based communication system. Similarly, a CAZAC sequence in the time domain may also be used to produce a modified CAZĀC sequence in the frequency domain that satisfies the IEEE 802.16 transmit frequency spectrum mask for the guard bands and channel selective filtering.
[0040] FIGS. 1A and 1B illustrate one exemplary method of construction of a preamble sequence $17 \overline{0}$ with a length of 2 L in the time domain from a CAZAC sequence 120 with a length of L in the frequency domain. FIG. 1A shows the processing steps according to an exemplary operation flow and FIG. 1B shows the resulting sequence of each processing step in FIG. 1A.
[0041] Initially at step 102 in FIG. 1A, a CAZAC sequence of a length L is selected as the basis for construction of the preamble sequence. An example of such a CAZAC sequence 120 in the frequency domain is shown in FIG. 1B, where the sequence 120 is partitioned into a left or first portion C1, a center or second portion C 2 , and a right or third portion C3. The sizes of C1, C2 and C3 may vary depending on the specific requirements of the left guard band size, the right guard band size, and the length L. Next, the CAZAC sequence 120 in the frequency domain is transformed into a first modified CAZAC sequence 130 and a second modified CAZAC sequence 140, still in the frequency domain, as shown in FIG. 1B through the processing steps 104 and 106, respectively. The first and second modified CAZAC sequences 130 and 140 may be carried out in any order or simultaneously.
[0042] As illustrated, the first modified CAZAC sequence 130 is the right buffer and is formed by setting the amplitude of each component in C3 to zero and by adding a phase shift factor $e^{j \theta}$ for each component in $C 2$. The frequency components in the left portion C1 are not changed. The second modified CAZAC sequence 140 is the left buffer and is formed by setting the amplitude of each component in

C1 to zero and by adding a phase shift factor $e^{-j \theta}$ for each component in C2. This phase shift is opposite to the phase shift in the first modified CAZAC sequence 130. The right portion C3 is not changed. These processing steps set the amplitudes of the guard bands of the OFDMA spectral components to zeros. In FIG.1A, the Left Buffer is at the left side of the DC component in the frequency spectrum under the Nyquist sampling rate and the Right Buffer is at the right side of the $D C$ component. The $D C$ component is the first frequency component in the first modified CAZAC sequence and is represented by the index " 1 " in FIG. 1B. Hence, the name designations do not reflect whether they appear on the left or right in FIG.1B. In Step 108, the amplitude of the DC component is set to zero, if the DC subcarrier is not used, for example, as in the IEEE 802.16 OFDMA system.
[0043] Next in step 110, the first and second modified CAZAC sequences 150 and 140 are joined together in the frequency domain to construct a new sequence 160 of a length 2L, where the C3 of the first modified CAZAC sequence 150 is connected to the C1 of the second modified CAZAC sequence 140 in the frequency domain. In step 112, an inverse FFT is then performed on the new sequence 160 in the frequency domain to form the near-CAZAC sequence 170 as the preamble sequence in the time domain.
[0044] The above process forms one preamble sequence for identifying a particular cell sector or segment in a particular cell among many segments of adjacent cells within the radio ranges of the base stations in these adjacent cells. Different preamble sequences for different IDcells and different segments may be generated in different ways. As one exemplary implementation, a new preamble sequence may be generated by first performing a cyclic shift of components of the initial CAZAC sequence 120 in the frequency domain to produce a new initial CAZAC sequence.

EIG. 2A illustrates this cyclic shift of the frequency components to generate two new CAZAC sequences $\mathbf{2 1 0}$ and $\overline{2 \overline{2}}$ from the initial CAZAC sequence 120 of L components in the frequency domain. Then the two new initial CAZAC sequences 210 and 220 are processed according to step 104 to step 112 in FIG. 1A, respectively, to produce two corresponding nearCAZAC sequences in the time domain. Under this approach, a total of L different preamble sequences can be generated from the cyclic shift of the L components.
[0045] EIG. 2B shows another way of generating different preamble sequences based on a cyclic shift of CAZAC sequence components in the time domain. The components of the nearCAZAC preamble sequence 170 generated from an initial CAZAC sequence 120 can be shifted in time to produce different near-CAZAC preamble sequences in time. As illustrated, the cyclic shift of preamble sequence 170 is used to generate two new preamble sequences 230 and 240. A total of 2 L different preamble sequences can be generated from the cyclic shift of the 2 L components. These sequences are sufficient to represent all IDcell and cell sectors/segments.
[0046] As an example, FIG. 3 shows a 3-tier cell design used in various OFDM or OFDMA systems where a base station can reach three layers of cells and each cell may have up to 6 cell segments and 6 adjacent cells. Hence, under this specific 3-tier cell design, the maximum number of cell segments in the total of 19 reachable cells from one base station is $19 \times 6=114$. Therefore, a CAZAC sequence of a length of at least 114 can have sufficient number of sequences for carry IDcell and segment numbers based on the above described implementation.
[0047] For illustration purpose, an exemplary OFDMA system with a 1024-FFT (Fast Fourier Transform) size, a left guard band of 87 FFT bins, commonly referred to as subcarriers, a right guard band of 86 subcarriers, and a configuration of
four preamble carrier-sets is described here. For those skilled in the art, different values for the FFT size, the left and right guard band sizes, or the number of preamble carrier-sets may be used.
[0048] In the case of four-sector configuration in which each cell contains four sectors, one way to generate preambles is to divide the entire 1024 subcarriers into four equal subset, arranged in an interlaced manner. Effectively, there are four preamble carrier-sets. The subcarriers are modulated, for example, using a level boosted Phase Shift Keying (PSK) modulation with a CAZAC sequence cyclically shifted with a code phase defined by IDcell and Segment, which are the base station identity. More specifically, the four preamble carrier-sets are defined using the following formula:

PreambleCarrierSet ${ }_{m}=m+4 * k$
where PreambleCarrierSet t_{m} specifies all subcarriers allocated to the specific preamble, m is the number of the preamble carrier-set indexed as $0,1,2$, or 3 , and k is a running index. Each segment of a cell is assigned one of the four possible preamble carrier-sets in this particular example.
[0049] To further illustrate, let the 1024-FFT OFDMA sampling rate be 20 MHz at the Nyquist rate. The basic preamble timedomain symbol rate is 10 MHz . The frequency-domain components are composed of a Chu sequence described in Equations (1) and (2) of length 128 that is zero-inserted to length 512 by inserting CAZAC symbols one for every four frequency bins. In the following, it can be established that a time-domain CAZAC sequence at the symbol rate (10 MHz) introduces a CAZAC sequence in frequency domain after spectrum folding. Its frequency-domain CAZAC sequence can be computed using a 512FFT operation instead of a 1024-FET operation.
[0050] Let $\mathbf{h}=\left[h_{0}, h_{1}, \ldots, h_{2 L-1}\right]^{T}$ be a time-domain waveform of length 2L at the Nyquist rate. Its spectral components can be computed using Equation (14) as follows:
$5 \quad \mathbf{g}_{h}=\sqrt{2 L} \mathbf{F}_{2 L} \mathbf{h}=\left[\begin{array}{l}\mathbf{g}_{H L} \\ \mathbf{g}_{H L}\end{array}\right]$
where $\mathbf{F}_{2 L}$ is the Fourier transform matrix of dimension 2 Lx $2 L$ and $\mathbf{g}_{H L}$ and $\mathbf{g}_{H U}$ are lower and upper portions of the frequency spectrum. When subsampling (i.e., down sampling) the waveform at the mobile station receiver at the symbol rate which is one half of the Nyquist rate, a spectrum folding in the frequency domain is introduced in the sampled signal at the mobile station. Let $\mathbf{h}_{E}=\left[h_{0}, h_{2}, h_{4}, \ldots, h_{2 L-2}\right]^{T}$ be the subsampled sequence of the even-numbered samples and
$15 \mathbf{h}_{o}=\left[h_{1}, h_{3}, h_{5}, \ldots, h_{2 L-1}\right]^{T}$ the odd-numbered samples. Define \mathbf{s} to be the matrix operation that rearranges matrix columns into even and odd columns:

$$
\mathbf{S}=\left[\begin{array}{lllllll}
\mathbf{e}_{0} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{2 L-2} & \vdots \mathbf{e}_{1} & \mathbf{e}_{3} & \cdots \tag{20}
\end{array} \mathbf{e}_{2 L-1}\right] .
$$

Therefore,
20
$\left[\begin{array}{l}\mathbf{h}_{E} \\ \mathbf{h}_{o}\end{array}\right]=\mathbf{S}^{-1} \mathbf{h}=\frac{1}{\sqrt{2 L}} \mathbf{S}^{-1} \mathbf{F}_{2 L}^{H}\left[\begin{array}{l}\mathbf{g}_{H L} \\ \mathbf{g}_{H U}\end{array}\right]$
[0051] When simplified, the following can be derived:

25

$$
\begin{equation*}
\mathbf{h}_{E}=\frac{1}{\sqrt{L}} \mathbf{F}_{L}^{H}\left(\frac{\mathbf{g}_{H L}+\mathbf{g}_{H U}}{2}\right)=\frac{1}{\sqrt{L}} \mathbf{F}_{L}^{H} \mathbf{g}_{H E} \tag{22}
\end{equation*}
$$

$\mathbf{h}_{o}=\frac{1}{\sqrt{L}} \mathbf{F}_{L}^{H} \boldsymbol{\Lambda}_{\varepsilon}\left(\frac{\mathbf{g}_{H L}-\mathbf{g}_{H U}}{2}\right)=\frac{1}{\sqrt{L}} \mathbf{F}_{L}^{H} \mathbf{g}_{H O}$
where $\mathbf{g}_{H E}$ and $\mathbf{g}_{H O}$ are spectral components of the even and odd sample sequences, and $\boldsymbol{\Lambda}_{\varepsilon}=\operatorname{diag}\left\{1, \varepsilon, \varepsilon^{2}, \ldots \varepsilon^{L-1}\right\}, \quad \varepsilon=\exp (j \pi / L)$. [0052] Equations (22) and (23) can be used to derive the following spectrum folding relationships:
$g_{H E}(k)=\frac{g_{H L}(k)+g_{H U}(k)}{2}$
$g_{H O}(k)=\varepsilon^{k}\left(\frac{g_{H L}(k)-g_{H U}(k)}{2}\right)$
[0053] Equations (24) and (25) sum up the spectral folding phenomenon of the waveform subsampling of the downlink preamble signal at the mobile station. Hence, the subsampling is likely to introduce frequency folding, or spectrum aliasing. If the subsampling frequency is sufficiently low when sampling a received preamble sequence in time, the spectral components of the sampled signal overlap, resulting in the frequency folding. In some OFDM/OFDMA applications, this phenomenon is intentionally avoided in order to perfect the signal restoration.
[0054] The spectral folding via sub-sampling at the mobile station receiver, however, may be advantageously used as a technique to recover the CAZAC property of a unfortunately truncated CAZAC sequence due to spectral filtering described above. This is in part based on the recognition that, if the coherent channel bandwidth is much smaller than the subsampled signal bandwidth, there is little adverse effect to the preamble signals (not true for voice or data signals, however). As an example, a $1 / 2$ sub-sampling can be used to intentionally create a "folded" or "aliased" spectrum that is exactly the CAZAC sequence. By virtue of the timefrequency duality property of a CAZAC sequence, the corresponding sequence in the time-domain is also a CAZAC sequence. Although the sub-sampled sequences maintain the desired CAZAC property, the non-sub-sampled (transmitted)sequences do not maintain the CAZAC property. For example,the PAPR is about 4.6 dB when the phase rotation shown inFIG. 1 B is $\theta=\pi / 3$. To achieve lower PAPR, the phase θ canbe adjusted to $\pi / 4$. Although the "folded spectrum" is no
longer an exact CAZAC sequence in the frequency domain, the
resulting time domain waveform has a low PAPR of 3.0 dB .
[0055] This technique to preserve CAZAC sequence
characteristics of the folded frequency spectrum in both
frequency and time domains is now further described below.
[0056] Following on the above example, the above described
construction of the CAZAC sequence in FIGS. $1 A$ and $1 B$ is
used to reconstruct the 1024 subcarriers using the $4: 1$ zero-
inserted 512-element frequency-domain CAZAC sequence of a
128-element Chu sequence such that, after the spectrum
folding due to the down sampling at the mobile station
receiver, the folded 512 spectral components form the
frequency-domain CAZAC sequence of the Chu sequence.
[0057] Let $\mathbf{c}_{c h u}$ denote the time-domain 512-element CAZAC
sequence and its frequency-domain CAZAC sequence be denoted
as $\mathbf{g}_{\text {chu }}$ (512 elements) and expressed as
$\mathbf{g}_{\text {chu }}(4 n+k)=\left\{\begin{array}{cc}e^{j \frac{\pi n^{2}}{128}}, & n=0,1, \ldots, 127, \\ 0, & \text { otherwise }\end{array}\right.$,
where k denotes the fixed preamble carrier-set. $\quad \mathbf{c}_{c h u}$ and $\mathbf{g}_{c h u}$ form a time-frequency pair and their relationship is expressed as
$\mathbf{c}_{c h u}=\operatorname{IFF} T_{512}\left(\mathbf{g}_{c h u}\right)$.
[0058] In IEEE P802.16e/D3, the 1024-FET OFDMA has 86 guard subcarriers on the left-hand side and 87 on the right-hand side. The DC (direct current) subcarrier resides on index
512. The construction procedures of assembling \mathbf{g}_{L} and \mathbf{g}_{R} ofthe left- and right-hand sides $1024-$ FFT OFDMA preambles are
$g_{R}(1: 86)=g_{C h u}(1: 86)$
$g_{R}(87: 425)=e^{-j \pi / 3} g_{\text {Chu }}(87: 425)$ $g_{R}(426: 512)=0$

$$
\begin{equation*}
g_{L}(1: 86)=0 \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
g_{L}(87: 425)=e^{j \pi / 3} g_{C h u}(87: 425) \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
g_{L}(426: 512)=g_{C h u}(426: 512) \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
q(1: 1024)=\left[g_{R}(1: 512) \vdots g_{L}(1: 512)\right] \tag{35}
\end{equation*}
$$

and its final reconstructed 1024 time-domain preamble sequence at Nyquist rate is

$$
\begin{equation*}
\mathbf{c}=I F F T_{1024}(\mathbf{q}) \tag{36}
\end{equation*}
$$

[0059] After spectrum folding due to subsampling at symbol rate in the time domain, the resulting folded frequency
spectral components of even-numbered samples are, based on Equation (24),
$g(1: 512) \sim g_{L}(1: 512)+g_{R}(1: 512)$

The overlapped area has the following relationship
$g(87: 425) \propto\left(e^{j \pi / 3}+e^{-j \pi / 3}\right) g_{C h u}(87: 425)=g_{C h u}(87: 425)$.
[0060] Equations (28)-(33) suggest that the CAZAC property is preserved. Note also that overlapped area of odd-numbered samples has the following relationship according to Equation (25):
$g^{\prime}(87: 425) \sim\left(e^{j \pi / 3}-e^{-j \pi / 3}\right) g_{C h u}(87: 425)=j \sqrt{3} g_{C h u}(87: 425)$.

Therefore, the reconstructed time sequence has the lowest PAPR for the even-numbered sampled sequences and very low PAPR for the odd-numbered sampled sequences that only slightly deviate from the exact CAZAC sequences due to the guard bands requirement. The nominal PAPR of the time-domain sub-sampled sequences is less than 3 dB at all different code-phases. The frequency components of the reconstructed 1024-FFT in the preamble sequence have constant amplitudes and thus may be used to facilitate the channel estimation.
[0061] In one implementation, fast cell searching can be performed as follows: The IDCell and Segment allocation to different sector are done via assigning different CAZAC code phases of cyclic shift of the $\mathbf{g}_{\text {chu }}$ sequence and forming the time-domain sequence in the same manners described in Equations (28)-(36).
[0062] FIG. 4 shows an example of the subcarrier allocations of the preamble sequence in segment 0 .
[0063] FIG. 5 shows the corresponding amplitude of the waveform in the time domain. Because the frequency-domain spectral components form a CAZAC sequence, a new sequence formed by cyclically shifting the sequence of the spectral components, in the time domain (subsampled) also forms a CAZAC sequence. Due to the well-defined zeroautocorrelation properties, identifying code-phase and thereby identifying IDcell and segments can be made with optimal decision. The cyclic shifting of the order of different components in the PN sequence permits the MSS to retain one copy of the PN sequence without other shifted sequences. A simple look-up table may be used to provide
the relationships between all sequences based on the cyclic shifting and the corresponding base stations and the associated cell sectors. Therefore, the present technique enables fast cell searching.
[0064] A CAZAC sequence has been used for channel sounding whereby the CIR (channel impulse response) can be uniquely determined because of the zero-autocorrelation property of the CAZAC sequence. In OFDMA or OFDM systems, we can use it not only to identify CIR but also to achieve fine timing synchronization whereby we can exclusively remove GI (guard interval) so as to minimize ISI.
[0065] EIG. 6 shows the time waveform of the result of matched filtering of the near-CAZAC sequence (spaced by symbols) without channel distortion and EIG. 7 shows the result of matched filtering of the near-CAZAC sequence in a multipath fading environment. The waveforms are CIRs of the tested RF multipath environment.
[0066] For a sensible and low-cost TCXO, the clock precision is usually about 5ppm for both the base station and the mobile station in some systems. At 10 GHz the frequency offset becomes 50 kHz . For a 11 kHz FFT spacing it spans 5 subcarriers in both directions.
[0067] The near-CAZAC sequence in the frequency domain can be used to simplify identification of peak positions of the cross-correlation. For example, for a sensible and low-cost TCXO, the clock precision is usually about 5ppm (BS+SS). At 10 GHz carrier frequency the frequency offset becomes 50 kHz .

For an 11 kHz FFT spacing it spans 5 subcarriers in both directions. We can assign code phase for different sectors that have different IDCells and segments by at least 10 code phase apart that accommodates ± 5 subcarrier drifts due to large frequency offset, then we can easily perform frequency offset cancellation to within 11 kHz . Further fine correction utilizes pilot channel tracking.
[0068] The PAPR of the current preamble design is 4.6dB. The PAPR can be further reduced by selecting different phase factor in Equations (29) and (32). For example, if we change the phase factor in Equations (29) and (32) from $e^{j \pi / 3}$ to $e^{j \pi / 4}$ as shown in Equations (40) and (41), then PAPR is reduced to 3.0 dB by compromising the CAZAC performance. $g_{R}(87: 425)=e^{-j \pi / 4} g_{C h u}(87: 425)$
$g_{L}(87: 425)=e^{j \pi / 4} g_{C h u}(87: 425)$

10 [0069] Only a few implementations are described. Modifications, variations and enhancements may be made based on what is described and illustrated here.

```
What is claimed is:
    1. A method for communications based on OFDM or OFDMA,
comprising:
selecting an initial CAZAC sequence;
modifying the initial CAZAC sequence to generate a modified sequence which has frequency guard bands; and
using the modified sequence as part of a preamble of a downlink signal from a base station to a mobile station.
```

2. The method as in claim 1 , wherein the initial CAZAC sequence is a Chu sequence.
3. The method as in claim 1, wherein the initial CAZAC sequence is a Frank-Zadoff sequence.
4. The method as in claim 1, further comprising:
using an order of frequency components of the preamble sequence to identify a base station transmitter; and
using different orders of frequency components of the preamble sequence based on a cyclic shift of the orders of frequency components to identify different base station transmitter.
5. The method as in claim 4, further comprising using different orders of frequency components of the preamble sequence based on a cyclic shift of the orders of frequency components to further identify different cells sectors in each cell of a base station.
6. The method as in claim 1 , wherein the modifying of the initial CAZAC sequence comprises:
selecting frequency components in the initial CAZAC sequence to create the frequency guard bands; and
```
    setting amplitudes of the selected frequency components
in the initial CAZAC sequence to zero to create frequency
guard bands.
```

7. The method as in claim 6, wherein the modifying of the initial CAZAC sequence further comprises:
adjusting a phase of a selected group of adjacent frequency components in the initial CAZAC sequence whose amplitudes are not changed.
8. The method as in claim 1, further comprising:
sub sampling the preamble at a mobile station receiver to create a frequency overlap and to minimize a variation in amplitude.

comprising:

selecting a CAZAC sequence of a length I in frequency which includes spectral components in first, second and third sequential portions in frequency;
modifying the CAZAC sequence to produce a first modified sequence by setting amplitudes of spectral components in the first portion of the CAZAC sequence to zeros and adding a first phase shift on spectral components of the second portion of the CAZAC sequence, without changing the third portion;
modifying the CAZAC sequence to produce a second modified sequence by setting amplitudes of spectral components in the third portion of the CAZAC sequence to zeros and adding a second phase shift spectral components of the second portion of the CAZAC sequence, without changing the first portion;
combining the first and second modified sequences to
form a combined sequence in frequency of a length 2L, wherein the first portion from the first modified sequence
> is positioned next to the third portion from the second modified sequence in the combined sequence; and performing an inverse fast Fourier transform on the combined sequence to generate a first preamble sequence in time for OFDM or OFDMA communication.
10. The method as in claim 9, further comprising setting widths of the first and third portions of the CAZAC sequence to achieve desired OFDMA guard bands.
> 11. The method as in claim 9, further comprising setting an amplitude of a DC subcarrier to zero when the DC subcarrier is not used.
12. The method as in claim 9, further comprising making the first phase shift and second phase shift to be opposite to each other.
13. The method as in claim 9, further comprising: prior to generation of the first and the second modified sequences, performing a cyclic shift of frequency components of an initial CAZAC sequence to produce the CAZAC sequence which is subsequent used to generate the combined sequence; and
using an order of the spectral components of the CAZAC sequence to identify at least an identity of a base station which transmits the first preamble sequence as part of a downlink signal.
14. The method as in claim 13, further comprising using the cyclic shift of frequency components of the initial CAZAC sequence to generate different orders of the frequency components in frequency to identify at least different base stations and different cell sectors of cells of the different base stations.
15. The method as in claim 9, further comprising: performing a cyclic shift of time components of the first preamble sequence to generate a second preamble sequence.
16. The method as in claim 15, further comprising using the cyclic shift of time components of the initial CAZAC sequence to generate different orders of the time components to identify at least different base stations.
17. The method as in claim 16, further comprising using the cyclic shift of time components of the initial CAZAC sequence to generate different orders of the time components to represent, in addition to the different base stations, different cell sectors of cells of the different base stations.
18. The method as in claim 9, wherein the initial CAZAC sequence is a Chu sequence.

19. The method as in claim 9, wherein the initial CAZAC sequence is a Frank-Zadoff sequence.
20. A method for communications based on OFDM or OFDMA, comprising:
sub sampling a preamble signal in a downlink signal received at a mobile station receiver to create a frequency overlap and to minimize a variation in amplitude, wherein the preamble signal is generated from an initial CAZAC sequence to preserve properties of the initial CAZAC sequence and has frequency guard bands; and
extracting an order of signal components in the preamble signal to identify at least a base station at which the downlink signal is generated.

21. The method as in claim 20, wherein the initial

CAZAC sequence is a Chu sequence.
22. The method as in claim 20, wherein the initial

5 CAZAC sequence is a Frank-Zadoff sequence.

FIG. 2A

(19) World Intellectual Property Organization
 International Bureau

(43) International Publication Date 3 February 2005 (03.02.2005)

PCT

(10) International Publication Number WO 2005/011128 A1
(51) International Patent Classification ${ }^{7}$: H03M 13/00, H04L 27/26, H04B 7/208
(21) International Application Number:

PCT/AU2004/001036
(22) International Filing Date: 23 July 2004 (23.07.2004)
(25) Filing Language: English
(26) Publication Language:

English
(30) Priority Data: $2003903826 \quad 24$ July 2003 (24.07.2003) AU
(71) Applicant (for all designated States except US): COHDA WIRELESS PTY LTD [AU/AU]; c/o Itek Pty Ltd, Building P- Mawson Lakes Campus, Mawson Lakes, S.A. 5095 (AU).
(72) Inventors; and
(75) Inventors/Applicants (for US only): ALEXANDER, Paul, Dean [AU/AU]; 5 Harrington Street, Prospect, S.A. 5082 (AU). GRANT, Alexander, James [AU/AU]; 33 Wellington Square, North Adelaide, S.A. 5006 (AU). RASMUSSEN, Lars, Kildehoj [DK/AI]; $62 / 52$ Brougham Place, North Adelaide, S.A. 5006 (AU). JAKAS, Stephen, Peter [AU/AU]; 26 Norseman Avenue, Hillcrest, S.A. 5086 (AU).
(74) Agent: SMOORENBURG PATENT \& TRADE MARK ATTORNEYS; P.O. Box 9, Kangaroo Ground, VIC 3097 (AU).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CN}$, $\mathrm{CO}, \mathrm{CR}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DZ}, \mathrm{EC}, \mathrm{EE}, \mathrm{EG}, \mathrm{ES}, \mathrm{FI}$, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IIU, IE, IT', LUJ, MC, NI, PI, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
(54) Title: METHOD AND SYSTEM FOR COMMUNICATION IN A MULTIPLE ACCESS NETWORK

(57) Abstract: The present invention provides an iterative decoding circuit for a wireless multiuser communications receiver comprising a first signal processing means for receiving at least one received signal, said first signal processing means comprising at least two linear iterative filters such that the first linear iterative filter provides an estimate of a selected received signal to an estimated signal output and a second linear iterative filter provides estimates of at least one other received signal, delayed by one iteration cycle, to an input of said first linear iterative filter, a second signal processing means for receiving the estimated signal output of the first linear iterative filter and providing a further received signal estimate to the input of the first signal processing means in a succeeding iteration cycle of the decoding circuit. The application also includes a method of communication with packet sample hypothesis and a method of communicating using estimating time varying channel impairments.

METHOD AND SYSTEM FOR COMMUNICATION IN A MULTIPLE ACGESS NETWORK

RELATED APPLICATIONS

This application claims priority to Australian Provisional Patent Application No. 2003903826, filed 24 July 2003, entitled "An OFDM Receiver Structure", the specification thereof being incorporated herein by reference in its entirety and for all purposes.

FIELD OF INVENTION

The present invention relates to the field of wireless communications. In particular, the present invention relates to improved multiple access communications. In one form, the invention relates to an improved signal processing method and apparatus for a multiple access communication system. It will be convenient to hereinafter describe the invention in relation to the use of an iterative method of determining the reception of a signal in a multi user packet based wireless OFDM (Orthogonal Frequency Division Multiplexing) communication system, however, it should be appreciated that the present invention may not be limited to that use, only. By way of further example, in other forms the present invention may relate to recursive filtering for joint iterative decoding in a variety of systems and functions such as linear multiple access channef decoders, iterative equalisation, iterative joint channel estimation and detection/decoding, iterative space-time processing, iterative multi user interference cancellation and iterative demodulation.

RELATED ART

Throughoui this specification the use of the word "inventor" in singular form may be taken as reference to one (singular) or more (plural) inventors of the present invention. The inventor has identified the following related art.

Most wireless communications systems are based on so-called multiple access techniques in which, information such as voice and data are communicated. This is a technology where many simultaneously active users share the same system resources in an organised manner. In most cases, sharing resources in a multiple access system means that if more than one user is active, then all active users interfere with each other. Traditionally, such
interference has been considered to be part of the inevitable noise that corrupts transmissions.

Such interference increases with the number of active users and thus, the performance quality in terms of how many users (capacity) that can share the resources simultaneously becomes limited.

Figure 1 shows an exemplary multiple access scenario that may occur in Wireless Networks. The radio terminals 102, 104 and 100b transmit signals that are received at network access point 100a. In general not all of these signals are intended for radio terminal 100a. They maybe signals from devices that belong to other networks, presumably in unlicensed radio spectrum. In any case there are ordinarily some users of interest that belong to the network to which 100a provides access. The Network aims to make arrangements for all of these signals to be effectively transmitted. Commonly the users may be required to share the radio resource by, for example, transmitting on different frequencies or at different times. Such techniques may be wasteful in terms of the expensive radio resource.

The radio terminal 102 may have an associated user 103 who generates and receives information (in the form of voice, video, data etc). Similarly, the radio terminal 102 is associated with a user. In the case of a vehicular user 105, the vehicle (such as bus, train, or car) may generate and receive data to be communicated over the network. This data may also be generated and received by the passengers and/or operators of the vehicle. The network access point 100b may also wish to communicate with radio terminal 100a as may be the case in wireless backhaui or multhop networks. In this respect, it is also possible that the other users' radio terminals 102, 104 may form part of any multihopping network.

One way to improve capacity is to introduce error control coding. Applying coding allows performance to be improved by only allowing a few of all possible combinations of code symbols to be transmitted. Another way is to expioit the information contained in the interference. This is known as joint multiuser detection. In systems where both these techniques are used, a decoding strategy may be applied which is termed iterative decoding. Here, a multiuser detector first provides an estimate of the transmitted symbols in terms of reliability
information. This information is forwarded to decoders that also provide reliability information based on the input from the detector. Information is then exchanged in an iterative fashion until there are no further improvements. This decoding strategy may increase capacity significantly, getting very close to theoretical capacity limits at a complexity level within reach of practical implementation. However, an optimal multiuser detector is prohibitively complex for practical implementation, as the inherent complexity grows exponentially with the number of active users. Instead; linear multiuser detection based on linear filtering may be applied, where the corresponding complexity only grows linearly with the number of active users. The inventor has identified that for practical reasons related art linear filters for iterative joint multiuser decoding are based on the received signal and the most recent information from the decoders as input to the filter. These filters have been designed based on various optimality criteria.

Where multiple users share common communications resources, access to channel resources may be addressed by a multiple access scheme, commonly executed by a medium access control (MAC) protocol. Channel resources such as available bandwidth are typically strictly limited in a wireless environment. It is therefore desirable to use these resources as efficiently as possible. Allowing multiple users to share common resources creates a risk for disturbances and interference caused by colliding access attempts. Such disturbances are usually referred to as multiple access interference. In wireless local area network (WLAN) systems the MAC attempts to schedule transmissions from Stations in order to avoid collisions. Sometimes the MAC fails, and Stations access the channel resources simultaneously. An example of this situation is llustrated in Figure 2, which shows the transmission of packets from a first transmitter station 1 a second transmitter station 2 and, a representation of received packets at the access point shown on the lowermost line. Physical layer receivers may fail to recover such collided packets. As the traffic load on the network increases, this probiem becomes a significant limiting factor in terms of network capacity and quality of service.

A different problem, leading to similar effects, is caused by the multipath nature of communication channels associated with, for example, a WLAN. The multipath channel causes several delayed replicas of the same signal to arrive at
the receiver. This, in turn, creates self-interference similar in nature to multiple access, interference discussed above. In this case, the problem becomes a limiting factor for the required power to achieve acceptable performance, which translates into limitations on the coverage of the WLAN. An example of a direct and a reflected version of the original signal arriving at the receiver is shown in Figure 3, where the direct and reflected transmissions of the packet are illustrated on the top two lines as shown. The presence of self interference is indicated by shading in the received signal, represented by the access point on the lowermost line as shown. Transmission range may be affected by the interference mechanisms described above and also by the sophistication of the diversity signal processing at the Receiver. Physical Layer receiver designers therefore strive to ensure that effective use is made of all available time, frequency and space diversity (the latter may be provided through the use of multiple antennas).

The inventor has also identified that when synchronizing transmitted packets over wireless connections each packet ordinarily has a preamble of several repetitions of the same short signal. A received packet signal may be correlated with a delayed version of itself where commonly the delay equals the duration of the repeated signal component in the preamble. This correlation may be implemented repetitively over a given sample sequence. The output power of the resultant correlafion may then be combined with the average power of the raw received signal to define a decision statistic. The point at which the decision statistic exceeds a given threshold is selected as the time of arrival of the packet. However, there are drawbacks with this technique in as much as signal distorions may be ampifified or accentuated by the processing invoived with the synchronization process producing uncertainties in the determination of packet timing.

Generally, in packet based communication systems it is important to reduce latency of a receiver or, in other words, provide as little delay as possible between arrival of signals and the decoding of the bits contained in those signals. Moreover, receiver processes are unable to determine the variation of a radio channel over the time of a packet length and the associated effect on the waveform of the transmitted signal. This may lead to lower than optimum data rates due to poorly tracked packets that are otherwise intact being discarded.

In OFDM packet based communication systems channel impairments may occur, which contribute to changing both the channel over which an OFDM signal travels and also the received signal itself. Collectively, these channel impairments comprise variations in the transmission channel due to multipath fading and, variations to OFDM symbols due to frequency and time offsets caused by receiver inaccuracies and phase offsets due to combined transmission and reception processes. These channel impairments may vary from OFDM symbol to OFDM symbol, in other words, they may not be invariant over the length of a packet. Traditionally, channel impairments are countered by estimates made using a packet preamble and maintained by pilot symbols throughout the received packet, which may assume invariance over the packet length. Other methods use data estimates to aid for example with channel estimation and these are implemented in the frequency domain and may result in power loss by discarding a cyclic prefix for each received symbol. Generally, there is no use made of all available received information to address channel impairments in such packet based communication systems.

With regard to space diversity, for multiple receiving antennae in wireless data packet communication systems related art schemes provide decisions on the synchronization of a received signal on the basis of per antenna and then a majority vote, otherwise the received measurements are added prior to the decision. These approaches do not address the variation of signal statistics across the number of antennae resulting in degraded synchronization accuracy and increased packet loss.

In EP 1387544 it is noted that time synchronisation of a receiver to the incoming signal is essential for effective decoding of that signal. In many packet based applications a special preamble is inserted by the transmitter at the start of every packet transmitted in order to assist the receiver with its timing estimation task. In OFDM systems the transmitter imparts a special structure on the signal called a cyclic prefix. This cyclic prefix is inserted for every OFDM symbol. A cyclic prefix is a replica of a small portion of the last section of a signal inserted at the start of the signal. There are many OFDM symbols transmitted sequentially in most forms of communication. In EP 1387544 the cyclic prefix, in the form of a guard interval as a cyclic continuation of the last part of the active symbol, is
employed to time synchronise the receiver instead of a preamble. In EP 1387544 a two step time synchronisation approach is disciosed, namely a pre-FFT and post-FFT time synchronisation algorithm. These are complementary techniques and may be used together. The pre-FFT technique consists of a "delay and correlate" algorithm applied to find the cyclic prefix of the OFDM symbols. This is achieved by setting the delay in the "delay and correlate" algorithm to the distance between the cyclic prefix and the region from which it was copied. The output of the correlator is then filtered using an auto-regression filter comprising a recursive Infinite-Impulse Response (IIR) filter to determine an average of the correlation across OFDM symbols. A second filtering, by way of smoother 44 in Fig 2 of EP 1387544, is then applied to discard samples outside of the maximum delay measurable, namely, the cyclic prefix duration. However, EP 1387544 relates to a system which makes use of a streaming signal and not readily adapted for the random arrival of packets. In the case of streaming signal, the signal is always there but the fine timing associated with the OFDM symbol boundaries must be determined.

In US 6,327,314 (Cimini, Jr. et al) the problem of tracking the radio channel in a hostile propagation environment is addressed for wireless communications systems using OFDM and one or more antennae for reception. The solution disclosed by Cimini Jr. employs decoder and demodulator outcomes to generate a training or, reference signal, to drive the estimation of the channel for use in decoding the next symbol. The decoding, demodulation and channel estimation loops run according to the paradigm that the channel estimate may use all outcomes up to and inciuding the symbol to be decoded. Each OFDM symbol is decoded once. The raw channel estimate is obtained by multiplying the received OFDM symbol with the training symbols. These training symbols may be from a decoding step. The raw channel estimate, corresponding to one OFDM symbol, is stored in a database. Each time a new OFDM symbol is to be processed all raw estimates in the database are employed to yield the channel estimate at the processing wavefront. In this disclosure the raw channel estimates are stored and a smoothing step is executed every time the data base is accessed, which entails a relative degree of complexity.

In US 6,477,210 (Chuang et al) the problem of tracking the radio channel in a hostile propagation environmient is also addressed for wireless communications systems using OFDM and one or more antennae for reception. The solution provided in this disclosure augments that disclosed in US 6,327,314 by more clearly disclosing the processing flow and adding a backward recursion to the processing. The backward recursion includes the steps of demodulation, decoding and channel estimation, as in the forward recursion, but the processing commences from the end of the packet. Chuang et al is restricted to Maximum Likelihood decoding systems such as Viterbl decoders. There are many other types of FEC systems that do not employ ML decoding (e.g. Soft Output Decoders such as A-Posterior Probability techniques) and, moreover, for which Chuang is not adapted to operate within.

In a paper by Czylwik, A., entitled "Synchronization for systems with antenna diversity", IEEE Vehicular Technolagy Conference, Vol. 2, 19-22 Sep. 1999, pp 728-732 the time and frequency synchronisation of a receiver is considered. In order to successfully decode a packet the receiver must determine the packet time of arrival. Errors in this estimate may result in signal power loss or failures in the synchronisation of high layer structures such as error control coding and FFT windows. Another parameter to be estimated is residual frequency offset. This parameter must be accurately estimated and its effect removed or countered if the packet is to be decoded. Errors in this estimate may result in demodulator failure and subsequent packet decode failure. When a receiver has two antennae there is a possibllity to employ these two signals to improve estimation of time and frequency offsets. As disclosed in Czywik, conventional techniques for single antenna exist involving the calculation and subsequent combination of two components. In this paper two main methods are proposed for time and frequency offset estimation. In the first, one antenna is selected, based on received power strength, and conventional techniques are applied to only that signal. in the second method disclosed by Czyiwik, first and second conventional components are computed for each antenna. The two first components from each antenna are added. The two second components from each antenna are added. The resulting sums are then treated conventionally as a first and second component. The option of weighting each component prior to
combining across antenna according to a signal strength measure for each corresponding antenna is also disclosed in Czyiwik. This later option is shown to perform better than any of the other proposals in the paper. Filtering of the resulting metric for time synchronisation is also disclosed.

Any discussion of documents, devices, acts or knowledge in this specification is included to explain the context of the invention. It should not be taken as an admission that any of the material forms a part of the prior art base or the common general knowledge in the relevant art in Australia, the United States of America or elsewhere on or before the priority date of the disclosure and claims herein.

SUMMARY OF INVENTION

It is an object of the present invention to overcome or mitigate at least one of the disadvantages of related art systems.

In one form the present invention provides an iterative decoding circuit for a wireless multiuser communications receiver comprising:
a first signal processing means for receiving at least one received signal, said first signal processing means comprising at least two linear iterative filters such that:
the first linear iterative filter provides an estimate of a selected received signal to an estimated signal output and;
a second linear iterative filter provides estimates of at least one other received signal, delayed by one iteration cycle, to an input of said first linear iterative filter;
a second signal processing means for receiving the estimated signa! output of the first linear iterative filter and providing a further received signal estimate to the input of the first signal processing means in a succeeding iteration cycle of the decoding circuit.

In another form the present invention provides a method, apparatus and system of communicating in a multiple access network by iteratively receiving multi user signals comprising:
determining a first set of signal estimates for the multi user signals based on linear channel constraints;
determining a second set of signal estimates based on non-linear channel constraints and the first set of signal estimates;
providing the second set of signal estimates as input to the step of determining the first set of signal estimates;
repeating the above steps at least once.
In a further form the present invention provides an iterative receiver for receiving multi user signals comprising:
a first signal processing component for determining a first set of signal estimates for the multi user signals based on linear channel constraints;
a second signal processing component for receiving the first set of signal estimates and determining a second set of signal estimates based on non-linear channel constraints;
wherein the signal processing components are operatively connected so as to provide the second set of signal estimates as input to the first signal processing component in a succeeding iteration cycle.

In another form the present invention provides a method, apparatus and system of communicating in a multiple access network by iteratively receiving OFDM packets comprising:
a) sample a receiver input signal;
b) add the input slgnal with one of a plurality of prior stored received packet sample estimates to determine a packet sample hypothesis;
c) determine an information bit estimate from the sample hypothesis for storage in an information bit estimates list;
d) determine an updated received packet sample estimate from the sample hypothesis for updating the plurality of prior stored estimates;
e) subtract the updated sample estimate from the sample hypothesis to determine a noise hypothesis and provide the noise hypothesis as the receiver input signal;
f) repeat steps a) to e) until at least one or more complete packets are accumulated in the information bit estimates list.

In yet another form the present invention provides a method, apparatus and system of communicating in a multiple access network by iteratively providing a sample estimates list in an OFDM receiver comprising:
a) sample a receiver input signal;
b) determine a packet sample estimate from the sampled receiver input signal;
c) store the packet sample estimate;
d) determine a packet sample hypothesis by adding the receiver input with a selected previously stored packet sample estimate;
e) determine an updated packet sample estimate by decoding and retransmission modelling the packet sample hypothesis;
f) update the selected previously stored packet sample estimate with the updated packet sample estimate.

In still another form the present invention provides a method, apparatus and system of communicating in a multiple access network by iteratively providing a packet information bit estimates list in an OFDM receiver comprising:
a) determine a packet sample hypothesis by adding a receiver input with a selected previously stored packet sample estimate;
b) determine an information bit estimate by decoding the packet sample hypothesis with one or more of a hard decoding technique and a soft decoding technique
c) storing the information bit estimate with one or more previously determined information bit estimates;
d) repeating steps a) to c) until a complete packet is accumulated.

In yet another form the present invention provides a method, apparatus and system of communicating in a multiple access network including determining a hybrid OFDM received packet sample estimate comprising:
multiplexing a time domain channel application received sample estimate with a frequency domain channel application received sample estimate, such that the multiplexed time domain sample estimate is mapped to correspond to one or more of:
an OFDM signal cyclic prefix;
an OFDM tail portion, and;
an OFDM guard period,
and wherein the multiplexed frequency domain sample estimate is mapped to correspond to one or more of:
an OFDM signal preamble and;
an OFDM payload data symbol.
In another form the present invention provides a method, apparatus and system of communicating in an OFDM multiple access network comprising:
performing multi-user interference cancelling which comprises adapting a single pass OFDM receiver to iteratively receive signals at the sampling level so as to allow the receiver to differentiate a desired packet from an observation of an interference signal at the receiver input.

In yet another form the present invention provides a method, apparatus and system of communicating in a multiple access communication network by synchronizing packets arriving at a receiver comprising:
receiving a packet input signal;
determining a correlation signal corresponding, to the packet input signal;
processing the input and correlation signals such that at least one of the input signal and the correlation signal are filtered;
determining a decision statistic by combining a power component of the processed correlation signal with a power component of the processed input signal;
nominate a point in time given by a predetermined threshold condition of the decision statistic as a received packet arrival time.
in yet another form the present invention provides a method, apparatus and system of communicating by tracking time varying channels in a multiple access packet based communication network comprising:
a) initializing a channei estimate reference based on an initiai channel estimate in a received packet preamble;
b) updating the channel estimate reference based on a packet data symbol channel estimate in a coded portion of the current and all prior received data symbols;
c) repeating step b) at the arrival of subsequent packet data symbois.

In yet another form the present invention provides a method, apparatus and system of communicating by estimating time varying channel impairments in a multiple access packet based communication network, where channel
impairments comprise channel variation, signal frequency offset and signal time offset, comprising:
a) initializing a set of channel impaiment estimates based on initial pilot and preamble symbols included in a received packet;
b) performing a decoder operation which comprises processing the set of channel impairment estimates and the received packet to determine a set of transmit symbol estimates;
c) updating the set of channel impairment estimates with the determined set of symbol estimates and received packet;
d) repeating steps b) and c).

In still another form the present invention provides a method, apparatus and system of communicating in a multiple access network by time varying channel estimation in a receiver for receiving transmitted packets, comprising:
a) estimating a frequency offset based on information included in a received packet preamble;
b) correcting a received signal using the estimated frequency offset;
c) determining a channel estimate using information included in the received packet preamble;
d) transforming a sample sequence of the received signal into the frequency domain such that the sample sequence includes OFDM symbols and intervening cyclic prefixes;
e) performing a decoding operation which comprises processing the determined channel estimate and received packet;
f) generating a transmission sampie sequence using the decoding results and information in the received packet preamble;
g) transforming the transmission sample sequence into the frequency domain;
h) updating the determined channel estimate by combining the received sample sequence and the transmission sample sequence in the frequency domain;
i) repeating steps e) to h).

In a preferred embodiment, the combining operation of step h), which updates the determined channel estimate, is performed by dividing the received
sample sequence and the transmission sample sequence in the frequency domain.

In a further form the present invention provides a method, apparatus and system of communicating in a multiple access network by time varying channel estimation in a receiver for receiving transmitted packets, where the receiver retrieves OFDM symbols from a received signal and transforms the retrieved. symbols to the frequency domain, comprising:
a) determine a matrix of training symbols comprised of symbol estimates derived from a decoder;
b) determine a matrix of frequency domain received OFDM symbols;
c) determine an intermediate channel estimate matrix by multiplying the OFDM symbol matrix by the conjugate of the training symbol matrix;
d) determine an intermediate matrix of training weights comprising the absolute value of the training symbol matrix;
e) perform a smoothing operation on both intermediate matrices comprising 2 dimensional filtering;
f) determine the channel estimate by dividing the smoothed channel estimate matrix with the smoothed training weight matrix.

In embodiments of the invention, the step d) determining an intermediate matrix of training weights may comprise other functions such as, for example, (absolute value of the training symbol matrix) ${ }^{2}$.

In still another form the present invention provides a method, apparatus and system of communicating in a multiple access network by estimating offsets in a receiver for receiving transmitted packets, comprising:
a) determine a matrix of received OFDM symbols;
b) determine a matrix of conjugated data symbols wherein the data symbols comprise one or more of preamble, training and estimated symbols;
c) determine a 2 dimensional Fourier transform matrix comprised of the received symbol matrix multiplied with the conjugated symbol matrix;
d) filter the Fourier transform matrix;
e) determine time and frequency offsets by locating peak power occurrences within the filtered Fourier transform.

In a particular embodiment, the above steps a) to e) for estimating offsets may be used effectively as a means of channel estimation. For example, in the above described form of the invention which provides communication by estimating time varying channel impairments, the step c) of updating the set of channel impairment estimates with the determined set of symbol estimates and received packet may comprise the above steps a) to e) for estimating offsets.

In a further embodiment, the above method may be used as the channel estimator as required herein, in as much as updating the set of channel estimates with the determined set of symbol estimates.

In yet a further form the present invention provides a method, apparatus and system of communicating in a multiple access packet communication network by synchronizing a received signal in a multi antenna receiver comprising:
correlating a received signal observation at each of a plurality of antennae with a known signal preamble to provide a received signal sequence;
determine a power signal of each received signal sequence;
combine the determined power signals in accordance with a time averaged weighting based on estimated antenna signal strength for each antenna;
determine a time of arrival for the received signal in accordance with a predetermined threshold condition.

In embodiments of the present invention there is provided a computer program product comprising:
a computer usable medium having computer readable program code and computer readable system code embodied on said medium for communicating in a multiple access communication network, said computer program product comprising:
computer readable code within said computer usable medium for performing the method steps as disclosed herein.

Other aspects and preferred aspects are disclosed in the specification and/or defined in the appended claims, forming a part of the description of the invention.

The present invention provides an improved or enhanced wireless link between two communicating devices, for example, an IEEE 802.11a Access

Point to an IEEE 802.11a Station or between two nodes in a wireless mesh. The present invention leads to enhanced key performance indicators for point to point links, namely, range, power, data rate and reliability. This is achieved by advanced signal processing techniques in the following areas to improve performance

- Decoding
- Synchronisation
- Equalisation
- Channel Estimation
- Full Exploitation of Multiple Receiver Antennae.

As would be understood by the person skilled in the art, in addition, techniques that exploit multiple antennas for transmission may be employed to provide electronically generated directional antennas in an adaptive manner. The following advantages stem from the present invention.

- Spatial rejection of interference,
- Significantly increased receiver sensitivity,
- Significantly increased robustness to fading, and
- Self configuration of antenna patterns

Spatial rejection of interference effectively ignores or rejects signals that are not emanating from the same location as the current or point of interest source. Rejecting these signals increases the probability that a signal may be received without errors thus increasing the reliability of the link and therefore the throughput to lower retransmissions and dropped packets. Interferers have a spatial signature as measured at the receive antenna that is substantially determined by their position. However, it is possible that transmitters that are not collocated could produce a similar spatial signature and it is also possible that collocated transmitters could produce different spatial signatures.

Significantly, increasing the receiver sensitivity means that the receiver may operate a lower SNR (Signal-to-Noise-Ratio) point which produces many benefits. Since the received power at which the signal may be successfully decoded has been reduced, the path loss may be increased by increasing the distance between the receiver and transmitter thereby increasing the range. Alternatively, the present invention allows the transmit power to be decreased
and still a link may be maintained. Increasing the receiver sensitivity also means that less power is required per bit and accordingly, it may be possible to transmit a higher number of information bits per constellation symbol. This increases the data rate.

Robustness to fading provided by the inventive techniques disclosed herein may decrease the amount of packet errors due to extreme radio channel variations or fades. By increasing robustness, a more reliable link may be created ensuring a better user experience and increased throughput through less re-transmissions and fewer dropped packets.

The use of multiple antennas for transmit and receive functions allows the rejection of interference from outside the direction of interest. This functionality is adaptive so no hands-on antenna orientation is required at install-time or during the life of the instaillations.

By way of example, indicative performance measures of a sample communications link are given with and without the use of the Point-to-Point technology of the present invention.

	Typical of Related Art	Present Invention
Range	300 m	1 km
Required Tx Power	1.0 W	0.1 W
Maximum Data Rate	500 Kbps	5 Mbps

The present invention also provides improved channel tracking capabilities. Channel tracking technology refers to the adaptation of the receiver, when the channel changes rapidly over the duration of a single packet. Typically, the channel estimate that is used to decode a received packet is determined from known sequences at the start of a packet. This estimate may be used to decode the whole packet. However, if the relative speed between the transmitter and receiver is great enough, the channel experienced at the beginning of the packet is substantially different from that at the end of a packet rendering the channel estimate incorrect for the end of the packet resulting in decoding errors. There are other processes that manifest themselves as the radio channel changing over the packet. These include mismatches between the Transmit and Receive Radio processing resulting in residual frequency offsets and misalignments in the time
and frequency synchronisation. It is difficult to build transmit and receive radio devices that match perfectly.

The advanced signal processing techniques of the present invention allows a receiver circuit to build a progressive Channel Estimate that tracks the changes in the channel over the duration of a packet. The benefit of applying such Channel Tracking technology is the ability to communicate under high mobility conditions and under larger mismatches between the transmit and receive radio processing. By way of example, typical performance measures of a sample communications link are given with and without the use of the Channel Tracking technology.

	Typical of Related Art	Present Invention
Maximum Mobility	$40 \mathrm{~km} / \mathrm{hr}$	$400 \mathrm{~km} / \mathrm{hr}$

The present invention also provides interference cancelling allowing the removal of same standard interference from a signal. The term "same standard" refers to transmissions of similar packet structures from other users in a multiuser system, or multipath transmissions (reflections) from the same transmitter, or multiple transmit antenna in the case of a device equipped with multiple transmit antenna. In all wireless communications systems, multiple active transmitters share the wireless medium. This sharing may be done in a coordinated attempt in infrastructure networks by dividing the wireless medium into time and frequency slots or in an uncoordinated attempt in an-hoc networks by all active transmitters contesting for the right to use the medium. Both schemes limit the use of the medium to a well defined frequency and time where only one user may transmit. Packet collisions occur when two transmitters inadvertently choose to use the same frequency at the same time. The Interference Cancelling technology includes advance signal processing techniques that benefit the following areas

- Acquisition
- Interference Mitigation
- Range
- Network Throughput
- Reduced Control Overhead

Further benefits of the Interference Cancellation technologies of the present invention resolve collisions between two or more transmitters from the same standard transmitting at the same time on the same frequency. This has numerous advantages. Firstly, when collisions occur, all transmitted packets are received correctly increasing throughput and reliability by decreasing retransmissions and dropping packets. Secondly, by removing the requirement that only one transmitter may use a given frequency at a given time the amount of traffic that can be carried on the medium may be increased. Moreover, this may give greater flexibility in infrastructure design such as frequency planning and in the case of co-located competing networks such as two IEEE 802.11 networks from separate companies in adjoining offices.

In the case where the desired user and interfering users transmit according to different standards, the interference cancellation structure may employ a receiver and re-transmitter for all relevant standards. The receiver is then able to create hypotheses of the interfering signals thereby enabling interference cancellation.

Callisions may be resolved in the Physical Layer in accordance with embodiments of the present invention. The resulting reduction in network signaling overhead multiplies the benefits over and above the resolution of the two colliding packets. Typical quantitative measures are a doubling of network throughput and several orders of magnitude reduction in packet loss rate as follows:

	Typical of Related Art	Present Invention
Throughpuí	10 Mbps	20 Mibps

The multi-hop technology of embodiments of the present invention allows selected (and possibly all) wireless devices to act as routers, forwarding packets from one device to another in a communication network. This means that though two devices may not receive each others signals, if there is a set of intermediate devices that may be linked to form a radio path between them, then they may communicate to each other by passing their message through that intermediate set.

Depending on the particular network dynamics, the multi-hop technology may employ dynamic route determination techniques to build and maintain the required routing tables. Multi-hop networks provide many benefits in terms of flexibility, reliability and cost of infriastructure.

Flexibility is achieved through a self forming network that requires minimal planning. The only requirement is that no device may be isolated, in a radio range sense, from the core network. All configurations meeting this criterion may be possible.

If multiple paths between devices exist in the network, dynamic route determination may select a new route when the current route is blocked or congestion is best avoided. Therefore if a device was to go offline, the network may rearrange its routing tables to exclude that device from all routes and find a new path through the network thus creating a robust, self healing (and therefore more reliable network). Dynamic route determination continuously adapts to network configuration changes allowing for mobile network nodes.

Multi-hop networks in accordance with embodiments of the present invention offer a simple solution to provide a high bandwidth link over a wide area. Due to easy flexible installations, low infrastructure costs and a high rate, reliable link, multi-hop networks generally offer excellent return on investment.

Four areas of application in the communications field which best utilize the benefits of the technologies of embodiments of the present invention have been identified by the inventor as

- Mobile Multi-hop Radio Networks
- Fixed iviulti-hop Radio Networks
- IEEE 802.11a Access Point Chipsets
- 802.16 Base Stations
- OFDM Baseband Receiver Co-pracessor

The following describes each of the above identified applications in turn. Other applications may also benefit from these technologies of embodiments of the present invention.

Firstly, a Mobile Multi-hop Radio Network requires effective real-time communication to networks of moving entities. This concept provides costeffective bi-directional high bandwidth communication both between the mobile
entities and between fixed networks and the mobile entities. Wireless Routers are placed where service is required with regular connections to a wideband backbone network. A fixed network may be used to connect to other networks such as the internet or other private networks. Other than access to power and a physical mounting point no other infrastructure is required for each wireless router. The wireless routers may be fixed or mobile. The routers adapt to their environment in terms of link quality using, for example, data communications methods as would be understood by the person skilled in the art. Embodiments of the present invention provide a competitive advantage relative to other Multihop Radio Networks in that the improved mobility and range, as noted above, leading to a more efficient network is provided. Relative to related art Private Communications Networks, embodiments of the present invention provide significant improvements in Data Rate, Range, Mobility and cost of Network as noted above.

Secondly, a Fixed Multi-hop Radio Networks is provided by installing Wireless Routers at fixed user locations with links available to one or more wideband backbone connections. The only requirement is that all routers must be able to form a link (direct or hopped) back to a backbone connection. There is no need for expensive base station configurations and ultimate range is not limited by signal strength. The Fixed Multi-hop radio Network forms a flexible, low infrastructure cost solution in providing a high bandwidth connection to a Wide Area Network that is reliable, easily managed and self healing.

Furthermore; the present invention enables all decoder outcomes to be employed (decoder outcomes are stored across all iterations and able to be combined) in the receiver filter structure providing improved estimate determination. The number of users that may be supported is greatly increased. Particularly advantageous, for example, in OFDM systems the present invention does not require prohibitively large matrices to be inverted in forming estimates. Receiver performance is superior to that of the related art due to the quality of the feedback symbol provided by including decoding in the iteration loop. Embodiments of the present invention are based on interference cancellation where previous estimates of the multi user received signals are subtracted from the received signal to cancel the interference they cause. Accordingly, these
embodiments do not suffer the disadvantages and complexities of using tree search methodologies for multiuser signals which would necessitate exploring many paths through a given tree. The present invention advantageously enables decoding of each user's signal according to their Forward Error Correction encoding. This use of strong error control code structure provides for significantly improved symbol estimates, resulting in superior interference estimates. This in turn allows support for significantly higher numbers of users. Embodiments of the present invention do not require synchronised users to enable improved multi user reception. Embodiments of the present invention advantageously use decoder outcomes as training symbols rather than only using demodulator outcomes. Advantageously, receiver coefficients for beamforming may be determined without transmitter interaction. Also the use of decoder outcomes to improve channel estimates allows accurate estimation of the required beamforming coefficients. In accordance with embodiments of the present invention, smoothing of channel estimate taps is performed in the frequency domain as well as the time domain. Further to this, embodiments of the present invention allow decoding of symbols more than once as a channel estimate corresponding to its interval is improved resulting in increased receiver sensitivity.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only; since various changes and modifications within the spirit and scope of the invention will become apparent to those skiiled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

Further disclosure, improvements, advantages, features and aspects of the present invention may be better understood by those skilled in the relevant art by reference to the following description of preferred embodiments taken in conjunction with the accompanying drawings, which are given by way of illustration only, and thus are not limiting to the scope of the present invention, and in which:

Figure 1 illustrates a related art multiple access wireless communication system;

Figure 2 illustrates an example of a MAC failure in a related wireless communication system involving an access collision;

Figure 3 depicts self interference in WLAN network of a related art wireless communication system;

Figure 4 depicts a generic iterative receiver structure in accordance with a first embodiment;

Figure 5 depicts the transmission system model for coded CDMA;
Figure 6 depicts a canonical iterative multiuser decoder;
Figure 7 depicts an iterative multiuser decoder with linear multiuser estimation in accordance with a first embodiment;

Figure 8 depicts the recursive filter $\Lambda_{k}^{(n)}$ in accordance with a first embodiment for $n=1$ the input signal is r while for $n \geq$ the input signal is $\hat{\chi}_{k}^{(n-1)}$; and

Figure 9 depicts Bit Error Rate versus users after 10 iterations, $N=8, E_{b} I$ $N_{0}=5 \mathrm{~dB}$ in accordance with a first embodiment;

Figure 10 shows a typical related art single pass OFDM receiver high level structure;

Figure 11 illustrates an adaptation of the single pass OFDM receiver high level structure of figure 10 in accordance with a second embodiment to facilitate iterative receiver technologies;

Figure 12 shows a OFDM Soft/Hard Decode and Re-transmit structure for use in Iterative Receive structure in accordance with a second embodiment;

Figure 13 shows a Hybrid Re-transmit in accordance with a second embodiment;

Figure 14 shows a Hard Decode and Re-Modulate for OFDM Soff/Hard Decode and Re-transmit structure in accordance with a second embodiment;

Figure 15 shows a Soft Decode and Re-Modulate for OFDM Sof/VHard Decode and Re-transmit structure in accordance with a second embodiment;

Figure 16 shows a structure for time domain channel application process in accordance with a second embodiment;

Figure 17 shows a structure for frequency domain channel application process in accordance with a second embodiment; and

Figure 18 shows an Example of a Typical OFDM Packet Physical layer Format and an associated Multiplexer mapping;

Figures 19a and 19b show a wireless modem incorporating a baseband receiver processor in accordance with preferred embodiments of the present invention;

Figure 20 illustrates a packet structure in accordance with related art;
Figure 21 illustrates an example related art time synchronisation decision;
Figure 22 shows triangle filter coefficients for a receiver filter in accordance with a third embodiment of the invention;

Figure 23 shows an example of a filtered decision statistic in accordance with a third embodiment of the invention;

Figure 24 represents an actual frequency domain of a related art radio channel;

Figure 25 represents the frequency domain of figure 24 after receiver phase and frequency offset correction;

Figure 26 represents an error pattern for a related art processing of a receiver;

Figure 27 represents a radio channel estimate after smoothing across OFDM symbols in accordance with a fourth embodiment of the invention;

Figure 28 represents an error pattern for a fourth embodiment of the invention using perfect training symbols;

Figure 29 represents a raw radio channel estimate or channel estimate database in accordance with a fourth embodiment of the invention;

Figure $\mathbf{3 0}$ is an example of a WLAN packet format in accordance with related art;

Figure 31 is an OFDM symbol sub-carrier matrix structure in accordance with a fifth embodiment of the invention;

Figure 32 is a representation of channel power (amplitude) over a subcarrier and OFDM symbol resulting from application of a fifth embodiment of the invention;

Figure 33 is a representation of channel phase corresponding to the waveform represented in figure 32;

Figure 34 is a representation of a synchronisation metric of a sub-carrier and OFDM symbol in accordance with a fifth embodiment of the invention.

DETAILED DESCRIPTION

System Overview

In wireless networks a signal received at a network device comprises components from all active transmitters. These components, along with noise, add together resulting in the received signal. In some cases, only one of these components, corresponding to a specific transmitter, is of interest. In other cases, such as a reception at a network access point, several of the received components are of interest. In either case the presence of the other signal components in the received signal inhibits the accurate estimation of any given transmitted signal of interest. In accordance with embodiments of the present invention a system and methods and apparatus for processing a received signal comprising one or more received signal components from different transmitters is disclosed herein. The processing typically resides in the baseband receiver processing of a wireless transceiver 190 as illustrated in figures 19a and 19b. The Radio Frequency Transceiver Integrated Circuit (IC) is an analogue device that interfaces between the digital signal processing components LLC, MAC, Rx, Tx, and the antenna system of the transceiver. In receive mode IC amplifias and downconverts the received signal suitable for driving analogue to digital converters. In transmit mode it up converts and amplifies the signal for excitation of the antenna.

