

Figure 1527b. The horizon system of coordinates, showing measurement of altitude, zenith distance, azimuth, and azimuth angle .

| Earth | Celestial Equator | Horizon | Ecliptic |
| :--- | :--- | :--- | :--- |
| equator | celestial equator | horizon | ecliptic |
| poles | celestial poles | zenith; nadir | ecliptic poles |
| meridians | hours circle; celestial meridians | vertical circles | circles of latitude |
| prime meridian | hour circle of Aries | principal or prime vertical circle | circle of latitude through Aries |
| parallels | parallels of declination | parallels of altitude | parallels of latitude |
| latitude | declination | altitude | celestial altitude |
| colatitude | polar distance | zenith distance | celestial colatitude |
| longitude | SHA; RA; GHA; LHA; t | azimuth; azimuth angle; amplitude | celestial longitude |

Table 1527. The four systems of celestial coordinates and their analogous terms.

As shown in Figure 1527b, altitude is angular distance above the horizon. It is measured along a vertical circle, from $0^{\circ}$ at the horizon through $90^{\circ}$ at the zenith. Altitude measured from the visible horizon may exceed $90^{\circ}$ because of the dip of the horizon, as shown in Figure 1526. Angular distance below the horizon, called negative altitude, is provided for by including certain negative altitudes in some
tables for use in celestial navigation. All points having the same altitude lie along a parallel of altitude.

Zenith distance ( z ) is angular distance from the zenith, or the arc of a vertical circle between the zenith and a point on the celestial sphere. It is measured along a vertical circle from $0^{\circ}$ through $180^{\circ}$. It is usually considered the complement of altitude. For a body above the celestial
horizon it is equal to $90^{\circ}-\mathrm{h}$ and for a body below the celestial horizon it is equal to $90^{\circ}-(-\mathrm{h})$ or $90^{\circ}+\mathrm{h}$.

The horizontal direction of a point on the celestial sphere, or the bearing of the geographical position, is called azimuth or azimuth angle depending upon the method of measurement. In both methods it is an arc of the horizon (or parallel of altitude), or an angle at the zenith. It is azimuth $(\mathrm{Zn})$ if measured clockwise through $360^{\circ}$, starting at the north point on the horizon, and azimuth angle ( Z ) if measured either clockwise or counterclockwise through $180^{\circ}$, starting at the north point of the horizon in north latitude and the south point of the horizon in south latitude.

The ecliptic system is based upon the ecliptic as the primary great circle, analogous to the equator. The points $90^{\circ}$ from the ecliptic are the north and south ecliptic poles. The series of great circles through these poles, analogous to meridians, are circles of latitude. The circles parallel to the plane of the ecliptic, analogous to parallels on the Earth, are parallels of latitude or circles of longitude. Angular distance north or south of the ecliptic, analogous to latitude, is celestial latitude. Celestial longitude is measured eastward along the ecliptic through $360^{\circ}$, starting at the vernal equinox. This system of coordinates is of interest chiefly to astronomers.

The four systems of celestial coordinates are analogous to each other and to the terrestrial system, although each has distinctions such as differences in directions, units, and limits of measurement. Table 1527 indicates the analogous term or terms under each system.

## 1528. Diagram on the Plane of the Celestial Meridian

From an imaginary point outside the celestial sphere and over the celestial equator, at such a distance that the view would be orthographic, the great circle appearing as the outer limit would be a celestial meridian. Other celestial meridians would appear as ellipses. The celestial equator would appear as a diameter $90^{\circ}$ from the poles, and parallels of declination as straight lines parallel to the equator. The view would be similar to an orthographic map of the Earth.

A number of useful relationships can be demonstrated by drawing a diagram on the plane of the celestial meridian showing this orthographic view. Arcs of circles can be substituted for the ellipses without destroying the basic relationships. Refer to Figure 1528a. In the lower diagram the circle represents the celestial meridian, $\mathrm{QQ}^{\prime}$ the celestial equator, Pn and Ps the north and south celestial poles, respectively. If a star has a declination of $30^{\circ} \mathrm{N}$, an angle of $30^{\circ}$ can be measured from the celestial equator, as shown. It could be measured either to the right or left, and would have been toward the south pole if the declination had been south. The parallel of declination is a line through this point and parallel to the celestial equator. The star is somewhere on this line (actually a circle viewed on edge).

To locate the hour circle, draw the upper diagram so that Pn is directly above Pn of the lower figure (in line with
the polar axis Pn-Ps), and the circle is of the same diameter as that of the lower figure. This is the plan view, looking down on the celestial sphere from the top. The circle is the celestial equator. Since the view is from above the north celestial pole, west is clockwise. The diameter $\mathrm{QQ}^{\prime}$ is the celestial meridian shown as a circle in the lower diagram. If the right half is considered the upper branch, local hour angle is measured clockwise from this line to the hour circle, as shown. In this case the LHA is $80^{\circ}$. The intersection of the hour circle and celestial equator, point A , can be projected down to the lower diagram (point $\mathrm{A}^{\prime}$ ) by a straight line parallel to the polar axis. The elliptical hour circle can be represented approximately by an arc of a circle through A', Pn, Ps. The center of this circle is somewhere along the celestial equator line $\mathrm{QQ}^{\prime}$, extended if necessary. It is usually found by trial and error. The intersection of the hour circle and parallel of declination locates the star.

Since the upper diagram serves only to locate point $\mathrm{A}^{\prime}$ in the lower diagram, the two can be combined. That is, the LHA arc can be drawn in the lower diagram, as shown, and point A projected upward to $\mathrm{A}^{\prime}$. In practice, the upper diagram is not drawn, being shown here for illustrative purposes.

In this example the star is on that half of the sphere toward the observer, or the western part. If LHA had been greater than $180^{\circ}$, the body would have been on the eastern or "back" side.

From the east or west point over the celestial horizon, the orthographic view of the horizon system of coordinates would be similar to that of the celestial equator system from a point over the celestial equator, since the celestial meridian is also the principal vertical circle. The horizon would appear as a diameter, parallels of altitude as straight lines parallel to the horizon, the zenith and nadir as poles $90^{\circ}$ from the horizon, and vertical circles as ellipses through the zenith and nadir, except for the principal vertical circle, which would appear as a circle, and the prime vertical, which would appear as a diameter perpendicular to the horizon.

A celestial body can be located by altitude and azimuth in a manner similar to that used with the celestial equator system. If the altitude is $25^{\circ}$, this angle is measured from the horizon toward the zenith and the parallel of altitude is drawn as a straight line parallel to the horizon, as shown at $\mathrm{hh}^{\prime}$ in the lower diagram of Figure 1528b. The plan view from above the zenith is shown in the upper diagram. If north is taken at the left, as shown, azimuths are measured clockwise from this point. In the figure the azimuth is $290^{\circ}$ and the azimuth angle is $\mathrm{N} 70^{\circ} \mathrm{W}$. The vertical circle is located by measuring either arc. Point A thus located can be projected vertically downward to $\mathrm{A}^{\prime}$ on the horizon of the lower diagram, and the vertical circle represented approximately by the arc of a circle through A' and the zenith and nadir. The center of this circle is on NS, extended if necessary. The body is at the intersection of the parallel of altitude and the vertical circle. Since the upper diagram serves only to locate $\mathrm{A}^{\prime}$ on the lower diagram, the two can


Figure 1528a. Measurement of celestial equator system of coordinates.
be combined, point A located on the lower diagram and projected upward to $\mathrm{A}^{\prime}$, as shown. Since the body of the example has an azimuth greater than $180^{\circ}$, it is on the western or "front" side of the diagram.

Since the celestial meridian appears the same in both the celestial equator and horizon systems, the two diagrams can be combined and, if properly oriented, a body can be located by one set of coordinates, and the coordinates of the other system can be determined by measurement.

Refer to Figure 1528c, in which the black lines represent the celestial equator system, and the red lines the horizon system. By convention, the zenith is shown at the top and the north point of the horizon at the left. The west point on the horizon is at the center, and the east point directly behind it. In the figure the latitude is $37^{\circ} \mathrm{N}$. Therefore, the zenith is $37^{\circ}$ north of the celestial equator. Since the zenith is established at the top of the diagram, the equator can be found by measuring an arc of $37^{\circ}$ toward the south, along the celestial meridian. If the declination is $30^{\circ} \mathrm{N}$ and the LHA is $80^{\circ}$, the body can be located as shown


Figure 1528b. Measurement of horizon system of coordinates.
by the black lines, and described above.
The altitude and azimuth can be determined by the reverse process to that described above. Draw a line hh' through the body and parallel to the horizon, NS. The altitude, $25^{\circ}$, is found by measurement, as shown. Draw the arc of a circle through the body and the zenith and nadir. From $\mathrm{A}^{\prime}$, the intersection of this arc with the horizon, draw a vertical line intersecting the circle at A. The azimuth, $\mathrm{N} 70^{\circ} \mathrm{W}$, is found by measurement, as shown. The prefix N is applied to agree with the latitude. The body is left (north) of ZNa , the prime vertical circle. The suffix W applies because the LHA, $80^{\circ}$, shows that the body is west of the meridian.

If altitude and azimuth are given, the body is located by means of the red lines. The parallel of declination is then drawn parallel to $\mathrm{QQ}^{\prime}$, the celestial equator, and the declination determined by measurement. Point $L^{\prime}$ is located by drawing the arc of a circle through Pn, the star, and Ps. From $\mathrm{L}^{\prime}$ a line is drawn perpendicular to $\mathrm{QQ}^{\prime}$, locating L . The meridian angle is then found by measurement. The declination is known to be north because the body is between


Figure 1528c. Diagram on the plane of the celestial meridian.
the celestial equator and the north celestial pole. The meridian angle is west, to agree with the azimuth, and hence LHA is numerically the same.

Since QQ' and PnPs are perpendicular, and ZNa and NS are also perpendicular, arc NPn is equal to arc ZQ. That is, the altitude of the elevated pole is equal to the declination of the zenith, which is equal to the latitude. This relationship is the basis of the method of determining latitude by an observation of Polaris.

The diagram on the plane of the celestial meridian is useful in approximating a number of relationships. Consider Figure 1528d. The latitude of the observer (NPn or ZQ ) is $45^{\circ} \mathrm{N}$. The declination of the Sun (Q4) is $20^{\circ} \mathrm{N}$. Neglecting the change in declination for one day, note the following: At sunrise, position 1, the Sun is on the horizon (NS), at the "back" of the diagram. Its altitude, h , is $0^{\circ}$. Its azimuth angle, Z , is the $\operatorname{arc} \mathrm{NA}, \mathrm{N} 63^{\circ} \mathrm{E}$. This is prefixed N to agree with the latitude and suffixed E to agree with the meridian angle of the Sun at sunrise. Hence, $\mathrm{Zn}=063^{\circ}$. The amplitude, A , is the $\operatorname{arc} \mathrm{ZA}, \mathrm{E} 27^{\circ} \mathrm{N}$. The meridian angle, t , is the arc QL, $110^{\circ} \mathrm{E}$. The suffix E is applied because the Sun is east of the meridian at rising. The LHA is $360^{\circ}-$ $110^{\circ}=250^{\circ}$.

As the Sun moves upward along its parallel of declination, its altitude increases. It reaches position 2 at about 0600 , when $t=90^{\circ} \mathrm{E}$. At position 3 it is on the prime vertical, ZNa . Its azimuth angle, Z , is $\mathrm{N} 90^{\circ} \mathrm{E}$, and $\mathrm{Zn}=$ $090^{\circ}$. The altitude is Nh or $\mathrm{Sh}, 27^{\circ}$.

Moving on up its parallel of declination, it arrives at position 4 on the celestial meridian about noon-when $t$ and LHA are both $0^{\circ}$, by definition. On the celestial meridian a


Figure 1528d. A diagram on the plane of the celestial meridian for lat. $45^{\circ} \mathrm{N}$.
body's azimuth is $000^{\circ}$ or $180^{\circ}$. In this case it is $180^{\circ}$ because the body is south of the zenith. The maximum altitude occurs at meridian transit. In this case the arc S 4 represents the maximum altitude, $65^{\circ}$. The zenith distance, z , is the $\operatorname{arc} \mathrm{Z} 4$, $25^{\circ}$. A body is not in the zenith at meridian transit unless its declination's magnitude and name are the same as the latitude.

Continuing on, the Sun moves downward along the "front" or western side of the diagram. At position 3 it is again on the prime vertical. The altitude is the same as when previously on the prime vertical, and the azimuth angle is numerically the same, but now measured toward the west. The azimuth is $270^{\circ}$. The Sun reaches position 2 six hours after meridian transit and sets at position 1. At this point, the azimuth angle is numerically the same as at sunrise, but westerly, and $\mathrm{Zn}=360^{\circ}-63^{\circ}=297^{\circ}$. The amplitude is W $27^{\circ} \mathrm{N}$.

After sunset the Sun continues on downward, along its parallel of declination, until it reaches position 5, on the lower branch of the celestial meridian, about midnight. Its negative altitude, arc N 5 , is now greatest, $25^{\circ}$, and its azimuth is $000^{\circ}$. At this point it starts back up along the "back" of the diagram, arriving at position 1 at the next sunrise, to start another cycle.

Half the cycle is from the crossing of the $90^{\circ}$ hour circle (the PnPs line, position 2) to the upper branch of the celestial meridian (position 4) and back to the PnPs line (position 2). When the declination and latitude have the same name (both north or both south), more than half the parallel of declination (position 1 to 4 to 1 ) is above the horizon, and the body is above the horizon more than half the
time, crossing the $90^{\circ}$ hour circle above the horizon. It rises and sets on the same side of the prime vertical as the elevated pole. If the declination is of the same name but numerically smaller than the latitude, the body crosses the prime vertical above the horizon. If the declination and latitude have the same name and are numerically equal, the body is in the zenith at upper transit. If the declination is of the same name but numerically greater than the latitude, the body crosses the upper branch of the celestial meridian between the zenith and elevated pole and does not cross the prime vertical. If the declination is of the same name as the latitude and complementary to it $\left(\mathrm{d}+\mathrm{L}=90^{\circ}\right)$, the body is on the horizon at lower transit and does not set. If the declination is of the same name as the latitude and numerically greater than the colatitude, the body is above the horizon during its entire daily cycle and has maximum and minimum altitudes. This is shown by the black dotted line in Figure 1528d.

If the declination is $0^{\circ}$ at any latitude, the body is above the horizon half the time, following the celestial equator $\mathrm{QQ}^{\prime}$, and rises and sets on the prime vertical. If the declination is of contrary name (one north and the other south), the body is above the horizon less than half the time and crosses the $90^{\circ}$ hour circle below the horizon. It rises and sets on the opposite side of the prime vertical from the elevated pole. If the declination is of contrary name and numerically smaller than the latitude, the body crosses the prime vertical below the horizon. If the declination is of contrary name

Figure 1528e. A diagram on the plane of the celestial meridian for lat. $45^{\circ} \mathrm{S}$.

and numerically equal to the latitude, the body is in the nadir at lower transit. If the declination is of contrary name and complementary to the latitude, the body is on the horizon at upper transit. If the declination is of contrary name and numerically greater than the colatitude, the body does not rise.

All of these relationships, and those that follow, can be derived by means of a diagram on the plane of the celestial meridian. They are modified slightly by atmospheric refraction, height of eye, semidiameter, parallax, changes in declination, and apparent speed of the body along its diurnal circle.

It is customary to keep the same orientation in south latitude, as shown in Figure 1528e. In this illustration the latitude is $45^{\circ} \mathrm{S}$, and the declination of the body is $15^{\circ} \mathrm{N}$. Since Ps is the elevated pole, it is shown above the southern horizon, with both SPs and ZQ equal to the latitude, $45^{\circ}$. The body rises at position 1, on the opposite side of the prime vertical from the elevated pole. It moves upward along its parallel of declination to position 2, on the upper branch of the celestial meridian, bearing north; and then it moves downward along the "front" of the diagram to position 1, where it sets. It remains above the horizon for less than half the time because declination and latitude are of contrary name. The azimuth at rising is arc NA, the amplitude ZA, and the azimuth angle SA. The altitude circle at meridian transit is shown at hh'.


Figure 1528f. Locating a point on an ellipse of a diagram on the plane of the celestial meridian.

A diagram on the plane of the celestial meridian can be used to demonstrate the effect of a change in latitude. As the latitude increases, the celestial equator becomes more nearly parallel to the horizon. The colatitude becomes smaller increasing the number of circumpolar bodies and those which neither rise nor set. It also increases the difference in the length of the days between summer and winter. At the poles celestial bodies circle the sky, parallel to the horizon.

At the equator the $90^{\circ}$ hour circle coincides with the horizon. Bodies rise and set vertically; and are above the horizon half the time. At rising and setting the amplitude is equal to the declination. At meridian transit the altitude is equal to the codeclination. As the latitude changes name, the same-contrary name relationship with declination reverses. This accounts for the fact that one hemisphere has winter while the other is having summer.

NAVIGATIONAL COORDINATES

| Coordinate | Symbol | Measured from | Measured along | Direction | Measured to | Units | Precision | $\begin{aligned} & \text { Maximum } \\ & \text { value } \end{aligned}$ | Labels |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| latitude | L, lat. | equator | meridian | N, S | parallel | ${ }^{\circ}$, | $0^{\prime} .1$ | $90^{\circ}$ | N, S |
| colatitude | colat. | poles | meridian | S, N | parallel | ${ }^{\circ},{ }^{\prime}$ | $0^{\prime} .1$ | $90^{\circ}$ | - |
| longitude | $\lambda$, long. | prime meridian | parallel | E, W | local meridian | ${ }^{\circ}$, | $0^{\prime} .1$ | $180^{\circ}$ | E, W |
| declination | d, dec. | celestial equator | hour circle | N, S | parallel of declination | ${ }^{\circ},{ }^{\prime}$ | $0^{\prime} .1$ | $90^{\circ}$ | N, S |
| polar distance | p | elevated pole | hour circle | S, N | parallel of declination | ${ }^{\circ},{ }^{\prime}$ | $0^{\prime} .1$ | $180^{\circ}$ | - |
| altitude | h | horizon | vertical circle | up | parallel of altitude | ${ }^{\circ},{ }^{\prime}$ | $0^{\prime} .1$ | $90^{\circ} *$ | - |
| zenith distance | z | zenith | vertical circle | down | parallel of altitude | ${ }^{\circ},{ }^{\prime}$ | $0^{\prime} .1$ | $180^{\circ}$ | - |
| azimuth | Zn | north | horizon | E | vertical circle | - | $0^{\circ} .1$ | $360^{\circ}$ | - |
| azimuth angle | Z | north, south | horizon | E, W | vertical circle | - | $0^{\circ} .1$ | $180^{\circ}$ or $90^{\circ}$ | N, S...E, W |
| amplitude | A | east, west | horizon | N, S | body | - | $0^{\circ} .1$ | $90^{\circ}$ | E, W...N, S |
| Greenwich hour angle | GHA | Greenwich celestial meridian | parallel of declination | W | hour circle | ${ }^{\circ},{ }^{\prime}$ | $0^{\prime} .1$ | $360^{\circ}$ | - |
| local hour angle | LHA | local celestial meridian | parallel of declination | W | hour circle | ${ }^{\circ},{ }^{\prime}$ | $0^{\prime} .1$ | $360^{\circ}$ | - |
| meridian angle | t | local celestial meridian | parallel of declination | E, W | hour circle | ${ }^{\circ}$,' | $0^{\prime} .1$ | $180^{\circ}$ | E, W |
| sidereal hour angle | SHA | hour circle of vernal equinox | parallel of declination | W | hour circle | ${ }^{\circ}$,' | $0^{\prime} .1$ | $360^{\circ}$ | - |
| right ascension | RA | hour circle of vernal equinox | parallel of declination | E | hour circle | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |
| Greenwich mean time | GMT | lower branch Greenwich celestial meridian | parallel of declination | W | hour circle mean Sun | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |
| local mean time | LMT | lower branch local celestial meridian | parallel of declination | W | hour circle mean Sun | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |
| zone time | ZT | lower branch zone celestial meridian | parallel of declination | W | hour circle mean Sun | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |
| Greenwich apparent time | GAT | lower branch Greenwich celestial meridian | parallel of declination | W | hour circle apparent Sun | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |
| local apparent time | LAT | lower branch local celestial meridian | parallel of declination | W | hour circle apparent Sun | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |
| Greenwich sidereal time | GST | Greenwich celestial meridian | parallel of declination | W | hour circle vernal equinox | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |
| local sidereal time | LST | local celestial meridian | parallel of declination | W | hour circle vernal equinox | $\mathrm{h}, \mathrm{m}, \mathrm{s}$ | $1^{\text {S }}$ | $24^{\text {h }}$ | - |

Figure 1528g. Navigational Coordinates.

The error arising from showing the hour circles and vertical circles as arcs of circles instead of ellipses increases with increased declination or altitude. More accurate results can be obtained by measurement of azimuth on the parallel of altitude instead of the horizon, and of hour angle on the parallel of declination instead of the celestial equator. Refer to Figure 1528f. The vertical circle shown is for a body having an azimuth angle of $S 60^{\circ} \mathrm{W}$. The arc of a circle is shown in black, and the ellipse in red. The black arc is obtained by measurement around the horizon, locating A' by means of A , as previously described. The intersection of this arc with the altitude circle at $60^{\circ}$ places the body at M. If a semicircle is drawn with the altitude circle as a diameter, and the azimuth angle measured around this, to B , a perpendicular to the hour circle locates the body at $\mathrm{M}^{\prime}$, on the ellipse. By this method the altitude circle, rather than the horizon, is, in effect, rotated through $90^{\circ}$ for the measurement. This refinement is seldom used because actual values are usually found mathematically, the diagram on the plane of the meridian being used primarily to indicate relationships.

With experience, one can visualize the diagram on the plane of the celestial meridian without making an actual drawing. Devices with two sets of spherical coordinates, on either the orthographic or stereographic projection, pivoted at the center, have been produced commercially to provide a mechanical diagram on the plane of the celestial meridian. However, since the diagram's principal use is to illustrate certain relationships, such a device is not a necessary part of the navigator's equipment.

Figure 1528 g summarizes navigation coordinate systems.

## 1529. The Navigational Triangle

A triangle formed by arcs of great circles of a sphere is called a spherical triangle. A spherical triangle on the celestial sphere is called a celestial triangle. The spherical triangle of particular significance to navigators is called the navigational triangle, formed by arcs of a celestial meridian, an hour circle, and a vertical circle. Its vertices are the elevated pole, the zenith, and a point on the celestial sphere (usually a celestial body). The terrestrial counterpart is also called a navigational triangle, being formed by arcs of two meridians and the great circle connecting two places on the Earth, one on each meridian. The vertices are the two places and a pole. In great-circle sailing these places are the point of departure and the destination. In celestial navigation they are the assumed position (AP) of the observer and the geographical position (GP) of the body (the point having the body in its zenith). The GP of the Sun is sometimes called the subsolar point, that of the Moon the sublunar point, that of a satellite (either natural or artificial) the subsatellite point, and that of a star its substellar or subastral point. When used to solve a celestial observation, either the celestial or terrestrial triangle may be called the astronomical triangle.

The navigational triangle is shown in Figure 1529a on a diagram on the plane of the celestial meridian. The Earth is at the center, O . The star is at M , dd' is its parallel of declination, and hh' is its altitude circle.


Figure 1529a. The navigational triangle.
In the figure, arc QZ of the celestial meridian is the latitude of the observer, and PnZ, one side of the triangle, is the colatitude. Arc AM of the vertical circle is the altitude of the body, and side ZM of the triangle is the zenith distance, or coaltitude. Arc LM of the hour circle is the declination of the body, and side PnM of the triangle is the polar distance, or codeclination.

The angle at the elevated pole, ZPnM , having the hour circle and the celestial meridian as sides, is the meridian angle, t . The angle at the zenith, PnZM, having the vertical circle and that arc of the celestial meridian, which includes the elevated pole, as sides, is the azimuth angle. The angle at the celestial body, ZMPn, having the hour circle and the vertical circle as sides, is the parallactic angle ( X ) (sometimes called the position angle), which is not generally used by the navigator.

A number of problems involving the navigational triangle are encountered by the navigator, either directly or indirectly. Of these, the most common are:

1. Given latitude, declination, and meridian angle, to find altitude and azimuth angle. This is used in the reduction of a celestial observation to establish a line of position.
2. Given latitude, altitude, and azimuth angle, to find declination and meridian angle. This is used to identify an unknown celestial body.


Figure 1529b. The navigational triangle in perspective.
3. Given meridian angle, declination, and altitude, to find azimuth angle. This may be used to find azimuth when the altitude is known.
4. Given the latitude of two places on the Earth and the difference of longitude between them, to find the initial great-circle course and the great-circle
distance. This involves the same parts of the triangle as in 1, above, but in the terrestrial triangle, and hence is defined differently.

Both celestial and terrestrial navigational triangles are shown in perspective in Figure 1529b.

## IDENTIFICATION OF STARS AND PLANETS

## 1530. Introduction

A basic requirement of celestial navigation is the ability to identify the bodies observed. This is not difficult because relatively few stars and planets are commonly used for navigation, and various aids are available to assist in their identification. See Figure

1530a and Figure 1532a.
Navigational calculators or computer programs can identify virtually any celestial body observed, given inputs of DR position, azimuth, and altitude. In fact, a complete round of sights can be taken and solved without knowing the names of a single observed body. Once the data is entered, the computer identifies the bodies, solves the sights,

NAVIGATIONAL STARS AND THE PLANETS

| Name | Pronunciation | Bayer name |  | Origin of name | Meaning of name | Distance* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acamar |  | $\theta$ Eridani |  | Arabic | another form of Achernar | 120 |
| Achernar |  | ${ }_{\alpha}^{\alpha}$ Eridani |  | Arabic | end of the river (Eridanus) | ${ }^{72}$ |
| ${ }_{\text {A Acrux }}^{\text {Adhara }}$ |  | ${ }_{\alpha}$ Crucis |  | Modern Arabic | coined from Bayer name | ${ }_{350}^{220}$ |
| Adhara |  | ${ }_{\alpha}$ Canis Majoris |  | Arabic Arabic | the virgin(s) follower (of the Pleiades) | 350 64 |
| Alioth |  | ${ }_{\text {a }}{ }^{\alpha}$ Tauri Ursa Majoris |  | Arabic | another form of Capella | 49 |
| Alkaid |  | $\eta$ Ursa Majoris |  | Arabic | leader of the daughters of the bier | 190 |
| Al $\mathrm{Na}^{\prime} \mathrm{ir}$ |  |  |  | Arabic | bright one (of the fish's tail) | 90 |
| Alnilam | all-nãr' | ${ }^{\alpha}$ Orionis |  | Arabic | string of pearls | 410 |
| Alphard | al'nillam |  |  | Arabic Arabic | solitary star of the serpent feeble one (in the erown) | 200 76 |
| Alphecca |  | ${ }_{\alpha}^{\boldsymbol{\alpha}}$ Andromeda |  | Arabic | feeble one (in the erown) the horse's navel | 120 |
| Altair |  | $\alpha$ Aquilae |  | Arabic | flying eagle or vulture | 16 |
| Ankaa |  | ${ }_{\alpha}^{\alpha}$ Phoenicis |  | Arabic | coined name | 93 |
| Antares |  |  |  | Greek | rival of Mars (in color) | 250 |
| Arcturus |  |  |  | Greek | the bear's guard | 37 |
| Atria |  | ${ }_{\alpha}^{\alpha}$ Trianguli Australis |  | Modern | coined from Bayer name | 130 |
| Avior | a'slobr | ${ }_{\gamma}{ }^{\text {c Carinae }}$ Orionis |  | Modern | coined name | 350 |
| Bellatrix | bél $1{ }^{\text {ät }}$ triks.bét 'el jū |  |  | Latin | female warrior | 250 |
| Betelgeuse |  | ${ }_{\alpha}$ Orionis |  | Arabic | the arm pit (of Orion) | ${ }_{230}$ |
| Canopus | bět'èl:jūz. <br> $\mathrm{k} \dot{\alpha} \cdot \mathrm{nơ}$ 'püs | ${ }_{\boldsymbol{\alpha}}^{\boldsymbol{\alpha}}$ Carinae |  | Greek | city of ancient Egypt | 230 46 |
| Capelia |  | ${ }_{\alpha}^{\alpha}$ Cygni |  | Arabic | lail of the hen | 600 |
| Denebola |  |  |  | Arabic | tail of the lion | 42 |
| Diphda | dif'd ${ }^{\text {a }}$ d | ${ }_{\beta}^{\beta}$ Ceti |  | Arabic | the second frog (Fomalhaut was once | 57 |
| Dubhe | dub ' ${ }^{\text {eld }}$ diath | $\alpha$ Ursa Majoris |  | Arabic | the bear's back | 100 |
| Elnath |  | ${ }_{\gamma}^{\beta}$ Tauri ${ }^{\text {Draconis }}$ |  | Arabic | one butting with horns | 130 |
| Eltanin |  |  |  | Arabic | head of the dragon | ${ }^{150}$ |
| Enif |  | ${ }_{\text {¢ P P Praconis }}$ |  | Arabic | nose of the horse | 250 |
| Fomalhaut | $\begin{aligned} & \begin{array}{l} \text { enn II } \\ \text { fól'mal.ôt } \end{array} \end{aligned}$ | $\alpha$ Piscis Austrini |  | Arabic | mouth of the southern fish | ${ }_{72} 23$ |
| Gacrux | fơ'mál•ôt gā'krūks | ${ }_{\gamma}^{\gamma}$ Crucis |  | Modern | coined from Bayer name | 72 |
| Cilenah |  | B Centauri |  | Arabic | right wing of the raven leg of the centaur | ${ }_{200}^{136}$ |
| $\underset{\text { Hamal }}{\text { Hadar }}$ |  |  |  | Arabic | full-grown lamb | 76 |
| Kaus Australis |  | ¢ Sagittarii |  | Ar., L. | southern part of the bow | ${ }^{163}$ |
| Kochab |  | $\boldsymbol{\beta}$ Ursa Minoris |  | Arabic | shortened form of "north star"' (named when it was that, c. 1500 BC-AD 300) | 100 |
| Markab | kơ'kåb | $\underset{\sim}{\alpha}$ Pegasi |  | Arabic | saddle (of Pegasus) | ${ }_{100}^{100}$ |
| Menkar |  | ${ }^{\alpha}{ }^{\alpha}$ O Centauri |  | Arabic | nose (of the whale) | 1. 100 |
| $\underset{\text { Miaplacidus }}{\substack{\text { Menkent } \\ \text { M }}}$ | měn'kênt <br> mi'á'plas'I.dũs |  |  | Modern | shoulder of the centaur quiet or still waters | ${ }_{86}$ |
| Mirfak | mir'tak | ${ }_{\text {a }}$ Persei |  | Arabic | elbow of the Pleiades | 130 |
| Nunki | nữ'ké | ${ }_{\alpha}^{\alpha}$ Pagavitarii |  | Bab. | constellation or the holy city (Eridu) | 150 250 |
| Peacock |  |  |  | Modern | coined from English name of constellation | 250 |
| Polaris Pollux | pól lā́ris pól'űks | $\alpha$ Ursa Minoris $\beta$ Geminorum |  | $\underset{\text { Latin }}{\text { Latin }}$ | the pole (star) Zeus' other twin son (Ca | 450 33 |
| Procyon | prö'sl-ǒn | $\alpha$ Canis Minoris |  | Greek | norum, is first twin) ${ }_{\text {nefore }}^{\text {nefore }}$ (he dog (rising before the dog | 11 |
| Rasalhague |  | ${ }_{\text {a }}^{\alpha}$ Ophiuchi |  | Arabic | head of the serpent charmer | 67 |
| Regulus |  |  |  | Latin | the prince | 67 |
| Rigel | rij ${ }^{\prime}$ | ${ }_{\alpha}^{\beta}$ Orionis |  | Arabic | foot (left foot of Orion) |  |
| Rigil Kentaurus | (ilijll kĕn tô'rũs | ${ }_{\boldsymbol{\alpha}}$ Centauri |  | Arabic | foot of the centaur | ${ }_{69}^{4.3}$ |
| Sabik ${ }_{\text {Schedar }}$ |  | $\alpha$ Cassiopeiae |  | Arabic Arabic | second winner or conqueror | 69 360 |
| Shaula | shêd'ar shôld |  |  | Arabic | cocked-up part of the scorpion's tail | 200 |
| Sirius | sir'I-üs |  |  | Greek | the scorching one (popularly, the dog | 8.6 |
| Spica Suhail | $\begin{aligned} & \text { spi'k } \dot{a}_{1}^{\prime} \\ & \text { sōohäl' } \end{aligned}$ | $\alpha$ Virginis <br> $\lambda$ Velorum |  | Latin Arabic | the ear of corn <br> shortened form of Al Suhail, one | 155 200 |
| Vega Zubenelgenubi | vê'gá $z \overline{O 0} \cdot b e ̄ n ' e ̀ l \cdot j e ̄ \cdot n u ̄ ’ b e ̉$ | $\alpha$ Lyrae <br> $\alpha$ Librae |  | Arabic Arabic | the falling eagle or vulture southern claw (of the scorpion) | 27 66 |
| PLANETS |  |  |  |  |  |  |
| Name | Pronunciation | Origin of name | Meaning of name |  |  |  |
| Mercury | mûr'kǘrl vè'nūs ûrth ${ }_{\mathrm{jOO}} \mathrm{ma}^{\mathrm{p} i-t e ̃ r}$ | Latin <br> Latin <br> Mid. Eng. <br> Latin <br> Latin | god of commerce and gain goddess of love |  |  |  |
| Venus |  |  |  |  |  |  |
| Earth |  |  |  |  |  |  |
| Jupiter |  |  | Olympian gods |  |  |  |
| Saturn | săt'èrn nèp'tūn plō'tō | Latin <br> Greek <br> Greek <br> Greek |  |  |  |  |
| Uranus |  |  | the personification of heaven |  |  |  |
| Neptune |  |  | god of the lower world (Hades) |  |  |  |
| Pluto |  |  |  |  |  |  |

Guide to pronunciations:
 circŭs, ârn
${ }^{\bullet}$ Distances in light-years. One light-year equals approximately $63,300 \mathrm{AU}$, or $5,880,000,000,000$ miles. Authorities differ on distances of the stars; the values given are representative.

Figure 1530a. Navigational stars and the planets.
and plots the results. In this way, the navigator can learn the stars by observation instead of by rote memorization.

No problem is encountered in the identification of the Sun and Moon. However, the planets can be mistaken for stars. A person working continually with the night sky recognizes a planet by its changing position among the relatively fixed stars. The planets are identified by noting their positions relative to each other, the Sun, the Moon, and the stars. They remain within the narrow limits of the zodiac, but are in almost constant motion relative to the stars. The magnitude and color may be helpful. The information needed is found in the Nautical Almanac. The "Planet Notes" near the front of that volume are particularly useful. Planets can also be identified by planet diagram, star finder, sky diagram, or by computation.

## 1531. Stars

The Nautical Almanac lists full navigational information on 19 first magnitude stars and 38 second magnitude stars, plus Polaris. Abbreviated information is listed for 115 more. Additional stars are listed in the Astronomical Almanac and in various star catalogs. About 6,000 stars of the sixth magnitude or brighter (on the entire celestial sphere) are visible to the unaided eye on a clear, dark night.

Stars are designated by one or more of the following naming systems:

- Common Name: Most names of stars, as now used, were given by the ancient Arabs and some by the Greeks or Romans. One of the stars of the Nautical Almanac, Nunki, was named by the Babylonians. Only a relatively few stars have names. Several of the stars on the daily pages of the almanacs had no name prior to 1953.
- Bayer's Name: Most bright stars, including those with names, have been given a designation consisting of a Greek letter followed by the possessive form of the name of the constellation, such as $\alpha$ Cygni (Deneb, the brightest star in the constellation Cygnus, the swan). Roman letters are used when there are not enough Greek letters. Usually, the letters are assigned in order of brightness within the constellation; however, this is not always the case. For example, the letter designations of the stars in Ursa Major or the Big Dipper are assigned in order from the outer rim of the bowl to the end of the handle. This system of star designation was suggested by John Bayer of Augsburg, Germany, in 1603. All of the 173 stars included in the list near the back of the Nautical Almanac are listed by Bayer's name, and, when applicable, their common name.
- Flamsteed's Number: This system assigns numbers to stars in each constellation, from west to east in the order in which they cross the celestial meridian. An example is 95 Leonis, the 95 th star in the constellation Leo. This system was suggested by John Flamsteed (1646-1719).
- Catalog Number: Stars are sometimes designated by the name of a star catalog and the number of the star as given in the catalog, such as A. G. Washington 632. In these catalogs, stars are listed in order from west to east, without regard to constellation, starting with the hour circle of the vernal equinox. This system is used primarily for fainter stars having no other designation. Navigators seldom have occasion to use this system.


## 1532. Star Charts

It is useful to be able to identify stars by relative position. A star chart (Figure 1532a and Figure 1532b) is helpful in locating these relationships and others which may be useful. This method is limited to periods of relatively clear, dark skies with little or no overcast. Stars can also be identified by the Air Almanac sky diagrams, a star finder, Pub.No.249, or by computation by hand or calculator.

Star charts are based upon the celestial equator system of coordinates, using declination and sidereal hour angle (or right ascension). The zenith of the observer is at the intersection of the parallel of declination equal to his latitude, and the hour circle coinciding with his celestial meridian. This hour circle has an SHA equal to $360^{\circ}$ LHA $\Upsilon$ (or RA = LHA $\Upsilon$ ). The horizon is everywhere $90^{\circ}$ from the zenith. A star globe is similar to a terrestrial sphere, but with stars (and often constellations) shown instead of geographical positions. The Nautical Almanac includes instructions for using this device. On a star globe the celestial sphere is shown as it would appear to an observer outside the sphere. Constellations appear reversed. Star charts may show a similar view, but more often they are based upon the view from inside the sphere, as seen from the Earth. On these charts, north is at the top, as with maps, but east is to the left and west to the right. The directions seem correct when the chart is held overhead, with the top toward the north, so the relationship is similar to the sky.

The Nautical Almanac has four star charts. The two principal ones are on the polar azimuthal equidistant projection, one centered on each celestial pole. Each chart extends from its pole to declination $10^{\circ}$ (same name as pole). Below each polar chart is an auxiliary chart on the Mercator projection, from $30^{\circ} \mathrm{N}$ to $30^{\circ} \mathrm{S}$. On any of these charts, the zenith can be located as indicated, to determine which stars are overhead. The horizon is $90^{\circ}$ from the zenith. The charts can also be used to determine the location of a star relative to surrounding stars.


Figure 1532a. Star chart from Nautical Almanac.


Figure 1532b. Star chart from Nautical Almanac.

|  | Fig. 1534 | Fig.1535 | Fig. 1536 | Fig. 1537 |
| :---: | :--- | :--- | :--- | :--- |
| Local sidereal time | 0000 | 0600 | 1200 | 1800 |
| LMT 1800 | Dec. 21 | Mar. 22 | June 22 | Sept. 21 |
| LMT 2000 | Nov. 21 | Feb. 20 | May 22 | Aug. 21 |
| LMT 2200 | Oct. 21 | Jan. 20 | Apr. 22 | July 22 |
| LMT 0000 | Sept. 22 | Dec. 22 | Mar. 23 | June 22 |
| LMT 0200 | Aug. 22 | Nov. 22 | Feb. 21 | May 23 |
| LMT 0400 | July 23 | Oct. 22 | Jan 21 | Apr. 22 |
| LMT 0600 | June 22 | Sept. 21 | Dec. 22 | Mar. 23 |

Table 1532. Locating the zenith on the star diagrams.

The star charts shown in Figure 1533 through Figure 1536, on the transverse Mercator projection, are designed to assist in learning Polaris and the stars listed on the daily pages of the Nautical Almanac. Each chart extends about $20^{\circ}$ beyond each celestial pole, and about $60^{\circ}$ (four hours) each side of the central hour circle (at the celestial equator). Therefore, they do not coincide exactly with that half of the celestial sphere above the horizon at any one time or place. The zenith, and hence the horizon, varies with the position of the observer on the Earth. It also varies with the rotation of the Earth (apparent rotation of the celestial sphere). The charts show all stars of fifth magnitude and brighter as they appear in the sky, but with some distortion toward the right and left edges.

The overprinted lines add certain information of use in locating the stars. Only Polaris and the 57 stars listed on the daily pages of the Nautical Almanac are named on the charts. The almanac star charts can be used to locate the additional stars given near the back of the Nautical Almanac and the Air Almanac. Dashed lines connect stars of some of the more prominent constellations. Solid lines indicate the celestial equator and useful relationships among stars in different constellations. The celestial poles are marked by crosses, and labeled. By means of the celestial equator and the poles, one can locate his zenith approximately along the mid hour circle, when this coincides with his celestial meridian, as shown in Table 1532. At any time earlier than those shown in Table 1532 the zenith is to the right of center, and at a later time it is to the left, approximately onequarter of the distance from the center to the outer edge (at the celestial equator) for each hour that the time differs from that shown. The stars in the vicinity of the North Pole can be seen in proper perspective by inverting the chart, so that the zenith of an observer in the Northern Hemisphere is up from the pole.

## 1533. Stars in the Vicinity of Pegasus

In autumn the evening sky has few first magnitude stars. Most are near the southern horizon of an observer in the latitudes of the United States. A relatively large number of second and third magnitude stars seem conspicuous, perhaps because of the small number of brighter stars. High in
the southern sky three third magnitude stars and one second magnitude star form a square with sides nearly $15^{\circ}$ of arc in length. This is Pegasus, the winged horse.

Only Markab at the southwestern corner and Alpheratz at the northeastern corner are listed on the daily pages of the Nautical Almanac. Alpheratz is part of the constellation Andromeda, the princess, extending in an arc toward the northeast and terminating at Mirfak in Perseus, legendary rescuer of Andromeda.

A line extending northward through the eastern side of the square of Pegasus passes through the leading (western) star of M-shaped (or W-shaped) Cassiopeia, the legendary mother of the princess Andromeda. The only star of this constellation listed on the daily pages of the Nautical Almanac is Schedar, the second star from the leading one as the configuration circles the pole in a counterclockwise direction. If the line through the eastern side of the square of Pegasus is continued on toward the north, it leads to second magnitude Polaris, the North Star (less than $1^{\circ}$ from the north celestial pole) and brightest star of Ursa Minor, the Little Dipper. Kochab, a second magnitude star at the other end of Ursa Minor, is also listed in the almanacs. At this season Ursa Major is low in the northern sky, below the celestial pole. A line extending from Kochab through Polaris leads to Mirfak, assisting in its identification when Pegasus and Andromeda are near or below the horizon.

Deneb, in Cygnus, the swan, and Vega are bright, first magnitude stars in the northwestern sky. The line through the eastern side of the square of Pegasus approximates the hour circle of the vernal equinox, shown at Aries on the celestial equator to the south. The Sun is at Aries on or about March 21, when it crosses the celestial equator from south to north. If the line through the eastern side of Pegasus is extended southward and curved slightly toward the east, it leads to second magnitude Diphda. A longer and straighter line southward through the western side of Pegasus leads to first magnitude Fomalhaut. A line extending northeasterly from Fomalhaut through Diphda leads to Menkar, a third magnitude star, but the brightest in its vicinity. Ankaa, Diphda, and Fomalhaut form an isosceles triangle, with the apex at Diphda. Ankaa is near or below the southern horizon of observers in latitudes of the United States. Four stars farther south than Ankaa may be visible when on the celes-


Figure 1533. Stars in the vicinity of Pegasus.
tial meridian, just above the horizon of observers in latitudes of the extreme southern part of the United States. These are Acamar, Achernar, Al Na'ir, and Peacock. These stars, with each other and with Ankaa, Fomalhaut, and Diphda, form a series of triangles as shown in Figure 1533. Almanac stars near the bottom of Figure 1533 are discussed in succeeding articles.

Two other almanac stars can be located by their positions relative to Pegasus. These are Hamal in the constellation Aries, the ram, east of Pegasus, and Enif, west of the southern part of the square, identified in Figure 1533. The line leading to Hamal, if continued, leads to the Pleiades (the Seven Sisters), not used by navigators for celestial observations, but a prominent figure in the sky, heralding the approach of the many conspicuous stars of the winter evening sky.

## 1534. Stars in the Vicinity of Orion

As Pegasus leaves the meridian and moves into the western sky, Orion, the hunter, rises in the east. With the possible exception of Ursa Major, no other configuration of stars in the entire sky is as well known as Orion and its immediate surroundings. In no other region are there so many first magnitude stars.

The belt of Orion, nearly on the celestial equator, is visible in virtually any latitude, rising and setting almost on the prime vertical, and dividing its time equally above and below the horizon. Of the three second magnitude stars forming the belt, only Alnilam, the middle one, is listed on the daily pages of the Nautical Almanac.

Four conspicuous stars form a box around the belt. Rigel, a hot, blue star, is to the south. Betelgeuse, a cool, red star lies to the north. Bellatrix, bright for a second magnitude star but overshadowed by its first magnitude neighbors, is a few degrees west of Betelgeuse. Neither the second magnitude star forming the southeastern corner of the box, nor any star of the dagger, is listed on the daily pages of the Nautical Almanac.

A line extending eastward from the belt of Orion, and curving toward the south, leads to Sirius, the brightest star in the entire heavens, having a magnitude of -1.6 . Only Mars and Jupiter at or near their greatest brilliance, the Sun, Moon, and Venus are brighter than Sirius. Sirius is part of the constellation Canis Major, the large hunting dog of Orion. Starting at Sirius a curved line extends northward through first magnitude Procyon, in Canis Minor, the small hunting dog; first magnitude Pollux and second magnitude Castor (not listed on the daily pages of the Nautical Almanac), the twins of Gemini; brilliant Capella in Auriga, the charioteer; and back down to first magnitude Aldebaran, the follower, which trails the Pleiades, the seven sisters. Aldebaran, brightest star in the head of Taurus, the bull, may also be found by a curved line extending northwestward from the belt of Orion. The V-shaped figure forming the outline of the head and horns of Taurus points
toward third magnitude Menkar. At the summer solstice the Sun is between Pollux and Aldebaran.

If the curved line from Orion's belt southeastward to Sirius is continued, it leads to a conspicuous, small, nearly equilateral triangle of three bright second magnitude stars of nearly equal brilliancy. This is part of Canis Major. Only Adhara, the westernmost of the three stars, is listed on the daily pages of the Nautical Almanac. Continuing on with somewhat less curvature, the line leads to Canopus, second brightest star in the heavens and one of the two stars having a negative magnitude ( -0.9 ). With Suhail and Miaplacidus, Canopus forms a large, equilateral triangle which partly encloses the group of stars often mistaken for Crux. The brightest star within this triangle is Avior, near its center. Canopus is also at one apex of a triangle formed with Adhara to the north and Suhail to the east, another triangle with Acamar to the west and Achernar to the southwest, and another with Achernar and Miaplacidus. Acamar, Achernar, and Ankaa form still another triangle toward the west. Because of chart distortion, these triangles do not appear in the sky in exactly the relationship shown on the star chart. Other daily-page almanac stars near the bottom of Figure 1534 are discussed in succeeding articles.

In the winter evening sky, Ursa Major is east of Polaris, Ursa Minor is nearly below it, and Cassiopeia is west of it. Mirfak is northwest of Capella, nearly midway between it and Cassiopeia. Hamal is in the western sky. Regulus and Alphard are low in the eastern sky, heralding the approach of the configurations associated with the evening skies of spring.

## 1535. Stars in the Vicinity of Ursa Major

As if to enhance the splendor of the sky in the vicinity of Orion, the region toward the east, like that toward the west, has few bright stars, except in the vicinity of the south celestial pole. However, as Orion sets in the west, leaving Capella and Pollux in the northwestern sky, a number of good navigational stars move into favorable positions for observation.

Ursa Major, the great bear, appears prominently above the north celestial pole, directly opposite Cassiopeia, which appears as a "W" just above the northern horizon of most observers in latitudes of the United States. Of the seven stars forming Ursa Major, only Dubhe, Alioth, and Alkaid are listed on the daily pages of the Nautical Almanac. See Figure 1535.

The two second magnitude stars forming the outer part of the bowl of Ursa Major are often called the pointers because a line extending northward (down in spring evenings) through them points to Polaris. Ursa Minor, the Little Bear, contains Polaris at one end and Kochab at the other. Relative to its bowl, the handle of Ursa Minor curves in the opposite direction to that of Ursa Major.

A line extending southward through the pointers, and curving somewhat toward the west, leads to first magnitude Regulus, brightest star in Leo, the lion. The head,


Figure 1534. Stars in the vicinity of Orion.


Scale of magnitudes: 1 st $*$ 2nd * 3 rd +4 th $* 5$ th.
Figure 1535. Stars in the vicinity of Ursa Major.
shoulders, and front legs of this constellation form a sickle, with Regulus at the end of the handle. Toward the east is second magnitude Denebola, the tail of the lion. On toward the southwest from Regulus is second magnitude Alphard, brightest star in Hydra, the sea serpent. A dark sky and considerable imagination are needed to trace the long, winding body of this figure.

A curved line extending the arc of the handle of Ursa Major leads to first magnitude Arcturus. With Alkaid and Alphecca, brightest star in Corona Borealis, the Northern Crown, Arcturus forms a large, inconspicuous triangle. If the arc through Arcturus is continued, it leads next to first magnitude Spica and then to Corvus, the crow. The brightest star in this constellation is Gienah, but three others are nearly as bright. At autumnal equinox, the Sun is on the celestial equator, about midway between Regulus and Spica.

A long, slightly curved line from Regulus, eastsoutheasterly through Spica, leads to Zubenelgenubi at the southwestern corner of an inconspicuous box-like figure called Libra, the scales.

Returning to Corvus, a line from Gienah, extending diagonally across the figure and then curving somewhat toward the east, leads to Menkent, just beyond Hydra.

Far to the south, below the horizon of most northern hemisphere observers, a group of bright stars is a prominent feature of the spring sky of the Southern Hemisphere. This is Crux, the Southern Cross. Crux is about $40^{\circ}$ south of Corvus. The "false cross" to the west is often mistaken for Crux. Acrux at the southern end of Crux and Gacrux at the northern end are listed on the daily pages of the Nautical Almanac.

The triangles formed by Suhail, Miaplacidus, and Canopus, and by Suhail, Adhara, and Canopus, are west of Crux. Suhail is in line with the horizontal arm of Crux. A line from Canopus, through Miaplacidus, curved slightly toward the north, leads to Acrux. A line through the east-west arm of Crux, eastward and then curving toward the south, leads first to Hadar and then to Rigil Kentaurus, both very bright stars. Continuing on, the curved line leads to small Triangulum Australe, the Southern Triangle, the easternmost star of which is Atria.

## 1536. Stars in the Vicinity of Cygnus

As the celestial sphere continues in its apparent westward rotation, the stars familiar to a spring evening observer sink low in the western sky. By midsummer, Ursa Major has moved to a position to the left of the north celestial pole, and the line from the pointers to Polaris is nearly horizontal. Ursa Minor, is standing on its handle, with Kochab above and to the left of the celestial pole. Cassiopeia is at the right of Polaris, opposite the handle of Ursa Major. See Figure 1536.

The only first magnitude star in the western sky is Arcturus, which forms a large, inconspicuous triangle with Alkaid, the end of the handle of Ursa Major, and Alphecca, the brightest star in Corona Borealis, the Northern Crown.

The eastern sky is dominated by three very bright stars. The westernmost of these is Vega, the brightest star north of the celestial equator, and third brightest star in the heavens, with a magnitude of 0.1. With a declination of a little less than $39^{\circ} \mathrm{N}$, Vega passes through the zenith along a path across the central part of the United States, from Washington in the east to San Francisco on the Pacific coast. Vega forms a large but conspicuous triangle with its two bright neighbors, Deneb to the northeast and Altair to the southeast. The angle at Vega is nearly a right angle. Deneb is at the end of the tail of Cygnus, the swan. This configuration is sometimes called the Northern Cross, with Deneb at the head. To modern youth it more nearly resembles a dive bomber, while it is still well toward the east, with Deneb at the nose of the fuselage. Altair has two fainter stars close by, on opposite sides. The line formed by Altair and its two fainter companions, if extended in a northwesterly direction, passes through Vega, and on to second magnitude Eltanin. The angular distance from Vega to Eltanin is about half that from Altair to Vega. Vega and Altair, with second magnitude Rasalhague to the west, form a large equilateral triangle. This is less conspicuous than the Vega-Deneb-Altair triangle because the brilliance of Rasalhague is much less than that of the three first magnitude stars, and the triangle is overshadowed by the brighter one.

Far to the south of Rasalhague, and a little toward the west, is a striking configuration called Scorpius, the scorpion. The brightest star, forming the head, is red Antares. At the tail is Shaula.

Antares is at the southwestern corner of an approximate parallelogram formed by Antares, Sabik, Nunki, and Kaus Australis. With the exception of Antares, these stars are only slightly brighter than a number of others nearby, and so this parallelogram is not a striking figure. At winter solstice the Sun is a short distance northwest of Nunki.

Northwest of Scorpius is the box-like Libra, the scales, of which Zubenelgenubi marks the southwest corner.

With Menkent and Rigil Kentaurus to the southwest, Antares forms a large but unimpressive triangle. For most observers in the latitudes of the United States, Antares is low in the southern sky, and the other two stars of the triangle are below the horizon. To an observer in the Southern Hemisphere Crux is to the right of the south celestial pole, which is not marked by a conspicuous star. A long, curved line, starting with the now-vertical arm of Crux and extending northward and then eastward, passes successively through Hadar, Rigil Kentaurus, Peacock, and Al Na'ir.

Fomalhaut is low in the southeastern sky of the southern hemisphere observer, and Enif is low in the eastern sky at nearly any latitude. With the appearance of these stars it is not long before Pegasus will appear over the eastern horizon during the evening, and as the winged horse climbs evening by


Figure 1536. Stars in the vicinity of Cygnus.
evening to a position higher in the sky, a new annual cycle approaches.

## 1537. Planet Diagram

The planet diagram in the Nautical Almanac shows, for any date, the LMT of meridian passage of the Sun, for the five planets Mercury, Venus, Mars, Jupiter, and Saturn, and of each $30^{\circ}$ of SHA. The diagram provides a general picture of the availability of planets and stars for observation, and thus shows:

1. Whether a planet or star is too close to the Sun for observation.
2. Whether a planet is a morning or evening star.
3. Some indication of the planet's position during twilight.
4. The proximity of other planets.
5. Whether a planet is visible from evening to morning twilight.

A band 45 minutes wide is shaded on each side of the curve marking the LMT of meridian passage of the Sun. Any planet and most stars lying within the shaded area are too close to the Sun for observation.

When the meridian passage occurs at midnight, the body is in opposition to the Sun and is visible all night; planets may be observable in both morning and evening twilights. As the time of meridian passage decreases, the body ceases to be observable in the morning, but its altitude above the eastern horizon during evening twilight gradually increases; this continues until the body is on the meridian at twilight. From then onwards the body is observable above the western horizon and its altitude at evening twilight gradually decreases; eventually the body comes too close to the Sun for observation. When the body again becomes visible, it is seen as a morning star low in the east. Its altitude at twilight increases until meridian passage occurs at the time of morning twilight. Then, as the time of meridian passage decreases to $0^{\mathrm{h}}$, the body is observable in the west in the morning twilight with a gradually decreasing altitude, until it once again reaches opposition.

Only about one-half the region of the sky along the ecliptic, as shown on the diagram, is above the horizon at one time. At sunrise (LMT about $6^{\text {h }}$ ) the Sun and, hence, the region near the middle of the diagram, are rising in the east; the region at the bottom of the diagram is setting in the west. The region half way between is on the meridian. At sunset (LMT about ${ }^{18}{ }^{\text {h }}$ ) the Sun is setting in the west; the region at the top of the diagram is rising in the east. Marking the planet diagram of the Nautical Almanac so that east is at the top of the diagram and west is at the bottom can be useful to interpretation.

If the curve for a planet intersects the vertical line connecting the date graduations below the shaded area, the planet is a morning star; if the intersection is above the
shaded area, the planet is an evening star.
A similar planet location diagram in the Air Almanac represents the region of the sky along the ecliptic within which the Sun, Moon, and planets always move; it shows, for each date, the Sun in the center and the relative positions of the Moon, the five planets Mercury, Venus, Mars, Jupiter, Saturn and the four first magnitude stars Aldebaran, Antares, Spica, and Regulus, and also the position on the ecliptic which is north of Sirius (i.e. Sirius is $40^{\circ}$ south of this point). The first point of Aries is also shown for reference. The magnitudes of the planets are given at suitable intervals along the curves. The Moon symbol shows the correct phase. A straight line joining the date on the lefthand side with the same date of the right-hand side represents a complete circle around the sky, the two ends of the line representing the point $180^{\circ}$ from the Sun; the intersections with the curves show the spacing of the bodies along the ecliptic on the date. The time scale indicates roughly the local mean time at which an object will be on the observer's meridian.

At any time only about half the region on the diagram is above the horizon. At sunrise the Sun (and hence the region near the middle of the diagram), is rising in the east and the region at the end marked "West" is setting in the west; the region half-way between these extremes is on the meridian, as will be indicated by the local time (about $6^{\mathrm{h}}$ ). At the time of sunset (local time about $18{ }^{\text {h }}$ ) the Sun is setting in the west, and the region at the end marked "East" is rising in the east. The diagram should be used in conjunction with the Sky Diagrams.

## 1538. Finding Stars for a Fix

Various devices have been invented to help an observer find individual stars. The most widely used is the Star Finder and Identifier, formerly published by the U.S. Navy Hydrographic Office as No. 2102D. It is no longer issued, having been replaced officially by the STELLA computer program, but it is still available commercially. A navigational calculator or computer program is much quicker, more accurate, and less tedious.

In fact, the process of identifying stars is no longer necessary because the computer or calculator does it automatically. The navigator need only take sights and enter the required data. The program identifies the bodies, solves for the LOP's for each, combines them into the best fix, and displays the lat./long. position. Most computer programs also print out a plotted fix, just as the navigator might have drawn by hand.

The data required by the calculator or program consists of the DR position, the sextant altitude of the body, the time, and the azimuth of the body. The name of the body is not necessary because there will be only one possible body meeting those conditions, which the computer will identify.

Computer sight reduction programs can also automatically predict twilight on a moving vessel and create a plot
of the sky at the vessel's twilight location (or any location, at any time). This plot will be free of the distortion inherent in the mechanical star finders and will show all bodies, even planets, Sun, and Moon, in their correct relative orientation centered on the observer's zenith. It will also indicate which stars provide the best geometry for a fix.

Computer sight reduction programs or celestial navigation calculators are especially useful when the sky is only briefly visible thorough broken cloud cover. The navigator can quickly shoot any visible body without having to identify it by name, and let the computer do the rest.

## 1539. Identification by Computation

If the altitude and azimuth of the celestial body, and the approximate latitude of the observer, are known, the navigational triangle can be solved for meridian angle and declination. The meridian angle can be converted to LHA, and this to GHA. With this and GHA $\boldsymbol{\gamma}$ at the time of observation, the SHA of the body can be determined. With SHA and declination, one can identify the body by reference to an almanac. Any method of solving a spherical triangle, with two sides and the included angle being given, is suitable for this purpose. A large-scale, carefully-drawn diagram on the plane of the celestial meridian, using the refinement shown in Figure 1528f, should yield satisfactory results.

Although no formal star identification tables are included in Pub. No. 229, a simple approach to star identi-
fication is to scan the pages of the appropriate latitudes, and observe the combination of arguments which give the altitude and azimuth angle of the observation. Thus the declination and LHA $\star$ are determined directly. The star's SHA is found from SHA $\star=$ LHA $\star$ - LHA $\Upsilon$. From these quantities the star can be identified from the Nautical Almanac.

Another solution is available through an interchange of arguments using the nearest integral values. The procedure consists of entering Pub.No. 229 with the observer's latitude (same name as declination), with the observed azimuth angle (converted from observed true azimuth as required) as LHA and the observed altitude as declination, and extracting from the tables the altitude and azimuth angle respondents. The extracted altitude becomes the body's declination; the extracted azimuth angle (or its supplement) is the meridian angle of the body. Note that the tables are always entered with latitude of same name as declination. In north latitudes the tables can be entered with true azimuth as LHA.

If the respondents are extracted from above the C-S Line on a right-hand page, the name of the latitude is actually contrary to the declination. Otherwise, the declination of the body has the same name as the latitude. If the azimuth angle respondent is extracted from above the CS Line, the supplement of the tabular value is the meridian angle, $t$, of the body. If the body is east of the observer's meridian, LHA $=360^{\circ}-\mathrm{t}$; if the body is west of the meridian, $\mathrm{LHA}=\mathrm{t}$.

## CHAPTER 16

## INSTRUMENTS FOR CELESTIAL NAVIGATION

## THE MARINE SEXTANT

## 1600. Description and Use

The marine sextant measures the angle between two points by bringing the direct image from one point and a double-reflected image from the other into coincidence. Its principal use is to measure the altitudes of celestial bodies above the visible sea horizon. It may also be used to measure vertical angles to find the range from an object of known height. Sometimes it is turned on its side and used for measuring the angular distance between two terrestrial objects.

A marine sextant can measure angles up to approximately $120^{\circ}$. Originally, the term "sextant" was applied to the navigator's double-reflecting, altitude-measuring instrument only if its arc was $60^{\circ}$ in length, or $1 / 6$ of a circle, permitting measurement of angles from $0^{\circ}$ to $120^{\circ}$. In modern usage the term is applied to all modern navigational altitude-measuring instruments regardless of angular range or principles of operation.

## 1601. Optical Principles of a Sextant

When a plane surface reflects a light ray, the angle of reflection equals the angle of incidence. The angle between the first and final directions of a ray of light that has undergone double reflection in the same plane is twice the angle the two reflecting surfaces make with each other (Figure 1601).


Figure 1601. Optical principle of the marine sextant.

In Figure 1601, AB is a ray of light from a celestial body. The index mirror of the sextant is at B , the horizon glass at C , and the eye of the observer at D. Construction lines EF and CF are perpendicular to the index mirror and horizon glass, respectively. Lines BG and CG are parallel to these mirrors. Therefore, angles BFC and BGC are equal because their sides are mutually perpendicular. Angle BGC is the inclination of the two reflecting surfaces. The ray of light AB is reflected at mirror B , proceeds to mirror C , where it is again reflected, and then continues on to the eye of the observer at D. Since the angle of reflection is equal to the angle of incidence,
$\mathrm{ABE}=\mathrm{EBC}$, and $\mathrm{ABC}=2 \mathrm{EBC}$.
$\mathrm{BCF}=\mathrm{FCD}$, and $\mathrm{BCD}=2 \mathrm{BCF}$.
Since an exterior angle of a triangle equals the sum of the two non adjacent interior angles,
$\mathrm{ABC}=\mathrm{BDC}+\mathrm{BCD}$, and $\mathrm{EBC}=\mathrm{BFC}+\mathrm{BCF}$.
Transposing,
$\mathrm{BDC}=\mathrm{ABC}-\mathrm{BCD}$, and $\mathrm{BFC}=\mathrm{EBC}-\mathrm{BCF}$.
Substituting 2EBC for ABC , and 2BCF for BCD in the first of these equations,
$\mathrm{BDC}=2 \mathrm{EBC}-2 \mathrm{BCF}$, or $\mathrm{BDC}=2(\mathrm{EBC}-\mathrm{BCF})$.
Since $\mathrm{BFC}=\mathrm{EBC}-\mathrm{BCF}$, and $\mathrm{BFC}=\mathrm{BGC}$, therefore
$B D C=2 B F C=2 B G C$.
That is, BDC, the angle between the first and last directions of the ray of light, is equal to 2 BGC , twice the angle of inclination of the reflecting surfaces. Angle BDC is the altitude of the celestial body.

If the two mirrors are parallel, the incident ray from any observed body must be parallel to the observer's line of sight through the horizon glass. In that case, the body's altitude would be zero. The angle that these two reflecting surfaces make with each other is one-half the observed angle. The graduations on the arc reflect this half angle relationship between the angle observed and the mirrors' angle.

## 1602. Micrometer Drum Sextant

Figure 1602 shows a modern marine sextant, called a micrometer drum sextant. In most marine sextants, brass or aluminum comprise the frame, A. Frames come in
various designs; most are similar to this. Teeth mark the outer edge of the limb, B; each tooth marks one degree of altitude. The altitude graduations, C, along the limb, mark the arc. Some sextants have an arc marked in a strip of brass, silver, or platinum inlaid in the limb.

The index arm, D , is a movable bar of the same material as the frame. It pivots about the center of curvature of the limb. The tangent screw, E , is mounted perpendicularly on the end of the index arm, where it engages the teeth of the limb. Because the observer can move the index arm through the length of the arc by rotating the tangent screw, this is sometimes called an "endless tangent screw." The release,F, is a spring-actuated clamp that keeps the tangent screw engaged with the limb's teeth. The observer can disengage the tangent screw and move the index arm along the limb for rough adjustment. The end of the tangent screw mounts a micrometer drum, $G$, graduated in minutes of altitude. One complete turn of the drum moves the index arm one degree along the arc. Next to the micrometer drum and fixed on the index arm is a vernier, $H$, that reads in fractions of a minute. The vernier shown is graduated into ten parts, permitting readings to ${ }^{1 / 10}$ of a minute of arc ( 0.1 '). Some sextants have verniers graduated into only five parts, permitting readings to $0.2^{\prime}$.

The index mirror, I, is a piece of silvered plate glass mounted on the index arm, perpendicular to the plane of the instrument, with the center of the reflecting surface directly over the pivot of the index arm. The horizon glass, J , is a piece of optical glass silvered on its half nearer the frame.

It is mounted on the frame, perpendicular to the plane of the sextant. The index mirror and horizon glass are mounted so that their surfaces are parallel when the micrometer drum is set at $0^{\circ}$, if the instrument is in perfect adjustment. Shade glasses, K , of varying darkness are mounted on the sextant's frame in front of the index mirror and horizon glass. They can be moved into the line of sight as needed to reduce the intensity of light reaching the eye.

The telescope, L, screws into an adjustable collar in line with the horizon glass and parallel to the plane of the instrument. Most modern sextants are provided with only one telescope. When only one telescope is provided, it is of the "erect image type," either as shown or with a wider "object glass" (far end of telescope), which generally is shorter in length and gives a greater field of view. The second telescope, if provided, may be the "inverting type." The inverting telescope, having one lens less than the erect type, absorbs less light, but at the expense of producing an inverted image. A small colored glass cap is sometimes provided, to be placed over the "eyepiece" (near end of telescope) to reduce glare. With this in place, shade glasses are generally not needed. A "peep sight," or clear tube which serves to direct the line of sight of the observer when no telescope is used, may be fitted.

Sextants are designed to be held in the right hand. Some have a small light on the index arm to assist in reading altitudes. The batteries for this light are fitted inside a recess in the handle, M. Not clearly shown in Figure 1602 are the tangent screw, E , and the three legs.


Figure 1602. U.S. Navy Mark 2 micrometer drum sextant.

There are two basic designs commonly used for mounting and adjusting mirrors on marine sextants. On the U.S. Navy Mark 3 and certain other sextants, the mirror is mounted so that it can be moved against retaining or mounting springs within its frame. Only one perpendicular adjustment screw is required. On the U.S. Navy Mark 2 and other sextants the mirror is fixed within its frame. Two perpendicular adjustment screws are required. One screw must be loosened before the other screw bearing on the same surface is tightened.

## 1603. Vernier Sextant

Most recent marine sextants are of the micrometer drum type, but at least two older-type sextants are still in use. These differ from the micrometer drum sextant principally in the manner in which the final reading is made. They are called vernier sextants.

The clamp screw vernier sextant is the older of the two. In place of the modern release clamp, a clamp screw is fitted on the underside of the index arm. To move the index arm, the clamp screw is loosened, releasing the arm. When the arm is placed at the approximate altitude of the body being observed, the clamp screw is tightened. Fixed to the clamp screw and engaged with the index arm is a long tangent screw. When this screw is turned, the index arm moves slowly, permitting accurate setting. Movement of the index arm by the tangent screw is limited to the length of the screw (several degrees of arc). Before an altitude is measured, this screw should be set to the approximate midpoint of its range. The final reading is made on a vernier set in the index arm below the arc. A small microscope or magnifying glass fitted to the index arm is used in making the final reading.

The endless tangent screw vernier sextant is identical to the micrometer drum sextant, except that it has no drum, and the fine reading is made by a vernier along the arc, as with the clamp screw vernier sextant. The release is the same as on the micrometer drum sextant, and teeth are cut into the underside of the limb which engage with the endless tangent screw.

## 1604. Sextant Sun Sights

For a Sun sight, hold the sextant vertically and direct the sight line at the horizon directly below the Sun. After moving suitable shade glasses into the line of sight, move the index arm outward along the arc until the reflected image appears in the horizon glass near the direct view of the horizon. Rock the sextant slightly to the right and left to ensure it is perpendicular. As you rock the sextant, the image of the Sun appears to move in an arc, and you may have to turn slightly to prevent the image from moving off the horizon glass.

The sextant is vertical when the Sun appears at the bottom of the arc. This is the correct position for making the observation. The Sun's reflected image appears at the center of the horizon glass; one half appears on the silvered part, and the other half appears on the clear part. Move the
index arm with the drum or vernier slowly until the Sun appears to be resting exactly on the horizon, tangent to the lower limb. The novice observer needs practice to determine the exact point of tangency. Beginners often err by bringing the image down too far.

Some navigators get their most accurate observations by letting the body contact the horizon by its own motion, bringing it slightly below the horizon if rising, and above if setting. At the instant the horizon is tangent to the disk, the navigator notes the time. The sextant altitude is the uncorrected reading of the sextant.

## 1605. Sextant Moon Sights

When observing the Moon, follow the same procedure as for the Sun. Because of the phases of the Moon, the upper limb of the Moon is observed more often than that of the Sun. When the terminator (the line between light and dark areas) is nearly vertical, be careful in selecting the limb to shoot. Sights of the Moon are best made during either daylight hours or that part of twilight in which the Moon is least luminous. At night, false horizons may appear below the Moon because the Moon illuminates the water below it.

## 1606. Sextant Star and Planet Sights

While the relatively large Sun and Moon are easy to find in the sextant, stars and planets can be more difficult to locate because the field of view is so narrow. One of three methods may help locate a star or planet:

Method 1. Set the index arm and micrometer drum on $0^{\circ}$ and direct the line of sight at the body to be observed. Then, while keeping the reflected image of the body in the mirrored half of the horizon glass, swing the index arm out and rotate the frame of the sextant down. Keep the reflected image of the body in the mirror until the horizon appears in the clear part of the horizon glass. Then, make the observation. When there is little contrast between brightness of the sky and the body, this procedure is difficult. If the body is "lost" while it is being brought down, it may not be recovered without starting over again.

Method 2. Direct the line of sight at the body while holding the sextant upside down. Slowly move the index arm out until the horizon appears in the horizon glass. Then invert the sextant and take the sight in the usual manner.

Method 3. Determine in advance the approximate altitude and azimuth of the body by a star finder such as No. 2102D. Set the sextant at the indicated altitude and face in the direction of the azimuth. The image of the body should appear in the horizon glass with a little searching.

When measuring the altitude of a star or planet, bring its center down to the horizon. Stars and planets have no discernible upper or lower limb; you must observe the center of the point of light. Because stars and planets have
no discernible limb and because their visibility may be limited, the method of letting a star or planet intersect the horizon by its own motion is not recommended. As with the Sun and Moon, however, "rock the sextant" to establish perpendicularity.

## 1607. Taking a Sight

Unless you have a navigation calculator or computer that will identify bodies automatically, predict expected altitudes and azimuths for up to eight bodies when preparing to take celestial sights. Choose the stars and planets that give the best bearing spread. Try to select bodies with a predicted altitude between $30^{\circ}$ and $70^{\circ}$. Take sights of the brightest stars first in the evening; take sights of the brightest stars last in the morning.

Occasionally, fog, haze, or other ships in a formation may obscure the horizon directly below a body which the navigator wishes to observe. If the arc of the sextant is sufficiently long, a back sight might be obtained, using the opposite point of the horizon as the reference. For this the observer faces away from the body and observes the supplement of the altitude. If the Sun or Moon is observed in this manner, what appears in the horizon glass to be the lower limb is in fact the upper limb, and vice versa. In the case of the Sun, it is usually preferable to observe what appears to be the upper limb. The arc that appears when rocking the sextant for a back sight is inverted; that is, the highest point indicates the position of perpendicularity.

If more than one telescope is furnished with the sextant, the erecting telescope is used to observe the Sun. A wider field of view is present if the telescope is not used. The collar into which the sextant telescope fits may be adjusted in or out, in relation to the frame. When moved in, more of the mirrored half of the horizon glass is visible to the navigator, and a star or planet is more easily observed when the sky is relatively bright. Near the darker limit of twilight, the telescope can be moved out, giving a broader view of the clear half of the glass, and making the less distinct horizon more easily discernible. If both eyes are kept open until the last moments of an observation, eye strain will be lessened. Practice will permit observations to be made quickly, reducing inaccuracy due to eye fatigue.

When measuring an altitude, have an assistant note and record the time if possible, with a "stand-by" warning when the measurement is almost ready, and a "mark" at the moment a sight is made. If a flashlight is needed to see the comparing watch, the assistant should be careful not to interfere with the navigator's night vision.

If an assistant is not available to time the observations, the observer holds the watch in the palm of his left hand, leaving his fingers free to manipulate the tangent screw of the sextant. After making the observation, he notes the time as quickly as possible. The delay between completing the altitude observation and noting the time should not be more than one or two seconds.

## 1608. Reading the Sextant

Reading a micrometer drum sextant is done in three steps. The degrees are read by noting the position of the arrow on the index arm in relation to the arc. The minutes are read by noting the position of the zero on the vernier with relation to the graduations on the micrometer drum. The fraction of a minute is read by noting which mark on the vernier most nearly coincides with one of the graduations on the micrometer drum. This is similar to reading the time with the hour, minute, and second hands of a watch. In both, the relationship of one part of the reading to the others should be kept in mind. Thus, if the hour hand of a watch were about on " 4 ," one would know that the time was about four o'clock. But if the minute hand were on " 58 ," one would know that the time was 0358 (or 1558), not 0458 (or 1658). Similarly, if the arc indicated a reading of about $40^{\circ}$, and $58^{\prime}$ on the micrometer drum were opposite zero on the vernier, one would know that the reading was $39^{\circ} 58^{\prime}$, not $40^{\circ} 58^{\prime}$. Similarly, any doubt as to the correct minute can be removed by noting the fraction of a minute from the position of the vernier. In Figure 1608a the reading is $29^{\circ} 42.5^{\prime}$. The arrow on the index mark is between $29^{\circ}$ and $30^{\circ}$, the zero on the vernier is between $42^{\prime}$ and $43^{\prime}$, and the $0.5^{\prime}$ graduation on the vernier coincides with one of the graduations on the micrometer drum.

The principle of reading a vernier sextant is the same, but the reading is made in two steps. Figure $1608 b$ shows a typical altitude setting. Each degree on the arc of this sextant is graduated into three parts, permitting an initial reading by the reference mark on the index arm to the nearest $20^{\prime}$ of arc. In this illustration the reference mark lies between $29^{\circ} 40^{\prime}$ and $30^{\circ} 00^{\prime}$, indicating a reading between these values. The reading for the fraction of $20^{\prime}$ is made using the vernier, which is engraved on the index arm and has the small reference mark as its zero graduation. On this vernier, 40 graduations coincide with 39 graduations on the arc. Each graduation on the vernier is equivalent to $1 / 40$ of one graduation of $20^{\prime}$ on the arc, or 0.5 , or 30 ". In the illustration, the vernier graduation representing 2 $1 / 2^{\prime}\left(2^{\prime} 30^{\prime \prime}\right)$ most nearly coincides with one of the graduations on the arc. Therefore, the reading is $29^{\circ} 42^{\prime} 30^{\prime \prime}$, or $29^{\circ} 42.5^{\prime}$, as before. When a vernier of this type is used, any doubt as to which mark on the vernier coincides with a graduation on the arc can usually be resolved by noting the position of the vernier mark on each side of the one that seems to be in coincidence.

Negative readings, such as a negative index correction, are made in the same manner as positive readings; the various figures are added algebraically. Thus, if the three parts of a micrometer drum reading are $(-) 1^{\circ}, 56^{\prime}$ and $0.3^{\prime}$, the total reading is $(-) 1^{\circ}+56^{\prime}+0.3^{\prime}=(-) 3.7^{\prime}$.

## 1609. Developing Observational Skill

A well-constructed marine sextant is capable of measuring angles with an instrument error not exceeding 0.1'. Lines of position from altitudes of this accuracy would not be


Figure 1608a. Micrometer drum sextant set at $29^{\circ} 42.5^{\prime}$.


Figure $1608 b$. Vernier sextant set at $29^{\circ} 42^{\prime} 30^{\prime \prime}$.
in error by more than about 200 yards. However, there are various sources of error, other than instrumental, in altitudes measured by sextant. One of the principal sources is the observer.

The first fix a student celestial navigator plots is likely to be disappointing. Most navigators require a great amount of practice to develop the skill necessary for consistently good observations. But practice alone is not sufficient. Good technique should be developed early and refined throughout the navigator's career. Many good pointers can be obtained from experienced navigators, but each develops his own technique, and a practice that proves successful for one observer may not help another. Also, an experienced navigator is not necessarily a good observer. Navigators have a natural tendency to judge the accuracy of their observations by the size of the figure formed when the lines of position are plotted. Although this is some indication, it is an imperfect one, because it does not indicate errors of individual observations, and may not reflect constant errors. Also, it is a compound of a number of errors, some of which are not subject to the navigator's control.

Lines of position from celestial observations should be compared often with good positions obtained by electronics or piloting. Common sources of error are:

1. The sextant may not be rocked properly.
2. Tangency may not be judged accurately.
3. A false horizon may have been used.
4. Subnormal refraction (dip) might be present.
5. The height of eye may be wrong.
6. Time might be in error.
7. The index correction may have been determined incorrectly.
8. The sextant might be out of adjustment.
9. An error may have been made in the computation.

Generally, it is possible to correct observation technique errors, but occasionally a personal error will persist. This error might vary as a function of the body observed, degree of fatigue of the observer, and other factors. For this reason, a personal error should be applied with caution.

To obtain greater accuracy, take a number of closelyspaced observations. Plot the resulting altitudes versus time and fair a curve through the points. Unless the body is near the celestial meridian, this curve should be a straight line. Use this graph to determine the altitude of the body at any time covered by the graph. It is best to use a point near the middle of the line. Using a navigational calculator or computer program to reduce sights will yield greater accuracy because of the rounding errors inherent in the use of sight reduction tables, and because many more sights can be reduced in a given time, thus averaging out errors.

A simpler method involves making observations at equal intervals. This procedure is based upon the
assumption that, unless the body is on the celestial meridian, the change in altitude should be equal for equal intervals of time. Observations can be made at equal intervals of altitude or time. If time intervals are constant, the mid time and the average altitude are used as the observation. If altitude increments are constant, the average time and mid altitude are used.

If only a small number of observations is available, reduce and plot the resulting lines of position; then adjust them to a common time. The average position of the line might be used, but it is generally better practice to use the middle line. Reject any observation considered unreliable when determining the average.

## 1610. Care of the Sextant

A sextant is a rugged instrument. However, careless handling or neglect can cause it irreparable harm. If you drop it, take it to an instrument repair shop for testing and inspection. When not using the sextant, stow it in a sturdy and sufficiently padded case. Keep the sextant away from excessive heat and dampness. Do not expose it to excessive vibration. Do not leave it unattended when it is out of its case. Do not hold it by its limb, index arm, or telescope. Lift it only by its frame or handle. Do not lift it by its arc or index bar.

Next to careless handling, moisture is the sextant's greatest enemy. Wipe the mirrors and the arc after each use. If the mirrors get dirty, clean them with lens paper and a small amount of alcohol. Clean the arc with ammonia; never use a polishing compound. When cleaning, do not apply excessive pressure to any part of the instrument.

Silica gel kept in the sextant case will help keep the instrument free from moisture and preserve the mirrors. Occasionally heat the silica gel to remove the absorbed moisture.

Rinse the sextant with fresh water if sea water gets on it. Wipe the sextant gently with a soft cotton cloth and dry the optics with lens paper.

Glass optics do not transmit all the light received because glass surfaces reflect a small portion of light incident on their face. This loss of light reduces the brightness of the object viewed. Viewing an object through several glass optics affects the perceived brightness and makes the image indistinct. The reflection also causes glare which obscures the object being viewed. To reduce this effect to a minimum, the glass optics are treated with a thin, fragile, anti-reflection coating. Therefore, apply only light pressure when polishing the coated optics. Blow loose dust off the lens before wiping them so grit does not scratch the lens.

Occasionally, oil and clean the tangent screw and the teeth on the side of the limb. Use the oil provided with the sextant or an all-purpose light machine oil. Occasionally set the index arm of an endless tangent screw at one extremity of the limb, oil it lightly, and then rotate the tangent screw
over the length of the arc. This will clean the teeth and spread oil over them. When stowing a sextant for a long period, clean it thoroughly, polish and oil it, and protect its arc with a thin coat of petroleum jelly. If the mirrors need re-silvering, take the sextant to an instrument shop.

## 1611. Non Adjustable Sextant Errors

The non-adjustable sextant errors are prismatic error, graduation error, and centering error. The higher the quality of the instrument, the less these error will be.

Prismatic error occurs when the faces of the shade glasses and mirrors are not parallel. Error due to lack of parallelism in the shade glasses may be called shade error. The navigator can determine shade error in the shade glasses near the index mirror by comparing an angle measured when a shade glass is in the line of sight with the same angle measured when the glass is not in the line of sight. In this manner, determine and record the error for each shade glass. Before using a combination of shade glasses, determine their combined error. If certain observations require additional shading, use the colored telescope eyepiece cover. This does not introduce an error because direct and reflected rays are traveling together when they reach the cover and are, therefore, affected equally by any lack of parallelism of its two sides.

Graduation errors occur in the arc, micrometer drum, and vernier of a sextant which is improperly cut or incorrectly calibrated. Normally, the navigator cannot determine whether the arc of a sextant is improperly cut, but the principle of the vernier makes it possible to determine the existence of graduation errors in the micrometer drum or vernier. This is a useful guide in detecting a poorly made instrument. The first and last markings on any vernier should align perfectly with one less graduation on the adjacent micrometer drum.

