
APPLE INC.
EXHIBIT 1017 - PAGE 1

APPLE INC.

EXHIBIT 1017 - PAGE 1

9n.._..UrOD.D..US.6aFl8hin

Irect-X 5.0

mg Per

0 and D"

PC Gam

ce 2

APPLE INC.
EXHIBIT 1017 - PAGE 2

A Force Feedback

Programming Primer

For Gaming Peripherals Supporting DirectX 5
and I—FORCE 2.0

by

Louis B. Rosenberg Ph.D.

Endorsed by these Manufacturers of Force Feedback Hardware:

Logitech Inc. CH Products

ThrustMaster SC&T International

ACT Labs Interactive IO

Advanced Gravis InterAct Accessories

Nuby Manufacturing Immersion Corporation

Immersion Corporation _ :

the Force Feedback Company E

IMIVIERSION CORPORATION, San Jose, Caljfomia 95131 Copyright © 1997

APPLE INC.

EXHIBIT 1017 - PAGE 2

APPLE INC.
EXHIBIT 1017 - PAGE 3

-Rosenberg, Louis B. _ i

A Force Feedback Programming Primer. For PC Gaming E
Peripherals Supporting I-Force 2.0 and DirectX 5

Editorial/production supervisor: Tim Lacey

Cover design: Cathy Ricke E
Cover art contributions: Bruce Schena

Special Thanks to Adam Braun,_Dean Chang, and everyone else on the LFORCE E
development team who provided technical assistance without which this book would have

been impossible.

Special thanks to I—FORCE hardware manufacturers, who contributed to Section 1.5 of

this book.

DirectX is a trademark of Microsoft Corporation. I-Force and I~Force Studio are

trademarks of Immersion Corporation. Product and company names in section 1.5 and

throughout this book are trademarked by their respective holders.

Copyright © 1997

Immersion Corporation

San Jose, CA 95131

, First Printing, April 1997

Second Printing (revised), June 1997

All rights reserved. No part of this book may be reproduced, in any form or by any means,

without permission in wiiting from the publisher.

Printed in the United States of America

APPLEINC.

.. _-

APPLE INC.
EXHIBIT 1017 - PAGE 4

(:-

3E

ii.
1‘;

".’".".Ccfr’l-’:1’-\<,%‘-v13’%T:F?bf§§‘Ef?i‘§%-Krfirri-I-W?»-....ma!-‘raw.

PREFACE

Like graphics and sound, Force Feedback is a creative medium that will let you add

engaging perceptual content to your gaming environments. As is true of any creative

medium, the potential of force feedback is essentially unlimited but the effectiveness of

particular force feedback implementations is ultimately in the hands of the individual

developer. Our goal in -writing this book is to expose developers to the exciting potential

of force feedback technologies, to _provide guidelines on how to use “feel” most

effectively within your gaming applications, and to encourage gaming innovators to invent

creative uses of “feel” that have never before been imagined. We sincerely hope the

information and insights provided in this text will encourage developers to use force

feedback technologies to their fullest potential.

This book is structured as an introduction to the hardware and software issues of force

feedback technology. The text is presented as a reference document written for

professionals involved in allraspects of game development from conceptual design to low-

level coding. For the game designer, this book provides an overview of force feedback

device capabilities, giving you an understanding of how “feel” can enhance your current

gaming titles. For the programmer, this book describes the methods used to add feel

sensations to your applications. We hope the information provided in this text will clarify,

simplify, and facilitate the force feedback development process.

While many of the concepts introduced in this text are applicable across all platforms, the

specific code examples used in this text assume that you are programming force feedback

hardware compatible with the DirectX 5 specification defined by Microsoft and

Immersion Corporation. Some of the advanced features described in this text are enabled

through the “I-FORCE Studio” toolset from Immersion Corporation. The LFORCE

Studio toolset enhances and facilitates DirectX force feedback development and is

described in detail in the last chapter of this book. For the latest updates on force

feedback technology and a list of titles currently supporting this new technology, please

visit the web site www.force-feedback.com.

APPLE INC.

EXHIBIT 1017 - PAGE 4

APPLE INC.
EXHIBIT 1017 - PAGE 5

CONTENTS

-'"‘-~«
1. INTRODUCTION... 1

' 1.1 OVERVIEW OF FORCE FEEDBACK TECHNOLOGY 2
". 1.2 THE SCIENCE OF FORCE FEEDEACK.:I 6
t I .2. a Bi-Directional Interaction 9

I .2.b So, What is a Feel Sensation Anyway? I I

I .2. c Reflexes, A Techniquefor Efiicient Force Feedback Programming.............. .. I 6 %

I .2.d Intelligent Disturbance Filtering (IDF) I 8 =

1.3 SUPPORTING FORCE FEEDBACK — THE EMERGING STANDARDS 20

1.4 THE DIRECTX API AND THE I-FORCE STUDIO TOOLSET. 21

1.5 WHAT TO EXPECT EROM MANUFACTLIRERS' 23

I.5.a Logitech Inc. 24

I.5.b CHProducts 25

I .5.c ThrustMaster 26

I .5.d Immersion Corporation 2 7

I.5.eACTLabs..28

I .5.fSC&TInternational 29

I . 5.g Nuby Manufacturing.. .. 30

I.5.hInteract... .. 31

I. 5.1‘ Interactive I/O... .. 32

2. THE BASICS OF FORCE FEEDBACK ... 33

2.1 OVERVIEW 34

2.2 OVERVIEW OF FORCE FEEDBACK HARDWARE ARCHITECTURE 35

2.3 OVERVIEW OF FORCE FEEDBACK SENSATIONS 43

APPLE INC.

EXHIBIT 1017 - PAGE 5”

APPLE INC.
EXHIBIT 1017 - PAGE 6

iv

APPLE INC.

EXHIBIT 1017 - PAGE 6

APPLE INC.
EXHIBIT 1017 - PAGE 7

2.3.a Spatial Conditions 43

2.3.12 Temporal Waves 44

2.3.4: Dynamic Sensations... .. 45

2.4 FORCE STREAMING 47

3. UNDERSTANDING SPATIAL CONDITIONS 49..

3 .1 OVERVIEW 50

3.2 SPRING 52

3.3 DAMPER 57

3.4 INERTIA 59

3.5 FRICTION 60

3 .6 TEXTURE 61

3.7 WALL 63

3.8 BARRIER 68

4. UNDERSTANDING TEMPORAL WAVES 71

4.1 OVERVIEW 72

4.2 DEFINING FORCE SIGNALS: CONSTANT & PERIODIC 73

4.2.a Impulse Wave Shaping ofForce Signals 75

4.2.b Summary ofPeriodic Force Signal Generation 8]

4.2.c Three types ofPeriodic Waves 83

4.3 DEFINING FORCE PROFILES 86

4. 3.a Custom Force Profiles.. 86

S. UNDERSTANDING DYNAMIC SENSATIONS ... 89

5.1 OVERVIEW-. 90

5.2 THE BASIC DYNAMIC SENSATIONS 93

5.3 DYNAMIC RECOIL — “ULTRA—REALIsTIC WEAPON SIMULATION” 96

5.4 DYNAMIC IMPACT — “ULTRA—REALISTIC COLLISION SIMULATION” 98

5.5 DYNAMIC LIQUID — “A LIQUID SENSATION THAT JIGGLES” 100

5.6 DYNAMIC INERTIA — “ADJUST THE WEIGHT OF YOUR INTERFACE” 102

5.7 DYNAMICCENTERDRIPT - “SPRING ORIGIN FOLLOWS USER OVER TIME” 103

5.8 DYNAMIC SLING — “LETS YOU FEEL A BALL-ON-A-STRING” 104

5.9 DYNAMIC PADDLE -“LETS YOU FEEL A BALL—PADDLE INTERACTION” 107

5.10 DYNAMIC CONTROL LAW 111

6. THE PROGRAMMING MODEL FOR SIMULATED FEEL 113

6.1 OVERVIEW' 114

vi CONTENTS’

APPLE INC. E
EXHIBIT 1017 - PAGE 7

APPLE INC.
EXHIBIT 1017 - PAGE 8

6.2 THE CONCEPTUAL MODEL SHARED BY DIRECTX AND LFORCE 1 16
6.3 THE EFFECT STRUCTURE 119

_ 6 .4 THE‘. TYPE DEFINITIONS 123
6. 4‘. a Condition Type Definitions I23

6. 4.?) Wave Type Definitions I24'
6. 4.0 Dynamic Type Definitions I24

6.5 DIRECTION CONVENTIONS 125
6.5.a ID Devices I25
6.5.}: 2D Devices 125

I 6.5. c 3D Devices I25
6.5. d nD Devices I26

6.6 TYPE SPECIFIC PARAMETER STRUCTURE 127
6. 6. a Condition Strucr... .. I27
6.'6.b Periodic Siruct I28
6. 6.c Constant Struct... .. I29

6. 6.d Custom Szfrucz‘...‘. 1301: 6. 6.eRamp Struct.. -130
6. 6.fDynamic Srruci131
6. 6.g Barrier Struct... .. I33

E 6.6.}: Wall Struct I 35
6. 6. i Advanced Periodic Struci... .. J 3 7
6. 6.j Texture Struct... I38

7. WPLEMENTATION OF FORCE FEEDBACK USING BIRECTINPUT 139
1‘. 7.1 OVERVIEW140 %

7 .2 ENUMERATING DIRECTINPUT FORCE FEEDBACK JOYSTICKS 141

7 .3 CREATING THE. DIRECTINPUT FORCE FEEDBACK DEVICE 142
7 .4 GETTING DIRECTINPUT FORCE FEEDBACK DEVICE CAPABILITIES 143
7 .5 GENERATING DIRECTINPUT FORCE FEEDBACK DEVICE EFFECTS EXAMPLE: SPR1NG_
AND TEXTURE 144

8. THE I-FORCE 2.0 WRAPPER FUNCTIONS .. 147
3.1 OVERVIEW 148
8.2 CONDITION FUNCTION WRAPPERS 149

8.3 WAVE FUNCTION WRAPPERS 153

'5 3.4 DYNAMIC FUNCTION WRAPPERS 155

8.5 SAMPLE CODE FOR FUNCTION WRAPPERS. 158

CONTENTS vii

APPLE INC.

EXHIBIT 1017 - PAE 8 _ _

APPLE INC.
EXHIBIT 1017 - PAGE 9

9. THE I-FORCE STUDIO TOOLSET FOR 171

 9.1 OVERVIEW 172

9.2 INTRODUCTION 173

9.3 THE DEVELOPMENT ENVIRONMENT.. .. 174

9.4 THE SENSATION DESIGN PROCESS 177

9.5 THE S1MPL}F[E‘.D PROGRAMMING PROCESS 1-81

viii CONTENTS

APPLE INC.

EXHIBIT 1017 - PAGE 9

APPLE INC.
EXHIBIT 1017 - PAGE 10

1. Introduction

You are Captain Flack, the latest space wanior to battle evil-creatures in the dark tunnels

of Griok. In the distance you see a platoon of enemy soldiers. Using your force feedback

joystick, you cautiously retreat into the shadows — abruptly youfeel the solid surface of a

stone wall at your rear. You can Withdraw no fu-iiher. Instead, you strafe ‘along the wall,

feeling the texture of the rock surface as you cover ground. Suddenly youfeel a snap as

the wall gives way behind you — a secret passage. You enter. Splash, you slip into an

underground poo]. As you wade through the waste-deep s]1'1ne, the feeling of undulating

muck makes it difficult to walk in a straight line. 'But you are a fast study and quickly

learn that by absorbing the undulations with your wrist, you can move as efficiently in

5:7‘:

=%
a
ti ,

E

water as on land.

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 11

1.1 Overview of Force Feedback Technology

Physical sensations added to gaming software greatly enhance the realism of simulated

environments, providing players with more engaging, more intuitive, and more

entertaining experiences. High fidelity feel, like advanced graphics and sound, adds

dramatically to the perceptual richness of simulated interactions by presenting users with

compelling information through natural and intuitive channels. But while graphics and

sound are passive media presented to static observers, force feedback is a inherently

interactive media that is engaged by active participants. In other words, when using force

feedback hardware technology, the player pushes on the game and the game pushes back.

The implications of such bi—directiona1 interactions are nothing less than profound — for

when a player makes a physical gesture and the computer fights back with genuine

physical forces, the basic premise of computer gaming is launched to an entirely new level

of realism. Computer Gaming World magazine, after reviewing the world’s first

consumer force feedback joystick, the Force-FX Joystick developed by CH Products and

Immersion Corporation, commented:

“A forcefeedbackjoystick does more for the feeling of

‘being there’ than any VR helmet. ”

Computer Gaming World, 11/96

The above observation is highly insightful, for it summarizes a universal reaction players

report when first experiencing force feedback technology — namely that force feedback

makes even the most basic simulated interactions seem intensely real. A ball bouncing on

a paddle, a boat floating through water, a sword clanking into armor, a missile thrusting

off the deck of your A ship; no matter how simple or sophisticated the graphics, an

appropriate feel sensation can make the gaming event seem startlingly genuine.

Many users are actually surprised by the profound improvement that subtle physical

sensations can have upon the realism of gaming interactions. Many first time users even

inquire as to how such simple physicals ones can so substantially enhance the perceived

realism of a simulated event. The answer has nothing to do with software, it has only to

2 Introduction

APPLE INC.

EXHIBIT 1017 _- PAGE11, _ _,_,,,____,___.__.nm

APPLE INC.
EXHIBIT 1017 - PAGE 12

do with the human perceptual system — the human organism has evolved to rely heavily on

feel sensations as a primary means of instilling the surrounding world with the sensory

impression of concrete substance and physical realism. Although we often take it for

granted, people depend greatly upon feel as a critical modality for interacting with and

understanding the physical" world. As a result, adding accurate feel sensations to

simulated worlds greatly facilitates a user’s Suspension of disbelief and induces users

immerse themselves within the simulated experience, transforming game players from

passive-observers to interactive participants.

Of course today’s computer users have been cultured to expect and accept simulated

environments that are rich in graphics and sound but devoid of allphysical content. These

cultural expectations, though deeply ingrained by decades of “feel-less” computing, will

rapidly change as users learn that just because an environment is computer‘ generated, it

need not deprive them of their intuitive physical senses. With a number of force feedback

products already on the market and many more scheduled for release over the next year,

consumers will quickly start demanding gaming experiences that are instilled with

physical realism. Feel will soon become a basic requirement of quality gaming rather than

the advanced enhancement it is today.

Figure 1-1 The Currently Shipping Force-FX Joystick

In many ways, the addition of Force Feedback technology to gaming controllers is much

like the transition from monochrome displays to color displays made by computer users 3.

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 13

generation ago — once a user makes the shift, there is simply no turning back. For most

users, the first experience with force feedback is a truly memorable event, a revelation of

sorts — suddenly a new channel of information has been added to the world of computing

and users do not want to turn it off. Game Pro Magazine and Computer Life Magazine

gave the following assessments after their -first experience with a joystick enabled with the

I-FORCE force feedback technology from Immersion Corporation:

“Once you’ve felt theforce, it may be hard to go back
to a static stick”

Computer Life Magazine 9/96

“Once you’ve tried an I—FORCEjoystick with a game,

playing without it isn ’I nearly asfun! ”

Game Pro Magazine 8/96

It is not only users who are excited by the potentialiof force feedback. Game developers

are captivated not only by the feel, but by the creative potential of this largely unexplored

new medium. By adding the physical modality to the toolbox of perceptual effects that

game developers have at their disposal, Force Feedback will breathe new life into common

video game paradigms. In addition, this new physical modality for human—computer

interaction is sure to inspire entirely new scenarios for video game experiences which have

never been considered because the feel sensations were simply unavailable. Game

paradigms will be developed where feel is so critical to play, users can not perform the

task without leveraging their physical dexterity and manual intuition — it is not hard to

imagine feel becoming essential to skilled play — after all, in the real world you can not

throw a ball, swing a sword, or even walk across a room without depending heavily on

your sense of feel.

_ 4 Introduction

APPLE INC.

EXHIBIT 1017 - PAGE 13 ,

APPLE INC.
EXHIBIT 1017 - PAGE 14

Reporting on their first experience with force feedback technology, gaming experts at

Next Generation Magazine Wrote:

“More than any other advanced controller technology,

Force-Feedback promises to open up whole new ways of

experiencing a video or computer game”

Next Generation Magazine 5/96

“Force feedbackjoysticks enable players to go out and

physically wrestle with an opponentfor the

ball...Basz'cally, the simplest game in the world becomes

very interesting when you addforce feedback... This

could be the understatement of the year”

Next Generation Magazine 5/96

Of course there will remain skeptics who view force feedback as a novel embellishment

rather than a fundamental milestone in interactive computing. Such misconceptions will

be born from either a lack of experience with quality Force Feedback technology or from

confusion between Force Feedback and gimmicky technologies where simple buzzing is

touted as “feel”. Force Feedback, when done right, is not just a “whack” or a “buzz”

corresponding with a game event, true Force Feedback is the generation and presentation

of complex and subtle feel sensations that accurately represent physical phenomenon

through carefully simulated forces. In other words, Force Feedback is an “infonnation

technology” that provides a rich and perceptually important channel of information that

informs, engages, and interacts with users as they experience simulated environments. A

APPLE INC.

AG .

APPLE INC.
EXHIBIT 1017 - PAGE 15

 1.2 The Science of Force Feedback.

Force Feedback, also known as hapticfeedbaek orforce reflection, refers to the technique

of adding “feel” sensations to computer software by imparting real physical forces upon

the user’s hand. These forces are imposed by actuators, usually motors, incorporated in

the interface hardware. The interface hardware may be a joystick, steering wheel, flight

yoke, or other standard peripheral. When equipped with force feedback technology, the

interface device can impart the simulated “feel” of jolting blasts, rigid surfaces, viscous

liquids, compliant springs, jarring vibrations, grating textures, heavy masses, gusting

winds, rumbling engines, impacting asteroids, and just about any other physical

phenomenon that can be represented rnathematically.

The basic premise behind Force Feedback technology is quite simple — as the user

manipulates the interface hardware, the actuators apply computer modulated forces that

either resist or assist the manipulations. These forces are generated based on mathematical

models appropriate for the desired sensations. For example, when simulating the feel of a

rigid wall with a force feedback joystick, motors within the joystick apply forces to the

handle to replicate the feel of encountering a wall. In this case, the mathematical model

driving the forces is as follows — as the user moves the joystick to penetrate the wall, the

motors apply a force that resists the penetration. The harder the user pushes, the harder

the motors push back. The end result is a sensation that feels quite compelling because it

truly represents a physical encounter with an obstacle — a simulated obstacle — but an

obstacle none the less. Other sensations follow more complex mathematical models, but

the paradigm is basically the same.

The magic behind generating compelling force feedback sensations is of course in the

mathematical models that control the actuators. These models may be very simple,

modulating force based on a predefined function of time (the resulting sensations are

known as “Temporal Waves”). These models may be more complex, modulating forces

based on user manipulations (the resulting sensations are known as Spatial Conditions”).

These models may even modulate force based on both time and user manipulations (the

resulting sensations are known as “ namic Sensations”). Together, these three classes

of feel sensation make up the basic conceptual foundation for force feedback

6 Introduction

APPLE INC.

EXHIBIT 1017 - PAGE

APPLE INC.
EXHIBIT 1017 - PAGE 16

programming. These types of feel sensation are listed for your reference below and are

described in detail throughout the rest of this text:

 Sensation Overview

To simplify the process of generating feel sensations, the manufacturers of force feedback

hardware have taken care of all the mathematics required in the generation of the above

types of feel sensations. Most of the sophisticated computations are handled by dedicated

hardware on board the peripheral device. For example, I-FORCE is a computation engine

from Immersion Corporation that has been licensed to many major manufacturers of

gaming peripheral devices for use in their force feedback products. Such a computation

engine enables a wide variety of complex feel sensation to be produced efficiently in

hardware with minimal programming overhead.

With manufacturers handling the mathematical complexities of force feedback in -

dedicated hardware, game programmers can be provided with an easy to use high—level

API that abstracts the problem of feel programming to a perceptual rather than

mathematical level. API calls allow programmers to easily define and initiate feel

sensations using intuitive function calls with descriptive physical names such as “Wall”,

“Vibration” or “Liquid”. These functions are highly parameterized so that programmers

can customize the feel of each basic sensation type with great flexibility. Programmers are

thereby spared the burden of actually controlling force as a mathematical function of time

or motion. Of course there are methods by which advanced programmers can delve into

the mathematics and create their own sensations at the lowest level, but for the most part

programmers can generate very sophisticated sensations that are carefully tuned to desired

gaming events by using the high—level API calls provided by manufacturers.

APPLE INC.

|B01 ..

APPLE INC.
EXHIBIT 1017 - PAGE 17

To make force feedback programming easier, the core API for the I-FORCE hardware

processor has been added to DirectX 5 from Microsoft. The I—FORCE Studio toolset

has also been developed by Immersion Corporation, the inventors of consumer force

feedback technology, to further support force feedback development within DirectX. I-

FORCE Studio is a development package for use with DirectX that greatly facilitates the

force feedback programming process and simplifies the design of feel sensations. An

added feature of I-FORCE Studio is that it enables force feedback in operating systems

other than those supported by DirectX (e.g., DOS and later perhaps consoles).

Whether programniing for Windows, DOS, or another platform, the Dii-ectX API and/or

g the LFORCE Studio toolset greatly facilitate the generation of the three primary classes of

sensations: Temporal Waves, Spatial Conditions, and Dynamic Sensation. These three

sensation types are described in great detail throughout this text. In addition, this text will

also describe a technique for modulating forces directly, allowing you to create sensations

from the most basic building blocks, discrete forces. This technique is called Force

Streaming and is best implemented on rapid communication channels such as USB. See

section 2.4 for details on Force Streaming. Finally, at the end of this book, Chapter 9 will

introduce the LFORCE Studio toolset and describe how force feedback programming is

accelerated by using these simple graphical tools to create DirectX compatible code.

8 A Introduction

APPLE INC.

EXHIBIT 1017 - PAGE 17

APPLE INC.
EXHIBIT 1017 - PAGE 18

1.2.a Bi—Directional Interaction

To fully understand force feedback programming, it is helpful to first explore how force

feedback hardware devices differ from traditional gaming peripherals. Typical human

interface devices are input—onIy; they track a user’s physical manipulations but provide no

manual feedback representing the results of those manipulations. As a result, information

flow for traditional joysticks, steering Wheels, and other gaming peripherals is in only one

direction, from the peripheral to the host computer. Force Feedback human interface

devices are input-output devices. They not only track a user’s physical manipulations

(input), they also provide realistic physical sensations coordinated with game play

(output). Therefore the host computer running the gaming application needs to

communicate quickly with the force feedback device bi—directionally. Tracking

information is sent from the peripheral to the host for use in controlling game play. Force

Feedback information is sent from the host to the peripheral, to coordinate feel sensations

with gaming events.

Force Commands

HOST

COMPUTER

FORCEFEEDBACK

PEMPHERAL

Position Data

Figure 1-2 Force Feedback Information Flow

Because force feedback devices require bi—directiona1 communication to coordinate feel

sensations with gaming play, communication speed has a substantial effect upon force

feedback performance. The faster the communication link, the better the coordination

between visual and physical events.

Ideally, force feedback devices use efficient processing techniques to minimize the

amount of information that needs to be communicated between the host and the peripheral.

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 19

For example, efficient force feedback devices use sophisticated local microprocessors to

produce force feedback sensations locally in response to concise high—level commands

sent from the host. The I—FORCE processor is a popular example of such a force feedback

computation engine that has been licensed by many major manufacturers as listed in

Section 1.5 of this book. Beyond reducing the amount of information that needs to pass

between the host and the peripheral, such local processing hardware has the added benefit

of performing force feedback computations in parallel with host execution of -gaming

software, thereby reducing the processing burden of the host. This distributed processing

architecture is shown in Figure 1-3 and will be described in great detail in Section 2.2.

FORCE FEEDBACK

High Level PERIPHERAL
Force Commands

HOST LOCAL FORCE

COMPUTER PROCESSOR
Position Data

 - .4

Figure 1~3 Distributed Processing Architecture

By reducing the amount of information transfer required to convey high fidelity feel

sensations, local processing is a powerful means of enhancing force feedback

performance. Another method of increasing performance is simply increasing

communication speed between the host and the peripheral. At the present time, the most

ideal communication medium for force feedback gaming peripherals is the Universal

Serial Bus or USB. The USB provides a high speed bi—directiona1 communication channel

which can service multiple peripherals simultaneously.

10 Introduction

APPLE INC.

EXHIBIT 1017 — PAG:Ei19A

mmmmm

APPLE INC.
EXHIBIT 1017 - PAGE 20

1.2.b So, What is a “Feel Sensation” Anyway?

