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A Suggestion for Using Powerful and Informative

Tests of Normality

RALPH B. D’AGOSTINO, ALBERT BELANGER, AND RALPH B. D’AGOSTINO, JR.*

 

For testing that an underlying population is normally dis-

tributed the skewness and kurtosis statistics, \/b—, and b2,

and the D’Agostino—Pearson K2 statistic that combines these

two statistics have been shown to be powerful and infor-

mative tests. Their use, however, has not been as prevalent
as their usefulness. We review these tests and show how

readily available and popular statistical software can be used

to implement them. Their relationship to deviations from

linearity in normal probability plotting is also presented.

KEY WORDS: \/b_l, b2; D’Agostino—Pearson K2; Kur—

tosis; Normal probability plot; Skewness. 

1. INTRODUCTION

Tests of normality are statistical inference procedures de-

signed to test that the underlying distribution of a random

variable is normally distributed. There is a long history of

these tests, and there are a plethora of them available for

use (D’AgoStino 1971; D’Agostino and Stephens 1986, chap.

9). Major studies investigating the statistical power of these
over a wide range of alternative distributions have been

undertaken, and a reasonably consistent picture has emerged
as to which of these should be recommended for use. See

D’Agostino and Stephens (1986, chap. 9) for a review of

these power studies. The Shapiro—Wilk W test (Shapiro and

Wilk 1965), the third sample moment (Vb—l) and fourth

sample moment ([72) tests, and the D’Agostino—Pearson K2

test combining these (D’Agostino and Pearson 1973) emerge

as excellent tests. The W and K2 tests share the fine property

of being omnibus tests, in that they have good power prop-

erties over a broad range of nonnormal distributions. The

\/b_l and b2 tests have excellent properties for detecting
nonnormality associated with skewness and nonnormal kur-
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tosis, respectively. The extensive power studies just men-4
tioned have also demonstrated convincingly that the old

warhorses, the chi—squared test and the Kolmogorov test

(1933), have poor power properties and should not be used

when testing for normality.

Unfortunately, the preceding results have not been dis—

seminated very well. The chi-squared and Kolmogorov tests

are still suggested in textbooks for testing for normality.

Major statistical packages such as SAS and SPSSX perform

the excellent Shapiro—Wilk W test for sample sizes up to

50. For larger samples, however, they supply the poor-

power Kolmogorov test. These statistical packages do give

skewness and kurtosis measures. They are not, however,

the \/b_l and [)2 statistics. Rather they are functions of these,
the so—called Fisher g statistics (Fisher 1973). The docu-

mentation on this latter point is very incomplete. In our

experience, many users are unaware of it, and descriptive

evaluation of normality or nonnormality is confused because

of it. Hypothesis testing using the powerful \/b_1 and 122 is
not presented or even suggested.

In this article, we discuss the skewness, \/b_, and kur-

tosis, b2, statistics and indicate how they are excellent de-

scriptive and inferential measures for evaluating normality.

Further, we relate the Fisher g skewness and kurtosis mea-

sures produced by the SAS and SPSSX software packages

to V171 and b2 and show how a simple program (SAS macro)
can be used to produce an excellent, informative analysis

for investigating normality. This analysis contains separate

tests based on Vii—1 and b2 and the K2 test, which combines

V5: and 192 for an omnibus test. Finally, we indicate how
the preceding can be used in conjunction with normal prob-

ability plotting. The latter gives an informative graphical

component to an analysis for normality.

2. POPULATION—MOMENTS DESCRIPTION OF

NORMALITY AND NONNORMALITY

A population, or its random variable X, is said to be

normally distributed if its density function is given by

 
 

l _l(-‘*#>Z ‘°°<X<°°fix): 6 2 U "0°<,u<°° (1)
V2770 0_>0.
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Here ,1}. and 0' are the mean and standard deviation, respec-

tively, of it. Of interest here are the third and fourth stan-

dardized moments given by

 

 

E<X — m3 E<X e m3

VE _ [E(X — i021” " a3 (2)
and

E<X — m4 E<X — m4

32 _ [E(X — “>212 _ a4 ’ (3)

where E is the expected value operator. These moments

measure skewness and kurtosis, respectively, and for the

normal distribution they are equal to 0 and 3, respectively.