Centering error results if the index arm does not pivot at the exact center of the arc's curvature. Calculate centering error by measuring known angles after removing all adjustable errors. Use horizontal angles accurately measured with a theodolite as references for this procedure. Several readings by both theodolite and sextant should minimize errors. If a theodolite is not available, use calculated angles between the lines of sight to stars as the reference, comparing these calculated values with the values determined by the sextant. To minimize refraction errors, select stars at about the same altitude and avoid stars near the horizon. The same shade glasses, if any, used for determining index error should be used for measuring centering error.

The manufacturer normally determines the magnitude of all three non-adjustable errors and reports them to the user as instrument error. The navigator should apply the correction for this error to each sextant reading.

## 1612. Adjustable Sextant Error

The navigator should measure and remove the
following adjustable sextant errors in the order listed:

1. Perpendicularity Error: Adjust first for perpendicularity of the index mirror to the frame of the sextant. To test for perpendicularity, place the index arm at about $35^{\circ}$ on the arc and hold the sextant on its side with the index mirror up and toward the eye. Observe the direct and reflected views of the sextant arc, as illustrated in Figure 1612a. If the two views are not joined in a straight line, the index mirror is not perpendicular. If the reflected image is above the direct view, the mirror is inclined forward. If the reflected image is below the direct view, the mirror is inclined backward. Make the adjustment using two screws behind the index mirror.
2. Side Error: An error resulting from the horizon glass not being perpendicular is called side error. To test for side error, set the index arm at zero and direct the line of sight at a star. Then rotate the tangent screw back and forth so that the reflected image passes alternately above and below the direct view. If, in changing from one position to the other, the reflected image passes directly over the unreflected image, no side error exists. If it passes to one side, side error exists. Figure 1612b illustrates observations without side error (left) and with side error (right). Whether the sextant reads zero when the true and reflected images are in coincidence is immaterial for this test. An alternative method is to observe a vertical line, such as one edge of the mast of another vessel (or the sextant can be held on its side and the horizon used). If the direct and reflected portions do not form a continuous line, the horizon glass is not perpendicular to the frame of the sextant. A third method involves holding the sextant vertically, as in observing the altitude of a celestial body. Bring the reflected image of the horizon into coincidence with the direct view until it appears as a continuous line across the horizon glass. Then tilt the sextant right or left. If the horizon still appears continuous, the horizon glass is perpendicular to the frame, but if the reflected portion appears above or below the part seen directly, the glass is not perpendicular. Make the appropriate adjustment using two screws behind the horizon glass.
3. Collimation Error: If the line of sight through the telescope is not parallel to the plane of the instrument, a collimation error will result. Altitudes measured will be greater than their actual values. To check for parallelism of the telescope, insert it in its collar and observe two stars $90^{\circ}$ or more apart. Bring the reflected image of one into coincidence with the direct view of the other near either the right or left edge of the field of view (the upper or lower edge if the sextant is horizontal). Then tilt the sextant so that the stars appear near the opposite edge. If they remain in coincidence, the telescope is parallel to the frame; if they separate, it is not. An alternative method involves placing the telescope in its collar and then laying the sextant on a flat table. Sight along the frame of the sextant and have an assistant place a mark on the opposite bulkhead, in line with the frame. Place another mark above the first, at a distance equal to the distance from the center of the telescope to the frame. This second line should be in the center of the field


Figure 1612a. Testing the perpendicularity of the index mirror. Here the mirror is not perpendicular.


Figure 1612b.Testing the perpendicularity of the horizon glass. On the left, side error does not exist. At the right, side error does exist.
of view of the telescope if the telescope is parallel to the frame. Adjust the collar to correct for non-parallelism.
4. Index Error: Index error is the error remaining after the navigator has removed perpendicularity error, side error, and collimation error. The index mirror and horizon glass not being parallel when the index arm is set exactly at zero is the major cause of index error. To test for parallelism of the mirrors, set the instrument at zero and direct the line of sight at the horizon. Adjust the sextant reading as necessary to cause both images of the horizon to come into line. The sextant's reading when the horizon comes into line is the index error. If the index error is positive, subtract it from each sextant reading. If the index error is negative, add it to each sextant reading.

## 1613. Selecting a Sextant

Carefully match the selected sextant to its required uses.

For occasional small craft or student use, a plastic sextant may be adequate. A plastic sextant may also be appropriate for an emergency navigation kit. Accurate offshore navigation requires a quality metal instrument. For ordinary use in measuring altitudes of celestial bodies, an arc of $90^{\circ}$ or slightly more is sufficient. If back sights or determining horizontal angles are often required, purchase one with a longer arc. An experienced mariner or nautical instrument technician can provide valuable advice on the purchase of a sextant.

## 1614. The Artificial Horizon

Measurement of altitude requires an exact horizontal reference, normally provided at sea by the visible horizon. If the horizon is not clearly visible, however, a different horizontal reference is required. Such a reference is commonly termed an artificial horizon. If it is attached to, or part of, the sextant, altitudes can be measured at sea, on land, or in the air, whenever celestial bodies are available for observations.

An external artificial horizon can be improvised by a carefully levelled mirror or a pan of dark liquid. To use an external artificial horizon, stand or sit so that the celestial body is reflected in the mirror or liquid, and is also visible in direct view. With the sextant, bring the double-reflected image into coincidence with the image appearing in the liquid. For a lower limb observation of the Sun or the Moon, bring the bottom of the double-reflected image into coincidence with the top of the image in the liquid. For an upper-limb observation, bring the opposite sides into coincidence. If one image covers the other, the observation is of the center of the body.

After the observation, apply the index correction and any other instrumental correction. Then take half the remaining angle and apply all other corrections except dip (height of eye) correction, since this is not applicable. If the center of the Sun or Moon is observed, omit the correction for semidiameter.

## 1615. Artificial Horizon Sextants

Various types of artificial horizons have been used, including a bubble, gyroscope, and pendulum. Of these, the bubble has been most widely used. This type of instrument is fitted as a backup system to inertial and other positioning systems in a few aircraft, fulfilling the requirement for a selfcontained, non-emitting system. On land, a skilled observer using a 2-minute averaging bubble or pendulum sextant can measure altitudes to an accuracy of perhaps $2^{\prime}$, ( 2 miles). This, of course, refers to the accuracy of measurement only, and does not include additional errors such as abnormal refraction, deflection of the vertical, computing and plotting errors, etc. In steady flight through smooth air the error of a 2-minute observation is increased to perhaps 5 to 10 miles.

At sea, with virtually no roll or pitch, results should approach those on land. However, even a gentle roll causes large errors. Under these conditions observational errors of 10-16 miles are not unreasonable. With a moderate sea,
errors of 30 miles or more are common. In a heavy sea, any useful observations are virtually impossible to obtain. Single altitude observations in a moderate sea can be in error by a matter of degrees.

When the horizon is obscured by ice or haze, polar navigators can sometimes obtain better results with an artificial-horizon sextant than with a marine sextant. Some artificial-horizon sextants have provision for making observations with the natural horizon as a reference, but results are not generally as satisfactory as by marine sextant. Because of their more complicated optical systems, and the need for providing a horizontal reference, artificial-horizon sextants are generally much more costly to manufacture than marine sextants.

Altitudes observed by artificial-horizon sextants are subject to the same errors as those observed by marine sextant, except that the dip (height of eye) correction does not apply. Also, when the center of the Sun or Moon is observed, no correction for semidiameter is required.

## CHRONOMETERS

## 1616. The Marine Chronometer

The spring-driven marine chronometer is a precision timepiece used aboard ship to provide accurate time for celestial observations. A chronometer differs from a springdriven watch principally in that it contains a variable lever device to maintain even pressure on the mainspring, and a special balance designed to compensate for temperature variations.

A spring-driven chronometer is set approximately to Greenwich mean time (GMT) and is not reset until the instrument is overhauled and cleaned, usually at three-year intervals. The difference between GMT and chronometer time (C) is carefully determined and applied as a correction to all chronometer readings. This difference, called chronometer error (CE), is fast $(\mathrm{F})$ if chronometer time is later than GMT, and slow (S) if earlier. The amount by which chronometer error changes in 1 day is called chronometer rate. An erratic rate indicates a defective instrument requiring repair.

The principal maintenance requirement is regular winding at about the same time each day. At maximum intervals of about three years, a spring-driven chronometer should be sent to a chronometer repair shop for cleaning and overhaul.

## 1617. Quartz Crystal Marine Chronometers

Quartz crystal marine chronometers have replaced spring-driven chronometers aboard many ships because of their greater accuracy. They are maintained on GMT directly from radio time signals. This eliminates chronometer error (CE) and watch error (WE) corrections. Should the second hand be in error by a readable amount, it can be reset
electrically.
The basic element for time generation is a quartz crystal oscillator. The quartz crystal is temperature compensated and is hermetically sealed in an evacuated envelope. A calibrated adjustment capability is provided to adjust for the aging of the crystal.

The chronometer is designed to operate for a minimum of 1 year on a single set of batteries. A good marine chronometer has a built-in push button battery test meter. The meter face is marked to indicate when the battery should be replaced. The chronometer continues to operate and keep the correct time for at least 5 minutes while the batteries are changed. The chronometer is designed to accommodate the gradual voltage drop during the life of the batteries while maintaining accuracy requirements.

## 1618. Watches

A chronometer should not be removed from its case to time sights. Observations may be timed and ship's clocks set with a comparing watch, which is set to chronometer time (GMT, also known as UT) and taken to the bridge wing for recording sight times. In practice, a wrist watch coordinated to the nearest second with the chronometer will be adequate.

A stop watch, either spring wound or digital, may also be used for celestial observations. In this case, the watch is started at a known GMT by chronometer, and the elapsed time of each sight added to this to obtain GMT of the sight.

All chronometers and watches should be checked regularly with a radio time signal. Times and frequencies of radio time signals are listed in NIMA Pub. 117, Radio Navigational Aids.

## 1619. Navigational Calculators

While not considered "instruments" in the strict sense of the word, certainly one of the professional navigator's most useful tools is the navigational calculator or computer program. Calculators eliminate several potential sources of error in celestial navigation, and permit the solution of many more sights in much less time, making it possible to refine a celestial position much more accurately than is practical using mathematical or tabular methods.

Calculators also save space and weight, a valuable consideration on many craft. One small calculator can replace several heavy and expensive volumes of tables, and is inexpensive enough that there is little reason not to carry a spare for backup use should the primary one fail. The pre-programmed calculators are at least as robust in construction, probably more so, than the sextant itself, and properly cared
for, will last a lifetime with no maintenance except new batteries from time to time.

If the vessel carries a computer for other ship's chores such as inventory control or personnel administration, there is little reason not to use it for celestial navigation. Freeware or inexpensive programs are available which take up little hard disk space and allow rapid solution of all types of celestial navigation problems. Typically they will also take care of route planning, sailings, tides, weather routing, electronic charts, and numerous other tasks.

Using a calculator or sight reduction program, it is possible to take and solve half a dozen or more sights in a fraction of the time it would normally take to shoot two or three and solve them by hand. This will increase the accuracy of the fix by averaging out errors in taking the sights. The computerized solution is always more accurate than tabular methods because it is free of rounding errors.

## CHAPTER 17

## AZIMUTHS AND AMPLITUDES

## INTRODUCTION

## 1700. Checking Compass Error

The navigator must constantly be concerned about the accuracy of the ship's primary and backup compasses, and should check them regularly. A regularly annotated compass log book will allow the navigator to notice a developing error before it becomes a serious problem.

As long as at least two different types of compass (e.g. mechanical gyro and flux gate, or magnetic and ring laser gyro) are consistent with each other, one can be reasonably sure that there is no appreciable error in either system. Since different types of compasses depend on different scientific principles and are not subject to the same error sources, their agreement indicates almost certainly that no error is present.

A navigational compass can be checked against the heading reference of an inertial navigation system if one is installed. One can also refer to the ship's indicated GPS track as long as current and leeway are not factors, so that the ship's COG and heading are in close agreement.

The navigator's only completely independent directional reference (because it is extra-terrestrial and not
man-made) is the sky. The primary compass should be checked occasionally by comparing the observed and calculated azimuths and amplitudes of a celestial body. The difference between the observed and calculated values is the compass error. This chapter discusses these procedures.

Theoretically, these procedures work with any celestial body. However, the Sun and Polaris are used most often when measuring azimuths, and the rising or setting Sun when measuring amplitudes.

While errors can be computed to the nearest tenth of a degree or so, it is seldom possible to steer a ship that accurately, especially when a sea is running, and it is reasonable to round calculations to the nearest half or perhaps whole degree for most purposes.

Various hand-held calculators and computer programs are available to relieve the tedium and errors of tabular and mathematical methods of calculating azimuths and amplitudes. Naval navigators will find the STELLA program useful in this regard. Chapter 20 discusses this program in greater detail.

## AZIMUTHS

## 1701. Compass Error by Azimuth of the Sun

Mariners may use Pub 229, Sight Reduction Tables for Marine Navigation to compute the Sun's azimuth. They compare the computed azimuth to the azimuth measured with the compass to determine compass error. In computing an azimuth, interpolate the tabular azimuth angle for the difference between the table arguments and the actual values of declination, latitude, and local hour angle. Do this triple interpolation of the azimuth angle as follows:

1. Enter the Sight Reduction Tables with the nearest integral values of declination, latitude, and local hour angle. For each of these arguments, extract a base azimuth angle.
2. Reenter the tables with the same latitude and LHA arguments but with the declination argument $1^{\circ}$ greater or less than the base declination argument, depending upon whether the actual declination is greater or less than the base argument. Record the
difference between the respondent azimuth angle and the base azimuth angle and label it as the azimuth angle difference (Z Diff.).
3. Reenter the tables with the base declination and LHA arguments, but with the latitude argument $1^{\circ}$ greater or less than the base latitude argument, depending upon whether the actual (usually DR) latitude is greater or less than the base argument. Record the Z Diff. for the increment of latitude.
4. Reenter the tables with the base declination and latitude arguments, but with the LHA argument $1^{\circ}$ greater or less than the base LHA argument, depending upon whether the actual LHA is greater or less than the base argument. Record the Z Diff. for the increment of LHA.
5. Correct the base azimuth angle for each increment.

|  | Actual | Base Arguments | $\begin{gathered} \text { Base } \\ \text { Z } \end{gathered}$ | $\begin{gathered} \hline \text { Tab* } \\ \text { Z } \end{gathered}$ | Z Diff. | Increments | Correction <br> (Z Diff x Inc. $\div 60$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec. | $20^{\circ} 13.8^{\prime} \mathrm{N}$ | $20^{\circ}$ | $97.8^{\circ}$ | $96.4{ }^{\circ}$ | -1.4 ${ }^{\circ}$ | $13.8^{\prime}$ | $-0.3^{\circ}$ |
| DR Lat. | $33^{\circ} 24.0^{\prime} \mathrm{N}$ | $33^{\circ}$ (Same) | $97.8^{\circ}$ | $98.9^{\circ}$ | +1.1 ${ }^{\circ}$ | $24.0{ }^{1}$ | $+0.4{ }^{\circ}$ |
| LHA | $316^{\circ} 41.2^{\prime}$ | $317^{\circ}$ | $97.8^{\circ}$ | $97.1^{\circ}$ | $-0.7^{\circ}$ | $18.8{ }^{\prime}$ | -0.2 ${ }^{\circ}$ |
| Base Z | $97.8^{\circ}$ | Total Corr. <br> *Respondent for the two base arguments and $1^{\circ}$ change from third base argument, in vertical order of Dec., DR Lat., and LHA. |  |  |  |  |  |
| Corr. | (-) $0.1^{\circ}$ |  |  |  |  |  |  |
| Z | N $97.7^{\circ} \mathrm{E}$ |  |  |  |  |  |  |
| Zn | $097.7^{\circ}$ |  |  |  |  |  |  |
| Zn pgc | $096.5^{\circ}$ |  |  |  |  |  |  |
| Gyro Error | $1.2^{\circ} \mathrm{E}$ |  |  |  |  |  |  |

Figure 1701. Azimuth by Pub. No. 229.

## Example:

In DR latitude $33^{\circ} 24.0^{\prime} N$, the azimuth of the Sun is $096.5^{\circ}$ pgc. At the time of the observation, the declination of the Sun is $20^{\circ} 13.8^{\prime} \mathrm{N}$; the local hour angle of the Sun is $316^{\circ} 41.2^{\prime}$. Determine compass error.

## Solution:

See Figure 1701 Enter the actual value of declination, DR latitude, and LHA. Round each argument to the nearest whole degree. In this case, round the declination and the latitude down to the nearest whole degree. Round the LHA up to the nearest whole degree. Enter the Sight Reduction Tables with these whole degree arguments and extract the base azimuth value for these rounded off arguments. Record the base azimuth value in the table.

As the first step in the triple interpolation process, increase the value of declination by $1^{\circ}$ (to $21^{\circ}$ ) because the actual declination value was greater than the base declination. Enter the Sight Reduction Tables with the following arguments: (1) Declination $=21^{\circ}$; (2) DR Latitude $=33^{\circ}$; (3) LHA $=317^{\circ}$. Record the tabulated azimuth for these arguments.

As the second step in the triple interpolation process, increase the value of latitude by $1^{\circ}$ to $34^{\circ}$ because the actual DR latitude was greater than the base latitude. Enter the Sight Reduction Tables with the following arguments: (1) Declination $=20^{\circ}$; (2) DR Latitude $=34^{\circ}$; (3) LHA $=$
$317^{\circ}$. Record the tabulated azimuth for these arguments.
As the third and final step in the triple interpolation process, decrease the value of LHA to $316^{\circ}$ because the actual LHA value was smaller than the base LHA. Enter the Sight Reduction Tables with the following arguments: (1) Declination $=20^{\circ}$; (2) DR Latitude $=33^{\circ}$; (3) LHA $=316^{\circ}$. Record the tabulated azimuth for these arguments.

Calculate the $Z$ Difference by subtracting the base azimuth from the tabulated azimuth. Be careful to carry the correct sign.

## Z Difference = Tab Z - Base Z

Next, determine the increment for each argument by taking the difference between the actual values of each argument and the base argument. Calculate the correction for each of the three argument interpolations by multiplying the increment by the $Z$ difference and dividing the resulting product by 60 .

The sign of each correction is the same as the sign of the corresponding $Z$ difference used to calculate it. In the above example, the total correction sums to -0.1'. Apply this value to the base azimuth of $97.8^{\circ}$ to obtain the true azimuth $97.7^{\circ}$. Compare this to the compass reading of $096.5^{\circ} \mathrm{pgc}$. The compass error is $1.2^{\circ} E$, which can be rounded to $1^{\circ}$ for steering and logging purposes.

## AZIMUTH OF POLARIS

## 1702. Compass Error By Azimuth Of Polaris

The Polaris tables in the Nautical Almanac list the azimuth of Polaris for latitudes between the equator and $65^{\circ}$ N. Figure 2012 in Chapter 20 shows this table. Compare a compass bearing of Polaris to the tabular value of Polaris to determine compass error. The entering arguments for the table are LHA of Aries and observer latitude.
at 02-00-00 GMT, Polaris bears $358.6^{\circ} \mathrm{pgc}$. Calculate the compass error.

| Date | 17 March 2001 |
| :--- | :--- |
| Time (GMT) | $02-00-00$ |
| GHA Aries | $204^{\circ} 43.0^{\prime}$ |
| Longitude | $045^{\circ} 00.0^{\prime} \mathrm{W}$ |
| LHA Aries | $159^{\circ} 43.0^{\prime}$ |

## Solution:

Enter the azimuth section of the Polaris table with the

## Example:

On March 17, 2001, at L $33^{\circ} 15.0^{\prime} N$ and $\lambda 045^{\circ} 00.0^{\prime} W$,
calculated LHA of Aries. In this case, go to the column for LHA Aries between $160^{\circ}$ and $169^{\circ}$. Follow that column down and extract the value for the given latitude. Since the increment between tabulated values is so small, visual interpolation is sufficient. In this case, the azimuth for Polaris for the given LHA of Aries and the given latitude
is $359.3^{\circ}$.

| Tabulated Azimuth | $359.2^{\circ} \mathrm{T}$ |
| :--- | :--- |
| Compass Bearing | $358.6^{\circ} \mathrm{C}$ |
| Error | $0.6^{\circ} \mathrm{E}$ |

## AMPLITUDES

## 1703. Amplitudes

A celestial body's amplitude angle is the complement of its azimuth angle. At the moment that a body rises or sets, the amplitude angle is the arc of the horizon between the body and the East/West point of the horizon where the observer's prime vertical intersects the horizon (at $90^{\circ}$ ), which is also the point where the plane of the equator intersects the horizon (at an angle numerically equal to the observer's co-latitude). See Figure 1703.


Figure 1703. The amplitude angle (A) subtends the arc of the horizon between the body and the point where the prime vertical and the equator intersect the horizon. Note that it is the compliment of the azimuth angle $(Z)$.

In practical navigation, a bearing (psc or pgc) of a body can be observed when it is on either the celestial or the visible horizon. To determine compass error, simply convert the computed amplitude angle to true degrees and compare it with the observed compass bearing.

The angle is computed by the formula:

$$
\sin \mathrm{A}=\sin \mathrm{Dec} / \cos \mathrm{Lat} .
$$

This formula gives the angle at the instant the body is on the celestial horizon. It does not contain an altitude term
because the body's computed altitude is zero at this instant.
The angle is prefixed E if the body is rising and W if it is setting. This is the only angle in celestial navigation referenced FROM East or West, i.e. from the prime vertical. A body with northerly declination will rise and set North of the prime vertical. Likewise, a body with southerly declination will rise and set South of the prime vertical. Therefore, the angle is suffixed N or S to agree with the name of the body's declination. A body whose declination is zero rises and sets exactly on the prime vertical.

The Sun is on the celestial horizon when its lower limb is approximately two thirds of a diameter above the visible horizon. The Moon is on the celestial horizon when its upper limb is on the visible horizon. Stars and planets are on the celestial horizon when they are approximately one Sun diameter above the visible horizon.

When observing a body on the visible horizon, a correction from Table 23 must be applied. This correction accounts for the slight change in bearing as the body moves between the visible and celestial horizons. It reduces the bearing on the visible horizon to the celestial horizon, from which the table is computed.

For the Sun, stars, and planets, apply this correction to the observed bearing in the direction away from the elevated pole. For the moon, apply one half of the correction toward the elevated pole. Note that the algebraic sign of the correction does not depend upon the body's declination, but only on the observer's latitude. Assuming the body is the Sun the rule for applying the correction can be outlined as follows:

| Observer's Lat. | Rising/Setting | Observed bearing |
| :--- | :--- | :--- |
| North | Rising | Add to |
| North | Setting | Subtract from |
| South | Rising | Subtract from |
| South | Setting | Add to |

The following two articles demonstrate the procedure for obtaining the amplitude of the Sun on both the celestial and visible horizons.

## 1704. Amplitude of the Sun on the Celestial Horizon

## Example:

The DR latitude of a ship is $51^{\circ} 24.6^{\prime} N$. The navigator observes the setting Sun on the celestial horizon. Its decli-

| Actual | Base | Base Amp. | Tab. Amp. | Diff. | Inc. | Correction |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{L}=51.4^{\circ} \mathrm{N}$ | $51^{\circ}$ | $32.0^{\circ}$ | $32.8^{\circ}$ | $+0.8^{\circ}$ | 0.4 | $+0.3^{\circ}$ |
| dec $=19.67^{\circ} \mathrm{N}$ | $19.5^{\circ}$ | $32.0^{\circ}$ | $32.9^{\circ}$ | $+0.9^{\circ}$ | 0.3 | $\underline{+0.3^{\circ}}$ |
|  |  |  |  |  |  | Total |
|  |  |  |  | $+0.6^{\circ}$ |  |  |

Figure 1704. Interpolation in Table 22 for Amplitude.
nation is $N 19^{\circ} 40.4^{\prime}$. Its observed bearing is $303^{\circ} \mathrm{pgc}$.

## Required:

Gyro error.

## Solution:

Interpolate in Table 22 for the Sun's calculated amplitude as follows. See Figure 1704. The actual values for latitude and declination are $L=51.4^{\circ} \mathrm{N}$ and dec. $=\mathrm{N}$ $19.67^{\circ}$. Find the tabulated values of latitude and declination closest to these actual values. In this case, these tabulated values are $L=51^{\circ}$ and dec. $=19.5^{\circ}$. Record the amplitude corresponding to these base values, $32.0^{\circ}$, as the base amplitude.

Next, holding the base declination value constant at $19.5^{\circ}$, increase the value of latitude to the next tabulated value: $N 52^{\circ}$. Note that this value of latitude was increased because the actual latitude value was greater than the base value of latitude. Record the tabulated amplitude for $L=$ $52^{\circ}$ and dec. $=19.5^{\circ}: 32.8^{\circ}$. Then, holding the base latitude value constant at $51^{\circ}$, increase the declination value to the next tabulated value: $20^{\circ}$. Record the tabulated amplitude for $L=51^{\circ}$ and dec. $=20^{\circ}: 32.9^{\circ}$.

The latitude's actual value $\left(51.4^{\circ}\right)$ is 0.4 of the way between the base value $\left(51^{\circ}\right)$ and the value used to determine the tabulated amplitude $\left(52^{\circ}\right)$. The declination's actual value $\left(19.67^{\circ}\right)$ is 0.3 of the way between the base value ( $19.5^{\circ}$ ) and the value used to determine the tabulated amplitude $\left(20.0^{\circ}\right)$. To determine the total correction to base amplitude, multiply these increments ( 0.4 and 0.3 ) by the respective difference between the base and tabulated values $(+0.8$ and +0.9 , respectively) and sum the products. The total correction is $+0.6^{\circ}$. Add the total correction $\left(+0.6^{\circ}\right)$ to the base amplitude $\left(32.0^{\circ}\right)$ to determine the final amplitude ( $32.6^{\circ}$ ) which will be converted to a true bearing.

Because of its northerly declination (in this case), the Sun was $32.6^{\circ}$ north of west when it was on the celestial horizon. Therefore its true bearing was $302.6^{\circ}\left(270^{\circ}+\right.$ $32.6^{\circ}$ ) at this moment. Comparing this with the gyro bearing of $303^{\circ}$ gives an error of $0.4^{\circ} \mathrm{W}$, which can be rounded to $1 / 2^{\circ} \mathrm{W}$.
1705. Amplitude of the Sun on the Visible Horizon

In higher latitudes, amplitude observations should be made when the body is on the visible horizon because the value of the correction is large enough to cause significant error if the observer misjudges the exact position of the celestial horizon. The observation will yield precise results whenever the visible horizon is clearly defined.

## Example:

Observer's DR latitude is $59^{\circ} 47^{\prime} N$, Sun's declination is $5^{\circ} 11.3^{\prime} S$. At sunrise the Sun is observed on the visible horizon bearing $098.5^{\circ} \mathrm{pgc}$.

## Required:

Compass error.

## Solution:

Given this particular latitude and declination, the amplitude angle is $10.4^{\circ} S$, so that the Sun's true bearing is $100.4^{\circ}$ at the moment it is on the celestial horizon, that is, when its Hc is precisely $0^{\circ}$. Applying the Table 23 correction to the observed bearing using the rules given in Article 1703, the Sun would have been bearing $099.7^{\circ}$ pgc had the observation been made when the Sun was on the celestial horizon. Therefore, the gyro error is $0.7^{\circ} E$.

## 1706. Amplitude by Calculation

As an alternative to using Table 22 and Table 23, a visible horizon amplitude observation can be solved by the "altitude azimuth" formula, because azimuth and amplitude angles are complimentary, and the co-functions of complimentary angles are equal; i.e., cosine $\mathrm{Z}=$ sine A .

$$
\text { Sine } A=[\operatorname{Sin} D-(\sin L \sin H)] /(\cos L \cos H)
$$

For shipboard observations, the Sun's (computed) altitude is negative $0.7^{\circ}$ when it is on the visible horizon. Using the same entities as in Article 1705, the amplitude angle is computed as follows:
$\operatorname{Sin} \mathrm{A}=\left[\sin 5.2^{\circ}-\left(\sin 59.8^{\circ} \mathrm{X} \sin -0.7^{\circ}\right)\right] /\left(\cos 59.8^{\circ}\right.$ $\mathrm{X} \cos 0.7^{\circ}$ )

# CHAPTER 18 

## TIME

## TIME IN NAVIGATION

## 1800. Solar Time

The Earth's rotation on its axis causes the Sun and other celestial bodies to appear to move across the sky from east to west each day. If a person located on the Earth's equator measured the time interval between two successive transits overhead of a very distant star, he would be measuring the period of the Earth's rotation. If he then made a similar measurement of the Sun, the resulting time would be about 4 minutes longer. This is due to the Earth's motion around the Sun, which continuously changes the apparent place of the Sun among the stars. Thus, during the course of a day the Sun appears to move a little to the east among the stars, so that the Earth must rotate on its axis through more than $360^{\circ}$ in order to bring the Sun overhead again.

See Figure 1800. If the Sun is on the observer's meridian when the Earth is at point A in its orbit around the Sun, it will not be on the observer's meridian after the Earth has rotated through $360^{\circ}$ because the Earth will have moved along its orbit to point B. Before the Sun is again on the observer's meridian, the Earth must turn a little more on its axis. The

Sun will be on the observer's meridian again when the Earth has moved to point C in its orbit. Thus, during the course of a day the Sun appears to move eastward with respect to the stars.

The apparent positions of the stars are commonly reckoned with reference to an imaginary point called the vernal equinox, the intersection of the celestial equator and the ecliptic. The period of the Earth's rotation measured with respect to the vernal equinox is called a sidereal day. The period with respect to the Sun is called an apparent solar day.

When measuring time by the Earth's rotation, using the actual position of the Sun, or the apparent Sun, results in apparent solar time. Use of the apparent Sun as a time reference results in time of non-constant rate for at least three reasons. First, revolution of the Earth in its orbit is not constant. Second, time is measured along the celestial equator and the path of the real Sun is not along the celestial equator. Rather, its path is along the ecliptic, which is tilted at an angle of $23^{\circ} 27^{\prime}$ with respect to the celestial equator. Third, rotation of the Earth on its axis is not constant.


Figure 1800. Apparent eastward movement of the Sun with respect to the stars.

To obtain a constant rate of time, we replace the apparent Sun with a fictitious mean Sun. This mean Sun moves eastward along the celestial equator at a uniform speed equal to the average speed of the apparent Sun along the ecliptic. This mean Sun, therefore, provides a uniform measure of time which approximates the average apparent time. The speed of the mean Sun along the celestial equator is $15^{\circ}$ per hour of mean solar time.

## 1801. Equation of Time

Mean solar time, or mean time as it is commonly called, is sometimes ahead of and sometimes behind apparent solar time. This difference, which never exceeds about 16.4 minutes, is called the equation of time.

The navigator most often deals with the equation of time when determining the time of upper meridian passage of the Sun. The Sun transits the observer's upper meridian at local apparent noon. Were it not for the difference in rate between the mean and apparent Sun, the Sun would be on the observer's meridian when the mean Sun indicated 1200 local time. The apparent solar time of upper meridian passage, however, is offset from exactly 1200 mean solar time. This time difference, the equation of time at meridian transit, is listed on the right hand daily pages of the Nautical Almanac.

The sign of the equation of time is negative if the time of Sun's meridian passage is earlier than 1200 and positive if later than 1200. Therefore: Apparent Time = Mean Time + (equation of time).

Example 1: Determine the time of the Sun's meridian passage (Local Apparent Noon) on June 16, 1994.

Solution: See Figure 2008 in Chapter 20, the Nautical Almanac's right hand daily page for June 16, 1994. The equation of time is listed in the bottom right hand corner of the page. There are two ways to solve the problem, depending on the accuracy required for the value of meridian passage. The time of the Sun at meridian passage is given to the nearest minute in the "Mer. Pass." column. For June 16, 1994, this value is 1201.

To determine the exact time of meridian passage, use the value given for the equation of time. This value is listed immediately to the left of the "Mer. Pass." column on the daily pages. For June 16, 1994, the value is given as $00^{m} 37$ s. Use the " 12 " column because the problem asked for meridian passage at LAN. The value of meridian passage from the "Mer. Pass." column indicates that meridian passage occurs after 1200; therefore, add the 37 second correction to 1200 to obtain the exact time of meridian passage. The exact time of meridian passage for June 16, 1994, is $12^{\text {h }} 00^{m} 37$ s.

The equation of time's maximum value approaches $16^{\mathrm{m}} 22^{\mathrm{s}}$ in November.

If the Almanac lists the time of meridian passage as 1200 , proceed as follows. Examine the equations of time
listed in the Almanac to find the dividing line marking where the equation of time changes between positive and negative values. Examine the trend of the values near this dividing line to determine the correct sign for the equation of time.

Example 2: See Figure 1801. Determine the time of the upper meridian passage of the Sun on April 16, 1995.

Solution: From Figure 1801, upper meridian passage of the Sun on April 16, 1995, is given as 1200. The dividing line between the values for upper and lower meridian passage on April 16th indicates that the sign of the equation of time changes between lower meridian passage and upper meridian passage on this date; the question, therefore, becomes: does it become positive or negative? Note that on April 18, 1995, upper meridian passage is given as 1159, indicating that on April 18, 1995, the equation of time is positive. All values for the equation of time on the same side of the dividing line as April 18th are positive. Therefore, the equation of time for upper meridian passage of the Sun on April 16, 1995 is $(+) 00^{m} 05^{s}$. Upper meridian passage, therefore, takes place at $11^{h} 59^{m} 55^{s}$.

| Day | SUN |  |  | MOON |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Eqn. o } \\ & 00^{\mathrm{h}} \end{aligned}$ | Time ${ }^{12}{ }^{\text {h }}$ | Mer. Pass. | $\begin{aligned} & \text { Mer. } \\ & \text { Upper } \end{aligned}$ | Pass. Lower | Age | Phase |
|  | m s | m s | h m | h m | h m | d |  |
| 16 | $\begin{array}{ll}00 & 02\end{array}$ | $\bigcirc$ | 1200 | $00 \quad 26$ | $12 \quad 55$ | 16 | $\square$ |
| 17 | 00 13 | 0020 | 1200 | $01 \quad 25$ | $13 \quad 54$ | 17 |  |
| 18 | $00 \quad 27$ | $00 \quad 33$ | 1159 | $02 \quad 25$ | $14 \quad 55$ | 18 |  |

Figure 1801. The equation of time for April 16, 17, 18, 1995.
To calculate latitude and longitude at LAN, the navigator seldom requires the time of meridian passage to accuracies greater than one minute. Therefore, use the time listed under the "Mer. Pass." column to estimate LAN unless extraordinary accuracy is required.

## 1802. Fundamental Systems of Time

Atomic time is defined by the Systeme International (SI) second, with a duration of $9,192,631,770$ cycles of radiation corresponding to the transition between two hyperfine levels of the ground state of cesium 133. International Atomic Time (TAI) is an international time scale based on the average of a number of atomic clocks.

Universal time (UT) is counted from 0 hours at midnight, with a duration of one mean solar day, averaging out minor variations in the rotation of the Earth.

UT0 is the rotational time of a particular place of observation, observed as the diurnal motion of stars or extraterrestrial radio sources.

UT1 is computed by correcting UT0 for the effect of polar motion on the longitude of the observer, and varies because of irregularities in the Earth's rotation.

Coordinated Universal Time, or UTC, used as a standard reference worldwide for certain purposes, is kept
within one second of TAI by the introduction of leap seconds. It differs from TAI by an integral number of seconds, but is always kept within 0.9 seconds of TAI.

Dynamical time has replaced ephemeris time in theoretical usage, and is based on the orbital motions of the Earth, Moon, and planets.

Terrestrial time (TT), also known as Terrestrial Dynamical Time (TDT), is defined as 86,400 seconds on the geoid.

Sidereal time is the hour angle of the vernal equinox, and has a unit of duration related to the period of the Earth's rotation with respect to the stars.

Delta T is the difference between UT1 and TDT.
Dissemination of time is an inherent part of various electronic navigation systems. The U.S. Naval Observatory Master Clock is used to coordinate Loran signals, and GPS signals have a time reference encoded in the data message. GPS time is normally within 15 nanoseconds with SA off, about 70 nanoseconds with SA on. One nanosecond (one one-billionth of a second) of time is roughly equivalent to one foot on the Earth for the GPS system.

## 1803. Time and Arc

One day represents one complete rotation of the Earth. Each day is divided into 24 hours of 60 minutes; each minute has 60 seconds.

Time of day is an indication of the phase of rotation of the Earth. That is, it indicates how much of a day has elapsed, or what part of a rotation has been completed. Thus, at zero hours the day begins. One hour later, the Earth has turned through $1 / 24$ of a day, or $1 / 24$ of $360^{\circ}$, or $360^{\circ} \div$ $24=15^{\circ}$

Smaller intervals can also be stated in angular units; since 1 hour or 60 minutes is equivalent to $15^{\circ}$ of arc, 1 minute of time is equivalent to $15^{\circ} \div 60=0.25^{\circ}=15^{\prime}$ of arc, and 1 second of time is equivalent to $15^{\prime} \div 60=0.25^{\prime}=15^{\prime \prime}$ of arc.

Summarizing in table form:

| $1^{\mathrm{d}}$ | $=24^{\mathrm{h}}$ | $=360^{\circ}$ |
| :--- | :--- | :--- |
| $60^{\mathrm{m}}$ | $=1^{\mathrm{h}}$ | $=15^{\circ}$ |
| 4 m | $=1^{\circ}$ | $=60^{\prime}$ |
| $60^{\mathrm{s}}$ | $=1^{\mathrm{m}}$ | $=15^{\prime}$ |
| $4^{\mathrm{s}}$ | $=1^{\prime}$ | $=60^{\prime \prime}$ |
| $1^{\mathrm{s}}$ | $=15^{\prime \prime}$ | $=0.25^{\prime}$ |

Therefore any time interval can be expressed as an equivalent amount of rotation, and vice versa. Interconversion of these units can be made by the relationships indicated above.

To convert time to arc:

1. Multiply the hours by 15 to obtain degrees of arc.
2. Divide the minutes of time by four to obtain degrees.
3. Multiply the remainder of step 2 by 15 to obtain minutes of arc.
4. Divide the seconds of time by four to obtain minutes of arc
5. Multiply the remainder by 15 to obtain seconds of arc.
6. Add the resulting degrees, minutes, and seconds.

Example 1: Convert $14^{h} 21^{m 39 s}$ to arc.

## Solution:

| (1) $14^{h} \times 15$ | $=210^{\circ} 00^{\prime} 00^{\prime \prime}$ |
| :--- | :--- |
| (2) $21^{m} \div 4$ | $=005^{\circ} 00^{\prime} 00^{\prime \prime}($ remainder 1$)$ |
| (3) $1 \times 15$ | $=000^{\circ} 15^{\prime} 00^{\prime \prime}$ |
| (4) $39 s \div 4$ | $=000^{\circ} 09^{\prime} 00^{\prime \prime}$ (remainder 3 ) |
| (5) $3 \times 15$ | $=000^{\circ} 00^{\prime} 45^{\prime \prime}$ |
| (6) $14^{h} 21^{m} 39^{s}$ | $=215^{\circ} 24^{\prime} 45^{\prime \prime}$ |

To convert arc to time:

1. Divide the degrees by 15 to obtain hours.
2. Multiply the remainder from step 1 by four to obtain minutes of time.
3. Divide the minutes of arc by 15 to obtain minutes of time.
4. Multiply the remainder from step 3 by four to obtain seconds of time.
5. Divide the seconds of arc by 15 to obtain seconds of time.
6. Add the resulting hours, minutes, and seconds.

Example 2: Convert $215^{\circ} 24^{\prime} 45^{\prime \prime}$ to time units.

## Solution:

| (1) $215^{\circ} \div 15$ | $=14^{h} 00^{m} 00^{s}$ | remainder 5 |
| :--- | :--- | :--- |
| (2) $5 \times 4$ | $=00^{h} 20^{m} 00^{s}$ |  |
| (3) $24^{\prime} \div 15$ | $=00^{h} 01^{m} 00^{s}$ | remainder 9 |
| (4) $9 \times 4$ | $=00^{h} 00^{m} 36^{s}$ |  |
| (5) $45^{\prime \prime} \div 15$ | $=00^{h} 00^{m} 03^{s}$ |  |
| (6) $215^{\circ} 24^{\prime} 45^{\prime \prime}$ | $=14^{h} 21^{m} 39^{s}$ |  |

Solutions can also be made using arc to time conversion tables in the almanacs. In the Nautical Almanac, the table given near the back of the volume is in two parts, permitting separate entries with degrees, minutes, and quarter minutes of arc. This table is arranged in this manner because the navigator converts arc to time more often than the reverse.

Example 3: Convert $334^{\circ} 18^{\prime} 22^{\prime \prime}$ to time units, using the Nautical Almanac arc to time conversion table .

## Solution:

Convert the 22 " to the nearest quarter minute of arc for solution to the nearest second of time. Interpolate if more precise results are required.

$$
\begin{aligned}
334^{\circ} 00.00^{m} & =22^{h} 16^{m} 00^{s} \\
000^{\circ} 18.25^{m} & =00^{h} 01^{m} 13^{s} \\
334^{\circ} 18^{\prime} 22^{\prime \prime} & =22^{h} 17^{m} 13^{s}
\end{aligned}
$$

## 1804. Time and Longitude

Suppose the Sun were directly over a certain point on the Earth at a given time. An hour later the Earth would have turned through $15^{\circ}$, and the Sun would then be directly over a meridian $15^{\circ}$ farther west. Thus, any difference of longitude between two points is a measure of the angle through which the Earth must rotate to separate them. Therefore, places east of an observer have later time, and those west have earlier time, and the difference is exactly equal to the difference in longitude, expressed in time units. The difference in time between two places is equal to the difference of longitude between their meridians, expressed in units of time instead of arc.

## 1805. The Date Line

Since time grows later toward the east and earlier toward the west of an observer, time at the lower branch of one's meridian is 12 hours earlier or later, depending upon the direction of reckoning. A traveler circling the Earth gains or loses an entire day depending on the direction of travel, and only for a single instant of time, at precisely Greenwich noon, is it the same date around the earth. To prevent the date from being in error and to provide a starting place for each new day, a date line is fixed by informal agreement. This line coincides with the 180th meridian over most of its length. In crossing this line, the date is altered by one day. If a person is traveling eastward from east longitude to west longitude, time is becoming later, and when the date line is crossed the date becomes 1 day earlier. At any instant the date immediately to the west of the date line (east longitude) is 1 day later than the date immediately to the east of the line. When solving celestial problems, we convert local time to Greenwich time and then convert this to local time on the opposite side of the date line.

## 1806. Zone Time

At sea, as well as ashore, watches and clocks are normally set to some form of zone time (ZT). At sea the nearest meridian exactly divisible by $15^{\circ}$ is usually used as the time meridian or zone meridian. Thus, within a time zone extending $7.5^{\circ}$ on each side of the time meridian the time is the same, and time in consecutive zones differs by
exactly one hour. The time is changed as convenient, usually at a whole hour, when crossing the boundary between zones. Each time zone is identified by the number of times the longitude of its zone meridian is divisible by $15^{\circ}$, positive in west longitude and negative in east longitude. This number and its sign, called the zone description (ZD), is the number of whole hours that are added to or subtracted from the zone time to obtain Greenwich Mean Time (GMT). The mean Sun is the celestial reference point for zone time. See Figure 1806.

Converting ZT to GMT, a positive ZT is added and a negative one subtracted; converting GMT to ZT, a positive ZD is subtracted, and a negative one added.

Example: The GMT is $15^{h} 27^{m} 09$ s.
Required: (1) ZT at long. $156^{\circ} 24.4^{\prime} W$.
(2) ZT at long. $039^{\circ} 04.8^{\prime} E$.

## Solutions:

| (1) |  | 15h27m09s |
| :---: | :---: | :---: |
|  | $Z D$ | $+10^{\text {h (rev. }}$ ) |
| (2) | ZT | 05h27m09s |
|  | GMT | 15h27m09s |
|  | ZD | -03 ${ }^{\text {(rev. }}$ ) |
|  | ZT | 18h27m09s |

## 1807. Chronometer Time

Chronometer time (C) is time indicated by a chronometer. Since a chronometer is set approximately to GMT and not reset until it is overhauled and cleaned about every 3 years, there is nearly always a chronometer error (CE), either fast (F) or slow (S). The change in chronometer error in 24 hours is called chronometer rate, or daily rate, and designated gaining or losing. With a consistent rate of $1^{\text {s }}$ per day for three years, the chronometer error would total approximately $18^{\mathrm{m}}$. Since chronometer error is subject to change, it should be determined from time to time, preferably daily at sea. Chronometer error is found by radio time signal, by comparison with another timepiece of known error, or by applying chronometer rate to previous readings of the same instrument. It is recorded to the nearest whole or half second. Chronometer rate is recorded to the nearest 0.1 second.

Example: At GMT 1200 on May 12 the chronometer reads $12^{h} 04^{m} 21^{s}$. At GMT 1600 on May 18 it reads $4^{h} 04^{m} 25^{s}$.

Required: . 1. Chronometer error at 1200 GMT May 12.
2. Chronometer error at 1600 GMT May 18.
3. Chronometer rate.
4. Chronometer error at GMT 0530, May 27.
TIME ZONE CHART

Figure 1806. Time Zone Chart.

## Solutions:

| 1. | GMT | 12ho0mo0s | May 12 |
| :---: | :---: | :---: | :---: |
|  | C | $12^{\text {h }} 04^{m} 21^{s}$ |  |
|  | CE | (F) $4^{m} 21^{s}$ |  |
| 2. | GMT | $16^{\text {h }} 00^{m} 00^{s}$ | May 18 |
|  | C | 040425 |  |
|  | CE | (F)4m25s |  |
| 3. | GMT | $18^{d} 16^{h}$ |  |
|  | GMT | $12^{d} 12 \mathrm{~h}$ |  |
|  | diff. | $06^{d} 04{ }^{h}=6.2^{d}$ |  |
|  | CE | (F)4m21s | 1200 May 12 |
|  | CE | (F) $4^{m} 25^{s}$ | 1600 May 18 |
|  | diff. | $4 s$ (gained) |  |
|  | daily rate | $0.6^{\text {s }}$ (gain) |  |
| 4. | GMT | $27^{d} 05^{h} 30{ }^{\text {m }}$ |  |
|  | GMT | $18^{\text {d }} 16^{\text {h }} 00^{m}$ |  |
|  | diff. | $08^{\text {d }} 133^{h} 30{ }^{\text {m }}$ (8.5d) |  |
|  | CE | (F)4m25s | 1600 May 18 |
|  | corr. | $(+) 0^{m} 05^{s}$ | diff. $\times$ rate |
|  | CE | (F)4m30s | 0530 May 27 |

Because GMT is on a 24-hour basis and chronometer time on a 12 -hour basis, a 12 -hour ambiguity exists. This is ignored in finding chronometer error. However, if chronometer error is applied to chronometer time to find GMT, a 12 -hour error can result. This can be resolved by mentally applying the zone description to local time to obtain approximate GMT. A time diagram can be used for resolving doubt as to approximate GMT and Greenwich date. If the Sun for the kind of time used (mean or apparent) is between the lower branches of two time meridians (as the standard meridian for local time, and the Greenwich meridian for GMT), the date at the place farther east is one day later than at the place farther west.

## 1808. Watch Time

Watch time (WT) is usually an approximation of zone time, except that for timing celestial observations it is easiest to set a comparing watch to GMT. If the watch has a second-setting hand, the watch can be set exactly to ZT or GMT, and the time is so designated. If the watch is not set exactly to one of these times, the difference is known as watch error (WE), labeled fast (F) or slow (S) to indicate whether the watch is ahead of or behind the correct time.

If a watch is to be set exactly to ZT or GMT, set it to some whole minute slightly ahead of the correct time and stopped. When the set time arrives, start the watch and check it for accuracy.

The GMT may be in error by $12^{\mathrm{h}}$, but if the watch is graduated to 12 hours, this will not be reflected. If a watch
with a 24 -hour dial is used, the actual GMT should be determined.

To determine watch error compare the reading of the watch with that of the chronometer at a selected moment. This may also be at some selected GMT. Unless a watch is graduated to 24 hours, its time is designated am before noon and pm after noon.

Even though a watch is set to zone time approximately, its error on GMT can be determined and used for timing observations. In this case the 12 -hour ambiguity in GMT should be resolved, and a time diagram used to avoid error. This method requires additional work, and presents a greater probability of error, without compensating advantages.

If a stopwatch is used for timing observations, it should be started at some convenient GMT, such as a whole 5 m or $10^{\mathrm{m}}$. The time of each observation is then the GMT plus the watch time. Digital stopwatches and wristwatches are ideal for this purpose, as they can be set from a convenient GMT and read immediately after the altitude is taken.

## 1809. Local Mean Time

Local mean time (LMT), like zone time, uses the mean Sun as the celestial reference point. It differs from zone time in that the local meridian is used as the terrestrial reference, rather than a zone meridian. Thus, the local mean time at each meridian differs from every other meridian, the difference being equal to the difference of longitude expressed in time units. At each zone meridian, including $0^{\circ}$, LMT and ZT are identical.

In navigation the principal use of LMT is in rising, setting, and twilight tables. The problem is usually one of converting the LMT taken from the table to ZT. At sea, the difference between the times is normally not more than 30 m , and the conversion is made directly, without finding GMT as an intermediate step. This is done by applying a correction equal to the difference of longitude. If the observer is west of the time meridian, the correction is added, and if east of it, the correction is subtracted. If Greenwich time is desired, it is found from ZT.

Where there is an irregular zone boundary, the longitude may differ by more than $7.5^{\circ}\left(30^{\mathrm{m}}\right)$ from the time meridian.

If LMT is to be corrected to daylight saving time, the difference in longitude between the local and time meridian can be used, or the ZT can first be found and then increased by one hour.

Conversion of ZT (including GMT) to LMT is the same as conversion in the opposite direction, except that the sign of difference of longitude is reversed. This problem is not normally encountered in navigation.

## 1810. Sidereal Time

Sidereal time uses the first point of Aries (vernal equinox) as the celestial reference point. Since the Earth
revolves around the Sun, and since the direction of the Earth's rotation and revolution are the same, it completes a rotation with respect to the stars in less time (about $3 \mathrm{~m} 56.6^{\mathrm{s}}$ of mean solar units) than with respect to the Sun, and during one revolution about the Sun (1 year) it makes one complete rotation more with respect to the stars than with the Sun. This accounts for the daily shift of the stars nearly $1^{\circ}$ westward each night. Hence, sidereal days are shorter than solar days, and its hours, minutes, and seconds are correspondingly shorter. Because of nutation, sidereal time is not quite constant in rate. Time based upon the average rate is called mean sidereal time, when it is to be distinguished from the slightly irregular sidereal time. The ratio of mean solar time units to mean sidereal time units is 1:1.00273791.

A navigator very seldom uses sidereal time. Astronomers use it to regulate mean time because its celestial reference point remains almost fixed in relation to the stars.

## 1811. Time And Hour Angle

Both time and hour angle are a measure of the phase of rotation of the Earth, since both indicate the angular distance of a celestial reference point west of a terrestrial reference meridian. Hour angle, however, applies to any point on the celestial sphere. Time might be used in this respect, but only the apparent Sun, mean Sun, the first point of Aries, and occasionally the Moon, are commonly used.

Hour angles are usually expressed in arc units, and are measured from the upper branch of the celestial meridian.

Time is customarily expressed in time units. Sidereal time is measured from the upper branch of the celestial meridian, like hour angle, but solar time is measured from the lower branch. Thus, LMT $=$ LHA mean Sun plus or minus $180^{\circ}$, LAT $=$ LHA apparent Sun plus or minus $180^{\circ}$, and LST = LHA Aries.

As with time, local hour angle (LHA) at two places differs by their difference in longitude, and LHA at longitude $0^{\circ}$ is called Greenwich hour angle (GHA). In addition, it is often convenient to express hour angle in terms of the shorter arc between the local meridian and the body. This is similar to measurement of longitude from the Greenwich meridian. Local hour angle measured in this way is called meridian angle ( t ), which is labeled east or west, like longitude, to indicate the direction of measurement. A westerly meridian angle is numerically equal to LHA, while an easterly meridian angle is equal to $360^{\circ}-$ LHA. LHA $=t(W)$, and LHA $=360^{\circ}-\mathrm{t}(\mathrm{E})$. Meridian angle is used in the solution of the navigational triangle.

Example: Find LHA and t of the Sun at GMT $3^{h} 24^{m} 16^{s}$ on June 1, 1975, for long. 11848.2' W.

## Solution:

| GMT | $3 h^{2} 4^{m} 16^{s}$ | June 1 |
| :--- | ---: | ---: |
| $3^{h}$ | $225^{\circ} 35.7^{\prime}$ |  |
| $24^{m} 16^{s}$ | $6^{\circ} 04.0^{\prime}$ |  |
| $G H A$ | $231^{\circ} 39.7^{\prime}$ |  |
| $\lambda$ | $118^{\circ} 48.2^{\prime} \mathrm{W}$ |  |
| LHA | $112^{\circ} 51.5^{\prime}$ |  |
| $t$ | $112^{\circ} 51.5^{\prime} \mathrm{W}$ |  |

## RADIO DISSEMINATION OF TIME SIGNALS

## 1812. Dissemination Systems

Of the many systems for time and frequency dissemination, the majority employ some type of radio transmission, either in dedicated time and frequency emissions or established systems such as radionavigation systems. The most accurate means of time and frequency dissemination today is by the mutual exchange of time signals through communication (commonly called TwoWay) and by the mutual observation of navigation satellites (commonly called Common View).

Radio time signals can be used either to perform a clock's function or to set clocks. When using a radio wave instead of a clock, however, new considerations evolve. One is the delay time of approximately 3 microseconds per kilometer it takes the radio wave to propagate and arrive at the reception point. Thus, a user 1,000 kilometers from a transmitter receives the time signal about 3 milliseconds later than the on-time transmitter signal. If time is needed to better than 3 milliseconds, a correction must be made for the time it takes the signal to pass through the receiver.

In most cases standard time and frequency emissions
as received are more than adequate for ordinary needs. However, many systems exist for the more exacting scientific requirements.

## 1813. Characteristic Elements of Dissemination Systems

A number of common elements characterize most time and frequency dissemination systems. Among the more important elements are accuracy, ambiguity, repeatability, coverage, availability of time signal, reliability, ease of use, cost to the user, and the number of users served. No single system incorporates all desired characteristics. The relative importance of these characteristics will vary from one user to the next, and the solution for one user may not be satisfactory to another. These common elements are discussed in the following examination of a hypothetical radio signal.

Consider a very simple system consisting of an unmodulated $10-\mathrm{kHz}$ signal as shown in Figure 1813. This signal, leaving the transmitter at 0000 UTC, will reach the receiver at a later time equivalent to the propagation
delay. The user must know this delay because the accuracy of his knowledge of time can be no better than the degree to which the delay is known. Since all cycles of the signal are identical, the signal is ambiguous and the user must somehow decide which cycle is the "on time" cycle. This means, in the case of the hypothetical $10-\mathrm{kHz}$ signal, that the user must know the time to $\pm 50$ microseconds (half the period of the signal). Further, the user may desire to use this system, say once a day, for an extended period of time to check his clock or frequency standard. However, if the delay varies from one day to the next without the user knowing, accuracy will be limited by the lack of repeatability.


Figure 1813. Single tone time dissemination.
Many users are interested in making time coordinated measurements over large geographic areas. They would like all measurements to be referenced to one time system to eliminate corrections for different time systems used at scattered or remote locations. This is a very important practical consideration when measurements are undertaken in the field. In addition, a one-reference system, such as a single time broadcast, increases confidence that all measurements can be related to each other in some known way. Thus, the coverage of a system is an important concept. Another important characteristic of a timing system is the percent of time available. The man on the street who has to keep an appointment needs to know the time perhaps to a minute or so. Although requiring only coarse time information, he wants it on demand, so he carries a wristwatch that gives the time 24 hours a day. On the other hand, a user who needs time to a few microseconds employs a very good clock which only needs an occasional update, perhaps only once or twice a day. An additional characteristic of time and frequency dissemination is reliability, i.e., the likelihood that a time signal will be available when scheduled.

Propagation fade-out can sometimes prevent reception of HF signals.

## 1814. Radio Wave Propagation Factors

Radio has been used to transmit standard time and frequency signals since the early 1900's. As opposed to the physical transfer of time via portable clocks, the transfer of information by radio entails propagation of electromagnetic energy from a transmitter to a distant receiver.

In a typical standard frequency and time broadcast, the signals are directly related to some master clock and are transmitted with little or no degradation in accuracy. In a vacuum and with a noise-free background, the signals should be received at a distant point essentially as transmitted, except for a constant path delay with the radio wave propagating near the speed of light ( 299,773 kilometers per second). The propagation media, including the Earth, atmosphere, and ionosphere, as well as physical and electrical characteristics of transmitters and receivers, influence the stability and accuracy of received radio signals, dependent upon the frequency of the transmission and length of signal path. Propagation delays are affected in varying degrees by extraneous radiations in the propagation media, solar disturbances, diurnal effects, and weather conditions, among others.

Radio dissemination systems can be classified in a number of different ways. One way is to divide those carrier frequencies low enough to be reflected by the ionosphere (below 30 MHz ) from those sufficiently high to penetrate the ionosphere (above 30 MHz ). The former can be observed at great distances from the transmitter but suffer from ionospheric propagation anomalies that limit accuracy; the latter are restricted to line-of-sight applications but show little or no signal deterioration caused by propagation anomalies. The most accurate systems tend to be those which use the higher, line-of-sight frequencies, while broadcasts of the lower carrier frequencies show the greatest number of users.

## 1815. Standard Time Broadcasts

The World Administrative Radio Council (WARC) has allocated certain frequencies in five bands for standard frequency and time signal emission. For such dedicated standard frequency transmissions, the International Radio Consultative Committee (CCIR) recommends that carrier frequencies be maintained so that the average daily fractional frequency deviations from the internationally designated standard for measurement of time interval should not exceed 1 X 10-10. The U.S. Naval Observatory Time Service Announcement Series 1, No. 2, gives characteristics of standard time signals assigned to allocated bands, as reported by the CCIR.

## 1816. Time Signals

The usual method of determining chronometer error and daily rate is by radio time signals, popularly called time ticks. Most maritime nations broadcast time signals several times daily from one or more stations, and a vessel equipped with radio receiving equipment normally has no difficulty in obtaining a time tick anywhere in the world. Normally, the time transmitted is maintained virtually uniform with respect to atomic clocks. The Coordinated Universal Time (UTC) as received by a vessel may differ from (GMT) by as much as 0.9 second.

The majority of radio time signals are transmitted automatically, being controlled by the standard clock of an astronomical observatory or a national measurement standards laboratory. Absolute reliance may be placed on these signals because they are required to be accurate to at least $0.001^{\mathrm{s}}$ as transmitted

Other radio stations, however, have no automatic transmission system installed, and the signals are given by hand. In this instance the operator is guided by the standard clock at the station. The clock is checked by astronomical observations or radio time signals and is normally correct to 0.25 second.

At sea, a spring-driven chronometer should be checked daily by radio time signal, and in port daily checks should
be maintained, or begun at least three days prior to departure, if conditions permit. Error and rate are entered in the chronometer record book (or record sheet) each time they are determined.

The various time signal systems used throughout the world are discussed in NIMA Pub. 117, Radio Navigational Aids, and volume 5 of Admiralty List of Radio Signals. Only the United States signals are discussed here.

The National Institute of Standards and Technology (NIST) broadcasts continuous time and frequency reference signals from WWV, WWVH, WWVB, and the GOES satellite system. Because of their wide coverage and relative simplicity, the HF services from WWV and WWVH are used extensively for navigation.

Station WWV broadcasts from Fort Collins, Colorado at the internationally allocated frequencies of $2.5,5.0,10.0$, 15.0 , and 20.0 MHz ; station WWVH transmits from Kauai, Hawaii on the same frequencies with the exception of 20.0 MHz . The broadcast signals include standard time and frequencies, and various voice announcements. Details of these broadcasts are given in NIST Special Publication 432, NIST Frequency and Time Dissemination Services. Both HF emissions are directly controlled by cesium beam frequency standards with periodic reference to the NIST atomic frequency and time standards.


Figure 1816a. Broadcast format of station WWV.


Figure 1816b. Broadcast format of station WWVH.

The time ticks in the WWV and WWVH emissions are shown in Figure 1816a and Figure 1816b. The 1 -second UTC markers are transmitted continuously by WWV and WWVH, except for omission of the 29th and 59th marker each minute. With the exception of the beginning tone at each minute ( 800 milliseconds) all 1 -second markers are of 5 milliseconds duration. Each pulse is preceded by 10 milliseconds of silence and followed by 25 milliseconds of silence. Time voice announcements are given also at 1minute intervals. All time announcements are UTC.

Pub. No. 117, Radio Navigational Aids, should be referred to for further information on time signals.

## 1817. Leap-Second Adjustments

By international agreement, UTC is maintained within about 0.9 seconds of the celestial navigator's time scale, UT1. The introduction of leap seconds allows a clock to keep approximately in step with the Sun. Because of the variations in the rate of rotation of the Earth, however, the occurrences of the leap seconds are not predictable in detail.

The Central Bureau of the International Earth Rotation Service (IERS) decides upon and announces the introduction of a leap second. The IERS announces the new leap second at least several weeks in advance. A positive or negative leap


Figure 1817a. Dating of event in the vicinity of a positive leap second.
second is introduced the last second of a UTC month, but first preference is given to the end of December and June, and second preference is given to the end of March and September. A positive leap second begins at $23 \mathrm{~h} 59^{\mathrm{m}} 60^{\text {s }}$ and ends at $00^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{s}}$ of the first day of the following month. In the case of a negative leap second, $23 \mathrm{~h} 59 \mathrm{~m} 58^{\text {s }}$ is followed one second later by $00^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{s}}$ of the first day of
the following month.
The dating of events in the vicinity of a leap second is effected in the manner indicated in Figure 1817a and Figure 1817b.

Whenever leap second adjustments are to be made to UTC, mariners are advised by messages from NIMA.


Figure 1817b. Dating of event in the vicinity of a negative leap second.

IPR2017-00946
Garmin EX2001 Page 297

## CHAPTER 19

THE ALMANACS

## PURPOSE OF ALMANACS

## 1900. Introduction

Celestial navigation requires accurate predictions of the geographic positions of the celestial bodies observed. These predictions are available from three almanacs published annually by the United States Naval Observatory and H. M. Nautical Almanac Office, Royal Greenwich Observatory.

The Astronomical Almanac precisely tabulates celestial data for the exacting requirements found in several scientific fields. Its precision is far greater than that required by celestial navigation. Even if the Astronomical Almanac is used for celestial navigation, it will not necessarily result in more accurate fixes due to the limitations of other aspects of the celestial navigation process.

The Nautical Almanac contains the astronomical information specifically needed by marine navigators Information is tabulated to the nearest $0.1^{\prime}$ of arc and 1 second of time. GHA and declination are available for the Sun, Moon, planets, and 173 stars, as well as corrections necessary to reduce the observed values to true.

The Air Almanac was originally intended for air navigators, but is used today mostly by a segment of the maritime community. In general, the information is similar to the Nautical Almanac, but is given to a precision of 1 ' of arc and 1 second of time, at intervals of 10 minutes (values for the Sun and Aries are given to a precision of $0.1^{\prime}$ ). This publication is suitable for ordinary navigation at sea, but lacks the precision of the Nautical Almanac, and provides GHA and declination for only the 57 commonly used navigation stars.

The Multi-Year Interactive Computer Almanac (MICA) is a computerized almanac produced by the U.S. Naval Observatory. This and other web-based calculators are available from: http://aa.usno.navy.mil. The Navy's STELLA program, found aboard all seagoing naval vessels, contains an interactive almanac as well. A variety of privately produced electronic almanacs are available as computer programs or installed in pocket calculators. These invariably are associated with sight reduction software which replaces tabular and mathematical sight reduction methods.

## FORMAT OF THE NAUTICAL AND AIR ALMANACS

## 1901. Nautical Almanac

The major portion of the Nautical Almanac is devoted to hourly tabulations of Greenwich Hour Angle (GHA) and declination, to the nearest $0.1^{\prime}$ of arc. On each set of facing pages, information is listed for three consecutive days. On the left-hand page, successive columns list GHA of Aries ( $\Upsilon$ ), and both GHA and declination of Venus, Mars, Jupiter, and Saturn, followed by the Sidereal Hour Angle (SHA) and declination of 57 stars. The GHA and declination of the Sun and Moon, and the horizontal parallax of the Moon, are listed on the right-hand page. Where applicable, the quantities $v$ and $d$ are given to assist in interpolation. The quantity v is the difference between the actual change of GHA in 1 hour and a constant value used in the interpolation tables, while $d$ is the change in declination in 1 hour. Both $v$ and $d$ are listed to the nearest 0.1 .

To the right of the Moon data is listed the Local Mean Time (LMT) of sunrise, sunset, and beginning and ending of nautical and civil twilight for latitudes from $72^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{S}$. The LMT of moonrise and moonset at the same
latitudes is listed for each of the three days for which other information is given, and for the following day. Magnitude of each planet at UT 1200 of the middle day is listed at the top of the column. The UT of transit across the celestial meridian of Greenwich is listed as "Mer. Pass.". The value for the first point of Aries for the middle of the three days is listed to the nearest $0.1^{\prime}$ at the bottom of the Aries column. The time of transit of the planets for the middle day is given to the nearest whole minute, with SHA (at UT 0000 of the middle day) to the nearest $0.1^{\prime}$, below the list of stars. For the Sun and Moon, the time of transit to the nearest whole minute is given for each day. For the Moon, both upper and lower transits are given. This information is tabulated below the rising, setting, and twilight information. Also listed, are the equation of time for $0^{h}$ and $12^{\mathrm{h}}$, and the age and phase of the Moon. Equation of time is listed, without sign, to the nearest whole second. Age is given to the nearest whole day. Phase is given by symbol.

The main tabulation is preceded by a list of religious and civil holidays, phases of the Moon, a calendar, information on eclipses occurring during the year, and notes and a diagram giving information on the planets.

The main tabulation is followed by explanations and examples. Next are four pages of standard times (zone descriptions). Star charts are next, followed by a list of 173 stars in order of increasing SHA. This list includes the stars given on the daily pages. It gives the SHA and declination each month, and the magnitude. Stars are listed by Bayer's name and also by popular name where applicable. Following the star list are the Polaris tables. These tables give the azimuth and the corrections to be applied to the observed altitude to find the latitude.

Following the Polaris table is a section that gives formulas and examples for the entry of almanac data, the calculations that reduce a sight, and a method of solution for position, all for use with a calculator or microcomputer. This is followed by concise sight reduction tables, with instructions and examples, for use when a calculator or traditional sight reduction tables are not available. Tabular precision of the concise tables is one minute of arc.

Next is a table for converting arc to time units. This is followed by a 30-page table called "Increments and Corrections," used for interpolation of GHA and declination. This table is printed on tinted paper for quick location. Then come tables for interpolating for times of rise, set, and twilight; followed by two indices of the 57 stars listed on the daily pages, one index in alphabetical order, and the other in order of decreasing SHA.

Sextant altitude corrections are given at the front and back of the almanac. Tables for the Sun, stars, and planets, and a dip table, are given on the inside front cover and facing page, with an additional correction for nonstandard temperature and atmospheric pressure on the following page. Tables for the Moon, and an abbreviated dip table, are given on the inside back cover and facing page. Corrections for the Sun, stars, and planets for altitudes greater than $10^{\circ}$, and the dip table, are repeated on one side of a loose bookmark. The star indices are repeated on the other side.

## 1902. Air Almanac

As in the Nautical Almanac, the major portion of the Air Almanac is devoted to a tabulation of GHA and declination. However, in the Air Almanac values are listed at intervals of 10
minutes, to a precision of 0.1 for the Sun and Aries, and to a precision of 1 ' for the Moon and the planets. Values are given for the Sun, first point of Aries (GHA only), the three navigational planets most favorably located for observation, and the Moon. The magnitude of each planet listed is given at the top of its column, and the percentage of the Moon's disc illuminated, waxing ( + ) or waning $(-)$, is given at the bottom of each page. Values for the first 12 hours of the day are given on the right-hand page, and those for the second half of the day on the back. In addition, each page has a table of the Moon's parallax in altitude, and below this the semidiameter of the Sun, and both the semidiameter and age of the Moon. Each daily page includes the LMT of moonrise and moonset; and a difference column to find the time of moonrise and moonset at any longitude.

Critical tables for interpolation for GHA are given on the inside front cover, which also has an alphabetical listing of the stars, with the number, magnitude, SHA, and declination of each. The same interpolation table and star list are printed on a flap which follows the daily pages. This flap also contains a star chart, a star index in order of decreasing SHA, and a table for interpolation of the LMT of moonrise and moonset for longitude.

Following the flap are instructions for the use of the almanac; a list of symbols and abbreviations in English, French, and Spanish; a list of time differences between Greenwich and other places; sky diagrams; a planet location diagram; star recognition diagrams for periscopic sextants; sunrise, sunset, and civil twilight tables; rising, setting, and depression graphs; semiduration graphs of Sunlight, twilight, and Moonlight in high latitudes; percentage of the Moon illuminated at 6 and 18 hours UT daily; a list of 173 stars by number and Bayer's name (also popular name where there is one), giving the SHA and declination each month (to a precision of $0.1^{\prime}$ ), and the magnitude; tables for interpolation of GHA Sun and GHA $\gamma$; a table for converting arc to time; a single Polaris correction table; an aircraft standard dome refraction table; a refraction correction table; a Coriolis correction table; and on the inside back cover, a correction table for dip of the horizon.

## USING THE ALMANACS

## 1903. Entering Arguments

The time used as an entering argument in the almanacs is $12^{\mathrm{h}}+$ GHA of the mean Sun and is denoted by UT, formerly referred to as GMT and so referred to in this book to avoid confusion. This scale may differ from the broadcast time signals by an amount which, if ignored, will introduce an error of up to $0.2^{\prime}$ in longitude determined from astronomical observations. The difference arises because the time argument depends on the variable rate of rotation of the Earth while the broadcast time signals are now based on
atomic time. Step adjustments of exactly one second are made to the time signals as required (primarily at 24 h on December 31 and June 30) so that the difference between the time signals and UT, as used in the almanacs, may not exceed $0.9^{\mathrm{s}}$. If observations to a precision of better than $1^{\mathrm{s}}$ are required, corrections must be obtained from coding in the signal, or from other sources. The correction may be applied to each of the times of observation. Alternatively, the longitude, when determined from observations, may be corrected by the corresponding amount shown in Table 1903.

The main contents of the almanacs consist of data from

| Correction to time <br> signals | Correction to <br> longitude |
| :---: | :---: |
| $-0.7^{\mathrm{s}}$ to $-0.9^{\mathrm{s}}$ | $0.2^{\prime}$ to east |
| $-0.6^{\mathrm{s}}$ to $-0.3^{\mathrm{s}}$ | $0.1^{\prime}$ to east |
| $-0.2^{\mathrm{s}}$ to $+0.2^{\mathrm{s}}$ | no correction |
| $+0.3^{\mathrm{s}}$ to $+0.6^{\mathrm{s}}$ | $0.1^{\prime}$ to west |
| $+0.7^{\mathrm{s}}$ to $+0.9^{\mathrm{s}}$ | $0.2^{\prime}$ to west |

Table 1903. Corrections to time.
which the GHA and the declination of all the bodies used for navigation can be obtained for any instant of UT. The LHA can then be obtained with the formula:

$$
\begin{aligned}
& \text { LHA }=\text { GHA + east longitude. } \\
& \text { LHA }=\text { GHA - west longitude. }
\end{aligned}
$$

For the Sun, Moon, and the four navigational planets, the GHA and declination are tabulated directly in the Nautical Almanac for each hour of GMT throughout the year; in the Air Almanac, the values are tabulated for each whole 10 m of GMT. For the stars, the SHA is given, and the GHA is obtained from:

$$
\text { GHA Star }=\text { GHA } \Upsilon+\text { SHA Star }
$$

The SHA and declination of the stars change slowly and may be regarded as constant over periods of several days or even months if lesser accuracy is required. The SHA and declination of stars tabulated in the Air Almanac may be considered constant to a precision of $1.5^{\prime}$ to $2^{\prime}$ for the period covered by each of the volumes providing the data for a whole year, with most data being closer to the smaller value. GHA $\gamma$, or the GHA of the first point of Aries (the vernal equinox), is tabulated for each hour in the Nautical Almanac and for each whole $10^{\mathrm{m}}$ in the Air Almanac. Permanent tables list the appropriate increments to the tabulated values of GHA and declination for the minutes and seconds of time.

In the Nautical Almanac, the permanent table for increments also includes corrections for $v$, the difference between the actual change of GHA in one hour and a constant value used in the interpolation tables; and $d$, the change in declination in one hour.

In the Nautical Almanac, $v$ is always positive unless a negative sign $(-)$ is shown. This occurs only in the case of Venus. For the Sun, the tabulated values of GHA have been adjusted to reduce to a minimum the error caused by treating $v$ as negligible; there is no $v$ tabulated for the Sun.

No sign is given for tabulated values of $d$, which is positive if declination is increasing, and negative if decreasing. The sign of a $v$ or $d$ value is also given to the related correction.

In the Air Almanac, the tabular values of the GHA of the Moon are adjusted so that use of an interpolation table
based on a fixed rate of change gives rise to negligible error; no such adjustment is necessary for the Sun and planets. The tabulated declination values, except for the Sun, are those for the middle of the interval between the time indicated and the next following time for which a value is given, making interpolation unnecessary. Thus, it is always important to take out the GHA and declination for the time immediately before the time of observation.

In the Air Almanac, GHA $\wp$ and the GHA and declination of the Sun are tabulated to a precision of 0.1'. If these values are extracted with the tabular precision, the "Interpolation of GHA" table on the inside front cover (and flap) should not be used; use the "Interpolation of GHA Sun" and "Interpolation of GHA Aries' tables, as appropriate. These tables are found immediately preceding the Polaris Table.

## 1904. Finding GHA and Declination of the Sun

Nautical Almanac: Enter the daily page table with the whole hour before the given GMT, unless the exact time is a whole hour, and take out the tabulated GHA and declination. Also record the $d$ value given at the bottom of the declination column. Next, enter the increments and corrections table for the number of minutes of GMT. If there are seconds, use the next earlier whole minute. On the line corresponding to the seconds of GMT, extract the value from the Sun-Planets column. Add this to the value of GHA from the daily page. This is GHA of the Sun. Next, enter the correction table for the same minute with the d value and take out the correction. Give this the sign of the $d$ value and apply it to the declination from the daily page. This is the declination.

The correction table for GHA of the Sun is based upon a rate of change of $15^{\circ}$ per hour, the average rate during a year. At most times the rate differs slightly. The slight error is minimized by adjustment of the tabular values. The d value is the amount that the declination changes between 1200 and 1300 on the middle day of the three shown.

Air Almanac: Enter the daily page with the whole $10^{\mathrm{m}}$ preceding the given GMT, unless the time is itself a whole $10^{\mathrm{m}}$, and extract the GHA. The declination is extracted without interpolation from the same line as the tabulated GHA or, in the case of planets, the top line of the block of six. If the values extracted are rounded to the nearest minute, next enter the "Interpolation of GHA" table on the inside front cover (and flap), using the "Sun, etc." entry column, and take out the value for the remaining minutes and seconds of GMT. If the entry time is an exact tabulated value, use the correction listed half a line above the entry time. Add this correction to the GHA taken from the daily page. This is GHA. No adjustment of declination is needed. If the values are extracted with a precision of $0.1^{\prime}$, the table for interpolating the GHA of the Sun to a precision of $0.1^{\prime}$ must be used. Again no adjustment of declination is needed.

## 1905. Finding GHA and Declination of the Moon

Nautical Almanac: Enter the daily page table with the whole hour before the given GMT, unless this time is itself a whole hour, and extract the tabulated GHA and declination. Record the corresponding v and d values tabulated on the same line, and determine the sign of the d value. The $v$ value of the Moon is always positive (+) and is not marked in the almanac. Next, enter the increments and corrections table for the minutes of GMT, and on the line for the seconds of GMT, take the GHA correction from the Moon column. Then, enter the correction table for the same minute with the v value, and extract the correction. Add both of these corrections to the GHA from the daily page. This is GHA of the Moon. Then, enter the same correction table with the d value and extract the correction. Give this correction the sign of the $d$ value and apply it to the declination from the daily page. This is declination.

The correction table for GHA of the Moon is based upon the minimum rate at which the Moon's GHA increases, $14^{\circ} 19.0^{\prime}$ per hour. The v correction adjusts for the actual rate. The $v$ value is the difference between the minimum rate and the actual rate during the hour following the tabulated time. The d value is the amount that the declination changes during the hour following the tabulated time.

Air Almanac: Enter the daily page with the whole $10^{\mathrm{m}}$ next preceding the given GMT, unless this time is a whole $10^{\mathrm{m}}$, and extract the tabulated GHA and the declination without interpolation. Next, enter the "Interpolation of GHA" table on the inside front cover, using the "Moon" entry column, and extract the value for the remaining minutes and seconds of GMT. If the entry time is an exact tabulated value, use the correction given half a line above the entry time. Add this correction to the GHA taken from the daily page to find the GHA at the given time. No adjustment of declination is needed.

The declination given in the table is correct for the time 5 minutes later than tabulated, so that it can be used for the 10minute interval without interpolation, to an accuracy to meet most requirements. Declination changes much more slowly than GHA. If greater accuracy is needed, it can be obtained by interpolation, remembering to allow for the 5 minutes.

## 1906. Finding GHA and Declination of a Planet

Nautical Almanac: Enter the daily page table with the whole hour before the given GMT, unless the time is a whole hour, and extract the tabulated GHA and declination. Record the $v$ value given at the bottom of each of these columns. Next, enter the increments and corrections table for the minutes of GMT, and on the line for the seconds of GMT, take the GHA correction from the Sun-planets column. Next, enter the correction table with the v value and extract the correction, giving it the sign of the $v$ value. Add the first correction to the GHA from the daily page,
and apply the second correction in accordance with its sign. This is GHA. Then enter the correction table for the same minute with the $d$ value, and extract the correction. Give this correction the sign of the d value, and apply it to the declination from the daily page to find the declination at the given time.

The correction table for GHA of planets is based upon the mean rate of the Sun, $15^{\circ}$ per hour. The $v$ value is the difference between $15^{\circ}$ and the change of GHA of the planet between 1200 and 1300 on the middle day of the three shown. The d value is the amount the declination changes between 1200 and 1300 on the middle day. Venus is the only body listed which ever has a negative v value.

Air Almanac: Enter the daily page with the whole $10^{\mathrm{m}}$ before the given GMT, unless this time is a whole $10^{\mathrm{m}}$, and extract the tabulated GHA and declination, without interpolation. The tabulated declination is correct for the time 30 m later than tabulated, so interpolation during the hour following tabulation is not needed for most purposes. Next, enter the "Interpolation of GHA" table on the inside front cover, using the "Sun, etc." column, and take out the value for the remaining minutes and seconds of GMT. If the entry time is an exact tabulated value, use the correction half a line above the entry time. Add this correction to the GHA from the daily page to find the GHA at the given time. No adjustment of declination is needed.

## 1907. Finding GHA and Declination of a Star

If the GHA and declination of each navigational star were tabulated separately, the almanacs would be several times their present size. But since the sidereal hour angle and the declination are nearly constant over several days (to the nearest $0.1^{\prime}$ ) or months (to the nearest 1 '), separate tabulations are not needed. Instead, the GHA of the first point of Aries, from which SHA is measured, is tabulated on the daily pages, and a single listing of SHA and declination is given for each double page of the Nautical Almanac, and for an entire volume of the Air Almanac. Finding the GHA $\Upsilon$ is similar to finding the GHA of the Sun, Moon, and planets.

Nautical Almanac: Enter the daily page table with the whole hour before the given GMT, unless this time is a whole hour, and extract the tabulated GHA of Aries. Also record the tabulated SHA and declination of the star from the listing on the left-hand daily page. Next, enter the increments and corrections table for the minutes of GMT, and, on the line for the seconds of GMT, extract the GHA correction from the Aries column. Add this correction and the SHA of the star to the GHA $\gamma$ on the daily page to find the GHA of the star at the given time. No adjustment of declination is needed.

The SHA and declination of 173 stars, including Polaris and the 57 listed on the daily pages, are given for the middle of each month. For a star not listed on the daily pages, this is the only almanac source of this information. Interpolation in this table is not necessary
for ordinary purposes of navigation, but is sometimes needed for precise results.

Air Almanac: Enter the daily page with the whole 10 m before the given GMT, unless this is a whole $10^{\mathrm{m}}$, and extract the tabulated GHA $\gamma$. Next, enter the "Interpolation of GHA" table on the inside front cover, using the "Sun, etc." entry column, and extract the value for the
remaining minutes and seconds of GMT. If the entry time is an exact tabulated value, use the correction given half a line above the entry time. From the tabulation at the left side of the same page, extract the SHA and declination of the star. Add the GHA from the daily page and the two values taken from the inside front cover to find the GHA at the given time. No adjustment of declination is needed.

## RISING, SETTING, AND TWILIGHT

## 1908. Rising, Setting, and Twilight

In both Air and Nautical Almanacs, the times of sunrise, sunset, moonrise, moonset, and twilight information, at various latitudes between $72^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{S}$, is listed to the nearest whole minute. By definition, rising or setting occurs when the upper limb of the body is on the visible horizon, assuming standard refraction for zero height of eye. Because of variations in refraction and height of eye, computation to a greater precision than 1 minute of time is not justified.

In high latitudes, some of the phenomena do not occur during certain periods. Symbols are used in the almanacs to indicate:

1. Sun or Moon does not set, but remains continuously above the horizon, indicated by an open rectangle.
2. Sun or Moon does not rise, but remains continuously below the horizon, indicated by a solid rectangle.
3. Twilight lasts all night, indicated by 4 slashes (////).

The Nautical Almanac makes no provision for finding the times of rising, setting, or twilight in polar regions. The Air Almanac has graphs for this purpose.