The key components of a typical force feedback device are the actuators (usually

motors) and the sensors (usually encoders or potentiometers). A force feedback sensation

is generated by controlling the current through the motors, thereby modulating forces

imposed on the user’s hand. These forces can be controlled as a function of time,

controlled as function of sensor readings, or controlled as .a function of both time and

sensor readings. To clarify these three distinct cases, lets take a look at three basic yet

important sensations — the I_ol_t, the Spgg, and the Dynamic Impact :

Example 1:- The Jolt Sensation
The Jolt is a basic example of a “Temporal Wave” meaning that a jolt is a force

modulated as a function of t'gn_e. Like all temporal Waves (described in detail in E
Chapter 4), a Jolt is a pre—defined force profile that is stored and “played back”

over a time period. In the simplest case, a Jolt is defined by parameters such as a

magnitude, direction, and duration. So, you might describe a jolt as a force with

a magnitude of 50%, at an orientation of 45 degrees, for a duration of 50 i
milliseconds. By sending this information to the force feedback peripheral

device, an appropriate Jolt sensation is executed. For example, your software

might issue this call when your simulated Star Fighter is hit by an enemy blast.

Depending upon the intensity and direction of the blast, you can choose the

appropriate parameters. The effect will be a sensation that can be drawn as a

force felt as a function of time.

TIME

Figure 1-4 A Simple Jolt

ll

APPLE INC.

..ml=,_,_.__," U

APPLE INC.
EXHIBIT 1017 - PAGE 21

Of course Temporal Waves can he more complicated than a simple Jolt of

constant magnitude. Forces played over time can have complex predefined

profiles. For example, vibrations can be composed of periodic signals such as

square waves, sine waves, or triangle wave. Custom profiles, on the other hand,

are a different type of temporal Wave that are not simple mathematical functions, I;

but rather are defined as a prescribed sequence of discrete sampled data.

Regardless of how the Wave is define, all Temporal Waves have one basic thing

in common — they are predefined and played back over time. in other words,

they are “canned” sensations where force varies overtime in a pre—pla1med

manner. Such effects have certain important applications, but because they are

canned rather than “interactive”, they are typically the least interesting class of

force sensations and should be used sparingly.

Impulse Profile Vibration

l'1'JO7~'-‘O71
TIL4E TIBGE

Figure 1-5 Force Profiles for Predefined Temporal Waves

Example 2: The Spring Sensation

The Spring is a basic example of a “Spatial Condition” meaning that the spring is

a force sensation generated by modulating the current through the motor as a

function of spatial gtjpwn of flie interface device. In the case of a joystick, force

is modulated as a function of displacement ofthe joystick handle. A you might

imagine, a spring sensation is one where the force increases as you move flie

12 Introduction

A PP LE I N C .

EX],-J I BIT .1DJ.,Z.;EAG.E.2.l_....

APPLE INC.
EXHIBIT 1017 - PAGE 22

joystick in a given direction, creating the illusion that a spring is being

compressed in that direction.

It is important to understand that the force produced by a spring Condition is

NOT predefined and played over time as is the force profile of the simple is a jolt

effect described above ~ for a spring condition, all that is predefined is the

relationship between force and displacement. Once the relationship is defined

the actual sensation depends upon how the user moves the joystick. If the user

holds the joystick in one place, the force will not change. If the user moves the

joystick through the range of the simulated spring, the forces w—i}] change. For a

basic spring, the Force Versus Displacement profile looks something like this:

Stiff Spring

Weak Springt'I'JOWO"1'l

DISPLACEMENT

Figure 1-6 Force Displacement Profiles

As shown in the diagram above, the feel of the spring sensation is defined by the

particular relationship between displacement of the joystick and increasing force.

If force increases steeply with displacement, the simulated spring will feel .s*t.rff.

If the force increases gradually with displacement, the simulated spring will feel

loose. The slope of this relationship is commonly called the “stiffness” of the

simulated spring sensation. To implement a Spring sensation, a programmer

would simply call a “spring”-command and would define basic parameters such

as the stiffness and the orientation.

13

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 23

Because spring sensations, like all Conditions (described in detail in Chapter 3),

create force sensations that are functions of user motion, they are much more

“interactive” than canned Waves which are merely played back over time.

Therefore Conditions are more compelling implementations of force feedback

than Waves. Conditions can be as simple as springs, but can also bernore

complex sensations such as dampers, textures, friction, or even hard walls. For

example, a damper sensation can provide a viscous feel as if you were pulling

your joystick through a vat of thick honey. A-texture sensation can provide a feel

as if you were pulling your joystick across a rough sand-paper surface. A wall

sensation can provide a feel as if your. joystick bangedinto a simulated hard stop.

All of these sensations share one -thing in common, the FEEL is based on the

motion of the interface device —— how the honey is stirred by the user, how the

texture is rubbed by the user, how the wall is impacted by the user, and how the

spring is compressed by the user. Because the feel of such sensations are

dependent upon how the user moves the interface device in space, they are

classified as “Spatial Conditions”.

Example 3: The Dynamic Impact Sensation

The Dynamic Impact is an example of a “Dynamic Sensation” meaning that the

force is not a canned function of time (like Waves) or a simple function of

motion (like Conditions) but rather is based on a sophisticated dynamic

simulation involving both time and motion. Dynamic Sensations are best thought

of as interactive events like the jarring collision of _two bodies hitting and

bouncing apart, the undulating sensation of a mass moving through a pool of

water, or the reverberating recoil of a weapon after firing. Such Dynamic

sensations will be described in detail in Chapter 5.

A Dynamic Impact sensation is a Sensation that can be conceptualized as the

physical representation of an object propelling itself into the handle of your

joystick and then bouncing off with the interactive feel of a ball bouncing off a

rubber surface. This is not just a pre—defined jolt, it is a truly interactive

exchange of energy between the joystick and the user. The user’s actions during 9

14 Introduction

APPLE INC.

._.E n§E%L

APPLE INC.
EXHIBIT 1017 - PAGE 24

the impact event actually affects the feel of the sensation. If the user stiffens his

or her wrist, the sensation will feel very different than if the user cushions the

blow with a loose ann. In other words, while a canned Jolt Wave is just a

predefined sequence of forces played over time that always feels the same

regardless how the user reacts during the play period, Dynamic Impact (like all

Dynamic Sensations) is an interactive dynamic simulation where the user’s

motion during-the event changes the feel. This is because the feel of the Dynamic

is adjusted in real—time to-account for user motion thereby creating a compelling

interactive feel based on physically intuitive model.

In a sense, Dynamic force feedback interactions make video gaming much like

physical sporting where dexterity and finesse are central to play. Just as the feel

"of a ball bouncing off a tennis racquet depends greatly upon how you react with

the racquet during the sporting interaction, the feel of a Dynamic Sensation

depends upon how you react with the joystick during the gaming interaction.

The results are extremely realistic sensations that allows for fine interactive

control. For example, good players of a space game using Dynamic Impacts will

learn how to minimize the disturbing effect of asteroids as they collide with their

ship by reacting appropriately to absorb the impact energy in their palm during

the collision. Such advantages of Dynamics over both Conditions and Waves will

be described in detail in Section 2.3.

15

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 25

1.2.0 Reflexes, A Technique for Efficient Force Feedback Programming"

In the human body, very rapid physical responses such as a knee jerk, are made possible

through the mechanism of spinal chord reflexes. The reflex concept in humans is quite

simple. Rather than waste the processing time to bring the stimulus (the strike of a mallet

on the knee) from the leg all me way to the brain so the brain can process the stimulus and

then send -a knee jerk command all the way back to the leg muscles — the spinal chord

processes the input locally and responds directly without intervention of the brain. In

other words, the reflex is a local reaction to an input that allows for faster output response.

In force feedback devices, very often you want physical ogtpfiit to happen in response to an
i_I_1;11t such as a button press. For example, you are playing a first person action game and

when you pull a trigger, your character fires a revolver. You want the user to feel a recoil

sensation every time this trigger is pulled. One way to do this is to have your host g
computer monitor the button press (input) associated with the trigger, then command the

joystick to perform the recoil sensation (output). ‘This method works, but it uses up

communication bandwidth in both directions, especially if the user pulls the trigger many

times in rapid succession. In the Worst case, the trigger will be pulled too fast for the

communication channel and some recoil sensations will be missed. And even if no

sensations are missed, if the user pulls the trigger many times, the host is forced to perform

many operations quickly, burdening the host and the communication pathway for no good

reason. Like the brain of a human, the host computer can benefit greatly by having a

means of off—loading simple relations between local events (button presses) and reactions

to those events (force sensations).

The solution is the force reflex. The notion is simple, a local microprocessor on board the

force feedback device can be configured to execute any sensation in response to any local

event. For example, a vibration sensation of a specific frequency and duration might be

associated with the press of hat switch #2. A jolt sensation of a particular magnitude

might be associated with the press of trigger #1. Ideally your force feedback hardware

allows you to set up a great many reflexes that are all resident at once. This greatly

reduces the communication throughput between the host and the joystick and it reduces

the processing burden of the host computer.

16 Introduction

APPLE INC.

_ ;EiCfi;L

APPLE INC.
EXHIBIT 1017 - PAGE 26

The Reflex concept works very well for games where a user is going to select a weapon

and use it for an extended period until either the user runs out of ammunition or selects

another weapon. When a Weapon is selected, the host just sets up a reflex on the force

feedback device that creates the appropriate sensation when the particular button is

pressed. Then during the extended period of play that follows, the host does not have to

worry about that particular sensation — it will be generated appropriately by the joystick

regardless of how quickly the button might be pressed in rapid succession. If the user runs

out of 'arnrnunition or changes the weapon, the reflex is updated by the host. If 5 weapons

are active at once, all assigned to different buttons, then 5 reflexes are resident on the

peripheral device. For example, the local processor might have a representation in local

memory that associates buttons with sensations that can be described as follows:

Reflex Sensation Description
Button #4 Produce a Sine-Wave Vibration at 100Hz

with 20% Magnitude in the left—right direction

in order to simulate the engine-hum associated

Hat Switch #2

Trigger #1

with engaging the Afterburner Rockets.

Setting up reflexes is actually quite simple and is supported by the DirectX 5

programming API using the Trigger Button described in Section 6.3. If the particular

hardware being used with your game does not support reflexes in the local processor on

board the device, the host can emulate the feature in the driver. Of course this removes all

advantage of the reflex process because the burden is passed back to the host and

c_ornrnunication is required between the host and the device for every button press.

Produce a 30 millisecond Jolt at 75 %

magnitude to simulate the feel of launching

your Patriot Missile.

Produce a Square—Wave Vibration at 10 Hz

with 70% Magnitude to simulate the feel of

firing your forward machine—guns.

17

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 27

Therefore you will notice substantially better performance with hardware that supports

“button reflex processing” as compared to hardware devices that do not.

1.2.d intelligent Disturbance Filtering (IDF)

An important thing to understand about force feedback sensations is that because actual

forces are imposed on the user’s hand, sensations have the potential to disrupt a user’s

manual actions. In most cases this -is not a problem because the sensation is representative

of the gaming event so the force is compiementary rather than destructive to game play. In

some case, a programmer may want to impose a sensation but may NOT want the‘-

sensationto affect a user’s ability to" manipulate the interface device. To address this

need, many force feedback hardware devices will soon support a feature called Intelligent

Disturbance Filtering or IDF. This is best conveyed through example: '

Imagine that you are piloting a jet—ski across choppy water. Every time your craft hits the

crest of a wave, you feel a jolt and your joystick is pitched back. In this case, the jolt is a

valuable physical disturbance because the pitching of the joystick, while making play

more difficult, is a realistic gaming experience -— in real life, the impact of the Waves

makes piloting the craft more difficult. So, in this game scenario there is probably no need

to use Intelligent Disturbance Filtering.

Now Imagine that you are using a force feedback joystick within a first person shooting

game, moving your player through a space station while shooting robots. As you run, you

feel the vibration of your gravity jet—pack. While this sensation ads great realism to the

feel of the game, it might be disruptive to your ability to aim your laser gun and fire

because the joystick is vibrating. Hence the dilemma — as a programmer you want to

provide vibration to convey a realistic sensation, but you do not want to disrupt the users

ability to steer or aim. The solution is to engage an Intelligent Disturbance Filter. When

engaged, the peripheral device will report data that is filtered to reduce the disturbing

effect of a given force feedback sensation.

For -example, a very common disturbance is aperiodic disturbance such as a square wave,

sine wave, triangle wave, or any other repeating force profile. Such a force signal will

provide a vibration at a given frequency. To minimize the affect of a periodic force

1 8 Introduction

APPLE INC.

,

APPLE INC.
EXHIBIT 1017 - PAGE 28

disturbance, the IDF activated on board the force feedback device can filter the data

before it is reported to the host computer. This provides the game with a less jittery signai

despite the compelling sensation.

Another common disturbance is an impulse disturbance which is a short pulse of force

that causes -a jolt sensation. This might be a recoil from a gun or the impact from an

asteroid. Such a short, intense force signal often causes the user manipulated object, a

joystick for example, to be jarred in a given direction. Most of the time, programmers

want this disturbance to affect game play because it adds a realistic dimension to the

interactions. In some cases, however, programmers —want the player to feel the jarring

disturbance but do not want the jolt to affect the aiming of weapons or other play

activities. For such cases, the IDF lets the peripheral report stable data in spite of the

rapid impulse.

Ideally this filtering process is performed by a local microprocessor on board the interface

device. The filtering happens prior to the local microprocessor reporting data back to the

host. Therefore the filtering process happens independent of the host and is invisible to

the game. This works well because the force feedback device is performing the high

speed force feedback sensations and can therefore filter the data reported back to the host

based on how the force feedback sensations are being generated. The host computer

receives clean data and the software running on the host does not need to know anything

about the filtering process. This architecture is ideal because the IDF filter can be an

option that is chosen by the player. If the player wants to reduce the difficulty of a force

feedback game he or she can choose to engage the filter and enhance control of the device
when disturbances hit.

19

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 29

1.3 Supporting Force Feedback - The Emerging Standards

The industry of consumer Force Feedback was launched in 1995 when Immersion

Corporation began promoting I-FORCE technology to hardware makers and game

. developers alike. I-FORCE is a hardware technology that turns basic joysticks, steering

i I wheels, and flight yokes into sophisticated force feedback systems. Immersion has

Z licensed the I-F-QRCE core to a half dozen manufacturers of gaming hardware. This core
includes a sophisticated local processor that is optimized to

perform the computations associated with generating force

feedback sensations. The first shipping product with

I-FORCE support was the Force-FX joystick from CH

Products. Many more products from additional

manufacturers will soon follow.

In 1996, Immersion Corporation launched their own I-FORCE Programming API to

allow game developers to support the many force feedback products scheduled to

incorporate the I-FORCE hardware technology. Since then, Immersion Corporation has

been working closely with Microsoft to incorporate and extend the functionality of the

I-FORCE programming API into Microsoft’s DirectX standard. Through an extensive

E ; collaborative effort, DirectX 5 supports force feedback hardware products enabled by

i E lmrnersion’s I-FORCE technology, letting Windows applications access the power of the
‘ I-FORCE processing core.

 mm am..mmm_mmmHwo
To facilitate understanding of force feedback technology and promote efficient use of feel

sensations within gaming applications, Immersion has recently announced the I-FORCE

Studio toolset. This is a set of graphical tools for use with DirectX 5 that assists

developers in crafting effective feel sensations. Because these tools are so valuable in

promoting the effective use of force feedback within gaming applications, we have

devoted a full chapter of this book to I-FORCE Studio — Chapter 9.

20 I Introduction

APPLE INC.
-a>_:alair.;1n -i.aA..ea.29_.Wr-

APPLE INC.
EXHIBIT 1017 - PAGE 30

1.4 The DirectX API and the I-FORCE Studio Toolset.

The most important thing to do when planning your force feedback development is make

sure that your integration efforts will be fast, easy, fun, and will support the largest

number of hardware products possible. With so many hardware companies introducing

force feedback products in the near future (see Section 1.5), you may be confused about

how to best support them all. At the present time, there are only two paths that lead you

to support all of the upcoming hardware products in a single effort: either you can code

using the DirectX 5 API directly, or you use I-FORCE Studio, the graphical force

feedback toolkit from Immersion that automatically creates and executes standard DirectX

effects for you. The following figure shows the basic architecture for programming force

feedback using DirectX directly or using the I—FORCE Studio tools. All Overview of both

DirectX and I-Force Studio follows on the next page.
I—Force Studio

for DirectX

Compatibility

CH Products

Logitech

Thrustmaster

Gravis

Microsoft

Hardware

Immersion Corporation
Manufacturers

Suppnrfing ACT Labs
Force SC&T International

Feedback
Interactive I/0

Nuby Manufacturing

Interact Accessories

21

APPLE INC.

._ 17 - PGE _

APPLE INC.
EXHIBIT 1017 - PAGE 31

.,...___...»_..t.....;m-.'
DirectX 5: Immersion Corporation and Microsoft worked together to spec out and add

force feedback to the newest version of DirectX (DX5). Directlnput now provides a

standard set of force feedback features that will work on any force feedback device that

supports DirectX. This includes ALL of the hardware products from the 10 manufacturers

that are using the LFORCE technology from Immersion in upcoming ' products.

Unfortunately, direct coding through DirectX is not the best way to rapidly “design” feel

sensations because design is an iterative process that requires assigning parameters,

feeling sensations, and modifying parameters until you get the sensation just right. Thus,

programming through DirectX 5 alone is a slow and difficult way to design sensations.

I-FORCE Studio At the request of many "hardware and software makers, Immersion

Corporation has developed a graphical programming environment for use with DirectX

that assists in designing, testing, and coding force feedback sensations. The intent of this

toolkit is to greatly simplify the effort required to generate DirectX compatible force

feedback code. I-FORCE Studio, shown below, lets you design any DirectX compliant

force feedback sensation using intuitive graphical tools. The tools are fully animated so

that what you feel is What you see: feel a spring, see a spring ~ feel a damper, see a

damper ~— feel a wave, see a wave. It makes feel sensation design fast and fun.

22 . Introduction

APPLE INC.

EXHIBIT 1017 - PAGE 31

APPLE INC.
EXHIBIT 1017 - PAGE 32

 1.5 What to Expect from Manufacturers

At the time this book went to press, there were almost a dozen major hardware

manufacturers who announced their plans to produce a force feedback gaming peripherals

in the near future. Of those companies, almost all have formally endorsed the I-FORCE

processing core from Immersion Corporation and have conveyed their support for the I-

FORCE force feedback architecture presented in this text. In fact, those companies who

have already announced their intent to produce I-FORCE compatible force feedback

hardware include:

- Logitech Inc.

0 CH Products

0 ThrustMaster

0 ACT Labs

- Advanced Gravis

0 InterAct Multimedia

0 Interactive IO

0 SC&T International

0 Immersion Corporation

0 Nuby Manufacturing

23

APPLE INC.

. IA..,.A.-.

APPLE INC.
EXHIBIT 1017 - PAGE 33

1.5.a Logitech Inc.

Loitéch
Logitech Inc., and Immersion Corporation are co-developing a next-generation Logitech

WingMan Joystick that will feature realistic force feedback. The product will incorporate

Logitech‘s award—Winning industrial design with lmmersiorfs advanced LFORCE 2.0

force feedback technology, and will include features responsible for the continuing

success of current models the retail channel, including rubberized buttons, a heavier

base for greater stability and control, and a rugged, sculpted grip for realistic feel and

comfort over long periods of time.

The Logitech—Imrnersion relationship reinforces Logitech's position as the leading

manufacturer and innovator of control devices for PC-based games. Founded in 1981,

Logitech designs, manufactures, and markets products that make human—to-computer

communication more intuitive and natural. Retail and OEM product offerings include

pointing devices, "scanners, gaming hardware, and digital video cameras. The company has

been a pioneer in numerous gaming hardware innovations, including the popular

WingMan Warrior.

For more information or to obtain pre—release force feedback hardware, contact:

Contact Name Bob Wudeck

Company Name and Address Logitech Inc.
i 6505 Kaiser Dr.

Fremont, CA 94555

Tele hone (510 713-4739

3 E-mail robert_wudeck@1t_:_g_itech.com

rld ide Web _ _ __ _ _ _ h ___ulw.o'ch.c __

24 Introduction
APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 34

raéaucts

CH Products‘ Force FX is guaranteed to knock your socks off with six bui1t—in effects you

can experience through the stick in many variations of magnitude, duration, direction and

repetitiveness. Each variation is determined through your favorite I—Force supported game.

The six integrated styles of force" have full, programmable feel parameters to allow

thousands of distinct sensations. The Force FX features two 4-way, five fire buttons, a

trigger and trim controls for a total of 14 functions to play with. If you're gonna play with

the FORCE FX, you'd better sit down and fasten your seatbelt. It's a bumpy ride!

For more information or to obtain a developer kit, contact:

_CONTACT 1f~IFoR1v1Af1oN

Company Name CH Products
970 Park Center Dr.

.
Tale hone 619 598-2518

(619) 598-2524

http:/lwww chproducts .comm.*w» @

25

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 35

1.5.c Thrustl\/laster

ThrustMaster, Inc. and Immersion Corporation are working together to bring the

excitement of I—FORCE force feedback to its Formula T2 driving system. ThrustMaster’s

Formula T2 driving control system has already captured the market place due to its

quality, durability, and realistic experience. ThrustMaster’s mission is to continue as the

technology leader in entertainment based input devices.

ThrustMaster will be working closely with software developers and publishers to enable

the force feedback driving wheel to simulate authentic forces such as skids, collisions,

terrain, and other driving conditions within driving software titles.

ThrusMaster, Inc. designs, develops, manufactures and markets input devices that take

users of computer entertainment software to new heights bringing realism and true

functionality- to their gaming experience. For more information or to obtain a developer

kit, Contact: l

 C0N,1T::£9.?~L!.1:1_1*0R1\4A..-..T..LQP.L

Company Name and Address 'I'hrustmaster

7175 NW Evergreen Pkwy #400

... ...1.1l.i.l.!.$l?.9IR=..9..1.3....?.Zl,%§;__mm..........-._..._.i..........-......
503 615-3200

Fax (503) 6156300

worm wide web http://www .I31rustmaster.comvnwwwnwwwwawwmm

26 Introduction

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 36

1.5.d Immersion Corporation

The Impulse Stick Robust

Joystick for Arcade and Location

Based Enter-tainment

The Impulse Stick from Immersion is the worlds first force feedback joystick designed

specifically to meet the needs of Arcade and Location Based Entertainment applications.

The Impulse Stick is a robust two axis joystick product with analog tracking and force

feedback features intended for harsh-use environments. The currently shipping Impulse-

Stick product uses the I-FORCE 1.5 processing core to enable high-performance force

feedback functionality through standard serial port interfaces. The Impulse Stick is

compatible with PC platforms running Windows—95 or DOS operating systems. The

Impulse Stick is also compatible with SGI and other platforms used for location based

entertainment systems.

Hardware developers who wish to purchase the Impulse-Stick module from Immersion

Corporation as an OEM component for incorporation into Arcade and LBE system should

contact Immersion Corporation directly at the number below. Software Developers who

want to support the Impulse Stick, should use the LFORCE 1.5 API.

Contact Name Mike Levin

Company Name and Address Immersion Corporation
2158 Paragon Drive
San Jose, CA 95131

T2!-unset:.......a._.__.m_..(:4£1§.2.5t§'.’:.1.9.f1°9.-.__ammmm..,,."._

Eevin@irnmerse.com

world wide Web httpzl/www.imrnerse.corn

27

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 37

1.5.e ACT Labs

ACT Labs, developers of cutting—edge_ game peripherals for PC and console gaming

systems, has partnered with Immersion Corporation to produce a high-fidelity force

feedback driving wheel for the PC platform.

The new wheel will combine ACT Labs’ HYPER programmable game control with

I1nrnersio11’s I—Force technology. The wheel will also allow force feedback responses to

be programmed into buttons on the wheel. Programmable force feedback can be used in

games with or without force feedback support.

Founded in 1994, ACT is committed to bringing garners the latest in advanced technology.

ACT’s mu1ti—platform product line consists of joysticks, gamepads, arcade sticks, and

light guns for both the video game console and PC markets.

CONTACT 1NFoRrvi}\T1oN
Contact Name

3 Company Name and Address ACT Labs
120-1357] Commerce Parkway

..

Telephone L604) 278-3650
Fax (604) 278-3612

3 E-mail erwin@actIab.com 1

28 Introduction

APPLE INC.

EXHIBIT 1017 - PA ,E._3Z.

APPLE INC.
EXHIBIT 1017 - PAGE 38

1.5.f SC&T International

l 2

The Ultimate PER4MER Steering Wheel is a revolutionary product and has been designed

and built from the ground up by an industry leading design studio. The Ultimate

PER4MER provides high fidelity force feedback, creating a much more realistic and

enjoyable experience. This product is suitable for DOS and Windows based games that

support the I-Force API from Immersion Corporation.

To be released with this product is an ergonomically designed industrial strength set of

foot pedals. These will incorporate a unique pivotal pedal assembly that will allow the

pedal to be comfortably depressed under the foot.

The Ultimate PER4MER Wheel is the creation of SC & T International Inc, a leading

manufacturer of racing wheel products, and will be marketed under the company

registered trademark, Platinum Sound®.
CONTACT INFORMATION

Contact Name Klaus Muerzl

. Company Name and Address SC&.T International, Inc.
15695 North 83 Way

Scottsdale, AZ 85260

.. ..(.§Q%1..§§.§.:.?.f?.?9.:.2€§2§ ..

Fax (§9_?l_§. ;:
Email kmuerzl@platinumsound.com

Wm-id wide web http://www.platinumsound.corn

29

APPLE INC.

XH|BT101-A ._. y .o .. t.