The baseband receiver is responsible for determining the existence of any packets and then to recover transmitied information estimates from the received signal if packet(s) are deemed to exist.

A canonical baseband receiver processor $R x$ is shown in figure 19b. The received signals for each antenna are supplied as input by the Radio Frequency Circuit IC. These signals are then filtered 302 by filters 302a, 302b to remove any out of band interference. The filtered signals 303 are then combined with the current Received Signal Estimates 306, implementing an interference cancellation function 304. Ideally, the interference cancellation module 304 removes the signal components in the received signal pertaining to all packets
except for the packet of interest. The packet of interest is then decoded by feeding the Interference Cancelled output 309 to a Single Packet Processor 313.

The Single Packet Processor 313 takes a Multiantenna received signal as delivered by the Interference Cancellation module 304 and produces an estimate of the transmitted information bits 314 and an estimate of the received symbols 306 for the packet of interest. These symbols, along with the channel estimates for the packet of interest, are then fed back to the interference cancellation module. 304. In some cases it is preferred to send back only the transmitted symbol estimates to the interference cancellation module 304.

The Single Packet Processor 313 may contain advanced or conventional single packet techniques. The multiuser interference rejection performance of the receiver will be better if the Single Packet Processor is of high quality. Techniques pertaining to synchronisation and channel estimation are key to the performance of the Single Packet Processor 313.

Techniques that improve the robustness of the synchronisation and channel estimation employed in decoder 310 are described herein. The synchronisation uses all antenna slgnals in its operation. The channel estimation makes use of the decoder outcomes to improve the channel estimation accuracy.

New packets are found by a searcher in the interference cancellation module 304. The searcher investigates an intermediate signal generated in the module 304. This intermediate signal is the received signal minus the estimated received signal for all currently detected packets and is referred to as a noise hypothesis since in ideal conditions all transmitter components are removed from the received signal leaving behind oniy the random noise.

In applications sensitive to latency the feedback loops, both inside 310 for decoder outcome assisted channel estimation, and between 304, 310 and 312 for multi packet interference cancellation may be executed at a rate higher than the packet rate. In OFDM based systems the preferred choice for the loop rates is the OFDM symbol rate with decoding and interference cancellation occurring at the OFDM symbol rate.

In applications where packet based decoding and interference cancellation may be performed at the packet rate additional packet-based techniques for the

Single Packet Processor 313 are disclosed. These techniques leverage the extra signal processing gain available when considering long sequences of symbols.

In either case, lists of current estimates of the quantities passed between the Interference Canceller 304 and the Single Packet Processor 313 are required. A controller determining which packet is to be updated may also be utilised.

With reference to figures 4 to 9 , a first embodiment stems from the general realization that over a number of iterations using linear filters in a multiuser receiver, each iteration provides new information and, as the filter structure converges, the output of the decoders also converges and eventually becomes completely correlated. The linear filters of the multiuser decoding circuit means may be structured in accordance with at least one predetermined recursive expression:

An innovation in the filter design of a first embodiment disclosed herein is to exploit the fact that information provided by the decoders is initially only marginally correlated over iterations, i.e. in the first few iterations, each iteration provides new information. As the structure converges, the output of the decoders also converges and eventually becomes completely correlated.

The disclosed filter design is based on a technique to use all available information from all previous iterations. This implies that the filter grows linearly in size by a factor equal to the number of users. This is clearly impractical. Thus, the disclosed filter design makes it possible to use all the available information through recursive feedback of the filter output over iterations, without requiring a growing filter. The size of the filter remains the same. In order to achieve this, the filters in the structure may be designed according to the recursive expressions derived herein.

Related structures, having lower complexity implementations, are obtained by modifying the specific filters used in the structure. The general recursive structure, however, is still fundamental for such modified filters. In these cases, the individual fiiters are designed according to appropriately different strategies using the principles disclosed herein.

The recursive filtering structure for iterative signal processing disclosed herein is not limited to multiuser detection, but may also be directly applied within systems and functionalities of the same structure. Examples of such applications
are iterative equalisation, iterative joint channel estimation and detection/decoding, iterative space-time processing, and iterative demodulation.

In a broad aspect of the first embodiment, an iterative signal processing arrangement shown generally in figure 3 as 10 having one or more pairs of first and second signal processing components 1,2, the pairs of components being in iterative configuration, each of the first signal processing components having as input one or more received signals dependent upon one or more transmitted signals, wherein for each said signal processing component pair the output of said first signal processing component 1 is an estimate of a characteristic of a selected transmitted signal based on the current and one or more previous signals received by said first signal processing component 1, which is input to said corresponding second signal processing component 2 that provides a further estimate of said selected transmitted signal to the output of said second signal processing component 2, the outputs of all said second signal processing components of respective pairs are input to each said first signal processing components of all said pairs in a succeeding iteration cycle.

In a further aspect of the first embodiment, the iterative signal processing arrangement 10 according to that described above wherein said first signal processing component 1 comprises at least wo linear iterative filters wherein a first of said linear iterative filiers outputs an estimate of a selected characteristic of a selected one or said transmitted signals to said second signal processing component 2, and a second of said iterative filters having the same inputs as said first linear iterative filter provides an estimate of a characteristic of a selected of one or more transmitted signals and then delays by one iteration cycle said estimate and outputs said delayed estimate to an input of said first linear iterative filter.

This first embodiment is intended for application to any communication system described by a generic linear channel model. The received signal at the input to the receiver is described by a weighted sum of the transmitted signals plus noise. The set of weighting factors represents a set of linear constraints imposed on the transmitted signals. Other constraints could possibly have been imposed on the signals. These other constraints are independent of the linear constraints imposed by the linear channel.

The optimal receiver structure finds the estimates of the transmitted signals, subject to all the imposed constraints. This approach is prohibitively complex for most practical cases of interest. As an alternative, a generic iterative receiver structure comprises of two separate components (see Figure 4). The first component 1 finds the optimal estimates, only subject to the linear channel constraints, ignoring all other constraints. Only preferably these estimates are shuffled by reordering according to a pre-determined order (de-interleaved) and used as inputs to the second component 2 which finds the optimal estimates subject only to all the other constraints, ignoring the linear channel constraints. These estimates are in turn, preferably shuffled back into the original order (interleaved), undoing the pre-determined reordering, and used as inputs to the first component 1 in the succeeding iteration cycle.

The optimal design of the first component 1, enforcing the linear channel constraints is often also prohibitively complex. To limit complexity, the component design itself can be constrained to be linear, leading to a linear signal processing component. The design of this linear signal processing component, given selected inputs, is the main subject of this disclosure with respect to the first embodiment. For the following description, the first embodiment lies in the linear signal processing component, or signal processing component 1, corresponding to component 1 in Figure 4. The remaining part of Figure 4 is referred to as signal processing component 2 .

The function of the linear signal processing component 1 is to separate a selected transmitted signal from other "interfering" transmitted signials, based on the received signal which is a weighted sum of all transmitied signal as described above.

The input to the linear signal processing component 1 are one or more received signals and one or more estimates of the transmitted signals, provided by signal processing component 2. The output of the linear signal processing component 1 is an estimate of the selected transmitted signal.

The linear signal processing component 1 comprises two linear filters. The first filter provides as output estimates of the selected transmitted signal based on inputs of one or more of the input signals to the linear signal processing component, the output of this first filter delayed by one processing time period of
the iterative cycle, and the output of the second filter delayed by one processing time period of the iterative cycle.

The second filter provides as output estimates of one or more of the other transmitted signals (interfering with the selected transmitted signal) based on inputs of one or more of the input signals to the linear signal processing component, and the output of the second filter delayed by one processing time period of the iterative cycle.

The output of the first filter is the output of the linear signal processing component.

Specific embodiments of the first embodiment will now be described in some further detail with reference to and as illustrated in the accompanying figures. These embodiments are illustrative, and not meant to be restrictive of the scope of the embodiment. Suggestions and descriptions of other embodiments may be included but they may not be illustrated in the accompanying figures or alternatively features of the embodiment may be shown in the figures but not described in the specification.

This embodiment is described using linear multiuser estimators (MUEs) suitable for use as part of an iterative multiuser decoder. A specific application of the technique in the field of turbo-decoding in a transmission system for coded COMA is provided. However, as stated previously the structure of the filter and the principles revealed are useful in many other areas or the communications field. Thus the embodiment provided shouid not be considered as limiting in any way.

The specification inciudes theoretical considerations expressed in an appropriately precise fashion and uses mathematical analysis to prove the correctness of the approach using assumptions as required. Not all proofs of theorems used are provided herein. A disclasure such as that contained herein has directed correlation to practical devices and configurations of filter elements of performing the functions described. Furthermore the disclosure provided herein would be readily understood by those skilled in the art. The disclosure is such that a person skilled in the art can readily translate the theoretical configurations of elements disclosed herein into a variety of devices to solve problems or improve the performance of devices and algorithm in a variety of
application areas same of which have been described previously and that will be described herein.

This embodiment is intended for application to any communication system described by a generic linear channel model. The received signal at the input to the receiver is described by a weighted sum of the transmitted signals plus noise. There could be multiple received observables pertaining to the same symbol internal, ie, the received signal can be a vector of received observables,

$$
\begin{equation*}
\mathbf{r}=\sum_{i=1}^{K} s_{i} x_{i}+\mathbf{n} \tag{1}
\end{equation*}
$$

where a total K signals are transmitted, \mathbf{s}_{k} is the weighting factors for signal x_{k} and \mathbf{n} is a noise vector.

Here, the set of weighting factors, $\mathbf{s}_{1}, s_{2}, \ldots, s_{K}$ represents a set of linear constraints imposed on the transmitted signals. Other constraints could possibly have been imposed on the signals $x_{1}, x_{2}, \ldots, x_{K}$ such as error control encoding, channel fading etc. These other constraints are independent from the linear constraints imposed by the linear channel.

The optimal receiver structure finds the estimates of the fransmitted signals, subject to all the imposed constraints. This approach is prohibitively complex for most practical cases of interest. As an alternative, a generic iterative receiver structure comprises of two separate components (see Figure 4). The first component 1 finds the optimal estimates, only subject to the linear channel constraints, ignoring all other constraints. These estimates are inputs to the second component 2 which finds the optimal estimates subject only to all the other constraints, ignoring the linear channel constraints. These estimates are in turn, provided as inputs to the first component 1 in the following iteration cycle. constraints is often also prohibitively complex. To limit complexity, the component 1 design itself can be constrained to be linear, leading to a linear filter. The design of this linear filter, given selected inputs to the filter, is disclosed herein. The function of the filter is to separate a selected signal from other "interfering" signals, based on the received signal which is a weighted sum of all transmitted signal as described in (1). All the references provided in this
specification are incorporated herein by reference and for all purposes. An innovation in the filter design disclosed herein is to exploit the fact that information provided by the decoders is initially only marginally correlated over iterations, i.e., in the first few iterations, each iteration provides new information. The disclosed filter design is based on a technique to use all available information from all previous iterations.

This implies that the filter grows linearly in size by a factor equal to the number of users. This is clearly impractical. Thus, the disclosed filter design makes it possible to use all the available information through recursive feedback of the filter output over iterations, without requiring a growing filter. The size of the filter remains the same. The filter design is based on two linear iterative filters, where the first linear filter provides an estimate of the desired signal based on the received signal, the most current estimates of all user signals from signal processing component 2, and the output of the second linear filter which is a vector of estimates of all user signals based on all previous inputs to signal processing component 1 . The two linear filters are shown explicitly in Figure. 8.

The linear fterative filters may appropriately be designed based on the linear minimum mean squared error criterion, according to the recursive expressions derived therein.

This embodiment applies to any system described by such a generic linear channel model, and where an iterative receiver as described above, is to be applied. Examples of such applications include (but are not limited to) the foilowing:

- Decoding of coded fransmission in a inear muitiple access system.
- Decoding of coded transmission over an inter-symbol interference channel.
- Joint channel estimation and detection/decoding of coded transmission over unknown channels.
- Decoding of space-time coded transmission.
- Decoding of coded transmission with higher order modulation formats.

In the following, the design is demonstrated for multiuser decoding for a general linear multiple access system.

System Model in Multiuser Decoding Example
The basic principle behind turbo decoding is to decode independently with respect to the various constraints imposed on the received signal. The overall constraint is accommodated by iteratively passing extrinsic information between the individual decoders. For turbo codes, these constraints are the parallel concatenated codes. For turbo-equalisation they are the channel code and the memory of the inter-symbol interference channel. For multiuser decoding, there are constraints due to the multiple-access channel and due to the individual users' encoders.

In this embodiment, a theoretical framework for the derivation of linear multiuser estimators (MUEs) suitable for use as part of an iterative multiuser decoder is disclosed. We consider a two-input linear minimum mean squared error (LMMSE) estimator which inspires our main result, the derivation of a recursive Bayesian estimator. The proposed estimator yields estimates based on the received signal and all the successive outputs provided by the error control code decoders over all previous iterations. This approach is motivated by an observation that these estimates are loosely correlated during initial iterations.

Notation: P^{n} is the space of probability n-vectors (length n non-negative vectors that sum to 1). For random vectors x and $y, E[x]$ is the expectation, $\operatorname{var} x=E\left[x^{*} \mathbf{x}\right]$ and $\operatorname{cov} x=\langle x, x\rangle=E\left[\mathbf{x x}^{*}\right]$. Likewise $\left.\operatorname{cov}(x, y)=\langle x, y\rangle=E \mid x y^{*}\right]$.

We consider the K-use linear multiple-access system of Figure 5 . User $k, k=1.2, \ldots, K$ encodes its binary information sequence $b_{k}[l]$ using a rate R code C, to produce the coded binary sequence $d_{k}[I]$.

Consider transmission of $2 L$ code bits per user. Each user independently permutes their encoded sequence with an interleaver π_{k}. Denote the sequence output from the interleaver of user k as $u_{k}[\tau] l=1,2, \ldots 2 L$. Pairs of interleaved code bits $u_{k}[l]$ are memorylessly mapped onto the quaternary phase-shift keyed (QPSK) signal constellation, $\mathbf{Q}=\{ \pm 1 / \sqrt{2} \pm j / \sqrt{2}\}$, giving sequences of modulated code symbols $x_{k}[i]$, where $i=1,2, \ldots, L$ is the symbol time index. We
choose QPSK only for simplicity and note that different code constraints and symbol maps across users are possible in general.

At symbol time i, each user transmits $s_{k}[i] x_{k}[i]$, the multiplication of $x_{k}[i]$ with the real N-chip spreading sequence, $\mathbf{s}_{k}[\mathrm{i}] \in\{-1,1\}^{N}$. We model the use of spreading sequences with period much longer than the data symbol duration by letting each element of $s_{k}[i]$ be independent and identical distributed over users and time. For conceptual ease only, users are symbol synchronised, transmit over an additive white Gaussian noise (AWGN) channel, and are received at the same power level. These assumptions however are not required. Write the chipmatch filtered received vector $r[i] \in \square^{N}$ at symbol time $i=1,2, \ldots, L$ as

$$
\begin{equation*}
\mathbf{r}[i]=\mathrm{s}[i] x[i]+\mathrm{n}[i] \tag{2}
\end{equation*}
$$

where $\left.S_{[i}\right]=\left\{s_{l}[i] s_{2}[i] \ldots, s_{k}[i]\right)$, is a $N x K$ matrix with the spreading sequence for user k as column k. The symbol represents the set of complex numbers. The vector $x[i] \in Q^{K}$ has elements $x_{k}[i]$ and the vector $\mathbf{n}[i] \in \square^{N}$ is a sampled circularly symmetric i.i.d. Gaussian noise process, with $\operatorname{covn}[i]=\sigma^{2} \mathbf{I}$. The symbol Q represents the set of possible modulated symbols, e.g. QPSK.

Henceforth, it is not required to identify specific symbol intervals and these indices will be omitted. For later use, we define $S_{\bar{k}}=\left(s_{1}, s_{2}, \ldots, s_{k-1}, s_{k+1}, \ldots, s_{k}\right)$ and $\mathrm{x}_{\bar{k}}=\left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{X}\right)^{\prime}$ to indicate deletion of user k from S or x.

Recursive Fllter from Multiuser Estimation

Appllication of the turbo-principle to the coded linear multiple-access system, where for each user. we treat the error control code as one constraint and the multiuser channel (2) as the other constraint, results in the canonical receiver structure of Figure 6[1].

An iteration n_{1}, the multiuser APP takes an input \mathbf{r} and the set of extrinsic probabiifies $\mathbf{q}_{k}^{(n-1)}$ from user $k=1,2, \ldots, K$ calculated in the previous iteration $n-1$. $\boldsymbol{q}_{k}^{(n-1)}[i] \in P^{|Q|}$ is the extrinsic probability distribution on the transmitted symbols $x_{k}[i] \in Q$ of user k. The set Q is the set of all possible modulated symbols at the transmitter. The multiuser APP calculates the updated extrinsic probability vector
$\mathbf{p}_{k}^{(n)}[i]$ for user k. After appropriate de-interieaving, the extrinsics $\mathbf{p}_{k}^{(n)}$ are used as priors for independent APP decoding of the code \mathbf{C} by each user, producing (after interleaving) the extrinsics $\mathbf{q}_{k}^{(n)}$ which serve as priors for the subsequent iteration. The marginalisation in the multiuser APP requires summation over $|Q|^{K-1}$ terms. Many lower-complexity alternatives have been proposed while retaining the same basic architecture.

Consider the receiver structure shown in Figure 7. There is a bank of linear filters $\Lambda_{k}^{(n)}$, one for each user. The coefficients of these filter may be recomputed every iteration. For the first iteration, $n=1$, the input to $\Lambda_{k}^{(1)}$ is just \mathbf{r}. For subsequent iterations $n=2,3, \ldots$, the input to the filter for user k is \mathbf{r} and a set of signal estimates for all the other users from previous iterations, $\left\{\hat{x}_{k^{\prime}}^{(m)}: k^{\prime} \neq \dot{k}, m \in M\right\}$, where $M \subseteq\{1,2, \ldots, n-1\}$ is a set defining the memory order of the iteration. Typically in the literature, $M=\{n-1\}$, although recently $M=$ $\{n-1, n-2\}$ has been considered [2].

The output of the filter $\Lambda_{k}^{(n)}$ is an updated sequence of estimates $\hat{x}_{k}^{(n)}$ of the corresponding code symbol for user k. These estimates are mapped from the signal space onto the probability vector space using a symbol-wise mapping $T: \square \rightarrow p^{l d}$. The resulting sequence of probabilify vectors $\bar{m}_{k}^{(n)}$ are used as priors for individual APP decoding of the code C . These APP decoders can output either posterior or extrinsic probabilities $\boldsymbol{q}_{k}^{(n)}$ (both approaches have been investigated in the literature). The sequence of probability vectors $\boldsymbol{q}_{k}^{(n)}$ is in turn mapped back onto the signal space by a symbol-wise function $U: P^{|q|} \rightarrow 0$. Typically, T calculates the vectors $\mathbf{p}_{k}^{(n)}$ assuming that $\hat{x}_{k}^{(n)}$ is Gaussian distributed with known mean and variance, $\hat{x}_{k}^{(n)}: N\left(\widetilde{\mu}_{k}^{(n)}, \widetilde{\mathcal{F}}_{k}^{(n)}\right)$. Likewise, a common choice for U is the conditional mean.

The following easily proved lemma provides a useful general framework for the derivation of filters $\Lambda_{k}^{(n)}$.

Lemma 1

Suppose that for a parameter x we have the vector observation $c=\left(a^{t} b^{t}\right)^{t}$, the concatenation of two vector observations a and b. The LSE estimate of x

$$
\begin{equation*}
\tilde{x}=\langle x, a\rangle(a, a\rangle^{-1} a+m\left(b-\langle b, a\rangle\langle a, a\rangle^{-5} \mathbf{a}\right) \text { given } c \text { is } \tag{3}
\end{equation*}
$$

where
$\mathrm{m}=\left(\langle x, b\rangle-\langle x, a\rangle\langle a, a\rangle^{-1}\langle a, b\rangle\right)\left(\langle b, b\rangle-\langle b, a\rangle\langle a, a\rangle^{-1}\langle a, b\rangle\right)^{-1}$

We see that (3) can be writien as $\tilde{x}=\mathbf{g a}+\mathbf{m}(\mathbf{F a}-\mathbf{b})$, where

$$
\begin{equation*}
\left.\left.\left.\mathrm{m}=\left(\langle x, b\rangle-\langle x, a\rangle\langle a, a\rangle^{-1}<a, b\right\rangle\right)(<b, b\rangle-\langle b, a\rangle\langle a, a\rangle^{-1}<a, b\right\rangle\right)^{-1} \tag{4}
\end{equation*}
$$

$F=\langle b, a\rangle\langle a, a\rangle^{-1}$
(5)
$\mathbf{g}=\langle x, a\rangle\langle\boldsymbol{a}, \boldsymbol{a}\rangle^{-1}$
(6)

So far in the literature, linear filters $\Lambda_{k}^{(n)}$ for multiuser estimation in iterative decoding have been designed based on the received signal and the most current code symbol estimates of the interfering users $\hat{x}_{k}^{(t)}$. After n iterations, we have however a sequence of such estimates available, namely $\left\{\hat{\mathbf{x}}_{k}^{(1)}, \hat{\mathbf{x}}_{k}^{(2)}{ }_{2} \ldots \hat{\mathbf{x}}_{k}^{(n)}\right\}$ together with \mathbf{r}, It has been observed that the estimates are not strongly correlated during the initial iterations [2].

Consider the following recursively defined version of observables as input to the filter $\Lambda_{k}^{(n)}$;

$$
\mathbf{c}_{k}^{(n)}=\left\{\begin{array}{ll}
\mathbf{r} & n=1 \tag{7}\\
\left(\mathbf{c}_{k}^{(n-1)}\right. \\
\hat{\mathbf{x}}_{k}^{(n-1)}
\end{array}\right), n=2,3, \ldots
$$

Direct application of the LMMSE criterion results in $\Lambda_{k}^{(n)}=\left\langle x_{k}, \mathbf{c}_{k}^{(n)}\right\rangle\left\langle\mathbf{c}_{k}^{(n)}, \mathbf{c}_{k}^{(n)}\right\rangle^{-1}$. It is clear however that $\Lambda_{k}^{(n)}$ grows in dimension with n which is impractical.

Inspired by recursive Bayesian estimation (RBE) [3], we can prove the following theorem that solves this dimensionality problem by giving a recursive form from $\Lambda_{k}^{(n)}$ (subject to certain constraints on the input signal).

Theorem 1

Make the following assumptions,
A1: The received signal $\mathbf{r}=\mathbf{S x}+\mathbf{n}$, is described according to (2) where \mathbf{n} is circularly symmetric complex Gaussian with covn $=\sigma^{2} \mathrm{I}$, and σ^{2} and s are known.

A2: The interieaved code symbol estimates of the interfering users $\hat{\mathbf{x}}_{\bar{k}}^{(n)}$ coming out of the single user APP decoders can be written as $\hat{x}_{k}^{(n)}=x_{k}^{(n)}+\hat{\nu}_{k}^{(n)}$ where $\hat{v}_{t}^{(n)}$ is uncorrelated with \mathbf{x} and also uncorrelated over time and iterations, but not over users at a given iteration, i.e. $<\mathbf{x}, \hat{v}_{k}^{(n)}>=0,<\hat{v}_{k}^{(n)}, \hat{v}_{k}^{(m)}>=0$ for $n \neq m$ and $\left\langle\hat{v}_{k}^{(n)}, \hat{v}_{j}^{(n)}\right\rangle=q_{k j}$.

Define $\mathbf{Q}_{k}^{(n)}=\left\langle\hat{\nu}_{\hat{k}}^{(n)}, \hat{\psi}_{k}^{(n)}\right\rangle$, with elements determined as shown above.
Let $\mathbb{c}_{k}^{(n)}$ be according to (7). Under A1 and A2, the LMMSE estimate of x_{k} given $\mathrm{c}_{k}^{(n)}$ is given by the output $\tilde{x}_{k}^{(n)}$ of the recursive filter shown in Figure 8.

The update for the estimate is

$$
\tilde{x}_{k}^{(n)}=\tilde{x}_{k}^{(n-1)}+\mathbf{m}_{k}^{(n)}\left(\hat{X}_{k}^{(n-1)}-\tilde{X}_{k}^{(n-1)}\right)
$$

The fiters in the figure are defined as follows:

$$
\begin{aligned}
& \mathbf{m}_{k}^{(n)}=-\mathbf{W}_{k}^{(n)}\left(\mathbf{I}+\mathbf{Q}_{k}^{(n-1)}-\mathbf{W}_{k}^{(n)}\right)^{-1} \\
& \mathbf{M}_{k}^{(n)}=\left(\mathbf{I}-\mathbf{W}_{k}^{(n)}\right)\left(\mathbf{I}+\mathbf{Q}_{k}^{(n-1)}-\mathbf{W}_{k}^{(n)}\right)^{-1}
\end{aligned}
$$

with the recursive update equations for $n=3,4, \ldots$

$$
\begin{aligned}
& \mathbf{W}_{k}^{(n)}=\mathbf{W}_{k}^{(n-1)}\left[\mathbf{I}-\left(\mathbf{H}_{k}^{(n-1)}\right)^{-1}\left(\mathbf{I}-\mathbf{W}_{k}^{(n-1)}\right)\right]^{-1} \\
& \mathbf{W}_{k}^{(n)}=\mathbf{W}_{k}^{(n-1)}+\left(\mathbf{I}-\mathbf{W}_{k}^{(n-1)}\right)\left(\mathbf{H}_{k}^{(n-1)}\right)^{-1}\left(\mathbf{I}-\mathbf{W}_{k}^{(n-1)}\right) \\
& \mathbf{H}_{k}^{(n-1)}-\mathbf{I}+\mathbf{Q}_{k}^{(n-2)}-\mathbf{W}_{k}^{(n-1)}
\end{aligned}
$$

The initial conditions with $\tilde{x}_{k}^{(0)}=0$ and $\mathbf{x}_{\frac{(0)}{(0)}}=0$ are $\mathbf{m}_{k}^{(1)}=\mathbf{s}_{k}^{t}\left(\mathbf{S S}^{t}+\sigma^{2} \mathbf{I}\right)^{-1}$, $\mathbf{M}_{k}^{(1)}=\mathbf{S}_{\bar{k}}^{t}\left(\mathbf{S} \mathbf{S}^{t}+\sigma^{2} \mathbf{I}\right)^{-1}$ for $n=1$ and $\mathbf{w}_{k}^{(2)}=\mathbf{S}_{k}^{t}\left(\mathbf{S S}^{t}+\mathbf{I}\right)^{-1} \mathbf{S}_{\bar{k}}, \mathbf{W}_{k}^{(2)}=\mathbf{S}_{\bar{k}}^{t}\left(\mathbf{S S} \mathbf{S}^{t}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{S}_{\bar{k}}$ for $n=2$.

Computer simulations have been used to evaluate the proposed technique. For the purposes of simulation, each user used the maximum free distance 4 state convolutional code naturally mapped onto QPSK. Each user is therefore transmitting 1 bit per channel use. Binary spreading sequences with $N=8$ were generated i.i.d. at each symbol for each user. Transmission is chip synchronous and all users are received at the same power level.

Indicative simulation results are shown in Figure 9. Three curves are shown. PIC is the parallel interference cancellation method of [4]. IPIC is the improved parallel interference cancellation of [2]. RBE is the proposed recursive Bayesian estimation technique. Each of the curves begins for small numbers of users at the single-user BER near 10^{-4}. As each receiver fails to converge, its curve deviates from single-user. For PIC, this occurs at $K N=1.125$. For IPIC, the limit is 1.625 and for RBE 1.875. The performance benefit of IPIC over PIC is reported in [2]. The recursive Bayesian technique supports even higher loads. In fact, further numerical investigations (for smaller systems) have shown that RBE supports almost the same load as using the multiuser APP.

Described herein is a computationally efficient recursive filter for use in iterative multiuser decoding. This filter uses the entire history of outputs from the single user decoders in order to accelerate convergence and to support greater loads.

With reference to figures 10 to 18 a second embodiment is described where there are a number of specific solutions offered which fall out from the general solution of (or realization that) adapting related art single pass OFDM receivers to iteratively receive signals at the sampling level allows the receiver to differentiate a desired packet from an observation of an interference (coliision) signal at the receiver input. These solutions are as follows:

- An overall system solution - Iterative Receiver Structure itself.
- Additional solution aspect - Samples Estimates list.
- Additional solution aspect - Information Bit Estimates list.
- Additional solution aspect - Multiplexing of Time/Frequency Domain Channel Application Sample Estimates.
In one aspect, the second embodiment provides a system and method of receiving OFDM packets comprising the following:
a) sample a recelver input signal consisting of signals from one or more antenna;
b) add the input signal with one of a plurality of prior stored received packet sample estimates to determine a packet sample hypothesis;
c) determine an information bit estimate from the sample hypothesis for storage in an information bit estimates list;
d) determine an updated received packet sample estimate from the sample hypothesis for updating the plurality of prior stored estimates;
e) subtract the updated sample estimate from the sample hypothesis to determine a noise hypothesis and provide the noise hypothesis as the receiver input signal;
f) repeat steps a) to e) until at least one or more complete packets are accumulated in the information bit estimates list.

In another aspect, the second embodiment provides a system and method of providing a sample estimates list in an OFDM receiver comprising the following:
a) sample a receiver input signal;
b) determine a packet sample estimate from the sampled receiver input signal;
c) store the packet sample estimate;
d) determine a packet sample hypothesis by adding the receiver input with a selected previously stored packet sample estimate;
e) determine an updated packet sample estimate by decoding and retransmission modelling the packet sample hypothesis;
f) update the selected previously stored packet sample estimate with the updated packet sample estimate.

In yet another aspect the second embodiment provides a system and method of providing a packet information bit estimates list in an OFDM receiver comprising the following:
a) determine a packet sample hypothesis by adding a receiver input with a selected previously stored packet sample estimate;
b) determine an information bit estimate by decading the packet sample hypothesis with one or more of a hard decoding technique and a soft decoding technique
c) storing the information bit estimate with one or more previously determined information bit estimates;
d) repeating steps a) to c) until a complete packet is accumulated.

In still another aspect, the second embodiment provides a system and method of determining a hybrid OFDM received packet sample estimate comprising the step of:
multiplexing a time domain channel application received sample estimate with a frequency domain channel application received sample estimate, such that the multiplexed time domain sample estimate is mapped to correspond to one or more of;
an OFDM signal cyclic prefix;
an OFDM tail portion, and;
an OFDM guard period,
wherein the multiplexed frequency domain sample estimate is mapped to correspond to ane or more of;
an OFDM signal preamble and;
an OFDM payload data symbol.
In another aspect the second embodiment provides an iterative sample estimation method for OFDM packet based network communication comprising the following steps:
a) selecting either the windowed matched received samples or the noise hypothesis as the input signal;
b) adding an empty packet estimate to a samples estimate list containing packet sample estimates;
c) selecting one of said list entries;
d) adding said packet samples estimate to said input signal to create a packet received samples hypothesis;
e) decoding and re-transmission modeling of said packet received samples hypothesis to create a new packet received samples estimate and new information bit estimates;
f) updating said information bit estimate list with new information bit estimates;
g) subtracting said new packet samples estimate from said packet received samples hypothesis to create a noise hypothestis; and
h) updating said samples estimate list entry with said new packet samples estimate;
all said steps being trerated at least once for each packet.
In a further aspect the second embodiment provides an iterative sample estimation method according to the previous paragraph wherein step e) further comprises:
i) soft decoding said selected packet sample estimate to create soft encoded bits and new packet information bit estimates for reinsertion into said information bit estimates list;
j) soft modulating said soft encoded bits to create a transmitted symbol estimate;
k) constructing the time domain channel estimate from said packet received samples hypothesis and said transmitted symbol estimates;

1) constructing the packet transmit sample estimate from said transmitted symbol estimate;
m) convolving said time packet transmit sample estimate with said time domain channel estimate to create the time domain channel appied received samples estimate; and in parallel with steps k) and m);
n) constructing the frequency domain channel estimate from said packet received samples hypothesis and said transmitted symbol estimates;
o) multiplying said frequency domain channel estimate with said transmitted symbol estimates to create packet received symbol estimates; then
p) constructing the frequency domain channel applied received samples estimate from the packet received symbol estimates; and
q) multiplexing the time domain channel applied received samples estimate with the frequency domain channel applied received samples estimate
for reinsertion into said samples estimate list, wherein steps n) to p) are repeated for each OFDM symbol in a packet:

In still another aspect, the second embodiment provides an iterative sample estimation method according to the paragraph previous to the preceding paragraph wherein step e) further comprises:
r) hard decoding said selected packet sample estimate to create hard encoded bits and new packet information bit estimates for reinsertion into said information bit estimates list;
s) hard modulating said hard encoded bits to create a transmitted symbol estimate;
t) Constructing the time domain channel estimate from said packet received samples hypothesis and said transmitted symbol estimates;
u) constructing the packet transmit sample estimate from said transmitted symbol estimate;
v) convolving said time packet transmit sample estimate with said time domain channel estimate to create the time domain channel applied received samples estimate; and in parallel with steps t) and u);
w) constructing the frequency domain ohannel estimate from said packet received samples hypothesis and said transmitted symbol estimates;
x) multiplying said frequency domain channel estimate with said transmitted symbol estimates to create packet received symbol estimates; then
y) constructing the frequency domain channel applied received samples estimate from the packet received symbol estimates; and
z) multiplexing the time domain channel applied received samples estimate for reinsertion into said list.

With reference to figures 10 to 18 , the following blocks are used for receiver signal processing techniques in accordance with the second embodiment;

- OFDM Soft Output Decode 288
- OFDM Hard Output Decode 222
- Encode 224
- Soft Modulate 230
- Hard Modulate 226
- Acquisition 204
- Matched Filter 202
- Sum 208
- Sụbtract 212
- Convolve 236
- Multiply 240
- Time to Frequency Conversion (dependant on system standard) 234
- Time Domain Channel Estimator 232
- Frequency Domain ChanneI Estimator 238
- Time, Frequency Domain Multiplex 220
- Samples Estimate List (including associated Controller) 206
- Information Bit Estimates List (including associated Controller) 213
Table 1 and Table 2 provide a key for the number signals and process in each figure and the reference numbers in the text.

1002	Received Samples
1004	Windowed Matched Received Samples
1006	Empty Sample Estimates
108	Previous Packet Received Samples Estimate
110	Packet Received Samples Hypotheses
112	New Packet Information Bit Estimates
114	New Packet Received Samples Estimate
116	Noise Hypothesis
118	Completed Packet Information Bit Estimates
119	Packet Transmit Symbol Estimates
120	Time Domain Channel Applied Received Samples Estimate
122	Frequency Domain Channel Applied Received Samples Estimate 126
128	Hard Encoded Information Bits
130	Soft Encoded Information Bits
132	Time Domain Channel Estimate
134	Packet Transmlt Samples Estimate
136.	Frequency Domain Channel Estimate
	Packet Recelved Symbol Estimates

Table 1: Signals

202	$p(t)$ - Bandwidth Limiting Filter - Matched Filter
204	Acquisition
206	Samples Estimate List
208	Σ-Add
210	OFDM Soft/Hard Decode and Re-transmit
212	$\Sigma($-ve) -Subtract
213	Information Bit Estimates List
214	OFDM Soft/Hard Decode and Re-modulate
215	Hybrid Re-transmit
216	TDCA - Time Domain Channel Applicatlon
218	FDCA - Frequency Domain Channel Application
220	MUX - Time, Frequency Domain Multiplex
222	OFDM Hard Output Decode
224	Encode
226	Hard Modulate
228	OFDM Soft Output Decode
230	Soft Modulate
232	Time Domain Channel Estimator
234	F \rightarrow T - 802.11a Frequency to Time Domain Conversion
236	Convolve - Linear Convolution
238	Frequency Domain Channel Estimator
240	Multiply

Table 2: Function Blocks
The second embodiment of the invention is adapted for a Packet based 5 OFDM WLAN system (eg IEEE 802.11a, IEEE 802.11g). A typical receiver for such a system performs processing tasks in accordance with figure 10. The input to the system is a complex, oversampled baseband received signal 1002 for each attached antenna. The signal received on each antenna is passed through a band limiting filter 202 which is then followed by a packet detection and

SUBSTITUTE SHEET (RULE 26) ROIAU
synchronisation (Acquisition) processing block 204. This Acquisition block uses one or more of the matched filter antenna signals 1004. Once a packet is acquired it is decoded using either hard or soft decoding techniques and passed on to a higher processing layer (eg. MAC). The typical receiver structure figure 10 may be modified to an iterative structure that provides interference cancelling at the sample level.

Iterative Recelver Structure \& Function

The input to the receiver is the oversampled digital $1 / Q$ baseband samples from each antenna connected to the receiver called the Received Samples 1002. The Received Samples 1002 are windowed over time and passed through a filter 202 matched to the pulse shape in order to produce windowed matched received samples 1004. This constitutes the Noise Hypothesis 116 for the first iteration ($n=1$). For all proceeding iterations ($n>1$), the Noise Hypothesis 116 is provided by the feedback of the interference signal. This is depicted in Figure 11 by the n conditioned switch SW_{n}.

An iteration of the receiver is a single execution of each of the following processes:

- Attempt to acquire a new Packet in the Noise Hypothesis 116 using the Acquisition 204 process.
- If a new packet is found, add empty entries 1006 to the Samples Estimate List 206 and Information Bit Estimates List 213. Each entry in the Samples Estimates List 206 has a corresponding entry in the Information Bit Estimate List 213.
- Determine, from the evolution of both Samples and Information Bit estimates list, Completed Packets $\left\{y_{1} \ldots y_{m}\right\}$, in the Information Bit Estimates List 206.
- Release to higher layer (MAC) then Remove Completed Packets $\left\{y_{1} \ldots y_{m}\right\}$ from the Information Bit Estimates List 213.
- Remove Completed Packets $\left\{y_{1} \ldots y_{m}\right\}$ from the Samples Estimate List 206.
- Select a Packet k in the Samples Estimate List 206 to Process.
- Add 208 the Previous Packet Received Samples Estimate 208 of selected packet k from the Samples Estimate List 206 to the Noise Hypothesis 116 to produce the Packet Received Samples Hypothesis 110.
- Generate new Packet Received Samples Estimate 114 and new information bit estimates 112 for the selected packet k from the Packet Received Samples Hypothesis 110 using OFDM Soft/Hard Decode and Re-transmit process 210.
- Update the selected packets' k previous information bit estimates in the Information Bit Estimates List 213 with the New Information Bit Estimates 112.
- Update the selected packets' k previous Samples Estimate in the Samples Estimate List 206 with the New Packet Received Samples Estimate 114.
- Subtract 212 the New Packet Received Samples Estimate 114 from the Packet Received Samples Hypothesis 110 to produce the Noise Hypothesis 116.

Iterations are continually performed until all packets have been released from the Information Bit Estimates List 213. Once this state has been reached, the lists 206, 213 are cleared, the time window is updated and the entire process repeated.
Iterative Interterence Cancelling
Interference cancelling at the sample level requires the generation of New Packet Received Samples Estimate 114 for each antenna using the OFDM Soft/Hard Decode and Re-transmit 210 process for every Packet found by the Acquisition 204 process. Each packet's New Packet Received Samples Estimate 114 are stored in the Samples Estimate List 206. The interference cancelling structure requires that each packet Adds 208 its Previous Packet Received Samples Estimate 108 to the Noise Hypothesis 116 before the Soft/Hard Decode and Re-transmit 210 process to produce the Packet Received Sample Hypothesis 110 for each antenna. The New Packet Received Samples Estimate 114 produced by the Soft/Hard Decode and Re-transmit 210 process are then Subtracted 212 from the Packet Received Sample Hypothesis 110 to generate an updated Noise Hypothesis 116. The New Packet Received Samples Estimate 114 are also used to update the Samples Estimate List 206. The Noise

Hypothesis 116 is then fed back through the system (minus the latest estimated contribution of the previously processed packet) providing Iterative interference Cancelling. Figure 11 provides a graphical reference for this process.

Samples Estimate List

The Samples Estimate List 206 contains the New Packet Received Samples Estimate 114 as generated by the OFDM Soft/Hard Decode and Retransmit process 210 for each receive antenna for each Packet found by the Acquisition 204 process.

For each iteration, a packet to iterate (k) is selected from the Samples Estimate List 204. The selection k can be based on numerous metrics e.g., sorted signal power, the minimum number of processing cycles performed, order of arrival. This selection is depicted by the k controlled switch SW_{k} in Figure 11, where k is the current selected packet.

Information Bit Estimates List

The Information Bit Estimates List 213 contains the latest New Packet Information Bit Estimates 112 as generated by the OFDM Soft/Hard Decode and Re-transmit 215 process for each Packet found by the Acquisition 204 process.

Each iteration provides an opportunity to release Completed Information Bit Estimates 118 to higher layers (e.g. MAC). The choice of which packets are complete is made by evaluating a metric for each packet in the Samples Estimate List 206. For example, this metric may be based on indicators such as signal power, the number of iterations performed and number of completed packets. These metrics are then compared to a target value. All packets that meet their target are marked for release from the Information Bit Estimates List 213.

For each packet acquired there is an entry in both the Samples Estimate List 206 and the Information Bit Estimates List 213. The selection of completed packets is depicted by the $\left\{y_{1} \ldots y_{m}\right\}$ controlled switch SWy in Figure 11, where $\left\{y_{1} \ldots y_{m}\right\}$ is the list of Completed Packet Information Bit Estimates. A feature of the iterative receiver structure is that the packet's Packet Received Samples Estimate 114 remain subtracted from the Noise Hypothesis 116 even after it is released and its corresponding entries in both lists removed.

Hybrid Re-transmission

The Hybrid Re-transmission 215 process is depicted in Figure 12 and Figure 13. It uses both Time Domain Channel Application 216 and Frequency Domain Channel Application 218 processes to generate a New Packet Received Samples Estimate 114. Both processes use the Packet Received Samples Hypothesis 110 for each antenna and Packet Transmit Symbol Estimates 119 to create Channel Applied Received Samples Estimate 120, 122 for each receive antenna. The Time Domain Channel Application 216 process produces a Time Domain Channel Applied Received Samples Estimate 120. The Frequency Domain Channel Application 218 process produces a Frequency Domain Channel Applied Received Samples Estimate 122. The Channel Applied Received Samples Estimate 120, 122 are then multiplexed 220 together to form the New Packet Received Samples Estimate 113 for each antenna. Each of these processes is described in further detail below.
Time Domain Channel Application (TDCA)
The Time Domain Channel Application 216 process is further expanded in Figure 16. The Time Domain Channel Estimator 232 produces a Time Domain Channel Estimate 130 for each receive antenna using the Packet Transmit Symbol Estimates 119 from the OFDM Soft/Hard Decode and Re-modulate 214 process (see Figure 14 and Figure 15) and the Packet Received Sample Hypothesis 110 for each antenna. The Frequency to Time Conversion 234 then produces a Packet Transmit Samples Estimate 132 using the Packet Transmit Symbol Estimates 119. The Packet Transmit Samples Estimate 132 and Time Domain Channei Estimate 130 for each antenna are then lineariy convoived via the Convolve 236 process to produce the Time Domain Applied Received Samples Estimates 120 for each antenna.
Frequency Domain Channel Application (FDCA)
The Frequency Domain Channel Application 218 process is further expanded in Figure 17. The Frequency Domain Channel Estimator 238 produces a Frequency Domain Channel Estimate 134 for each antenna using the Packet Transmit Symbol Estimates 119 from the OFDM Soft/Hard Decode and Remodulate 214 process and the Packet Received Sample Hypothesis 110 for each antenna. The Packet Transmit Symbol Estimates 119 are then multiplied, one

OFDM symbol at a time, by the Frequency Domain Channel Estimate 134 via the Multiply 240 process to produce the Packet Received Symbol Estimates 136. The Packet Received Symbol Estimates 136 are then converted into the Frequency Domain Channel Applied Received Samples Estimate 122 using the Frequency-To-Time process 234.
Time, Frequency Domain Channel Application Multiplexing (MUX)
Referring now to Figure 13 , the Multiplexing 220 process takes the Time Domain Channel Applied Received Samples Estimate 120 and the Frequency Domain Channel Applied Received Samples Estimate 122 and multiplexes them together to produce a hybrid New Packet Received Samples Estimate 114.

OFDM modulation scheme such as thase used in this second embodiment, commonly employ a cyclic prefix to combat multi-path interference. Also, due to time dispersion characteristics of both the radio channel and band limiting filters, there are tails at the beginning and end of the New Packet Received Samples Estimate 114. New. Packet Received Samples Estimate 114 corresponding to the OFDM portion of the signal are taken from the Frequency Domain Channel Applied Received Samples Estimate 122. The remaining samples in the New Packet Received Samples Estimate 114 are taken from the Time Domain Channel Applied Received Samples Estimate 120. In this embodiment those samples comprise the cyclic prefix and teil portions of the New Packet Received Samples Estimate 114.

An example of multiplexer mapping is shown in Figure 18.

Preferred Area of Application

The preferred areas of application for the second embadiment of the present invention are OFDM receivers that may be used with IEEE 802.11a, IEEE 802.11g, IEEE 802.16 and HiperLAN Wireless Local Area Network (WLAN) standards. However, the invention disclosed is useable in any packed based OFDM communications system as would be understood by the person skilled in the art.

With reference to figures 19 to 23 a third embodiment is described which stems from the realization that reducing the distortions in one or more of the raw signals arriving at a receiver used to provide a decision statistic leads to an overall improvement in the decision statistic itself. Furthermore, appropriate
selection of the means of reducing these distortions leads to a more reliable determination of packet arrival time.

In one aspect the third embodiment provides a method and apparatus for communicating in a multiple access communication network by synchronizing packets arriving at a receiver comprising:
receiving a packet input signal;
determining a correlation signal corresponding to the packet input signal;
processing the imput and correlation signals such that at least one of the input signal and the correlation signal are filtered;
determining a decision statistic by combining a power component of the processed correlation signal with a power component of the processed input signal;
nominate a point in time glven by a predetermined threshold condition of the decision statistic as a received packet arrival time.

The processing of at least one of the input and correlation signals is performed by one of a centre weighted filter having a triangular impulse response, a root raised cosine filter, a Hanning window filter, a Hamming window filter, or a combined Hanning/Hamming window fitter. The predetermined threshold condition may be one of the decision statistic crossing the predetermined threshold or a maximum of the decision statistic occurring above the predetermined threshold. The determination of the correlation signal may be performed every Kth sample of a sampled packet input signal, where K is an integer greater than or equal to 1. The third embodiment of the present invention is described in more detail below.

Power averaging mask for FFT window synchronisation

Synchronisation of packets transmitted, especially over wireless media, is ordinarily achieved by employing a preamble comprised of several repetitions of the same signal and correlating the received signal with a delayed version of itself. The delay may be chosen to equal the duration of the repeated signal component defining the preamble. The output power of this correlation process is then usually normalised against the average power in the received signal. The point at which the normalised correlator output exceeds a threshold is selected as the packet arrival time. This technique has a number of deficiencies. For
example, it does not optimally exploit the statistics of the correlator outputs and thus may introduce larger error margins in the determination of data packet timing. In this third embodiment, a method is disclosed which permits a more accurate determination of arrival time of a data packet. Thus synchronisation errors may be reduced and, consequently, packet loss rates are reduced. Specifically, the method uses a linear filtering approach to interpret the correlator outputs prior to powers being calculated, thereby improving the quality of the statistic used for packet synchronisation. This is achieved primarily due to the noise suppression properties of the filter. The shape of the linear filter may be optimally designed against the characteristics of the preamble and the radio channel. An example would be a root raised cosine filter, or a Hanning/Hamming window filter. One preferred embodiment of the invention is the use of a centre weighted average filter with a triangular impulse response for application to the correlator outputs. This filter enables more accurate location of the time of the packet arrival than is achievable otherwise and has an efficient implementation. It is also proposed to use the maximum correlation power, once a threshold is exceeded, as the decision point rather than the time at which the correlation power first crosses a threshold. Those practiced in the art will recognise that this method has potential application to any communication system that uses a repetitive preamble for packet synchronisation. The inventor has recognised that filters are widely used in general applications and that the synchronisation of packets may be treated as a filtering problem. Accordingly, the inventor proposes to use raw correlator outputs as a preferred filter input. The use of a centre weighted (or other) filter on the correlator outputs prior to power calculation is used as a measure of the arrival timing of a packet. Threshold testing of the normalised power of the received signal correlated with a delayed version of itself is also contemplated. The delay is equal to the repetition size of the preamble. The normalisation is achieved by dividing by the sliding window averaged power of the received signai. in this third embodiment it is particularly advantageous to provide a receiver with the following functions:

Filtering of raw correlator outputs;
Centre weighted averaged filter, preferably a triangular filter which has an efficient implementation;

The above allows for basing a decision point on the maximum of correlator output power rather thian a first level crossing leading to better characterisation of packet timing to avoid packet transmission loss/inefficiency. The third embodiment may comprise a receiver technology for packet data transmissions. where a repetitive preamble is deployed to determine packet data timing and allowing for adaptive design of filter form against the statistics of the radio channel.
Field of Application
The third embodiment technolagy applies to a point to point communications link where transmissions are made using a waveform structure that has a preamble of a particular type. Specifically the preamble may be formed by one or more repetitions of a base signal. The functional device embodying the technology preferably resides in the baseband receiver processor Rx of a general receiver 190, as previously discussed and, in this embodiment, in the exemplary form of a wireless modem 190 as shown in figure 19. The relative logical location of the baseband receiver Rx is shown in figure 19 as the "Baseband Rx".

In more detail, in packet based communications systems the timing of the arrival of a packet is determined at the receiver 190. Once this timing is determined the alignment of the remaining (typically data bearing) porions of the packet may be determined using a-prior knowledge of the packet structure. Therefore without accurate determination of the packet time packet errors may be prevalent. A common technique employed is to transmit a preamble at the start of the packet transmission that has a special structure permitting efficient arrival time determination at the receiver 190. This structure requires the repetition of a short signal several times in the preamble. The structure of a typical packet is shown in figure 20 where the Sync Word (SW) is repeated several times at the beginning of the transmission.

The conventional time synchronisation technique correlates the received signal with a delayed version of itself. This delay may be set to the length of the Sync Word and the correlation length may be set to the number of SW repetitions (L) minus one. This correlation is implemented every sample (or every K^{h}
sample where K is small, e.g. 4). If the received sample sequence is $\left\{r_{i-1}, r_{i}, r_{i+1}\right.$, $\left.r_{i+2}, \ldots\right\}$ then the correlator output at time i is

$$
\rho_{i}=\sum_{j=i}^{i+N(L-1)} r_{j}^{*} r_{j+N}
$$

This correlation value is compared with the power in the observed sequence

$$
\sigma_{i}=\sum_{j=i}^{i+N(L-1)} r_{j}^{*} r_{j}
$$

to form a decision statistic $\left|\rho_{i}^{2}\right| / \sigma_{i}^{2}$. The arrival time i is chosen when this metric exceeds a threshold.

The inventor has identified that any noise present in the received sequence r_{i} is amplified by the squaring process and may cause the synchronisation technique to pick the incorrect arrival time. Rather than waiting for the statistic to cross a threshold, the algorithm may be adjusted to select the maximum statistic by including a small amount of decision delay. This maximum is chosen from those statistics above the threshold. A number of statistics crossing a given threshold is shown in figure 21.

Preferred Mlethod

In this method according to the third embodiment of the invention the inventor exploits the profile of the autocorrelation of the preamble in order to mitigate the negative effects of noise of the time synchronisation performance. This may be achieved by filtering the sequences ρ_{i} and σ_{i} by a centre weighted low pass fitter. Note that this filter is applied prior to the subsequent squaring of the sequences for decision statistic generation. Any noise presence will be better suppressed by filtering prior to squaring. The filter may be designed against the autocorrelation properties of the preamble but in a preferred embodied a triangle filter is employed.

A triangle filter has an impulse response that is trianguiar in nature, specifically the coefficients (taps) of the (discrete time) filter are

$$
\dot{f}=\frac{N-|i|}{N^{2}}
$$

as shown in figure 22. If the filter described above is applied to the underlying sequences (ρ_{i} and σ_{i}) then a typical result would be as shown in figure 23. It can be seen that the threshold crossing technique has benefited from the application of the filter, since it is now closer to the maximum as seen by inspection of figure 23. The effect of the noise has also been reduced therefore enhancing both the maximum and threshold crossing techniques. The preferred method is to apply the filter to both raw sequences, compute the metric using the filtered sequence and to use the maximum of the statistic that is above the threshold. Advantageously, a more accurate synchronisation of arrival time is achieved by filtering of the correlator output and power measurement processing prior to decision statistic generation; using a maximum search within a window defined by a threshold on the decision statistic.

By accurately estimating the arrival time of the preamble (and therefore the packet), the number of packet decoding failures may be significantly reduced. Apart from improving the chance of recovering the data payload this has flow on effects to the network users since both network control and data packets are now more reliably recovered.

With reference to figures 24 to 31 a fourth embodiment of the present invention is described in which the solution offered stems from the realization that receiver sensitivity may be improved by improving channel estimates using symbol estimates from the encoded portion of a packet and iteratively updating these channel estimates based on recently received data symbol channel estimates. A further aspect of the fourth embodiment resides in transforming each received data symbol to the frequency domain to enable the release of time smoothed channel estimates for improved decoding.

Advantageously, in the fourth embodiment, each OFDM symbol may be decoded more than once by obtaining a channel estimate for Symbol n, decoding symbol n, updating the channel estimate for symbol n, updating the channel estimate for symbol $n-1$ (by time domain smoothing from the new channel estimate for symbol n), decoding symbol $n-1$, updating channel estimate $n-1$,

In accordance with a fourth embodiment the present invention provides a method and system of tracking time varying channels in a packet based communication system comprising:
a) initializing a channel estimate reference based on an initial channel estimate derived from a received packet preamble;
b) updating the channel estimate reference based on a packet data symbol channel estimate in a coded portion of the current and all previous received data symbols;
c) repeating step b) at the arrival of subsequent packet data symbols.

The method preferably comprises storing the channel estimate reference in a channel estimate data base at the receiver. The method preferably comprises transforming the packet data symbol channel estimates to the frequency domain prior to updating the stored channel estimate reference to provide a time smoothed channel estimate reference. The method also preferably comprises for each subsequent received data symbol within step b), pipelining the steps of demodulating, modulating, and updating the channel estimate reference with the further step of FEC decoding.

In the current state of the art, high mobility high bandwidth transmission of information is limited by the inability of receiver processing techniques or methods to track the time varying nature of the radio channel and its effect on the transmitted signal and its waveform. Thus, related art systems for high mobility transmission support only low data rates. In this fourth embodiment, a receiver technique that exploits OFDM signal structures is disclosed and the fact that these OFDM signals are error control coded. Thus high mobility, high bandwidth data transmission is permitted. Additionally, the technique also benefits fixed communication radio networks by improving receiver sensitivity. Specifically, the fourth embodiment has been achieved by developing an algorithm that permits the reliable decoding of OFDM modulated packets of information that have been distorted by a rapidly varying radio channel, but without the need for compromising data rate by the excessive use of pilot or training signals.

In a preferred aspect of the fourth embodiment of the invention, an algorithm has been devised that may operate on a per OFDM symbol basis in order to avoid increased decoding latency and complexity. Correspondingly, in
this embodiment, three statistics are exploited: the frequency domain statistics of the radio channel at the OFDM symbol rate; time domain statistics of the radio channel across OFDM symbols and; the outcomes of each decoded OFDM symbol. These statistics are used to estimate the radio channel from OFDM symbol to OFDM symbol. When a new OFDM symbol arrives the channel and data estimates are updated for the corresponding symbol and some small number of previous symbols. In this manner each OFDM symbol is decoded more than ance with an improved channel estimate each time. Prediction of the radio channel from the received signal and knowledge of the preamble of the packet is deployed to initialise the process. That prediction uses the statistics of the radio channel. It will be evident to those practiced in the art that this embodiment permits the effective decoding of OFDM packets in rapidly varying: radio environments. Thus it offers benefits in terms of supporting increased mobility at increased spectral efficiencies. It achieves this without increasing the implementation complexity, or latency, while simultaneously increasing receiver sensitivity. In this regard, it has potential in both high mobility and in fixed wireless networks. Those practiced in the art will recognise that this embodiment may be applied to any wide band modulation technique that shares a common underlying channel model similar to the preferred embodiment above. Some examples are the addition of multiple recelve antennas, multi-carrier OFDM or multi-carrier CDMA.

Advantageously, the fourth embodiment provides:

- Iterative channel and data estimation whereby the initial estimates are improved using data aided techniques.
- Frequency domain smoothing stored across OFDM symbols enabling release of time smoothed channel estimates for improved decoding.
- Decoder outcomes derive channel estimates stored in "CEDB" (channel estimate data base) described in more detail, below.
- Prediction of channel from CEDB to start up OFDM symbol loop based processing.
- Consequent low latency, high bandwidth high mobility data.

In this fourth embodiment a baseband digital receiver technology that enables the effective reception of high data rate signals from a mobile device traveling at high speed is disclosed. A brief performance analysis is also presented.

Field of Application

This technology applies to a point to point communications link where transmissions are made using coded Orthagonal Frequency Division Multiplex (OFDM). In general, coded OFDM transmissions are formed by

1. forward error correction (FEC) encoding, over one (OFDM) symbol duration, the information bits, then
2. conventional OFDM modulation.

The FEC coding over one OFDM symbol may be block coded or the coding may continue across multiple OFDM symbols but per OFDM symbol decoding techniques must be available. The receiver will exploit the coding on the OFDM symbols to improve performance.

As with the third embodiment, the functional device embodying the technology preferably resides in the baseband receiver processor $R x$ of a receiver 190 in the exemplary form of a wireless modem 190 as shown in figure 19. The relative logical location of the baseband receiver $R x$ is shown in figure 19 as the "Baseband Rx".

Latency and OFDM Symbol based Processing Loops

In packet based communications systems it is important to implement the receiver processing with as little delay between the arrival of signals and the decoding of the bits contained in the signal as possible. This is important since the turn-around time for acknowledgements is a significant driver in the network performance. In OFDM modulated systems this requirement typically forces the use of per OFDM symbol processing. That is, when a new OFDM Symbols worth of signal arrives the Baseband Rx should release an OFDM symbols worth of information bits. The delay between the information enabling the decoding of an OFDM Symbol and the outcomes of decoding the Symbol must be of the order of a few OFDM Symbols duration.

OFDM Channel Estimation in Moblle Environments

In mobile radio communications systems coherent receiver designs typically require the use of accurate channel estimation methods in the baseband receiver. The channel to be estimated is a multipath fading channel induced by motion and reflections in the field. Among other uses, the channel estimate is employed to drive the FEC decoder, a critical aspect of the receiver. In the case of OFDM modulated signals the channel is normally measured in the frequency domain, after the received signal has been sliced up into OFDM Symbol sized pieces. In mobile communications systems the channel over which the signal travels changes with time and, if the vehicle speed is high enough, the channel may change during the reception of a packet. In related art receiver techniques it is assumed that the multipath fading channel is invariant over the packet enabling the one-off estimation of the channel at the start of the packet. In most standards (e.g. IEEE 802.11a) a preamble is transmitted at the start of a packet for exactly this purpose.

Preferred Method

In this method according to a fourth embodiment the partitioning of the received signal for OFDM to provide a convenient boundary for tracking time varying channels is exploited. The channel estimate changes from OFDM Symbol to OFDN Symbol. The preferred embodiment also exploits the fact that the OFDM symbol is encoded, enabling the use of decoded data as training information for the channel estimator. The statistics of the way that the channel changes with time and frequency are also exploited here.

An estimate of the channel in the frequency domain is obtained. The inventor defines the CEDB as a Channel Estimate Data Base containing channel estimates for each OFDM symbol, smoothed in the frequency dimension (across sub-carriers), but not in the time dimension. The method comprises the following steps, as set out below, for a packet with N OFDM symbols. Steps required for OFDM window synchronization occur prior to the processing shown here. The inner loop (3.4) is of length, L, OFDM Symbols and enables iterative channel and data estimation.

Ref	Function	
1	Estimate Time and Frequency Offsets based on Preamble	
2	Initialise CEDB based on Preamble	
3	For Each OFDM Symbol ($n=1: \mathrm{N}$) \{	
3.1	Transform Rx OFDM Symbol into Frequency Domain (apply FFT)	
3.2	Correct Rx OFDM Symbol for Time and Frequency offsets	
3.3	Generate Channel Estimate for OFDM Symbol n by prediction from CEDB	
3.4	For Each recent OFDM Symbol ($m=n:-1: n-L)$ \{	
3.4 .1		Demodulate OFDM Symbol m using Channel Estimate
3.4.2		FEC Decode OFDM Symbol (outcomes also released to upper layer)
3.4.3		Generate Training by remodulating FEC Decoder Outcomes
3.4.4		Update CEDB using Training and Corrected Rx OFDM Symbol
3.4.5		Generate Channel Estimate for OFDM Symbol m - 1 from CEDB
	\}	
	\}	

The channel prediction (step 3.3 above) and generate channel estimate (step 3.4 .5 above) both apply CEDE time domain smoothing across OFDM symbols in their implementation. The strength of the smoothing (across SubCarrier and OFDM Symbol dimensions) are independently controlled by a process not described here.
Advantageously, the fourth embodiment provides:

1. Iterative Channel and Data Estimation whereby the initial estimates (resembling those that would be obtained conventionally) are improved (step 3.4) using data aided techniques.
2. Frequency Domain Smoothing stored across OFDM Symbols enabling release of time smoothed channel estimates for improved decoding (steps 2, 3.4.4).
3. Decoder outcomes drive channel estimates stored in CEDB (steps $3.4 .3,3.4 .4)$.
4. Prediction of Channel from CEDB to start up loop based processing (step 3.3).