In the Nautical Almanac, sunrise, sunset, and twilight tables are given only once for the middle of the three days on each page opening. For navigational purposes this information can be used for all three days. Both almanacs have moonrise and moonset tables for each day.

The tabulations are in LMT. On the zone meridian, this is the zone time (ZT). For every 15 ' of longitude the observer's position differs from the zone meridian, the zone time of the phenomena differs by 1 m , being later if the observer is west of the zone meridian, and earlier if east of the zone meridian. The LMT of the phenomena varies with latitude of the observer, declination of the body, and hour angle of the body relative to the mean Sun.

The UT of the phenomenon is found from LMT by the formula:

UT = LMT + W Longitude
$\mathrm{UT}=\mathrm{LMT}-\mathrm{E}$ Longitude.
To use this formula, convert the longitude to time using the table on page $i$ or by computation, and add or subtract
as indicated. Apply the zone description (ZD) to find the zone time of the phenomena.

Sunrise and sunset are also tabulated in the tide tables (from $76^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{S}$ ).

## 1909. Finding Times of Sunrise and Sunset

To find the time of sunrise or sunset in the Nautical Almanac, enter the table on the daily page, and extract the LMT for the latitude next smaller than your own (unless it is exactly the same). Apply a correction from Table I on almanac page xxxii to interpolate for altitude, determining the sign by inspection. Then convert LMT to ZT using the difference of longitude between the local and zone meridians.

For the Air Almanac, the procedure is the same as for the Nautical Almanac, except that the LMT is taken from the tables of sunrise and sunset instead of from the daily page, and the latitude correction is by linear interpolation.

The tabulated times are for the Greenwich meridian. Except in high latitudes near the time of the equinoxes, the time of sunrise and sunset varies so little from day to day that no interpolation is needed for longitude. In high latitudes interpolation is not always possible. Between two tabulated entries, the Sun may in fact cease to set. In this case, the time of rising and setting is greatly influenced by small variations in refraction and changes in height of eye.

## 1910. Twilight

Morning twilight ends at sunrise, and evening twilight begins at sunset. The time of the darker limit can be found from the almanacs. The time of the darker limits of both civil and nautical twilights (center of the Sun $6^{\circ}$ and $12^{\circ}$, respectively, below the celestial horizon) is given in the Nautical Almanac. The Air Almanac provides tabulations of civil twilight from $60^{\circ} \mathrm{S}$ to $72^{\circ} \mathrm{N}$. The brightness of the sky at any given depression of the Sun below the horizon may vary considerably from day to day, depending upon the amount of cloudiness, haze, and other atmospheric conditions. In general, the most effective period for observing stars and planets occurs when the center of the Sun is between about $3^{\circ}$ and $9^{\circ}$ below the celestial horizon. Hence, the darker limit of civil twilight occurs at about the mid-point of this period. At the darker limit of nautical twilight, the horizon is generally too dark for good
observations.
At the darker limit of astronomical twilight (center of the Sun $18^{\circ}$ below the celestial horizon), full night has set in. The time of this twilight is given in the Astronomical Almanac. Its approximate value can be determined by extrapolation in the Nautical Almanac, noting that the duration of the different kinds of twilight is proportional to the number of degrees of depression for the center of the Sun. More precise determination of the time at which the center of the Sun is any given number of degrees below the celestial horizon can be determined by a large-scale diagram on the plane of the celestial meridian, or by computation. Duration of twilight in latitudes higher than $65^{\circ} \mathrm{N}$ is given in a graph in the Air Almanac.

In both Nautical and Air Almanacs, the method of finding the darker limit of twilight is the same as that for sunrise and sunset.

Sometimes in high latitudes the Sun does not rise but twilight occurs. This is indicated in the Air Almanac by a solid black rectangle symbol in the sunrise and sunset column. To find the time of beginning of morning twilight, subtract half the duration of twilight as obtained from the duration of twilight graph from the time of meridian transit of the Sun; and for the time of ending of evening twilight, add it to the time of meridian transit. The LMT of meridian transit never differs by more than $16.4^{\mathrm{m}}$ (approximately) from 1200. The actual time on any date can be determined from the almanac.

## 1911. Moonrise and Moonset

Finding the time of moonrise and moonset is similar to finding the time of sunrise and sunset, with one important difference. Because of the Moon's rapid change of declination, and its fast eastward motion relative to the Sun, the time of moonrise and moonset varies considerably from day to day. These changes of position on the celestial sphere are continuous, as moonrise and moonset occur successively at various longitudes around the Earth. Therefore, the change in time is distributed over all longitudes. For precise results, it would be necessary to compute the time of the phenomena at any given place by lengthy complex calculation. For ordinary purposes of navigation, however, it is sufficiently accurate to interpolate between consecutive moonrises or moonsets at the Greenwich meridian. Since apparent motion of the Moon is westward, relative to an observer on the Earth, interpolation in west longitude is between the phenomenon on the given date and the following one. In east longitude it is between the phenomenon on the given date and the preceding one.

To find the time of moonrise or moonset in the Nautical Almanac, enter the daily-page table with latitude, and extract the LMT for the tabulated latitude next smaller than the observer's latitude (unless this is an exact tabulated value). Apply a correction from table I of almanac page xxxii to
interpolate for latitude, determining the sign of the correction by inspection. Repeat this procedure for the day following the given date, if in west longitude; or for the day preceding, if in east longitude. Using the difference between these two times, and the longitude, enter table II of the almanac on the same page and take out the correction. Apply this correction to the LMT of moonrise or moonset at the Greenwich meridian on the given date to find the LMT at the position of the observer. The sign to be given the correction is such as to make the corrected time fall between the times for the two dates between which interpolation is being made. This is nearly always positive (+) in west longitude and negative (-) in east longitude. Convert the corrected LMT to ZT.

To find the time of moonrise or moonset by the Air Almanac for the given date, determine LMT for the observer's latitude at the Greenwich meridian in the same manner as with the Nautical Almanac, except that linear interpolation is made directly from the main tables, since no interpolation table is provided. Extract, also, the value from the "Diff." column to the right of the moonrise and moonset column, interpolating if necessary. This "Diff." is the halfdaily difference. The error introduced by this approximation is generally not more than a few minutes, although it increases with latitude. Using this difference, and the longitude, enter the "Interpolation of moonrise, moonset" table on flap F4 of the Air Almanac and extract the correction. The Air Almanac recommends taking the correction from this table without interpolation. The results thus obtained are sufficiently accurate for ordinary purposes of navigation. If greater accuracy is desired, the correction can be taken by interpolation. However, since the "Diff." itself is an approximation, the Nautical Almanac or computation should be used if accuracy is a consideration. Apply the correction to the LMT of moonrise or moonset at the Greenwich meridian on the given date to find the LMT at the position of the observer. The correction is positive (+) for west longitude, and negative (-) for east longitude, unless the "Diff." on the daily page is preceded by the negative sign $(-)$, when the correction is negative $(-)$ for west longitude, and positive (+) for east longitude. If the time is near midnight, record the date at each step, as in the Nautical Almanac solution.

As with the Sun, there are times in high latitudes when interpolation is inaccurate or impossible. At such periods, the times of the phenomena themselves are uncertain, but an approximate answer can be obtained by the Moonlight graph in the Air Almanac, or by computation. With the Moon, this condition occurs when the Moon rises or sets at one latitude, but not at the next higher tabulated latitude, as with the Sun. It also occurs when the Moon rises or sets on one day, but not on the preceding or following day. This latter condition is indicated in the Air Almanac by the symbol * in the "Diff." column.

Because of the eastward revolution of the Moon around the Earth, there is one day each synodical month $\left(29^{1 / 2} 2\right.$ days) when the Moon does not rise, and one day when it
does not set. These occur near last quarter and first quarter, respectively. Since this day is not the same at all latitudes or at all longitudes, the time of moonrise or moonset found from the almanac may occasionally be the preceding or succeeding one to that desired. When interpolating near midnight, caution will prevent an error.

The effect of the revolution of the Moon around the Earth is to cause the Moon to rise or set later from day to day. The daily retardation due to this effect does not differ greatly from 50 m . However, the change in declination of the Moon may increase or decrease this effect. This effect increases with latitude, and in extreme conditions it may be greater than the effect due to revolution of the Moon. Hence, the interval between successive moonrises or moonsets is more erratic in high latitudes than in low latitudes. When the two effects act in the same direction, daily differences can be quite large. When they act in opposite directions, they are small, and when the effect due to change in declination is larger than that due to revolution, the Moon sets earlier on succeeding days.

This condition is reflected in the Air Almanac by a negative "Diff." If this happens near the last quarter or first quarter, two moonrises or moonsets might occur on the same day, one a few minutes after the day begins, and the other a few minutes before it ends, as on June 8, 2002, where two moonrises occur at latitude $72^{\circ}$. Interpolation for longitude is always made between consecutive moonrises or moonsets, regardless of the days on which they fall.

Beyond the northern limits of the almanacs the values can be obtained from a series of graphs given near the back of the Air Almanac. For high latitudes, graphs are used instead of tables because graphs give a clearer picture of conditions, which may change radically with relatively little change in position or date. Under these conditions interpolation to practical precision is simpler by graph than by table. In those parts of the graph which are difficult to read, the times of the phenomena's occurrence are uncertain, being altered considerably by a relatively small change in refraction or height of eye.

On all of these graphs, any given latitude is represented by a horizontal line and any given date by a vertical line. At the intersection of these two lines the duration is read from the curves, interpolating by eye between curves.

The "Semiduration of Sunlight" graph gives the number of hours between sunrise and meridian transit or between meridian transit and sunset. The dot scale near the top of the graph indicates the LMT of meridian transit, the time represented by the minute dot nearest the vertical dateline being used. If the intersection occurs in the area marked "Sun above horizon," the Sun does not set; and if in the area marked "Sun below horizon," the Sun does not rise.

The "Duration of Twilight" graph gives the number of hours between the beginning of morning civil twilight (center of Sun $6^{\circ}$ below the horizon) and sunrise, or between sunset and the end of evening civil twilight. If the Sun does not rise, but twilight occurs, the time taken from
the graph is half the total length of the single twilight period, or the number of hours from beginning of morning twilight to LAN, or from LAN to end of evening twilight. If the intersection occurs in the area marked "continuous twilight or Sunlight," the center of the Sun does not move more than $6^{\circ}$ below the horizon, and if in the area marked "no twilight nor Sunlight," the Sun remains more than $6^{\circ}$ below the horizon throughout the entire day.

The "Semiduration of Moonlight" graph gives the number of hours between moonrise and meridian transit or between meridian transit and moonset. The dot scale near the top of the graph indicates the LMT of meridian transit, each dot representing one hour. The phase symbols indicate the date on which the principal Moon phases occur, the open circle indicating full Moon and the dark circle indicating new Moon. If the intersection of the vertical dateline and the horizontal latitude line falls in the "Moon above horizon" or "Moon below horizon" area, the Moon remains above or below the horizon, respectively, for the entire 24 hours of the day.

If approximations of the times of moonrise and moonset are sufficient, the semiduration of Moonlight is taken for the time of meridian passage and can be used without adjustment. When an estimated time of rise falls on the preceding day, that phenomenon may be recalculated using the meridian passage and semiduration for the day following. When an estimated time of set falls on the following day, that phenomenon may be recalculated using meridian passage and semiduration for the preceding day. For more accurate results (seldom justified), the times on the required date and the adjacent date (the following date in W longitude and the preceding date in E longitude) should be determined, and an interpolation made for longitude, as in any latitude, since the intervals given are for the Greenwich meridian.

Sunlight, twilight, and Moonlight graphs are not given for south latitudes. Beyond latitude $65^{\circ} \mathrm{S}$, the northern hemisphere graphs can be used for determining the semiduration or duration, by using the vertical dateline for a day when the declination has the same numerical value but opposite sign. The time of meridian transit and the phase of the Moon are determined as explained above, using the correct date. Between latitudes $60^{\circ} \mathrm{S}$ and $65^{\circ} \mathrm{S}$, the solution is made by interpolation between the tables and the graphs.

Other methods of solution of these phenomena are available. The Tide Tables tabulate sunrise and sunset from latitude $76^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{S}$. Semiduration or duration can be determined graphically using a diagram on the plane of the celestial meridian, or by computation. When computation is used, solution is made for the meridian angle at which the required negative altitude occurs. The meridian angle expressed in time units is the semiduration in the case of sunrise, sunset, moonrise, and moonset; and the semiduration of the combined Sunlight and twilight, or the time from meridian transit at which morning twilight begins or evening twilight ends. For sunrise and sunset the altitude
used is (-)50'. Allowance for height of eye can be made by algebraically subtracting (numerically adding) the dip correction from this altitude. The altitude used for twilight is $(-) 6^{\circ},(-) 12^{\circ}$, or $(-) 18^{\circ}$ for civil, nautical, or astronomical twilight, respectively. The altitude used for moonrise and moonset is $-34^{\prime}-\mathrm{SD}+\mathrm{HP}$, where SD is semidiameter and HP is horizontal parallax, from the daily pages of the Nautical Almanac.

## 1912. Rising, Setting, and Twilight on a Moving Craft

Instructions to this point relate to a fixed position on the Earth. Aboard a moving craft the problem is complicated somewhat by the fact that time of occurrence depends upon the position of the craft, which itself depends
on the time. At ship speeds, it is generally sufficiently accurate to make an approximate mental solution and use the position of the vessel at this time to make a more accurate solution. If greater accuracy is required, the position at the time indicated in the second solution can be used for a third solution. If desired, this process can be repeated until the same answer is obtained from two consecutive solutions. However, it is generally sufficient to alter the first solution by $1^{\mathrm{m}}$ for each 15 ' of longitude that the position of the craft differs from that used in the solution, adding if west of the estimated position, and subtracting if east of it. In applying this rule, use both longitudes to the nearest 15 '. The first solution is the first estimate; the second solution is the second estimate.

## CHAPTER 20

## SIGHT REDUCTION

## BASIC PROCEDURES

## 2000. Computer Sight Reduction

The purely mathematical process of sight reduction is an ideal candidate for computerization, and a number of different hand-held calculators and computer programs have been developed to relieve the tedium of working out sights by tabular or mathematical methods. The civilian navigator can choose from a wide variety of hand-held calculators and computer programs which require only the entry of the DR position, altitude and azimuth of the body, and GMT. It is not even necessary to know the name of the body because the computer can figure out what it must be based on the entered data. Calculators and computers provide more accurate solutions than tabular and mathematical methods because they can be based on actual values rather than theoretical assumptions and do not have inherent rounding errors.
U.S. Naval navigators have access to a program called STELLA (System To Estimate Latitude and Longitude Astronomically; do not confuse with a commercial astronomy program with the same name). STELLA was developed by the Astronomical Applications Department of the U.S. Naval Observatory based on a Navy requirement. The algorithms used in STELLA provide an accuracy of one arc-second on the Earth's surface, a distance of about 30 meters. While this accuracy is far better than can be obtained using a sextant, it does support possible naval needs for automated navigation systems based on celestial objects. These algorithms take into account the oblateness of the Earth, movement of the vessel during sight-taking, and other factors not fully addressed by traditional methods.

STELLA can perform almanac functions, position updating/DR estimations, celestial body rise/set/transit calculations, compass error calculations, sight planning, and sight reduction. On-line help and user's guide are included, and it is a component of the Block III NAVSSI. Because STELLA logs all entered data for future reference, it is authorized to replace the Navy Navigation Workbook. STELLA is now an allowance list requirement for Naval ships, and is available from:

Superintendent<br>U.S. Naval Observatory<br>Code: AA/STELLA<br>3450 Massachusetts Ave. NW<br>Washington, DC, 20392-5420

or on the Navigator of the Navy Web site at
http://www.navigator.navy.mil/navigator/surface.html.

## 2001. Tabular Sight Reduction

The remainder of this chapter concentrates on sight reduction using the Nautical Almanac and Pub. No. 229, Sight Reduction Tables for Marine Navigation. The method explained here is only one of many methods of reducing a sight. The Nautical Almanac contains directions for solving sights using its own concise sight reduction tables or calculators, along with examples for the current year

Reducing a celestial sight to obtain a line of position using the tables consists of six steps:

1. Correct the sextant altitude (hs) to obtain observed altitude (ho).
2. Determine the body's GHA and declination (dec.).
3. Select an assumed position (AP) and find its local hour angle (LHA).
4. Compute altitude and azimuth for the AP.
5. Compare the computed and observed altitudes.
6. Plot the line of position.

The introduction to each volume of Pub. 229 contains information: (1) discussing use of the publication for a variety of special celestial navigation techniques; (2) discussing interpolation, explaining the double second difference interpolation required in some sight reductions, and providing tables to facilitate the interpolation process; and (3) discussing the publication's use in solving problems of great circle sailings. Prior to using Pub. 229, carefully read this introductory material.

Celestial navigation involves determining a circular line of position based on an observer's distance from a celestial body's geographic position (GP). Should the observer determine both a body's GP and his distance from the GP, he would have enough information to plot a line of position; he would be somewhere on a circle whose center was the GP and whose radius equaled his distance from that GP. That circle, from all points on which a body's measured altitude would be equal, is a circle of equal altitude. There is a direct proportionality between a body's altitude as measured by an observer and the distance of its GP from that observer; the lower the altitude, the farther away the GP.

Therefore, when an observer measures a body's altitude he obtains an indirect measure of the distance between himself and the body's GP. Sight reduction is the process of converting that indirect measurement into a line of position.

Sight reduction reduces the problem of scale to manageable size. Depending on a body's altitude, its GP could be thousands of miles from the observer's position. The size of a chart required to plot this large distance would be impractical. To eliminate this problem, the navigator does not plot this line of position directly. Indeed, he does not plot the GP at all. Rather, he chooses an assumed position (AP) near, but usually not coincident with, his DR position. The navigator chooses the AP's latitude and longitude to correspond to the entering arguments of LHA and latitude used in Pub. 229. From Pub. 229, the navigator computes what the body's altitude would have been had it been measured from the AP. This yields the computed altitude ( $\mathbf{h}_{\mathbf{c}}$ ). He then compares this computed value with the observed altitude ( $\mathbf{h}_{\mathbf{0}}$ ) obtained at his actual position. The difference between the computed and observed altitudes is directly proportional to the distance between the circles of equal altitude for the assumed position and the actual position. Pub. 229 also gives the direction from the GP to the AP. Having selected the assumed position, calculated the distance between the circles of equal altitude for that AP and his actual position, and determined the direction from the assumed position to the body's GP, the navigator has enough information to plot a line of position (LOP).

To plot an LOP, plot the assumed position on either a chart or a plotting sheet. From the Sight Reduction Tables, determine: 1) the altitude of the body for a sight taken at the AP and 2) the direction from the AP to the GP. Then, determine the difference between the body's calculated altitude at this AP and the body's measured altitude. This difference represents the difference in radii between the equal altitude circle passing through the AP and the equal altitude circle passing through the actual position. Plot this difference from the AP either towards or away from the GP along the axis between the AP and the GP. Finally, draw the circle of equal altitude representing the circle with the body's GP at the center and with a radius equal to the distance between the GP and the navigator's actual position.

One final consideration simplifies the plotting of the equal altitude circle. Recall that the GP is usually thousands of miles away from the navigator's position. The equal altitude circle's radius, therefore, can be extremely large. Since this radius is so large, the navigator can approximate the section close to his position with a straight line drawn perpendicular to the line connecting the AP and the GP. This straight line approximation is good only for sights at relatively low altitudes. The higher the altitude, the shorter the distance between the GP and the actual position, and the smaller the circle of equal altitude. The shorter this distance, the greater the inaccuracy introduced by this approximation.

## 2002. Selection of the Assumed Position (AP)

Use the following arguments when entering Pub. 229 to compute altitude $\left(\mathrm{h}_{\mathrm{c}}\right)$ and azimuth:

1. Latitude (L)
2. Declination (d or Dec.)
3. Local hour angle (LHA)

Latitude and LHA are functions of the assumed position. Select an AP longitude resulting in a whole degree of LHA and an AP latitude equal to that whole degree of latitude closest to the DR position. Selecting the AP in this manner eliminates interpolation for LHA and latitude in Pub. 229.

## 2003. Comparison of Computed and Observed Altitudes

The difference between the computed altitude $\left(\mathrm{h}_{\mathrm{c}}\right)$ and the observed altitude $\left(h_{0}\right)$ is the altitude intercept (a).

The altitude intercept is the difference in the length of the radii of the circles of equal altitude passing through the AP and the observer's actual position. The position having the greater altitude is on the circle of smaller radius and is closer to the observed body's GP. In Figure 2004, the AP is shown on the inner circle. Therefore, $h_{c}$ is greater than $h_{o}$.

Express the altitude intercept in nautical miles and label it T or A to indicate whether the line of position is toward or away from the GP, as measured from the AP.

A useful aid in remembering the relation between $h_{0}$, $h_{c}$, and the altitude intercept is: $\underline{H}_{0} \underline{M}_{0} \underline{T}_{0}$ for $H_{0}$ More Toward. Another is C-G-A: Computed Greater Away, remembered as Coast Guard Academy. In other words, if $h_{o}$ is greater than $\mathrm{h}_{\mathrm{c}}$, the line of position intersects a point measured from the AP towards the GP a distance equal to the altitude intercept. Draw the LOP through this intersection point perpendicular to the axis between the AP and GP.

## 2004. Plotting the Line of Position

Plot the line of position as shown in Figure 2004. Plot the AP first; then plot the azimuth line from the AP toward or away from the GP. Then, measure the altitude intercept along this line. At the point on the azimuth line equal to the intercept distance, draw a line perpendicular to the azimuth line. This perpendicular represents that section of the circle of equal altitude passing through the navigator's actual position. This is the line of position.

A navigator often takes sights of more than one celestial body when determining a celestial fix. After plotting the lines of position from these several sights, advance the resulting LOP's along the track to the time of the last sight and label the resulting fix with the time of this last sight.


Figure 2004. The basis for the line of position from a celestial observation.

## 2005. Sight Reduction Procedures

Just as it is important to understand the theory of sight reduction, it is also important to develop a practical procedure to reduce celestial sights consistently and accurately. Sight reduction involves several consecutive steps, the accuracy of each completely dependent on the accuracy of the steps that went before. Sight reduction tables have, for the most part, reduced the mathematics involved to simple addition and subtraction. However, careless errors will render even the most skillfully measured sights inaccurate. The navigator using tabular or mathematical techniques must work methodically to reduce careless errors.

Naval navigators will most likely use OPNAV 3530, U.S. Navy Navigation Workbook, which contains pre-formatted pages with "strip forms" to guide the navigator through sight reduction. A variety of commercially-produced forms are also available. Pick a form and learn its method thoroughly. With familiarity will come increasing understanding, speed and accuracy.

Figure 2005 represents a functional and complete worksheet designed to ensure a methodical approach to any sight reduction problem. The recommended procedure discussed below is not the only one available; however, the navigator who uses it can be assured that he has considered every correction required to obtain
an accurate fix.

SECTION ONE consists of two parts: (1) Correcting sextant altitude to obtain apparent altitude; and (2) Correcting the apparent altitude to obtain the observed altitude.

Body: Enter the name of the body whose altitude you have measured. If using the Sun or the Moon, indicate which limb was measured.

Index Correction: This is determined by the characteristics of the individual sextant used. Chapter 16 discusses determining its magnitude and algebraic sign.

Dip: The dip correction is a function of the height of eye of the observer. It is always negative; its magnitude is determined from the Dip Table on the inside front cover of the Nautical Almanac.

Sum: Enter the algebraic sum of the dip correction and the index correction.

Sextant Altitude: Enter the altitude of the body measured by the sextant.

Apparent Altitude: Apply the correction determined above to the measured altitude and enter the result as the apparent altitude.

Altitude Correction: Every observation requires an altitude correction. This correction is a function of the apparent altitude of the body. The Almanac contains tables for determin-

## SECTION ONE: OBSERVED ALTITUDE

Body
Index Correction
Dip (height of eye)
Sum
Sextant Altitude ( $\mathrm{h}_{\mathbf{s}}$ )
Apparent Altitude ( $\mathrm{h}_{\mathbf{a}}$ )
Altitude Correction
Mars or Venus Additional Correction
Additional Correction
Horizontal Parallax Correction
Moon Upper Limb Correction
Correction to Apparent Altitude $\left(\mathrm{h}_{\mathbf{a}}\right)$
Observed Altitude ( $\mathrm{h}_{\mathbf{0}}$ ) $\qquad$

## SECTION TWO: GMT TIME AND DATE

Date
DR Latitude
DR Longitude
Observation Time
Watch Error
Zone Time
Zone Description
Greenwich Mean Time
Date GMT $\qquad$

## SECTION THREE: LOCAL HOUR ANGLE AND DECLINATION

Tabulated GHA and $v$ Correction Factor
GHA Increment
Sidereal Hour Angle (SHA) or $v$ Correction GHA

+ or $-360^{\circ}$ if needed
Assumed Longitude (-W, +E)
Local Hour Angle (LHA)
Tabulated Declination and $d$ Correction Factor
$d$ Correction
True Declination
Assumed Latitude $\qquad$


## SECTION FOUR: ALTITUDE INTERCEPT AND AZIMUTH

Declination Increment and $d$ Interpolation Factor
Computed Altitude (Tabulated)
Double Second Difference Correction
Total Correction
Computed Altitude ( $\mathrm{h}_{\mathrm{c}}$ )
Observed Altitude ( $\mathrm{h}_{\mathrm{o}}$ )
Altitude Intercept
Azimuth Angle
True Azimuth

Figure 2005. Complete sight reduction form.
ing these corrections. For the Sun, planets, and stars, these tables are located on the inside front cover and facing page. For the Moon, these tables are located on the back inside cover and preceding page.

Mars or Venus Additional Correction: As the name implies, this correction is applied to sights of Mars and Venus. The correction is a function of the planet measured, the time of year, and the apparent altitude. The inside front cover of the Almanac lists these corrections.

Additional Correction: Enter this additional correction from Table A-4 located at the front of the Nautical Almanac when obtaining a sight under non-standard atmospheric temperature and pressure conditions. This correction is a function of atmospheric pressure, temperature, and apparent altitude.

Horizontal Parallax Correction: This correction is unique to reducing Moon sights. Obtain the H.P. correction value from the daily pages of the Almanac. Enter the H.P correction table at the back of the Almanac with this value. The H.P correction is a function of the limb of the Moon used (upper or lower), the apparent altitude, and the H.P. correction factor. The H.P. correction is always added to the apparent altitude.

Moon Upper Limb Correction: Enter $-30^{\prime}$ for this correction if the sight was of the upper limb of the Moon.

Correction to Apparent Altitude: Sum the altitude correction, the Mars or Venus additional correction, the additional correction, the horizontal parallax correction, and the Moon's upper limb correction. Be careful to determine and carry the algebraic sign of the corrections and their sum correctly. Enter this sum as the correction to the apparent altitude.

Observed Altitude: Apply the Correction to Apparent Altitude algebraically to the apparent altitude. The result is the observed altitude.

SECTION TWO determines the Greenwich Mean Time (GMT; referred to in the Almanacs as Universal time or UT) and GMT date of the sight.

Date: Enter the local time zone date of the sight.
DR Latitude: Enter the dead reckoning latitude of the vessel.

DR Longitude: Enter the dead reckoning longitude of the vessel.

Observation Time: Enter the local time of the sight as recorded on the ship's chronometer or other timepiece.

Watch Error: Enter a correction for any known watch error.

Zone Time: Correct the observation time with watch error to determine zone time.

Zone Description: Enter the zone description of the time zone indicated by the DR longitude. If the longitude is west of the Greenwich Meridian, the zone description is positive. Conversely, if the longitude is east of the Greenwich Meridian, the zone description is negative. The zone description represents the correction necessary to convert local time to Greenwich Mean Time.

Greenwich Mean Time: Add to the zone description the
zone time to determine Greenwich Mean Time.
Date: Carefully evaluate the time correction applied above and determine if the correction has changed the date. Enter the GMT date.

SECTION THREE determines two of the three arguments required to enter Pub. 229: Local Hour Angle (LHA) and Declination. This section employs the principle that a celestial body's LHA is the algebraic sum of its Greenwich Hour Angle (GHA) and the observer's longitude. Therefore, the basic method employed in this section is: (1) Determine the body's GHA; (2) Determine an assumed longitude; (3) Algebraically combine the two quantities, remembering to subtract a western assumed longitude from GHA and to add an eastern longitude to GHA; and (4) Extract the declination of the body from the appropriate Almanac table, correcting the tabular value if required.

## Tabulated GHA and (2) $\boldsymbol{v}$ Correction Factor:

For the Sun, the Moon, or a planet, extract the value for the whole hour of GHA corresponding to the sight. For example, if the sight was obtained at 13-50-45 GMT, extract the GHA value for 1300 . For a star sight reduction, extract the value of the GHA of Aries (GHA $\Upsilon$ ), again using the value corresponding to the whole hour of the time of the sight.

For a planet or Moon sight reduction, enter the $v$ correction value. This quantity is not applicable to a Sun or star sight. The $v$ correction for a planet sight is found at the bottom of the column for each particular planet. The $v$ correction factor for the Moon is located directly beside the tabulated hourly GHA values. The $v$ correction factor for the Moon is always positive. If a planet's $v$ correction factor is listed without sign, it is positive. If listed with a negative sign, the planet's $v$ correction factor is negative. This $v$ correction factor is not the magnitude of the $v$ correction; it is used later to enter the Increments and Correction table to determine the magnitude of the correction.

GHA Increment: The GHA increment serves as an interpolation factor, correcting for the time that the sight differed from the whole hour. For example, in the sight at 13-50-45 discussed above, this increment correction accounts for the 50 minutes and 45 seconds after the whole hour at which the sight was taken. Obtain this correction value from the Increments and Corrections tables in the Almanac. The entering arguments for these tables are the minutes and seconds after the hour at which the sight was taken and the body sighted. Extract the proper correction from the applicable table and enter the correction.

Sidereal Hour Angle or $\boldsymbol{v}$ Correction: If reducing a star sight, enter the star's Sidereal Hour Angle (SHA). The SHA is found in the star column of the daily pages of the Almanac. The SHA combined with the GHA of Aries results in the star's GHA. The SHA entry is applicable only to a star. If reducing a planet or Moon sight, obtain the $v$ correction from the Increments and Corrections Table. The correction is a function of only the $v$ correction factor; its
magnitude is the same for both the Moon and the planets.
GHA: A star's GHA equals the sum of the Tabulated GHA of Aries, the GHA Increment, and the star's SHA. The Sun's GHA equals the sum of the Tabulated GHA and the GHA Increment. The GHA of the Moon or a planet equals the sum of the Tabulated GHA, the GHA Increment, and the $v$ correction.
$+\mathbf{o r}-\mathbf{3 6 0}^{\circ}$ (if needed): Since the LHA will be determined from subtracting or adding the assumed longitude to the GHA, adjust the GHA by $360^{\circ}$ if needed to facilitate the addition or subtraction.

Assumed Longitude: If the vessel is west of the prime meridian, the assumed longitude will be subtracted from the GHA to determine LHA. If the vessel is east of the prime meridian, the assumed longitude will be added to the GHA to determine the LHA. Select the assumed longitude to meet the following two criteria: (1) When added or subtracted (as applicable) to the GHA determined above, a whole degree of LHA will result; and (2) It is the longitude closest to that DR longitude that meets criterion (1).

Local Hour Angle (LHA): Combine the body's GHA with the assumed longitude as discussed above to determine the body's LHA.

Tabulated Declination and $\boldsymbol{d}$ Correction factor: (1) Obtain the tabulated declination for the Sun, the Moon, the stars, or the planets from the daily pages of the Almanac. The declination values for the stars are given for the entire three day period covered by the daily page of the Almanac. The values for the Sun, Moon, and planets are listed in hourly increments. For these bodies, enter the declination value for the whole hour of the sight. For example, if the sight is at 12-58-40, enter the tabulated declination for 1200 . (2) There is no $d$ correction factor for a star sight. There are $d$ correction factors for Sun, Moon, and planet sights. Similar to the v correction factor discussed above, the $d$ correction factor does not equal the magnitude of the $d$ correction; it provides the argument to enter the Increments and Corrections tables in the Almanac. The sign of the $d$ correction factor, which determines the sign of the $d$ correction, is determined by the trend of declination values, not the trend of $d$ values. The $d$ correction factor is simply an interpolation factor; therefore, to determine its sign, look at the declination values for the hours that frame the time of the sight. For example, suppose the sight was taken on a certain date at 12-30-00. Compare the declination value for 1200 and 1300 and determine if the declination has increased or decreased. If it has increased, the $d$ correction factor is positive. If it has decreased, the $d$ correction factor is negative.
$\boldsymbol{d}$ correction: Enter the Increments and Corrections table with the $d$ correction factor discussed above. Extract the proper correction, being careful to retain the proper sign.

True Declination: Combine the tabulated declination and the $d$ correction to obtain the true declination.

Assumed Latitude: Choose as the assumed latitude
that whole value of latitude closest to the vessel's DR latitude. If the assumed latitude and declination are both north or both south, label the assumed latitude "Same." If one is north and the other is south, label the assumed latitude "Contrary."

SECTION FOUR uses the arguments of assumed latitude, LHA, and declination determined in Section Three to enter Pub. 229 to determine azimuth and computed altitude. Then, Section Four compares computed and observed altitudes to calculate the altitude intercept. From this the LOP is plotted.

Declination Increment and $\boldsymbol{d}$ Interpolation Factor: Note that two of the three arguments used to enter Pub. 229, LHA and latitude, are whole degree values. Section Three does not determine the third argument, declination, as a whole degree. Therefore, the navigator must interpolate in Pub. 229 for declination, given whole degrees of LHA and latitude. The first steps of Section Four involve this interpolation for declination. Since declination values are tabulated every whole degree in Pub.229, the declination increment is the minutes and tenths of the true declination. For example, if the true declination is $13^{\circ} 15.6^{\prime}$, then the declination increment is $15.6^{\prime}$.

Pub. 229 also lists a $d$ Interpolation Factor. This is the magnitude of the difference between the two successive tabulated values for declination that frame the true declination. Therefore, for the hypothetical declination listed above, the tabulated $d$ interpolation factor listed in the table would be the difference between declination values given for $13^{\circ}$ and $14^{\circ}$. If the declination increases between these two values, $d$ is positive. If the declination decreases between these two values, $d$ is negative.

Computed Altitude (Tabulated): Enter Pub. 229 with the following arguments: (1) LHA from Section Three; (2) assumed latitude from Section Three; (3) the whole degree value of the true declination. For example, if the true declination were $13^{\circ} 15.6^{\prime}$, then enter Pub. 229 with $13^{\circ}$ as the value for declination. Record the tabulated computed altitude.

Double Second Difference Correction: Use this correction when linear interpolation of declination for computed altitude is not sufficiently accurate due to the nonlinear change in the computed altitude as a function of declination. The need for double second difference interpolation is indicated by the $d$ interpolation factor appearing in italic type followed by a small dot. When this procedure must be employed, refer to detailed instructions in the introduction to Pub. 229.

Total Correction: The total correction is the sum of the double second difference (if required) and the interpolation corrections. Calculate the interpolation correction by dividing the declination increment by $60^{\prime}$ and multiply the resulting quotient by the $d$ interpolation factor.

Computed Altitude ( $\mathbf{h}_{\mathrm{c}}$ ): Apply the total correction, being careful to carry the correct sign, to the tabulated computed altitude. This yields the computed altitude.

Observed Altitude ( $\mathbf{h}_{\mathrm{o}}$ ): Enter the observed altitude from Section One.

Altitude Intercept: Compare $h_{c}$ and $h_{0}$. Subtract the smaller from the larger. The resulting difference is the magnitude of the altitude intercept. If $h_{o}$ is greater than $h_{c}$, then label the altitude intercept "Toward." If $h_{c}$ is greater than $\mathrm{h}_{\mathrm{o}}$, then label the altitude intercept "Away."

Azimuth Angle: Obtain the azimuth angle ( Z ) from Pub. 229, using the same arguments which determined tabulated computed altitude. Visual interpolation is sufficiently accurate.

True Azimuth: Calculate the true azimuth $\left(\mathrm{Z}_{\mathrm{n}}\right)$ from the azimuth angle ( Z ) as follows:
a) If in northern latitudes:

$$
\begin{aligned}
& \text { LHA }>180^{\circ} \text {, then } Z_{n}=Z \\
& \text { LHA }<180^{\circ} \text {, then } Z_{n}=360^{\circ}-Z
\end{aligned}
$$

b) If in southern latitudes:

$$
\begin{aligned}
& \text { LHA }>180^{\circ} \text {, then } Z_{n}=180^{\circ}-Z \\
& \text { LHA }<180^{\circ} \text {, then } Z_{n}=180^{\circ}+Z
\end{aligned}
$$

## SIGHT REDUCTION

The section above discussed the basic theory of sight reduction and presented a method to be followed when reducing sights. This section puts that method into practice in reducing sights of a star, the Sun, the Moon, and planets.

## 2006. Reducing Star Sights to a Fix

On May 16, 1995, at the times indicated, the navigator takes and records the following sights:

| Star | Sextant Altitude | Zone Time |
| :--- | :--- | :--- |
|  |  |  |
| Kochab | $47^{\circ} 19.1^{\prime}$ | $20-07-43$ |
| Spica | $32^{\circ} 34.8^{\prime}$ | $20-11-26$ |

Height of eye is 48 feet and index correction (IC) is $+2.1^{\prime}$. The DR latitude for both sights is $39^{\circ} \mathrm{N}$. The DR longitude for the Spica sight is $157^{\circ} 10^{\prime} \mathrm{W}$. The DR longitude for the Kochab sight is $157^{\circ} 08.0^{\prime} \mathrm{W}$. Determine the intercept and azimuth for both sights. See Figure 2006.

First, convert the sextant altitudes to observed altitudes. Reduce the Spica sight first:

| Body | Spica |
| :--- | :--- |
| Index Correction | $+2.1^{\prime}$ |
| Dip (height 48 ft$)$ | $-6.7^{\prime}$ |
| Sum | $-4.6^{\prime}$ |
| Sextant Altitude $\left(\mathrm{h}_{\mathrm{s}}\right)$ | $32^{\circ} 34.8^{\prime}$ |
| Apparent Altitude $\left(\mathrm{h}_{\mathrm{a}}\right)$ | $32^{\circ} 30.2^{\prime}$ |
| Altitude Correction | $-1.5^{\prime}$ |
| Additional Correction | 0 |
| Horizontal Parallax | 0 |
| Correction to $\mathrm{h}_{\mathrm{a}}$ | $-1.5^{\prime}$ |
| Observed Altitude $\left(\mathrm{h}_{\mathrm{o}}\right)$ | $32^{\circ} 28.7^{\prime}$ |

Determine the sum of the index correction and the dip correction. Go to the inside front cover of the Nautical Almanac to the table entitled "DIP." This table lists dip corrections as a function of height of eye measured in either feet or meters. In the above problem, the observer's height of eye is 48 feet. The heights of eye are tabulated in intervals,
with the correction corresponding to each interval listed between the interval's endpoints. In this case, 48 feet lies between the tabulated 46.9 to 48.4 feet interval; the corresponding correction for this interval is -6.7'. Add the IC and the dip correction, being careful to carry the correct sign. The sum of the corrections here is -4.6'. Apply this correction to the sextant altitude to obtain the apparent altitude $\left(\mathrm{h}_{\mathrm{a}}\right)$.

Next, apply the altitude correction. Find the altitude correction table on the inside front cover of the Nautical Almanac next to the dip table. The altitude correction varies as a function of both the type of body sighted (Sun, star, or planet) and the body's apparent altitude. For the problem above, enter the star altitude correction table. Again, the correction is given within an altitude interval; $h_{a}$ in this case was $32^{\circ} 30.2^{\prime}$. This value lies between the tabulated endpoints $32^{\circ} 00.0^{\prime}$ and $33^{\circ} 45.0^{\prime}$. The correction corresponding to this interval is -1.5 '. Applying this correction to $h_{a}$ yields an observed altitude of $32^{\circ} 28.7^{\prime}$.

Having calculated the observed altitude, determine the time and date of the sight in Greenwich Mean Time:

| Date | 16 May 1995 |
| :--- | :--- |
| DR Latitude | $39^{\circ} \mathrm{N}$ |
| DR Longitude | $157^{\circ} 10^{\prime} \mathrm{W}$ |
| Observation Time | $20-11-26$ |
| Watch Error | 0 |
| Zone Time | $20-11-26$ |
| Zone Description | +10 |
| GMT | $06-11-26$ |
| GMT Date | 17 May 1995 |

Record the observation time and then apply any watch error to determine zone time. Then, use the DR longitude at the time of the sight to determine time zone description. In this case, the DR longitude indicates a zone description of +10 hours. Add the zone description to the zone time to obtain GMT. It is important to carry the correct date when applying this correction. In this case, the +10 correction made it 06-11-26 GMT on May 17, when the date in the local time zone was May 16.

After calculating both the observed altitude and the GMT
time, enter the daily pages of the Nautical Almanac to calculate the star's Greenwich Hour Angle (GHA) and declination.

| Tab GHA $\Upsilon$ | $324^{\circ} 28.4^{\prime}$ |
| :--- | :--- |
| GHA Increment | $2^{\circ} 52.0^{\prime}$ |
| SHA | $158^{\circ} 45.3^{\prime}$ |
| GHA | $486^{\circ} 05.7^{\prime}$ |
| $+/-360^{\circ}$ | not required |
|  |  |
| Assumed Longitude | $157^{\circ} 05.7^{\prime}$ |
| LHA | $329^{\circ}$ |
| Tabulated Dec/d | $\mathrm{S} 11^{\circ} 08.4^{\prime} /$ n.a. |
| $d$ Correction | - |
| True Declination | S $11^{\circ} 08.4^{\prime}$ |
| Assumed Latitude | $\mathrm{N} 39^{\circ}$ contrary |

First, record the GHA of Aries from the May 17, 1995 daily page: $324^{\circ} 28.4^{\prime}$.

Next, determine the incremental addition for the minutes and seconds after 0600 from the Increments and Corrections table in the back of the Nautical Almanac. The increment for 11 minutes and 26 seconds is $2^{\circ} 52^{\prime}$.

Then, calculate the GHA of the star. Remember:

$$
\text { GHA }(\text { star })=\text { GHA } \Upsilon+\text { SHA }(\text { star })
$$

The Nautical Almanac lists the SHA of selected stars on each daily page. The SHA of Spica on May 17, 1995: $158^{\circ} 45.3^{\prime}$.

Pub. 229's entering arguments are whole degrees of LHA and assumed latitude. Remember that LHA = GHA west longitude or GHA + east longitude. Since in this example the vessel is in west longitude, subtract its assumed longitude from the GHA of the body to obtain the LHA. Assume a longitude meeting the criteria listed in Article 2005.

From those criteria, the assumed longitude must end in 05.7 minutes so that, when subtracted from the calculated GHA, a whole degree of LHA will result. Since the DR longitude was $157^{\circ} 10.0^{\prime}$, then the assumed longitude ending in $05.7^{\prime}$ closest to the DR longitude is $157^{\circ} 05.7^{\prime}$. Subtracting this assumed longitude from the calculated GHA of the star yields an LHA of $329^{\circ}$.

The next value of concern is the star's true declination. This value is found on the May 17th daily page next to the star's SHA. Spica's declination is $\mathrm{S} 11^{\circ} 08.4^{\prime}$. There is no d correction for a star sight, so the star's true declination equals its tabulated declination. The assumed latitude is determined from the whole degree of latitude closest to the DR latitude at the time of the sight. In this case, the assumed latitude is $\mathrm{N} 39^{\circ}$. It is marked "contrary" because the DR latitude is north while the star's declination is south.

The following information is known: (1) the assumed
position's LHA $\left(329^{\circ}\right)$ and assumed latitude $\left(39^{\circ} \mathrm{N}\right.$ contrary name); and (2) the body's declination (S11 ${ }^{\circ} 08.4^{\prime}$ ).

Find the page in the Sight Reduction Table corresponding to an LHA of $329^{\circ}$ and an assumed latitude of $\mathrm{N} 39^{\circ}$, with latitude contrary to declination. Enter this table with the body's whole degree of declination. In this case, the body's whole degree of declination is $11^{\circ}$. This declination corresponds to a tabulated altitude of $32^{\circ} 15.9^{\prime}$. This value is for a declination of $11^{\circ}$; the true declination is $11^{\circ} 08.4^{\prime}$. Therefore, interpolate to determine the correction to add to the tabulated altitude to obtain the computed altitude.

The difference between the tabulated altitudes for $11^{\circ}$ and $12^{\circ}$ is given in Pub. 229 as the value d ; in this case, $\mathrm{d}=$ -53.0. Express as a ratio the declination increment (in this case, 8.4 ') and the total interval between the tabulated declination values (in this case, $60^{\prime}$ ) to obtain the percentage of the distance between the tabulated declination values represented by the declination increment. Next, multiply that percentage by the increment between the two values for computed altitude. In this case:

$$
\frac{8.4}{60} \times(-53.0)=-7.4
$$

Subtract 7.4' from the tabulated altitude to obtain the final computed altitude: $\mathrm{H}_{\mathrm{c}}=32^{\circ} 08.5^{\prime}$.

| Dec Inc $/+$ or -d | $8.4^{\prime} /-53.0$ |
| :--- | :--- |
| $\mathrm{~h}_{\mathrm{c}}($ tabulated $)$ | $32^{\circ} 15.9^{\prime}$ |
| Correction $(+$ or -$)$ | $-7.4^{\prime}$ |
| $\mathrm{h}_{\mathrm{c}}($ computed $)$ | $32^{\circ} 08.5^{\prime}$ |

It will be valuable here to review exactly what $h_{o}$ and $h_{c}$ represent. Recall the methodology of the altitude-intercept method. The navigator first measures and corrects an altitude for a celestial body. This corrected altitude, $\mathrm{h}_{\mathrm{o}}$, corresponds to a circle of equal altitude passing through the navigator's actual position whose center is the geographic position (GP) of the body. The navigator then determines an assumed position (AP) near, but not coincident with, his actual position; he then calculates an altitude for an observer at that assumed position (AP).The circle of equal altitude passing through this assumed position is concentric with the circle of equal altitude passing through the navigator's actual position. The difference between the body's altitude at the assumed position ( $\mathrm{h}_{\mathrm{c}}$ ) and the body's observed altitude $\left(h_{0}\right)$ is equal to the differences in radii length of the two corresponding circles of equal altitude. In the above problem, therefore, the navigator knows that the equal altitude circle passing through his actual position is:
away from the equal altitude circle passing through his assumed position. Since $h_{o}$ is greater than $h_{c}$, the navigator knows that the radius of the equal altitude circle passing through his actual position is less than

$$
\begin{aligned}
\mathrm{h}_{\mathrm{o}} & =32^{\circ} 28.7^{\prime} \\
-\mathrm{h}_{\mathrm{c}} & =\frac{32^{\circ} 08.5^{\prime}}{20.2 \mathrm{NM}}
\end{aligned}
$$

the radius of the equal altitude circle passing through the assumed position. The only remaining question is: in what direction from the assumed position is the body's actual GP. Pub. 229 also provides this final piece of information. This is the value for Z tabulated with the $\mathrm{h}_{\mathrm{c}}$ and d values discussed above. In this case, enter Pub. 229 as before, with LHA, assumed latitude, and declination. Visual interpolation is sufficient. Extract the value $\mathrm{Z}=$ $143.3^{\circ}$. The relation between Z and $\mathrm{Z}_{\mathrm{n}}$, the true azimuth, is as follows:

In northern latitudes:

$$
\begin{aligned}
& \text { LHA }>180^{\circ}, \text { then } Z_{n}=Z \\
& \text { LHA }<180^{\circ} \text {, then } Z_{n}=360^{\circ}-Z
\end{aligned}
$$

In southern latitudes:

$$
\begin{aligned}
& \text { LHA }>180^{\circ}, \text { then } Z_{n}=180^{\circ}-Z \\
& \text { LHA }<180^{\circ}, \text { then } Z_{n}=180^{\circ}+Z
\end{aligned}
$$

In this case, LHA $>180^{\circ}$ and the vessel is in northern latitude. Therefore, $\mathrm{Z}_{\mathrm{n}}=\mathrm{Z}=143.3^{\circ} \mathrm{T}$. The navigator now has enough information to plot a line of position.

The values for the reduction of the Kochab sight follow:
Body
Index Correction
Dip Correction
Sum
$\mathrm{h}_{\mathrm{s}}$
$\mathrm{h}_{\mathrm{a}}$
Altitude Correction $_{\text {Additional Correction }}^{\text {Horizontal Parallax }}$
Correction to $\mathrm{h}_{\mathrm{a}}$
$\mathrm{h}_{\mathrm{o}}$
Date
DR latitude
DR longitude
Observation Time
Watch Error
Zone Time
Zone Description
GMT
GMT Date
Tab GHA
GHA Increment
SHA
Kochab
$+2.1^{\prime}$
$-6.7^{\prime}$
$-4.6^{\prime}$
$47^{\circ} 19.1^{\prime}$
$47^{\circ} 14.5^{\prime}$
$-.9^{\prime}$
not applicable
not applicable
$-9^{\prime}$
$47^{\circ} 13.6^{\prime}$
16 May 1995
$39^{\circ} \mathrm{N}$
$157^{\circ} 08.0^{\prime} \mathrm{W}$
$20-07-43$
0
$20-07-43$
+10
$06-07-43$
17 May 1995
$324^{\circ} 28.4^{\prime}$
$1^{\circ} 56.1^{\prime}$
$137^{\circ} 18.5^{\prime}$

Kochab
+2.1'
-6.7'
-4.6'
${ }^{\circ} 1$
$-.9^{\prime}$
not applicable not applicable
$47^{\circ} 13.6^{\prime}$
16 May 1995
$39^{\circ} \mathrm{N}$

20-07-43
0
20-07-43
$+10$

17 May 1995
$324^{\circ} 28.4^{\prime}$
56.1
$137^{\circ} 18.5^{\prime}$

| GHA | $463^{\circ} 43.0^{\prime}$ |
| :--- | :--- |
| $+/-360^{\circ}$ | not applicable |
| Assumed Longitude | $156^{\circ} 43.0^{\prime}$ |
| LHA | $307^{\circ}$ |
| Tab Dec /d | $\mathrm{N} 74^{\circ} 10.6^{\prime} /$ n.a. |
| $d$ Correction | not applicable |
| True Declination | $\mathrm{N} 74^{\circ} 10.6^{\prime}$ |
| Assumed Latitude | $39^{\circ} \mathrm{N}$ (same $)$ |
| Dec Inc / + or - d | $10.6^{\prime} /-24.8$ |
| $\mathrm{~h}_{\mathrm{c}}$ | $47^{\circ} 12.6^{\prime}$ |
| Total Correction | $-4.2^{\prime}$ |
| $\mathrm{h}_{\mathrm{c}}$ (computed) | $47^{\circ} 08.4^{\prime}$ |
| $\mathrm{h}_{\mathrm{o}}$ | $47^{\circ} 13.6^{\prime}$ |
| a (intercept) | 5.2 towards |
| Z | $018.9^{\circ}$ |
| $\mathrm{Z}_{\mathrm{n}}$ | $018.9^{\circ}$ |

## 2007. Reducing a Sun Sight

The example below points out the similarities between reducing a Sun sight and reducing a star sight. It also demonstrates the additional corrections required for low altitude $\left(<10^{\circ}\right)$ sights and sights taken during non-standard temperature and pressure conditions.

On June 16, 1994, at 05-15-23 local time, at DR position $\mathrm{L} 30^{\circ} \mathrm{N} \lambda 45^{\circ} \mathrm{W}$, a navigator takes a sight of the Sun's upper limb. The navigator has a height of eye of 18 feet, the temperature is $88^{\circ} \mathrm{F}$, and the atmospheric pressure is 982 mb . The sextant altitude is $3^{\circ} 20.2^{\prime}$. There is no index error. Determine the observed altitude. See Figure 2007.

Apply the index and dip corrections to $\mathrm{h}_{\mathrm{s}}$ to obtain $\mathrm{h}_{\mathrm{a}}$. Because $h_{a}$ is less than $10^{\circ}$, use the special altitude correction table for sights between $0^{\circ}$ and $10^{\circ}$ located on the right inside front page of the Nautical Almanac.

Enter the table with the apparent altitude, the limb of the Sun used for the sight, and the period of the year. Interpolation for the apparent altitude is not required. In this case, the table yields a correction of -29.4'. The correction's algebraic sign is found at the head of each group of entries and at every change of sign.

The additional correction is required because of the non-standard temperature and atmospheric pressure under which the sight was taken. The correction for these nonstandard conditions is found in the Additional Corrections table located on page A4 in the front of the Nautical Almanac.

First, enter the Additional Corrections table with the temperature and pressure to determine the correct zone letter: in this case, zone L. Then, locate the correction in the L column corresponding to the apparent altitude of $3^{\circ} 16.1^{\prime}$. Interpolate between the table arguments of $3^{\circ} 00.0^{\prime}$ and $3^{\circ}$ $30.0^{\prime}$ to determine the additional correction: $+1.4^{\prime}$. The total correction to the apparent altitude is the sum of the altitude and additional corrections: -28.0'. This results in an $h_{o}$ of $2^{\circ} 48.1^{\prime}$.

Next, determine the Sun's GHA and declination.

1995 MAY 16, 17, 18 (TUES., WED., THURS.)


Figure 2006. Left hand daily page of the Nautical Almanac for May 17, 1995.

| Body | Sun UL |
| :--- | :--- |
| Index Correction | 0 |
| Dip Correction $(18 \mathrm{ft})$ | $-4.1^{\prime}$ |
| Sum | $-41^{\prime}$ |
| $\mathrm{h}_{\mathrm{s}}$ | $3^{\circ} 20.2^{\prime}$ |
| $\mathrm{h}_{\mathrm{a}}$ | $3^{\circ} 16.1^{\prime}$ |
| Altitude Correction | $-29.4^{\prime}$ |
| Additional Correction | $+1.4^{\prime}$ |
| Horizontal Parallax | 0 |
| Correction to $\mathrm{h}_{\mathrm{a}}$ | $-28.0^{\prime}$ |
| $\mathrm{h}_{\mathrm{o}}$ | $2^{\circ} 48.1^{\prime}$ |
|  |  |
| Date | $\mathrm{June} 16,1994$ |
| DR Latitude | $\mathrm{N} 30^{\circ} 00.0^{\prime}$ |
| DR Longitude | $\mathrm{W} 045^{\circ} 00.0^{\prime}$ |
| Observation Time | $05-15-23$ |
| Watch Error | 0 |
| Zone Time | $05-15-23$ |
| Zone Description | +03 |
| GMT | $08-15-23$ |
| Date GMT | $\mathrm{June}^{\prime} 16,1994$ |
| Tab GHA / $v$ | $299^{\circ} 51.3^{\prime} / \mathrm{n} . \mathrm{a}$. |
| GHA Increment | $3^{\circ} 50.8^{\prime}$ |
| SHA or $v$ correction | not applicable |
| GHA | $303^{\circ} 42.1^{\prime}$ |
| Assumed Longitude | $44^{\circ} 42.1^{\prime} \mathrm{W}$ |
| LHA | $259^{\circ}$ |
| Tab Declination $/ d$ | $\mathrm{~N} 23^{\circ} 20.5^{\prime} /+0.1^{\prime}$ |
| $d$ Correction | 0.0 |
| True Declination | $\mathrm{N} 23^{\circ} 20.5^{\prime}$ |
| Assumed Latitude | $\mathrm{N} 30^{\circ}($ same $)$ |
|  |  |

Again, this process is similar to the star sights reduced above. Notice, however, that SHA, a quantity unique to star sight reduction, is not used in Sun sight reduction.

Determining the Sun's GHA is less complicated than determining a star's GHA. The Nautical Almanac's daily pages list the Sun's GHA in hourly increments. In this case, the Sun's GHA at 0800 GMT on June 16, 1994 is $299^{\circ}$ 51.3'. The $v$ correction is not applicable for a Sun sight; therefore, applying the increment correction yields the Sun's GHA. In this case, the GHA is $303^{\circ} 42.1^{\prime}$.

Determining the Sun's LHA is similar to determining a star's LHA. In determining the Sun's declination, however, an additional correction not encountered in the star sight, the $d$ correction, must be considered. The bottom of the Sun column on the daily pages of the Nautical Almanac lists the $d$ value. This is an interpolation factor for the Sun's declination. The sign of the $d$ factor is not given; it must be determined by noting from the Almanac if the Sun's declination is increasing or decreasing throughout the day. If it is increasing, the factor is positive; if it is decreasing, the factor is negative. In the above problem, the Sun's declination is increasing throughout the day. Therefore, the $d$ factor is +0.1 .
Having obtained the $d$ factor, enter the 15 minute
increment and correction table. Under the column labeled " $v$ or $d$ corr"," find the value for $d$ in the left hand column. The corresponding number in the right hand column is the correction; apply it to the tabulated declination. In this case, the correction corresponding to a $d$ value of +0.1 is 0.0 '

| Correction $(+$ or -$)$ | $+10.8^{\prime}$ |
| :--- | :--- |
| Computed Altitude $\left(\mathrm{h}_{\mathrm{c}}\right)$ | $2^{\circ} 39.6^{\prime}$ |
| Observed Altitude $\left(\mathrm{h}_{\mathrm{o}}\right)$ | $2^{\circ} 48.1^{\prime}$ |
| Intercept | 8.5 NM (towards) |
| Z | $064.7^{\circ}$ |
| $\mathrm{Z}_{\mathrm{n}}$ | $064.7^{\circ}$ |

The final step will be to determine $\mathrm{h}_{\mathrm{c}}$ and $\mathrm{Z}_{\mathrm{n}}$. Enter Pub. 229 with an LHA of $259^{\circ}$, a declination of $\mathrm{N} 23^{\circ} 20.5^{\prime}$, and an assumed latitude of $30^{\circ} \mathrm{N}$.
Declination Increment $/+$ or $-d \quad 20.5^{\prime} /+31.5$
Tabulated Altitude
$2^{\circ} 28.8^{\prime}$

## 2008. Reducing a Moon Sight

The Moon is easy to identify and is often visible during the day. However, the Moon's proximity to the Earth requires applying additional corrections to $h_{a}$ to obtain $h_{0}$. This article will cover Moon sight reduction.

At 10-00-00 GMT, June 16, 1994, the navigator obtains a sight of the Moon's upper limb. $\mathrm{H}_{\mathrm{s}}$ is $26^{\circ} 06.7^{\prime}$. Height of eye is 18 feet; there is no index error. Determine $h_{0}$, the Moon's GHA, and the Moon's declination. See Figure 2008.

This example demonstrates the extra corrections required for obtaining $h_{0}$ for a Moon sight. Apply the index and dip corrections in the same manner as for star and Sun sights. The altitude correction comes from tables located on the inside back covers of the Nautical Almanac.

In this case, the apparent altitude was $26^{\circ} 02.6^{\prime}$. Enter the altitude correction table for the Moon with the above apparent altitude. Interpolation is not required. The correction is $+60.5^{\prime}$. The additional correction in this case is not applicable because the sight was taken under standard temperature and pressure conditions.

The horizontal parallax correction is unique to Moon sights. The table for determining this HP correction is on the back inside cover of the Nautical Almanac. First, go to the daily page for June 16 at 10-00-00 GMT. In the column for the Moon, find the HP correction factor corresponding to $10-00-00$. Its value is 58.4 . Take this value to the HP correction table on the inside back cover of the Almanac. Notice that the HP correction columns line up vertically with the Moon altitude correction table columns. Find the HP correction column directly under the altitude correction table heading corresponding to the apparent altitude. Enter that column with the HP correction factor from the daily pages. The column has two sets of figures listed under "U" and "L" for upper and lower limb, respectively. In this case, trace down the "U" column until it intersects with the HP

1994 JUNE 15, 16, 17 (WED., THURS., FRI.)

| $\begin{gathered} \text { UT } \\ \text { IGMT) } \\ \text { d } \\ 1500 \end{gathered}$ | ARIES | VENUS - 4.0 | MARS + 1.2 | JUPITER - 2.3 | SATURN +1.0 | STARS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\therefore \quad \text {, }$ | $\underset{0}{\text { G.H.A. }, ~ D e c ., ~}$ | $\text { G.H.A. } \quad{ }_{0} \text { Dec. }$ | $\therefore 1$ |  | Nom | S.H.A. | Dec. |
|  | 26303.0 | 14048.0 N 2209.1 | 21859.0 N16 08.6 | 49 42.0 S12 03.8 | 278 39.3 S 831.9 | Acamar | 1529.5 | 9.5 |
|  | 27805.4 | 15547.408 .5 | $23359.7 \quad 09.1$ | $6444.6 \quad 03.8$ | $29341.7 \quad 31.9$ | Achernar | 33537.6 | S57 15.6 |
| 02 | 29307.9 | $17046.7 \quad 07.9$ | $24900.3 \quad 09.7$ | 7947.203 .7 | $30844.1 \quad 31.9$ | Acru | 17325.1 | S63 04.5 |
| 03 | 30810.4 | 18546.1 • 07.3 | 26401.0 - 10.2 | $9449.7 \cdots 03.7$ | 32346.6 - 31.9 | Adharo | 25524.1 | S28 58.0 |
| 04 | 32312.8 | $20045.5 \quad 06.7$ | $27901.6 \quad 10.8$ | 10952.303 .7 | $338849.0 \quad 31.9$ | Aldebara | 29106.1 | N16 29.8 |
| 05 | 33815.3 | $21544.8 \quad 06.0$ | 29402.211 .3 | $12454.9 \quad 03.6$ | $35351.4 \quad 31.9$ |  |  |  |
| 06 | 35317.8 | 23044.2 N 2205.4 | 30902.9 N16 11.9 | 13957.5 S12 03.6 | 53.9 S 831.9 | Alioth | 66 | N55 59.6 |
| W 07 | 820.2 | $24543.6 \quad 04.8$ | 32403.512 .4 | $15500.1 \quad 03.6$ | $2356.3 \quad 31.9$ | Alkaid | 15309 | 9 |
| E 08 | 2322.7 | $26042.9 \quad 04.2$ | $33904.2 \quad 13.0$ | $17002.7 \quad 03.5$ | $3858.7 \quad 31.9$ | Al $\mathrm{Na}^{\prime}$ | 2801. | S46 58.9 |
| D 09 | 3825.2 | 27542.3 • 03.5 | 35404.8 - 13.5 | $18505.3 \cdots 03.5$ | 5401.1 - 31.9 | Inila | 27601.2 | S 112.4 |
| N 10 | 5327.6 | $29041.7 \quad 02.9$ | 905.514 .0 | 20007.903 .5 | $6903.6 \quad 31.9$ | Alphard | 21810.3 | S 838.3 |
| E 11 | 6830.1 | $30541.0 \quad 02.3$ | $2406.1 \quad 14.6$ | $21510.4 \quad 03.4$ | $8406.0 \quad 31.9$ |  |  |  |
| S 12 | 8332.6 | 32040.4 N 2201.6 | 3906.8 N16 15.1 | 23013.0 S12 03.4 | 9908.4 S 831.9 | Alphecca | 12622.7 | N26 44.1 |
| D 13 | 9835.0 | $33539.8 \quad 01.0$ | 5407.415 .7 | $24515.6 \quad 03.4$ | $11410.9 \quad 31.9$ | Alpheratz | 35758.3 | N29 03.5 |
| A 14 | 11337.5 | $35039.2 \quad 2200.4$ | $6908.1 \quad 16.2$ | 26018.203 .3 | $12913.3 \quad 31.9$ | Altair | 6221.8 | N 851.3 |
| Y 15 | 12839.9 | 538.5 21 59.7 | 8408.7 . 16.8 | $27520.8 \cdots 03.3$ | 14415.7 - 31.9 | A | 35329.8 | S42 19.9 |
| 16 | 14342.4 | 2037.959 .1 | 9909.417 .3 | $29023.4 \quad 03.3$ | 15918.231 .9 | Antares | 11243.4 | S26 25.2 |
| 17 | 15844.9 | 3537.358 .5 | $11410.0 \quad 17.8$ | $30526.0 \quad 03.3$ | $\begin{array}{lll}174 & 20.6 & 31.9\end{array}$ |  |  |  |
| 18 | 17347.3 | 5036.7 N21 57.8 | 12910.7 N16 18.4 | 32028.5 S12 03.2 | 18923.0 S 831.9 | Arcturus | 4608 | 19 |
| 19 | 18849.8 | $6536.0 \quad 57.2$ | 14411.318 .9 | $33531.1 \quad 03.2$ | $20425.5 \quad 31.9$ | At | 10757.4 | 6901 |
| 20 | 20352.3 | 8035.456 .6 | $15912.0 \quad 19.5$ | $35033.7 \quad 03.2$ | $21927.9 \quad 31.9$ | Avior | 23424.3 | S59 29.8 |
| 21 | 21854.7 | 9534.8 . 55.9 | 17412.6 - 20.0 | 536.3 - 03.1 | 23430.3 - 31.9 | Bellatrix | 27847.6 | 620.6 |
| 22 | 23357.2 | $11034.2 \quad 55.3$ | 8913.3 20.6 | $2038.9 \quad 03.1$ | $24932.8 \quad 31.9$ | Betelgeu | 27117.0 | 4. |
| 23 | 24859.7 | $12533.5 \quad 54.6$ | $20413.9 \quad 21.1$ | $3541.5 \quad 03.1$ | $26435.2 \quad 31.9$ |  |  |  |
| 1600 | 26402.1 | 14032.9 N 2154.0 | 21914.6 N16 21.6 | 5044.1 S12 03.0 | 27937.658831 .9 | Canopus | 03.0 | 241.7 |
| 01 | 27904.6 | 15532.3533 .4 | $23415.2 \quad 22.2$ | 6546.6 | $29440.1 \quad 31.9$ | Cape | 28056.0 | 59.5 |
| 02 | 29407.1 | $17031.7 \quad 52.7$ | $24915.9 \quad 22.7$ | 8049.203 .0 | $30942.5 \quad 31.9$ |  | 4940.8 | N45 15.6 |
| 03 | 30909.5 | 18531.1 - 52.1 | $26416.5 \cdots 23.2$ | $9551.8 \cdots 03.0$ | 32444.9 - 31.9 | Denebola | 182 | N14 36.2 |
| 04 | 32412.0 | 20030.451 .4 | 27917.233 .8 | 11054.402 .9 | $33947.4 \quad 31.9$ | Diphdo | 34910.3 | . 9 |
| 05 | 33914.4 | 21529.850 .8 | $29417.8 \quad 24.3$ | $12557.0 \quad 02.9$ | $35449.8 \quad 31.8$ |  |  |  |
| 06 | 35416.9 | 23029.2 N21 50.1 | 30918.5 N16 24.9 | 14059.551202 .9 | 952.2 S 831.8 | Dubhe | 19409.2 | N61 47.0 |
| 07 | 919.4 | 24528.649 .5 | $32419.1 \quad 25.4$ | 15602.1002 .8 | $2454.7 \quad 31.8$ | El | 27831.0 | N28 36.1 |
| T 08 | 2421.8 | 26028.048 .8 | $33919.8 \quad 25.9$ | $17104.7 \quad 02.8$ | 3957.1 | Eltanin | 9052.2 | N51 29.4 |
| H 09 | 3924.3 | 27527.4 - 48.2 | $35420.4 \cdots 26.5$ | $18607.3 \cdots 02.8$ | $5459.5 \cdots 31.8$ | En | 3400.9 | 951.0 |
| U 10 | 5426.8 | 29026.847 .5 | $21.1 \quad 27.0$ | 20109.902 .7 | $7002.0 \quad 31.8$ | Fomalhau | 1539.6 | S29 38.8 |
| R 11 | 6929.2 | 30526.146 .9 | $2421.7 \quad 27.6$ | $21612.5 \quad 02.7$ | $8504.4 \quad 31.8$ |  |  |  |
| S 12 | 8431.7 | 32025.5 N21 46.2 | 3922.3 N16 28.1 | 23115.0 S12 02.7 | 10006.8 S 831.8 | Go | 17216.6 | 557 |
| D 13 | 9934.2 | $33524.9 \quad 45.6$ | $5423.0 \quad 28.6$ | $24617.6 \quad 02.7$ | $11509.3 \quad 31.8$ | Gie | 17606.9 | S17 30.9 |
| A 14 $Y$ | 11436.6 | 35024.3 44.9 | 6923.6 29.2 | 26120.202 .6 | $13011.7 \quad 31.8$ | Ha | 14907.7 | S60 21.1 |
| Y 15 | 12939.1 | 523.7 . 44.3 | 8424.3 - 29.7 | $27622.8 \cdots 02.6$ | 14514.1 - 31.8 | al | 32817.1 | N23 26.1 |
| 16 | 14441.5 | 2023.1 43.6 | $9924.9 \quad 30.2$ | 29125.302 .6 | 16016.6 | Kaus Aus | 8402.3 | S34 23.1 |
| 17 | 15944.0 | $3522.5 \quad 42.9$ | $11425.6 \quad 30.8$ | $30627.9 \quad 02.5$ | $\begin{array}{lll}17519.0 & 31.8\end{array}$ |  |  |  |
| 18 | 17446.5 | 5021.9 N 2142.3 | 12926.2 N 1631.3 | 32130.5 S12 02.5 | 19021.4 S 831.8 | Kochab | 13718.6 | N74 10.9 |
| 19 | 18948.9 | $6521.3 \quad 41.6$ | $14426.9 \quad 31.8$ | $33633.1 \quad 02.5$ | $20523.9 \quad 31.8$ | Mar | 1352.4 | N15 10.5 |
| 20 | 20451.4 | $8020.6 \quad 41.0$ | $15927.5 \quad 32.4$ | $35135.7 \quad 02.5$ | $22026.3 \quad 31.8$ | Me | 31430.2 | N 404.1 |
| 21 | 21953.9 | 9520.0 . 40.3 | 17428.2 - 32.9 | $638.2 \cdots 02.4$ | 23528.7 - 31.8 | Menkent | 14824.1 | S36 20.8 |
| 22 | 23456.3 | $11019.4 \quad 39.6$ | $18928.8 \quad 33.4$ | $2140.8 \quad 02.4$ | 25031.231 .8 | Miaplacidus | 22143.2 | S69 42.1 |
| 23 | 24958.8 | $12518.8 \quad 39.0$ | $20429.5 \quad 34.0$ | $3643.4 \quad 02.4$ | $26533.6 \quad 31.8$ |  |  |  |
| 1700 | 26501.3 | 14018.2 N 2138.3 | 21930.1 N16 34.5 | 5146.0 S12 02.4 | 28036.0 S 831.8 | Mirfak | 30901.2 | N49 50.3 |
| 1701 | 28003.7 | $15517.6 \quad 37.6$ | $\begin{array}{llll}234 & 30.8 & 35.0\end{array}$ | $6648.5 \quad 02.3$ | $29538.5 \quad 31.8$ | Nunki | 7615.6 | S26 <br> 18.1 |
| 02 | 29506.2 | $17017.0 \quad 37.0$ | $24931.4 \quad 35.6$ | $8151.1 \quad 02.3$ | $\begin{array}{lll}310 & 40.9 & 31.8\end{array}$ | Peacock | 5341.1 | S56 44.9 |
| 03 | 31008.7 | 18516.4 - 36.3 | 26432.1 - 36.1 | $9653.7 \cdots 02.3$ | $32543.4 \cdots 31.8$ | Pollux | 24345.4 | N28 02.3 |
| 04 | 32511.1 | $20015.8 \quad 35.6$ | $27932.7 \quad 36.6$ | 11156.302 .2 | $34045.8 \quad 31.8$ | Procyon | 24514.9 | 514.2 |
| 05 | 34013.6 | 21515.235 .0 | 29433.3 | 12658.8 | 35548.231 |  |  |  |
| 06 | 35516.0 | 23014.6 N21 34.3 | 30934.0 N16 37.7 | 14201.4 S12 02.2 | 1050.7 S 831.8 | Ra | 9619.3 | N12 33.9 |
| 07 | 1018.5 | $24514.0 \quad 33.6$ | $32434.6 \quad 38.2$ | $15704.0 \quad 02.2$ | $2553.1 \quad 31.8$ | Regulus | 20758.8 | N11 59.6 |
| 08 | 2521.0 | $26013.4 \quad 32.9$ | $33935.3 \quad 38.8$ | $17206.6 \quad 02.1$ | $4055.5 \quad 31.8$ | Rigel | 28126.1 | S 812.6 |
| F 09 | 4023.4 | 27512.8 - 32.3 | $35435.9 \cdots 39.3$ | $18709.1 \cdots 02.1$ | 5558.0 - 31.8 | Rigil Ken | 14010.7 | S60 48.9 |
| R 10 | 5525.9 | 29012.231 .6 | 36.6 39.8 | 20211.702 .1 | $\begin{array}{lll}71 & 00.4 & 31.8\end{array}$ | Sabik | 10228.5 | 43.0 |
| 111 | 7028. | $30511.6 \quad 30$ | 24 | 21714 | 8602.9 |  |  |  |
|  | 8530.8 | 32011.0 N21 30.2 | 3937.9 N16 40.9 | 23216.9 S12 02.0 | 101 05.3 S 831.8 | Schedar | 34956.9 | N56 30.2 |
| A 13 Y | 10033.3 | $33510.4 \quad 29.6$ | $5438.5 \quad 41.4$ | 24719.402 .0 | $11607.7 \quad 31.8$ | Shaul | 9640.8 | S37 05.9 |
| Y 14 | 11535.8 | $35009.8 \quad 28.9$ | $6939.2 \quad 41.9$ | $26222.0 \quad 02.0$ | $\begin{array}{lll}131 & 10.2 & 31.8\end{array}$ | Sirius | 25846.6 | S16 42.6 |
| 15 | 13038.2 | $509.2 \cdots 28.2$ | $8439.8 \cdots 42.5$ | 27724.6 - 02.0 | 14612.6 - 31.8 | Spico | 15846.1 | S11 08.1 |
| 16 | 14540.7 | 2008.627 .5 | $9940.5 \quad 43.0$ | 29227.1001 .9 | $\begin{array}{lll}16115.1 & 31.8\end{array}$ | Suhail | 22303.2 | S43 24.9 |
| 17 | 16043.2 | $3508.0 \quad 26.8$ | 11441.1 | 30729.701 .9 | $17617.5 \quad 31.8$ |  |  |  |
| 18 | 17545.6 | 5007.4 N21 26.2 | 12941.7 N16 44.1 | 32232.3 S12 01.9 | 191 19.9 S 831.8 | Vega | 8048.2 | N38 46.8 |
| 19 | 19048.1 | $6506.8 \quad 25.5$ | $14442.4 \quad 44.6$ | 33734.901 .9 | $20622.4 \quad 31.8$ | Zuben'ub | 13720.9 | S16 01.2 |
| 20 | 20550.5 | 8006.24 .8 | $15943.0 \quad 45.1$ | $35237.4 \quad 01.8$ | $\begin{array}{lll}221 & 24.8 & 31.8\end{array}$ |  | S.H.A. | Mer. Pass. |
| 21 | 22053.0 | $9505.6 \cdots 24.1$ | 17443.7 . 45.6 | $740.0 \cdots 01.8$ | $\begin{array}{llllllllllll}236 & 27.3 & \cdots & 31.8\end{array}$ |  |  |  |
| 22 | 23555.5 | $11005.1 \quad 23.4$ | 18944.3 46.2 | $2242.6 \quad 01.8$ | $\begin{array}{lll}251 & 29.7 & 31.8\end{array}$ | Venus | 23630.8 | 1438 |
| 23 | 25057.9 | $12504.5 \quad 22.7$ | $20445.0 \quad 46.7$ | 3745.1 - 01.8 | $26632.1 \quad 31.8$ | Mars | 31512.5 | 923 |
| Mer. Pos |  | $\begin{array}{lll}v-0.6 & d & 0.7\end{array}$ | $\begin{array}{lllll}v & 0.6 & d & 0.5\end{array}$ | 2.6 d 0.0 | 2.4 d 0.0 | Jupiter Saturn | $\begin{array}{r} 14641.9 \\ 1535.5 \end{array}$ | $\begin{array}{rl} 2034 \\ 5 & 21 \end{array}$ |


| Body | Moon (UL) |
| :--- | :--- |
| Index Correction | $0.0^{\prime}$ |
| Dip (18 feet) | $-4.1^{\prime}$ |
| Sum | $-4.1^{\prime}$ |
| Sextant Altitude $\left(\mathrm{h}_{\mathrm{s}}\right)$ | $26^{\circ} 06.7^{\prime}$ |
| Apparent Altitude $\left(\mathrm{h}_{\mathrm{a}}\right)$ | $26^{\circ} 02.6^{\prime}$ |
| Altitude Correction | $+60.5^{\prime}$ |
| Additional Correction | $0.0^{\prime}$ |
| Horizontal Parallax $(58.4)$ | $+4.0^{\prime}$ |
| Moon Upper Limb Correction | $-30.0^{\prime}$ |
| Correction to $\mathrm{h}_{\mathrm{a}}$ | $+34.5^{\prime}$ |
| Observed Altitude $\left(\mathrm{h}_{\mathrm{o}}\right)$ | $26^{\circ} 37.1^{\prime}$ |

correction factor of 58.4. Interpolating between 58.2 and 58.5 yields a value of $+4.0^{\prime}$ for the horizontal parallax correction.

The final correction is a constant -30.0' correction to $h_{a}$ applied only to sights of the Moon's upper limb. This correction is always negative; apply it only to sights of the Moon's upper limb, not its lower limb. The total correction to $h_{a}$ is the sum of all the corrections; in this case, this total correction is +34.5 minutes.

To obtain the Moon's GHA, enter the daily pages in the Moon column and extract the applicable data just as for a star or Sun sight. Determining the Moon's GHA requires an additional correction, the $v$ correction.

| GHA Moon and $v$ | $245^{\circ} 45.1^{\prime}$ and +11.3 |
| :--- | :--- |
| GHA Increment | $0^{\circ} 00.0^{\prime}$ |
| $v$ Correction | ${ }^{+0.1^{\prime}}$ |
| GHA | $245^{\circ} 45.2^{\prime}$ |

First, record the GHA of the Moon for $10-00-00$ on June 16, 1994, from the daily pages of the Nautical Alma$n a c$. Record also the $v$ correction factor; in this case, it is +11.3 . The $v$ correction factor for the Moon is always positive. The increment correction is, in this case, zero because the sight was recorded on the even hour. To obtain the $v$ correction, go to the tables of increments and corrections. In the 0 minute table in the $v$ or $d$ correction columns, find the correction that corresponds to a $v=11.3$. The table yields a correction of $+0.1^{\prime}$. Adding this correction to the tabulated GHA gives the final GHA as $245^{\circ} 45.2^{\prime}$.

Finding the Moon's declination is similar to finding the declination for the Sun or stars. Go to the daily pages for June 16, 1994; extract the Moon's declination and $d$ factor.

$$
\begin{array}{ll}
\text { Tabulated Declination } / d & \mathrm{~S} 00^{\circ} 13.7^{\prime} /+12.1 \\
d \text { Correction } & +0.1^{\prime} \\
\text { True Declination } & \mathrm{S} 00^{\circ} 13.8^{\prime}
\end{array}
$$

The tabulated declination and the $d$ factor come from the Nautical Almanac's daily pages. Record the declination and $d$ correction and go to the increment and correction pages to extract the proper correction for the given $d$ factor. In this case, go to the correction page for 0 minutes. The
correction corresponding to a $d$ factor of +12.1 is +0.1 . It is important to extract the correction with the correct algebraic sign. The $d$ correction may be positive or negative depending on whether the Moon's declination is increasing or decreasing in the interval covered by the $d$ factor. In this case, the Moon's declination at 10-00-00 GMT on 16 June was $\mathrm{S} 00^{\circ} 13.7^{\prime}$; at 11-00-00 on the same date the Moon's declination was $S 00^{\circ} 25.8^{\prime}$. Therefore, since the declination was increasing over this period, the $d$ correction is positive. Do not determine the sign of this correction by noting the trend in the $d$ factor. In other words, had the $d$ factor for 11-00-00 been a value less than 12.1, that would not indicate that the $d$ correction should be negative. Remember that the $d$ factor is analogous to an interpolation factor; it provides a correction to declination. Therefore, the trend in declination values, not the trend in $d$ values, controls the sign of the $d$ correction. Combine the tabulated declination and the $d$ correction factor to determine the true declination. In this case, the Moon's true declination is $S$ $00^{\circ} 13.8^{\prime}$.

Having obtained the Moon's GHA and declination, calculate LHA and determine the assumed latitude. Enter the Sight Reduction Table with the LHA, assumed latitude, and calculated declination. Calculate the intercept and azimuth in the same manner used for star and Sun sights.

## 2009. Reducing a Planet Sight

There are four navigational planets: Venus, Mars, Jupiter, and Saturn. Reducing a planet sight is similar to reducing a Sun or star sight, but there are a few important differences. This Article will cover the procedure for determining $h_{0}$, the GHA and the declination for a planet sight.

On July 27, 1995, at 09-45-20 GMT, you take a sight of Mars. $\mathrm{H}_{\mathrm{s}}$ is $33^{\circ} 20.5^{\prime}$. The height of eye is 25 feet, and the index correction is $+0.2^{\prime}$. Determine $h_{0}$, GHA, and declination. See Figure 2009.

The table above demonstrates the similarity between reducing planet sights and reducing sights of the Sun and stars. Calculate and apply the index and dip corrections exactly as for any other sight. Take the resulting apparent altitude and enter the altitude correction table for the stars and planets on the inside front cover of the Nautical Almanac.