APPLE INC.
EXHIBIT 1017 - PAGE 39

1.5.9 Nuby Manufacturing

Nuby Manufacturing has recently announced its plans to add Imrnersion’s LFORCE

technology to its current line of joystick and steering wheel products. Nuby makes high

quality gaming peripherals for PC, Nintendo 64, and Sony PlayStation platforms as shown

in the photographs above. For more information about force feedback product plans,

contact Immersion Corporation or Nuby directly at the address below.

..7“?
‘ Contact Name Ed Hames 2

Company Name and Address Nuby Holdings Corp. E35 Main Street, PO. Box 3080

Peterbprough, NH 03458 g
(501992 22

Edharnes@aol.com WM5

30 Introduction

APPLE INC. E

APPLE INC.
EXHIBIT 1017 - PAGE 40

1.5.h Interact

. 33r%£~’L7;1"’?'*5~;;1_-75*?*"":’:3‘?:.C_3%_9!{3‘:?.7"

5&1

_InterAct Multimedia Products develops, manufactures, and markets fun and exciting

controllers and joysticks that make ganrnng more fun, more exciting, and more realistic.

Rather_ than developing for a small niche of gamers, InterAct‘s products are noted for

innovations that appeal to a wide audience of gamers, including the development of a line

of products based on I—FORCE force—feedback technology.

Contact Name Michael Rolhman, VP ofMarke1in

3 Company Name and Address Inter-Act Multimedia Products
9611 Pulaski Park Dr. Suite 309

Baltimore, MD 2] 120

mro!l1man@gameshar!< com

http://www.interac1~acc .com

31

APPLE INC.

..‘-_.._

APPLE INC.
EXHIBIT 1017 - PAGE 41

1 ..5.i Interactive I/O

Virtual Vehicle JDi Virtual Vehicle TDi

At the heart of Interactive I/O’s product line is the Virtual Vehicle JD. Both realistic and

rugged, Virtual Vehicle JD has been chosen by Papyrus and NASCAR as the control units

for their new NASCAR Racing II simulation and on-line kiosk found at the Myrtle Beach

NASCAR Cafe. The Virtual Vehicle IDi incorporates I-FORCE versions 1.5 and 2.0 into

a totally self-contained force feedback driving unit. The JDi produces stronger forces than

the mass produced consumer sticks and wheels. This makes the JDi the platform of

choice among discerning developers who demand the most realistic force feedback

environment.

The Virtual Vehicles TD and TDi are based on the same award winning technology as the

Virtual Vehicle JD and mi. This New tabletop line offers a compact solution for those

looking for a smaller home or more flexible Location Based Entertainment / commercial

product. The Virtual Vehicle TD and TDi offer a compact footprint, easily attached to a

tabletop or desk. The sturdy steel cover is perfect for mounting and offers easy

installation into a commercial display or cockpit.

CONTACT INFORMATION

- C°“£§E£.1_‘l5!£"L______._____§£*3E‘Ei_‘5.l-_1?E9935.9...........m_,......_n________

CaI9.9aI.aY..blaai.@.a9.9wé.é.é59§§m.{a.=¢£§.a*é.V:2.1L9;.lI£;...9£a.ss.a££x_m--....................
E-mail l'1ancisd@ interactiveiosom

World Wide Web ://www.interactiveio.com

'32 Introduction

APPLE INC.
‘A A

APPLE INC.
EXHIBIT 1017 - PAGE 42

2. The Basics of Force

 Feedback

Imagine landing a simulated F-14 fighter plane on the deck of an aircraft carrier in rough

seas. As you make your approach, you can feel the wind buffeting your plane in all

directions. Suddenly a strong gust hits you from the side, jarring your stick and rattiing

your nerves. You recover, and continue your approach. You must fight the driving gusts

to keep your nose pointed. As your wheels touch down, youfeel the sharp thud of contact,

then the impulse of rapid deceleration. You catch the arrestor cable and your stick snaps

forward with a final jerk. You are safe on the deck. '

APPLE INC.

 EXHIBIT 1017 - PA . 77

APPLE INC.
EXHIBIT 1017 - PAGE 43

2. 1 Overview

This chapter provides a high level overview of force feedback technology. Half of this

chapter is devoted to the hardware side of force feedback, providing insights into the

components and architecture that make force feedback peripherals work. The second half

of this chapter is-devoted to force feedback sensations, providing a high level conceptual

model for sensation generation. You will be introduced to the key concepts of Conditions,

Waves, and Dynamics, the three classes of force feedback sensations that are fundamental

to quality force feedback devices. Later chapters will explore all of these concepts in

much greater detail.

This chapter is divided up as follows:

A. Force Feedback Hardware Overview

i. Bi-Directional Communication

Lag Time I Update Rate Requirements

iii. Distributed Processing Architecture

iv. Local Memory, Safety Features, Bandwidth

B. Force Feedback Sensation Overview

i. Spatial Conditions

Temporal Waves

Dynamic Sensations

34 The Basics of Force Feedback

APPLE INC.

.e_l,,.,n,; . Z;1;. ‘

APPLE INC.
EXHIBIT 1017 - PAGE 44

2.2 Overview of Force Feedback Hardware Architecture

A force feedback computer peripheral performs two basic functions when connected to a

host computer; a) it tracks a user’s manual manipulation, feeding sensory data to the host

computer representative of those manipulations, and b) it provides physical feedback to

the user in response to commands from the host computer. In other words, a force

feedback computer peripheral is an input/output device, feeding 'gp_u_t ldata (sensor

readings) to the host and displaying puqg; data to the user (physical forces). Because of

this unique inputfoutput functionality, a force feedback device requires a bi-directional

communication link with rapid infonnation flow on both directions.

Bi—directiona1

Communication Link

Figure 2-1

The most important thing to understand about force feedback is that the two information

pathways, the sensory input and the force output, are tightly coupled. In other words, the

force sensations that are commanded by the host (the output) is highly dependent upon

how the user is manipulating the interface (the input). In addition, the manual gestures

made by the user (the input) are affected by the force sensations commanded by the host

(the output). To make this clear, consider the following example:

A player is using a force feedback steering wheel to drive a race car around a track.

When the user pulls the wheel hard and causes the car to make a sharp turn, the host

computer updates the simulation based on the sensor input from the wheel. The host

determines that the car lost traction around the turn and skidded into the outer wall of

the track. At the moment of impact, the host commands the force feedback peripheral

U?U1

APPLE INC.

. I: 11., “-‘

APPLE INC.
EXHIBIT 1017 - PAGE 45

to provide a force feedback sensation representative of the interaction. This might be

a sharp jolt. Thus the physical output from the computer is obviously dependent upon

the physical input from the user. The reverse is also true, for when the interface

device hits the user with the sharp jolt, his or her hand is jarred away from the wall,

causing the wheel to move and causing the input to change. In other words, output is

dependent upon input and input is dependent upon output.

This tight coupling between input and output is the very feature that allows force feedback

to be the compelling interactive medium that it is. This coupling between input and output

is also the most complex aspect of force feedback technology that programmers need to

deal with. The first thing to understand about the coupling is that time delay between

input and output is very bad. Using the car example above, it is obvious that even a short

delay between visually seeing the car hit the wall and physically feeling the car hit the wall

will be disconcerting for the user. But such delays can be more than just disconcerting,

they can cause stability problems during interactive play. Imagine driving the car into the

wall, recovering control of the car through skilled driving, and then being hit by a late jolt.

You then try to recover from the jolt and end up 0ver—steering and hitting the Wall again.

You recover from the wall collision, but another late jolt forces you to repeat the cycle.

Clearly this is not going to enhance your driving performance.

To avoid such problems, force feedback devices require rapid communication between the

host and the peripheral. The communication rate must be fast enough to ensure that the

lag between visual and physical events are not perceptible by the user. As a rule of thumb,

time-lags below 25 milliseconds between the onset of visual and physical events will not

be detectable by the human perceptual system. This means that standard serial port

connections are fast enough to convey force information without a time lag problem.

‘ However, this only solves the coordination problem for simple canned Waves like the Jolt

sensation described in the car-wall collision presented above. Such simple effects are easy

to coordinate because they require only that the onset (and completion) of the force events

coordinate with the onset (and completion) of the visual event. But what about complex

sensations that require real-time coupling between manual input and force output during

the entire sensation rather than just at the start and end of the sensation? Consider the

classic example of the Spring that was introduced in Chapter 1.

36 The Basics of Force Feedback

APPLE INC.

EXHIBIT 1017 - PAGE_45

APPLE INC.
EXHIBIT 1017 - PAGE 46

The Spring is a force sensation where the force output is a function of displacement of the

peripheral device. Because displacement is continually changing during play, the force

must be continually updated at a very fast rate. For example, as you move a force feedback

joystick away from center position, a simulated spring sensation provides a restoring force

that increases linearly with that displacement. As you bring the joystick back towards

center, the restoring force decreases linearly. The steeper the curve that relates force and

displacement, the “stiffer” the simulated spring will feel. This is depicted withthe simple

graphical relation between force as displacement indicative of a spring sensation:

Stiff Spring

Weak Springt1‘.[(‘J7UO"‘—'3

DISPLACEIVIENT

Figure 2-2 Force Displacement Profiles

Now, consider that a spring sensation is simulated by rapidly reading displacement

sensors (input) and commanding forces (output) based on those sensor readings. The

quality of such a sensation will be greatly effected by delays between input and output.

For example, if you were compressinga simulated spring by moving a force feedback

joystick and it took 2 seconds to read sensors, compute the force output based on the

spring model, and then command forces back to the peripheral device, you would move

the joystick to a given position and have to wait 2 seconds for it to feel like the spring was

compressed to that location. This 2 second delay would greatly corrupt the feel sensation —

especially if you were moving the joystick back and forth within the spring and you only

felt force changes every 2 seconds and they were 2 seconds late. As you might expect,

this will not feel like a smooth spring being compressed, it would feel jerky and erratic.

37*

APPLE INC.

. _ ' B” 11 - . t

APPLE INC.
EXHIBIT 1017 - PAGE 47

Ideally, to make a spring sensation with high quality interactive feel you Want to read

sensors and control the motors very quickly. The faster you can read sensors and update

the forces, the smoother the spring sensation. This “loop” of reading sensors and updating

forces is called the “Update Rate” of the force feedback sensation. It is typically reported

as how many times per second the loop can be completed. Sensations such as springs and

dampers that are highly interactive require update rates on the order of 10001-iz. In other

Words, delays between reading sensors and controlling motors that are as small" as 2 or 3

milliseconds are enough to greatly corrupt the feel of physically interactive sensations like

the Spring.

So, the perceptual requirements of quality feel sensations can be summarized as two

simple rules of thumb.

i. The lag time between the onset of a visual event and the onset of an

associated force event should be less than 25 milliseconds or else the user

will notice a disconcerting perceptual delay.

The update rate in a real—time control loop where force is continually

updated based on user motion (sensor readings) of a peripheral device

should be on the order of 1000 Hz for high quality feel simulations and

should never fall below 500 Hz — if so, stability distortions will greatly

corrupt the feel.

As a programmer, the above update rate requirement is probably a concern — clearly you

do not want to have your software read sensors and update forces 1000 times per second,

' especially not across a slow communication channel. This would divert substantial

processing from your game and stress the communication channel to its limit. Fortunately,

the manufacturers of most force feedback hardware devices have adopted a technology

that solves this problem for you. The solution is achieved by having a local

microprocessor on board the force feedback device that performs the high speed

computations in parallel with host execution of the gaming software. The following

Figure 2-3 is a high level depiction of this “distributed processor architecture”.

38 The Basics ofForce Feedback

APPLE INC.

EXHIBIT 1017 - PAGE 47

APPLE INC.
EXHIBIT 1017 - PAGE 48

EFORCE FEEDBACK

EPERIPHERAL

Force Commands

COMPUTER Position Data ; i
& Button Data 3..

Figure 2-3 Distributed Processing Architecture

Figure 2-3 depicts the basic architecture of most high quality force feedback computer

peripherals. The local processor contains sophisticated firmware that makes the device

intelligent enough to generate force feedback sensations based on high level commands

from the host computer. For example, the I-FORCE processing core that is incorporated

in peripheral devices from many rnanufacturers has the ability to create the spring

sensation described above based on a simple high—leve1 command from the host that

includes basic parameters such as the “stiffness” of the spring and the “offset” location of

the spring. It also provides for advanced parameters such as the “saturation” of the spring

and the “dead—band” of the spring. All of these parameters will be described in detail later
in this text, demonstrating how such a simple high level command allows programmers

great flexibility in defining feel sensations.

39

APPLE INC.

EXHIBIT 1017 - PAGE 48

APPLE INC.
EXHIBIT 1017 - PAGE 49

Referring to the detailed architectural overview diagram in Figure 2-4, we see that a force

feedback device, using a local microprocessor to assist in force feedback sensation

generation, allows for two “control loops” that function in parallel. One control loop is

called the “host control loop” wherein the host computer reads sensors, updates the

gaming application, and commands high level force sensations back the peripheral." If

this loop runs too slow, users will notice a delay between what they see on the screen and

what they feel through the peripheral. To maintain coordination between visual and

physical events, this loop should run on-the order of 1001-12.

EFORGE FEEDBACK
§PERIPHERAL

 Local Control Loop

LOCAL FORCE -

PROCESSOR
Safety Switch

Force Commands

Host Control Loop

Position Da
& Button Data

Figure 2-4 Control Loops in the Distributed Processing Architecture

The other control loop is called the “local control loop” wherein the local force processor

reads sensors, computes force sensations, and controls the motors. To generate “high

fidelity” force sensations, this loop should run on the order of 1000hz. The Host Control

Loop and the Local Control Loop are coordinated through high level commands issued

from the host to the local processor. These commands allow for a great diversity of

sensations, from simple jolts to complex interactive sensation. In the following Section we

will introduce the broad classes of sensations known as Conditions, Waves, and

Dynamics and describe the type of commands and parameters that programmers can use

to coordinate such sensations.

The Basics of Force -Feedback

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 50

Local Triggers: Also shown in Figure 2-4, the local processor also functions to monitor

the buttons, hat switches, throttles, and other controls local to the peripheral. Because the

local processor has access to the state of all these controls, the processor can use their state

to “trigger” local force feedback sensations. The technique of local triggering is what

enables the “reflex” concept introduced in Chapter 1. The actual method of using local

controls such as buttons and hat switches to automatically trigger sensations on board the

force feedback device is described in Chapter 6. As you will find when you review that

Chapter, ‘a simple Trigger Button parameter can be set when defining a feel sensation to

establish the button reflex relationship.

Local Safety Features: Many force feedback peripheral devices include a safety switch,

sometimes called a “dead—man” switch, that reports if a user is properly engaging the

device with his or her hand. If a user is not holding the device properly, the hardware will

not produce forces. This prevents the device from moving around when not being

attended. Programmers should note that high quality force feedback devices will include a

feature known as “safety fade—in” wherein forces are faded-in rather than abruptly

returned when the safety feature is engaged. The advantages are obvious, when a user

grabs a device and engages the safety feature, forces should be restored, but if they are

restored abruptly the joystick or wheel might jump out of the users hand before he or she

firmly grasped it. For example, the local microprocessor within most shipping LFORCE

class devices performs an intelligent safety fade—in feature ’

Local Memory Limitations: Many force feedback hardware products have local

memory within the product that is accessible by the Local Force Processor. This memory

is used for storing the parameters associated with commands sent from the host computer,

storing button assignments for Reflexes, storing data for digitized force profiles, and for

storing Iun—time variables used in generation of sensations. Because force feedback

hardware devices are typically low—cost products, memory is usually limited. As a result,

the functionality of a force feedback device is limited by memory resources. For example,

most force feedback hardware devices are limited in how many sensations can be

generated simultaneously. This means that you should not attempt to store large numbers

of effects locally at the same time. If you try to command the force feedback device to

create too many force feedback sensations simultaneously, the device will report an

creation error when asked to load an effect that exceeds available memory. The

implication of this is that effects should only be created when they are needed and should

be destroyed when the are no longer useful. If an application keeps many extraneous

41

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 51

(unused) effects that it has created, these effects will be using device memory that could

be used for other effects.

Local Bandwidth Limitations: As described previously, many force feedback hardvf/are

peripherals provide enhanced performance -by using a local microprocessor to off—load

processing burden from the host computer. While this technique is Very effective in

providing an easy to use force feedback architecture that does not burden the host, the

processors employed by force feedback products are low—cost and therefore limited in

processing power. As a result, force feedback devices are limited in how many sensations

can be generated simultaneously based on the available processing resources of the local

processor. Different hardware products have different limitations.

42 The Basics of Force Feedback

APPLE INC.

EXHIBIT 101 ~ PA _

APPLE INC.
EXHIBIT 1017 - PAGE 52

2.3 Overview of Force Feedback Sensations

Because force feedback devices can produce such a wide variety of feel sensations, each

with its own unique parameters, constraints, and implementation issues, it is very helpful

to subdivide the overall spectrum of sensations into manageable subsets. On the highest

level, it is very helpful to define the following three unique and distinct classes of feel

sensations Spatial Conditions, Temporal Waves, and Dynamic Sensations. These will

more generally be referred to as:

0 Conditions - Forces that are a function of user motion

0 Waves - Forces that are a predefined profile played back over time

0 Dynamics - Forces that are based on an interactive dynamic model

of motion and time

2.3.a Spatial Conditions

“Conditions” describe the basic physical properties of an interface device based on spatial

motion of the interface. For example, a joystick device has basic properties such as

Stiffness, Damping, Inertia, and Friction in the joystick handle. These elementary

conditions define the underlying feel of handle motion during general manipulation.

Conditions can be used to make a joystick feel “loose”, “stiff”, “heavy”, ”light”, “sticky”,

“scratchy”, “slippery”, etc. Conditions can also be barriers or obstructions that restrict

spatial manipulation of the stick. These are usually called mm and they can be “hard" or

“so ” barriers. Conditions can also be Textures, and may feel “rough” or “smooth”.

Programmers use conditions to tune the general feel of the device based upon game

parameters. For example, when flying an F-16 fighter, the joystick handle might be made

to feel very stiff and heavy. When flying an old Spitfire, the joystick handle might be

made to feel loose and light. When the craft is damaged by an enemy fire, the joystick

handle might be made to feel sticky with a scratchy texture.

43

APPLE INC.

EHII ' . ". ,

APPLE INC.
EXHIBIT 1017 - PAGE 53

Overall, it should be understood that conditions are typically not associated with discrete

sudden events during game play, but rather are background conditions of game play,

hence the name “conditions”. A condition is usually an environmental feel that is set—up

and experienced over an extended period. For example, when your aircraft lifts off the

runway, a set of conditions would be engaged that represent the feel of that particular

plane. Such conditions are felt by the user for an extended period, but will be updated as

gaining events change. For example, when the wing—flaps are raised, the stick might be

made to feel more stiff. Another good example is a driving game — depending upon what

car is being driven, a set of conditions will define the stiffness of the wheel, the range of

motion of the wheel, even the damping and friction in the wheel. When the car is air-

borne off a jump, these conditions may change to simulate the feel of the free tires. When

driving in mud, the conditions may change again. Thus conditions, while typically used

over extended periods of time, can be highly tuned to changing game events.

2.3.b Temporal Waves

“Waves” are feel sensations that are closely correlated with discrete temporal e1en_t_s_

during game play. For example, a shuttle—craft is blasted by an alien laser and the user

feels a physical blast that is synchronized with graphics and sound that also represent the

event. The jolt will likely have a predefined duration and possibly have other parameters

that describe the physical feel of the event. The blast may even be represented by a

complex force profile that defines a feel unique to the weapon that was fired. While

discrete, Waves can have a substantial duration — for example, a small motor boat is

caught in the wake of a huge tanker, the bobbing sensation may be an Wave that lasts over

an extended period and may vary over time.

Waves are best thought of as time related sensations such as vibrations and jolts that are

“overlaid” on top of the background conditions described above. For example, in the

driving example given above, a given car may have Conditions that define the “feel” of the

wheel such as the stiffness, damping, and friction in the wheel. But, when the car hits a

pot hole or bumps another car, the discrete jolt that is overlaid on top of the background

sensations are Waves. In addition, the subtle motor—hurn, felt as the engine is revved, is

another Wave overlaid on -top of the background conditions.

44 The Basics of Force Feedback

APPLE INC.

. 1017 - PAGE 53
»w:=>='-Tlauaq~n-n=1vavvuwarwavv-evm-A=1u1.-r-:zA-—------art-Innevazv-~w»A‘wv1-nr':ut..'a:‘.r _--. - V...

APPLE INC.
EXHIBIT 1017 - PAGE 54

.2‘

The biggest drawback of Waves is that they are pre—defined sensations that are simply

played back over time. While conditions are highly interactive sensations that respond to

user motion, Waves are canned foroe profiles that execute the same, regardless of how the

user responds. Nevertheless, effects can be very effective when well coordinated with

gaming events. The key is to use canned Waves only where appropriate and to use.

Conditions and Dynamics to provide the interactive richness.

2.3.0 Dynamic Sensations

While Conditions and Waves have been part of force feedback programming since the

launch of the first commercial force feedback API in 1995, Dynamics is a new

innovation just recently made possible by advances in the hardware processors employed

within force feedback devices. Most force feedback devices that will launch in 1997 will

support embedded Dynamics. For example, all hardware products that support the latest

generation of LFORCE engine, currently I-FORCE 2.0, include what is called a

Distributed Dynamic Processing Engine. This local software engine allows complex

Dynamic Sensations to be executed at high speeds in parallel with host executing of

gaming events. High level commands allow the host to coordinate the feel and execution

of the Dynamic Sensations with gaming interactions.

Transforming Games into Sports: Imagine the feel of a ball impacting a racquet,

compressing the strings, and then bouncing off with a snap. It is a very compelling force

feedback sensation. It is also a sensation that provides critical real tirne information that

allows players of racquet sports to impart subtle control over the ball. It is also a great

example of a “dynamic” sensation that can not be represented by as simple “canned”

profile that is predefined and played back over time. This is simply because how the user

interacts with the ball during the event greatly changes the feel. The user could cushion

the ball to a halt by absorbing energy in the wrist, could whip the ball sharply off the

paddle by tightening the wrist with a snap, or could sling the ball off to the side with a

flick of the arm. Although the entire event may only last 500 milliseconds, the subtle feel

of the continuously changing forces during the interaction is very important to making a

realistic sensation.

45

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 55

With the new level of realism provided by force feedback with Dynamic Sensations, feel

becomes not just a embellishment but an integral part of the gaming experience — it lets

users take advantage of their inherent sensory—rnotor skill and dexterity to optimize their

control. The implications are profound, for video games can finally take on a level of

physicdity reminiscent of real sports. Dynamic Sensations will be described in detail in

Chapter 5 and are most easily understood by grabbing hold of a force feedback device that

supports Dynamics and feeling it.

46 The Basics of Force Feedback

APPLE INC.

117 - PG

APPLE INC.
EXHIBIT 1017 - PAGE 56

2.4 Force Streaming

While the makers of force feedback hardware provide programmers with a wide variety of

predefined feel sensations such as the Conditions, Waves, and Dynamics introduced in the

previous sections, some programmers will inevitably want to create force feedback

sensations from scratch by. manipulating forces directly. In other words, rather than using

the mathematical relationships between force and motion or force and time provided by

hardware makers, some programmers may want to modulate force directly from the host.

This can be achieved using the Vector Force or Constant Force commands described in

section 8.3.

For example, the Vector Force function allows a programmer to command a force of a

given magnitude and direction upon the force feedback hardware. By continually

updating the magnitude and direction from the host in real time based on sensor readings

reported from the hardware, the host can create it’s own complex force sensations. This

technique is often called “closing the loop from the host” since the force feedback control

loop is not being performed by the local microprocessor on board the hardware but rather

being performed by the host.

EFORCE FEEDBACK
f.PERIPHfE‘.RAL

.
_u|---—--nu--r

Force Commands

Host Control Loop

 Position Data

&: Button Data

47

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 57

As you might have guessed, there are two draw—backs of this approach. First, the host

needs to read the sensors and control the forces very rapidly (1000 times per second or as

close to tl1at rate as you can achieve). Therefore, closing the loop from the host is a

computational burden that can slow game play. Second, the communication bus between

the host and the hardware must work very hard to read sensors and command forces at

such a rapid rate. This can be a bottleneck that limits fidelity of the feel sensation and
further burdens the host.

While the first problem mentioned above is only solved through faster host processors and

more efficient operating systems, the second problem is solved on force feedback devices

that employ high speed communication means such the Universal Serial‘ Bus. Using the

USB, the many force feedback hardware devices can transmit force data at very fast rates.

For-example, devices that use the, I—FORCE processing core and use the USB employ a

method called Force Streaming where data is conveyed in a highly efficient and rapid

manner. Nevertheless, we do not recommend closing the loop on the host unless it is

absolutely necessary and you know you can handle the additional host processing

overhead. For more information on Force Streaming, refer to your LFORCE 2.0 device

developer documentation included with all USB LFORCE units.

48 The Basics of Force Feedback

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 58

3. Understanding Spatiai

Conditions

You are 10 laps away from winning a stock—car quahfier in Indianapolis. As you scream

into the most treacherous tum, force feedback steering wheel fights you with a stiff

centrifugal force that helps you judge your speed and maintain your bearing. As you fly

into the straight—away, the wheel suddenly lightens up, the hot rubber of your tires are

slipping on the track surface. Being the skilled driver that you are, you can judge by the

fee] of the wheel that it is time for a pit stop. You pull-in and your crew outfits your car

with a new set of tires. As you race out of the pit, you know you made the correct

decision — your car now feels tight and rnaneuverable.