Parallelism may be exploited for implementation purposes by two processes running in parallel comprising.

1. demodulation, modulation and channel estimation stages (steps 3.4.1, 3.4.3, 3.4.4 \& 3.4.5), and
2. FEC Decoding (step 3.4.2)

While Process 1 is working on OFDM Symbal n, Process 2 is working on OFDM symbol $\mathrm{n}-2$. This offset requires the predictor in Ref 3.3 to look ahead one extra OFDM symbol.

The benefits obtained by use of this embodiment's technology are now described.

Complexity

By exploiting pipelining of the FEC decoder function the most difficult aspect of the receiver device is fully exploited while maintaining a highly adaptive capability in terms of the propagation environment.

Sensitivity

By accurately estimating the channel, the performance of the decoder stage may be significantly improved (typically in excess of 1 dB increase in receiver sensitivity). This has been found to be the case even for time-invariant channels and is realized by exploiting data symbols for training purposes. In the case where mobility exists the ability of the receiver to track the channel in time allows the receiver to operate effectively where conventional systems may fail. At the same time, the benefits of iterative (multi-visit) estimation of the data symbols are realized.

Latency

By employing per OFDM symbol processing and pipelining the FEC decoder the inventor has obtained the earliest possible release of high quality data estimates. Therefore the receiver operates without increasing latency relative to conventional techniques. It should be noted that conventional techniques may fail in high speed mobile conditions.Performance Analysis

In this section an example of the data and channel estimates that are obtained using conventional, idealised and the proposed receiver processing
techniques are provided. The attributes of the communications link used in the example are shown in the table below.

Quantity	Value	Unit
Bandwidth	16.0	MHz
Carrier Freqency	5.0	GHz
Number SubCarriers	256	SubCarriers
OFDM Symbol Duration	16	us
OFDM Symbols Per Packet	38	OFDM Symbols
Mobile Unit Velocity	30	$\mathrm{~ms}^{-1}$
CoherenceFrequency	3.0	$\mathrm{MHz}^{(16)}$
Bits Per SubCarrier	2	Bits
Pilot SubCarrier Spacing	32	SubCarriers
Eb/No	8.0	dB
FEC Rate	$1 / 2$	
FEC Memory	5	
Derived		
Channel Frequency	Coherence	48.0
Channel Coherence Time	62.5	SubCarriers
Packet Length	640.0	Us
Doppler Frequency	0.5	kHz

The actual radio channel (measured after FFT application in the receiver) is shown in Figure 24. The rapid phase rotations in the Phase plot result from FFT window misalignment and residual intermediate frequency in the downconversion step. These are both real-world impairments. The receiver estimates both of these parameters and may be compensated for them on a symbol by symbol tasis. The result of this correction is shown in Figure 25. Note that this figure represents the actual radio channel corrected by an estimated quantity and is shown here for assessment purposes. An objective of the receiver is to accurately estimate this corrected channel.

Conventional Processing

In conventional processing the radio channel is estimated based on the preamble only. The main restriction with this approach is that the radio channel (affer correction) must be invariant across the frame. As shown in figure 25 this is not the case since there is a phase change at around OFDM symbol 30 in some of the sub-carriers. It is therefore expected that decoder failures starting at around OFDM Symbol 30 of the packet will occur. This is indeed the case as shown in figure 26.

Preferred Method (Perfect Training Symbols)
Figure 28 shows the performance of the proposed system is shown with the possibility of decoder failures for training symbol generation eliminated. The decoder outcomes for data recovery are still recorded hence the errors in figure 28. This represents the best possible case for data aided radio channel estimation. It is possible to compare this result with that obtained using decoder outcomes for training in the following section. Note that the number of errors has dramatically reduced relative to the conventional technique.

Preferred Method

In this section the performance of the proposed method is evaluated. The CEDB is shown in figure 29 and represents a good estimate of the radio channel even though smoothing across OFDM symbols has not been employed. The smoothing across sub-carriers is however evident. Once the smoothing across OFDM symbols is employed a very good match to the actual radio channel is observed, as shown in figure 28. As can be seen in figure 28 and figure 29 the error obtained using the proposed method results in the same error pattern as the idealised method. The error performance is vastly superior to the conventional method as shown in figure 26.

With reference to figures 30 to 34 a fifth embodiment is described, which stems from the realization that receiver sensitivity may be improved by use of the outputs of a receiver's decoder as additional pilot or training symbols and updating these iteratively with each symbol received for the recalculation of a channel estimate, and frequency and time offsets as they vary throughout a packet.

In one aspect the fifth embodiment provides a system and method of communicating in a multiple access packet based network by estimating time varying channel impairments, where channel impairments comprise channel variation, signal frequency offset and signal time offset, comprising:
a) initializing a set of channel impairment estimates based on initial pilot and preamble symbols included in a received packet;
b) performing a decoder operation which comprises processing the set of channel impairment estimates and the received packet to determine a set of transmit symbol estimates;
c) updating the set of channel impairment estimates through use of the determined set of symbol estimates and received packet;
d) repeating steps b) and c).

In another aspect the fifth embodiment provides a system and method of communicating in a multiple access network by time varying channel estimation in a receiver for receiving transmitted packets, comprising:
a) estimating a frequency offset based on information included in a received packet preamble;
b) correcting a received signal using the estimated frequency offset;
c) determining a channel estimate using information included in the received packel preamble;
d) transforming a sample sequence of the received signal into the frequency domain such that the sample sequence includes OFDM symbols and intervening cyclic prefixes;
e) performing a decoding operation which comprises processing the determined channel estimate and received packet;
f) generating a transmission sample sequence using the decoding results and information in the received packet preamble;
g) transforming the transmission sample sequence into the frequency domain;
h) updating the determined channel estimate by combining the received sample sequence and the transmission sample sequence in the frequency domain;
i) repeating steps e) to h).

In a further aspect the fifth embodiment provides a system and method of communicating in a multiple access network by time varying chaninel estimation in a receiver for recelving transmitted packets, where the receiver retrieves OFDM symbols from a recelved signal and transforms the retrieved symbols to the frequency domain, comprising:
a) determine a matrix of training symbols comprised of symbol estimates derived from a decoder;
b) determine a matrix of frequency domain received OFDM symbols;
c) determine an intermediate channel estimate matrix by multiplying the OFDM symbol matrix by the conjugate of the training symbol matrix;
d) determine an intermediate matrix of training weights comprising the absolute value of the training symbol matrix;
e) perform a smoothing operation on both intermediate matrices comprising 2 dimensional filtering;
f) determine the channel estimate by dividing the smoothed channel estimate matrix with the smoothed training weight matrix.

In yet another aspect the fifth embodiment provides a system and method of communicating in a multiple access network by estimating offsets in a receiver for recelving transmitted packets, comprising:
a) determine a mairix of received OFDM symbols;
b) determine a matrix of conjugated data symbols wherein the data symbols comprise one or more of preamble, training and estimated symbols;
c) determine a 2 dimensional Fourier transform matrix comprised of the received symbol matrix multiplied with the conjugated symbol matrix;
d) filter the Fourier fransform matrix;
e) determine time and frequency offsets by locating peak power occurrences within the filtered Fourier transform.

The fifth embodiment provides reliable estimation of channel impairments. In the related art, that is, in the theoretical rather than practical context, decoder outcomes are employed to assist with the estimation of channel coefficients and synchronisation of received signals in radio communications systems and radio networks. The difficulties encountered with these present theoretical approaches to decoder outcomes include the appropriate freatment of the uncertainty of these
decoder outcomes in what would otherwise be conventional channel estimation and synchronisation techniques. In other words, the difficulty of applying oneshot or preamble-only channel estimation techniques or processing to an iterative process leads to less efficient and less accurate channel estimate and synchronisation performance. With this in mind, in this embodiment the use of a channel estimation and a synchronisation technique that employ an entire packet's worth of decoder outcomes (in addition to the preamble) is described. While others also have advocated this approach (at least in general terms), in the present embodiment, the specific method to manage uncertainty in the decoder outcomes and subsequent processing are distinguished from the related art by the features described here below. In this embodiment, in estimating the channel, the inventor first employs the frequency domain version of the remodulated decoder outcomes and preamble as training symbols. Then compute the frequency domain channel estimate from this training symbol sequence and from the frequency domain version of this the received signal. This may be achieved by either division or by minimum mean square error estimation or, via other estimation techniques. Any errors in the decoder outcomes will be dispersed similar to the use of an interleaver and not have direct impact on a local region of the channel estimate.

It should be noted that the channel estimation approach of the fifth embodiment is able to track the channel as it varies across the packet by slicing the packet up into segments that are assumed invariant. Thus the practical impact of this embodiment is that more reliable channel estimates provide the opportunity for significantly improved information packet recovery in radio communications.

In another aspect, the synchronisation technique, the inventor employs the preamble and decoder outcomes to remove the effects of data modulation on the received signal and then applies a 2 dimensional Fast Fourier Transform. By then executing a peak power search estimates of both the residual time and frequency offsets are obtained. These may then be employed to enable effective synchronisation.

In another aspect a channel estimator has been provided. This aspect employs the outcomes of soft FEC Decoding (e.g. SOVA) to improve the quality
of the radio channel estimate so that repeating the decoding step, using the new channel estimate, offers improved outcomes. These soft outputs are used to generate soft training symbols. Firstly, multiply the received OFDM Symbol matrix by the conjugate of the Soft Training symbols to get an intermediate raw channel estimate. Then compute a further intermediate matrix of training weights equal to the absolute value, or absolute value squared, of the each of the soft training symbols. Both of these matrices are then smoothed using filters based on channel statistics. The channel estimate is then obtained by dividing the smoothed raw channel estimate by the smoothed training weight matrix in an element wise fashion. The impact of this aspect on high mobility, high data rate communications networks will be evident to those practiced in the art. Accordingly, lower packet loss rates impact on network capacity. The method also increases the ability to accommodate rapidly changing radio channels and more reliably decode data transmissions. Likewise, increased receiver sensitivity leads to reduced packet loss rates and increased range for OFDM based systems with high velocity nodes.

The following acronyms are used in this description of the fifth embodiment.

APP	A-Posterior Probability
DSP	Digital Signal Processor
FEC	Forward Error Correction
FFT	Fast Fourier Transform
IF	Intermediate Frequency
IFFT	Inverse FFT
OFDM	Orthogonal Frequency Multiplex
RF	Radivision Frequency
SOVA	Saft Output Viterbi Algorithm

This fifth embodiment of the invention provides a suite of baseband digital recelver technologies that enables the effective reception of high data rate signals from a mobile device travelling at high speed.

Field of Application

This suite of technologies applies to point to point communications links where transmissions are made using coded Orthogonal Frequency Division Multiplex (OFDM). As noted above, coded OFDM transmissions are formed by

- forward error correction (FEC) encoding, over one (OFDM) symbol duration, the information bits, then
- conventional OFDM modulation.

The FEC coding over one OFDM symbol may be block coded or the coding may continue across multiple OFDM symbols but per OFDM symbol decoding techniques should be available. The receiver may exploit the coding on the OFDM symbols to improve performance.

Typically the technology resides in the baseband receiver processor of a wireless modem. This location is shown in figure 19 as the "Baseband $R x$ "

In packet based communications systems it is important to implement the receiver processing with as little delay between the arrival of signals and the decoding of the bits contained in the signal as possible. This is important since the turn-around time for acknowledgements is a significant driver in the network performance. In OFDM modulated systems this requirement typically forces the use of per OFDM symbol processing. However as signal processing capabilities improve it is envisaged that another, more powerful option, will become available to system designers. The more powerful technique will employ the entire observation in making decisions about every bit transmitted (e.g. Turbo Codes). In current techniques only a portion of the received signal is employed to assist with the decoding of any particular information bit. Typically, a local channel estimate may be formed using a portion of the observation and then decoding for that portion may be executed. The benefit of employing the observations, to follow, to assist with channel (or any other unknown parameter) estimation is currently not realised due to implementation complexity and performance of currently available DSP technology. Here the fifth embodiment provides techniques that employ the entire observation to improve the channel estimation and hence reduce decoder errors. In addition, the transmitted waveform is often structured to permit per OFDM symbol processing at the receiver, If this
requirement is relaxed, frame based channel coding techniques may be applied to further improve the performance of the communications link. Examples of these techniques are the use of packet level interleaving and Block (e.g. Turbo) coding which may offer large performance benefits. OFDM Channel Estimation in Moblle Environments

In mobile radio communications systems coherent receiver designs require the use of accurate channel estimation techniques in the baseband receiver. The channel to be estimated is a multipath fading channel induced by relative motion and multiple propagation paths between the transmitter and receiver and residual errors due to Transmit/Receive radio mismatch. The channel estimate is employed, among other uses, to drive the FEC decoder, a critical aspect of the recelver. In the case of OFDM modulated signals the channel is normally measured in the frequency domain, after the received signal has been separated into OFDM Symbol sized pieces and transformed via the application of an IFFT. In mobile communications systems the channel over which the signal travels changes with time and, if the vehicle speed is high enough, the channel may change over the duration of a packet. This translates to the channel experienced at the start of the packet being substantialiy different that experienced at the end of the packet when viewed from the receiver. Related art receiver techniques assume that the multipath fading channel is invariant over the packet, enabling the calculation of a single channel estimate at the start of the packet to decode the entire packet. In most standards that use OFDM transmission schemes (e.g. IEEE 802.11a) a preamble is transmitted at the start of each OFDM symbol in order to permit estimation of the radio channel at the start of the packet.

However, the quality of the communications link may be increased by employing the use of data aided techniques in the estimation of the radio channel. In this case, the result of applying the FEC decoder on the received signal generates an estimate of the transmitted symbols which, while not absolutely accurate, are suitable for exploitation as additional pilot symbols. Typical examples of data aided channel estimation for OFDM are implemented in the frequency domain and therefore suffer power losses due to discarding of the cyclic prefix from each received OFDM symbol. The discarded cyclic prefix is theoretically useful for channel estimation and typically accounts for 10-50
percent of the received signal energy. Since the transmitted symbols determining the cycling prefix may be estimated at the receiver, this energy is potentially useful, as illustrated below, in the estimation of the radio channel and should not be discarded.

Frequency and Time Offset Estimation
Frequency offset arises due to the imprecise down conversion of the received signal from RF or IF to baseband. Time Offsets are commonly caused by inaccuracies in the packet arrival time estimation due to the impact of multipath fading channel and noise. Multipath, or Time dispersive, channels result in multiple copies of the transmitted packet arriving at the receiver at different times therein decreasing the certainty in the time of arrival of the packet. Conventionally, estimates of the frequency and time offsets are initially made using the preamble of the packet and maintained using pilot symbols, inserted by the transmitter, throughout the packet (e.g. 802.11a). An example of this packet format for 802.11a is shown in figure 30.

Frequency offsets manifest as inter carrier interference and a constant phase rotation across OFDM Symbols and Time offsets manifest as phase rotations across the OFDM Sub-Carriers. The inventor assumes that fine Interfrequency offset estimation is required consistent with the residual errors after an initial frequency offiset correction. The phase offsets induced in the received symbols are due to the combined effects of the data modulation, transmission across the radio channel, imprecision in the frequency synchronisation during down conversion and imprecise time of alignment of the OFDM symbols during the time to frequency conversions. In order to estimate the radio channel, the effect of the data symbols (be it preamble, pilot or unknown) on the received signal must first be removed, thereby leaving only the effect of the radio channel and time/frequency offsets. In the case of preambles and pilots the symbols are known a-priori and hence their removal is possible at the receiver. Using related art methods, the parts of the observation that are effected by data are not available to aide in the estimation of the frequency and time offsets since the data symbols are not known at the receiver. The fifth embodiment, however, employs data aided techniques to significantly improve the performance of the estimation by making many more symbols available to the estimation pracess.

Proposed Method

The method proposed here is an iterative process that uses the outputs of the decoder as additional pilot symbols for recalculation of the channel estimate and for the recalculation of the frequency and time offsets as they vary across the packet. Collectively herein we shall refer to effects of the multipath channel combined with the frequency offsets induced by the RF or IF to baseband conversion and the time offsets caused by time misalignments in the time to frequency conversion as channel impairments. On the first iteration, the channel impairments are estimated using the pilot and preamble symbols nominated by the transmission scheme. These estimates are used to drive the initial execution of the decoder and generate the first transmit symbol estimates. Iterations thereafter use the transmit symbol estimates of the previous iteration as new pilot symbols to aid in the estimation of the channel impairments. The new channel impairment estimates are then used to re-run the decoder and generate new symbol estimates. This process may be repeated / times where l is the number of iterations and is an integer greater than equal to zero.

The details of the specific channel impairment estimators will be described in the following sections.

Channel Estimation

Two methods are available for estimation of the radio channel. One may be used when the radio channel is said to be invariant over the duration of the packet or discrete subsection thereof. The other is applicable when the radio channel varies over the duration of the packet.

Sequence Based Channel Estimation for OFDM

The sequence based channel estimator described here applies when the channel is invariant over a packet or, any substantial fraction thereof. This technique exploits all of the available received energy and is implemented prior to the OFDM symbol slicing conventionally employed in receivers for OFDM signals. The steps executed are as follows

Ref	Function
1	Estimate Frequency Offset using Preamble
2	Correct Received Signal for Frequency Offset
3	Estimate Channel using Preamble
4	Convert Rx Sample Sequence to Frequency Domain
5	Far Some Number of Iterations \{
5.1	Decode Packet using Current Channel Estimate
5.2	Generate Tx Sample Sequence using Decoder Outcomes \& Preamble/Pilots
5.3	Convert Tx Sample Sequence to Frequency Domain
5.4	Estimate Channel By Dividing Rx Sample and Tx Samples in Freq Domain
	$\}$

Steps 1 through 3 are common operations performed in typical OFDM receivers. Step 4 would not normally be found in an OFDM receiver. Conventionally the received sequence is sliced up into small OFDM Symbol periods, separated by Cyclic Prefix regions which are discarded. Each of these OFDM Symbols is transformed into the frequency domain by an FFT ior processing (channel estimation, decoding, etc) as in step 5.1. Step 4 converts all parts of the received sample sequence that represents an entire packet or, selected portion thereof, including the cyclic prefix regions into the frequency domain to enable frequency domain channel estimate at the sequence level. This requires the other steps (5.2 and 5.3) which produces a hypothesis of the entire packet's frequency domain transmitted signal. In the frequency domain the received signal is equal to the transmitted signal multiplied by the channel plus any noise. This fact is exploited in step 5.4. The step in 5.4 could be replaced with an optimal linear estimator based on the Minimum Mean Squared Error criterion.

Channel Estimation with Soft Training Symbols

The channel estimator described here operates in the frequency domain of a conventional OFDM receiver. It is assumed that the received signal has be sliced up into OFDM Symbols, the Cyclic prefix discarded and the resulting OFDM Symbols converted to the frequency domain, via the use of an FFT. These processes are found in conventional OFDM receivers. The proposed method of the fifth embodiment is an iterative process that uses the symbol estimate outputs of the FEC decoder as additional pilot symbols or "Soft Training Symbols" in a re-estimation of the radio channel. By doing so (while noting these symbol estimate outputs may not be precise) the estimate of the radio channel is improved such that a subsequent execution FEC decoder produces an improved result over the previous execution.

Many different types of "soft output" decoders are available presently, including Soft-Output Viterbi Algorithms (SOVA), A-Posteriori Probability (APP) Decoders and various types of Turbo Codes. These soft outputs are used to generate soft training symbols according to techniques that may be found in the relate art literature, which would be understood by the person skilled in the art. It is the use of these soft training symbols which requires careful consideration and an improved technique is proposed here.

In the absence of noise, and other impaiments, a recelved OFDM Symbol is equal to the multiplication of the transmitted OFDM Symbol and the frequency domain channel. If an OFDM system has N sub-carriers (frequency bins) then we may define vectors of length N to represent the transmitted data d_{i} and radio channel h_{i} for some OFDM Symbol period i. The received OFDM symbol in this case is $r_{i}=d_{i} .{ }^{*} h_{i}$, where the operator '.*' corresponds to element-wise multiplication of the vectors. In the case where d_{i} is known perfectly at the receiver (e.g. if it were a pilot symbol) then the channel could be recovered perfectly in this ideal noise free case as

$$
\tilde{h}_{i}=r_{i} / / d_{i}=h_{i}
$$

where, similar to the '.*' operator, the '.. ' operator corresponds to an element-wise division of the vector elements. In data aided techniques the decoder outcome, \hat{d}_{i} is used instead of the actual transmitted data. This
estimate is subject to errors. The fifth embodiment involves a technique that accounts for this uncertainty in the "training" symbols. The method may be employed for time varying or invariant radio channels and takes a slightly different form depending of the channel variation. The following is a description of the estimator for time varying radio channels.

Assume the following is provided:

1. an entire packets worth of received OFDM Symbols R, and
2. an entire packets worth of soft training symbols D (some may be "hard" pilot symbols).

It is possible to structure these two objects as matrices as shown in figure 31 for M sub-carriers and N OFDM Symbals, where the rows are sub-carriers (tones or frequency bins) and the columns are OFDM Symbols (time).

Firstly, multiply the received OFDM Symbol matrix by the conjugate (denoted X^{*}) of the Soft Training symbols to get an intermediate raw channel estimate $V=R$. *D. Note that the conventional step (as described above) would prescribe a division, not a multiplication. Then compute a further intermediate matrix of training weights $T=|D|$ or other functions such as absolution value squared. : Then apply smoothing to both of these matrices using a two dimensional filter (f) matched to the channel coherence time and frequency. This filter outcome may be approximated by implementing smoothing independently in the time and frequency domains (rows then columns or vice versa) to save complexity. The estimate of the time varying channel is then derived as

$$
\hat{H}_{i}=f(V) . / f(T)=f\left(R .^{*} D^{*}\right): / f(D \mid)
$$

The uncertainty in the decoder outcomes is accounted for in the step where the absolute value of the training symbols was obtained. Small training symbols result from uncertain soft output from the FEC decoder step. A soft output FEC decoder will output a zero when a reliable estimate cannot be determined. Multipllcation (in the R.* D^{*} step) by a zero effectively excludes that symbol estimate from the channel estimation process. Note that in the next iteration the symbol estimate may have firmed up, due to improved statistics driving the FEC decoder, increasing its reliability and therefore it may now be
included in the channel estimation process. In the ideal case the decoder will output correct, hard decisions and all data symbols will be used as perfect training to yield a very accurate channel estimate.

In the case that the channel is assumed time invariant across the packet the filtering function simply adds up the column and resulting in a column that is assume to apply over the entire packet.

In some cases, an approach whereby the two dimensional filter f applied to the raw channel estimate and training weight is different may be warranted. In these cases the time varying channel estimate would be

$$
\hat{H}_{i}=f_{1}(Y) \cdot / f_{2}(T)=f_{1}\left(R . * D^{*}\right) \cdot / f_{2}(D \mid)
$$

where f_{1} and f_{2} implement different filters.

Joint Time and Frequency Offset Estimation using 2D FFT

In this aspect of the fifth embodiment we remove the effect of the data on the phase difference between adjacent symbols in the OFDM received matrix as shown in figure 31 and then apply a 2 Dimensional FFT. This removal may be achieved by multiplying the observed OFDM Symbol matrix with a corresponding matrix of conjugated data symbols be they preamble, training or estimated. The FFT output is then filtered to suppress noise, and a search for the peak power across the resulting 2 Dimensional space of metrics is executed. The filtering will have an impact on the maximum offsets that mey be measured and it is therefore recommended that only very weak filtering be employed. The location of the peak, in terms of relative position in the rectangle of figure 31, determines the time and frequency offsets.

The granularity and range of the estimation is limited as follows. If there are M Sub Carriers and N OFDM Symbols then the range and resolution available from this technique is as shown in the following

	Resolution	Limit	
Frequency Offset	OFDM Frequency / N	Symbol Time Offset	OFDM Symbol

An example for the system parameterised by is now given.

Parameter	Value
Number Of Tones	256
Number Of Symbols	20
Coherence Tones	40
Coherence Symbols	50
Actual Freq Offset	0.05
Actual Time Offset	0.20

With the actual channel amplitude and phase shown in figure 32 and figure 33 we get the metric shown in figure 34 for peak detection. Note that the peak is in the expected relative position, i.e. a fraction of 0.05 along the OFDM Symbol dimension and a fraction of 0.2 along the sub-carrier dimension. These estimates match the actual time and frequency offsets as shown in the above table of parameter values in the model.

By accurately estimating the channel, the performance of the FEC decoder stage is significantly improved, typically in excess of 1 dB increase in receiver sensitivity. This is true even for time-invariant channels and is realized by exploiting data symbols for training purposes. In the case where mobility exists the ability of the receiver to track the channel in time allows the receiver to operate effectively where related art systems may fail. At the same time, the benefits of iterative estimation of the data symbols are realized.

In a sixth embodiment the present invention provides a solution predicated on the use of firstly correlating the received signal at each antenna of a multiple access communication network with a known signal preamble and then statistically combining the correlated signal sequence of each antenna based on estimated antenna signal strength. It should be noted that in order to determine the coefficients for combining an initial timing estimate must be determined. The calculation of these coefficients will require, in practice, initial coarse timing and frequency offset estimation by other means. The quality of the initial timing estimate may be worse than that desired ultimately. The inventor considers further processing on the combined signal will lead to a timing estimate of high quality.

In a first aspect the sixth embodiment provides a system and method of communicating in a multiple access packet network by synchronizing a received signal in a multi antenna receiver comprising:
correlating a received signal observation at each of a plurality of antennae with a known signal preamble to provide a received signal sequence;
determine a power signal of each received signal sequence;
combine the determined power signals in accordance with a time averaged weighting based on estimated antenna signal strength for each antenna;
determine a time of arrival for the received signal in accordance with a predetermined threshold condition.

An preferred aspect of the sixth embodiment of the invention comprises:
determining an estimate of the relative phase and amplitude coefficients of a receiving channel for each antenna;
combining a received signal with the estimated coefficients to provide a composite signal;
determining a time of arrival of the received signal by correlating the composite signal with a delayed version of itself.

In related art, metrics used for synchronisation are based on outputs of correlators for the preamble of a packet. In the case of multiple receive antennae, a method for either combining or deriving a new method of metric generation for synchronisation is desirable. Related art schemes propose making decisions per antenna and then majority voting or adding the metrics prior to decision. Neither of these approaches addresses sufficiently the variation of the signal statistics across antennae. The net result of this is degraded synchronisation accuracy and increased packet loss rates. A further issue relates to the effective use of multiple antennae for data carriage but poor use of multiple antennae for synchronisation. in this case packets that could otherwise be decoded may be missed by the synchronisation module.

In this sixth embodiment, we disclose a method for determining per antenna metrics and for subsequent combining across antennae in order to generate a metric for time of arrival estimation. The method involves essentially two steps. The per antenna metrics are derived by correlating the received signal with a known preamble in a first step. The power of the sequences for each
antenna is determined and added across antenna according to the time averaged weight based on estimated antenna signal strength. A threshold is then applied in order to determine the time of arrival.

A further aspect of the sixth embodiment relates to obtaining a rapid estimate of the relative phase and amplitude of the channel on each antenna and then to combine the received signal according to the conjugate of these coefficients. The processing would then proceed as in the related art with correlation of this composite signal with a delay version of itself. Application of this aspect of the sixth embodiment is in the synchronisation of wireless communication links involving the simultaneous use of multiple receive antennae where the multiple antennae are used to increase the robustness of the communications link primarily through increased diversity.

In a further aspect, the signals from each antenna are combined according to Minimum Mean Square Error criteria where the combining coefficients are dependent on a background noise measure on each antenna as well as the received signal energy. The processing would then proceed as in the related art with correlation of this composite signal with a delay version of itself.

It is particularly advantageous that the sixth embodiment provides for: a combining method for the metrics over antennae; currently does not require OFDM specific characieristics, and; a version with OFDM specificity may be defined for clarity.

It will be appreciated by those skilled in the art, that the invention is not restricted in its use to this particular application described, neither is the present invention restricted to its preferred embodiment with regards to the particular elements and/or features described or depicted herein. It will be appreciated that various modifications can be made without departing from the principles of the invention. Therefore, the invention should be understood to include all such modifications within its scope.

While this invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modification(s). This application is intended to cover any variations uses or adaptations of the invention following in general, the principies of the invention and comprising such departures from the present disclosure as come within
known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

As the present invention may be embodied in several. forms without departing from the spirit of the essential characteristics of the invention, it should be understood that the above described embodiments are not to limit the present invention unless otherwise specified, but rather should be construed broadly within the spirit and scope of the invention as defined in the appended claims. Various modifications and equivalent arrangements are intended to be included within the spirit and scope of the invention and appended claims. Therefore, the specific embodiments are to be understood to be illustrative of the many ways in which the principles of the present invention may be practiced. In the following claims, means-plus-function clauses are intended to cover structures as performing the defined function and not only structural equivalents; but aiso equivalent structures. For example, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface to secure wooden parts together, in the environment of fastening wooden parts; a nail and a screw are equivalent structures.
"Comprises/comprising" when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof."

References

[1] M.C. Reed, C.B. Schlegel, P.D. Alexander, and J. Asenstorfer, "Iterative multiuserdetection for CDMA with FEC; Near-single-user performance," IEEE Trans. Commun., pp. 1693-1699, Dec. 1998.
[2] S. Marinkovic, B.S. Vucetic, and J. Evans, "Improved iterative Parallel interference cancellation for coded CDMA systems," in the Proc. IEEE Int. Symp. Info. Theory, (Washington D.C.), p.34, July 2001.
[3] D.E. Catlin, Estimation, Control, and the Discrete Kalman Filter, Springer Verlag, 1989.
[4] P.D. Alexander, A.J. Grant, and M.C. Reed, "Iterative detection on code-division multiple-access with error control coding," European Transactions on Telecommunications, vol. 9, pp.419-426, Sept.-Oct. 1998.

CLAIMS

1. An iterative decoding circuit for a wireless multiuser communications receiver comprising:
a first signal processing means for receiving at least one received signal, said first signal processing means comprising at least two linear iterative filters such that:
the first linear iterative filter provides an estimate of a selected received signal to an estimated signal output and;
a second linear iterative filter provides estimates of at least one other received signal, delayed by one iteration cycle, to an input of said first linear iterative filter;
a second signal processing means for receiving the estimated signal output of the first linear iterative filter and providing a further received signal estimate to the input of the first signal processing means in a succeeding iteration cycle of the decoding circuit.
2. An iterative decoding circuit according to claim 1, wherein the linear filters function in accordance with at least one predetermined recursive Bayesian expression.
3. An iterative decoding circuit according to claim 2, wherein the predetermined recursive expression comprises the following recursive Bayesian estimation using the following assumptions:

A1: The received signal is described as $\mathbf{r}=\mathbf{S x}+\mathbf{n}$, where \mathbf{S} is the constraint matrix, containing all the linear channel constraints, \mathbf{x} is a vector containing all transmitted information symbols and \mathbf{n} is circularly symmetric complex Gaussian with covariance matrix $\operatorname{covn}=\sigma^{2} \mathbf{I}$, and where the noise variance σ^{2} and the constraint matrix S are known.

A2: The interieaved code symbol estimates of the interfering users $\hat{\mathbf{x}}_{\bar{k}}^{(n)}$ which is a vector containing all the signal estimates at iteration n for all users except userk, coming out of said corresponding signal processing
component 2 can be modelled as $\hat{x}_{k}^{(r)}=x_{k}+\hat{v}_{k}^{(n)}$ where x_{k} is the transmitted symbol for user k and $\hat{\nu}_{k}^{(n)}$ is the corresponding estimated noise sample which is uncorrelated with \mathbf{x}, which is a vector containing the transmitted symbols for all users, and also uncorrelated over time and iterations, but not over users at a given iteration, that is $\left\langle\mathbf{x}, \hat{v}_{k}^{(n)}\right\rangle=0,\left\langle\hat{v}_{k}^{(n)}, \hat{v}_{k}^{(m)}\right\rangle=0$ for $n \neq m$, where n and m denote different iteration numbers, and the estimated noise correlation for user k and j at iteration n is defined as $\left\langle\hat{v}_{k}^{(n)}, \hat{v}_{j}^{(n)}\right\rangle=q_{k j}$.

Define the estimated noise covaniance matrix $\mathbf{Q}_{k}^{(n)}=\left\langle\hat{v}_{k}^{(n)}, \hat{v}_{k}^{(n)}\right\rangle$, with elements detemined as shown above.

Let $\mathbf{c}_{k}^{(n)}$ be the auxiliary vector that contains all signals received from user k at iteration n and all previous iterations, according to the following recursively defined vector of observables as input to the said linear iterative filter denoted by $\Lambda_{k}^{(n)}$,

$$
\mathbf{c}_{k}^{(n)}=\left\{\begin{array}{ll}
\mathbf{r} & n=1 \\
\left(\mathbf{c}_{k}^{(n-1)}\right. \\
\hat{\mathbf{x}}_{k}^{(n-1)}
\end{array}\right), ~ n=2,3, \ldots .
$$

Under At and A2, the linear minimum mean square error estimate of said signal x_{k} given said signal $c_{k}^{(n)}$ is given by the output $\bar{x}_{k}^{(n)}$ of the recursive niter which is an updated estimate of the transmitted signal for user k at iteration n, defined as follows.

$$
\begin{aligned}
& \widetilde{x}_{k}^{(n)}=\widetilde{x}_{k}^{(n-1)}+\overline{\mathbf{I}}_{k}^{(n)}\left(\hat{\mathbf{x}}_{k}^{(n-1)}-\widetilde{\mathbf{x}}_{k}^{(n-1)}\right) \\
& \widetilde{\mathbf{x}}_{\bar{k}}^{(n)}=\widetilde{\mathbf{x}}_{k}^{(n-1)}+\mathbf{M}_{k}^{(n)}\left(\hat{\mathbf{x}}_{\hat{k}}^{(n-1)}-\widetilde{\mathbf{x}}_{k}^{(n-1)}\right) \\
& \mathbf{m}_{k}^{(n)}=-\mathbf{W}_{k}^{(n)}\left(\mathbf{I}+\mathbf{Q}_{k}^{(n-1)}-\mathbf{W}_{k}^{(n)}\right)^{-1} \\
& \mathbf{M}_{k}^{(n)}=\left(\mathbf{I}-\mathbf{W}_{k}^{(n)}\right)\left(\mathbf{I}+\mathbf{Q}_{k}^{(n-1)}-\mathbf{W}_{k}^{(n)}\right)^{-1}
\end{aligned}
$$

where for user k at iteration $n \mathrm{~m}_{k}^{(n)}$ is the said first linear iterative fiter, $\mathbf{M}_{k}^{(n)}$ is the said second linear iterative filter, \mathbf{I} is an identity matrix with ones on the diagonal and zeros everywhere else, $\mathbf{w}_{k}^{(n)}$ is a recursive, complex auxiliary
vector and $\mathbf{W}_{k}^{(n)}$ is a first recursive, complex auxiliary matrix, respectively, the recursive update equations for $n=3,4, \ldots$ are as follows:

$$
\begin{aligned}
& \mathbf{W}_{k}^{(n)}=\mathbf{w}_{k}^{(n-1)}\left[\mathbf{I}-\left(\mathbf{H}_{k}^{(n-1)}\right)^{-1}\left(\mathbf{I}-\mathbf{W}_{k}^{(n-1)}\right)\right]^{-1} \\
& \mathbf{W}_{k}^{(n)}=\mathbf{W}_{k}^{(n-1)}+\left(\mathbf{I}-\mathbf{W}_{k}^{(n-1)}\right)\left(\mathbf{H}_{k}^{(n-1)}\right)^{-1}\left(\mathbf{I}-\mathbf{W}_{k}^{(n-1)}\right) \\
& \mathbf{H}_{k}^{(n-1)}-\mathbf{I}+\mathbf{Q}_{k}^{(n-2)}-\mathbf{W}_{k}^{(n-1)}
\end{aligned}
$$

where $\mathrm{H}_{k}^{(n-1)}$ is a second recursive, complex auxiliary matrix. The initial

$$
\text { conditions } \quad \text { with } \quad \tilde{x}_{k}^{(0)}=0 \text { and } \mathbf{x}_{\bar{k}}^{(0)}=0 \text { are } \mathbf{m}_{k}^{(1)}=\mathbf{s}_{k}^{4}\left(\mathbf{S S}^{r}+\sigma^{2} \mathbf{I}\right)^{-1}
$$

$$
\mathbf{M}_{k}^{(1)}=\mathbf{S}_{\frac{t}{k}}\left(\mathbf{S} \mathbf{S}^{t}+\sigma^{2} \mathbf{I}\right)^{-1} \quad \text { for } \quad n=1 \text { and } \mathbf{w}_{k}^{(2)}=\mathbf{S}_{k}^{t}\left(\mathbf{S} \mathbf{S}^{t}+\mathbf{I}\right)^{-1} \mathbf{S}_{\bar{k}}, \mathbf{W}_{k}^{(2)}=\mathbf{S}_{\frac{t}{k}}\left(\mathbf{S} \mathbf{S}^{t}+\sigma^{2} \mathbf{I}\right)^{-1} \mathbf{S}_{\bar{k}}
$$ for $n=2$, where s_{k} is the linear constraint for user k, s_{k}^{\prime} denotes the complex conjugate transpose of sald vector $s_{k}, s_{\bar{k}}$ is the constraint matrix with column k deleted and $\mathbf{S}_{\bar{k}}$. denotes the complex conjugate transpose of vector $\mathbf{S}_{\vec{k}}$.

4. A method of communicating in a multiple access network by iteratively receiving multi user signals the method comprising the steps of:
determining a first set of signal estimates for the multi user signals based on linear channel constraints;
determining a second set of signal estimates based on non-linear channel constraints and the first set of signal estimates;
providing the second set of signal estimates as input to the step of determining the first set of signal estimates;
repeating the above steps at least once.
5. An iterative receiver for receiving multi user signals comprising:
a first signal processing component for determining a first set of signal estimates for the multi user signals based on linear channel constraints;
a second signal processing component for receiving the first set of signal estimates and determining a second set of signal estimates based on non-linear channel constraints;
wherein the signal processing components are operatively connected so as to provide the second set of signal estimates as input to the first signal processing component in a succeeding iteration cycle.
6. A method of communicating in a multiple access network by iteratively recelving OFDM packets the method comprising the following steps:
a) sample a receiver input signal consisting of signals from one or more antenna;
b) add the input signal with one of a plurality of prior stored recelved packet sample estimates to determine a packet sample hypothesis;
c) determine an information bit estimate from the sample hypothesis for storage in an information bit estimates list;
d) determine an updated received packet sample estimate from the sample hypothesis for updating the plurality of prior stored estimates;
e) subtract the updated sample estimate from the sample hypothesis to determine a noise hypothesis and provide the noise hypothesis as the receiver input signal;
f). repeat steps a) to e) until at least one or more complete packets are accumulated in the information bit estimates list.
7. A method of communicating in a multiple access network by iteratively providing a sample estimates list in an OFDM receiver, the method comprising the steps of:
a) sample a receiver input signal;
b) determine a packet sample estimate from the sampled receiver input signal;
c) store the packet sample estimate;
d) determine a packet sample hypothesis by adding the receiver input with a selected previously stored packet sample estimate;
e) determine an updated packet sample estimate by decoding and retransmission modelling the packet sample hypothesis;
f) update the selected previously stored packet sample estimate with the updated packet sample estimate.
8. A method of communicating in a multiple access network by iteratively providing a packet information bit estimates list in an OFDM receiver the method comprising the steps of:
a) determine a packet sample hypothesis by adding a receiver input with a selected previously stored packet sample estimate;
b) determine an information bit estimate by decoding the packet sample hypothesis with one or more of a hard decoding technique and a soft decoding technique
c) storing the information bit estimate with one or more previously determined information bit estimates;
d) repeating steps a) to c) until a complete packet is accumulated.
9. A method of communicating in a multiple access network including determining a hybrid OFDM received packet sample estimate the method comprising the step of:
multiplexing a time domain channel application received sample estimate with a frequency domain channel application received sample estimate, such that the multiplexed time domain sample estimate is mapped to correspond to one or more of:
an OFDM signal cyclio prefix;
an OFDM tail portion, and;
an OFDM guard period,
and wherein the multiplexed frequency domain sample estimate is mapped to correspond to one or more of:
an OFDM signal preamble and;
an OFDM payload data symbol.
10. A method of communicating in an OFDM multiple access network comprising the step of:
performing multi-user interference cancelling which comprises adapting a single pass OFDM receiver to iteratively receive signals at the sampling level so as to allow the receiver to differentiate a desired packet from an observation of an interference signal at the receiver input.
11. A method of communicating in a multiple access communication network by synchronizing packets arriving at a receiver the method comprising the steps of:
recelving a packet input signal;
determining a correlation signal corresponding to the packet input signal;
processing the input and correlation signals such that at least one of the input signal and the correlation signal are filtered;
determining a decision statistic by combining a power component of the processed correlation signal with a power component of the processed input signal;
nominate a point in time given by a predetermined threshold condition of the decision statistic as a received packet arrival time.
12. A method according to claim 11, wherein the step of processing at least one of the input and correlation signals is performed by one of:
a center weighted filter having a triangular impulse response;
a root raised cosine filter;
a Hanning window filter;
a Hamming window filter;
a combined Hanning/Hamming window filter.
13. A method according to claim 11 or 12, wherein the predetermined threshold condition is one of:
the decision statistic crossing the predetermined threshold and;
a maximum of the decision statistic occurring above the predetermined threshold.
14. A method according to claim 11,12 or 13 , wherein the step of determining the.correlation signal is performed every Kth sample of a sampled packet input signal, where K is an integer greater than or equal to 1.
15. A method of communicating by tracking time varying channels in a multiple access packet based communication network the method comprising the steps of:
a) initializing a channel estimate reference based on an initial channel estimate derived from a received packet preamble;
b) updating the channel estimate reference based on a packet data symbol channel estimate in a coded portion of the current and all previously received data symbols;
c) repeating step b) at the arrival of subsequent packet data symbols.
16. A method according to claim 15, further comprising the step of:
storing the channel estimate reference in a channel estimate data base at the receiver.
17. A method according to any one of claims 15 or 16 , further comprising the step of:
transforming the packet data symbol channel estimates to the frequency comain prior to updating the stored channel estimate reference to provide a time smoothed channel estimate reference.
18. A method according to claim 15, wherein the method further comprises the steps of:
for each subsequent received data symbol within step b), pipelining the steps of demodulating and modulating, and;
updating the channel estimate reference with the further step of FEC decoding.
19. A method of communicating by estimating time varying channel impairments in a multiple access packet based communication network, where channel impairments comprise channel variation, signal frequency offset and signal time offset, the method comprising the steps of:
a) initializing a set of channel impairment estimates based on initial pilot and preamble symbols included in a received packet;
b) performing a decoder operation which comprises processing the set of channel impairment estimates and the received packet to determine a set of transmit symbol estimates;
c) updating the set of channel impairment estimates with the determined set of symbol estimates and the received packet;
d) repeating steps b) and c).
20. A method of communicating in a multiple access network by time varying channel estimation in a receiver for receiving transmitted packets, the method comprising the steps of:
a) estimating a frequency offset based on information included in a received packet preamble;
b) correcting a received signal using the estimated frequency offset;
c) determining a channel estimate using information included in the received packet preamble;
d) transforming a sample sequence of the received signal into the frequency domain such that the sample sequence includes OFDM symbols and intervening cyclic prefixes;
e) performing a decoding operation which comprises processing the détermined channel estimate and received packet;
f) generating a transmission sample sequence using the decoding results and information in the received packet preamble;
g) transforming the transmission sample sequence into the frequency domain;
h) updating the determined channel estimate by combining the received sample sequence and the transmission sample sequence in the frequency domain;
i) repeating steps e) to h).
21. A method of communicating in a multiple access network by time varying channel estimation in a receiver for receiving transmitted packets, where the receiver retrieves OFDM symbols from a received signal and transforms the retrieved symbols to the frequency domain, the method comprising the steps of:
a) determine a matrix of training symbols comprised of symbal estimates derived from a decoder;
b) determine a matrix of frequency domain received OFDM symbols;
c) determine an intermediate channel estimate matrix by multiplying the OFDM symbol matrix by the conjugate of the training symbol matrix;
d) determine an intermediate matrix of training weights comprising the absolute value of the training symbol matrix;
e) perform a smoothing operation on both intermediate matrices comprising 2 dimensional filtering;
f) determine the channel estimate by dividing the smoothed channel estimate matrix with the smaothed training weight matrix.
22. A method of communicating in a multiple access network by estimating offsets in a receiver for receiving transmitted packets, the method comprising the steps of:
a) determine a matrix of frequency domain received OFDM symbols;
b) determine a matrix of conjugated data symbols wherein the data symbols comprise one or more of preamble, training and estimated symbols;
c) determine a 2 dimensional Fourier transform matrix comprised of the received symbol matris multiplied with the conjugated symbol matrix;
d) filter the Fourier transform matrix;
e) determine time and frequency offsets by locating peak power occurrences within the filtered Fourier transform.
23. A method of communicating in a multiple access packet communication network by synchronizing a received signal in a multi antenna receiver the method comprising:
correlating a received signal observation at each of a plurality of antennae with a known signal preamble to provide a received signal sequence;
determine a power signal of each received signal sequence;
combine the determined power signals in accordance with a time averaged weighting based on estimated antenna signal strength for each antenna;
determine a time of arrival for the received signal in accordance with a predetermined threshold condition.
24. A method according to claim 33, further comprising the steps of:
determining an estimate of the relative phase and amplitude coefficients of a receiving channel for each antenna;
combining a received signal with the estimated coefficients to provide a composite signal;
determining a time of arrival of the received signal by correlating the composite signal with a delayed version of itself.
25. Apparatus adapted to communicate in a multiple access communication network, said apparatus comprising:
processor means adapted to operate in accordance with a predetermined instruction set,
said apparatus, in conjunction with said instruction set, being adapted to perform a method according to any one of claims 4,6 to 24.

26. A computer program product comprising:

 computer readable system code embodied on said medium for communicating in a multiple access communication network, said computer program product comprising:computer readable code within said computer usable medium for performing the method steps according to any one of claims 4, 6 to 24.
27. A. method substantially as herein described with reference to the accompanying drawings.
28. Apparatus substantially as herein described with reference to the accompanying drawings.

Figure 1

Station 1 Tx
Station 2 Tx
Access Point Rx

Figune 2 (Related Art)
Direct
Reflection
Access Point Rx

Figure 3 (Related Art)

Figure 10 (Related Art)

2/17

Generic iterative receiver structure
Figure 4

The transmission system model for coded CDMA
Figure 5

Figure 6

Iterative multiuser decoder with linear multiuser estimation Figure 7

The recursive filter $\wedge_{8}^{(n)} \operatorname{For}(n=1)$ the input signal is r while for $n \geq 2$ the input signal is $\hat{\gamma}(n-1)$

Figure 8

BER versus users after 10 iterations, $N=B_{1} E_{b} / N_{0}=5 d B$ Figure 9

Figure 11

6/17

Figure 12

Figure 13

Figure 14
$7 / 17$

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19a

9/17

Figure 19b

Figure 20

Figure 21

Figure 22

11/17

Figure 23

Figure 24

Figure 25

13/17

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

INTERNATIONAL SEARCH REPORT			International application No. PCT/AU2004/001036
A. Int. Cl^{7} : According t	CLASSIFICATION OF SUBJECT M H03M 13/00, H04L 27/26, H04B International Patent Classification (IPC)	TER 08 r to both national cla	
B.	FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols)			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) See Supplemental Box			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
P,X P,A X A	WO 2003/094037 A1 (UNIVERSITY OF SOUTH AUSTRALIA ET AL) 13 November 2003 whole document US 2003/0185284 A1 (YOUSEF ET AL) 2 October 2003 whole document Rasmussen et al : "Recursive Filters for Iterative Multiuser Decoding" ISIT 2002, Lausanne, Switzerland June 30-July 5, 2002 page 445 WO 2001/058105 A1 (AT\&T CORP) whole document		1-3 $15-18$ $1-3$ $1-5,10,15-18$
Further documents are listed in the continuation of Box C C See patent family annex			
$\left.\begin{array}{lll}\text { * } & \begin{array}{l}\text { Special categories of cited documents: } \\ \text { document defining the general state of the art which is } \\ \text { not considered to be of particular relevance }\end{array} & \text { "T" }\end{array} \quad \begin{array}{l}\text { later document published after the international filing date or priority date and not in } \\ \text { conflict with the application but cited to understand the principle or theory }\end{array}\right]$underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken			
Date of the ac 10 Novemb	al completion of the international search $\text { r } 2004$	Date of mailing of the international search report 22 NOV 2004	
Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA E-mail address: pct@ipaustralia.gov.au Facsimile No. (02) 62853929		Authorized JAMES Telephone	

INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. \square Claims Nos::
because they relate to subject matter not required to be searched by this Authority, namely:
2. \square Claims Nos::
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. \square Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: See Suplememntal Box
4.

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. \square As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
Claims 1-5,10,15-18
Claims 6-8
Claims 19-20
4. \square No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.No protest accompanied the payment of additional search fees.

International application No. PCT/AU2004/001036

Supplemental Box

(To be used when the space in any of Boxes I to VIII is not sufficient)
Continuation of Box No: B
Group 1 Claims 1-5,10 and 15-18
WPAT: MULTI + OR + DMA ,(ITERATIVE OR RECURSIVE) ,ESTIMAT + , SIGNAL
Group 2 Claims 6-8
WPAT: OFDM OR ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING, (SAMPLE? OR PART? OR SELECTION?), PACKET?, SAMPLE ,HYPOTHESIS

Group 3 Claims 19-20
WPAT: MULTIPLE ACCESS OR +DMA OR OFDM, PACKET?, (CHANNEL OR TIME OR FREQUENCY), (VARIA+ OR OFFSET? OR IMPARMENT)

Supplemental Box

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: III

Group 1: Claims $1-5,10$ and $15-18$ method of communicating and decoding using iterative estimates

Group 2: Claims 6-8 method of communication with packet sample hypothesis

Group 3: Claim 9 method of communications with multiple time domain and frequency domain samples

Group 4: Claims 11-14 method of communicating by synchronising packets using input/output correlation

Group 5: Claims 19-20 method of communicating using estimating time varying channel impairments

Group 6: Claims 21-22 method of communicating using a training symbol matrix

Group 7: Claim 23 multi-antenna synchronising using received power

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report			Patent Family Member		
WO	03094037				
US	2003185284				
WO	01058105				
US	2004062299	JP	2004289788		
US	2004062297			US	2003058968
US	2003031170	US	2003058951	WO	03028205
US	2003112825	WO	2346714	0065756	
AU	$38414 / 00$	AU	$27299 / 02$	EP	1336255
					US
WO	0239597				

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	KHAJURIA, SHRIPALK	
	Attorney Docket Number		2101-3596

U.S.PATENTS Remove											
Examiner Initial ${ }^{*}$	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1										
If you wish to add additional U.S. Patent citation information please click the Add button.											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite		Publication Number	Kind Code ${ }^{1}$	Publica Date		Name of Pa of cited Docu	ntee or Applicant ment	Pag Rele Figu	s,Columns,Lines where vant Passages or Relev es Appear	
1											
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	Cite No		reign Document mber ${ }^{3}$	Country Code ${ }^{2}$		Kind Code ${ }^{4}$	Publication Date	Name of Patente Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear	T5
	1		$5 / 011128$	WO			2005-02-03	COHDA WIRELESS PTY L			\square
	2		6/015108	WO			2006-02-09	ZTE SAN DIEGO, INC			\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Add											
NON-PATENT LITERATURE DOCUMENTS Remove											

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	KHAJURIA, SHRIPAL K	
	Attorney Docket Number		2101-3596

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56 (c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.
SIGNATURE
A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR $1.4(\mathrm{~d})$ for the form of the signature.

Signature	Harry Lee $/$	Date (YYYY-MM-DD)	$2011-10-31$
Name/Print	Harry Lee	Registration Number	56,814

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552 a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1-30. (Canceled)
31. (Currently Amended) A method of transmitting a preamble sequence in a mobile communication system, the method comprising:
generating said preamble sequence by repeating a specifie sequence at least one time and eoncatenating a cyclic prefix (CP) to a front end of said repeated sequence, said CP being identical to a part of a rear end of said specifie sequence; and
repeating a specific sequence, having a length (L), N times to generate a consecutive sequence having a length ($\mathrm{N}^{*} \mathrm{~L}$);
generating said preamble sequence by concatenating a single cyclic prefix (CP) to a front end of said consecutive sequence; and
transmitting, on a random access channel, said preamble sequence to a receiving side-on a fandom access channet.
32. (Currently Amended) The method of claim 31, further comprising generating said specific sequence from a Constant Amplitude Zero Auto Correlation (CAZAC) (Constant Amplitude Zero Auto Correlation) sequence.
33. (Currently Amended) The method of claim 32, further comprising applying a cyclic shift to said specific sequence generated from said CAZAC sequence.
34. (Currently Amended) The method of claim 33, wherein a value of said applied cyclic shift is determined as an integer value-multiple of a predetermined circular shift unit.
35. (Previously Presented) The method of claim 33, wherein a value of said applied cyclic shift is used as additional information.
36. (Previously Presented) The method of claim 33, wherein applying said cyclic shift comprises multiplying said specific sequence by an exponential sequence.
37. (Currently Amended) The method of claim 31, further comprising generating said specific sequence by combining at least two code sequences mapped with at least one information bit, respectively.
38. (Currently Amended) A transmitter for transmitting a preamble sequence in a mobile communication system, the transmitter comprising:
a preamble generation unit configured to generate said preamble sequence by repeating a specific sequence, having a length (L), N times to generate a consecutive sequence having a length ($\mathrm{N}^{*} \mathrm{~L}$) and concatenating a single cyclic prefix (CP) to a front end of said consecutive sequence:
means for generating said preamble sequenee by repenting a specific sequence at least one time and coneatenating a cyelic prefix (CP) to a front end of said repeated sequence, said eyclic prefix being identieal to a rear end of said specific sequence; and
means for transmitting a transmission unit configured to transmit, on a random access channel, said preamble sequence to a receiving side-on a random aceess channet.
39. (Currently Amended) The transmitter of claim 38, wherein said means for generating said preamble are-said preamble generation unit is further configured to generate said specific sequence from a Constant Amplitude Zero Auto Correlation (CAZAC) (Constant Amplittude Zero Auto Correlation) sequence.
40. (Currently Amended) The transmitter of claim 39, wherein said preamble generation unit mid means for eneranger preamble are-is further configured to apply a cyclic shift to said specific sequence generated from said CAZAC sequence.
41. (Currently Amended) The transmitter of claim 40, wherein a value of said applied cyclic shift is determined as an integer walte-multiple of a predetermined circular shift unit.
42. (Currently Amended) The transmitter of claim 39 claim 40, wherein a value of said applied cyclic shift is used as additional information.

43. (Currently Amended) The transmitter of-claim 39 claim 40, wherein said preamble

 generation unit means for generating said preamble are-is further configured to apply acyelie said cyclic shift by multiplying said specific sequence by an exponential sequence.> 44. (Currently Amended) The transmitter of claim 38, wherein said preamble generation unit means for generating said preamble are is further configured to generate said specific sequence by combining at least two code sequences mapped with at least one information bit, respectively.
45. (New) The method of claim 31, wherein:
said consecutive sequence comprises at least a first sequence, a second sequence, and an N -th sequence; and
said CP is identical to a rear part of said N -th sequence.
46. (New) The transmitter of claim 38, wherein:
said consecutive sequence comprises at least a first sequence, a second sequence, and an N-th sequence; and
said CP is identical to a rear part of said N -th sequence.

REMARKS

Claims 31-46 are pending in the application. Claims 31-34 and 37-44 are currently amended. Claims 45 and 46 are newly submitted. No new matter has been added as the amendments and newly submitted claims have support in the specification as originally filed. It is submitted that the application, as amended, is in condition for allowance. Reconsideration is respectfully requested.

Applicant notes with appreciation the Examiner's acknowledgement of Applicant's claim for foreign priority under 35 USC 119(a)-(d) and that all certified copies of the priority documents have been received.

Claims 31-44 are rejected under 35 U.S.C. 102(b) as being anticipated by Jung et al. (US 2006/0153282). Applicant respectfully traverses these rejections, and requests reconsideration and allowance of the pending claims in view of the following arguments.

As amended, independent claim 31 recites repeating a specific sequence, having a length (L), N times to generate a consecutive sequence having a length ($\mathrm{N}^{*} \mathrm{~L}$) and generating said preamble sequence by concatenating a single cyclic prefix (CP) to a front end of said consecutive sequence.

Page 2 of the Office Action states that paragraphs 0064 and 0068 of Jung disclose generating said preamble sequence by repeating a specific sequence at least one time and concatenating a cyclic prefix (CP) to a front end of said repeated sequence. Applicant provides the following remarks.

A review of cited paragraph 0064 of Jung reveals that Jung arguably discloses repeatedly transmitting a second preamble sequence. Furthermore, cited paragraph 0064 of Jung discloses that a combination of second preamble sequences is transmitted through, for example, odd and even frames. Accordingly, Jung discloses that the second preamble sequence is repeated through separate frames, such as, odd and even frames (Jung, paragraph 0064). Applicant submits that repeating a preamble via separate frames, each of which including an individual cyclic prefix and first preamble sequences, is patentably distinguishable from repeating a specific sequence, having a length (L), N times to generate a consecutive sequence having a length $\left(\mathrm{N}^{*} \mathrm{~L}\right)$, as
recited in independent claim 31 . More specifically, since the second preamble sequence of Jung is repeated in different frames, the second preamble sequence of Jung is not a consecutive sequence as required by independent claim 31. Therefore, since Jung fails to disclose generating a consecutive sequence by repeating a specific sequence, Jung cannot teach or suggest "repeating a specific sequence, having a length (L), N times to generate a consecutive sequence having a length ($\mathrm{N}^{*} \mathrm{~L}$)," as recited in independent claim 31.

Furthermore, cited paragraph 0068 of Jung discloses that "the guard interval signal is inserted using a cyclic prefix scheme in which the last predetermined samples of a time domain OFDM symbol are copied and inserted into an effective OFDM symbol or a cyclic postfix scheme in which the first predetermined samples of a time domain OFDM symbol are copied and inserted into an effective OFDM symbol."

A review of cited paragraph 0068 of Jung reveals that an OFDM symbol or a cyclic postfix scheme are copied and inserted into an effective OFDM symbol. Similar to the arguments presented above with regard to cited paragraph 0064 of Jung, Applicant submits that although paragraph 0068 of Jung arguably discloses copying and inserting OFDM symbols into an effective OFDM symbol, paragraph 068 of Jung fails to disclose generating a consecutive sequence by repeating a specific sequence, as required by independent claim 31.

Furthermore, Applicant has reviewed Jung and has found no discussion with regard to "generating said preamble sequence by concatenating a single cyclic prefix to a front end of said consecutive sequence," as recited in independent claim 31. Rather, a review of FIG. 2 of Jung reveals that a preamble sequence of Jung may include more than one cyclic prefix. Therefore, Applicant submits that Jung cannot teach or suggest generating said preamble sequence by concatenating a single cyclic prefix (CP) to a front end of said consecutive sequence, as recited in independent claim 31.

To assist the Examiner in understanding the Applicant's position with regard to Jung, Applicant provides below relevant portions of FIG. 2 of Jung, which has been annotated in accordance with Applicant's position.

As illustrated in annotated FIG. 2 of Jung, the preamble sequences do not form a consecutive sequence, rather, the preamble sequences are repeated in different frames. For example, the preamble sequence \#2 is split between two frames, and therefore, since the preamble sequence \#2 is split between two frames, the preamble sequence \#2 is not a consecutive sequence. Accordingly, as previously discussed, Jung cannot teach or suggest "repeating a specific sequence, having a length (L), N times to generate a consecutive sequence having a length $\left(\mathrm{N}^{*} \mathrm{~L}\right)$, ," as recited in independent claim 31.

Furthermore, as illustrated in annotated FIG. 2, each of the frames, even and odd, has its own CP. Therefore, since each frame has its own CP, the preamble sequences of Jung are not concatenated with a single CP to a front end of the consecutive sequence, as required in independent claim 31. In other words, each preamble sequence of Jung has its own CP, as opposed to a single CP concatenated to a front end of the consecutive sequence to generate a preamble symbol. Therefore, as previously discussed, since Jung does not disclose concatenating a single CP to a front end of the consecutive sequence to generate a preamble symbol, Jung cannot teach or suggest "generating said preamble sequence by concatenating a single cyclic prefix (CP) to a front end of said consecutive sequence," as recited in independent claim 31.

Furthermore, FIG. 2 of Jung arguably illustrates a consecutive "preamble sequence \#1." However, Applicant submits that the consecutive "preamble sequence \#1," as illustrated in FIG. 2 of Jung is entirely different from the "consecutive sequence" required in independent claim 31.