In this case, the altitude correction for $33^{\circ} 15.8^{\prime}$ results in a correction of $-1.5^{\prime}$. The additional correction is not applicable because the sight was taken at standard temperature and pressure; the horizontal parallax correction is not applicable to a planet sight. All that remains is the correction specific to Mars or Venus. The altitude correction table in the Nautical Almanac also contains this correction. Its magnitude is a function of the body sighted (Mars or Venus), the time of year, and the body's apparent altitude. Entering this table with the data for this problem yields a correction of $+0.1^{\prime}$. Applying these cor-

1994 JUNE 15, 16, 17 (WED., THURS., FRI.)


Figure 2008. Right hand daily page of the Nautical Almanac for June 16, 1994.

| Body | Mars |
| :---: | :---: |
| Index Correction | +0.2' |
| Dip Correction (25 feet) | -4.9' |
| Sum | -4.7' |
| $\mathrm{h}_{\text {s }}$ | $33^{\circ} 20.5{ }^{\prime}$ |
| $\mathrm{ha}_{\text {a }}$ | $33^{\circ} 15.8{ }^{\prime}$ |
| Altitude Correction | -1.5' |
| Additional Correction | Not applicable |
| Horizontal Parallax | Not applicable |
| Additional Correction for Mars | +0.1' |
| Correction to $\mathrm{ha}_{\mathrm{a}}$ | -1.4' |
| $\mathrm{h}_{0}$ | $33^{\circ} 14.4{ }^{\prime}$ |

rections to $h_{a}$ results in an $h_{o}$ of $33^{\circ} 14.4^{\prime}$.

| Tabulated GHA $/ v$ | $256^{\circ} 10.6^{\prime} / 1.1$ |
| :--- | :--- |
| GHA Increment | $11^{\circ} 20.0^{\prime}$ |
| $v$ correction | $+0.8^{\prime}$ |
| GHA | $267^{\circ} 31.4^{\prime}$ |

The only difference between determining the Sun's GHA and a planet's GHA lies in applying the $v$ correction. Calculate this correction from the $v$ or $d$ correction section of the Increments and Correction table in the Nautical Almanac. Find the $v$ factor at the bottom of the planets' GHA columns on the daily pages of the Nautical Almanac. For Mars on

July 27, 1995, the $v$ factor is 1.1. If no algebraic sign precedes the $v$ factor, add the resulting correction to the tabulated GHA. Subtract the resulting correction only when a negative sign precedes the $v$ factor. Entering the $v$ or $d$ correction table corresponding to 45 minutes yields a correction of $0.8^{\prime}$. Remember, because no sign preceded the $v$ factor on the daily pages, add this correction to the tabulated GHA. The final GHA is $267^{\circ} 31.4^{\prime}$.

| Tabulated Declination $/ d$ | S 01 |
| :--- | :--- |
|  |  |
| $d$ Correction $06.1^{\prime} / 0.6$ |  |
| True Declination | $+0.5^{\prime}$ |
|  | S 01 |

Read the tabulated declination directly from the daily pages of the Nautical Almanac. The $d$ correction factor is listed at the bottom of the planet column; in this case, the factor is 0.6 . Note the trend in the declination values for the planet; if they are increasing during the day, the correction factor is positive. If the planet's declination is decreasing during the day, the correction factor is negative. Next, enter the $v$ or $d$ correction table corresponding to 45 minutes and extract the correction for a $d$ factor of 0.6 . The correction in this case is $+0.5^{\prime}$.

From this point, reducing a planet sight is exactly the same as reducing a Sun sight.

## MERIDIAN PASSAGE

This section covers determining both latitude and longitude at the meridian passage of the Sun, or Local Apparent Noon (LAN). Determining a vessel's latitude at LAN requires calculating the Sun's zenith distance and declination and combining them according to the rules discussed below.

Latitude at LAN is a special case of the navigational triangle where the Sun is on the observer's meridian and the triangle becomes a straight north/south line. No "solution" is necessary, except to combine the Sun's zenith distance and its declination according to the rules discussed below.

Longitude at LAN is a function of the time elapsed since the Sun passed the Greenwich meridian. The navigator must determine the time of LAN and calculate the GHA of the Sun at that time. The following examples demonstrates these processes.

## 2010. Latitude at Meridian Passage

At 1056 ZT, May 16, 1995, a vessel's DR position is L $40^{\circ} 04.3^{\prime} \mathrm{N}$ and $\lambda 157^{\circ} 18.5^{\prime} \mathrm{W}$. The ship is on course $200^{\circ} \mathrm{T}$ at a speed of ten knots. (1) Calculate the first and second estimates of Local Apparent Noon. (2) The navigator actually observes LAN at 12-23-30 zone time. The sextant altitude at LAN is $69^{\circ} 16.0^{\prime}$. The index correction is $+2.1^{\prime}$ and the height of eye is 45 feet. Determine the vessel's latitude.

First, determine the time of meridian passage from the daily pages of the Nautical Almanac. In this case, the meridian
passage for May 16, 1995, is 1156 . That is, the Sun crosses the central meridian of the time zone at 1156 ZT and the observer's local meridian at 1156 local time. Next, determine the vessel's DR longitude for the time of meridian passage. In this case, the vessel's 1156 DR longitude is $157^{\circ} 23.0^{\prime} \mathrm{W}$. Determine the time zone in which this DR longitude falls and record the longitude of that time zone's central meridian. In this case, the central meridian is $150^{\circ} \mathrm{W}$. Enter the Conversion of Arc to Time table in the Nautical Almanac with the difference between the DR longitude and the central meridian longitude. The conversion for $7^{\circ}$ of arc is $28^{\mathrm{m}}$ of time, and the conversion for $23^{\prime}$ of arc is $1 \mathrm{~m} 32^{\mathrm{s}}$ of time. Sum these two times. If the DR position is west of the central meridian (as it is in this case), add this time to the time of tabulated meridian passage. If the longitude difference is to the east of the central meridian, subtract this time from the tabulated meridian passage. In this case, the DR position is west of the central meridian. Therefore, add 29 minutes and 32 seconds to 1156 , the tabulated time of meridian passage. The estimated time of LAN is 12-25-32 ZT.

This first estimate for LAN does not take into account the vessel's movement. To calculate the second estimate of LAN, first determine the DR longitude for the time of first estimate of LAN (12-25-32 ZT). In this case, that longitude would be $157^{\circ}$ $25.2^{\prime} \mathrm{W}$. Then, calculate the difference between the longitude of the 12-25-32 DR position and the central meridian longitude. This would be $7^{\circ} 25.2^{\prime}$. Again, enter the arc to time conversion table and calculate the time difference corresponding to this

1995 JULY 27, 28, 29 (THURS., FRI., SAT.)

| $\begin{gathered} \text { UT } \\ \text { (GMT) } \\ d . \end{gathered}$ | ARIES | VENUS -3.9 |  | MARS |  | JUPITER - 2.3 |  | SATURN +1.0 |  | STARS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | G.H.A. | $\circ \text {, 。 }$ |  | $\circ \text {, }$ | Dec. |  | Dec. |  | : | Name |  |  |  |  |
| 2700 | 30412.4 | 18523.5 N 21 | 31.7 | 12100.7 | S 100.4 | 60 23.8 S20 | 036.7 | 30827.9 | S 415.6 | Acamar | 315 | 28.7 | S40 | 19.1 |
| 01 | 31914.9 | 20022.7 | 31.2 | 13601.8 | 01.0 | 7526.3 | 36.7 | 32330.4 | 15.: | Acherna | 335 | 36.7 | S57 | 15.2 |
| 02 | $\begin{array}{lll}334 & 17.3\end{array}$ | 21521.9 | 30.7 | 15102.9 | 01.7 | 9028.8 | 36.7 | 33833.0 | 15.7 | Acrux | 173 | 24.6 | S63 | 04.8 |
| 03 | 34919.8 | 23021.1 | 30.2 | 16604.0 | 02.3 | 10531.3 | 36.7 | 35335.5 | 15.3 | Adhara | 255 | 23.4 | S28 | 58.0 |
| 04 | 422.3 | 24520.4 | 29.7 | 18105.1 | 02.9 | 12033.8 | 36.7 | 838.1 | $15 . \hat{E}$ | Aldebara | 291 | 05.0 |  | 29.9 |
| 05 | 1924.7 | 26019.6 | 29.2 | 19606.2 | 03.6 | 13536.4 | 36.7 | 2340.6 | 15.8 |  |  |  |  |  |
| 06 | 3427.2 | 27518.8 N21 | 28.7 | 21107.3 | S 104.2 | 15038.9 S20 | 036.7 | 3843.1 | S 415.9 | Alioth | 166 | 32.7 |  | 59.3 |
| 07 | 4929.7 | 29018.0 | 28.2 | 22608.4 | 04.8 | 16541.4 | 36.7 | 5345.7 | 15.9 | Alkaid | 153 | 09.6 |  | 20.4 |
| T 08 | 6432.1 | 30517.2 | 27.7 | 24109.5 | 05.4 | 18043.9 | 36.7 | 6848.2 | 16.0 | Al ${ }^{\text {Na}}$ | 28 | 00.2 |  |  |
| H 09 | 7934.6 | 32016.4 | 27.1 | 25610.6 | 06.1 | 19546.4 | 36.7 | 8350.7 | 16.0 | Alnilam | 276 | 00.3 |  |  |
| U 10 | 9437.1 | 33515.6 | 26.6 | 27111.7 | 06.7 | 21048.9 | 36.7 | 9853.3 | 16: | Alphard |  | 09.6 |  |  |
| R 11 | 10939.5 | 35014.8 | 26.1 | 28612.8 | 07.3 | 22551.5 | 36.7 | 11355.8 | 16.: |  |  |  |  |  |
| S 12 | 12442.0 | 14.0 N21 | 25.6 | 30113.9 | S 108.0 | 240 54.0 S20 | 36.7 | 12858.4 | $\mathrm{S}=16: \%$ |  | 26 | 22.3 |  | O |
| D 13 | 13944.4 | 2013.2 | 25.1 | 31615.0 | 08.6 | 25556.5 | 36.7 | 14400.9 | 16.2 | Alpherat | 357 | 57.2 |  |  |
| A 14 y | 15446.9 | 3512.4 | 24.5 | 33116.1 | 09.2 | 27059.0 | 36.7 | 15903.4 | 16.2 |  |  | 21.0 |  | 51.6 |
| Y 15 | 16949.4 | 5011.6 | 24.0 | 34617.2 | 09.8 | 28601.5 | 36.7 | 17406.0 | 16.3 | Ankao | 353 | 28.8 |  |  |
| 16 | 18451.8 | 6510.8 | 23.5 | 118.3 | 10.5 | 30104.0 | 36.7 | 18908.5 | 16.3 | Antares | 112 | 42.5 |  |  |
| 17 | 19954.3 | 8010.0 | 23.0 | 1619.4 | 11.1 | 31606.6 | 36.7 | 20411.1 | 16.4 |  |  |  |  |  |
| 18 | 21456.8 | 9509.2 N21 | 22.5 | 3120.6 | S 111.7 | 33109.1 S20 | 036.7 | 21913.6 | S 416.4 | Act | 146 | 08.0 |  | 12.5 |
| 19 | 22959.2 | 11008.4 | 21.9 | 4621.7 | 12.4 | 34611.6 | 36.7 | 23416.1 | 16. ${ }^{\text {a }}$ | Atri | 107 | 56.1 |  | 01.3 |
| 20 | 24501.7 | 12507.7 | 21.4 | 6122.8 | 13.0 | 114.1 | 36.7 | 24918.7 | 16.5 | Avior | 234 | 24.1 |  | 29.8 |
| 21 | 26004.2 | 14006.9 | 20.9 | 7623.9 | 13.6 | 1616.6 | 36.7 | 26421.2 | 16.5 | Bellatrix |  | 46.7 |  | 20.7 |
| 22 | 27506.6 | 15506.1 | 20.3 | 9125.0 | 14.2 | 3119.1 | 36.7 | 27923.8 | 16.6 | Beteige |  | 16.1 |  |  |
| 23 | 29009.1 | 17005.3 | 19.8 | 10626.1 | 14.9 | 4621.6 | 36.7 | 29426.3 | 16.6 |  |  |  |  |  |
| 2800 | 30511.6 | 18504.5 N 21 | 19.3 | 12127.2 | S 115.5 | 6124.1 S20 | 36.7 | 30928.8 | $5<16.7$ | C | 264 | 02.6 |  | 41.6 |
| 01 | 32014.0 | 20003.7 | 18.8 | 13628.3 | 16.1 | 7626.7 | 36.7 | 32431.4 | 16.7 | Cap | 280 | 54.7 |  | 59.4 |
| 02 | 33516.5 | 21502.9 | 18.2 | 15129.4 | 16.8 | 9129.2 | 36.7 | 33933.9 | 16.8 | Deneb | 49 | 40.1 |  | 16.0 |
| 03 | 35018.9 | 23002.1 | 17.7 | 16630.5 | 17.4 | 10631.7 | 36.7 | 35436.5 | 16.6 | Denebol | 182 | 47.6 |  | 35.9 |
| 04 | 5121.4 | 24501.3 | 17.1 | 18131.6 | 18.0 | 12134.2 | 36.7 | 939.0 | 16.8 | Diphda | 349 | 09.2 |  | 0.4 |
| 05 | 2023.9 | 26000.6 | 16.6 | 19632.7 | 18.6 | 13636.7 | 36.7 | 2441.5 | 16.9 |  |  |  |  |  |
| 06 | 3526.3 | 27459.8 | 16 | 21133.8 | S 119.3 | 15139.2 S20 | 36.7 | 3944.1 | S 416.9 |  |  | 08. |  | . 6 |
| 07 | 5028.8 | 28959.0 | 15.5 | 22634.9 | 19.9 | 16641.7 | 36.7 | 5446.6 | 17.0 |  |  | 29.9 |  |  |
| 08 | 6531.3 | 30458.2 | 15.0 | 24136.0 | 20.5 | 18144.2 | 36.7 | 6949.2 | 17.0 | Eltanin |  | 51. |  |  |
| F 09 | 8033.7 | 31957.4 | 14.5 | 25637.1 | 21.2 | 19646.7 | 36.7 | 8451.7 | 17.2 | Enif |  | 00.0 |  | 51.5 |
| R 10 | 9536.2 | 33456.6 | 13.9 | 27138.2 | 21.8 | 21149.2 | 36.7 | 9954.3 | 17.2 | Foma | 15 | 38.5 |  |  |
| 11 | 11038.7 | 34955.8 | 13.4 | 28639.3 | 22.4 | 22651.8 | 36.7 | 11456.8 | 17.2 |  |  |  |  |  |
| D 12 | 12541.1 | 455.1 N 21 | 12.8 | 30140.4 | S 123.0 | 24154.3 S20 | 36.7 | 12959.3 | S 417.2 | acrux |  | 16.1 |  | 05.6 |
| A 13 | 14043.6 | 1954.3 | 12.3 | 31641.5 | 23.7 | 25656.8 | 36.7 | 14501.9 | 17.2 | G |  | 06.3 |  | 31.1 |
| Y 14 | 15546.1 | 3453.5 | 11.7 | 33142.6 | 24.3 | 27159.3 | 36.7 | 16004.4 | 17.3 | da | 149 | 07.0 |  | 1.3 |
| 15 | 17048.5 | 4952.7 | 11.2 | 34643.6 | 24.9 | 28701.8 | 36.7 | 17507.0 | 17.3 | Hamal | 328 | 15.9 |  | 26.4 |
| 16 | 18551.0 | 6451.9 | 10.6 | 144.7 | 25.6 | 30204.3 | 36.7 | 19009.5 | 17.4 | Kaus Aust | 84 | 01.3 |  | 3.1 |
| 17 | 20053.4 | 7951.1 | 10.1 | 1645.8 | 26.2 | 31706.8 | 36.7 | 20512.1 | 17.4 |  |  |  |  |  |
| 18 | 21555.9 | 9450.4 N21 | 09.5 | 3146.9 | S 126.8 | 33209.3 S20 | 36.7 | 22014.6 | S 417.5 | Koc | 137 | 19.4 |  | 10.8 |
| 19 | 23058.4 | 10949.6 | 09.0 | 4648.0 | 27.5 | 34711.8 | 36.7 | 23517.1 | 17.5 | Mark |  | 51.5 |  | 11.0 |
| 20 | 24600.8 | 12448.8 | 08.4 | 6149.1 | 28.1 | 214.3 | 36.7 | 25019.7 | 17.6 | Men | 314 | 29.2 |  | 04.4 |
| 21 | 26103.3 | 13948.0 | 07.9 | 7650.2 | 28.7 | 1716.8 | 36.7 | 26522.2 | 17.6 | Menkent | 148 | 23.4 |  | 21.0 |
| 22 | 27605.8 | 15447.2 | 07.3 | 9151.3 | 29.3 | 3219.3 | 36.7 | 28024.8 | 17.6 | Miaplaci |  | 43.3 |  | 42.1 |
| 23 | 29108.2 | 16946.4 | 06.8 | 10652.4 | 30.0 | 4721.8 | 36.7 | 29527.3 | 17.7 |  |  |  |  |  |
| 2900 | 30610.7 | 18445.7 N21 | 06.2 | 12153.5 | S 130.6 | 6224.3 S20 | 36.8 | 31029.9 | S 417.7 |  | 308 | 59.8 |  | 50.5 |
| 01 | 32113.2 | 19944.9 | 05.7 | 13654.6 | 31.2 | 7726.8 | 36.8 | 32532.4 | 17.8 | Nunki |  | 14.6 |  | 18.0 |
| 02 | 33615.6 | 21444.1 | 05.1 | 15155.7 | 31.9 | 9229.3 | 36.8 | 34034.9 | 17.8 | Peaco | 53 | 39.8 |  | 44.8 |
| 03 | 35118.1 | 22943.3 | 04.5 | 16656.8 | 32.5 | 10731.8 | 36.8 | 35537.5 | 17.9 | Pollux | 243 | 44.5 | N28 | 02.1 |
| 05 | 620.5 | 24442.5 | 04.0 | 18157.9 | 33.1 | 12234.3 | 36.8 | 1040.0 | 17.9 | Procyo |  | 14.1 |  | 14.1 |
| 05 | 2123.0 | 259 | 03. | 19659.0 | 33 | 13736.8 | 36.8 | 2542.6 | 18.0 |  |  |  |  |  |
| 06 | 3625.5 | 27441.0 N | 02.9 | 21200.1 | S 134.4 | 15239.3 S20 | 36.8 | 4045.1 | S 418.0 | R |  | 18.7 |  | 34.0 |
| 07 | 5127.9 | 28940.2 | 02.3 | 22701.2 | 35.0 | 16741.8 | 36.8 | 5547.7 | 18.1 | R |  | 58.1 |  | 59.3 |
| 508 | 6630.4 | 30439.4 | 01.7 | 24202.3 | 35.6 | 18244.4 | 36.8 | 7050.2 | 18.1 | Rigel | 281 | 25.2 | S 8 | 12.4 |
| A 09 | 8132.9 | 31938.7 | 01.2 | 25703.4 | 36.3 | 19746.9 | 36.8 | 8552.8 | 18.1 | Rigil Ken | 140 | 10.0 | S60 | 49.2 |
| T 10 | 9635.3 | 33437.9 | 00.6 | 27204.5 | 36.9 | 21249.4 | 36.8 | 10055.3 | 18.2 | Sabik | 102 | 27 |  | 43.1 |
| $\cup 11$ | 11137.8 | 34937 | 00.0 | 287 | 37.5 | 227 | 36.8 | 115 | 18.2 |  |  |  |  |  |
| ${ }^{\mathrm{R}} 12$ | 12640.3 | 436.3 N20 | 59.4 | 30206.7 | S 138.2 | 24254.4 S20 | 36.8 | 13100.4 | S 418.3 | Sched | 349 | 55.6 |  | 30.6 |
| D 13 | 14142.7 | 1935.6 | 58.9 | 31707.8 | 38.8 | 25756.9 | 36.8 | 14602.9 | 18.3 | Shaul | 96 | 39.8 | S37 | 06.0 |
| A 14 <br> Y | 15645.2 | 3434.8 | 58.3 | 33208.9 | 39.4 | 27259.4 | 36.8 | 16105.5 | 18.4 | Sirius | 258 | 45.9 | S16 | 42.6 |
| 15 | 17147.7 | 4934.0 | 57.7 | 34710.0 | 40.1 | 28801.8 | 36.8 | 17608.0 | 18.4 | Spico | 158 | 45.5 | S11 | 08.3 |
| 16 | 18650.1 | 6433.2 | 57.2 | 211.0 | 40.7 | 30304.3 | 36.8 | 19110.6 | 18.5 | Suhail | 223 | 02.7 | S43 | 25.0 |
| 17 | 20152.6 | 7932.5 | 56.6 | 1712.1 | 41.3 | 31806.8 | 36.8 | 20613.1 | 18.5 |  |  |  |  |  |
| 18 | 21655.0 | 9431.7 N20 | 56.0 | 3213.2 | S 142.0 | 33309.3 S20 | 36.8 | 22115.7 | S 418.6 | ega | 80 | 47.7 | N38 | 47.1 |
| 19 | 23157.5 | 10930.9 | 55.4 | 4714.3 | 42.6 | 34811.8 | 36.8 | 23618.2 | 18.6 | Zuben'u | 137 | 20.3 | S16 | 01.4 |
| 20 | 24700.0 | 12430.1 | 54.9 | 6215.4 | 43.2 | 314.3 | 36.8 | 25120.8 | 18.6 |  |  |  |  |  |
| 21 | 26202.4 | 13929.4 | 54.3 | 7716.5 | 43.8 | 1816.8 | 36.8 | 26623.3 | 18.7 |  |  |  |  |  |
| 22 | 27704.9 | 15428.6 | 53.7 | 9217.6 | 44.5 | 3319.3 | 36.8 | 28125.9 | 18.7 | Venus | 239 |  |  | 40 |
| 23 | 29207.4 | 16927.8 | 53.1 | 10718.7 | 45.1 | 4821.8 | 36.8 | 29628.4 | 18.8 | Mars | 176 |  | 15 | 53 |
| Mer. Pass |  | $v-0.8 \quad d$ | 0.5 | v 1.1 | d 0.6 | $\begin{array}{llll}v & 2.5 & d\end{array}$ | d 0.0 | $v 2.5$ | d 0.0 | Jupiter Saturn |  | 12.6 17.3 |  | 51 22 |


| Date | 16 May 1995 |
| :--- | :--- |
| DR Latitude (1156 ZT) | $39^{\circ} 55.0^{\prime} \mathrm{N}$ |
| DR Longitude $(1156 \mathrm{ZT})$ | $157^{\circ} 23.0^{\prime} \mathrm{W}$ |
| Central Meridian | $150^{\circ} \mathrm{W}$ |
| d Longitude (arc) | $7^{\circ} 23^{\prime} \mathrm{W}$ |
| d Longitude (time) | +29 min .32 sec |
| Meridian Passage (LMT) | 1156 |
| ZT (first estimate) | $12-25-32$ |
| DR Longitude (12-25-32) | $157^{\circ} 25.2^{\prime}$ |
| d Longitude (arc) | $7^{\circ} 25.2^{\prime}$ |
| d Longitude (time) | +29 min. 41 sec |
| Meridian Passage | 1156 |
| ZT (second estimate) | $12-25-41$ |
| ZT (actual transit) | $12-23-30$ local |
| Zone Description | +10 |
| GMT | $22-23-30$ |
| Date (GMT) | 16 May 1995 |
| Tabulated Declination $/ d$ | $\mathrm{~N} 19^{\circ} 09.0^{\prime} /+0.6$ |
| $d$ correction | $+0.2^{\prime}$ |
| True Declination | $\mathrm{N} 19^{\circ} 09.2^{\prime}$ |
| Index Correction | $+2.1^{\prime}$ |
| Dip (48 ft) | $-6.7^{\prime}$ |
| Sum | $-4.6^{\prime}$ |
| $\mathrm{h}_{\mathrm{s}}$ (at LAN) | $69^{\circ} 16.0^{\prime}$ |
| $\mathrm{h}_{\mathrm{a}}$ | $69^{\circ} 11.4^{\prime}$ |
| Altitude Correction | $+15.6^{\prime}$ |
| 89 $60^{\prime}$ | $89^{\circ} 60.0^{\prime}$ |
| $\mathrm{h}_{\mathrm{o}}$ | $69^{\circ} 27.0^{\prime}$ |
| Zenith Distance | $\mathrm{N} 20^{\circ} 33.0^{\prime}$ |
| True Declination | $\mathrm{N} 19^{\circ} 09.2^{\prime}$ |
| Latitude | $39^{\circ} 42.2^{\prime}$ |
|  |  |

longitude difference. The correction for $7^{\circ}$ of arc is $28^{\prime}$ of time, and the correction for $25.2^{\prime}$ of arc is $1^{\prime} 41^{\prime \prime}$ of time. Finally, apply this time correction to the original tabulated time of meridian passage ( 1156 ZT ). The resulting time, $12-25-41 \mathrm{ZT}$, is the second estimate of LAN.

Solving for latitude requires that the navigator calculate two quantities: the Sun's declination and the Sun's zenith distance. First, calculate the Sun's true declination at LAN. The problem states that LAN is 12-28-30. (Determining the exact time of LAN is covered in Article 2011.) Enter the time of observed LAN and add the correct zone description to determine GMT. Determine the Sun's declination in the same manner as in the sight reduction problem in Article 2006. In this case, the tabulated declination was $\mathrm{N} 19^{\circ} 19.1^{\prime}$, and the d correction $+0.2^{\prime}$. The true declination, therefore, is $\mathrm{N} 19^{\circ} 19.3^{\prime}$.

Next, calculate zenith distance. Recall from Navigational Astronomy that zenith distance is simply $90^{\circ}$ - observed altitude. Therefore, correct $h_{s}$ to obtain $h_{a}$; then correct $h_{a}$ to obtain $h_{o}$. Then, subtract $h_{0}$ from $90^{\circ}$ to determine the zenith distance. Name the zenith distance North or South depending on the relative position of the observer and the Sun's declination. If the observer is to the north of the Sun's declination, name the zenith distance north. Conversely, if the observer is to the south of the Sun's declination, name the zenith distance south. In this case,
the DR latitude is $\mathrm{N} 39^{\circ} 55.0^{\prime}$ and the Sun's declination is $\mathrm{N} 19^{\circ}$ 19.3'. The observer is to the north of the Sun's declination; therefore, name the zenith distance north. Next, compare the names of the zenith distance and the declination. If their names are the same (i.e., both are north or both are south), add the two values together to obtain the latitude. This was the case in this problem. Both the Sun's declination and zenith distance were north; therefore, the observer's latitude is the sum of the two.

If the name of the body's zenith distance is contrary to the name of the Sun's declination, then subtract the smaller of the two quantities from the larger, carrying for the name of the difference the name of the larger of the two quantities. The result is the observer's latitude. The following examples illustrate this process.

| Zenith Distance | N $25^{\circ}$ | Zenith Distance | S $50^{\circ}$ |
| :--- | :--- | :--- | :--- |
| True Declination | $\underline{\text { S } 15^{\circ}}$ | True Declination | $\underline{\text { N10 }}$ |
| Latitude | N $10^{\circ}$ | Latitude | S $40^{\circ}$ |

## 2011. Longitude at Meridian Passage

Determining a vessel's longitude at LAN is straightforward. In the western hemisphere, the Sun's GHA at LAN equals the vessel's longitude. In the eastern hemisphere, subtract the Sun's GHA from $360^{\circ}$ to determine longitude. The difficult part lies in determining the precise moment of meridian passage.

Determining the time of meridian passage presents a problem because the Sun appears to hang for a finite time at its local maximum altitude. Therefore, noting the time of maximum sextant altitude is not sufficient for determining the precise time of LAN. Two methods are available to obtain LAN with a precision sufficient for determining longitude: (1) the graphical method and (2) the calculation method. The graphical method is discussed first below.

See Figure 2011. For about 30 minutes before the estimated time of LAN, measure and record several sextant altitudes and their corresponding times. Continue taking sights for about 30 minutes after the Sun has descended from the maximum recorded altitude. Increase the sighting frequency near the meridian passage. One sight every 20-30 seconds should yield good results near meridian passage; less frequent sights are required before and after.

Plot the resulting data on a graph of sextant altitude versus time and draw a fair curve through the plotted data. Next, draw a series of horizontal lines across the curve formed by the data points. These lines will intersect the faired curve at two different points. The x coordinates of the points where these lines intersect the faired curve represent the two different times when the Sun's altitude was equal (one time when the Sun was ascending; the other time when the Sun was descending). Draw three such lines, and ensure the lines have sufficient vertical separation. For each line, average the two times where it intersects the faired curve. Finally, average the three resulting times to obtain a final value


Figure 2011. Time of LAN.
for the time of LAN. From the Nautical Almanac, determine the Sun's GHA at that time; this is your longitude in the western hemisphere. In the eastern hemisphere, subtract the Sun's GHA from $360^{\circ}$ to determine longitude. For a quicker but less exact time, simply drop a perpendicular from the apex of the curve and read the time along the time scale.

The second method of determining LAN is similar to the first. Estimate the time of LAN as discussed above, Measure and record the Sun's altitude as the Sun approaches its maximum altitude. As the Sun begins to descend, set the sextant to correspond to the altitude
recorded just before the Sun's reaching its maximum altitude. Note the time when the Sun is again at that altitude. Average the two times. Repeat this procedure with two other altitudes recorded before LAN, each time presetting the sextant to those altitudes and recording the corresponding times that the Sun, now on its descent, passes through those altitudes. Average these corresponding times. Take a final average among the three averaged times; the result will be the time of meridian passage. Determine the vessel's longitude by determining the Sun's GHA at the exact time of LAN.

## LATITUDE BY POLARIS

## 2012. Latitude by Polaris

Since Polaris is always within about $1^{\circ}$ of the North Pole, the altitude of Polaris, with a few minor corrections, equals the latitude of the observer. This relationship makes Polaris an extremely important navigational star in the northern hemisphere.

The corrections are necessary because Polaris orbits in a small circle around the pole. When Polaris is at the exact same altitude as the pole, the correction is zero. At two points in its orbit it is in a direct line with the observer and the pole, either nearer than or beyond the pole. At these points the corrections are maximum. The following example illustrates converting a Polaris sight to latitude.

At 23-18-56 GMT, on April 21, 1994, at DR Lat. $50^{\circ}$
$23.8^{\prime} \mathrm{N}, \lambda=37^{\circ} 14.0^{\prime} \mathrm{W}$, the observed altitude of Polaris $\left(\mathrm{h}_{\mathrm{o}}\right)$ is $49^{\circ} 31.6^{\prime}$. Find the vessel's latitude.

To solve this problem, use the equation:
Latitude $=\mathrm{h}_{\mathrm{o}}-1^{\circ}+\mathrm{A}_{0}+\mathrm{A}_{1}+\mathrm{A}_{2}$
where $h_{o}$ is the sextant altitude $\left(h_{s}\right)$ corrected as in any other star sight; $1^{\circ}$ is a constant; and $\mathrm{A}_{0}, \mathrm{~A}_{1}$, and $\mathrm{A}_{2}$ are correction factors from the Polaris tables found in the Nautical Almanac. These three correction factors are always positive. One needs the following information to enter the tables: LHA of Aries, DR latitude, and the month of the year. Therefore:

Enter the Polaris table with the calculated LHA of Aries

POLARIS (POLE STAR) TABLES, 1994
FOR DETERMINING LATITUDE FROM SEXTANT ALTITUDE AND FOR AZIMUTH

| LHA ARIES | $\begin{array}{r} 120^{\circ}- \\ 129^{\circ} \end{array}$ | $\begin{array}{r} 130^{\circ}- \\ 139^{\circ} \end{array}$ | $\begin{array}{r} 140^{\circ}- \\ 149^{\circ} \end{array}$ | $\begin{array}{r} 150^{\circ}- \\ 159^{\circ} \end{array}$ | $\begin{array}{r} 160^{\circ}- \\ 169^{\circ} \end{array}$ | $\begin{array}{r} 170^{\circ}- \\ 179^{\circ} \end{array}$ | $\begin{array}{r} 180^{\circ}- \\ 189^{\circ} \end{array}$ | $\begin{array}{r} 190^{\circ}- \\ 199^{\circ} \end{array}$ | $\begin{array}{r} 200^{\circ}- \\ 209^{\circ} \end{array}$ | $\begin{array}{r} 210^{\circ}- \\ 219^{\circ} \end{array}$ | $\begin{array}{r} 220^{\circ}- \\ 229^{\circ} \end{array}$ | $\begin{array}{r} 230^{\circ}- \\ 239^{\circ} \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $a_{0}$ |
| $\bigcirc$ | - , | - , | - $\quad 1$ | - , | - , | - , | - , | - , | - , | - , | - , | - , |
| 0 | - 53.9 | 1 ll OI.8 | I 09.7 | I 17.2 | 124.1 | I $30 \cdot 3$ | 135.5 | I $39 \cdot 6$ | 142.5 | I 44.1 | I 44.3 | 143.2 |
| 1 | 54.7 | 02.6 | 10.4 | 17.9 | 24.8 | $30 \cdot 9$ | $36 \cdot 0$ | $40 \cdot 0$ | 42.7 | $44 \cdot 2$ | $44 \cdot 3$ | 43.0 |
| 2 | 55.5 | $03 \cdot 4$ | II. 2 | 18.6 | 25.4 | 31.4 | $36 \cdot 4$ | $40 \cdot 3$ | $42 \cdot 9$ | $44 \cdot 3$ | $44 \cdot 2$ | $42 \cdot 8$ |
| 3 | $56 \cdot 3$ | 04.2 | 12.0 | 19.3 | $26 \cdot 1$ | $32 \cdot 0$ | $36 \cdot 9$ | $40 \cdot 6$ | $43 \cdot 1$ | $44 \cdot 3$ | $44^{1}$ | $42 \cdot 6$ |
| 4 | 57'I | 05.0 | 12.7 | $20 \cdot 0$ | $26 \cdot 7$ | $32 \cdot 5$ | $37 \cdot 3$ | $40 \cdot 9$ | $43 \cdot 3$ | 44.4 | 44.0 | $42 \cdot 4$ |
| 5 | - $\quad 57.8$ | $\begin{array}{ll}1 & 05 \cdot 8\end{array}$ | $\begin{array}{ll}1 & 13.5 \\ & 14.2\end{array}$ | $120 \cdot 7$ | I 27.3 | I 33.0 | I $37 \cdot 7$ | I 41.2 | I 43.5 | I 44.4 | I 43.9 | $1{ }^{1} 42 \cdot 1$ |
| 6 | 58.6 | $06 \cdot 6$ | 14.2 | 21.4 | 27.9 | 33.5 | $38 \cdot 1$ | 4I'5 | $43 \cdot 6$ | 44.4 | $43 \cdot 8$ | 41.9 |
| 7 | - 59.4 | $07 \cdot 3$ | 15.0 | $22 \cdot 1$ | 28.5 | $34 \cdot 1$ | $38 \cdot 5$ | 4I.8 | $43 \cdot 8$ | 44.4 | $43 \cdot 7$ | 41.6 |
| 8 | $1 \quad 00.2$ | $08 \cdot \mathrm{I}$ | 15.7 | $22 \cdot 8$ | $29 \cdot 1$ | $34 \cdot 6$ | 38.9 | 42.0 | $43 \cdot 9$ | 44.4 | $43 \cdot 5$ | 41.3 |
| 9 | O1.0 | 08.9 | 16.4 | 23.5 | $29 \cdot 7$ | 35.0 | $39 \cdot 3$ | $42 \cdot 3$ | $44^{\circ}$ | $44 \cdot 4$ | $43 \cdot 4$ | 41.0 |
| 10 | $1 \begin{array}{ll}1 & 01.8\end{array}$ | $\begin{array}{ll}\text { I } & 09 \cdot 7\end{array}$ | $\begin{array}{ll}1 & 17.2\end{array}$ | 124.1 | $130 \cdot 3$ | 135.5 | I 39.6 | I 42.5 | I $44 \cdot \mathrm{I}$ | I 44:3 | I 43.2 | I $40 \cdot 7$ |
| Lat. | $a_{1}$ | $a_{1}$ | $a_{1}$ | $a_{1}$ | ${ }^{1}$, | $a_{1}$ | $a_{1}$, | $a_{1}$ | $a_{1}$ | $a_{1}$ | $a_{1}$ | $a_{1}$ |
| 0 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| 10 | - 3 | $\cdot 3$ | $\cdot 3$ | $\cdot 4$ | $\cdot 4$ | - 5 | $\cdot 5$ | . 6 | . 6 | . 6 | . 6 | $\cdot 6$ |
| 20 | $\cdot 3$ | $\cdot 4$ | -4 | -4 | $\cdot 4$ | -5 | $\cdot 5$ | . 6 | . 6 | . 6 | . 6 | . 6 |
| 30 | - 4 | -4 | -4 | $\cdot 5$ | - 5 | - 5 | . 5 | . 6 | . 6 | . 6 | . 6 | . 6 |
| 40 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| 45 | . 5 | . 5 | . 5 | . 6 | $\cdot 6$ | . 6 | . 6 | . 6 | . 6 | . 6 | . 6 | . 6 |
| 50 | - 6 | $\cdot 6$ | $\cdot 6$ | $\cdot 6$ | . 6 | . 6 | . 6 | . 6 | . 6 | . 6 | . 6 | . 6 |
| 55 | $\cdot 7$ | $\cdot 7$ | $\cdot 7$ | $\cdot 7$ | - 6 | $\cdot 6$ | . 6 | . 6 | . 6 | $\cdot 6$ | . 6 | . 6 |
| 60 | . 8 | . 8 | -7 | $\cdot 7$ | $\cdot 7$ | $\cdot 7$ | . 6 | . 6 | . 6 | . 6 | . 6 | . 6 |
| 62 | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
| 64 | - 9 | . 9 | . 8 | . 8 | . 8 | $\cdot 7$ | $\cdot 7$ | . 6 | . 6 | . 6 | . 6 | . 6 |
| 66 | 0.9 | 0.9 | '9 | . 8 | . 8 | $\cdot 7$ | $\cdot 7$ | . 6 | . 6 | . 6 | . 6 | . 6 |
| 68 | 1.0 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 |
| Month | $a_{2}$ | $a_{2}$ , | $a_{2}$ | $a_{2}$ | $a_{2}$ | $a_{2}$ | $a_{2}$ | $a_{2}$ | $a_{2}$, | $a_{2}$ | $a_{2}$ | $a_{2}$ |
| Jan. | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
| Feb. | . 8 | . 8 | $\cdot 7$ | $\cdot 7$ | . 6 | $\cdot 6$ | - 5 | - 5 | -4 | 4 | $\cdot 4$ | -3 |
| Mar. | 0.9 | 0.9 | 0.9 | . 8 | . 8 | $\cdot 7$ | . 6 | . 6 | -5 | -5 | - 4 | -4 |
| Apr. | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 | 0.7 | 0.7 | 0.6 | 0.5 | 0.5 |
| May | 0.9 | 1.0 | 1.0 | 1.0 | $1 \cdot 0$ | 0.9 | $\cdot 9$ | $\cdot 9$ | . 8 | . 8 | $\cdot 7$ | . 6 |
| June | . 8 | 0.9 | 0.9 | 0.9 | 0.9 | $1 \cdot 0$ | 9 | $\cdot 9$ | -9 | 9 | . 8 | -8 |
| July | 0.7 | 0.7 | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| Aug. | - 5 | - 5 | . 6 | . 6 | 7 | $\cdot 7$ | . 8 | . 8 | . 8 | 9 | $\cdot 9$ | -9 |
| Sept. | - 3 | 4 | $\cdot 4$ | -5 | - 5 | . 6 | . 6 | $\cdot 7$ | $\cdot 7$ | $\cdot 7$ | . 8 | . 8 |
| Oct. | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.7 |
| Nov. | - 2 | $\cdot 2$ | $\cdot 2$ | $\cdot 2$ | - 2 | - 2 | - 2 | $\cdot 3$ | $\cdot 3$ | 4 | . 5 | - 5 |
| Dec. | 0.3 | 0.2 | 0.2 | 0.2 | $0 \cdot 1$ | $0 \cdot 1$ | $0 \cdot 1$ | 0.2 | 0.2 | 0.2 | $0 \cdot 3$ | 0.4 |
| Lat. |  |  |  |  |  |  |  |  |  |  |  |  |
| - | - | - | - | - | $\bigcirc$ | - | - | $\bigcirc$ | $\bigcirc$ | - | - | $\bigcirc$ |
| 0 | $359 \cdot 2$ | $359 \cdot 2$ | 359.3 | 359•3 | 359.4 | $359 \cdot 5$ | $359 \cdot 6$ | 359•7 | $359 \cdot 8$ | 0.0 | 0.1 | 0.2 |
| 20 | $359 \cdot 2$ | $359 \cdot 2$ | $359 \cdot 2$ | 359•3 | $359 \cdot 4$ | 359'5 | $359 \cdot 6$ | $359 \cdot 7$ | $359 \cdot 8$ | 0.0 | 0.1 | 0.3 |
| 40 | 359•0 | $359 \cdot 0$ | 359•1 | 359'1 | $359 \cdot 2$ | $359 \cdot 3$ | 359•5 | $359 \cdot 6$ | $359 \cdot 8$ | 0.0 | 0.1 | 0.3 |
| 50 | $358 \cdot 8$ | $358 \cdot 8$ | $358 \cdot 9$ | $359 \cdot 0$ | 359•1 | 359•2 | 359•4 | $359 \cdot 6$ | 359.8 | 0.0 | 0.2 | 0.4 |
| 55 | $358 \cdot 7$ | $358 \cdot 7$ | $358 \cdot 7$ | $358 \cdot 8$ | 359.0 | $359 \cdot 1$ | $359 \cdot 3$ | $359 \cdot 5$ | $359 \cdot 7$ | 0.0 | 0.2 | 0.4 |
| 60 | $358 \cdot 5$ | $358 \cdot 5$ | 358.6 | $358 \cdot 7$ | 358.8 | 359.0 | $359 \cdot 2$ | $359 \cdot 5$ | $359 \cdot 7$ | 0.0 | 0.2 | 0.5 |
| 65 | $358 \cdot 2$ | $358 \cdot 2$ | $358 \cdot 3$ | $358 \cdot 4$ | $358 \cdot 6$ | $358 \cdot 8$ | 359•1 | $359 \cdot 4$ | $359 \cdot 6$ | 359.9 | 0.3 | 0.6 |

Figure 2012. Excerpt from the Polaris Tables.
$\left(162^{\circ} 03.5^{\prime}\right)$. See Figure 2012. The first correction, $\mathrm{A}_{0}$, is a function solely of the LHA of Aries. Enter the table column indicating the proper range of LHA of Aries; in this case, enter the $160^{\circ}-169^{\circ}$ column. The numbers on the left hand side of the $\mathrm{A}_{0}$ correction table represent the whole degrees of
LHA $\Upsilon$; interpolate to determine the proper $\mathrm{A}_{0}$ correction.
In this case, LHA $\gamma$ was $162^{\circ} 03.5^{\prime}$. The $A_{0}$ correction for LHA $=162^{\circ}$ is $1^{\circ} 25.4^{\prime}$ and the $\mathrm{A}_{0}$ correction for $\mathrm{LHA}=163^{\circ}$ is $1^{\circ} 26.1^{\prime}$. The $\mathrm{A}_{0}$ correction for $162^{\circ} 03.5^{\prime}$ is $1^{\circ} 25.4^{\prime}$.

LHA $\Gamma$
$162^{\circ} 03.5^{\prime}$
$\mathrm{A}_{0}\left(162^{\circ} 03.5^{\prime}\right) \quad+1^{\circ} 25.4^{\prime}$
$\mathrm{A}_{1}\left(\mathrm{~L}=50^{\circ} \mathrm{N}\right) \quad+0.6^{\prime}$
$\mathrm{A}_{2}$ (April) $+0.9^{\prime}$
Sum $\quad 1^{\circ} 26.9^{\prime}$
Constant $\quad-1^{\circ} 00.0^{\prime}$
Observed Altitude $\quad 49^{\circ} 31.6^{\prime}$
Total Correction $+26.9^{\prime}$
Latitude

N $49^{\circ} 58.5^{\prime}$

| Tabulated GHA $\Upsilon^{\circ}(2300 \mathrm{hrs})$. | $194^{\circ} 32.7^{\prime}$ |
| :--- | :--- |
| Increment $(18-56)$ | $4^{\circ} 44.8^{\prime}$ |
| GHA $\Upsilon$ | $199^{\circ} 17.5^{\prime}$ |
| DR Longitude $(-W+E)$ | $37^{\circ} 14.0^{\prime}$ |

To calculate the $\mathrm{A}_{1}$ correction, enter the $\mathrm{A}_{1}$ correction table with the DR latitude, being careful to stay in the $160^{\circ}$ $169^{\circ}$ LHA column. There is no need to interpolate here; simply choose the latitude that is closest to the vessel's DR latitude. In this case, L is $50^{\circ} \mathrm{N}$. The $\mathrm{A}_{1}$ correction corresponding to an LHA range of $160^{\circ}-169^{\circ}$ and a latitude of $50^{\circ} \mathrm{N}$ is $+0.6^{\circ}$.

Finally, to calculate the $\mathrm{A}_{2}$ correction factor, stay in the $160^{\circ}-169^{\circ}$ LHA $\gamma^{\circ}$ column and enter the $\mathrm{A}_{2}$ correction table. Follow the column down to the month of the year; in this case, it is April. The correction for April is $+0.9^{\prime}$.

Sum the corrections, remembering that all three are always positive. Subtract $1^{\circ}$ from the sum to determine the total correction; then apply the resulting value to the observed altitude of Polaris. This is the vessel's latitude.

## THE DAY'S WORK IN CELESTIAL NAVIGATION

## 2013. Celestial Navigation Daily Routine

The navigator need not follow the entire celestial routine if celestial navigation is not the primary navigation method. It is appropriate to use only the steps of the celestial day's work that are necessary to provide a meaningful check on the primary fix source and maintain competency in celestial techniques.

The list of procedures below provides a complete daily celestial routine to follow. This sequence works equally well for all sight reduction methods, whether tabular, mathematical, computer program, or celestial navigation calculator. See Figure 2013 for an example of a typical day's celestial plot.

1. Before dawn, compute the time of morning twilight and plot the dead reckoning position for that time.
2. At morning twilight, take and reduce celestial observations for a fix. At sunrise take an amplitude of the Sun for a compass check.
3. Mid-morning, wind the chronometer and determine chronometer error with a radio time tick.
4. Mid-morning, reduce a Sun sight for a morning Sun
line.
5. Calculate an azimuth of the Sun for a compass check, if no amplitude was taken at sunrise.
6. At LAN, obtain a Sun line and advance the morning Sun line for the noon fix. Compute a longitude determined at LAN for an additional LOP.
7. Mid afternoon, again take and reduce a Sun sight. This is primarily for use with an advanced noon Sun line, or with a Moon or Venus line if the skies are overcast during evening twilight.
8. Calculate an azimuth of the Sun for a compass check at about the same time as the afternoon Sun observation. The navigator may replace this azimuth with an amplitude observation at sunset.
9. During evening twilight, reduce celestial observations for a fix.
10. Be alert at all times for the moon or brighter planets which may be visible during daylight hours for additional LOP's, and Polaris at twilight for a latitude line.

Chapter 7, Chapter 17, and Chapter 20 contain detailed explanations of the procedures required to carry out the various functions of this routine.


Figure 2013. Typical celestial plot at sea.

IPR2017-00946
Garmin EX2001 Page 327

## CHAPTER 21

# NAVIGATIONAL MATHEMATICS 

## GEOMETRY

## 2100. Definition

Geometry deals with the properties, relations, and measurement of lines, surfaces, solids, and angles. Plane geometry deals with plane figures, and solid geometry deals with three-dimensional figures.

A point, considered mathematically, is a place having position but no extent. It has no length, breadth, or thickness. A point in motion produces a line, which has length, but neither breadth nor thickness. A straight or right line is the shortest distance between two points in space. A line in motion in any direction except along itself produces a surface, which has length and breadth, but not thickness. A plane surface or plane is a surface without curvature. A straight line connecting any two of its points lies wholly within the plane. A plane surface in motion in any direction except within its plane produces a solid, which has length, breadth, and thickness. Parallel lines or surfaces are those which are everywhere equidistant. Perpendicular lines or surfaces are those which meet at right or $90^{\circ}$ angles. A perpendicular may be called a normal, particularly when it is perpendicular to the tangent to a curved line or surface at the point of tangency. All points equidistant from the ends of a straight line are on the perpendicular bisector of that line. The shortest distance from a point to a line is the length of the perpendicular between them.

## 2101. Angles

An angle is formed by two straight lines which meet at


Figure 2101. An angle.
a point. It is measured by the arc of a circle intercepted between the two lines forming the angle, the center of the circle being at the point of intersection. In Figure 2101, the angle formed by lines $A B$ and $B C$, may be designated "angle $B$," "angle $A B C$," or "angle $C B A$ "; or by Greek letter as "angle $\alpha$." The three letter designation is preferred if there is more than one angle at the point. When three letters are used, the middle one should always be that at the vertex of the angle.

An acute angle is one less than a right angle $\left(90^{\circ}\right)$.
A right angle is one whose sides are perpendicular $\left(90^{\circ}\right)$.
An obtuse angle is one greater than a right angle $\left(90^{\circ}\right)$ but less than $180^{\circ}$.

A straight angle is one whose sides form a continuous straight line $\left(180^{\circ}\right)$.

A reflex angle is one greater than a straight angle $\left(180^{\circ}\right)$ but less than a circle $\left(360^{\circ}\right)$. Any two lines meeting at a point form two angles, one less than a straight angle of $180^{\circ}$ (unless exactly a straight angle) and the other greater than a straight angle.

An oblique angle is any angle not a multiple of $90^{\circ}$.
Two angles whose sum is a right angle $\left(90^{\circ}\right)$ are complementary angles, and either is the complement of the other.

Two angles whose sum is a straight angle $\left(180^{\circ}\right)$ are supplementary angles, and either is the supplement of the other.

Two angles whose sum is a circle $\left(360^{\circ}\right)$ are explementary angles, and either is the explement of the other. The two angles formed when any two lines terminate at a common point are explementary.

If the sides of one angle are perpendicular to those of another, the two angles are either equal or supplementary. Also, if the sides of one angle are parallel to those of another, the two angles are either equal or supplementary.

When two straight lines intersect, forming four angles, the two opposite angles, called vertical angles, are equal. Angles which have the same vertex and lie on opposite sides of a common side are adjacent angles. Adjacent angles formed by intersecting lines are supplementary, since each pair of adjacent angles forms a straight angle.

A transversal is a line that intersects two or more other lines. If two or more parallel lines are cut by a transversal, groups of adjacent and vertical angles are formed,

A dihedral angle is the angle between two intersecting planes.

## 2102. Triangles

A plane triangle is a closed figure formed by three straight lines, called sides, which meet at three points called vertices. The vertices are labeled with capital letters and the sides with lowercase letters, as shown in Figure 2102a.

An equilateral triangle is one with its three sides equal in length. It must also be equiangular, with its three angles equal.

An isosceles triangle is one with two equal sides, called legs. The angles opposite the legs are equal. A line which bisects (divides into two equal parts) the unequal angle of an isosceles triangle is the perpendicular bisector of the opposite side, and divides the triangle into two equal right triangles.

A scalene triangle is one with no two sides equal. In such a triangle, no two angles are equal.

An acute triangle is one with three acute angles.
A right triangle is one having a right angle. The side opposite the right angle is called the hypotenuse. The other two sides may be called legs. A plane triangle can have only one right angle.

An obtuse triangle is one with an obtuse angle. A plane triangle can have only one obtuse angle.

An oblique triangle is one which does not contain a right angle.

The altitude of a triangle is a line or the distance from any vertex perpendicular to the opposite side.

A median of a triangle is a line from any vertex to the


Figure 2102a. A triangle.


Figure 2102b. A circle inscribed in a triangle.
center of the opposite side. The three medians of a triangle meet at a point called the centroid of the triangle. This point divides each median into two parts, that part between the centroid and the vertex being twice as long as the other part.

Lines bisecting the three angles of a triangle meet at a point which is equidistant from the three sides, which is the center of the inscribed circle, as shown in Figure 2102b. This point is of particular interest to navigators because it is the point theoretically taken as the fix when three lines of position of equal weight and having only random errors do not meet at a common point. In practical navigation, the point is found visually, not by construction, and other factors often influence the chosen fix position.

The perpendicular bisectors of the three sides of a triangle meet at a point which is equidistant from the three vertices, which is the center of the circumscribed circle, the circle through the three vertices and the smallest circle which can be drawn enclosing the triangle. The center of a circumscribed circle is within an acute triangle, on the hypotenuse of a right triangle, and outside an obtuse triangle.

A line connecting the mid-points of two sides of a triangle is always parallel to the third side and half as long. Also, a line parallel to one side of a triangle and intersecting the other two sides divides these sides proportionally. This principle can be used to divide a line into any number of equal or proportional parts.

The sum of the angles of a plane triangle is always $180^{\circ}$. Therefore, the sum of the acute angles of a right triangle is $90^{\circ}$, and the angles are complementary. If one side of a triangle is extended, the exterior angle thus formed is supplementary to the adjacent interior angle and is therefore equal to the sum of the two non adjacent angles. If two angles of one triangle are equal to two angles of another triangle, the third angles are also equal, and the triangles are similar. If the area of one triangle is equal to the area of another, the triangles are equal. Triangles having equal bases and altitudes also have equal areas. Two figures are congruent if one can be placed over the other to make an exact fit. Congruent figures are both similar and equal. If any side of one triangle is equal to any side of a similar triangle, the triangles are congruent. For example, if two right triangles have equal sides, they are congruent; if two right triangles have two corresponding sides equal, they are congruent. Triangles are congruent only if the sides and angles are equal.

The sum of two sides of a plane triangle is always greater than the third side; their difference is always less than the third side.

The area of a triangle is equal to $1 / 2$ of the area of the polygon formed from its base and height. This can be stated algebraically as:

$$
\text { Area of plane triangle } \mathrm{A}=\frac{\mathrm{bh}}{2}
$$

The square of the hypotenuse of a right triangle is equal
to the sum of the squares of the other two sides, or $\mathrm{a}^{2}+\mathrm{b}^{2}$ $=c^{2}$. Therefore the length of the hypotenuse of plane right triangle can be found by the formula:

$$
c=\sqrt{a^{2}+b^{2}}
$$

## 2103. Circles

A circle is a plane, closed curve, all points of which are equidistant from a point within, called the center.

The distance around a circle is called the circumference. Technically the length of this line is the perimeter, although the term "circumference" is often used. An arc is part of a circumference. A major arc is more than a semicircle $\left(180^{\circ}\right)$, a minor are is less than a semicircle $\left(180^{\circ}\right)$. A semi-circle is half a circle $\left(180^{\circ}\right)$, a quadrant is a quarter of a circle $\left(90^{\circ}\right)$, a quintant is a fifth of a circle $\left(72^{\circ}\right)$, a sextant is a sixth of a circle $\left(60^{\circ}\right)$, an octant is an eighth of a circle $\left(45^{\circ}\right)$. Some of these names have been applied to instruments used by navigators for measuring altitudes of celestial bodies because of the part of a circle used for the length of the arc of the instrument.

Concentric circles have a common center. A radius (plural radii) or semidiameter is a straight line connecting the center of a circle with any point on its circumference.

A diameter of a circle is a straight line passing through its center and terminating at opposite sides of the circumference. It divides a circle into two equal parts. The ratio of the length of the circumference of any circle to the length of its diameter is $3.14159+$, or $\pi$ (the Greek letter pi), a relationship that has many useful applications.

A sector is that part of a circle bounded by two radii and an arc. The angle formed by two radii is called a central angle. Any pair of radii divides a circle into sectors, one less than a semicircle $\left(180^{\circ}\right)$ and the other greater than a semicircle (unless the two radii form a diameter).

A chord is a straight line connecting any two points on the circumference of a circle. Chords equidistant from the center of a circle are equal in length.

A segment is the part of a circle bounded by a chord and the intercepted arc. A chord divides a circle into two segments, one less than a semicircle $\left(180^{\circ}\right)$, and the other greater than a semicircle (unless the chord is a diameter). A diameter perpendicular to a chord bisects it, its arc, and its segments. Either pair of vertical angles formed by intersecting chords has a combined number of degrees equal to the sum of the number of degrees in the two arcs intercepted by the two angles.

An inscribed angle is one whose vertex is on the circumference of a circle and whose sides are chords. It has half as many degrees as the arc it intercepts. Hence, an angle inscribed in a semicircle is a right angle if its sides terminate at the ends of the diameter forming the semicircle.

A secant of a circle is a line intersecting the circle, or a chord extended beyond the circumference.

A tangent to a circle is a straight line, in the plane of the circle, which has only one point in common with the circumference. A tangent is perpendicular to the radius at the point of tangency. Two tangents from a common point to opposite sides of a circle are equal in length, and a line from the point to the center of the circle bisects the angle formed by the two tangents. An angle formed outside a circle by the intersection of two tangents, a tangent and a secant, or two secants has half as many degrees as the difference between the two intercepted arcs. An angle formed by a tangent and a chord, with the apex at the point of tangency, has half as many degrees as the arc it intercepts. A common tangent is one tangent to more than one circle. Two circles are tangent to each other if they touch at one point only. If of different sizes, the smaller circle may be either inside or outside the larger one.

Parallel lines intersecting a circle intercept equal arcs.
If $\mathrm{A}=$ area; $\mathrm{r}=$ radius; $\mathrm{d}=$ diameter; $\mathrm{C}=$ circumference; $s=$ linear length of an arc; $a=$ angular length of $a n$ arc, or the angle it subtends at the center of a circle, in degrees; $b=$ angular length of an arc, or the angle it subtends at the center of a circle, in radians:

$$
\begin{aligned}
& \text { Area of circle } \mathrm{A}=\pi \mathrm{r}^{2}=\frac{\pi \mathrm{d}^{2}}{4} \\
& \text { Circumference of a circle } \mathrm{C}=2 \pi \mathrm{r}=\pi \mathrm{d}=2 \pi \mathrm{rad} \\
& \text { Area of sector }=\frac{\pi \mathrm{r}^{2} \mathrm{a}}{360}=\frac{\mathrm{r}^{2} \mathrm{~b}}{2}=\frac{\mathrm{rs}}{2} \\
& \text { Area of segment }=\frac{\mathrm{r}^{2}(\mathrm{~b}-\sin \mathrm{a})}{2}
\end{aligned}
$$

## 2104. Spheres

A sphere is a solid bounded by a surface every point of which is equidistant from a point within called the center. It may also be formed by rotating a circle about any diameter.

A radius or semidiameter of a sphere is a straight line connecting its center with any point on its surface. A diameter of a sphere is a straight line through its center and terminated at both ends by the surface of the sphere.

The intersection of a plane and the surface of a sphere is a circle, a great circle if the plane passes through the center of the sphere, and a small circle if it does not. The shorter arc of the great circle between two points on the surface of a sphere is the shortest distance, on the surface of the sphere, between the points. Every great circle of a sphere bisects every other great circle of that sphere. The poles of a circle on a sphere are the extremities of the sphere's diameter which is perpendicular to the plane of the circle. All points on the circumference of the circle are equidistant from either of its poles. In the ease of a great circle, both
poles are $90^{\circ}$ from any point on the circumference of the circle. Any great circle may be considered a primary, particularly when it serves as the origin of measurement of a coordinate. The great circles through its poles are called secondary. Secondaries are perpendicular to their primary.

A spherical triangle is the figure formed on the surface of a sphere by the intersection of three great circles. The lengths of the sides of a spherical triangle are measured in degrees, minutes, and seconds, as the angular lengths of the arcs forming them. The sum of the three sides is always less than $360^{\circ}$. The sum of the three angles is always more than $180^{\circ}$ and less than $540^{\circ}$.

A lune is the part of the surface of a sphere bounded by halves of two great circles.

## 2105. Coordinates

Coordinates are magnitudes used to define a position. Many different types of coordinates are used. Important navigational ones are described below.

If a position is known to be on a given line, only one magnitude (coordinate) is needed to identify the position if an origin is stated or understood.

If a position is known to be on a given surface, two magnitudes (coordinates) are needed to define the position.

If nothing is known regarding a position other than that it exists in space, three magnitudes (coordinates) are needed to define its position.

Each coordinate requires an origin, either stated or implied. If a position is known to be on a given plane, it might be defined by means of its distance from each of two intersecting lines, called axes. These are called rectangular coordinates. In Figure 2105, OY is called the ordinate, and OX is called the abscissa. Point $O$ is the origin, and lines $O X$ and OY the axes (called the X and Y axes, respectively). Point A is at position $\mathrm{x}, \mathrm{y}$. If the axes are not perpendicular but the lines $x$ and $y$ are drawn parallel to the axes, oblique coordinates result. Either type are called Cartesian coordinates. A three-dimensional system of Cartesian coordinates, with X Y , and Z axes, is called space coordinates.

Another system of plane coordinates in common usage consists of the direction and distance from the origin (called the pole). A line extending in the direction indicated is called a radius vector. Direction and distance from a fixed point constitute polar coordinates, sometimes called the rho-theta (the Greek $\rho$, to indicate distance, and the Greek $\theta$, to indicate direction) system. An example of its use is the radar scope.

Spherical coordinates are used to define a position on the surface of a sphere or spheroid by indicating angular distance from a primary great circle and a reference secondary great circle. Examples used in navigation are latitude and longitude, altitude and azimuth, and declination and hour angle.


Figure 2105. Rectangular coordinates.

## TRIGONOMETRY

## 2106. Definitions

Trigonometry deals with the relations among the angles and sides of triangles. Plane trigonometry deals with plane triangles, those on a plane surface. Spherical trigonometry deals with spherical triangles, which are drawn on the surface of a sphere. In navigation, the common methods of celestial sight reduction use spherical triangles on the surface of the Earth. For most navigational purposes,
the Earth is assumed to be a sphere, though it is somewhat flattened.

## 2107. Angular Measure

A circle may be divided into 360 degrees ( ${ }^{\circ}$ ), which is the angular length of its circumference. Each degree may be divided into 60 minutes ('), and each minute into 60 seconds ("). The angular measure of an arc is usually
expressed in these units. By this system a right angle or quadrant has $90^{\circ}$ and a straight angle or semicircle $180^{\circ}$. In marine navigation, altitudes, latitudes, and longitudes are usually expressed in degrees, minutes, and tenths $\left(27^{\circ} 14.4^{\prime}\right)$. Azimuths are usually expressed in degrees and tenths $\left(164.7^{\circ}\right)$. The system of degrees, minutes, and seconds indicated above is the sexagesimal system. In the centesimal system, used chiefly in France, the circle is divided into 400 centesimal degrees (sometimes called grades) each of which is divided into 100 centesimal minutes of 100 centesimal seconds each.

A radian is the angle subtended at the center of a circle by an arc having a linear length equal to the radius of the circle. A circle $\left(360^{\circ}\right)=2 \pi$ radians, a semicircle $\left(180^{\circ}\right)=\pi$ radians, a right angle $\left(90^{\circ}\right)=\pi / 2$ radians. The length of the arc of a circle is equal to the radius multiplied by the angle subtended in radians.

## 2108. Trigonometric Functions

Trigonometric functions are the various proportions or ratios of the sides of a plane right triangle, defined in relation to one of the acute angles. In Figure 2108a, let $\theta$ be any acute angle. From any point R on line OA, draw a line perpendicular to $O B$ at $F$. From any other point $R^{\prime}$ on $O A$, draw a line perpendicular to $O B$ at $F^{\prime}$. Then triangles OFR and $\mathrm{OF}^{\prime} \mathrm{R}^{\prime}$ are similar right triangles because all their corresponding angles are equal. Since in any pair of similar triangles the ratio of any two sides of one triangle is equal to the ratio of the corresponding two sides of the other triangle,

$$
\frac{\mathrm{RF}}{\mathrm{OF}}=\frac{\mathrm{R}^{\prime} \mathrm{F}^{\prime}}{\mathrm{OF}^{\prime}}=\frac{\mathrm{RF}}{\mathrm{OR}}=\frac{\mathrm{R}^{\prime} \mathrm{F}^{\prime}}{\mathrm{OR}} \quad \text { and } \frac{\mathrm{OF}}{\mathrm{OR}}=\frac{\mathrm{OF}^{\prime}}{\mathrm{OR}^{\prime}}
$$

No matter where the point R is located on OA , the ratio between the lengths of any two sides in the triangle OFR has a constant value. Hence, for any value of the acute angle $\theta$, there is a fixed set of values for the ratios of the various sides of the triangle. These ratios are defined as follows:

$$
\begin{array}{ll}
\operatorname{sine} \theta & =\sin \theta=\frac{\text { side opposite }}{\text { hypotenuse }} \\
\operatorname{cosine} \theta & =\cos \theta=\frac{\text { side adjacent }}{\text { hypotenuse }} \\
\text { tangent } \theta & =\tan \theta=\frac{\text { side opposite }}{\text { side adjacent }} \\
\operatorname{cosecant} \theta & =\csc \theta=\frac{\text { hypotenuse }}{\text { side opposite }} \\
\text { secant } \theta & =\sec \theta=\frac{\text { hypotenuse }}{\text { side adjacent }}
\end{array}
$$

cotangent $\theta=\cot \theta=\frac{\text { side adjacent }}{\text { side opposite }}$

Of these six principal functions, the second three are the reciprocals of the first three; therefore


Figure 2108a. Similar right triangles.

$$
\begin{array}{ll}
\sin \theta=\frac{1}{\csc \theta} & \csc \theta=\frac{1}{\sin \theta} \\
\cos \theta=\frac{1}{\sec \theta} & \sec \theta=\frac{1}{\cos \theta} \\
\tan \theta=\frac{1}{\cot \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

In Figure 2108b, A, B, and C are the angles of a plane right triangle, with the right angle at C . The sides are labeled a, b, c, with opposite angles labeled A, B, and C respectively.


Figure 2108b. A right triangle.
The six principal trigonometric functions of angle B are:
$\sin B=\frac{b}{c}=\cos A \quad=\cos \left(90^{\circ}-B\right)$


Figure 2108c. Numerical relationship of sides of $30^{\circ}, 60^{\circ}$, and $45^{\circ}$ triangles.

| $\cos \mathrm{B}$ | $=\frac{\mathrm{a}}{\mathrm{c}}$ | $=\sin \mathrm{A}$ | $=\sin \left(90^{\circ}-\mathrm{B}\right)$ |
| :--- | :--- | :--- | :--- |
| $\tan \mathrm{B}$ | $=\frac{\mathrm{b}}{\mathrm{a}}$ | $=\cot \mathrm{A}$ | $=\cot \left(90^{\circ}-\mathrm{B}\right)$ |
| $\cot \mathrm{B}$ | $=\frac{\mathrm{a}}{\mathrm{b}}$ | $=\tan \mathrm{A}$ | $=\tan \left(90^{\circ}-\mathrm{B}\right)$ |
| $\sec \mathrm{B}$ | $=\frac{\mathrm{c}}{\mathrm{a}}$ | $=\csc \mathrm{A}$ | $=\csc \left(90^{\circ}-\mathrm{B}\right)$ |
| $\csc \mathrm{B}$ | $=\frac{\mathrm{c}}{\mathrm{b}}$ | $=\sec \mathrm{A}$ | $=\sec \left(90^{\circ}-\mathrm{B}\right)$ |


| Function | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ |
| :---: | :---: | :---: | :---: |
| sine | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}=\frac{1}{2} \sqrt{2}$ | $\frac{\sqrt{3}}{2}=\frac{1}{2} \sqrt{3}$ |
| cosine | $\frac{\sqrt{3}}{2}=\frac{1}{2} \sqrt{3}$ | $\frac{1}{\sqrt{2}}=\frac{1}{2} \sqrt{2}$ | $\frac{1}{2}$ |
| tangent | $\frac{1}{\sqrt{3}}=\frac{1}{3} \sqrt{3}$ | $\frac{1}{1}=1$ | $\frac{\sqrt{3}}{1}=\sqrt{3}$ |
| cotangen | $\frac{\sqrt{3}}{1}=\sqrt{3}$ | $\frac{1}{1}=1$ | $\frac{1}{\sqrt{3}}=\frac{1}{3} \sqrt{3}$ |
| secant | $\frac{2}{\sqrt{3}}=\frac{2}{3} \sqrt{3}$ | $\frac{\sqrt{2}}{1}=\sqrt{2}$ | $\frac{2}{1}=2$ |
| cosecant | $\frac{2}{1}=2$ | $\frac{\sqrt{2}}{1}=\sqrt{2}$ | $\frac{2}{\sqrt{3}}=\frac{2}{3} \sqrt{3}$ |

Table 2108d. Values of various trigonometric functions for angles $30^{\circ}, 45^{\circ}$, and $60^{\circ}$.

Since A and B are complementary, these relations show that the sine of an angle is the cosine of its complement, the tangent of an angle is the cotangent of its
complement, and the secant of an angle is the cosecant of its complement. Thus, the co-function of an angle is the function of its complement.

$$
\begin{array}{ll}
\sin \left(90^{\circ}-\mathrm{A}\right) & =\cos \mathrm{A} \\
\cos \left(90^{\circ}-\mathrm{A}\right) & =\sin \mathrm{A} \\
\tan \left(90^{\circ}-\mathrm{A}\right) & =\cot \mathrm{A} \\
\csc \left(90^{\circ}-\mathrm{A}\right) & =\sec \mathrm{A} \\
\sec \left(90^{\circ}-\mathrm{A}\right) & =\csc \mathrm{A} \\
\cot \left(90^{\circ}-\mathrm{A}\right) & =\tan \mathrm{A}
\end{array}
$$

The numerical value of a trigonometric function is sometimes called the natural function to distinguish it from the logarithm of the function, called the logarithmic function.
Since the relationships of $30^{\circ}, 60^{\circ}$, and $45^{\circ}$ right triangles are as shown in Figure 2108c, certain values of the basic functions can be stated exactly, as shown in Table 2108d.

## 2109. Functions in Various Quadrants

To make the definitions of the trigonometric functions more general to include those angles greater than $90^{\circ}$, the functions are defined in terms of the rectangular Cartesian coordinates of point R of Figure 2108a, due regard being given to the sign of the function. In Figure 2109a, OR is assumed to be a unit radius. By convention the sign of OR is always positive. This radius is imagined to rotate in a counterclockwise direction through $360^{\circ}$ from the horizontal position at $0^{\circ}$, the positive direction along the X axis. Ninety degrees $\left(90^{\circ}\right)$ is the positive direction along the Y axis. The angle between the original position of the radius and its position at any time increases from $0^{\circ}$ to $90^{\circ}$ in the first quadrant (I), $90^{\circ}$ to $180^{\circ}$ in the second quadrant (II), $180^{\circ}$ to $270^{\circ}$ in the third quadrant (III), and $270^{\circ}$ to $360^{\circ}$ in the fourth quadrant (IV).

The numerical value of the sine of an angle is equal to the projection of the unit radius on the Y-axis. According to the definition given in Article 2108, the sine of angle in
the first quadrant of Figure 2109a is $\frac{+y}{+O R}$. If the radius $O R$ is equal to one, $\sin \theta=+y$. Since $+y$ is equal to the projection of the unit radius OR on the Y axis, the sine function of an angle in the first quadrant defined in terms of rectangular Cartesian coordinates does not contradict the definition in Article 2108. In Figure 2109a,

$$
\begin{array}{ll}
\sin \theta & =+y \\
\sin \left(180^{\circ}-\theta\right)=+y & =\sin \theta \\
\sin \left(180^{\circ}+\theta\right)=-y & =-\sin \theta \\
\sin \left(360^{\circ}-\theta\right) & =-y \quad=\sin (-\theta)=-\sin \theta
\end{array}
$$

The numerical value of the cosine of an angle is equal to the projection of the unit radius on the X axis. In Figure 2109a,

$$
\begin{array}{ll}
\cos \theta & =+x \\
\cos \left(180^{\circ}-\theta\right) & =-x=-\cos \theta \\
\cos \left(180^{\circ}+\theta\right) & =-x=-\cos \theta \\
\cos \left(360^{\circ}-\theta\right) & =+x=\cos (-\theta)=\cos \theta
\end{array}
$$

The numerical value of the tangent of an angle is equal to the ratio of the projections of the unit radius on the Y and X axes. In Figure 2109a,

$$
\begin{array}{ll}
\tan \theta & =\frac{+y}{+x} \\
\left(180^{\circ}-\theta\right) & =\frac{+y}{-x}=-\tan \theta
\end{array}
$$

$$
\tan \left(180^{\circ}+\theta\right)=\frac{-\mathrm{y}}{-\mathrm{x}}=\tan \theta
$$

$$
\tan \left(360^{\circ}-\theta\right)=\frac{-y}{+x}=\tan (-\theta) \quad=-\tan \theta
$$

The cosecant, secant, and cotangent functions of angles in the various quadrants are similarly determined.
$\csc \theta=\frac{1}{+y}$
$\csc \left(180^{\circ}-\theta\right)=\frac{1}{+y}=\csc \theta$
$\csc \left(180^{\circ}+\theta\right)=\frac{1}{-y}=-\csc \theta$
$\csc \left(360^{\circ}-\theta\right)=\frac{1}{-y}=\csc (-\theta)=-\csc \theta$


Figure 2109a. The functions in various quadrants, mathematical convention.

$$
\begin{aligned}
& \sec \theta=\frac{1}{+x} \\
& \sec \left(180^{\circ}-\theta\right)=\frac{1}{-x}=-\sec \theta \\
& \sec \left(180^{\circ}+\theta\right)=\frac{1}{-x}=-\sec \theta
\end{aligned}
$$

$$
\sec \left(360^{\circ}-\theta\right)=\frac{1}{+x}=\sec (-\theta)=\sec \theta
$$

$$
\cot \theta=\frac{+x}{+y}
$$

$$
\cot \left(180^{\circ}-\theta\right)=\frac{-x}{+y}=-\cot \theta
$$

$$
\cot \left(180^{\circ}+\theta\right)=\frac{-\mathrm{x}}{-\mathrm{y}}=\cot \theta
$$

$$
\cot \left(360^{\circ}-\theta\right)=\frac{+\mathrm{x}}{-\mathrm{y}}=\cot (-\theta)=-\cot \theta
$$



Figure 2109b. Graphic representation of values of trigonometric functions in various quadrants.

The signs of the functions in the four different quadrants are shown below:

|  | I | II | III | IV |
| :--- | :---: | :---: | :---: | :---: |
| sine and cosecant | + | + | - | - |
| cosine and secant | + | - | - | + |
| tangent and cotangent | + | - | + | - |

The numerical values vary by quadrant as shown above:

| I | II | III | IV |  |
| :--- | :--- | :--- | :--- | :--- |
| $\sin$ | 0 to +1 | +1 to 0 | 0 to -1 | -1 to 0 |
| $\csc$ | $+\infty$ to +1 | +1 to 0 | $-\infty$ to -1 | -1 to $-\infty$ |
| $\cos +1$ to 0 | 0 to -1 | -1 to 0 | 0 to +1 |  |
| $\sec +1$ to $+\infty$ | $-\infty$ to -1 | -1 to $-\infty$ | $+\infty$ to +1 |  |

$\left.\begin{array}{|rrrr|}\hline & \text { I } & \text { II } & \text { III } \\ \text { tan } 0 \text { to }+\infty & -\infty \text { to } 0 & 0 \text { to }+\infty & -\infty \text { to } 0 \\ \cot & +\infty \text { to } 0 & 0 \text { to }-\infty & +\infty \text { to } 0\end{array}\right) 0$ to $-\infty \quad$.

These relationships are shown graphically in Figure 2109b.

## 2110. Trigonometric Identities

A trigonometric identity is an equality involving trigonometric functions of $\theta$ which is true for all values of $\theta$, except those values for which one of the functions is not defined or for which a denominator in the equality is equal to zero. The fundamental identities are those identities from which other identities can be derived.

| $\sin \theta=\frac{1}{\csc \theta}$ | $\csc \theta=\frac{1}{\sin \theta}$ |
| :--- | :--- |
| $\cos \theta=\frac{1}{\sec \theta}$ | $\sec \theta=\frac{1}{\cos \theta}$ |
| $\tan \theta=\frac{1}{\cot \theta}$ | $\cot \theta=\frac{1}{\tan \theta}$ |
| $\tan \theta=\frac{\sin \theta}{\cos \theta}$ | $\cot \theta=\frac{\cos \theta}{\sin \theta}$ |
| $\sin ^{2} \theta+\cos ^{2} \theta=1$ | $\tan 2 \theta+1=\sec ^{2} \theta$ |
| $\sin \left(90^{\circ}-\theta\right)=\cos \theta$ | $\csc \left(90^{\circ}-\theta\right)=\sec \theta$ |
| $\cos \left(90^{\circ}-\theta\right)=\sin \theta$ | $\sec \left(90^{\circ}-\theta\right)=\csc \theta$ |
| $\tan \left(90^{\circ}-\theta\right)=\cot \theta$ | $\cot \left(90^{\circ}-\theta\right)=\tan \theta$ |
| $\sin (-\theta)=-\sin \theta$ | $\csc (-\theta)=-\csc \theta$ |
| $\cos (-\theta)=\cos \theta$ | $\sec (-\theta)=\sec \theta$ |
| $\tan (-\theta)=-\tan \theta$ | $\cot (-\theta)=-\cot \theta$ |
| $\sin (90+\theta)=\cos \theta$ | $\csc (90+\theta)=\sec \theta$ |
| $\cos (90+\theta)=-\sin \theta$ | $\sec (90+\theta)=-\csc \theta$ |
| $\tan (90+\theta)=-\cot \theta$ | $\cot (90+\theta)=-\tan \theta$ |

$$
\begin{array}{ll}
\sin \left(180^{\circ}-\theta\right)=\sin \theta & \csc \left(180^{\circ}-\theta\right)=\csc \theta \\
\cos \left(180^{\circ}-\theta\right)=-\cos \theta & \sec \left(180^{\circ}-\theta\right)=-\sec \theta \\
\tan \left(180^{\circ}-\theta\right)=-\tan \theta & \cot \left(180^{\circ}-\theta\right)=-\cot \theta
\end{array}
$$

$$
\begin{array}{lc}
\sin \left(180^{\circ}+\theta\right)=-\sin \theta & \csc \left(180^{\circ}+\theta\right)=-\csc \theta \\
\cos \left(180^{\circ}+\theta\right)=-\cos \theta & \sec \left(180^{\circ}+\theta\right)=-\sec \theta \\
\tan \left(180^{\circ}+\theta\right)=\tan \theta & \cot \left(180^{\circ}+\theta\right)=\cot \theta
\end{array}
$$

$$
\begin{array}{ll}
\sin \left(360^{\circ}-\theta\right)=-\sin \theta & \csc \left(360^{\circ}-\theta\right)=-\csc \theta \\
\cos \left(360^{\circ}-\theta\right)=\cos \theta & \sec \left(360^{\circ}-\theta\right)=\sec \theta \\
\tan \left(360^{\circ}-\theta\right)=-\tan \theta & \cot \left(360^{\circ}-\theta\right)=-\cot \theta
\end{array}
$$

## 2111. Inverse Trigonometric Functions

An angle having a given trigonometric function may be indicated in any of several ways. Thus, $\sin y=x, y=\operatorname{arc} \sin$ x , and $\mathrm{y}=\sin ^{-1} \mathrm{x}$ have the same meaning. The superior " -1 " is not an exponent in this case. In each case, y is "the angle whose sine is x ." In this case, y is the inverse sine of x . Similar relationships hold for all trigonometric functions.

## SOLVING TRIANGLES

A triangle is composed of six parts: three angles and three sides. The angles may be designated $\mathrm{A}, \mathrm{B}$, and C ; and the sides opposite these angles as $a, b$, and $c$, respectively. In general, when any three parts are known, the other three parts can be found, unless the known parts are the three angles.

## 2112. Right Plane Triangles

In a right plane triangle it is only necessary to substitute numerical values in the appropriate formulas representing the basic trigonometric functions and solve. Thus, if $a$ and $b$ are known,

$$
\begin{aligned}
& \tan \mathrm{A}=\frac{a}{b} \\
& \mathrm{~B}=90^{\circ}-\mathrm{A} \\
& c=a \csc \mathrm{~A}
\end{aligned}
$$

Similarly, if $c$ and $B$ are given,

$$
\begin{aligned}
& \mathrm{A}=90^{\circ}-B \\
& a=c \sin \mathrm{~A} \\
& b=c \cos \mathrm{~A}
\end{aligned}
$$

## 2113. Oblique Plane Triangles

When solving an oblique plane triangle, it is often desirable to draw a rough sketch of the triangle approximately to scale, as shown in Figure 2113. The following laws are helpful in solving such triangles:


Figure 2113. An oblique plane triangle.

| Known | To find | Formula | Comments |
| :---: | :---: | :---: | :---: |
| $a, b, c$ | A | $\cos \mathrm{A}=\frac{c^{2}+b^{2}-a^{2}}{2 b c}$ | Cosine law |
| $a, b, \mathrm{~A}$ | B | $\sin B=\frac{b \sin \mathrm{~A}}{a}$ | Sine law. Two solutions if $b>a$ |
|  | C | $\mathrm{C}=180^{\circ}-(\mathrm{A}+\mathrm{B})$ | $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ |
|  | c | $c=\frac{a \sin \mathrm{C}}{\sin \mathrm{~A}}$ | Sine law |
| $a, b, \mathrm{C}$ | A | $\tan \mathrm{A}=\frac{a \sin \mathrm{C}}{b-a \cos \mathrm{C}}$ |  |
|  | B | $\mathrm{B}=180^{\circ}-(\mathrm{A}+\mathrm{C})$ | $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ |
|  | c | $c=\frac{a \sin \mathrm{C}}{\sin \mathrm{~A}}$ | Sine law |
| $a, \mathrm{~A}, \mathrm{~B}$ | $b$ | $b=\frac{a \sin \mathrm{~B}}{\sin \mathrm{~A}}$ | Sine law |
|  | C | $\mathrm{C}=180^{\circ}-(\mathrm{A}+\mathrm{B})$ | $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ |
|  | c | $c=\frac{a \sin \mathrm{C}}{\sin \mathrm{~A}}$ | Sine law |

Table 2113. Formulas for solving oblique plane triangles.

Law of sines: $\quad \frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}$
Law of cosines: $a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A}$.

The unknown parts of oblique plane triangles can be computed by the formulas in Table 2113, among others. By reassignment of letters to sides and angles, these formulas can be used to solve for all unknown parts of oblique plane triangles.

## SPHERICAL TRIGONOMETRY

## 2114. Napier's Rules

Right spherical triangles can be solved with the aid of Napier's Rules of Circular Parts. If the right angle is omitted, the triangle has five parts: two angles and three sides, as shown in Figure 2114a. Since the right angle is already known, the triangle can be solved if any two other parts are known. If the two sides forming the right angle, and the complements of the other three parts are used, these elements (called "parts" in the rules) can be arranged in five sectors of a circle in the same order in which they occur in the triangle, as shown in Figure 2114b. Considering any part as the middle part, the two parts nearest it in the diagram are considered the adjacent parts, and the two farthest from it the opposite parts.