The nonnormality of a population can be described by values

of its central moments differing from the normal values.

The normal distribution is symmetric, so VE = 0. A
nonnormal distribution that is asymmetrical has a value of

VB: 75 0 (see Fig. l); VE > 0 corresponds to skewness
to the right and VB: < 0 corresponds to skewness to the
left.

The word kurtosis means “curvature,” and it has tradi-

tionally been measured by the fourth standardized moment

32. For the normal distribution, its value is 3. Figure 1

displays two nonnormal distributions in which ,82 9e 3. Un-
imodal distributions whose tails are heavier or thicker than

the normal have ,82 > 3. These distributions also tend to

have higher peaks in the center of the distribution, and in

the past these distributions were often described in terms of

the high peaks (leptokurtic). Unimodal distributions whose

 
Figure 1. Illustration of Distributions With \/E 75 0 and [32 9e 3;

Distributions Differing in Skewness and Differing in Kurtosis from
the Normal Distribution; Top panel: A, \/E > 0; B, VE = 0; C,
VE < 0; Bottom panel: A, [32 = 3; B, 32 < 3; C, 32 > 3.

tails are lighter than the normal tend to have ,82 < 3. In

terms of their peak, it tends to be broader than the normal

(platykurtic). Readers are referred to D’Agostino and Ste-

phens (1986) for further discussion of these and to Balanda

and MacGillivray (1988) for a detailed discussion of kur-

tosis. D’Agostino and Stephens (1986) also gave examples

of well-known nonnormal distributions indexed by VE and
32-

3. SAMPLE MOMENTS AS INDICATORS OF
NONNORMALITY

Karl Pearson (1895) was the first to suggest that the

sample estimates of \/[3_l and ,82 could be used to describe
nonnormal distributions and used as the bases for tests of

normality. For a sample of size n, X1, . . ., X,, the sample

estimates of VE and 32 are, respectively,

x/b—l = Ina/mt” (4)

and

b2 = m4/mg, (5)

where

m, = 2(X, — Your; (6)

and )7 is the sample mean

i = 2X,/n. (7)

As descriptive statistics, values of Via—1 and b2 close to 0
and 3, respectively, indicate normality. To be more precise

the expected values of these are 0 and 3(n — l)/(n + 1)

under normality. Values differing from these are indicators

of nonnormality. The signs and magnitudes of these give

information about the type of nonnormality [e.g., \/b—l >
0 corresponds to positive skewness and [22 > 301 — 1)/ (n

+ 1) relates to heavy tails in the population distribution].

4. TESTS OF NORMALITY BASED ON SAMPLE
MOMENTS

The \/b_I and [)2 statistics are the bases for powerful tests

of normality (D’Agostino and Stephens 1986, chap. 9).

4.1 Tests of Skewness (Vb—1)

Here the null hypothesis is H0: normality versus the al-

ternative; H1: nonnormality due to skewness. For alterna-

tives (VE 7e 0), a two-sided test based on V2): is performed.
For directional alternatives (VE > 0 or VF, < 0), one-

sided tests are performed. Tables of critical values are avail-

able (D’Agostino and Stephens 1986, chap. 9). For sample

sizes n > 8, a normal approximation that is easily com-

puterized is available. It is obtained as follows (D’Agostino
1970):

1. Compute \/b_1 from the sample data.
2. Compute 1/2

_ (n + 1)(n + 3) aY — \/b_I{———-——6(n_ 2) } (8)
3(n2 + 2711 — 70)(n + l)(n + 3)

(n — 2)(n + 5)(n + 7)(n + 9)

 

Bzo/b—n — (9)
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W2 = —1 + {2(Bz(\/b_1) — 1)}“2, (10)

5 = MW, (11)

and

a = {2/(W2 — 1)}1/2, (12)

3. Compute

Z(\/b_l) = 51n(Y/a + {(Y/a)2 + 1}“). (13)

Z(\/b—1) is approximately normally distributed under the null
hypothesis of population normality.