APPLE INC.

A. ‘A 3

APPLE INC.
EXHIBIT 1017 - PAGE 59

3. 1 Overview

As described in Chapter 2, Conditions are best thought of as the “background physical

properties” of the force feedback interface device. Conditions define the interactive feel

of the controller as it is moved throughout the workspace. For example, Conditions

include the Stififness felt as a joystick is moved away from the center of the workspace, the

damping felt when a steering wheel is spun quickly, or the texture felt when a flight-yoke

is pulled back into a certain region. Conditions are very compelling physical sensations

because their feel is so dependent upon user interaction. This is because Conditions

generate forces as a function of the spatial motion of the interface device as caused by the
11381’.

Some Conditions create force sensations that are a function of interface position, some

create force sensations that are a function of interface velocity, and some create force

sensations that are a function of interface acceleration. At the present time, there are a

standard set of condition gag supported by most force feedback hardware. These include

Springs, Dampers, Inertia, Friction, Texture, Wafls, and Barriers. These types can be

defined briefly as follows:

Spring: A restoiing force that feels like stretching or compressing a spring

Damper: A drag resistance that feels like moving through a viscous liquid

Inertia: An inertial sensation that feels like moving a heavy mass

Friction: A simple rubbing resistance that encumbers free motion.

Texture: A spatially varying resistance that feels like dragging over a grating

Wall: A one—sided obstruction that feels like an impenetrable hard stop.

Barrier: A two-sided obstruction that feels like a penetrable surface.

Generating Conditions of the above categories simply involve specifying the condition

type and defining the unique physical properties associated with that type. For example,

the most basic type of Condition is a Spring and the fundamental physical property is the

50 Understanding “Spatial'Conditions”

APPLE INC.

EXHIBJIJD17 -PAGE 59

APPLE INC.
EXHIBIT 1017 - PAGE 60

stzfiiiess. The resulting sensation will be a restoring force upon the interface that resists

motion away from the spring origin. The stiffness defines how quickly the force increases

with motion. Additional parameters can further customize the feel of the spring by

adjusting the location of the spring origin, by assigning which axis or axes the spring is

applied to, by limiting the maximum force output of the spring sensation, etc. All of these

physical properties are the parameters for the stiffness sensation. By defining these

parameters, a wide variety of feels can be created. By combining multiple springs, even

more diverse sensations can be defined. By com'binin-g spring sensations with other

conditions such as textures and friction, the diversity grows further.

At the highest level, generating a Condition" can be conceptualized as assigning the

following definitions:

Type: Depending upon hardware capabilities, choose one of the

basic condition types such as Spring, Damper, Inertia,

Friction, Texture, Wall, Barrier, etc...

Axis: The axis or axes effected by the condition being defined:

X,Y,XY,XZ,etc...

Direction: For multi—axis conditions, you can define a direction. The

direction conditions are described in Section 6.5.

Parameters: These define the physical properties associated with the

given condition type. The parameter set depends upon the

type of condition chosen. For Spring, this would include

stzfliiess, for Damper, this would include damping, etc...

To fully understand the power and potential of Conditions, we will describe below each of

the condition types and the parameters associated with them. Once you understand this

basic conceptual framework, you can use the programming model defined in Chapter 6 to

actually implement these sensations.

51

APPLE INC.

- '-‘- __ ,.nl.._

APPLE INC.
EXHIBIT 1017 - PAGE 61

3.2 Spring

Spring is a Condition that defines a physical property best described as the stiffness of the

device. Lets think first in terms of a single axis of a peiipheral device, such as the x—axis

of a joystick or the wheel—spin axis of a steering wheel. A joystick axis with a high

stiffness will feel as if a strong spring resists displacernentof the handle. A steering wheel

axis with a low stiffness will feel loose, as if a weak spring resists displacement of the

wheel.

One way to understand the spring sensation is to think of the mathematical relationship

between force and displacement. A spring is generally modeled using Hooke .9 Law where

resistance force (F) is simply proportional to the displacement (d). The proportionality (k)

is generally called the stiffness or “spring constant”.

F=k*d

k : “stiffness” = slope of profile,t'r2‘O7~'3O*'r}
DISPLACEMENT

Figure 3-1 Hooke s Law: Spring Forces

A number of parameters can be used to fine tune the feel of the spring sensation. Most

importantly, different values of stiffness (k) can be defined for positive and negative

displacements of a device axis. For example, the spring can be defined with a +k and -k

such that it is much harder to push the joystick forward than it is to pull it back. This

might be used to simulate the feel of a tug boat pulling a heavy load.

52 Understanding “Spatial Conditions”

APPLE INC.

EXHIBIT 1017 - PAGE 61

APPLE INC.
EXHIBIT 1017 - PAGE 62

In addition, other parameters can also be used such as the location of the center of the

simulated spring and the maxiInum—rn.inimum allowable force values. All relevant

parameters for a general Stiffness condition are described below and shown graphically:

---- "+Sat

-Sat-ml

Figure 3&2 Generalized Spring Profile

+k: The spring constant (k) on the positive side of the simulated neutral

position

-k: The spring constant (k) on the negative side of the simulated center

offset: The percent distance of the simulated spring “center” from the axis’

zero origin

db: deadband — The range around the “center” where the spring condition is

not active

+Sat: Positive Saturation — The maximum positive force output

—Sat: Negative Saturation - The maximum negative force output

Another way to conceptualize the Spring Condition is to think of the physical metaphor

rather than the mathematical relationship between force and displacement. The following

diagram, shows a physical representation of a single axis of a force feedback peripheral

device. This figurative representation shows the handle of the object free to move in

either the positive or negative direction along the given axis and encounter either a

positive or negative stiffness.

53

APPLE INC.

EH5‘G

APPLE INC.
EXHIBIT 1017 - PAGE 63

negative k Posmve k

 . .

deadband

Figure 3-3 Visualization of a Single Joystick Axis with Springs

Along each axis, there is a spring as defmed by a positive stiffness parameter (k) and a
negative stiffness parameter (k). Graphically we have represented a big stiffness as a

larger spring. The origin of this condition is shown at the center, but could be offset as

defined by an offset parameter. A deadband region is shown graphically as the gap

between the handle and the spring. As you could imagine, if the handle moved to the left,

it would have to move some distance before encountering the spring and compressing it.

If there was no gap (no deadband), the spring would immediately start compressing as

soon as the handle was moved.

To make the physical metaphor more clear, Figure 3-4 shows what happens as the user

moves the interface device in the positive direction along the axis, encounters the spring

stiffness in the positive direction and compresses the spring.

54 Understanding “Spatial Conditions”

APPLE INC.

w|“E_Z(H|B|T 1017 - PAGE 63

an

APPLE INC.
EXHIBIT 1017 - PAGE 64

Figure 3-4 Visualization of a Spring in one Axis

The above diagram demonstrates that no spring resistance is felt when the user moves the

interface Within the deadband region. Once the‘ positive spring stiffness is encountered,

the resistance force increases linearly with compression of the spriI1g'(as is true of a real

spring). If the programmer had defined a sanitation value for the positive direction, the

force output would cease increasing with compression once the saturation limit in the

positive direction was exceeded. M This simple physical metaphor makes the spring

Condition clear.

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 65

Two Types of Spring Sensations:

Axis Spring: In some cases, it is desire that the Spring Condition be associated with a

single degree of freedom of the force feedback device such as the X axis of a joystick, the

rotation axis of a steering wheel, or the Y axis of a flight yoke. For these situations where

the spring is oriented along a primary axis of ‘the hardware device, the spring can be

thought of as an “axis spring”.

Angle Spring: For cases where the Spring Condition is associated with multiple degrees

of freedom of the force feedback device, such as both the X and Y axes of a joystick, the

Spring Condition must be assigned an angle to dictate how it is oriented within the multi

degree of freedom space. For example, a spring can be assigned a 45 degree angle as

shown in Figure 3-5 below with respect to the X—Y workspace of a standard joystick

interface. This angle parameter is very useful for generating interesting off—axis

sensations .

Figure 3-5 Angle Spring

The easiest way to create both Axis Spring and Angle Spring sensations is to use the I-

FORCE Studio toolset as described in Chapter 9. These tools provide a simple graphical

environment where you can manipulate spring parameters and feel the results in real-time.

One last thing to keep in mind is that multiple spring Conditions can be present on a single

axis of a force feedback peripheral device. In such a case, the resisting force imposed by

the springs will simply sum. Of course if the springs are defined with different offsets,

deadband regions, and saturation values, the summation of the multiple springs can give a

very interesting sensation where the resistance either increases or drops at different

locations in. the range of travel of the interface device.

56 Understanding “Spatial Conditions”

APPLE INC.

_ _ EX|B1017 - A

APPLE INC.
EXHIBIT 1017 - PAGE 66

3.3 Damper

Damper is a Condition that defines a physical property that is best described as the

sensation of moving an object through a viscous fluid. A device axis with high “damping”

will feel as though it is moving through a thick fluid such as honey. A device axis with

low “damping” will feel as though it is moving through a thin medium like air. When

_ heavy damping is applied to an interface like a joystick or steering wheel, the handle will

feel sluggish or unresponsive because the damping resists quick user motions.

Like the Spring Condition, the Damping Condition is a force sensation that is computed as

aniathernatical function of motion. While the computed force level for a Spring sensation

increases with displacement of the interface device, the computed force level for a damper

sensation increases with velocity of the interface device. In other Words, the faster the

handle of a joystick moves through a simulated damping, the stronger the resistance felt by

the user. This makes intuitive physical sense —~ for example, if you stir thick honey

slowly, the resistance you feel is low. But if you try to stir thick honey quickly, the

resistance you feel is high. This is because viscous fluids resist disturbance based on the

velocity of the disturbance.

One way to understand the Damper sensation is to think of the mathematical relationship

between force and velocity. A damper is generally modeled as Viscosity wherein the

resistance force (F) is simply proportional to the velocity (v). The proportionality (b) is

generally called the stiffness or “darnping constant”.

Resistance

Force

‘”

0

. i b = “damping” = slope of profile

VELOCITY (V)

Figure 3-6 Damping: Resistance versus Velocity

57

APPLE INC.
A.-=

APPLE INC.
EXHIBIT 1017 - PAGE 67

In some cases, damping is represented with slightly different mathematical relations

between force and velocity. For example, sometimes damping is represented as a function

of the velocity squared. Regardless of how damping is represented, the fundamental

aspect of all damping sensations is that the resistance felt by the user increases

substantially as with user velocity. '

A number of parameters can be used to fine tune the feel of the damping sensation. Most

importantly, different values of damping (b) can be defined for positive and negative

velocities alongof a device axis. For example, the damper can be defined with a+b and

5b such that it is much harder to quickly push the joystick forward than it is to pull it back.

+S at

Figure 3-7 Generalized Damping Profile E

Other basic parameters include ofifser, deadband, and saturation values. All of these

parameters are shown above in Figure 3-7 and are described below.

+1): The damping coefficient (b) used for positive velocities

-b: The damping coefficient (b) used for negative velocities

offset: The velocity value for which damping force is zero.

db: Deadband range centered around the “zero” where the physical damping is

not active

+Sat: Positive Saturation = The maximum positive force output from damping

-Sat: Negative Saturation = The maximum negative force output from damping

58 I Understanding “Spatial Conditions”

APPLE INC.

EXIBIT 117 - PAGE 67

APPLE INC.
EXHIBIT 1017 - PAGE 68

3.4 Inertia

Inertia is a Condition that defines a physical property best described as the feel of moving

a heavy mass. A device axis with a high “Inertia” will feel heavy and a device axis with

low Inertia will feel light. High Inertia should feel like your joystick or steering wheel is

filled with sand and you are now carrying the weight as you move the interface around.

This can be a very compelling sensation that simulates the feel of piloting a large craft or

dragging a heavy weight.

One way to understand the Inertia sensation is to think of the mathematical relationship

between force and acceleration. It is generally modeled as an inertial force using the Very

well known Newton’s Law represented as F = m a._ wherein the resistance force (F) is

simply proportional to the acceleration (a). The proportionality constant (In) is simply the

mass. So, to make an interface device feel heavy, just define a high mass. To make an

interface device feel light, define a small mass. Inertia is a very simple Condition to use.

Inertia: F = 111 a

Figure 3-8 Inertia

59

APPLE INC.

mmmme.:

APPLE INC.
EXHIBIT 1017 - PAGE 69

3.5 Friction

Friction is a Condition that defines a physical resistance sensation representing the feel of

sliding an object against a uniform frictional surface. Lilce damping, friction force always

resists the direction of motion. Unlike damping, friction force has a constant magnitude

regardless of the velocity. In other words, friction is a force sensation where in the

direction. of the force is dependent upon the Sign of the velocity, but the magnitude of the

force is constant. This is represented below in the following simple diagram, Figure 3-9.

F

O

R

Figure 3-9 Force vs. Velocity for Friction Condition

The magnitude of the frictional resistance is defined by a parameter known as the Friction

Coefficient. Of course a number of parameters can be used to fine tune the feel of the

friction sensation. Most importantly, different values of friction coefficient (f) can be

defined for positive and negative Velocities along a device axis. For example, the friction

can be defined with a +f and ~f such that it is much harder to turn a steering wheel left

than it is to turn it right.

It is important to note that there is a fundamental problem with the pure mathematical

friction sensation shown in the diagram above — namely that when you change direction

you encounter a sudden sharp force. This situation is usually not desired. Therefore, most

force feedback devices employ simulated friction that have a smooth transition where

force is proportional to velocity when velocity is very small.

60 Understanding “Spatial Conditions”

APPLE INC.

EXHIBIT 1017 - PAGE 69

APPLE INC.
EXHIBIT 1017 - PAGE 70

3.6 Texture

Texture is a spatial Condition which give the user a feel similar to dragging an object

over a rough surface like a metal grating. Textures are similar to vibration Waves in that

they result in a periodic force signal felt by the user. The big difference between a texture

and a vibration is that a texture creates a periodic force signal that varies based on the

spatial motion of the interface Whereas vibrations are periodic forces that are simple

functions of time. In other words, vibrations are canned routines “played” over time while

textures create interactive spatial environments wherein the feel is highly dependent upon

user motion. For this reason, textures are very compelling force feedback sensations.

A number of simple parameters can be used to tune the feel of a texture sensation. These

parameters include the Roughness, Spacing, and Density. By adjusting each of these

values, programmers can define a variety of texture sensations with great flexibility. The

meaning of each parameter is described concisely below.

Roughness Roughness defines the intensity of the texture sensation. Since

this is an interactive effect, the strength of the sensation also

depends on how the user moves the interface through the

texture environment. You can think of Roughness (R) as the

grit of sandpaper, the feel depends both on the grit and how

you rub your hand over it. It should be noted that high quality

force feedback devices allow you to define a positive

roughness (+R) and a negative roughness (-R) such that the

intensity of the texture depends upon which direction the

interface device is moving.

Spacing Spacing defines the center to center spacing between the

“bumps” in the texture. The smaller the spacing the finer the
texture.

Density Density defines the width of the “bumps” in the texture with a

range of l to 100 where 50 means 50% of the center to center

spacing of the bumps. A small density means the bumps are

small with respect to the empty space between them. A big

61

APPLE INC.

EXHIBIT 1017 - PAGE 70

APPLE INC.
EXHIBIT 1017 - PAGE 71

space between them. The implications of this parameter are

density means the bumps are large with respect to the empty

best understood by simply feeling a force feedback device.

The following diagram, Figure 3-10, is useful in helping to convey the implications of a

Texture Condition. As you can see, a Texture gives a periodic spatial grating that is felt as

the user moves the interface device through a region. A different intensity can be felt in

the positive and negative directions.

Figure 3-10 Visualization of Texture Condition

62 Understanding “Spatial Conditions”

APPLE INC.
.35

I
til u

APPLE INC.
EXHIBIT 1017 - PAGE 72

3.7 Wall

‘Wall is a Condition that creates the feel of encountering a hard linear surface within the

range of travel of the force feedback interface device. For example, if you are using a

force feedback joystick and you move the joystick into a simulated Wall, you will- feel a

hard obstacle when the stick is moved perpendicular to the wall (pushed into the wall) and

you will feel a smooth surface when the stick is moved parallel to wall (rubbed along the

wall). The wall will stop providing resistance forces if the stick is backed away from the

wall. The wall will re—apply forces if the stick re—encounters the wall. In principle the

wall sensation is very simple and very effective.

Mathematically, a Wall is represented as a force that increases rapidly with displacement

upon encountering the defined location of the wall boundary. Looking at the diagram

below, you can imagine a joystick handle starting at rest in the center of its Workspace.

The joystick moves to the right. No force is felt until the wall location is encountered

(where the dotted line meets the horizontal axis on the figure). Once the joystick crosses

the location of the wall, the force increases very rapidly with displacement, creating a

force that pushes back, resisting the joystick from penetrating the wall.

rnorvoui

DISPLACENIENT

Figure 3-11 Force and Displacement for a Simulated Wall

The dotted line in Figure 3-11 represents the relation between force and displacement. It

is a steep line, representing a force that increases quickly with penetration into the

simulated wall. The steeper the force increases with displacement into the wall, the

“harder” the wall will feel.

63

APPLE INC.

.. EH||. .. -

APPLE INC.
EXHIBIT 1017 - PAGE 73

An even simpler Way to conceptualize a Wall sensation is to think of it as a physical—stop

placed in the path of travel of the interface device. The physica1—stop could be hard like

metal or soft like rubber, but it is still a physical—stop. Figure 3-12 below depicts "this

conceptual representation of the hard-stop:

Figure 3-12 Visual Conceptualization of a Hard Stop

Of course, programmers do not have to worry about the mathematical relationship

between force and displacement in order to define a Wall sensation. The Wall sensation

has been abstracted to simple parameters that can be rapidly defined by programmers. As

you would expect, a Wall is defined in terms of its hardness, its location, and its

orientation. In fact, there are a number of central parameters that make the Wall sensation

very diverse and extremely powerful. Each parameter is described below: '

Hardness Hardness is the basic physical parameter for a Wall

Condition. It describes how rigid or compliant the surface of

the wall feels when pushed against. It is very important to

understand that a force feedback device CAN NOT simulate

64 Understanding “Spatial Conditions”

APPLE INC.

EXHIBIT 1017 - PAGE 73

APPLE INC.
EXHIBIT 1017 - PAGE 74

Sense

Offset

Surface Friction

the feel of a tmly “rigid” wall because the force output

capability of the hardware is limited. Most force feedback

joysticks made for consumer applications produce, at

maximum, less than 1 pound of force. This means when a

user pushes a force feedback joystick into a simulated wall,

the joystick can only resist penetration with a limited

resistance force.

Sense is a binary parameter defined as either positive or

negative. A wall with positive sense will resist crossing of

the wall when moving in a positive direction along an axis.

A wall with negative sense will resist crossing of the wall

when moving in a negative direction. Another way to look at

this: Sense defines which way the wall is facing.

Offset is defined in one of two ways, either it is the distance

away from the origin of the peripheral device’s range of

motion (i.e. the center of the joystick space), or Offset is

defined as a distance from the current location of the

peripheral (i.e. the location of the joystick at the instant that

the command is called). In the first instance, Offset is an

absolute value and in the second instance the Offset is a

relative value. An Ojjfset-Flag is used to indicate which way

you want to define your wall location.

Surface Friction is a parameter that governs surface damping

felt by -the user when rubbing along the length of the Wall

surface. If the Surface_Friction is low, the wall will feel like

a smooth surface, like glass or ice. If the Surface_Friction is

high, the wall will feel less smooth, as through it was coated

Note ~ high quality force feedback devices

employ a method called “pressure mode” when generating

Wall sensations that greatly enhances the realism of the

Surface Friction feel. Pressure mode modulates the intensity

of the rubbing resistance based on how hard the user is

pushing against the wall. In other words, the resistance felt

in rubber.

by the user -while rubbing along a surface is dependent upon

the pressure exerted by the user against the surface. As a

65

APPLE INC.

EXHIBIT 1017 - PAGE 74

APPLE INC.
EXHIBIT 1017 - PAGE 75

66

Surface Texture

Clipping

result, when a user pushes hard against the wall, friction

along the wall surface will feel stronger than when the user

pushes light against the wall. This makes for a very realistic

wall sensation, especially when used in combination with

Clipping (as described below).

Surface Texture is aparameter that governs the texture felt

when rubbing along the length of the Wall surface. If

Surface_Texture is low, the feel of rubbing along the wall

will feel very uniform. If the Surface_Texture is high; the

feel of rubbing along the wall will feel bumpy, like dragging

over a rough Surface,_Texture and

Surface_Friction together can define a wide range of

sensations from a smooth glass to a bumpy stone. Quality

force feedback devices use “pressure mode”, as described

above, to enhance the realism of the rubbing texture

COI1CI'6l'.6 .

sensation. Pressure mode automatically modulates the

intensity of the texture sensation based on how hard the user

is pushing against the wall surface.

Clipping is a binary parameter that can be on or ofl. When

clipping is ON, the peripheral device creates a unique visual

illusion that greatly enhances the impression of wall

hardness. Before describing the illusion, lets motivate the

need: As described previously, a simulated Wall can never

be fully rigid, for it will always have some compliance due to

the fact that the motors are limited in force output capability.

This means that a user using a force feedback joystick and

pushing against a simulated Wall, will penetrate the Wall by

some distance. If there is no visual representation of this

penetration, it is not noticeable to the user. But, if a

graphical object drawn by the host computer is following

joystick locanon and is visually shown to penetrate a

graphical wall, the penetration becomes very noticeable.

Therefore, it is useful to have a means of creating a visual

illusion where the graphical object hits a wall and stops even

though the joystick actually penetrates the simulated wall.

Understanding “Spatial Conditions”

APPLE INC.

EXHIBIT 1017 - PAGE 75

APPLE INC.
EXHIBIT 1017 - PAGE 76

-To achieve this illusion we need to break the mapping

between the graphical display and joystick position. This is

called Clipping and it works as follows: When a peripheral

device penetrates a simulated wall, the peripheral will

normally report position data that reflects the penetration.

But, if Clipping is turned ON, the data reported from the

device will not reflect the penetration into the wall, it will

reflect the location of the joystick as if the wall was

impenetrable. In other words, Clipping causes the peripheral

to send false data to the host — data that makes the wall seem

rigid even though it is not. This is very useful for graphical

simulations where walls are used as real boundaries that

objects can not move beyond. The best way to understand

this, is to try it. Note, at the present time most force

feedback hardware that support Clipping only support this

feature for horizontal and Vertical walls — not walls at

arbitraiy angles.

67

APPLE INC.

EXHIBIT 1017 - PAGE 76

APPLE INC.
EXHIBIT 1017 - PAGE 77

3.8 Barrier

Barrier is a Condition, much like a Wall, that creates the feel of encountering a hard

surface within the range of travel of the force feedback interface device. Unlike a Wall, a

Barrier is a simulated obstacle that can be penetrated. For example, if you are using a

force feedback joystick and you move the joystick into a simulated Barrier, you will feel a

hard obstacle when the stick is moved perpendicular to the Barrier (pushed into the

Barrier). If you push into the Barrier with enough force, you will penetrate and thereby

“pop” to the other side. Because you can be. on either side of a Barrier, it does not require

the Sense parameter used by the Wall sensation. However, unlike the Wall, the Barrier

"requires two hardness parameters —— a positive- hardness and a negative hardness which

define the feel of the barrier depending upon which direction you are crossing it. Also, the

Barrier sensation requires a thickness parameter that defines how difficult or easy it is to

penetrate.

Mathematically, a Barrier is represented as a force ' that increases sharply with

displacement at the location of the Barrier when crossed from a given direction. If the user

pushes against the Barrier with enough force to cause the peripheral to penetrate by half

the thickness (t) of the Barrier, the force profile will flip direction thereby “popping” the

user to the other side.

DISPLACEMENT

Figure 3-13 Force vs. Displacement for a Barrier Condition

68 Understanding “Spatial Conditions”

APPLE INC.

EXHIBIT 1017 - PAGE 77

APPLE INC.
EXHIBIT 1017 - PAGE 78

Looking at Figure 3»13, imagine a joystick starting at rest in the center of its workspace P

and then moving to the right. No force is felt until the Barrier location is encountered

(where the dotted line meets the horizontal axis on the figure). The force resists

penetration until the joystick penetrates the barrier by half the thickness distance (t).

Then, the force flips and the user pops to» the other side. If the user now approaches from

the right side, the force will again resist penetration until the user “pops” back to the left

side of the Barrier.

The angled dotted lines in Figure 3-13 represents the relation between force and

displacement when the barrier is penetrated from a given direction. A steep line

represents a forcethat increases quickly with penetration. The steeper the force increases

with displacement into the Barrier, the “harder” the Barrier will feel when penetrated from

that direction.

Like the Wall sensation, The Barrier sensation has been abstracted to simple parameters

that can be rapidly defined by programmers. Below is a summary:

Positive Hardness Positive Hardness describes how rigid or compliant the

surface of the Barrier feels when pressed against from the

positive direction.