Napier's Rules state: The sine of a middle part equals the product of (1) the tangents of the adjacent parts or (2)
the cosines of the opposite parts.
In the use of these rules, the co-function of a complement can be given as the function of the element. Thus, the cosine of co-A is the same as the sine of A. From these rules the following formulas can be derived:
$\sin a=\tan b \cot \mathrm{~B}=\sin c \sin \mathrm{~A}$
$\sin b=\tan a \cot \mathrm{~A}=\sin c \sin \mathrm{~B}$
$\cos c=\cot \mathrm{A} \cot \mathrm{B}=\cos a \cos b$
$\cos \mathrm{A}=\tan b \cot c=\cos a \sin \mathrm{~B}$
$\cos \mathrm{B}=\tan a \cot c=\cos b \sin \mathrm{~A}$
The following rules apply:

1. An oblique angle and the side opposite are in the same quadrant.
2. Side $c$ (the hypotenuse) is less then $90^{\circ}$ when $a$ and


Figure 2114a. Parts of a right spherical triangle as used in Napier's rules.
$b$ are in the same quadrant, and more than $90^{\circ}$ when $a$ and $b$ are in different quadrants.

If the known parts are an angle and its opposite side, two solutions are possible.

A quadrantal spherical triangle is one having one side of $90^{\circ}$. A biquadrantal spherical triangle has two sides of $90^{\circ}$. A triquadrantal spherical triangle has three sides of $90^{\circ}$. A biquadrantal spherical triangle is isosceles and has two right angles opposite the $90^{\circ}$ sides. A triquadrantal spherical triangle is equilateral, has three right angles, and bounds an octant (one-eighth) of the surface of the sphere. A quadrantal spherical triangle can be solved by Napier's rules provided any two elements in addition to the $90^{\circ}$ side are known. The $90^{\circ}$ side is omitted and the other


Figure 2114b. Diagram for Napier's Rules of Circular Parts.
parts are arranged in order in a five-sectored circle, using the complements of the three parts farthest from the $90^{\circ}$ side. In the case of a quadrantal triangle, rule 1 above is used, and rule 2 restated: angle C (the angle opposite the side of $90^{\circ}$ ) is more than $90^{\circ}$ when A and B are in the same quadrant, and less than $90^{\circ}$ when $A$ and $B$ are in different quadrants. If the rule requires an angle of more than $90^{\circ}$ and the solution produces an angle of less than $90^{\circ}$, subtract the solved angle from $180^{\circ}$.

## 2115. Oblique Spherical Triangles

An oblique spherical triangle can be solved by dropping a perpendicular from one of the apexes to the opposite side, subtended if necessary, to form two right spherical triangles. It can also be solved by the following formulas in Table 2115, reassigning the letters as necessary.

| Known | To find | Formula | Comments |
| :---: | :---: | :---: | :---: |
| $a, b, \mathrm{C}$ | A | $\tan \mathrm{A}=\frac{\sin D \tan \mathrm{C}}{\sin (b-D)}$ | $\tan D=\tan a \cos \mathrm{C}$ |
|  | B | $\sin \mathrm{B}=\frac{\sin \mathrm{C} \sin b}{\sin c}$ |  |
|  | C | $\cos \mathrm{C}=\sin \mathrm{A} \sin \mathrm{B} \cos c-\cos \mathrm{A} \cos \mathrm{B}$ |  |
|  | $a$ | $\tan a=\frac{\tan c \sin E}{\sin (\mathrm{~B}+E)}$ | $\tan E=\tan \mathrm{A} \cos c$ |
|  | $b$ | $\tan b=\frac{\tan c \sin F}{\sin (\mathrm{~A}+F)}$ | $\tan F=\tan \mathrm{B} \cos c$ |

Table 2115. Formulas for solving oblique spherical triangles.

| Known | To find | Formula | Comments |
| :---: | :---: | :---: | :---: |
| $a, b, \mathrm{~A}$ | $c$ | $\sin (c+G)=\frac{\cos a \sin G}{\cos b}$ | $\cot G=\cos \mathrm{A} \tan b$ <br> Two solutions |
|  | B | $\sin \mathrm{B}=\frac{\sin \mathrm{A} \sin b}{\sin \mathrm{a}}$ | Two solutions |
|  | C | $\sin (\mathrm{C}+H)=\sin H \tan b \cot a$ | $\tan H=\tan \mathrm{A} \cos b$ <br> Two solutions |
| $a, \mathrm{~A}, \mathrm{~B}$ | C | $\sin (\mathrm{C}-K)=\frac{\cos \mathrm{A} \sin K}{\cos \mathrm{~B}}$ | $\cot K=\tan \mathrm{B} \cos a$ <br> Two solutions |
|  | $b$ | $\sin b=\frac{\sin a \sin \mathrm{~B}}{\sin \mathrm{~A}}$ | Two solutions |
|  | c | $\sin (c-M)=\cot \mathrm{A} \tan \mathrm{B} \sin M$ | $\tan M=\cos \mathrm{B} \tan a$ <br> Two solutions |

Table 2115. Formulas for solving oblique spherical triangles.

## CHAPTER 22

# CALCULATIONS AND CONVERSIONS 

## INTRODUCTION

## 2200. Purpose and Scope

This chapter discusses the use of calculators and computers in navigation and summarizes the formulas the navigator depends on during voyage planning, piloting, celestial navigation, and various related tasks. To fully utilize this chapter, the navigator should be competent in basic mathematics including algebra and trigonometry (See Chapter 21, Navigational Mathematics), and be familiar with the use of a basic scientific calculator. The navigator should choose a calculator based on personal needs, which may vary greatly from person to person according to individual abilities and responsibilities.

## 2201. Use of Calculators in Navigation

Any common calculator can be used in navigation, even one providing only the four basic arithmetic functions of addition, subtraction, multiplication, and division. Any good scientific calculator can be used for sight reduction, sailings and other tasks. However, the use of a computer program or handheld calculator specifically designed for navigation will greatly reduce the workload of the navigator, reduce the possibility of errors, and increase the accuracy of results over those obtained by hand calculation.

Calculations of position based on celestial observations are becoming increasingly obsolete as GPS takes its place as a dependable position reference for all modes of navigation. This is especially true since handheld, batterypowered GPS units have become less expensive, and can provide a worldwide backup position reference to more sophisticated systems with far better accuracy and reliability than celestial.

However, for those who still use celestial techniques, a celestial navigation calculator or computer program can improve celestial positions by easily solving numerous sights, and by reducing mathematical and tabular errors inherent in the manual sight reduction process. They can also provide weighted plots of the LOP's from any number of celestial bodies, based on the navigator's subjective analysis of each sight, and calculate the best fix with lat./long. readout.

On a vessel with a laptop or desktop computer convenient to the bridge, a good choice would be a comprehensive computer program to handle all navigational functions such as sight reduction, sailings, tides, and other tasks, backed up by a handheld navigational calcula-
tor for basic calculations should the computer fail. Handheld calculators are dependable enough that the navigator can expect to never have to solve celestial sights, sailings, and other problems by tables or calculations.

In using a calculator for any navigational task, it important to remember that the accuracy of the result, even if carried to many decimal places, is only as good as the least accurate entry. If a sextant observation is taken to an accuracy of only a minute, that is the best accuracy of the final solution, regardless of a calculator's ability to solve to 12 decimal places. See Chapter 23, Navigational Errors, for a discussion of the sources of error in navigation.

Some basic calculators require the conversion of degrees, minutes and seconds (or tenths) to decimal degrees before solution. A good navigational calculator, however, should permit entry of degrees, minutes and tenths of minutes directly, and should do conversions at will. Though many non-navigational computer programs have an onscreen calculator, these are generally very simple versions with only the four basic arithmetical functions. They are thus too simple for many navigational problems. Conversely, a good navigational computer program requires no calculator per se, since the desired answer is calculated automatically from the entered data.

The following articles discuss calculations involved in various aspects of navigation.

## 2202. Calculations of Piloting

- Hull speed in knots is found by:

$$
\mathrm{S}=1.34 \sqrt{\text { waterline length }} \text { (in feet). }
$$

This is an approximate value which varies with hull shape.

- Nautical and U.S. survey miles can be interconverted by the relationships:

1 nautical mile $=1.15077945$ U.S. survey miles.
1 U.S. survey mile $=0.86897624$ nautical miles.

- The speed of a vessel over a measured mile can be calculated by the formula:
$S=\frac{3600}{T}$
where S is the speed in knots and T is the time in seconds.
- The distance traveled at a given speed is computed by the formula:
$D=\frac{S T}{60}$
where D is the distance in nautical miles, S is the speed in knots, and T is the time in minutes.
- Distance to the visible horizon in nautical miles can be calculated using the formula:
$\mathrm{D}=1.17 \sqrt{\mathrm{~h}_{\mathrm{f}}}$, or
$\mathrm{D}=2.07 \sqrt{\mathrm{~h}_{\mathrm{m}}}$
depending upon whether the height of eye of the observer above sea level is in feet $\left(h_{f}\right)$ or in meters $\left(h_{m}\right)$.
- Dip of the visible horizon in minutes of arc can be calculated using the formula:
$\mathrm{D}=0.97^{\prime} \sqrt{\mathrm{h}_{\mathrm{f}}}$, or
$\mathrm{D}=1.76^{\prime} \sqrt{\mathrm{h}_{\mathrm{m}}}$
depending upon whether the height of eye of the observer above sea level is in feet $\left(h_{f}\right)$ or in meters $\left(h_{m}\right)$
- Distance to the radar horizon in nautical miles can be calculated using the formula:
$\mathrm{D}=1.22 \sqrt{\mathrm{~h}_{\mathrm{f}}}$, or
$\mathrm{D}=2.21 \sqrt{\mathrm{~h}_{\mathrm{m}}}$
depending upon whether the height of the antenna above sea level is in feet $\left(\mathrm{h}_{\mathrm{f}}\right)$ or in meters $\left(\mathrm{h}_{\mathrm{m}}\right)$.
- Dip of the sea short of the horizon can be calculated using the formula:
Ds $=60 \tan ^{-1}\left(\frac{h_{f}}{6076.1 d_{s}}+\frac{d_{s}}{8268}\right)$
where Ds is the dip short of the horizon in minutes of arc; $h_{f}$ is the height of eye of the observer above sea
level, in feet and $d_{s}$ is the distance to the waterline of the object in nautical miles.
- Distance by vertical angle between the waterline and the top of an object is computed by solving the right triangle formed between the observer, the top of the object, and the waterline of the object by simple trigonometry. This assumes that the observer is at sea level, the Earth is flat between observer and object, there is no refraction, and the object and its waterline form a right angle. For most cases of practical significance, these assumptions produce no large errors.

$$
\mathrm{D}=\sqrt{\frac{\tan ^{2} \mathrm{a}}{0.0002419^{2}}+\frac{\mathrm{H}-\mathrm{h}}{0.7349}}-\frac{\operatorname{tan~a}}{0.0002419}
$$

where D is the distance in nautical miles, a is the corrected vertical angle, H is the height of the top of the object above sea level, and $h$ is the observer's height of eye in feet. The constants ( 0.0002419 and 0.7349 ) account for refraction.

## 2203. Tide Calculations

- The rise and fall of a diurnal tide can be roughly calculated from the following table, which shows the fraction of the total range the tide rises or falls during flood or ebb.

| Hour | Amount of flood/ebb |
| :---: | :---: |
|  |  |
| 1 | $1 / 12$ |
| 2 | $2 / 12$ |
| 3 | $3 / 12$ |
| 4 | $3 / 12$ |
| 5 | $2 / 12$ |
| 6 | $1 / 12$ |

## 2204. Calculations of Celestial Navigation

Unlike sight reduction by tables, sight reduction by calculator permits the use of nonintegral values of latitude of the observer, and LHA and declination of the celestial body. Interpolation is not needed, and the sights can be readily reduced from any assumed position. Simultaneous, or nearly simultaneous, observations can be reduced using a single assumed position. Using the observer's DR or MPP for the assumed longitude usually provides a better representation of the circle of equal altitude, particularly at high observed altitudes.

- The dip correction is computed in the Nautical Almanac using the formula:

$$
\mathrm{D}=0.97 \sqrt{\mathrm{~h}}
$$

where dip is in minutes of arc and $h$ is height of eye in feet. This correction includes a factor for refraction. The Air Almanac uses a different formula intended for air navigation. The differences are of no significance in practical navigation.

- The computed altitude $(\mathrm{Hc})$ is calculated using the basic formula for solution of the undivided navigational triangle:

$$
\sin h=\sin L \sin d+\cos L \cos d \cos L H A
$$

in which $h$ is the altitude to be computed $(\mathrm{Hc}), \mathrm{L}$ is the latitude of the assumed position, $d$ is the declination of the celestial body, and LHA is the local hour angle of the body. Meridian angle ( t ) can be substituted for LHA in the basic formula.
Restated in terms of the inverse trigonometric function:
$H c=\sin ^{-1}[(\sin L \sin d)+(\cos L \cos d \cos L H A)]$.
When latitude and declination are of contrary name, declination is treated as a negative quantity. No special sign convention is required for the local hour angle, as in the following azimuth angle calculations.

- The azimuth angle ( Z ) can be calculated using the altitude azimuth formula if the altitude is known. The formula stated in terms of the inverse trigonometric function is:

$$
Z=\cos ^{-1}\left(\frac{\sin d-(\sin L \sin H c)}{(\cos L \cos H c)}\right)
$$

If the altitude is unknown or a solution independent of altitude is required, the azimuth angle can be calculated using the time azimuth formula:

$$
Z=\tan ^{-1}\left(\frac{\sin L H A}{(\cos L \tan d)-(\sin L \cos L H A)}\right)
$$

The sign conventions used in the calculations of both azimuth formulas are as follows: (1) if latitude and declination are of contrary name, declination is treated as a negative quantity; (2) if the local hour angle is greater than $180^{\circ}$, it is treated as a negative quantity.
If the azimuth angle as calculated is negative, add $180^{\circ}$ to obtain the desired value.

- Amplitudes can be computed using the formula:
$\mathrm{A}=\sin ^{-1}(\sin \mathrm{~d} \sec \mathrm{~L})$
this can be stated as
$A=\sin ^{-1}\left(\frac{\sin d}{\cos L}\right)$
where A is the arc of the horizon between the prime ver-
tical and the body, L is the latitude at the point of observation, and d is the declination of the celestial body.


## 2205. Calculations of the Sailings

- Plane sailing is based on the assumption that the meridian through the point of departure, the parallel through the destination, and the course line form a plane right triangle, as shown in Figure 2205.
From this: $\cos C=\frac{1}{D}, \sin C=\frac{p}{D}$, and $\tan C=\frac{p}{1}$.
From this: $1=D \cos C, D=1 \sec C$, and $p=D \sin C$.
From this, given course and distance (C and D), the difference of latitude (l) and departure (p) can be found, and given the latter, the former can be found, using simple trigonometry. See Chapter 24.
- Traverse sailing combines plane sailings with two or more courses, computing course and distance along a series of rhumb lines. See Chapter 24.


Figure 2205. The plane sailing triangle.

- Parallel sailing consists of interconverting departure and difference of longitude. Refer to Figure 2205.

DLo $=p \sec L$, and $p=D L o \cos L$

- Mid-latitude sailing combines plane and parallel sailing, with certain assumptions. The mean latitude (Lm) is half of the arithmetical sum of the latitudes of two places on the same side of the equator. For places on
opposite sides of the equator, the N and S portions are solved separately.

In mid-latitude sailing:
DLo $=p \sec L m$, and $p=$ DLo cos $L m$

- Mercator Sailing problems are solved graphically on a Mercator chart. For mathematical Mercator solutions the formulas are:
$\tan \mathrm{C}=\frac{\mathrm{DLo}}{\mathrm{m}}$ or $\mathrm{DLo}=\mathrm{m} \tan \mathrm{C}$
where $m$ is the meridional part from Table 6 in the Tables Part of this volume. Following solution of the course angle by Mercator sailing, the distance is by the plane sailing formula:
$\mathrm{D}=1 \sec \mathrm{C}$.
- Great-circle solutions for distance and initial course angle can be calculated from the formulas:
$\mathrm{D}=\cos ^{-1}\left[\left(\sin \mathrm{~L}_{1} \sin \mathrm{~L}_{2}+\cos \mathrm{L}_{1} \cos \mathrm{~L}_{2} \cos \mathrm{DLo}\right)\right]$,
and

$$
\left.C=\tan ^{-1}\left(\frac{\sin \text { DLo }}{\left(\cos L_{1}\right.} \tan L_{2}\right)-\left(\sin L_{1} \cos D L o\right) ~\right) ~
$$

where D is the great-circle distance, C is the initial great-circle course angle, $\mathrm{L}_{1}$ is the latitude of the point of departure, $\mathrm{L}_{2}$ is the latitude of the destination, and DLo is the difference of longitude of the points of departure and destination. If the name of the latitude of the destination is contrary to that of the point of departure, it is treated as a negative quantity.

- The latitude of the vertex, $\mathrm{L}_{\mathrm{v}}$, is always numerically equal to or greater than $\mathrm{L}_{1}$ or $\mathrm{L}_{2}$. If the initial course angle C is less than $90^{\circ}$, the vertex is toward $\mathrm{L}_{2}$, but if C is greater than $90^{\circ}$, the nearer vertex is in the opposite direction. The vertex nearer $\mathrm{L}_{1}$ has the same name as $\mathrm{L}_{1}$.

The latitude of the vertex can be calculated from the formula:
$L_{v}=\cos ^{-1}\left(\cos L_{1} \sin C\right)$
The difference of longitude of the vertex and the point
of departure $\left(\mathrm{DLo}_{\mathrm{v}}\right)$ can be calculated from the formula:
$D \mathrm{Lo}_{\mathrm{v}}=\sin ^{-1}\left(\frac{\cos \mathrm{C}}{\sin \mathrm{L}_{\mathrm{v}}}\right)$.
The distance from the point of departure to the vertex $\left(D_{v}\right)$ can be calculated from the formula:

$$
\mathrm{D}_{\mathrm{v}}=\sin ^{-1}\left(\cos \mathrm{~L}_{1} \sin \mathrm{DLo}_{\mathrm{v}}\right)
$$

- The latitudes of points on the great-circle track can be determined for equal DLo intervals each side of the vertex $\left(\mathrm{DLo}_{\mathrm{vx}}\right)$ using the formula:

$$
\mathrm{L}_{\mathrm{x}}=\tan ^{-1}\left(\cos \mathrm{D} \mathrm{Lo}_{\mathrm{vx}} \tan \mathrm{~L}_{\mathrm{v}}\right)
$$

The $\mathrm{DLo}_{\mathrm{v}}$ and $\mathrm{D}_{\mathrm{v}}$ of the nearer vertex are never greater than $90^{\circ}$. However, when $L_{1}$ and $L_{2}$ are of contrary name, the other vertex, $180^{\circ}$ away, may be the better one to use in the solution for points on the great-circle track if it is nearer the mid point of the track.

The method of selecting the longitude (or $\mathrm{DLo}_{\mathrm{vx}}$ ), and determining the latitude at which the great-circle crosses the selected meridian, provides shorter legs in higher latitudes and longer legs in lower latitudes. Points at desired distances or desired equal intervals of distance on the great-circle from the vertex $\left(\mathrm{D}_{\mathrm{vx}}\right)$ can be calculated using the formulas:
$\mathrm{L}_{\mathrm{x}}=\sin ^{-1}\left[\sin \mathrm{~L}_{\mathrm{v}} \cos \mathrm{D}_{\mathrm{vx}}\right]$,
and
$D L_{v x}=\sin ^{-1}\left(\frac{\sin D_{v x}}{\cos L_{x}}\right)$.
A calculator which converts rectangular to polar coordinates provides easy solutions to plane sailings. However, the user must know whether the difference of latitude corresponds to the calculator's X-coordinate or to the Y-coordinate.

## 2206. Calculations Of Meteorology And Oceanography

- Converting thermometer scales between centigrade, Fahrenheit, and Kelvin scales can be done using the
following formulas:

$$
\begin{aligned}
& \mathrm{C}^{\circ}=\frac{5\left(\mathrm{~F}^{\circ}-32^{\circ}\right)}{9}, \\
& \mathrm{~F}^{\circ}=\frac{9}{5} \mathrm{C}^{\circ}+32^{\circ}, \text { and } \\
& \mathrm{K}^{\circ}=\mathrm{C}^{\circ}+273.15^{\circ} .
\end{aligned}
$$

- Maximum length of sea waves can be found by the
formula:
$\mathrm{W}=1.5 \sqrt{\text { fetch in nautical miles }}$.
- Wave height $=0.026 \mathrm{~S}^{2}$ where S is the wind speed in knots.
- Wave speed in knots

$$
\begin{aligned}
& =1.34 \sqrt{\text { wavelength in feet }}, \text { or } \\
& =3.03 \times \text { wave period in seconds. }
\end{aligned}
$$

## UNIT CONVERSION

Use the conversion tables that appear on the following pages to convert between different systems of units.
Conversions followed by an asterisk are exact relationships.

## MISCELLANEOUS DATA

## Area

1 square inch _ _ _ _ _ _ _ _ _ _ $=6.4516$ square centimeters*
1 square foot
$=144$ square inches*
$=0.09290304$ square meter*
$=0.000022957$ acre

$=0.83612736$ square meter

$=640$ acres*
$=2.589988110336$ square kilometers*

$=0.00107639$ square foot
1 square meter_ _ _ _ _ _ _ _ _ _ _ $=10.76391$ square feet
$=1.19599005$ square yards
1 square kilometer _ _ _ _ _ _ _ _ _ $=247.1053815$ acres
$=0.38610216$ square statute mile
$=0.29155335$ square nautical mile

## Astronomy






## Meteorology





## Prefixes to Form Decimal Multiples and Sub-Multiples

 of International System of Units (SI)| Multiplying factor |  | Prefix | Symbol |
| ---: | :--- | ---: | :--- |
| 1000000000000 | $=10^{12}$ | tera | T |
| 1000000000 | $=10^{9}$ | giga | G |
| 1000000 | $=10^{6}$ | mega | M |
| 1000 | $=10^{3}$ | kilo | k |
| 100 | $=10^{2}$ | hecto | h |
| 10 | $=10^{1}$ | deka | da |
| 0.1 | $=10^{-1}$ | deci | d |
| 0.01 | $=10^{-2}$ | centi | c |
| 0.001 | $=10^{-3}$ | milli | m |
| 0.000001 | $=10^{-6}$ | micro | H |
| 0.000000001 | $=10^{-9}$ | nano | n |
| 0.000000000001 | $=10^{-12}$ | pico | p |
| 0.000000000000001 | $=10^{-15}$ | femto | f |
| 0.000000000000000001 | $=10^{-18}$ | atto | a |

## CHAPTER 23

# NAVIGATIONAL ERRORS 

## DEFINING NAVIGATIONAL ERRORS

## 2300. Introduction

Navigation is an increasingly exact science. Electronic positioning systems give the navigator a greater certainty than ever that his position is correct within a few meters. However, the navigator makes certain assumptions which would be unacceptable in purely scientific work.

For example, when the navigator uses his latitude graduations as a mile scale to compute a great-circle course and distance, he neglects the flattening of the Earth at the poles. When the navigator plots a visual bearing on a Mercator chart, he uses a rhumb line to represent a great circle. When he plots a celestial line of position, he substitutes a rhumb line for a small circle. When he interpolates in sight reduction tables, he assumes a linear (constant-rate) change between tabulated values. All of these assumptions introduce errors

There are so many approximations in navigation that there is a natural tendency for some of them to cancel others. However, if the various small errors in a particular fix all have the same sign, the error might be significant The navigator must recognize the limitations of his positioning systems and understand the sources of position error.

The errors inherent in the use of various types of navigation systems are included in the chapters relating to those systems. This chapter discusses errors in general terms.

## 2301. Definitions

Error is the difference between a specific value and the correct or standard value. As used here, it does not include mistakes, but is related to lack of perfection. for example, an altitude determined by a marine sextant is corrected for a standard amount of refraction. But if the actual refraction at the time of observation varies from the standard, the value taken from the table is in error by the difference between standard and actual values. This error will be compounded with others in the observed altitude. Similarly, a depth determined by an echo sounder is in error, among other things, by the difference between the actual speed of sound waves in the water and the speed used for calibration of the instrument.

The navigator studying sources of error is concerned primarily with the deviation from standard values. Generalized corrections can be applied for standard values of error. It is the
deviation from standard, as well as mistakes, that produce inaccurate results in navigation.

A mistake is a blunder, such as an incorrect reading of an instrument, the taking of a wrong value from a table, a data entry error, or plotting a reciprocal bearing.

A standard is a value or quantity established by custom, agreement, or authority as a basis for comparison. Frequently, a standard is chosen as a model which approximates a mean or average condition. However, the distinction between the standard value and the actual value at any time should not be forgotten. Thus, a standard atmosphere has been established in which the temperature, pressure, and density are precisely specified for each altitude. Actual conditions, however, are generally different from those defined by the standard atmosphere. Similarly, the values for dip given in the almanacs are considered standard by those who use them, but actual dip may be appreciably different due to non-standard atmospheric conditions.

Accuracy is the degree of conformance with the correct value, while precision is a measure of refinement of a value. Thus, an altitude determined by a marine sextant might be stated to the nearest $0.1^{\prime}$, and yet be accurate only to the nearest $1.0^{\prime}$ if the horizon is indistinct

There are three types of accuracy with respect to navigation systems. The first is absolute accuracy, sometimes referred to as predictable or geodetic accuracy. This is the accuracy of a position with respect to the true geographic coordinates according to the particular datum being used. Repeatable accuracy is the accuracy with which a navigation system can return to a previously identified position. Relative accuracy is a measure of the ability of two different receivers of the same type to define a position at the same time.

## 2302. Systematic and Random Errors

Systematic errors are those which follow some rule by which they can be predicted. Random errors, on the other hand, are unpredictable. The laws of probability govern random errors.

If a navigator takes several measurements that are subject to random error and graphs the results, the error values would be normally distributed around a mean, or average, value. Suppose, for example, that a navigator takes 500 celestial observations. Table 2302 shows the frequency of
each error in the measurement, and Figure 2302 shows a plot of these errors. The curve's height at any point represents the percentage of observations that can be expected to have the error indicated at that point. The probability of any similar observation having any given error is the proportion of the number of observations having this error to the total number of observations. Thus, the probability of an observation having an error of -3 is:

$$
\frac{40}{500}=\frac{1}{12.5}=0.08(8 \%)
$$

An important characteristic of a probability distribution is the standard deviation. For a normal error curve, square each error, sum the squares, and divide the sum by one less than the total number of measurements. Finally, take the square root of the quotient. In the illustration, the standard deviation is:

$$
\sqrt{\frac{4474}{499}}=\sqrt{8.966}=2.99
$$

| Error | No. of obs. | Percent of obs. |
| :---: | :---: | :---: |
| $-10^{\prime}$ | 0 | 0.0 |
| $-9^{\prime}$ | 1 | 0.2 |
| $-8^{\prime}$ | 2 | 0.4 |
| $-7^{\prime}$ | 4 | 0.8 |
| $-6^{\prime}$ | 9 | 1.8 |
| $-5^{\prime}$ | 17 | 3.4 |
| $-4^{\prime}$ | 28 | 5.6 |
| $-3^{\prime}$ | 40 | 8.0 |
| $-2^{\prime}$ | 53 | 10.6 |
| $-1^{\prime}$ | 63 | 12.6 |
| 0 | 66 | 13.2 |
| $+1^{\prime}$ | 63 | 12.6 |
| $+2^{\prime}$ | 53 | 10.6 |
| $+3^{\prime}$ | 40 | 8.0 |
| $+4^{\prime}$ | 28 | 5.6 |
| $+5^{\prime}$ | 17 | 3.4 |
| $+6^{\prime}$ | 9 | 1.8 |
| $+7^{\prime}$ | 4 | 0.8 |
| $+8^{\prime}$ | 2 | 0.4 |
| $+9^{\prime}$ | 1 | 0.2 |
| $+10^{\prime}$ | 0 | 0.0 |
| 0 | 500 | 100.0 |

Table 2302. Normal distribution of random errors.
One standard deviation on either side of the mean defines the area under the probability curve in which lie 67 percent of all errors. Two standard deviations encompass 95 percent of all errors, and three standard deviations encompass 99 percent of all errors.

The normalized curve of any type of random error is symmetrical about the line representing zero error. This means that in the normalized plot every positive error is


Figure 2302. Normal curve of random error with 50 percent of area shaded. Limits of shaded area indicate probable error.
matched by a negative error of the same magnitude. The average of all readings is zero. Increasing the number of readings increases the probability that the errors will fit the normalized curve.

When both systematic and random errors are present in a process, increasing the number of readings decreases the residual random error but does not decrease the systematic error. For example, if a number of phase-difference readings are made at a fixed point, the average of all the readings should be a good approximation of the true value if there is no systematic error. But increasing the number of readings will not correct a systematic error. If a constant error is combined with a normal random error, the error curve will have the correct shape but will be offset from the zero value.

## 2303. Navigation System Accuracy

In a navigation system, predictability is the measure of the accuracy with which the system can define the position in terms of geographical coordinates; repeatability is the measure of the accuracy with which the system permits the user to return to a position as defined only in terms of the coordinates peculiar to that system. For example, the distance specified for the repeatable accuracy of a system, such as Loran C, is the distance between two Loran C positions established using the same stations and timedifference readings at different times. The correlation between the geographical coordinates and the system coordinates may or may not be known.

Relative accuracy is the accuracy with which a user can determine his position relative to another user of the same navigation system, at the same time. Hence, a system with high relative accuracy provides good rendezvous capability for the users of the system. The correlation between the geographical coordinates and the system coordinates is not relevant.

## 2304. Most Probable Position

Some navigators have been led by simplified definitions and explanations to conclude that the line of position is almost infallible and that a good fix has very little error.

A more realistic concept is that of the most probable position (MPP), which recognizes the probability of error in all navigational information and determines position by an evaluation of all available information.

Suppose a vessel were to start from an accurate position and proceed on dead reckoning. If course and speed over the bottom were of equal accuracy, the uncertainty of dead reckoning positions would increase equally in all directions, with either distance or elapsed time (for any one speed these would be directly proportional, and therefore either could be used). A circle of uncertainty would grow around the dead reckoning position as the vessel proceeded. If the navigator had full knowledge of the distribution and nature of the errors of course and speed, and the necessary knowledge of statistical analysis, he could compute the radius of a circle of uncertainty, using the 50 percent, 95 percent, or other probabilities. This technique is known as fix expansion when done graphically. See Chapter 7 for a more detailed discussion of fix expansion.

In ordinary navigation, statistical computation is not practicable. However, the navigator might estimate at any time the likely error of his dead reckoning or estimated position. With practice, considerable skill in making this estimate is possible. He would take into account, too, the fact that the area of uncertainty might better be represented by an ellipse than a circle, with the major axis along the course line if the estimated error of the speed were greater than that of the course and the minor axis along the course line if the estimated error of the course were greater. He would recognize, too, that the size of the area of uncertainty would not grow in direct proportion to the distance or elapsed time, because disturbing factors, such as wind and current, could not be expected to remain of constant magnitude and direction. Also, he would know that the starting point of the dead reckoning might not be completely free from error.

The navigator can combine an LOP with either a dead reckoning or estimated position to determine an MPP. Determining the accuracy of the dead reckoning and estimated positions from which an MPP is determined is primarily a judgment call by the navigator. See Figure 2304a.

If a fix is obtained from two lines of position, the area of uncertainty is a circle if the lines are perpendicular and have equal error. If one is considered more accurate than the other, the area is an ellipse. As shown in Figure 2304b, it is also an ellipse if the likely error of each is equal and the lines cross at an oblique angle. If the errors are unequal, the major axis of the ellipse is more nearly in line with the line of position having the smaller likely error.

If a fix is obtained from three or more lines of position


Figure 2304a. A most probable position based upon a dead reckoning position and line of position having equal probable errors.


Figure 2304b. Ellipse of uncertainty with lines of positions of equal probable errors crossing at an oblique angle.
with a total bearing spread greater $180^{\circ}$, and the error of each line is normally distributed and equal to that of the others, the most probable position is the point within the figure equidistant from the sides. If the lines are of unequal error, the distance of the most probable position from each line of position varies as a function of the accuracy of each LOP.

Systematic errors are treated differently. Generally, the navigator tries to discover the errors and eliminate them or compensate for them. In the case of a position determined by three or more lines of position resulting from readings with constant error, the error might be eliminated by finding and applying that correction which will bring all lines through a common point.

Lines of position which are known to be of uncertain accuracy might better be considered as "bands of position", with a width of twice the possible amount of error. Intersecting bands of position define areas of position. It is most probable that the vessel is near the center of the area, but the navigator must realize that he could be anywhere within the area, and must navigate accordingly.

## 2305. Mistakes

The recognition of a mistake, as contrasted with an error, is not always easy, since a mistake is random, may have any magnitude, and may be either positive or negative. A large mistake should be readily apparent if the navigator is alert and has an understanding of the size of error to be reasonably expected. A small mistake is usually not detected unless the work is checked.

If results by two methods are compared, such as a dead reckoning position and a line of position, exact agreement is unlikely. But, if the discrepancy is unreasonably large, a mistake is a logical conclusion. If the 99.9 percent areas of the two results just touch, it is possible that no mistake has been made. However, the probability of either one having so great an error is remote if the errors are normal. The probability of both having 99.9 percent error of opposite sign at the same instant is extremely small. Perhaps a reasonable standard
is that unless the most accurate result lies within the 95 percent area of the least accurate result, the possibility of a mistake should be investigated.

## 2306. Conclusion

A navigator need not understand the mathematical theory of error probability to navigate his ship safely. However, he must understand that his systems and processes are subject to numerous errors, some random, some systematic, and all potentially dangerous.

From a practical standpoint, the best policy is to never trust any single aid to navigation system explicitly in all situations. Some backup method must be used regularly to check for errors in the primary system. As the navigator becomes more and more confident in using a certain system or method, it is easy to also become dependent on that one system. He must understand his systems' limitations and use this understanding to bring his ship safely into harbor.

## CHAPTER 24

## THE SAILINGS

## INTRODUCTION

## 2400. Introduction

Dead reckoning involves the determination of one's present or future position by projecting the ship's course and distance run from a known position. A closely related problem is that of finding the course and distance from one known point to another. For short distances, these problems are easily solved directly on charts, but for trans-oceanic distances, a purely mathematical solution is often a better method. Collectively, these methods are called The Sailings.

Navigational computer programs and calculators commonly contain algorithms for computing all of the problems of the sailings. For those situations when a calculator is not available, this chapter discusses hand calculation methods and tabular solutions. Navigators can also refer to NIMA Pub. 151, Distances Between Ports, for distances along normal ocean routes.

Because most commonly used formulas for the sailings are based on rules of spherical trigonometry and assume a perfectly spherical Earth, there may be inherent errors in the calculated answers. Errors of a few miles over distances of a few thousand can be expected. These will generally be much less than errors due to currents, steering error, and leeway.

To increase the accuracy of these calculations, one would have to take into account the oblateness of the Earth. Formulas exist which account for oblateness, reducing these errors to less than the length of the typical vessel using them, but far larger errors can be expected on any voyage of more than a few day's duration.

## 2401. Rhumb Lines and Great Circles

The principal advantage of a rhumb line is that it maintains constant true direction. A ship following the rhumb line between two places does not change its true course. A rhumb line makes the same angle with all meridians it crosses and appears as a straight line on a Mercator chart. For any other case, the difference between the rhumb line and the great circle connecting two points increases (1) as the latitude increases, (2) as the difference of latitude between the two points decreases, and (3) as the difference of longitude increases.

A great circle is the intersection of the surface of a sphere and a plane passing through the center of the sphere.

It is the largest circle that can be drawn on the surface of the sphere, and is the shortest distance along the surface between any two points. Any two points are connected by only one great circle unless the points are antipodal ( $180^{\circ}$ apart on the Earth), and then an infinite number of great circles passes through them. Every great circle bisects every other great circle. Thus, except for the equator, every great circle lies exactly half in the Northern Hemisphere and half in the Southern Hemisphere. Any two points $180^{\circ}$ apart on a great circle have the same latitude numerically, but contrary names, and are $180^{\circ}$ apart in longitude. The point of greatest latitude is called the vertex. For each great circle, there is a vertex in each hemisphere, $180^{\circ}$ apart in longitude. At these points the great circle is tangent to a parallel of latitude, and its direction is due east-west. On each side of these vertices, the direction changes progressively until the intersection with the equator is reached, $90^{\circ}$ in longitude away, where the great circle crosses the equator at an angle equal to the latitude of the vertex.

On a Mercator chart, a great circle appears as a sine curve extending equal distances each side of the equator. The rhumb line connecting any two points of the great circle on the same side of the equator is a chord of the curve. Along any intersecting meridian the great circle crosses at a higher latitude than the rhumb line. If the two points are on opposite sides of the equator, the direction of curvature of the great circle relative to the rhumb line changes at the equator. The rhumb line and great circle may intersect each other, and if the points are equal distances on each side of the equator, the intersection takes place at the equator.

Great circle sailing takes advantage of the shorter distance along the great circle between two points, rather than the longer rhumb line. The arc of the great circle between the points is called the great circle track. If it could be followed exactly, the destination would be dead ahead throughout the voyage (assuming course and heading were the same). The rhumb line appears the more direct route on a Mercator chart because of chart distortion. The great circle crosses meridians at higher latitudes, where the distance between them is less. This is why the great circle route is shorter than the rhumb line.

The decision as to whether or not to use great circle sailing depends upon the conditions. The savings in distance should be worth the additional effort, and of course the great circle route cannot cross land, nor should it carry the vessel into dangerous waters. Composite sailing (see Article 2402
and Article 2410) may save time and distance over the rhumb line track without leading the vessel into danger.

Since a great circle other than a meridian or the equator is a curved line whose true direction changes continually, the navigator does not attempt to follow it exactly. Instead, he selects a number of waypoints along the great circle, constructs rhumb lines between the waypoints, and steers along these rhumb lines.

## 2402. Kinds of Sailings

There are seven types of sailings:

1. Plane sailing solves problems involving a single course and distance, difference of latitude, and departure, in which the Earth is regarded as a plane surface. This method, therefore, provides solution for latitude of the point of arrival, but not for longitude. To calculate the longitude, the spherical sailings are necessary. Plane sailing is not intended for distances of more than a few hundred miles.
2. Traverse sailing combines the plane sailing solutions when there are two or more courses and determines the equivalent course and distance made good by a vessel steaming along a series of rhumb lines.
3. Parallel sailing is the interconversion of departure and difference of longitude when a vessel is proceeding due east or due west.
4. Middle- (or mid-) latitude sailing uses the mean latitude for converting departure to difference of longitude when the course is not due east or due west.
5. Mercator sailing provides a mathematical solution of the plot as made on a Mercator chart. It is similar to plane sailing, but uses meridional difference and difference of longitude in place of difference of latitude and departure.
6. Great circle sailing involves the solution of courses, distances, and points along a great circle between two points.
7. Composite sailing is a modification of great circle sailing to limit the maximum latitude, generally to avoid ice or severe weather near the poles.

## 2403. Terms and Definitions

In solutions of the sailings, the following quantities are used:

1. Latitude ( $\mathbf{L}$ ). The latitude of the point of departure is designated $\mathrm{L}_{1}$; that of the destination, $\mathrm{L}_{2}$; middle (mid) or mean latitude, $\mathrm{L}_{\mathrm{m}}$; latitude of the vertex of a great circle, $\mathrm{L}_{\mathrm{v}}$; and latitude of any point on a great circle, $\mathrm{L}_{\mathrm{x}}$.
2. Mean latitude ( $\mathbf{L}_{\mathbf{m}}$ ). Half the arithmetical sum of the latitudes of two places on the same side of the equator.
3. Middle or mid latitude ( $\mathbf{L}_{\mathbf{m}}$ ). The latitude at which the arc length of the parallel separating the meridians passing through two specific points is exactly equal to the departure in proceeding from one point to the other by mid-latitude sailing. The mean latitude is used when there is no practicable means of determining the middle latitude.
4. Difference of latitude (l or DLat.).
5. Meridional parts (M). The meridional parts of the point of departure are designated $\mathrm{M}_{1}$, and of the point of arrival or the destination, $\mathrm{M}_{2}$.
6. Meridional difference (m).
7. Longitude ( $\lambda$ ). The longitude of the point of departure is designated $\lambda_{1}$; that of the point of arrival or the destination, $\lambda_{2}$; of the vertex of a great circle, $\lambda_{\mathrm{v}}$; and of any point on a great circle, $\lambda_{x}$.
8. Difference of longitude (DLo).
9. Departure (p or Dep.).
10. Course or course angle (Cn or C).
11. Distance (D or Dist.).

## GREAT CIRCLE SAILING

## 2404. Great Circle Sailing by Chart

The graphic solution of great circle problems involves the use of two charts. NIMA publishes several gnomonic projections covering the principal navigable waters of the world. On these great circle charts, any straight line is a great circle. The chart, however, is not conformal; therefore, the navigator cannot directly measure directions and distances as on a Mercator chart.

The usual method of using a gnomonic chart is to plot the route and pick points along the track every $5^{\circ}$ of longitude using the latitude and longitude scales in the immediate vicinity of each point. These points are then transferred to a

Mercator chart and connected by rhumb lines. The course and distance for each leg can then be measured, and the points entered as waypoints in an electronic chart system, GPS, or Loran C. See Figure 2404..

## 2405. Great Circle Sailing by Sight Reduction Tables

Any method of solving a spherical triangle can be used for solving great circle sailing problems. The point of departure replaces the assumed position of the observer, the destination replaces the geographical position of the body, the difference of longitude replaces the meridian angle or local hour angle, the initial course angle replaces the azimuth angle, and the great


Figure 2404. Constructing a great circle track on a Mercator projection.
circle distance replaces the zenith distance ( $90^{\circ}$ - altitude). See Figure 2405. Therefore, any table of azimuths (if the entering values are meridian angle, declination, and latitude) can be used for determining initial great circle course. Tables which solve for altitude, such as Pub. No. 229, can be used for determining great circle distance. The required distance is $90^{\circ}$ - altitude.

In inspection tables such as Pub. No. 229, the given combination of $\mathrm{L}_{1}, \mathrm{~L}_{2}$, and DLo may not be tabulated. In this case reverse the name of $L_{2}$ and use $180^{\circ}$ - DLo for entering the table. The required course angle is then $180^{\circ}$ minus the tabulated azimuth, and distance is $90^{\circ}$ plus the altitude. If neither combination can be found, solution cannot be made by that method. By interchanging $L_{1}$ and $\mathrm{L}_{2}$, one can find the supplement of the final course angle.

Solution by table often provides a rapid approximate check, but accurate results usually require triple interpolation. Except for Pub. No. 229, inspection tables do not provide a solution for points along the great circle. Pub.No. 229 provides solutions for these points only if interpolation is not required.

By entering Pub. No. 229 with the latitude of the point of departure as latitude, latitude of destination as declination, and difference of longitude as LHA, the tabular altitude and azimuth angle may be extracted and converted to great circle distance and course. As in sight reduction, the tables are entered according to whether the name of the latitude of the point of departure is the same as or contrary
to the name of the latitude of the destination (declination). If the values correspond to those of a celestial body above the celestial horizon, $90^{\circ}$ minus the arc of the tabular altitude becomes the distance; the tabular azimuth angle becomes the initial great circle course angle. If the respondents correspond to those of a celestial body below the celestial horizon, the arc of the tabular altitude plus $90^{\circ}$ becomes the distance; the supplement of the tabular azimuth angle becomes the initial great circle course angle.

When the Contrary/Same (CS) Line is crossed in either direction, the altitude becomes negative; the body lies below the celestial horizon. For example: If the tables are entered with the LHA (DLo) at the bottom of a right-hand page and declination $\left(\mathrm{L}_{2}\right)$ such that the respondents lie above the CS Line, the CS Line has been crossed. Then the distance is $90^{\circ}$ plus the tabular altitude; the initial course angle is the supplement of the tabular azimuth angle. Similarly, if the tables are entered with the LHA (DLo) at the top of a right-hand page and the respondents are found below the CS Line, the distance is $90^{\circ}$ plus the tabular altitude; the initial course angle is the supplement of the tabular azimuth angle. If the tables are entered with the LHA (DLo) at the bottom of a right-hand page and the name of $L_{2}$ is contrary to $L_{1}$, the respondents are found in the column for $\mathrm{L}_{1}$ on the facing page. In this case, the CS Line has been crossed; the distance is $90^{\circ}$ plus the tabular altitude; the initial course angle is the supplement of the


CELESTIAL EQUATOR

Figure 2405. Adapting the astronomical triangle to the navigational triangle of great circle sailing.
tabular azimuth angle.
The tabular azimuth angle, or its supplement, is prefixed N or S for the latitude of the point of departure and suffixed E or W depending upon the destination being east or west of the point of departure.

If all entering arguments are integral degrees, the distance and course angle are obtained directly from the tables without interpolation. If the latitude of the destination is nonintegral, interpolation for the additional minutes of latitude is done as in correcting altitude for any declination increment; if the latitude of departure or difference of longitude is nonintegral, the additional interpolation is done graphically.

Since the latitude of destination becomes the declination entry, and all declinations appear on every page, the great circle solution can always be extracted from the volume which covers the latitude of the point of departure.

Example 1: Using Pub. No. 229, find the distance and initial great circle course from lat. $32^{\circ} \mathrm{S}$, long.
$116^{\circ} \mathrm{E}$ to lat. $30^{\circ} \mathrm{S}$, long. $31^{\circ} \mathrm{E}$.

Solution: Refer to Figure 2405. The point of departure (lat. $32^{\circ} \mathrm{S}$, long. $116^{\circ} \mathrm{E}$ ) replaces the AP of the observer; the destination (lat. $30^{\circ} \mathrm{S}$, long. $31^{\circ} \mathrm{E}$ ) replaces the GP of the celestial body; the difference of longitude (DLo $85^{\circ}$ ) replaces local hour angle (LHA) of the body.
Enter Pub. No. 229, Volume 3 with lat. $32^{\circ}$ (Same Name), LHA $85^{\circ}$, and declination $30^{\circ}$. The respondents correspond to a celestial body above the celestial horizon. Therefore, $90^{\circ}$ minus the tabular altitude ( $90^{\circ}-19^{\circ} 12.4^{\prime}=70^{\circ} 47.6^{\prime}$ ) becomes the distance; the tabular azimuth angle $\left(S 66.0^{\circ} W\right.$ ) becomes the initial great circle course angle, prefixed $S$ for the latitude of the point of departure and suffixed $W$ due to the destination being west of the point of departure.

## Answer:

$D=4248$ nautical miles

$$
C=S 66.0^{\circ} W=246.0^{\circ} .
$$

Example 2: Using Pub.No. 229, find the distance and initial great circle course from lat. $38^{\circ} \mathrm{N}$, long. $122^{\circ} \mathrm{W}$ to lat. $24^{\circ} \mathrm{S}$, long. $151^{\circ} \mathrm{E}$.

Solution: Refer to Figure 2405. The point of departure (lat. $38^{\circ} \mathrm{N}$, long. $122^{\circ} \mathrm{W}$ ) replaces the $A P$ of the observer; the destination (lat. $24^{\circ} \mathrm{S}$, long. $151^{\circ} \mathrm{E}$ ) replaces the GP of the celestial body; the difference of longitude (DLo $87^{\circ}$ ) replaces local hour angle (LHA) of the body
Enter Pub. No. 229 Volume 3 with lat. $38^{\circ}$ (Contrary Name), LHA $87^{\circ}$, and declination $24^{\circ}$. The respondents correspond to those of a celestial body below the celestial horizon. Therefore, the tabular altitude plus $90^{\circ}\left(12^{\circ} 17.0^{\prime}+90^{\circ}=\right.$ $102^{\circ} 17.0^{\prime}$ ) becomes the distance; the supplement of tabular azimuth angle ( $180^{\circ}-69.0^{\circ}=111.0^{\circ}$ ) becomes the initial great circle course angle, prefixed $N$ for the latitude of the point of departure and suffixed $W$ since the destination is west of the point of departure.
Note that the data is extracted from across the CS Line from the entering argument (LHA $87^{\circ}$ ), indicating that the corresponding celestial body would be below the celestial horizon.

> Answer:
> $D=6137$ nautical miles
> $C=$ N111. $0^{\circ} \mathrm{W}=249^{\circ}$.

## 2406. Great Circle Sailing by Computation

In Figure 2406, 1 is the point of departure, 2 the destination, P the pole nearer 1, 1-X-V-2 the great circle through 1 and $2, \mathrm{~V}$ the vertex, and X any point on the great circle. The arcs P1, PX, PV, and P2 are the colatitudes of points $1, \mathrm{X}, \mathrm{V}$, and 2 , respectively. If 1 and 2 are on opposite sides of the equator, P 2 is $90^{\circ}+\mathrm{L}_{2}$. The length of arc 1-2 is the great circle distance between 1 and 2. Arcs 1$2, \mathrm{P} 1$, and P 2 form a spherical triangle. The angle at 1 is the initial great circle course from 1 to 2 , that at 2 the supplement of the final great circle course (or the initial course from 2 to 1 ), and that at P the DLo between 1 and 2.

Great circle sailing by computation usually involves solving for the initial great circle course, the distance, latitude/longitude (and sometimes the distance) of the vertex, and the latitude and longitude of various points ( X ) on the great circle. The computation for initial course and the distance involves solution of an oblique spherical triangle, and any method of solving such a triangle can be used. If 2 is the geographical position (GP) of a celestial body (the point at which the body is in the zenith), this triangle is solved in celestial navigation, except that $90^{\circ}-\mathrm{D}$ (the


Figure 2406. The navigational triangle and great circle sailing.
altitude) is desired instead of $D$. The solution for the vertex and any point X usually involves the solution of right spherical triangles.

## 2407. Points Along the Great Circle

If the latitude of the point of departure and the initial great circle course angle are integral degrees, points along the great circle are found by entering the tables with the latitude of departure as the latitude argument (always Same Name), the initial great circle course angle as the LHA argument, and $90^{\circ}$ minus distance to a point on the great circle as the declination argument. The latitude of the point on the great circle and the difference of longitude between that point and the point of departure are the tabular altitude and azimuth angle, respectively. If, however, the respondents are extracted from across the CS Line, the tabular altitude corresponds to a latitude on the side of the equator opposite from that of the point of departure; the tabular azimuth angle is the supplement of the difference of longitude.

Example 1: Find a number of points along the great circle from latitude $38^{\circ} \mathrm{N}$, longitude $125^{\circ} \mathrm{W}$ when the initial great circle course angle is $N 111^{\circ} \mathrm{W}$.

Solution: Entering the tables with latitude $38^{\circ}$ (Same Name), LHA $111^{\circ}$, and with successive
declinations of $85^{\circ}, 80^{\circ}, 75^{\circ}$, etc., the latitudes and differences in longitude from $125^{\circ} \mathrm{W}$ are found as tabular altitudes and azimuth angles respectively:

Answer:

| D(NM) | 300 | 600 | 900 | 3600 |
| :--- | :--- | :--- | :--- | :--- |
| D(arc) | $5^{\circ}$ | $10^{\circ}$ | $15^{\circ}$ | $60^{\circ}$ |
| dec | $85^{\circ}$ | $80^{\circ}$ | $75^{\circ}$ | $30^{\circ}$ |
| Lat. | $36.1^{\circ} \mathrm{N}$ | $33.9^{\circ} \mathrm{N}$ | $31.4^{\circ} \mathrm{N}$ | $3.6^{\circ} \mathrm{N}$ |
| Dep. | $125^{\circ} \mathrm{W}$ | $125^{\circ} \mathrm{W}$ | $125^{\circ} \mathrm{W}$ | $125^{\circ} \mathrm{W}$ |
| DLo | $5.8^{\circ}$ | $11.3^{\circ}$ | $16.5^{\circ}$ | $54.1^{\circ}$ |
| Long | $130.8^{\circ} \mathrm{W}$ | $136.3^{\circ} \mathrm{W}$ | $141.5^{\circ} \mathrm{W}$ | $179.1^{\circ}$ |

Example 2: Find a number of points along the great circle track from latitude $38^{\circ} \mathrm{N}$, long. $125^{\circ} \mathrm{W}$ when the initial great circle course angle is $N 69^{\circ} \mathrm{W}$.

Solution: Enter the tables with latitude $38^{\circ}$ (Same Name), LHA $69^{\circ}$, and with successive declinations as shown. Find the latitudes and differences of longitude from $125^{\circ} \mathrm{W}$ as tabular altitudes and azimuth angles, respectively:
Answer:

| D(NM.) | 300 | 600 | 900 | 6600 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| D(arc) | $5^{\circ}$ | $10^{\circ}$ | $15^{\circ}$ | $110^{\circ}$ |
| dec | $85^{\circ}$ | $80^{\circ}$ | $75^{\circ}$ | $20^{\circ}$ |
| Lat. | $39.6^{\circ} \mathrm{N}$ | $40.9^{\circ} \mathrm{N}$ | $41.9^{\circ} \mathrm{N}$ | $3.1^{\circ} \mathrm{N}$ |
| Dep. | $125^{\circ} \mathrm{W}$ | $125^{\circ} \mathrm{W}$ | $125^{\circ} \mathrm{W}$ | $125^{\circ} \mathrm{W}$ |
| DLo | $6.1^{\circ}$ | $12.4^{\circ}$ | $18.9^{\circ}$ | $118.5^{\circ}$ |
| Long | $131.1^{\circ} \mathrm{W}$ | $137.4^{\circ} \mathrm{W}$ | $143.9^{\circ} \mathrm{W}$ | $116.5^{\circ} \mathrm{E}$ |

## 2408. Finding the Vertex

Using Pub. No. 229 to find the approximate position of the vertex of a great circle track provides a rapid check on the solution by computation. This approximate solution is also useful for voyage planning purposes.

Using the procedures for finding points along the great circle, inspect the column of data for the latitude of the point of departure and find the maximum value of tabular altitude. This maximum tabular altitude and the tabular azimuth angle correspond to the latitude of the vertex and the difference of longitude of the vertex and the point of departure.

Example 1: Find the vertex of the great circle track from lat. $38^{\circ} \mathrm{N}$, long. $125^{\circ} \mathrm{W}$ when the initial great circle course angle is $N 69^{\circ} \mathrm{W}$.

Solution: Enter Pub. No. 229 with lat. $38^{\circ}$ (Same Name), LHA $69^{\circ}$, and inspect the column for lat.
$38^{\circ}$ to find the maximum tabular altitude. The
maximum altitude is $42^{\circ} 38.1^{\prime}$ at a distance of 1500
nautical miles $\left(90^{\circ}-65^{\circ}=25^{\circ}\right)$ from the point of
departure. The corresponding tabular azimuth
angle is $32.4^{\circ}$. Therefore, the difference of
longitude of vertex and point of departure is $32.4^{\circ}$.

## Answer: <br> Latitude of vertex $=42^{\circ} 38.1^{\prime} \mathrm{N}$. <br> Longitude of vertex $=125^{\circ}+32.4^{\circ}=157.4^{\circ} \mathrm{W}$. <br> 2409. Altering a Great Circle Track to Avoid Obstructions

Land, ice, or severe weather may prevent the use of great circle sailing for some or all of one's route. One of the principal advantages of the solution by great circle chart is that any hazards become immediately apparent. The pilot charts are particularly useful in this regard. Often a relatively short run by rhumb line is sufficient to reach a point from which the great circle track can be followed. Where a choice is possible, the rhumb line selected should conform as nearly as practicable to the direct great circle.

If the great circle route passes too near a navigation hazard, it may be necessary to follow a great circle to the vicinity of the hazard, one or more rhumb lines along the edge of the hazard, and another great circle to the destination. Another possible solution is the use of composite sailing; still another is the use of two great circles, one from the point of departure to a point near the maximum latitude of unobstructed water and the second from this point to the destination.

## 2410. Composite Sailing

When the great circle would carry a vessel to a higher latitude than desired, a modification of great circle sailing called composite sailing may be used to good advantage. The composite track consists of a great circle from the point of departure and tangent to the limiting parallel, a course line along the parallel, and a great circle tangent to the limiting parallel and through the destination.

Solution of composite sailing problems is most easily made with a great circle chart. For this solution, draw lines from the point of departure and the destination, tangent to the limiting parallel. Then measure the coordinates of various selected points along the composite track and transfer them to a Mercator chart, as in great circle sailing. Composite sailing problems can also be solved by computation, using the equation:

$$
\cos \mathrm{DLo}_{\mathrm{vx}}=\tan \mathrm{L}_{x} \cot \mathrm{~L}_{v}
$$

The point of departure and the destination are used successively as point X. Solve the two great circles at each
end of the limiting parallel, and use parallel sailing along the limiting parallel. Since both great circles have vertices at the same parallel, computation for $\mathrm{C}, \mathrm{D}$, and $\mathrm{DLo}_{\mathrm{vx}}$ can be made by considering them parts of the same great circle
with $L_{1}, L_{2}$, and $L_{v}$ as given and $\mathrm{DLo}=\mathrm{DLo}_{\mathrm{v} 1}+\mathrm{DLo}_{\mathrm{v} 2}$. The total distance is the sum of the great circle and parallel distances.

## TRAVERSE TABLES

## 2411. Using Traverse Tables

Traverse tables can be used in the solution of any of the sailings except great circle and composite. They consist of the tabulation of the solutions of plane right triangles. Because the solutions are for integral values of the course angle and the distance, interpolation for intermediate values may be required. Through appropriate interchanges of the headings of the columns, solutions for other than plane sailing can be made. For the solution of the plane right triangle, any value N in the distance (Dist.) column is the hypotenuse; the value opposite in the difference of latitude (D. Lat.) column is the product of N and the cosine of the acute angle; and the other number opposite in the departure (Dep.) column is the product of N and the sine of the acute angle. Or, the number in the D. Lat. column is the value of the side adjacent, and the number in the Dep. column is the value of the side opposite the acute angle. Hence, if the acute angle is the course angle, the side adjacent in the D . Lat. column is meridional difference m ; the side opposite in the Dep. column is DLo. If the acute angle is the midlatitude of the formula $\mathrm{p}=\mathrm{DLo} \cos \mathrm{Lm}$, then DLo is any value N in the Dist. column, and the departure is the value $\mathrm{N} \times \cos \mathrm{L}_{\mathrm{m}}$ in the D . Lat. column.

The examples below clarify the use of the traverse tables for plane, traverse, parallel, mid latitude, and Mercator sailings.

## 2412. Plane Sailing

In plane sailing the figure formed by the meridian through the point of departure, the parallel through the point of arrival, and the course line is considered a plane right triangle. This is illustrated in Figure 2412a. $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$ are the points of departure and arrival, respectively. The course angle and the three sides are as labeled. From this triangle:

$$
\cos \mathrm{C}=\frac{l}{D} \quad \sin \mathrm{C}=\frac{\mathrm{p}}{\mathrm{D}} \quad \tan \mathrm{C}=\frac{\mathrm{p}}{l} .
$$

From the first two of these formulas the following relationships can be derived:

$$
l=\mathrm{D} \cos \mathrm{C} \quad \mathrm{D}=l \sec \mathrm{C} \quad \mathrm{p}=\mathrm{D} \sin \mathrm{C}
$$

Label $l$ as N or S , and p as E or W , to aid in identification of the quadrant of the course. Solutions by


Figure $2412 a$. The plane sailing triangle.
calculations and traverse tables are illustrated in the following examples:

Example 1: A vessel steams 188.0 miles on course $005^{\circ}$.
Required: (1) (a) Difference of latitude and (b) departure by computation. (2) (a) difference of latitude and (b) departure by traverse table.

## Solution:

(1) (a) Difference of latitude by computation:

$$
\begin{aligned}
\text { diff latitude } & =D \times \cos C \\
& =188.0 \text { miles } \times \cos \left(005^{\circ}\right) \\
& =187 . \mathrm{arc} \mathrm{~min}^{\prime} \\
& =3^{\circ} 07.3^{\prime} \mathrm{N}
\end{aligned}
$$

(1) (b) Departure by computation:

$$
\begin{aligned}
\text { departure } & =D \times \sin C \\
& =188.0 \text { miles } \times \sin \left(005^{\circ}\right) \\
& =16.4 \text { miles }
\end{aligned}
$$

## Answer:

Diff. Lat. $=3^{\circ} 07.3^{\prime} \mathrm{N}$
departure $=16.4$ miles
(2) Difference of latitude and departure by traverse table:

$$
\begin{aligned}
& C= \arctan \frac{203.0}{136.0} \\
& \text { (1) (a) Course by computation: } \\
& \mathrm{C}=\arctan \frac{\text { deparature }}{\text { diff. . lat. }} \\
& C= N 56^{\circ} 10.8^{\prime} \mathrm{W}
\end{aligned}
$$

$$
C=304^{\circ}(\text { to nearest degree })
$$

Draw the course vectors to determine the correct course. In this case the vessel has gone north 136 miles and west 203 miles. The course, therefore, must have been between $270^{\circ}$ and $360^{\circ}$. No solution other than $304^{\circ}$ is reasonable.
(1) (b) Distance by computation:

$$
\begin{aligned}
D & =\text { diff. latitude } \times \sec C \\
& =136 \text { miles } \times \sec \left(304^{\circ}\right) \\
& =136 \text { miles } \times 1.8 \\
& =244.8 \text { miles }
\end{aligned}
$$

> Answer:
> $C=304^{\circ}$
> $D=244.8$ miles


Figure 2412b. Extract from Table 4.


Figure 2412c. Extract from Table 4.
(2) Solution by traverse table:

Refer to Figure 2412c. Enter the table and find 136 and 203 beside each other in the columns labeled $D$. Lat. and Dep., respectively. This occurs most nearly on the page for course angle $56^{\circ}$. Therefore, the course is $304^{\circ}$. Interpolating for intermediate values, the corresponding number in the Dist. column is 244.3 miles.

## Answer:

(a) $C=304^{\circ}$
(b) $D=244.3 \mathrm{mi}$.

## 2413. Traverse Sailing

A traverse is a series of courses or a track consisting of a number of course lines, such as might result from a sailing vessel beating into the wind. Traverse sailing is the finding of a single equivalent course and distance.

Though the problem can be solved graphically on the chart, traverse tables provide a mathematical solution. The distance to the north or south and to the east or west on each course is tabulated, the algebraic sum of difference of latitude and departure is found, and converted to course and distance.

Example: A ship steams as follows: course $158^{\circ}$, distance 15.5 miles; course $135^{\circ}$, distance 33.7 miles; course $259^{\circ}$, distance 16.1 miles; course $293^{\circ}$, distance 39.0 miles; course $169^{\circ}$, distance 40.4 miles.

Required: Equivalent single (1) course (2) distance.
Solution: Solve each leg as a plane sailing and tabulate each solution as follows: For course $158^{\circ}$, extract the values for D. Lat. and Dep. opposite 155 in the Dist. column. Then, divide the values by 10 and round them off to the nearest tenth. Repeat the procedure for each leg.

| Course <br> degrees | Dist. <br> $\boldsymbol{m i}$. | $\boldsymbol{N}$ <br> $\boldsymbol{m i}$. | $\boldsymbol{S}$ <br> $\boldsymbol{m i}$. | $\boldsymbol{E}$ <br> $\boldsymbol{m i}$. | $\boldsymbol{W}$ <br> $\boldsymbol{m i}$. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 158 | 15.5 |  | 14.4 | 5.8 |  |
| 135 | 33.7 |  | 23.8 | 23.8 |  |
| 259 | 16.1 |  | 3.1 |  | 15.8 |
| 293 | 39.0 | 15.2 |  |  | 35.9 |
| 169 | 40.4 |  | 39.7 | 7.7 |  |
|  |  | 15.2 | 81.0 | 37.3 | 51.7 |
| Subtotals |  |  | -15.2 |  | -37.3 |
|  |  |  | 65.8 S |  | 14.4 W |

Thus, the latitude difference is $S 65.8$ miles and the departure is $W 14.4$ miles. Convert this to a course and distance using the formulas discussed in Article 2413.

Answer:
(1) $C=192.3^{\circ}$
(2) $D=67.3$ miles.

## 2414. Parallel Sailing

Parallel sailing consists of the interconversion of departure and difference of longitude. It is the simplest form of spherical sailing. The formulas for these transformations are:

DLo $=p \sec L \quad p=$ DLo $\cos L$
Example 1: The DR latitude of a ship on course $090^{\circ}$ is $49^{\circ} 30^{\prime} N$. The ship steams on this course until the longitude changes $3^{\circ} 30^{\prime}$.

Required: The departure by (1) computation and (2) traverse table.

## Solution:

(1) Solution by computation:

$$
\begin{aligned}
D L o & =3^{\circ} 30^{\prime} \\
D L o & =210 \text { arc min } \\
p & =D L o \times \cos L \\
p & =210 \text { arc minutes } \times \cos \left(49.5^{\circ}\right) \\
p & =136.4 \text { miles }
\end{aligned}
$$

## Answer:

$p=136.4$ miles
(2) Solution by traverse table:

Refer to Figure 2414a. Enter the traverse table with latitude as course angle and substitute DLo as the heading of the Dist. column and Dep. as the heading of the D. Lat. column. Since the table is computed for integral degrees of course angle (or latitude), the tabulations in the pages for $49^{\circ}$ and $50^{\circ}$ must be interpolated for the intermediate value $\left(49^{\circ} 30^{\prime}\right)$. The departure for latitude $49^{\circ}$ and DLo $210^{\prime}$ is 137.8 miles. The departure for latitude $50^{\circ}$ and DLo 210 ' is 135.0 miles. Interpolating for the intermediate latitude, the departure is 136.4 miles.

Answer:

$$
p=136.4 \text { miles }
$$

Example 2: The DR latitude of a ship on course $270^{\circ}$ is $38^{\circ} 15^{\prime}$ 'S. The ship steams on this course for a distance of 215.5 miles.

Required: The change in longitude by (1) computation and (2) traverse table.

## Solution:

(1) Solution by computation

$$
\begin{aligned}
D L o & =215.5 \text { arc } \min \times \sec \left(38.25^{\circ}\right) \\
D L o & =215.5 \text { arc min } \times 1.27 \\
D L o & =274.4 \text { minutes of arc }(\text { west }) \\
D L o & =4^{\circ} 34.4^{\prime} \mathrm{W}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Answer: } \\
& D L o=4^{\circ} 34.4^{\prime} \mathrm{W}
\end{aligned}
$$

## (2) Solution by traverse table

Refer to Figure 2414b. Enter the traverse tables with latitude as course angle and substitute DLo as the heading of the Dist. column and Dep. as the heading of the D. Lat. column. As the table is computed for integral degrees of course angle (or latitude), the tabulations in the pages for $38^{\circ}$ and $39^{\circ}$ must be interpolated for the minutes of latitude. Corresponding to Dep. 215.5 miles in the former is DLo 273.5', and in the latter DLo 277.3'. Interpolating for minutes of latitude, the DLo is $274.4^{\prime} \mathrm{W}$.

## Answer:

$$
D L o=4^{\circ} 34.4^{\prime}
$$

## 2415. Middle-Latitude Sailing

Middle-latitude sailing combines plane sailing and parallel sailing. Plane sailing is used to find difference of latitude and departure when course and distance are known, or vice versa. Parallel sailing is used to interconvert departure and difference of longitude. The mean latitude ( $\mathrm{L}_{\mathrm{m}}$ ) is normally used for want of a practical means of determining the middle latitude, or the latitude at which the arc length of the parallel separating the meridians passing through two specific points is exactly equal to the departure in proceeding from one point to the other. The formulas for these transformations are:

$$
\text { DLo }=p \sec L_{m} \quad p=D L o \cos L_{m}
$$



Figure 2414a. Extract from Table 4.


Figure 2414b. Extract from Table 4.

The mean latitude $\left(\mathrm{L}_{\mathrm{m}}\right)$ is half the arithmetic sum of the latitudes of two places on the same side of the equator. It is labeled N or S to indicate its position north or south of the equator. If a course line crosses the equator, solve each course line segment separately.

Example 1: A vessel steams 1,253 miles on course $070^{\circ}$ from lat. $15^{\circ} 17.0^{\prime} N$, long. $151^{\circ} 37.0^{\prime} \mathrm{E}$.

Required: Latitude and longitude of the point of arrival by (1) computation and (2) traverse table.

## Solution:

(1) Solution by computation:

$$
\begin{aligned}
l & =D \cos C ; p=D \sin C ; \text { and } D L o=p \sec L_{m} . \\
D & =1253.0 \text { miles. } \\
C & =070^{\circ} \\
l & =428.6^{\prime} \mathrm{N} \\
p & =1177.4 \text { miles } E \\
L_{1} & =15^{\circ} 17.0^{\prime} \mathrm{N} \\
l & =7^{\circ} 08.6^{\prime} \mathrm{N} \\
L_{2} & =22^{\circ} 25.6^{\prime} \mathrm{N} \\
L_{m} & =18^{\circ} 51.3^{\prime} \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
D L o & =1244.2^{\prime} E \\
\lambda_{1} & =151^{\circ} 37.0^{\prime} E \\
D L o & =20^{\circ} 44.2^{\prime} E \\
\lambda_{2} & =172^{\circ} 21.2^{\prime} E
\end{aligned}
$$

## Answer:

$$
\begin{aligned}
& L_{2}=22^{\circ} 25.6^{\prime} N \\
& \lambda_{2}=172^{\circ} 21.2^{\prime} E
\end{aligned}
$$

## (2) Solution by traverse tables:

Refer to Figure 2415a. Enter the traverse table with course $070^{\circ}$ and distance 1,253 miles. Because a number as high as 1,253 is not tabulated in the Dist. column, obtain the values for D. Lat. and Dep. for a distance of 125.3 miles and multiply them by 10. Interpolating between the tabular distance arguments yields D. Lat. = 429' and Dep. $=1,178$ miles. Converting the D. Lat. value to degrees of latitude yields $7^{\circ} 09.0^{\prime}$. The point of arrival's latitude, therefore, is $22^{\circ} 26^{\prime} N$. This results in a mean latitude of $18^{\circ} 51.5^{\prime} \mathrm{N}$.
Reenter the table with the mean latitude as course angle and substitute DLo as the heading of the Dist. column and Dep. as the heading of the D. Lat. column. Since the table is computed for integral degrees of course angle (or latitude), the tabulations in the pages for $18^{\circ}$ and $19^{\circ}$ must be interpolated for the minutes of $L_{m}$. In the $18^{\circ}$ table, interpolate for DLo between the departure values of 117.0 miles and 117.9 miles. This results in a DLo value of 123.9. In the $19^{\circ}$ table, interpolate for DLo between the departure values of 117.2 and 118.2. This yields a DLo value of 124.6.
Having obtained the DLo values corresponding to mean latitudes of $18^{\circ}$ and $19^{\circ}$, interpolate for the actual value of the mean latitude: $18^{\circ} 51.5^{\prime} N$. This yields the value of DLo: 124.5. Multiply this final value by ten to obtain DLo $=1245$ minutes $=20^{\circ}$ $45^{\prime} E$.
Add the changes in latitude and longitude to the original position's latitude and longitude to obtain the final position.

## Answer:

$L_{2}=22^{\circ} 26^{\prime} N$
$\lambda_{2}=172^{\circ} 22.0^{\prime} \mathrm{E}$

Example 2: A vessel at lat. 848.9'S, long. $89^{\circ} 53.3^{\prime} \mathrm{W}$ is to proceed to lat. $17^{\circ} 06.9^{\prime} \mathrm{S}$, long. $104^{\circ} 51.6^{\prime} \mathrm{W}$.

Required: Course and distance by (1) computation and (2) traverse table.

## Solution:

(1) Solution by computation:

$$
p=D L o \cos L_{m} ; \quad \tan C=\frac{p}{l} ; \text { and } D=l \sec C
$$

```
\(D L o=14^{\circ} 58.3^{\prime}\)
DLo \(=898.3^{\prime}\)
    \(L_{m}=12^{\circ} 57.9^{\prime} \mathrm{S}\)
        \(p=893.8 \operatorname{arc} \min \times \cos \left(12^{\circ} 57.9^{\prime}\right)\)
        \(p=875.4\) arc min
        \(l=17.1^{\circ}-8.8^{\circ}\)
        \(l=8.3^{\circ}\)
        \(l=498\) arc min
        \(C=\arctan \frac{875.4 \operatorname{arc} \min }{498 \operatorname{arcmin}}\)
        \(C=S 60.4^{\circ} \mathrm{W}\)
        \(C=240.4^{\circ}\)
    \(D=498 \operatorname{arc} \min \times \sec \left(60.4^{\circ}\right)\)
    \(D=1008.2\) miles
```


## Answer:

$C=240.4^{\circ}$
$D=1008.2$ miles
The labels ( $N, S, E, W$ ) of l, p, and $C$ are determined by noting the direction of motion or the relative positions of the two places.
(2) Solution by traverse tables:

Refer to Figure 2415b. Enter the traverse table with the mean latitude as course angle and substitute DLo as the heading of the Dist. column and Dep. as the heading of the D. Lat. column. Since the table is computed for integral values of course angle (or latitude), it is usually necessary to extract the value of departure for values just less and just greater than the $L_{m}$ and then interpolate for the minutes of Lm. In this case where $L_{m}$ is almost $13^{\circ}$, enter the table with $L_{m} 13^{\circ}$ and DLo 898.3' to find Dep. 875 miles. The departure is found for DLo 89.9', and then multiplied by 10.
Reenter the table to find the numbers 875 and 498




Figure 2415a. Extracts from the Table 4.


Figure 2415b. Extract from Table 4.
beside each other in the columns labeled Dep. and D. Lat., respectively. Because these high numbers are not tabulated, divide them by 10, and find 87.5 and 49.8. This occurs most nearly on the page for course angle $60^{\circ}$. Interpolating for intermediate values, the corresponding number in the Dist. column is about 100.5. Multiplying this by 10, the distance is about 1005 miles.

## Answer:

$C=240^{\circ}$
$D=1005$ miles.
The labels ( $N, S, E, W$ ) of $l, p, D L o$, and $C$ are determined by noting the direction of motion or the relative positions of the two places.

## 2416. Mercator Sailing

Mercator sailing problems can be solved graphically on a Mercator chart. For mathematical solution, the formulas of Mercator sailing are:

$$
\tan \mathrm{C}=\frac{\mathrm{DLo}}{\mathrm{~m}} \quad \mathrm{DLo}=\mathrm{m} \tan \mathrm{C}
$$

After solving for course angle by Mercator sailing, solve for distance using the plane sailing formula:
$\mathrm{D}=l \sec \mathrm{C}$

Example 1: A ship at lat. $32^{\circ} 14.7^{\prime} N$, long. $66^{\circ} 28.9^{\prime} \mathrm{W}$ is to head for a point near Chesapeake Light, lat. $36^{\circ} 58.7^{\prime} \mathrm{N}$, long. $75^{\circ} 42.2^{\prime} \mathrm{W}$.


Figure $2416 a$
Required: Course and distance by (1) computation and (2) traverse table.

## Solution:

(1) Solution by computation:
$\tan C=\frac{D L o}{m}$, and $D=l \sec C$.

First calculate the meridional difference by entering Table 6 and interpolating for the meridional parts for the original and final latitudes. The meridional difference is the difference between these two val-
ues. Having calculated the meridional difference, simply solve for course and distance from the equations above.
$M_{2}\left(36^{\circ} 58.7^{\prime} N\right)=2377.1$
$M_{1}\left(32^{\circ} 14.7^{\prime} N\right)=2033.4$
$m=343.7$
$\lambda_{2}=075^{\circ} 42.2^{\prime} \mathrm{W}$
$\lambda_{1}=066^{\circ} 28.9^{\prime} \mathrm{W}$
DLo $=9^{\circ} 13.3^{\prime} \mathrm{W}$
$D L o=553.3^{\prime} \mathrm{W}$
$C=\arctan \left(553.3 \div 343.7^{\prime}\right)$
$C=N 58.2^{\circ} \mathrm{W}$
$C=301.8^{\circ}$
$L_{2}=36^{\circ} 58.7^{\prime} \mathrm{N}$
$L_{1}=32^{\circ} 14.7^{\prime} \mathrm{N}$
$l=4^{\circ} 44.0^{\prime} N$
$l=284.0^{\prime}$
$D=284.0 \operatorname{arcmin} \times \sec \left(58.2^{\circ}\right)$
$D=537.4$ miles

## Answer:

$C=301.8^{\circ}$
$D=538.2$ miles
(2) Solution by traverse table:

Refer to Figure 2416b. Substitute $m$ as the heading of the D. Lat. column and DLo as the heading of the Dep. column. Inspect the table for the numbers 343.7 and 553.3 in the columns relabeled $m$ and DLo, respectively.
Because a number as high as 343.7 is not tabulated in the $m$ column, it is necessary to divide $m$ and DLo by 10. Then inspect to find 34.4 and 55.3 abreast in the $m$ and DLo columns, respectively. This occurs most nearly on the page for course angle $58^{\circ}$ or course $302^{\circ}$.
Reenter the table with course $302^{\circ}$ to find Dist. for D. Lat. 284.0'. This distance is 536 miles.

Answer:
C $=302^{\circ}$
$D=536$ miles
Example 2: A ship at lat. $75^{\circ} 31.7^{\prime} N$, long. $79^{\circ} 08.7^{\prime} \mathrm{W}$, in Baffin Bay, steams 263.5 miles on course $155^{\circ}$.

Required: Latitude and longitude of point of arrival by (1) computation and (2) traverse table.

## Solution:

(1) Solution by computation:
$l=D \cos C$; and $D L o=m \tan C$


Figure 2416b. Extract from Table 4 composed of parts of left and right hand pages for course angle $58^{\circ}$.

```
D = 263.5mi.
C=155
l=238.8'S
l= 3 58.8'S
L
l= 3 58.8'S
L
M}=7072.
M}=6226.
m=846.3
DLo = 394.6'E
DLo = 6'34.6' E
\lambda}\mp@subsup{\lambda}{I}{}=7\mp@subsup{9}{}{\circ}08.\mp@subsup{7}{}{\prime}\textrm{W
DLo = 6034.6' E
\lambda}\mp@subsup{\lambda}{2}{\prime}=07\mp@subsup{2}{}{\circ}34.\mp@subsup{1}{}{\prime}\textrm{W
```

The labels ( $N, S, E, W$ ) of $l, D L o$, and $C$ are determined by noting the direction of motion or the relative positions of the two places.

Answer:
$L_{2}=71^{\circ} 32.9^{\prime}$
$\lambda_{2}=072^{\circ} 34.1^{\prime}$
(2) Solution by traverse table:

Refer to Figure 2416c. Enter the traverse table with course $155^{\circ}$ and Dist. 263.5 miles to find D. Lat. 238.8'. The latitude of the point of arrival is found by subtracting the D. Lat. from the latitude of the point of departure. Determine the meridional difference by Table Table 4 ( $m=846.3$ ).
Reenter the table with course $155^{\circ}$ to find the DLo corresponding to $m=846.3$. Substitute meridional difference $m$ as the heading of the D. Lat. column and DLo as the heading of the Dep. column. Because a number as high as 846.3 is not tabulated in the $m$ column, divide $m$ by 10 and then inspect the $m$ column for a value of 84.6. Interpolating as necessary, the latter value is opposite DLo 39.4'. The DLo is 394' (39.4' $\times 10$ ). The longitude of the point of arrival is found by applying the DLo to the longitude of the point of departure.

## Answer:

$L_{2}=71^{\circ} 32.9^{\prime} \mathrm{N}$.
$\lambda_{2}=72^{\circ} 34.7^{\prime} \mathrm{W}$.


Figure 2416c. Extract from Table 4.

## 2417. Additional Problems

Example: A vessel steams 117.3 miles on course $214^{\circ}$.
Required: (1) Difference of latitude, (2) departure, by plane sailing.
Answers: (1) l 97.2 'S, (2) p 65.6 mi . W.
Example: A steamer is bound for a port 173.3 miles south and 98.6 miles east of the vessel's position
Required: (1) Course, (2) distance, by plane sailing.
Answers: (1) $C 150.4^{\circ}$; (2) $D 199.4 \mathrm{mi}$. by computation, 199.3 mi. by traverse table.

Example: A ship steams as follows: course $359^{\circ}$, distance 28.8 miles; course $006^{\circ}$, distance 16.4 miles; course $266^{\circ}$, distance 4.9 miles; course $144^{\circ}$, distance 3.1 miles; course $333^{\circ}$, distance 35.8 miles; course $280^{\circ}$, distance 19.3 miles.

Required: (1) Course, (2) distance, by traverse sailing. Answers: (1) C $334.4^{\circ}$, (2) D 86.1 mi.

Example: The 1530 DR position of a ship is lat. $44^{\circ} 36.3^{\prime} \mathrm{N}$, long. $31^{\circ} 18.3^{\prime} \mathrm{W}$. The ship is on course $270^{\circ}$, speed 17 knots.
Required: The 2000 DR position, by parallel sailing.
Answer: 2000 DR: L $44^{\circ} 36.3^{\prime} N, \lambda 33^{\circ} 05.7^{\prime} W$.

Example: A ship at lat. $33^{\circ} 53.3^{\prime}$ S, long. $18^{\circ} 23.1^{\prime}$ E, leaving Cape Town, heads for a destination near Ambrose Light, lat. $40^{\circ} 27.1^{\prime} \mathrm{N}$, long. $73^{\circ} 49.4^{\prime} W$.
Required: (1) Course and (2) distance, by Mercator sailing.
Answers: (1) $C$ 310.9ㅇ (2) $D 6,811.5 \mathrm{mi}$. by computation, 6,812.8 mi. by traverse table.

Example: A ship at lat. $15^{\circ} 03.7^{\prime} \mathrm{N}$, long. $151^{\circ} 26.8^{\prime} E$ steams 57.4 miles on course $035^{\circ}$.
Required: (1) Latitude and (2) longitude of the point of arrival, by Mercator sailing.
Answers: (1) L $15^{\circ} 50.7^{\prime} N$; (2) $\lambda 152^{\circ} 00.7^{\prime} E$.

