigation are temporarily removed or extinguished.
Winter Coastal Countercurrent. See DAVIDSON CURRENT.
winter light. A light which is in service during the winter months when the regular light is out of service. It has lower intensity than the regular light but usually has the same characteristic.
winter marker. An unlighted buoy or small lighted buoy which is established as a replacement during the winter months when other aids are out of service or withdrawn.
winter solstice. The point on the ecliptic occupied by the sun at maximum southerly declination. Sometimes called DECEMBER SOLSTICE, FIRST POINT OF CAPRICORNUS.
wiping, n. The process of reducing the amount of permanent magnetism in a vessel by placing a single coil horizontally around the vessel and moving it, while energized, up and down along the sides of the vessel. If the coil remains stationary, the process is called FLASHING. See also DEPERMING.
wire drag. An apparatus for surveying rock areas where the normal sounding methods are insufficient to insure the discovery of all existing obstructions above a given depth, or for determining the least depth of an area. It consists of a buoyed wire towed at the desired depth by two vessels. Often shortened to DRAG. See also DRAG, $v ., t$.
withdrawn, $a d j$. Removed from service during severe ice conditions or for the winter season. Compare with the term disestablished, which means permanently removed. See also CLOSED, COMMISSIONED.

WMO Sea-Ice Nomenclature (WMO/OMM/BMO No. 259. TP. 145). A publication of the World Meteorological Organization which is comprised of sea-ice terminology, ice reporting codes, and an illustrated glossary. This publication results from international cooperation in the standardization of ice terminology.
working, n. In sea ice navigation, making headway through an ice pack by boring, breaking, and slewing.
World Geographic Reference System. A worldwide position reference system that may be applied to any map or chart graduated in latitude and longitude (with Greenwich as prime meridian) regardless of projection. It is a method of expressing latitude and longitude in a form suitable for rapid reporting and plotting. Commonly referred to by use of the acronym GEOREF.
World Geodetic System. A consistent set of parameters describing the size and shape of the earth, the positions of a network of points with respect to the center of mass of the earth, transformations from major geodetic datums, and the potential of the earth (usually in terms of harmonic coefficients). It forms the common geodetic reference system for modern charts on which positions from electronic navigation systems can be plotted directly without correction.
Worldwide Marine Weather Broadcasts. A joint publication of the National Weather Service and the Naval Weather Service Command providing information on marine weather broadcasts in all areas of the world. In general, English language broadcasts (or foreign language broadcasts repeated in English) are included in the publication. For areas where English language broadcasts are not available foreign language transmissions are also included.
World Meteorological Organization. A specialized agency of the United Nations which seeks to facilitate world-wide cooperation in the establishment of stations for meteorological and related geophysical observations of centers providing meteorological services, of systems of rapid exchange of weather information; and to promote the standardization and publication of meteorological and hydrometeorological observations and statistics; to further the application of meteorology to aviation, shipping, agriculture, and other related activities; to encourage research and training in meteorology and their international coordination.
World Port Index. See PUB. 150.
World Wide Navigational Warning Service. Established through the joint efforts of the International Hydrographic Organization (IHO) and the Intergovernmental Maritime Consultative Organization (IMCO) now called the International Maritime Organization (IMO), the World Wide Navigational Warning Service (WWNWS) is a coordinated global service for the promulgation by radio of information on hazards to navigation which might endanger international shipping. The basic objective of the WWNWS is the timely promulgation by radio of information of concern to the ocean-going navigator. Such information includes failure and or changes to major navigational aids, newly discovered wrecks or natural hazards in or near main shipping lanes; areas where search and rescue, antipollution operations, cable-laying or other underway activities are taking place. For WWNWS purposes, the world is divided into 16 NAVAREAS. Within each NAVAREA one national authority, designated the Area Coordinator, has assumed responsibility for the coordination and promulgation of warnings. Designated "National Coordinators" of other coastal states in a NAVAREA are responsible for collecting and forwarding information to the Area Coordinator. In the Baltic, a Sub-Area Coordinator has been established to filter information prior to passing to the Area Coordinator. Coordinators are responsible for the exchange of information as appropriate with other coordinators, including that which should be further promulgated by charting authorities in Notice to Mariners. The language used is English, although warnings may also be transmitted in one or more of the official languages of the United Nations. Broadcast schedules appear in an Annex to the International Telecommunication Union List of Radiodetermination and Special Service Stations Volume II, and in the lists of radio signals published by various hydrographic authorities (for the U.S., Pub 117, Radio Navigational Aids.) Transmissions usually occur frequently enough during day to fall within at least one normal radio watch period, and the information is repeated with varying frequency as time passes until either the danger has passed or the information on it has appeared as a notice to mariners.
worldwide system. A term used to describe a navigation system providing positioning capability wherever the observer may be located. Also
wreck, n. The ruined remains of a vessel which has been rendered useless, usually by violent action by the sea and weather, on a stranded or sunken vessel. In hydrography the term is limited to a wrecked vessel, either submerged or visible, which is attached to or foul of the bottom or cast up on the shore. In nautical cartography wrecks are designated visible, dangerous, or non-dangerous according to whether they are above tidal datum, less than, or more than 20 meters (66 feet; 11 fathoms) below tidal datum, respectively.
wreck buoy. A buoy marking the position of a wreck. It is usually placed on the seaward or channel side of the wreck and as near to the wreck as conditions will permit. To avoid confusion in some situations, two buoys may be used to mark the wreck.
wreck mark. A navigation mark which marks the position of a wreck.