Negative Hardness Negative Hardness describes how rigid or compliant the

surface of the Barrier feels when pressed against from the

positive direction. '

Thickness Thickness lets the programrner control how easy or

difficult it is to penetrate a given Barrier. In essence,

Thickness defines how deep into the barrier the user needs

to push before “popping through” to the other side. As

described above, the user needs to push into the barrier by

half the Thickness in order to pop to the other side.

Because positive and negative hardness define how much

force is required to penetrate to a given depth, Thickness

and hardness together define the feel of the penetration.

Offset Offset is defined in one of two ways, either it is the

distance away from the origin of the peripheral device’s

69

APPLE INC.

EXHIBIT 1017 - PAGE 78

APPLE INC.
EXHIBIT 1017 - PAGE 79

70

Surface Friction

Surface Texture

range of motion (ie. the center of the joystick space), or

Offset is defined as a distance from the current location of

the peripheral (ie. the location of the joystick at the instant

that the command is called). In the first instance, Offset is

an absolute value and in the second instance the Offset is a

relative value. An 0fiC9et—Flag is used to indicate which

Way you want to define your wall location.

Surface Eriction is a parameter that governs surface

damping when rubbing along the length of the Barrier

suiface. If the Surface_Friction is low, the Barrier will

feel like a smooth surface, like glass or ice. If the

Surface_Friction is high, the Barrier will not feel as

smooth, as through it was coated in rubber.

Surface Texture is a parameter that governs the texture felt

when rubbing along the length of the Barrier surface. If

Su1'face_TeXture is low, the feel of rubbing along the

Barrier will feel very uniform. If the Surface_Texture is

high, the feel of rubbing along the Barrier will feel bumpy,

like dragging over a rough concrete.

Understanding “Spatial Conditions”

APPLE INC.

EXHIBIT 1017 - PAGE 79

APPLE INC.
EXHIBIT 1017 - PAGE 80

4. Understanding
Temporal Waves

You are the pilot of a Celestial Star Cruiser. The enemy is closing in from behind. You

flick a switch on your force feedback joystick and feel the comforting rumble of your

hyper—thrusters as they warm up. Seconds tick away, the enemy gains ground, and the

rumble in your stick steadily rises to a mild, high frequency hum. Finally, the feel is just

right — your thrusters are tuned and ready for activation. You pull the trigger and twack,

your ship lurches forward. You can feel the pressure on your hand steadily rising as your

ship gains speed. But then it happens — a spasticjerk to the left, a sickly jolt to right, then

an agonizing pop as your engine fails. All is still and quiet. The next thing you feel is the

familiar shock wave caused by an exploding enemy torpedo off your starboard bow. They

are closing in.

APPLE INC.

_ EHIBIT 1017 - PAGE 80

APPLE INC.
EXHIBIT 1017 - PAGE 81

4. 1 Overview

Whereas Conditions are described as spatial feel sensations that are based on the motion

of the interface device, Waves are best conceptualized as temporal feel sensations that are

predefined functions of time. In other words, Waves are force sensations that are defined

and then “played back” over time when called. Temporal Waves fall into two basic

categories: a)‘Force Signals and b) Force Profiles

Force Signals are Wave effects that are defined based on a -mathematical

relationship between force and time using standard wave—form conventions. For

example, a Force Signal might be defined as a force that varies with time based on

a sz'ne—wave of a given frequency, magnitude, and duration. As will be described

throughout this Chapter, Force Signals can have either a constant or a periodic

source. The resulting sensation can be as simple as a constant force or as complex

as a modulated sine wave, square wave, triangle wave, or saw-tooth wave. Force

Signals are useful for generating canned feel sensations such as vibrations and jolts.

Force Profiles are Wave effects that are defined based on a stream of digitized

data. This is basically just a list of force samples that are stored and played back

over time. Because Force Profiles are so free—form, they are often called Custom

Effects. Force Profiles are useful in generating carmed feel sensations that can not

be easily represented as a constant or periodic Force Signal.

The primary advantage of Force Signals over Force Profiles is that a complex sensation

can be defined based on simple parameters such as Sine— Wave, 50 Hz, 50% Magnitude.

As a result, Force Signals are very efficient to represent and work with. On the other

hand, Force Profiles allow for more general force sensations than Force Signals.

Unfortunately, complex Force Profiles require that a significant amount of data to be

stored and transferred to the peripheral device. This has implications on processing

"burden, communication bandwidth, and local memory limitations of the force feedback

hardware. As a rule of thumb when creating canned Wave effects, you should use

constant or periodic Force Signals unless the sensation you need to achieve absolutely

requires the you design a custom Force Profile from scratch.

72 Understanding “Temporal Waves”

APPLE INC.

EXHIBIT 1017 - PAGE 81
 n§n.

APPLE INC.
EXHIBIT 1017 - PAGE 82

4.2 Defining Force Signals: Constant & Periodic

Many feel effects can be created by having actuators generate ti1ne—va1ying force signals

upon a force feedback device. The form and shape of the resulting wave has great

influence upon the “feel” experienced by the user. This is analogous to the audio

modality in which the “sound” perceived by a user is directly imuenced by the form and

shape of a generated audio signal. Diverse force feedback effects can be generated by

implementing various forms of force waves-. For example, a force signal can be a simple

constant force, or can be a square—wave, a sine—wave, a saw—tooth, or other common

periodic wave-form. Wave Parameters such as the fiaequency, duration, and magnitude

are used to modulate the feel of a given sensation.

Wave Source Wave Parameters

Figure 4-1 Force Signals: Sources and Parameters

Source: At the heart of every force signal is a signal source. This is basically the

mathematical foundation for the force versus time relationship. The simplest Source is

just a constant force wherein the force remains the same over time. More complex signal

sources involve basic periodic wave forms such as the sine-wave, triangle-wave, square-

wave and saw—tooth waves (both up and down). The choices for Source supported by

most force feedback hardware devices are shown below in Figure 4~2.

73

APPLE INC.

'3' 117 A- .. y. ._

APPLE INC.
EXHIBIT 1017 - PAGE 83

E
Constant Square Sine Triangle Saw-Up Saw—Down

Figure. 4-2 Wave Sources

The basic parameters shown in the diagram above define the basic structure of the Force

Signal. These parameters include:

Magnitude:

Period:

Duration:

Offset:

Phase:

Once a signal source is chosen, the Magnitude simply scales

the source based on a percentage of full capability of the given

hardware device. Magnitude can'be0 to ‘l00%. As will be

described in the next section, it is best not to set the Magnitude

near 100% because it consumes your dynamic range.

Periodic signal sources such as square, sine, triangle, and saw-

tooth require a period to define how the wave should be

generated over time. The period is simply the time it takes for

a single cycle of the wave form to be played and is defined in

microseconds. As is true of all periodic signals, period is

defined as l/frequency of the resulting form.

The duration parameter simply defines how long the periodic

signal shouldbe played. It is defined in microseconds.

While periodic wave forms usually oscillate about zero force,

the offset parameter allows the center of the wave—form to be

shifted in the magnitude domain. The result of an offset is a

force bias felt throughout the duration of the force signal.

Periodic wave forms such as Sine and Triangle are such that

forces always start at zero and follow a mathematical profile to

a peak. Phase is a parameter that allows prograrmners to have

such wave forms start at some value other than zero.

Note, there is one additional Wave Source that is a special case of the Triangle periodic

form called the Ramp. The Ramp is just half a cycle of a triangle wave form representing

either a linearly increasing force or linearly decreasing force with time. While ramp

Understanding “Temporal Waves”

APPLE INC.

,,\‘EfinBIT 1017 — PAGE 83

APPLE INC.
EXHIBIT 1017 - PAGE 84

sensations can be generated using the triangle form by setting parameters appropriately,

the Ramp is often treated as it’s own signal type. Therefore we will list the Ramp, shown

in Figure 4-3, for the sake of completeness:

Ramp Wave Form

Figure 4-3 Ramp Wave Forrn

4.2.a “Impulse” Wave Shaping of Force Signals

Once we have defined the basic form, frequency, duration, and magnitude of a feel wave-

form, the sensation can be greatly influenced by adjusting the shape of the signal. While

flexibility in wave shaping is desirable to achieve a wide variety of feel sensations,

complete generality is inefficient because humans are only sensitive to certain perceptual

features within a “feel” signal. Therefore the most efficient method is to manipulate 0115

those variables that have significant impact upon perception of the resulting sensation.

This approach helps reduce the complexity of force feedback hardware and minimizes the

computational burden of representing diverse feel sensations.

The Audio Analogy:

Like feel signals, sound signals can take many shapes and forms. When artificially

synthesizing audio signals, it is often valuable to extract primary perceptual qualifies that

define the sound of a given signal. Psychophysical research has demonstrated that the

sound quality of an audio signal can be represented by fundamental perceptual features

known as a_t_ta_cl_<_, sustain, and _d§“c:_ay that dictate the global shape, or envelope, of an audio

wave form. Attack, for example, represents the onset of a sound sensation resulting from

the pluck of a suing or the blow of a pipe.

75

APPLE INC.

_ EXHIBIT 1017 - PAGE 84

APPLE INC.
EXHIBIT 1017 - PAGE 85

Whfle the overall concept of the signal envelope can be applied to the Force Signals to

allow for efficient modulation of the key perceptual qualities of feel sensation, the

parameters of the standard audio envelope (attack, sustain, and decay) have little meaning

for the physical senses. This is because human perceptual abilities in the physical

modalities are substantially different than those in the audio realm. Audio signals, for

example, are perceived in the frequency domain while force sensations are perceived in

the magnitude domain. This fundamentally changes how an envelope should be defined

and manipulated to extract the primary perceptual qualities of the signal. Fortunately, there

are physical parameters that are much more meaningful ways to shape a physical signal as

compared to the audio attack, sustain, and decay model. These include two primary

parameters known as Impulse Level and Settle Time. These also include two secondary

parameters called Fade Level, and Fade Time. As will be described in the sections that

follow, Impulse Level and Settle Time are essentialenvelope parameters for creating

efficient force feedback Waves. These parameters follow what is called the Impulse

Model of Wave generation. As will also be discussed, Fade Level and Fade Time are

secondary parameters that, while not critical to efficient sensation generation, do extend

the flexibility and control of Wave sensations.

The Impulse Model:

Like audio signals, Force Signals can be decomposed into primary perceptual features that

make the representation simpler and more efficient. The key notion force feedback

programmers must understand is that the human physical senses are most sensitive to

changes in force intensity (called “transients” or “impulses”) and least sensitive to

constant forces or slowly changing forces. In fact, a force that abruptly changes from 0%

to 40% magnitude, might feel significantly more intense than a force that slowly changes

from 0% to 100% magnitude. This is because it is not the magnitude that effects the

intensity of a feel sensation, it is the transition -~ the change. Therefore, when shaping a

Force Signal, the most important parameters to adjust are those that allow the programmer

to accentuate the sharp transitions in force level. Psychophysical research in the area of

feel perception has revealed that force sensations can be decomposed into two

perceptually distinct features referred to here as Impulse and Steady State. Impulse is

defined by two parameters, a Impulse Level and a Settle Time.

76 Understanding “Temporal Waves”

APPLE INC.

EXHIBIT 1017 - PAGE 85

APPLE INC.
EXHIBIT 1017 - PAGE 86

Impulse Level is a variable (defined as a percentage of full) that describes how
much initial “kick” or “punch” should be delivered upon initiation of the Wave to

accentuate the transient. The effect of Impulse Level can be described as

effecting the “crispness” of a physical sensation. An effect with a high Impulse

Level will feel abrupt and intense. As is shown in the diagram below, Impulse

Level is usually defined as some value significantly higher than the steady state

force level of the Wave sensation.

Settle Time is a variable (defined as a duration) that describes how quickly the

Force Signal will settle from the Impulse Level to the steady state magnitude.

Together these two parameters define an effective envelope for force signals that

represents the primary perceptual qualifies of feel sensations — the transient.

Typically the Settle Time is very short as compared to the Duration of the entire

Wave. While the Duration of an Wave can be on the order of hundreds of

milliseconds or even seconds, Settle Time is usually on the order of tens of

milliseconds.

E

4~——-—-——> Duration I

Settle I

Time

Figure 4-4 Impulse Parameters
Example: Let’s say you want to create the feel of a car hitting the side railing of a race

track while making a wide turn. Perceptually this is represented as a sharp impulse upon

impact wherein the impulse quickly settles to a lower steady state value that maintains the

sensation of continued physical contact.with the railing. The Impulse part of the signal is

77

APPLE INC.

EXHIBIT 1017 - PAGE 86

APPLE INC.
EXHIBIT 1017 - PAGE 87

what conveys the intensity of the collision sensation. The steady state part of the signal

need only be a mild, non—intrusive resistive force that simply maintains the physical

illusion that the railing is a concrete entity that resists penetration. The steady state force

level need not end until the driver recovers the turn and pulls the car away from the wall.

Making the Most of Limited Dynamic Range: The great advantage of the Impulse

Wave Shape used in this example is that the high force is only applied for very short

period. Most of the Duration of the Wave sensation is filled with much smaller forces. In

other words, the Impulse Wave Shape encourages the efficient use of force resources -«

applying the high forces when needed, during the sharp transients, and using low forces

when appropriate, during steady state periods. This is critical to efficient force feedback

programming because it helps manage the limited force resources of the hardware. The

last thing a programmer wants to do is saturate the capabilities of the hardware by keeping

steady state forces near the maximum capability of the peripheral device because if you do

that, you have no available range left to provide the perceptually critical sharp transients.

In other words, Impulse Wave Shaping lets you make the most of the limited dynamic

rgngg of force feedback hardware devices.

Consider the following two principles. They represent important concepts that every
programmer should keep in mind when designing force feedback sensations:

0 Humans are more sensitive to force transients than steady state forces.

In other words, to make a sensation such as a blast or crash feel intense, the objective

should be to impart a strong impulse upon a user (an abrupt change in force), not a

strong steady force. An impulse is the differential between the background force

level and a sudden transient.

0 Force Feedback devices are limited in force output (limited in Dynamic Range).

In other words, the maximum force level a device can impart in a given direction is

generally on the order of one pound. Therefore it is easy to impart a sensation that

uses up most of the available force, leaving no room to impart the strong transients

that are so important to compelling sensations. Safety limitations and power

78 Understanding “Temporal “Waves”

APPLE INC.

EXHIBIT 1017 - PAGE 87

APPLE INC.
EXHIBIT 1017 - PAGE 88

constraints prevent manufacturers from building hardware with greater dynamic

range, so programmers must be able to efficiently use the available range of forces.

Impulse Wave Forming helps reconcile the above two points. By designing effects as

strong impacts with subdued steady state values, programmers will maintain a low

background force level from which strong transients can be applied. This institutes an

efficient management of hardware resources, ’allows multiple effects to be superimposed
without reaching dynamic range limitations of the hardware. ‘

Example:

Problem: In a flight simulator game, the airplane suddenly gets hit by a strong cross-

wind. As the programmer, you want the sensation of the wind to" be

intense so you apply a strong constant force on the joystick that pushes to

the left. Suddenly, an enemy fighter emerges from the clouds and starts

pummeling the craft with gunfire from the right. As programmer, you

want the sensation of the gun blasts to be an intense stream of Jolt

sensations, also to the left. Unfortunately, the joystick motors are near

their force limit due to the cross—wind sensation so the gun blasts feel like

weak taps that are not even noticed by the user.

Solution: Using the Impulse Wave Forming method, the sudden cross wind is

represented by a sharp Impulse of force to the left that quickly settles to a

moderate side force. Because the user is most sensitive to the transient

and not the magnitude of the constant force, the resulting sensation is still

convincing as an intense wind blast. Now the enemy fighter emerges and

there is sufficient dynamic range left to provide a convincing stream of

jolts above the background force level. Clearly, use of Impulse Wave

Shaping helps you make the most of your force resources.

The General Wave Effect Envelope

While the parameters of Impulse Level and Settle Time are enough to define the primary

envelope features for feel based sensations, there are two secondary parameters that

extend the flexibility of the Impulse Wave Shaping paradigm. Fade Level and Fade

79

APPLE INC.

__ EX|B|;|' 1017 - PAGE 88

APPLE INC.
EXHIBIT 1017 - PAGE 89

Time are analogous to Impulse Level and Settle Time but are applied at the trailing end

rather than at the onset of a Force Signal. Fade Level defines the final force level to be felt

and Fade Time defines how long it takes for the steady state value to decay to that level.

Because the human sensory system is not sensitive to slowly changing forces, using fade

parameters to create force sensations that slowly decay is usually not effective. (

Fade
Duration

Settle Fade

Time Time

Figure 4-5 Force Signal Parameters

By using the fourparameters defined above as Impulse Level, Settle Time, Fade Level and

Fade Time, programmers can generate a wide variety of envelope shapes. Figure 4-6

shows some of the shapes that can be achieved with this basic parameter set.

Figure 4-6 Example s of Force Signal Wave Shapes

80 Understanding “Temporal Waves”

APPLE INC.

EXHJBIT 1017 - PAGE 89

APPLE INC.
EXHIBIT 1017 - PAGE 90

4.2.b Summary of Periodic Force Signal Generation

All Force Signal type Waves are based upon a force Source. The source is the basic force

signal from which the Wave is created. The Source may be as simple as a constant force

value or may be as complex as a sine wave or square wave. The typical Source values

supported by hardware are:

0 Constant Force

0 Square Wave

0 Sine Wave

0 Triangle Wave

0 Saw—Tooth (Up or Down)

All Force Signal type Waves have Control Parameters that regulate the feel of the force

Source. Control parameters include some or all of the following values:

0 Magnitude

0 Frequency

0 Duration

0 Offset

0 Phase

All Force Signal type Waves may also have Impulse Parameters that shape the quality of

the feel signal described by the parameters above. Impulse Parameters used to define the

feel envelope are:

- Impulse Level

0 Settle Time

0 Fade Level

-0 Fade Time

81

. APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 91

All Waves also have Application Parameters that describe how the resulting signal is

applied to the given device. Application Parameters may be a Direction in vector space or

may be an Axis Mask that defines one or more device axes for signal application.

0 Axes

0 Direction

All Waves may also have Trigger Parameters that indicate when to execute the defined

effect. Many effects may simply trigger (execute) upon being called by the host. Other

effects may trigger automatically when a given button is pressed on the device. This

automatic execution of an Wave is called a reflex and is helpful in reducing the

communication burden for effects that occur very frequently such as “gun recoil”

sensations. The parameter Trigger Button defines what button should trigger a given

effect. The parameter Trigger Repeat Interval defines the time the delay between multiple

executions of a given effect when a button is held down for an extended period.

0 Trigger Button

0 Trigger Repeat Interval

82 Understanding “Temporal Waves”

APPLE INC.

EXHIBIT 1017 - PAGE 91

APPLE INC.
EXHIBIT 1017 - PAGE 92

Impulse ParametersControl Parameters

Trigger Parmneters Application Parameters

Figure 4-7 Diagram of Wave Generation Process

The above figure shows the entire wave generation process at the conceptual level. A

signal source is chosen based on the desired feel, then control parameters are then defined

to tune the feel of the basic signal, Impulse parameters are then applied to fit the signal to

a desired envelope, and finally application parameters are assigned which indicate the axis

or orientation that the signal will be applied to. If the signal is to trigger from a button

press, Trigger Parameters are also assigned. While this process may seem complex, it has

been reduced to a simple programming paradigm within.DirectX that is introduced in

Chapter 6.

4.2.c Three types of Periodic Waves

Thus far we have presented a process of picking the type of wave source, defining basic

effect parameters such as Magnitude, Direction, and Duration, and then applying an

envelope to the resulting form. While this process allows for a wide variety of feel

83

APPLE INC.

awvlvvwavnvii-vvumv--44

APPLE INC.
EXHIBIT 1017 - PAGE 93

sensations, high quality force feedback devices employ some advanced notions that allow

for even more compelling Wave sensations. The three Basic and Advanced Periodic

notions that are important to introduce here are Axis Wave, Angle Wave, and Angie

Sweep Wave..

84

Axis Wave:

Angle Wave:

Angle Sweep Wave:

In many situations, it is desirable to have the Wave sensation

associated with a single degree of freedom of the force

feedback device such as the X axis of a joystick, the rotation

axis of asteering wheel, or -the Y axis of a flight yoke. For

example, when an "airplane stalls in a flight simulation, you

may want to have a subtle vibration on the pitch axis {Y axis)

of the Flight Stick. For such cases where the Wave is oriented

along a primary axis of the hardware device, the signal can be

thought of as an “axis Wave”.

For cases Where the Wave sensation is associated with multiple

degrees of freedom of the force feedback device, such as both

the X and Y axes of a joystick, the Wave sensation must be

assigned an angle to dictate how it is oriented within the

multiple degree of freedom space. For example, in a flight

simulation your plane might be bombarded by machine—gun

fire from an enemy fighter that is attacking from a 30 degree

angle off your right wing. In this case you might want to have

a square wave represent the gun fire pounding your craft such

that the force is oriented at the appropriate 30 degree angle. In

such cases, the angle parameter associated With the Wave

sensation is very useful.

The basic periodic wave described above (with a single angle

parameter) can create a vibration or other time varying signal

at a particular orientation. While you can repeatedly call such

an angle wave, updating the angle parameter, to very the

orientation over time, sometime it is desirable to have that

angle change smoothly in real time. For this reason, the makers

of force feedback hardware have invented the Angle Sweep

concept Where a periodic wave is assigned a Start Angle and

an End Angle such that the direction of the force will sweep

Understanding “Temporal Waves”

APPLE INC.

EXHIBIT 1_O17 - PAGE 93

APPLE INC.
EXHIBIT 1017 - PAGE 94

between these angles over the duration of the sensation.

Because this sweep is controlled by the local processing

hardware on board the force feedback device, the programmer

need not continually update the angle parameter. This is useful

in creating very complex Wave sensations.

One way to create all three types of Wave sensations described above (Axis Waves, Angle

Waves, and Angle Sweep Waves) is to use the DirectX structs described in Chapter 6.

This is a well defined process where simple parameters are assigned to describe the

desired wave form. Alternatively, you can use the graphical LFORCE Studio toolset

described in Chapter 9. Using these tools you can construct your wave form in a

graphical wave editor and when the sensation is complete, the Toolset will generate the

appropriate DirectX code automatically.

85

APPLE INC.

EXHIBIT 1017 - PAGE 94

APPLE INC.
EXHIBIT 1017 - PAGE 95

4.3 Defining Force Profiles

As described in the previous sections, Temporal Waves are a class of feel sensations

defined as forces that vary as pre—defmed functions of time. Many interesting Wave

sensations can be created by using periodic signals to define the relationship between

force and time. And while periodic signals provide an efficient means of representing

Wave sensations, there are situations where these simple combinations of sine waves,

square waves, or other periodic sources will not be capable ofdefning the canned force-

time profile you desire. For such cases, manufacturers of force feedback hardware

devices have provided a versatile means for programmers to define custom force profiles

of any shape. M

4.3.a Custom Force Profiles

Custom Force Profiles (or Custom Forces, as they are called under DirectX), are simply

a sequence of force values stored in array that define through discrete samples how force

should vary over time. A custom force profile is best thought of as a digitized signal

composed of (11) Samples wherein each sample is played for a defined Sample Period.

The samples can be stored to represent the forces to be played over a single hardware axis,

or the samples can be stored as forces to be played over multiple hardware axes ~» the

number of axes represented in an array of sampled data is represented by a Variable that

indicates how many Channels are included in the structure. How a custom force profile

of 10 samples might look follows in Figure 4-8.

86 Understanding “Temporal Waves”

APPLE INC.

EXHIBIT1017

APPLE INC.
EXHIBIT 1017 - PAGE 96

Sample Period

__.,g 3?

12345678910

Figure 4-8 Custom Force Profle Example

As represented above, a force profile composed of an array of force values, each Value in

the representing the force to be played for a sample period. While the forces shown above

are all positive, it should be noted that the values stored in a profile array can be positive

or negative. Also, it should also be noted that a profile array can contain multiple

channels, meaning multiple sets of data each of which is assigned to a different axes of the

force feedback device. This allows a force profile to be multidimensional is desired.

Ideally, the force feedback device that generates the force profile sensation has an

intelligent local microprocessor architecture as described in Section 2.2 of this text. Such

a local processor greatly facilitates the generation of custom profiles because the force

array can be downloaded to the peripheral device and played upon demand. For example,

the patented I-FORCE architecture enables force profiles to downloaded from the host and

stored in memory local to the peripheral device. These force profiles can then be triggered

by host commands or be triggered by a button reflexes (reflexes are described in detail in

Section l.2.c). The button reflex is an ideal implementation for custom profiles that

define the unique feel of a particular weapon-fire event. For example, a compelling

custom profile that defines the feel of your gyro-blaster weapon can be downloaded to the

local microprocessor along with a trigger assignment that establishes a button reflex.

Then, every time the given button is pressed, the particular force profile is executed. This

87

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 97

allows for clean coordination between gaming events and feel sensations with minimal

programming overhead.

Designing the FEEL of a Custom Profile

Because it is not obvious What a given force profile will feel like when generated through

force feedback hardware, it is difficult to design a custom force profile without engaging

in an iterative process of defining values and feeling sensations. Ideally, force profiles are

created using an interactive force editing tool that speeds the iterative design process.

Such a tool can allow force sensations to be constructed rapidly using a graphical editor

and played repeatedly until the feel is just right. Among other things, the I—FORCE

Studio toolset described in Chapter 9 of this text includes such an interactive editing tool.