Specifically, paragraph 0041 of Jung discloses that "the preamble sequence transmitted through the first transmit antenna is referred to as the first preamble sequence (Preamble Sequence \#1)." Additionally, paragraphs $0046-0051$ of Jung disclose that the first preamble sequence is divided into subsequences and the generated subsequences are transmitted through the first antenna. Accordingly, Applicant submits that in view of paragraphs 0041 and $0046-0051$ of Jung, the "preamble sequence \#1" of FIG. 2 of Jung is a consecutive sequence of subsequences of the first preamble sequence. In other words, Jung does not repeat the first preamble sequence in order to create a consecutive sequence, and therefore, the consecutive "preamble sequence \#1" illustrated in FIG. 2 of Jung, is patentably distinguishable from the "consecutive sequence" of independent claim 31. Thus, notwithstanding the arguments presented above, Applicant submits that Jung cannot teach or suggest "repeating a specific sequence, having a length (L), N times to generate a consecutive sequence having a length ($\mathrm{N} * \mathrm{~L}$)," as recited in independent claim 31.

Applicant has demonstrated above that Jung fails to teach or suggest various elements recited in independent claim 31, and therefore, independent claim 31 is allowable over the cited reference. Additionally, independent claim 38 recites elements similar to those recited in independent claim 31 and is allowable for reasons similar to those presented with regard to independent claims 31. Finally, claims 32-37 and 39-44 are allowable at least by virtue of their dependence on an allowable base claim.

Finally, although not formally rejected, newly submitted claims 45 and 46 are allowable at least by virtue of their dependence on an allowable base claim.

CONCLUSION

In light of the above remarks, Applicant submits that the present Amendment places all claims of the present application in condition for allowance. Reconsideration of the application is requested.

If for any reason the Examiner finds the application other than in condition for allowance, the Examiner is requested to call the undersigned attorney at the Los Angeles, California, telephone number (213) 623-2221 to discuss the steps necessary for placing the application in condition for allowance. Please charge any additional fees and credit any overpayment to Deposit Account No. 502290.

Date: December 16, 2011

Customer No. 035884

Respectfully submitted,
Lee, Hong, Degerman, Kang \& Waimey

By: /Puya Partow-Navid/
Puya Partow-Navid Registration No. 59,657
Attorney for Applicant(s)

Payment information:

Submitted wit	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Transmittal Letter	2101-3596-Transmittal-ROA.pdf		no	1
Warnings:					
Information:					

2		2101-3596-ROA.pdf	472138	yes	10	
			3885157e7a60e672eea6582bce42f585d0a 5074f			
	Multipart Description/PDF files in .zip description					
	Document Description		Start	End		
	Amendment/Req. Reconsideration-After Non-Final Reject		1		1	
	Specification		2		2	
	Claims		3		5	
	Applicant Arguments/Remarks Made in an Amendment		6		10	
Warnings:						
Information:						
Total Files Size (in bytes):			539499			
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.						
New Applications Under 35 U.S.C. 111						
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.						
National Stage of an International Application under 35 U.S.C. 371						
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.						
New International Application Filed with the USPTO as a Receiving Office						
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.						

AMENDMENT TO THE SPECIFICATION
 Please insert the following paragraph on page 1 of the Specification, after the title of the invention and before the section titled TECHNICAL FIELD, with the following heading and paragraph:

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage filing under 35 U.S.C. § 371 of International Application No. PCT/KR07/02784, filed on January 8, 2007, which claims the benefit and right of priority to Korean Application Nos. 10-2006-0052167, filed on June 9, 2006 and 10-20060057488 , filed on June 26, 2006.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
Yeong Hyeon KWON et al.
Serial No.: $12 / 303,947$
Filed: July 7, 2010

For: METHOD OF TRANSMITTING DATA IN A MOBILE COMMUNICATION SYSTEM

Art Unit: 2478
Examiner: Khajuria, Shripal K.
Conf. No. 1730

Mail Stop Amendment

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Sir:

Transmitted herewith is an AMENDMENT in the above-identified application.
$\square \quad$ A petition for extension of time for _ month(s) is enclosed.
$\boxtimes \quad$ No additional fee is required.
The fee has been calculated as shown below:

* If the entry in Col. 1 is less than the entry in Col. 2, write " 0 " in Col. 3.
** If the "Highest Number Previously Paid For" IN THIS SPACE is
*** If the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, write " 3 " in this space. The "Highest Number Previously Paid For" (Total or Independent) is the highest number found from the equivalent box on Col. 1 of a prior amendment or the number of claims originally filed.
$\boxtimes \quad$ The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 502290:
$\square \quad$ Excess claim(s) fee in the amount of \$ \qquad
\qquad
$\square \quad$ RCE fee in the amount of \$ \qquad _.
\square Extension fees in the amount of $\$$ \qquad .
$\square \quad$ Petition fee in the amount of $\$$ \qquad .
$\square \quad$ Terminal Disclaimer fee in the amount of \$ \qquad _.
Any filing fees under 37 CFR 1.16 for the presentation of extra claims.
Q Any patent application processing fees under 37 CFR 1.17.
Respectfully submitted, Lee, Hong, Degerman, Kang \& Waimey

Date: December 16, 2011

By: \quad /Puya Partow-Navid/ \quad| Puya Partow-Navid |
| :--- |
| Registration No. 59,657 |
| |
| Attorney for Applicant(s) |

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Yeong Hyeon KWON et al.

Serial No.: $12 / 303,947$
Filed: July 7, 2010

For: METHOD OF TRANSMITTING DATA IN A MOBILE COMMUNICATION SYSTEM

Art Unit: 2478
Examiner: Khajuria, Shripal K.
Conf. No. 1730

AMENDMENT

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir:

In response to the Office Action dated September 16, 2011, for which the Examiner set a three-month period for response, Applicant provides the following.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	KHAJURIA, SHRIPAL K	
	Attorney Docket Number		2101-3596

U.S.PATENTS Remove											
Examiner Initial ${ }^{*}$	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1										
If you wish to add additional U.S. Patent citation information please click the Add button. Ad											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite		Publication Number	Kind Code ${ }^{1}$	Publica Date		Name of Pa of cited Doc	ntee or Applicant ment		,Columns, Lines wher ant Passages or Rele es Appear	
1											
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	$\begin{array}{\|l\|l} \text { Cite } \\ \text { No } \end{array}$	For Nu	reign Document mber ${ }^{3}$	Country Code ${ }^{2}$		Kind Code ${ }^{4}$	Publication Date	Name of Patente Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevan Figures Appear	T5
	1										\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Add											
NON-PATENT LITERATURE DOCUMENTS Remove											
Examiner Initials*	$\begin{array}{l\|l} \text { Cite } \\ \text { No } \end{array}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.									T5

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	12303947
	Filing Date	2010-07-07
	First Named Inventor	Yeong Hyeon Kwon
	Art Unit	2478
	Examiner Name	KHAJURIA, SHRIPAL K
	Attorney Docket Number	- 2101-3596

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	12303947
	Filing Date	2010-07-07
	First Named Inventor	Yeong Hyeon Kwon
	Art Unit	2478
	Examiner Name	KHAJURIA, SHRIPALK
	Attorney Docket Number	- 2101-3596

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56 (c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.
SIGNATURE
A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR $1.4(\mathrm{~d})$ for the form of the signature.

Signature	IDavid Majdali/	Date (YYYY-MM-DD)	2011-12-20
Name/Print	David Majdali	Registration Number	53,257

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552 a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Information Disclosure Statement (IDS) Form (SB08)	2101-3596_112311_IDSform.		no	4
Warnings:					
Information:					

A U.S. Patent Number Citation or a U.S. Publication Number Citation is required in the Information Disclosure Statement (IDS) form for

 autoloading of data into USPTO systems. You may remove the form to add the required data in order to correct the Informational Message if you are citing U.S. References. If you chose not to include U.S. References, the image of the form will be processed and be made available within the Image File Wrapper (IFW) system. However, no data will be extracted from this form. Any additional data such as Foreign Patent Documents or Non Patent Literature will be manually reviewed and keyed into USPTO systems.| 2 | Non Patent Literature | Chang.pdf | 586496 | no | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| Warnings: | | | | | |
| Information: | | | | | |
| | Non Patent Literature | Texas_Instruments.pdf | 577575 | no | 8 |
| | | |
 осаa | | |
| Warnings: | | | | | |
| Information: | | | | | |
| Total Files Size (in bytes) | | | 1776610 | | |
| This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. | | | | | |
| New Applications Under 35 U.S.C. 111 | | | | | |
| If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. | | | | | |
| National Stage of an International Application under 35 U.S.C. 371 | | | | | |
| If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. | | | | | |
| New International Application Filed with the USPTO as a Receiving Office | | | | | |
| If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. | | | | | |

Synchronization Method Based on a New Constant Envelop Preamble for OFDM Systems

Guangliang Ren, Yilin Chang, Hui Zhang, and Huining Zhang

Abstract

The synchronization method using the available constant envelop preambie is analyzeli, and a new preambie weighted by pseudo-noise sequence is proposed, with which a novel timing and frequency oflset estimation method is presented for orthogonal frequency division nulliplexing (OFDM) sysiems in this paper. By the proposed method, the accuracy of the timing offset estimator is significantly improved, and the estimate range of the frexuency offset estimator is greatly enlarged with no loss in accuracy. The performance of the proposed method is demonstrated by simalations.

Index Terms-Constant envelop preamble, OFDM, synchronization.

I. INTRODUCTION

0RTHOGONAL frequency division multiplexing has been widely used in wireless communication systems such as WLANs, DAB, etc. due to its advantages. But it is very sensitive to nonlinear distortion and synchtomization errors caused by Doppler shift and/or oscillator instabilities [1]. A number of synchronization methods [2]-[9] have been proposed to estimate the time and frequency offsets either jointly or individually.

In packet oriented application, the preamble based synctronization methods are often employed and most of them use the preamble whose length is more than two OFDM symbols to estimate the timing and frequency offsets [2]-[4]. In order to improve the efficiency of the transmission and the performance of the synchronization method, many algorithms [5]-[8] are investigated to estimate the timing offset and/or the frequency offset wherein the lengit of the preamble is the same as one OFDM symbol, and the preambles in [5]-[\$] can be made by transmitting a pseudo-noise sequence and zeros at the special frequency respectively. However, the peak-to-average power ratio (PAPR) of the preambles is still large due to a large number of sub-carriers in the preamble. So the nonlinear distortion in the transmission degrades the performance of the synchronization method.

In order to achieve robustness to the nonlinear distortion, Andreas Cyzlwink proposed a synchronization method using a constant envelop preanble [9], but the performance of the method is not satisfactory and the ideas in [6]-[8] cannot be applied to the method since the data on the sub-carriers of the constant envelop preamble cannot be selected as those in [6]-[8]. To further improve the performance of the synchronization method

Manuseripl received, Iuly 1, 2004; revised September9. 2004. This work was supported in part by the National Naural Science Foundation of China under Grant 60172030.
The authors ate with the National Key Laboratory of ISN, Xidian Unjversity, Xi'an 710071, China (e-mail: glren@mailxidianeducn; ylehang@xidian.edu.cn; Huizhang19581@sina,com; sxemitro(@sila.com).

Digital Objeat Identifier 10.1109/1BC.2004.842520
with the constanl envelop preanble, we propose a new constant envelop preamble weighed by the pseudo-noise sequence and the corresponding timing and frequency offset estimation method for wireless OFDM systems in this paper.

II. Signaf, Model

The samples of a complex-valued baseband OFDM symbol can be described as

$$
\begin{equation*}
n_{n}=\sum_{k=u}^{N-1} c_{e^{e^{j 2 \pi}}} \tag{I}
\end{equation*}
$$

where c_{k} is the complex modulated symbol on the k th sub-carrier, N is the size of IFFT and is is the index of samples. The useful part of each OFDM symbol has a duration of T seconds and the intersymbol interference (ISD) can be easily elininated by inserting a cyclic prefix that is longer than the channel impulse response.

At the receiver, the received waveform $r(t)$ is sampled with period $T_{s}=T / N$. In the received signal models, the timing offset is often modeled as a delay and the frequency offset is modeled as a phase distortion of the received data in the time domain, so, the u th received sample may be represented as [6]

$$
\begin{equation*}
r(n)=p(n-\varepsilon) e^{j(2 \pi v n / N)}+w(n) \tag{2}
\end{equation*}
$$

where ε is the integer-valued unknown arrival time of a symbol, v is the frequency offset nommalized by the sub-carrier spacing, $w(n)$ is the sample of zero-mean complex Gaussian noise process with variance σ_{w}^{2}, and

$$
\begin{equation*}
y(n)=\sum_{m=0}^{L-1} h(m) x_{n-r m} \tag{3}
\end{equation*}
$$

where $h(m u)$ is the channel impulse response, whose memory is denoted by L.

In OFDM systems, the task of synchronization is to estimate and compensate the timing and frequency offsets.

IIl. The Available Constant Envelop Preamble Based Synchronization Methoir

The constant envelop preamble generated from DFT of a CAZAC sequence [10], [11] in [9] can be described as

$$
\begin{equation*}
X_{\text {prcamble }}=\left[x_{0}, x_{1}, \ldots, x_{N-1}\right] \tag{4}
\end{equation*}
$$

where x_{i} with $i=0$ to $N-1$ is the sample of the preamble in time domain. The samples in the preamble satisfy

$$
\begin{equation*}
x_{i}=x_{i+N / 2}, \quad i=0, \ldots, \frac{N}{2}-1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{k}\right\|=C, \quad k=0, \ldots, N-1 \tag{6}
\end{equation*}
$$

where O is a constant number.
The constant envelop preamble contains the two identical halves and has the same structure as that in [4]. In fact, the synchronization algorithms in [4], [9] are essentiatly based on finding the highest correlation between two repeated sample sequences. Therefore, the metric used to estimate the timing offset in $|9|$ can be defined as

$$
\begin{equation*}
M(d)=\frac{|P(d)|^{2}}{(R(d))^{2}} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& P(d)=\sum_{k=0}^{N / 2-1} r^{\prime \prime}(d+k) r\left(d+k+\frac{N}{2}\right) \tag{8}\\
& R(d)=\frac{1}{2} \sum_{k=0}^{N-1}|r(d+k)|^{2} . \tag{9}
\end{align*}
$$

The timing offset can be estimated from

$$
\begin{equation*}
\hat{\xi}=\arg \max _{i}(M(d)) . \tag{10}
\end{equation*}
$$

Using (10), the correct starting point of OFDM symbol $\varepsilon_{\text {opt }}$ can be estimated. At the correct starting point, the metric $\mathrm{P}\left(\varepsilon_{\mathrm{upp}}\right)$ is used to estimate the frequency offset, which is given by

$$
\begin{equation*}
\hat{y}=\frac{1}{\pi} \operatorname{angle}\left(I^{\prime}\left(\varepsilon_{\text {opt }}\right)\right) . \tag{11}
\end{equation*}
$$

In the timing offset estimation, it can be seen from (7) that the difference between $M(d)$ and $M(d+1)$ in (7) is too small for they have all the same sum of the product terms
$r^{*}(d+1) r\left(d+1+\frac{N}{2}\right)+r^{*}(d+2) r\left(d+2+\frac{N}{2}\right)$

$$
+\cdots+r^{*}\left(d+\frac{N}{2}-1\right) r(d+N-1)
$$

with the exception of only two product terms $r^{*}(d) r(d+N / 2)$ and $r^{*}(d+N / 2) r(d+N)$, and the timing meiric has a plateau due to the cyclic prefix of the preamble, which causes a large variance in the estimation. In the frequency offset estimation, the estimate range defined by (11) is too small, and the large frequency offset deteriorates the performance of the OFDM systems greally.

In the development of the synchronization methods, based on the method in [4], Mim and Park modified the structure of the preamble by transnitung different duta on different sub-carriers to improve the performance of the timing synchronization [5], [6], and Morelii and Song proposed the modified preamble to estimate the frequency offset with a wide estimating range in [7], [8] respectively, but all the ideas in the modified preambles cannot be used to modify the constant envelop preamble since the data of the preamble on the sub-carriers cannot be selected as those for modified preambles. It is also noted that the constant envelop property of the preamble is not utilized in synchronization.

To make fill use of the advantages of the constant envelop preamble in the transmission, we introduce a PN sequence weighted factor into the preamble to improve the performance of the synchronization method.

IV. Proposed Synchronization Method

A. New Preanble

To enlarge the difference between $\mathrm{M}(\mathrm{d})$ and $\mathrm{M}(\mathrm{d}+1)$ of the preamble given by (7), the pseudo-noise (PN) sequence weighted factors are iniroduced, and the new preamble can be defined as

$$
\begin{equation*}
x_{k}^{\prime}=s_{k} x_{k} ; \quad k=0,1, \ldots, N-1 \tag{12}
\end{equation*}
$$

where s_{s} is the PN sequence weighted factor of the kth sample of the original preamble. The value of the PN sequence is +1 or -1 .

B. Timing Offset Estimation

At the correct starting point of the proposed preamble, the weighted factors can be removed by multiplying the preamble by the corresponding PN sequence. The two idemical part: mi the processed preamble are fully correlated. So, the new tinning metric can be defined as

$$
\begin{equation*}
M(d)=\frac{|P(d)|^{2}}{(R(d))^{2}} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& f^{\prime}(d)=\sum_{k=0}^{N / 2-1} s_{k} s_{k+N / 2} r *(d+k) r\left(d+k+\frac{N}{2}\right) \tag{14}\\
& R(d)=\frac{1}{2} \sum_{k=0}^{N-1}|r(d+k)|^{2}
\end{align*}
$$

It is obvious from (14) that the correlation properly of the PN sequence weighted factors ensures that the proposed timing metric $M(d)$ has its preak value al the correct symbol starting point while the values al all other points are comparatively smaller, which leads to a much smaller error of timing offset estimation. The new timing metric like that in [4]-[6] is robust to the frequency offset.

C. Frequency Offsel Estimatrion

After the liming synchronization, the starting point of the received preamble can be determined. Similar to frequency offset estimation in [4], [9], the melric $\mathrm{P}(\mathrm{d})$ at the correct starting point $\varepsilon_{\text {ppt }}$ can also be used to estimate the frequency offset

$$
\begin{equation*}
\hat{t}_{1}=\frac{1}{\pi} \operatorname{angle}\left(P\left(\varepsilon_{\text {opt }}\right)\right) \tag{16}
\end{equation*}
$$

The range of the frequency estimate given by (16) is +1 due to the period of phase function angle(\cdot). When the absolute frequency offset v is greater than 1 , the relation between v and \hat{v}_{1} can be represented as

$$
\begin{equation*}
v \approx 2 q+\hat{v}_{1} \tag{17}
\end{equation*}
$$

where q is the number of the ambiguity period. In the frequency synclronization, it is necessary to estimate q when the absolute frequency offset is greater than one.

Horder to estimate q in a simple way, the received proamble is first compensated by \hat{t}_{1}, which can be represented as

$$
\begin{align*}
& r_{1}(k)=r(k) e^{-j(2 \pi i+k / k)} \\
& =y_{k} e^{j\left(2 \pi\left(v-i_{1}\right) k / k\right)}+w(k) e^{-j\left(2 \pi \dot{x}_{1} k / N\right)} \\
& =y_{n} e^{j\left(2-2 q q^{2} / T N\right)}+w_{1}(k) \\
& =h_{0} s_{k} w_{k} e^{j(1 \pi \bar{\pi} k / k)} \\
& +\sum_{w=1}^{L-1} h_{m} s_{k} x_{k-m} E^{j(4 \pi q k / N)}+w_{1}(k) \tag{18}
\end{align*}
$$

where $w_{1}(k)=w(k) e^{-j\left(2 \pi v_{1} k / N\right)}$. Then, multiply the samples of the compensated received preamble in (18) with the samples of the transnitted constant envelop preamble given by (12), which can be described as

$$
\begin{aligned}
& r_{2}(k)=r_{1}(k) k_{k}{ }^{\prime *} \\
& =h_{u}\left|x_{h}\right|^{2} e^{j(1 \pi q k / N)}
\end{aligned}
$$

$$
\begin{align*}
& =h_{1} C e^{i(4 \pi q k / N)}+w_{2}(i) \tag{19}
\end{align*}
$$

where

It is easy to find from (19) that the frequency offset estimation turms to be the frequency estimation of a complex tone. There are many algorithms [12] for the frequency estimation, and most of them are based on the periodogram. So, the simple standard periodogran algorithm with high performance in [12] is applied. Therefore, the estimate of q can be defined as

$$
\begin{equation*}
\hat{q}=\arg \max _{q}(I(\dot{q}) \tag{21}
\end{equation*}
$$

where
$I(q)=\left|\sum_{i=0}^{N-1} r_{2}(k) e^{-j 4 \pi q k / N}\right|^{2} ; \quad q=-\frac{N}{4} \ldots, 0,1, \ldots, \frac{N}{4}$.

Therefore, the total frequency offset can be represented as

$$
\begin{equation*}
\hat{v}=2 \hat{q}+\hat{n}_{1} . \tag{23}
\end{equation*}
$$

From (23), it can be found that the range of the new frequency offset method is $\pm \mathrm{N} / 2$.

In the AWGN channel. the Cramer-Rao lower bound (CRLB) for ${ }^{\circ}$ [4] is

$$
\begin{equation*}
\operatorname{var}\left(\hat{c}_{1}\right) \geq \frac{2}{\pi^{2} N-S N R} \tag{24}
\end{equation*}
$$

where the SNR is the ratio of the signal to noise power, and the Cramer-Rao lower bound (CRLB) for $\dot{4}$ [12] is

$$
\begin{equation*}
\operatorname{var}(\hat{1}) \geq \frac{3}{4 \pi^{2} N^{T}\left(N^{2}-1\right)-S N R} \tag{25}
\end{equation*}
$$

Since the error generated by \hat{t}_{1} and the error by \hat{q} are independent, the errors in two estimators may be assumed to be inde-

Fig. 1. The tinting metric of extimators.
pendent, and the Cramer-Rao lower bound (CRLB) for \hat{v} can be represented as

$$
\begin{equation*}
\operatorname{var}(\hat{v}) \geq \frac{12}{4 \pi^{2} N\left(N^{2}-1\right) \cdot S N R}+\frac{2}{\pi^{2} N \cdot S N R} \tag{26}
\end{equation*}
$$

V. Performance Evaluation, Simulation Results, and Discussion

A. Simulation Parameters

The performance of the proposed synchronization method is investigated by computer simulation. The OFDM system parameters used are 1024 subcarriers, 1024 point $\mathrm{IFFT} / \mathrm{FFT}$, and 12.5% guard interval (128 samples). Unless stated otherwise, 10090 simulation runs will be applied.

The chamels considered are described in the following. All channels have 16 taps with an equal tap spacing of 8 samples. The Rayleigh fading channel has an exponental power delay profile and the ratio of the first fading tap to the last fading tap is set to be 24 dB . The channel coefficient is time-imvariant since the coherence time is much longer than the burst duration.

B. Timing Synchronization Performance

In order to make a convenient comparison with the proposed method, the timing synchronization methods with constant envelop and nonconstant envelop preambles in [5], [6] are also simulated. Fig. 1 shows the timing metrics of Cyzlwink's method [9], Minn's method [5], Park's method [6] and the proposed method under the circumstances of no noise and no channel distortion. The correct timing point is indexed as 0 in the Fig. 1 and taken as the starting position of the useful part of the OFDM symbol.

As seen in Fig, 1, the timing metric of the proposed method and that of Park's method have an impulse-like shape, and the impulses of the two methods overlap at the correct timing point. Compared with the values of the timing metric of Park's
\qquad

Fig. 2. MSE of timing ofiset versus SNR for four mellods.
method, those of the proposed method at the other positions are much smaller, which makes the proposed method offer a more accurate timing offset estimation.
The mean square error (MSE) reflects both the bias and the variance of the estimation. Therefore, the performance of the proposed estimator is evaluated by the mean square error (MSE), and compared with Minn's method, Park's method and Cyzlwink's method. Fig. 2 shows the MSEs ol the four methods in the Rayleigh channel. We can see that the proposed method has a much smaller MSE than Minn's method and Cyzlwink's method. Compared with Park's method, when the SNR is less than 15 dB , it can be seen that the MSE of the proposed method is smaller than that of Park's melhod, but that they are almost the same when the SNR is greater than 15 dB .

C. Frequency Synchronization Performance

Based on the timing synchronization, the starting point of the preamble can be determined. The performance of the frequency offset estimation in Cyzlwink's method is the same as that in Minn's method and Park's method, and therefore, in simulaiion, only the frequency synchronization meuhod in Cyziwink's method is simulated. In order to make a convenient comparison with the proposed method, the multistage method in [8] and Morelli's methol in [7] are also simulated.

In the multisiage method and Morelli's method, the number of the idenlical parts in the preambles is limited due to the average operations. In order to enlarge the estimation range of the multistage method and Morelli's method further, the preambles consisting of 32 idenical parts are considered. Fig. 3 illusirates the average estimate as a function of the real normalized offset for the $\mathrm{SNR}=20 \mathrm{~dB}$. The ideal curve is also shown for comparison. Wie can see from the curves in Fig. 3 that the available normalized tiequency offiset estimation range of the multistage method and Miorelli's method is ± 16, and that of Czylwink's method in [9] is only ± 1. The average estimate of the proposed method is almost the same as that for the ideal case, and the lested estimation range of the proposed method in the simulation is ± 512, which is consistent with (15). Therefore, the esti-

Fig. 3. Average frequency extimate versus normalized frequency offsci.

Fig. 4. MSE of frequency ofiset estimation versus SNR.
mation range of the proposed method is wider than those of the methods in [7], [8] since the number of the identical parts in the preamble is much less than 1024.
The mean square errors (MSEs) of the four methods versus SNR and the Cramer-Rao lower bound (CRLB) of the proposed method are shown in Fig. 4. The nommalized frequencs offset is set to be $v=0.4$ and 10.4. It is obvious that the MSE of the proposed method is almost the same as those of Czylwink's method with $\mathrm{v}=0.4$ and Morelli's method, but less than that of the multistage method at a low SNR. Therefore, the proposed method has a wider estimation range with no loss in accuracy. For the same estimate range, the computational complexity of the proposed method is about the same order as that of Morelli's method.

VI. CONCLUSIONS

In order to improve the synchronization performance of wireless OFDM systems with the constant envelop preamble, we suggested a new constant envelop preamble weighted by
\qquad $11127986 \mathrm{~A} \quad \mathrm{~S}$
the psetudo-noise sequence and the conesponding timing and frequency offset estimation method. The new synchronization algorithm exploits the correlation property of the PN sequence and the two identical parts in the preamble to estimate the timing offset, and the constant envelop property of the preamble is used to estimate the frequency offee with a wide estimate range. Simulations show that the timing accuracy and the estimate range of the frequency offser in the proposed synchronization are significmtly improved. Theretore, the proposed method is suitable for improving the performance of the synchronization for the OFDM system in wireless channels with a large frequency offset.

ACKNOWLEDGMENT

The aurhors would like to thank all the reviewers whose comments led to the great improvements of the paper.

References

[1] X. Wang, T. T. Tjbung, Y. Wu, and B. Caron, "SER performance evalulation and optimization of OFDM systen with sesidual frequency and timing offsets from imperfect synchronization,", IEEE Tvens, Broedeross. vol. 49, no. 2, pp. 170-177, Jun. 2003.
 aique in OFDM systems," IEEE Truns. Broudcuat. vel. 50. no. 1, pp. $56-61, \mathrm{Mar} .20144$
[3] B. Y. Praselyo, F. Stid, ath A. H. Aghvami. "Fast burst synchronization rechnique for OFDN-WLAN systems:" IEE Proe Commun, vol 147, no. 5, Pp. 292-297, Oct. 2 (fin).
[4] T. M. Schmidt and D. C. Cox. "Rubust frequency and timing synchrenization for OFDM," IEEE Truzs. Connmun, wol. 45, pp. 1613-1621, Dec. 1947.
[5] H. Mim, M. Zeng, and V. K. Bhargava, "On timing offsct estmation for OFBM system." IEEE Conmunn. Len., wol. 4. pp. 242-244, Jul. 2000.
[6] B. Park et af., "A novel timing estimation method for olpom sysiems," IEEE Comnmun. Len., vol. 7, no. 5, pp. 239-241. May 2003.
[7] M. Morelif and U. Mengali, '"An improved irequency offset estimator for OrPDM applizations," IEEE Commun. Lenh, vol. 3, no. 3, pp. 75-7s, Mar. 194\%.
[8] H.-K. Song en al., "Frequency-otiset synchronization and clannel estimation for OFDM -based Iransnissim.- IEEF Commum. Jett., vol. 4, no. 3. pp. 95-97, Mar 2600.
[9] A. Czylwink, "Synchronization for systems with ;umenn diversity." in Veh, Tectnol. Comf, wol, 2, VTC 1999, IEEE 50ih VTS, Scp, 1499, pp. 728-732.
[10] A. Nilewski, "Periodic sequences with opimal properties for chanmel estination and fast astartu-up equalization," $1 A_{M} J$. Res. Develop., vol. 27, pp. 425-528, Sep. 1983.
[11] R. L. Frank und S. A. Zudull. "Phase shilt pulse codes will gooci periodic correlation properties," IRE Trans. Inform. Treory. pp. 381-382, Oct. 1962.
[12] H.C. So, Y. T. Chan. and Q. Ma, "Comparsion of various periodograms for single tone detection and frequency estimation," in IEEE Int, Symp. Cinzuis Sysf, Hong Kong, lun. 9-12. 1997, pp. 2529-2532.
\qquad _11127926A_1_>

Source:	Texas Instruments
Title:	On Allocation of Uplink Pilot Sub-Channels in EUTRA SC-FDMA
Agenda Item:	10.3
Document for:	Discussion

1. Introduction

1.1 Problem Formulation

Onc of the two possible TTI structures for uplink Single Carrier FDMA (SC-FDMA) as proposed by Drafting group 1 is given in Figure 1 below.

Figure 1: Uplink TTI structure for SC-FDMA.

In Figure 1, LB represents a "Long Block," which can contain only data symbols, and SB represents a "Short Block," which can contain either pilot or data symbols. Therefore, the uplink pilot is always confined inside the SB field. The time duration of the SB field is half of the time duration of the LB field. The rest of the numerology for the uplink frame structure is given in [1].

The proposed uplink TTI structure results in the frequency set where the width of pilot subcarriers is twice the width of data subcarriers. For example, in the baseline case of 5 MHz bandwidth, pilot and data subcarriers are as given in Figure 2 below.

Figure 2: Frequency Set for SC-OFDM.

In the case of distributed (IFDMA) uplink transmission, each mobile is allocated a set of non-contiguous tones for data subcarriers. In this case, it is unclear as to which is the most appropriate allocation of uplink pilot resources. The following options should be considered.
1.2 Possible Allocations for Orthogonal Uplink Pilot
a) Time Domain Orthogonality

Time domain orthogonality is the most obvious altemative for usage of the SB field for pilot transmission. However, such a solution may result in a high peak to average ratio (PAR) for uplink transmission, which would decrease coverage due to the amplifier back-off.
b) Frequency Domain Orthogonality

Frequency domain orthogonality is another proposed solution for the uplink orthogonal pilot, which is a topic of current studies. The main difficulty faced by a frequency domain orthogonal pilot is for UE's near the cell border when the neighboring cell utilizes the same uplink pilot channel. For this reason, frequency domain orthogonality of the uplink pilot requires careful frequency planning and reuse patterns.
c) Code Domain Orthogonality

Code domain orthogonality can be achieved with a use of Constant Amplitude Zero Autocorrelation (CAZAC) sequences, as we demonstrate in the remainder of this document. Furthermore, CAZAC sequences have a flat frequency domain response, which makes them attractive for SC - OFDMA systems.
d) Code-Frequency Domain Orthogonality

Code-Frequency domain orthogonality is a hybrid alternative between b) and c), which uses a combination of CAZAC sequences and distributed FDMA transmission to achieve an uplink orthogonal pilot.

In this contribution, we focus on the Code Domain Orthogonality.

1.3 Background on CAZAC Sequences

An example of CAZAC sequences is given as follows. Let L be any positive integer, and let k be any number which is relatively prime with L. Then the n-th entry of the k th Zadoff-Chu CAZAC sequence [2] is given as follows:

$$
\begin{array}{ll}
c_{k}(n)=\exp \left[\frac{j 2 \pi k}{L}\left(n+n \frac{n+1}{2}\right)\right] & \text { if } L \text { is odd } \\
c_{k}(n)=\exp \left[\frac{j 2 \pi k}{L}\left(n+\frac{n^{2}}{2}\right)\right] & \text { if } L \text { is even }
\end{array}
$$

The set of Zadoff-Chu CAZAC sequences has the following properties:

- Constant magnitude
- Zero circular autocorrelation
- Flat frequency domain response
- Low, constant magnitude, cross-correlation, provided that L is a prime number.

2. Proposal: Allocation of Uplink Pilot Sub-Channels

In this section we demonstrate how to achieve the uplink orthogonal pilot in the code domain with the use of CAZAC sequences. The main idea is to use a single CAZAC sequence per sector and exploit the property of zero circular autocorrelation along with the cyclic prefix transmission.

2.1 Allocation of Pilot Sub-Channels for a Single Sector

2.1.1 Option 1: Orthogonality in the Code Domain

In order to illustrate how to achieve orthogonality in the code domain, we let the CAZAC sequence be "c," and let its right cyclic shift by Q be specified as $S_{Q}(c)$. Since the sequence has zero cyclic autocorrelation, then $\mathrm{S}_{0}(\mathrm{c}), \mathrm{S}_{\mathrm{Q}}(\mathrm{c}), \mathrm{S}_{2 \mathrm{Q}}(\mathrm{c}) \ldots \mathrm{S}_{\mathrm{MQ}}(\mathrm{c})$ are all orthogonal provided that MQ does not exceed the length of the sequence. Furthermore, even when $\mathrm{S}_{0}(\mathrm{c})$ is cyclically right-shifted by less than Q samples, it remains orthogonal to the rest of $\mathrm{S}_{\mathrm{Q}}(\mathrm{c}), \mathrm{S}_{2 \mathrm{Q}}(\mathrm{c}) \ldots \mathrm{S}_{\mathrm{MQ}}(\mathrm{c})$. Next, we simply allocate $\mathrm{S}_{0}(\mathrm{c})$ to be
the pilot sequence for UE\#0, $S_{Q}(c)$ to be the pilot sequence for UE\#1, and proceed accordingly until we allocate S_{MQ} (c) to be the pilot sequence for UE\#M. Such an allocation is illustrated in the following figure.

Figure 3: Proposed Allocation of Uplink Pilot Sequences.

With such an allocation, the arriving multipath signal from each UE will be orthogonal, under the assumption that Q is longer than each delay profile. For this reason an appropriate choice for Q is the prefix length of the transmission. Alternatively, a more conservative allocation would accommodate scenarios where the delay profile is longer than the prefix length. In such cases, Q should be longer than the transmission prefix.

2.1.2 Option 2: Orthogonality in the Code-Frequency Domain

Since distributed (IFDMA) transmission can be simply achieved by block repetition in the time domain, the extension of section 2.1.1 to orthogonality in the Code-Frequency domain is straightforward. Namely, upon the above described uplink pilot sequence allocation, one can perform block repetition to achieve distributed FDMA transmission. In this manner, multiple UE's utilize the same IFDMA uplink pilot channel through the use of cyclically shifted CAZAC sequences.

2.2 Allocation of Pilot Sub-Channels in Softer Handover

For UE's which are in the Softer Handover, the transmitted signal is received with significant power level in two sectors of the Node B. In order to avoid UE selfinterference, we propose that both serving sectors allocate the same CAZAC sequence, with the exact same shift, to UE's which are shared in the Softer Handover. Hence, each sector of a single Node B will utilize the same CAZAC sequence.
2.3 Allocation of Pilot Sub-Channels between different Node B's

Neighboring Node B's should utilize different CAZAC sequences for the uplink pilot channel in order to achieve interference averaging. For this reason, the most appropriate choice for CAZAC sequences are Zadoff-Chu sequences of prime length (see Background section above), which have low constant magnitude cyclic crosscorrelation. Since the number of different Zadoff-Chu sequences is close to the length of the sequence itself (hence large), there are no difficulties in constructing the reuse pattern for distant Node B's.

2.4 Number of CAZAC sequences

As stated earlier in the background section, Zadoff - Chu sequences have low constant magnitude cross - correlation; provided that their length is a prime number. In this section, we present the number of possible sequences, assuming the exact uplink numerology from [1], Option2.

Table 1: Number of CAZAC Sequences

	1.25 MHz	2.5 MHz	5 MHz	10 MHz	15 MHz	20 MHz
LB Samples	128	256	512	1024	1536	2048
Used Subcarriers in LB	76	151	301	601	901	1201
SB Samples	64	128	256	512	768	1024
Used Subcarriers in SB	37	73	151	293	449	601
CP Samples	7	15	31	63	95	127
\# of distinct CAZACs not including shifts	36	72	150	292	448	600
\# of distinct CAZACs including 8 shifts	288	576	1200	2336	3584	4800

Table 1 is derived as follows. Rows 2 and 4 are from the uplink proposal in [1], Option2. Row 3 hasn't been agreed upon yet (for the uplink), which is why we assumed the downlink numerology from [1]. Row 5 is proposed to be the prime number which is closest to half of the Row 3. Row 6 is directly from [1]. Row 7 is derived based of properties (see background section) of Zadoff - Chu sequences. Finally, Row 8 is 8^{*} Row 7, since the SB (Row 4) accepts 8 distinct circular shifts by the cyclic prefix (Row 6).

2.5 Simulation Results

Table 2: Simulation Assumptions

Parameter		Assumption
Bandwidth		$5 \mathrm{MHz}(2.6 \mathrm{GHz})$
Channel Model		TU
Data Channel Turbo Coding		Rate $1 / 2$
Data Modulation		16QAM
Uplink Numerology		Option 2 in [1] (Table 9.1.1.2)
Pilot Sequence/Modulation		QPSK Random Sequence vs. Constant Amplitude Zero Autocorrelation (CAZAC)
Pilot Average Power Boost		2.5 dB (Peak Pilot Power = Peak Data Power)
Data Channel		IFDMA which occupies each $4^{\text {th }}$ tone. Number of Subcarriers $=64$
Pilot Channel		Occupies the entire transmission band with 2 short blocks per TTI
Antenna Configuration		1 at Transmitter, 2 at Receiver
Channel Estimation	Time Interpolation	Doppler dependent filter coefficients MF - Wiener Matched Filter ZF - Wiener Zero Forcing Filter
	Frequency Interpolation	Least Squares
	Interpolation Method	Past, Current and Future TTI

Figure 4: Block Error Rates (BLER) for Random QPSK Pilot, and CAZAC Pilot, at UE Speed $=3 \mathrm{kmph}$.

Figure 5: Block Error Rates for Random QPSK Pilot, and CAZAC Pilot, at UE Velocity $=150 \mathrm{kmph}$

Figure6: Block Error Rates for Random QPSK Pilot, and CAZAC Pilot, at UE Velocity $=360 \mathrm{kmph}$.

As we see from the above simulation results (for single UE), the choice of a CAZAC sequence offers superior channel estimation results at higher UE velocities. Specifically, the CAZAC pilot sequence offers up to 0.4 dB gain when compared to the Random pilot sequence at 150 kmph and 0.3 dB at 360 kmph . At 3 kmph , the performance of CAZAC and Random pilot sequences are close. Furthermore, multiple UEs which utilize cyclic shifts of a single CAZAC sequence do not mutually interfere, which is not the case with Random sequences. Further simulations will be provided in future meetings.

3. Conclusion

The set of Zadoff-Chu CAZAC uplink pilot sequences presents an attractive solution for the uplink pilot design in LTE. In this document we presented a method for reuse of a single CAZAC sequence with cyclic shifts in order to achieve orthogonality in the uplink pilot channel. Furthermore, interference management between different cells is fairly simple because it reduces to assigning different CAZAC sequences to neighboring cells.

4. References

[1] TR 25.814 v 0.1.1 "Physical Layer Aspects for Evolved UTRA"
[2] K. Fazel and S. Keiser, "Multi Carrier and Spread Spectrum Systems," John Willey and Sons, 2003.

Espacenet

Bibliographic data: JP2004512728 (A) - 2004-04-22

APPARATUS AND METHOD FOR TRANSMITTING A BURST PLOT CHANNEL IN A MOBILE COMMUNICATION SYSTEM

Inventor(s):

Applicant(s):

| | H04B1/707; H04B1/76; H04B7/26; |
| :--- | :--- | :--- |

Abstract not available for IP2004512728 (A)
Abstract of corresponding document: WOB233841 (A1)
Disclosed are a method and apparatus for transmiting a time-discontinuous burst pilot channel being dependent on transmission data in a mobite communicaton system. In the apparatus, a modulator generates a moduated pilot symboi by outputing an imput pilot symbol at a designated at least one of phase and on a designated complex chanmel according to an information bit for determining at least one of the phase andor the complex channel, and a spreader spreads the modulated pilot symbol from the modulator with an orthogonal code selected among a plurality of othogonal codes. The burst pilot channel transmits side information being dependent on the transmission data according to the phase, and or the complex channel and the orthogonal code

		F：			
H04	13／3	N0\％	8\％	A	

\％	
	㠇要（\％）


```
        } 学》誃
```


（b）［㱍

［綵酸々］

【落
 ※事衫

飞解：
天怒

【続要路〉】

 ※为施て，
※－x

【絡领8】

 を㒄えで

 ※象数

 \％㦱淂学：

苗

苑 \＆\％

$[080]$

$[8 \lll 2]$

$[0 \leqslant 08]$

3 缭

$[080$ 莫 $]$

【0 0 0 5 】

【000 0］

［000\％）

 ＊

［4808］

 を＂8．
$\lfloor 0008]$

【06：0】

［0 0 ）

〔00：2】

$[04 \mathrm{a}\rfloor$

$[0<8]$

［08：5］

【0 $0: 8$ 】

$[00 \%$ ］

〔08：8】

 ロッ＊

 byyyyyy．
〔0 \％\＆¢

【0 020 ！
（

【002；
 A－Х
【0 022】
子

〔麦 ：

ksy	 			
！				冬䢒
\＆	$\left\{\begin{array}{c} \{3>\% \& \\ \{13 * y>x \in\} \end{array}\right.$	（s Brisymul）	x 	
8			$\begin{gathered} \text { E/W } \\ (\text { nic/swasis) } \end{gathered}$	佥迷
2				碞號
2		（1 blikyably		
＊		$19+3 \operatorname{sex}+3$ （1）biveswol）	$\begin{gathered} s / \mathrm{M} \\ \text { (sit/kywol }) \end{gathered}$	\％ 66

〔0 8 2 8 ）

$[0<2 \&]$
क 8 \＆

 c力口

$[0 * 25]$

［0020］

【0 027 〕

［0428］
 （x）

［0028］

〔0480］

 N\＆

$\lfloor 043\}$

 च $\%$
【0＊8 2 】

 \％卷。
【0 082$]$

【0 084 】

［0885］

［08：8］

【0 0 §

$\lfloor 0 \leqslant 88 】$

$[0<89]$

【0 $040 】$

【0 4 \＆〕

$\lfloor 0 \leqslant 42]$

 F $\%$
$\lfloor 044 \mathrm{a} \rrbracket$

[^0]

\%

 а

 $* * * s!$
 \& *

 \$ $\%$, \% m

中

 Amw :

 mance A

 mwhomoxncme

太 is

 abs.
 R m

 d 6

 N

 *)

 Wh

 का

 ,

 N-

 N sm

is 3 swism

sisk :

$\begin{aligned} & \text { As } 2 \pi \mathrm{~s} \\ & \mathrm{syos} \end{aligned}$	 			Nxans 1000648
		43ss 6 andes ss.	somex 68 m *	
S		x 	 Thensom	8, 38
!		Rexsons W20 C 6ivanm	$\begin{gathered} k \\ 4 \end{gathered}$	S8S
d		Cmomeds * 8 oxas C W Wow wo	 S Moxmkas	Stas
s	smox为	A Wescrod	Porsworsw 	Pme 8

	knsw			
\％	人 क人 sumbs		$\begin{gathered} \text { 泴 } \end{gathered}$	
\otimes	2 s्m N Q Sumbis CaCos		80 	Sux

 wow

 s.

今心:

 * mank

 woñessat

 wasmor

 w

 \$8,

 asw

 \#及

 R

An s
 K w w

 Emos mod

 \& wosh

\rangle S

O

 क

S
 me tom

 manemi \&

 $8 \quad 8 \mathrm{mos}$ wasmen

 $\$ 80$

 * 8 \%

30,

w, w

\$

 wromad exs.

A

 wns.

11G. 2

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 4

FIG. 5 B

FIG. 5C

FIG. 6A

FIG. 6 B


```
    #8..78%
```



```
F%\cdots&&**)
```


PATENT ABSTRACTS OF JAPAN

(11)Publication number :
04-035332
(43)Date of publication of application : 06.02.1992
(51)Int.Cl.

H04J 13/00
(21)Application number : 02-138759 (71)Applicant : SANYO ELECTRIC $C O$ LTD
(22)Date of filing : $\quad 28.05 .1990$ (72)Inventor: HIRAMATSU TATSUO

(54) SPREAD SPECTRUM COMMUNICATION SYSTEM

(57)Abstract:

PURPOSE: To improve S / N by constituting this system with a 1st equipment having a transmission means, a means receiving a spread spectrum signal, M-sets of code generating means, a means adding outputs of M inverse spread means and a 2 nd equipment having a phase control means for a spread code.
CONSTITUTION: A decoder 2 outputs a signal selecting a spread code in response to transmission information, a spread code outputted from a selective circuit 3 is fed to a spread section 4 and a spread spectrum signal is sent via a trans mission antenna 6. A reception side multiplyes a spread spectrum signal received by a reception antenna 7 with codes from 1 st - 4 th code generating sections $8 a-8 d$ to apply inverse spread processing to the spread spectrum signal.

（13）只本葍特許庁（JP）
 （1i）特許出願公開
 （10）公開特許公報（A）平4－35332

（51）Int．Cl．${ }^{5}$ 識別記号 庁内整理番号（43）公開 平成4年（1992）2月6日 H 04 J $13 / 00$

A $\quad 7117-5 \mathrm{~K}$

蓄査請求 未請求 請求項の数 1 （全5頁）
（6）発明の名称 スペクトラム㹡散通信システム
（21）特 䫟 平2－138759
（2）出 願 平2（1990）5月28日
（22）発 明 者 平 松 達 夫 大阪府守口市京点本通2T目18番地 三洋電機株式会社内 （71）出 㛲 人 三洋電耭株式会社 大阪府守口市京踟本通2丁目18番地

昭 細 意	
1．毫明の名称	に接絁されたフィルタ手段，このフィルタ手段の
スペクトラム拡㪉通倍システム	出力に基つき前記符号免生手段から出力きれる应
2．特许清求の範囲	散符号の位相を制触する位相制御手段を有する第
発生手段，この拡敞䐪号発生手段からのM啫の桩	4
散符号が供給きれ，情鞎信号に応して1つの拡敨	3．発明の詳細な説明
符号を㟟択する暴択手段，この㟟択手段にて选択	
波信号に閉する信号とに基つき播送波信号のス	る。
クトラムを应放するスベクトラム拡敞手段，この	（口）徒来の技荇
スペクトラム拉敞于段石らのスヘタトラム热敞信	
号を送倍する送信手颜を有する第1の装哑	を有する，例えば2進の晚似難音符号（Pseuco
前記送信手段からのスペクトラム㓪敨信号を受	Noise Code）（以下，P ※ 符号と称す）でスベク
信する受俗手段，前記拉敞符号塈生手段から出力	トラムが拡敞きれた䑤送波信号を送信し，受偅側
値の符号を免生する符号発生手段，前記受信手段	号を乗算することにより元の情報を復開する，所
からの受信信号と前記符号発生手段からの各捬效	都スペクトラム拡敞通信が知られている（例え
符甼とに基づ事受信信号のスペクトラムを逆拉敞	は，置子科学1978年11月号参照）

して，M－ary方式によるスペクトル拡㬚通信方式が提案されている（例えば，然子情鈘通信学会 S S TA89－37；1989年11月8，9白娄照）。

此乗 M－ary方式について間単に談明する と，送信闌に各々符号長及び発生速度が問一で且 つ符号哃で同期がとれている，異なるM用の应散符号を発生する拉散府号発生器を設け，この㧤敨符号発生器からの拉散符号を情斏信号に応して虺
 スペクトラムを前敌して送信しる。

一方，受信測では，前記拡散符号発生器からの各拡敨符号と同じ若しくは相関の大きい，M佫の符号を発生する符号発生器とを設け，受信信号と符号呠生器からの符号とを各々乘算することによ り，受信信号のスベクトラムを逆拉敨する。

このとき，受信信号に含まれる拡敞符号と同一若しくは相䦎の大きい符号が供給きれる采算器の出力にのみ搬送波信号が再生きれるので，この䦐送波信号を検出することにより情竍信号を復元す

ることができる。
（ハ）宏明が解決しよう上する䛶題
ところで，スベクトラム应敬通信では，受俉溉
発生する符号を送信側の符号と同期きせることが不可欠である。

上違したM－ary方式では，情新によって送信きれる符号予列が買なり，これを用いて同期羅立を行なうことは難しいため，列途同期用の符号㕛列を同一带域で同時に送るようにしている。

然し乍ら，この場合送信電力の一部を同期嶪列 に割り与えるので，情報信呂の拉敨用采列のS N が少し下がり，復調時のデータ虽り率の增加を招いたり，同期用至列の宽力放小きいと，同期解铝に時間がかかるという問题を有していた。

> (二) 淉垔を解決するための手段

上記の点に違み，本発明は異なるM個の应教㾈号を発生する疝部符号発生手段，この应敨符号発生手段からのM樋の昿散符号が供給ミれ，情就信号に応して 1 つの狕敢符号を通択する逥択手段，

この進択手段にて㩐択豆れた㹡散符号と搬送波信号発生手段からの僛选波信号とに基つき散送波信号のスベクトラムを厥送するスベクトラム前龍手段，このスペクトラム拡散手段からのスペクトラ ム拡散信号を送信する送信手段を有する第1の蒋置と，前記选信き段からのスペクトラム茫敬僙号
出力される各拉㬚符号と同一若しくは相関の大き いM個の符号を発生する符号発生手段，前記受信
拡敬苻亭とに基づき受信信号のスベクトラムを逆拡敞するM据の逆拡散手段，このM傏の逆应㬚手段の出力を加算する加第手段，この加算手段の出方鿓に接続をれたフィルタ手段，このフィルタ手段の出力に基つき前記苻号発生手段から出力きれ る拡散符号の位相を制御さる位相制卸手段を有す る第2の装首とよりなることを特鏗とする。
（亦）作用
本発明に位九ば，䏠㬚府号発生手段からのM偪 の拡敨符毕の内，1つを情哏信号に応じて造択し

てこの逪択きれた栃㬚符号にて搬造波信号のスヘ クトラムを茽散して送供し，受信側では，前記桩效符号発生手段からの施散符号と同一若しくは㛎関の大きい，M西の苻号を発生をせ，この苻号と要信信号とに基つき受信信号のスペクトラムを逆
 し，フィルタを通過をせることにより位梠制䚡情
手段から出力きれる符号の位相を制御する。
（八）矣菣倒
弟1挤は本充明システムに係る送信襍の一実施例を示す図である。第1図において，（1）は異な る M 個（図示の場台では， 4 個）の拡散符号を発生方る兹散符号䇼生舞で，第1莅散第号（PN 1）を発生する第1拡敨符号発生部（ia）と，第2应僌符号（PN2）を発生する第2掖敨府号発生部（1 b）と，第3脏敞符号（PN3）を発
符号（PN4）を発生する第 4 拡散符号発生部

の慗号長，発生速度は全く同じであり，また各符号間では同期加完全にとれているものとする。
 コータ，（3）は第1～第4拡敨符号発生部からの拡䑤符号の内， 1 つの拡敨符号をテコータ（2）か らの逥択信号に応して㟟択する㟟択回路，（4）は
号発生回路（ら）からの旅送波信号とに基つ㪯钲送波信号のスベクトラムを拡散する拡敞部で，系宣器より情成されている。（6）はスペクトラム拉敬 きれた信号を送信する送信アンデャである。

第2困は本発明システムに保る受信機の一実旅例を示す図である。第2図において，（7）は受信 アンテナ，（8a）は第1摭䰚符号贾生部（1a） からの第1应散符号（PN1）と同一若しくは相闌の大きい第1府号（PN1）を発生する第1符号発生部，（8b）は第2拉散符号発生部（1 b） からの第2茫敨符号（PN2）上同—若しくは相関の大きい第2符号（PN2＇）を筅生する第2符号拪生部，（8c）は第3拡䯘発生部（1c）
タク・ティサ回路や遅延ロックループ回路であ
次に, 致作について談明する。
今, 伝達すべき清報加「00」, 「011」.
「10」, 「11」の4つであったとすると, テ コータ（2）は前記情热に応にて摭敦等号を選㘮方
 き，第上拡敞符号（ P N1）を逼択する信号を，情惊「01」のとき，第2应故符号（PN2）を
符号（FN3）を逪抧する信号「ii」のとき，第4拡放府号（PN4）を㟟択する信号を出力す る。
 （3）方ら出方きれる符号は，第3䍒に示す如く第 1 应敞府号（PN1），第2拉敞府号（PN2）第 3 拉敞符号（PN3），第4拡敞符号（PN4） の頃になる。
㧤䑤部（4）に供粭をれ，拡散部（4）において搬送

からの第3拡散符号発生部（PN3）と同一君し くは相関の大きい第3符号（PN•）を発生する
 （1d）からの第4抎敨符号（PN4）と同一若 しくは相関の大きい第4符号（PN4）を発生 する第4符号発生部である。この第1—第4符号
符号長，発生速度が同一で，然も同期しているも のとする。（9a）は受信信号と第1符号（PN

算器，（9c）は受信信号と第3符号（PN 3•）とを采第する第3乗算器，（9d）は受侓信号と第4符号（PN4）とを乗算をる亭4乗無器，（10）は第1～第4来賭器（9a）（9 d）の出力を加算する加算器，（11）は加算器（10） の出力曟に接繶をれ，搬送波信号成分を通過させ るバントパスフィルタ，（12）はパンドパスフィル夕（11）を通遍した信号に基つき符号発生部から出力きれる符号の位相を制御する位相制御回路で，

波信号発生回路（5）加らの般送波信号と秉算きれ る。その結果，搬送波信号のスペクトラムが艮敬 きれる。斯をスペクトラム苰散信号は，造信アン テナ（6）を芹して送信それる。

一方，受信側では，受信アンテナ（7）にて受信 きれたスペクトラム茫教信号と算1—第4答号発生部（8 a）～（ 8 d）からの符号とを各々乘算

今，受信㑡符号と送信側符号とが同期し，且つ スペク！ラム茫敨信号に含まれむ符号累列が第4凶（a）に示す如くなっていたとすると，このスペ クトラム应㬚信号と第1符号とを乗算する第1乗筆器（9a）の出力端には，第4図（c）に示す如 く，受信信号に含まれる第1泫敞符号の期㬗位け襒送波信号が再生きれる。尚，第を昿敨苻号～第 4 拉散符号の期間には，各拡敞符号にてスペクト ラム拡敝きれている信号が第1符号（PN1•） にて要にスペクトラムが应龍きれることになり，凝送波信号は再生きれない。

以下，同様に第2乗算器（9b）の出力端に

算器（9 d）の出力嵲には，第4拡散符号の期間 だけ热羔波信号加再生きれる（算4図（e）（g） （i）䚚）。

而して，加算器（10）の出力端には，撤送波信号

去した喰，位柏制澥回路（12）に囬給することによ り符畧発生器から発生される符号の位相を制御す ることが可能になる。
列にてスペラトラム拡玟した場台と同暴に，送德做符号と受信㑡符号との位相関保に応してレベル が変化するなめ，このレペル変化を利用して住娼制餜を違成すること出出委る。
 は，従来と同様に受信側符号の位相を順次変化き せることにより違䖵きれるものとする。

である。
（1）…拡数符号発生器，（2）‥テテコータ，（3）

 …受信テンテナ（受信手段），（8a）（8b） （ 8 c）（ 8 d）\cdots 符号発生部，（ 9 a）（9b） （ 9 c ）（ 9 d ）…系算器，（10）…加算器，（11）

 きれた，搟送波信号をスペクトラム拡澈する寺種々変更が可能であり，また便用きれる符号系列 6 4つに焜定きれるものではない。
（ト）発昭の効畳
本発明に依れば，应敞符号発生手段からのM㑭 の应耍符号の内，1つを情報信号に応じて部抧し て，この逪択きれた拉敬符号にてスペクトラム应
 と受倍信号とを各々采算し，キの采算出力を加買 とて得られた㷌号に基つを仿相制御を行なうよう

上を計れる。同時に，システム全体の情成が簡弾 こなり，コストの低減が計れる。

4．葍面の筒草な談明

 2 図は本発明システムの受信假を示な图，穿3図 （a）（b）は送住側の動作を説明するための図，第

（a）情報信昜

（D）㹡数符号	PN 1	PN2	PN 3	PN 4

（D）㹡敕苻号

（a）情新侸皃

第8

第4圈

（a）受倍倍号 | | PNI | PN2 | PN3 | PN4 |
| :--- | :--- | :--- | :--- | :--- |

（c）第1采草出力

（d）第2符号	PN 2＇	PN2＇	PN2＇	PN2＇

（e）第2来買出力

 （腩送洨成分）

（h）第公苻号 | | PN 4^{\prime} | PN 4 | PN 4 | PN 4^{\prime} |
| :--- | :--- | :--- | :--- | :--- |

（i）管4东荋朔 （斯送浪地分）

Espacenet

Bibliographic data: JP11154929 (A) - 1999-06-08

DIGITAL MODULATION DEMODULATION SYSTEM FOR RADIO COMMUNICATION

Inventor(s):	YAMAO YASUSHI; ITOU SHIYOUGO; OKUBO SHINZO; SHIMADA KOHARUTO; ADACHI FUMIYUKI \pm
Applicant(s):	NIPPON TELEGRAPH \& TELEPHONE \pm
Classification:	- H04J13/00; H04L27/00; (IPC1- international: 7): H04J13/00; H04L27/00 - European:
Application number:	JP19970319939 19971120
Priority number (s):	JP19970319939 19971120

Abstract of 3811954929 (A)

PROBLEM TO BE SOLVED: To provide a digital modulation demodulation system for radio communication where error hardy takes place in fading while keeping a feature of the M-ary modulation demodulation system immune to interference. SOLUTION: A division section 5 divides transmission information into blocks each consisting of L.N bits and further divides each block into $N L$-bits information series. Each M-ary coder 2 generates an M-ary orthogonal code for each L-bits information series. N-sets of orthogonal codes per block are multiplexed, each orthogonal code is spreaded into a length multiplica by N on a time base, and the carrier is digitally modulated by the multiplexed signal in order to be transmitted. A synchronization detector 3 at a receiver side detects a reception signal, a detection output is demuitiplexed into N -sets of othogonal codes, each M-ary decoder 4 determines correlation of each orthogonal code and discriminates an orthogona: code having the highest correlation, and the signa: is demodulated. The L-bits information series corresponding to the orthogonal code are outpuifed, and the outputed N L-bits infomaton series are restored to a signal in LN bits per reception unit.

Last updated:

Whrom．			F＊		
\＄20．s	N\＃W		\％0＊s	1\％\％	A
5088	\％ w^{6}		8 EO	S\％	\％

4． 3 \＆

 SAR，专K…

要
 \％

 ＊

 कि\＃

 Wも
 स \＆
 \＆
 2．

 K $\%$ 产登

＋क介世

Fobs 2

族。
O y 大

 K U ※
 ब

 $\%$ \％

 ＊\＆＂

 ※

 4%

［8：0）？

「
 \＃

 \％\％w w サどめ
 अ
 के

 ज4 M

（601） 1
ज4me\％

 kक

队） K\＆
［0\％ 31 ］

人

女 \％

解永。

 ॠ，अ

 $\$$ ．

\％

 की

 n．\％\＃m

 से से

 H2 （E）－

 के

 ＊

 \＆
 3

 औस को
〔人

 ry \％

 \％©

 $\%$ ．
（002．

 －A

 Kッ

 \＆ s 。

 क女 \％

 की （b）

人

Faxys

 （4）＊

 －

\｜mbemmark

 \＆केष

 $\%$ ．

［4S 1 W

 $\%$ ．

 \％े8．
UAS Fress mak
（＊）ल्याय？

3 B6s，memma

5 क＂

$\because 32$ के \％
\＆क人\％
1）के \％\％
14 sk＊）ksk

\#2)

© 3

(4)

\&

* 3

\&c|

【然 ©

\%

Hes

से

फिस

Espacenet

Bibliographic data: JP2004274794 (A) - 2004-09-30

METHOD FOR GENERATING CODE RELATED TO PREAMBLE IN RANDOM ACCESS CHANNEL
\(\left.\begin{array}{lll}Inventor(s): \& DICK STEPHEN G; DENNEAN CHARLES; ZEIRA ELDAD;

\& PAN JUNG-LIN; SHIN SUNG-HYUK; ZEIRA ARIELA \pm\end{array}\right]\)| Applicant(s): | INTERDIGITAL TECH CORP \pm |
| :--- | :--- |
| | - |
| Classification: | international: |
| | H04B1/707; H04J13/00; H04J13/10; |
| | (IPC1-7): H04B1/707 |

Application number:

JP20040175917 20040614
Priority number US19980112299P 19981214; US19990116284P 19990119;
(s): US19990125418P 19990322; US19990129177P 19990414

Also published JP4589662 (B2) WO0036761 (A2) WO0036761 (A3) as:

US2010240411 (A1) US2009245220 (A1) more

Abstract of 182004274794 (A)
PROBLEM TO BE SOLVED: To provide a CDMA transmission and reception system that ensures high quality tranemission and reception notwithstanding a communication distance and the Doppler effects. ; SOLUTION: A detector of the system detects a received digital signature using ar energy output from a matched filter. The energies are tabulated according to an anticipated signature pattern for variable transmission distances. The tabulation accounts for expected round trip transmission delays and allows processing of the accumulated symbols to derive a correct signature independently of whether coherent or non-coherent signature coding is used and multipie Doppler channels are present. ; COPYRIGHT: (C) 2004, PO ONCIP

\＄6ו\％e\％		$\geqslant 1$			
	Sncf	88.1	13\％	3	\％ $\mathrm{K} \mathrm{m} \%$

413 \％			\％p4x
			＊－\％3＞
4为限	3880\％		
	W		
		\％盛紋之	146\％\％88
	媇的		
	\％	s\％	
\％\％\％\％e			
	W48，48		68

渗学

（1）
为䍝

 ， F

 きे太 स＊
4 W W \％

＂केक्ष

\% \&
F

\% \%
1\% F 4.