X-Y-Z

X-band. A radio-frequency band of 5,200 to 10,900 megahertz. See also FREQUENCY, FREQUENCY BAND.
yard, n. A unit of length equal to 3 feet, 36 inches, or 0.9144 meter.
yaw, n. The oscillation of a vessel in a seaway about a vertical axis approximately through the center of gravity.
Y-code, n. The encrypted version of the P-code.
yawing, n. See YAW.
year, n. A period of one revolution of a planet around the sun. The period of one revolution of the earth with respect to the vernal equinox, averaging 365 days, 5 hours, 48 minutes, 46 seconds in 1900, is called a tropical, astronomical, equinoctial, or solar year. The period with respect to the stars, averaging 365 days, 6 hours, 9 minutes, 9.5 seconds in 1900, is called a sidereal year. The period of revolution from perihelion to perihelion, averaging 365 days, 6 hours, 13 minutes, 53.0 seconds in 1900, is an anomalistic year. The period between successive returns of the sun to a sidereal hour angle of 80° is called a fictitious or Besselian year. A civil year is the calendar year of 365 days in common years, or 366 days in leap years. A light-year is a unit of length equal to the distance light travels in 1 year, about 5.88×10^{12} miles. The term year is occasionally applied to other intervals such as an eclipse year, the interval between two successive conjunctions of the sun with the same node of the moon's orbit, a period averaging 346 days, 14 hours, 52 minutes, 50.7 seconds in 1900, or a great or Platonic year, the period of one complete cycle of the equinoxes around the ecliptic, about 25,800 years.
young coastal ice. The initial stage of fast ice formation consisting of nilas or young ice, its width varying from a few meters up to 100 to 200 meters from the shoreline.
young ice. Ice in the transition stage between nilas and first-year ice, 10 to 30 centimeters in thickness. Young ice may be subdivided into GRAY ICE and GRAY-WHITE ICE.
zenith, n. The point on the celestial sphere vertically overhead. The point 180° from the zenith is called the NADIR.
zenithal, $a d j$. Of or pertaining to the zenith.
zenithal chart. See AZIMUTHAL CHART.
zenithal map projection. See AZIMUTHAL MAP PROJECTION.
zenith distance. Angular distance from the zenith; the arc of a vertical circle between the zenith and a point on the celestial sphere, measured from the zenith through 90°, for bodies above the horizon. This is the same as COALTITUDE with reference to the celestial horizon.
zephyr, n. A warm, gentle breeze, especially one from the west.
zodiac, n. The band of the sky extending 9° either side of the ecliptic. The sun, moon, and navigational planets are always within this band, with the occasional exception of Venus. The zodiac is divided into 12 equal parts, called signs, each part being named for the principal constellation originally within it.
zodiacal light. A faint cone of light which extends upward from the horizon along the ecliptic after sunset or before sunrise, seen best in the tropics and believed to be the reflection of sunlight by extraterrestrial particles in the zodiac.
zone, $n .1$. A defined area or region. The surface of the earth is divided into climatic zones by the polar circles and the tropics; the parts between the poles and polar circles are called the north and south frigid zones; the parts between the polar circles and the tropics are the north and south temperate zones; the part between the two tropics is the torrid zone. 2. A time zone, within which the same time is kept.
zone description. The number, with its sign, that must be added to or subtracted from the zone time to obtain the Greenwich mean time. The zone description is usually a whole number of hours.
zone meridian. The meridian used for reckoning zone time. This is generally the nearest meridian whose longitude is exactly divisible by 15°. The DAYLIGHT SAVING MERIDIAN is usually 15° east of the zone meridian.
zone noon. Twelve o'clock zone time, or the instant the mean sun is over the upper branch of the zone meridian. Standard noon is 12 o'clock standard time.
zone time. The local mean time of a reference or zone meridian whose time is kept throughout a designated zone. The zone meridian is usually the nearest meridian whose longitude is exactly divisible by 15°. Standard time is a variation of zone time with irregular but well-defined zone limits. Daylight saving or summer time is usually 1 hour later than zone or standard time. See ZONE DESCRIPTION.
zulu. See GREENWICH MEAN TIME.

INDEX

A

Abscissa, 320
Absolute accuracy 178
Absorption and scattering, 156
Accuracy, 341
Accuracy, digital chart 212
Acoustic Doppler current profilers, 439
Acute angle, 317
Acute triangle, 318
Additional Secondary Phase Factor (ASF) 178
Adjacent angle, 317
Adjusting barometer readings, 521
Adjustment of departure time, 555
Adjustment of SOA, 555
Advance, 107
advance 107
Advanced piloting techniques, 122
Advection fog, 496
Aeronautical lights, 65
Agulhas Current, 436, 438
Aids to navigation system, 63
Air Almanac, 287, 288
Air masses, 489
Alaska Current, 437
Aleutian Current, 437
Allowances for Non-Uniform Propagation Rates 178
Almanacs, 58, 287, 378
Altering a great circle track to avoid obstructions, 350
Alternating current, 151
Alternating light, 66
Altitude correction, 297
Altitude intercept (a), 296
Altitude measurement, 378
Alto, 528
Altocumulus (Ac), 531
Altostratus (As), 530
Amplitude modulation (AM), 159
Amplitude of radio waves, 151
Amplitude of the sun by calculation, 274
Amplitudes, 271, 273, 331
AMVER participation, 400
AMVER plot information, 401
AMVER reporting, 401
Anabolic wind, 493
Anchorage, 121
Anchoring procedures, 119
Anemometer, 523

Aneroid barometer, 519
aneroid barometer 519
Angle, 317
Angle of magnetic dip, 82
Angular length, 320
Angular measure, 320
Annular eclipse, 233
Anomalistic month, 134
Antarctic Circle, 230
Antarctic Circumpolar Current, 434
Antenna characteristics, 157
Anthelion, 498
Anticrepuscular rays, 499
Anticyclone, 492
Antilles Current, 435
Antipodal, 345
Antipode, 130
Antiselene, 498
Aphelion, 219
Apogean tides, 134
Apogee, 219
Apparent horizon, 238
Apparent motion, 218, 226
Apparent solar day, 275
Apparent solar time, 275
Apparent wind, 523
apparent wind 523
Arc, 262, 277
Arctic Circle, 230
Arctic sea smoke, 496
Area calls, 396
Areas to be avoided, 383
Aries, 230
Artificial horizon, 268
Artificial horizon sextants, 268
Assumed latitude, 300
Assumed longitude, 300
Assumed position (AP), 296
Astronomic latitude, 16, 234
Astronomic longitude, 17, 234
Astronomical Almanac, 287
Astronomical distances, 219
Astronomical triangle, 246
Astronomical unit (AU), 219
Athwartship (A) coil, 89
Atlantic ocean currents, 434
Atmosphere, 481

Atmospheric electricity, 499
Atmospheric noise, 157
Atmospheric pressure, 519
Attenuation, 156, 188
Aureole, 498
Aurora, 500
Aurora Australis, 500
Aurora Borealis, 500
Auroral zones, 500
Automated Mutual-Assistance Vessel Rescue System (AMVER), 399
Autumnal equinox, 229
Azimuth angle (Z), 241, 331
Azimuth of polaris, 272
Azimuth of the sun, 271
Azimuthal equidistant projection, 23, 31
Azimuthal orthomorphic projection, 30
Azimuthal projection, 23, 29
Azimuths, 241, 271

B

Back sight, 264
Backstays of the sun, 499
Backwash, 449
Baily's Beads, 233
Bank cushion, 121
Bank suction, 121
Barograph, 520
barograph 520
barometer 519
Barometric pressure, 519
barometric pressure 519
Barometric pressure, analysis of, 514
Baseline, 17
baseline 176
baseline extension 176
baseline length (BLL) 174
baseline travel time (BTT) 174
Basins, 430
Bathymetric charts, 40
Beach sediments, 451
Beacons, 63, 78
Beam compasses, 105
Beam width, 410
Bearing (B, Brg.), 5
Bearing record book, 110
Beaufort Scale of wind force, 537
Bells, 71
Benguela Current, 436, 438
Bergy bit, 454
Biquadrantal spherical triangle, 327
Bisects, 318
Blind lead, 457
blink coding 175
Blizzard, 494

Boat sheet, 410
Bobbing a light, 56
Body at rising, 377
Body at setting, 377
Body in zenith, 382
Body on prime vertical, 377
Bolide, 224
Bora, 494
Bore, 134, 447
Bottom contour charts, 40
Bottom description, 40
Bottom relief, 430
Brazil Current, 436
Breaker, 444
Breakers, classes of, 448
Bridge lights, 65
British Thermal Unit (BTU), 522
Bummocks, 473
Buoy lights, 71
Buoy moorings, 71
Buoyage systems, 73
Buoyant beacon, 63
Buoys, 70
Buys Ballot's Law, 513