## CHAPTER 25

## NAVIGATION PROCESSES

## INTRODUCTION

## 2500. Understanding the Process of Navigation

Navigation is comprised of a number of different processes. Some are done in a set order, some randomly, some almost constantly, others only infrequently. It is in choosing using these processes that an individual navigator's experience and judgment are most crucial. Compounding this subject's difficulty is the fact that there are no set rules regarding the optimum employment of navigational systems and techniques. Optimum use of navigational systems varies as a function of the type of vessel, the quality of the navigational equipment on board, and the experience and skill of the navigator and all the members of his team.

For the watch officer, ensuring the ship's safety always takes priority over completing operational commitments and carrying out the ship's routine. Navigation is his primary responsibility. Any ambiguity about the position of the vessel which constitutes a danger must be resolved immediately. The best policy is to prevent ambiguity by using all the tools available and continually checking different sources of position information to see that they agree. This includes the routine use of several different navigational techniques, both as operational checks and to maintain skills which might be needed in an emergency.

Any single navigational system constitutes a single point of failure, which must be backed up with another source to ensure the safety of the vessel.

It is also the navigator's responsibility to ensure that he and all members of his team are properly trained and ready in all respects for their duties, and that he is familiar with the operation of all gear and systems for which he is responsible. He must also ensure that all digital and/or hardcopy charts and publications are updated with information from the Notice to Mariners, and that all essential navigational gear is in operating condition.

Navigating a vessel is a dynamic process. Schedules, missions, and weather often change. Planning a voyage is a process that begins well before the ship gets underway. Executing that plan does not end until the ship ties up at the pier at its final destination. While it is possible to over plan a voyage, it is a more serious error to under plan it. Carefully planning a route, preparing required charts and publications, and using various methods to monitor the ship's position as the trip proceeds are fundamental to safe navigation and are the marks of a professional navigator.

This chapter will examine navigational processes, the means by which a navigator manages all of the resources at his command to ensure a safe and efficient voyage.

## BRIDGE RESOURCE MANAGEMENT

## 2501. The Navigator as Manager

The development of computers and navigational technologies driven by them has led to an evolution - some might say revolution-in the role of the navigator. Increasingly, the navigator is the manager of a combination of systems of varying complexity, which are used to direct the course of the ship and ensure its safety. The navigator is thus becoming less concerned with the direct control of the ship and more concerned with managing the systems and people which do so under his direction. The navigator must become competent and comfortable with the management of advanced technology and human resources, especially in stressful situations.

A modern ship's navigational suite might include an integrated bridge system with a comprehensive ship and voyage management software package, an ECDIS replacing paper charts and including radar overlay, dual
interswitched X- and S-band ARPA radars, autopilot linked to digital flux gate and ring laser gyrocompasses linked to the ECDIS, integrated GPS/DGPS and Loran C positioning system, numerous environmental sensors, digital depth sounder, and Doppler speed log. The communications suite might include a GMDSS workstation with NAVTEX receiver, a weatherfax and computer weather routing system, SATCOM terminal, several installed and portable VHF radios, an internal telephone exchange, a public address and alarm system, and sound powered telephones. As all this technology is coming aboard, crew size is decreasing, placing increased responsibility on each member of the team.

Thus, the modern navigator is becoming a manager of resources, both electronic and human. Of course, he has always been so, but today's systems are far more complex, and the consequences of a navigational error far more serious, than ever before. The prudent navigator will
therefore be familiar with the techniques of Bridge Resource Management (BRM), by which he can supervise the numerous complex tasks involved with maintaining navigational control of his vessel.

Bridge Team Management refers to the management of the human resources available to the navigator-helmsman, lookout, engine room watch, etc.-and how to ensure that all members contribute to the goal of a safe and efficient voyage.

Bridge Resource Management (BRM) is the study of the resources available to the navigator and the exploitation of them in order to conduct safe and efficient voyages. The terms "bridge resource management" and "bridge team management" are not precisely defined. For most, bridge resources consist of the complete suite of assets available to the navigator including electronic and human, while bridge team management refers only to human assets, except for the pilot, who is normally not considered a member of the team.

The resources available will vary according to the size of the ship, its mission, its crew, its shoreside management, funding, and numerous other variables. No two vessels are alike in resources, for even if two ships of a single class are alike in every physical respect, the people who man them will be different, and people are the most important resource the navigator has.

Effective Bridge Resource Management requires:

- Clearly defined navigational goals
- Defined procedures-a system-for achieving goals
- Means to achieve the goals
- Measures of progress toward goals
- Constant awareness of the situation tactically, operationally, and strategically
- Clearly defined accountability and responsibility
- Open communication throughout the system
- External support


## 2502. Watch Conditions

Whenever the navigational situation demands more resources than are immediately available to the navigator, a dangerous condition exists. This can be dealt with in two ways. First, the navigator can call up additional resources, such as by adding a bow lookout or an additional watch officer. Second, he can lower the navigational demands to the point where his available resources are able to cope, perhaps by reducing speed, changing course, heaving to, or anchoring.

Some conditions that increase the demands on the navigator include:

- Fog
- Heavy traffic
- Entering a channel, harbor or restricted area
- Heavy weather
- Fire, flooding, or other emergency

These and many other situations can increase the demands on the time and energy of the navigator, and cause him to need additional resources-another watch officer, a bow lookout, a more experienced helmsman - to take some of the workload and rebalance the amount of work to be done with the people available to do it.

There is no strict legal direction as to the assignment of personnel on watch. Various rules and regulations establish certain factors which must be addressed, but the responsibility for using the available people to meet them rests with the watch officer. Laws and admiralty cases have established certain requirements relating to the position and duties of the lookout, safe speed under certain conditions, mode of steering, and the use of radar. The maritime industry has established certain standards known as Watch Conditions to help define the personnel and procedures to be used under various situations.

Watch Condition I indicates unrestricted maneuverability, weather clear, little or no traffic, and all systems operating normally. In this condition, depending on the size and type of vessel and its mission, often a single licensed person can handle the bridge watch.

Watch Condition II applies to situations where visibility is somewhat restricted, and maneuverability is constrained by hydrography and other traffic. This condition may require additional navigational resources, such as a lookout, helmsman, or another licensed watch officer.

Watch Condition III reflects a condition where navigation is seriously constrained by poor visibility, close quarters (as in bays, sounds, or approach channels), and heavy traffic.

Watch Condition IV is the most serious, occurring when visibility is poor, maneuvering is tightly constrained (as in channels and inner harbors), and traffic is heavy.

Any watch condition can change almost momentarily due to planned or unforeseen events. Emergency drills or actual emergencies on one's own or other nearby vessels can quickly overwhelm the unprepared bridge team.

Under each of these conditions, the navigator must manage his resources effectively and efficiently, calling in extra help when necessary, assigning personnel as needed to jobs for which they are qualified and ready to perform. He must consider the peculiarities of his ship and its people, including considerations of vessel design and handling characteristics, personalities and qualifications of individuals, and the needs of the situation.

## 2503. Laws Relating to Bridge Resources

Numerous laws and regulations relate to the navigation of ships, particularly in less than ideal conditions. Title 33 of the Code of Federal Regulations (CFR) specifies bridge visibility parameters. Title 46 CFR and IMO standards relate to medical fitness. Public Law 101-380 specifies the maximum hours of work permitted, while 46 CFR specifies the minimum hours of rest required. Competency and certification are addressed by 46 CFR and STCW 95. Charts, publications, and navigational equipment are the subject of 33 CFR, which also specifies tests required before getting underway. This code also requires reporting of certain dangerous conditions aboard the vessel.

Various U.S. state and local regulations also apply to the duties and responsibilities of the bridge team, and numerous regulations and admiralty case law relate indirectly to bridge resource management.

## 2504. Pilots

One of the navigator's key resources in the harbor and harbor approaches is the pilot, a professional shiphandler with encyclopedic knowledge of a local port and harbor area. His presence is very often required by local regulation or law. He is not considered, by the common definition, to be a member of the bridge team, but he is an extremely important bridge resource. He remains, except in certain defined areas, an advisor to the captain, who retains full responsibility for the safety of the ship. Only in the Suez Canal and Panama Canal are pilots given full navigational responsibility.

As an important navigational resource, the pilot requires management, and as a professional navigator, he deserves respect. The balance of these two elements is the responsibility of the captain, who manages the Master-Pilot Exchange (MPX).

The explicit purpose of the MPX is to tell the pilot the particulars of the ship: its draft, condition of engines and navigational equipment, and special conditions or characteristics which might affect the pilot's ability to understand how the ship will handle in close quarters. However, simply relating the ship's characteristics and condition does not constitute a proper MPX, which must be more comprehensive.

The implicit purpose of the MPX is to establish a rapport with the pilot so that a mental model of the transit can be agreed on and shared with the bridge team. Thus, the MPX is not an event but a process, which will ensure that everyone responsible for navigating the vessel shares the same plan for the transit.

Some ships prepare a pilot card that lists the essential vessel parameters for the pilot's ready reference. The pilot himself may use a checklist to ensure that all required areas of concern are covered. The pilot may or may not require a signature on his own forms, and may or may not be
requested or allowed to sign ship's forms. These are matters of local law and custom that must be respected.

Often, among the pilot's first words upon boarding will be a perfunctory recommendation to the captain to take up a certain course and speed. The captain then gives the appropriate orders to the bridge team. As the vessel gathers way, the rest of the MPX can proceed. As time permits, the pilot can be engaged in conversation about the events and hazards to be expected during the transit, such as turning points, shoal areas, weather and tides, other ship traffic, tugs and berthing arrangements, status of ground tackle, and other matters of concern. This information should be shared with the bridge team. At any time during the transit, the captain should bring up matters of concern to the pilot for discussion. Communication is the vital link between pilot and master that ensures a safe transit.

## 2505. Managing the Bridge Team

Shipboard personnel organization is among the most hierarchical to be found. Orders are given and expected to be obeyed down the chain of command without hesitation or question, especially in military vessels. While this operational style defines responsibilities clearly, it does not take advantage of the entire knowledge base held by the bridge team, which increasingly consists of a number of highly trained people with a variety of skills, abilities, and perceptions.

While the captain may have the explicit right to issue orders without discussion or consultation (and in most routine situations it is appropriate to do so), in unusual, dangerous, and stressful situations it is often better to consult other members of the team. Communication, up and down, is the glue that holds the bridge team together and ensures that all resources are effectively used. Many serious groundings could have been prevented by the simple exchange of information from crew to captain, information which, for reasons of tradition and mindless obedience to protocol, was not shared or was ignored.

A classic case of failure to observe principles of bridge team management occurred in 1950 when the USS Missouri, fully loaded and making over 12 knots at high tide, grounded hard on Thimble Shoals in Chesapeake Bay. The Captain ignored the advice of his Executive Officer, berated the helmsman for speaking out of turn, and failed to order a right turn into Thimble Shoals Channel. It took more than two weeks to free the ship.

Most transportation accidents are caused by human error, usually resulting from a combination of circumstances, and almost always involving a communications failure. Analysis of numerous accidents across a broad range of transportation fields reveals certain facts about human behavior in a dynamic team environment:

- Better decisions result from input by many individuals
- Success or failure of a team depends on their ability to communicate and cooperate
- More ideas present more opportunities for success and simultaneously limit failure
- Effective teams can share workloads and reduce stress, thus reducing stress-caused errors
- All members make mistakes; no one has all the right answers
- Effective teams usually catch mistakes before they happen, or soon after, and correct them

These facts argue for a more inclusive and less hierarchical approach to bridge team management than has been traditionally followed. The captain/navigator should include input from bridge team members when constructing the passage plan and during the pre-voyage conference, and should share his views openly when making decisions, especially during stressful situations. He should look for opportunities to instruct less experienced team members by involving them in debate and decisions regarding the voyage. This ensures that all team members know what is expected and share the same mental model of the transit.

Effective bridge teams do not just happen. They are the result of planning, education, training, practice, drills, open communication, honest responses, and management support. All of these attributes can and should be taught, and a number of professional schools and courses are dedicated to this subject. The U.S. Coast Guard web site at http://www.uscg.mil/STCW/m-achome.htm lists courses in Bridge Resource Management and other subjects that will help the navigator manage resources effectively.

## 2506. Standards of Training, Certification, and Watchkeeping (STCW)

From a personnel standpoint, the management of a military vessel is a very different proposition than a commercial vessel. Procedures are more formalized, lines of communication and responsibility are more structured, and the process of navigation is more highly organized. Military personnel are trained for navigational duties through a variety of required on-the-job and school-based training programs. The watch officer on a military vessel can generally be assured that the ratings under his command have passed the proper tests for their rank and are trained for their jobs. (Experience is another matter.)

The commercial captain has had, until recently, little such assurance. Training programs and certification for deck personnel only minimally addressed routine duties of bridge watchstanders, concentrating on emergency proce-
dures and deck-related skills. The IMO's International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW) of 1978 set certain qualifications for masters, mates, and watch personnel. It entered into force in 1984, and the United States became a party to this convention in 1991.

Between 1984 and 1992, significant limitations to the 1978 conventions became apparent. Vague requirements, lack of clear standards, limited oversight and control, and failure to address modern issues of watchkeeping were all seen as problems meriting a review of the 1978 agreement. Prior to this, the IMO had concentrated mostly on construction and equipment of ships. This new review, spearheaded by the U.S., was to concentrate on the human element, which in fact is the cause of most marine casualties. Three serious maritime casualties in which human factors played a part spurred the leadership of the IMO to immediate action, and in 1995, a year sooner than initially planned, the new convention was signed, and entered into force on February $1,1997$.

The U.S. Coast Guard immediately began the process of changing the regulations related to issuing licenses to U.S. maritime personnel to comply with the new guidelines. Mariners licensed under the 1978 convention had until February 1, 2002, to renew their documents under the old rule. All others would have to comply with the new standards. This date was subsequently amended to allow more time for compliance.

The provisions of STCW 95 strongly address the human element of bridge team management. They mandate maximum duty hours, minimum rest periods, and training requirements for specific navigational and communications systems such as ARPA and GMDSS. They require that officers understand and comply with the principles of bridge resource management. They require not merely that people be trained in certain procedures and operations, but that they demonstrate competence therein.

The competencies relating to navigation required of unlicensed personnel relate to general watchstanding duties. Such personnel must not only pass training, but must demonstrate competency in the use of magnetic and gyrocompasses for steering and course changes, response to standard helm commands, change from automatic to hand steering and back, responsibilities of the lookout, and proper watch relief procedures.

Competence may be demonstrated at sea or in approved simulators, and must be documented by Designated Examiners (DE's) who provide documentation which will allow the examinee to be certified under the provisions of STCW 95.

## VOYAGE PLANNING

## 2507. The Passage Plan

Before each voyage begins, the navigator should develop a detailed mental model of how the entire voyage is to proceed sequentially, from getting underway to mooring. This mental model will include charting courses, forecasting the weather and tides, checking Sailing Directions and Coast Pilots, and projecting the various future events-landfalls, narrow passages, and course changes - that will transpire during the voyage. This mental model becomes the standard by which he will measure progress toward the goal of a safe and efficient voyage, and it is manifested in a passage plan.

The passage plan is a comprehensive, step by step description of how the voyage is to proceed from berth to berth, including undocking, departure, enroute, approach and mooring at the destination. The passage plan should be communicated to the navigation team in a pre-voyage conference in order to ensure that all members of the team share the same mental model of the entire trip. This differs from the more detailed piloting brief discussed in Chapter 8 , though it may be held in conjunction with it, and may be a formal or informal process.

Differences of opinion must be addressed. For example, one watch officer might consider a one mile minimum passing distance appropriate, while the captain prefers to pass no closer than two miles. These kinds of differences must be reconciled before the voyage begins, and the passage plan is the appropriate forum in which to do so.

Thus, each member of the navigation team will be able to assess the vessel's situation at any time and make a judgement as to whether or not additional bridge resources are necessary. Passage planning procedures are specified in Title 33 of the U.S. Code, IMO Resolutions, and a number of professional books and publications. There are some fifty elements of a comprehensive passage plan depending on the size and type of vessel, each applicable according to the individual situation.

Passage planning software can greatly simplify the process and ensure that nothing important is overlooked. A good passage planning software program will include great circle waypoint/distance calculators, tide and tidal current predictors, celestial navigational calculators, consumables estimators for fuel, oil, water, and stores, and other useful applications.

As the voyage proceeds, the navigator must maintain situational awareness to continually assess the progress of the ship as measured against the passage plan and the mental model of the voyage. Situational awareness consists of perceiving, comprehending, and comparing what is known at any given time with the mental model and passage plan. Both individual and team situational awareness are necessary for a safe voyage, and the former must be established by all members of the bridge team before the
latter is possible.
The enemies of situational awareness are complacency, ignorance, personal bias, fatigue, stress, illness, and any other condition which prevents the navigator and his team members from clearly seeing and assessing the situation.

## 2508. Constructing a Voyage Track

Coastwise passages of a few hundred miles or less can be laid out directly on charts, either electronic or paper. Over these distances, it is reasonable to ignore great circle routes and plot voyages directly on Mercator charts.

For trans-oceanic voyages, construct the track using a navigational computer, a great circle (gnomonic) chart, or the sailings. It is best to use a navigational computer or calculator if one is available to save time and to eliminate the plotting errors inherent in transferring the track from a gnomonic to a Mercator projection. Because they solve problems mathematically, computers and calculators also eliminate rounding errors inherent in the tables, providing more accurate solutions.

To use a navigational computer for voyage planning, the navigator simply enters the two endpoints of his planned voyage or major legs thereof in the appropriate spaces. The program may ask for track segment intervals every $X$ number of degrees. It then computes waypoints along the great circle track between the two endpoints, determines each track leg's distance and, given a speed of advance, calculates the time the vessel can expect to pass each waypoint. The waypoints may be saved as a route, viewed on screen, and sent to the autopilot. On paper charts, construct the track on an appropriate Mercator chart by plotting the computer-generated waypoints and the tracks between them.

After adjusting the track as necessary to pass well clear of any hazard, choose a speed of advance (SOA) that ensures the ship will arrive on time at its destination or at any required point. If the time of arrival is open-ended, that is, not specifically required, choose a reasonable average SOA. Given an SOA, mark the track with the vessel's first few planned hourly positions. In the Navy, these planned positions are points of intended movement (PIM's). The SOA chosen for each track leg is the PIM speed. Merchant vessels usually refer to them as waypoints.

An operation order often assigns a naval vessel to an operating area. In that case, plan a track from the departure to the edge of the operating area to ensure that the vessel arrives at the operating area on time. Following a planned track inside the assigned area may be impossible because of the dynamic nature of an exercise. In that case, carefully examine the entire operating area for navigational hazards. If simply transiting through the area, the ship should still follow a planned and approved track.

## 2509. Following a Voyage Plan

Complete the planning discussed in Article 2508 prior to leaving port. Once the ship is transiting, frequently compare the ship's actual position to the planned position and adjust the ship's course and speed to compensate for
any deviations. Order courses and speeds to keep the vessel on track without significant deviation.

Often a vessel will have its operational commitments changed after it gets underway. If this happens, it will be necessary to begin the voyage planning process anew.

## VOYAGE PREPARATION

## 2510. Equipment Inventory

Prior to getting the ship underway, the navigator should inventory all navigational equipment, charts, and publications. He should develop a checklist of navigational equipment specific to his vessel and check that all required equipment is onboard and in operating order. The navigator should have all applicable Sailing Directions, pilot charts, and navigation charts covering his planned route. He should also have all charts and Sailing Directions covering ports at which his vessel may call. He should have all the equipment and publications required to support all appropriate navigational methods. Finally, he must have all technical documentation required to support the operation of his electronic navigation suite.

It is important to complete this inventory well before the departure date and obtain all missing items before sailing.

## 2511. Chart Preparation

Just as the navigator must prepare charts for piloting, he must also prepare his small scale charts for an open ocean transit. The following is the minimum chart preparation required for an open ocean or offshore coastal transit.

Correcting the Chart: Correct all applicable charts through the latest Notice to Mariners, Local Notice to Mariners, and Broadcast Notice to Mariners. Ensure the chart to be used is the latest announced edition.

Plotting the Track: Mark the track course above the track line with a "C" followed by the course. Similarly, mark each track leg's distance under the course line with a " $D$ " followed by the distance in nautical miles.

Calculating Minimum Expected, Danger, and Warning Soundings: Chapter 8 discusses calculating minimum expected, danger and warning soundings. Determining these soundings is particularly important for ships passing a shoal close aboard. Set these soundings to warn the conning officer that he is passing close to the shoal. Mark the minimum expected sounding, the warning sounding, and the danger sounding clearly on the chart and indicate the section of the track for which they are applicable.

Marking Allowed Operating Areas: (Military vessels) Often an operation order assigns a naval vessel to an operating area for a specific period of time. There may be operational restrictions placed on the ship while within this area. For example, a surface ship assigned to an operating area may be ordered not to exceed a certain speed for the duration of an exercise. When assigned an operating area, clearly mark that area on the chart. Label it with the time the vessel must remain in the area and what, if any, operational restrictions it must follow. The conning officer and the captain should be able to glean the entire navigational situation from the chart alone without reference to the directive from which the chart was constructed. Therefore, put all operationally important information directly on the chart.

Marking Chart Shift Points: Mark the chart points where the navigator must shift to the next chart, and note the next chart number.

Examining Either Side of Track: Highlight any shoal water or other navigational hazard near the planned track. This will alert the conning officer as he approaches a possible danger.

## NAVIGATION ROUTINE AT SEA

## 2512. Fix Frequency

If ECDIS is in use, fix frequency is not an issue. The ship's position will be displayed on the chart once per second, and the navigator need only monitor the process. If only an ECS is available, more careful attention is necessary since ECS cannot substitute for a paper chart.

Nevertheless, it is reasonable to plot fixes at less frequent intervals when using an ECS, checking the system with a hand-plotted fix at prudent intervals.

Assuming that an electronic chart system is not available and hand-plotted fixes are the order of the day, adjust the fix interval to ensure that the vessel remains at least two fixes from the nearest danger. Choose a fix interval that
provides a sufficient safety margin from all charted hazards.

Table 2512 below lists recommended fix intervals as a function of the phase of navigation:

|  | Harbor/Appr. | Coastal | Ocean |
| :--- | :--- | :--- | :--- |
| Frequency | 3 min. or less | $3-15 \mathrm{~min}$. | 30 min. |

Table 2512. Recommended fix intervals.
Use all available fix information. With the advent of accurate satellite navigational systems, it is especially tempting to disregard this maxim. However, the experienced navigator never feels comfortable relying solely on one particular system. Supplement the satellite position with positions from Loran, celestial fixes, radar lines of position, soundings, or visual observations. Evaluate the accuracy of the various fix methods against the satellite position.

Use an inertial navigator if one is available. The inertial navigator may actually produce estimated positions more accurate than non-GPS based fix positions. Inertial navigators are completely independent of any external input. Therefore, they are invaluable for maintaining an accurate ship's position during periods when external fix sources are unreliable or unavailable.

Always check a position determined by a fix, inertial navigator, or DR by comparing the charted sounding at the position with the fathometer reading. If the soundings do not correlate, investigate the discrepancy.

Chapter 7 covers the importance of maintaining a proper DR. It bears repeating here. Determine the difference between the fix and the DR positions at every fix and use this information to calculate an EP from every DR. Constant application of set and drift to the DR is crucial if the vessel must pass a known navigational hazard close aboard.

## 2513. Fathometer Operations

While the science of hydrography has made tremendous advances in the last few years, these developments have yet to translate into significantly more accurate soundings on charts. Further, mariners often misunderstand the concept of an electronic chart, erroneously thinking that the conversion of a chart to electronic format indicates that updated hydrographic information has been used to compile it. This is rarely the case. In fact, most electronic charts are simply digitized versions of the paper charts, newly compiled but based on the same sounding databases, which in some cases are more than a century old.

While busy ports and harbors tend to be surveyed and dredged at regular intervals, in less travelled areas it is common for the navigator to find significant differences
between the observed and charted soundings. If in doubt about the date of the soundings, refer to the title block of the chart, where information regarding the data used to compile it may be found.

Standardized rules and procedures for the use of the depth sounder are advisable and prudent. Table 2513 suggests a set of guidelines for depth sounder use on a typical ship.

| Water Depth | Sounding Interval |
| :--- | :--- |
|  |  |
| $<10 \mathrm{~m}$ | Monitor continuously. |
| $10 \mathrm{~m}-<100 \mathrm{~m}$ | Every 15 minutes. |
| $100 \mathrm{~m}-<300 \mathrm{~m}$ | Every 30 minutes. |
| $>300 \mathrm{~m}$ | Every hour. |

Table 2513. Fathometer operating guidelines.

## 2514. Compass Checks

Determine gyro compass error at least once daily and before each transit of restricted waters. Check the gyro compass reading against the inertial navigator if one is installed. If the vessel does not have an inertial navigator, check gyro error using a flux gate magnetic or ring laser gyro compass, or by using the celestial techniques discussed in Chapter 17.

The magnetic compass, if operational, should be adjusted regularly and a deviation table prepared and posted as required (See Chapter 6). If the magnetic compass has been deactivated in favor of a digital flux gate magnetic, ring laser gyro, or other type of electronic compass, the electronic compass should be checked to ensure that it is operating within manufacturer's specifications, and that all remote repeaters are in agreement. Note that the electronic compass must not be in the ADJUST mode when in restricted waters.

## 2515. Night Orders and Standing Orders

The Night Order Book is the vehicle by which the captain informs the officer of the deck of his orders for operating the ship. It may be in hardcopy or softcopy format. The Night Order Book, despite its name, can contain orders for the entire 24 hour period for which the Captain or Commanding Officer issues it.

The navigator may write the Night Orders pertaining to navigation. Such orders include assigned operating areas, maximum speeds allowed, required positions with respect to PIM or DR, and, regarding submarines, the maximum depth at which the ship can operate. Each department head should include in the Night Order book the evolutions he wants to accomplish during the night that would normally require the captain's permission. The captain can add further orders and directions as required.

The Officer of the Deck or mate on watch must not follow the Night Orders blindly. Circumstances under which the captain signed the Orders may have changed, rendering some evolutions impractical or impossible. The Officer of the Deck, when exercising his judgment on completing ordered evolutions, must always inform the captain of any deviation from the Night Orders as soon as such a deviation occurs.

While Night Orders are in effect only for the 24 hours after they are written, Standing Orders are continuously in force. The captain sets the ship's navigation policy in these orders. He sets required fix intervals, intervals for fathometer operations, minimum CPA's, and other general navigation and collision avoidance requirements.

## 2516. Watch Relief Procedures

When a watch officer relieves as Officer of the Deck or mate on watch, he assumes the responsibility for the safe navigation of the ship. He becomes the Captain's direct representative, and is directly responsible for the safety of the ship and the lives of its crew. He must prepare himself carefully prior to assuming these responsibilities. A checklist developed specifically for each vessel can serve as a reminder that all watch relief procedures have been followed. The following list contains those items that, as a minimum, the relieving watch officer must check prior to assuming the navigation watch.

- Conduct a Pre-Watch Tour: The relieving watch officer should tour the ship prior to his watch. He should familiarize himself with any maintenance in progress, and check for general cleanliness and stowage. He should see that any loose gear that could pose a safety hazard in rough seas is secured.
- Check the Position Log and Chart: Check the type and accuracy of the ship's last fix. Verify that the navigation watch has plotted the last fix properly. Ensure there is a properly constructed DR plot on the chart. Examine the DR track for any potential navigational hazards. Check ship's position with respect to the PIM or DR. Ensure that the ship is in the correct operating area, if applicable. Check to ensure that the navigation watch has properly applied fix expansion if necessary.
- Check the Fathometer Log: Ensure that previous watches have taken soundings at required intervals and that the navigation watch took a sounding at the last fix. Verify that the present sounding matches the charted sounding at the vessel's position.
- Check the Compass Record Log: Verify that the navigation watch has conducted compass checks at the proper intervals. Verify that gyro error is less
than $1^{\circ}$ and that all repeaters agree within $1^{\circ}$ with the master gyro.
- Read the Night Orders: Check the Night Order Book for the captain's directions for the duration of the watch.
- Check Planned Operations and Evolutions: For any planned operations or evolutions, verify that the ship meets all prerequisites and that all watchstanders have reviewed the operation order or plan. If the operation is a complicated one, consider holding an operations brief with applicable watchstanders prior to assuming the watch.
- Check the Broadcast Schedule: Read any message traffic that could have a bearing on the upcoming watch. Find out when the last safety and operational messages were received. Determine if there are any required messages to be sent during the watch (e.g. position reports, weather reports, Amver messages).
- Check the Contact Situation: Check the radar picture (and sonar contacts if so equipped). Determine which contact has the nearest CPA and what maneuvers, if any, might be required to open the CPA. Find out from the off-going watch officer if there have been any bridge-to-bridge communications with any vessels in the area. Check that no CPA will be less than the minimum set by the Standing Orders.
- Review Watchstander Logs: Review the log entries for all watchstanders. Note any out-ofspecification readings or any trends in log readings indicating that a system will soon fail.

After conducting these checks, the relieving watch officer should report that he is ready to relieve the watch. The watch officer should brief the relieving watch officer on the following:

- Present course and speed
- Present depth (submarines only)
- Evolutions planned or in progress
- Status of the engineering plant
- Status of any out-of-commission equipment
- Orders not noted in the Night Order Book
- Status of cargo
- Hazardous operations planned or in progress
- Routine maintenance planned or in progress
- Planned ship's drills
- Any individuals working aloft, or in a tank or hold
- Any tank cleaning operations in progress

If the relieving watch officer has no questions following this brief, he should relieve the watch and announce to the rest of the bridge team that he has the deck and the conn. The change of watch should be noted in the ship's deck log.

Watch officers should not relieve the watch in the
middle of an evolution or when casualty procedures are being carried out. This ensures that there is watchstander continuity when carrying out a specific evolution or combating a casualty. Alternatively, the on-coming watch officer might relieve only the conn, leaving the deck watch with the off-going officer until the situation is resolved.

IPR2017-00946
Garmin EX2001 Page 383

## CHAPTER 26

# EMERGENCY NAVIGATION 

## BASIC TECHNIQUES OF EMERGENCY NAVIGATION

## 2600. Planning for Emergencies

Increasing reliance on electronic navigation and communication systems has dramatically changed the perspective of emergency navigation. While emergency navigation once concentrated on long-distance lifeboat navigation, today it is far more likely that a navigator will suffer failure of his ship's primary electronic navigation systems than that he will be forced to navigate a lifeboat. In the unlikely event that he must abandon ship, his best course of action is to remain as close to the scene as possible, for this is where rescuers will concentrate their search efforts. Leaving the scene of a disaster radically decreases the chance of rescue, and there is little excuse for failure to notify rescue authorities with worldwide communications and maritime safety systems available at little cost. See Chapter 28 for further discussion of these systems.

In the event of failure or destruction of electronic systems when the vessel itself is not in danger, navigational equipment and methods may need to be improvised. This is especially true with ECDIS and electronic charts. The navigator of a paperless ship, whose primary method of navigation is ECDIS, must assemble enough backup paper charts, equipment, and knowledge to complete his voyage in the event of a major computer system failure. A navigator who keeps a couple of dozen paper charts and a spare handheld GPS receiver under his bunk will be a hero in such an event. If he has a sextant and celestial calculator or tables and the knowledge to use them, so much the better.

No navigator should ever become completely dependent on electronic methods. The navigator who regularly navigates by blindly pushing buttons and reading the coordinates from "black boxes" will not be prepared to use basic principles to improvise solutions in an emergency.

For offshore voyaging, the professional navigator should become thoroughly familiar with the theory of celestial navigation. He should be able to identify the most useful stars and know how to solve various types of sights. He should be able to construct a plotting sheet with a protractor and improvise a sextant. He should know how to solve sights using tables or a navigational calculator. For the navigator prepared with such knowledge the situation is never hopeless. Some method of navigation is always available to one who understands certain basic principles.

The modern ship's regular suite of navigation gear consists of many complex electronic systems. Though they may possess a limited backup power supply, most depend on an uninterrupted supply of ship's electrical power. The failure of that power due to breakdown, fire, or hostile action can instantly render the unprepared navigator helpless. This discussion is intended to provide the navigator with the information needed to navigate a vessel in the absence of the regular suite of navigational gear. Training and preparation for a navigational emergency are essential. This should consist of regular practice in the techniques discussed herein while the regular navigation routine is in effect in order to establish confidence in emergency procedures.

## 2601. Emergency Navigation Kit

The navigator should assemble a kit containing equipment for emergency navigation. This kit should contain:

1. At least one proven and personally tested handheld GPS receiver with waypoints and routes entered, and with plenty of spare batteries.
2. A small, magnetic hand-bearing compass such as is used in small craft navigation, to be used if all other compasses fail.
3. A minimal set of paper charts for the voyage at hand, ranging from small-scale to coastal to approach and perhaps harbor, for the most likely scenarios. A pilot chart for the ocean basin in question makes a good small scale chart for offshore use.
4. A notebook or journal suitable for use as a deck log and for computations, plus maneuvering boards, graph paper, and position plotting sheets.
5. Pencils, erasers, a straightedge, protractor or plotter, dividers and compasses, and a knife or pencil sharpener.
6. A timepiece. The optimum timepiece is a quartz crystal chronometer, but any high-quality digital wristwatch will suffice if it is synchronized with the ship's chronometer. A portable radio capable of receiving time signals, together with a good wristwatch, will also suffice.
7. A marine sextant. (An inexpensive plastic sextant will
suffice.) Several types are available commercially. The emergency sextant should be used periodically so its limitations and capabilities are fully understood.
8. A celestial navigation calculator and spare batteries, or a current Nautical Almanac and this book or a similar text. Another year's almanac can be used for stars and the Sun without serious error by emergency standards. Some form of long-term almanac might be copied or pasted in the notebook.
9. Tables. Some form of table might be needed for reducing celestial observations if the celestial calculator fails. The Nautical Almanac produced by the U.S. Naval Observatory contains detailed procedures for calculator sight reduction and a compact sight reduction table.
10. Flashlight. Check the batteries periodically and include extra batteries and bulbs in the kit.
11. Portable radio. A handheld VHF transceiver approved by the Federal Communications Commission for emergency use can establish communications with rescue authorities. A small portable radio may be used as a radio direction finder or for receiving time signals.
12. An Emergency Position Indicating Radiobeacon (EPIRB) and a Search and Rescue Transponder (SART) are absolutely essential. (See Chapter 28).

## 2602. Most Probable Position

In the event of failure of primary electronic navigation systems, the navigator may need to establish the most probable position (MPP) of the vessel. Usually there is little doubt as to the position. The most recent fix updated with a DR position will be adequate. But when conflicting information or information of questionable reliability is received, the navigator must determine the MPP.

When complete positional information is lacking, or when the available information is questionable, the most probable position might be determined from the intersection of a single line of position and a DR, from a line of soundings, from lines of position which are somewhat inconsistent, or from a dead reckoning position with a correction for set and drift. Continue a dead reckoning plot from one fix to another because the DR plot often provides the best estimate of the MPP.

A series of estimated positions may not be consistent because of the continual revision of the estimate as additional information is received. However, it is good practice to plot all MPP's, and sometimes to maintain a separate EP plot based upon the best estimate of track and speed made good. This could indicate whether the present course is a safe one (See Chapter 23).

## 2603. Plotting Sheets

If plotting sheets are not available, a Mercator plotting
sheet can be constructed through either of two alternative methods based upon a graphical solution of the secant of the latitude, which approximates the expansion of latitude.

First method (Figure 2603a):
Step one: Draw a series of equally spaced vertical lines at any spacing desired. These are the meridians; label them at any desired interval, such as $1^{\prime}, 2^{\prime}, 5^{\prime}, 10^{\prime}, 30^{\prime}, 1^{\circ}$, etc.
Step two: Draw and label a horizontal line through the center of the sheet to represent the parallel of the mid-latitude of the area.
Step three: Through any convenient point, such as the intersection of the central meridian and the parallel of the mid-latitude, draw a line making an angle with the horizontal equal to the mid-latitude. In Figure 2603a this angle is $35^{\circ}$.
Step four: Draw in and label additional parallels. The length of the oblique line between meridians is the perpendicular distance between parallels, as shown by the broken arc. The number of minutes of arc between parallels is the same as that between the meridians.
Step five: Graduate the oblique line into convenient units. If $1^{\prime}$ is selected, this scale serves as both a latitude and mile scale. It can also be used as a longitude scale by measuring horizontally from a meridian instead of obliquely along the line.

The meridians may be shown at the desired interval and the mid-parallel may be printed and graduated in units of longitude. In using the sheet it is necessary only to label the meridians and draw the oblique line. From it determine the interval used to draw in and label additional parallels. If the central meridian is graduated, the oblique line need not be.

Second method (Figure 2603b):
Step one: At the center of the sheet draw a circle with a radius equal to $1^{\circ}$ (or any other convenient unit) of latitude at the desired scale. If a sheet with a compass rose is available, as in Figure 2603b, the compass rose can be used as the circle and will prove useful for measuring directions. It need not limit the scale of the chart, as an additional concentric circle can be drawn, and desired graduations extended to it.


Figure 2603a. Small area plotting sheet with selected longitude scale.

Step two: Draw horizontal lines through the center of the circle and tangent at the top and bottom. These are parallels of latitude; label them accordingly, at the selected interval (as every $1^{\circ}, 30^{\prime}$, etc.).
Step three: From the center of the circle draw a line making an angle with the horizontal equal to the mid-latitude. In Figure 2603b this angle is $40^{\circ}$.
Step four: Draw in and label the meridians. The first is a vertical line through the center of the circle. The second is a vertical line through the intersection of the oblique line and the circle. Additional meridians are drawn the same distance apart as the first two.
Step five: Graduate the oblique line into convenient units. If $1^{\prime}$ is selected, this scale serves as a latitude and mile scale. It can also be used as a longitude scale by measuring horizontally from a meridian, instead of obliquely along the line.

In the second method, the parallels may be shown at the desired interval, and the central meridian may be printed and graduated in units of latitude. In using the sheet it is necessary only to label the parallels, draw the oblique line,
and from it determine the interval and draw in and label additional meridians. If the central meridian is graduated, as shown in Figure 2603b, the oblique line need not be.

The same result is produced by either method. The first method, starting with the selection of the longitude scale, is particularly useful when the longitude limits of the plotting sheet determine the scale. When the latitude coverage is more important, the second method may be preferable. In either method a simple compass rose might be printed.

Both methods use a constant relationship of latitude to longitude over the entire sheet and both fail to allow for the ellipticity of the Earth. For practical navigation these are not important considerations.

## 2604. Dead Reckoning

Of the various types of navigation, dead reckoning alone is always available in some form. In an emergency it is of more than average importance. With electronic systems out of service, keep a close check on speed, direction, and distance made good. Carefully evaluate the effects of wind and current. Long voyages with accurate landfalls have been successfully completed by this method alone. This is not meant to minimize the importance of other methods of determining position. However, a good dead reckoning position may actually be more accurate than one determined from several inexact LOP's. If the means of determining direction and distance (the elements of dead reckoning)


Figure 2603b. Small area plotting sheet with selected latitude scale.

| Angle | 0 | 18 | 31 | 41 | 49 | 56 | 63 | 69 | 75 | 81 | 87 |  | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Factor | 1.0 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0.0 |  |  |

Table 2604. Simplified traverse table.
are accurate, it may be best to adjust the dead reckoning only after a confident fix.

Plotting can be done directly on a pilot chart or plotting sheet. If this proves too difficult, or if an independent check is desired, some form of mathematical reckoning may be useful. Table 2604, a simplified traverse table, can be used for this purpose. To find the difference or change of latitude in minutes, enter the table with course angle, reckoned from north or south toward the east or west. Multiply the distance run in miles by the factor. To find the departure in miles, enter the table with the complement of the course angle. Multiply the distance run in miles by the factor. To convert departure to difference of longitude in minutes, enter the table with mid-latitude and divide the departure by the factor.

Example: A vessel travels 26 miles on course $205^{\circ}$, from Lat. $41^{\circ} 44^{\prime} N$, Long. $56^{\circ} 21^{\prime} W$.

Required: Latitude and longitude of the point of arrival.
Solution: The course angle is $205^{\circ}-180^{\circ}=S 25^{\circ} \mathrm{W}$, and the complement is $90^{\circ}-25^{\circ}=65^{\circ}$. The factors corresponding to these angles are 0.9 and 0.4, respectively. The difference of latitude is $26 \times 0.9=23$ ' (to the nearest minute) and the
departure is $26 \times 0.4=10 \mathrm{NM}$. Since the course is in the southwestern quadrant in the Northern Hemisphere, the latitude of the point of arrival is $41^{\circ} 44^{\prime} N-23^{\prime}=41^{\circ} 21^{\prime} N$. The factor corresponding to the mid-latitude $41^{\circ} 32{ }^{\prime} \mathrm{N}$ is 0.7 . The difference of longitude is $10 \div 0.7=14^{\prime}$. The longitude of the point of arrival is $56^{\circ} 21^{\prime} \mathrm{W}+14=56^{\circ} 35^{\prime} \mathrm{W}$.

Answer: Lat. $41^{\circ} 21^{\prime} N$, Long. $56^{\circ} 35^{\prime} \mathrm{W}$.

## 2605. Deck Log

At the onset of a navigational emergency, a navigation $\log$ should be started if a deck $\log$ is not already being maintained. The date and time of the casualty should be the first entry, followed by navigational information such as ship's position, status of all navigation systems, the decisions made, and the reasons for them.

The best determination of the position of the casualty should be recorded, followed by a full account of courses, distances, positions, winds, currents, and leeway. No important navigational information should be left to memory.

## 2606. Direction

Direction is one of the elements of dead reckoning. A deviation table for each compass, including any lifeboat compasses, should already have been determined. In the event of destruction or failure of the gyrocompass and bridge magnetic compass, lifeboat compasses can be used.

If an almanac, accurate Greenwich time, and the necessary tables are available, the azimuth of any celestial body can be computed and this value compared with an azimuth measured by the compass. If it is difficult to observe the compass azimuth, select a body dead ahead and note the compass heading. The difference between the computed and observed azimuths is compass error on that heading. This is of more immediate value than deviation, but if the latter is desired, it can be determined by applying variation to the compass error.

Several unique astronomical situations occur, permitting determination of azimuth without computation:

Polaris: Polaris is always within $2^{\circ}$ of true north for observers between the equator and about $60^{\circ}$ North. When Polaris is directly above or below the celestial pole, its azimuth is true north at any latitude. This occurs when the trailing star of either Cassiopeia or the Big Dipper is directly above or below Polaris. When these two stars form a horizontal line with Polaris, the maximum correction applies. Below about $50^{\circ}$ latitude, this correction is $1^{\circ}$, and between $50^{\circ}$ and $65^{\circ}$, it is $2^{\circ}$. If Cassiopeia is to the right of Polaris, the azimuth is $001^{\circ}\left(002^{\circ}\right.$ above $\left.50^{\circ} \mathrm{N}\right)$, and if Cassiopeia is to the left of Polaris, the azimuth is $359^{\circ}\left(358^{\circ}\right.$ above $50^{\circ} \mathrm{N}$ ).

The south celestial pole is located approximately at the intersection of a line through the longer axis of the Southern Cross with a line from the northernmost star of Triangulum Australe, perpendicular to the line joining the other two stars of the triangle. No conspicuous star marks this spot.

Meridian Transit: Any celestial body bears due north or south at meridian transit, either upper or lower. This is the moment of maximum (or minimum) altitude of the body. However, since the altitude at this time is nearly constant during a considerable change of azimuth, the instant of meridian transit may be difficult to determine. If time and an almanac are available, and the longitude is known, the time of transit can be computed. It can also be graphed as a curve on graph paper and the time of meridian transit determined with sufficient accuracy for emergency purposes.

Body on Prime Vertical: If any method is available for determining when a body is on the prime vertical (due east or west), the compass azimuth at this time can be observed. Table 20, Meridian Angle and Altitude of a Body on the Prime Vertical Circle provides this information. Any body on the celestial equator (declination $0^{\circ}$ ) is on the prime vertical at the time of rising or setting. For the Sun this occurs at the time of the equinoxes. The star Mintaka ( $\delta$ Orionis), the leading star of Orion's belt, has a declination
of approximately $0.3^{\circ} \mathrm{S}$ and can be considered on the celestial equator. For an observer near the equator, such a body is always nearly east or west. Because of refraction and dip, the azimuth should be noted when the center of the Sun or a star is a little more than one Sun diameter (half a degree) above the horizon. The Moon should be observed when its upper limb is on the horizon.

Body at Rising or Setting: Except for the Moon, the azimuth angle of a body is almost the same at rising as at setting, except that the former is toward the east and the latter toward the west. If the azimuth is measured both at rising and setting, true south (or north) is midway between the two observed values, and the difference between this value and $180^{\circ}$ (or $000^{\circ}$ ) is the compass error. Thus, if the compass azimuth of a body is $073^{\circ}$ at rising, and $277^{\circ}$ at setting, true south $\left(180^{\circ}\right)$ is $\frac{073^{\circ}+277^{\circ}}{2}=175^{\circ}$ by compass, and the compass error is $5^{\circ} \mathrm{E}$. This method may be in error if the vessel is moving rapidly in a northerly or southerly direction. If the declination and latitude are known, the true azimuth of any body at rising or setting can be determined by means of a diagram on the plane of the celestial meridian or by computation. For this purpose, the body (except the Moon) should be considered as rising or setting when its center is a little more than one Sun diameter (half a degree) above the horizon, because of refraction and dip.

Finding direction by the relationship of the Sun to the hands of a watch is sometimes advocated, but the limitations of this method prevent its practical use at sea.

A simple technique can be used for determining deviation. Find an object that is easily visible and that floats, but will not drift too fast in the wind. A life preserver, or several tied together, will suffice. Throw this marker overboard, and steer the vessel steadily in the exact opposite direction to the chosen course. At a distance of perhaps half a mile, or more if the marker is still clearly in view, execute a Williamson turn, or turn the vessel $180^{\circ}$ in the smallest practical radius, and head back toward the marker. The magnetic course will be midway between the course toward the object and the reciprocal of the course away from the object. Thus, if the boat is on compass course $151^{\circ}$ while heading away from the object, and $337^{\circ}$ while returning, the magnetic course is midway between $337^{\circ}$ and $151^{\circ}+180^{\circ}=331^{\circ}$, or

$$
\frac{337^{\circ}+331^{\circ}}{2}=334^{\circ}
$$

Since $334^{\circ}$ magnetic is the same as $337^{\circ}$ by compass, the deviation on this heading is $3^{\circ} \mathrm{W}$.

If a compass is not available, any celestial body can be used to steer by, if its diurnal apparent motion is considered. A reasonably straight course can be steered by noting the direction of the wind, the movement of the clouds, the direction of the waves, or by watching the wake of the vessel. The angle between the centerline and the wake is an indication of the amount of leeway.

A body having a declination the same as the latitude of the destination is directly over the destination once each day, when its hour angle equals the longitude, measured westward through
$360^{\circ}$. At this time it should be dead ahead if the vessel is following the great circle leading directly to the destination. Inspect the almanac to find a body with a suitable declination.

## EMERGENCY CELESTIAL NAVIGATION

## 2607. Almanacs

Almanac information, particularly declination and Greenwich Hour Angle of bodies, is important to celestial navigation. If the only copy available is for a previous year, it can be used for the Sun, Aries ( $T$ ), and stars without serious error by emergency standards. However, for greater accuracy, proceed as follows:

For declination of the Sun, enter the almanac with a time that is earlier than the correct time by $5 \mathrm{~h} 49^{\mathrm{m}}$ multiplied by the number of years between the date of the almanac and the correct date, adding 24 hours for each February 29th that occurs between the dates. If the date is February 29th, use March 1 and reduce by one the number of 24 hour periods added. For GHA of the Sun or Aries, determine the value for the correct time, adjusting the minutes and tenths of arc to agree with that at the time for which the declination is determined. Since the adjustment never exceeds half a degree, care should be used when the value is near a whole degree, to prevent the value from being in error by $1^{\circ}$.

If no almanac is available, a rough approximation of the declination of the Sun can be obtained as follows: Count the days from the given date to the nearer solstice (June 21st or December 22nd). Divide this by the number of days from that solstice to the equinox (March 21st or September 23rd), using the equinox that will result in the given date being between it and the solstice. Multiply the result by $90^{\circ}$. Enter Table 2604 with the angle so found and extract the factor. Multiply this by $23.45^{\circ}$ to find the declination.

Example 1: The date is August 24th.
Required: The approximate declination of the Sun.
Solution: The number of days from the given date to the nearer solstice (June 21) is 64. There are 94 days between June 21 and September 23. Dividing and multiplying by $90^{\circ}$,

$$
\frac{64}{94} \times 90^{\circ}=61.3^{\prime}
$$

The factor from Table 2604 is 0.5. The declination is $23.45^{\circ} \times 0.5=11.7^{\circ}$. We know it is north because of the date.

Answer: Dec. $11.7^{\circ} \mathrm{N}$.
The accuracy of this solution can be improved by considering the factor of Table 2604 as the value for the mid-angle between the two limiting ones (except that 1.00 is correct for $0^{\circ}$ and 0.00 is correct for $90^{\circ}$ ), and interpolating to one additional decimal. In this instance the interpolation would be between 0.50 at $59.5^{\circ}$ and 0.40 at $66^{\circ}$. The interpolated value is 0.47 , giving a declination of
$11.0^{\circ} \mathrm{N}$. Still greater accuracy can be obtained by using a table of natural cosines instead of Table 2604. By natural cosine, the value is $11.3^{\circ} \mathrm{N}$.

If the latitude is known, the declination of any body can be determined by observing a meridian altitude. It is usually best to make a number of observations shortly before and after transit, plot the values on graph paper, letting the ordinate (vertical scale) represent altitude, and the abscissa (horizontal scale) the time. The altitude is found by fairing a curve or drawing an arc of a circle through the points, and taking the highest value. A meridian altitude problem is then solved in reverse.

Example 2: The latitude of a vessel is $40^{\circ} 16^{\prime}$ S. The Sun is observed on the meridian, bearing north. The observed altitude is $36^{\circ} 29^{\prime}$.

Required: Declination of the Sun.
Solution: The zenith distance is $90^{\circ}-36^{\circ} 29^{\prime}=53^{\circ} 31^{\prime}$. The Sun is $53^{\circ} 31^{\prime}$ north of the observer, or $13^{\circ} 15^{\prime}$ north of the equator. Hence, the declination is $13^{\circ} 15^{\prime} \mathrm{N}$.

## Answer: Dec. $13^{\circ} 15^{\prime} N$.

The GHA of Aries can be determined approximately by considering it equal to GMT (in angular units) on September 23rd. To find GHA Aries on any other date, add $1^{\circ}$ for each day following September 23rd. The value is approximately $90^{\circ}$ on December 22nd, $180^{\circ}$ on March 21st and $270^{\circ}$ on June 21st. The values found can be in error by as much as several degrees, and so should not be used if better information is available. An approximate check is provided by the great circle through Polaris, Caph (the leading star of Cassiopeia), and the eastern side of the square of Pegasus. When this great circle coincides with the meridian, LHA $\boldsymbol{\gamma}$ is approximately $0^{\circ}$. The hour angle of a body is equal to its SHA plus the hour angle of Aries. If an error of up to $4^{\circ}$, or a little more, is acceptable, the GHA of the Sun can be considered equal to GMT $\pm 180^{\circ}\left(12^{\mathrm{h}}\right)$.

For more accurate results, one can make a table of the equation of time from the Nautical Almanac perhaps at five- or ten-day intervals, and include this in the emergency navigation kit. The equation of time is applied according to its sign to GMT $\pm 180^{\circ}$ to find GHA.

## 2608. Altitude Measurement

With a sextant, altitudes are measured in the usual manner. If in a small boat or raft, it is a good idea to make a number of observations and average both the altitudes and times, or plot on graph paper the altitudes versus time. The rougher the sea, the
more important this process becomes, which tends to average out errors caused by rough weather observations.

The improvisations which may be made in the absence of a sextant are so varied that in virtually any circumstances a little ingenuity will produce a device to measure altitude. The results obtained with any improvised method will be approximate at best, but if a number of observations are averaged, the accuracy can be improved. A measurement, however approximate, is better than an estimate. Two general types of improvisation are available:

1. Circle. Any circular degree scale, such as a maneuvering board, compass rose, protractor, or plotter can be used to measure altitude or zenith distance directly. This is the principle of the ancient astrolabe. A maneuvering board or compass rose can be mounted on a flat board. A protractor or plotter may be used directly. There are a number of variations of the technique of using such a device. Some of them are:

A peg or nail is placed at the center of the circle as seen in Figure 2608a. A weight is hung from the $90^{\circ}$ graduation, and a string for holding the device is attached at the $270^{\circ}$ graduation. When it is held with the weight acting as a plumb bob, the $0^{\circ}-180^{\circ}$ line is horizontal. In this position the board is turned in azimuth until it is in line with the Sun. The intersection of the shadow of the center peg with the arc of the circle indicates the altitude of the center of the Sun.


Figure 2608a. Improvised astrolabe; shadow method.
The weight and loop can be omitted and pegs placed at the $0^{\circ}$ and $180^{\circ}$ points of the circle. While one observer sights along the line of pegs to the horizon, an assistant notes the altitude.

The weight can be attached to the center pin, and the
three pins $\left(0^{\circ}\right.$, center, $180^{\circ}$ ) aligned with the celestial body. The reading is made at the point where the string holding the weight crosses the scale. The reading thus obtained is the zenith distance unless the graduations are labeled to indicate altitude. This method, illustrated in Figure 2608b, is used for bodies other than the Sun.


Figure 2608b. Improvised astrolabe; direct sighting method.
Whatever the technique, reverse the device for half the readings of a series to minimize errors of construction. Generally, the circle method produces more accurate results than the right triangle method, described below.
2. Right triangle. A cross-staff can be used to establish one or more right triangles, which can be solved by measuring the angle representing the altitude, either directly or by reconstructing the triangle. Another way of determining the altitude is to measure two sides of the triangle and divide one by the other to determine one of the trigonometric functions. This procedure, of course, requires a source of information on the values of trigonometric functions corresponding to various angles. If the cosine is found, Table 2604 can be used. The tabulated factors can be considered correct to one additional decimal for the value midway between the limited values (except that 1.00 is the correct value for $0^{\circ}$ and 0.00 is the correct value for $90^{\circ}$ ) without serious error by emergency standards. Interpolation can then be made between such values.

By either protractor or table, most devices can be graduated in advance so that angles can be read directly. There are many variations of the right triangle method. Some of these are described below.

Two straight pieces of wood can be attached to each other in such a way that the shorter one can be moved along the longer, the two always being perpendicular to each other. The shorter piece is attached at its center. One end of the longer arm is held to the eye. The shorter arm is moved until its top edge is in line with the celestial body, and its bottom edge is in line with the horizon. Thus, two right triangles are formed, each representing half the altitude. See Figure 2608c.For low altitudes, only one of the triangles is used, the long arm being held in line with the horizon. The length of half the short arm, divided by the length of that part of the long arm between the eye and the intersection with the short arm, is the tangent of half the altitude (the whole altitude if only one right triangle is used). The cosine can be found by dividing that part of the long arm between the eye and the intersection with the short arm by the slant distance from the eye to one end of the short arm. Graduations consist of a series of marks along the long arm indicating settings for various angles. The device should be inverted for alternate readings of a series.


Figure 2608c. Improvised cross-staff.
A rule or any stick can be held at arm's length. The top of the rule is placed in line with the celestial body being observed, and the top of the thumb is placed in line with the horizon. The rule is held vertically. The length of rule above the thumb, divided by the distance from the eye to the top of the thumb, is the tangent of the angle observed. The cosine can be found by dividing the distance from the eye to the top of the thumb by the distance from the eye to the top of the rule. If the rule is tilted toward the eye until the minimum of rule is used, the distance from the eye to the middle of the rule is substituted for the distance from the eye to the top of the thumb, half the length of the rule above the thumb is used, and the angle found is multiplied by 2 . Graduations consist of marks on the rule or stick indicating various altitudes. For the average observer each inch of rule will subtend an angle of about $2.3^{\circ}$, assuming an eye-to-ruler distance of 25 inches. This relationship is good to a maximum altitude of about $20^{\circ}$.

The accuracy of this relationship can be checked by comparing the measurement against known angles in the sky. Angular distances between stars can be computed by sight reduction methods, including Pub.No.229, by using the dec-
lination of one star as the latitude of the assumed position, and the difference between the hour angles (or SHA's) of the two bodies as the local hour angle. The angular distance is the complement of the computed altitude. The angular distances between some well-known star pairs are: end stars of Orion's belt, $2.7^{\circ}$; pointers of the Big Dipper, $5.4^{\circ}$, Rigel to Orion's belt, $9.0^{\circ}$; eastern side of the great square of Pegasus, $14.0^{\circ}$; Dubhe (the pointer nearer Polaris) and Mizar (the second star in the Big Dipper, counting from the end of the handle), $19.3^{\circ}$.

The angle between the lines of sight from each eye is, at arm's length, about $6^{\circ}$. By holding a pencil or finger horizontally, and placing the head on its side, one can estimate an angle of about $6^{\circ}$ by closing first one eye and then the other, and noting how much the pencil or finger appears to move in the sky.

The length of the shadow of a peg or nail mounted perpendicular to a horizontal board can be used as one side of an altitude triangle. The other sides are the height of the peg and the slant distance from the top of the peg to the end of the shadow. The height of the peg, divided by the length of the shadow, is the tangent of the altitude of the center of the Sun. The length of the shadow, divided by the slant distance, is the cosine. Graduations consist of a series of concentric circles indicating various altitudes, the peg being at the common center. The device is kept horizontal by floating it in a bucket of water. Half the readings of a series are taken with the board turned $180^{\circ}$ in azimuth.

Two pegs or nails can be mounted perpendicular to a board, with a weight hung from the one farther from the eye. The board is held vertically and the two pegs aligned with the body being observed. A finger is then placed over the string holding the weight, to keep it in position as the board is turned on its side. A perpendicular line is dropped from the peg nearer the eye, to the string. The body's altitude is the acute angle nearer the eye. For alternate readings of a series, the board should be inverted. Graduations consist of a series of marks indicating the position of the string at various altitudes.

As the altitude decreases, the triangle becomes smaller. At the celestial horizon it becomes a straight line. No instrument is needed to measure the altitude when either the upper or lower limb is tangent to the horizon, as the sextant altitude is then $0^{\circ}$.

## 2609. Sextant Altitude Corrections

If altitudes are measured by a marine sextant, the usual sextant altitude corrections apply. If the center of the Sun or Moon is observed, either by sighting at the center or by shadow, the lower-limb corrections should be applied, as usual, and an additional correction of minus $16^{\prime}$ applied. If the upper limb is observed, use minus $32^{\prime}$. If a weight is used as a plumb bob, or if the length of a shadow is measured, omit the dip (height of eye) correction.

If an almanac is not available for corrections, each source of error can be corrected separately, as follows:

If a sextant is used, the index correction should be determined and applied to all observations, or the sextant adjusted to


Table 2609. Simplified refraction table.
eliminate index error.
Refraction is given to the nearest minute of arc in Table 2609. The value for a horizon observation is 34 '. If the nearest $0.1^{\circ}$ is sufficiently accurate, as with an improvised method of observing altitude, a correction of $0.1^{\circ}$ should be applied for altitudes between $5^{\circ}$ and $18^{\circ}$, and no correction applied for greater altitudes. Refraction applies to all observations, and is always minus.

Dip, in minutes of arc, is approximately equal to the square root of the height of eye, in feet. The dip correction applies to all observations in which the horizon is used as the horizontal reference. It is always a minus. If $0.1^{\circ}$ accuracy is acceptable, no dip correction is needed for height of eye in a small boat.

The semidiameter of the Sun and Moon is approximately 16 ' of arc. The correction does not apply to other bodies or to observations of the center of the Sun and Moon, by whatever method, including shadow. The correction is positive if the lower limb is observed, and negative if the upper limb is observed.

For emergency accuracy, parallax is applied to observations of the Moon only. An approximate value, in minutes of arc, can be found by multiplying 57' by the factor from Table 2604, entering that table with altitude. For more accurate results, the factors can be considered correct to one additional decimal for the altitude midway between the limiting values (except that 1.00 is correct for $0^{\circ}$ and 0.00 is correct for $90^{\circ}$ ), and the values for other altitudes can be found by interpolation. This correction is always positive.

For observations of celestial bodies on the horizon, the total correction for zero height of eye is:

$$
\begin{array}{ll}
\text { Sun: } & \text { Lower limb: (-)18', upper limb: (-)50'. } \\
\text { Moon: } & \text { Lower limb: }(+) 39^{\prime}, \text { upper limb: }(+) 7^{\prime} .
\end{array}
$$

Planet/Star: (-)34 ${ }^{\circ}$
Dip should be added algebraically to these values. Since the sextant altitude is zero, the observed altitude is equal to the total correction.

## 2610. Sight Reduction

Sight reduction tables should be used, if available. If not, use the compact sight reduction tables found in the Nautical Almanac. If trigonometric tables and the necessary formulas are available, they will serve the purpose. Speed in solution is seldom a factor in a liferaft, but might be important aboard ship, particularly in hostile areas. If tables but no formulas are available, determine the mathematical knowledge possessed by the crew. Someone may be able to provide the missing information. If the formulas are available, but no tables, approximate natural values of the various trigonometric
functions can be obtained graphically. Graphical solution of the navigational triangle can be made by the orthographic method explained Chapter 15, Navigational Astronomy. A maneuvering board might prove helpful in the graphical solution for either trigonometric functions or altitude and azimuth. Very careful work will be needed for useful results by either method. Unless proper navigational equipment is available, better results might be obtained by making separate determinations of latitude and longitude.

## 2611. Finding Latitude

Several methods are available for determining latitude; none requires accurate time.

Latitude can be determined using a meridian altitude of any body, if its declination is known. If accurate time, knowledge of the longitude, and an almanac are available, the observation can be made at the correct moment, as determined in advance. However, if any of these are lacking, or if an accurate altitude measuring instrument is unavailable, it is better to make a number of altitude observations before and after meridian transit. Then plot altitude versus time on graph paper, and the highest (or lowest, for lower transit) altitude is scaled from a curve faired through the plotted points. At small boat speeds, this procedure is not likely to introduce a significant error. The time used for plotting the observations need not be accurate, as elapsed time between observations is all that is needed, and this is not of critical accuracy. Any altitudes that are not consistent with others of the series should be discarded.

Latitude by Polaris is explained in Chapter 20, Sight Reduction. In an emergency, only the first correction is of practical significance. If suitable tables are not available, this correction can be estimated. The trailing star of Cassiopeia ( $\varepsilon$ Cassiopeiae) and Polaris have almost exactly the same SHA. The trailing star of the Big Dipper (Alkaid) is nearly opposite Polaris and $\varepsilon$ Cassiopeiae. These three stars, $\varepsilon$ Cassiopeiae, Polaris, and Alkaid, form a line through the N. Celestial Pole (approximately). When this line is horizontal, there is no correction. When it is vertical, the maximum correction of 56 ' applies. It should be added to the observed altitude if Alkaid is at the top, and subtracted if $\varepsilon$ Cassiopeiae is at the top. For any other position, estimate the angle this line makes with the vertical, and multiply the maximum correction ( $56^{\prime}$ ) by the factor from Table 2604, adding if Alkaid is higher than $\varepsilon$ Cassiopeiae, and subtracting if it is lower. See Figure 2611. For more accurate results, the factor from Table 2604 can be considered accurate to one additional decimal for the mid-value between those tabulated (except that 1.00 is
correct for $0^{\circ}$ and 0.00 for $90^{\circ}$ ). Other values can be found by interpolation.


Figure 2611. Relative positions of $\varepsilon$ Cassiopeiae, Polaris, and Alkaid with respect to the north celestial pole.

The length of the day varies with latitude. Hence, latitude can be determined if the elapsed time between sunrise and sunset can be accurately observed. Correct the observed length of day by adding 1 minute for each $15^{\prime}$ of longitude traveled toward the east and subtracting 1 minute for each 15 ' of longitude traveled toward the west. The latitude determined by length of day is the value for the time of meridian transit. Since meridian transit occurs approximately midway between sunrise and sunset, half the interval may be observed and doubled. If a sunrise and sunset table is not available, the length of daylight can be determined graphically using a diagram on the plane of the celestial meridian, as explained in Chapter 15. A maneuvering board is useful for this purpose. This method cannot be used near the time of the equinoxes and is of little value near the equator. The Moon can be used if moonrise and moonset tables are available. However, with the Moon, the half-interval method is of insufficient accuracy, and allowance should be made for the longitude correction.

The declination of a body in zenith is equal to the latitude of the observer. If no means are available to measure altitude, the position of the zenith can be determined by holding a weighted string overhead.

## 2612. Finding Longitude

Unlike latitude, determining longitude requires
accurate Greenwich time. All such methods consist of noting the Greenwich time at which a phenomenon occurs locally. In addition, a table indicating the time of occurrence of the same phenomenon at Greenwich, or equivalent information, is needed. Three methods may be used to determine longitude.

When a body is on the local celestial meridian, its GHA is the same as the longitude of the observer if in west longitude, or $360-\lambda$ in east longitude. Thus, if the GMT of local time of transit is determined and a table of Greenwich Hour Angles (or time of transit of the Greenwich meridian) is available, longitude can be computed. If only the equation of time is available, the method can be used with the Sun. This is the reverse of the problem of finding the time of transit of a body. The time of transit is not always apparent. If a curve is made of altitude versus time, as suggested previously, the time corresponding to the highest altitude is used in finding longitude. Under some conditions, it may be preferable to observe an altitude before meridian transit, and then again after meridian transit when the body has returned to the same altitude as at the first observation. Meridian transit occurs midway between these two times. A body in the zenith is on the celestial meridian. If accurate azimuth measurement is available, note the time when the azimuth is $000^{\circ}$ or $180^{\circ}$.

The difference between the observed GMT of sunrise or sunset and the LMT tabulated in the almanac is the longitude in time units, which can then be converted to angular measure. If the Nautical Almanac is used, this information is tabulated for each third day only. Greater accuracy can be obtained if interpolation is used for determining intermediate values. Moonrise or moonset can be used if the tabulated LMT is corrected for longitude. Planets and stars can be used if the time of rising or setting can be determined. This can be computed, or approximated using a diagram on the plane of the celestial meridian (See Chapter 15, Navigational Astronomy).

Either of these methods can be used in reverse to set a watch that has run down or to check the accuracy of a watch if the longitude is known. In the case of a meridian transit, the time at the instant of transit is not necessary.

Simply start the watch and measure the altitude several times before and after transit, or at equal altitudes before and after transit. Note the times of these observations and find the exact watch time of meridian transit. The difference between this time and the correct time of transit is the correction factor by which to reset the watch.

## CHAPTER 27

# NAVIGATION REGULATIONS 

## SHIP ROUTING

## 2700. Purpose and Types of Routing Systems

Navigation, once independent throughout the world, is an increasingly regulated activity. The consequences of collision or grounding for a large, modern ship carrying tremendous quantities of high-value, perhaps dangerous cargo are so severe that authorities have instituted many types of regulations and control systems to minimize the chances of loss. These range from informal and voluntary systems to closely controlled systems requiring strict compliance with numerous regulations. The regulations may concern navigation, communications, equipment, procedures, personnel, and many other aspects of ship management. This chapter will be concerned primarily with navigation regulations and procedures.

There are many types of vessel traffic rules. However, the cornerstone of all these are the Navigation Rules: Inter-national-Inland. The International Rules (Title 33 U.S.C. Chap. 30) were formalized in the Convention of the International Regulations for the Preventing of Collisions at Sea of 1972 (COLREGS ‘72) and became effective on July 15, 1977. Following the signing of the Convention, an effort was made to unify and update the various domestic navigation rules. This effort culminated in the enactment of the Inland Navigation Rules Act of 1980.

The Inland Navigation Rules (Title 33 U.S.C. Chap. 34) recodified parts of the Motorboat Act of 1940 and a large body of existing navigational practices, pilot rules, interpretive rules previously referred to as the Great Lakes Rules, Inland Rules and Western River Rules. The effective date for the Inland Navigation Rules was December 24, 1981, except for the Great Lakes where the effective date was March 1, 1983.

The International Rules apply to vessels on waters outside of the established lines of demarcation (COLREGS Demarcation Lines, 33 C.F.R. §80). These lines are depicted on U.S. charts with dashed lines, and generally run between major headlands and prominent points of land at the entrance to coastal rivers and harbors. The Inland Navigation Rules apply to waters inside the lines of demarcation. It is important to note that with the exception of Annex V to the Inland Rules, the International and Inland Navigation Rules are very similar in both content and format.

Much information relating to maritime regulations may be found on the World Wide Web, and any common
search engine can turn up increasing amounts of documents posted for mariners to access. As more and more regulatory information is posted to new Web sites and bandwidth increases, mariners will have easier access to the numerous rules with which they must comply.

## 2701. Terminology

There are several specific types of regulatory systems. For commonly used open ocean routes where risk of collision is present, the use of Recommended Routes separates ships going in opposite directions. In areas where ships converge at headlands, straits, and major harbors, Traffic Separation Schemes (TSS's) have been instituted to separate vessels and control crossing and meeting situations. Vessel Traffic Services (VTS's), sometimes used in conjunction with a TSS, are found in many of the major ports of the world. While TSS's are often found offshore in international waters, VTS's are invariably found closer to shore, in national waters. Environmentally sensitive areas may be protected by Areas to be Avoided which prevent vessels of a certain size or carrying certain cargoes from navigating within specified boundaries. In confined waterways such as canals, lock systems, and rivers leading to major ports, local navigation regulations often control ship movement.

The following terms relate to ship's routing:
Routing System: Any system of routes or routing measures designed to minimize the possibility of collisions between ships, including TSS's, twoway routes, recommended tracks, areas to be avoided, inshore traffic zones, precautionary areas, and deep-water routes.

Traffic Separation Scheme: A routing measure which separates opposing traffic flow with traffic lanes.

Separation Zone or Line: An area or line which separates opposing traffic, separates traffic from adjacent areas, or separates different classes of ships from one another.

Traffic Lane: An area within which one-way traffic is established.

Roundabout: A circular traffic lane used at junctions of several routes, within which traffic moves counterclockwise around a separation point or zone.

Inshore Traffic Zone: The area between a traffic separation scheme and the adjacent coast, usually designated for coastal traffic.

Two-Way Route: A two-way track for guidance of ships through hazardous areas.

Recommended Route: A route established for convenience of ship navigation, often marked with centerline buoys.

Recommended Track: A route, generally found to be free of dangers, which ships are advised to follow to avoid possible hazards nearby.

Deep-Water Route: A route surveyed and chosen for the passage of deep-draft vessels through shoal areas.

Precautionary Area: A defined area within which ships must use particular caution and should follow the recommended direction of traffic flow.

Area to be Avoided: An area within which navigation by certain classes of ships is prohibited because of particular navigational dangers or environmentally sensitive natural features. They are depicted on charts by dashed or composite lines. The smallest may cover less than a mile in extent; the largest may cover hundreds of square miles. Notes on the appropriate charts and in pilots and Sailing Directions tell which classes of ships are excluded from the area.

Established Direction of Traffic Flow: The direction in which traffic within a lane must travel.

Recommended Direction of Traffic Flow: The direction in which traffic is recommended to travel.

There are various methods by which ships may be separated using Traffic Separation Schemes. The simplest scheme might consist of just one method. More complex schemes will use several different methods together in a
coordinated pattern to route ships to and from several areas at once. Schemes may be just a few miles in extent, or cover relatively large sea areas.

## 2702. Recommended Routes and Tracks

Recommended Routes across the North Atlantic have been followed since 1898, when the risk of collision between increasing numbers of ships became too great, particularly at junction points. The International Convention for the Safety of Life at Sea (SOLAS) codifies the use of certain routes. These routes vary with the seasons, with winter and summer tracks chosen so as to avoid iceberg-prone areas. These routes are often shown on charts, particularly small scale ones, and are generally used to calculate distances between ports in tables.

Recommended Routes consist of single tracks, either one-way or two-way. Two-way routes show the best water through confined areas such as among islands and reefs. Ships following these routes can expect to meet other vessels head-on and engage in normal passings. One-way routes are generally found in areas where many ships are on similar or opposing courses. They are intended to separate opposing traffic so that most maneuvers are overtaking situations instead of the more dangerous meeting situation.

## 2703. Charting Routing Systems

Routing Systems and TSS's are depicted on nautical charts in magenta (purple) or black as the primary color. Zones are shown by purple tint, limits are shown by composite lines such as are used in other maritime limits, and lines are dashed. Arrows are outlined or dashed-lined depending on use. Deep-water routes are marked with the designation "DW" in bold purple letters, and the least depth may be indicated.

Recommended Routes and recommended tracks are generally indicated on charts by black lines, with arrowheads indicating the desired direction of traffic. Areas to be Avoided are depicted on charts by dashed lines or composite lines, either point to point straight lines or as a circle centered on a feature in question such as a rock or island.

Note that not all ship's routing measures are charted. U.S. charts generally depict recommended routes only on charts made directly from foreign charts. Special provisions applying to a scheme may be mentioned in notes on the chart and are usually discussed in detail in the Sailing Directions. In the U.S., the boundaries and routing scheme's general location and purpose are set forth in the Code of Federal Regulations and appear in the Coast Pilot.

## TRAFFIC SEPARATION SCHEMES

## 2704. Traffic Separation Schemes (TSS)

In 1961, representatives from England, France, and

Germany met to discuss ways to separate traffic in the congested Straits of Dover and subsequently in other congested areas. Their proposals were submitted to the

International Maritime Organization (IMO) and were adopted in general form. IMO expanded on the proposals and has since instituted a system of Traffic Separation Schemes (TSS) throughout the world.

The IMO is the only international body responsible for establishing and recommending measures for ship's routing in international waters. It does not attempt to regulate traffic within the territorial waters of any nation.

In deciding whether or not to adopt a TSS, IMO considers the aids to navigation system in the area, the state of hydrographic surveys, the scheme's adherence to accepted standards of routing, and the International Rules of the Road. The selection and development of TSS's are the responsibility of individual governments, who may seek IMO adoption of their plans, especially if the system extends into international waters.

Governments may develop and implement TSS's not adopted by the IMO, but in general only IMO-adopted schemes are charted. Rule 10 of the International Regulations for Preventing Collisions at Sea (Rules of the Road) addresses the subject of TSS's. This rule specifies the actions to be taken by various classes of vessels in and near traffic schemes.

Traffic separation schemes adopted by the IMO are listed in Ship's Routing, a publication of the IMO, 4 Albert Embankment, London SE1 7SR, United Kingdom http://www.imo.org. Because of differences in datums, chartlets in this publication which depict the various schemes must not be used either for navigation or to chart the schemes on navigational charts. The Notice to Mariners should be consulted for charting details.

## 2705. Methods and Depiction

A number of different methods of separating traffic have been developed, using various zones, lines, and defined areas. One or more methods may be employed in a given traffic scheme to direct and control converging or passing traffic. These are discussed below. Refer to definitions in Article 2701 and Figure 2705.

Method 1.Separation of opposing streams of traffic by separation zones or lines. In this method, typically a central separation zone is established within which ships are not to navigate. The central zone is bordered by traffic lanes with established directions of traffic flow. The lanes are bounded on the outside by limiting lines.

Method 2. Separation of opposing streams of traffic by natural features or defined objects. In this method islands, rocks, or other features may be used to separate traffic. The feature itself becomes the separation zone.

Method 3. Separation of through traffic from local traffic by provision of Inshore Traffic Zones. Inshore traffic
zones provide an area within which local traffic may travel at will without interference from through traffic in the lanes. Inshore zones are separated from traffic lanes by separation zones or lines.

Method 4. Division of traffic from several different directions into sectors. This approach is used at points of convergence such as pilot stations and major entrances.

Method 5. Routing traffic through junctions of two or more major shipping routes. The exact design of the scheme in this method varies with conditions. It may be a circular or rectangular precautionary area, a roundabout, or a junction of two routes with crossing routes and directions of flow well defined.

## 2706. Use of Traffic Separation Schemes

A TSS is not officially approved for use until adopted by the IMO. Once adopted, it is implemented at a certain time and date and announced in the Notice to Mariners and by other means. The Notice to Mariners will also describe the scheme's general location and purpose, and give specific directions in the chart correction section on plotting the various zones and lines which define it. These corrections usually apply to several charts. Because the charts may range in scale from quite small to very large, the corrections for each should be followed closely. The positions for the various features may be slightly different from chart to chart due to differences in rounding off positions or chart datum.

Use of TSS's by all ships is recommended but not always required. In the event of a collision, vessel compliance with the TSS is a factor in assigning liability in admiralty courts. TSS's are intended for use in all weather, both day and night. Adequate aids to navigation are a part of all TSS's. There is no special right of one ship over another in TSS's because the Rules of the Road apply in all cases. Deep-water routes should be avoided by ships that do not need them to keep them clear for deep-draft vessels. Ships need not keep strictly to the courses indicated by the arrows, but are free to navigate as necessary within their lanes to avoid other traffic. The signal "YG" is provided in the International Code of Signals to indicate to another ship: "You appear not to be complying with the traffic separation scheme." TSS's are discussed in detail in the Sailing Directions for the areas where they are found.

Certain special rules adopted by IMO apply in constricted areas such as the Straits of Malacca and Singapore, the English Channel and Dover Strait, and in the Gulf of Suez. These regulations are summarized in the appropriate Sailing Directions (Planning Guides). For a complete summary of worldwide ships' routing measures, the IMO publication Ship's Routing should be obtained. See Article 2704.

| Routing term | Symbol | Description | Applications |
| :---: | :---: | :---: | :---: |
| 1 Established direction of traffic flow | $\longrightarrow$ | Outlined arrow | Traffic separation schemes and deepwater routes (when part of a traffic lane) |
| 2 Recommended direction of traffic flow | ㄷニニ $\Rightarrow$ | Dashed outlined arrow | Precautionary areas, two-way routes, recommended routes and deep-water routes |
| 3 Separation lines |  | Tint, 3 mm wide | Traffic separation schemes and between traffic separation schemes and inshore traffic zone |
| 4 Separation zones |  | Tint, may be any shape | Traffic separation schemes and between traffic separation schemes and inshore traffic zones |
| 5 Limits of restricted areas (charting term) |  | T-Shaped dashes | Areas to be avoided and defined ends of inshore traffic zones |
| 6 General maritime limits (charting term) |  | Dashed line | Traffic separation schemes, precautionary areas, two-way routes and deep-water routes |
| 7 Recommended tracks: one-way two-way | --<-------- | Dashed lines with arrowheads (colour black) | Generally reserved for use by charting authorities |
| 8 Recommended routes | ---------- | Dashed line and dashed outlined arrows | Recommended routes |
| 9 Precautionary areas |  | Precautionary symbol | Precautionary areas |

Figure 2705. Traffic separation scheme symbology. On charts the symbols are usually in magenta.

## VESSEL TRAFFIC SERVICES (VTS)

## 2707. Description and Purpose

The purpose of Vessel Traffic Services (VTS) is to provide interactive monitoring and navigational advice for vessels in particularly confined and busy waterways. There are two main types of VTS, surveilled and non-surveilled. Surveilled systems consist of one or more land-based radar sites which transmit their signals to a central location where
operators monitor and, to a certain extent, control traffic flows. Ships contact the VTS authority at predetermined, charted calling -in points. Non-surveilled systems consist of one or more calling-in points at which ships are required to report their identity, course, speed, and other data to the monitoring authority. At least 18 countries in the world now operate vessel traffic services of some sort, including most major maritime nations.

Vessel Traffic Services in the U.S. are implemented under the authority of the Ports and Waterways Safety Act of 1972 (Public Law 92-340 as amended) and the St. Lawrence Seaway Act (Public Law 358). They encompass a wide range of techniques and capabilities aimed at preventing vessel allisions, collisions, and groundings in the approach, harbor and inland waterway phases of navigation. They are also designed to expedite ship movements, increase transportation system capacity, and improve allweather operating capability. Automatic Identification Systems (AIS) may be integrated into VTS operations.

A VHF-FM communications network forms the basis of most VTS's. Transiting vessels make position reports to an operations center by radiotelephone and are in turn provided with accurate, complete, and timely navigational safety information. The addition of a network of radars for surveillance and computer-assisted tracking and tagging, similar to that used in air traffic control, allows the VTS to play a more significant role in marine traffic management. This decreases vessel congestion and critical encounter situations, and lessens the probability of a marine casualty resulting in environmental damage. Surveilled VTS's are found in many large ports and harbors where congestion is a safety and operational hazard. Less sophisticated services have been established in other areas in response to hazardous navigational conditions according to the needs and resources of the authorities.

An important and rapidly developing technology is the ship Automated Information System (AIS). AIS is similar to the transponder in an aircraft, which sends out a radio signal containing information such as the name of the vessel, course, speed, etc. This data appears as a text tag, attached to the radar blip, on systems designed to receive and process the signals. It enhances the ability of VTS operators to monitor and control shipping in busy ports.

## 2708. Development of U.S. VTS's

Since the early 1960's the U.S. Coast Guard has been investigating various concepts by which navigational safety can be improved in the harbor and harbor approach phases. Equipment installations in various ports for this investigation have included shore-based radar, closed-circuit television (LLL-CCTV), VHF-FM communications, broadcast television, and computer driven electronic situation displays.

In 1962 an experimental installation called Ratan (Radar and Television Aid to Navigation) was completed in New York Harbor. In this system a radar at Sandy Hook, New Jersey, scanned the approaches to the harbor. The radar video, formatted by a scan conversion storage tube, was broadcast by a television band UHF transmitter. This enabled mariners to observe on commercial television sets the presentation on the radarscope at Sandy Hook. The mariner could identify his vessel on the television screen by executing a turn and by observing the motions of the
targets. The high persistency created by the scan converter provided target "tails" which aided in observing target movement. This Ratan experiment was discontinued primarily because of allocation of the commercial television frequency spectrum for other purposes.

In January 1970 the Coast Guard established a harbor radar facility in San Francisco to gather data on vessel traffic patterns. The information was used to determine parameters for new equipment procurements. The initial installation consisted of standard marine X-band (3-centimeter) search radars located on Point Bonita and Yerba Buena Island in San Francisco Bay. Radar video was relayed from these two radar sites to a manned center co-located with the San Francisco Marine Exchange. When the parameter definition work was completed, VHF-FM communications equipment was added to enable communications throughout the harbor area. This experimental system, previously called Harbor Advisory Radar (HAR) was designated in August 1972 as an operational Vessel Traffic System (VTS); a continuous radar watch with advisory radio broadcasts to traffic in the harbor was provided. This change from HAR to VTS coincided with the effective date of the Ports and Waterways Safety Act of 1972, authorizing the U.S. Coast Guard to install and operate such systems in United States waters to increase vessel safety and protect the environment.