The Profile Editor component of the I-FORCE Studio toolset greatly facilitates the use of

the custom force feature and is highly recommended.

88 Understanding “Temporal Waves”

APPLE INC.

_EXH|_B|T 7-‘ 97
-————-1-u-s-n.ua_

APPLE INC.
EXHIBIT 1017 - PAGE 98

5. Understanding

Dynamic Sensations

Suddenly your Alterian Cargo Vessel has drifted into an uncharted asteroid belt. At first

you feel the subtle rattle of small stones bouncing of your hull. Then you see a massive

boulder screaming in from above. You engage your force field and brace yourself for

impact. Whack —~ the large stone compresses your energy field like a rubber—band

stretched to its limit, but thankfully the boulder is repelled — you can feel the compression

and release as the giant rock flies clear. Then another stone hits with an even deeper

compression and more Violent release. Thad. Then another. It is becoming increasingly

difficult to steer while repelling stones from every direction. Three more collisions hit in

rapid succession. If you don’t leam to cushion the blows by pitching your ship away from

the impact, your field will be penetrated by the next large boulder.

APPLE INC.

EXHIBIT 1017 - PAGE 98

APPLE INC.
EXHIBIT 1017 - PAGE 99

5.1 Overview

The industry of consumer force feedback was born in 1995 with the launch of the first

force feedback programming interface, LFORCE from Immersion Corporation. Version

1.1 of the LFORCE 1.1 supported the basic notions of Conditions and Waves but did not

enable Dynamic Sensations, or simply “Dynamics”. While Conditions and Waves do

provide programmers with a compelling ability to embellish gaming environments with

feel sensations, Dynamics is a fundamental leap forward in force feedback technology

that enables a level of realism and interaction never before provided.

While Dynamics is a relatively new innovation, most force feedback devices that will

launch in 1997 will support embedded Dynamics capabilities. Dynamics is made possible

by recent advances in the hardware processors employed within force feedback devices.

For example, all hardware products that support the latest generation of LFORCE engine,

currently referenced as I—FORCE 2.0, will include what is called a Distributed Dynamic

Processing Engine. This local software engine allows complex Dynamic Sensations to be

executed at high speeds in parallel with host executing of gaming events. The DDP engine

unleashes an new level of power and sophistication in force feedback programming —

consider the following:

0 The feel of a ball impacting a racquet, compressing the strings, and then

bouncing off with a final snap.

0 The feel of wading through a thick pool of swarnp—muck that jiggles as you

struggle, making it difficult to move straight.

0 The feel of swinging a boulder on the end of a cable —— the faster you spin,

the harder it tugs until you let go, letting it fly.

I The feel of an asteroid as it dives into the force field surrounding your

spaceship and is deflected by your quick maneuvering skills.

All of the above sensations have one important thing in common — how the user reacts

d_u1_1n'_g the sensation event has a significant effect on the feel of the event. This is because

the above example all involve real—time physical interactions based on user motion and a

physical system wherein user motion during the interaction effects the behavior of the

90 Understanding “Dynamic Sensations”

APPLE INC.

EXHIBIT 1017 - PAGE 99

APPLE INC.
EXHIBIT 1017 - PAGE 100

physical system. For example, if the user wades through swamp—mucl-: in a violent manner

that stirs up undulations in the fluid, the user’s rash motions will increase the difficulty of

travel because the undulations in the fluid will worsen as the user struggles. But, if the

user wades through the swamp-muck in a dexterous manner that absorbs the undulations

in the fluid, the user will have an easier time passing through the muck. This example, like

all interactions with physical systems, demonstrates that how the user influences the

system during the event will affect how the event feels. ‘Whether is "be a ball bouncing off

a paddle or a bolder swinging on a string, when feel is influenced by user actions, the

realism of the gaming environment is propelled to a new level.

The importance of real—time dynamic interactions can not be underestimated. After

feeling a demonstration of a simple ball—paddle dynamic. interaction developed by

Immersion Corporation for LFORCE 2.0, Next Generation Magazine reported:

The technology makes such a difierence that even the test

demo is mesmerizing. . . Allyou do is bounce the ball on the

rubber band and thefeel ofthe bounce is communicated

through thejoystick. The experience is so unique thatyou

could spend hours doing nothing but bouncing the ball

it sounds stupid, but its true.

Next Generation Magazine, March 1997

While Conditions and Waves are force feedback entities that are incapable of supporting

real-time physical interactions based on user motion and a physical system, Dynamics is

a new class of force feedback entity developed specifically to meet this need. Dynamics

are force feedback sensations generated based on real-time dynamic simulations of

genuine physical systems. For example, to generate the feel sensation of a mass impacting

a compliant object (i.e. an asteroid impacting the force field of a space ship), a real—time

dynamic simulation of the physical system must be used that takes into account how user

moves during the interaction. The result — a feel sensation that is so real, it makes physical

dexterity part of game play.

Dynamic Sensations lets users take advantage of their inherent sensory—motor skill md

physical dexterity when interacting with software. Consider the ball bouncing off a

racquet. Beyond being a very compelling force feedback sensation, it is a sensation that

91

APPLE INC.

EXHIBIT 1017 - PAGE 100

APPLE INC.
EXHIBIT 1017 - PAGE 101

provides critical real time information that allows players of racquet sports to impart

subtle control over the ball. The user could cushion the ball to a halt by absorbing energy

in the wrist, could whip the ball sharply off the paddle by tightening the wrist with a snap,

or could sling the ball off to the side with a flick of the arm. Although the entire event

may only last 500 milliseconds, the subtle feel of the continuously changing forces during

the interaction is very important to making a realistic sensation. It is an clear example of

a “dynamic” sensation that can not be represented by a simple “canned” profile that is

predefined and played back over time. This is because how the user interacts withthe ball

during the event greatly changes the feel.

The Distributed Dynamic Processing Engine: As you might imagine, the dynamic

simulation of the physical system used to generate the feel of a ball bouncing off a paddle

needs to run very quickly in order to provide a sensation that is not corrupted by lag. In

other words, the software that runs the dynamic simulation needs to read sensor position,

update location of the paddle, compute the dynamic interaction between the paddle and

the ball, compute the resultant forces to be felt by the user, and send those forces to the

motors of the interface device every few milliseconds. If the host computer was to

perform the dynamic simulation, this process would also include the steps of reading

sensor data from the interface device across the communication bus and sending force

command back to the interface device across the communication bus. This would be a

computational burden for the host and a bottleneck for the communication bus. Luckily,

the designers of force feedback hardware peripherals have solved this problem by

allowing the force feedback device to perform the dynamic simulation localbz using the

DDP engine. As a programmer, all you have to do is set up the dynamic simulation by

sending physical parameters to the interface device — everything else is handled for you in

parallel with gaming execution.

92 Understanding “Dynamic Sensations”

APPLE INC.

EXHIBIT 1017 - PAGE 101

APPLE INC.
EXHIBIT 1017 - PAGE 102

5.2 The Basic Dynamic Sensations

At the present time, there are a handful of primary dynamic sensations supported by force

feedback hardware. Each dynamic sensation sets up a compelling physical sensation

within the local processing engine of the force feedback device. Simple parameters

defined by the programmer can tune the dynamic sensation to mesh with gaming events.

The basic types of Dynamic Sensation are listed below and described in detail in the

following sections:

_ ICSENSATI SESATIO OVERVIEW g

[Dynamic Recoil The interactive feel of firing a weapon that kicks back
and reverberates

The interactive feel of a collision with a hysical body
Dynamic Liquid The interactive feel of moving through a jiggling I

oscillating liquid

The interactive feel of dra ging a mass
Dynamic Center Drift The interactive feel of spring centering that adapts to

 game play

D namic Control Law Lets you program the d narnic engine directly.

The DDP engine performs dynamic simulations of physical events such as a reverberating

recoils, jarring collisions, and undulating liquids based on simple physical parameters

defined by the programmer. These simulations are performed locally within I-FORCE

enabled hardware products using embedded I—FORCE microelectronics. This distributed

processing architecture greatly reduces the computational burden on the host and ensures

that the complex dynamic feel sensations can be generated with minimal impact upon

game speed.

Dynamics with Interim Reporting:

For discrete dynamic events such as impacts and recoils, or for dynamic environments

such as dynamic liquid and dynamic inertia, the above distributed architecture works fine.

93

APPLE INC.

EXHIBIT 1017 - PAGE 102

APPLE INC.
EXHIBIT 1017 - PAGE 103

The host just sends parameters to the DDP engine and the hardware executes the complex

sensation in parallel to what ever is happening in the host application. But, say you wanted

to do a more complex feel simulation that was coordinated in real time with dynamic

graphical events shown on the screen. For example, say you wanted to simulate the feel of

a ball interacting with a compliant paddle, the subtle dynamics of the interaction being

coordinated with a screen image of the ball compressing and bouncing off the paddle. Or

say you wanted to simulate the feel of a ball being swung around on the end of a string

while simultaneously displaying. a graphical image of"the ball that coordinated with the

dynamic feel. Clearly, to create such compelling coordination during a dynamic

simulation performed by the DDP engine, the DDP engine needs a means of updating the

host during the feel event. We call this updating feature interim reporting.

Interim Reporting is a feature of the I-FORCE 2.1 Processing Core that allows the DDP

engine to report to the host the location of the simulated mass used by the dynamic feel

sensation at discrete time intervals during the sensation. While the DDP engine might be

performing the dynamic simulation with an internal update rate as high as 1000 Hz

required for good feel, the host does not need such rapid update for graphical display.

Instead, the DDP engine reports data back to the host at 60hz, sufficient for visualization

of the event.

Interim Reporting enables the following two additional Dynamic Sensations:

DNSA10 ..SESA1 VIEW . _

Dynamic Sling The interactive feel of a mass being swung on the end

of a cable.

Dynamic Paddle The interactive feel of a ball/puck bouncing off a

addle.

In addition to reporting interim mass location values during a dynamic simulation, it is

also valuable for the DDP engine to perform Final Value Reporting, reporting the final

position and final velocity of the simulated mass at the end of the interaction. The purpose

for this is easy to see in the Ball-on-Paddle interaction example described below.

94 Understanding “Dynamic Sensations”

APPLE INC.

EXHIBIT 1017 - PAGE 103

APPLE INC.
EXHIBIT 1017 - PAGE 104

Example:

Ball—on~PaddIe The DDP engine of the I-Force 2.1 Processing Core makes it easy

to achieve this complex interactive event described above where the

graphical display of a ball compressing and bouncing off a paddle

is coordinated with the dynamic feel simulation of a ball—paddle

interaction. When the simulated ball first impacts the simulated

paddle, the host configures the dynamic event by telling the DDP

engine the physics of the event. Parameters such as the mass of the

ball, the incoming velocity of thebail, the compliance of the paddle,

and the inherent damping of the paddle are conveyed. The DDP

engine then simulates the event, taking control over the simulation.

In real time, the ball compresses the paddle while the user

simultaneously moves the paddle in response. Based on the

momentum of the paddle, the compliance and damping of the

paddle, and the motions made by the user — the DDP engine

computes the simulated location of the ball in real time. Based on

that simulated location and the stretch of the paddle, the DDP

engine creates the appropriate and realistic feel sensation. At

regular time intervals during this complex interaction, the DDP

engine reports ball location and paddle location back to the host.

These interim reports are used by the host to update the graphics

and create a visual display that corresponds with the complex feel.

When the ball leaves the paddle, the event is over and the DDP

engine returns control of the simulation to the host by reporting the

final velocity-of the ball as it leaves the paddle.

The result is a well coordinated graphical and physical simulation where the high speed

computations required for feel simulation are done local to the joystick and therefore do

not slow down the host application. At the present time, LFORCE 2.1 products running

under DirectX 5 support two sensations that are enhanced by interim reporting:

Dynamic_Sling and Dynan1ic_Paddle.

95

M APPLE INC.
EXHIBIT 1017 - PAGE 104

5-

APPLE INC.
EXHIBIT 1017 - PAGE 105

5.3 Dynamic Recoil — Ultra-Realistic Weapon Simulation

Recoil is a very common sensation used in gaming applications wherein a_ weapon is fired

and the user is given a feel sensation of the “kick—back”. The simplest recoil sensation is

just a canned jolt, a force of a given magnitude played over time. A slightly more complex

recoil sensation might be -force profile defined as scripted force variation over time. A

common recoil may also -include a canned vibration profile to simulate the feel of weapon

resonating after firing. In all such cases, the canned effects may be complex to create but

they still lack realism of feel because the jolts, profiles, or Vibrations are merely pre-

defined scripts played over time, regardless of user interaction. In other words, such

canned routines do not vary dynamically based on how the user resists motion during the

interaction. For example, if the user tenses his grip during a kick, the canned recoil will

not feel any different than if the user cushions the blow with a loose grip. In the real

world, a tense grip would result in a more abrupt recoil sensation with a high frequency

resonance. A loose grip would cause a less jarring recoil with a slow resonance that

quickly fades away. Simply put, how the user reacts to the blast, through grip and hand

motion, should greatly influence the recoil response of the simulated weapon. Therefore

what is needed is an entirely new method for defining recoil sensations that is not just a

scripted pI‘0ffl6 but actually accounts for the fact that in the real world, the feel of the blast

depends greatly upon how the user responds manually in real-time. What is needed is

Dynamic Recoil.

Dynamic Recoil is a revolutionary method of defining the feel of a weapon tire that takes

advantage of the distributed dynamic processing engine on—board all 1—FORCE 2.0

products. Rather than scripting a canned force profile (which is time consuming and gives

less than compelling results), the programmer simply defines the dynamic properties of the

weapon and lets the joystick’s DDP engine generate the detailed force profile in real—time

based on how the user reacts. The result is a very complex and rich sensation that is easy

to define and that changes appropriately based on user actions. This makes the weapon

fire an interactive physical event rather than a scripted whack. Good players will learn

how to cushion the blow, thereby limiting the effect that the recoil may have on play. The

following parameters are used in Dynamic Recoil:

96 Understanding “Dynamic Sensations”

APPLE INC.

E}_(H|B_|T 1917 ,— PAGE 105

APPLE INC.
EXHIBIT 1017 - PAGE 106

Blast Direction

Blast Intensity

Dynamic Mass

Blast Resonance

Blast Decay

Blast Direction simply defines the direction that the

weapon is being fired.

Blast Intensity defines theioverall strength of the blast.

Dynamic Mass defines the simulated physical mass of the

weapon used by the DDP engine. A weapon defined with

large dynamic mass will recoil as if it where heavy, having

a strong kick that is difficult to counter. A weapon

definedwith a small mass will recoil as if it were light and

easy to wield, being very controllable during kick-back.

Blast resonance defines how the simulated mass will

resonate after the shock of the initial blast. A high

resonance parameter will result in a violent shaking after

the initial blast. A low resonance parameter will result in a

light tremble. Remember these are physical simulation

parameters, not canned routines over time, so how the user

grabs the stick, reacts to the blast, and cushions the blow

will greatly influence the result.

Blast Decay defines how quickly the simulated mass will

decay back to rest after the initial blast. A high decay

parameter will result in one or two oscillations. A low

decay parameter may result in a lengthy reverberation.

Again, this is a physical simulation parameter, not a

canned routine over time, so how the user grabs the stick,

reacts to the blast, and cushions the blow, will greatly

influence the resulting feel.

9’?

APPLE INC.

EXHIBIT 1017 - PAGE1 In

puma

APPLE INC.
EXHIBIT 1017 - PAGE 107

5.4 Dynamic Impact- Ultra-Realistic Collision Simulation

Impact is a common sensation used in gaming applications to simulate the feel of being

hit by an incoming object or slamming into an external obstruction. The incoming object

might be an asteroid careening into your space ship, a laser blast impinging on your robot-

W-aJl<er,.. or an opponent’s Indy—car bumping you around a tight turn. An external

obstruction might be the railing of a race track, the walls of a dungeon, or the back

bumper of the opponents car.

The simplest Impact sensation is just a jolt imposed in a given direction for a given

duration. A more sophisticated Impact might be a force profile scripted over a predefined

time period. These canned effects will convey that a collision event has occurred, but the

scripted nature of the event will cause the sensation to feel somewhat artificial. Because

such canned routines do not vary based on how the user reacts during the collision, the

scripted whack lacks realism. For example, if a user of a first-person action game runs

head first into a wall, a canned Impact could produce simple whack to represent the

collision. The canned Impact could even give a complex scripted profile that simulates

the feel of colliding with the wall and bouncing off. But, the collision is pre—planned and

just played back over time — how the user is holding the stick during the collision event

will not change the feel. For example, if the user is holding the stick rigidly during the

collision, the impact will not feel any different than if the user was holding the stick

loosely. Or if the user reacts to the collision by quickly pulling back, it will not feel any

different than if the user was caught off guard and hit the wall so unexpectedly he could

not react at all. What is needed is a new method for defining impact sensations that is not

just a scripted profile but actually accounts for the fact that real collisions depend greatly

upon how the interacting objects respond in real—time during the event. In other words,

what is needed is Dynamic Impact.

Dynamic Impact is a new method of defining and executing force sensations associated

with collision events. Dynamic Impact allows for very complex collision sensations with

minimal programming burden because it uses the advanced features enabled by the

distributed dynamic processing engine used by LFORCE 2.0 products. Rather than

merely scripting force profile, the programmer simply defines the physical properties of

the collision and lets the joystick’s DDP engine generate the forces in real-time based on

98 Understanding “Dynamic Sensations”

APPLE INC.

_EXH BLT 1017 :,,EAG_E 107
c~—_.._m._,_..._._.._—_.___ _.. N .. _. .. , _ _ _ ,_ , _ , __ ____ _m___ __ .

APPLE INC.
EXHIBIT 1017 - PAGE 108

how the user reacts during the collision. The result is a complex sensation that is easy to

define and that changes appropriately based on user actions. This makes the collision @

interactive physical event rather than a scripted jolt. By allowing such interaction, force

feedback becomes part of game play," not just an overlay. Good players will learn how to

minimize the disturbing effect of a collision by reacting appropriately to absorb the energy

in their palm. The following parameters are used to define the physics of the impact.

Impact Direction

impact Intensity

Dmarnic Mass

Elasticity

Collision Abs ogption

Impact Direction simply defines the direction from which the

impact came

Impact Intensity defines the overall magnitude of the impact.

Dynamic Mass defines the simulated physical mass of the

object controlled by the user. For example, in a driving game

it would represent the mass of your car, in an action game,

the mass of your character. A object defined with large

dynamic mass will impact forcefully (with substantial inertia

behind it) whereas an object defined with a small mass will

not impact with much momentum.

Elasticity defines how the object under your control (ship, car,

character) will respond to the collision. An elastic object will

compress and absorb much of the impact — this will create a

much softer feel that an inelastic object. which will collide

with a crisp crack. Of course how the user grabs the stick,

reacts to the collision, and cushions to impact will greatly

influence the feel.

Collision Absorption defines how quickly the collision

disturbance will be absorbed and dissipated after the initial

impact. A high absorption parameter will result in the

disturbance decaying after one or two oscillations. A low

absorption may result in a lengthy reverberation. Again, this

is a physical simulation parameter, not a canned routine over

time, so how the user grabs the stick, reacts during the

collision, and cushions the impact, will greatly influence the

resulting feel.

99

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 109

5.5 Dynamic Liquid - A Liquid Sensation that Jiggles

Liquid is a sensation often used in gaining environments where a character is submerged

in water, mud, or other viscous mediums. Typically liquid is simulated as simple damping

—« this creates the sensation of “drag” but not the dynamic jiggles and oscillations of water.

As a result, static damping falls short as a realistic liquid simulator. What is needed is a

dynamic liquid simulation whereinthe 1-rsers motions will cause disturbances in the liquid

and excite realistic jiggles and undulations. In other words, what is needed is Dynamic

Liquid.

Dynamic Liquid is an astounding technique for defining and ‘executing force sensations

representing motion within a liquid environment. Dynamic Liquid allows for very

complex undulations and jiggle disturbances with minimal programming burden because it

uses the advanced features enabled by the Distributed Dynamic Processing Engine used

by I—FORCE 2.0 products. Rather than merely defining simple damping and scripting

predefined vibrations, the programmer simply defines the physical properties of the liquid

medium and lets the joystick’s DDP engine generate the forces in real—time based on how

the user disturbs the simulated liquid. The result is a complex sensation that is easy to

define and is highly dependent upon user interactions. This makes the liquids seem like

interactive physical environments rather than a scripted sensations. Good players will learn

how to minimize the disturbing undulations caused when moving through a dynamic

liquid by controlling their abrupt motions. The following three parameters define the

physics of the liquid environment:

100 Understanding “Dynamic Sensations”

APPLE INC.

EXHIBIT 1017 - PAGE 109 =mamm=aum;m-emg

APPLE INC.
EXHIBIT 1017 - PAGE 110

Density

Settle

Viscosity

Density defines the thickness of the simulated liquid as felt

by the user — the greater the density, the larger the

disturbance generated when moving through the dynamic

liquid. A high density will feel like sloshing around in a

thick liquid while a low density might feel like mildly

disturbing a thin gas.

Settle defines -how quickly the undulations induced in the

liquid will settle down after a disturbance. A liquid with a

high Settle parameter will oscillate mildly. A liquid with a

low settle parameter will oscillate for a long time after the

disturbance. Again, this is a physical simulation

parameter, not a canned routine over time, so how the user

hold the stick and resists the repeated undulations will

influence how quickly or slowly the sensation settles.

Viscosity represents the resistance to motion felt object

under your control (ship, car, character) as it moves

through the liquid. High Viscosity will feel like rnud. Low

Viscosity will feel like water.

101

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 111

5.6 Dynamic Inertia - Adjust the Weight of Your Interface

Simulated weight is an interesting sensation that has many useful applications within

gaming environments, however there are few sensations that adequately emulate the feel

of heavy or light joystick or wheel. For example, it is desirable to make a joystick or

wheel feel “heavy” when controlling a big Vehicle like a tank or abomber and feel “light”

when controlling asmall vehicle like a hang—g1ider or scooter.

Dynamic_Inertiais a new command that enables accurate weight simulation by using the

distributed dynamic processing engine of LFORCE 2.0 products. To use dynamic inertia,

you simply define the dynamic parameters Inertia and Play as follows:

Inertia Inertia defines the felt weight of the joystick, wheel, or

other garning device.

flay Play defines a gap of free motion between the stick and

the mass. It feels like the mass is not attached to the stick

very well. This works very well for wheels since in real

steering systems, there is play caused by gear backlash.

102 Understanding “Dynamic Sensations”

APPLE INC.

EX IBIIJQ17 - PAGE 111

mu:

APPLE INC.
EXHIBIT 1017 - PAGE 112

5. 7 Dynamiccentemrift - Spring Origin Follows User Over Time

DynamicCenterDrift is an interesting command made possible by the distributed

dynamic processing engine of LFORCE 2.0 products. When using DynamicCenterDrift,

the joystick or wheel will be pulled to an origin by simulated springs of some stiffness.

This is very similar to static spring return commands used in older versions of LFORCE.

The new enabled feature is that if -the user stays in a given location for a period of time,

the origin will slowly drift to that new location. The sensation is very interesting and is

best understood by simply trying it. To define a DynamicCenterDrift, you simply define

the two dynamicparameters Stiffness, and Drift__Resistance. Ii

Stiffness Stiffness is the strength of the simulated restoring spring.

_ Drift Resistance Drift Resistance defines how quickly or slowly the origin

will drift to follow the current location of the interface.

103
APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 113

5.3 Dynamic Sling - Lets you feel a ball-on-a-string

Dynamic Sling is a unique sensation that simulates the feel of swinging a ball on the end

of a string. As with a real ball, the Dynamic Sling sensation is such that the faster you

swing the ball, the stronger the force you feel. The force pulls radially along the length of

the string, simulating the centripetal force pulling on the swinging mass. The string can be

rigid like a steel cable or compliant like rubber bungie chord.

The best way to understand Dynamic Sling is to of the interface device, such as the

joystick, controlling the location of a “bobbin” to which one end of the simulated string is

attached. The other end of the string is attached to a mass. Since a joystick is a two

dimensional interface, the motion of the mass and the bobbin is restricted to a plane. This

is represented graphically in Figure 5-1.

_ Bobbin Controlled by Joystick

Mass Swinging on String

Figure 5-1 Dynamic Sling: Bobbin and Mass

Imagine that the joystick interface controls the motion of the bobbin. As the user moves

the bobbin in the plane, the mass will move in the plane. If the user moves the bobbin in a

circular motion, the mass will swing around and around as it would in the real world. A

certain amount of physical coordination is required to get the mass spinning. This

physical coordination is highly dependent upon the feel of the mass pulling on the string.

Clearly this is a simulated interaction where user motion in real—time and mass feel in real

time are both critical to performance. In other words, the algorithm that updates the

104 Understanding “Dynamic Sensations”

APPLEINC.

-. . .m-.-_-.._ ._ .. ._ ._ , W. .__. Efl-||\|3.|,T1017-PAQE 113 . ,

APPLE INC.
EXHIBIT 1017 - PAGE 114

dynamic simulation of the mass-string interaction must read user position and update the

forces felt by the user very quickly (on the order of 1000 times per second). While the

host computer could perform this closed—loop simulation, the communication interface

between the host and the remote peripheral device is a bottleneck to rapid control. Also, if

the host performed this rapid control loop, it would slow down other critical tasks the host

needs to perform such‘ as updating the graphics and controlling game play.