C

Calculations of meteorology, 332
Calculations of piloting, 329
Calculations of the sailings, 331
Calculator keys, 329
Calculators in navigation, 329
Calendar, 232
California Current, 436
Calve, 454
Can, 74
Canary Current, 436
Cape Horn Current, 436
Cardinal marks, 73
Cartesian coordinates, 320
Cat's paw, 494
Catalogs, 59
Cathode ray tube (CRT), 197
Causes of tides, 129
Celestial equator, 234
Celestial horizon, 238
Celestial meridian, 234
Celestial navigation routine, 314
Celestial sphere, 218, 234
Celestial triangle, 246
Celsius (C) 521
Centering error, 267
Centesimal degrees, 321
Centesimal system, 321
Central angle, 319
Centroid, 318

Characteristics of lights, 66
Chart accuracy, 35, 412
Chart catalogs, 49
Chart classification by scale, 35
Chart database, 200
Chart dates, 37
Chart features, 43
Chart graticule, 24
Chart lettering, 38
Chart lighting, 50
Chart No. 1, 38, 58
Chart numbering system, 45
Chart numerical scale, 34
Chart preparation, 106, 368
Chart projection, 23
Chart reading, 37
Chart scales, 34
Chart sounding datum, 41
Chart soundings, 40
Chart symbols, 38
Chart symbols and abbreviations, 77
Chinook, 493
Chipping rate, 165
Chlorinity, 426
Chord, 319
Chronometer, 269
Chronometer error (CE), 6, 278
Chronometer rate, 269, 278
Chronometer time, 278
Chronometers, 269
Circle of equal altitude, 295
Circles, 319
Circulation of the atmosphere, 481
Circumference, 319
Circumhorizontal arc, 498
Circumscribed circle, 318
Circumscribed halo, 498
Circumzenithal arc, 498
Cirrocumulus (Cc), 530
Cirrostratus (Cs), 529
Cirrus 528
Cirrus (Ci), 528
Clamp screw vernier sextant, 263
Climate, 481
Cloud Formation 527
Cloud formation, 527
Cloud height measurement, 535
Clouds 527
Clouds, 527
Clutter, 189
Coaltitude, 6
Coarse acquisition code, 163
Coast Earth Stations (CES), 395
Coast Pilots, 52
Coastal charts, 35

Coastal current, 433
Coastal phase, 2
Coastal refraction, 154
Code division multiple access (CDMA), 163
Codeclination, 6
coding delay (CD) 174
Cold front, 489
Cold wall, 435
Collecting survey data, 410
Collimation error, 267
Collision with buoys, 70
Colors of lights, 74
Colors of marks, 74
Comets, 224
common establishment 136
Common tangent, 319
Communications, 555
Comparing watch, 269
Compass checks, 369
Compass compensation, 81, 89
Compass error, 97
Compass operation, 86
Compasses, 2
Compensating coils, 91
Complementary angle, 317
Composite sailing, 345, 346, 350
Compressibility, 427
Computed altitude (hc), 296, 331
Computer Sight Reduction 295
Concentric, 319
Conductivity-temperature-depth (CTD), 426
Cone topmark, 74
Congruent, 318
Conic projection, 27, 28
Conical buoy, 74
Conn, 112
Conning Officer, 112
Constellations, 224
Continental shelf, 430
Continental slope, 430
Coordinate systems, 237
Coordinates, 16, 320
Corona, 220, 233, 498
Corposant, 500
Correcting and Uncorrecting the Compass 97
Correcting compass, 86
Correctors, 84
COSPAS/SARSAT participants, 405
Counterglow, 224
Course deviation, 214
Course line, 99
Cracks in ice, 457
Crepuscular rays, 499
Critical point approach, 214
Cross check lines, 409

Cross-track error, 214
Cumulonimbus (Cb), 535
Cumulus (Cu), 528, 533
Current, 102
Current diagrams, 148
Current ellipse, 138
current ellipse 139
Current meters, 142
Current rose, 139
Cycle, 151
Cyclone, 492
Cygnus, 257
Cylindrical projection, 23, 24

D

Damp haze, 496
Danger bearings, 108
Danger ranges, 108
Danger soundings, 108, 368
Dangerous semicircle, 514
dangerous semicircle 514
Date line, 278
Datum, 19, 214
Datum connections, 19
Datum shifts, 21
Davidson Current, 436
Day, 232
Daybeacons, 63
Dayboards, 63
Daymark, 63
Dead reckoning (DR), 375
Dead reckoning plot, 99
Dead water, 447
Deck ice, 496
Deck log, 110, 376
Declination, 235
Declination of a planet, 290
Declination of a star, 290
Declination of the moon, 289
Declination of the sun, 289
Deep, 430
Deep Scattering Layer (DSL), 416
Deep-Water route, 383
Defense Mapping Agency, 10
Defense Mapping Agency Hydrographic Center 10
Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC) 10
Degaussing, 88, 95, 96
Degaussing coils, 89
Degaussing compensation, 88, 89, 91, 95
Degaussing effects, 91
Degaussing folder, 89
Degaussing stations, 89
Degaussing system, 91

Degrees, 320
Demarcation line, 109
Density, 427
Departure (p, Dep.), 4, 100, 346
Deperming, 91
Depressed pole, 239
Depth contours, 40
Depth conversion scale, 40
Depths and datums, 40
Developable surface, 23
Deviation, 3, 84, 97
Diameter, 319
Difference of latitude (l, Dlat.), 4, 346
Difference of longitude (DLo), 4, 346
Differential GPS (DGPS), 170
Diffraction, 155, 188
Digital Nautical Chart, 206
Digital Nautical Chart (DNC), 209
Digital Selective Calling (DSC), 398
Dihedral angle, 317
Dip, 297
Dip correction, 330
Dip of the sea short of the horizon, 330
Direct, 151
Direct current, 151
Direct motion, 222
Direction on the earth, 5
Directional light, 64
Directional sector light, 64
Display and Control Subsystem (DCS), 209
Dissemination systems, 281
Distance (D, Dist.), 346
Distance by vertical angle, 330
Distance on the earth, 4
Distance to the radar horizon, 330
Distance to the visible horizon, 330
Distances Between Ports (Pub. 151), 58
Diurnal circle, 226, 235
Diurnal tide, 133
Diversion, 555
DNC corrections, 211
DNC portfolio, 209
Doldrums, 484
Double high water, 134
Double low water, 134
Drag circle, 121
Drift, 102, 110, 139
Drift currents, 433
Drift of sea ice, 460
Dry haze, 496
dual rating 174
Duel frequency correction techniques, 170
Duration of slack water, 147
Dust whirl, 494