In late 1972 improved developmental radar systems were installed side by side with the operational system, operated by a new research evaluation center at Yerba Buena Island. Redundant operator-switchable transceivers provided 50 kW peak power and incorporated receivers with large dynamic ranges of automatic gain control giving considerable protection against receiver saturation by interfering signals and interference by rain and sea clutter. Parabolic antennas with apertures of 27 feet ( 8.2 meters) and beam widths of 0.3 degrees improved the radar system accuracy. Variable pulse lengths ( 50 and 200 nanoseconds), three pulse repetition rates ( 1000,2500 , and 4000 pps ), two receiver bandwidths ( 22 MHz and 2 MHz ), and three antenna polarizations (horizontal, vertical, and circular) were provided to evaluate the optimum parameters for future procurements.

After a period of extensive engineering evaluation, the radar system was accepted in May 1973 as an operational replacement for the equipment installed earlier at the HAR.

In 1980 an analysis indicated that a modified version of the Coast Guard standard shipboard radar would meet all the VTS standard operating requirements. Additionally, it was more cost effective to procure and maintain than the specially designed, non-standard radar. After a period of evaluation at VTS San Francisco and with certain technical modifications, the standard radar was accepted for VTS use. The radar includes a tracking system which enhances the radar capability by allowing the VTS to track up to 20 targets automatically. The PPI can operate in an environment that is half as bright as a normal room with an option for a TV type display that can operate under any
lighting conditions.
The new radar was installed in VTS Prince William Sound in August, 1984. VTS Houston-Galveston's radar was replaced in January, 1985. VTS San Francisco's radars were replaced in May, 1985. VTS New York reopened in late 1990.

## 2709. U.S. Operational Systems

VTS New York became operational in December 1990. It had been open previously but was closed in 1988 due to a change in funding priorities.

This VTS has the responsibility of coordinating vessel traffic movements in the busy ports of New York and New Jersey. The VTS New York area includes the entrance to the harbor via Ambrose and Sandy Hook Channels, through the Verrazano Narrows Bridge to the Brooklyn Bridge in the East River, to the Holland Tunnel in the Hudson River, and the Kill Van Kull, including Newark Bay.

The current operation uses surveillance data provided by several radar sites and three closed circuit TV sites. VTS communications are on VHF-FM channels 12 and 14.

VTS San Francisco was commissioned in August of 1972. When the original radar system became operational in May 1973, the control center for VTS San Francisco was shifted to the Yerba Buena Island. This center was designated a Vessel Traffic Center (VTC).

As of early 1985, the major components of the system include a Vessel Traffic Center at Yerba Buena Island, two high resolution radars, a VHF-FM communications network, a traffic separation scheme, and a vessel movement reporting system (VMRS). Channels 12 and 14 are the working frequencies. In 1985, all existing radar equipment was replaced with the standard Coast Guard radar.

VTS San Francisco also operates an Offshore Vessel Movement Reporting System (OVMRS). The OVMRS is completely voluntary and operates using a broadcast system with information provided by participants.

VTS Puget Sound became operational in September 1972 as the second Vessel Traffic Service. It collected vessel movement report data and provided traffic advisories by means of a VHF-FM communications network. In this early service a VMRS was operated in conjunction with a Traffic Separation Scheme (TSS), without radar surveillance. Operational experience gained from this service and VTS San Francisco soon proved the expected need for radar surveillance in those services with complex traffic flow.

In 1973 radar coverage in critical areas of Puget Sound was provided. Efforts to develop a production generation of radar equipment for future port development were initiated. To satisfy the need for immediate radar coverage, redundant military grade Coast Guard shipboard radar transceivers
were installed at four Coast Guard light stations along the Admiralty Inlet part of Puget Sound. Combination microwave radio link and radar antenna towers were installed at each site. Radar video and azimuth data, in a format similar to that used with VTS San Francisco, were relayed by broad band video links to the VTC in Seattle. At that center, standard Navy shipboard repeaters were used for operator display. Although the resolution parameters and display accuracy of the equipment were less than those of the VTS San Francisco equipment, the use of a shorter range scale (8 nautical miles) and overlapping coverage resulted in very satisfactory operation. In December 1980 additional radar surveillance was added in the Strait of Juan De Fuca and Rosario Strait, as well as increased surveillance of the Seattle area, making a total of 10 remote radar sites.

The communications equipment was upgraded in July 1991 to be capable of a two frequency, four sector system. Channels 5A and 14 are the frequencies for VTS Puget Sound. A total of 13 communication sites are in operation (3 extended area sites, 10 low level sites). The three extended area sites allow the VTS the ability to communicate in a large area when needed. The low level sites can be used in conjunction with one another without interference, and have greatly reduced congestion on the frequency. VTS Puget Sound now covers the Strait of Juan de Fuca, Rosario Strait, Admiralty Inlet, and Puget Sound south as far as Olympia.

The major components of the system include the Vessel Traffic Center at Pier 36 in Seattle, a VHF-FM communications network, a traffic separation scheme, radar surveillance of about $80 \%$ of the VTS area, and a Vessel Movement Reporting System. Regulations are in effect which require certain classes of vessels to participate in the system and make movement reports at specified points. The traffic separation scheme in the Strait of Juan de Fuca was extended as far west as Cape Flattery in March 1975 in cooperation with Canada and was formally adopted by the International Maritime Organization in 1982.

Under an agreement between the United States and Canada, regulations for the Strait of Juan de Fuca took effect in 1984. The Cooperative Vessel Traffic Management System (CVTMS) divides responsibility among the two Canadian VTS's and VTS Puget Sound.

VTS Houston-Galveston became operational in February 1975 as the third U.S. Vessel Traffic Service. The operating area is the Houston Ship Channel from the sea buoy to the Turning Basin (a distance of 53 miles) and the side channels to Galveston, Texas City, Bayport, and the Intracoastal Waterway. The area contains approximately 70 miles of restricted waterways. The greater part of the Houston Ship Channel is 400 feet wide with depths of 36 40 feet. Several bends in the channel are in excess of 90 degrees.

The major components of the system include the VTC at Galena Park, Houston; a VHF-FM communications network; low light level, closed circuit television (LLL-

CCTV) surveillance covering approximately three miles south of Morgan's Point west through the ship channel to City Dock \#27 in Houston; a Vessel Movement Reporting System; and a radar surveillance system covering lower Galveston Bay approaches, Bolivar Roads, and Lower Galveston Bay.

A second radar was installed in 1994. This radar provides surveillance coverage between the Texas City channel and Morgan's Point.

VTS Prince William Sound is required by The TransAlaska Pipeline Authorization Act (Public Law 93-153), pursuant to authority contained in Title 1 of the Ports and Waterways Safety Act of 1972 (86 Stat. 424, Public Law 92-340).

The southern terminus of the pipeline is on the south shoreline of Port Valdez, at the Alyeska Pipeline Service Company tanker terminal. Port Valdez is at the north end of Prince William Sound, and Cape Hinchinbrook is at the south entrance.

Geographically, the area is comprised of deep open waterways surrounded by mountainous terrain. The only constrictions to navigation are at Cape Hinchinbrook, the primary entrance to Prince William Sound, and at Valdez Narrows, the entrance to Port Valdez.

The vessel traffic center is located in Valdez. The system is composed of two radars, two major microwave data relay systems, and a VMRS which covers Port Valdez, Prince William Sound, and Gulf of Alaska. There is also a vessel traffic separation scheme from Cape Hinchinbrook to Valdez Arm.

The Coast Guard is installing a dependent surveillance system to improve its ability to track tankers transiting Prince William Sound. To extend radar coverage the length of the traffic lanes in Prince William

Sound would require several radars at remote, difficult-toaccess sites and an extensive data relay network. As an alternative to radar, the Coast Guard is installing a dependent surveillance system that will require vessels to carry position and identification reporting equipment. The ability to supplement radar with dependent surveillance will bridge the gap in areas where conditions dictate some form of surveillance and where radar coverage is impractical. Once the dependent surveillance information is returned to the vessel traffic center, it will be integrated with radar data and presented to the watchstander on an electronic chart display.

## 2710. Vessel Traffic Management and Information Systems

An emerging concept is that of Vessel Traffic Management and Information Services (VTMIS) wherein a VTS is only part of a larger and much more comprehensive information exchange. Under this concept, not only can vessel traffic be managed from the standpoint of navigation safety and efficiency, but also tugs, pilots, line handlers, intermodal shipping operators, port authorities, customs and immigration, law enforcement, and disaster response agencies and others can use vessel transit information to enhance the delivery of their services.

A VTS need not be part of a VTMIS, but it is logical that no port needing the latter would be without the former. It is important to note that VTMIS is a service, not a system, and requires no particular set of equipment or software. VTMIS development and installations are proceeding in several busy ports and waterways worldwide, and mariners can expect this concept to be implemented in many more areas in the future.

## AUTOMATIC IDENTIFICATION SYSTEMS

## 2711. Development and Purpose

The Automatic Identification System (AIS) is a shipboard transponder that operates in the maritime VHF band, transmitting detailed information about a particular vessel and its operation. Similarly equipped vessels and shore stations can receive and display this information on an ECDIS, making it possible for each to know the identity, course, speed, condition, and other vital information about the others.

Each AIS consists of a VHF transmitter, two receivers, a VHF DSC receiver, and a link to shipboard display and information systems. Positional and timing information is generally derived from GPS or other electronic navigation systems, and includes differential GPS in coastal and inland waters. Heading and speed information come from shipboard sensors.

Once a signal broadcast from a vessel is received
aboard another vessel or a shore station, it is processed and symbolized with basic information on the navigation display. It is then possible to query the symbol for additional information, such as name, tonnage, dimensions, draft, cargo, etc. This allows navigators to know the exact identity of nearby vessels with which a risk of collision exists, and to call them by name to agree on procedures for meeting, passing, crossing, or overtaking. Other information might consist of destination, ETA, rate of turn, and other data. It also allows VTS and other authorities to know the identity of each ship in their system.

AIS is capable of handling over 2,000 reports per minute, with updates every two seconds. It is intended to replace DSC-based transponder systems currently in operation. Operation is autonomous and continuous, and each station automatically synchronizes itself with all others in range.

As with all VHF transmissions, AIS range depends on
the antenna height, and since the wavelength is slightly longer than radar, AIS signals tend to cross land and other obstructions moderately well. The use of shore-based repeater stations can greatly enhance the range and strength of the signals. At sea, ranges of about 20 miles can be expected.

In May of 1998, the Marine Safety Committee of the IMO formally adopted the Performance Standards for a Universal Shipborne Automatic Identification System. These standards dictate that AIS systems must meet three requirements:

1. Operate in a ship-to-ship mode for collision avoidance.
2. Operate in a ship-to-shore mode for traffic management.
3. Carry specified data about the ship and its cargo.

The goal of the IMO in publishing these standards is to have one AIS as the worldwide standard, so that all vessels and countries may benefit. Originally envisioned as operating in a ship-to-shore mode for vessel tracking by VTS and harbor authorities, the concept has evolved into a " 4 -s" system: ship-to-shore/ship-to-ship, available for collision avoidance as well as traffic control. AIS transponders use a frequency available worldwide and the system has sufficient capacity to operate in the busiest ports. Eventually, it is likely that all SOLAS and many other types of vessels will be required to carry an AIS transponder.

The integration of AIS technology into the world's port and harbor control systems is ongoing, while the integration into ECDIS and other ship-to-ship systems is in the developmental stage. It is reasonable to expect that in the future, all commercial ocean-going vessels, most commercial coastal craft, and many other vessels will be able, if not required, to use AIS.

## 2712. Classes and Capabilities of AIS's

There are two classes of AIS transponders. The Class A unit meets all IMO requirements, while the Class $B$, intended for smaller vessels or those not requiring the more capable Class A device, lacks some of the IMO-required features, but still provides vital data.

The Class A AIS broadcasts the following data every 2-10 seconds while underway, and every three minutes at anchor, at a power of 12.5 watts:

- MMSI number, a unique identification number
- Navigation status: underway, anchored, not under command, etc.
- Rate of turn, right or left, to 720 degrees per minute
- Speed over ground
- Course over ground
- Position accuracy; GPS, DGPS and whether RAIM is in operation
- Lat. and long. to $1 / 10,000$ minute
- True heading, derived from gyro if installed
- Time of report

In addition, the Class A AIS will transmit every six minutes:

- MMSI number as above, links data above to vessel
- IMO number, a unique identifier related to ship's construction
- International call sign
- Name of ship, to 20 characters
- Type of ship and cargo, from list of types
- Dimensions of ship, to nearest meter
- Location on ship of reference point for position reports
- Source of fix information: GPS, Loran, DR, undefined, etc.
- Draft of ship, to 0.1 meter; air draft is not defined
- Destination, to 20 characters
- ETA: month, day, hour, and minute in UTC

Class B AIS capabilities are not yet specifically defined, but in general the Class B units will report less often, leave out certain information such as IMO number, destination, rate of turn, draft, and status, and are not required to transmit textual safety messages.

AIS has the potential of eventually replacing racons, since shore stations can transmit data on aids to navigation for display through the AIS system. This would enable aids to navigation to appear with appropriate text data on the display, instead of as simple unidentified blips.

IMO requirements specify various classes of ships that must commence use of AIS by certain dates under a phased schedule. In general, by 2007 all vessels operating under SOLAS V must have AIS equipment. Additionally, in the U.S., all vessels subject to the Bridge-to-bridge Radiotelephone Act may be required to carry AIS equipment. The U.S. Coast Guard will define the requirements for certification of U.S. vessels.

## REGULATED WATERWAYS

## 2713. Purpose and Authorities

In confined waterways not considered international waters, local authorities may establish certain regulations for the safe passage of ships and operate waterway systems
consisting of locks, canals, channels, and ports. This generally occurs in especially busy or highly developed waterways which form the major constrictions on international shipping routes. The Panama Canal, St. Lawrence Seaway, and the Suez Canal represent systems of this type.

Nearly all ports and harbors have a body of regulations concerning the operation of vessels within the port limits, particularly if locks and other structures are part of the system. The regulations covering navigation through these areas are typically part of a much larger body of regulations relating to assessment and payment of tariffs and tolls, vessel condition and equipment, personnel, communications equipment, and many other factors. In general, the larger the investment in the system, the larger the body of regulations which control it will be.

Where a waterway separates two countries, a joint authority may be established to administer the regulations, collect tolls, and operate the system, as in the St. Lawrence Seaway.

Copies of the regulations are usually required to be aboard each vessel in transit. These regulations are available from the authority in charge or an authorized agent. Summaries of the regulations are contained in the appropriate volumes of the Sailing Directions (Enroute).

## CHAPTER 28

# MARITIME SAFETY SYSTEMS 

## MARITIME SAFETY AND THE NAVIGATOR

## 2800. Introduction

The navigator's chief responsibility is the safety of the vessel and its crew. Fulfilling this duty consists mostly of ascertaining the ship's position and directing its course so as to avoid dangers. But accidents can happen to the most cautious, and the most prudent of navigators may experience an emergency which requires outside assistance. Distress incidents at sea are more likely to be resolved without loss of vessel and life if they are reported immediately. The more information that rescue authorities have, and the sooner they have it, the more likely it is that the outcome of a distress at sea will be favorable.

Global distress communication systems, ship reporting systems, emergency radiobeacons, and other technologies have greatly enhanced mariners' safety. Therefore, it is critical that mariners understand the purpose, functions, and
limitations of maritime safety systems.
The mariner's direct high-seas link to shoreside rescue authorities is the Global Maritime Distress and Safety System (GMDSS), which was developed to both simplify and improve the dependability of communications for all ships at sea. GMDSS nicely compliments the operation of the U.S. Coast Guard's Amver system, which tracks participating ships worldwide and directs them as needed to distress incidents. GMDSS and Amver rely on radiotelephone or satellite communications for passing information. But even with normal communications disabled, a properly equipped vessel has every prospect of rapid rescue or aid if it carries a SOLAS-required Emergency Position Indicating Radiobeacon (EPIRB) and a Search and Rescue radar Transponder (SART). These systems are the subject of this chapter.

## GLOBAL MARITIME DISTRESS AND SAFETY SYSTEM

## 2801. Introduction and Background

The Global Maritime Distress and Safety System (GMDSS) represents a significant improvement in maritime safety over the previous system of short range and high seas radio transmissions. Its many parts include satellite as well as advanced terrestrial communications systems. Operational service of the GMDSS began on February 1, 1992, with full implementation accomplished by February $1,1999$.

GMDSS was adopted in 1988 by amendments to the Conference of Contracting Governments to the International Convention for the Safety of Life at Sea (SOLAS), 1974. This was the culmination of more than a decade of work by the International Maritime Organization (IMO) in conjunction with the International Telecommunications Union (ITU), International Hydrographic Organization (IHO), World Meteorological Organization (WMO), Inmarsat (International Maritime Satellite Organization), and others.

GMDSS offers the greatest advancement in maritime safety since the enactment of regulations following the Titanic disaster in 1912. It is an automated ship-to-ship, shore-to-ship and ship-to-shore communications system covering distress alerting and relay, the provision of mari-
time safety information (MSI), and routine communications. Satellite and advanced terrestrial systems are incorporated into a communications network to promote and improve safety of life and property at sea throughout the world. The equipment required on board ships depends not on their tonnage, but rather on the area in which the vessel operates. This is fundamentally different from the previous system, which based requirements on vessel size alone. The greatest benefit of the GMDSS is that it vastly reduces the chances of ships sinking without a trace, and enables search and rescue (SAR) operations to be launched without delay and directed to the exact site of a maritime disaster.

## 2802. Ship Carriage Requirements

By the terms of the SOLAS Convention, the GMDSS provisions apply to cargo ships of 300 gross tons and over and ships carrying more than 12 passengers on international voyages. Unlike previous shipboard carriage regulations that specified equipment according to size of vessel, the GMDSS carriage requirements stipulate equipment according to the area in which the vessel operates. These sea areas are designated as follows:

## Sea Area A1

## Sea Area A2

## Sea Area A3 An area, excluding sea areas A1 and

 A2, within the coverage of an Inmarsat geostationary satellite in which continuous alerting is available. This area is from about $70^{\circ} \mathrm{N}$ to $70^{\circ} \mathrm{S}$.Sea Area A4
An area within the radiotelephone coverage of at least one VHF coast station in which continuous Digital Selective Calling is available, as may be defined by a Contracting Government to the 1974 SOLAS Convention. This area extends from the coast to about 20 miles offshore.

An area, excluding sea area A1, within the radiotelephone coverage of at least one MF coast station in which continuous DSC alerting is available, as may be defined by a Contracting Government. The general area is from the A1 limit out to about 100 miles offshore.

All areas outside of sea areas A1, A2 and A3. This area includes the polar regions, where geostationary satellite coverage is not available.

Ships at sea must be capable of the following functional GMDSS requirements:

1. Ship-to-shore distress alerting
2. Shore-to-ship distress alerting
3. Ship-to-ship distress alerting
4. SAR coordination
5. On-scene communications
6. Transmission and receipt of emergency locating signals
7. Transmission and receipt of MSI
8. General radio communications
9. Bridge-to-bridge communications

To meet the requirements of the functional areas above the following is a list of the minimum communications equipment needed for all ships:

1. VHF radio capable of transmitting and receiving DSC on channel 70, and radio telephony on channels 6, 13 and 16
2. Radio receiver capable of maintaining a continuous Digital Selective Calling (DSC) watch on channel 70 VHF
3. Search and rescue transponders (SART), a minimum of two, operating in the 9 GHz band
4. Receiver capable of receiving NAVTEX broadcasts anywhere within NAVTEX range
5. Receiver capable of receiving SafetyNET anywhere NAVTEX is not available
6. Satellite emergency position indicating radiobeacon (EPIRB), manually activated and float-free self-activated
7. Two-way handheld VHF radios (two sets minimum on 300-500 gross tons cargo vessels and three sets minimum on cargo vessels of 500 gross tons and upward and on all passenger ships)

Additionally, each sea area has its own requirements under GMDSS which are as follows:

## Sea Area A1

1. General VHF radio telephone capability
2. Free-floating satellite EPIRB
3. Capability of initiating a distress alert from a navigational position using DSC on either VHF, HF or MF; manually activated EPIRB; or Ship Earth Station (SES)

## Sea Areas A1 and A2

1. Radio telephone MF radiotelephony or direct printing 2182 kHz , and DSC on 2187.5 kHz
2. Equipment capable of maintaining a continuous DSC watch on 2187.5 kHz
3. General working radio communications in the MF band ( $1605-4000 \mathrm{kHz}$ ), or Inmarsat SES
4. Capability of initiating a distress alert by HF (using DSC), manual activation of an EPIRB, or Inmarsat SES

## Sea Areas A1, A2 and A3

1. Radio telephone MF 2182 kHz and DSC 2187.5 kHz .
2. Equipment capable of maintaining a continuous DSC watch on 2187.5 kHz
3. Inmarsat-A, -B or -C (class 2) or Fleet 77 SES Enhanced Group Call (EGC), or HF as required for sea area A4
4. Capability of initiating a distress alert by two of the following:
a. Inmarsat-A, -B or -C (class 2) or Fleet 77 SES
b. Manually activated EPIRB
c. HF/DSC radio communication

## Sea Area A4

1. $\mathrm{HF} / \mathrm{MF}$ receiving and transmitting equipment for band $1605-27500 \mathrm{kHz}$ using DSC, radiotelephone and direct printing
2. Equipment capable of selecting any safety and
distress DSC frequency for band $4000-27500 \mathrm{kHz}$, maintaining DSC watch on $2187.5,8414.5 \mathrm{kHz}$ and at least one additional safety and distress DSC frequency in the band
3. Capability of initiating a distress alert from a navigational position via the Polar Orbiting System on 406 MHz (manual activation of 406 MHz satellite EPIRB)

## 2803. The Inmarsat System

Inmarsat (International Maritime Satellite Organization), a key player within GMDSS, is an international corporation comprising over 75 international partners providing maritime safety communications for ships at sea. Inmarsat provides the space segment necessary for improving distress communications, efficiency and management of ships, as well as public correspondence services.

The basic components of the Inmarsat system include the Inmarsat space segment, Land Earth Stations (LES), also referred to as Coast Earth Stations (CES), and mobile Ship Earth Stations (SES).

The Inmarsat space segment consists of 11 geostationary satellites. Four operational Inmarsat satellites provide primary coverage, four additional satellites (including satellites leased from the European Space Agency (ESA) and the International Telecommunications

Satellite Organization (INTELSAT)) serve as spares and three remaining leased satellites serve as back-ups.

The polar regions are not visible to the operational satellites but coverage is available from about $75^{\circ} \mathrm{N}$ to $75^{\circ} \mathrm{S}$. Satellite coverage (Figure 2803) is divided into four overlapping regions:

1. Atlantic Ocean - East (AOR-E)
2. Atlantic Ocean - West (AOR-W)
3. Pacific Ocean (POR)
4. Indian Ocean (IOR)

The LES's provide the link between the Space Segment and the land-based national/international fixed communications networks. These communications networks are funded and operated by the authorized communications authorities of a participating nation. This network links registered information providers to the LES. The data then travels from the LES to the Inmarsat Network Coordination Station (NCS) and then down to the SES's on ships at sea. The SES's provide two-way communications between ship and shore. Inmarsat-A, the original Inmarsat system, operates at a transfer rate of up to 64 k bits per second and is telephone, telex and facsimile (fax) capable. The similarly sized Inmarsat-B system uses digital technology, also at rates to 64 kbps . Fleet 77 service is also digital and operates at up to 64 kbps .


Figure 2803. The four regions of Inmarsat coverage.

Inmarsat-C provides a store and forward data messaging capability (but no voice) at 600 bits per second and was designed specifically to meet the GMDSS requirements for receiving MSI data on board ship. These units are small, lightweight and use an omni-directional antenna.

## 2804. Maritime Safety Information (MSI)

Major categories of MSI for both NAVTEX and SafetyNET are:

1. Navigational warnings
2. Meteorological warnings
3. Ice reports
4. Search and rescue information
5. Meteorological forecasts
6. Pilot service messages (not in the U.S.)
7. Electronic navigation system messages (i.e., LORAN, GPS, DGPS, etc.)

Broadcasts of MSI in NAVTEX international service are in English, but may be in languages other than English to meet requirements of the host government.

## 2805. SafetyNET

SafetyNET is a broadcast service of Inmarsat-C's Enhanced Group Call (EGC) system. The EGC system (Figure 2805) is a method used to specifically address particular regions or groups of ships. Its unique addressing capabilities allow messages to be sent to all vessels in both fixed geographical areas or to predetermined groups of ships. SafetyNET is a service designated by the IMO through which ships receive maritime safety information. The other service under the EGC system, called FleetNET, is used by commercial companies to communicate directly and privately with their individual fleets.

SafetyNET is an international shore to ship satellitebased service for the promulgation of distress alerts, navigational warnings, meteorological warnings and forecasts, and other safety messages. It fulfills an integral role in GMDSS as developed by the IMO. The ability to receive SafetyNET messages is required for all SOLAS ships that sail beyond coverage of NAVTEX (approximately 200 miles from shore).

SafetyNET can direct a message to a given geographic area based on EGC addressing. The area may be fixed, as in the case of a NAVAREA or weather forecast area, or it may be uniquely defined by the originator. This is particularly useful for messages such as local storm warnings or focussed shore to ship distress alerts.

SafetyNET messages can be originated by a Registered Information Provider anywhere in the world and broadcast to the appropriate ocean area through an Inmarsat-C LES. Messages are broadcast according to their
priority (i.e. Distress, Urgent, Safety, and Routine).
Virtually all navigable waters of the world are covered by the operational satellites in the Inmarsat system. Each satellite broadcasts EGC traffic on a designated channel. Any ship sailing within the coverage area of an Inmarsat satellite will be able to receive all the SafetyNET messages broadcast over this channel. The EGC channel is optimized to enable the signal to be monitored by SES's dedicated to the reception of EGC messages. This capability can be built into other standard SES's. It is a feature of satellite communications that reception is not generally affected by the position of the ship within the ocean region, atmospheric conditions, or time of day.

Messages can be transmitted either to geographic areas (area calls) or to groups of ships (group calls):

1. Area calls can be to a fixed area such as one of the 16 NAVAREA's or to a temporary geographic area selected by the originator. Area calls will be received automatically by any ship whose receiver has been set to one or more fixed areas.
2. Group calls will be received automatically by any ship whose receiver acknowledges the unique group identity associated with a particular message.

Reliable delivery of messages is ensured by forward error correction techniques. Experience has demonstrated that the transmission link is generally error-free and low error reception is achieved under normal circumstances.

Given the vast ocean coverage by satellite, some form of discrimination and selectivity in printing the various messages is required. Area calls are received by all ships within the ocean region coverage of the satellite; however, they will be printed only by those receivers that recognize the fixed area or the geographic position in the message. The message format includes a preamble that enables the microprocessor in a ship's receiver to decide to print those MSI messages that relate to the present position, intended route or a fixed area programmed by the operator. This preamble also allows suppression of certain types of MSI that are not relevant to a particular ship. As each message will also have a unique identity, the reprinting of messages already received correctly is automatically suppressed.

MSI is promulgated by various information providers around the world. Messages for transmission through the SafetyNET service will, in many cases, be the result of coordination between authorities. Information providers will be authorized by IMO to broadcast via SafetyNET. Authorized information providers are:

1. National hydrographic offices for navigational warnings
2. National weather services for meteorological warnings and forecasts


Figure 2805. SafetyNET EGC concept.
3. Rescue Coordination Centers (RCC's) for ship-toshore distress alerts and other urgent information
4. In the U.S., the International Ice Patrol (IIP) for North Atlantic ice hazards

Each information provider prepares their SafetyNET messages with certain characteristics recognized by the EGC service. These characteristics, known as "C" codes are combined into a generalized message header format as follows: C1:C2:C3:C4:C5. Each "C" code controls a different broadcast criterion and is assigned a numerical value according to available options. A sixth "C" code, "C0" may be used to indicate the ocean region (i.e., AORE, AOR-W, POR, IOR) when sending a message to an LES which operates in more than one ocean region. Because errors in the header format of a message may prevent its being broadcast, MSI providers must install an Inmarsat SafetyNET receiver to monitor the broadcasts it originates. This also ensures quality control.

The "C" codes are transparent to the mariner, but are used by information providers to identify various transmitting parameters. C1 designates the message priority, either distress to urgent, safety, or routine. MSI messages will always be at least at the safety level. C2 is the service code or type of message (for example, long range NAVAREA warning or coastal NAVTEX warning). It also tells the receiver the length of the address (the C3 code) it will need to decode. C3 is the address code. It can be the
two digit code for the NAVAREA number for instance, or a 10 digit number to indicate a circular area for a meteorological warning. C 4 is the repetition code which instructs the LES when to send the message to the NCS for actual broadcast. A six minute echo (repeat) may also be used to ensure that an urgent (unscheduled) message has been received by all ships affected. C5 is a constant and represents a presentation code, International Alphabet number 5, " 00 ".

Broadcasts of MSI in the international SafetyNET service must be in English, but may be supplemented by other languages to meet requirements of the host government.

## 2806. NAVTEX

NAVTEX is a maritime radio warning system consisting of a series of coast stations transmitting radio teletype (standard narrow-band direct printing, called Sitor for Simplex Telex Over Radio) safety messages on the internationally standard medium frequency of 518 kHz . It is a GMDSS requirement for the reception of MSI in coastal and local waters. Coast stations transmit during previously arranged time slots to minimize mutual interference. Routine messages are normally broadcast four times daily. Urgent messages are broadcast upon receipt, provided that an adjacent station is not transmitting. Since the broadcast uses the medium frequency band, a typical station service
radius ranges from 100 to 500 NM day and night (although a 200 mile rule of thumb is applied in the U.S.). Interference from or receipt of stations further away occasionally occurs at night.

Each NAVTEX message broadcast contains a fourcharacter header describing: identification of station (first character), message content or type (second character), and message serial number (third and fourth characters). This header allows the microprocessor in the shipboard receiver to screen messages from only those stations relevant to the user, messages of subject categories needed by the user and messages not previously received by the user. Messages so screened are printed as they are received, to be read by the mariner when convenient. All other messages are suppressed. Suppression of unwanted messages is becoming more and more a necessity to the mariner as the number of messages, including rebroadcast messages, increases yearly. With NAVTEX, a mariner will not find it necessary to listen to, or sift through, a large number of non-relevant data to obtain the information necessary for safe navigation.

The NAVTEX receiver is a small unit with an internal printer, which takes a minimum of room on the bridge. Its antenna is also of modest size, needing only a receive capability.

## 2807. Digital Selective Calling (DSC)

Digital Selective Calling (DSC) is a system of digitized radio communications which allows messages to be targeted to all stations or to specific stations, allows for unattended and automated receipt and storage of messages for later retrieval, and permits the printing of messages in hardcopy form. All DCS calls automatically include errorchecking signals and the identity of the calling unit. Digital codes allow DSC stations to transmit and receive distress messages, transmit and receive acknowledgments of distress messages, relay distress messages, make urgent and safety calls, and initiate routine message traffic.

Each unit has a MAYDAY button which allows the instant transmittal of a distress message to all nearby ships and shore stations. The location of the distress will be automatically indicated if the unit is connected to a GPS or Loran C receiver. Each unit must be registered with the Coast Guard and have unique identifier programmed into it. Distress alerts can be sent on only one or as many as six channels consecutively on some units.

Listening watch on 2182 kHz ended with implementation of GMDSS in 1999. When DSC has been implemented worldwide, the traditional listening watch on Channel 16 VHF will no longer be necessary. The introduction of DSC throughout the world is expected to take to take a number of years.

There are four basic types of DSC calls:

- Distress
- Urgent
- Safety
- Routine

Distress calls are immediately received by rescue authorities for action, and all vessels receiving a distress call are alerted by an audible signal.

Each DSC unit has a unique Maritime Mobile Service Identity (MMSI) code number, which is attached to all outgoing messages. The MMSI number is a nine-digit number to identify individual vessels, groups of vessels, and coast stations. Ship stations will have a leading number consisting of 3 digits which identify the country in which the ship is registered, followed by a unique identifying number for the vessel. A group of vessels will have a leading zero, followed by a unique number for that group. A coast station will have 2 leading zeros followed by a code number. Other codes may identify all stations, or all stations in a particular geographic area.

DSC frequencies are found in the VHF, MF and HF bands. Within each band except VHF, one frequency is allocated for distress, urgent, and safety messages. Other frequencies are reserved for routine calls. In the VHF band, only one channel is available, Channel $70(156.525 \mathrm{MHz})$, which is used for all calls. In the MF band, 2187.5 kHz and 2189.5 kHz are reserved for distress/safety, and 2177 kHz for ship to ship and ship to shore calls.

## 2808. Using DSC

A distress call consists of a Format Specifier--Distress; the MMSI code; the nature of the distress (selected from a list: fire/explosion, flooding, collision, grounding, listing, sinking, disabled/adrift, or abandoning ship; defaults to Undesignated); the time of the call, and the format for subsequent communications (radiotelephone or NDBP). Once activated, a distress signal is repeated automatically every few minutes until an acknowledgment is received or the function is switched off. As soon as an acknowledgment is received by the vessel in distress, it must commence communications with appropriate an message by radiotelephone or NDBP according to the format:

```
"MAYDAY"
MMSI CODE NUMBER AND CALL SIGN
NAME OF VESSEL
POSITION
NATURE OF DISTRESS
TYPE OF ASSISTANCE NEEDED
OTHER INFORMATION
```

Routine calls should be made on a channel reserved for non-distress traffic. Once made, a call should not be repeated, since the receiving station either received the call and stored it, or did not receive it because it was not in service. At least 5 minutes should elapse between calls by vessels on
the first attempt, then at 15 minute minimum intervals.
To initiate a routine ship to shore or ship to ship call to a specific station, the following procedures are typical (consult the operator's manual for the equipment for specific directions):

- Select the appropriate frequency
- Select or enter the MMSI number of the station to be called
- Select the category of the call
- Select subsequent communications method (R/T, NDBP)
- Select proposed working channel (coast stations will indicate vacant channel in acknowledgment)
- Select end-of-message signal (RQ for acknowledgment required)
- Press <CALL>

The digital code is broadcast. The receiving station may acknowledge receipt either manually or automatically, at which point the working channel can be agreed on and communications begin.

Watchkeeping using DSC consists of keeping the unit ON while in the appropriate Sea Area. DSC watch frequencies are VHF Channel 70, $2187.5 \mathrm{kHz}, 8414.5 \mathrm{kHz}$, and one HF frequency selected according to the time of day and season. Coast stations maintaining a watch on DCS channels are listed in NIMA Pub. 117 and other lists of radio stations.

## AMVER

## 2809. The Automated Mutual-Assistance Vessel Rescue System (Amver)

The purpose of ship reporting systems is to monitor vessels' positions at sea so that a response to any high-seas emergency can be coordinated among those nearest and best able to help. It is important that complete information be made available to search and rescue (SAR) coordinators immediately so that the right type of assistance can be sent to the scene with the least possible delay.

For example, a medical emergency at sea might require a doctor; a ship reporting system can find the nearest vessel with a doctor aboard. A sinking craft might require a vessel to rescue the crew, and perhaps another to provide a lee. A ship reporting system allows SAR coordinators to quickly assemble the required assets to complete the rescue.

The International Convention for the Safety of Life at Sea (SOLAS) obligates the master of any vessel who becomes aware of a distress incident to proceed to the emergency and assist until other aid is at hand or until released by the distressed vessel. Other international treaties and conventions impose the same requirement.

By maintaining a database of information as to the particulars of each participating vessel, and monitoring their positions as their voyages proceed, the Amver coordinator can quickly ascertain which vessels are closest and best able to respond to any maritime distress incident. They can also release vessels that might feel obligated to respond from their legal obligation to do so, allowing them to proceed on their way without incurring liability for not responding. International agreements ensure that no costs are incurred by a participating vessel

Several ship reporting systems are in operation throughout the world. The particulars of each system are given in publications of the International Maritime Organization (IMO). Masters of vessels making offshore passages are requested to always participate these systems when in the areas covered by them. The only worldwide system in operation is the U.S. Coast Guard's Amver system.

Amver is an international maritime mutual assistance program that coordinates search and rescue efforts around the world. It is voluntary, free of charge, and endorsed by the IMO. Merchant ships of all nations are encouraged to file a sailing plan, periodic position reports, and a final report at the end of each voyage, to the Amver Center located in the U.S. Coast Guard Operations Systems Center in Martinsburg, WV. Reports can be sent via e-mail, Inmarsat-C, Amver/SEAS "compressed message" format, Sat-C format, HF radiotelex, HF radio or telefax message. Most reports can be sent at little or no cost to the ship.

Data from these reports is protected as "commercial proprietary" business information, and is released by U.S. Coast Guard only to recognized national SAR authorities and only for the purposes of SAR in an actual distress. Information concerning the predicted location and SAR characteristics of each vessel is available upon request to recognized SAR agencies of any nation or to vessels needing assistance. Predicted locations are disclosed only for reasons related to marine safety.

The Amver computer uses a dead reckoning system to predict the positions of participating ships at any time during their voyage. Benefits to participating vessels and companies include:

- Improved chances of timely assistance in an emergency.
- Reduced number of calls for ships not favorably located.
- Reduced lost time for vessels responding.
- Added safety for crews in the event of an overdue vessel.

Amver participants can also act as the eyes and ears of SAR authorities to verify the authenticity of reports, reducing the strain on SAR personnel and facilities. Amver is designed to compliment computer and communications technologies, including GMDSS systems that provide distress alerting, and GPS positioning systems. These technologies can reduce or entirely eliminate the search aspect of search and rescue (since the precise location of the distress can be known), allowing SAR authorities to concentrate immediately on the response.

The Amver Sailing Plan provides information on the port of departure, destination, course, speed, navigational method,
waypoints, communications capabilities, and the presence of onboard medical personnel. The database contains information on the ship's official name and registry, call sign, type of ship, tonnage, propulsion, maximum speed, and ownership. Changes in any of this data should be reported to Amver at the earliest opportunity.

Amver participants bound for U.S. ports enjoy an additional benefit: Amver messages which include the necessary information are considered to meet the requirements of 33 CFR 161 (Notice of Arrival).

## 2810. The Amver Communications Network

The following methods are recommended for ships to transmit information to Amver:

1. Electronic mail (e-mail) via the Internet: The Amver internet e-mail address is amvermsg@amver.com. If a ship already has an inexpensive means of sending e-mail to an internet address, this is the preferred method. The land-based portion of an e-mail message is free, but there may be a charge for any ship-to-shore portion. Reports should be sent in the body of the message, not as attachments.
2. Amver/SEAS Compressed Message via Inmarsat-C through certain Land Earth Stations (LES's): Ships equipped with an Inmarsat-C transceiver with floppy drive and capability to transmit a binary file (The ship's GMDSS Inmarsat-C transceiver can be used); and ships equipped with an IBMcompatible computer with hard drive, 286 or better processor, VGA graphics interface, and Amver/SEAS software; may send combined Amver/Weather Observation messages free of charge via TELENOR-USA Land Earth Stations at:

001 Atlantic Ocean Region-West (AOR-W)-Southbury
101 Atlantic Ocean Region East (AOR-E)-Southbury
201 Pacific Ocean Region (POR)-Santa Paula
321 Indian Ocean Region (IOR)-Assaguel
Amver/SEAS software can be downloaded free of charge from http://dbcp.nos.noaa.gov/seas.html.
3. HF Radiotelex Service of the U.S. Coast Guard Communication Stations; see full instructions at:
http://www.navcen.uscg.mil/marcomms/cgcomms/call.htm
4. HF Radio at no cost via Coast Guard contractual agreements with Globe Wireless Super Station Network, or Mobile Marine Radio (WLO) (under Telaurus Communications Inc.).
5. Telex: Amver Address (0) 230127594 AMVERNYK
6. Telefax: To the USCG Operations Systems Center at:
+13042642505 . Telefax should be used only if other means are unavailable.

The Amver Bulletin provides information on the operation of the Amver System of general interest to the mariner and up-to-date information on the Amver communications network.

## 2811. Amver Participation

Instructions guiding participation in the Amver System are available from the Amver User's Manual published in the following languages: Chinese, Danish, Dutch, English, French, German, Greek, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish and Swedish. This manual is available free from:

Amver Maritime Relations Office<br>USCG Battery Park Building<br>1 South Street<br>New York, NY, USA, 10004-1499<br>Telephone: (212) 668-7764<br>Fax: (212) 668-7684

or from:

Commander, Pacific Area
United States Coast Guard
Government Island
Alameda, CA 94501
The manual may also be obtained from Coast Guard District Offices, Marine Safety Offices, and Captain of the Port Offices in all major U.S. ports. Requests should indicate the language desired if other than English.

SAR operational procedures are contained in the International Aeronautical and Maritime Search and Rescue (IAMSAR) Manual published jointly by the IMO and the ICAO. Volume III of this manual is required aboard SOLAS vessels.

To enroll in Amver, a ship must first complete a SAR Questionnaire (SAR-Q). Participation involves filing four types of reports:

1. Sailing Plan
2. Position Report
3. Deviation Report
4. Final Report

The Sailing Plan is sent before leaving port, and indicates the departure time and date, destination, route and waypoints, speed, and navigational method.

The Position Report is sent after the first 24 hours to confirm departure as planned and conformance with the reported Sailing Plan. An additional report is requested every 48 hours to verify the DR plot being kept in the Amver computer.

A Deviation Report should be sent whenever a change of route is made, or a change to course or speed due to weath-
er, heavy seas, casualty, or any other action that would render the computerized DR inaccurate.

A Final Report should be sent at the destination port. The system then removes the vessel from the DR plot and logs the total time the ship was participating.

Vessels that travel certain routes on a recurring basis may be automatically tracked for successive voyages as long as delays in regular departures are reported. The system may also be used to track vessels sailing under special circumstances such as tall ships, large ocean tows, research vessel operations, factory fishing vessels, etc. At any given time nearly 3,000 vessels worldwide are being plotted by Amver, and the number of persons rescued as a direct result of Amver operations is in the hundreds each year.

## 2812. Amver Reporting Requirements

The U.S. Maritime Administration (MARAD) regulations state that certain U.S. flag vessels and foreign flag "War Risk" vessels must report and regularly update their voyages to the Amver Center. This reporting is required of the following: (a) U.S. flag vessels of 1,000 tons or greater, operating in foreign commerce; (b) foreign flag vessels of 1,000 gross tons or greater, for which an Interim War Risk Insurance Binder has been issued under the provisions of Title XII, Merchant Marine Act, 1936.

## 2813. The Surface Picture (SURPIC)

When a maritime distress is reported to SAR authorities, the Amver computer is queried to produce a Surface Picture (SURPIC) in the vicinity of the distress. Several different types of SURPIC are available, and they can be generated for any specified time. The SURPIC output is a text file containing the names of all vessels meeting the criteria requested, plus a subset of the
information recorded in the database about each vessel. See Figure 2813. A graphic display can be brought up for RCC use, and the data can be sent immediately to other SAR authorities worldwide. The information provided by the SURPIC includes the position of all vessels in the requested area, their courses, speeds, estimated time to reach the scene of the distress, and the amount of deviation from its course required for each vessel if it were to divert. RCC staff can then direct the best-placed, best-equipped vessel to respond.

Four types of SURPIC can be generated:
A Radius SURPIC may be requested for any radius from 50 to 500 miles. A sample request might read:
"REQUEST 062100Z RADIUS SURPIC OF DOCTORSHIPS WITHIN 800 MILES OF 43.6N 030.2W FOR MEDICAL EVALUATION M/V SEVEN SEAS."

The Rectangular SURPIC is obtained by specifying the date, time, and two latitudes and two longitudes. As with the Radius SURPIC, the controller can limit the types of ships to be listed. There is no maximum or minimum size limitation on a Rectangular SURPIC.

A sample Area SURPIC request is as follows:
"REQUEST 151300Z AREA SURPIC OF WESTBOUND SHIPS FROM 43N TO 31N LATITUDE AND FROM 130W TO 150W LONGITUDE FOR SHIP DISTRESS M/V EVENING SUN LOCATION 37N, 140W."

The Snapshot or Trackline SURPIC is obtained by specifying the date and time, two points (P1 and P2), whether the trackline should be rhumb line or great circle, what the half-width (D) coverage should be (in nautical miles), and whether all ships are desired or only those meeting certain parameters (e.g. doctor on board).

| Name | $\begin{aligned} & \text { Call } \\ & \text { sign } \\ & \hline \end{aligned}$ | Position | Course | Speed | SAR data |  |  |  | Destination and ETA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHILE MARU CPA 258 DEG | $\begin{aligned} & \text { JAYU } \\ & 2000 \mathrm{Z} \end{aligned}$ | $26.2 \text { N 179.9E }$ | C294 | 12.5 K | H 1 | 6 R | T | X Z | KOBE | 11 |
| WILYAMA CPA 152 DEG | $\begin{aligned} & \text { LKBD } \\ & 2000 \mathrm{Z} \end{aligned}$ | 24.8N 179.1W | C106 | 14.0K | H X | R | T V | V X Z | BALBOA | 21 |
| PRES CLEVELAND CPA 265 WILL | $\begin{gathered} \text { WITM } \\ \text { [HIN } 10 \mathrm{I} \end{gathered}$ | 25.5 N 177.0 W <br> 040430Z | C284 | 19.3K | H 2 | 4 R D | T | X Z S | YKHAMA | 08 |
| AENEAS | GMRT | 25.9N 176.9E | C285 | 16.0K | H 8 | R |  | V X Z | YKHAMA | 10 |

Figure 2813. Radius SURPIC as received by a rescue center.

A Snapshot Trackline SURPIC request might look like:
"REQUEST 310100Z GREAT CIRCLE TRACKLINE SURPIC OF ALL SHIPS WITHIN 50 MILES OF A LINE FROM 20.1N 150.2W TO 21.5 N 158.0W FOR AIRCRAFT PRECAUTION."

A Moving Point SURPIC is defined by the starting and ending points of a vessel's trackline, the estimated departure time of the vessel, and the varying time of the SURPIC. This SURPIC is useful when a vessel is overdue at her destination. If the vessel's trackline can be accurately estimated, a SURPIC can generated for increments of time along the trackline, and a list can be generated of ships that might have sighted the missing ship.

## 2814. Uses of Amver Information

After evaluating the circumstances of a reported distress, The RCC can select the best available vessel to divert to the scene. In many cases a participating ship will be asked only to change course for a few hours or take a slightly different route to their destination, in order to provide a lookout in a certain area. RCC coordinators strive to use participating ships efficiently, and release them as soon as possible.

An example of the use of a Radius SURPIC is depicted in Figure 2814. In this situation rescue authorities believe
that a ship in distress, or her survivors, might be found in the rectangular area. The RCC requests a SURPIC of all eastbound ships within 100 miles of a position well west of the rectangular area. With this list, the RCC staff prepares a modified route for each of four ships which will comprise a "search team" to cover the entire area, while adding only a few miles to each ship's route. Messages to each ship specify the exact route to follow and what to look for enroute.

Each ship contacted may be asked to sail a rhumb line between two specified points, one at the beginning of the search area and one at the end. By carefully assigning ships to areas of needed coverage, very little time need be lost from the sailing schedule of each cooperating ship. Those ships joining the search would report their positions every few hours to the Rescue Coordination Center, together with weather data and any significant sightings. In order to achieve saturation coverage, a westbound SURPIC at the eastern end of the search area would also be used.

The Trackline SURPIC is most commonly used as a precautionary measure for aircraft. Occasionally a plane loses of one or more of its engines. A Trackline SURPIC, provided from the point of difficulty to the destination, provides the pilot with the added assurance of knowing the positions of vessels beneath him and that they have been alerted. While the chance of an airliner experiencing such an emergency is extremely remote, SURPIC's have been used successfully to save the lives of pilots of general aviation aircraft on oceanic flights.


Figure 2814. Example of the use of a radius SURPIC to locate ships to search a rectangular area.

## EMERGENCY POSITION INDICATING RADIOBEACONS (EPIRB'S)

## 2815. Description And Capabilities

Emergency Position Indicating Radiobeacons (EPIRB's) are designed to save lives by automatically alerting rescue authorities and indicating the distress location. EPIRB types are described below (Figure 2815a):
121.5/243 MHz EPIRB's (Class A, B, S): These are the most common and least expensive type of EPIRB, designed to be detected by overflying commercial or military aircraft.

The IMO and the International Civil Aviation Organization (ICAO) have announced plans to eventually terminate the processing distress signals for 121.5/243 MHz EPIRBS. Support for Class A, B, and S EPIRB's will be discontinued at some unannounced time in the future due to the high number of false alarms and the superiority of other systems.

Satellites were designed to detect these EPIRB's, but are limited for the following reasons:

1. Satellite detection range is limited for these EPIRB's (satellites must be within line of sight of both the EPIRB and a ground terminal for detection to occur).
2. EPIRB design and frequency congestion cause a high false alarm rate (over 99\%); consequently, confirmation is required before SAR forces deploy.
3. EPIRB's manufactured before October 1988 may have design or construction problems (e.g. some models will leak and cease operating when immersed in water) or may not be detectable by satellite.

406 MHz EPIRB's (Category I, II): The 406 MHz EPIRB was designed to operate with satellites. Its signal al-
lows authorities to locate the EPIRB much more accurately than $121.5 / 243 \mathrm{MHz}$ devices and identify the individual vessel anywhere in the world. There is no range limitation. These devices also include a 121.5 MHz homing signal, allowing aircraft and rescue vessels to quickly locate the vessel in distress once underway. These are the only type of EPIRB which must be tested by Coast Guard-approved independent laboratories before they can be sold for use in the United States.

An automatically activated, float-free version of this EPIRB has been required on SOLAS vessels (cargo ships over 300 tons and passenger ships on international voyages) since August 1, 1993. The Coast Guard requires U.S. commercial fishing vessels to carry this device, and requires the same for other U.S. commercial uninspected vessels which travel more than 3 miles offshore.

Inmarsat-E EPIRB's: Inmarsat-E EPIRB's operate on 1.6 GHz (L-band) and transmit a distress signal to Inmarsat geostationary satellites, which includes a registered identity similar to that of the 406 MHz EPIRB, and a location derived from a GPS navigational satellite receiver inside the EPIRB. Inmarsat-E EPIRB's may be detected anywhere in the world between $70^{\circ} \mathrm{N}$ and $70^{\circ} \mathrm{S}$. Since geostationary satellites are used, alerts are transmitted almost instantly to a RCC associated with the Inmarsat CES receiving the alert. The distress alert transmitted by an Inmarsat-E EPIRB is received by two CES's in each ocean region, giving 100 percent duplication for each ocean region in case of failures or outages associated with any of the CES's. Alerts received over the Inmarsat Atlantic Ocean Regions are routed to the U.S. Coast Guard Atlantic Area command center in Portsmouth, and alerts received over the Inmarsat Pacific Ocean Region are routed to the U.S. Coast Guard Pacific Area command center in Alameda. This type of EPIRB is designated for use in the GMDSS, but it is not sold in the United States or approved for use by U.S. flag vessels.

| Type | Frequency | Description |
| :--- | :--- | :--- |
| Class A | $121.5 / 243 \mathrm{MHz}$ | Float-free, automatic activating, detectable by aircraft and <br> satellite. Coverage limited (see Figure 2815 b ). <br> Manually activated version of Class A. <br> Similar to Class B, except that it floats, or is an integral <br> part of a survival craft. |
| Class B S | $121.5 / 243 \mathrm{MHz}$ | Float-free, automatically activated. Detectable by satellite <br> anywhere in the world. <br> Similar to Category I, except manually activated. <br> Category I |
| Category II | $406.5 / 243 \mathrm{MHz}$ | 406 MHz |
| Inmarsat-E | 1646 MHz | Float-free, automatically activated EPIRB. Detectable by <br> Inmarsat geostationary satellite. |

Figure 2815a. EPIRB classifications.

| Feature | 406 MHz EPIRB | 121.5/243 MHz EPIRB |
| :---: | :---: | :---: |
| Frequencies | $\begin{aligned} & \text { 406.025 MHz (locating) } \\ & 121.500 \mathrm{MHz} \text { (homing) } \end{aligned}$ | 243.000 MHz (military) |
| Primary Function | Satellite alerting, locating, identification of distressed vessels. | Transmission of distress signal to passing aircraft and ships. |
| Distress Confirmation | Positive identification of coded beacon; each beacon signal is a coded, unique signal with registration data (vessel name, description, and telephone number ashore, assisting in confirmation). | Virtually impossible; no coded information, beacons often incompatible with satellites; impossible to know if signals are from EPIRB, ELT, or non-beacon source. |
| Signal | Pulse digital, providing accurate beacon location and vital information on distressed vessel. | Continuous signal allows satellite locating at reduced accuracy; close range homing. |
| Signal Quality | Excellent; exclusive use of 406 MHz for distress beacons; no problems with false alerts from non-beacon sources. | Relatively poor; high number of false alarms caused by other transmitters in the 121.5 MHz band. |
| Satellite Coverage | Global coverage, worldwide detection; satellite retains beacon data until next Earth station comes into view. | Both beacon and LUT must be within coverage of satellite; detection limited to line of sight. |
| Operational Time | 48 hrs. at $-20^{\circ} \mathrm{C}$. | 48 hrs. at $-20^{\circ} \mathrm{C}$. |
| Output Power | 5 watts at $406 \mathrm{MHz}, 0.025$ watts at 121.5 MHz. | 0.1 watts average. |
| Strobe Light | High intensity strobe helps in visually locating search target. | None. |
| Location Accuracy (Search Area) and Time Required | 1 to 3 miles ( 10.8 sq. miles); accurate position on first satellite overflight enables rapid SAR response, often within 30 min . | 10 to 20 miles ( 486 sq . miles); SAR forces must wait for second system alert to determine final position before responding (1 to 3 hr . delay). |

Figure 2815b. Comparison of $121.5 / 406 \mathrm{MHz}$ and $121.5 / 243 \mathrm{MHz}$ EPIRB's.

Mariners should be aware of the differences between capabilities of $121.5 / 243 \mathrm{MHz}$ and $121.5 / 406 \mathrm{MHz}$ EPIRB's, as they have implications for alerting and locating of distress sites, as well as response by SAR forces. See Figure 2815b. The advantages of 121.5/406 MHz devices are substantial, and are further enhanced by EPIRB-transmitted registration data on the carrying vessel. Owners of $121.5 / 406 \mathrm{MHz}$ EPIRB's furnish registration information about their vessel, type of survival gear, and emergency points of contact ashore, all of which greatly enhance the quality of the response. The database for U.S. vessels is maintained by the National Oceanographic and Atmospheric Administration, and is accessed worldwide by SAR authorities to facilitate SAR response.

## 2816. Testing EPIRB's

EPIRB owners should periodically check for water tightness, battery expiration date, and signal presence. FCC
rules allow Class A, B, and S EPIRB's to be turned on briefly (for three audio sweeps, or 1 second only) during the first 5 minutes of any hour. Signal presence can be detected by an FM radio tuned to 99.5 MHz , or an AM radio tuned to any vacant frequency and located close to an EPIRB. All $121.5 / 406 \mathrm{MHz}$ EPIRB's have a self-test function that should be used in accordance with manufacturers' instructions at least monthly.

## 2817. The COSPAS/SARSAT System

COSPAS is a Russian acronym for "Space System for Search of Distressed Vessels"; SARSAT signifies "Search And Rescue Satellite-Aided Tracking." COSPASSARSAT is an international satellite-based search and rescue system established by the U.S., Russia, Canada, and France to locate emergency radiobeacons transmitting on the frequencies $121.5,243$, and 406 MHz . Since its inception, the COSPAS-SARSAT system (SARSAT satellite only) has contributed to saving over 13,000 lives.

The USCG receives data from MRCC stations and SAR Points of Contact (SPOC). See Figure 2817.

| Country | Location | Designator |
| :--- | :--- | :--- |
| Australia | Canberra | AUMCC |
| Brazil | San Paulo | BBMCC |
| Canada | Trenton | CMCC |
| Chile | Santiago | CHMCC |
| France | Toulouse | FMCC |
| Hong Kong | Hong Kong | HKMCC |
| India | Bangalore | INMCC |
| Indonesia | Jakarta | IONCC |
| ITDC | Taipei | TAMCC |
| Japan | Tokyo | JAMCC |
| Norway | Bodo | NMCC |
| Pakistan | Lahore | PAMCC* |
| Singapore | Singapore | SIMCC |
| Spain | Maspalomas | SPMCC |
| South Africa |  | SAMCC |
| Russian Federation Moscow | CMC |  |
| United Kingdom | Plymouth | UKMCC |
| United States | Suitland | USMCC |
| * Status Unknown |  |  |

Figure 2817. Participants in COSPASS/SARSAT system.

## 2818. Operation of The COSPAS/SARSAT System

If an EPIRB is activated, COSPAS/SARSAT picks up the signal, locates the source and passes the information to a land station. From there, the information is relayed to Rescue Coordination Centers, rescue vessels and nearby ships. This constitutes a oneway only communications system, from the EPIRB via the satellite to the rescuers. It employs low altitude, near polar orbiting satellites and by exploiting the Doppler principle, locates the 406 MHz EPIRB within about two miles. Due to the low polar orbit, there may by a delay in receiving the distress message unless the footprint of the satellite is simultaneously in view with a monitoring station. However, unlike SafetyNET, worldwide coverage is provided.

As a satellite approaches a transmitting EPIRB, the frequency of the signals it receives is higher than that being transmitted; when the satellite has passed the EPIRB, the received frequency is lower. This creates a notable Doppler shift. Calculations which take into account the Earth's rota-
tion and other factors then determine the location of the EPIRB.

Each 406 MHz EPIRB incorporates a unique identification code. Once the satellite receives the beacon's signals, the Doppler shift is measured and the beacon's digital data is recovered from the signal. The information is time-lagged, formatted as digital data and transferred to the repeater downlink for real time transmission to a local user terminal. The digital data coded into each 406 MHz EPIRB's memory indicates the identity of the vessel to SAR authorities. They can then refer to the EPIRB registration database for information about the type of vessel, survival gear carried aboard, whom to contact in an emergency, etc. The data includes a maritime identification digit (MID, a three digit number identifying the administrative country) and either a ship station identifier (SSI, a 6 digit number assigned to specific ships), a ship radio call sign or a serial number to identify the ship in distress.

With the Inmarsat-E satellite EPIRB's, coverage does not extend to very high latitudes, but within the coverage area the satellite connection is instantaneous. However, to establish the EPIRB's geographic position, an interface with a GPS receiver or other sensor is needed.

## 2819. Alarm, Warning, and Alerting Signals

For MF (i.e. 2182 kHz ), the signal consists of either (1) a keyed emission modulated by a tone of 1280 Hz to 1320 Hz with alternating periods of emission and silence of 1 to 1.2 seconds each; or (2) the radiotelephone alarm signal followed by Morse code B (- •••) and/or the call sign of the transmitting ship, sent by keying a carrier modulated by a tone of 1300 Hz or 2200 Hz . For VHF (i.e. 121.5 MHz and 243 MHz ), the signal characteristics are in accordance with the specifications of Appendix 37A of the ITU Radio Regulations. For 156.525 MHz and UHF (i.e. 406 MHz to 406.1 MHz and 1645.5 MHz to 1646.5 MHz ), the signal characteristics are in accordance with CCIR recommendations.

The purpose of these signals is to help determine the position of survivors for SAR operations. They indicate that one or more persons are in distress, may no longer be aboard a ship or aircraft, and may not have a receiver available.

## SEARCH AND RESCUE RADAR TRANSPONDERS

## 2820. Operational Characteristics

Operating much like a RACON, the Search and Rescue Radar Transponder (SART) is a passive rescue device which, when it senses the pulse from a radar operating in the 9 gHz frequency band, emits a series of pulses in response, which alerts the radar operator that some sort of
maritime distress is in progress. Further, the SART signal allows the radar operator to home in on the exact location of the SART. The SART can be activated manually, or will activate automatically when placed in water.

The SART signal appears on the radar screen as a series of 12 blips, each 0.64 nautical miles apart. As the vessel or aircraft operating the radar approaches the SART loca-
tion, the blips change to concentric arcs, and within about a mile of the SART become concentric circles, centered on the SART.

Because the SART actively responds to radar pulses, it also informs its user, with an audible or visual signal, that it is being triggered. This alerts the user in distress that there is an operating radar in the vicinity, whereupon they may send up flares or initiate other actions to indicate their position.

Approved SART's operate in standby mode for at least 96 hours and actively for at least 8 hours. Because the SART signal is stronger than any surrounding radar returns, it will be easily sensed by any nearby radar. But because it is much weaker than the radar, its own range is the limiting factor in detection.

## 2821. Factors Affecting SART Range

SART range is affected by three main factors. First, The type of radar and how it is operated is most important. Larger vessels with powerful, high-gain antennae, set higher above sea level, will trigger and detect the SART signal sooner than low-powered radars set closer to sea level. The radar should be set to a range of 12 or 6 miles for best indication of a SART's signal, and should not have too narrow a receive bandwidth, which might reduce the strength of the received signal.

Second, weather is a factor in SART range. A flat calm might cause multipath propagation and distort the SART's signal. Heavy seas may cause the SART signal to be received intermittently as the transponder falls into the troughs of the seas. Careful adjustment of the sea and rain clutter controls will maximize the SART's received signal strength.

Third, the height of the SART will greatly affect the range, because the signal obeys the normal rules for radio waves in its spectrum and does not follow the curvature of the earth, except for a small amount of refraction. Tests indicate that a SART floating in the sea will have a range of about 2 nautical miles when triggered by a radar mounted 15 meters above sea level. At a height of 1 meter, range increases to about 5 miles. To an aircraft actively searching for a SART at an altitude of 3.000 feet, the range increases to about 40 miles.

## 2822. Operating the Radar for SART Detection

Only an X-band ( 3 cm ) radar can trigger and sense a SART. An S-Band $(10 \mathrm{~cm})$ radar will neither trigger nor detect a SART. Normally, an X-band radar will sense a SART at about 8 nm . When triggered by an incoming radar signal, the SART will transmit a return signal across the entire 3 cm radar frequency band. The first signal is a rapid $0.4 \mathrm{mi}-$ crosecond sweep, followed by a 7.5 microsecond sweep, repeated 12 times. This will cause a series of 12 blips on the radar, spaced 0.64 nm apart. See Figure 2822a.


Figure 2822a. SART 12-dot blip code
For best reception, the radar should be set to medium bandwidth and to the 12 or 6 mile range. Too narrow a bandwidth will cause the SART signal to be weakened, as the radar is not sensing the entire SART pulse. The radar operator's manual should be consulted for these settings. Less expensive radars may not be able to change settings.

As the range to the SART decreases to about 1 nm , the initial 0.4 microsecond sweeps may become visible as weaker and smaller dots on the radar screen. When first sensed, the first blip will appear about 0.6 miles beyond the actual location of the SART. As range decreases, the blips will become centered on the SART.

As the SART is approached more closely, the blips ap-


Figure 2822b. SART arcs
pearing on the radar become concentric arcs centered on the SART itself. The arcs are actually caused by the radar return of side lobes associated with the radar signal. While use of the sea return or clutter control may decrease or eliminate these arcs, it is often best to retain them, as they indicate the proximity of the SART. See Figure 2822 b. Eventually the arcs become rings centered on the SART, as in Figure 2822c.

On some radars it may be possible to detune the radar signal in situations where heavy clutter or sea return obscures the SART signal. With the Automatic Frequency Control (AFC) on, the SART signal may become more visible, but the radar should be returned to normal operation as soon as possible. The gain control should usually be set to normal level for best detection, with the sea clutter control at its minimum and rain clutter control in normal position for the ambient conditions.


Figure 2822c. SART rings

## CHAPTER 29

## HYDROGRAPHY

## 2900. Introduction

Hydrography is the science of measurement and description of the features which affect marine navigation, including water depths, shorelines, tides, currents, bottom types, and undersea obstructions. Cartography transforms the scientific data collected by hydrographers into data usable by the mariner, and is the final step in a long process which leads from raw data to a usable chart.

The mariner, in addition to being the primary user of hydrographic data, is also an important source of data used in the production and correction of nautical charts. This chapter discusses the processes involved in producing a
nautical chart, whether in digital or paper form, from the initial planning of a hydrographic survey to the final printing. It is important to note that digital charts are no more accurate than the paper charts and other sources from which they are produced. "Digital" does not mean "more accurate," for in most cases the digitized data comes from the same sources that the paper charts use.

With this information, the mariner can better understand the information presented on charts, evaluate hydrographic information which comes to his attention, and report discrepancies in a form that will be most useful to charting agencies.

## BASICS OF HYDROGRAPHIC SURVEYING

## 2901. Planning the Survey

The basic sources of data used to produce nautical charts are hydrographic surveys. Much additional information is included, but the survey is central to the compilation of a chart. A survey begins long before actual data collection starts. Some elements which must be decided are:

- Exact area of the survey.
- Type of survey (reconnaissance or standard), scaled to meet standards of charts to be produced.
- Scope of the survey (short or long term).
- Platforms available (ships, launches, aircraft, leased vessels, cooperative agreements).
- Support work required (aerial or satellite photography, geodetics, tides).
- Limiting factors (budget, politics, geographic or operational constraints, positioning system limitations, logistics).

Once these issues are decided, all information available in the survey area is reviewed. This includes aerial photography, satellite data, topographic maps, existing nautical charts, geodetic information, tidal information, and anything else affecting the survey. The survey planners then compile sound velocity information, climatology, water clarity data, any past survey data, and information from light lists, Sailing Directions, and Notices to

Mariners. Tidal information is thoroughly reviewed and tide gauge locations chosen. Local vertical control data is reviewed to see if it meets the expected accuracy standards so the tide gauges can be linked to the vertical datum used for the survey. Horizontal control is reviewed to check for accuracy and discrepancies and to determine sites for local positioning systems to be used in the survey.

Line spacing refers to the distance between tracks to be run by the survey vessel. It is chosen to provide the best coverage of the area using the equipment available. Line spacing is a function of the depth of water, the sound footprint of the collection equipment to be used, and the complexity of the bottom. Once line spacing is chosen, the hydrographer can compute the total miles of survey track to be run and have an idea of the time required for the survey, factoring in the expected weather and other possible delays. The scale of the survey, orientation to the shorelines in the area, and the method of positioning determine line spacing. Planned tracks are laid out so that there will be no gaps between sound lines and sufficient overlaps between individual survey areas.

Wider lines are run at right angles to the primary survey development to verify data repeatability. These are called cross check lines.

Other tasks to be completed with the survey include bottom sampling, seabed coring, production of sonar pictures of the seabed, gravity and magnetic measurements (on deep ocean surveys), and sound velocity measurements in the water column.

## 2902. Echo Sounders in Hydrographic Surveying

Echo sounders were developed in the early 1920s, and compute the depth of water by measuring the time it takes for a pulse of sound to travel from the source to the sea bottom and return. A device called a transducer converts electrical energy into sound energy and vice versa. For basic hydrographic surveying, the transducer is mounted permanently in the bottom of the survey vessel, which then follows the planned trackline, generating soundings along the track.

The major difference between different types of echo sounders is in the frequencies they use. Transducers can be classified according to their beam width, frequency, and power rating. The sound radiates from the transducer in a cone, with about $50 \%$ actually reaching to sea bottom. Beam width is determined by the frequency of the pulse and the size of the transducer. In general, lower frequencies produce a wider beam, and at a given frequency, a smaller transducer will produce a wider beam. Lower frequencies also penetrate deeper into the water, but have less resolution in depth. Higher frequencies have greater resolution in depth, but less range, so the choice is a trade-off. Higher frequencies also require a smaller transducer. A typical low frequency transducer operates at 12 kHz and a high frequency one at 200 kHz .

The formula for depth determined by an echo sounder is:

$$
\mathrm{D}=\frac{\mathrm{V} \times \mathrm{T}}{2}+\mathrm{K}+\mathrm{D}_{\mathrm{r}}
$$

where D is depth from the water surface, V is the average velocity of sound in the water column, T is round-trip time for the pulse, $K$ is the system index constant, and $D_{r}$ is the depth of the transducer below the surface (which may not be the same as vessel draft). $\mathrm{V}, \mathrm{D}_{\mathrm{r}}$, and T can be only generally determined, and K must be determined from periodic calibration. In addition, T depends on the distinctiveness of the echo, which may vary according to whether the sea bottom is hard or soft. V will vary according to the density of the water, which is determined by salinity, temperature, and pressure, and may vary both in terms of area and time. In practice, average sound velocity is usually measured on site and the same value used for an entire survey unless variations in water mass are expected. Such variations could occur in areas of major currents or river outflows. While V is a vital factor in deep water surveys, it is normal practice to reflect the echo sounder signal off a plate suspended under the ship at typical depths for the survey areas in shallow waters. The K parameter, or index constant, refers to electrical or mechanical delays in the circuitry, and also contains any constant correction due to the change in sound velocity between the upper layers of water and the average used for the whole project. Further, vessel speed is factored in and corrections are computed for settlement and squat, which affect transducer depth. Vessel roll, pitch, and heave are also accounted for. Finally, the observed tidal data is recorded in
order to correct the soundings during processing.
Tides are accurately measured during the entire survey so that all soundings can be corrected for tide height and thus reduced to the chosen vertical datum. Tide corrections eliminate the effect of the tides on the charted waters and ensure that the soundings portrayed on the chart are the minimum available to the mariner at the sounding datum. Observed, not predicted, tides are used to account for both astronomically and meteorologically induced water level changes during the survey.

## 2903. Collecting Survey Data

While sounding data is being collected along the planned tracklines by the survey vessel(s), a variety of other related activities are taking place. A large-scale boat sheet is produced with many thousands of individual soundings plotted. A complete navigation journal is kept of the survey vessel's position, course and speed. Side-scan sonar may be deployed to investigate individual features and identify rocks, wrecks, and other dangers. Divers may also be sent down to investigate unusual objects. Time is the single parameter which links the ship's position with the various echograms, sonograms, journals, and boat sheets that make up the hydrographic data package.

## 2904. Processing Hydrographic Data

During processing, echogram data and navigational data are combined with tidal data and vessel/equipment corrections to produce reduced soundings. This reduced data is combined on a plot of the vessel's actual track with the boat sheet data to produce a smooth sheet. A contour overlay is usually made to test the logic of all the data shown. All anomolous depths are rechecked in either the survey records or in the field. If necessary, sonar data are then overlayed to analyze individual features as related to depths. It may take dozens of smooth sheets to cover the area of a complete survey. The smooth sheets are then ready for cartographers, who will choose representative soundings manually or using automated systems from thousands shown, to produce a nautical chart. Documentation of the process is such that any individual sounding on any chart can be traced back to its original uncorrected value. See Figure 2904.

The process is increasingly computerized, such that all the data from an entire survey can be collected and reduced to a selected set of soundings ready for incorporation into an electronic chart, without manual processes of any kind. Only the more advanced maritime nations have this capability, but less developed nations often borrow advanced technology from them under cooperative hydrographic agreements.

## 2905. Automated Hydrographic Surveying

The evolution of echo sounders has followed the same


Figure 2904. The process of hydrographic surveying.
pattern of technological innovation seen in other areas. In the 1940s low frequency/wide beam sounders were developed for ships to cover larger ocean areas in less time with some loss of resolution. Boats used smaller sounders which usually required visual monitoring of the depth. Later, narrow beam sounders gave ship systems better resolution using higher frequencies, but with a corresponding loss of area. These were then combined into dual-frequency systems. All echo sounders, however, used a single transducer, which limited surveys to single lines of soundings. For boat equipment, automatic recording became standard.

The last three decades have seen the development of multiple-transducer, multiple-frequency sounding systems which are able to scan a wide area of seabed. Two general types are in use. Open waters are best surveyed using an array of transducers spread out athwartships across the hull of the survey vessel. They may also be deployed from an array towed behind the vessel at some depth to eliminate corrections for vessel heave, roll, and pitch. Typically, as many as 16 separate transducers are arrayed, sweeping an arc of $90^{\circ}$. The area covered by these swath survey systems is thus a function of water depth. See Figure 2905. In shallow water, track lines must be much closer together than in deep water. This is fine with hydrographers, because shallow waters need more closely spaced data to provide an accurate portrayal of the bottom on charts. The second type of multiple beam system uses an array of vertical beam transducers rigged out on poles abeam the survey vessel with transducers spaced to give overlapping coverage for the general water depth. This is an excellent configuration for very shallow water, providing very densely spaced soundings from which an accurate picture of the bottom can be made for harbor and small craft charts. The width of the swath
of this system is fixed by the distance between the two outermost transducers and is not dependent on water depth.

Airborne Laser Hydrography (ALH) uses laser light to conduct hydrographic surveys from aircraft. It is particularly suitable in areas of complex hydrography containing numerous rocks, shoals, and obstructions dangerous to survey vessels. The technology has developed and matured since the 1970's, and in some areas of the world up to $50 \%$ of the hydrographic surveying is done with lasers. Survey rates of some 65 square km per hour are possible, at about a quarter of the cost of comparable vessel surveys. Data density is variable, ranging down to some 1-2 meters square, and depths from one half to over 70 meters have been successfully surveyed.

The technology uses laser light generators mounted in the bottom of a fixed or rotary wing aircraft. Two colors are used, one which reflects off the surface of the sea and back to the aircraft, and a different color which penetrates to the seabed before reflecting back to the aircraft. The difference in the time of reception of the two beams is a function of the water depth. This data is correlated with position data obtained from GPS, adjusted for tides, and added to a bathymetric database from which subsets of data are drawn for compilation of nautical charts.

Obviously water clarity has a great deal to do with the success of ALH, but even in most areas of murky water, seasonal or meteorological variations often allow sufficient penetration of the laser to conduct surveys. Some $80 \%$ of the earth's shallow waters are suitable for ALH.

In addition to hydrographic uses, ALH data finds application in coastal resource management, maritime boundaries, environmental studies, submarine pipeline construction, and oil and gas exploration.

## HYDROGRAPHIC REPORTS

## 2906. Chart Accuracies

The chart resulting from a hydrographic survey can be no more accurate than that survey; the survey's accuracy, in turn, is limited by the positioning system used. For many older charts, the positioning system controlling data collection involved using two sextants to measure horizontal angles between surveyed points established ashore. The accuracy of this method, and to a lesser extent the accuracy of modern, shore based electronic positioning methods, deteriorates rapidly with distance. In the past this often determined the maximum scale which could be considered for the final chart. With the advent of the Global Positioning System (GPS) and enhancements such as DGPS and WAAS, the mariner can often now navigate with greater accuracy than could the hydrographic surveyor who collected the chart's source data. Therefore, one must exercise care not to take shoal areas or other hazards closer aboard than necessary because they may not be exactly where they are charted. This is especially true in less-travelled waters.

This is in addition to the caution the mariner must exercise to be sure that his navigation system and chart are on the same datum. The potential danger to the mariner increases with digital charts because by zooming in, he can increase the chart scale beyond what can be supported by the source data. The constant and automatic update of the vessel's position on the chart display can give the navigator a false sense of security, causing him to rely on the accuracy of a chart when the source data from which the chart was compiled cannot support the scale of the chart displayed.

## 2907. Navigational and Oceanographic Information

Mariners at sea, because of their professional skills and location, represent a unique data collection capability unobtainable by any government agency. Provision of high quality navigational and oceanographic information by government agencies requires active participation by mariners in data collection and reporting. Examples of the type of information required are reports of obstructions, shoals or


Figure 2905. Swath versus single-transducer surveys.
hazards to navigation, unusual sea ice or icebergs, unusual soundings, currents, geophysical phenomena such as magnetic disturbances and subsurface volcanic eruptions, and marine pollution. In addition, detailed reports of harbor conditions and facilities in both busy and out-of-the-way ports and harbors helps charting agencies keep their products current. The responsibility for collecting hydrographic data by U.S. Naval vessels is detailed in various directives and instructions. Civilian mariners, because they often travel to a wider range of ports, also have an opportunity to contribute substantial amounts of valuable information.

## 2908. Responsibility for Information

The National Imagery and Mapping Agency (NIMA), the U.S. Naval Oceanographic Office (NAVOCEANO), the U.S. Coast Guard and NOAA's Coast and Geodetic Survey (C\&GS) are the primary agencies which receive, process, and disseminate marine information in the U.S.

NIMA produces charts, Notice to Mariners, and other nautical materials for the U.S. military services and for navigators in general for waters outside the U.S.

NAVOCEANO conducts hydrographic and oceanographic surveys of primarily foreign or international waters, and disseminates information to naval forces, government agencies, and civilians.

The Coast and Geodetic Survey (C\&GS) conducts hydrographic and oceanographic surveys and provides charts for marine and air navigation in the coastal waters of the United States and its territories.

The U.S. Coast Guard is charged with protecting safety of life and property at sea, maintaining aids to navigation, law enforcement, and improving the quality of the marine environment. In the execution of these duties, the Coast Guard collects, analyzes, and disseminates navigational and oceanographic data.

Modern technology allows navigators to easily contribute to the body of hydrographic and oceanographic information.

Navigational reports are divided into four categories:

1. Safety Reports
2. Sounding Reports
3. Marine Data Reports
4. Port Information Reports

The seas and coastlines continually change through the actions of man and nature. Improvements realized over the years in the nautical products published by NIMA, the National Ocean Service (NOS), and U.S. Coast Guard have been made possible in part by the reports and constructive criticism of seagoing observers, both naval and merchant marine. NIMA and NOS continue to rely to a great extent on the personal observations of those who have seen the changes and can compare charts and publications with
actual conditions. In addition, many ocean areas and a significant portion of the world's coastal waters have never been adequately surveyed for the purpose of producing modern nautical charts.

Information from all sources is evaluated and used in the production and maintenance of NIMA, NOS and Coast Guard charts and publications. Information from surveys, while originally accurate, is subject to continual change. As it is impossible for any hydrographic office to conduct continuous worldwide surveys, U.S. charting authorities depend on reports from mariners to provide a steady flow of valuable information from all parts of the globe.

After careful analysis of a report and comparison with all other data concerning the same area or subject, the organization receiving the information takes appropriate action. If the report is of sufficient urgency to affect the immediate safety of navigation, the information will be broadcast as a SafetyNET or NAVTEX message. Each report is compared with others and contributes in the compilation, construction, or correction of charts and publications. It is only through the constant flow of new information that charts and publications can be kept accurate and up-to-date.

## 2909. Safety Reports

Safety reports are those involving navigational safety which must be reported and disseminated by message. The types of dangers to navigation which will be discussed in this article include ice, floating derelicts, wrecks, shoals, volcanic activity, mines, and other hazards to shipping.

1. Ice-Mariners encountering ice, icebergs, bergy bits, or growlers in the North Atlantic should report to Commander, International Ice Patrol, Groton, CT through a U.S. Coast Guard Communications Station. Direct printing radio teletype (SITOR) is available through USCG Communications Stations Boston or Portsmouth.

Satellite telephone calls may be made to the Ice Patrol office in Groton, Connecticut throughout the season at (203) 441-2626 (Ice Patrol Duty Officer). Messages can also be sent through the Coast Guard Operations Center, Boston at (617) 223-8555.

When sea ice is observed, the concentration, thickness, and position of the leading edge should be reported. The size, position, and, if observed, rate and direction of drift, along with the local weather and sea surface temperature, should be reported when icebergs, bergy bits, or growlers are encountered.

Ice sightings should also be included in the regular synoptic ship weather report, using the five-figure group following the indicator for ice. This will assure the widest distribution to all interested ships and persons. In addition, sea surface temperature and weather reports should be made to COMINTICEPAT every 6 hours by vessels within latitude $40^{\circ} \mathrm{N}$ and $52^{\circ} \mathrm{N}$ and longitude $38^{\circ} \mathrm{W}$ and $58^{\circ} \mathrm{W}$, if a
routine weather report is not made to METEO Washington.
2. Floating Derelicts-All observed floating and drifting dangers to navigation that could damage the hull or propellers of a vessel at sea should be immediately reported by radio. The report should include a brief description of the danger, the date, time (GMT) and the location as exactly as can be determined (latitude and longitude).
3.Wrecks/Man-Made Obstructions-Information is needed to assure accurate charting of wrecks, man-made obstructions, other objects dangerous to surface and submerged navigation, and repeatable sonar contacts that may be of interest to the U.S. Navy. Man-made obstructions not in use or abandoned are particularly hazardous if unmarked and should be reported immediately. Examples include abandoned wellheads and pipelines, submerged platforms and pilings, and disused oil structures. Ship sinkings, strandings, disposals, or salvage data are also reportable, along with any large amounts of debris, particularly metallic.

Accuracy, especially in position, is vital. Therefore, the date and time of the observation, as well as the method used in establishing the position, and an estimate of the fix accuracy should be included. Reports should also include the depth of water, preferably measured by soundings (in fathoms or meters). If known, the name, tonnage, cargo, and cause of casualty should be provided.

Data concerning wrecks, man-made obstructions, other sunken objects, and any salvage work should be as complete as possible. Additional substantiating information is encouraged.
4. Shoals-When a vessel discovers an uncharted or erroneously charted shoal or an area that is dangerous to navigation, all essential details should be immediately reported to NIMA NAVSAFETY BETHESDA MD via radio. An uncharted depth of 300 fathoms or less is considered an urgent danger to submarine navigation. Immediately upon receipt of any message reporting dangers to navigation, NIMA may issue an appropriate NAVAREA warning. The information must appear on published charts as "reported" until sufficient substantiating evidence (i.e. clear and properly annotated echograms and navigation logs, and any other supporting information) is received.

Therefore, originators of shoal reports are requested to verify and forward all substantiating evidence to NIMA at the earliest opportunity. Clear and properly annotated echograms and navigation logs are especially important in verifying or disproving shoal reports.
5. Volcanic Activity-On occasion, volcanic eruptions may occur beneath the surface of the water. These submarine eruptions may occur more frequently and be more widespread than has been suspected in the past. Sometimes the only evidence of a submarine eruption is a noticeable discoloration of the water, a marked rise in sea
surface temperature, or floating pumice. Mariners witnessing submarine activity have reported steams with a foul sulfurous odor rising from the sea surface, and strange sounds heard through the hull, including shocks resembling a sudden grounding. A subsea volcanic eruption may be accompanied by rumbling and hissing as hot lava meets the cold sea.