Fortunately, the manufacturers of force feedback hardware have solved these problems by

giving the Distributed Dynamic Processing engine the ability to perform this closed loop

simulation locally. In other words, the processor on board the force feedback peripheral

device can track user motion, update the dynamic simulation of the “mass—o11—a—string”

based on how the bobbin would move based on joystick motion, and then update forces

applied to the user. The DDP engine can do this at ratesas fast as 1000 times per second,

without putting any burden on the host processor or on the communication interface.

There are two important methods of coordinate the Dynamic Sling sensation generated

locally by the DDP engine with software events happening on the host computer. The first

method is to customize the feel of the ball~string sensation using parameters. The host can

update the DDP engine by sending basic parameters that define the physics of the

interaction. The parameters include Ball_Mass, Srring_Length, String_C'omplz'ance, and

Ball_Dampz'ng. These four parameters allow for very diverse feel sensation.

The second method for coordinating the Dynamic Sling sensation generated locally by the

I-Force 2.1 DDP engine with software events happening on the host is to take advantage

of the Interim Reporting feature described previously in this section. As defined, Interim

Reporting allows the local processor on board the peripheral device to provide the host

with intermittent updates about the physical simulation. In this case, the processor reports

the location of the simulated mass with respect to the joystick location.

Why should the peripheral device report the locations of a simulated mass in addition to

reporting the locations of joystick itself? Lets say you are designing the next first person

fighting game and you want your character to be able to wield a mace. As you know, a

mace is a heavy metal ball with spikes that swings on the end of a chain. Your animators

have developed a killer graphical display of swinging mace. You have created a

compelling feel to go with the mace, by setting up your force feedback joystick with the .

105

APPLE INC.

EXHIBIT 1017 - PAGE 114

APPLE INC.
EXHIBIT 1017 - PAGE 115

appropriate Dynamic Sling parameters — you define the Ball_Mass, String_Length,

Stn'ng_Compliance, and Ball_Damping to make it feel just right. NOW you need to

coordinate the killer animation displayed by the host with the awesome feel performed by

the peripheral device. ‘How do you do this? With interim reporting -— just ask the

peripheral device to report to the host the location of the simulated mass with respect to

the joystick. The host can now use this data to display the mass in a location that

corresponds with the feel. The end result — a thoroughly compelling graphical and

physical representation that brings realism to a level never before possible.

106

Ball Mass

String Length

String Compliance

Ball Damping

Bass Mass defines the simulated physical mass of the ball on the

end of the string. The heavier ‘the mass, the stronger the pull for

a given spin velocity. Also, the stronger the mass, the more

energy you need to put in to get the ball spinning.

String Mass defines the simulated distance between the center

of the bobbin and the center of the mass. The longer the string,

the longer it takes for the mass to make a complete revolution

about the bobbin.

String Compliance defines the compliance of the simulated

cable that connects the bobbin and the mass. A compliant string

will give the mass a bouncy feel as it spins. A stiff string will

give the mass a smooth, rigid feel as it spins.

Ball Damping is best conceptualized as the “wind—resistance” on

the ball as it revolves around the bobbin. If the Ball_Darnping is

low, the ball will have little resistance to motion. This means

that if the user stops moving the bobbin, the ball will continue to

spin for a long time until its motion dies out. If Ball_Damping

is high, the opposite is true — the ball will come to rest very

quickly when the user stops moving. This parameter is best

understood by imagining what it would feel like to spin a ball on

the end of a string in air versus in water. In water, the ball

would come to rest very quickly if you stop spinning. In air, the

ball would make a few revolutions before coming to rest.

Understanding “Dynamic Sensations”

APPLE INC.

m|,E,XH,|B_|_]_'__1Q17 - PAGE 115

APPLE INC.
EXHIBIT 1017 - PAGE 116

5.9 Dynamic Paddle - Lets you feel a ball-paddle interaction

Dynamic Paddle is a compelling sensation that simulates the feel of hitting a ball (or

other projectile like a puck, asteroid, cannon-ball, etc...) with a paddle (or other compliant

object like a rubber—band, force—f1eld, pillow, etc...). As with a real ball-paddle

interaction, the Dynamic Paddle sensation is such that the faster the ball hits. the paddle,

the harder the impact. Also, how the user reacts during the ball—paddle interaction, greatly

changes the feel. For example, if the user Iries to cushion the blow and slow—down the

ball, the feel is very different than if the user tries to resist the blow and accelerate the ball.

The best Way to understand Dynamic Paddle is to think of the interface device, such as the

joystick, controlling the location of a “paddle” which has just been hit by a “ball”. The

weight of the ball, the velocity of the ball, the direction of motion of the ball, and the

stiffness of the paddle, all affect the feel of the interaction. All of these physical factors

can be defined with basic parameters such as the BallHMass, Initi'aLVelocz'ty,

Paddle_C'ompl1'ance, Paddle_Damping, and Gravity. Also, how the user moves during

the interaction greatly effects the feel. It is also important to understand that how the user

moves during the interaction also effects how the ball bounces off the paddle — a

cushioned blow will eject a slow moving ball while a stiff blow will eject a fast moving

ball.

To clarify this point, lets examine the ball—paddle interaction in more detail. The basic

baJl—paddle interaction can be represented graphically in the figure below. Of course this

physical interaction can be abstracted beyond the basic notion of a ball compressing and

rebounding off‘ a paddle — the physical sensation can represent any “elastic collision”

where amass impacts a flexible surface, compresses the surface, and then rebounds off

the surface. It could be an asteroid bouncing off a force-field, an acrobat jumping on a

trampoline, or a race—car car bouncing off a... Regardless of the metaphor used, the

physical interaction can be conceptualized as having two distinct stages — a compression

stage and a rebound stage. These are shown in Figure 5—2:

107

APPLE INC.

EX”3|

APPLE INC.
EXHIBIT 1017 - PAGE 117

Compression

Figure 5~2 Stages of Paddle Interaction

Because the user is controlling the location of the paddle during both the compression and

rebound stages, the user’s motions effects the physical behavior of the overall interaction.

If the user pulls the paddle back during the compression stage with skilled timing, the

impact will be cushioned and the rebound will be dulled. If the user pumps the paddle

forward during the rebound stage With appropriate timing, the paddle will pump energy

into the ball and it will leave the paddle With extra energy behind it.

Interim Reporting - Because the user’s reaction during the interaction affects the outcome

of the event — it is very useful to use the Interim Reporting feature of the I-Force 2.1

Processing Core described earlier in this chapter. This interim reporting feature serves

two function: a) to provide a real-time update of ball location with respect to the paddle

(joystick) during flue interaction and b) to report the final velocity of the ball when it

leaves the paddle so that flue host can update the software With an appropriate final state.

Let’s explore this feature further using the following example.

108 Understanding “Dynamic Sensations”

APPLE INC.

B__|T 1017 __P

APPLE INC.
EXHIBIT 1017 - PAGE 118

Example:

You are designing a game where simulated asteroids (balls) are going to impact your

space ship’s force field (paddle). The asteroids compress the force field and bounce off.

Now, lets say you make your game so that skilled players can deflect the asteroids towards

their opponents if they cushion the blow just right. Now, lets say -t11at your animator has

done a great job of representing the graphical impact of the asteroid hitting the force field

and bouncing off. At the same time, you create a compelling feel by defining the basic

parameters such as Ball_Mass, Initial Velocity, and Paddle_Cornpliance to represent the

feel of an asteroid hitting the space ship: All that is left is the coordination — at the

moment that the asteroid hits the space ship, you command the DDP engine of the force

feedback device to produce a Dynamic_Paddle sensation with appropriate parameters.

Those parameters reflect the initial velocity of the asteroid, so that the sensation correlates

Well with game play. Now the DDP engine computes the high-fidelity dynamic

simulation. With interim reporting, the position of the asteroid with respect to the joystick

is reported to the host. This value lets you update the animation to show how deeply the

force field is stretched during the collision.

Now, imagine that the user reacts to the blow and deflects the asteroid using a subtle wrist

snap so that it should continue forth and pummel an opponent ship. With interim

reporting, the final velocity of the asteroid is reported back to the host so the game can

maintain coordination and have the asteroid fly off in the right direction. This creates a

gaming interaction based so deeply on physical skill and dexterity that it is more like an

interactive physical sport than a passive visual game.

To use the Dynarnic_Paddle feature, programmers need only define the following simple

parameters.

Ball Mass Defines the simulated physical mass of the. ball impacting

the paddle. The heavier the mass, the stronger the impact.

Initial Velocigg Defines the physical velocity of the ball at the moment of

impact. This initial velocity has both a magnitude and

direction, both of which greatly affect the feel.

109

APPLE INC.

EXHIBIT 1017 - PAGE 118

APPLE INC.
EXHIBIT 1017 - PAGE 119

110

Paddle Compliance Defines the springiness of the paddle surface. A

Paddle Damping

Gravity

compliant paddle will stretch and snap back with a large

displacement as if it were a loose rubber band. A stiff

paddle will not stretch very far as if it were the tight

s1:rings of a tennis racquet. A

Defines how much momentum is lost within the paddle as

the ball bounces off. A paddle with low Paddle_’Damping

will repel a projectile with the same velocity as it had upon

impact. A paddle with high Paddle___Damping will absorb

much of the momentum during the interaction so that the

projectile bounces off much slower than when it impacted.

Defines a physical bias upon the projectile that represents

the acceleration of gravity. This parameter has both a

magnitude and a direction. It is useful for gaming

scenarios where the mass is a ball that is being bounced in

a gravitational field (a ball bouncing into the air off a

tennis racquet) but is not useful for scenarios where the

ball is not effected by a directional gravitational pull (like

the asteroid bouncing off a space ship).

Understanding “Dynamic Sensations”

APPLE INC.

EXHIBIT 1017 - PAGEV119

APPLE INC.
EXHIBIT 1017 - PAGE 120

5. 10 Dynamic Control Law

Dynamic Control Law lets the advanced programmer control the Distributed Dynamic

Processing engine directly by defining parameters at the lowest level. This is for the

ambitious programmer who wants to go beyond the previously defined dynamic sensations

and achieve the most general sensations possible within the DDP hardware limitations.

The best way to understand the Dynamic_Control__Law is to of the physical

simulation that is being performed by the DDP engine. This simulation includes a

dynamic mass that is connected to the peripheral device (Joystick handle, Steering Wheel,

etc...) by a simulated spring and a simulated damper. The graphical representation in

Figure 5-3 depicts this simple physical model. The Dynamic Mass is the block marked M

and the spring and damper are shown as the two graphical symbols connecting the mass to

the joystick. It should be noted that the following diagram shows one dimension,

Dynamic Control Law can be extended to two dimensions for 2D interface devices and

three dimensions for 3D interface devices.

Figure 5-3 Physical Model of the Dynamic Control Law

As you might have guessed, when the joystick moves, the simulated mass moves because

the spring and the damper link the two systems physically. Depending upon how the

mass, the spring, and the damper parameters are defined, the mass might jiggle, jerk, or

sluggishly lag behind the joystick. Also, there are initial conditions that can be defined to

help tune the feel sensation. These initial conditions include the initial position of the

111

APPLE INC.

EXHIBIT 1017 - PAGE 120

APPLE INC.
EXHIBIT 1017 - PAGE 121

mass with respect to the joystick (this defines an initial stretch of the spring) as well as an

initial velocity of the mass. Finally, there is an ambient damping parameter that defines

the simulated medium that the mass is moving in. A high ambient damping implies the

mass is in a thick fluid while a low ambient damping implies the mass is in air.

Below is a brief description of each parameter used by the Dynamic_Control_Law

sensation:

Dynamic Mass: The mass ofa dynamic body.

Dynamic Stiffness: The stiffness of a spring between the joystick and the

dynamicbody

Dynamic Damping: A damping resistance on the joystick based on the relative
velocity between the dynamic body and the joystick

Ambient Damping: A damping resistance on the dynamic body with respect to

a fixed frame

Initial Velocigg: The initial velocity of the dynamic body upon onset of the

sensation

 : The initial position of the dynamic body with respect to

the joystick handle defined upon onset of the sensation.

Deadband: The slop or play that is artificially induced between the

dynamic body and joystick.

Gravi : Defines a gravitational force acting on the Dynamic Mass.

Unlike in the real world, you can have gravity in any

direction (+y, —y, +x, or -X).

112 Understanding “Dynamic Sensations”

APPLE INC.

EXHIBIT 1017 - PAGE 121

APPLE INC.
EXHIBIT 1017 - PAGE 122

6. The Programming
Mode! for Simulated

FEEL

iE

APPLE INC. 7 ‘
EXHIBIT 1017 - PAGE 122

APPLE INC.
EXHIBIT 1017 - PAGE 123

6. 1 Overview

This Chapter introduces the programming foundation for developing feel sensations

within Windows and DOS enviromnents. The software structure presented is based on the

DirectX 5 force feedback interface that was designed through a collaborative effort of

Microsoft Corporation and Immersion Corporation. While the published DirectX 5

specification inherently includes esample structures for basic force feedback features, the

true power of the DirectX force feedback specification is itsextensibility. Inmany ways,

the DirectX 5 force feedback specification is simply a framework within which hardware

makers can define the features and functionality of their products. DirectX 5 allows

manufacturers of force feedback hardware to define force feedback functionality using

DirectX upon initialization of a hardware device. This is achieved through a polling

process where the hardware reports its capabilities to the host allowing DirectX to

enumerate the supported features.

The fact that every manufacturer of force feedback hardware can provide a unique and

distinct force feedback featL1re—set under DirectX is potentially a problem for

programmers. How do you know what basic feature—set should be used to so that you

support the fitnctionality of the greatest number of devices? Fortunately for

programmers, there is a hardware—standard called LFORCE that has been adopted by most

makers of gaming peripherals to solve this very problem. LFORCE is the processing core

that has been endorsed by major makers of force feedback products including Logitech

Inc., CH Products, Advanced Gravis, InterAct, SC&T International, ACT Labs,

Interactive IO, Nuby Manufacturing and others. As listed in Section 1.5, each of these

makers will ship product (or is currently shipping product) that uses the licensed I-FORCE

processing core. Currently shipping devices use the I-FORCE 1.01 core while future

products will support the I-FORCE 2 core.

Because Immersion Corporation, the inventor of I-FORCE, was a collaborator in the

definition of the DirectX 5 specification, DirectX is capable of supporting all the features

of the advanced I-FORCE 2.0 processing core. The basic features are explicitly supported

within the published DirectX specification. The advanced features are enabled through the

LFORCE Extensions to DirectX. These LFORCE extensions are enabled through the

enumeration process that automatically occurs upon connecting to any LFORCE device.

114 The Programming Model for Simulated FEEL

APPLE INC.

' EXHIBIT jO17 - PAGE 123

APPLE INC.
EXHIBIT 1017 - PAGE 124

The following pages will describe the DirectX foundation and describe how to program

This seamless integration of DirectX software and advanced I—FORCE hardware allows

programmers to continually take advantage of the latest force feedback features being

offered by hardware makers.

for force feedback devices.

115

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 125

"wt

6.2 The Conceptual Model Shared by DirectX and I-FORCE

When programming force feedback devices, the fundamental goal is to design and

implement feel sensations, referred to as “Effects”. As you might expect, to design a

force feedback sensation under DirectX and LFORCE you use a simple command

CreateEffect that creates and initializes an instance of the desired feel sensation. To

inquire what types of sensations are supported by a particular force feedback hardware

device, you poll the device with E11umEffccts. To cause a force feedback device to

generate a sensation defined by a given effect, you would use StartEffect. Of course

there are many other functions that allow you to find the status of an effect, terminate an

' effect, but overall the process is simple and clear.

The Effects that force feedback devices are capable of producing are decomposed into

three high level classes. As described though out this book, the classes include

Conditions, Waves, and Dynamics. Each of these classes of sensations can be further

decomposed into sensation types. For example, Springs, Dampers, and Friction are all

types of Condition Effects. Sine—Wave, Sguare-Wave, and Triangle-Wave are all types of

Wave Effects. Dg1_1arnic—Recoil, Dynamic—Liguid, and D3garnic—Collision are all types of

Dynamic Effects. I

When defining a force feedback sensation, the first step in the process is to choose the

type. Once a type is chosen, DirectX will automatically know what parameters the force

feedback device requires to instantiate that type. For example, if you were to create an

effect of type Spring, Direct:X would know that the parameters required to define the

spring sensation include the positive stzflness, negative safiirzess, spring oflret, positive

saturation, negative saturation, and deadband. Such parameters are all stored in a

l)irectX structure called the Type Specific Parameter Structure.

For efficiency, each class of force feedback sensation has it’s own type specific parameter

structure that is used as the template for most of the sensation types within that class. For

example, there is a Condition Struct that is used for most Condition Effects. There is a

Periodic Struct that is used for most Wave Effects. And there is a Dynamic Struct that

is used for- most Dynamic Effects. Of course there are some types of sensations in each

class that have parameter requirements that are unique. For example, Ramp is a type of a

116 The Programming Model for Simulated FEEL

APPLE INC.

EXHIBIT 1017 - PAGE 125

APPLE INC.
EXHIBIT 1017 - PAGE 126

Wave that is not periodic and therefore has its own struct called the Ramp Struct.

Similarly, Texture is a Condition that has unique parameters and therefore has its own

struct called the Texture Struct. As will be described in great detail in the following

section, there are also basic type specific parameter structures such as the Constant Struct,

Wall Struct, Barrier Struct, Circle Struct, Advanced Periodic Struct, and Custom Struct.

As a Whole, the Effect Structure allows a force feedback sensation of any type to be

defined under DirectX. Depending upon the effect type, the appropriate parameter

structures are used. The complete architecture can be represented as follows:

Effects Structure

In S ecific Parameters Ptr

 Envelope Struct

Condition Struct Custom Strnct DY”3mi° St1'“‘3t

Pos Coeffifient
Sam 16 period

2 Initial V610“
Periodic Struct Ramp StrnctgDeadBand

D adB d

Constant Struct 6 an
—ffS8t End

. -

Direct-X 5.0
-- Advanced Periodic

Battier Strllct Wall Struct Texture Strnct Strnct

Direct-X 5.0 with I—FORCE Extensions

Figure 6-1 Complete Architecture

117

APPLE INC.

AI: I ‘A, -

APPLE INC.
EXHIBIT 1017 - PAGE 127

How Does DirectX know what parameters are needed for a particular Effect type?

Simple, every type of force feedback sensation whether it be a textureor a spring has a

globally unique 1D, or GUID associated with it. The hardware driver that links the force

feedback peripheral to DirectX knows what parameters are required based on the GUID

definition for each and every sensation. V

The following pages will describe each of the DirectX structures in greater detail.

118 The Programming Model for Simulated FEEL

APPLE INC.-
EXHIBIT 1017 - PAGE 127

APPLE INC.
EXHIBIT 1017 - PAGE 128

6.3 The Effect Structure

As described above, the primary aspect of defining an Effect is to specify the type. Once

a type is defined, there are a number of type specific parameters that need to be define; In

addition to the parameters that are unique to the given sensation type, there are number of

universal parameters that need to be defined for all Effects. These universal parameters

"include Duration, Direction, figs, Tiigger Button, and Trigger Repeat Interval. All of

these parameters, along with the type definition are stored within the Effect Structure. In

addition, if the effect is of the Wave class, there is an additional set of Envelope

Parameters need to be defined. These Envelope parameters are stored within an Envelope
2 ‘Structure as shown below:

Effects Structure

0 to 65 minion
Direction tr to direction info

Axes tr to axis infor

Trigger Button id or offset

0 to 65 million

ptr to envelope

ptr to effect type

 Trigger Repeat Interval

Envelope Ptr

Type Specific Parameters Ptr

Duration: Duration is a parameter that simply defines how long the given

sensation will be active for. Duration can be any value between 1

and 65 million where the units are nncroseconds. Therefore the

maximum duration for a given effect is about 65 seconds.

Anything longer than 65 seconds would essentially be an infinite, or

endless Effect. This can be achieved using the #DEF[NE Value

 .

Axes: Axes is a parameter that defines which axis or axes are influenced

by the given effect. For example, a spring effect could be applied

to, a single axis of a joystick or could be applied to both axes of a

119

APPLE INC.

EXHIBIT 1017 - PAGE 128

APPLE INC.
EXHIBIT 1017 - PAGE 129

Direction:

Trigger Button:

joystick. In the general case, it could be applied to n axes of an N

dimensional interface. '

Direction is a parameter that defines the direction the given effect is

to be applied. Of course this depends upon which axes are active.

Direction conventions can be Cartesian, Polar, or Spherical and will

vary from one device to another. The case of a single axis device is

easily defined. In the case of a multiple axis device, the situation is

complicated as the axes in the device may or may not be directly

related to each other. For a complete description of Direction

Conventions, see section 6.5, later in this chapter.

Trigger button is a parameter that is directly related to the Button

Reflex concept introduced in section 1.20 of this text. As described

previously, there are often times when you want a given effect to be

generated (triggered) in response to a local event such as the press

of a button on a joystick. The Trigger value indicates which button

should trigger the effect being defined.

Trigger Repeat Interval:

Gain:

120

Trigger Repeat Interval is a parameter that is also related to the

Button Reflex concept introduced in section 1.20 of this text. As

defined by the Trigger Button parameter above, a given effect can

trigger in response to a locally detected button press. If the player

holds that button down for a given period, it is often desirable to .

have the effect trigger again and again. The Trigger Repeat Interval

defines how long the user must hold the button down for the effect

to repeat. This value is very useful in coordinating recoil sensations

with automatic weapons that fire repeatedly at a given interval. The

Trigger Repeat Interval can be any value between 1 and 65 million

Where each increment is one microsecond.

Gain is a parameter that is a global scaling factor for the magnitude

of the given effect. This is not a very widely used parameter.

The Programming Model for Simulated FEEL

APPLE INC.

|E,,)$|_,-|_|_B|T 1017 — PAGE 129

mm

APPLE INC.
EXHIBIT 1017 - PAGE 130

The Envelope Structure is used to shape Wave effects as described in Section 4.2.

entitled Impulse Wave Shaping. The Envelope structure takes four parameters that

represent tl1e Impulse Level, Impulse Time, Fade Level and Fade Time. To understand

the usage and implications of these parameters on a Wave effect, please refer to Section

4.2.a of this text.

Envelo n e Struct

0- to 55 million

Impulse Level Impulse Level is a variable (defined as a percentage of full) that

describes how much “kick” should be delivered upon initial

execution of the Wave as shown in the diagram below. Delivering

sensations with a sharp initial Impulse is an important way to

accentuate the sensation. This is because the human perceptual

system is more sensitive to sharp transients in force than it is to

static magnitude of force. The effect of Impulse Level can be

described as effecting the “crispness” of a physical sensation. An

effect with a high Impulse Level will feel abrupt and intense. An

effect with a low Impulse Level will feel subtle and subdued.

Settle Time Settle Time is a variable (defined as a duration in microseconds)

that describes how quickly the Force Signal will settle from the

Impulse Level to the steady state magnitude. Typically the Settle

Time is very short as compared to the Duration of the entire Wave.

While the Duration of an Wave can be on the order of hundreds of

milliseconds or even seconds, Settle Time is usually on the order of

tens of milliseconds.

Fade Level Fade Level is similar to Impulse Level, but it defines the g
termination level rather than the onset level of a wave sensation. ' g

Like an Impulse, a Fade is most effective when it dictates a very

sharp transition in force rather than a slowly changing force. For

this reason, Fade Level is often set to zero.

121

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 131

Fade Time Fade Time is similar to Settle Time in that it defines how quickly

the Force Signal will settle from the steady state magnitude to the

Fade Level. This variable is only useful in the rare situation when

you want a force sensation to slowly decay.

Note: The Steady State Magnitude level shown in the diagram below is not defined by a

parameter in the Envelope Struct. Instead it is defined by a Magnitude Parameter that is

part of the Periodic Struct as shown in Figure (The Programming Model for Simulated

FEEL) and described in Section 6.5 .b. This is because the Magnitude is a general

parameter for all Periodic Waves, regardless ofwhether or not an envelope is applied‘.

Steady State Magnitude
Impulse
Level

Figure 6-2 Envelope Parameters

Type Specific Structs: Having defined the Effect Strnct and the Envelope Strnct, the §
only part of the force feedback data structure left to define are the Type Specific Structs. ‘I
As described previously, the overall Effect Struct includes a Type Specific Parameter

Pointer that points at additional Parameter Structs specific for the type of sensation

selected. The following sections of this text describe each of these sensation types in

detail.

122 The Programming Model for Simulated FEEL

APPLE INC.

E)(_|W-l|gI3_|_T 1017 — PAGE 131

APPLE INC.
EXHIBIT 1017 - PAGE 132

6.4 The Type Definitions

As described in the previous section, the key step in building a force feedback sensation -is

defining the type of the Effect. Every type has a, unique GUID that represents the given

sensation. All force feedback devices will report which upon mitialization, what effect E

types it is capable of producing. While there is no standard’ set of sensation types, all

force feedback peripheral devices that employ the I—FORCE 2.0 hardware core can

support the following master set of sensations:

6.4.a Condition Type Definitions

Type Specific Parameter Struct M Envelope
St: s cm:

sang No
Damer No
Inertia Condition Struct NO

Friction No
Angle sang No
Axis Banner No
Angle Barrier Barrier Struct NO

Axiswan No
maglewan No
Tame No

Type

123

APPLE INC.