E

E layer, 153
Earth, 3, 221
East Auckland Current, 437
East Australian Current, 437
East Cape Current, 437
East Greenland Current, 438
East Wind Drift, 434
Easterly wave, 508
Ebb, 139
ECDIS Correction System, 210
ECDIS Outputs, 204
ECDIS Performance Standards, 200
ECDIS warnings and alarms, 204
ECDIS-N, 208
Echo sounders, 410
Eclipse of lights, 66
Eclipses, 233
Ecliptic, 221, 228
Eddy viscosity, 428
Effect of ice on waves, 444
Effects of currents on waves, 444
Effects of wind on the sea, 525
Ekman layer, 433
Ekman pumping, 433
Ekman spiral, 434
Ekman transport, 433
Electric psychrometer, 523
Electrical conductivity, 429
Electromagnetic spectrum, 152
electronic 199
Electronic chart, 23
electronic chart 199
electronic chart data base 199
electronic chart display and information system, 199
Electronic Chart Display and Information System (ECDIS), 13, 200
Electronic chart display characteristics, 202
Electronic Chart Standards, 202
electronic chart system, 199
Electronic Chart Systems (ECS), 200
Electronic Charts, 199
Electronic Charts, correcting 210
Electronic charts, using, 212
electronic navigation chart, 199
electronic navigation chart database, 199
Electronic navigation reports, 419
Electronic Navigational Chart, 205
Electronic Notice To Mariners, 60
Electronic systems, 8
Elevated pole, 239
Ellipsoid, 16
Ellipsoid of revolution, 16, 221
Emergency navigation, 373
Emergency navigation kit, 373
emission delay (ED) 174
Endless tangent screw vernier sextant, 263
Energy of waves, 445
Enhanced Group Call (EGC), 396
envelope-to-cycle difference (ECD) 174
Epicenter, 446
EPIRB's (Category I, II), 403
EPIRB's (Class A, B, S), 403
EPIRB's (Inmarsat-E), 403
EPIRB's, alarm, warning, and alerting signals, 405
EPIRB's, testing, 404
Equation of time, 232, 276
Equatorial Countercurrent, 437
Equatorial jet, 437
Equatorial tides, 134
Equatorial undercurrent, 438
Equiangular, 318
Equilateral triangle, 318
Equinoctial, 234
Equipment inventory, 368
Error, 341
Error circle, 101
Errors in piloting, 125
Established direction of traffic flow, 383
Estimated position, 100, 102
Estimated speed made good, 103
estimated time of arrival 111
Estimated track made good, 103
Estimating the wind at sea, 525
European datum, 19
Evasion, 555
Evolutions prior to piloting, 111
Expendable bathythermograph (XBT), 426
Explement, 317
Exterior angle, 318
Extremely high frequency, 158

F

F layer, 153
Fading, 155
Fahrenheit (F), 521
Fall wind, 494
Fallibility of buoys, 72
False echoes, 192
False shoals, 416
Fast ice, 457
Fata morgana, 497
Fathom, 3
Fathometer, 119
Fathometer log, 110
Fathometer operating guidelines, 369
Fault lines, 425
Federal Radionavigation Plan, 160
Fetch, 441, 526
fetch 525

Filling, 492
Finding the vertex, 350
Fireball, 224
Fischer plotting, 196
Fix by range and distance, 115
Fix by two bearing lines, 111
Fix by two ranges, 115
Fix expansion, 101
Fixed lights, 63
Fixing position, 196
Flashing, 91
Flashing light, 66
Flaw lead, 457
FleetNET, 396
Flinders bar, 85
Floating derelicts, 414
Flood, 139
Florida Current, 435
Fog, 496, 527, 548
Fogbow, 498
Forecasting weather, 500
Forecastle (F) coil, 89
Foreign chart reproduction, 45
Fractures, 457
Frazil ice, 456
Frequency, 151
Frequency modulation (FM), 159
Fresnel lenses, 63
Friendly ice, 473
Frigid zones, 230
Front range light, 64
Frontal zone, 489
Fronts, 489
Frost smoke, 496
Fundamental identities, 324

G

Galactic nebula, 225
Galileo System 172
Gauss, 89
Gaussin error, 88
Gegenschein, 224
General charts, 35
General circulation, 485
General direction of buoyage, 74
General precession, 230
Generator, 151
Geocentric latitude, 17, 234
Geodesic, 3
Geodesy, 15
Geodetic latitude, 17, 234
Geodetic longitude, 17, 234
Geodetic survey, 17
Geodetic systems, 19
Geographic latitude, 234

Geographic longitude, 234
Geographic range, 55
Geoid, 15
Geoidal heights, 16
Geoidal horizon, 238
Geoidal separations, 16
Geoidal undulations, 16
Geometric dilution of precision (GDOP), 168
Geometrical horizon, 239
Geometry, 317
Geostrophic equilibrium, 434
Geostrophic wind, 482
GHA increment, 299
Glacier, 453
Glasses shade, 262
Global Maritime Distress and Safety System, 393
Global Positioning System (GPS), 9, 163
Globular clusters, 225
Gnomonic projection, 24, 29
Gongs, 71
GPS, 161
GPS signal coding, 165
Gradient wind, 482
Graduation errors, 267
Gravity waves, 441
Gray-white ice, 456
Grease ice, 456
Great circle, 3, 319, 345
Great circle charts, 30, 346
Great circle sailing, 346
Great circle sailing by chart, 346
Great circle sailing by computation, 349
Great circle sailing by sight reduction tables, 346
Great circle track, 5, 345
Great Lakes ice, 477
Green flash, 498
Greenwich, 233
Greenwich Hour Angle (GHA), 235, 237
Grids, 34
Ground swell, 444
Groundwave, 154
Group calls, 396
group repetition interval (GRI) 175
Group time delay, 169
Group velocity, 443
Growler, 454
Guinea Current, 436
Gulf Stream, 435
Gust, 494
Gyrocompass, 3

H

Halos, 498
Hand over word (HOW), 166
Handle, 262

Harbor charts, 35
Harbor/harbor approach phase, 2
Harmonic constants, 143
Harvest moon, 224
Haze, 496
Heading relationships, 97
Heat lightning, 499
hecto pascal (hPa) 519
Heeling coil, 91
Heeling magnet, 85
Height error 521
Heights, 41
Hertz, 151
Hevelian halo, 498
High Clouds 528
High clouds 528
High frequency, 157
High tide, 131
High water datums, 138
Horizon glass, 262
Horizontal datum, 19
Horizontal geodetic datum, 17
Horns, 71
Horse latitudes, 485
Hostile ice, 473
Hour circle, 235
Hull speed in knots, 329
Humboldt Current, 437
Humidity, 522
Hummock, 457
Hummocked ice, 457
Hunter's moon, 224
Hurricane, 503, 507
Hydraulic current, 139
Hydrograms, 59
Hydrographic surveys, 409
Hydrography, 409
Hygrometer, 523
hygrometer 523
Hypotenuse, 318