4.2 Tests of Kurtosis (b2)

Here the null hypothesis is HO: normality versus the al-

ternative; H1: nonnormality due to nonnormal kurtosis. Again

a two-sided test (for [$2 75 3) or one-sided tests (for B2 >

3 or [32 < 3) can be performed. Again elaborate tables are

available (D’Agostino and Stephens 1986, chap. 9). More-

over, a normal approximation due to Anscombe and Glynn
(1983) is available. It is valid for n 2 20 and is as follows:

1. Compute [92 from the sample data.

2. Compute the mean and variance of oz,

3 - 1

E022) = 4H (14)
and

24n(n — 2)(n -— 3)

(n + mm + 3)(n + 5) ' (15)var(b2) =

3. Compute the standardized version of oz,

x = (.172 — E(b2))/Vvar(b2)- (16)

4. Compute the third standardized moment of £72,

 

_ 6(n2 — 5n + 2) 6(n + 3)(n + 5).“8‘0?” 7 (n + 7)(n + 9) \/n(n — 2)(n — 3)
(l7)

5. Compute

8 [ 2A = 6 + —— —,——
‘VB1(b2) W31(b2)

4
+ 1 + - 18\/< 13103)] ( )

6. Compute

Zb — l——2—>(2)— 9A

_ l— 2/A
1+ x\/2/(A — 4)

Z(b2) is approximately normally distributed under the null

hypothesis of population normality.

1/3

] > /‘\/2/(9A). (19)

Both Z(\/b—l) and Z([72) can be used to test one-sided and
two-sided alternative hypotheses.
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4.3 Omnibus Test

D’Agostino and Pearson (1973) presented a statistic that

combines \/b_l and b2 to produce an omnibus test of nor-
mality. By omnibus, we mean it is able to detect deviations

from normality due to either skewness or kurtosis. The test
statistic is

K2 = 220/171) + 22(192), (20)

where Z(\/b_1) and Z(b2) are the normal approximations to
\/b_1 and b2 discussed in Sections 4.1 and 4.2. The K2
statistic has approximately a chi-squared distribution, with

2 df when the population is normally distributed.

5. NUMERICAL EXAMPLE

Table 1 contains a sample of cholesterol values from a

sample of 62 subjects from the Framingham Heart Study.

The data are presented as a stem-and-leaf plot. From these
data we obtain

V171 = 1.02, Z(\/b_1) = 3.14, p = .0017,

£72
Ii

4.58, Z(b2) = 2.21, p = .0269,

and

K2 = 14.75, p = .0006.

The preceding p values are the levels of significance for the

corresponding two-sided tests. For the Kolmogorov test, p

= .087. The data are clearly nonnormal. The \/b_1 and b2
statistics quantify the nature of the nonnormality. The data

distribution is skewed to the right and heavy in the tails.

The Kolmogorov test gives no information about this non-

normality and only indicates marginally nonnormality.

6. THE FISHER g STATISTICS

Both SAS and SPSSX routinely give skewness and kur-

tosis statistics in their descriptive statistics output. Unfor-

Tab/e 1. Cholesterol Data From the Framingham Heart Study  

 Stem-and-Ieaf plot Number

39 3 1
38
37
36
35 3 1
34
33 46 2
32 7 1
31
30 008 3
29
28 35 2
27 00288 5
26 347778 6
25 444668 6
24 03678 5
23 0000122244668 13
22 0556 4
21 0125678 7
20 02 2
1 9 28 2
1 8 4 1
1 7
1 6 7 1 