今心列

जy>\%

1\％

thems．

Fको
$\cdots \infty$ M

कळत

Fकes
Amm： U

कल？

सH
 S\％

 ज से ＊。

Fकo：

 ，わん

 ＊．
Wess

世8

कले

\＃ッチ．

 \＆

乡 （
 \＆\％8．
कल：

 $\$ \infty \pi$

कलक

 Whmymb

ABCT

＋के F

 \％
 सिए

$\% 1 \%$

tक

薬

荌。
$\$$ \％

Sका

委

F00\％


```
    }क%%
    |*)]
```

			ジャ゙と
swam		Fras	\％\＃

\bigcirc	0	\％	1
\％	0． 8 \％	3\％	$\stackrel{1}{8}$
13	0.56	\％	2
88	0．$\%$ \％	\＄0	3
28	0.3	8 6	3
\％	0.10	688	3
$3 *$	＊）	8 \％	＊

Abstract

以 \＄ळx कल⿱⿱亠䒑日\zh20 Fक्ष


```
$ws
```



```
Iक##
```



```
    <%>
```



```
    #%*:
```



```
###*)
```



```
\क%\
```



```
8,
    %o%
```



```
&%|
```



```
|क",
```


 s．

\｛को।

ल．

 E\％

‘os？

कल）

Tक्ष

 せ＊＊

お世


```
##|
```


※… $8 * 8 \%$ 。

FOXY

$\$$
 3.

毋为为
\＆NAN：

$$
\left.S_{\mathrm{s}:} \mathrm{m}, \mathrm{~A}\right) \mathrm{m}
$$

Es 8

\｛क्ष）

B \＃世 ©

 4.383

今

末．


```
**&&%*
    &%<13
```



```
#sus%
```



```
F#s%
```



```
            &*
```



```
%%s*
```



```
{倉*
```



```
}ि%
```



```
    &凶<}
```



```
##%
```


おकV

 \％
 te
 \＃ से
Wad？
\＃Tct

 ¢2 \quad ， －सF

Fकेल

क\＃
TS \＆：：OMme8क
सESm $\mathrm{A}, \mathrm{k} \%, \mathrm{k}, \mathrm{Z}, 3$

\％\％
绿。

$\$ \mathrm{~m} \times \mathrm{k} \mathrm{k}$
\％ $\mathrm{x}: \mathrm{B}$ \＆

Wmonk


```
wok:
```



```
कल\
##F%##%&, m, 4
```



```
Fक%!
```



```
{े%:
<\infty>
```



```
#,*
<\infty<]
```



```
\x>3
%%%
```


Equatien 9

$$
\begin{aligned}
& \text { : } 16 \times A=A
\end{aligned}
$$

$$
\begin{aligned}
& :=14 \times 2 \\
& -\$ \% \quad \$ \geqslant{ }^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& }
\end{aligned}
$$

引ゃक：

 3世 \％mak

｜कल।

1． mbs\％

 4

क\％\％

中

कल，

$\left\{\begin{array}{c}\text { an } \\ 0 \mid\end{array}\right.$
\＄Nes：

$y_{i t}=\sum_{s=1}^{3 n}\left|f(n \Delta t) \times \vec{s}_{i} \times \exp \left(-j \bullet 2 \pi f_{e n} n \Delta t\right)\right|^{2}$, Equation 10


```
#め|
```



```
fere%
```



```
&%%%N:
F%>4
```



```
क<%
```



```
    &&, %"m*&&,&&
***2}
```



```
Fmos:
```



```
    ***?
```



```
<<.
##%%
```



```
                            *)
```



```
4%4%%
```



```
<<<&&%*%
```



```
$&%
```



```
*F%
```



```
***%%&|
$%%%
% %
```



```
*% w% w
24 及##
```



```
8 人\% % %
```



```
@3 केलयके
```



```
* % <<%
6&, %2b &%*
G% सेक्षबल&%%
7% ###<4.%
```



```
#s e-%\mp@code{#H*}
```



```
*4 m&k&*** 
```



```
** *紮弯
106 %"$%%%
```



```
*0% $**ms%temt?
```



```
23* ***&&%%%
```


\%

 186

Fen

[Fl

[\%3]

Fk 为

Hac

$m \mathrm{me}$

18:3

TW.

5\%

10\%

Fig Yc

18.

Frse

F36\%

1ame

1825

FW. x_{2}

सके

裡, 13
180)

$10 \infty 1$

Fis. 13
1\%88:

Mc. 10

```
###*)
```



```
        * %
```



```
        *
```


Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Information Disclosure Statement (IDS) Form (SB08)	2101-3596_120911_IDSForm.		no	4
Warnings:					
Information:					

A U.S. Patent Number Citation or a U.S. Publication Number Citation is required in the Information Disclosure Statement (IDS) form for autoloading of data into USPTO systems. You may remove the form to add the required data in order to correct the Informational Message if you are citing U.S. References. If you chose not to include U.S. References, the image of the form will be processed and be made available within the Image File Wrapper (IFW) system. However, no data will be extracted from this form. Any additional data such as Foreign Patent Documents or Non Patent Literature will be manually reviewed and keyed into USPTO systems.							
2		Foreign Reference	F1_JP2005260337.pdf	1269319	no	24	
Warnings:							
Information:							
3			Foreign Reference	F2_JP2004274794.pdf	1107072	no	21
Warnings:							
Information:							
4		Foreign Reference	F3_JP2004512728.pdf	2041519	no	46	
		b4a 1 3e394d4362b44462048a25315a2619					
Warnings:							
Information:							
5			Foreign Reference	F4_JP435332.pdf	518705	no	6
		e2165ccdf70051c8bc483e2b98ise2F4af549					
Warnings:							
Information:							
6		Foreign Reference	F5_JP11154929.pdf	612130	no	11	
		b9ddccd0301b90d55488cc91206ed 3 bodd وber34					
Warnings:							
Information:							
Total Files Size (in bytes):				6161158			

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt; in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	Khajuria, Shripal K.	
	Attorney Docket Number		2101-3596

U.S.PATENTS Remove											
Examiner Initial*	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1										
If you wish to add additional U.S. Patent citation information please click the Add button. Add											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite		Publication Number	Kind Code ${ }^{1}$	Publicat Date		Name of Pa of cited Doc	ntee or Applicant ment	Pag Rele Figu	s,Columns,Lines where vant Passages or Releva es Appear	ant
1											
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	Cite No	Foreign Document Number ${ }^{3}$		Country Code ${ }^{2}$		Kind Code ${ }^{4}$	Publication Date	Name of Patentee or Applicant of cited Document		Pages, Columns, Lines where Reievant Passages or Relevant Figures Appear	St T^{5}
	1	2005	5260337	JP			2005-09-22	Renesas Tech Corp.			\square
	2	200	4274794	JP			2004-09-30	Interdigital Tech Corp.			\square
	3	200	4512728	JP			2004-04-22	Samsung Electronics Co. Ltd.			\square

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	12303947
	Filing Date	2010-07-07
	First Named Inventor	Yeong Hyeon Kwon
	Art Unit	2478
	Examiner Name	Khajuria, Shripal K.
	Attorney Docket Num	er $2101-3596$

	4	04-035332	JP	1992-02-06	Sanyo Electric Co., Ltd.		\square
	5	11-154929	JP	1999-06-08	Nippon Telegraph \& Telephone		\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Add							
NON-PATENT LITERATURE DOCUMENTS Remove							
Examiner Initials*	$\begin{array}{\|l\|l\|} \text { Cite } \\ \text { No } \end{array}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.					
	1						\square
If you wish to add additional non-patent literature document citation information please click the Add button Add							
EXAMINER SIGNATURE							
Examiner Signature					Date Considered		
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.							
${ }^{1}$ See Kind Codes of USPTO Patent Documents at www. USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.							

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	12303947
	Filing Date	2010-07-07
	First Named Inventor	Yeong Hyeon Kwon
	Art Unit	2478
	Examiner Name	Khajuria, Shripal K.
	Attorney Docket Number	er $2101-3596$

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56 (c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.
SIGNATURE
A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR $1.4(\mathrm{~d})$ for the form of the signature.

Signature	IDavid G. Majdali/	Date (YYYY-MM-DD)	2011-12-22
Name/Print	David G. Majdali	Registration Number	53,257

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552 a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Espacenet

Bibliographic data: JP2005260337 (A) - 2005-09-22

DEMODULATION CIRCUT AMD RADIO COMMUNICATION SYSTEM

Inventor(s):	MATSUDA KEISUKE; OKUBO TAKASHI; HORI JINICHI;
Applicant(s):	TAKADA KAZUYUKI \pm
	RENESAS TECH CORP \pm

Classification:	international:	H04J11/00; H04L25/02; H04L27/14; H04L27/26; H04L27/38; H04L27/00; (IPC1-7): H04J11/00
	- European:	H04L25/02C5; HO4L27/26M5C3;

Application JP20040065567 20040309
number:
Priority number
(s):

Also published
as:
JP20040065567 20040309
US2005213689 (A1)

Abstract of SP2005260337 (A)

PROBLEM TO BE SOLVED: To provice a
semiconductor integrated circuit for communication having a builtin OFDM demodulation circuit capable of reuucing a delay tme from packet reception to demodulated data output, and a radio
communication system employing the same.
SOLUTION: The demodulation circuit demoduiates
a reception signal of a packet modulated in an orthogonal frequency division multiplexing system and containing a preamble having two or more continuous fixed signal sequences. The circuit is provided with a frequency error
estimation/correction processing function (210) for estimating a frequency error of a reception signal using the received preamble to correct the reception signal, a fast Fourier transform processing function (FFT section 220) for transforming time axis information into frequency axis inturmation fiom the received reception signal, a transmission path response estimation/correction processing function (230) for estimating the status of a transmission path from the transformed signal to correct the reception signal, and an averaging processing
 function (214); for averaging the reception signal atter the frequency error correction. The circuit is configured so that the averaging processing may be executed before execution of the fast Fourier transform processing.; COPYRIGHT: (C) $2005, \mathrm{PPO} \mathrm{NCIPI}$

	請公瑹（A） 1 背
 W\＆ 	 \＄ 药
＊\％（8） 8 ） $\% 8$ 人 — 列 θ 3＊＊kym	


```
##%m%
```



```
    ##sw%)
ym変紋を
```



```
#ymem
```



```
    |####%}
```



```
&
4%2ms
```



```
F
```



```
    f%=m%%
```



```
    #%%%
```



```
|W\\M\:
```


चिक्ये
Wan

 \＆\＆\％mbun

 स

若
了要要：
M

 5：

\＃
 4

\％$\%$ स m
数：

\#\# m

?

 K
Mm:

\#

\#\#wn

f\%

Fon?

$\{\infty \times\}$

 $\$ \%$.
Woys
世，

Fकण
\＃2 \＆\＆\＆

 F－

「おめ？

 \dot{z} ．

$\omega \mathrm{m}$

 －／x \geqslant \｛en

S A

 －

mb

Foms
\％

1कण

 A 以 W W

 Wr

 B以 以

W\％

 \％啇幺

 \＃F स
Exan


```
4%)
```



```
    %%%}
```



```
**
```



```
\square##*)
```



```
    |%|
```



```
    #क%
```



```
W%ms=के%
W%%
```



```
कN%%
```


参ヶ

|क्यु
4 k

$\{\omega \%$

कल
48xas:

Fक्य

※थ

\&\%

 8. \# \% ta *

1\%" 18


```
    #*)
```



```
    F%%
```



```
<<ses,&
1%%1
```



```
    F%%*
```



```
&े%%.
Tक< S
```



```
**S
```



```
&%%%%%*&%%%%
$\infty,1
```



```
#mak
```



```
&栄.
{ब%|
```



```
F%%%
```



```
#%:
```



```
\क<>
    *)&%%**)
```



```
Fकw%
[*<"
```

$$
\begin{aligned}
& n=16 n_{1}+n_{2}^{+}\left(n_{3}=0,23_{3} n_{2}^{*}=0,1, \ldots, 8\right) \\
& k=k_{1}+4 k_{2}^{\prime}\left(k_{1}=01,23, k_{2}^{\prime}-0,1,2, \ldots 15\right)
\end{aligned}
$$

$$
\begin{aligned}
& W_{3}^{x \dot{x}} \cdots \exp \left(\frac{2 m k}{N}\right)=\cos \left(\frac{2 m k}{N}\right) \cdots / \cdot \sin \left(\frac{2 \pi k}{N}\right)
\end{aligned}
$$

[^1]

 सके
$\uparrow \%$
\[

$$
\begin{aligned}
& n_{2}^{*}=4 n_{3}+n_{3} \quad\left(n_{2}=0,1,2,3 ; n_{3}=0,12,3\right) \\
& k_{2}=k_{2}+4 k_{3} \quad\left(k_{2}=0,1,2,3, k_{3}=0,1,2,3\right)
\end{aligned}
$$
\]

कबत

क人3
1**)

$$
\sum_{n_{3}=0}^{3} \widetilde{x}_{2}\left[k_{1}, k_{2}, n_{2}, n_{3} W_{4}^{n_{3} k_{3}}\right.
$$

कलa

 $\%$
Imes
[数]

$$
W_{k}^{k k}=\exp \left(-\frac{2 m k}{4}\right) \cdots \cos \left(\frac{2 \pi k}{4}\right)-j \cdot \sin \left(\frac{2 \pi k}{4}\right)
$$

[^2]

कली

के

F\％

Fक人？

太

要之

\｛क्य

W1 W\％

 \＆
 4

Fown

 कक्री
 स w w m U

Wकी।

今世，… ＊

Fके：
『क।

$$
\begin{aligned}
& X\left(k_{x}\right)=\sum_{k=1}^{N=}\left(x_{x}(n)+j x_{s i t}(n)\left(\cos \frac{2 \pi k_{s}}{N}-j \sin \frac{2 m k_{x}}{N}\right)\right. \\
& Y\left(k_{y}\right)=\sum_{x=}^{N-k}\left(y_{N}(n)+j y_{s}(n)\left(\cos \frac{2 \pi k_{y}}{N} \cdots \sin \frac{2 \pi k_{y}}{N}\right)\right.
\end{aligned}
$$

ॠक

甘

［W6］

$$
\begin{aligned}
& \frac{\operatorname{Cb})+Y(k)}{2}= \\
& \sum_{m=0}^{m-1}\left(\frac{x_{m}(n)+y_{x}(n)}{2}+j \frac{x_{\mathrm{s}}(n)+y_{\mathrm{s}}(n)}{2}\right)\left(\cos \frac{2 m b}{N} \cdots \sin \frac{2 m s k}{N}\right)
\end{aligned}
$$

fos）
 ＊mblck

अक
वसेक＂

 कलक
F\%
 जिएन

 अै

شक:

引क")

 $3 \pm+5 * 8$

个mon

 [को)
A.

Ims:

令.
W\%
xkems)

$\operatorname{sic} \boldsymbol{k}\}$

 \&

 m

 कस \%

引लके

Mes:
 \%
 \& (

\%कले
 प

 *2.

F

$\omega \in$

 फल
© R \&

क\# \%
ब

केत

कले

 \$
क"

 15
Fक्\%


```
#%%
```



```
    $क#
```



```
#*:
```



```
F%%%ч%*.
```



```
<<<%%>
```



```
F%***
```



```
2%%***
```



```
    |me%
    26! अैF%
```



```
2&& आ< &&B
2<% 世%%%
2& % % % & 
2%1 %%%%%%%%%
```



```
A* 若&**
```



```
47% 苑良
```


1031

［\％\％）

（\％）

1081

（18）

[s\%

1\%

1\% 1

$\$$
(\#)

棌

10\%

1814

Fme

?

4\%\%

Wers

\{ल女?

18%

s:
*
$\because \otimes+\infty$
:

3sem

[^3]

ORIGINAL							INTERNATIONAL CLASSIFICATION										
CLASS			subCLASS				CLAIMED							NON-CLAIMED			
370			328					H	0	4	4	L	12/50(2006.0)				
CROSS REFERENCE(S)																	
CLASS	SUBCLASS (ONE SUBCLASS PER BLOCK)																
370	329	330															

	Claims renumbered in the same order as presented by applicant								CPA		T.D.	R.1.47			
Final	Original														
1	31														
2	32														
3	33														
4	34														
5	35														
6	36														
7	37														
8	38														
9	39														
10	40														
11	41														
12	42														
13	43														
14	44														
15	45														
16	46														

/S.K./ Examiner.Art Unit 2478 (Assistant Examiner)	$02 / 24 / 2012$ (Date)	Total Claims Allowed:16	
/JEFFREY PWU/ Supervisory Patent Examiner.Art Unit 2478 (Primary Examiner)	$02 / 25 / 2012$ (Date)	O.G. Print Claim(s) 1	O.G. Print Figure 12

Index of Claims	Application/Control No. 12303947	Applicant(s)/Patent Under Reexamination KWON ET AL.
	Examiner SHRIPAL KHAJURIA	Art Unit 2478

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
\mathbf{O}	Objected

NOTICE OF ALLOWANCE AND FEE(S) DUE

358847590 03/06/2012	EXAMINER	
LEE, HONG, DEGERMAN, KANG \& WAIMEY	KHAJURIA, SHRIPAL K	
660 S. FIGUEROA STREET		
Suite 2300	ART UNIT	PAPER NUMBER
LOS ANGELES, CA 90017	2478	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/303,947	07/07/2010	Yeong Hyeon Kwon	2101-3596	1730

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1740	\$300	\$0	\$2040	06/06/2012

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box $5 b$ on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5 a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " $4 b$ " of Part B-Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.
IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where propriate All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address) Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.
$35884 \quad 7590$ 03/06/2012
LEE, HONG, DEGERMAN, KANG \& WAIMEY
660 S. FIGUEROA STREET
Suite 2300
LOS ANGELES, CA 90017

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile ransmitted to the USPTO (571) 273-2885, on the date indicated below.

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$12 / 303,947$	$07 / 07 / 2010$	Yeong Hyeon Kwon	$2101-3596$	

TITLE OF INVENTION: METHOD OF TRANSMITTING DATA IN A MOBILE COMMUNICATION SYSTEM

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1740	\$300	\$0	\$2040	06/06/2012
EXAMINER		ART UNIT	CLASS-SUBCLASS			
KHAJURIA, SHRIPAL K		2478	370-328000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \square Change of correspondence address (or Change of Correspondence Address form $\mathrm{PTO} / \mathrm{SB} / 122$) attached. "Fee Address" indication (or "Fee Address" Indication form $\mathrm{PTO} / \mathrm{SB} / 47$; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively,		a 1 to 2 is 3	

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \quad Individual \quad Corporation or other private group entity $\quad \square$ Government

```
4a. The following fee(s) are submitted:
    \square \text { Issue Fee}
    \square \text { Publication Fee (No small entity discount permitted)}
    \square \text { Advance Order - \# of Copies}
```

\qquad

4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above) \square A check is enclosed.
\square Payment by credit card. Form PTO-2038 is attached.
\square The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number (enclose an extra copy of this form).
\square b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27(g)(2).

Change in Entity Status (from status indicated above)
$\square_{\text {a. Applicant claims SMALL ENTITY status. See } 37 \text { CFR 1.27. }}$.
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.

| Authorized Signature | Date |
| :--- | :--- | :--- |
| Typed or printed name | Registration No. |

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450 , Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P. O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/303,947	07/07/2010	Yeong Hyeon Kwon	2101-3596	1730
35884	03/06/2012		EXAMINER	
LEE, HONG, DEGERMAN, KANG \& WAIMEY			KHAJURIA, SHRIPAL K	
Suite 2300			ART UNIT	PAPER NUMBER
LOS ANGELES, CA 90017			2478	

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 5 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 5 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Receipt date: $12 / 21 / 2011$ INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	12303947	12303947-GAU:2478
	Filing Date	2010-07-07	
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit	2478	
	Examiner Name	Khajuria, Shripal K.	
	Attorney Docket Number	2101-3596	

Search Notes	Application/Control No. 12303947	Applicant(s)/Patent Under Reexamination KWON ET AL.
	Examiner SHRIPAL KHAJURIA	Art Unit 2478

SEARCHED

Class	Subclass	Date	Examiner
370	328	$9 / 7 / 2011$	skk
370	328	$2 / 24 / 2012$	skk

SEARCH NOTES

Search Notes	Date	Examiner
Text search of East (USPat, USPG_Pub, JPO, EPO, Derwent, IBM_TDB) and Inventor search	$9 / 7 / 2011$	skk
Updated Text search of East (USPat, USPG_Pub, JPO, EPO, Derwent, IBM_TDB)	$2 / 24 / 2012$	skk
Limited class search of 370/329 and 370/330	$2 / 24 / 2012$	skk
Consulted Jeff Pwu on allowable subject matter	$2 / 24 / 2012$	skk

INTERFERENCE SEARCH

Class	Subclass	Date	Examiner
PgPub and UnPub	see attached search history	$2 / 24 / 2012$	skk

EAST Search History
EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	14884	kwon.in.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 58 \end{aligned}$
\square	29796	han.in.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 58 \end{aligned}$
L3	55702	park.in.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 58 \end{aligned}$
L4	125629	kim.in.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 58 \end{aligned}$
L5	195557	lee.in.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 58 \end{aligned}$
L6	1930	noh.in.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2212 / 02 / 24 \\ & 22: 58 \end{aligned}$
L7	4	(L1 L2 L3 L4 L5 L6) and (preamble same prefix ssame repeated). clm.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 58 \end{aligned}$
L8	8822	(370/328).CCLS.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 58 \end{aligned}$
L17	455	cyclic near prefix and preamble same repeat\$3 and length	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 02 \end{aligned}$
L19	87	cyclic near prefix and preamble and concatenating	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 03 \end{aligned}$
L20	176	prefix and preamble and concatenating	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 03 \end{aligned}$
L21	166	prefix and preamble and concatenating and length	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 03 \end{aligned}$
L23	8753	(370/329).OCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 05 \end{aligned}$
L24	1248	(370/330).CCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 06 \end{aligned}$
L25	9909	(123 124) prefix and preamble and concatenating	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 06 \end{aligned}$
L26	11	(123 124) and prefix and preamble and	US-PGPUB; USPAT; USOCR; FPRS; EPO;	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 06 \end{aligned}$

		concatenating	IJPO; DERWENT; IBM TDB			
L27	9903	$\begin{aligned} & (123 \mathrm{l24)} \text { prefix and } \\ & \text { preamble and } \\ & \text { concatenating and length } \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 06 \end{aligned}$
L28	7	(I23 I24) and prefix and preamble and concatenating and length	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 06 \end{aligned}$
S1	7734	(370/328).CCLS.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 0 \\ & 18: 00 \end{aligned}$
S2	13808	kwon.in.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 18: 08 \end{aligned}$
S3	27622	han.in.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 18: 08 \end{aligned}$
S4	52224	park.in.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 18: 08 \end{aligned}$
S5	117541	kim.in.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 18: 08 \end{aligned}$
S6	185530	lee.in.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 18: 08 \end{aligned}$
S7	1736	noh.in.	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 18: 08 \end{aligned}$
S8	4	$\begin{aligned} & \text { (S2 S3 S4 S5 S6 S7) and } \\ & \text { (preamble same prefix } \\ & \text { same repeated). clm. } \end{aligned}$	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 18: 08 \end{aligned}$
S9	1	("20050286409").PN.	$\begin{aligned} & \text { US-PGPUB; USPAT; } \\ & \text { USOCR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 09 / 01 \\ & 19: 55 \end{aligned}$
S10	463	cyclic near prefix and preamble same repeat\$3	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 07 \\ & 10: 52 \end{aligned}$
S11	51	cyclic near prefix and preamble same repeat\$3 land CAZAC	US-PGPUB; USPAT; USOCR	OR	OFF	$\begin{aligned} & 2011 / 09 / 07 \\ & 10: 52 \end{aligned}$

EAST Search History (Interference)

Ref	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp		
L9	14899	kwon.in.	US-PGPUB; USPAT; UPAD	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 59 \end{aligned}$		
L10	29820	han.in.	US-PGPUB; USPAT: UPAD	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 59 \end{aligned}$		
L11	55137	park.in.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; UPAD } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 22: 59 \end{aligned}$		
L12	125838	kim.in.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; UPAD } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 00 \end{aligned}$		
L13	187828	lee.in.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; UPAD } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 00 \end{aligned}$		
L14	4	(19 \|10 I11	12	13) and (preamble same prefix same repeated). clm.	US-PGPUB; USPAT; UPAD	OR	OFF	2
L15	523	cyclic near prefix and preamble same repeat\$3	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; UPAD } \end{aligned}$	OR	OFF	$\begin{aligned} & 2212 / 02 / 24 \\ & 23: 02 \end{aligned}$		
L16	455	cyclic near prefix and preamble same repeat $\$ 3$ and length	US-PGPUB; USPAT; UPAD	OR	OFF	$2012 / 02 / 24$		

L18	26	cyclic near prefix and preamble and concatenating	USPAT; UPAD	OR	OFF	$\begin{aligned} & 2012 / 02 / 24 \\ & 23: 03 \end{aligned}$
L22	165	prefix and preamble and concatenating and length	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; UPAD } \end{aligned}$	OR	OFF	2

2/24/2012 11:07:05 PM
 C:\Users\ skhajuria\ Documents EAST W orkspaces\12303947.wsp

SK/	CHA	CHANG ET AL: "Synchronization Method Based on a New Constant Envelop Preamble for OFDM Systems," IEEE TRANSACTIONS ON BROADCASTING, vol. 51, no. 1, March 2005, pp. 139-143, XP-011127926.				
S.K.	TEX	TEXAS INSTRUMENTS: "On Allocation of Uplink Pilot Sub-Channels in EUTRA SC-FDMA," R1-050822, 3GPP TSGRAN WG1 Ad Hoc on LTE, August 2005, XP-002448008.				\square
If you wish to add additional non-patent literature document citation information please click the Add button Add						
EXAMINER SIGNATURE						
Examiner Signature		/Shripal Khajuria/	Date Considered	/S.K.		
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.						
${ }^{1}$ See Kind Codes of USPTO Patent Documents at www. USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.						

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	KHAJURIA, SHRIPAL K	
	Attorney Docket Number		2101-3596

U.S.PATENTS Remove											
Examiner Initial*	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1										
If you wish to add additional U.S. Patent citation information please click the Add button. Add											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite		Publication Number	Kind Code1	Publica Date		Name of Pa of cited Doc	ntee or Applicant ment		s,Columns,Lines where vant Passages or Relev es Appear	
1											
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	Cite No		reign Document mber ${ }^{3}$	Country Code²		Kind Code ${ }^{4}$	Pubication Date	Name of Patente Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear	T5
/S.K.	1		5/011128	WO			2005-02-03	COHDA WIRELESS PTY L			\square
IS.K.	2		6/015108	WO			2006-02-09	ZTE SAN DIEGO, INC			\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Add											
NON-PATENT LITERATURE DOCUMENTS Remove											

Receipt date: 10/31/2011 INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947	12303947-GAU:2478
	Filing Date		2010-07-07	
	First Named Inventor	Yeong Hyeon Kwon		
	Art Unit		2478	
	Examiner Name	KHAJURIA, SHRIPAL K		
	Attorney Docket Number		2101-3596	

Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.				T5
	1					\square
If you wish to add additional non-patent literature document citation information please click the Add button Add						
EXAMINER SIGNATURE						
Examiner Signature			Shripal Khajuria/	Date Considered	02/24/2012	
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.						
${ }^{1}$ See Kind Codes of USPTO Patent Documents at www. USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.						

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 16 June 2005 (16.06.2005)

PCT

(10) International Publication Number WO 2005/055527 A1
(51) International Patent Classification': H04L 12/28, 12/56, H04Q 7/38, H04L 1/00, 27/26, 1/06, Н04B 7/26
(21) International Application Number:

PCT/US2004/038198
(22) International Filing Date:

15 November 2004 (15.11.2004)
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data: 10/725,904 1 December 2003 (01.12.2003) US
(71) Applicant (for all designated States except US): QUALCOMM Incorporated [US/US]; 5775 Morehouse Drive, San Diego, California 92121 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): WALTON, J. Rod ney [US/US]; 85 Highwoods Lanc, Carlisle, Massachusetts

01741 (US). KETCHUM, John W. [US/US]; 37 Candleberry Lane, Harvard, Massachusetts 01451 (US).
(74) Agents: WADSWORTH, Philip R. et al.; 5775 Morehouse Drive, San Diego, California 92121 (US)
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}, \mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CN}$, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, M7, NA, SD, SL, S7, T7, UG, 7M, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL. PL, PT, RO, SE, $\mathrm{SI}, \mathrm{SK}, \mathrm{TR}$), OAPI (BI, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
[Continued on next page]
(54) Title: METHOD AND APPARATUS FOR PROVIDING AN EFFICIENT CONTROL CHANNEL STRUCTURE IN A WIRELESS COMMUNICATION SYS'TEM

(57) Abstract: According to one aspect of the invention, a method is provided in which a control channel used for transmitting control information is partitioned into a plurality of subchannels each of which is operated at a specific data rate. For each of one or more user terminals, one of the subchannels is selected based on one or more selection criteria for transmitting control information from an access point to the respective user terminal. Control information is transmitted from the access point to a user terminal on a particular subchannel selected for the respective user terminal. At the user terminal, one or more subchannels are decoded to obtain control information designated for the user terminal.

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations $A E$, $A G, A L, A M, A T, A U, A Z, B A, B B, B G, B R, B W, B Y, B Z$, $C A, C H, C N, C O, C R, C U, C Z, D E, D K, D M, D Z, E C, E E$. EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, $J P, K E, K G, K P, K R, K \angle, L C, L K, L R, L S, L T, L U, L V, M A$, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, $T M, T N, T R, T T, T Z, U A, U G, U Z, V C, V N, Y U, Z A, Z M$, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, $S D, S L, S \angle, T Z, U G, Z M, Z W$), Eurasian patent ($A M, A Z$, $B Y, K G, K Z, M D, R U, T J, T M$), European palent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,

IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17 (iii)) for all designations

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHOD AND APPARATUS FOR PROVIDING AN EFFICIENT CONTROL CHANNEL STRUCTURE IN A WIRELESS COMMUNICATION SYSTEM

BACKGROUND

I. Field

The present invention relates generally to data communication and processing, and more specifically to a method and apparatus for providing an efficient control channel structure in a wireless local area network (WLAN) communication system.

II. Background

[0002] Wireless communication systems have been widely deployed to provide various types of communication such as voice, packet data, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users sequentially or simultaneously by sharing the available system resources. Examples of multiple-access systems include Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, and Frequency Division Multiple Access (FDMA) systems.
[0003] In recent years, wireless local area networks (WLANs) have also been widely deployed in accordance with various WLAN standards (e.g., IEEE 802.11a, 802.11b, and 802.11 g , etc.) to enable communication among wireless electronic devices (e.g., computers) via wireless link. A WLAN may employ devices called access points (or base stations) that act like hubs and/or routers and provide connectivity for other wireless devices in the network (e.g. user terminals or user stations). The access points may also connect (or "bridge") the WLAN to wired LANs, thus allowing the wireless devices access to LAN resources.
[0004] In a wireless communication system, a radio frequency (RF) modulated signal from a transmitter unit may reach a receiver unit via a number of propagation paths. The characteristics of the propagation paths typically vary over time due to a number of factors, such as fading and multipath. To provide diversity against deleterious path effects and improve performance, multiple transmit and receive antennas may be used. If the propagation paths between the transmit and receive antennas are linearly
independent (e.g., a transmission on one path is not formed as a linear combination of the transmissions on the other paths), then the likelihood of correctly receiving a data transmission increases as the number of antennas increases. Generally, diversity increases and performance improves as the number of transmit and receive antennas increases.
[0005] A MIMO system employs multiple (N_{T}) transmit antennas and multiple (N_{R}) receive antennas for data transmission. A MIMO channel formed by the N_{T} transmit and N_{R} receive antennas may be decomposed into N_{S} spatial channels, with $N_{S} \leq \min \left\{N_{T}, N_{R}\right\}$. Each of the N_{S} spatial channels corresponds to a dimension. The MIMO system can provide improved performance (e.g., increased transmission capacity and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
[0006] An exemplary MIMO WLAN system is described in the aforementioned U.S. Patent Application Serial No. 10/693,419, assigned to the assignce of the present invention. Such a MIMO WLAN system may be configured to provide various types of services and support various types of applications, and achieve a high level of system performance. In various embodiments, MIMO and orthogonal frequency division multiplexing (OFDM) may be employed to attain high throughput, combat deleterious path effects, and provide other benefits. Each access point in the system may be configured to support multiple user terminals. The allocation of downlink and uplink resources may be dependent on the requirements of the user terminals, the channel conditions, and other factors.
[0007] In one embodiment, the WLAN system as disclosed in the aforementioned U.S. Patent Application employs a channel structure designed to support efficient downlink and uplink transmissions. Such a channel structure may comprise a number of transport channels that may be used for various functions, such as signaling of system parameters and resource assignments, downlink and uplink data transmissions, random access of the system, and so on. Various attributes of these transport channels may be configurable, which allows the system to easily adapt to changing channel and loading conditions. One of these transport channels, called forward control channel (FCCH), may be used by the access point to allocate resources (e.g., channel assignments) on the downlink and uplink. The FCCH may also be used to provide acknowledgment for messages received on another transport channel.

As disclosed in the aforementioned U.S. Patent Application, in one embodiment, the FCCH can be transmitted or operable at different data rates (e.g., four different data rates). For example, the different data rates may include $0.25 \mathrm{bps} / \mathrm{Hz}, 0.5 \mathrm{bps} / \mathrm{Hz}, 1$ $\mathrm{bps} / \mathrm{Hz}$, and $2 \mathrm{bps} / \mathrm{Hz}$. However, in such a configuration, the rate employed on the FCCH is dictated by the worst case user in the system (i.e., the user that operates at the lowest data rate). This scheme is inefficient because a single user that cannot operate at a higher rate may reduce the efficiency and utilization of the FCCH, even though other users in the system may be able to operate at higher data rates.
[0009] There is, therefore, a need in the art for a method and apparatus to provide a more efficient control channel structure that is able to accommodate different users that may operate at different data rates.

SUMMARY

The various aspects and embodiments of the invention are described in further detail below. According to one aspect of the invention, a method is provided in which a control channel used for transmitting control information is partitioned into a plurality of subchannels each of which is operated at a specific data rate. For each of one or more user terminals, one of the subchannels is selected based on one or more selection criteria for transmitting control information from an access point to the respective user terminal. Control information is transmitted from the access point to a user terminal on a particular subchannel selected for the respective user terminal. At the user terminal, one or more subchannels are decoded to obtain control information designated for the user terminal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The various features and aspects of the invention can be understood from the detailed description set forth below in conjunction with the following drawings, in which:

FIG. 1 shows a block diagram of a MIMO WLAN system in which the teachings of the invention are implemented;
[0013] FIG. 2 shows a layer structure for the MIMO WLAN system;
[0014] FIG. 3 is a block diagram illustrating various components of an access point and user terminals;

FIGS. 4A, 4B and 4C show a TDD-TDM frame structure, an FDD-TDM frame structure, and an FDD-CDM frame structure, respectively;
[0016] FIG. 5 shows the TDD-TDM frame structure with five transport channels $\mathrm{BCH}, \mathrm{FCCH}, \mathrm{FCH}, \mathrm{RCH}$, and RACH;
[0017] FIGS. 6A and 6B illustrate various PDU formats for the various transport channels;
[0018] FIG. 7 shows a new FCCH structure, in accordance with one embodiment of the invention;
[0019] FIG. 8 shows a flow diagram of a method, in accordance with one embodiment of the invention; and
[0020] FIG. 9 shows a flow diagram of a decoding process in accordance with one embodiment of the invention.

DETAILED DESCRIPTION

[0021] The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any embodiment or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments or designs.

FIG. 1 shows a MIMO WLAN system 100 in which the teachings of the present invention are implemented. As shown in FIG. 1, MIMO WLAN system 100 includes a number of access points (APs) 110 that support communication for a number of user terminals (UTs) 120. For simplicity, only two access points 110 are shown in FIG. 1. An access point may also be referred to as a base station, access controller, or communication controller herein.
[0023] User terminals 120 may be dispersed throughout the system. Each user terminal may be a fixed or mobile terminal that can communicate with the access point. A user terminal may also be referred to as a mobile station, a remote station, an access terminal, a user equipment (UE), a wireless device, or some other terminology herein. Each user terminal may communicate with one or possibly multiple access points on the downlink and/or uplink at any given moment. The downlink (also called forward link) refers to transmission from the access point to the user terminal, and the uplink (also called reverse link) refers to transmission from the user terminal to the access point.

In FIG. 1, access point 110a communicates with user terminals 120a through 120 f , and access point 110 b communicates with user terminals 120 f through 120 k . Depending on the specific design of system 100, an access point may communicate with multiple user terminals simultaneously (e.g., via multiple code channels or subbands) or sequentially (e.g., via multiple time slots). At any given moment, a user terminal may receive downlink transmissions from one or multiple access points. The downlink transmission from each access point may include overhead data intended to be received by multiple user terminals, user-specific data intended to be received by specific user terminals, other types of data, or any combination thereof. The overhead data may include pilot, page and broadcast messages, system parameters, and so on.
[0025] In one embodiment, the MIMO WLAN system is based on a centralized controller network architecture. Thus, a system controller 130 couples to access points 110 and may further couple to other systems and networks. For example, system controller 130 may couple to a packet data network (PDN), a wired local area network (LAN), a wide area network (WAN), the Internet, a public switched telephone network (PSTN), a cellular communication network, etc. System controller 130 may be designed to perform a number of functions such as (1) coordination and control for the access points coupled to it, (2) routing of data among these access points, (3) access and control of communication with the user terminals served by these access points, and so on. The MIMO WLAN system as shown in FIG. 1 may be operated in various frequency bands (e.g., the 2.4 GHz and $5 . \mathrm{x} \mathrm{GHz}$ U-NII bands), subject to the bandwidth and emission constraints specific to the selected operating band.
[0026] In one embodiment, each access point may be equipped with multiple transmit and receive antennas (e.g., four transmit and receive antennas) for data transmission and reception. Each user terminal may be equipped with a single transmit/receive antenna or multiple transmit/receive antennas for data transmission and reception. The number of antennas employed by each user terminal type may be dependent on various factors such as, for example, the services to be supported by the user terminal (e.g., voice, data, or both), cost considerations, regulatory constraints, safety issues, and so on.

For a given pairing of multi-antenna access point and multi-antenna user terminal, a MIMO channel is formed by the N_{T} transmit antennas and N_{R} receive antennas available for use for data transmission. Different MIMO channels are formed between the access point and different multi-antenna user terminals. Each MIMO
channel may be decomposed into N_{S} spatial channels, with $N_{S} \leq \min \left\{N_{T}, N_{R}\right\} . N_{S}$ data streams may be transmitted on the N_{S} spatial channels. Spatial processing is required at a receiver and may or may not be performed at a transmitter in order to transmit multiple data streams on the N_{S} spatial channels.
[0028] The N_{S} spatial channels may or may not be orthogonal to one another. This depends on various factors such as (1) whether or not spatial processing was performed at the transmitter to obtain orthogonal spatial channels and (2) whether or not the spatial processing at both the transmitter and the receiver was successful in orthogonalizing the spatial channels. If no spatial processing is performed at the transmitter, then the N_{S} spatial channels may be formed with N_{S} transmit antennas and are unlikely to be orthogonal to one another.
[0029] The N_{S} spatial channels may be orthogonalized by performing decomposition on a channel response matrix for the MIMO channel, as described in the aforementioned U.S. Patent Application. For a given number of (e.g., four) antennas at the access point, the number of spatial channels available for each user terminal is dependent on the number of antennas employed by that user terminal and the characteristics of the wireless MIMO channel that couples the access point antennas and the user terminal antennas. If a user terminal is equipped with one antenna, then the four antennas at the access point and the single antenna at the user terminal form a multiple-input singleoutput (MISO) channel for the downlink and a single-input multiple-output (SIMO) channel for the uplink.
[0030] The MIMO WLAN system as shown in FIG. 1 may be designed and configured to support various transmission modes, as illustrated in Table 1 below.

Table 1

Transmission modes	Description
SIMO	Data is transmitted from a single antenna but may be received by multiple antennas for receive diversity.
Diversity	Data is redundantly transmitted from multiple transmit antennas and/or multiple subbands to provide diversity.
Beam-steering	Data is transmitted on a single (best) spatial channel at full power using phase steering information for the principal eigenmode of the MIMO channel.

Spatial multiplexing

Data is transmitted on multiple spatial channels to achieve higher spectral efficiency.
[0031] The transmission modes available for use for the downlink and uplink for each user terminal are dependent on the number of antennas employed at the user terminal. Table 2 lists the transmission modes available for different terminal types for the downlink and uplink, assuming multiple (e.g., four) antennas at the access point.

Table 2

Transmission modes	Downlink		Uplink	
	Single- antenna user terminal	Multi- antenna user terminal	Single- antenna user terminal	Multi- antenna user terminal
	X	X	X	X
Diversity	X	X		X
Beam-steering	X	X		X
Spatial multiplexing		X		X

[0032]
In an embodiment, the MIMO WLAN system employs OFDM to effectively partition the overall system bandwidth into a number of $\left(N_{F}\right)$ orthogonal subbands. These subbands are also referred to as tones, bins, or frequency channels. With OFDM, each subband is associated with a respective subcarrier that may be modulated with data. For a MIMO system that utilizes OFDM, each spatial channel of each subband may be viewed as an independent transmission channel where the complex gain associated with each subband is effectively constant across the subband bandwidth.
[0033] In one embodiment, the system bandwidth can be partitioned into 64 orthogonal subbands (i.e., $N_{F}=64$), which are assigned indices of -32 to +31 . Of these 64 subbands, 48 subbands (e.g., with indices of $\pm\{1, \ldots, 6,8, \ldots, 20,22, \ldots, 26\}$) can be used for data, 4 subbands (e.g., with indices of $\pm\{7,21\}$) can be used for pilot and possibly signaling, the DC subband (with index of 0) is not used, and the remaining subbands are also not used and serve as guard subbands. This OFDM subband structure is described in further detail in a document for IEEE Standard 802.11a and entitled
"Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band," September 1999, which is publicly available. In other embodiments, different numbers of subbands and various other OFDM subband structures may also be implemented for the MIMO WLAN system. For example, all 53 subbands with indices from -26 to +26 may be used for data transmission. As another example, a 128 -subband structure, a 256 -subband structure, or a subband structure with some other number of subbands may be used.

For OFDM, the data to be transmitted on each subband is first modulated (i.e., symbol mapped) using a particular modulation scheme selected for use for that subband. Zeros are provided for the unused subbands. For each symbol period, the modulation symbols and zeros for all N_{F} subbands are transformed to the time domain using an inverse fast Fourier transform (IFFT) to obtain a transformed symbol that contains N_{F} time-domain samples. The duration of each transformed symbol is inversely related to the bandwidth of each subband. In one specific design for the MIMO WLAN system, the system bandwidth is $20 \mathrm{MHz}, N_{F}=64$, the bandwidth of each subband is 312.5 KHz , and the duration of each transformed symbol is $3.2 \mu \mathrm{sec}$.
[0035] OFDM can provide certain advantages, such as the ability to combat frequency selective fading, which is characterized by different channel gains at different frequencies of the overall system bandwidth. It is well known that frequency selective fading causes inter-symbol interference (ISI), which is a phenomenon whereby each symbol in a received signal acts as distortion to subsequent symbols in the received signal. The ISI distortion degrades performance by impacting the ability to correctly detect the received symbols. Frequency selective fading can be conveniently combated with OFDM by repeating a portion of (or appending a cyclic prefix to) each transformed symbol to form a corresponding OFDM symbol, which is then transmitted.

The length of the cyclic prefix (i.e., the amount to repeat) for each OFDM symbol is dependent on the delay spread of the wireless channel. In particular, to effectively combat ISI, the cyclic prefix should be longer than the maximum expected delay spread for the system.
[0037] In an embodiment, cyclic prefixes of different lengths may be used for the OFDM symbols, depending on the expected delay spread. For the MIMO WLAN system described above, a cyclic prefix of 400 nsec (8 samples) or 800 nsec (16 samples) may be selected for use for the OFDM symbols. A "short" OFDM symbol
uses the 400 nsec cyclic prefix and has a duration of $3.6 \mu \mathrm{sec}$. A "long" OFDM symbol uses the 800 nsec cyclic prefix and has a duration of $4.0 \mu \mathrm{sec}$. Short OFDM symbols may be used if the maximum expected delay spread is 400 nsec or less, and long OFDM symbols may be used if the delay spread is greater than 400 nsec . Different cyclic prefixes may be selected for use for different transport channels, and the cyclic prefix may also be dynamically selectable, as described below. Higher system throughput may be achieved by using the shorter cyclic prefix when possible, since more OFDM symbols of shorter duration can be transmitted over a given fixed time interval.

FIG. 2 illustrates a layer structure 200 that may be used for the MIMO WLAN system. As shown in FIG. 2, in one embodiment, layer structure 200 includes (1) applications and upper layer protocols that approximately correspond to Layer 3 and higher of the ISO/OSI reference model (upper layers), (2) protocols and services that correspond to Layer 2 (the link layer), and (3) protocols and services that correspond to Layer 1 (the physical layer).
[0039] The upper layers includes various applications and protocols, such as signaling services 212 , data services 214 , voice services 216 , circuit data applications, and so on. Signaling is typically provided as messages and data is typically provided as packets. The services and applications in the upper layers originate and terminate messages and packets according to the semantics and timing of the communication protocol between the access point and the user terminal. The upper layers utilize the services provided by Layer 2.
[0040] Layer 2 supports the delivery of messages and packets generated by the upper layers. In the embodiment shown in FIG. 2, Layer 2 includes a Link Access Control (LAC) sublayer 220 and a Medium Access Control (MAC) sublayer 230. The LAC sublayer implements a data link protocol that provides for the correct transport and delivery of messages generated by the upper layers. The LAC sublayer utilizes the services provided by the MAC sublayer and Layer 1. The MAC sublayer is responsible for transporting messages and packets using the services provided by Layer 1. The MAC sublayer controls the access to Layer 1 resources by the applications and services in the upper layers. The MAC sublayer may include a Radio Link Protocol (RLP) 232, which is a retransmission mechanism that may be used to provide higher reliability for packet data. Layer 2 provides protocol data units (PDUs) to Layer 1.
[0041] Layer 1 comprises physical layer 240 and supports the transmission and reception of radio signals between the access point and user terminal. The physical layer performs coding, interleaving, modulation, and spatial processing for various transport channels used to send messages and packets generated by the upper layers. In this embodiment, the physical layer includes a multiplexing sublayer 242 that multiplexes processed PDUs for various transport channels into the proper frame format. Layer 1 provides data in units of frames.
[0042] It should be understood by one skilled in the art that various other suitable layer structures may also be designed and used for the MIMO WLAN system.
[0043] FIG. 3 shows a block diagram of one embodiment of an access point 110x and two user terminals 120 x and 120 y within the MIMO WLAN system.
[0044] On the downlink, at access point 110x, a transmit (TX) data processor 310 receives traffic data (e.g., information bits) from a data source 308 and signaling and other information from a controller 330 and possibly a scheduler 334 . These various types of data may be sent on different transport channels that are described in more details below. TX data processor 310 "frames" the data (if necessary), scrambles the framed/unframed data, encodes the scrambled data, interleaves (i.e., reorders) the coded data, and maps the interleaved data into modulation symbols. For simplicity, a "data symbol" refers to a modulation symbol for traffic data, and a "pilot symbol" refers to a modulation symbol for pilot. The scrambling randomizes the data bits. The encoding increases the reliability of the data transmission. The interleaving provides time, frequency, and/or spatial diversity for the code bits. The scrambling, coding, and modulation may be performed based on control signals provided by controller 330. TX data processor 310 provides a stream of modulation symbols for each spatial channei used for data transmission.
[0045] A TX spatial processor 320 receives one or more modulation symbol streams from TX data processor 310 and performs spatial processing on the modulation symbols to provide four streams of transmit symbols, one stream for each transmit antenna.
[0046] Each modulator (MOD) 322 receives and processes a respective transmit symbol stream to provide a corresponding stream of OFDM symbols. Each OFDM symbol stream is further processed to provide a corresponding downlink modulated signal. The four downlink modulated signals from modulator 322a through 322d are then transmitted from four antennas 324 a through 324 d , respectively.
[0047] At each user terminal 120, one or multiple antennas 352 receive the transmitted downlink modulated signals, and each receive antenna provides a received signal to a respective demodulator (DEMOD) 354. Each demodulator 354 performs processing complementary to that performed at modulator 322 and provides received symbols. A receive (RX) spatial processor 360 then performs spatial processing on the received symbols from all demodulators 354 to provide recovered symbols, which are estimates of the modulation symbols sent by the access point.
[0048] An RX data processor 370 receives and demultiplexes the recovered symbols into their respective transport channels. The recovered symbols for each transport channel may be symbol demapped, deinterleaved, decoded, and descrambled to provide decoded data for that transport channel. The decoded data for each transport channel may include recovered packet data, messages, signaling, and so on, which are provided to a data sink 372 for storage and/or a controller 380 for further processing.
[0049] For the downlink, at each active user terminal 120, RX spatial processor 360 further estimates the downlink to obtain channel state information (CSI). The CSI may include channel response estimates, received SNRs, and so on. RX data processor 370 may also provide the status of each packet/frame received on the downlink. A controller 380 receives the channel state information and the packet/frame status and determines the feedback information to be sent back to the access point. The feedback information is processed by a TX data processor 390 and a TX spatial processor 392 (if present), conditioned by one or more modulators 354 , and transmitted via one or more antennas 352 back to the access point.
[0050] At access point 110, the transmitted uplink signal(s) are received by antennas 324 , demodulated by demodulators 322 , and processed by an $\overline{R X}$ spatial processor 340 and an RX data processor 342 in a complementary manner to that performed at the user terminal. The recovered feedback information is then provided to controller 330 and a scheduler 334.
[0051] In one embodiment, scheduler 334 uses the feedback information to perform a number of functions such as (1) selecting a set of user terminals for data transmission on the downlink and uplink, (2) selecting the transmission rate(s) and the transmission mode for each selected user terminal, and (3) assigning the available FCH/RCH resources to the selected terminals. Scheduler 334 and/or controller 330 further uses
information (e.g., steering vectors) obtained from the uplink transmission for the processing of the downlink transmission.
[0052] As mentioned above, a number of services and applications may be supported by the MIMO WLAN system and various transport channels may be defined for the MIMO WLAN system to carry various types of data. Table 3 lists an exemplary set of transport channels and also provides a brief description for each transport channel.

Table 3

Transport channels		Description
Broadcast channel	BCH	Used by the access point to transmit pilot and system parameters to the user terminals.
Forward control channel	FCCH	Used by the access point to allocate resources on the downlink and uplink. The resource allocation may be performed on a frame-by-frame basis. Also used to provide acknowledgment for messages received on the RACH.
Forward channel	FCH	Used by the access point to transmit user-specific data to the user terminals and possibly a reference (pilot) used by the user terminals for channel estimation. May also be used in a broadcast mode to send page and broadcast messages to multiple user terminals.
Random access channel	RACH	Used by the user terminals to gain access to the system and send short messages to the access point.
Reverse channel	RCH	Used by the user terminals to transmit data to the access point. May also carry a reference used by the access point for channel estimation.

[0053]
As shown in Table 3, the downlink transport channels used by the access point includes the $\mathrm{BCH}, \mathrm{FCCH}$, and FCH . The uplink transport channels used by the user terminals include the RACH and RCH. It should be recognized by one skilled in the art that the transport channels listed in Table 3 represent an exemplary embodiment of a channel structure that may be used for the MIMO WLAN system. Fewer, additional, and/or different transport channels may also be defined for use for the MIMO WLAN system. For example, certain functions may be supported by function-specific transport
channels (e.g., pilot, paging, power control, and sync channel channels). Thus, otl channel structures with different sets of transport channels may be defined and used the MIMO WLAN system, within the scope of the invention.
[0054] A number of frame structures may be defined for the transport channels. T specific frame structure to use for the MIMO WLAN system is dependent on varic factors such as, for example, (1) whether the same or different frequency bands are us for the downlink and uplink and (2) the multiplexing scheme used to multiplex 1 transport channels together.

If only one frequency band is available, then the downlink and uplink may transmitted on different phases of a frame using time division duplexing (TDD). If t frequency bands are available, then the downlink and uplink may be transmitted different frequency bands using frequency division duplexing (FDD).

For both TDD and FDD, the transport channels may be multiplexed togetl using time division multiplexing (TDM), code division multiplexing (CDM), frequen division multiplexing (FDM), and so on. For TDM, each transport channel is assign to a different portion of a frame. For CDM, the transport channels are transmitt concurrently but each transport channel is channelized by a different channelizati code, similar to that performed in a code division multiple access (CDMA) system. I FDM, each transport channel is assigned a different portion of the frequency band 1 the link

Table 4 lists the various frame structures that may be used to carry the transp channels. Each of these frame structures is described in further detail below.

Table 4

	Shared frequency band for downlink and uplink	Separate frequency bands fc downlink and uplink
Time division	TDD-TDM frame structure	FDD-TDM frame structure
Code division	TDD-CDM frame structure	FDD-CDM frame structure

[0058]
FIG. 4A illustrates an embodiment of a TDD-TDM frame structure 400a tl may be used if a single frequency band is used for both the downlink and uplink. D: transmission occurs in units of TDD frames. Each TDD frame may be defined to spar particular time duration. The frame duration may be selected based on various facts such as, for example, (1) the bandwidth of the operating band, (2) the expected sizes
the PDUs for the transport channels, and so on. In general, a shorter frame duration may provide reduced delays. However, a longer frame duration may be more efficient since header and overhead may represent a smaller fraction of the frame. In one embodiment, each TDD frame has a duration of 2 msec .

As shown in FIG. 4A, each TDD frame can be partitioned into a downlink phase and an uplink phase. The downlink phase is further partitioned into three segments for the three downlink transport channels - the BCH, FCCH, and FCH. The uplink phase is further partitioned into two segments for the two uplink transport channels - the RCH and RACH
[0060] The segment for each transport channel may be defined to have either a fixed duration or a variable duration that can change from frame to frame. In one embodiment, the BCH segment is defined to have a fixed duration, and the FCCH , $\mathrm{FCH}, \mathrm{RCH}$, and RACH segments are defined to have variable durations.
[0061] The segment for each transport channel may be used to carry one or more protocol data units (PDUs) for that transport channel. In the embodiment shown in FIG. 4 A , a BCH PDU is transmitted in a first segment 410 , an FCCH PDU is transmitted in a second segment 420 , and one or more FCH PDUs are transmitted in a third segment 430 of the downlink phase. On the uplink phase, one or more RCH PDUs are transmitted in a fourth segment 440 and one or more RACH PDUs are transmitted in a fifth segment 450 of the TDD frame.
[0062] Frame structure 400a represents one arrangement of the various transport channels within a TDD frame. This arrangement can provide certain benefits such as reduced delays for data transmission on the downlink and uplink. The BCH is transmitted first in the TDD frame since it carries system parameters that may be used for the PDUs of the other transport channels within the same TDD frame. The FCCH is transmitted next since it carries resource allocation (e.g., channel assignment) information indicative of which user terminal(s) are designated to receive downlink data on the FCH and which user terminal(s) are designated to transmit uplink data on the RCH within the current TDD frame. Other TDD-TDM frame structures may also be defined and used for the MIMO WLAN system.
[0063] FIG. 4B illustrates an embodiment of an FDD-TDM frame structure 400b that may be used if the downlink and uplink are transmitted using two separate frequency bands. Downlink data is transmitted in a downlink frame 402a, and uplink data is
transmitted in an uplink frame 402b. Each downlink and uplink frame may be defined to span a particular time duration (e.g., 2 msec). For simplicity, the downlink and uplink frames may be defined to have the same duration and may further be defined to be aligned at the frame boundaries. However, different frame durations and/or nonaligned (i.e., offset) frame boundaries may also be used for the downlink and uplink.

As shown in FIG. 4B, the downlink frame is partitioned into three segments for the three downlink transport channels. The uplink frame is partitioned into two segments for the two uplink transport channels. The segment for each transport channel may be defined to have a fixed or variable duration, and may be used to carry one or more PDUs for that transport channel.

In the embodiment shown in FIG. 4B, the downlink frame carries a BCH PDU, an FCCH PDU, and one or more FCH PDUs in segments 410,420 , and 430 , respectively. The uplink frame carries one or more RCH PDUs and one or more RACH PDUs in segments 440 and 450 , respectively. This arrangement may provide the benefits described above (e.g., reduced delays for data transmission). Other FDD-TDM frame structures may also be defined and used for the MIMO WLAN system, and this is within the scope of the invention.

FIG. 4C illustrates an embodiment of an FDD-CDM/FDM frame structure 400c that may also be used if the downlink and uplink are transmitted using separate frequency bands. Downlink data may be transmitted in a downlink frame 404a, and uplink data may be transmitted in an uplink frame 404b. The downlink and uplink frames may be defined to have the same duration (e.g., 2 msec) and aligned at the frame boundaries.

As shown in $\overline{\operatorname{FIG}} .4 \overline{\mathrm{C}}$, the three downlink transport channels are transmitted concurrently in the downlink frame, and the two uplink transport channels are transmitted concurrently in the uplink frame. For CDM, the transport channels for each link are "channelized" with different channelization codes, which may be Walsh codes, orthogonal variable spreading factor (OVSF) codes, quasi-orthogonal functions (QOF), and so on. For FDM, the transport channels for each link are assigned different portions of the frequency band for the link. Different amounts of transmit power may also be used for different transport channels in each link.

Other frame structures may also be defined for the downlink and uplink transport channels, and this is within the scope of the invention. Moreover, it is possible
to use different types of frame structure for the downlink and uplink. For example, a TDM-based frame structure may be used for the downlink and a CDM-based frame structure may be used for the uplink.
[0069]
In one embodiment, the transport channels as described above are used to send various types of data and may be categorized into two groups: common transport channels and dedicated transport channels.
[0070] The common transport channels, in one embodiment, may include the BCH , FCCH, and RACH. These transport channels are used to send data to or receive data from multiple user terminals. The BCH and FCCH can be transmitted by the access point using the diversity mode. On the uplink, the RACH can be transmitted by the user terminals using the beam-steering mode (if supported by the user terminal). The BCH can be operated at a known fixed rate so that the user terminals can receive and process the BCH without any additional information. As described in more details below, the FCCH support multiple rates to allow for greater efficiency. Each "rate" or "rate set" may be associated with a particular code rate (or coding scheme) and a particular modulation scheme.

The dedicated transport channels, in one embodiment, include the FCH and RCH. These transport channels are normally used to send user-specific data to or by specific user terminals. The FCH and RCH may be dynamically allocated to the user terminals as necessary and as available. The FCH may also be used in a broadcast mode to send overhead, page, and broadcast messages to the user terminals. In general, the overhead, page, and broadcast messages are transmitted prior to any user-specific data on the FCH.

FIG. 5 iilustrates an exemplary transmission on the $\mathrm{BCH}, \mathrm{FCCH}, \mathrm{FCH}, \mathrm{RCH}$, and RACH based on TDD-TDM frame structure 400a. In this embodiment, one BCH PDU 510 and one FCCH PDU 520 are transmitted in BCH segment 410 and FCCH segment 420 , respectively. FCH segment 430 may be used to send one or more FCH PDUs 530, each of which may be intended for a specific user terminal or multiple user terminals. Similarly, one or more RCH PDUs 540 may be sent by one or more user terminals in RCH segment 440. The start of each FCH/RCH PDU is indicated by an $\mathrm{FCH} / \mathrm{RCH}$ offset from the end of the preceding segment. A number of RACH PDUs 550 may be sent in RACH segment 450 by a number of user terminals to access the system and/or to send short messages.

In one embodiment, the BCH is used by the access point to transmit a beacon pilot, a MIMO pilot, and system parameters to the user terminals. The beacon pilot is used by the user terminals to acquire system timing and frequency. The MIMO pilot is used by the user terminals to estimate the MIMO channel formed by the access point antennas and their own antennas. The system parameters specify various attributes of the downlink and uplink transmissions. For example, since the durations of the FCCH, FCH, RACH, and RCH segments are variable, the system parameters that specify the length of each of these segments for the current TDD frame are sent in the BCH .