I

IALA Cardinal Marks, 74
IALA Isolated Danger Mark, 75
IALA Lateral Marks, 73
IALA Maritime Buoyage System, 73
IALA New Dangers, 76
IALA Region A, 73
IALA Region B, 73
IALA Safe Water Marks, 76
IALA Special Marks, 76
Ice, 414, 453, 527, 549
Ice accretion, 496
Ice blink, 468
Ice cake, 456

Ice cap, 453
Ice, density of, 460
Ice detection, 467
Ice field, 456
Ice floes, 456
Ice forecasts and observations, 477
Ice front, 454
Ice islands, 457
Ice keels, 473
Ice operations, 470
Ice products and services, 478
Ice rind, 456
Ice shelf, 457
Ice wall, 454
Iceberg drift, 461
Icebergs, 453, 457
Icebergs in the North Atlantic, 463
Identification of stars, 247
IMO performance standards, 201
Index arm, 262
Index correction, 297
Index error, 268
Index mirror, 262
Indian datum, 19
Indian Ocean Currents, 437
Indian spring low water (ISLW), 137
Induced magnetism, 88
Inertial navigation system, 9
Inferior conjunction, 221
Inferior mirage, 497
Inferior planets, 221
Infrared, 497
Inland Waterway phase, 2
Inmarsat (International Maritime Satellite Organization), 395
INMARSAT B, 395
INMARSAT C, 395
Inscribed angle, 319
Inscribed circle, 318
Inshore current, 433
Inshore traffic zone, 383
Instrument error 521
Integrated bridge, 199
Integrated Bridge System, 207
Intercardinal coils, 92
Interference, 156
Interior angle, 318
Interlaced display, 197
Internal waves, 447
International Association of Lighthouse Authorities, 13, 70, 73
International charts, 45
International Hydrographic Bureau (IHB), 45
International Hydrographic Organization (IHO), 11, 45
International Ice Patrol, 466

International Maritime Organization (IMO), 12
International Regulations for Preventing Collision, 12
Interpreting weather, 501
Intracoastal Waterway aids to navigation, 79
Inverse trigonometric functions, 325
Ion, 153
Ionosphere, 153
Ionospheric delay errors, 169
Irminger Current, 435
Island shelf, 430
Island slope, 430
Isobars, 482, 519
Isophase light, 66
Isosceles triangle, 318

J

Jamming, 156
Japan Current, 436
Jupiter, 223

K

Kamchatka Current, 437, 438
Katabatic wind, 493
Knot (kn.), 5
Kuroshio Current, 436

L

Labrador Current, 435
Lagging tides, 134
Lambert conformal projection, 23, 29
Lamp changer, 66
Land breeze, 493
Land Earth Stations (LES), 395
Land effect, 153
Land ice, 453
Land sky, 468
Large navigational buoys, 71
Large-scale chart, 35
Lateral and cardinal systems, 73
Lateral marks, 73
Latitude (L, lat.), 4, 234, 346, 549
Latitude at meridian passage, 309
Latitude by Polaris, 312
Latitude determination, 6, 381
Latitude of the vertex, 332
Latitudes of points on the great-circle track, 332
Leads, 457
Leap seconds, 284
Leap-second adjustments, 284
Leeuwin Current, 438
Leeway, 102
Length of sea waves, 333
Length of the day, 382

Lens, 66
Less dangerous semicircle, 515
Leveling, 18
Life of a tropical cyclone, 508
Light characteristics, 66
Light Lists, 54
Light pipes, 64
Light sectors, 69
Light-year, 219
Lighted buoy, 71
Lighthouses, 63
Lightning, 499
Limb, 262
Line, 317
Line of apsides, 219
Line of position, 7, 296
Line spacing, 409
List of Lights, 57
Local apparent noon, 276
Local Hour Angle (LHA), 235, 237, 300
Local Mean Time (LMT), 280
Local Notice To Mariners, 60
Local time, 232
Local wind names, 486
Local winds, 493
Location vessel, 401
Log, 3
Logarithmic function, 322
Longitude (l, long.), 4, 234, 346
Longitude at meridian passage, 311
Longitude determination, 6
Longitudinal (L) coil, 89
Longshore current, 433, 450
Loom, 69
Looming, 497
Loop Current, 435
Loran antenna 174
Loran C, 161, 173
Loran C control station 174
Loran C Signal 174
Loran C Theory 176
Loran C transmitting stations 173
Loran chains 173
Loran charts 174
Loran receiver 174
Low clouds 528
Low clouds, 533
Low frequency, 157
Low tide, 132
Low Water Datums 136
Lower branch, 4, 235
Lower transit, 238
Lowest low water, 138
Lowest normal low water, 138
Loxodromic curve, 4

Luminous range, 54
Lunar day, 232
Lunar distance, 6
Lunar eclipse, 233
Lunar month, 134
Lune, 320
Lunitidal interval, 136
lunitidal interval 136

M

Magnetic adjustment, 84
Magnetic disturbances, 419
Magnetic fields, 84
Magnetic heading, 97
Magnetic poles, 81
Magnetic signature, 89
Magnitude ratio, 219
Magnitudes, 219
Main (M) coil, 89
Maintenance of buoys, 70
Major light, 63
Major wind patterns, 484
Malvinas Current, 436
Maneuvering to avoid the storm center, 514, 516, 517
Manganese nodules, 430
Marcq Saint Hilaire, 58
Marine chronometer, 269
Marine information reports, 418
marine microbarograph 520
Marine radiobeacons, 161
Marine sediments, 430
Marine sextant, 261
Maritime Safety Committee, 207
maritime safety information, 393
Maritime Safety Information (MSI), 393, 396
Maritime Safety Information Website, 60
Mars, 223
master station 173
Mean high water lunitidal interval, 136
Mean latitude (Lm), 346
Mean low water (MLW), 137
Mean low water springs (MLWS), 137
Mean lower low water (MLLW), 137
Mean lower low water springs (MLLWS), 137
Mean sidereal time, 281
Mean solar time, 276
Mean sun, 232, 276
Mean time, 276
Median, 318
Medium frequency, 158
Mercator projection, 23, 24
Mercator sailing, 332, 358
mercurial barometer 519
Meridian altitude, 381
Meridian angle, 237, 239

Meridian passage, 309
Meridian transit, 239, 377
Meridional difference (m), 346
Meridional parts (M), 24, 346
Meteor showers, 224
Meteor swarms, 224
Meteorite, 224
Meteorological equator, 484
Meteors, 224
Metric system, 3
Micrometer drum, 262
Micrometer drum sextant, 261
Microwaves, 152
Mid-latitude (Lm), 4, 346
Mid-latitude sailing, 331, 346, 354
Middle clouds 528
Middle clouds, 530
Military ECDIS, 208
Mindanao Current, 437
Mines, 415
Minimum expected sounding, 368
Minor light, 63
Mirage, 497
Miscellaneous chart features, 43
Mist, 496
Mistake, 341, 344
Mistral, 494
Mixed tide, 133
Mock sun, 498
Modified facsimile charts, 45
Modified Lambert conformal, 32
Modulation, 159
Monsoon, 486
Moon, 223
Moon pillar, 498
Moonbow, 498
Moonrise, 292
Moonset, 292
Moorings, 71
Most probable position (MPP), 343, 374
Multiple star, 225
Multiyear ice, 456
N
Nadir, 235
Napier's Rules, 326
National Imagery and Mapping Agency (NIMA) 10
National Marine Electronic Association (NMEA), 13
National tidal datum epoch, 138
Natural function, 322
Nautical Almanac, 287, 289
Nautical chart, 23
Nautical mile, 3
Nautical miles, 329
Nautical texts, 51