NOTE: The descriptive statistics are sample size, n = 62; mean, )7 = 250.0; standard
deviation, S = 41.4; skewness, Vb1 = 1.02; kurtosis, D2 = 4.58:
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tunately, neither give Vb: and b2. Rather, they give the
Fisher g statistics defined as follows:

n2(X — 303

 

: ———————~—— 1
skewness g, (n _ 1)(n _ 2)S3 (2 )

and

k nosi _ n(n + 1)2(X — )_()4
u s g2 _ (n — 1)(n — 2)(n — 3)s4

_ 2

_ __3(n_2_.__ , (22)
(n — 2)(n — 3)

where

X — )7 2
52 = " m2 2 L3— (23)n — l n — l

is the sample variance.

These are related to \/b_, and b2 via the following:

(n — 2)b : “-
V—l mg] (24)

and

(n — 2)(n — 3) 3(n — 1)b = ~————————— + — -
2 (n + l)(n — 1) g2 (11 + 1) (25)

The BMDP statistics software package does compute

V197 and b2. All of the preceding software do not perform
tests of normality based on skewness and kurtosis.

7. RECOMMENDATIONS

The tests just described based on \/b_l and b2 are excellent
and powerful tests. We recommend that for all sample

sizes V5: and b2 should be computed and examined as
descriptive statistics. For all sample sizes 11 2 9, tests of

hypotheses can be based on them. In particular, for n >

50, where the Shapiro—Wilk test is no longer available, we

recommend these tests and the D’Agostino—Pearson K2 test

as the tests of choice. The justification for this is not only

because of their fine power but also because of the infor-

mation they supply on nonnormality. In conjunction with
the use of standard statistical software, such as SAS, SPSSX,

and BMDP, the skewness and kurtosis measures they pro-

duce can be used as inputs to simple programs (macros) to

perform these tests. In the appendix, we supply one such

simple macro that can be used with SAS and that will pro-
vide two-tailed tests.

8. NORMAL PROBABILITY PLOT

Another component in a good data analysis for investi-

gating normality of data and an item again often not well

handled routinely in computer packages is the normal prob-

ability plot. This plot is a graphical presentation of the data

that will be approximately a straight line if the underlying

distribution is normal. Deviations from linearity correspond

to various types of nonnormality. Some of these deviations
reflect skewness and/or kurtosis. Others reflect features such

as the presence of outliers, mixtures in the data, or truncation

(censoring) in the data. Readers are referred to D’Agostino

and Stephens (1986, chap. 2) for a detailed discussion of

probability plotting.

A normal probability plot is simply a plot of the inverse
of the standard normal cumulative on the horizontal axis

and the ordered observations on the vertical axis. The in-

verse of the normal cumulative is usually defined in such a

way to enhance the linearity of the plot, and one common

procedure is to let the normal probability plot employ Blom’s

(1958) approximation. In this case, the normal probability

plot is a plot of

 

 

= #1 i —— 3/8 X. 26Z q) <11 + on (1): ( )
where X“) is the ith ordered observation from the ordered

sample X“) s Xe) S S X(,,) and

i — 3/8
Z = d)" 27<11 + 1/4) ( )

is the Z value such that

i — 3/8 J2 l #1-: 2 dx 28
n + 1/4 ~06 V27re ( )

fori=1,...,n.

  

Figure 2 is a normal probability plot of the data of Section

5. The expected straight line can be obtained by connecting

the + ’s on the graph. Figure 3 contains a number of forms

that the normal probability plot will produce in the presence

of nonnormality. For the present data set, its skewness to

the right is very evident in the plot.

A program for the normal probability plot applicable to

SAS is part of the macro given in the appendix.

9. CONCLUSION

We have discussed the uses of \/b—, and b2 as descriptive
and inferential statistics for evaluating the normality of data.

We have made specific recommendations for their uses.