FIG. 6A illustrates an embodiment of BCH PDU 410. In this embodiment, BCH PDU 410 includes a preamble portion 510 and a message portion 516. Preamble portion 510 further includes a beacon pilot portion 512 and a MIMO pilot portion 514. Portion 512 carries a beacon pilot and has a fixed duration of $\mathrm{T}_{\mathrm{CP}}=8 \mu \mathrm{sec}$. Portion 514 carries a MIMO pilot and has a fixed duration of $\mathrm{T}_{\mathrm{MP}}=32 \mu \mathrm{sec}$. Portion 516 carries a BCH message and has a fixed duration of $\mathrm{T}_{\mathrm{BM}}=40 \mu \mathrm{sec}$. A preamble may be used to send one or more types of pilot and/or other information. A beacon pilot comprises a specific set of modulation symbols that is transmitted from all transmit antennas. A MIMO pilot comprises a specific set of modulation symbols that is transmitted from all transmit antennas with different orthogonal codes, which then allows the receivers to recover the pilot transmitted from each antenna. Different sets of modulation symbols may be used for the beacon and MIMO pilots.
[0075] In one embodiment, the BCH message carries system configuration information. Table 5 lists the various fields for an exemplary BCH message format.

Table 5-BCH Message

Fields/ Parameter Names	Length (bits)	Description
Frame Counter	4	TDD frame counter
Net ID	10	Network identifier (ID)
AP ID	6	Access point ID
AP Tx Lvl	4	Access point transmit level
AP Rx Lvl	3	Access point receive level
FCCH Length	6	Duration of FCCH (in units of OFDM symbols)
FCCH Rate	2	Physical layer rate of FCCH

FCH Length	9	Duration of FCH (in units of OFDM symbols)
RCH Length	9	Duration of RCH (in units of OFDM symbols)
RACH Length	5	Duration of RACH (in units of RACH slots)
RACH Slot Size	2	Duration of each RACH slot (in units of OFDM symbols)
RACH Guard Interval	2	Guard interval at the end of RACH
Cyclic Prefix Duration	1	Cyclic prefix duration
Page Bit	1	"0" = page message sent on FCH " $1 "=$ no page message sent
Broadcast Bit	1	" $0 "=$ broadcast message sent on FCH " $1 "=$ no broadcast message sent
RACH Acknowledgment Bit	1	" $0 "=$ RACH acknowledgment sent on FCH " $1 "=$ no RACH acknowledgment sent
CRC	16	CRC value for the BCH message
Tail Bits	6	Tail bits for convolutional encoder
Reserved	32	Reserved for future use

The Frame Counter value may be used to synchronize various processes at the access point and user terminals (e.g., the pilot, scrambling codes, cover code, and so on). A frame counter may be implemented with a 4-bit counter that wraps around. This counter is incremented at the start of each TDD frame, and the counter value is included in the Frame Counter field. The Net ID field indicates the identifier (ID) of the network to which the access point belongs. The AP ID field indicates the ID of the access point within the network D . The AP Tx Lvl and AP Rx Lvl fields indicate the maximum transmit power level and the desired receive power level at the access point, respectively. The desired receive power level may be used by the user terminal to determine the initial uplink transmit power.

The FCCH Length, FCH Length, and RCH Length fields indicate the lengths of the $\mathrm{FCCH}, \mathrm{FCH}$, and RCH segments, respectively, for the current TDD frame. In one embodiment, the lengths of these segments are given in units of OFDM symbols. The OFDM symbol duration for the BCH can be fixed at $4.0 \mu \mathrm{sec}$. The OFDM symbol duration for all other transport channels (e.g., the FCCH, FCH, RACH, and RCH) is
variable and depends on the selected cyclic prefix, which is specified by the Cyclic Prefix Duration field. The FCCH Rate field indicates the rate used for the FCCH for the current TDD frame.
[0078] The RACH Length field indicates the length of the RACH segment, which is given in units of RACH slots. The duration of each RACH slot is given by the RACH Slot Size field, in units of OFDM symbols. The RACH Guard Interval field indicates the amount of time between the last RACH slot and the start of the BCH segment for the next TDD frame.
[0079] The Page Bit and Broadcast Bit indicate whether or not page messages and broadcast messages, respectively, are being sent on the FCH in the current TDD frame. These two bits may be set independently for each TDD frame. The RACH Acknowledgment Bit indicates whether or not acknowledgments for PDUs sent on the RACH in prior TDD frames are being sent on the FCCH in the current TDD frame.
[0080] The CRC field includes a CRC value for the entire BCH message. This CRC value may be used by the user terminals to determine whether the received BCH message is decoded correctly or in error. The Tail Bits field includes a group of zeros used to reset the convolutional encoder to a known state at the end of the BCH message.
[0081] As shown in Table 5, the BCH message includes a total of 120 bits. These 120 bits may be transmitted with 10 OFDM symbols. Table 5 shows one embodiment of the format for the BCH message. Other BCH message formats with fewer, additional, and/or different fields may also be defined and used, and this is within the scope of the invention.
[0082] In one embodiment, the access point may allocate resources for the FCH and RCH on a per frame basis. The FCCH is used by the access point to convey the resource allocation information for the FCH and RCH (e.g., the channel assignments).
[0083] FIG. 6B illustrates an embodiment of FCCH PDU 420. In this embodiment, the FCCH PDU includes only a portion 520 for an FCCH message. The FCCH message has a variable duration that can change from frame to frame, depending on the amount of scheduling information being carried on the FCCH for that frame. The FCCH message duration is in even number of OFDM symbols and given by the FCCH Length field on the BCH message. The duration of messages sent using the diversity mode (e.g., BCH and FCCH messages) is given in even number of OFDM symbols because the diversity mode transmits OFDM symbols in pairs.

In an embodiment, the FCCH can be transmitted using four possible rates. The specific rate used for the FCCH PDU in each TDD frame is indicated by the FCCH Phy Mode field in the BCH message. Each FCCH rate corresponds to a particular code rate and a particular modulation scheme and is further associated with a particular transmission mode.
[0085] An FCCH message may include zero, one, or multiple information elements (IEs). Each information element may be associated with a specific user terminal and may be used to provide information indicative of the assignment of $\mathrm{FCH} / \mathrm{RCH}$ resources for that user terminal. Table 6 lists the various fields for an exemplary FCCH message format.

Table 6 - FCCH Message

Fields/ Parameter Names	Length (bits)	Description
N_IE	6	Number of IEs included in the FCCH message

N_IE information elements, each including:

IE Type	4	IE type
MAC ID	10	ID assigned to the user terminal
Control Fields	48 or 72	Control fields for channel assignment
Padding Bits	Variable	Pad bits to achieve even number of OFDM symbols in the FCCH message
CRC	16	CRC value for the FCCH message
Tail Bits	6	Tail bits for convolutional encoder

[0086] The N_IE field indicates the number of information elements included in the FCCH message sent in the current TDD frame. For each information element (IE) included in the FCCH message, the IE Type field indicates the particular type of this IE. Various IE types are defined for use to allocate resources for different types of transmissions, as described below.

The MAC ID field identifies the specific user terminal for which the information element is intended. Each user terminal registers with the access point at the start of a communication session and is assigned a unique MAC ID by the access point. This MAC ID is used to identify the user terminal during the session.
[0088]
The Control Fields are used to convey channel assignment information for the user terminal and are described in detail below. The Padding Bits field includes a sufficient number of padding bits so that the overall length of the FCCH message is an even number of OFDM symbols. The FCCH CRC field includes a CRC value that may be used by the user terminals to determine whether the received FCCH message is decoded correctly or in error. The Tail Bits field includes zeros used to reset the convolutional encoder to a known state at the end of the FCCH message. Some of these fields are described in further detail below.
[0089] A number of transmission modes are supported by the MIMO WLAN system for the FCH and RCH, as indicated in Table 1. Moreover, a user terminal may be active or idle during a connection. Thus, a number of types of IE are defined for use to allocate FCH/RCH resources for different types of transmissions. Table 7 lists an exemplary set of IE types.

Table 7 - FCCH IE Types

IE Type	IE Size (bits)	IE Type	Description
0	48	Diversity Mode	Diversity mode only
1	72	Spatial Multiplexing Mode	Spatial multiplexing mode - variable rate services
2	48	Idle Mode	Idle state - variable rate services
3	48	RACH Acknowledgment	RACH acknowledgment - diversity mode
4		Beam Steering Mode	Beam steering mode
$5-15$	-	Reserved	Reserved for future use

[0090]
For IE types 0,1 and 4, resources are allocated to a specific user terminal for both the FCH and RCH (i.e., in channel pairs). For IE type 2, minimal resources are allocated to the user terminal on the FCH and RCH to maintain up-to-date estimate of the link. An exemplary format for each IE type is described below. In general, the rates and durations for the FCH and RCH can be independently assigned to the user terminals.

IE type 0 and 4 are used to allocate $\mathrm{FCH} / \mathrm{RCH}$ resources for the diversity and beam-steering modes, respectively. For fixed low-rate services (e.g., voice), the rate
remains fixed for the duration of the call. For variable rate services, the rate may be selected independently for the FCH and RCH. The FCCH IE indicates the location of the FCH and RCH PDUs assigned to the user terminal. Table 8 lists the various fields of an exemplary IE Type 0 and 4 information element.

Table 8 - FCCH IE Type 0 and 4

Fields/ Parameter Names	Length (bits)	Description
IE Type	4	IE type
MAC ID	10	Temporary ID assigned to the user terminal
FCH Offset	9	FCH offset from start of the TDD frame (in OFDM symbols)
FCH Preamble Type	2	FCH preamble size (in OFDM symbols)
FCH Rate	4	Rate for the FCH
RCH Offset	9	RCH offset from start of the TDD frame (in OFDM symbols)
RCH Preamble Type	2	RCH preamble size (in OFDM symbols)
RCH Rate	4	Rate for the RCH
RCH Timing Adjustment	2	Timing adjustment parameter for RCH
RCH Power Control	2	Power control bits for RCH

The FCH and RCH Offset fields indicate the time offset from the beginning of the current TDD frame to the start of the FCH and RCH PDUs, respectively, assigned by the information element. The FCH and RCH Rate fields indicate the rates for the FCH and RCH, respectively.
[0093] The FCH and RCH Preamble Type fields indicate the size of the preamble in the FCH and RCH PDUs, respectively. Table 9 lists the values for the FCH and RCH Preamble Type fields and the associated preamble sizes.

Table 9 - Preamble Type

Type	Bits	Preamble Size
0	00	0 OFDM symbol
1	01	1 OFDM symbol
2	10	4 OFDM symbols
3	11	8 OFDM symbols

[0095]
The RCH Timing Adjustment field includes two bits used to adjust the timing of the uplink transmission from the user terminal identified by the MAC ID field. This timing adjustment is used to reduce interference in a TDD-based frame structure where the downlink and uplink transmissions are time division duplexed. Table 10 lists the values for the RCH Timing Adjustment field and the associated actions.

Table 10 - RCH Timing Adjustment

Bits	Description
00	Maintain current timing
01	Advance uplink transmit timing by 1 sample
10	Delay uplink transmit timing by 1 sample
11	Not used

The RCH Power Control field includes two bits used to adjust the transmit power of the uplink transmission from the identified user terminal. This power control is used to reduce interference on the uplink. Table 11 lists the values for the RCH Power Control field and the associated actions.

Table 11 - RCH Power Control

Bits	Description
00	Maintain current transmit power
01	Increase uplink transmit power by $\delta \mathrm{dB}$, where δ is a system parameter.
10	Decrease uplink transmit power by $\delta \mathrm{dB}$, where δ is a system parameter.
11	Not used

The channel assignment for the identified user terminal may be provided in various manners. In an embodiment, the user terminal is assigned $\mathrm{FCH} / \mathrm{RCH}$ resources for only the current TDD frame. In another embodiment, the FCH/RCH resources are assigned to the terminal for each TDD frame until canceled. In yet another embodiment, the $\mathrm{FCH} / \mathrm{RCH}$ resources are assigned to the user terminal for every n-th TDD frame, which is referred to as "decimated" scheduling of TDD frames. The different types of assignment may be indicated by an Assignment Type field in the FCCH information element.
[0098]
IE type 1 is used to allocate $\mathrm{FCH} / \mathrm{RCH}$ resources to user terminals using the spatial multiplexing mode. The rate for these user terminals is variable, and may be selected independently for the FCH and RCH. Table 12 lists the various fields of an exemplary IE type 1 information element.

Table 12 - FCCH IE Type 1

Fields/ Parameter Names	Length (bits)	Description
IE Type	4	IE type
MAC ID	10	Temporary ID assigned to the user terminal
FCH Offset	9	FCH offset from end of FCCH (in OFDM symbols)
FCH Preamble Type	2	FCH preamble size (in OFDM symbols)
FCH Spatial Channel 1 Rate	4	Rate for the FCH for spatial channel 1
FCH Spatial Channel 2 Rate	4	Rate for the FCH for spatial channel 2
FCH Spatial Channel 3 Rate	4	Rate for the FCH for spatial channel 3
FCH Spatial Channel 4 Rate	4	Rate for the FCH for spatial channel 4
RCH Offset	9	RCH offset from end of FCH (in OFDM symbols)
RCH Preamble Type	2	RCH preamble size (in OFDM symbols)
RCH Spatial Channel 1 Rate	4	Rate for the RCH for spatial channel 1
RCH Spatial Channel 2 Rate	4	Rate for the RCH for spatial channel 2
RCH Spatial Channel 3 Tate	4	Rate for the RCH for spatial channel 3
RCH Spatial Channel 4 Rate	4	Rate for the RCH for spatial channel 4

RCH Timing Adjustment	2	Timing adjustment parameter for RCH
Reserved	2	Reserved for future use

For IE type 1, the rate for each spatial channel may be selected independently on the FCH and RCH. The interpretation of the rates for the spatial multiplexing mode is general in that it can specify the rate per spatial channel (e.g., for up to four spatial channels for the embodiment shown in Table 12). The rate is given per eigenmode if the transmitter performs spatial processing to transmit data on the eigenmodes. The rate is given per antenna if the transmitter simply transmits data from the transmit antennas and the receiver performs the spatial processing to isolate and recover the data (for the non-steered spatial multiplexing mode).
[00100] The information element includes the rates for all enabled spatial channels and zeros for the ones not enabled. User terminals with less than four transmit antennas set the unused $\mathrm{FCH} / \mathrm{RCH}$ Spatial Channel Rate fields to zero. Since the access point is equipped with four transmit/receive antennas, user terminals with more than four transmit antennas may use them to transmit up to four independent data streams.
[00101] IE type 2 is used to provide control information for user terminals operating in an Idle state. In an embodiment, when a user terminal is in the Idle state, steering vectors used by the access point and user terminal for spatial processing are continually updated so that data transmission can start quickly if and when resumed. Table 13 lists the various fields of an exemplary IE type 2 information element.

Table 13-FCCH IE Type 2

Fields/ Parameter Names	Length (bits)	Description
IE Type	4	IE type
MAC ID	10	Temporary ID assigned to the user terminal
FCH Offset	9	FCH offset from end of FCCH (in OFDM symbols)
FCH Preamble Type	2	FCH preamble size (in OFDM symbols)
RCH Offset	9	RCH offset from end of FCH (in OFDM symbols)
RCH Preamble Type	2	RCH preamble size (in OFDM symbols)
Reserved	12	Reserved for future use

IE type 3 is used to provide quick acknowledgment for user terminals attempting to access the system via the RACH. To gain access to the system or to send a short message to the access point, a user terminal may transmit an RACH PDU on the uplink. After the user terminal sends the RACH PDU, it monitors the BCH to determine if the RACH Acknowledgement Bit is set. This bit is set by the access point if any user terminal was successful in accessing the system and an acknowledgment is being sent for at least one user terminal on the FCCH. If this bit is set, then the user terminal processes the FCCH for acknowledgment sent on the FCCH. IE Type 3 information elements are sent if the access point desires to acknowledge that it correctly decoded the RACH PDUs from the user terminals without assigning resources. Table 14 lists the various fields of an exemplary IE Type 3 information element.

Table 14 - FCCH IE Type 3

Fields/ Parameter Names	Length (bits)	Description
IE Type	4	IE type
MAC ID	10	Temporary ID assigned to user terminal
Reserved	34	Reserved for future use

[00103] A single or multiple types of acknowledgment may be defined and sent on the FCCH. For example, a quick acknowledgment and an assignment-based acknowledgment may be defined. A quick acknowledgment may be used to simply acknowledge that the RACH PDU has been received by the access point but that no $\mathrm{FCH} / \mathrm{RCH}$ resources have been assigned to the user terminal. An assignment-based acknowledgment includes assignments for the FCH and/or RCH for the current TDD frame.
[00104] A number of different rates are supported for the transport channels. Each rate is associated with a particular code rate and a particular modulation scheme, which collectively results in a particular spectral efficiency (or data rate). Table 15 lists the various rates supported by the system.

Table 15

Rate Word	Spectral Efficiency	Code Rate	Modulation Scheme	Info bits/ OFDM	Code bits/ OFDM

	(bps/Hz)			symbol	symbol
0000	0.0	-	off	-	-
0001	0.25	$1 / 4$	BPSK	12	48
0010	0.5	$1 / 2$	BPSK	24	48
0011	1.0	$1 / 2$	QPSK	48	96
0100	1.5	$3 / 4$	QPSK	72	96
0101	2.0	$1 / 2$	16 QAM	96	192
0110	2.5	$5 / 8$	16 QAM	120	192
0111	3.0	$3 / 4$	16 QAM	144	192
1000	3.5	$7 / 12$	64 QAM	168	288
1001	4.0	$2 / 3$	64 QAM	192	288
1010	4.5	$3 / 4$	64 QAM	216	288
1011	5.0	$5 / 6$	64 QAM	240	288
1100	5.5	$11 / 16$	256 QAM	264	384
1101	6.0	$3 / 4$	256 QAM	288	384
1110	6.5	$13 / 16$	256 QAM	312	384
1111	7.0	$7 / 8$	256 QAM	336	384

[00105]
While the FCCH channel structure as described above can be operable at different data rates, this structure may not be efficient because the rate employed on the FCCH is dictated or limited by the worst-case user in the system (e.g., the user that operates at the lowest data rate). For example, if one of the users can only receive and decode information on the FCCH at a low data rate of $0.25 \mathrm{bps} / \mathrm{Hz}$, other users in the system will be adversely affected even though they are capable of operating at higher data rates. This is because the rate employed on the FCCH structure will be limited to that of the worst-case user, which is $0.25 \mathrm{bps} / \mathrm{Hz}$. Thus, the FCCH performance and efficiency may be reduced by a single user. As described in more details below, the present invention provides a novei and more efficient FCCH channel structure that can be used to accommodate different users operable at different data rates.
[00106]
In one embodiment, the new FCCH structure, also referred to as a tiered control channel structure or segregated control channel structure herein), comprises multiple control channels (e.g., 4 distinct control channels). Each of these distinct control
channels, also called control subchannel or FCCH subchannel herein, can operate at one of the multiple overhead data rates (e.g., one or four different data rates as mentioned above).
[00107] FIG. 7 illustrates a diagram of a new FCCH structure within a TDD MAC frame, in accordance with one embodiment of the invention. It should be understood by one skilled in the art that while TDD-TDM frame structure is used in this example for the purposes of illustration and explanation, the teachings of the present invention are not limited to TDD frame structure but can also be applied to various other frame structures of various durations (e.g., FDD-TDM, etc). As shown in FIG. 7, the TDD MAC frame is partitioned into a downlink phase (also called downlink segment) 701 and an uplink phase (also called uplink segment) 751. In this embodiment, the downlink phase is further divided into three segments for the three corresponding transport channels - the BCH 710, the FCCH 720, and the FCH 730. The uplink phase is further partitioned into two segments for the two corresponding transport channels - the RCH 740 and the RACH 750.
[00108] As shown in FIG. 7, the FCCH segment is divided or partitioned into multiple distinct FCCH segments or subchannels, each of which may operate at a specific data rate. In this example, the FCCH segment is divided into four FCCH subchannels ($\mathrm{FCCH} _0, \mathrm{FCCH} _1, \mathrm{FCCH} _2$, and $\mathrm{FCCH} _3$). In other embodiments of the invention, the FCCH segment may be divided into different numbers of subchannels (e.g., 8 subchannels, etc.), depending on the particular applications or implementations of the invention. In one embodiment, each FCCH subchannel may be associated with a specific set of operating and processing parameters (e.g., code rate, modulation scheme, SNR, etc.). For example, Table 16 below illustrates the code rates, modulation scheme, SNR, etc., that are associated with each FCCH subchannel. In this example, STTD is employed for each of the subchannels, in which case the length of each subchannel is a multiple of two OFDM symbols.

Table 16 - FCCH Subchannel Data Rates (STTD)

FCCH	Efficiency	Code Rate	Modulation	Information	Total SNR
Subchannel	$(\mathrm{bps} / \mathrm{Hz})$			Bits Per STTD	Frame Error
			OFDM	Rate (FER)	

				symbol	
FCCH_0	0.25	0.25	BPSK	24	-2.0 dB
FCCH_1	0.5	0.5	BPSK	48	2.0 dB
FCCH_2	1	0.5	QPSK	96	5.0 dB
FCCH_3	2	0.5	16 QAM	192	11.0 dB

[00109]
As shown in Table 16, each FCCH subchannel has a distinct operating point (e.g., SNR and other processing parameters) associated with it. A user terminal (UT) that is assigned a specific FCCH subchannel (e.g., FCCH_n at a particular rate) can correctly decode all lower rate subchannels, but not those operating at the higher rates. For example, if a particular user terminal is assigned subchannel FCCH_2, that user terminal can decode FCCH_0 and FCCH_1 subchannels because FCCH_0 and FCCH_1 operate at the lower rates. However, that user terminal cannot decode FCCH_3 because FCCH_3 operates at a higher rate. In one embodiment, the access point (AP) decides which FCCH subchannel to send control data to a UT based on various factors or selection criteria. These various factors or selection may include link quality information or operating conditions of the user terminals (e.g., C/I, Doppler, etc.), quality of service (QoS) requirements associated with the user terminals, and control subchannel preference indicated by the user terminals, etc. As described in more details below, the user terminals then attempt to decode each of the FCCH subchannels to determine if they have been allocated resources (e.g., $\mathrm{FCH} / \mathrm{RCH}$ channel resources).
[00110] Table 17 illustrates the structure for the various FCCH subchannels, in accordance with one embodiment of the present invention. As shown in Table 17, the FCCH subchannel structure for subchannel FCCH $\quad 0$ is distinct from the structure used for other FCCH subchannels ($\mathbf{F C C H} _1$, FCCH_2, and $\mathrm{FCCH} _3$). In one embodiment, the FCCH_MASK field in the FCCH_0 structure is used to indicate the presence/absence of higher rate FCCH subchannels in a particular order. For example, the FCCH_MASK field may comprise three bits each of which corresponds to a particular subchannel and is used to indicate whether the particular subchannel is present in an order from subchannel 1 (MASK bit 0), subchanncl 2 (MASK bit 1), and subchannel 3 (MASK bit 2). The corresponding subchannel MASK bit is set to a particular value (e.g., 1) to indicate the presence of the respective subchannel. For example, if the value of MASK bit number 0 (the least significant MASK bit) is set to
" 1 ", this indicates the presence of $\mathrm{FCCH}_{1} 1$ subchannel. Pad bits are provided to achieve an even number of OFDM symbols in each subchannel. In one embodiment, each FCCH subchannel is capable of providing scheduling information for multiple user terminals (e.g., 32 users). The IE types described above can be used for the FCCH subchannels.

Table 17 - FCCH Subchannel Structure

FCCH_0:	Bits
FCCH MASK	3
No. IE Rate 0	5
Rate 0 IE's	
0 Padding	
CRC	16
Tail	6
FCCH_1:	Bits
No. IE Rate 1	5
Rate 1 IE's	
0 Padding	
CRC	16
Tail	6
FCCH_2:	Bits
No. IE Rate 2	5
Rate 2 IE's	
0 Padding	
CRC	16
Tail	6
FCCH_3:	Bits
No. IE Rate 3	5
Rate 3 IE's	
0 Padding	
CRC	16
Tail	6

FIG. 8 illustrates a flow diagram of a method 800 in accordance with one embodiment of the present invention. At block 810, as described above, a control channel is segregated or partitioned into a plurality of subchannels each of which being operable at a specific data rate. At block 820 , control information including resource allocation information is transmitted from an access point to a user terminal on a particular subchannel of the plurality subchannels selected for the user terminal, based on one or more selection criteria, as described above. At block 830, at the user terminal, one or more subchannels of the plurality of subchannels are decoded to obtain control information (e.g., channel assignments) designated for the user terminal. In one embodiment, as explained in more details below, the decoding procedure performed at the user terminal starts with the FCCH subchannel operated at the lowest data rate (FCCH_0 in this example) and continues until at least one of a plurality of conditions is satisfied.
[00112] FIG. 9 shows a flow diagram of a decoding procedure 900 performed by a user terminal in decoding the new FCCH structure, in accordance with one embodiment of the present invention. The user terminal starts by decoding the subchannel FCCH_0. In one embodiment, decoding is considered successful if the CRC test passes. The user terminal terminates FCCH decoding process whenever any of the following events occurs:
(i) Failure to correctly decode an FCCH subchannel;
(ii) Receipt of an assignment;
(iii) Decoding of all active FCCH subchannels without receiving an assignment.
[00113] Referring again to FIG. 9, at block 910, the process begins by initializing n to 0. In this example, n is a variable used to indicate the current FCCH subchannel being decoded in the current iteration of the process. At block 915, the current FCCH_n subchannel is decoded. For example, in the first iteration, $\mathrm{FCCH}_{-} 0$ is decoded at block 915. At block 920 , it is determined whether the CRC test with respect to the current FCCH_n subchannel passes. If the CRC test passes, the process proceeds to block 925 to determine whether the corresponding MAC D is present, otherwise the process proceeds to block 930 to process the next MAC frame. At block 925 , if the corresponding MAC ID is present, the process proceeds to block 940 to obtain the assignment information provided by the access point. Otherwise, the process proceeds to block 935 to check if n is equal to 3 . At block 935 , if n is equal to 3 , the process
proceeds to block 945 to initialize the FCCH_MASK field to indicate that all FCCH subchannels have been processed. As described above, in one embodiment, the FCCH_MASK field in the FCCH_0 subchannel structure comprises three bits each of which is used to indicate the presence/absence of a corresponding higher rate FCCH subchannel. For example, the first bit (bit 0 or the least significant bit) of the FCCH_MASK field is used to indicate the presence/absence of subchannel 1 , the second bit (bit 1 or the next significant bit) of the FCCH_MASK field is used to indicate the presence/absence of subchannel 2 , and so on. The process then proceeds to block 950 to determine whether there are any active FCCH subchannels remaining to be decoded. If there are more active FCCH subchannels to be decoded, the process proceeds to block 960 to increment n to the next active FCCH subchannel. Otherwise the process proceeds to block 955 to process the next MAC frame.
[00114] Various parts of the MIMO WLAN system and various techniques described herein may be implemented by various means. For example, the processing at the access point and user terminal may be implemented in hardware, software, or a combination thereof. For a hardware implementation, the processing may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
[00115] For a software implementation, the processing may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory unit and executed by a processor. The memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.
[00116] Headings are included herein for reference and to aid in locating certain sections. These headings are not intended to limit the scope of the concepts described therein under, and these concepts may have applicability in other sections throughout the entire specification.
[00117] The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to
these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

WHAT IS CLAIMED IS:

CLAIMS

1. A method for processing information in a communication system, comprising: partitioning a control channel used for transmitting control information into a plurality of subchannels, each subchannel being operated at a specific data rate;
selecting, for each of one or more user terminals, one of the subchannels to be used for transmitting control information from an access point to the respective user terminal, based on one or more selection criteria; and
transmitting control information from the access point to a particular user terminal on a particular subchannel selected for the respective user terminal.
2. The method of claim 1 wherein the control information is transmitted in a segment of a data frame specifically allocated for the control channel.
3. The method of claim 1 wherein each subchannel is associated with a specific set of operating parameters.
4. The method of claim 3 wherein the operating parameters are selected from the group consisting of a code rate, a modulation scheme, and a signal-to-noise ratio (SNR).
5. The method of claim 1 wherein the plurality of subchannels are transmitted sequentially in an order from a subchannel with a lowest data rate to a subchannel with a highest data rate.
6. The method of claim 5 wherein a subchannel that is transmitted first in the plurality of subchannels includes a field to indicate whether other subchannels are also being transmitted.
7. The method of claim 6 wherein the field comprises a plurality of bits each of which corresponds to a particular subchannel and is used to indicate whether the corresponding subchannel is present in the segment allocated for transmitting control information.
8. The method of claim 1 wherein the one or more selection criteria are selected from the group consisting of a first criterion corresponding to a link quality associated with the respective user terminal, a second criterion corresponding to quality of service requirements associated with the respective terminal, and a third criterion corresponding to a subchannel preference indicated by the respective terminal.
9. A method for processing information in a communication system, comprising: segregating a control channel into a plurality of subchannels each of which being operable at a specific data rate;
transmitting control information including resource allocation information from an access point to a user terminal on particular subchannel of the plurality subchannels selected for the user terminal, based on one or more selection criteria; and
decoding, at the user terminal, one or more subchannels of the plurality of subchannels to obtain control information designated for the user terminal.
10. The method of claim 9 wherein decoding comprises:
performing a decoding procedure to decode the one or more subchannels, starting with a subchannel operated at a lowest data rate, until at least one of a plurality of conditions is met.
11. The method of claim 10 further comprising:
terminating the decoding procedure if one of the plurality of conditions is met.
12. The method of claim 11 wherein the plurality of conditions includes a first condition indicating a failure to correctly decode one of the plurality of subchannels.
13. The method of claim 11 wherein the plurality of conditions includes a second condition indicating that control information designated for the user terminal has been obtained from one of the plurality of subchannels.
14. The method of claim 11 wherein the plurality of conditions includes a third condition indicating that all subchannels have been processed.
15. The method of claim 10 wherein performing a decoding procedure comprises: determining whether information transmitted on a subchannel has been correctly received, based on a quality metric corresponding to the respective subchannel.
16. The method of claim 15 wherein the quality metric comprises a cyclic redundancy check (CRC).
17. The method of claim 10 wherein performing a decoding procedure comprises: determining whether control information designated for the user terminal is present in the respective subchannel, based on an identifier associated with the user terminal.
18. The method of claim 17 wherein the identifier comprises a Medium Access Control (MAC) identifier.
19. The method of claim 9 wherein the one or more selection criteria are selected from the group consisting of a first criterion corresponding to operating conditions of the respective user terminal, a second criterion corresponding to quality of service requirements associated with the respective terminal, and a third criterion corresponding to a subchannel preference indicated by the respective terminal.
20. An apparatus for processing information in a communication system, comprising:
means for partitioning a control channel that is used for transmitting control information into a plurality of subchannels, each subchannel being operated at a specific data rate;
means for selecting, for each of one or more user terminals, one of the subchannels to be used for transmitting control information from an access point to the respective user terminal, based on one or more selection criteria; and
means for transmitting control information from the access point to a particular user terminal on a particular subchannel selected for the respective user terminal.
21. The apparatus of claim 20 wherein each subchannel is associated with a distinct set of operating parameters including a code rate, a modulation scheme, and an SNR.
22. The apparatus of claim 20 wherein the plurality of subchannels are transmitted sequentially in an order from a subchannel with a lowest data rate to a subchannel with a highest data rate.
23. The apparatus of claim 22 wherein a subchannel that is transmitted first in the plurality of subchannels includes a field to indicate whether other subchannels are also being transmitted.
24. The apparatus of claim 20 wherein the one or more selection criteria including a first criterion corresponding to a link quality associated with the respective user terminal, a second criterion corresponding to quality of service requirements associated with the respective terminal, and a third criterion corresponding to a subchannel preference indicated by the respective terminal.
25. An apparatus for processing information in a communication system, comprising:
means for segregating a control channel into a plurality of subchannels each of which being operable at a specific data rate;
means for transmitting control information including resource allocation information from an access point to a user terminal on particular subchannel of the plurality subchannels selected for the user terminal, based on one or more selection criteria; and
means for decoding, at the user terminal, one or more subchannels of the plurality of subchannels to obtain control information designated for the user terminal.
26. The apparatus of claim 25 wherein means for decoding comprises:
means for performing a decoding procedure to decode the one or more subchannels, starting with a subchannel operated at a lowest data rate, until at least one of a plurality of conditions is met.
27. The apparatus of claim 26 wherein the plurality of conditions includes a first condition indicating a failure to correctly decode one of the plurality of subchannels, a second condition indicating that control information designated for the user terminal has been obtained from one of the plurality of subchannels, and a third condition indicating that all subchannels have been processed.
28. The apparatus of claim 25 wherein means for performing a decoding procedure comprises:
means for determining whether information transmitted on a subchannel has been correctly received, based on a quality metric corresponding to the respective subchannel; and
means for determining whether control information designated for the user terminal is present in the respective subchannel, based on an identifier associated with the user terminal.
29. The apparatus of claim 25 wherein the one or more selection criteria including a first criterion corresponding to operating conditions of the respective user terminal, a second criterion corresponding to quality of service requirements associated with the respective terminal, and a third criterion corresponding to a subchannel preference indicated by the respective terminal.
30. An apparatus for processing information in a communication system, comprising:
a controller configured to select one of a plurality of control subchannels to send control information to a user terminal, based on one or more selection criteria, each subchannel being operable at a specific data rate; and
a transmitter to send the control information designated for the user terminal on the subchannel selected for the user terminal.
31. The apparatus of claim 30 wherein each subchannel is associated with a specific set of operating parameters, including a data rate at which control information is transmitted, a code rate, a modulation scheme, and an SNR.
32. The apparatus of claim 30 wherein the plurality of subchannels are transmitted sequentially in an order from a subchannel with a lowest data rate to a subchannel with a highest data rate.
33. The apparatus of claim 30 wherein the one or more selection criteria including a first criterion corresponding to a link quality associated with the respective user terminal, a second criterion corresponding to quality of service requirements associated with the respective terminal, and a third criterion corresponding to a subchannel preference indicated by the respective terminal.
34. An apparatus for processing information in a wireless communication system, comprising:
a receiver to receive information on one or more control subchannels each of which being operated at a specific data rate; and
a decoder to decode the one or more control subchannels to obtain control information designated for a particular user terminal, starting with a subchannel operated at a lowest data rate, until at least one of a plurality of conditions is met.
35. The apparatus of claim 34 wherein the plurality of conditions includes a first condition indicating a failure to correctly decode one of the plurality of subchannels, a second condition indicating that control information designated for the user terminal has been obtained from one of the plurality of subchannels, and a third condition indicating that all subchannels have been processed.
36. The apparatus of claim 34 wherein the decoder is configured to determine whether information transmitted on a subchannel has been correctly received, based on a quality metric corresponding to the respective subchannel and to determine whether control information designated for the user terminal is present in the respective subchannel, based on an identifier associated with the user terminal.
37. A machine-readable medium comprising instructions which, when executed by a machine, cause the machine to perform operations including:
partitioning a control channel that is used for transmitting control information into a plurality of subchannels, each subchannel being operated at a specific data rate;
selecting, for each of one or more user terminals, one of the subchannels to be used for transmitting control information from an access point to the respective user terminal, based on one or more selection criteria; and
transmitting control information from the access point to a particular user terminal on a particular subchannel selected for the respective user terminal.
38. The machine-readable medium of claim 37 wherein each subchannel is associated with a set of operating parameters, including a data rate at which control information is transmitted, a code rate, a modulation scheme, and an SNR.
39. The machine-readable medium of claim 37 wherein the one or more selection criteria including a first criterion corresponding to a link quality associated with the respective user terminal, a second criterion corresponding to quality of service requirements associated with the respective terminal, and a third criterion corresponding to a subchannel preference indicated by the respective terminal.
40. A machine-readable medium comprising instructions which, when executed by a machine, cause the machine to perform operations including:
receiving information on one or more control subchannels each of which being operated at a specific data rate; and
decoding the one or more control subchannels to obtain control information designated for a particular user terminal, starting with a subchannel operated at a lowest data rate, until at least one of a plurality of conditions is met.
41. The machine-readable medium of claim 40 wherein the plurality of conditions includes a first condition indicating a failure to correctly decode one of the plurality of subchannels, a second condition indicating that control information designated for the user terminal has been obtained from one of the plurality of subchannels, and a third condition indicating that all subchannels have been processed.
42. The machine-readable medium of claim 40 wherein the decoder is configured to determine whether information transmitted on a subchannel has been correctly received, based on a quality metric corresponding to the respective subchannel and to determine whether control information designated for the user terminal is present in the respective subchannel, based on an identifier associated with the user terminal.
43. A method for processing information in a system, comprising:
receiving information on one or more control subchannels each of which being operated at a specific data rate; and
decoding the one or more control subchannels to obtain control information designated for a particular user terminal, starting with a subchannel operated at a lowest data rate, until at least one of a plurality of conditions is met.
44. The method of claim 43 wherein the plurality of conditions includes a first condition indicating a failure to correctly decode one of the plurality of subchannels, a second condition indicating that control information designated for the user terminal has been obtained from one of the plurality of subchannels, and a third condition indicating that all subchannels have been processed.
45. The method of claim 43 wherein decoding comprises:
determining whether information transmitted on a subchannel has been correctly received, based on a quality metric corresponding to the respective subchannel; and
determining whether control information designated for the user terminal is present in the respective subchannel, based on an identifier associated with the user terminal.

3/10

4/10

Downlink

든
$\stackrel{y}{\square}$

$6 / 10$

FIG. 7

FIG. 8

10/10

FIG. 9

Form PCTISA/210 (second sheet) (January 2004)
page 1 of 2

Bibliographic data: JP2000102067 (A) - 2000-04-07

COMMUNICATION SYSTEM AND SLAVE SET

Inventor(s):	HAMADA TOMOICHI; MORIYA YOICHI; KAWABATA
Applicant(s): TAKASHI; SOGABE TORU \pm	
	MITSUBISHI ELECTRIC CORP \pm
Classification:	H04J3/00; H04Q7/36; (IPC1-
	international: \quad 7): H04J3/00; H04Q7/36
- European:	

Abstract of JP2000102067 (A)

PROBLEM TO BE SOLVED: To improve the frequency utilizing efficiency of operating frequency bands by dividing each of two frequency bands into carrier frequencies whose number is the same as a prescribed number of radio cells, assigning two carrier frequencies to each radio cell and operating a time division multiple access/time division duplex system with the respective frequencies. SOLUTION: Frequency bands are divided into two frequency bands being upper and lower frequencies with an equal band width, and let number of repetition of cell
 arrangement be, e.g. 7 , then the upper/lower frequency bands are divided respectively into 7 carrier frequencies f1-f7 and $f 1^{\prime}-f 7$ ' and two optional carrier frequencies are assigned as operating frequencies of each cell among the carrier frequencies in total of 14.; One system of a transmitter-receiver is enough by allocating slots of each carrier so that the slot assigned to the two carriers is not in duplicate at the same time and the configuration of the slave set is simplified.

【特許請求の範苏】

【請求項1】無線回線の多元接続方式として時分割多元接続／時分割複信方式を採用した無線セルでサービス エリアを覆い，一定の無線セル数毎に同一キャリア周波数による無線セルを繰返して配置する通信方式におい
て，システムの運用周波数帯が2つの領域に分離して割当てられており，2つの領域の周波数帯のそれぞれを上記一定の無線セル数と同じ数のキャリア周波数に分割 し，各無線セルに対してキャリア周波数を2つずつを割当て，それぞれのキャリア周波数で時分割多元接続／時分割複信方式を運用するとともに，各無線セル内の基地局と子機との間の通信に対して当該2つの時分割多元接続／時分割複信フレーム上からそれぞれタイムスロット を割当てることを特徴とする通信方式。
【請求項2】子機に割当てるタイムスロットの位置が 2つの時分割多元接続 時分割複信フレームにおいて同一時刻に重ならないように割当てることを特徴とする請求項1記載の通信方式。
【請求項3】 2 つに分離されたシステムの運用周波数帯は帯域幅が異なってあり，各無線セルに対して割当て るキャリア周波数は各々の領域から一つずつ割当ててい ることを特徵とする請求項1記載の通信方式。
【請求項4】 基地局から子機への同報チヤネルを2つ のキャリア周波数上の時分割多元接続 時分割複信フレ ームにおいて各々送信し，子機は両同報于ャネルの内受信状況の良好な方を選択して受信することを特徴とする請求項1記載の通信方式。
【請求項5】 基地局からの2つの同報チャネルを2つ のキャリア周波数上の時分割多元接続 時分割複信フレ ームにおいて一定時問差があるタイムスロットで各々送信し，子機は両同報チャネルの内受信状况の良好な方を選択して受信することを特徴とする請求頂4記載の通信方式。
【請求頂6】請求頂2の通信方式で基地局と通信する子機であって，送受信装置の送受信周波数を設定する局部発振器の発振周波数を2つのキャリア周波数の送受信 のタイミングに応じて切換えるようにしたことを特徴と する子機㓐置。
【発明o詳細な説明】
【0001】
【発明の属する技術分野】この発明は，一定の無線セル数毎に同一キャリア周波数による無線セルを繰返して配置する通信方式において，例えば，多元接続方式として時分割多元接続／周波数分割複信方式などを運用するこ とを若慮して，2つの領域に分離して割当てられたシス テムの運用周波数帯で時分割多元接続／時分割複信方式 を運用するための方式及び子機垻置に関するものであ る。
【0002】
【従来の技術】時分割多元接続／時分割複信（Time

Division Multiple Access ＜Time Division Duplex 以下，TDMA／TDDと称す。）通信方式を採用するセ ルラ通信方式に対する運用周波数の割当て例として，
＂第二世代コードレス電話システム標準規格＂（RCR STD－28，財団法人電波システム開発センター，平成5年12月20日策定）の第3．2．1項無線周波数帯（以下，文献 1 と称す。）に記載されたものがある。文献1にも示されているように，TDMA／T D D 通信方式においては，一般的に一つのまとまった周波数帯域 にあいて竡数のキャリア周波数が割当てられる。また， セルラ通信方式については＂移動通信の基碟＂，奧村善久，進士昌明監修，昭和61年電子情報通信学会発行の第8章（以下，文献2と称す。）に述べられている。以下，上記のような一つのまとまった領域の周波数帯を割当てるTDMA T T D Dによるセルラ通信方式について概略を説明する。
【0003】図9はTDMA／TDD方式で使用される フレーム構成の一例である。TDMA／TDD方式では時間領域で複数の于ャネルを構成するためにフレームを チャネルに対応するタイムスロット（以下，単にスロッ トと略称する。）に分割している。図において，Bは下 り放送チャネル用スロットで，基地局から無線セル（以下，単にセルと略称する。）内の複数の子機に向けた同報于ャネルで子機全体に対する制御情報や個々の子機に対する制御情報などが含まれる。また，下り放送チャネ ル用スロットBはセル内のTDMA T D D フレームの時間基準としても利用きれる。Rは上りランダムフクセ ス用スロットで，セル内の子機から基地局に向けた制御 チャネルで子機側から通信要求を行う時などに使用す る。一般的に，このRチャネルはそれぞれの子機がラン ダムにアタセスする方式がとられることが多い。U1か らUmまてのスロットは子機から基地局に向けた通信才 キネル（上り通信キヤネル），D 1 からDnまでのス口 ットは基地局から子機に向けた通信まャネル（下り通信 チャネル）である。
【0004】このようにTDMA CDDD 通信方式では 1フレーム内に䙡数の上り通信チやネルU 1～Umも下 り通信まャネルD 1 －D nを設けることにより，1つO キャリア周波数で基地局と複数の子機間の全二重通信を行うようにしている。文献1はTDMA／T D D 通信方式を採用している第二世代コードレス電話システム（ P HS）の周波数割当てを示しているが，本発明を端的に説明するため，従来のキャリア周波数の割当て例を図1 0に示す。図10にあいてにシステムに割当てらすねな楎用周波数帯を7つのキャリフ周波数f1～17に分割し ている。キャリア周波数f1～f7は分割きれたそれそ その周波数帯の中心周波数である。また，图11は文献 2にも述心゙られている7セル繰返しによるせル配置の一

セルでは，それらの中に記入された図10に対応するキ やリア周波数 $1 ~ 7$ を使用していることを示している。【0005】また，図12はTDMA／TDD通信方式 で使用される基地局と子綅の送受信装置の概略構成図で あり，図にあいて8は送受信アンテナ，9は送信奚回路，10はこの送信系回路9に送信データを入力する送信データ入力端子，11は受信系回路，12はこの受信系回路11が受信データを出力する受信データ出力端子，13はアンテナ8を送信系回路9又は受信系回路1 1の何れかに接続するスイッチ，14は送信系回路9及 び受信采回路11の送受信周波数を設定•選択する局部発信器，15は送受信制御及びスイッチ13の切換タイミ ングを制御する制御回路，16は制御信号の入力端子であ る。
【0006】例えば，図11のセル1内で基地局と通信 する子機を例に信号の送受信の動作を図12で說明す
る。図12において，送信データは送信データ入力端子 10に入力される。入力されたデータは送信采回路9で ディジタル変調され送信キャリア周波数f1でTDMA フレーム上の所定のスロット（上り通信チャネル）U 1 ～Umにおいて送信系回路9の出力側からスイッチ13 を経由してアンテナ8に接続され基地局に向けて送信さ れる。一方，アンテナ8で受信された基地局からのキャ リア周波数f1の電波はスイッチ13を経由して受信采回路11に導かれ受信処理され受信データ出力端子12 に出力される。なお，送受信采回路9，11の送受信周波数は，局部発信器 14 の設定によってf1が選択され る。また，制御回路 15 は制御信号の入力端子 16 から の制御信号によってアンテナ8の切換えや送受信采回路 9，11の処理内容を制御する。
【0007】以上のように，TDMA TDD通信方式 ではそれそれのセルに割当てられたキャリア上て図9の例のようTDMA／TDDフレームを構成し，基地局と子機の送信を時問軸上で区分けすることにより同一のキ ャリア周波数で基地局と複数の子機が通信を行うことが できる。
【0008】上記したように，TDMA T TDD通信方式では送受信を同一の中ャリア上で時間で区分して行
う。このため，各セルに詨する周波数割当てに関して
は，システムか運用周波数帯を絽返し七ル数て等分し，
それぞれの）周波数帯を繰返しセル群（図11の例ではて セル 1 ～7）を構成するセルに順に割当て，辣返しセル数毎にこれらの周波数帯を繰返し利用するのが基本であ る。
【0009】
【発明办解決しようとする課題】従来のTDMA $/$ TD D通信方式においては，図10及び図11のようにまと まった周波数帯域内できャリア周波数が割当てられるこ とが一股的である。しかしながら，TDMA／TDD通信方式の運用周波数帯が，例えば基地局とそれでれか子

機の送信の区別を周波数領域で行う時分割多元接続／周波数分割椱信（Time Division Mult iple Access Frequency D ivision Duplex：以下，TDMA／FD Dと称す。）方式を採用するシステムとの混在や選択的 な使用を考虑し，図13に示すように上下 2 つの周波数領域に分離され割当てられることもある。これは，TD MA／FDD通信方式にとっては運用周波数帯がある程度以上の周波数差がある上りチャネル用と下りチャネル用の2つの周波数領域に分けられていることが必須であ り，一方TDMA T TDD通信方式は基本的には運用周波数帯が一つにまとめられていても，2つに分けられて いても対応できるためである。
【0010】しかしながら，例えば図11に示した繰返 しセル数 7 のセル配置において，図 13 のように上下 2 つの等しい帯域楅の運用周沽数帯が割当てられたとする と，図11のセル配置を構成するために必要な 7 つのキ ヤリア周波数に割当てられた運用周波数帯の全体を等分 することはできない。このため図13に示市ように，例 えじ上下の周波数帯をそれぞれ 4 つ，すなわち合計8つ の周波数枼に等分しその内 7 つの周波数帯を図 11 のよ うに割当てたとすると，1キャリア周波数が余ってしま い与えられた運用周波数帯の全てを有効に利用すること ができないという主たる問題があった。
【0011】この発明は上記のような問題を解消するた めになされたもので，2つの領域に分離されて割当てら れた運用周波数帯を使用して周波数利用効率の良いTD MA／TDD通信方式によるセルラ通信を行うことを目的としており，きらにこれを実現するための送受信装置 が簡単に構成できる方式及び装置を提供すること，制び 2 つの頒域に分割きれていることを利用し通信の信頼性 を高める方式な提供することを目的としている。

【0012】

【課題を解決するための手段】この発明の請求頂1に係 る通信方式は，無線回線の多元接続方式として時分割多元接続／時分割複信方式を採用した無線セルでサービス エリアを覆い，一定の無線セル数毎に同一乎やリア周波数による無線セルを繰返して配置する通信方式におい て，システムの運用周波数帯が2つの領域に分離して割当てられており，2つの領域の周波數帯のきれぞれを上記一定の無線セル数と同じ数のキャリア周波数に分割 し，各無線セルに対してキャリア周波数を 2 つずつを割当て，それぞれのキャリア周波数で時分割多元接続／時分割複信方式を運用するとともに，各無線七ル内の基地局と子構との間の通信に対して当該2つの時分割多元接続／時分割複信フレーム上からをれたれタイムスロット を割当てるようにしたものてある。
【0013】この発明の請求項2に係る通信方式は，請求項1にむける通信方式であって，子機に割当てるタイ ムスロットの位置が2つか時分割多元接続／時分割複信

フレームにあいて同一時刻に重ならないように割当てる ようにしたものである。
【O O 1 4 】この発明の請求項3に係る通信方式は，請求項1における通信方式であって，2つに分離きれたシ ステムの運用周波数帯は帯域幅が異なっており，各無線 セルに対して割当てるキャリア周波数は各々の領域から一つずつ割当てるようにしたものである。
【0 0 1 5 】この発明の請求項4に係る通信方式は，請求項1における通信方式であって，基地局から子機への同報于ャネルを2つのキャリア周波数上の時分割多元接続／時分割複信フレームにおいて各々送信し，子機は両同報于ヤネルの内受信状況の良好な方を選択して受信す るようにしたものである。
【0016】この発明の請求項5に係る通信方式は，請求項4における通信方式であって，基地局からの2つの同報チャネルを2つのキャリア周波数上の時分割多元接続／時分割複信フレームにおいて一定時間差があるタイ ムスロットで各々送信し，子機は両同報チヤネルの内受信状況の良好な方を選択して受信するようにしたもので ある。
【0017】この発明の請求項6に係る通信方式は，請求項2の通信方式で基地局と通信する子機であって，送受信装置の送受信周波数を設定する局部発振器の発振周波数を2つのキャリア周波数の送受信のタイミングに応 じて切換えるように構成したものである。
【0018】
【発明の実施の形態】実施の形態1．以下，この発明の実施の形態1を図についで説明する。図1は下側と上側 の等しい帯域幅の2つの領域に分離をれ割当てられたせ ルラ通信システムの運用周波数帯の例である。今，セル配置の例として繰返したル数を7とする場合には，これ ら上下の周波数帯域をそれぞれ図中f1～f7及びf
割し，合計 14 のキャリア周波数の中から任意の2キや リア周波数を各セルの運用周波数として割当てる。
【0019】図2に繰返しセル数が 70 場合のセル配置 とこの実施の形態によるキャリア周波数割当ての例き示 す。図において，1～7はセルであり，それぞれのセル 1～7でま，それらの中に記人された図1に対応するキ ャリア周波数を使用することを例として示している。そ れそれのかャリア周波数で運用されるTDMA T T D のフレーム構成は基本的には図9の従来例で示したもの と同様であり，図3は図2においてセル1でf1とf2 のキャリア周波数で運用きれるTDMA T T D D フレ一ム構成の例を示す。図において各スロット信号の機能 は図9に示した従来のTDMA T D D フレームの例と同様である。また，図中ハッチングしたスロットはセル 1内のある子機と基地局の間の通信に割当てられたス口 ットを示している。この図に示すように2つのキャリケ の両方にスロットが割当てられる場合には，同一時刻に

お討る割当てを避けると同時に，必要に応して一定以上 の時間差を設けて割当てるようにすることによって送受信機の構成を簡単にすることができる。
【0020】すなかち，図2のように各セルに2つの送受信キャリアを割当てた場合の信号の送受信は同一時刻 に2つのキャリアのスロットが割当てられる場合を想定 して基本的には図4に示すように図12の従来例で示し た送受信装置を各々のキャリアに対応し，各基地局と子機に各々2つずつ設置する必要がある。しかしながら，図3に示したように2つのキャリア上に割当てられるス ロットが同一時刻に重ならないように各キャリアのスロ ットを割り当てておけば図ちに示すように送受信周波数 を選択する局部発振器 14 a の周波数をf1の送受信用 と f 2 の送受信用に該当するスロットのタイミングに合 わせて切掐えることにより送受信装置は 1 系統だけでよ くなり，装置構成を簡単にすることができる。なお，図 4において図12と同じ記号で示した回路は図120そ れぞれの回路と同じ機能の回路であり，また，17は例 としてここではキャリア周波数f1を，また，18は例 としてキャリア周波数f 2を送受信する装置である。
【0021】また，図5においても図12と同じ記号で示した回路は図12のそれぞれの回路と同じ機能の回路 であり，図中，14aは送受信回路の送受信周波数を選択する局部発信器であるが，図30例で示したTDMA〈TDDフレーム上に割当てられた送受信スロットに対応して送受信周波数をf1加f2に切換えて選択する機能を有している。
【0022】実施の形態2．図6はこの発明の実施の形態2に係る運用周波数の分割例を示す図である。図6は図 1 において運用周波数帯の下側と上側の帯域幅が異な る場合の周波数分割例であり，それぞれの楎用周波数炗 を繰返しセル数と同じ数に分割している。この場合の各 セルに対－するキャリア周波数の割当て例を図7に示す。図中に示すように各セル $1 \sim 7$ には上下の琿用周波数領域加らキャリア周波数を 1 つずつ割当てることにより，各セル1～7毎に同等の虫域を割当てることができる。 このような場合の装置構成ほ図4と同じでするが，17 と18の送受信装置の送受信帯域幅やデータの伝送速度 は，図6に示した上下媈用周波数帯に割当てられたキャ リア周波数のそれぞれの帯域幅に応じて異なる。
【0023】実施の形態3．図3に示したように，基地局から子機に向け大制御情報などを伝送するBチャネル を両方の中ャリアf1，f20TDMA／TDDフレー ムに設け，基地局は同一の情報を両B于ヤネルて伝送 し，子機むこれら両Bテャネルを受信し，受信状洗か良好な方の愛信データを採用するようにすれだ，制御おや ンネル○信頼性を向上させることができる。
【0024】実施の形態4．図3で示した2つのキャリ アf1，f2上のそれそれのTDMA TDDフレーム のВチかネルのスロットを図8で示すように異なる位置

に配置し，子檪はこれら両方のBチャネルを受信し，受信状況の良好な方の受信データを採用するようにすれ ば，制御みャンネルの信頼性をさらに向上させることが できる。

【0025】

【発明の効果】この発明の請求項1における通信方式に よれば，各無線セルに対してキャリア周波数を2つずつ を割当て，それぞれのキャリア周波数で時分割多元接続 －時分割複信方式を運用するとともに，各無線セル内の基地局と子機との間の通信に対して当該2つの時分割多元接続／時分割複信フレーム上からそれぞれタイムスロ ットを割当てるようにしたので，割当てられた周波数帯 を余すことなく有効に利用することができる効果があ る。
【0026】また，この発明の請求項2における通信方式によれば，子機に割当てるタイムスロットの位置が2 つの時分割多元接続／時分割複信フレームにおいて同一時刻に重ならないように割当てるようにしたので，子機 の送受信器の構成を簡単にすることができる効果があ る。
【0027】また，この発明の請求項ろにおける通信方式によれば，帯域幅の異なる2つの周波数帯から，各無線セルに対して割当てるキャリア周波数を各々の領域か ら一つずつ割当てるものとしたので，割当てられた周波数帯を余すことなく有効に利用することができ，かつ，各無線セルに同等の帯域を割当てるようにすることがで きる効果がある。
【0028】また，この発明の請求項4における通信方式によれば，2つのキャリフ周波数上にそれそれ送信さ れてくる同報于ャンネルの内，受信状況の良好な方を選択して受信するようにしたので，制御チャンネルの信頼性を向上できる効果がある。
【0029】必た，この発明の請求項ちにあける通信方式によれば，2つの同報みやンネルを一定時問差のある タイムスロットで送信するものとし，子機は受信状涀の良好な方を選択して受信するようにしたので，制御チや ンネルの信頼性きさらに向上できる効果がある。

【0030】さらに，この発明の請求項6における子機装置によれば，送受信装置の送受信周波数を設定する局部発振器の発振周波数を2つのキャリア周波数の送受信 のタイミングに応じて切換えるようにした送受信器の構成を簡単にすることができる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係る運用周波数帯 の分割例を示す図である。
【図2】この発明の実施の形態1に係る各無線セルに対するキャリア周波数の割当て例を示し図である。
【図3】この発明の実施の形態1に係る時分割多元接続 時分割複信フレームの構成を示す図である。
【図4】この発明の実施の形態1に係る送受信装置の構成を示すブロック図である。
【図5】この発明の実施の形態1に係る送受信装置の他の構成を示すブロック図である。
【図6】この発明の実施の形態2に係る運用周波数帯 の分割例を示す図である。
【図7】この発明の実施の形態2に係る各無線セルに対するキャリア周波数の割当て例を示し図である。
【図8】この発明の実施の形態2に係る時分割多元接続 時分割複信フレームの構成を示す図である。
【図9】従来の時分割多元接続／時分割複信フレーム の構成を示す図である。
【図10】従来の楎用周波数帯の分割例を示ず図であ る。
【図11】従来の各無線セルに対するキャリア周波数 の割当て例を示し図である。
【図12】従来の送受信装置の他の棤成を示すブロッ ク図である。
【図13】従来の運用周波数䟫の他の分割例を示市図 である。
【符号の説明】
$1 \sim 7$ 無線セル， 8 アンテナ， 9 送信采回路，11受信系回路，14 局部発信器， 15制御部。

【図1】

【図5】

【図2】

【図4】

【图6】

【図3】

【図7】

【図10】

【図11】

【図8】

【図9】

TDMiATDDフレーム
劓比
B：イク度迷チャネル井スロット
IC：ヒ！リランダAアクセス用スコット
U1－Uin 上り涌信用スロット
D1－Dn：下の逝届看スロット。

【図13】

フロントページか続き
（72）発明者 川端 孝史
Fターム（参芕）5K028 AA11 AA14 BB06 CCO2 CCO5東京都干代田区丸の内二丁目2番3号 三 DD01 DD02 HH02 LL02 RR01菱電機株式会社内
（72）発明者 曽我部 徹 TT02
$5 K 067$ AA11 CC04 DD45 EE02 EE10
東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内

【図12】

Espacenet

Bibliographic data: JP2001268051 (A) - 2001-09-28

UP-LINK PACKET TRANSMISSION METHOD IN MULTI-CARRIER/DS- CDMA MOBILE COMMUNICATION SYSTEM

Inventor(s):	OKAWA KOICHI; SHIN HIROYUKI; ABETA SADAYUKI; SAWAHASHI MAMORU \pm
Applicant(s):	NTT DOCOMO INC \pm

Abstract of JP2001268051 (A)

PROBLEM TO BE SOLVED: To provide an up-link packet transmission method in a novel multi- carrier DS-CDMA mobile communication system that can realize packet transmission at a variable
 transmission rate. SOLUTION: An operating frequency band is divided into n-sets (n is a natural number) of subcarrier f-fn, and the subcarriers $f 1$-fn are furthermore used in time division. A frame (frame length is TF and in common to all the subcarriers) is set
 to each subcarrier. Moreover, the frame is temporally divided into F-sets (F is a natural number) of time slots TS1-TSF (one time slot length $T S=T F / F$). A mobile station transmits a packet in matching the timing of this time slot. The packet can be furthermore multiplexed by applying spread processing to the packet in the same time slot by different spread codes by the principle of code division (CDMA).