NAVAIDS, 106
Navigable semicircle, 515
Navigation calculations, 329
Navigation, four phases of, 1
Navigation system accuracy, 342
Navigational astronomy, 217
Navigational error, 341
Navigational mathematics, 317
Navigational tables, 8
Navigational triangle, 6, 246
Navigator, 112
NAVSSI block diagram, 209
NAVTEX, 397
Navy Navigation Satellite System (NAVSAT), 8, 163
Neap tides, 134
Nebula, 226
Negative pole, 82
Neptune, 223
Network Coordination Station (NCS), 395
Névé, 460
New danger, 76
New Guinea Coastal Current, 437
Ney's projection, 32
Night effect, 155
Night observations, 527
Night orders, 369
Nilas, 456
Nimbostratus (Ns), 534
Nimbus, 528
No. 2102D 259
NOAA BSB corrections, 211
Nodal period, 134
Nodes, 233
Noise, 156
Nominal range, 54
Nontidal current 138
Nontidal current, 138
North American Datum, 1927, 19
North American Datum, 1983, 21
North Atlantic Current, 435
North Cape Current, 435
North Equatorial Countercurrent, 435, 436
North Equatorial Current, 435, 436, 437
North Pacific Current, 436
North pole, 82
North wall effect, 548
Northeast Drift Current, 435
Northeast trades, 484
Northeasterlies, 485
Northern lights, 500
Norway Current, 435
Notice To Mariners, 59
Nova, 225
nutation 230

0

Oblique angle, 317
Oblique coordinates, 320
Oblique gnomonic projection, 29
Oblique Mercator projections, 26
Oblique orthomorphic projection, 26
Oblique plane triangles, 325
Oblique spherical triangles, 327
Oblique triangle, 318
Obliquity of the ecliptic, 228
Observed altitude (ho), 296
Obtuse angle, 317
Obtuse triangle, 318
Occluded front, 492
Occulting light, 66
Ocean current observations, 439
Ocean current phenomena, 438
Ocean current reports, 423
Ocean currents, 433, 548
Ocean currents and climate, 438
Ocean currents, causes, 433
Ocean Data Acquisition System (ODAS) buoy, 70
Ocean eddies and rings, 438
Ocean phase of navigation, 2
Ocean pressure, 426
Ocean temperature, 426
Ocean waves, 441
Oceanic circulation, 434
Oceanographic chemistry, 425
Oceanography, 425
Octant, 319
Offshore current, 433
Omega, 161
Open cluster, 225
Opposition, 223
Ordinate, 320
Ordnance Survey of Great Britain 1936 Datum, 19
Origin, 320
Origin of the oceans, 425
Orion, 254
Orthographic projection, 24, 31
Orthomorphic projection, 30
Oscillatory wave, 444
Overfalls, 444
Overscale, 199
Oyashio Current, 437

P

Pacific ocean currents, 436
Pampero, 494
Pancake ice, 456
Parallax, 381
Parallel lines, 317
Parallel of declination, 235

Parallel sailing, 331, 346, 354
Paranthelion, 498
Parantiselene, 498
Paraselene, 498
Paraselenic circle, 498
Parhelic circle, 498
Parhelion, 498
Partial eclipse, 233
Pegasus, 252
Perigean spring tides, 134
Perigean tides, 134
Perigee, 219
Perihelion, 219
Perimeter, 319
Periodic current, 433
Permanent magnetism, 82
Permanent magnets, 85
Perpendicular lines, 317
Perpendicularity error, 267
Perspective projections, 24
Peru Current, 437
Phase, 151
Phase characteristics of lights, 74
phase coding 175
Photosphere, 220
Pillar buoys, 74
Piloting, 1, 105
Piloting brief, 110
Piloting procedures, 117
Pilots, 2
Pinnacled iceberg, 455
Plan position indicator (PPI), 187
Plane, 317
Plane geometry, 317
Plane projections, 24
Plane sailing, 331, 346, 351
Plane sailing triangle, 351
Plane surface, 317
Plane triangle, 318
Plane trigonometry, 320
Planet diagram, 259
Plates, 425
Plotting running fixes, 122
Plotting sheets, 34, 374
Plotting the DR, 100
Plunging breaker, 449
Pluto, 223
Point, 317
Point of tangency, 319
Points along the great circle, 349
Polar charts, 32
Polar circles, 230
Polar coordinates, 320
Polar distance (p), 237
Polar front, 485

Polar frontal jet stream (PFJ), 481
Polar lights, 500
Polar projection, 32, 34
Polar winds, 485
Polaris, 377
Polarization, 153
Polarization error, 155
Poles, 319
Polyconic projection, 23, 29
Polynyas, 457
Port information reports, 419
Position reporting systems, 399
Positive pole, 82
Practical salinity scale, 426
Practical salinity units, 426
Precautionary area, 383
Precession of the equinoxes, 230
Precipitation, 527
Precise positioning service (PPS), 166
Precision, 341
Precision code, 163
Preferred datums, 19
Presentation Library, 203
Pressure gradient, 482
Prevailing westerlies, 485
Primary, 320
Primary Phase Factor (PF) 178
Primary seacoast lights, 63
Prime meridian, 2
Prime vertical, 239
Prime vertical circle, 239
Priming tides, 134
Principal vertical circle, 239
Prismatic error, 267
Private aids to navigation, 80
Projections, 23
Proper motion, 225
Pseudorandom noise (PRN), 163
Psychrometer, 523
psychrometer 523
Psychrometric tables, 523
Publication 432 (NIST), 283
Pulse duration, 187
Pulse length, 187
Pulse modulation (PM), 159
Pulse Repetition Rate (PRR), 187
Pulse width, 187

Q

Quadrantal spheres, 85
Quadrantal spherical triangle, 327
Quarterdeck (Q) coil, 89
Quartz crystal marine chronometers, 269
Quintant, 319