Further we have reviewed briefly the normal probability

plot, which can be used in conjunction with \/b_1 and b2 for
a graphical analysis. A good complete normality analysis

would consist of the use of the plot plus the statistics. The

use of these is superior to what is routinely given in standard

computer software. Serious investigators should consider

using the materials of this article in their data analysis.

APPENDIX: A MACRO FOR USE WITH SAS

STATISTICAL SOFTWARE

The following macro takes as input a variable name and

a data set name. It produces as output the results of a uni-

variate descriptive analysis (PROC UNIVARIATE), skew-

ness and kurtosis measures and test statistics, the D’Agostino—

Pearson omnibus normality test statistic, p levels, and a

normal probability plot.

%MACRO NORMTEST(VAR,DATA);

PROC UNIVARIATE NORMAL PLOT DATA = &DATA;

VAR &VAR; OUTPUT OUT = XXSTAT N = N
MEAN = XBAR STD = S SKEWNESS = G1

KURTOSIS = G2;
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Figure 2. Normal Probability Plot of Cholesterol Data.

DATA; Z_B1 = DELTA*LOG(Y/ALPHA + SQRT((Y/
SET XXSTAT; ALPHA)**2+ 1));

DO _Z_= — 1,0,1; _X_= XBAR + _Z_*S; OUTPUT; B2: 3*(N —1)/(N + 1) + (N — 2)*(N — 3)/
END; ((N+ 1)*(N — 1))*G2;

KEEP _X_ _Z_; MEANB2=3*(N—1)/(N+l);
DATA; SET &DATA _LAST_;

PROC RANK TIES = MEAN NORMAL = BLOM; VAR

&VAR; RANKS BLOIVIRANK;

OPTIONS LS = 80;

PROC PLOT NOLEGEND;

PLOT &VAR*BLOMRANK = ’*’ _X_*_Z_= ' + '/

OVERLAY HAXIS= —3 TO 3 BY .5;
LABEL BLOMRANK = "NORMALIZED RANK"

&VAR = "NORMAL PROBABILITY PLOT FOR

&VAR”;
DATA;

SET XXSTAT;

SQRTBI = (N — 2)/SQRT(N*(N — 1))*G 1;

Y = SQRTB1*SQRT((N + 1)*(N + 3)/(6*(N — 2»);

BETA2 = 3*(N*N + 27*N — 70)*(N + 1)*(N + 3)/

((N — 2)*(N + 5)*(N + 7)*(N + 9));

W = SQRT( — l + SQRT(2*(BETA2 — l)));

DELTA = 1/SQRT(LOG(W));

ALPHA = SQRT(Z/(W*W — 1));

(N*(N — 2)*(N — 3»);

(MOIVIENT**2)));

FILE PRINT;

N=/

320 The American Statistician, November 1990, Vol. 44, N0. 4

VARB2 = 24*N*(N — 2)*(N — 3)/

((N +1)*(N +1)*(N + 3)*(N + 5));

X = (B2 — MEANB2)/SQRT(VARB2);

MOMENT = 6*(N*N — 5*N + 2)/

((N + 7)*(N + 9))*SQRT(6*(N + 3)*(N + 5)/

A = 6 + 8/MOMENT*(2/MOMENT + SQRT(I + 4/

Z_B2 = (1 — 2/(9*A) — ((1 — 2/A)/(1 + X*SQRT(2/

(A - 4))))**(1/3))/SQRT(2/(9*A));

PRZBl = 2*(1 ~PROBNORM(ABS(Z_B1)));

PRZB2 = 2*(1 — PROBNORM(ABS(Z_BZ)));

CHITEST = Z_B1*Z_B1+ Z_B2*Z_B2;

PRCHI = 1 — PROBCHI(CHITEST,2);

PUT “NORMALITY TEST FOR VARIABLE &VAR ”

@20 G1=8.5 @33 SQRTB1=8.5 @50 "2:" Z-

B1 8.5 ” P="PRZB1 @6.4/
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