【特許請求の範囲】

【請求項1】 n 個（nは2以上の自然数）のサブキャ リアを有するマルチキャリア／DS－C D MA移動通信 システムにおける上りリンクパケット伝送方法におい て，
上記サブキャリアの通信チャネルそれぞれに，一定時間 ごとの区切りであるフレームを設定し，さらに，前記フ レームを時間的にF個（Fは，2以上の自然数）に分割 したタイムスロットを設定し，
移動局は，伝送すべきパケットを，前記タイムスロット のタイミングに合わせて，拡散符号により拡散して，基地局に伝送することを特徴とする上りリンクパケット伝送方法。
【請求項2】請求項1記載の上りリンクパケット伝送方法において，
前記移動局は，パケット伝送するに当たり，前記基地局 に，タイムスロット及び拡散符号の割り当てを，予約要求パケットを伝送して要求し，
前記基地局は，要求した移動局にタイムスロット及び拡散符号を割り当て，
前記移動局は，前記基地局から割り当てられたタイムス ロットにおいて，割り当てられた拡散符号によりパゲッ トを摭散して伝送することを特䘗とする上りリンクパケ ット伝送方法。
【請求項3】請求項1記載の上りリンクパラ゙ット伝送方法におろいて，
前記移動局は，タイムスロットの割り当てを前記基地局 に要求することなく，前記通信チャネルのいずれかのタ イムスロットにランダムアクセスしてパケット传送する ことを特徴とする上りリンクパグット伝送方法。
【請求項4】請求項1記載の上りリンクパケット伝送方法におわいて，
前記移動局が位送するバケットの伝送量の大ききに応じ て，前記移動局 $\mathscr{\text { 伝送速度を変更することを特徴とする }}$上りリンクパクット伝送方法。
【請求項5】 請求項2記載の上りリンクパケット伝送方法におわて，
前記基地局は，前記予約要求パケット伝送用のタイム又 ロットとLてk1個（k1は自然数，k $1 \leqq \mathrm{~F} \times \mathrm{n}$ ）を割り当て，さらに，子約要求パグットか拡散用としてm 1 個（ m 1 は自然数， $\mathrm{m} 1 \leqq$ 使用できる拡散符号の総数）の拡散符号を割り当て，
前記移動局は，割り当てられたタイムスロットにおい て，割り当てられた拡散符号の1つで予約要求パラット を拡散して伝送することを特徴とずる上りリンクパグッ卜伝送方法。
【請求項6】請求項5記載の上りリンクパケット伝送方法において，
前記基地局は，前記移動局から○所定期間にむける予約要求パグット数に応じて，

前記予約要求パケット伝送用のタイムスロットの田数k 1を変更することを特徴とする上りリンクパケット伝送方法。
【請求項7】請求項5記載の上りリンクパケット伝送方法において，
前記基地局は，前記移動局からの所定期間における予約要求パケット数に応じて，
前記予約要求パケット伝送用の拡散符号の個数m1を変更することを特徴とする上りリンクパケット伝送方法。
【請求項8】請求項5記載の上りリンクパゲット伝送方法において，
前記基地局は，前記移動局からの所定期間における予約要求パケット数に応じて，
前記予約要求パケット伝送用のタイムスロットの個数k 1 及び前記予約要求パケット伝送用の拡散符号の個数m 1を変更することを特徴とする上りリンクパケット伝送方法。
【請求項9】請求項5記載の上りリンクパケット伝送方法において，
前記基地局は，前記移動局からの所定期間における予約要求パケット数が多い場合，
前記移動局に予約要求パグットの伝送制限を通知し，
前記移動局は，その制限にしたがつて予約要求パケット を伝送することを特徴とする上りリンクパケット伝送方法。
【請求項10】請求項3記載の上ワリンクパクット伝送方法において，
前記基地局は，前記移動局がランダムアクセスしてパケ ット伝送可能なタイムスロットとしてk2個（k2は自然数， $\mathrm{k} 2 \leq \mathrm{F} \times \mathrm{n}$ ）を割り当て，さらに，ランダムフ クセスバクットの拡散用としてm2棝（m2は自然数， $\mathrm{m} 2 \leq$ 使用できる拡散符号の総数）の拡散符号を割り当 て，
前記移動局は，割り当てられたタイムスロットにおい
て，割り当てられた拡散符号の1つてランダムアクセス するパケットを拡散して伝送することを特徴とする上り リンクパケット伝送方法。
【請求項11】請求項10記載の上りリンクパケット伝送方法にあいて，
前記基地局は，前記移動局からの所定期間におけるラン ダムアクセスするパケット数に応じて，
前記ランダムアクセスパケット伝送用のタイムスロット の個数k2を変更することを特徴とする上ワリンクパケ ット伝送方法。
【請求項12】請求頂10記載か上りリンクパケット伝送方法にあいて，
前記基地局は，前記移動局からの所定期間におけるラン ダムテクセスするパケット数に応じて，
前記ランダムケクセスパケット伝送用の掋散符号の個数 m2を変更することを特㟟もする上りリンクパン゙ット伝

送方洁。
【請求項13】請求項10記載の上りリンクパケット伝送方法において，
前記基地局は，前記移動局からの所定期間におけるラン ダムアクセスするパケット数に応じて，
前記ランダムアクセスパケット伝送用のタイムスロット の個数 k 2 及び前記ランダムアクセスバケット伝送用の拡散符号の個数m2を変更することを特徴とする上りり ンクパケット伝送方法。
【請求項14】請求項10記載の上りリンクパケット伝送方法において，
前記基地局は，前記移動局からの所定期間にあけるラン ダムアクセスするパケット数が多い場合，
前記移動局にテンダムアクセスパケットの伝送制限を通知し，
前記移動局は，その制限にしたがってランダムアクセス を行うことを特環とする上りリンクパケット伝送方法。
【請求項15】請求項4記載の上りリンクパケット伝送方法において，
前記基地局は，前記移動局の伝送量の大きさに応じて，
移動局に p 個（ p は自然数， p S使用できる拡散符号の
総数）の拡散符号を割り当てることを特勸とする上りリ ンクパケット伝送方法。
【請求項16】請求項4記載の上りリンクパケット伝送方法において，
前記基地局は，前記移動局の伝送量の大きさに応じて，前記移動局に異なる拡散率の拡散符号を割り当てること を特仙とする上りリンクパケット伝送方法。
【請求項17】請求頂4記載の上りリンクパケット伝送方法において，
前記基地局は，移動局の伝送量の大きさに応じて，
移動局に q 個（ q は自然数， $\mathrm{q} \leq \mathrm{F} \times \mathrm{n}$ ）のタイムス口 ットを割り当てることを特徵とする上りリンクパケット伝送方法。
【請求頂18】請求項4記載の上りリンクパクット伝送方法において，
前記基地局は，前記移動局の伝送量の大きさに応じて，
拡散符号数 p（ p は自然数， p §使用できる拡散符号の
総数），異なる拡散率の控散符号，タイムスロット数 q
（ q は自然数， $\mathrm{q} 5 \mathrm{~F} \times \mathrm{n}$ ）の内，少なくとも2つを変更させて割り当てを行うことを特徴とする上りリンクパ ケット伝送方法。
【発明の詳細な説明】
【0001】
【発明か属する技術分野】本発明は，マルキキかりア DS—CDMA移動通信システムにおける上りリンクバ ケット伝送方法に関する。
【0002】
【従来の技術】マルチキャリア変調を用いな新しい符号分割多元接続（CDMA）方式が多数提案きれている。

マルチキャリア／DS－CDMA方式は，その中の1つ であり，＂Perfomance of orthog onal CDMA codes for quasi －synchronous communicatio n systems＂（V．DaSilva，E．So usa：Proc．ofICUPC＇93，vol． 2，pp995－999，1993）において，最初の検討がなされている。
【0003】マルチキャリア／DS－CDMAは，1つ のキャリアでCDMA信号を伝送するシングルキャリア －DS－CDMAとは異なり，無線伝送帯域を分割して複数のサブキャリアによりCDMA信号の並列伝送を行 うものである。
【0004】これによりサブキャリア当たりの，情報伝送速度は小さくなり，それにともなって情報信号を拡散 してCDMA信号を生成する拡散信号の速度も小さくな る。その結果，シングルキャリア／DS－CDMAに比較して，マルチキャリア／DS－CDMAでは拡散信号 のチップ長が長くすることができる。チップ長が長くな れじ，拡散符号どうしの同期ずれの影響が緩和される。 この特徵を利用して，上記論文では，マルキキャリア／ DS－CDMAを移動体通信システムの移動局から基地局への通信に適用し，準同期伝送を行う方法の提案を行 つている。
【0005】また，マルキキャリア／DS—CDMAの リンクレベルでの性能評価が行われている。
【0006】＂On the Perfomance
of Multi－carrierDS CDMAS ystems，＂（S．Kondo and L．B． Milstein：IEEE Transaction s on Communications，vol． 4 4，no．2，pp．238－246，Februar y 1996）におかて，狭帯域干渉か存在する環境で か性能評侕では，マルキキャリアノDS－CDMAは， シンダルキャリアノDS－CDMAよりも良好な特性と なることが示きれている。

【0007】

【爻明が解決しようとする課題】しかし，従来のマルチ キャリア D S－CDMA方式に開する検討ではリンク レベルでの性能評侕が中心であり，この方式を移動体通信システムに適用した場合に，どのようにして移動局が基地局と通信のやり取りを行うか，そのための制御信号 をどのように伝送するかといった検討がなされていな い。
【0008】さらに，これらの検討り，従来の移動体通信システムで通常用いられているような，送信機から受信機への信号伝送の際に，送信開始加的終了まで常に専用の通信チャネルを磪保する回線交換方式基基準にした ものである。
【0009】ところで，伝送すべき信号の伝送量の大き

さが多様化すると，回線交換方式では伝送の効率が悪く なる。一方，パケット伝送は，伝送量の多様な信号を効率良く伝送することができるので，伝送すべき信号の伝送量の大きさが多様化した場合は，パケット伝送が有効 となる。
【0010】そこで，本発明は，可変伝送速度のパケッ ト伝送を実現することが可能な新規なマルチキャリア／ DS－CDMA移動通信システムにおける上りリンクパ ケット伝送方法を提供することを目的とするものであ る。

【0011】

【課題を解决するための手段】上記課題を解决するため に，本件発明は，以下の特徴を有する課題を解決するた めの手段を採用している。
【0012】請求項1に記載された発明は，n個（nは 2以上の自然数）のサブキャリアを有するマルチキャリ ア／DS－CDMA移動通信システムにおける上りリン クパケット伝送方法において，上記n個サブキャリアの通信チャネルそれぞれに，一定時間ごとの区切りである フレームを設定し，さらに，前記フレームを時間的にF個（Fは，2以上の自然数）に分割したタイムスロット を設定し，移動局は，伝送すべきパケットを，前記タイ ムスロットのタイミングに合わせて，拡散符号により拡散して，基地局に伝送することを特墔とする。
【0013】請求頂2に記載された発明は，請求頂 1 記載の上りリンクパゲット伝送方法において，前記移動局 は，パケット伝送するに当たり，前記基地局に，タイム スロット及び拡散符号の割り当てを，予約要求パケット を伝送して要求し，前記基地局は，要求した移動局に夕 イムスロット及び㹡散符号を割り当て，前記移動局は，前記基地局から割り当てられたタイムスロットにない て，割り当てられた摭散符号によりパケットを拡散して伍送方ることを特徱とする。
【0014】請求頂3に記載きれた発明は，請求頂1記載の上りリンクパラ゙ット层送方法において，前記移動局 は，タイムスロットの割り当てを前記基地局に要求する ことなく，前記通信チャネルのいずれかのタイムスロッ トにランダムアクセスしてパケット伝送することを特徴 とする。
【0015】請求項4に記載きれた発明は，請求頂 1 記載の上りリンクバケット伝送方法において，前記移動局 が伝送するバケットの伝送量の大きさに応じて，前記移動局の伝送速度を変更することを特徵とする。
【0016】請求頂5に記載された発明は，請求頂2記載の上りリンクバグット层送方法において，前記基地局 は，前記子約要求パケット伝送用のタイムスロットとし てk1個（k1は自然数，k1 1 F $\times \mathrm{n}$ ）を割り当て， さらに，予枃要求パケットの拡散用としてm1個（m1 は自然数，m1 1 使用できる拡散符号か総数）の拡散符号を割り当て，前記移動局は，割り当てられたタイムス

ロットにあいて，割り当てられた拔散符号の1つで予約要求パケットを拡散して伝送することを特徴とする。
【0017】請求項6に記載された発明は，請求項5記載の上りリンクパケット伝送方法にあいて，前記基地局 は，前記移動局からの所定期間における予約要求パケッ ト数に応じて，前記予約要求パケット伝送用のタイムス ロットの個数k1を変更することを特徴とする。
【0018】請求項7に記載された発明は，請求項5記載の上りリンクパラット伝送方法にあいて，前記基地局 は，前記移動局からの所定期間における予約要求パケッ ト数に応じて，前記予約要求パケット伝送用の拡散符号 の個数m1を変更することを特辩とする。
【0019】請求項8に記載された発明は，請求項5記載の上りリンクパラット伝送方法において，前記基地局 は，前記移動局からの所定期間における予約要求パケッ ト数に応じて，前記予約要求パケット伝送用のタイムス ロットの個数k1及び前記予約要求パケット伝送用の拡散符号の棝数m1を変更することを特徴とする。
【0020】請求項9に記載された発明は，請求項5記載の上りリンクパケット伝送方法にあいて，前記基地局 は，前記移動局からの所定期間における予韵要求パケッ ト数が多い場合，前記移動局に予約要求パケットの伝送制限を通知し，前記移動局に，その制限にしたがって予約要求パケットを伝送することを特䘖とする。
【0021】請求頂10に記載された発明は，請求項3記載の上りリンクパケット伝送方法に扔いて，前記基地局は，前記移動局がランダムアクセスしてバケット伝送可能なタイムスロットとしてk2個（k2は自然数，k $2 \leqq F \times n$ ）を割り当て，きらに，シンダムアクセスパ ケットの拡散用としてm2個（m2は自然数，m2s使用できる拡散符号の総数）の拡散符号を割り当て，前記移動局は，割り当てられたタイムスロットにおいて，割 り当てられた拨散符号の1つでランダムアクセスするパ ケットを拡散して伝送することを特惟とする。
〔0022】請求頂11に記載きれた発明は，請求頂1 0記載の上りリンタバタット伝送方法において，前記基地局は，前記移動局からの所定期間におけるランダムフ タセスするパケット数に庐じて，前記ランダムアクセス バケッット伝送用のタイムスロットの固数k2を変更する ことを特鐲とする。
【0023】請求項12に記載された発明は，請求項1 0記載の上りリンクパケット伝送方法において，前記基地局は，前記移動局からの所定期間におけるランダム戸 クセスするパラットト数に応じて，前記ランダムアクセス バゲット伝送用の㧤散符号の個数m2を変更することを特鳋とずる。
【0024】請求項13に記載きれた発明は，請求項1 0記載の上りリンタパケット伝送方法において，前記基地局は，前記移郵局からの所定期間におけるランダムす クセスするパラ゙ット数に応じて，前記ランダムアクセス

パケット伝送用のタイムスロットの個数k2及び前記ラ ンダムアクセスパケット伝送用の拡散符号の個数m2を変更することを特徴とする。
【0025】請求項14に記載された発明は，請求項1 0 記載の上りリンクパケット伝送方法において，前記基地局は，前記移動局からの所定期間におけるランダムア クセスするパケット数が多い場合，前記移動局にランダ ムアクセスパケットの伝送制限を通知し，前記移動局
は，その制限にしたがってランダムアクセスを行うこと を特徴とする。
【0026】請求項15に記載された発明は，請求項4記載の上りリンクパケット伝送方法にむいて，前記基地局は，前記移動局の伝送量の大きさに応じて，移動局に p 個（ p は自然数， $\mathrm{p} \leqq$ 使用できる拡散符号の総数）の拡散符号を割り当てることを特徴とする。
【0027】請求項16に記載された発明は，請求項4記載の上りリンクパケット伝送方法において，前記基地局は，前記移動局の伝送量の大きさに応じて，前記移動局に異なる拡散率の拡散符号を割り当てることを特紋と する。
【0028】請求項17に記載された発明は，請求項4記載の上りリンクパケット伝送方法において，前記基地局は，移動局の伝送量の大きさに応じて，移動局に q 個 （ q は自然数， $\mathrm{q} \leq \mathrm{F} \times \mathrm{n}$ ）のタイムスロットを割り当 てることを特徴とする。
【0029】請求項18に記載された発明は，請求項4記載の上りリンクパケット伝送方法において，前記基地局は，前記移動局の伝送量の大きさに応じて，掋散符号数 p （ p は自然数， p 使用できる拡散符号の総数），異なる拉散率の拡散符号，タイムスロット数 q （ q は自然数， $\mathrm{q} \leq \mathrm{F} \times \mathrm{n}$ ）の内，少なくとも2つを変更きせて割り当でき行すことを特徵とする。
【0030】
【発明の実施か形態】次に，本発明の実施の形態につい て図面と共に説明する。
（チャネル構成）図1ほ，マルチキャリア／DS－CD MA方式における移動局と基地局間の千ャネル構成の一例示示守图である。
【0031】使用周波数帯をn個（nは2以上の自然数）のサブキャリアf1～fnに分割する。また，この サブキャリアf $1 \sim \mathrm{fn}$ を時分割で使用する。そのた
め，各サブキャリアにフレーム（一定時間ごとの区切り であり，フレーム長を T_{F} とする。このフレームは，全 サブキャリアで共通とする。）を設定する。さらに，こ のクレームを，時間的にF個（Fは，2以上の自然数） のタイムスロットTS 1～TSF（1タイムスロット長 $\mathrm{TS}=\mathrm{T}_{\mathrm{F}} / \mathrm{F}$ ）に分割する。
【0032】したがって，全サブキャリアでは，1フレ一ム内にF×の個のタイムスロットが存在する。
【0033】移動局は，このタイムスロットのタイミン

グに合わせてパケットを伝送する。また，同一のタイム スロット内では，パケットを異なる拚散符号により拡散 することで，符号分割（CDMA）の原理により多重化 する。
【0034】従って，図1のチャネル構成では， $\mathrm{F} \times \mathrm{n}$ \times（拡散符号多重数）の複数パケットの同時伝送が可能 となる。
【0035】図1の例では，サブキャリアf1のタイム スロットTS1において，CDMAにより3つのパケッ トが多重化されている。
（タイムスロット及び拡散符号を予約してパケット伝送 する方法）図 2 は，移動局から基地局にパケット伝送す る際に，移動局と基地局の間で行われる制御のやり取り の一例を示す図である。
【0036】移動局は，まず，予約要求パケットを基地局に伝送して，パケットを伝送するためのタイムスロッ ト及び拡散符号の割り当てを要求する（S 1 0 1）。基地局は，移動局からの割り当て要求に対して，通信チや ネル上のタイムスロット及び拡散符号の割り当てを行い （S102），その結果を移動局に通知する（S 1 0 3）．
【0037］移動局は，基地局から割り当てられたタイ ムスロットで，かつ，割り当てられた拡散符号によりパ ケットを拡散して伝送する（S104）。
【0038】これにより，タイムスロット及び拡散符号 を割り当てられた移動局のみが，割り当てられたタイム スロットにおいて，割り当てられた拡散符号を用いてパ ケットを拡散して伝送を行うことができる。
【0039】多くのタイムスロット又は多くの掋散符号 を割り当てれば，同時に多くのパケットを伝送すること ができるので，伝送量か大きくなる。
【0040】また，一つのタイムスロット又は一つの拡散符号を割り当てた場合でも，移動局か割り当てられた タイムスロット及び割り当てられた拡散符号を優先して使用し，移動局が，伝送する情報かなくなるまで，周期的にから碎実に伝送ができれば，結果として，伝送量の大きなパケットが伝送できることとなる。
（予約無しのランダムアクセス）図3は，移動局から基地局にバタット伝送する際に，移動局と基地局で行るれ る制御のやり取りの一例を示す図である。
【0041】移動局は，通信チャネル上のいずれかのタ イムスロットにランダムアクセスしてバケットを伝送す る（S111）。
【0042】ここで，パラットの伝送に成功すれぼ，パ ケットの层送は終了となる（S112：YES）。失歕 した場合には（S112：NO），移動局は再び，通信 チャネル上のいずれかのタイムスロットにランダムアク セスしてバケットを伝送する（S 1 1 1）。
【0043】このように，移動局が，タイムスロットの割り当てを前記基地局に要求することなく，通信于かネ

ル○いずれかのタイムスロットにランダムアクセスして パケット伝送する方法し，移動局から基地局に伝送量の少ない信号をパケット伝送する場合に適する。
（伝送量に応じたタイムスロットと拡散符号の割り当 て）図4は，移動局が伝送すべきパケットの伝送量の大 きさに応じて伝送速度を変更するための，移動局と基地局で行ふれる制御のやり取りの一例を示す図である。
【0044】移動局は，まず，予約要求パゲットを基地局に伝送して，タイムスロット及び拡散符号の割り当て を要求するとともに，伝送量の大きさも伝える（S 12 0）。
【0045】基地局は，移動局からの割り当て要求及び伝送量の情報に基づいて，通信于ヤネル上に移動局の伝送量に応じたタイムスロットや拡散符号の割り当てを行 い，その結果を移動局に通知する（S 1 2 1）。
【0046】移動局は，この通知結果に基づいてパケッ ト伝送を行う（S122）。
【0047】これにより，移動局が伝送するパケットの伝送量が大きければ，基地局は，大きな伝送量が伝送可能な夕イムスロット（例えば，複数のタイムスロット）及び拡散符号（例えば，複数の拡散符号，拡散率の小さ い拡散符号）の割当を行い，移動局が必要とする伝送量 が小さけれぼ，基地局は，それに見合ったタイムスロッ ト及び拡散符号の割当を行う。
【0048】これにより，基地局は，移動局の伝送量に応じて，タイムスロットと拡散符号を適応的に割り当て る。
【0049】一方，移動局は，伝送する伝送量に応じた侃送速度を得ることができる。
（予約要求パケット伝送用のタイムスロットと拡散符号 の割り当て）次に，移動局が基地局に，予約要求パケッ トを伝送する場合に，基地局がどのように予約要求パケ ット伝送用のタイムスロットと拡散符号の割り当てを行 うかを説明する。移動局から基地局には，図1に示した ように， $\mathrm{F} \times \mathrm{n} \times$（拨散符号多重数） の複数パラットの同時伝送が可能となる。
【0050】本発明では，このF $\times \mathbf{n} \times$（拡散符号多重数）中の幾つかな，予約要求パケット伝送に用いる。
【0051】図5は，一フレーム内に存在する下 $\times \mathrm{n}$ の タイムスロットの中から，基地局が予約要求パラット伝送タイムスロットとして任意のk1個（k1：自然数， $\mathrm{k} 1 \leqq \mathrm{~F} \times \mathrm{n}$ ）を割り当てる。そして，移動局は，この予約要求パケット伝送タイムスロットにおいて，基地局 によって，あらかじめ決められたm1個（m1 ：自然数，m1 使用できる拡散符号の総数）か拡散符号の1 つで予新要求バうットを拡散して伝送する。
【0052】図5では，サブキャリアf10タイムスロ ットTS1，サブキャリアf2のタイムスロットTS 1，サブキャリアf30タイムスロットTS2等が，予䇋要求パタット伝送夕イムスロットとして割り当てられ

ている。
【0053】図6の場合は，全サブャャリアにおいて，毎フレームごとに発生するタイムスロットTS1のタイ ムスロットを予約要求パケット伝送タイムスロットとし て設定した場合（k1＝n）のチャネル構成の一例を示 している。
【0054】図6は，f1～fnの全てのサブキャリア において，タイムスロットTS 1 のタイムスロットを予約要求パケット伝送タイムスロットとして設定した場合 である。
〔0055】図7の場合は，全サブャャリアにおいて， タイムスロットTS 1 の一部を予約要求パケット伝送夕 イムスロットとして設定した場合（k1＜n）のチャネ ル構成の一例を示している。k1個のタイムスロットの選び方は，サブキャリアを連続的に割り当てても，離散的に割り当ててもよい。
【0056】図7では，サブキャリアf30タイムスロ ットTS 1 は，予約要求パケット伝送タイムスロットと して，割り当てられていない。
【0057】図8の場合は，一つのサブキャリアの全夕 イムスロットを予約要求パケット伝送タイムスロットと して設定した場合（k1＝F）のチャネル構成の一例を示している。なお，予約要求パケット伝送タイムスロッ トを設定するサブキャリアは，2以上であってもよい。【0058】図8では，サブキャリアf10全タイムス ロットが，予約要求パケット伝送タイムスロットとし
て，割り当てられている。
【0059】図9の場合は，一つのサブキャリアの一部 のタイムスロットを予約要求パケット伝送夕イムスロッ トとして設定した場合（k1＜F）の于ゃネル構成の一例を示している。k1個のタイムスロットの選び方は， タイムスコットを連続的に割り当てても，離散的に割り当てをもよい。
【0060】図9では，サブキャリアf1のTS1，T S2，TS4等のタイムスロットが，予約要求パグット伝送夕イムスロットとして，割り当てられている。 （予約要求パケット伝送用のタイムスロット数及び拡散符号数等の変更）移動局からの所定期間にあける予約要求バクット数が多いと，予約要求に応じられないことが ある。そこで，子約要求パケット数に応じて，子約要求 パケット伝送用のタイムスロット数及び拡散符号数等を変更する。
【0061】図10の場合は，移動局からの所定期間に おける子約要求パラットト数に応じて，基地局が予約要求 バクット伝送夕イムスロットの個数k1（k1：自然数， $\mathrm{k} 1 \leqq \mathrm{~F} \times \mathrm{n}$ ）を変更する際O，基地局で行われる制御の一例を示した図である。
【0062】基地局は，移動局から伝送きれた予韵要求 バケット数を，一定時間測定する（S130）。【0063】測定した結果，予約要求パンット数が吉る

しきい値以上の場合（S131：YES）は，予約要求 パケット伝送スロット数を増加させ，そのタイムスロッ トの位置を移動局に通知する（S 1 3 3）。
【0064】また，測定した結果，予約要求パケット数 があるしきい値以下の場合（S132：YES）は，予約要求パケット伝送スロット数を減少させ，そのタイム スロットの位置を移動局に通知する（S134）。
【0065】予約要求パケット数があるしきい值以上で なく（S131：NO），かつ，予約要求パケット数が あるしきい値以下でない（S132：NO）場合は，予約要求パケット伝送スロット数は変更しない。
【0066】移動局は，基地局から通知された予約要求 パケット伝送タイムスロットの位置にしたがって，予約要求パケットを伝送する。
【0067】図11は，移動局からの所定期間にあける予約要求パケット数に応じて，基地局が予約要求パケッ ト伝送用の拡散符号の個数 m 1 （ m 1 ：自然数， $\mathrm{m} 1 \leqq$使用できる拡散符号の総数）を変更する際の，基地局で行われる制御の一例を示した図である。
【0068】基地局は，移動局から伝送された子約要求 パケット数を，一定時間測定する（S 1 4 0）。
【0069】測定した結果，予約要求パケット数がある しきい值以上の場合（S141：YES）は，子約要求 パケットを拡散する拡散符号数m1を増加させ，その種類を移動局に通知する（S143）。
【0070】また，測定した結果，予韵要求パラット数 があるしきい値以下の場合（S142：YES）は，予約要求パケットを拡散する拡散符号数m1を減少させ， その種類を移動局に通知する（S 144）。
【0071】子約要求バケット数があるしきい值以上で なく（S141：NO），かつ，予新要求パケット数が あるしきい値以下でない（S 142：NO）場合は，予約要求パケットを拡散する拡散符号数は変更しない。
【0072】移動局は，基地局から通知きれた子約要求 パゲット伝送用の捖散符号の中から1つを選択して，子約要求パケットを拡散して伝送する。
【0073】図12は，移動局からの所定期間における予約要求パケット数に応じて，基地局が前記予約要求パ グット伝送タイムスロットの個数k1（k1：自然数， $\mathrm{k} 1 \leqq \mathrm{~F} \times \mathrm{n}$ ）及び子約要求パゲット伝送用か应散符号 の個数 m 1 （ m 1 ：自然数， $\mathrm{m} 1 乌$ 使用できる拡散符号 の総数）を変更する際の基地局で行うれる制御の一例を示した図である。
【0074】基地局は，移動局から伝送された子約要求 パケットト数を，一定時間測定する（S150）。
【0075】測定した結果，子約要求バラット数がある しきい值以上の場合（S151：YES）は，「予約要求パケットを拡散する拡散符号数m1を增加」あるいは「予移要求パケット伝送スロット数k 1 を増加」あるい は「号の双方を増加」させ，その情報を移動局に通知方

る（S153）。
【0076】また，測定した結果，予約要求パケット数 があるしきい値以下の場合（S152：YES）は，
「予約要求パケットを拡散する拡散符号数m1を減少」 あるいは「予約要求パケット伝送スロット数k1を減少」あるいは「その双方を減少」させ，その情報を移動局に通知する（S154）
予新要求バケット数があるしきい値以上でなく（S15 1：NO），かつ，予約要求パケット数があるしきい値以下でない（S 152：NO）場合は，「予約要求バケ ットを拡散する拡散符号数」及び「予約要求パケット伝送スロット数」ほ変更しない。
【0077】移動局は，基地局から通知された予約要求 バケット伝送タイムスロットの位置，及び予約要求パケ ット伝送用の拡散符号の中加ら1つを選択して，予約要求バケットを拡散して伝送する。
〔0078】図13は，予約要求パケット数が多くなる と，予約要求パケットの伝送が，的磪に伝送されない恐 れがあることから，基地局が移動局に予約要求パケット の伝送を制限（例えば，予約要求パケットの伝送を時間的に制限する。）し，移動局がその制限にしたがって予約要求パケットを伝送する場合の基地局で行われる制御 の一例を示した図である。
【0079】基地局は，移動局から伝送された予約要求 パケッット数を，一定時間測定する（S160）。
〔0080】測定した結果，予約要求パケット数がある しきい值以上の場合（S161：YES）は，予約要求 バケットの伝送制限を現状よりも厳しくし，移動局に通知家る（S 163）。
【0081】また，測定した結果，予約要求パケット数 があるしきい值以下の場合（S 162：YES）には，予韵要求バケットの伝送制限を現状よりも綂やかにし，移動局に通知する（S 164）。
〔0082］子約要求バケット数があるしきい値以上で なく（S161：NO），加，子約要求バラーット数が あるしきい値以下でない（S162：NO）場合は，伝送制际の変更を行かない。
（ランダムアクセス用のタイムスロット数及び拡散符号数等か割り当て）基地局は，移動局がランダムアクセス してパケット伝送可能なタイムスロットとしてk2個 （ k 2 ：自然数， $\mathrm{k} 2 \leqq \mathrm{~F} \times \mathrm{n}$ ）を割り当て，さらに， ランダムアクセスパケットの拡散用として m 2個（ m
2 ：自然数， m 2 S使用できる拡散符号の総数）の拡散符号を割り当てる。
〔0083】移動局は，割り当てられたタイムスロット にあいて，割り当てられた拉散符号の1つでランダムア タセスするパケットを拡散して伝送する。
【0084】図14に示されるように，一フレーム内に存在する $\mathrm{F} \times$ の個のタイムスロットの中から，基地局が ランダムアクセスパダット倠送タイムスロットとして任

意のk2個（k2：自然数，k2乌F×n）を割り当て る。そして，移動局はこのランダムアタセスパケット伝送タイムスロットにおいて，基地局によってあらかじめ決められたm2個（m2：自然数，m2 使用できる拡散符号の総数）の拡散符号の1つでランダムアクセスパ ケットを拡散して伝送する。
【0085】図14では，サブキャリアf1のタイムス ロットTS 1，サブキャリアf 2のタイムスロットTS 1，サブキャリアf3のタイムスロットTS 2 等が，ラ ンダムアクセスパゲット伝送タイムスロットとして割り当てられている。
【0086】図15は，全サブキャリアにおいて，毎フ レームごとに発生するタイムスロットTS 1 のタイムス ロットをランダムアクセスパケット伝送タイムスロット として設定した場合（k2＝n）のチャネル構成の一例 を示している。
【0087】図15では，全サブキャリアのタイムスロ ットTS1が，ランダムアクセスパケット伝送タイムス ロットとして，割り当てられている。
【0088】図16は，一部のサブキャリアにおいて，
毎フレームごとに発生するタイムスロットTS 1 のタイ
ムスロットをランダムアクセスパケット伝送タイムスロ ットとして設定した場合（k2＜n）のチャネル構成の一例を示している。k2個のタイムスロットの選び方
は，サブキャリアを連続的に割り当てても，離散的に割 り当ててもよい。
【0089】図16では，サブキャリアf30タイムス ロットTS1は，ランダムアクセスパケット伝送タイム スロットとして，割り当てられていない。
【0090】図17は，一つのサブキャリアの全タイム スロットをランダムアクセスパクット伝送夕イムスロッ トとして設定した場合（k2＝F）のチャネル構成の一例を示している。
【0091】図17では，サブキャリアf10全タイム スロットが，ランダムアクセスパラットト度送夕イムスロ ットとして，割り当てられている。
【0092】図18は，一つのサブキャリアの一部のタ イムスロットをランダムアクセスパケット伝送タイムス ロットとして設定した場合（k2くF）の夫ゅネル構成 の一例を示している。
【0093】図18では，サブキャリアf1のタイムス ロットTS1，タイムスロットTS2，タイムスロット TS 4等が，ランダムアクセスパケット伝送タイムスロ ットとして，割り当てられている。
【0094】k2個のタイムスロットの選び方は，タイ ムスロットを連続的に割り当てても，離散的に割り当て てもよい。
（ヲンダムアクセスバケット伝送タイムスロット数及び拡散符号数等の愛更）移動局からの所定期間内にあける ランダムアクセスパゲット数が多いと，通信できないこ

とが生じる。そこで，所定期間内にあけるランダムアク セスパケット数に応じて，ランダムアクセスパケット伝送夕イムスロット数及び拡散符号数等を変更する。
【0095】図19の場合は，移動局からの所定期間に おけるランダムアクセスパケット数に応じて，基地局が ランダムアクセスパケット伝送タイムスロットの個数k 2 （k2：自然数， $\mathrm{k} 2 \leqq \mathrm{~F} \times \mathrm{n}$ ）を変更守る際の，基地局で行われる制御の一例を示した図である。
【0096】基地局は，移動局から伝送されたランダム アクセスバケット数を，一定時間側定する（S 2 3 0）。
【0097】測定した結果，ランダムアクセスパケット数があるしきい値以上の場合（S231：YES）は， ランダムアクセスパケット伝送スロット数を増加させ， そのタイムスロットの位置を移動局に通知する（S 23 3）。
【0098】また，測定した結果，ランダムアクセスパ ケット数があるしきい値以下の場合（S232：YE
S）は，ヲンダムアクセスパケット伝送スロット数を減少させ，そのタイムスロットの位置を移動局に通知する （S234）。
【0099】ランダムアクセスパケット数があるしきい値以上でなく（S231：NO），かつ，シンダムアク セスパケット数があるしきい値以下でない（S232： NO）場合は，ランダムアクセスパグット伝送スロット数い変更しない。
【0100】移動局は，基地局から通知されたランダム アクセスパケット伝送タイムスロットの位置にしたがつ て，ランダムアクセスパケットを传送する。
【0101】図20は，移動局からの所定期問にあける ランダムアクセスパケット数に応じて，基地局がランダ ムアクセスパラット伝送用の拡散符号の個数m2（m 2：自然数，m25使用できる拡散符号の総数）を変更 する除の，基地局で行われる制御わ一例を示した図であ家。
【0102】基地局は，移動局から伝送されたランダム アクセスパケット数を，一定時間測定する（S24 0 ）。
【0103】測定した結果，ランダムアクセスバダット数があるしきい値以上の場合（S241：YES）4， ランダムアクセスパケットを拡散する拡散符号数m2を増加させ，その種類を移動局に通知する（S243）。【0104】また，測定した結果，ランダムアクセスパ ケット数があるしきい値以下の場合（S242：YE S）は，ランダムアクセスパクットを拡散する拡散符号数m2を減少させ，その種類を移動局に通知する（S2 44）。
【0105】ランダムアクセスパケット数があるしきい值以上でなく（S241：NO），かつ，ヲンダムアク セスパウット数が声るしきい值以下てない（S242：

NO）場合は，ランダムアクセスパケットを拡散する摭散符号数し変更しない。
【0106】移動局は，基地局から通知されたランダム アクセスパケット伝送用の拡散符号の中から1つを選択 して，ランダムアクセスパケットを拡散して伝送する。
【0107】図21は，移動局からの所定期間における ランダムアクセスパケット数に応じて，基地局が前記ラ ンダムアクセスパケット伝送タイムスロットの個数k2
（ k 2 ：自然数， $\mathrm{k} 2 \leqq \mathrm{~F} \times \mathrm{n}$ ）及びランダムアクセス パケット伝送用の拡散符号の個数m2（m2：自然数， $\mathrm{m} 2 \leqq$ 使用できる拡散符号の総数）を変更する際の基地局で行るれる制御の一例を示した図である。
【0108】基地局は，移動局から伝送されたランダム アクセスパケット数を，一定時間測定する（S 25 0 ）。
【0109】測定した結果，ランダムアクセスパケット数があるしきい値以上の場合（S251：YES）は，
「ランダムアクセスパケットを拡散する拡散符号数m2 を増加」あるいは「ランダムアクセスバケット伝送スロ ット数k2を増加」あるいは「その双方を増加」させ， その情報を移動局に通知する（S253）。
【0110】また，測定した結果，ランダムアクセスパ ケット数があるしきい値以下の場合（S252：YE
S）は，「ランダムアクセスパケットを拡散する拡散符号数m2を減少」あるいは「ランダムアクセスパゲット伝送スロット数k2を減少」あるいは「その双方完減少」させ，その情報を移動局に通知する（S254）ラ ンダムアクセスパケット数があるしきい值以上でなく
（S251：NO），かの，ランダムアクセスパケット数があるしきい値以下でない（S 252 ：NO）場合 は，「ランダムアクセスパケットを拡散する拡散符号数」及び「ランダムアクセスパケット伝送スロット数」 は変更しない。
【0111】移動局は，基地局から通知きれたランダム アクセスパラーット伝送タイムスロットの位置，及びラン ダムアクセスパケット伝送用の拡散符号の中から1つを選択して，ランダムアタセスパケットを拡散して伝送す る。
【0112】図22は，ランダムアクセスパケットト数が多くなると，ランダムアクセスパラ゙ットの伝送が，的醀 に伝送されない恐れがあることから，基地局が移動局に ランダムフクセスパケットの伝送を制限（例えば，伝送 を時間的に制限する。）し，移動局がその制限にしたが ってランダムアクセスパラットを伝送する場合の基地局 で行われる制御の一例を示した図である。
【0113】基地局は，移動局から伝送されたランダム アクセスパケット数を，一定時間測定する（S26 0 ）。
【0114】測定した結果，タンダムアクセスパケット数があるしきい値以上の場合（S261：YES）は，

ランダムアクセスパケットの伝送制限を現状よりも厳し くし，移動局に通知する（S263）。
【0115】また，測定した結果，ランダムアクセスパ ケット数があるしきい値以下の場合（S 262 ：YE S）には，ランダムアクセスパケットの伝送制限を現状 よりも緩やかにし，移動局に通知する（S 2 64）。
【0116】ランダムアクセスパケット数があるしきい値以上でなく（S261：NO），加つ，ランダムアク セスパケット数があるしきい値以下でない（S 262： NO ）場合は，伝送制限の変更を行わない。
（伝送量に応した伝送速度の変更）本発明では，移動局 が伝送するパケットの伝送量の大きさに応じて，移動局 の伝送速度を変更する。以下に，伝送量に応した伝送速度の変更の態㨾を示す。
【0117】図23では一例として，移動局2の伝送速度に対して，移動局 1 が p 個の拡散符号を用いてパケッ トを多重化して伝送することによりp倍の伝送速度を実現なる様子を示している。
【0118】図24虫，通信チャネルの一つのタイムス ロットTS内で，移動局の伝送量の大きさに応じて，基地局が移動局に異なる拡散率の拡散符号を割り当てるこ とにより，可変伝送速度を実現する一例を示した図で而 る。
【0119】図24では，移動局2のパケットに用いら れる拡散符号に対して，拡散率が 1 ／SF倍の拡散符号 により移動局1のパケットを拡散し，移動局1の伝送速度を移動局2に比較してSF倍（チップレートは一定） にする様子を示している。
【0120】図25は，通信きャネルの一フレーム内
で，移動局の伝送量の大きさに応して，基地局が移動局 に任意のq個（ q ：自然数， $\mathrm{q} \leq \mathrm{F} \times \mathrm{n}$ ）のタイムスロ ットを割り当てることにより，可変伝送速度を実現する一例を示した図である。
［0121］図26，図27，図28，図29は，移動局の伝送量の大きさに応じて，基地局は，抎散符号数 P，異なる拡散率の拡散符号，タイムスロット数のの内，少なくとも2のを変更して割り当てる実施の形能を說明するための図である。
［0122］図26では，図24に対して，さらに，移動局1に移動局2の拡散符号の拡散率に対して 1 ／SF倍の拡散萃を持つp個の拡散符号を割り当てることによ り，移動局 1 の伝送速度を移動局 2 に対して $\mathrm{p} \times \mathrm{SF}$ 倍 に設定している。
0123】図27では，図25に対して，さらに，移動局1の各タイムスロットにp個の拡散符号を割り当て ることにより，移動局 1 か伝送速度を移動局 2 に対して $\mathrm{p} \times \mathrm{q}$ 倍に設定している。
【0124】図28では，一例として，移動局1に移動局 2 の拡散符号の拡散率に対して $1 / \mathrm{SF}$ 倍の拡散率を持の拡散符号を割り当て，きらにq偣のタイムスロット
（田 10 ））01－268051（P2001－268051A）

を割り当くることにより，移動局 1 の伝送速度を移動局 2に対してq \times SF倍に設定している。
【0125】図29では，一例として，移動局1に移動局2のq倍のタイムスロットを割り当て，さらに，移動局1の各タイムスロットに移動局2の拡散符号の拡散率 に対して $1 / \mathrm{SF}$ 倍の拡散率を持つ p 個の拡散符号を割 り当てることにより，移動局 1 の伝送速度を移動局 2 に対して $\mathrm{p} \times \mathrm{q} \times \mathrm{SF}$ 倍に設定している
【発明の効果】本発明のマルチキャリア／D S－C DM Aでのパケット伝送方式を用いれば，タイムスロット予約型のパケット伝送，ランダムアクセ入型のパケット伝送，可変伝送速度のパケット伝送を実現することが可能 となり，多様な伝送量の信号を効率良く伝送することが実現できる。
【図面の簡単な説明】
【図1】マルチキャリア／D S－C D M A 方式における
移動局と基地局間のチャネル構成の一例を示す図であ る。
【図2】移動局から基地局にパケット伝送する際に，移動局と基地局の間で行わえる制御のやり取りの一例を示 す図（その1）である。
【図3】移動局から基地局にパラット伝送する際に，移動局と基地局の間で行われる制御のやり取りの一例を示 す図（その2）である。
【図4】移動局から基地局にパグット伝送する際に，移動局と基地局の間で行われるる制御のやり取りの一例を示 す図（その3）である。
【図5】予約要求パケット伝送スロットの割り当てを説明するための図（その1）である。
【図6】予約要求パケット伝送スロットの割り当てを説明するための図（その2）である。
【図7】予約要求パケット伝送スロットの割り当てを説明するための図（そのろ）である。
【図8】子約要求パケット伝送スロットか割り当てを説明するための図（その4）である。
【図9】予䋹要求パケット伝送スロットの割り当てを説明するための図（その5）である。
【図10】予約要求バケット伝送用のタイムスロット数 の変更を説明するための図である。
【図11】予約要求パケット伝送用か抵散符号数の変更 を説明するための図である。

【図12】予約要求パケット伝送用のタイムスロット数及び拡散符号数の変更を説明するための図である。
【図13】予約要求パケットの伝送制限を說明するため の図である。
【図14】ランダムアクセスパケット伝送スロットの割 り当てを説明するための図（その1）である。
【図15】ランダムアクセスパケット伝送スロットの割 り当てを説明するための図（その2）である。
【図16】ランダムアクセスパケット伝送スロットの割 り当てを説明するための図（その3）である。
【図17】ランダムアクセスパケット伝送スロットの割 り当てを説明するための図（その4）である。
【図18】ランダムアクセスパケット伝送スロットの割 り当てを説明するための図（その5）である。
【図19】ランダムアクセスパケット伝送用のタイムス ロット数の変更を説明するための図である。
【図20】ランダムアクセスパケット伝送用の拡散符号数の変更を説明するための図である。
【図21】ランダムアクセスパケット伝送用のタイムス ロット数及び拡散符号数の変更を説明するための図であ る。
【図22】ランダムアクセスパラットの伝送制限を説明 するための図である。
【図23】伝送量に応した拡散符号の割り当てを説明す るための図（その1）である。
【図24】伝送量に応じた拡散符号の割り当てを説明す るための図（その2）である。
【図25】伝送量に応じたタイムスロット数の割り当て を説明するためか図である。
【図26】伝送量に応した拹散符号の割り当てを説明す るための図（その3）でする。
【図27】伝送量に応じたタイムスロット及び拡散符号 の割り当てを説明するための図（その1）ぐある。
【図281仁送量に応じたタイムスロット及び拔散符号
の割り当てを説明するための図（そのて）である。
【図29】伝送量に応じたタイムスロット及び拡散符号 の割り当でき說明するための図（そのろ）である。【符号の説明】
f1～fn サブキャリア
TS タイムスロット
TF フレーム長

〔図1】

【園3】

移䡃局から基地局にパケット伝送する際に，移動局を基地局の間で行われる制御のやり取りの一例え示す図（その 2）

（土 2）） $01-268051(\mathrm{P} 2001-268051 \mathrm{~A})$

【図2】
訝橴局から基地局にパケット伝送する際に，移動局と基地泃の間ご行われる制衘のやり取りの一例を示す图（その1）

【図4】

移動局から基地局にパケット伝送する際に，務孰局と基地局の間で行われる制御のやり取りの一例を示す図（そのら）

【図5】

や苞要求パケット位送スロットの割り当てを唃明するための園（モの1）

【図6】

予約要求パケット伝送スロットの㫼り当てを

ZZD 予約要求パケット伝送人ロット （スロット内は，m1個か）掋敞符号により
 mif風能）

V7］予約要求パケット伝送人ロット （スロット内は，m1個の嫲教符号により

【図7】

予靶票求バケット伍㺒スロットの割り当てを説的すするための図（モの3）

予約要宗バケット伝送スロット （スロット内は，范1個の摭敬符号により m1個の予約要求バケットの同時伝送 が可能）

【図9】

が約要求パケット伝美スロットの䔰引当てを説明するためす）（モの园（モ5）

VZD 予約要求バケット伝送人口ット （スロット内は，m1個の摭散符号たよね m1僴の予粎要求バケットの同時伝送 jf可能）

【図8】

予絇票求パケット伝逆スロッ

説狩するための図（その4）

077 予約要求パケット伝送人ロット
（スロット内は，m1個が喥散符号により m 1 候の予萂要求バケットの同時伝送 が可能）

【図14】

認明するための図（そのけ）
 ランダムアクセスバケット伝送スロットとして基地局が選択

V7D フンダムワクせスバケット侕送スロット
 me個のランダムアクせスバケットの風同摬㐾送が可能）

【図10】
予約要求パケット伝送用のタイムスロット数の変更を説：明するための圆

【図11】

予約要求パケット伝送用の拡散符号数の変更を説明するための図

（図12】

予約要求パケット伝送用のタイムスロット数及び拡散符号数の変更を説明するための図

【図15】
到岄するための園（きの2） （スロット内は，水個の摭敬符号によ） m2個のランダムアクセスバンットの間時伝逆㥧可能

【図13】
予約要求パケットの伝送制限を説明するための図

［図17］

ランタムアウセスパケット伝詒スロットの䚯り当てを
説明するためめ図（その4）

毎フレームごとに，同じサおきャリアにあるF檤のスロットの

F圈（k2 F F）

V730 ランタムアクセスパケット伝送スロット （エロット内は，m2個の拡教符号により而2個けラングムアクセスパケットの同時伝达が可能）

【図18】

ランタムアクセスパ⿱丶万⿱⿰㇒一乂⿹\zh26灬的ッ伝送スロットの割り当てを說明するた課の関（きの5）

EOD フンダムアクセスパケット伝送スロット （スロット内は，mこ倜の捬散符号により mて個のランダムアウセスパケットの目時伝送が可能）
（田 8））01－268051（P2001－268051A）

【図19】

ランダムアクセスパケット用のタイムスロット数の変更を説㳉するための図

【図20】
ランダムアクセスパンット用の掂散符号数の変更を説明するための図

【図21】

ランダムアクセスパケット用のタイムスロット数及び拡散符号数の変更を説明するための図

【図22】

ランダムアクセスパケットの伝送制限を説明するための図

【図25】

【図26】

伝送量に応じたタイムスロット傃の割り当てを础明する「めの关（そめ2）

—移㔚局1が伝芙したパケット
\square 㖊動局2が伝送したバすット

可移動局が伝送したパケット \square 移動局が伝送したノ゚ケット

【図27】

詵明なるための圆（その1）

】移㔚局1が伝送したパテット裬動局2が伝営したパケット
［図29】

㐾送量に応じたタイノス！1ット及び㹡敨符号が舦り当てを説明するための図（そのア3）

\square 移動局2が位联したパテット

【図28】

伝送量ににじたタイムスロット及び拡散符号の割り当てを謂明するための図（そのつ）

移動局2に対して倍のスロットを害り当て，各ス！コット内では
㧤教符合たより应倣したパケット

可移動局が伝送したパケット \square 移動局がが云送したパテット

フロントページの続き

（72）発明者 安部田 貝行

東京都千代田区永田町二丁目11番1号 山王パークタワー 41 F エヌ・ティ・ティ移動通信網株式会社内
（72）発明者 佐和橋 衛
東京都千代田区永田町二丁目11番1号 山王パークタワー41F エヌ・ティ・ティ移動通信網株式会社内
Fタ＝ム（参考）5K022 A408 AA09 AA10 EE02 EE11EE22 FF01
5 K 028 AA11 BB06 CC02 CC05 DD01 DD02 KK32 LL02 LL12 LL42 LL43 MM13 RR01 RR03 TT02
5 K 030 GA01 HA08 HB11 HB28 HC09 JL01 JT02 JT09 LA17 LA18 LB14
5 K 067 AA13 BB03 BB04 CC08 CC10 DD53 EE02 EE10 EE71
$9 A 001$ BB04 CC05 EE02 EE04 HH34 KK56
, Exiswser Espacenet
Bibliographic data: JP2003179576 (A) - 2003-06-27

RADIO COMMUNICATION SYSTEM, RADIO TRANSMISSION EQUIPMENT, RADIO RECEPTION EQUIPMENT, RADIO TRANSMISSION METHOD, RADIO RECEPTION METHOD, ITS PROGRAM AND PROGRAM RECORDING MEDIUM

Inventor(s): Applicant(s):
 Classification:
 Application number

Priority number
(s):

SUZUKI MITSUHIRO \pm
SONY CORP \pm international:

- European:

H04J13/00; H04L7/00; (IPC1-
7): H04J13/00; H04L7/00

JP20020258743 20020904

JP20020258743 20020904; JP20010290227 20010921

Abstract of JP2003179576 (A)

PROBLEM TO BE SOLVED: To provide a radio transmission system wherein data transmission is rightly enabled without receiving restriction of use of communication equipment, even if an
interference due to another network is received, when at least two radio networks which are not adjusted to each other exist at positions where they receive interference mutually.; SOLUTION: In an ultrawide band was radio transmission system, subdivided slots 103 of frames 101, 102 are transmitted by changing the order at random by using a previously determined slot arrangement pattern, and received by returning the order s of received slots to the original order by using the previously determined slot arrangement pattern. As a result,
 communication in the respective networks is rightly enabled when at least two unadjusted networks which obtain diversity effect to interference in an ultrawide band radio transmission system approach each other. ; COPYRIGHT: (C)2003,JPO

果を得て調整されていない2以上のウルトラワイドバン ド無線伝送方式によるネットワークが近接していても， それそれのネットワークにおける通信が正しく行える。

【特話請求の範菑】

【請求項1】－以上のネットワータが互いに調整さ れることなく存在し，各々のネットワークでは所定の周期を有する時分割フレームを用いて無線通信が行われる無線通信システムにおいて，
前記時分割フレームは細分化された複数の細分化スロッ トからなり，
各無線通信装置は，送信を行うために基地局から割り当 てられた領域に対応する前記細分化スロットを，所定の スロット配列パターンに応じた順番に配列し，
前記配列された細分化スロットを用いて無線通信を行う ことを特徴とする無線通信システム。
【請求項2】請求項1に記載の無線通信システムにお いて，
前記スロット配列パターンは，前記細分化スロットを前記時分割フレーム全体の領域にランダムに配列きせるも のであることを特徴とする，無線通信システム。
【請求項3】請求項1に記載の無線通信システムにお いて，
基地局から割り当てられた領域に対応する前記細分化ス ロット数はN個であり，
前記スロット配列パターンは，前記N個の細分化スロッ トをJ個の連続したスロットを一つのグループとするN •J個のグループにし，各グループから細分化スロット を一つずつJ個のスロット群に割り振ることにより，各 スロットの配列を行わせるものであることを特徴とす る，無缐通信システム。
【請求項4】請求項1に記載の無線通信システムにおう いて，
前記時分割フレームはコンテンション・ピリオドを含 み，
各無線通信装置がコンテンション・ピリオドを使用して無線通信を行う場合，複数の連続した細分化スロットを送信領域として割当てた後に，所定のスロット配列パタ ーンに応した浿番に配列することを特嚉とする，無線通信シスデム。
【請求項5】請求項1に記載の無線通信システムにおう いて，
前記時分割フレームにば，前記スロット配列パターンの同期を獲得するための所定の同期用バターンを含む同期用スロットを複数存在することを特徴とする，無線通信 シスデム。
【請求項6】請求項5に記載の無線通信システムにお いて，
前記所定の同期用パターンは，同期用スロット莀と同じ長さであることを特徴とする，無楾通信システム。
【請求項7】請求項5に記載の無線通信シスデムにお いて，
前記所定の同期用パターンは同期用スロット長よりも短 く，該同期用パターンの祝り返しを用いて，前記同期用

スコットを構成することを特徵とする，無線通信システ么。
【請求項8】請求項5に記載の無線通信システムにお いて，
同期用スロット長が同期パターンの長さの整数倍でな く，
繰り返して生成される同期用パターンに同期用スロット を窓としてかけて取り出した空同期ワードを同期用スロ ットとして伝送することを特徴とする，無線通信システ么。
【請求項9】 二以上のネットワークが互いに調整され ることなく存する環境の下，所定の周期を有する時分割 フレームを使用して無線通信を行う無線送信装置であつ て，
前記時分割フレームは細分化された複数の細分化スロッ ト加らなり，
送信を行うために基地局から割り当てられた領域に対応 する前記細分化スロットを，所定のスロット配列パター ンに従って配列するよう制御するスロット配列制御手段 と，
前記スロット配列制御手段の制御により細分化スロット の配列を行うスロット配列手段と，
前記所定のスロット配列パターンに従ったタイミング
で，前記配列された細分化スロットを送信させるように送信手段意制御する送信タイミング制御手段と前記スロ ット配列手段から配列された細分化スロットを受け取
り，これを前記送信タイミンク制御手段により制御きれ たタイミングで無線通信する送信手段と，を有すること を特徴とする，無線送信装置。
【請求頂10】請求頂9に記載の無線送信装置におい て，
前記スロット配列パターンは，前記細分化スロットを前記時分割フレーム全体の領域にランダムに配列きせるも のであることを特徵とする，無線㮸信装置。
【請求項111】請求項9に記載の無線送信装置におい て，
基地局から割り当てられた前記領域に対応する細分化ス ロット数むN個であり，
前記スロット配列パターンは， N 個の細分化スロット
を，個か連続した細分化スロットを一つOダルーブと
するN／J 個のグルーブにし，各グループから細分化ス ロットを一つずつJ個のスロット群に割り振ることによ り，細分化スロットの配列を行うことを特徴とする，無線送信装置。
【請求項12】請求頂9に記載の無線通信装置におい て，
前記時分割フレームには，前記スロット配列パターンの同期を獲得するための所定の同期用パターンを合を同期用スロットが複数存在することを特嵿とする，無線通信装置。

【請求項13】－以上のネットワークが互いに調整さ れることなく存在する環境の下，所定の周期を有する時分割フレームを使用して通信を行う無線受信装置であっ て，
無線送信装置から無線信号を受信し，これを復調するた めの受信手段と，
前記無線送信装置が用いたスロット配列パターンを用い て所定のタイミングで受信信号の内必要なスロットに対応する部分を復調するように前記受信手段を制御する受信タイミング制御手段と，
前記スロット配列パターンに従って配列するよう制御す るスロット配列制御手段と，
前記愛信手段から復調された受信信号の内必要なスロッ トに対応する部分を受け取り，これを前記スロット配列制御手段の制御に従って配列するスロット配列手段とを有することを特徴とする，無線受信装置。
【請求項14】請求項13に記載の無線受信装置にお いて，
前記スロット配列パターンの同期を獲得するため，所定 の同期用パターンを検出する相関検出手段をさらに備え ることを特徴とする，無線受信装置。
【請求項15】請求項13に記載の無線受信装置にお いて，
この無線受信装置は，前記スロット配列手段により配列 された受信テータについて誤り訂正を行う誤り訂正手段 をさらに有することを特徵とする，無線受信装置。
【請求項 16】 二以上のネットワータが互いに調整さ れることなく存在する環境の下，所定の周期を有する時分割フレームを使用して通信を行う無線送信方法であっ て，
前記時分割フレームは細分化きれた複数の細分化スロッ トからなり，
送信を行うために基地局から割り当てられた領域に対応 する前記細分化スロットを，所定のスロット配列バター ンに従って配列するステップと，
前記所定のスロット配列パターンに従ったタイミング で，前記配列き九た細分化スロットを送信する送信ステ ップと，を有することを特徴とする，無線送信方法。
【請求項17】請求項16に記載の無線送信方法におう いて，
前記スロット配列パターンは，前記細分化スロットを前記時分割フレーム全体の領域にランダムに配列きせるも のであることを特徴とする，無線送信方法。
【請求項 18 】請求項 16 に記載の無線送信方法にお いて，
基地局から割り当てられた領域に対応する前記細分化又 ロット数むNスコットであり，
前記スロット配列パターンは，前記N個の細分化スロッ トをJ個の連続したスロットを一つのグループとするN •J個のグループにし，各グループから細分化スロット

を一つずつ個のスロット群に割り振ることにより，各 スロットの配列を行うことを特徴とする，無線送信方法。
【請求項19】 二以上のネットワークが互いに調整さ れることなく存在する環境の下，所定の周期を有する時分割フレームを使用して無線通信を行う無線受信方法で あって，
無線信号を所定のスロット配列パターンに応じたタイミ ングで受信するステップと，
送信装置が用いたスロット配列パターンに従ってスロッ トを配列するステップと，を有することを特徴とする無線受信方法。
【請求項20】請求項19に記載の無線愛信方法にお いて，
前記スロット配列パターンの同期を獲得するため，所定 の同期用パターンを検出する相関検出ステップをさらに備えることを特紋とする，無線受信方法。
【請求項21】 二以上のネットワークが互いに調整さ れることなく存する環境の下，所定の周期を有する時分割フレームを複数の細分化スロットに細分化して無線通信を行う，演算装置を有する無線送信装置において，こ の演算装置を：送信を行うために基地局から割り当てら れた領域に対応する前記細分化スロットを，所定のスロ ット配列バターンに従って配列するよう制御するスロッ ト配列制御手段と，
前記スロット配列制御手段の制御により細分化スロット の配列を行うスロット配列手段と，
前記所定のスロット配列パターンに従ったタイミング
で，前記配列きれた細分化スロットを送信きせるように送信制御すあ送信タイミング制御手段ととして機能させ るためのプログラム。
【請求項22】 二以上のホットワークが互いに調整さ れることなく存在する環境の下，所定の周期を有する時分割フレームを使用して通信を行う，演算装置を有する無線受信装置において，この演算装置を：無線送信装置 が用いたスロット配列パターンを用いて所定のタイミン グで受信信号の内も要なスコットに対応する部分を復調 するように無線信号の受信を制御する受信夕イミンク制御手段と。
前記スロット配列バターンに従つて配列するよう制御す るスロット配列制御手段と，
前記受信手段から愎調された受信信号の内必要なスロッ トに対応する部分を受け取り，これを前記スロット配列制衘手段の制御に従って配列するスロット配列手段とと して機能させる，プログラム。
【請求項23】－以上のホットワークが互いに調整さ れることなく存在する環境の下，所定の周期を有する時分割フレームを複数の細分化スロットに細分化して通信 を行う無線送信方法を演算装置に奉行きせるプログラム にあいて，

送信を行うために基地局から割り当てられた領域に対応 する前記細分化スロットを，所定のスロット配列パター ンに従って配列するステップと，
前記所定のスロット配列パターンに従ったタイミング
で，前記配列された細分化スロットを送信する送信ステ ップと，を演算装置に実行させることを特徴とするプロ グラム。
【請求項24】 二以上のネットワークが互いに調整さ れることなく存在する環境の下，所定の周期を有する時分割フレームを使用して無線通信を行う無線受信方法を演算装置に実行させるためのプログラムにおいて，
無線信号を所定のスロット配列パターンに応じたタイミ ングで受信させるステップと，
送信装置が用いたスロット配列パターンに従ってスロッ トを配列するステップとを演算装置に実行させることを特候とするプログラム。
【発明の詳細な説明】
【0001】
【発明か属する技術分野】本発明は，無線通信システ ム，無線送信装置，無線受信装置，無線送信方法，無線受信方法，そのプログラム並びにプログラム記録煤体に関する。
【0002】
【従来の技術】近年の情報化によりLAN（Local Area Network）の普及に伴い，オフィス内の配線工事，工事期間の短縮，室内美観上の課題，保守運用管理の複雑な どの問題から無線LANへの要求が高まっている。かか る無線LANに用いられる無線伝送方式としてウルトラ ワイドバンド（Ultra Wide Band：UWB）無線伝送方式がある。
【0003】ウルトラワイドバンド無線伝送方式む，基本的には，非常に細かいパルス幅（例えば1 n s（ナ） セコンド）以下）のパルス列からなる信号を用いて，べ ースバンド伝送を行なうものである。このUWB無線伝送方式は，所定の無線信号に例えば送信する情報に所定 の拡散符号票列を掛け合わせて拡散情報を形成する。を らに，整百けノ秒の周期で一つの短いインパルスを発生 きせ，ャのインパルス位相あるいはは時間変化を，前述の拡散情報にあるせて変化きせた信号を送信信号として利用し，一方情報を受信する装置は，前記送信されたイン パルスの位相あるいは儛妙な時間変化によってインパル ス信号の情報ビットを識別し，これに所定の拡㬴符号系列を用いて逆拡散することによって，所望の情報ビット を得るというものである。また，その占有帯域愊は，占有帯域愊をそか中心周波数（例えば1GHzから10G Hz）で割った值がほぼ1となるようなGHzオーダー の帯域幅であり，所謂W－CDMA方式やcdma． 20 00方式，並びにSS（Spread Spectrum）やOFDM （Orthogonal Frequency Division Multiplexing）を用 いた無線LANで使用きむし呂帯域幅に比べて，超広帯域