R

Racons, 194
Radar beacons, 194
Radar beam, 187
Radar, development of, 9
Radar interpretation, 188
Radar navigation, 1
Radar operation, 187
Radar piloting, 196
Radar ranges, 115
Radar reflectors, 65, 194
Radial motion, 225
Radian, 321
Radiation fog, 496
Radio navigation, 1
Radio Navigational Aids (Pub. 117), 57
Radio propagation factors, 282
Radio spectrum, 152
Radio Technical Commission for Maritime Services, 13, 202
Radio wave propagation, 157
Radio waves, 151
Radioactivity, 429
Radiobeacons, 161
Radius of a sphere, 319
Radius vector, 320
Rafting of ice, 456
Rage sea, 445
Rainbow, 497
Ramarks, 194
Rams, 454
Random errors, 341
Range lights, 64
Ranges, 107
raster chart display system, 199
Raster format, 199
raster navigation chart, 199
Raster navigational chart, 206
Raster radars, 197
Ratan (Radar and Television Aid to Navigation), 387
Rational horizon, 238
Rear range light, 64
Receivers, 159
Recommended direction of traffic flow, 383
Recommended routes, 383, 384
Recommended track, 383
Recording observations, 536
Rectangular coordinates, 320
Rectangular projection, 27
Recurring polynyas, 457
Reduced soundings, 410
Reducing a moon sight, 305
Reducing a planet sight, 307
Reducing a sun sight, 303
Reducing star sights, 301

Reflection, 153
Reflex angle, 317
Refraction, 188, 381, 444, 448
Refraction of radio waves, 153
Region A, 73
Region B, 73
Registered Information Provider, 396
Regression of the nodes, 234
Regulated waterways, 390
Regulation of frequency use, 158
Relative accuracy 178
relative display mode, 200
Relative humidity, 522
Relative motion, 218
Release, 262
Repeatable accuracy 178
Repeatable accuracy, 184
Representative fraction, 34
Requirements, ECDIS replacing paper charts, 200
Resolution in bearing, 189
Resolution in range, 188
Retentive error, 88
Retrograde motion, 222
Revolution, 219
Rhumb lines, 4, 345
Ridge, 456
Ridging, 456
Right angle, 317
Right ascension, 235
Right line, 317
Right plane triangles, 325
Right spherical triangles, 327
Right triangle, 318
Rip currents, 450
Ripples, 441
Roaring forties, 485
Rotation, 219
Rotten ice, 460
Roundabout, 384
Route planning and monitoring, 213
Route reports, 423
Routing system, 383
Royal Greenwich Observatory, 11
Rules of dead reckoning, 100
Running fix, 115

S

Safe Water Marks, 76
Safety contour, 214
Safety of Life at Sea (SOLAS), 12
Safety report messages, 415
Safety reports, 414
SafetyNET, 396
Sailing charts, 35
Sailing Directions 2

Sailing Directions (Enroute), 52
Sailing Directions (Planning Guide), 51
Salinity, 425
Sand bars, 450
Santa Ana, 494
Sargasso Sea, 436
Saros, 234
SART Range 406
Satellite oceanography, 430
Saturn, 223
Scale, 34
Scalene triangle, 318
Sea breeze, 493
Sea ice, 455
Sea ice, drifting, 460
Sea ice, salinity, 460
Sea ice, thickness, 457
sea level pressure 521
search and acquisition 174
Seasonal current, 433
Secant, 319
Secant conic projection, 29
Secchi disk, 429
Second-year ice, 456
secondary coding delay (SCD) 174
Secondary lights, 63
Secondary Phase Factor (SF) 178
secondary stations 173
Sector, 319
Sectors of lights, 69
Segment, 319
Seiche, 447
Seismic sea waves, 446
Semi-circle, 319
Semidiameter, 319, 381
Semidiameter of a sphere, 319
Semidiurnal, 139
Semidiurnal tide, 133
Semimajor axis, 16
Sensible horizon, 238
Separation zone, 383
Set, 102, 110, 139
settle phase 174
Sexagesimal system, 321
Sextant, 319
Sextant care, 266
Sextant errors, adjustable, 267
Sextant errors, non adjustable, 266
Sextant moon sights, 263
Sextant reading, 264
Sextant star sights, 263
Sextant sun sights, 263
Sextant verticle angles, 115
Shade glasses, 262
Shallow water, 526

Shapes of marks, 74
Ship Earth Stations (SES), 395
Ship simulators, 126
Ship's heading, 97
Ship's magnetism, 82
Shoaling, 444
Shoals, 414
Shooting stars, 224
Shore lead, 457
Shore lights, 65
Shuga, 456
Side error, 267
Sidereal day, 232, 275
Sidereal Hour Angle, 230, 299
Sidereal Hour Angle (SHA), 235
Sidereal month, 223
Sidereal time, 232, 280
Sight reduction, 295, 381
Sight reduction procedures, 297
Sight Reduction Tables, 58
Sight Reduction Tables for Marine Navigation Pub. No. 229, 295
Signal range, 157
signal-to-noise ratio (SNR) 179
Simple conic projection, 27
Sinkers, 71
Sinking, 497
Skip distance, 154
Sky coloring, 497
Sky diagrams, 250
Sky map, 468
Skylights, 473
Slack water, 139
Slide Bar 108
Slide bar, 108
Sling psychrometer, 523
Small circle, 3, 319
Small craft charts, 50
Small-scale chart, 35
Smog, 496
Smooth sheet, 410
Snow blink, 468
Solar day, 232
Solar eclipse, 233
Solar prominences, 233
Solar System 219
Solar tide, 133
Solar time, 275
Solar wind, 220
Solid geometry, 317
Somali Current, 437
Sound signals, 78
Sound signals on buoys, 71
Sound speed, 428
Sounding datum, 137

Sounding reports, 416
Soundings, 40
South Atlantic Current, 436
South Equatorial Current, 434, 437
South Java Current, 438
South Pole, 82
Southeast Drift Current, 435, 436
Southeast trades, 484
Southeasterlies, 485
Southern hemisphere routing, 555
Southern lights, 500
Southern Ocean Currents, 434
Southwest Monsoon Current, 437
Space coordinates, 320
Space segment, 395
Spar, 74
Special charts, 34
Special environmental problems, 554
Special Marks, 76
Special Notice to Mariners paragraphs, 59
Special purpose buoys, 78
Special tidal effects, 134
Specific heat, 428
Spectrum, 497
Speed (S), 5
Speed made good (SMG), 5
Speed of a vessel, 329
Speed of advance (SOA), 5
Speed over the ground (SOG), 5
Sphere, 319
Spherical buoys, 74
Spherical coordinates, 320
Spherical triangle, 246, 320
Spicules, 456
Spilling breaker, 449
Spitsbergen Current, 435
Spring tides, 134
Squall line, 492
Squat, 121
St. Elmo's fire, 499
Stadimeter ranges, 115
Standard, 341
Standard atmosphere, 481
Standard deviation, 342
Standard lapse, 481
Standard parallel, 27
Standard time broadcasts, 282
standard zero crossing 174
Standing orders, 370
Standing waves, 447
Star charts, 250
Star clouds, 225
Star finder, 250, 259
Star globe, 250
Stars, 224, 247
station pressure 521
Steering error, 102
STELLA 295
Stereographic projection, 24, 30
Stooping, 497
Storm surge, 518
Storm tides, 446, 518
Storm wave, 518
Straight angle, 317
Straight line, 317
Stratocumulus (Sc), 533
Stratosphere, 481
Stratus (St), 528, 534
Stream, 433
Sub-tropical jet stream (STJ), 481
Subastral point, 246
Sublunar point, 130, 246
Subpermanent magnetism, 82
Subsatellite point, 246
Subsolar point, 246
Substellar point, 246
Summary Of Corrections, 59
Summer solstice, 229
Sumner line, 8
Sun 220
Sun cross, 498
Sun dog, 498
Sun pillar, 498
Sunspots, 220
Super high frequency, 158
Super-refraction, 153
Superior conjunction, 221
Superior mirage, 497
Superior planets, 221, 222
Supernova, 225
supersaturated 523
Supplement, 317
Supplementary angle, 317
Surf, 444
Surging breaker, 449
Swath survey systems, 412
Sweat, 522
Swell, 441, 527
Swing circle, 121
Synodic period, 222
Synodical month, 134
Synoptic oceanography, 432
Synoptic weather considerations, 549
system area monitor 174
system electronic navigation chart, 199
Systematic errors, 341