In some cases, reports of discolored water at the sea surface have been investigated and found to be the result of newly formed volcanic cones on the sea floor. These cones can grow rapidly and within a few years constitute a hazardous shoal.

It is imperative that mariners report evidence of volcanic activity immediately to NIMA by message. Additional substantiating information is encouraged.
6. Mines-All mines or objects resembling mines should be considered armed and dangerous. An immediate radio report to NIMA should include (if possible):

1. Greenwich Mean Time (UT) and date
2. Position of mine, and how near it was approached
3. Size, shape, color, condition of paint, and presence of marine growth
4. Presence or absence of horns or rings
5. Certainty of identification

## 2910. Instructions for Safety Report Messages

The International Convention for the Safety of Life at Sea (1974), which is applicable to all U.S. flag ships, states "The master of every ship which meets with dangerous ice, dangerous derelict, or any other direct danger to navigation, or a tropical storm, or encounters subfreezing air temperatures associated with gale force winds causing severe ice accretion on superstructures, or winds of force 10 or above on the Beaufort scale for which no storm warning has been received, is bound to communicate the information by all means at his disposal to ships in the vicinity, and also to the competent authorities at the first point on the coast with which he can communicate."

The transmission of information regarding ice, derelicts, tropical storms, or any other direct danger to navigation is obligatory. The form in which the information is sent is not obligatory. It may be transmitted either in plain language (preferably English) or by any means of International Code of Signals (wireless telegraphy section). It should be sent to all vessels in the area and to the first station with which communication can be made, with the request that it be transmitted to the appropriate authority. A vessel will not be charged for radio messages to government authorities reporting dangers to navigation.

Each radio report of a danger to navigation should answer briefly three questions:

1. What? A description of the object or phenomenon
2. Where? Latitude and longitude
3. When? Greenwich Mean Time (GMT) and date

Examples:

## Ice

SECURITE. ICE: LARGE BERG SIGHTED DRIFTING SW AT 0.5 KT 4605N, 4410W, AT 0800 GMT, MAY 15.

## Derelicts

SECURITE. DERELICT: OBSERVED WOODEN 25 METER DERELICT ALMOST SUBMERGED AT 4406N, 1243W AT 1530 GMT, APRIL 21.

The report should be addressed to one of the following shore authorities as appropriate:

1. U.S. Inland Waters-Commander of the Local Coast Guard District
2. Outside U.S. Waters—NIMA NAVSAFETY BETHESDA MD

Whenever possible, messages should be transmitted via the nearest government radio station. If it is impractical to use a government station, a commercial station may be used. U.S. government navigational warning messages should invariably be sent through U.S. radio stations, government or commercial, and never through foreign stations. Detailed instructions for reporting via radio are contained in NIMA Pub. 117, Radio Navigational Aids.

## OCEANIC SOUNDING REPORTS

## 2911. Sounding Reports

Acquisition of reliable sounding data from all ocean areas of the world is a continuing effort of NIMA, NAVOCEANO, and NOS. There are vast ocean areas where few soundings have ever been acquired. Much of the bathymetric data shown on charts has been compiled from information submitted by mariners. Continued cooperation in observing and submitting sounding data is absolutely necessary to enable the compilation of accurate charts. Compliance with sounding data collection procedures by merchant ships is voluntary, but for U.S. Naval vessels compliance is required under various fleet directives.

## 2912. Areas Where Soundings are Needed

Prior to a voyage, navigators can determine the importance of recording sounding data by checking the charts for the route. Indications that soundings may be particularly useful are:

1. Old sources listed on source diagram or note
2. Absence of soundings in large areas
3. Presence of soundings, but only along well-defined lines with few or no soundings between tracks
4. Legends such as "Unexplored area"

## 2913. Fix Accuracy

A realistic goal of open ocean positioning for sounding reports is a few meters using GPS or Loran C. Depths of 300 fathoms or less should always be reported regardless of the fix accuracy. When such depths are uncharted or erroneously charted, they should be reported by message to NIMA NAVSAFETY BETHESDA MD, giving the best available positioning accuracy. Echograms and other
supporting information should then be forwarded by mail to NIMA.

The accuracy goal noted above has been established to enable NIMA to create a high quality data base which will support the compilation of accurate nautical charts. It is particularly important that reports contain the navigator's best estimate of his fix accuracy and that the positioning system being used (GPS, Loran C, etc.) be identified.

## 2914. False Shoals

Many poorly identified shoals and banks shown on charts are probably based on encounters with the Deep Scattering Layer (DSL), ambient noise, or, on rare occasions, submarine earthquakes. While each appears real enough at the time of its occurrence, a knowledge of the events that normally accompany these incidents may prevent erroneous data from becoming a charted feature.

The DSL is found in most parts of the world. It consists of a concentration of marine life which descends from near the surface at sunrise to an approximate depth of 200 fathoms during the day. It returns near the surface at sunset. Although at times the DSL may be so concentrated that it will completely mask the bottom, usually the bottom return can be identified at its normal depth at the same time the DSL is being recorded.

Ambient noise or interference from other sources can cause erroneous data. This interference may come from equipment on board the ship, from another transducer being operated close by, or from waterborne noise. Most of these returns can be readily identified on the echo sounder records and should cause no major problems. However, on occasion they may be so strong and consistent as to appear as the true bottom.

Finally, a volcanic disturbance beneath the ship or in the immediate vicinity may give erroneous indications of a
shoal. The experience has at times been described as similar to running aground or striking a submerged object. Regardless of whether the feature is an actual shoal or a submarine eruption, the positions, date/time, and other information should be promptly reported to NIMA.

## 2915. Doubtful Hydrographic Data

Navigators are requested to assist in confirming and charting actual shoals and the removal from the charts of doubtful data which was erroneously reported.

The classification or confidence level assigned to doubtful hydrographic data is indicated by the following standard abbreviations:

| Abbreviation | Meaning |
| :--- | :--- |
|  |  |
| Rep (date) | Reported (year) |
| E.D. | Existence Doubtful |
| P.A. | Position Approximate |
| P.D. | Position Doubtful |

Many of these reported features are sufficiently deep that a ship can safely navigate across the area. Confirmation of the existence of the feature will result in proper charting. On the other hand, properly collected and annotated sounding reports of the area may enable cartographers to accumulate sufficient evidence to justify the removal of the erroneous sounding from the database.

## 2916. Preparation of Sounding Reports

The procedures for preparing sounding reports have been designed to minimize the efforts of the shipboard observers, yet provide essential information. Submission of plotted sounding tracks is not required. Annotated echograms and navigation logs are preferred. The procedure for collecting sounding reports is for the ship to operate a recording echo sounder while transiting an area where soundings are desired. Fixes and course changes are recorded in the log, and the event marker is used to note these events on the echogram. Both the log and echogram can then be sent to NIMA whenever convenient. From this data, the track will be reconstructed and the soundings keyed to logged times.

The following annotations or information should be clearly written on the echogram to ensure maximum use of the recorded depths:

1. Ship's name-At the beginning and end of each roll or portion of the echogram.
2. Date-Date, noted as local or GMT, on each roll or portion of a roll.
3. Time-The echogram should be annotated at the
beginning of the sounding run, regularly thereafter (hourly is best), at every scale change, and at all breaks in the echogram record. Accuracy of these time marks is critical for correlation with ship's position.
4.Time Zone-Greenwich Mean Time (GMT) should be used if possible. In the event local zone times are used, annotate echogram whenever clocks are reset and identify zone time in use. It is most important that the echogram and navigation log use the same time basis.
4. Phase or scale changes-If echosounder does not indicate scale setting on echogram automatically, clearly label all depth phase (or depth scale) changes and the exact time they occur. Annotate the upper and lower limits of the echogram if necessary.

Figure 2916a and Figure 2916b illustrate the data necessary to reconstruct a sounding track. If ship operations dictate that only periodic single ping soundings can be obtained, the depths may be recorded in the Remarks column. Cartographers always prefer an annotated echogram over single soundings. The navigation $\log$ is vital to the reconstruction of a sounding track. Without the position information from the log, the echogram is virtually useless.

The data received from these reports is digitized and becomes part of the digital bathymetric data library of NIMA, from which new charts are compiled. Even in areas where numerous soundings already exist, sounding reports allow valuable cross-checking to verify existing data and more accurately portray the sea floor. Keep in mind that many soundings seen on currently issued charts, and in the sounding database used to make digital charts, were taken when navigation was still largely an art. Soundings accurate to modern GPS standards are helpful to our Naval forces and particularly to the submarine fleet, and are also useful to geologists, geophysicists, and other scientific disciplines.

A report of oceanic soundings should contain:

1. All pertinent information about the ship, sounding system, transducer, etc.
2. A detailed Navigation Log
3. The echo sounding trace, properly annotated

Each page of the report should be clearly marked with the ship's name and date, so that it can be identified if it becomes separated. Mail the report to:

## NIMA/PTNM

MS D-44
4600 Sangamore Rd.
Bethesda, MD 20816-5003


Figure 2916a. Annotated echo sounding record.

| NAVIGATION LOG |  |  |  |  |  |  | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATE | $\begin{aligned} & \text { TIME } \\ & \text { (GMT) } \end{aligned}$ | LAT. | LONG. | $\begin{aligned} & \hline \text { NAV. } \\ & \text { FIX } \\ & \hline \end{aligned}$ | COURSE | SPEED |  |
| 11/2/83 | 0221 | $29^{\circ} 41^{\prime} \mathrm{N}$ | $124^{\circ} 10^{\prime} \mathrm{E}$ | LORAN | $093{ }^{\circ}$ | 12.3 |  |
|  | 0340 |  |  |  | $097{ }^{\circ}$ | 12.3 | CHANGE COURSE |
|  | 0400 | $29^{\circ} 40^{\prime} \mathrm{N}$ | $124^{\circ} 35^{\prime} E$ | Noon | $097{ }^{\circ}$ | 12.3 |  |
|  | 0728 | $29^{\circ} 35^{\circ} \mathrm{N}$ | $125^{\circ} 22^{\prime} E$ | IORAN | 097 ${ }^{\circ}$ | 12.3 |  |
|  | 0810 |  |  |  | VARIOUS | 8.2 | REDUCE SPEED-MANUVERING TO AVOID FISHING BOATO |
|  | 0826 | $29^{\circ} 34^{\prime} \mathrm{N}$ | $125^{\circ} 35^{\prime} .5 E$ | LORAN | $097{ }^{\circ}$ | 12.3 | RESUME COURSE AND SPEED |
|  | 1011 | $29^{\circ} 32^{\prime} \mathrm{N}$ | $125^{\circ} 56^{\prime} \mathrm{E}$ | EVENING STARS | $097{ }^{\circ}$ | 12.3 |  |
|  | 1620 | $29^{\circ} 23^{\prime} \mathrm{N}$ | $127^{\circ} 22^{\prime} \mathrm{E}$ | LORAN | 102 ${ }^{\circ}$ | 12.4 | CHANGE COURSE |
|  | 2230 | $29^{\circ} 06^{\circ} .2 \mathrm{M}$ | $128^{\circ} 48^{\prime} 5 \mathrm{SE}$ |  | $102^{\circ}$ | 12.5 |  |
|  | 2305 |  |  |  | $102^{\circ}$ | 10.1 | REDUCE SPEED |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| . |  |  |  |  |  |  |  |

Figure 2916b. Typical navigation log for hydrographic reporting.

## OTHER HYDROGRAPHIC REPORTS

## 2917. Marine Information Reports

Marine Information Reports are reports of items of navigational interest such as the following:

1. Discrepancies in published information
2. Changes in aids to navigation
3. Electronic navigation reports
4. Satellite navigation reports
5. Radar navigation reports
6. Magnetic disturbances

Any information believed to be useful to charting authorities or other mariners should be reported. Depending on the type of report, certain information is absolutely critical for a correct evaluation. The follow-
ing general suggestions are offered to assist in reporting information that will be of maximum value:

1. The geographical position included in the report may be used to correct charts. Accordingly, it should be fixed by the most exact method available, and more than one if possible.
2. If geographical coordinates are used to report position, they should be as exact as circumstances permit. Reference should be made to paper charts by number, edition number, and edition date.
3. The report should state the method used to fix the position and an estimate of fix accuracy.
4. When reporting a position within sight of charted objects, the position may be expressed as bearings and ranges from them. Bearings should preferably
be reported as true and expressed in degrees.
5. Always report the limiting bearings from the ship toward the light when describing the sectors in which a light is either visible or obscured. Although this is just the reverse of the form used to locate objects, it is the standard method used on NIMA nautical charts and in light lists.
6. A report prepared by one person should, if possible, be checked by another.

In most cases marine information can be adequately reported on one of the various forms printed by NIMA or NOS. It may be more convenient to annotate information directly on the affected chart and mail it to NIMA. As an example, it may be useful to sketch uncharted or erroneously charted shoals, buildings, or geological features directly on the chart. Appropriate supporting information should also be provided. NIMA forwards reports as necessary to NOS, NAVOCEANO, or U.S. Coast Guard.

Reports by letter or e-mail are just as acceptable as those prepared on regular forms. A letter report will often allow more flexibility in reporting details, conclusions, or recommendations concerning the observation. When reporting on the regular forms, use additional sheets if necessary to complete the details of an observation.

Reports are required concerning any errors in information published on nautical charts or in nautical publications. The reports should be as accurate and complete as possible. This will result in corrections to the information, including the issuance of a Notice to Mariners when appropriate.

Report all changes, defects, establishment or discontinuance of navigational aids and the source of the information. Check your report against the List of Lights, Pub. 117, Radio Navigational Aids, and the largest scale chart of the area. If a new, uncharted light has been established, report the light and its characteristics in a format similar to that carried in light lists. For changes and defects, report only elements that differ with light lists. If it is a lighted aid, identify by number. Defective aids to navigation in U.S. waters should be reported immediately to the Commander of the local Coast Guard District.

## 2918. Electronic Navigation System Reports

Electronic navigation systems have become an integral part of modern navigation. Reports on propagation anomalies or any unusual reception while using the electronic navigation system are desired.

Information should include:

1. Type of system
2. Type of antenna
3. Nature and description of the reception
4. Date and time
5. Position of ship
6. Manufacturer and model of receiver

## 2919. Radar Navigation Reports

Reports of any unusual reception or anomalous propagation by radar systems caused by atmospheric conditions are especially desirable. Comments concerning the use of radar in piloting, with the locations and description of good radar targets, are particularly needed. Reports should include:

1. Type of radar, frequency, antenna height and type.
2. Manufacturer and model of the radar
3. Date, time and duration of observed anomaly
4. Position
5. Weather and sea conditions

Radar reception problems caused by atmospheric parameters are contained in four groups. In addition to the previously listed data, reports should include the following specific data for each group:

1. Unexplained echoes-Description of echo, apparent velocity and direction relative to the observer, and range
2. Unusual clutter-Extent and Sector
3. Extended detection ranges-Surface or airborne target, and whether point or distributed target, such as a coastline or landmass
4. Reduced detection ranges-Surface or airborne target, and whether point or distributed target, such as a coastline or landmass

## 2920. Magnetic Disturbances

Magnetic anomalies, the result of a variety of causes, exist in many parts of the world. NIMA maintains a record of such magnetic disturbances and whenever possible attempts to find an explanation. A better understanding of this phenomenon can result in more detailed charts which will be of greater value to the mariner.

The report of a magnetic disturbance should be as specific as possible. For instance: "Compass quickly swung $190^{\circ}$ to $170^{\circ}$, remained offset for approximately 3 minutes and slowly returned." Include position, ship's course, speed, date, and time.

Whenever the readings of the standard magnetic compass are unusual, an azimuth check should be made as soon as possible and this information included in a report to NIMA.

## PORT INFORMATION REPORTS

## 2921. Importance of Port Information Reports

Port Information Reports provide essential information obtained during port visits which can be used to update and improve coastal, approach, and harbor charts as well as nautical publications including Sailing Directions, Coast Pilots, and Fleet Guides. Engineering drawings, hydrographic surveys and port plans showing new construction affecting charts and publications are especially valuable.

Items involving navigation safety should be reported by message or e-mail. Items which are not of immediate urgency, as well as additional supporting information may be submitted by the Sailing Directions Information and Suggestion Sheet found in the front of each volume of Sailing Directions, or the Notice to Mariners Marine Information Report and Suggestion Sheet found in the back of each Notice to Mariners. Reports by letter are completely acceptable and may permit more reporting flexibility.

In some cases it may be more convenient and more effective to annotate information directly on a chart and mail it to NIMA. As an example, new construction, such as new port facilities, pier or breakwater modifications, etc., may be drawn on a chart in cases where a written report would be inadequate.

Specific reporting requirements exist for U.S. Navy ships visiting foreign ports. These reports are primarily intended to provide information for use in updating the Navy Port Directories. A copy of the navigation information resulting from port visits should be provided directly to NIMA by including NIMA NAVSAFETY BETHESDA MD as an INFO addressee on messages containing hydrographic information.

## 2922. What to Report

Coastal features and landmarks are almost constantly changing. What may at one time have been a major landmark may now be obscured by new construction, destroyed, or changed by the elements. Sailing Directions (Enroute) and Coast Pilots utilize a large number of photographs and line sketches. Photographs, particularly a series of overlapping views showing the coastline, landmarks, and harbor entrances are very useful.

Especially convenient are e-mailed pictures taken with a digital camera. Use the highest resolution possible and email the picture(s) with description of the feature and the exact Lat./Long. where the picture was taken to: navsafety@nima.mil. There is also an increasing need for video clips on VHS or other media of actual entrances to ports and harbors.

The following questions are suggested as a guide in preparing reports on coastal areas that are not included or
that differ from the Sailing Directions and Coast Pilots.

## Approach

1. What is the first landfall sighted?
2. Describe the value of soundings, GPS, LORAN, radar and other positioning systems in making a landfall and approaching the coast. Are depths, curves, and coastal dangers accurately charted?
3. Are prominent points, headlands, landmarks, and aids to navigation adequately described in Sailing Directions and Coast Pilots? Are they accurately charted?
4. Do land hazes, fog or local showers often obscure the prominent features of the coast?
5. Do discolored water and debris extend offshore? How far? Were tidal currents or rips experienced along the coasts or in approaches to rivers or bays?
6. Are any features of special value as radar targets?

## Tides and Currents

1. Are the published tide and current tables accurate?
2. Does the tide have any special effect such as river bore? Is there a local phenomenon, such as double high or low water or interrupted rise and fall?
3. Was any special information on tides obtained from local sources?
4. What is the set and drift of tidal currents along coasts, around headlands, among islands, in coastal indentations?
5. Are tidal currents reversing or rotary? If rotary, do they rotate in a clockwise or counterclockwise direction?
6. Do subsurface currents affect the maneuvering of surface craft? If so, describe.
7. Are there any countercurrents, eddies, overfalls, or tide rips in the area? If so, where?

## River and Harbor Entrances

1. What is the depth of water over the bar, and is it subject to change? Was a particular stage of tide necessary to permit crossing the bar?
2. What is the least depth in the channel leading from sea to berth?
3. If the channel is dredged, when and to what depth and width? Is the channel subject to silting?
4. What is the maximum draft, length and width of a vessel that can enter port?
5. If soundings were taken, what was the stage of tide? If the depth information was received from other sources, what were they?
6. What was the date and time of water depth observations?

## Hills, Mountains, and Peaks

1. Are hills and mountains conical, flat-topped, or of any particular shape?
2. At what range are they visible in clear weather?
3. Are they snowcapped throughout the year?
4. Are they cloud covered at any particular time?
5. Are the summits and peaks adequately charted? Can accurate distances and/or bearings be obtained by sextant, pelorus, or radar?
6. What is the quality of the radar return?

## Pilotage

1. Where is the signal station located?
2. Where does the pilot board the vessel? Are special arrangements necessary before a pilot boards?
3. Is pilotage compulsory? Is it advisable?
4. Will a pilot direct a ship in at night, during foul weather, or during periods of low visibility?
5. Where does the pilot boat usually lie?
6. Does the pilot boat change station during foul weather?
7. Describe the radiotelephone communication facilities available at the pilot station or pilot boat. What is the call sign, frequency, and the language spoken?

## General

1. What cautionary advice, additional data, and information on outstanding features should be given to a mariner entering the area for the first time?
2. At any time did a question or need for clarification arise while using NIMA, NOS, or Coast Guard products?
3. Were charted land contours useful while navigating using radar? Indicate the charts and their edition numbers.
4. Would it be useful to have radar targets or topographic features that aid in identification or position plotting described or portrayed in the Sailing Directions and Coast Pilots?

## Photographs

Use overlapping photographs to create panoramic views of wide features or areas. On the back of the photograph (negatives should accompany the required information), indicate the camera position by bearing and distance from a charted object if possible, name of the vessel, the date, time of exposure, height of eye (camera) and stage of tide. All features of navigational value should be clearly and accurately identified on an overlay, if time permits. Bearings and distances (from the vessel) of uncharted
features identified on the print should be included. If photographs are digital and sent electronically, include this information in the e-mail message and add the photographs as attachments. Digital photographs can be sent via e-mail, on floppy disks or CR-ROM's.

## Radarscope Photography

Because of the value of radar as an aid to navigation, NIMA desires radarscope photographs. Guidelines for radar settings for radarscope photography are given in Pub. 1310, Radar Navigation and Maneuvering Board Manual. Such photographs, reproduced in the Sailing Directions and Fleet Guides, supplement textual information concerning critical navigational areas and assist the navigator in correlating the radarscope presentation with the chart. To be of the greatest value, radarscope photographs should be taken at landfalls, sea buoys, harbor approaches, major turns in channels, constructed areas and other places where they will most aid the navigator. Two prints of each photograph are needed; one should be unmarked, the other annotated.

Examples of desired photographs are images of fixed and floating navigational aids of various sizes and shapes as observed under different sea and weather conditions, and images of sea return and precipitation of various intensities. There should be two photographs of this type of image, one without the use of special anti-clutter circuits and another showing the remedial effects of these. Photographs of actual icebergs, growlers, and bergy bits under different sea conditions, correlated with photographs of their radarscope images are also desired.

Radarscope photographs should include the following annotations:

1. Wavelength
2. Antenna height and rotation rate
3. Range-scale setting and true bearing
4. Antenna type (parabolic, slotted waveguide)
5. Weather and sea conditions, including tide
6. Manufacturer's model identification
7. Position at time of observation
8. Identification of target by Light List, List of Lights, or chart
9. Camera and exposure data

Other desired annotations include:

1. Beam width between half-power points
2. Pulse repetition rate
3. Pulse duration (width).
4. Antenna aperture (width)
5. Peak power
6. Polarization
7. Settings of radar operating controls, particularly use of special circuits
8. Characteristics of display (stabilized or unstabilized), diameter, etc.

## Port Regulations and Restrictions

Sailing Directions (Planning Guides) are concerned with pratique, pilotage, signals, pertinent regulations, warning areas, and navigational aids. The following questions are suggested as a guide to the requested data.

1. Is this a port of entry for overseas vessels?
2. If not a port of entry, where must a vessel go for customs entry and pratique?
3. Where do customs, immigration, and health officials board?
4. What are the normal working hours of officials?
5. Will the officials board vessels after working hours? Are there overtime charges for after-hour services?
6. If the officials board a vessel underway, do they remain on board until the vessel is berthed?
7. Were there delays? If so, give details.
8. Were there any restrictions placed on the vessel?
9. Was a copy of the Port Regulations received from the local officials?
10. What verbal instructions were received from the local officials?
11. What preparations prior to arrival would expedite formalities?
12. Are there any unwritten requirements peculiar to the port?
13. What are the speed regulations?
14. What are the dangerous cargo regulations?
15. What are the flammable cargo and fueling regulations?
16. Are there special restrictions on blowing tubes, pumping bilges, oil pollution, fire warps, etc.?
17. Are the restricted and anchorage areas correctly shown on charts, and described in the Sailing Directions and Coast Pilots?
18. What is the reason for the restricted areas: gunnery, aircraft operating, waste disposal, etc.?
19. Are there specific hours of restrictions, or are local blanket notices issued?
20. Is it permissible to pass through, but not anchor in, restricted areas?
21. Do fishing boats, stakes, nets, etc., restrict navigation?
22. What are the heights of overhead cables, bridges, and pipelines?
23. What are the locations of submarine cables, their landing points, and markers?
24. Are there ferry crossings or other areas of heavy local traffic?
25. What is the maximum draft, length, and breadth of a vessel that can enter?

## Port Installations

Much of the port information which appears in the

Sailing Directions and Coast Pilots is derived from visit reports and port brochures submitted by mariners. Comments and recommendations on entering ports are needed so that corrections to these publications can be made.

If extra copies of local port plans, diagrams, regulations, brochures, photographs, etc. can be obtained, send them to NIMA. It is not essential that they be printed in English. Local pilots, customs officials, company agents, etc., are usually good information sources.

The following list may be used as a check-off list when submitting a letter report:

## General

1. Name of the port
2. Date of observation and report
3. Name and type of vessel
4. Gross tonnage
5. Length (overall)
6. Breadth (extreme)
7. Draft (fore and aft)
8. Name of captain and observer
9. U.S. mailing address for acknowledgment

## Tugs and Locks

1. Are tugs available or obligatory? What is their power?
2. If there are locks, what is the maximum size and draft of a vessel that can be locked through?

## Cargo Handling Facilities

1. What are the capacities of the largest stationary, mobile, and floating cranes available? How was this information obtained?
2. What are the capacities, types, and number of lighters and barges available?
3. Is special cargo handling equipment available (e.g. grain elevators, coal and ore loaders, fruit or sugar conveyors, etc.)?
4. If cargo is handled from anchorage, what methods are used? Where is the cargo loaded? Are storage facilities available there?

## Supplies

1. Are fuel oils, diesel oils, and lubricating oils available? If so, in what quantity?

## Berths

1. What are the dimensions of the pier, wharf, or basin used?
2. What are the depths alongside? How were they
obtained?
3. Describe berth or berths for working containers or roll-on/roll-off cargo.
4. Does the port have berth for working deep draft tankers? If so, describe.
5. Are both dry and refrigerated storage available?
6. Are any unusual methods used when docking? Are special precautions necessary at berth?

## Medical, Consular, and Other Services

1. Is there a hospital or the services of a doctor and dentist available?
2. Is there a United States consulate? Where is it located? If none, where is the nearest?

## Anchorages

1. What are the limits of the anchorage areas?
2. In what areas is anchoring prohibited?
3. What is the depth, character of the bottom, types of holding ground, and swinging room available?
4. What are the effects of weather, sea, swell, tides, and currents on the anchorages?
5. Where is the special quarantine anchorage?
6. Are there any unusual anchoring restrictions?

## Repairs and Salvage

1. What are the capacities of drydocks and marine railways, if available?
2. What repair facilities are available? Are there repair facilities for electrical and electronic equipment?
3. Are divers and diving gear available?
4. Are there salvage tugs available? What is the size and operating radius?
5. Are any special services (e.g. compass compensation or degaussing) available?

## MISCELLANEOUS HYDROGRAPHIC REPORTS

## 2923. Ocean Current Reports

The set and drift of ocean currents are of great concern to the navigator. Only with the correct current information can the shortest and most efficient voyages be planned. As with all forces of nature, most currents vary considerably with time at a given location. Therefore, it is imperative that NIMA receive ocean current reports on a continuous basis.

The general surface currents along the principal trade routes of the world are well known. However, in other less traveled areas the current has not been well defined because of a lack of information. Detailed current reports from these areas are especially valuable.

An urgent need exists for more inshore current reports along all coasts of the world because data is scarce. Furthermore, information from deep draft ships is needed as this type of vessel is significantly influenced by the deeper layer of surface currents.

The CURRENT REPORT form, NAVOCEANO $3141 / 6$, is designed to facilitate passing information to NAVOCEANO so that all mariners may benefit. The form is self-explanatory and can be used for ocean or coastal current information. Reports by the navigator will contribute significantly to accurate current information for nautical charts, current atlases, Pilot Charts, Sailing Directions and other special charts and publications.

## 2924. Route Reports

Route Reports enable NIMA, through its Sailing Directions (Planning Guides), to make recommendations for ocean passages based upon the actual experience of mariners. Of particular importance are reports of routes used by very large ships and from any ship in regions where, from experience and familiarity with local conditions, mariners have devised routes that differ from the "preferred track." In addition, because of the many and varied local conditions which must be taken into account, coastal route information is urgently needed for updating both Sailing Directions and Coast Pilots.

A Route Report should include a comprehensive summary of the voyage with reference to currents, dangers, weather, and the draft of the vessel. If possible, each report should answer the following questions and should include any other data that may be considered pertinent to the particular route. All information should be given in sufficient detail to assure accurate conclusions and appropriate recommendations. Some questions to be answered are:

1. Why was the route selected?
2. Were anticipated conditions met during the voyage?

## CHAPTER 30

## THE OCEANS

## INTRODUCTION

## 3000. The Importance of Oceanography

Oceanography is the scientific study of the oceans. It includes a study of their physical, chemical, and geological forms, and biological features. Thus, it embraces the widely separated fields of geography, geology, chemistry, physics, and biology, along with their many subdivisions, such as sedimentation, ecology, bacteriology, biochemistry, hydrodynamics, acoustics, and optics.

The oceans cover 70.8 percent of the surface of the Earth. The Atlantic covers 16.2 percent, the Pacific 32.4 percent ( 3.2 percent more than the land area of the entire Earth), the Indian Ocean 14.4 percent, and marginal and adjacent areas (of which the largest is the Arctic Ocean) 7.8 percent. Their extent alone makes them an important subject for study. However, greater incentive lies in their use for transportation, their influence upon weather and climate, and their potential as a source of power, food, fresh water, minerals, and organic substances.

## 3001. Origin of the Oceans

The structure of the continents is fundamentally different
from that of the oceans. The rocks underlying the ocean floors are more dense than those underlying the continents. According to one theory, all the Earth's crust floats on a central liquid core, and the portions that make up the continents, being lighter, float with a higher freeboard. Thus, the thinner areas, composed of heavier rock, form natural basins where water has collected.

The shape of the oceans is constantly changing due to continental drift. The surface of the Earth consists of many different "plates." These plates are joined along fracture or fault lines. There is constant and measurable movement of these plates at rates of 0.02 meters per year or more.

The origin of the water in the oceans is unclear. Although some geologists have postulated that all the water existed as vapor in the atmosphere of the primeval Earth, and that it fell in great torrents of rain as soon as the Earth cooled sufficiently, another school holds that the atmosphere of the original hot Earth was lost, and that the water gradually accumulated as it was given off in steam by volcanoes, or worked to the surface in hot springs.

Most of the water on the Earth's crust is now in the oceans-about $1,370,000,000$ cubic kilometers, or about 85 percent of the total. The mean depth of the ocean is 3,795 meters, and the total area is $360,000,000$ square kilometers.

## CHEMISTRY OF THE OCEANS

## 3002. Chemical Description

Oceanographic chemistry may be divided into three main parts: the chemistry of (1) seawater, (2) marine sediments, and (3) organisms living in the sea. The first is of particular interest to the navigator.

Chemical properties of seawater are usually determined by analyzing samples of water obtained at various locations and depths. Samples of water from below the surface are obtained with special bottles designed for this purpose. The open bottles are mounted in a rosette which is attached to the end of a wire cable which contains insulated electrical wires. The rosette is lowered to the depth of the deepest sample, and a bottle is closed electronically. As the rosette is raised to the surface, other bottles are closed at the desired depths. Sensors have also been developed to measure a few chemical properties of sea water continuously.

Physical properties of seawater are dependent
primarily upon salinity, temperature, and pressure. However, factors like motion of the water and the amount of suspended matter affect such properties as color and transparency, conduction of heat, absorption of radiation, etc.

## 3003. Salinity

Salinity is a measure of the amount of dissolved solid material in the water. It has been defined as the total amount of solid material in grams contained in one kilogram of seawater when carbonate has been converted to oxide, bromine and iodine replaced by chlorine, and all organic material completely oxidized. It is usually expressed as parts per thousand (by weight), for example the average salinity of sea water is 35 grams per kilogram which would be written " 35 ppt " or " $35 \%$ ". Historically the determination of salinity was a slow and difficult process, while the amount of chlorine ions (plus the chlorine equivalent of the
bromine and iodine), called chlorinity, could be determined easily and accurately by titration with silver nitrate. From chlorinity, the salinity was determined by a relation based upon the measured ratio of chlorinity to total dissolved substances:

$$
\text { Salinity }=1.80655 \times \text { Chlorinity }
$$

This is now called the absolute salinity, $\left(\mathrm{S}_{\mathrm{A}}\right)$. With titration techniques, salinity could be determined to about 0.02 parts per thousand.

This definition of salinity has now been replaced by the Practical Salinity Scale, (S). Using this scale, the salinity of a seawater sample is defined as the ratio between the conductivity of the sample and the conductivity of a standard potassium chloride ( KCl ) sample.

As salinity on the practical scale is defined to be conservative with respect to addition and removal of water, the entire salinity range is accessible through precise weight dilution or evaporation without additional definitions. Since practical salinity is a ratio, it has no physical units but is designated practical salinity units, or psu. The Practical Salinity Scale, combined with modern conductivity cells and bench salinometers, provides salinity measurements which are almost an order of magnitude more accurate and precise, about 0.003 psu , than titration. Numerically, absolute salinity and salinity are nearly equal.

It has also been found that electrical conductivity is better related to density than chlorinity. Since one of the main reasons to measure salinity is to deduce the density, this favors the Practical Salinity Scale as well.

Salinity generally varies between about 33 and 37 psu. However, when the water has been diluted, as near the mouth of a river or after a heavy rainfall, the salinity is somewhat less; and in areas of excessive evaporation, the salinity may be as high as 40 psu . In certain confined bodies of water, notably the Great Salt Lake in Utah, and the Dead Sea in Asia Minor, the salinity is several times this maximum.

## 3004. Temperature

Temperature in the ocean varies widely, both horizontally and with depth. Maximum values of about $32^{\circ} \mathrm{C}$ are encountered at the surface in the Persian Gulf in summer, and the lowest possible values of about $-2^{\circ} \mathrm{C}$ (the usual minimum freezing point of seawater) occur in polar regions.

Except in the polar regions, the vertical distribution of temperature in the sea nearly everywhere shows a decrease of temperature with depth. Since colder water is denser (assuming the same salinity), it sinks below warmer water. This results in a temperature distribution just opposite to that of the Earth's crust, where temperature increases with depth below the surface of the ground.

In the sea there is usually a mixed layer of isothermal water below the surface, where the temperature is the same as that of the surface. This layer is caused by two physical processes: wind mixing, and convective overturning as surface water cools and becomes more dense. The layer is best developed in the Arctic and Antarctic regions, and in seas like the Baltic and Sea of Japan during the winter, where it may extend to the bottom of the ocean. In the Tropics, the wind-mixed layer may exist to a depth of 125 meters, and may exist throughout the year. Below this layer is a zone of rapid temperature decrease, called the thermocline. At a depth greater than 400 meters, the temperature everywhere is below $15^{\circ} \mathrm{C}$. In the deeper layers, fed by cooled waters that have sunk from the surface in the Arctic and Antarctic, temperatures as low as $-2^{\circ} \mathrm{C}$ exist.

In the colder regions the cooling creates the convective overturning and isothermal water in the winter; but in the summer a seasonal thermocline is created as the upper water becomes warmer. A typical curve of temperature at various depths is shown in Figure 3010a. Temperature is commonly measured with either a platinum or copper resistance thermometer or a thermistor (devices that measure the change in conductivity of a semiconductor with change in temperature).

The CTD (conductivity-temperature-depth) is an instrument that generates continuous signals as it is lowered into the ocean; temperature is determined by means of a platinum resistance thermometer, salinity by conductivity, and depth by pressure. These signals are transmitted to the surface through a cable and recorded. Accuracy of temperature measurement is $0.005^{\circ} \mathrm{C}$ and resolution an order of magnitude better.

A method commonly used to measure upper ocean temperature profiles from a vessel which is underway is the expendable bathythermograph (XBT). The XBT uses a thermistor and is connected to the vessel by a fine wire. The wire is coiled inside the probe, and as the probe freefalls in the ocean, the wire pays out. Depth is determined by elapsed time and a known sink rate. Depth range is determined by the amount of wire stored in the probe; the most common model has a depth range of 450 meters. At the end of the drop, the wire breaks and the probe falls to the ocean bottom. One instrument of this type is dropped from an aircraft; the data is relayed to the aircraft from a buoy to which the wire of the XBT is attached. The accuracy and precision of an XBT is about $0.1^{\circ} \mathrm{C}$.

## 3005. Pressure

The appropriate international standard (SI) unit for pressure in oceanography is $1 \mathrm{kPa}=10^{3} \mathrm{~Pa}$ where Pa is a Pascal and is equal to one Newton per square meter. A more commonly used unit is a bar, which is nearly equal to 1 atmosphere (atmospheric pressure is measured with a barometer and may be read as hectopascals). Water
pressure is expressed in terms of decibars, 10 of these being equal to 1 bar. One decibar is equal to nearly $1 \frac{1}{2}$ pounds per square inch. This unit is convenient because it is very nearly the pressure exerted by 1 meter of water. Thus, the pressure in decibars is approximately the same as the depth in meters, the unit of depth.

Although virtually all of the physical properties of seawater are affected to a measurable extent by pressure, the effect is not as great as those of salinity and temperature. Pressure is of particular importance to submarines, directly because of the stress it induces on the hull and structures, and indirectly because of its effect upon buoyancy.

## 3006. Density

Density is mass per unit of volume. The appropriate SI unit is kilograms per cubic meter. The density of seawater depends upon salinity, temperature, and pressure. At constant temperature and pressure, density varies with salinity. A temperature of $0^{\circ} \mathrm{C}$ and atmospheric pressure are considered standard for density determination. The effects of thermal expansion and compressibility are used to determine the density at other temperatures and pressures. Slight density changes at the surface generally do not affect the draft or trim of a ship, though a noticeable change may occur as a ship travels from salt to fresh water. But density changes at a particular subsurface pressure affect the buoyancy of submarines because they are ballasted to be neutrally buoyant. For oceanographers, density is important because of its relationship to ocean currents.

Open ocean values of density range from about 1,021 kilograms per cubic meter at the surface to about 1,070 kilograms per cubic meter at 10,000 meters depth. As a matter of convenience, it is usual in oceanography to define a density anomaly which is equal to the density minus 1,000 kilograms per cubic meter. Thus, when an oceanographer speaks of seawater with a density of 25 kilograms per cubic meter, the actual density is 1,025 kilograms per cubic meter.

The greatest changes in density of seawater occur at the surface, where the water is subject to influences not present at depths. At the surface, density is decreased by precipitation, run-off from land, melting ice, or heating. When the surface water becomes less dense, it tends to float on top of the more dense water below. There is little tendency for the water to mix, and so the condition is one of stability. The density of surface water is increased by evaporation, formation of sea ice, and by cooling. If the surface water becomes more dense than that below, convection currents cause vertical mixing. The more dense surface water sinks and mixes with less dense water below. The resultant layer of water is of intermediate density. This process continues until the density of the mixed layer becomes less than that of the water below. The convective circulation established as part of this process can create very deep uniform mixed layers.

If the surface water becomes sufficiently dense, it sinks
all the way to the bottom. If this occurs in an area where horizontal flow is unobstructed, the water which has descended spreads to other regions, creating a dense bottom layer. Since the greatest increase in density occurs in polar regions, where the air is cold and great quantities of ice form, the cold, dense polar water sinks to the bottom and then spreads to lower latitudes. In the Arctic Ocean region, the cold, dense water is confined by the Bering Strait and the underwater ridge from Greenland to Iceland to Europe. In the Antarctic, however, there are no similar geographic restrictions and large quantities of very cold, dense water formed there flow to the north along the ocean bottom. This process has continued for a sufficiently long period of time that the entire ocean floor is covered with this dense water, thus explaining the layer of cold water at great depths in all the oceans.

In some respects, oceanographic processes are similar to those occurring in the atmosphere. Masses of water of uniform characteristics are analogous to air masses.

## 3007. Compressibility

Seawater is nearly incompressible, its coefficient of compressibility being only 0.000046 per bar under standard conditions. This value changes slightly with changes in temperature or salinity. The effect of compression is to force the molecules of the substance closer together, causing it to become more dense. Even though the compressibility is low, its total effect is considerable because of the amount of water involved. If the compressibility of seawater were zero, sea level would be about 90 feet higher than it is now.

Compressibility is inversely proportional to temperature, i.e., cold water is more compressible than warm water. Waters which flow into the North Atlantic from the Mediterranean and Greenland Seas are equal in density, but because the water from the Greenland Sea is colder, it is more compressible and therefore becomes denser at depth. These waters from the Greenland Sea are therefore found beneath those waters which derive their properties from the Mediterranean.

## 3008. Viscosity

Viscosity is resistance to flow. Seawater is slightly more viscous than freshwater. Its viscosity increases with greater salinity, but the effect is not nearly as marked as that occurring with decreasing temperature. The rate is not uniform, becoming greater as the temperature decreases. Because of the effect of temperature upon viscosity, an incompressible object might sink at a faster rate in warm surface water than in colder water below. However, for most objects, this effect may be more than offset by the compressibility of the object.

The actual relationships existing in the ocean are considerably more complex than indicated by the simple explanation here, because of turbulent motion within the
sea. The disturbing effect is called eddy viscosity.

## 3009. Specific Heat

Specific Heat is the amount of heat required to raise the temperature of a unit mass of a substance a stated amount. In oceanography, specific heat is stated, in SI units, as the number of Joules needed to raise 1 kilogram of a given substance $1^{\circ} \mathrm{C}$. Specific heat at constant pressure is usually the quantity desired when liquids are involved, but occasionally the specific heat at constant volume is required. The ratio of these two quantities is directly related to the speed of sound in seawater.

The specific heat of seawater decreases slightly as salinity increases. However, it is much greater than that of land. The ocean is a giant storage area for heat. It can absorb large quantities of heat with very little change in temperature. This is partly due to the high specific heat of water and partly due to mixing in the ocean that distributes the heat throughout a layer. Land has a lower specific heat and, in addition, all heat is lost or gained from a thin layer at the surface; there is no mixing. This accounts for the greater temperature range of land and the atmosphere above it, resulting in monsoons, and the familiar land and sea breezes of tropical and temperate regions.

## 3010. Sound Speed

The speed of sound in sea water is a function of its density, compressibility and, to a minor extent, the ratio of specific heat at constant pressure to that at constant volume. As these properties depend on the temperature, salinity and pressure (depth) of sea water, it is customary to relate the speed of sound directly to the water temperature, salinity and pressure. An increase in any of these three properties causes an increase in the sound speed; the converse is true also. Figure 3010a portrays typical mid-ocean profiles of temperature and salinity; the resultant sound speed profile is shown in Figure 3010b.

The speed of sound changes by 3 to 5 meters per second per ${ }^{\circ} \mathrm{C}$ temperature change, by about 1.3 meters per second per psu salinity change and by about 1.7 meters per second per 100 m depth change. A simplified formula adapted from Wilson's (1960) equation for the computation of the sound speed in sea water is:

$$
\begin{aligned}
& \mathrm{U}=1449+4.6 \mathrm{~T}-0.055 \mathrm{~T}^{2}+0.0003 \mathrm{~T}^{3}+1.39(\mathrm{~S}-35) \\
& +0.017 \mathrm{D}
\end{aligned}
$$

where U is the speed $(\mathrm{m} / \mathrm{s}), \mathrm{T}$ is the temperature $\left({ }^{\circ} \mathrm{C}\right), \mathrm{S}$ is the salinity (psu), and D is depth (m).

## 3011. Thermal Expansion

One of the more interesting differences between salt


Figure 3010a. Typical variation of temperature and salinity with depth for a mid-latitude location.


Figure 3010b. Resultant sound speed profile based on the temperature and salinity profile in Figure 3010a.
and fresh water relates to thermal expansion. Saltwater continues to become more dense as it cools to the freezing point; freshwater reaches maximum density at $4^{\circ} \mathrm{C}$ and then expands (becomes less dense) as the water cools to $0^{\circ} \mathrm{C}$ and freezes. This means that the convective
mixing of freshwater stops at $4^{\circ} \mathrm{C}$; freezing proceeds very rapidly beyond that point. The rate of expansion with increased temperature is greater in seawater than in fresh water. Thus, at temperature $15^{\circ} \mathrm{C}$, and atmospheric pressure, the coefficient of thermal expansion is 0.000151 per degree Celsius for freshwater, and 0.000214 per degree Celsius for average seawater. The coefficient of thermal expansion increases not only with greater salinity, but also with increased temperature and pressure. At a salinity of 35 psu , the coefficient of surface water increases from 0.000051 per degree Celsius at $0^{\circ} \mathrm{C}$ to 0.000334 per degree Celsius at $31^{\circ} \mathrm{C}$. At a constant temperature of $0^{\circ} \mathrm{C}$ and a salinity of 34.85 psu, the coefficient increases to 0.000276 per degree Celsius at a pressure of 10,000 decibars (a depth of approximately 10,000 meters).

## 3012. Thermal Conductivity

In water, as in other substances, one method of heat transfer is by conduction. Freshwater is a poor conductor of heat, having a coefficient of thermal conductivity of 582 Joules per second per meter per degree Celsius. For seawater it is slightly less, but increases with greater temperature or pressure.

However, if turbulence is present, which it nearly always is to some extent, the processes of heat transfer are altered. The effect of turbulence is to increase greatly the rate of heat transfer. The "eddy" coefficient used in place of the still-water coefficient is so many times larger, and so dependent upon the degree of turbulence, that the effects of temperature and pressure are not important.

## 3013. Electrical Conductivity

Water without impurities is a very poor conductor of electricity. However, when salt is in solution in water, the salt molecules are ionized and become carriers of electricity. (What is commonly called freshwater has many impurities and is a good conductor of electricity; only pure distilled water is a poor conductor.) Hence, the electrical conductivity of seawater is directly proportional to the number of salt molecules in the water. For any given salinity, the conductivity increases with an increase in temperature.

## 3014. Radioactivity

Although the amount of radioactive material in seawater is very small, this material is present in marine sediments to a greater extent than in the rocks of the Earth's crust. This is probably due to precipitation of radium or other radioactive material from the water. The radioactivity of the top layers of sediment is less than that of deeper layers. This may be due to absorption of radioactive material in the soft tissues of marine organisms.

## 3015. Transparency

The two basic processes that alter the underwater distribution of light are absorption and scattering. Absorption is a change of light energy into other forms of energy; scattering entails a change in direction of the light, but without loss of energy. If seawater were purely absorbing, the loss of light with distance would be given by $I_{x}=I_{0} e^{-a x}$ where $I_{x}$ is the intensity of light at distance $x, I_{0}$ is the intensity of light at the source, and "a" is the absorption coefficient in the same units with which distance is measured. In a pure scattering medium, the transmission of light is governed by the same power law only in this case the exponential term is $I_{0} e^{-b x}$, where "b" is the volume scattering coefficient. The attenuation of light in the ocean is defined as the sum of absorption and scattering so that the attenuation coefficient, c , is given by $\mathrm{c}=\mathrm{a}+\mathrm{b}$. In the ocean, the attenuation of light with depth depends not only on the wavelength of the light but also the clarity of the water. The clarity is mostly controlled by biological activity although at the coast, sediments transported by rivers or resuspended by wave action can strongly attenuate light.

Attenuation in the sea is measured with a transmissometer. Transmissometers measure the attenuation of light over a fixed distance using a monochromatic light source which is close to red in color. Transmissometers are designed for in situ use and are usually attached to a CTD.

Since sunlight is critical for almost all forms of plant life in the ocean, oceanographers developed a simple method to measure the penetration of sunlight in the sea using a white disk 31 centimeters (a little less than 1 foot) in diameter which is called a Secchi disk. This is lowered into the sea, and the depth at which it disappears is recorded. In coastal waters the depth varies from about 5 to 25 meters. Offshore, the depth is usually about 45 to 60 meters. The greatest recorded depth at which the disk has disappeared is 79 meters in the eastern Weddell Sea. These depths, D, are sometimes reported as a diffuse attenuation (or "extinction") coefficient, k , where $\mathrm{k}=1.7 / \mathrm{D}$ and the penetration of sunlight is given by $I_{z}=I_{0} e^{-k z}$ where $z$ is depth and $I_{0}$ is the energy of the sunlight at the ocean's surface.

## 3016. Color

The color of seawater varies considerably. Water of the Gulf Stream is a deep indigo blue, while a similar current off Japan was named Kuroshio (Black Stream) because of the dark color of its water. Along many coasts the water is green. In certain localities a brown or brownish-red water has been observed. Colors other than blue are caused by biological sources, such as plankton, or by suspended sediments from river runoff.

Offshore, some shade of blue is common, particularly in tropical or subtropical regions. It is due to scattering of sunlight by minute particles suspended in the water, or by molecules of the water itself. Because of its short wavelength, blue light is more effectively scattered than
light of longer waves. Thus, the ocean appears blue for the same reason that the sky does. The green color often seen near the coast is a mixture of the blue due to scattering of light and a stable soluble yellow pigment associated with phytoplankton. Brown or brownish-red water receives its color from large quantities of certain types of algae, microscopic plants in the sea, or from river runoff.

## 3017. Bottom Relief

Compared to land, relatively little is known of relief below the surface of the sea. The development of an effective echo sounder in 1922 greatly simplified the determination of bottom depth. Later, a recording echo sounder was developed to permit the continuous tracing of a bottom profile. The latest sounding systems employ an array of echosounders aboard a single vessel, which continuously sound a wide swath of ocean floor. This has contributed immensely to our knowledge of bottom relief. By this means, many undersea mountain ranges, volcanoes, rift valleys, and other features have been discovered.

Along most of the coasts of the continents, the bottom slopes gradually downward to a depth of about 130 meters or somewhat less, where it falls away more rapidly to greater depths. This continental shelf averages about 65 kilometers in width, but varies from nothing to about 1400 kilometers, the widest part being off the Siberian Arctic coast. A similar shelf extending outward from an island or group of islands is called an island shelf. At the outer edge of the shelf, the steeper slope of $2^{\circ}$ to $4^{\circ}$ is called the continental slope, or the island slope, according to whether it surrounds a continent or a group of islands. The shelf itself is not uniform, but has numerous hills, ridges, terraces, and canyons, the largest being comparable in size to the Grand Canyon.

The relief of the ocean floor is comparable to that of land. Both have steep, rugged mountains, deep canyons, rolling hills, plains, etc. Most of the ocean floor is considered to be made up of a number of more-or-less circular or oval depressions called basins, surrounded by walls (sills) of lesser depth.

A wide variety of submarine features has been identified and defined. Some of these are shown in Figure 3017. Detailed definitions and descriptions of such features can be found in Kennett (1982) or Fairbridge (1966). The term deep may be used for a very deep part of the ocean, generally that part deeper than 6,000 meters.

The average depth of water in the oceans is 3795 meters ( 2,075 fathoms), as compared to an average height of land above the sea of about 840 meters. The greatest known depth is 11,524 meters, in the Marianas Trench in the Pacific. The highest known land is Mount Everest, 8,840 meters. About 23 percent of the ocean is shallower than 3,000 meters, about 76 percent is between 3,000 and 6,000 meters, and a little more than 1 percent is deeper than 6,000 meters.

## 3018. Marine Sediments

The ocean floor is composed of material deposited through the ages. This material consists principally of (1) earth and rocks washed into the sea by streams and waves, (2) volcanic ashes and lava, and (3) the remains of marine organisms. Lesser amounts of land material are carried into the sea by glaciers, blown out to sea by wind, or deposited by chemical means. This latter process is responsible for the manganese nodules that cover some parts of the ocean floor. In the ocean, the material is transported by ocean currents, waves, and ice. Near shore the material is deposited at the rate of about 8 centimeters in 1,000 years, while in the deep water offshore the rate is only about 1 centimeter in 1,000 years. Marine deposits in water deep enough to be relatively free from wave action are subject to little erosion. Recent studies have shown that some bottom currents are strong enough to move sediments. There are turbidity currents, similar to land slides, that move large masses of sediments. Turbidity currents have been known to rip apart large transoceanic cables on the ocean bottom. Because of this and the slow rate of deposit, marine sediments provide a better geological record than does the land.

Marine sediments are composed of individual particles of all sizes from the finest clay to large boulders. In general, the inorganic deposits near shore are relatively coarse (sand, gravel, shingle, etc.), while those in deep water are much finer (clay). In some areas the siliceous remains of marine organisms or calcareous deposits of either organic or inorganic origin predominate on the ocean floor.

A wide range of colors is found in marine sediments. The lighter colors (white or a pale tint) are usually associated with coarse-grained quartz or limestone deposits. Darker colors (red, blue, green, etc.) are usually found in mud having a predominance of some mineral substance, such as an oxide of iron or manganese. Black mud is often found in an area that is little disturbed, such as at the bottom of an inlet or in a depression without free access to other areas.

Marine sediments are studied primarily through bottom samples. Samples of surface deposits are obtained by means of a "snapper" (for mud, sand, etc.) or "dredge" (usually for rocky material). If a sample of material below the bottom surface is desired, a "coring" device is used. This device consists essentially of a tube driven into the bottom by weights or explosives. A sample obtained in this way preserves the natural order of the various layers. Samples of more than 100 feet in depth have been obtained using coring devices.

## 3019. Satellite Oceanography

Weather satellites are able to observe ocean surface temperatures in cloud free regions by using infrared sensors. Although these sensors are only able to penetrate a few

millimeters into the ocean, the temperatures that they yield are representative of upper ocean conditions except when the air is absolutely calm during daylight hours. For cloud covered regions, it is usually possible to wait a few days for the passage of a cold front and then use a sequence of infrared images to map the ocean temperature over a region. The patterns of warm and cold water yield information on ocean currents, the existence of fronts and eddies, and the temporal and spatial scales of ocean processes.

Other satellite sensors are capable of measuring ocean color, ice coverage, ice age, ice edge, surface winds and seas, ocean currents, and the shape of the surface of the ocean. (The latter is controlled by gravity and ocean circulation patterns. See Chapter 2.) The perspective provided by these satellites is a global one and in some cases they yield sufficient quantities of data that synoptic charts of the ocean surface, similar to weather maps and pilot charts, can be provided to the mariner for use in navigation.

The accuracy of satellite observations of the ocean surface depends, in many cases, on calibration procedures which use observations of sea surface conditions provided by mariners. These observations include marine weather observations, expendable bathythermograph soundings, and currents measured by electromagnetic logs or acoustic Doppler current profilers. Care and diligence in these observations will improve the accuracy and the quality of satellite data.

## 3020. Synoptic Oceanography

Oceanographic data provided by ships, buoys, and satellites are analyzed by the Naval Oceanographic Office and the National Meteorological Center. These data are utilized in computer models both to provide a synoptic view of ocean conditions and to predict how these conditions will change in the future. These products are available to the mariner via radio or satellite.

## CHAPTER 31

# OCEAN CURRENTS 

## TYPES AND CAUSES OF CURRENTS

## 3100. Definitions

The movement of ocean water is one of the two principal sources of discrepancy between dead reckoned and actual positions of vessels. Water in motion is called a current; the direction toward which it moves is called set, and its speed is called drift. Modern shipping speeds have lessened the impact of currents on a typical voyage, and since electronic navigation allows continuous adjustment of course, there is less need to estimate current set and drift before setting the course to be steered. Nevertheless, a knowledge of ocean currents can be used in cruise planning to reduce transit times, and current models are an integral part of ship routing systems.

Oceanographers have developed a number of methods of classifying currents in order to facilitate descriptions of their physics and geography. Currents may be referred to according to their forcing mechanism as either wind driven or thermohaline. Alternatively, they may be classified according to their depth (surface, intermediate, deep or bottom). The surface circulation of the world's oceans is mostly wind driven. Thermohaline currents are driven by differences in heat and salt and are associated with the sinking of dense water at high latitudes; the currents driven by thermohaline forces are typically subsurface. Note that this classification scheme is not unambiguous; the circumpolar current, which is wind driven, extends from the surface to the bottom.

A periodic current is one for which the speed or direction changes cyclically at somewhat regular intervals, such as a tidal current. A seasonal current is one which changes in speed or direction due to seasonal winds. The mean circulation of the ocean consists of semi-permanent currents which experience relatively little periodic or seasonal change.

A coastal current flows roughly parallel to a coast, outside the surf zone, while a longshore current is one parallel to a shore, inside the surf zone, generated by waves striking the beach at an angle. Any current some distance from the shore may be called an offshore current, and one close to the shore an inshore current.

General information on ocean currents is available from NOAA's National Ocean Data Center at: http://www.nodc.noaa.gov. Satellite graphics and other data can be found at: http://wwwo2c.nesdis.noaa.gov

## 3101. Causes of Ocean Currents

The primary generating forces are wind and differences in water density caused by variations in heat and salinity Currents generated by these forces are modified by such factors as depth of water, underwater topography including shape of the basin in which the current is running, extent and location of land, and deflection by the rotation of the Earth.

## 3102. Wind Driven Currents

The stress of wind blowing across the sea causes a surface layer of water to move. Due to the low viscosity of water, this stress is not directly communicated to the ocean interior, but is balanced by the Coriolis force within a relatively thin surface layer, $10-200 \mathrm{~m}$ thick. This layer is called the Ekman layer and the motion of this layer is called the Ekman transport. Because of the deflection by the Coriolis force, the Ekman transport is not in the direction of the wind, but is $90^{\circ}$ to the right in the Northern Hemisphere and $90^{\circ}$ toward the left in the Southern Hemisphere. The amount of water flowing in this layer depends only upon the wind and the Coriolis force and is independent of the depth of the Ekman layer and the viscosity of the water.

The large scale convergence or divergence of Ekman transport serves to drive the general ocean circulation. Consider the case of the Northern Hemisphere subtropics. To the south lie easterly winds with associated northward Ekman transport. To the north lie westerly winds with southward Ekman transport. The convergence of these Ekman transports is called Ekman pumping and results in a thickening of the upper ocean and a increase in the depth of the thermocline. The resulting subsurface pressure gradients, balanced by the Coriolis force, give rise to the anticyclonic subtropical gyres found at mid latitudes in each ocean basin. In subpolar regions, Ekman suction produces cyclonic gyres.

These wind driven gyres are not symmetrical. Along the western boundary of the oceans, currents are narrower, stronger, and deeper, often following a meandering course. These currents are sometimes called a stream. In contrast, currents in mid-ocean and at the eastern boundary, are often broad, shallow and slow-moving. Sometimes these are called drift currents.

Within the Ekman layer, the currents actually form a
spiral. At the surface, the difference between wind direction and surface wind-current direction varies from about $15^{\circ}$ along shallow coastal areas to a maximum of $45^{\circ}$ in the deep oceans. As the motion is transmitted to successively deep layers, the Coriolis force continues to deflect the current. At the bottom of the Ekman layer, the current flows in the opposite direction to the surface current. This shift of current directions with depth, combined with the decrease in velocity with depth, is called the Ekman spiral.

The velocity of the surface current is the sum of the velocities of the Ekman, geostrophic, tidal, and other currents. The Ekman surface current or wind drift current depends upon the speed of the wind, its constancy, the length of time it has blown, and other factors. In general, however, wind drift current is about 2 percent of the wind speed, or a little less, in deep water where the wind has been blowing steadily for at least 12 hours.

## 3103. Currents Related to Density Differences

The density of water varies with salinity, temperature,
and pressure. At any given depth, the differences in density are due only to differences in temperature and salinity. With sufficient data, maps showing geographical density distribution at a certain depth can be drawn, with lines connecting points of equal density. These lines would be similar to isobars on a weather map and serve an analogous purpose, showing areas of high density and those of low density. In an area of high density, the water surface is lower than in an area of low density, the maximum difference in height being about 1 meter in 100 km . Because of this difference, water tends to flow from an area of higher water (low density) to one of lower water (high density). But due to rotation of the Earth, it is deflected by the Coriolis force or toward the right in the Northern Hemisphere, and toward the left in the Southern Hemisphere. This balance, between subsurface pressure fields and the Coriolis force, is called geostrophic equilibrium. At a given latitude, the greater the density gradient (rate of change with distance), the faster the geostrophic current.

## OCEANIC CIRCULATION

## 3104. Introduction

A number of ocean currents flow with great persistence, setting up a circulation that continues with relatively little change throughout the year. Because of the influence of wind in creating current, there is a relationship between this oceanic circulation and the general circulation of the atmosphere. The oceanic circulation is shown on the chart following this page (winter N . hemisphere), with the names of the major ocean currents. Some differences in opinion exist regarding the names and limits of some of the currents, but those shown are representative. Speed may vary somewhat with the season. This is particularly noticeable in the Indian Ocean and along the South China coast, where currents are influenced to a marked degree by the monsoons.

## 3105. Southern Ocean Currents

The Southern Ocean has no meridional boundaries and its waters are free to circulate around the world. It serves as a conveyor belt for the other oceans, exchanging waters between them. The northern boundary of the Southern Ocean is marked by the Subtropical Convergence zone. This zone marks the transition from the temperate region of the ocean to the polar region and is associated with the surfacing of the main thermocline. This zone is typically found at $40^{\circ} \mathrm{S}$ but varies with longitude and season.

In the Antarctic, the circulation is generally from west to east in a broad, slow-moving current extending completely around Antarctica. This is called the Antarctic Circumpolar Current or the West Wind Drift, and it is
formed partly by the strong westerly wind in this area, and partly by density differences. This current is augmented by the Brazil and Falkland Currents in the Atlantic, the East Australia Current in the Pacific, and the Agulhas Current in the Indian Ocean. In return, part of it curves northward to form the Cape Horn, Falkland, and most of the Benguela Currents in the Atlantic, and the Peru Current in the Pacific.

In a narrow zone next to the Antarctic continent, a westward flowing coastal current is usually found. This current is called the East Wind Drift because it is attributed to the prevailing easterly winds which occur there.

## 3106. Atlantic Ocean Currents

The trade winds set up a system of equatorial currents which at times extends over as much as $50^{\circ}$ of latitude or more. There are two westerly flowing currents conforming generally with the areas of trade winds, separated by a weaker, easterly flowing countercurrent.

The North Equatorial Current originates to the northward of the Cape Verde Islands and flows almost due west at an average speed of about 0.7 knot.

The South Equatorial Current is more extensive. It starts off the west coast of Africa, south of the Gulf of Guinea, and flows in a generally westerly direction at an average speed of about 0.6 knot. However, the speed gradually increases until it may reach a value of 2.5 knots, or more, off the east coast of South America. As the current approaches Cabo de Sao Roque, the eastern extremity of South America, it divides, the southern part curving toward the south along the coast of Brazil, and the
northern part being deflected northward by the continent of South America.

Between the North and South Equatorial Currents, the weaker North Equatorial Countercurrent sets toward the east in the general vicinity of the doldrums. This is fed by water from the two westerly flowing equatorial currents, particularly the South Equatorial Current. The extent and strength of the Equatorial Countercurrent changes with the seasonal variations of the wind. It reaches a maximum during July and August, when it extends from about $50^{\circ}$ west longitude to the Gulf of Guinea. During its minimum, in December and January, it is of very limited extent, the western portion disappearing altogether.

That part of the South Equatorial Current flowing along the northern coast of South America which does not feed the Equatorial Countercurrent unites with the North Equatorial Current at a point west of the Equatorial Countercurrent. A large part of the combined current flows through various passages between the Windward Islands and into the Caribbean Sea. It sets toward the west, and then somewhat north of west, finally arriving off the Yucatan peninsula. From there, the water enters the Gulf of Mexico and forms the Loop Current; the path of the Loop Current is variable with a 13-month period. It begins by flowing directly from Yucatan to the Florida Straits, but gradually grows to flow anticyclonically around the entire Eastern Gulf; it then collapses, again following the direct path from Yucatan to the Florida Straits, with the loop in the Eastern Gulf becoming a separate eddy which slowly flows into the Western Gulf.

Within the Straits of Florida, the Loop Current feeds the beginnings of the most remarkable of American ocean currents, the Gulf Stream. Off the southeast coast of Florida this current is augmented by the Antilles Current which flows along the northern coasts of Puerto Rico, Hispaniola, and Cuba. Another current flowing eastward of the Bahamas joins the stream north of these islands.

The Gulf Stream follows generally along the east coast of North America, flowing around Florida, northward and then northeastward toward Cape Hatteras, and then curving toward the east and becoming broader and slower. After passing the Grand Banks, it turns more toward the north and becomes a broad drift current flowing across the North Atlantic. The part in the Straits of Florida is sometimes called the Florida Current.

A tremendous volume of water flows northward in the Gulf Stream. It can be distinguished by its deep indigo-blue color, which contrasts sharply with the dull green of the surrounding water. It is accompanied by frequent squalls. When the Gulf Stream encounters the cold water of the Labrador Current, principally in the vicinity of the Grand Banks, there is little mixing of the waters. Instead, the junction is marked by a sharp change in temperature. The line or surface along which this occurs is called the cold wall. When the warm Gulf Stream water encounters cold air, evaporation is so rapid that the rising vapor may be
visible as frost smoke.
Investigations have shown that the current itself is much narrower and faster than previously supposed, and considerably more variable in its position and speed. The maximum current off Florida ranges from about 2 to 4 knots. Northward, the speed is generally less, and it decreases further after the current passes Cape Hatteras. As the stream meanders and shifts position, eddies sometimes break off and continue as separate, circular flows until they dissipate. Boats in the Newport-Bermuda sailing yacht race have been known to be within sight of each other and be carried in opposite directions by different parts of the same current. This race is generally won by the boat which catches an eddy just right. As the current shifts position, its extent does not always coincide with the area of warm, blue water. When the sea is relatively smooth, the edges of the current are marked by ripples.

A recirculation region exists adjacent to and southeast of the Gulf Stream. The flow of water in the recirculation region is opposite to that in the Gulf Stream and surface currents are much weaker, generally less than half a knot.

As the Gulf Stream continues eastward and northeastward beyond the Grand Banks, it gradually widens and decreases speed until it becomes a vast, slowmoving current known as the North Atlantic Current, in the general vicinity of the prevailing westerlies. In the eastern part of the Atlantic it divides into the Northeast

## Drift Current and the Southeast Drift Current.

The Northeast Drift Current continues in a generally northeasterly direction toward the Norwegian Sea. As it does so, it continues to widen and decrease speed. South of Iceland it branches to form the Irminger Current and the Norway Current. The Irminger Current curves toward the north and northwest to join the East Greenland Current southwest of Iceland. The Norway Current continues in a northeasterly direction along the coast of Norway. Part of it, the North Cape Current, rounds North Cape into the Barents Sea. The other part curves toward the north and becomes known as the Spitsbergen Current. Before reaching Svalbard (Spitsbergen), it curves toward the west and joins the cold East Greenland Current flowing southward in the Greenland Sea. As this current flows past Iceland, it is further augmented by the Irminger Current.

Off Kap Farvel, at the southern tip of Greenland, the East Greenland Current curves sharply to the northwest following the coastline. As it does so, it becomes known as the West Greenland Current, and its character changes from that of an intense western boundary current to a weaker eastern boundary current. This current continues along the west coast of Greenland, through Davis Strait, and into Baffin Bay.

In Baffin Bay the West Greenland Current generally follows the coast, curving westward off Kap York to form the southerly flowing Labrador Current. This cold current flows southward off the coast of Baffin Island, through Davis Strait, along the coast of Labrador and Newfoundland, to the Grand Banks, carrying with it large
quantities of ice. Here it encounters the warm water of the Gulf Stream, creating the cold wall. Some of the cold water flows southward along the east coast of North America, inshore of the Gulf Stream, as far as Cape Hatteras. The remainder curves toward the east and flows along the northern edge of the North Atlantic and Northeast Drift Currents, gradually merging with them.

The Southeast Drift Current curves toward the east, southeast, and then south as it is deflected by the coast of Europe. It flows past the Bay of Biscay, toward southeastern Europe and the Canary Islands, where it continues as the Canary Current. In the vicinity of the Cape Verde Islands, this current divides, part of it curving toward the west to help form the North Equatorial Current, and part of it curving toward the east to follow the coast of Africa into the Gulf of Guinea, where it is known as the Guinea Current. This current is augmented by the North Equatorial Countercurrent and, in summer, it is strengthened by monsoon winds. It flows in close proximity to the South Equatorial Current, but in the opposite direction. As it curves toward the south, still following the African coast, it merges with the South Equatorial Current.

The clockwise circulation of the North Atlantic leaves a large central area between the recirculation region and the Canary Current which has no well-defined currents. This area is known as the Sargasso Sea, from the large quantities of sargasso or gulfweed encountered there.

That branch of the South Equatorial Current which curves toward the south off the east coast of South America, follows the coast as the warm, highly-saline Brazil Current, which in some respects resembles a weak Gulf Stream. Off Uruguay it encounters the colder, less-salty Falkland or Malvinas Current forming a sharp meandering front in which eddies may form. The two currents curve toward the east to form the broad, slowmoving, South Atlantic Current in the general vicinity of the prevailing westerlies and the front dissipates somewhat. This current flows eastward to a point west of the Cape of Good Hope, where it curves northward to follow the west coast of Africa as the strong Benguela Current, augmented somewhat by part of the Agulhas Current flowing around the southern part of Africa from the Indian Ocean. As it continues northward, the current gradually widens and slows. At a point east of St. Helena Island it curves westward to continue as part of the South Equatorial Current, thus completing the counterclockwise circulation of the South Atlantic. The Benguela Current is also augmented somewhat by the West Wind Drift, a current which flows easterly around Antarctica. As the West Wind Drift flows past Cape Horn, that part in the immediate vicinity of the cape is called the Cape Horn Current. This current rounds the cape and flows in a northerly and northeasterly direction along the coast of South America as the Falkland or Malvinas Current.

## 3107. Pacific Ocean Currents

Pacific Ocean currents follow the general pattern of those in the Atlantic. The North Equatorial Current flows westward in the general area of the northeast trades, and the South Equatorial Current follows a similar path in the region of the southeast trades. Between these two, the weaker North Equatorial Countercurrent sets toward the east, just north of the equator.

After passing the Mariana Islands, the major part of the North Equatorial Current curves somewhat toward the northwest, past the Philippines and Taiwan. Here it is deflected further toward the north, where it becomes known as the Kuroshio, and then toward the northeast past the Nansei Shoto and Japan, and on in a more easterly direction. Part of the Kuroshio, called the Tsushima Current, flows through Tsushima Strait, between Japan and Korea, and the Sea of Japan, following generally the northwest coast of Japan. North of Japan it curves eastward and then southeastward to rejoin the main part of the Kuroshio. The limits and volume of the Kuroshio are influenced by the monsoons, being augmented during the season of southwesterly winds, and diminished when the northeasterly winds are prevalent.

The Kuroshio (Japanese for "Black Stream") is so named because of the dark color of its water. It is sometimes called the Japan Current. In many respects it is similar to the Gulf Stream of the Atlantic. Like that current, it carries large quantities of warm tropical water to higher latitudes, and then curves toward the east as a major part of the general clockwise circulation in the Northern Hemisphere. As it does so, it widens and slows, continuing on between the Aleutians and the Hawaiian Islands, where it becomes known as the North Pacific Current.

As this current approaches the North American continent, most of it is deflected toward the right to form a clockwise circulation between the west coast of North America and the Hawaiian Islands called the California Current. This part of the current has become so broad that the circulation is generally weak. Near the coast, the southeastward flow intensifies and average speeds are about 0.8 knot. But the flow pattern is complex, with offshore directed jets often found near more prominent capes, and poleward flow often found over the upper slope and outer continental shelf. It is strongest near land. Near the southern end of Baja California, this current curves sharply to the west and broadens to form the major portion of the North Equatorial Current.

During the winter, a weak countercurrent flows northwestward, inshore of the southeastward flowing California Current, along the west coast of North America from Baja California to Vancouver Island. This is called the

## Davidson Current.

Off the west coast of Mexico, south of Baja California the current flows southeastward during the winter as a continuation of part of the California Current. During the
summer, the current in this area is northwestward as a continuation of the North Equatorial Countercurrent.

As in the Atlantic, there is in the Pacific a counterclockwise circulation to the north of the clockwise circulation. Cold water flowing southward through the western part of Bering Strait between Alaska and Siberia, is joined by water circulating counterclockwise in the Bering Sea to form the Oyashio. As the current leaves the strait, it curves toward the right and flows southwesterly along the coast of Siberia and the Kuril Islands. This current brings quantities of sea ice, but no icebergs. When it encounters the Kuroshio, the Oyashio curves southward and then eastward, the greater portion joining the Kuroshio and North Pacific Current.

The northern branch of the North Pacific Current curves in a counterclockwise direction to form the Alaska Current, which generally follows the coast of Canada and Alaska. When the Alaska Current turns to the southwest and flows along the Kodiak Island and the Alaska Peninsula, its character changes to that of a western boundary current and it is called the Alaska Stream. When this westward flow arrives off the Aleutian Islands, it is less intense and becomes known as the Aleutian Current. Part of it flows along the southern side of these islands to about the 180th meridian, where it curves in a counterclockwise direction and becomes an easterly flowing current, being augmented by the northern part of the Oyashio. The other part of the Aleutian Current flows through various openings between the Aleutian Islands, into the Bering Sea. Here it flows in a general counterclockwise direction. The southward flow along the Kamchatka peninsula is called the Kamchatka Current which feeds the southerly flowing Oyashio. Some water flows northward from the Bering Sea through the eastern side of the Bering Strait, into the Arctic Ocean.

The South Equatorial Current, extending in width between about $4^{\circ} \mathrm{N}$ latitude and $10^{\circ} \mathrm{S}$, flows westward from South America to the western Pacific. After this current crosses the 180th meridian, the major part curves in a counterclockwise direction, entering the Coral Sea, and then curving more sharply toward the south along the east coast of Australia, where it is known as the East Australian Current. The East Australian Current is the weakest of the subtropical western boundary currents and separates from the Australian coast near $34^{\circ} \mathrm{S}$. The path of the current from Australia to New Zealand is known as the Tasman Front, which marks the boundary between the warm water of the Coral Sea and the colder water of the Tasman Sea. The continuation of the East Australian Current east of New Zealand is the East Auckland Current. The East Auckland Current varies seasonally: in winter, it separates from the shelf and flows eastward, merging with the West Wind Drift, while in winter it follows the New Zealand shelf southward as the East Cape Current until it reaches Chatham Rise where it turns eastward, thence merging with the West Wind Drift.

Near the southern extremity of South America, most of
this current flows eastward into the Atlantic, but part of it curves toward the left and flows generally northward along the west coast of South America as the Peru Current or Humboldt Current. Occasionally a set directly toward land is encountered. At about Cabo Blanco, where the coast falls away to the right, the current curves toward the left, past the Galapagos Islands, where it takes a westerly set and constitutes the major portion of the South Equatorial Current, thus completing the counterclockwise circulation of the South Pacific.

During the northern hemisphere summer, a weak northern branch of the South Equatorial Current, known as the New Guinea Coastal Current, continues on toward the west and northwest along both the southern and northeastern coasts of New Guinea. The southern part flows through Torres Strait, between New Guinea and Australia, into the Arafura Sea. Here, it gradually loses its identity, part of it flowing on toward the west as part of the South Equatorial Current of the Indian Ocean, and part of it following the coast of Australia and finally joining the easterly flowing West Wind Drift. The northern part of New Guinea Coastal Current both curves in a clockwise direction to help form the Pacific Equatorial Countercurrent and off Mindanao turns southward to form a southward flowing boundary current called the Mindanao Current. During the northern hemisphere winter, the New Guinea Coastal Current may reverse direction for a few months.

## 3108. Indian Ocean Currents

Indian Ocean currents follow generally the pattern of the Atlantic and Pacific but with differences caused principally by the monsoons, the more limited extent of water in the Northern Hemisphere, and by limited communication with the Pacific Ocean along the eastern boundary. During the northern hemisphere winter, the North Equatorial Current and South Equatorial Current flow toward the west, with the weaker, eastward Equatorial Countercurrent flowing between them, as in the Atlantic and Pacific (but somewhat south of the equator). But during the northern hemisphere summer, both the North Equatorial Current and the Equatorial Countercurrent are replaced by the Southwest Monsoon Current, which flows eastward and southeastward across the Arabian Sea and the Bay of Bengal. Near Sumatra, this current curves in a clockwise direction and flows westward, augmenting the South Equatorial Current, and setting up a clockwise circulation in the northern part of the Indian Ocean. Off the coast of Somalia, the Somali Current reverses direction during the northern hemisphere summer with northward currents reaching speeds of 5 knots or more. Twice a year, around May and November, westerly winds along the equator result in an eastward Equatorial Jet which feeds warm water towards Sumatra.

As the South Equatorial Current approaches the coast of Africa, it curves toward the southwest, part of it flowing
through the Mozambique Channel between Madagascar and the mainland, and part flowing along the east coast of Madagascar. At the southern end of this island the two join to form the strong Agulhas Current, which is analogous to the Gulf Stream. This current, when opposed by strong winds from Southern Ocean storms, creates dangerously large seas.

South of South Africa, the Agulhas Current retroflects, and most of the flow curves sharply southward and then eastward to join the West Wind Drift; this junction is often marked by a broken and confused sea, made much worse by westerly storms. A small part of the Agulhas Current rounds the southern end of Africa and helps form the Benguela Current; occasionally, strong eddies are formed in the retroflection region and these too move into the Southeastern Atlantic.

The eastern boundary currents in the Indian Ocean are quite different from those found in the Atlantic and Pacific. The seasonally reversing South Java Current has strongest westward flow during August when monsoon winds are easterly and the Equatorial jet is inactive. Along the coast of Australia, a vigorous poleward flow, the

Leeuwin Current, runs against the prevailing winds.

## 3109. Arctic Currents

The waters of the North Atlantic enter the Arctic Ocean between Norway and Svalbard. The currents flow easterly, north of Siberia, to the region of the Novosibirskiye Ostrova, where they turn northerly across the North Pole, and continue down the Greenland coast to form the East Greenland Current. On the American side of the Arctic basin, there is a weak, continuous clockwise flow centered in the vicinity of $80^{\circ} \mathrm{N}, 150^{\circ} \mathrm{W}$. A current north through Bering Strait along the American coast is balanced by an outward southerly flow along the Siberian coast, which eventually becomes part of the Kamchatka Current. Each of the main islands or island groups in the Arctic, as far as is known, seems to have a clockwise nearshore circulation around it. The Barents Sea, Kara Sea, and Laptev Sea each have a weak counterclockwise circulation. A similar but weaker counterclockwise current system appears to exist in the East Siberian Sea.

## OCEANIC CURRENT PHENOMENA

## 3110. Ocean Eddies and Rings

Eddies with horizontal diameters varying from 50-150 km have their own pattern of surface currents. These features may have either a warm or a cold core and currents flow around this core, either cyclonically for cold cores or anticyclonically for warm cores. The most intense of these features are called rings and are formed by the pinching off of meanders of western boundary currents such as the Gulf Stream. Maximum speed associated with these features is about 2 knots. Rings have also been observed to pinch off from the Agulhas retroflexion and to then drift to the northwest into the South Atlantic. Similarly, strong anticyclonic eddies are occasionally spawned by the loop current into the Western Gulf Mexico.

In general, mesoscale variability is strongest in the region of western boundary currents and in the Circumpolar Current. The strength of mesoscale eddies is greatly reduced at distances of $200-400 \mathrm{~km}$ from these strong boundary currents, because mean currents are generally weaker in these regions. The eddies may be sufficiently strong to reverse the direction of the surface currents.

## 3111. Undercurrents

At the equator and along some ocean boundaries, shallow undercurrents exist, flowing in a direction counter to that at the surface. These currents may affect the operation of submarines or trawlers. The most intense of these flows, called the Pacific Equatorial Undercurrent, is found at the equator in the Pacific. It is centered at a depth
of 150 m to the west of the Galapagos, is about 4 km wide, and eastward speeds of up to $1.5 \mathrm{~m} / \mathrm{s}$ have been observed. Equatorial Undercurrents are also observed in the Atlantic and Indian Ocean, but they are somewhat weaker. In the Atlantic, the Equatorial Undercurrent is found to the east of $24^{\circ} \mathrm{W}$ and in the Indian Ocean, it appears to be seasonal.

Undercurrents also exist along ocean boundaries. They seem to be most ubiquitous at the eastern boundary of oceans. Here they are found at depths of $100-200 \mathrm{~m}$, may be 100 km wide, and have maximum speeds of $0.5 \mathrm{~m} / \mathrm{s}$.

## 3112. Ocean Currents and Climate

Many of the ocean currents exert a marked influence upon the climate of the coastal regions along which they flow. Thus, warm water from the Gulf Stream, continuing as the North Atlantic, Northeast Drift, and Irminger Currents, arrives off the southwest coast of Iceland, warming it to the extent that Reykjavik has a higher average winter temperature than New York City, far to the south. Great Britain and Labrador are about the same latitude, but the climate of Great Britain is much milder because of the relatively warm currents. The west coast of the United States is cooled in the summer by the California Current, and warmed in the winter by the Davidson Current. Partly as a result of this circulation, the range of monthly average temperature is comparatively small.

Currents exercise other influences besides those on temperature. The pressure pattern is affected materially, as air over a cold current contracts as it is cooled, and that over a warm current expands. As air cools above a cold ocean
current, fog is likely to form. Frost smoke occurs over a warm current which flows into a colder region. Evaporation is greater from warm water than from cold water, adding to atmospheric moisture.

## 3113. Ocean Current Observations

Historically, our views of the surface circulation of the ocean have been shaped by reports of ocean currents provided by mariners. As mentioned at the start of this chapter, these observations consist of reports of the difference between the dead reckoning and the observed position of the vessel. These observations were routinely collected until the start of World War II.

Today, two observation systems are generally used for
surface current studies. The first utilizes autonomous freedrifting buoys which are tracked by satellite or relay their position via satellite. These buoys consist of either a spherical or cylindrical surface float which is about 0.5 m in diameter with a drogue at a depth of about 35 m . The second system utilizes acoustic Doppler current profilers. These profilers utilize hull mounted transducers, operate at a frequency of 150 kHz , and have pulse repetition rates of about 1 second. They can penetrate to about 300 m , and, where water is shallower than this depth, track the bottom. Merchant and naval vessels are increasingly being outfitted with acoustic Doppler current profilers which, when operated with the Global Positioning System, provide accurate observations of currents.