なものとなっている。
〔0004】また，ウルトラワイドバンド伝送方式は， その低い信号電力密度の特性により，特定の周波数帯域 に高い信号電力密度特性を持つ既存の無線システムに対 し干渉を与えにくい持徴を有しており，既存の無線シス テムが利用している周波数帯域にオーバーレイ可能な技術として期待されている。さらに広帯域であることから パーソナルエリアネットワーク（Personal Area Networ k：PAN）の用途で， 100 MbpsL ベルの超高速無線伝送技術として有望視ざれている。
【0005】一方で，UWB無線伝送では，互いに調整 されていない（uncoordinated）な2つ以上のUWB無線ネットワークが同一エリアにある場合を想定すると，各送受信粕の位置開係によっては大きな干渉を与えるこ とも想定される。この場合，UWB無線伝送では超広帯域な占有帯域を用いているため，回避するための周波数 チャンネルがなく，最悪の場合通信ができなくなってし まうといった懸念がある。ここで「互いに調整されてい ない（uncoordinated）」とは，個々のネットワークを制御する制御局間できやネル割当情報などを共有しない ことをいう。
【0006】この問題を解決する手段の一つとして，1 つのチャネルをフレームに分割し，フレーム毎にリソー スの割り当てを行う時分割多元接続（Time Division Mu Itiple Access）TDMA方式が用いられている。
【0007】
【発明が解決しようとする課題】時分割多元接続方式で は，ネットワーク中の1通信に対して，フレーム内の比較的長い時問にわたって連続的なリソースの割り当てを する。
【0008】従来のTDMA方式では，以下のようなフ レーム構成を採用する。図13にフレーム構成例尝示 す。
［0009】TDMAでは，図13（A）に示すよう に，例えはTMAの単位フレーム（「TDMAフレー ム」という）1301，1302，1303繰り返き れている。このTDMAフレームの長きは，例えば1マ イタロセカンドである。
【0010】このTDMAフレームのそれそれにおいて は，図13（B）に示すように，フレーム先頭に，無線り ソースの割り当て情報（リソースアサイン情報）を含む識別言号であるビーコン1304が配置され，そのビー コン1304に続けて，該無線ネットワークに含まれる端末局（もしくはユーザ）宛ての䫀域か割り当てられ る。図13（B）に示す例では，ビーコン1304の後 に，喘末局A，端末局B，端末局Cの㥧に割り当てられ た領域（「ユーザ割当領域」という）1305，130 6，1307が設定きれている。各端末局に割り当てら れた領域ま，フレームどとに可変であってもよい。
【0011】また，ビーコン1304，各コーザ割当領

域1305，1306，1307以外の領域には，コン テンション・ピリオド1308が設定されている。コン テンション・ピリオド（Contention Period）は，端末局から基地局へのランダムアクセスチャネルや，端末局間の通信用に使用される領域である。このコンテンショ ン・ビリオドでは，基地局により割り当てられた区間で はないので，ネットワーク内通信の衝突（Contention） が生じ得る。
【O 0 1 2 】このようなTDMAフレームを用いた通信 では，例えば，端末局からは，コンテンション・ピリオ ドにおいてランダムアクセスチャネル（RACH）で次 のフレームでのリソース割り当てを要求（送信要求）
し，基地局はその要求に応じて次のフレームにおけるり ソース割り当てのためにユーザ割当領域を定め，これを次のフレームのビーコン1309によって各端末局に報知する。そして，各端末局は，該ビーコンのリソース割 り当て情報に基づいて通信を行う。
【0013】上述のようなTDMAフレームを用いた通信を行う互いに調整されていない（Uncoordinate）2つ以上のUWBネットワークが近接して配置されている と，ネットワーク内の局に対する干渉が連続的に起こり やすく，その場合，干渉を受けた局においてエラー訂正 などではデータが復帰できず，通信ができなくなってし まうという問題点がある。
【0 0 1 4 】図14に，2つのネットワークが近接して配置されている図を示す。図のようにパーソナル・エリ ア・ネットワーク（Persona1 Area Network；以下PA Nという）X1401とPANY1402が互いに調整 きれていない状態で近接して配きれている。PANX1 401は，基地局X1403と，該基地局X1403に よって制御される端末局A1405，端末局B140 6，端末局C1407，および端末局F1410とによ り構成きれる。一方，PANY1402は，基地局Y1 404と，該基地局Y 1 404によって制御きれる端末局D1408および端末局E1409をにより構成され ている。
【0015】また，端末局C1407と端末局E140 9は，一方が無線送信をした場合に他方の受信する無線信号に干渉するような位置関係にあるものとする。
【0016】図15に，上述のPANX1401とPA NY1402のフレーム状態を示す。図15（A）はある時点におけるPANX1401のフレームの状態を表 L，図13（B）は，同時点でのPANY1402のフレ ームの状態を表している。
【0017】図に示すように，端末局F（端末局F14 10 加ら端末局C1407への通信とする）に割り当て られたユーザ割当領域1501と端末局E12070送信に割り当てられたつーザ割当領域1302とは，時間的に重複した状態となのている。この図のように，互い の位置が近いパーソナル・エリア・ネットワークXに属

する端寺局Cと，别のパーソナル＝エリア＝ネットワー ク Yに属する端末局Eお割り当てられたユーサ割当領域 が衝突している場合は，通信が出来なくなるおそれが生 ずる。
【0 0 1 8 】 したがって，上記のような状況にならない ようにするためには，各ネットワークを構成する通信装置を使用する上で，何らかの制限を設ける必要があっ
た。例えに゙，互いに調整されていない2つ以上のネット ワークが同一エリアに存在しないようにする必要があっ た。
【0019】本発明の目的な，互いに調整されていない 2つ以上の無線ネットワークが相互に干渉を受ける位置 に存在する場合においても，通信装置の使用の制限を受 けることなく，他方のネットワークの干渉を受けても正 しくデータ伝送できる無線伝送方式を提供することにあ る。
【0020】
【課題を解決するための手段】上記の課題を解決する手段として，本発明は以下の特徴を有まる。本発明の第1 の態樣は，二以上のネットワークが互いに調整されるこ となく存在し，各々のネットワークでは所定の周期を有 する時分割フレームを用いて無線通信が行われる無線通信システムとして提案される。この無線通信システムで は，時分割フレームは細分化されて，複数の細分化スロ ットとして扱われる。この無線通信システムを構成する各無線通信装置は，送信を行うために基地局から割り当 てられた領域に対応する前記細分化スロットを，所定の スロット配列パターンに応じて，順番に配列し，この配列後の細分化スロットを用いて無線通信を行う。
【0021】本発明の第2の態様は，二以上のネットワ ータが互いに調整されることなく存守る環境の下，所定 の周期を有する時分割フレーム学使用して無線通信を行 う無線送信装置として提供きれる。この無線送信装置 は，前記時分割フレームを襀数の細分化スロットに細分化して报う。この無線送信装置は，送信を行うために基地局かっ割り当てられた領或に対応する前記細分化ス口 ットを，所定のスロット配列パターンに従って配列する よう制御するスロット配列制御手段上，前記スロット配列制御手段の制御により細分化スロットの配列を行うス ロット配列手段と，前記所定のスロット配列パターンに従ッたタイミングで，前記配列きれた細分化スロットを送信させるように送信手段を制御なる送信タイミング制御手段と，前記スロット配列手段から配列された細分化 スロットを受け取り，これを前記送信タイミング制御手段により制御されたタイミングで無線通信する送信手段 とを有することを特攸としている。
【0022】本発明の第3の意様は，二以上のネットワ ークが互いた調整きれることなく存在する環境の下，所定の周期を有する時分割フレームを使用して通信を行う無線受信装置として提供される。この無缐受信装置は，

無線送信装置から無線信号を受信し，これを復調するた めの受信手段と，前記無線送信装置が用いたスロット配列パターンを用いて所定のタイミングで受信信号の内必要なスロットに対応する部分を復調するように前記受信手段を制御する受信タイミング制御手段を，前記スロッ ト配列パターンに従って配列するよう制御するスロット配列制御手段と，前記受信手段から復調された受信信号 の内必要なスロットに対応する部分を受け取り，これを前記スロット配列制御手段の制御に従って配列するスロ ット配列手段とを有することを特徴としている。
【0023】本発明の第4の態様は，二以上のネットワ ークが互いに調整されることなく存在する環境の下，所定の周期を有する時分割フレームを使用して通信を行う無線送信方法として提供する。この無線送信方法におい て，時分割フレームは緮数の細分化スロット二分関され て扱われる。この無線送信方法は，送信を行うために基地局加ら割り当てられた領域に対応する前記細分化ス口 ットを，所定のスロット配列パターンに従って配列する ステップと，前記所定のスロット配列バターンに従った タイミングで，前記配列された細分化スロットを送信す る送信ステップとを有することを特徴としている。
【0024】本発明の第5の態様は，二以上のネットワ ークが互いに調整されることなく存在する環境の下，所定の周期を有する時分割フレームを使用して無線通信を行う無線受信方法として成立する。本無線受信方法は，無線信号を所定のスロット配列パターンに応じたタイミ ングで受信するステップと，送信装置分用いたスロット配列バターンに従ってスロットを配列なるステップとを有することを特峴としている。
【0025】
【発明の実施の形態】次に，本発明の実施の形能につい て，図面を参照しながっ說明する。
－0026】［本実施の形態にかかるフレームの構成例］まず，本実施の形態において使用きれるフレームの構成例について説明する。
【0027】図1（A）は，所定の長きを有するフレー ム101，102，‥か繰り返されるようになってい る。例えば，図示の例では，1のフレームは1024 ［ ms ］とする。
【0028】この1つのフレームはN個の細分化スロッ ト1031～103N（以下，総称的に「細分化スロッ ト103」と呼ぶ）で構成きれる。図1（B）に示す例 では，1のフレームは512個の細分化スロット103 から成り，この場合各細分化スロット103のスロット長は，1024［ms］／512＝2000［ns］と なる。
【0029】次に細分化スロット1030構成について説明守る。図 1 （C）は，本実施の形態にかかる細分化ス ロット103の構成例を示す。細分化スロット103の うちの一部は，ガード・ピリオド（guard period） 10

4として，送信信号を合めない領域とする。ガード・ピ リオド104は，連続する細分化スロット103が異な る送信装置により使用されている場合，各細分化スロッ トにおいて送信された送信信号が異なる伝搬退延の後あ る受信機に到達したとしても，送信信号を㣫突させない ために設けられている。
【0030】該がード・ビリオド104を除いた，細分化スロットの残りの領域 105 は，送信信号を含む領域 である。図1に示す例では，ガード・ピリオドの長さは 80［ns］，領域1050長さは1920［ns］であ る。
【0031】この䫀域 105 には情報ビットが含まれ る。たとえば送信速度が 100 ［Mbps］のときは1 $00[\mathrm{Mbps}] \times 1920[\mathrm{~ns}]=192$［bit］ が1スロット内に含まれることになる。
【0032】特に従来例に示したUWB伝送方式では， この1ビットは16個のパレス（パルス幅は100［p s］）によって表されている。図1（E）に示す例で は，直接拡散コードの0または1にしたがいパルスの位相を反転させるBi－phase変調で変調されて構成されるパ ルス列がパルス間隔 $65[\mathrm{ps}$ ）おきに伝送されている。
【0033】なお，上記説明では，一例として具体的数値を上げて説明したが，本発明はかかる数値に限定され る起旨ではない。また，UWB伝送方式の変調方式は， パルス生成タイミングを微妙にずらした信号を用いる， いわゆるパルス位置変調であっても良い。
【0034】［無線送信装置，無線受信装置の構成例］
次に，上記の複数のスロットからなるフレームを用いた無線伝送方式を行うための，無線送信装置と無線受信㵝置の構成例について説明する。
【0035】図2は，本実施の形能にかかる無線送信装置の構成例を示すブロッタ図である。送信装置は，符号化及びインターリーブ手段201と，スロット配列手段 202と，送信タイミング制御手段203と，送信手段 204と，アンテナ205と，スロット配列制御手段2 06とを有している。なぁ実際上，符昜化及びインター リーブ手段201と，スロット配列手段202，送信夕 イミング制御手段203，及びスロット配列制御手段2 06 は，中央演算装置（CPU）によって構成きれても良く，該CPUは図示しない記憶装置（例えば，EEP ROM（Electrically Erasable Programmable Read－On ly Memory）など）に格納されたブログラムにしたがっ て，以下に述べるような処理を実行する。
【0036】符号化及びインターリーブ手段（以下，「符号化手段」と略す）201は，送信すぐき情報か提供先から情報データを受け取り，これを誤り訂正符号を用いて符号化し，バースト誤りをランダム䛊りに置換し て畳み达み符号の効果を引き出すようにインターリーブ して得られる符号化データをスロット配列手段202に渡すように動作する。

100371スロット配列手段202は，送信を行うた めに基地局から割り当てられたチャネル（例えじ，図7 （A）に示すような各端末に割当てられた時分割スロッ ト）に含まれる複数の細分化スロットを，スロット配列制御手段206の制御により，所定のスロット配列パタ ーンに従って配列若しくは並び替えを行うように動作す る。
【0038】今，送信しようとする情報ビットがスロッ ト番号3，4，5，6に相当するスロットにあるものと する。なお，説明の便宜上スロット番号はフレームの最初のスロットを1番，最終のスロットをN番するように連続して付されているものとする。
【0039】スロット配列制御手段206の制御によ り，所定の配列パターンは，スロット番号3，4，5， 6のスロットがそれぞれスロット番号44，11，7
9，58に配列されるとすると，この4つのスロットに割り当てられたスロット化データは，\｛4（11），3 （44），6（58），5（79）：という順に配列き れる。なお，かっこ内の数字は配列された後のスロット番号を示す。
【0040】送信タイミング制御手段203は，前記所定のスロット配列パターンに従ったタイミングで，配列 されたスロット化データを送信手段204に送信させる ように動作する。
【0041】前述の例によれば，スロット番号4，3，
6，5に相当するスロット化データを，11，44，5 8，79のタイミングで送信手段に送信させる。なお， このスロット配列方法については別途詩述する。
【0042】送信手段204は，送信タイミング制御手段203より受け取った送信タイミンダで，データをU WB伝送方式により無綵信号に変換して，アンテナ 20 5より放射するように動作する。図3は，ウルトラワイ ドバンド伝送方式による送信手段の構成例を示すグロッ ク図であり，図2の送信手段204，アンテナ205を より詳組に表したものでるる。
【0043】拡散符号生成器302は，シンセサイザ3 01 の周波数て拡散符号采列坴秉算器303に出力す る。乗算器303では，スロット化データに拡散符号系列が乗算きれて拡散信号となり，この摭散信号がパルス発生器304に出力される。
【0044】パルス発生器304では，拡散信号の0
1に対応して，例えば100pso非常に細かいソ゚ルス信号を発生させる。このパルス信号は，バンドパスフィ ルタ305に出力され，そこで不要成分加除去きれて送信信号となり，アンテナ 306 （図2における205に相当）を介して送信され传。なか，バンドパスフィルタ 305 は必須の構成要素ではない。
【0045】［無線受信装置の構成例］次に，本実施の形態における無線受信脿置の構成例について説明する。
【0046】図4は，本実施の形能にむけけ無線受信装

置の搆成例を示すブロック图である。受信装置は，アン テサ400と，受信手段401と，爱信タイミング制御手段402と，スロット配列手段403と，スロット配列制御手段405と，配列パターン同期検出用相関器 4 06 と，エラー（䛊り）訂正手段404とを有してい る。なお揍際上，受信タイミング制御手段402と，ス ロット配列手段403と，スロット配列制御手段405 と，エラー訂正手段 404 とは中央演算装置（CPU） によって構成されても良く，該CPUは図示しない記憶装置（例えば，EEPROM（Electrically Erasable Programmable Read－Only Memory）など）に格納された プログラムにしたがって，以下に述べるような処理を実行することにより，受信タイミンク制御手段402と， スロット配列手段403と，スロット配列制御手段40 5と，エラー訂正手段404として機能する。
【0047】受信手段401は，アンテナ400を介し て送信装置から送信された無線信号を受信し，これを復調して受信データを出力するように動作する。図5は， ウルトラワイドバンド信号を受信する受信手段401の構成例を示すブロック図である。アンテナ400を介し て受信された受信信号は，バンドバスフィルタ502で不要成分が除去さえた後に，乗算器507，513，5 10に出力される。なお，バンドバスフィルタ502は必須の構成要素ではない。
【0048】拡散符号生成器504は，シンセサイザ5 03 の周波数で拡散符号系列（図5に示す送信装置で用 いた拡散符号系列を同じ拡散符号系列）をバルス発生器 505に出力する。パルス発生器 505 では，パルスを発生きせると共に，拡散符号生成器504から出力きれ た㹡散符号采列をパルスに重畳して，遅延器506，5 12 及び秉算器510に出力する。
【0049】荱延器506では，拡散符号采列索重畳し たパルスを $1 / 2$ パルス幅遅延きせて乗算器507に出力する。また，荱延器512では，拡散符号系列を重畳 したパルスを1 バルス幅崖延させて乗算器5 13に出力 する。
【0050】したがって，乗算器507では，送信デー夕を復調するための，拡散符号系列を重畳したパルスが受信信号に乗算きれ，逆拡散处理办行われる。乗算器5 07 の乗算結果は，積分器 508 に出力され，積分器 5 08 で積分されて受信データとして出力される。
【0051】また，秉算器510では，遅延器5060出力より $1 / 2$ バルス幅先行したタイミングで，拡散符号系列を重畳したパルスが受信信号に乗算され，逆应散处理が行われる。また，乗算器513では，遅延器50 6 の出力より $1 / 2$ パルス愊運延した，拡散符号系列を重畳したバルスが受信信号に乗算され，逆拡敬処理が行 かれる。
【0052】乗算器5100乗算結果ほは，積分器511 に出力され，積分器511て積分されて差分器515に

出力される。乗算器513の乗算結果しむ，積分器514 に出力され，積分器514で積分されて差分器515に出力される。
【0053】差分器515では，積分器511の出力と積分器5140出力の差分をとり，その差分をループフ ィルタ516に出力する。この差分についてループフィ ルタ516でフィルタリングした出力（差分）をシンセ サイザ503にフィードバックすることによってウルト ラワイドバンド信号を受信するためのタイミング同期が図られる。受信タイミングオフセットが前後にずれた場合にはタイミングオフセット信号として正負の値を出力 する。参照符号509は，このようなタイミング同期を行うタイミング同期回路（DLL：Delay Lock Loop） を示す。
【0054】再び図4に戻って無線受信装置の構成例の説明を続ける。受信タイミング制御手段402は，無線送信装置が用いた配列パターンを用いて受信手段401 が所定のタイミングで，受信信号の内必要な細分化スロ ットに対応する部分を受信するように制御する。例え ば，先に送信装置の説明においてあげたスロット番号 4，3，6，5に相当するスロット化データを，11， 44，58，790タイミングで送信手段に送信させる例によれば，受信タイミング制御手段402は11，4 4，58，790タイミングで受信手段401に受信さ せるように制御する。スロット配列制御手段405は，前記配列パターンを参照して，フレームの11，44， 58，79番スロットに対応する部分を復調するように制御する。端末の初期状態（電源ON直後など）では，
配列パターンの同期を萑得する必要があるため，相関器 406 が必要となる。相関器の動作 の具体的説明は後述 する。
【0055】スコット配列手段403は，受信手段40 1から出力される受信デー夕を受け取る。スロット配列手段403は，受信データをスロット配列制御手段40 らの制御により当初め順番となるように配列を行う。例 えば前記の例によれば，スロット配列手段403が受け取ったスロット化デー多は，スロット番号4，3，6， 5の順になっているので，これを当初の順番であるス口 ット番号3，4，5，6となるように配列を行う。
【0056】エラー訂正手段 403 は，配列きれたス口 ット化データをまずデインターリーブ（De－Interleave）
し，その後誤り訂正を行うことによって，情報データを生成し，出力する。
【0057】この構成により，無線受信装置は前記の無線送信装置から送信された情報データを復元することが できる。
【0058】［無線送信装置及び無線受信装置の動作］次に，本実施の形態における無線送信装置及び無線受信装置の動作について説明する。まず，無線送信装置は，
1フレーム時間に対応する情報データを，符号化及びィ

シターリーブ手段 2 0 1 により符号化する。さらに符号化された情報ビットを符号化手段201によりインター リーブし，インターリーブした情報ビットを1スロット分のデータ（ビット）毎にスロット化データとしてまと める。
【0059】その後無線送信装置は，送信タイミング制御手段203によって予め定められたスロット配列パタ ーンにしたがって決められたタイミングで該スロット化 デー夕を送信手段204に送信させる。
【0060】無線送信装置から送信された無線信号は，伝送路で干渉波などの妨害をうけて受信信号として無線受信装置に到達する。
【0061】無線受信装置は，受信タイミング制御手段 402が前記予め定められたスロット配列パターン（送信装置が用いたスロットパターンと同一）に応じて，受信信号のうち必要なスロット部分を受信するように受信手段401を制御する。
【0062】受信多イミング制御手段402によってタ イミング制御されている受信手段 401は，配列された スロット化データを出力する。配列されたスロット化デ ータはスロット配列手段403によって，前記スロット配列パターンに応じて配列されたスロット化データを配列方る。
【0063】スロット配列手段403によって配列きれ たスロット化データは，エラー訂正手段 404 によって デ・インターリーブ及び誤り訂正を施され，情報データ に変換される。こもにより，無缐受信装置は，無線送信装置から送信きれた情報データを得ることができる。
【0064】［本実施の形態にかかる無線ネットワーク の動作例］次に，本実施の形態にかかる無線ネットワー タの動作例について説明し，ランダムスロットアサイン （Random Slot Assign）方法と，それにより干涉波をど う扱うかをしめす。図6は，2つのネットワークPAN X601とPANYG02が近接して配置きれている様子を示している。
【0065】ネットワータPANX601は，基地局X 603と，該基地局X603によっを制御きれる端末局 A605，端末局B606，端末局C607および端末局F610とにより構成される。一方，ネットワークP ANY602は，基地局Y602と，該基地局Y602 によって制御される端末局D608および端末局E60 9とにより構成さえている。なお，基地局及び各端末局 は本実施の形態における無線送信装置，及び無線受信装置として機能名る。
【0066】また，端末局C607と端末局E609 は，両局が同時に無線送信をした場合に一方の無線送信信号が他方の無線送信信号に無視できない妨書を与える ような距離にあるものとする。
【0067】末た，ネットワークPANX601と，ネ ットワークPANY602ほ互いに独立に運用きれてい

て，互いに調整されていない（Uncoordinate）将能で運用されているものとする。
【0068】図7は，ネットワークPANX601にお ける，ある時点でのランダムスロットアサイン方法によ るフレームの使用を説明する図である。図7（A）は，あ るフレームにおけるチャネル割り当て状態を示してい る。このチヤネル割り当ては，一般的には基地局が行 う。この例では，ビーコン701，端末局Aへのユーザ割当領域702，端末局Bへのユーサ割当領域703，端末局Fへのユーザ割当領域 704 ，コンテンション。 ピリオド 705 がフレームに含まれている。端末局Fへ のユーザ割当領域 7 04におらいては，端末局F610か ら端末局C607に宛てての送信が行かれる。
【0069】図7（B）は，端末局Fへのユーサ割当領域 704 において送信される情報が複数の細分化スロット に割り付けられている状態を示す図である。ユーザ割当領域704は，細分化スロット706L，706L＋ 1， $706 \mathrm{~L}+2,706 \mathrm{~L}+3, ~ \cdots, ~ 706 \mathrm{NV}$ 対応 する。なお，Lは，ユーザ割当領域 704 の開始位置に対応するスロット番号，Mはユーザ割当領域704の終了位置に対応するスロット番号を表すものとする。
【0070】端末局Fは，所定のスロット配列パターン に応じて，細分化スロットの配列を行い，該スロット配列パターンに応じたタイミングで情報データを送信す る。図7（C）は，端末局Fが送信データをスロット配列パターンに応じたタイミングで送信する様子を示して いる。この例では，図7（B）におけるスロット706L は，フレーム中の第3スロットのタイミングで送信さ れ，スロット706L＋1は，フレーム中の第7スロッ トのタイミングで送信され，スロット706L＋2は， フレーム中の第11スロットのタイミングで送信され， スロット706L＋3は，フレーム中の第14スロット のタイミングで送信きれ，…，スロット706Mは，フ レーム中の第（ $\mathrm{N}-7$ ）スロットのタイミングで送信さ れる。このようにして，送信データはスロット配列パタ ーンに応じたタイミングで送信される。
【0071】スコット配列パターンは，スロット化デー タをフレーム内にランダムに配置するためのパターンで あって，例えば所定の乱数によりスロット番号をシャッ フル（permutate）することによって生成される。ま た，スロット配列パターンは1つのみでなく複数のもの を用いるようにしても良い。但し，同一ネットワーク内 における全ての基地局むよび端末局は所定の生成規則に従ってランダム化されていることを予め把握しているこ とが望ましい。フレームか先頭を示ずビーコンを合めて スロットをシャッフルしてしまうからである。
【0072】図7（D）ほ，端末局F（端末局C宛の通信 のためのリソース）へのユーザ割当領域704のみでな く，1フレーム全体，すなわちビーコン701，端末局 Aへのユーザ割当領域702，端末局Bへのユーザ割当

領域703，コンテンション・ピリオド 705 が細分化 スロットに分割され，さらにこれらスロット位置を組み かえて送信されている様子を示す图である。図に示す例 では，データ707は，端末局Aによってスロット配列 パターンに応じたタイミングで送信ざれたデータの一つ であり，データ708は，基地局によってスロット配列 バターンに応じたタイミングで送信されたデータの一つ （ビーコンの一部）であり，データ709は，端末局F によってスロット配列パターンに応じたタイミングで送信されたデータの一つであり，データ710は，耑末局 Bによってスロット配列パターンに応じたタイミングで送信されたデータの一つであり，データ711は，端末局のいずれかによってスロット配列パターンに応じたタ イミングで送信されたデータの一つ（コンテンション・ ピリオドで送信されるデータの一部）である。
【0073】次に，端末局C607が端末局Fから送信 された信号を受け取るに際して，他のパーソナル・エリ ア・ネットワークに属する端末局 E からの送信信号によ る干渉を受ける椂子を説明する。
〔0074】図8（A）は，ネットワークPANY60 2におけるフレームの送信状況を示す図である。ネット ワークPANY602においても，ネットワークPAN X601上全く独立のランダムスロットアサイン方法に よってデータガランダムにフレーム内に配されて送信が行われている。図中，端末局Eにより送信されるデータ を符号801によって示す。
【0075】図8（B）はネットワークPANX601 にむけるフレームの送信状況を示す図であって，図7
（D）と同じである。
【0076】端末局Eからの送信データは，端末局Cが データを受信するタイミング802にあいて妨害を与え ている。
〔0077】図8（C）は端末局Cが前記スロット配列パ ターンに応じたタイミングせ受信信号のうち必要な部分 を受信した信号を集めた様子を示している。集められた信号は端末局Eからの送信信号による干渉を受けないデ ータに対庙する部分803と，端末局Eからの送信信号 による干渉を受けるデータに対応なる部分804とを有 している。
〔0078】この集如られたデータは，デ・インターリ ーブされ，符号化データに戻され，符号化データはエラ一訂正により復号きれ，受信情報ビットが得られる。
【0079】ここに示したように，ランダムスロットア サイン方法によって，フレーム内のランダムなスロット位亘に配列されている端末局Eの送信信号は，端末局C の愛信に際し，磪率的に低い礶率て妨害を与えているの みであるので，この蚉害によって生したエラーは訂正き れ正しく复号きれることが期待できる。
【0080】［コンテンション・ピリオドの使い方］次 に，ランダムスロットアサイン方法におけるコンテンシ

ョン：ピリオドの扱いについて説明する。
【0081】コンテンション・ピリオドに相当するスロ ットを使用する場合にあいて，かかるスロットを使用す る端末局は，所定の数（たとえば8）の連続したスロッ トを最小単位として利用する。連続したスロットを使用 すれば，ランダムスロットアサイン方法におけるスロッ ト配列パターンに従って，フレーム内にランダムに配置 きれるので，コンテンション・ピリオドにおいて送信す るスロット化データについても，図8（C）に例示するよ うな他の局の送信信号に対してランダムな部分的干渉を与えることになり，あるいは他の局の送信信号からラン ダムな干渉を被るようになるので，この妨害によって生 じたエラーは訂正され正しく復号されることが期待でき る。
【0082】［スロット配列の方法について］次に，本実施の形態におけるランダムスロットアサイン方法のス ロットの配列方法について説明する。スロットの配列方法は，他の局の送信信号に対してランダムな部分的干渉 を与えることになり，あるいは他の局の送信信号からラ ンダムな干渉を被るようにする配列方法であればいずれ であっても良く，たとえば以下のような配列方法が考え られる。O．図7に示したように，フレーム内の1チ ヤネルを1フレーム全体にランダムに配列する方法であ る。說明は省略する。1．1フレーム若しくは1チヤネ ル内の1番からN番までのN個のスロットを完全にラン ダムに配列する方法がある。図9（A）は，配列前のス ロットを示し，図9（B）はN個のスロットがランダムに配列される様子を示している。2 別の配列方法とし て，スロットをグループ化してからランダムに配列する方法がある。この方法を図10（A）から（C）を参照し ながら説明する。
【0083】まず，図10（A）に示すように，N個の入 ロットからなるクレームにあいて，J個（たとえぼJ＝ 4）の連続したスロットを一つのグループ1001を L，N」J個のグルーブを作る。
【0084】次に，図10（B）に示すように，各グルー プ1001から1のスロットを一つずつJ個のスコット群1002に割り振る。各スロット群1002は，J個 のスロットを有することになる。
【0085】最後に，各スロット群1002においてJ個のスロットをランダムに配列する。図10（C）は各ス ロット群1002においくJ個のスロットをランダムに配列された後の状態を示している。
【0086】この配列方法によれば，J個の連続するス ロット性をれそれ，フレーム内のJ個のブロック（スロ ット群）に分散して配列きれることが保証され，を果フレームの一部分に特定の領域のスロットが偏って配置をれることがないようなすンダムかつ分散された配置 をおこなうことが可能となる。
【0087】［配列パターン同期方法］先に述バたよう

に，本実施の形態にあいては，同一パーソナル エリア －ネットワークにいる通信機（基地局，端末局双方を含 む）はす心゙てスロット配列パターン若しくは該パターン を生成する生成規則を知っていることが望ましい。ス口 ット配列バターンは数多くのフレームにわたつて同一の ものが出現しないいまうが，他のネットワークの局との衝突をランダムにする目的において望ましい。
【0088】まず，図11（A）に示すように，基地局 はフレーム1101毎に送信されるビーコンの1部とし て，同期用パターンを送信する。ところが，端末局は初期状態（電源ON直後など）では，基地局が使用するスロッ ト配列パターン若しくはその生成規則を把握することは できるが，該スロット配列パターンのどこを今送信して いるのかりま知り得ない。
【0089】そこで配列パターン同期を獲得するための既知の同期用パターン（例えば細分化スロット長に等し い長さを有する同期ワード）をあらかじめ定められてお き，各通信機にこえを記憶きせておく。この同期用パタ ーンを含ざスロットを複数用意し（1102），これら信号列を含むスロット（同期用スロットという）110 3が送信されるときはランダムスロットアサイン法によ るスロット配列パターンに応じてフレーム内のランダム な位置に配置されるようにする（図11（B）参照）。
【0090】端末局側は，同期用スロット1103に含 まれる配列パターンを獲得するための既知パターンに対応する相関器（図4，406）を用いて，同期用スロッ トの検出及び位置特定を行う。図11（C）は，かかる相関器の出力信号904を示す波形図であつて，同期用 スロット位置に対応した相関のピークが現れる。蝡末局 はまず $121 つ \varnothing$ 同期用スロットを検出する。次に同期用 のバターンを検出し，検出きれた同期用スロットの位置 パターンを記憶する。
【0091】この検出きれた同期用スロット位置のパタ ーンと，スロット配列バターンとを比較して，現在送信 されているスロット配列パターンわ位置を特定する。こ れにより端末局は，スロット配列バターンOどこを送信 しているのかを見つけ，そう以降は，記憶しているス口 ット配列バターン著しくはをの生成規則を用いて，自立的に該スロット配列バターンを発生して，基地局が使用 するスロット配列パターンとの同期をとることが出来 る。
【0092】また，本方法によれば，矛盾なくスロット配列パターンの同期がとれることは，フレームの区切り にも同期したことになり，フレーム同期も同時に達戍で きることになる。
〔0093］［同期用パターンの別の構成例］上述 同期用パターンは，1 スロット長と同一となるような信号列を用いたが，スロット長よりも短い同期ワードの繰り返しを用いて同期用スロットを構成することも考えられ る。スロット長が同期ワードの長きの整数㒀になのてい

ない場合は，規則的に並ぐた同期ワードの繰り返しを用 いる。
【0094】図12に，規則的に並べた同期ワードの繰 り返しを用いる同期用パターンの例を示す。
【0095】図12（A）は，あるフレームにおける同期用スロット1201列配置されている様子を示す図であ る。
【0096】基地局は同期用スロット長より短い同期ワ ード1202を繰り返し生成する。図12（B）は，同期ワードが繰り返し生成されている様子を示す図であ る。
【0097】基地局は，同期用スロット1201を公と して前記繰り返して生成される同期ワードにかけて取り出したもの（窓同期ワード）1203を得て，これを伝送する。図12（C）は，取り出された空同期ワード 12 03 が同期用スロットに対応するタイミングで送信され る様子を示す。
【00981受信側では，同期ワードに対する相関をと る。最初の相関がとれれば，が異動期ワードの周期（ワ ード長）で巡回するカウンタ等を用いることにより，そ れ以降に受信する同期ワードとの同期きとることが可能 となる。
【0099】かかる構成の同期方法を用いれば，同期ワ ードとスロット長の関係の制約を少なくすることが出来，同期ワードの選択及びスロット長の設定に関する自由度を増すことができる。
【0100】［変形例］上述の実施の形態においでは， デ・インターリーブおよび符号化を行うとしたが，本害施の変形例では，妨害によってデータエラーが起こるこ とを許容できる通信にあいては，相手に与える干渉をラ ンダムにするためには行うが，自分の送信データは符号化しないようにしてもよい。
【0101】また，きらに別の変形例では，デ・インタ ーリーブ，符号化をともに省略しても良い。
【0102】［その他の変形例］上述の無線送信装置，無線受信装置の構成例においては，中央制御部として機能するCPUがEEPROMなどに格部きれたプログラ ムに基づいてシンダムスロットアサイン法によるデータ の無線送受信处理を行うものとしたが，本発明はこれに限らず，該プログラムが記録きれたプログラム記録媒体 からこのプログラムを無線送信装置，無線受信装置に読 みとらせ，ランダムアサイン法によるデータの無線送受信処理の全部又は一部を無線送信装置，無線受信装置の CPUに行わせるようにしても良い。
【0103】かかるプログラム記録媒体は，例えばフロ ッピー（登録商慓）ディスク，CD－ROM，DVD等 のバックージメディアのみならず，プログラムが一時的若しくは永続的に格納される半導体メモリや礘気ディス クなどであってよい。また，これらプログラム記録媒体 にプログラムを格納方る手段としては，ローカルエリア

ネットワーク，インターネット，ディジタル通信萄星等 の有線または無線通信手段を利用してプログラムをダウ ンロードし，これをプログラム記録煤体に書き达むよう にしても良く，またルータやモデム等の通信機器を介在 させて格納するようにしても良い。
〔0104】
【発明の効果】互いに調整されていない2つ以上の無線 ネットワークが相互に干渉を受ける值置に存在しても，干渉を受けるスロットと受けないスロットが存在し，干渉受けたスロットはでインターリーブ・符号化でエラー訂正され正しく伝送できる。
【図面の簡単な說明】
【図1】（A）ほ，所定の長さを有するフレームを示す図であり，（B）は，1フレームがN個のスロットに分 けられる様子を示す図であり，（C）は，1スロットの構成を示す図であり，（D）は，スロットに含まれる情報ビットを示す図であり，（E）は，1ビットを示すパ ルス列の例を示す図である。
【図2】実施の形態にかかる送信装置の構成例を示すブ ロック図である。
【図3】送信装置の送信手段の構成例を示すブロック図 でする。
【図4】実施の形態にかかる受信装置の構成例を示すブ ロック図である。
【図5】受信装置の受信手段の構成例を示すブロック図 でする。
【図6】2つの無線ネットワークの構成を示す図であ る。
【図7】（A）は，本実施の形態にあけるフレームのり ソース割り当て状態を示す園であり，（B）は，コーザ割当領域704のスロット化を示す龱であり，（C） は，ユーード割当領域704のスロット化データガスロッ ト配列パターンに応してフレームに配置きれた様子を示 す図であり，（D）は全てのスロットがスロット配列パ ターンに応じてフレームに配置きれた様子を示す図であ る。
【図8】（A）\＆，PANYに関するフレームを示す図 であり，（B）相7（D）に対応するPANXに関す るフレームを示す図であり，（C）は端末局Cが受信す るスロット化データの状態を示す葍である。
【図9】（A）は，配列前のスロットを示す図であり，
（B）はN個のスロットがランダムに配列される様子を示 す图である。
【図10】（A）は，N個のスロットからなるフレーム において，J個の㫎続したスロットを一つのダループに する様子を示した図であり，（B）は，各ダループから 1のスロットを一つずつJ個のスロット群に割り振りを した後の状態を示す図であり，（C）は，各スロット群 にむいてJ個のスロットをクンダムに配列した後の状態 を示している図である。

【図11】（A）は，同期パターンを含ずフレームを示 す図であり，（B）はフレーム内に同期用スロットがス ロット配列パターンに応じて配列された状態を示す図で あり，（C）は同期用スロットに対応する相関器の出力波形を示す図である。
【図12】（A）は，あるフレームの位置部において同期用スロットが配置されている様子を示す図であり，同期 ワードが繰り返し生成されている様子を示す図であり，
（C）は，取り出された䆓同期ワード1203が同期用ス ロットに対応するタイミングで送信される様子を示す図 である。
【図13】（A）は，従来のTDMAフレームを示す図，（B）\＆従来のTDMAフレームの構成例を示す図 でする。
【図14】2つのネットワークが近接して配置きれてい る図である。
【図15】（A）は，図14のネットワークXにおける

フレーム構戌を示す図であり，（B）ほ，図14のネッ トワークYにむけるフレーム構成を示す図である。【符号の説明】
101，102 …フレーム 103 …細分化スロット
104 …ガード・ビリオド
201 …符号化（及びインターリーブ）手段
202 …スロット配列手段
203 … 送信多イミング制御手段
204 … 送信手段
206 … スロット配列制御手段
401 … 受信手段
402 …受信タイミング制御手段
403 … スロット配列手段
404 … エラー訂正手段
405 … スロット配列制御手段
（A）

（C）

【図2】

【図3】

【図4】

（田 4））03－179576（P2003－179576A）

【図5】

【図6】

〔図9】

（田5））03－179576（P2003－179576A）

【図7】
（A）

（i）

【図8】

（田6））03－179576（P2003－179576A）

【図10】

〔図11】

【図12】

【図13】

【図15】

【図14】

Electronic Patent Application Fee Transmittal

Application Number:	12303947			
Filing Date:	07-Jul-2010			
Title of Invention: METHOD OF TRANSMITTING DATA IN A MOBILE COMMUNICATION SYSTEM				
First Named Inventor/Applicant Name:	Yeong Hyeon Kwon			
Filer:	David Gerard Majdali/Neeti Rajput			
Attorney Docket Number:	2101-3596			
Filed as Large Entity				
U.S. National Stage under 35 USC 371 Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Submission- Information Disclosure Stmt	1806	1	180	180
Total in USD (\$) 180				

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	KHAJURIA, SHRIPAL K	
	Attorney Docket Number		2101-3596

U.S.PATENTS Remove											
Examiner Initial*	Cite No	Patent Number		Kind Code ${ }^{1}$	Issue Date		Name of Patentee or Applicant of cited Document		Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear		
	1										
If you wish to add additional U.S. Patent citation information please click the Add button. Add											
U.S.PATENT APPLICATION PUBLICATIONS Remove											
Examiner Initial*	Cite		Publication Number	Kind Code ${ }^{1}$	Publicat Date		Name of Pa of cited Doc	ntee or Applicant ment	Pag Rele Figu	s,Columns,Lines where vant Passages or Relevan es Appear	ant
1											
If you wish to add additional U.S. Published Application citation information please click the Add button. Add											
FOREIGN PATENT DOCUMENTS Remove											
Examiner Initial*	Cite No	For Nu	reign Document mber ${ }^{3}$	Country Code²		Kind Code ${ }^{4}$	Publication Date	Name of Patente Applicant of cited Document		Pages,Columns, Lines where Relevant Passages or Relevant Figures Appear	T5
	1	2000	0102067	JP			2000-04-07	MITSUBISHI ELEC CORP	TRIC		\square
	2	200	1268051	JP			2001-09-28	NTT DOCOMO INC			\square
	3	2003	3179576	JP			2003-06-27	SONY CORP			\square

	4	$2005 / 055527$	wo	2005-06-16	QUALCOMM INC		\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Add							
NON-PATENT LITERATURE DOCUMENTS Remove							
Examiner Initials*	$\begin{array}{\|l} \text { Cite } \\ \text { No } \end{array}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.					
	1						\square
If you wish to add additional non-patent literature document citation information please click the Add button Add							
EXAMINER SIGNATURE							
Examiner Signature		ture			Date Considered		
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.							
1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.							

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56 (c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.

A certification statement is not submitted herewith.
SIGNATURE
A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR $1.4(\mathrm{~d})$ for the form of the signature.

Signature	IDavid Majdali/	Date (YYYY-MM-DD)	2012-04-18
Name/Print	David Majdali	Registration Number	53,257

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552 a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 180$
RAM confirmation Number	9583
Deposit Account	502290
Authorized User	
The Director of the USPTO is hereby authorized to Charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)	

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Information Disclosure Statement (IDS) Form (SB08)	2101-3596_41812_IDSform.pdf	612340 b9528ael ec3c882a35848e04e21816551 ce2 d3311	no	4
Warnings:					
Information:					
A U.S. Patent Number Citation or a U.S. Publication Number Citation is required in the Information Disclosure Statement (IDS) form for autoloading of data into USPTO systems. You may remove the form to add the required data in order to correct the Informational Message if you are citing U.S. References. If you chose not to include U.S. References, the image of the form will be processed and be made available within the Image File Wrapper (IFW) system. However, no data will be extracted from this form. Any additional data such as Foreign Patent Documents or Non Patent Literature will be manually reviewed and keyed into USPTO systems.					
2	Foreign Reference	JP2000-102067.pdf	773765	no	9
			209729 cd 8801 1ef4336f7boo2cc103d300d $f 036$		
Warnings:					
Information:					
3	Foreign Reference	JP2001-268051.pdf	1963524	no	24
Warnings:					
Information:					
4	Foreign Reference	JP2003-179576.pdf	1870793	no	20
			$\underset{\substack{\text { 51772502832c3b2516 188088950b01 1d69 } \\ \text { aceaa6 }}}{ }$		
Warnings:					
Information:					
5	Foreign Reference	WO2005-055527.pdf	6926599	no	56
Warnings:					
Information:					
6	Fee Worksheet (SB06)	fee-info.pdf	30788	no	2
			617749793a5533272221959687425522573		
Warnings:					
Information:					
Total Files Size (in bytes):			12177809		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt; in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	KHAJURIA, SHRIPAL K	
	Attorney Docket Number		2101-3596

IS.K.	4	2005	55527	WO	2005-06-16	QUALCOMM INC		\square
If you wish to add additional Foreign Patent Document citation information please click the Add button Add								
NON-PATENT LITERATURE DOCUMENTS Remove								
Examiner Initials*	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s), publisher, city and/or country where published.						
	1							\square
If you wish to add additional non-patent literature document citation information please click the Add button Add								
EXAMINER SIGNATURE								
Examiner Signature			/Shripal Khajuria/			Date Considered	04/24/2012	
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a citation if not in conformance and not considered. Include copy of this form with next communication to applicant.								
${ }^{1}$ See Kind Codes of USPTO Patent Documents at www. USPTO.GOV or MPEP 901.04. ${ }^{2}$ Enter office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{3}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{4}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{5}$ Applicant is to place a check mark here if English language translation is attached.								

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number		12303947
	Filing Date		2010-07-07
	First Named Inventor	Yeong Hyeon Kwon	
	Art Unit		2478
	Examiner Name	KHAJURIA, SHRIPAL K	
	Attorney Docket Number		2101-3596

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communicationfrom a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
区 The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR 1.33,10.18. Please see CFR 1.4(d) for the form of the signature.

Signature	/David Majdali/	Date (YYYY-MM-DD)	2012-04-18
Name/Print	David Majdali	Registration Number	53,257

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Yeong Hyeon KWON et al.
Serial No.: 12/303,947
Filed: July 7, 2010

Art Unit: 2478
Examiner: Khajuria, Shripal K.
Conf. No. 1730

For: METHOD OF TRANSMITTING DATA IN A MOBILE COMMUNICATION SYSTEM

AMENDMENT AFTER NOTICE OF

ALLOWANCE (NOA) PURSUANT TO
37 CFR 1.312

Mail Stop Issue Fee
Commissioner for Patents
P. O. Box 1450

Alexandria, VA 22313-1450

Dear Sir:

In response to the Notice of Allowance dated March 6, 2012, for which the Issue Fee is due June 6, 2012, this paper is submitted prior to payment of the Issue Fee.

Applicant respectfully requests that the Examiner amend the above-identified application as follows prior to issuance:

IN THE SPECIFICATION:

Please amend the first paragraph at line 1 on page 1 as follows:
This application is the National Stage filing under 35 U.S.C. § 371 of International Application No. PCT/KR07/02784, filed on-danury June 8, 2007, which claims the benefit of earlier filing date and right of priority to Korean Application Nos. 10-20060052167, filed on June 9, 2006, and 10-2006-0057488, filed on June 26, 2006.

REMARKS

Claims 31-46, which are all the claims in the application, have been allowed. Applicant respectfully submits that the amendments to the specification are intended to correct formal matters and do not change the scope of the claims.

The foregoing amendment to the specification corrects a typographical error in the filing date of PCT Application No. PCT/KR07/02784. It is respectfully noted that the filing date of June 8, 2007 was correctly listed on PCT Publication No. WO 2007/042492, and on the Declaration/Power of Attorney filed on July 7, 2010.

The specification has been amended to reflect the issued status of the parent application. No new matter has been added to the specification. In view of the allowance of claims 31-46, which have not been amended with this paper, it is respectfully submitted that claims 31-46 are still in condition for allowance. The Examiner is requested to issue a Response to Rule 312 Communication (PTO-271) as soon as possible.

If for any reason the Examiner finds the proposed amendments not in condition for entry or if further changes are deemed necessary, the Examiner is requested to call the undersigned attorney at the Los Angeles, California, telephone number (213) 6232221.

Respectfully Submitted,
LEE, HONG, DEGERMAN, KANG \& WAIMEY

Date: May 3, 2012

Customer No. 035884

By: $\begin{aligned} & \text { |Ali Atefil } \\ & \begin{array}{l}\text { Ali Atefi } \\ \text { Registration No. 63,960 } \\ \text { Attorney for Applicant(s) }\end{array}\end{aligned}$

Payment information:

Submitted with	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		2101-3596-312Amendment.pdf		yes	3

	Multipart Description/PDF files in .zip description		
	Document Description	Start	End
	Amendment after Notice of Allowance (Rule 312)	1	1
	Specification	2	2
	Applicant Arguments/Remarks Made in an Amendment	3	3
Warnings:			
Information:			
Total Files Size (in bytes):		82611	
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.			
New Applications Under 35 U.S.C. 111			
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.			
National Stage of an International Application under 35 U.S.C. 371			
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.			
New International Application Filed with the USPTO as a Receiving Office			
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.			

Kommbsimer bor Pawento

* 0.8 8man 149%

68 fax (s7y)-273.2ks

48
ज
कめक
GHE, GONS M, DGGERMAM, KANG \& WABMEY
600 S FWGBEROA STREET
Sume 2700
DOS ANGUES, CA OOMF

Senk

SNs\%
48:asm Ss

LGELECTRONICS INC.

SEOUL, REPUBLIC OF KOREA

Mhandara
 3 Bowemmen

Fubacte

ms stacs \& watoxes

Awteras Mramas	\|Ali Atefi/	wex June 5,2012
	Ali Atefi	zegaram * 63,960

 क

Electronic Patent Application Fee Transmittal				
Application Number:	12303947			
Filing Date:	07-Jul-2010			
Title of Invention: \quad METHOD OF TRANSMITTING DATA IN A MOBILE COMMUNICATION SYSTEM				
First Named Inventor/Applicant Name:	Yeong Hyeon Kwon			
Filer:	Ali. Atefi/Anna Tounian			
Attorney Docket Number:	2101-3596			
Filed as Large Entity				
U.S. National Stage under 35 USC 371 Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Utility Appl issue fee	1501	1	1740	1740
Publ. Fee- early, voluntary, or normal	1504	1	300	300

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:				
	Total in USD (\$)			2040

Payment information:

Submitted with Payment	yes
Payment Type	Credit Card
Payment was successfully received in RAM	$\$ 2040$
RAM confirmation Number	7133
Deposit Account	502290
Authorized User	LEE, HONG, DEGERMAN, KANG \& WAIMEY
The Director of the USPTO is hereby authorized to Charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)	

File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	$\begin{gathered} \text { Pages } \\ \text { (if appl.) } \end{gathered}$
1	Transmittal Letter	2101-3596-Transmittal- IssueFee.pdf		no	1
Warnings:					
Information:					
2	Issue Fee Payment (PTO-85B)	2101-3596-IssueFeeForm.pdf		no	1
Warnings:					
Information:					
	Fee Worksheet (SB06)	fee-info.pdf	32110	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			444663		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
Yeong Hyeon KWON et al.
Serial No.: $12 / 303,947$
Filed: July 7, 2010
For: METHOD OF TRANSMITTING DATA IN A MOBILE COMMUNICATION SYSTEM

TRANSMITTAL OF ISSUE FEE

Mail Stop ISSUE FEE
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir:

In response to the Notice of Allowance dated March 6, 2012, enclosed are the following:
W Form Part B - Issue Fee Transmittal.
$\boxtimes \quad$ Inventor(s) or Assignee(s) is entitled to LARGE entity.
\boxtimes The Commissioner is hereby authorized to charge the Issue Fee in the amount of \$2,040 to the credit card and any deficiency in payment or credit any overpayment to Deposit Account No. 502290.

Respectfully submitted,
Lee, Hong, Degerman, Kang \& Waimey

Date: June 5, 2012
By: \quad |Ali Atefi/
Ali Atefi
Registration No. 63,960
Attorney for Applicant(s)

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.
Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)

The Patent Term Adjustment is 135 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Yeong Hyeon Kwon, Gyeonggi-do, KOREA, REPUBLIC OF;
Seung Hee Han, Gyeonggi-do, KOREA, REPUBLIC OF; Hyun Hwa Park, Gyeonggi-do, KOREA, REPUBLIC OF; Dong Cheol Kim, Gyeonggi-do, KOREA, REPUBLIC OF; Hyun Woo Lee, Gyeonggi-do, KOREA, REPUBLIC OF; Min Seok Noh, Gyeonggi-do, KOREA, REPUBLIC OF;

POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO

Name	Registration Nuribar

As attomey(s) or agent(s) to represent the undersigned before the United States Patent and Trademark Office (USPTO) in connection with any and all patent applications assigned only to the undersigned according to the USPTO assignment records or assignments documents attached to this form in accordance wifn 37 CFR $3.73(\mathrm{c})$.

Please change the correspondence address for the application identifed in the attached statement under 37 CFR $3.73(c)$ to:

Assignee Nams and Address: TQ LAMBDA, LLC 805 Las Cimas Parkway, Suite 240 Austin, TX 78746		
A copy of this form, together with a statement under 37 CFR 3.73 (c) (Form PTO/AIA/96 or equivalent) is required to be Filed in each application in which this form is used. The statement under 37 CFR $3.73\{c)$ may be completed by ane of The practitioners appointed in this form, and must Identify the application in which this Power of Attorney is to be filed.		
SIGNATURE of Assignee of Record The individual whose signatura and tite is supplied below is authorized to act on behali of the assignee		
Signature		Date $2 / 27 / 14$
Name	Abha S. Divine	Teiephone (512)609-1820
Title	Managing Director	

 to compthe, inciudng gathering, pregaring, and submationg the conpleted opplication form to the USPTO. Time with vary depending tyon the individual cass. Any

 FORMS TO THIE ACDEESS. SEND TO: COmmissioner for Patents, F.O. Box 1450, Alexandra, VA 22313-1450.

If you need assistare in completing the from, call fropupto 3109 and selfot option 2.

"FEE ADDRESS" INDICATION FORM

Address to:	Fax to:	
Mail Stop M Correspondence	571-273-6500	
Commissioner for Patents	- OR -	
P.O. Box 1450		
Alexandria, VA 22313-1450		

INSTRUCTIONS: The issue fee must have been paid for application(s) listed on this form. In addition, only an address represented by a Customer Number can be established as the fee address for maintenance fee purposes (hereafter, fee address). A fee address should be established when correspondence related to maintenance fees should be mailed to a different address than the correspondence address for the application. When to check the first box below: If you have a Customer Number to represent the fee address. When to check the second box below: If you have no Customer Number representing the desired fee address, in which case a completed Request for Customer Number (PTO/SB/125) must be attached to this form. For more information on Customer Numbers, see the Manual of Patent Examining Procedure (MPEP) § 403.

For the following listed application(s), please recognize as the "Fee Address" under the provisions of 37 CFR 1.363 the address associated with:

Customer Number: 62574

OR
The attached Request for Customer Number (PTO/SB/125) form.

PATENT NUMBER $(\mathrm{if}$ known)	APPLICATION NUMBER
$8,218,481$	$12 / 303,947$

Completed by (check one):

Applicant/Inventor

(Reg. No.)

Assignee of record of the entire interest. See 37 CFR 3.71.
Statement under 37 CFR 3.73(b) is enclosed. (Form PTO/SB/96)Assignee recorded at Reel \qquad Frame \qquad

[^4]Date
NOTE: Signatures of all the inventors or assignees of record of the entire interest or their representative(s) are required. Submit multiple forms if more that one signature is required, see below*.
$\square \quad$ *Total of $1 \quad$ forms are submitted.

This collection of information is required by 37 CFR 1.363. The information is required to obtain ar retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This colle ction is estimated to take 5 min ites to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Depar tment of Commerce, P.O, Box 1450, Alex andria, VA 22313-1450. DO NOT SEND COMPLETE D FORMS TO THIS A DDRESS. SEND TO: Mail Stop M Correspondence, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800.PTO-9199 and select option 2.

Payment information:

Submitted w	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		Statement_Under_373c_w_PO A.pdf		yes	3

STATEMENT UNDER 37 CFR 3.73(c)

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
3.The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
4.The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached.

The interest identified in option 1, 2 or 3 above (not option 4) is evidenced by either (choose one of options A or B below):
A.An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad , or for which a copy thereof is attached.
B. σ A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows: 1. From: YEONG HYEON KWON et al. To: LG ELECTRONICS INC.
The document was recorded in the United States Patent and Trademark Office at Reel 024647 , Frame 0517 , or for which a copy thereof is attached.
2. From: LG ELECTRONICS INC. To: TQ LAMBDA LLC

The document was recorded in the United States Patent and Trademark Office at Reel 032343 , Frame 0761 \qquad , or for which a copy thereof is attached.

[Page 1 of 2]

This collection of information is requirad by 37 CFR 3.73 (b). The information is required to obtaln or retain a benefit by the public which is to flle (and by the USPTO to process) an application. Confidentiality /s governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the indlvidual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

$$
\text { If you need assistance in completing the form, call 1-800-PTO-9199 and select option } 2 .
$$

STATEMENT UNDER 37 CFR 3.73(c)

3. From: \qquad To:

The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
4. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.
5. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame or for which a copy thereof is attached.
6. From: \qquad To: \qquad
The document was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad or for which a copy thereof is attached.Additional documents in the chain of title are listed on a supplemental sheet(s).
[. As required by 37 CFR 3.73 (c)(1)(i), the documentary evidence of the chain of title from the original owner to the assignee was, or concurrently is being, submitted for recordation pursuant to 37 CFR 3.11.
[NOTE: A separate copy (i.e., a true copy of the original assignment document(s)) must be submitted to Assignment Division in accordance with 37 CFR Part 3, to record the assignment in the records of the USPTO. See MPEP 302.08]

The undersigned (whose title is supplied betow) is authorized to act on behalf of the assignee

[Page 2 of 2]

United States Patent and Trademark Office

APPLICATION NUMBER	FILING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TITLE
$12 / 303,947$	$07 / 07 / 2010$	Yeong Hyeon Kwon	

CONFIRMATION NO. 1730
62574
Jason H. Vick
Sheridan Ross, PC
Suite \# 1200
1560 Broadway
Denver, CO 80202
Date Mailed: 04/01/2014

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 03/11/2014.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33

United States Patent and Trademark Office

APPLICATION NUMBER	FILING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TITLE
$12 / 303,947$	$07 / 07 / 2010$	Yeong Hyeon Kwon	$2101-3596$

35884
LEE, HONG, DEGERMAN, KANG \& WAIMEY
660 S. FIGUEROA STREET
Suite 2300
LOS ANGELES, CA 90017

NOTICE REGARDING CHANGE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 03/11/2014.

- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).
/jtfitzhugh sr/

I hereby revoke all previous powers of atomey given in the applicaton dentfied in the atached staternent under 37 CFR 3.73 c .
I hereby appont:
Prachinongry assoctated whi Customar number: OR

62574
Practuoneris) named betow (if move than ten patent practioners are to be named, hen a customer number must be used).

	Regitration

Nartien	Registration Mumber

As attorney(s) or agem(s) to represent the undersigned before the United States Patent and Tradenark Office (USPYO) in connection with any and at patent aphocotons assigned enty to the underigned according to the UspTo assignment recoct or assigments docments athached to this form in accordance with 37 CFR 3.73 ie).

Assignee Name anc Adcress:	EVOLVED WRRELESS LLC
	805 Las Cimas Parkway, Sute 240
	Austin, 7×78746

A copy of this form, together with a statement under 37 CFR 3.73 ch Form PTOAAMAS or equivalent is required to be Fited in each application if which this fom is used. The statement under $37 \mathrm{CFR} 3,73(\mathrm{c})$ may be completed by one of The practioners appointed in this form, and must identify the application in which this Power of matomey is to be fited.

SIGNATURE of Assignee of Record
The individul whose signature and tite is supplied beiow is authorized to act on behall of the assignee

Signaure	Wha $>($) $u \omega \operatorname{LL}$	Date $6,4 \times 2$
Name	Abha Divine	Telephone
Tide	Maneging Director	

Payment information:

Submitted w	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		Statement_Under_373c_w_PO A_EWL.pdf		yes	3

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, itile, and interest.
3. \square The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are:

Additonal Statement(s) by the owner(s) hoding the balance of the interest must be submitted to account for the entire right, itte, and interest.
4.The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entrety (a complete transfer of ownership interest was made). The certifed document(s) showing the trancier is attached.

The interest identified in option 1,2 or 3 above (not option 4) is evidenced by either (choose one of options A or B below):
A. \square

An assignment from the inventor(s) of the patent application/patent identifed above. The assignment was recorded in the United States Patent and Trademark Office at Peel \qquad Frame \qquad or for which a copy thereof is attached.
B. \square A chain of tite from the inventor(s), of the patent application/patent dentifed above, to the current assignee as follows:

This collection of information is required by 37 CFR $3.73(\mathrm{~b})$. The intormation is required to obtan or retain a benerit by the public which is to tile (and by the 13 F TO to process) an application. Conticentility is governed by 35 U.S.C. 122 and $370 F \mathrm{~F} 1.11$ and 1.14 . This collection is estimated to take t2 mintes to complete, including gathering, peparing, and submiting the completed application form to the USPTO. Tims will vary dspending upon the individual oase Any comments on the amount of tims you require to compiste this iorm andor suggestions tor reducing this burden, should be sent to the Chief iniormation Oticer, US. Patent and Trademark
 TO: Commissioner tor Patents, F.O. Box 1450_{9} Aexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

STATEMENT UNDER 37 CFR 373 ICl

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS PD. Box 1450 Alexandra, Vigginia 22313-1450 wwwinpto gov	
LICANT	ATTY. DOCKET NO./TITLE
	7836-4-PU

62574
Jason H. Vick
Sheridan Ross, PC
Suite \# 1200
1560 Broadway
Denver, CO 80202
Date Mailed: 11/07/2014

NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY

This is in response to the Power of Attorney filed 10/30/2014.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33.
/ttkim/

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

[^0]: m
 anow

[^1]: F\%
 \& 2.2.

[^2]: कले

[^3]: दिस K\& \%

[^4]: March 11, 2014