T

Tabular iceberg, 455
Tabular Sight Reduction 295

Tabulated declination, 299
Taking a sight, 264
Taking departure, 100
Tangent arc, 498
Tangent, geometric, 319
Tangent screw, 262
Tasman Front, 437
Tehuantepecer, 494
Telescope, 262
Temperate zones, 230
Temperature 521
Temperature error 521
Temperature measurement, 522
Temporary geographic grid (TGG), 34
Tenting, 456
Terrestrial magnetism, 82
Thawholes, 460
The Sailings, 3, 345
Thermal conductivity, 429
Thermal expansion, 428
Thermocline, 426
Thermohaline, 433
thermometer 522
Thunder, 499
Tidal current, 102, 129, 138
Tidal current charts, 147
Tidal current periods and cycles, 140
Tidal current tables, 143, 145
Tidal currents, 143, 526
Tidal cycles, 136
Tidal day, 134
tidal day 136
Tidal heights, 143
Tidal waves, 446, 518
Tide calculations, 330
Tide predictions for reference stations, 144
Tide predictions for subordinate stations, 144
Tide Tables, 144
Tide waves, 447
Time, 232, 275
Time balls, 6
time delay lattice 173
Time diagram, 239
time difference 173
Time meridian, 278
Time of sunrise, 291
Time of sunset, 291
Time sight, 7
Time signals, 283
Tokyo Datum, 19
Topmarks, 74
Torrid zone, 230
Towering, 497
Track made good by plotting running fixes, 122
tracking and lock phase 174

Trackline SURPIC, 401
tractive forces 131
Trade winds, 484
Traffic lane, 383
Traffic separation scheme, 383, 384
Transducer, 410
Transfer, 107
transfer 107
Transit, 161
Transit of the sun, 221
Transition to piloting, 112
Transmissometer, 429, 536
transmissometer 536
Transmitters, 158
Transparency, 429
Transversal, 317
Transverse Mercator projections, 25
Transverse orthomorphic projection, 25
Transverse projections, 23
Traverse, 18, 353
Traverse sailing, 331, 346, 353
Traverse tables, 351
Triangles, 318
Triangulation, 17
Trigonometric functions, 321
Trigonometric identity, 324
Trigonometry, 320
Trilateration, 18
Triquadrantal spherical triangle, 327
Tropic lower low water (TcLLW), 137
Tropic of Cancer, 230
Tropic of Capricorn, 230
Tropic tides, 134
Tropical cyclone, 503
Tropical cyclones, avoidance, 510
Tropical cyclones, locating center, 512
Tropical cyclones: origin, season, and frequency, 503
Tropical depression, 503
Tropical disturbance, 503
Tropical month, 134
Tropical year, 233
Tropopause, 481
Troposphere, 481
true display mode, 200
True heading, 97
True wind, 523
Tsunamis, 446
Tsushima Current, 436
Turbidity currents, 430
turning point 107
Twilight, 291
Two-way route, 384
Types of marks, 73
Types of sailings, 346
Typhoon, 503

U

U.S. Coast and Geodetic Survey, 9
U.S. Coast Guard Districts, 61

Ultra high frequency, 158
Ultraviolet, 497
Undercurrents, 438
underscale, 199
Uniform State Waterway Marking System (USWMS), 80
United States Coast Guard, 10
United States Naval Observatory, 11
United States Navy, 11
Universal polar stereographic (UPS) grid, 31, 34
Universal time, 232, 233
Universal Transverse Mercator (UTM), 26, 34
Upper air observations, 536
Upper branch, 235
Upper meridian passage, 276
Upper transit, 238
Uranus, 223
Ursa Major, 254
USCG Light Lists, 57
Use and stowage of charts, 49
User equivalent range error (UERE), 168
Using charts, 49

V

Variable stars, 225
Variation, 3, 82, 97
Vector format, 200
Vernal equinox, 229, 275
Vernier, 262
Vernier sextant, 263
Vertex, 317
Vertical angle, 317
Vertical datum, 19
Vertical surveying, 18
Vertices, 318
Very high frequency, 157
Very low frequency, 157
Vessel Traffic Services (VTS), 386
Viscosity, 427
Visibility 536
Visibility measurement, 536
Visible horizon, 238
Volcanic activity, 415
Voluntary Observation Ship (VOS) program 520
voyage data recorder, 205
Voyage preparation, 368
VTS Houston-Galveston, 388
VTS New York, 387
VTS Prince William Sound, 389
VTS Puget Sound, 388
VTS San Francisco, 387

W

Warm front, 489
Warning Sounding, 368
Warship ECDIS (WECDIS), 210
Watch circle, 71
Watch relief procedures, 370
Watch Time (WT), 280
Water sky, 468
Waterspout, 494
Wave characteristics, 441
Wave front, 151
Wave height, 333, 441, 548
Wave interference, 153
Wave measurement aboard ship, 445
Wave period (P), 441
Wave speed, 333
Wavelength, 151, 441
Waves, causes, 441
Waypoint navigation, 184
Waypoints, 214
waypoints 173
Weather, 481
Weather advisory, 555
Weather broadcasts and radiofacsimile, 510
Weather forecast dissemination, 500
Weather observations, 519
Weather routing, 545
West Greenland Current, 435
West Wind Drift, 434
Western Rivers System, 79
Whistle buoys, 71
Wind, 548
Wind driven currents, 433
Wind measurement, 523
Wind shifts, 527
Wind speed, 525
wind vane 523
Wind's duration, 525
Winter solstice, 229
World Geodetic Reference System (GEOREF), 34, 210
World Geodetic System, 19
World Geodetic System of 1960, 20
World Geodetic System of 1972, 20
World Geodetic System of 1984, 20
World Port Index Pub. 150, 58
Wreck buoys, 71
Wrecks/man-made obstructions, 415

X

X-shaped topmarks, 74
xx 199

	\mathbf{Y}
Year, 232	
Young ice, 456	
	\mathbf{Z}

Zenith, 235

Zenith distance, 240
Zenithal projection, 23, 29
Zodiac, 231
Zodiacal light, 224
Zone description (ZD), 278
Zone meridian, 278
Zone time (ZT), 233, 278

[^0]: correspond to the meridian angle in time units as given in the Increments and Corrections section of the