._ 07‘_.

APPLE INC.
EXHIBIT 1017 - PAGE 133

6.-4.b Wave Type Definitions

. . Struct . Snort.

:
_
_
j

:
Swee Triangle Wave Advanced Periodic Struct

 Bi

E

E

E

E

E1

E

E

E

E2
swee saw-Down:
—
—

E

E

5%

6.4.0 Dynamic Type Definitions

124 The Programming Model for Simulated‘FEEL

APPLE INC.

W EXHIBIT 1017 — PAGE 133

APPLE INC.
EXHIBIT 1017 - PAGE 134

6.5 Direction Conventions

Direction conventions can be Cartesian, Polar, or Spherical and will vary from one device

to another. The case of a single axis device is easily defined. In the case of a multiple axis

device, the situation is complicated as the axes in the device may or may not be directly

related to each. other. For example, in a joystick, the X and Y axes are related by the

motion of the stick itself. However, in a steering whee}? device with a pedal attachment,

the motion of wheel is completely independent of that of the pedals. In considering

multiple axes devices, the concept of direction should be applied to axes that are directly

related to one another.

6.5.a 1D Devices

A single axis device will have the positive direction defined as a force output that would

oppose displacement in a positive direction on the axis.

6.5.b 2D Devices

A two axis device can be represented as the X and Y axes of a joystick. If the direction is

defined as Polar, then the direction is the angle the force is COMING FROM based on the

stick’s perspective. Directions are also defined based on the compass angles. For

example, a force coming from behind the stick on the right side would have a direction of

1 35°.

6.5.c 3D Devices

A three axis device can be represented by using the definition of a spherical coordinate

system. Two angles are used in this definition. The first describes the rotation in the XY

plane from the x axis. This is angle starts at zero when the force is coming from the

125

APPLE INC.

. 7 - PAGE 13. _

APPLE INC.
EXHIBIT 1017 - PAGE 135

positive X axis direction and increases as the force rotates to be from the positive Y axis.

The second angle describes the rotation of the force away from the positive Z axis. For a

force coming purely from the positive 2. direction, this angle has a value of 0 degrees. For

a force purely in the XY plane, this angle has a value of 90 degrees.
C

Figure 6-3

6.5.d nD Devices

A device with more than 3 axes will apply additional forces as rotational moments only.

The specification of these moments is defined as the rotational components around the X,

Y, and Z axes.

126 The Programming Mode] for Simulated FEEL

APPLE INC.

' at mEI:JI.|':.'h(Msl.mlii.wwmW . E

APPLE INC.
EXHIBIT 1017 - PAGE 136

6.6 Type Specific Parameter Structure

6.6.a Condition Struct

This struct is used for Condition effect types that include Spring, Damper, Inertia,

Friction, and Angle Spring. The parameter block is as shown below.

Condition Struct

. Pos. Coefficient /Neg. Coefficient:

These values correspond with the physical constant for the

particular condition. For example, for Springs these values

represent the Stiffness for positive displacement and the Stiffness

for negative displacement. For Dampers these values represent the

Damping for positive velocity and the Damping for negative

velocity. For Inertia it represents the Mass for positive

accelerations and the mass for negative accelerations (Note, most

hardware devices only allow a positive coefficient for Inertia). For

Friction these values represent the Friction Coefficient for positive

and negative motions. See Chapter 3 for a more detailed

description of the above physical properties.

Offset: This tells the peripheral device where to make the switch between

Positive and Negative Coefficients. This is most clear by looking

at the diagrams in Chapter 3. For example, in a Spring Condition,

the Offset is the location (defined as an offset from 0) where the

spring flips from stretching to compressing. In a Damper

127

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 137

Condition, the Offset is the velocity (defined as an offset from 0)

where the velocity swaps from positive to negative damping.

Offset is usually not used for Inertia or Friction.

Pas. Saturation / Neg. Saturation:

For all ‘Condition types, these values simply define a maximum

positive force and a maximum negative force that can be produced

by the given Effect. This is useful for limiting how much influence

the effect might have upon the user. For example, in a Spring

Condition these values represent how much force can be imposed

upon the peripheral during positive and negative displacements

respectively.

Defines the size of a region around the Offset point where the force

output from the given Condition is zero. This is best understood by

referring to Chapter 3.

Deadband:

6.6.b Periodic Struct

This struct is used for Wave effect types that include Sine Wave, Square Wave, Triangle

Wave, Saw-Up Wave, and Saw-Down Wave. Please refer to Chapter 4 for a complete

description of these Wave effect types.

Periodic Struct

Magnitude
Offset

0 to 10,000

—10,000 to 10,000

0 to 65 million

0 to 35999

W

Magnitude:

Defines the magnitude of the periodic signal. It should be noted

that if an envelope is applied to the Wave effect, the Magnitude is

the “steady state” level of the sensation - the envelope parameters

define the starting and ending levels. The value is defined as a

percentage of maximum force capability of the given device.

128- The Programming Model for Simulated FEEL

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 138

Offset: The baseline level for the periodic signal. In other words, if an

Offset is defined, the periodic signal will oscillate about the Offset

value rather than about the zero force level. The value is defined as

a percentage of maximum force capability of the given device.

Period: The duration of a single cycle of the given periodic function. This

is defined graphically in Chapter 4. The value is defined in

microseconds.

Phase: Determines where in the wave-form the periodic sensation begins.

This values is defined in hundredths of degrees.

6.6.0 Constant Struct

This struct is used to produce constant forces. Since these forces are generally produced

as a function of time, the Constant Struct is considered part of the Wave class of

sensations.

Constant Struct

Magnitude -10,000 to 10,000

Magnitude: Defines the magnitude of the constant signal. It should be noted

that if an envelope is applied to the constant signal, the Magnitude

is the “steady state” level of the sensation -- the envelope

. parameters define the starting and ending levels. The value is 3

defined as a percentage of maximum force capability of the given

device.

129

APPLE INC.

. EB‘.. ...

APPLE INC.
EXHIBIT 1017 - PAGE 139. .=w,a-av-mg ~ .._,n_...... ...

6.6.d Custom Struct

This struct is used to produce a canned Wave sensation that is defined as sequence of

discrete force values. The data that represents the digitized force profile is stored in a

force array. The array may contain data for a single axis (single channel) or may contain

force Values that are to be applied to multiple axes (channels). Each element of the array

is a force sample that is to be applied to the device for a duration known as the sample

period.

Custom Struct

Channels

Sample Period

Samples
Force Data Ptr

Channels: The number of channels or axes represented in the force array

Sample Period: The duration of each sample in microseconds

Samples: The number of samples stored in the force array. It must be an

integral multiple of the Channels

Force Data Ptr: A pointer to the array of force values.

6.6.e Ramp Struct

This struct is used to Wave effect representing a linearly rarnping force value. The ramp

is defined as a starting and ending value. The duration of the ramp, like all effect

durations is defined in the Effect Structure.

Ram 1 Struct

—10000 to 10000
End —l0000 to 10000

Start: The starting value for the ramping Wave fonn

End: The ending value for the ramping wave form

130 The Programming Model for Simulated FEEL

APPLE INC.

EXHIBIT 1017 - PAGE 139

»«-m-

APPLE INC.
EXHIBIT 1017 - PAGE 140

6.6.1‘ Dynamic Struct

This struct is used for Dynamic effect types that include Dynamic Recoil, Dynamic

Impact, Dynamic Liquid, Dynamic Inertia, Dynamic Center Drift, Dynamic Control Law,‘

Dynamic'S]ing, Dynamic Paddle. Review Chapter 5 for a complete descliption of these

Dynamic effect types.

De-Jnamic Struct

.

Dynamic Mass: The simulated mass attached to the peripheral device handle.

Dynamic Stiffness: The stiffness of a simulated spring between the simulated mass and

the device handle

Dynamic Damping: The damping of a simulated damper between the simulated mass

and the device handle.

Air Damping: The damping between the simulated mass and the surrounding

environment

Initial Velocity: The starting velocity of the simulated mass upon inception of the

Dynamic effect.

InitialPosition. The starting position of the simulated mass with respect to the

handle of the peripheral device upon inception of the Dynamic

Effect. This position essentially defines a pre—stretch of the

simulated spring that connects the mass to the handle.

131

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 141

Dead—Band:

Gravity:

Interim Reporting:

132

Defines the size of the “slop” that exists between the simulated

mass and the peripheral

Defines a gravitational force acting on the Dynamic Mass. Unlike

in the real world, you can have gravity in any direction (-I-y, —y, +X,

or —X).

Defines whether intermediate position and/or velocity data of the

Dynamic Mass should be reported to the host appiication for

synchronizing graphics. This property will be supported in the

Advanced Dynamic struct.

The Programming Mode] for Simulated FEEL

APPLE INC.

EXHIBIT 1017 - PAGE 141

APPLE INC.
EXHIBIT 1017 - PAGE 142

6.6.9 Barrier Struct

This struct is used for Barrier Sensations described in detail in Section 3.8. A Barrier

creates the feel of encountering a hard surface that can be penetrated. If you push into the

Barrier with enough force, you will “pop” through to the other side. The feel of the

penetration is governed by hardness and thickness parameters as described below.

Barrier Struct

Pos. Hardness I Neg. Hardness:

Defines how rigid or compliant the surface of the barrier feels when

pressed against from the positive or negative direction respectively.

Thickness: Governs how easy or difficult it is to penetrate a given Barrier. A

thick Barrier will be hard to penetrate and a thin barrier will be easy

to penetrate. Of course the hardness parameters also affect

penetration.

Offset: Defines the location of the barrier with respect to the origin. This is

usually a distance along a single axis or (for multiple axis effects) it

is a radial distance along a radii whose orientation defined by the

Direction parameter of the Effects Struct.

Angle: Defines the compass angle of the barrier in hundredths of a degree.

Su1jfaceFrictz'on: Defines the rubbing resistance felt when pushed up against the

barrier surface and moving along the length of the barrier. This

property will be supported in the Advanced Barrier struct.

133

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 143

Surface Texture: Defines the rubbing texture felt when pushed up against the barrier

surface and moving along the length of the barrier. This property

will be supported in the Advanced Barrier struct.

134 The Programming Model for Simulated FEEL

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 144

6.6.h Wall Struct

This struct is used for Wall Sensations described in detail in Section 3.7. A Wall creates

the feel of encountering -a hard surface that can: Q be penetrated. The feel of pushing

against the Wall as well as rubbing along. the Wall is governed by the parameters

described below.

Wall Struct

Hardness:

Sense:

Offset:

Angle:

Surface Friction:

Surface Texture:

Off

 —10000 to 10000

Defines how rigid or compliant the surface of the wall feels when

pushed against

Simply defines which way the wall is facing (i.e., which side of the

Wall you are on).

Defines the location of the Wall with respect to the origin. This is

usually a distance along a single axis or (for multiple axis effects) it

is a radial distance along a radii whose orientation defined by the

Direction parameter of the Effects Struct.

Defines the compass angle of the wall in hundredths of a degree.

Defines the rubbing resistance felt when pushed up against the wall

surface and moving along the length of the wall. This property will

be supported in the Advanced Wall struct.

Defines the rubbing texture felt when pushed up against the wall

surface and moving along the length of the wall. This property will

be supported in the Advanced Wall struct.

135

APPLE INC.

.1017 ‘ PG .

—=g.m=.=mmmmm=mm.=~wm

APPLE INC.
EXHIBIT 1017 - PAGE 145

Clipping:

136

This is a binary parameter that can be ON or OFF as described in

detail in Section 3.7. When ON, this parameter prevents the

hardware peripheral from reporting position data that represents

penetration of the wall, even though the wall is not truly rigid.’ In

other words, the hardware devices enhances the iflusion of rigidity

by “clipping” the position data when the wall is penetrated. This

property will be supported in the Advanced "Wall struct.

The Programming Model for Simulated FEEL

APPLE INC.

EXHIBIT 1017 - PAGE 145

APPLE INC.
EXHIBIT 1017 - PAGE 146

6.6.i Advanced Periodic Struct

This struct is used for Advanced Periodic Wave Sensations described in detail in Chapter

4. This struct is very similar to the standard Periodic Struct. In fact, the Magnitude,

Offset, Period, and Phase parameters are identical. However, the Advanced Periodic

Struct include 4 additional parameters that greatly increase the flexibility of Wave

sensations as described below:

Start Delay 0 to 65 million

-10000 to 10000
-10000 to 10000

Advanced Periodic Struct g

Start Delay: This parameter that allows the peripheral device to wait some

period before starting the given periodic function of force versus

time. This allows multiple Waves to be triggered at the same time

but allows them actually start playing forces at staggered intervals.

This parameter can therefore be used to create very interesting

Sweep Start /Sweep End: While standard periodic waves can only be generated

along a given direction, Advanced Periodic can play the periodic

form such that the direction sweeps between a sweep start angle

and a Sweep end angle. This feature can only be used on multiple-

occurs at a linear rate over the duration of the Wave sensation.

Sweep is described in more detail in Section 4.2c

Sweep Sense: This simply defines which way the sweep occurs between the Start

and End angles. This canbe either clockwise or counter clockwise.

137

APPLE INC.

sensations composed of multiple sequenced periodic waves. E

degree of freedom hardware devices such as joysticks. The sweep 3

EXHIBIT 1017 - PAGE 146

APPLE INC.
EXHIBIT 1017 - PAGE 147

6.6.1‘ Texture Struct

This struct is used for Texture Sensations described in detail in Section 3.6. A Texture is

a spatial condition that gives the user a feel similar to dragging an object over a rough

surface like a metal grating. The Texture sensation is defined by four simple parameters

as defined below.

Texture Struct

Pos. Roughness / Neg. Roughness: Roughness defines the intensity of the texture

Spacing:

Density :

138

sensation. You can think of Roughness as the grit of sandpaper, the

feel depends both on the grit and how you rub your hand over it.

Quality force feedback devices allow you to define a positive

roughness and a negative roughness such that the intensity of the

texture depends upon which direction the interface device is

moving.

Spacing defines the center to center spacing between the “bumps”

in the texture. The smaller the spacing the finer the texture.

Density defines the width of the “bumps” in the texture with a

range of 1 to 10000 where 5000 means 50% of the center to center

spacing of the bumps. A small density means the bumps are small

with respect to the empty space between them.

The Rrograrrirning Model for Simulated FEEL

APPLE INC.

EXHIBIT 1017 - PAGE 147

APPLE INC.
EXHIBIT 1017 - PAGE 148

7. implementation of

Force Feedback using

Directlnput

APPLE INC.

. . |E.|.-M1. .. AGE..8...—

APPLE INC.
EXHIBIT 1017 - PAGE 149

7.1 Overview

This chapter describes the programming details for designing force feedback sensations

using Directlnput from Microsoft. As you will find in the sections below, the process is

clear and methodical, but is somewhat involved. As a means of accelerating and

sinaplifying this detailed process, Immersion Corporation has developed I-FORCE

Studio, a toolset for DirectX. Using the I-FORCE Studio toolset (as described in detail in

Chapter 9), programmers can define force feedback sensations using an intuitivegraphical

environment ~ once these sensations are designed, the LFORCE tools automatically

generate the Directlnput code for you.

While the LFORCE Studio toolset frees you from the effort of creating the force feedback

code described in this chapter, it is important that you review the process described below

so you understand how to use and modify the automatically generated code. The

following sections cover the basics of Directlnput specifically related to force feedback.

It does not cover topics such as setting up Directlnput and handling keyboard and mouse

input. Those topics are covered in Microsoft’s Direct X 5.0 SDK. For your convenience,

many of the examples below are similar to those provided within the Direct X 5.0 SDK

but have been specifically tailored to force feedback implementation.

140 Implementation ofForce Feedback using Directlnput

APPLE INC.

EXHIBIT 1017 - PAGE149

 mwmwfidq

APPLE INC.
EXHIBIT 1017 - PAGE 150

7.2 Enumerating Directlnput Force Feedback Joysticks

Enumerating input devices is a required step in Directlnput. You can choose to enumerate

only force feedback joysticks that are attached to the system. The following example using

IDirectInput::EnumDevices does just that.

// already initialized earlier

// LPDIRECEEINPUT lpdi;

ERESULT hr;

hr = lpdi—>1pVthl—>EnumDevices(lpdi, DIDEVTYPE_JOYSTICK, _

Initcroystickcallback, lpdi , DIEDFL__ATTACHEDONLY | DIEDFL_FORCEFEEDEACK) ;

A pointer to the Directlnput interface lpdi is required.

DIDEVTYPEJOYSTICK is a constant that specifies that the device must be a joystick.

Im'tJoystickCallback is the address of your callback function that initializes a joystick

each time one is found.

The fourth parameter can be any 32-bit value that you want to make available to the

callback function. It can be the pointer to the Directlnput interface or a globally unique

identifiers (GUIDs) that will be used to create device objects.

The flags DlEDFL_ATI‘ACHEDONLY I DIEDFL__FORCEFEEDBACK will enumerate

only devices that are physically attached to the computer and that support force feedback.

141

APPLE INC.

EXHIBIT 1017 - PAGE 150

APPLE INC.
EXHIBIT 1017 - PAGE 151

7.3 Creating the Dire-ctlnput Force Feedback Device

To access force feedback in Directlnput, you must create IDirectInputDevice2 objects

rather than -IDirectII1putDevice objects. The following function is a C or C++ wrapper

for CreateDe-vice that attempts to obtain the IDirectInputDevice2 interface.

HRESULT IDICz:eateDevice2(LPDIRECTINPUT lpdi,

REFGUID rguid,

LPDIRECTINPUTDEVICE2 IpIF2DeViee2)

LPDIRECTINPUTDEVICE lpDIDevice;

HRESULT hres:

// create a temporary standard DI device

hr = lpdi—>lpVtbl~>Createnevice(lpdi, rguid, &lpDIDevice, NULL);

if (SUCCEEDED(hr)) {

// create a DI device2 that supports force feedback

hr = lpDIDevice—>lpVbl—>QueryInterface(lpDIDevice,

&IID_IDirectInputDevice2,&lpIF2Device2);

// release temporary standard DI device

lpDIDevice—>1pVtbl—>Release(1pDIDevice);

} else {

*lpIF2Device2= 0;

}

return hr;

The function declares a temporaiy local pointer to a Directlnput device, l_pDIDevice.

Once the temporary device is created, IDirectInputDevice::QueryInterface is used to

get a pointer lpIF2Dev:'ce2 to a IDirectInpntDevice2 device which supports force

feedback. The ternporaiy IDirectInputDevice pointer can then be released.

The REFGUID rguid identifies the instance of the IDirectII1putDevice2 interface to

create and should be returned by IDirectInpI1t::EnumDevices.

142 Implementation of Force Feedback using Directlnput

APPLE INC.

.H'B' ..A ._.

APPLE INC.
EXHIBIT 1017 - PAGE 152

7.4 Getting Directlnput Force Feedback Device

Capabilities

Use IDirectInputDevice::GetCapabilities to determine if the device supports force

feedback, and if so, whether it supports force feedback capabilities such as force

saturation and positive and negative coefficients. This method returns the data in a

DIDEVCAPS structure. T

Here’s an example that checks Whether the joystick suppdrts force feedback and is
attached:

// LPDIRECTINPUTDEVICE2 lpIF2DeVice; // initialized previously

DIDEVCAPS DIIF2DeviceCaps;

HRESULT hr;

BOOLEAN HasIF2 ;

DIIF2DeviceCaps.dwSize = sizeof(DIDEVCAPS);

hr = 1pIF2Device—>lpvtbl->GetCapabilities(lpIF2Device, &DIIF2DeVCaps);

EaeIF2 = ((DIIF2DevCaps.dwF1ags & DIDC_ATTACEED)
&& (DIIF2DevCaps.dwF1ags & DIDC_FORCEFEEDBACK));

143

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 153

7.5 Generating Directlnput Force Feedback Device
Effects

Example: Spring and Texture

To create an LFORCE 2 effect, you must use the IDirectInputDevice2::CreateEffect

member. You can use IDirectInputDeVice2::EnumEffects to check if the desired effect

is supported by the device. Once the effect is created, you must use the to

IDirectInputEffec.::D0wn1ead and IDirectInputEffect::Start members to download

and start the effect on the joystick.

Below is an example that creates and starts a Spring effect on the X—axis of the joystick

and a Texture on the Y-axis:

// LPDIRECTINPUTDEVICE2 lpIF2Device; // initialized previously

LONG rglDirections[2};

DWORD rgdwAxes[2];

DIEFFECT dieffect;

DICONDITION dicondspring;

DITEXTURE ditexture;

LPDIRECTINPUTEFFECT lpdieffstiffspring;

LPDIRECTINPUTEFFECT lpdieffwashboard;

HRESULT hr;

dieffect.dwSize = sizeof(DIEFFECT);

dieffect.dwSamplePeriod = 0; // use default sample period

dieffect.dwTriggerButton = DIEB_NOTRIGGER:

dieffect.dwTriggerRepeatInterval = 0;

dieffect.rgdwAxes = rgdwAxes;

dieffect.rglDirection = rglnirections;

dieffect.dwGain = 10000; // maximum gain

dieffect.dwFlags = DIEFFfiPoLAR;

rgdwAxis[0] = DIJoFS_X; // X axis

rgdwAxes[1] = DIJOFS_':[; // Y axis

rglDirections[0] = 0: // specified in hundredths of degrees (not used by

conditions)

rglDirections[1] = 0; // must be 0 for polar coords

144 Implementation of Force Feedback using Directlnput

APPLEINC.

EXHIBIT 1017 - PAGE 153

APPLE INC.
EXHIBIT 1017 - PAGE 154

dieffect.dwDuration = INFINITE;

dieffect.cAxes = 1; // only play one axis (rgdwAxis[0] : X axis)

dieffect.lpEnvelope = NULL;

dieffect.cbTypeSpecificParams = sizeof(DICONDITION);

dieffect.lpvTypeSpecificParams fl &dicondSpring;

// enumerate to see if Spring is supported

hr = lpIF2Device—>lpVtbl—

>EnumEffects(lpIF2Device,EnumEffectCallback,&GUID_Spring,

DIEFT__CONDITION)

EnumEflecICalZback is the address of your callback function that handles the force

feedback effects each time one is found The third parameter can be any 32-bit value that

you want to make available to the callback function. It can be the globally unique

identifiers (GUIDS) of the desired effect. objects.
// if Spring supported, fill in Spring condition structure and create effect

if (SUCCEEDED(hr)) {

// fill in the spring condition parameters

dicondSpring.l0ffset = 0; // centered at 0

dicondspring.lPositiveCoefficient = 1000;

dicondspring.lNegativeCoefficient = 1000;

dicondspring.dwPositiveSaturation = 10000;

// maximum saturation level

dicondspring.dwNegativeSaturation = 10000;

// maximum saturation level

dicondSpring.1DeadBand = 0; // no deadband

hr = lpIF2Device->lpVtbl—>CreateEffect(lpIF2Device,

&GUID_Spring, adieffect, &lpdieffSpring, NULL);

ff if Spring created, download and start it

if (SUCCEEDED(hr)) {

hr = lpdieffSpring—>lpVtbl—>Download(lpdieffspring);

if (SUCCEEDED(hr)) {

hr = lpdieffSpring—>—>lpVtbl—>Start(lpdieffSpring,INFINITE,0);

// play until stopped

145

APPLE INC.

EXHIBIT 1017 - PAE 154

APPLE INC.
EXHIBIT 1017 - PAGE 155

dieffect.dwF1ags = DIEFFMPOLAR;

rgdwAxes[0] = DIJOFSWX; // x axis

rgdwAxes[1] = DIJOFSHY; // Y axis

rglDirections[0] = 0;

// 0 degrees = Y axis (specified in hundredths of degrees)

rglDirections{1} = O; // must be 0 for polar coords

dieffect.dwDuration = INFINITE;

dieffect.cAxes s 2;

dieffect.lpEnvelope = NULL;

dieffect.cbTypeSpecificParams = sizeof(DITEXTURE);

dieffect.1pvTypeSpecificParams = &ditexture;

// enumerate to see if Texture is supported

hr 2 lpIF2Device—>lpvtbl~>EnumEffects(lpIF2Device,

EhumEffectCa1lback,&GUID_Texture,DIEFTLALL)

// if Texture supported, fill in Texture structure and create effect

if (succssnsm hr)) {

// fill in the spring condition parameters

ditexture.dwPosRoughness = 5000; // moderate roughness

ditexture.dwNegRoughness = 5000; // moderate roughness

ditexture.dwSpacing = 2000; // relatively sparse bumps

ditexture.dwDensity = 7500; // relatively wide bumps

hr = lpIF2Device—>lpvtbl—>CreateEffect{lpIF2Device,

&GUID_Texture, &dieffect, &lpdieffWashboard, NULL);

// if Texture created, download and start it

if (snccssnsm hr)) {

hr = lpdieffwashboard->lpVtb1u>Download(lpdieffwashboard);

if (SUCCEEDED (hr)) {

hr = lpdieffWashboard—>—>lpVtbl->Start(lpdieffwashboard,

INFINIIE,0]; // play until stopped

146 Implementation of Force Feedback using Direcflnput

APPLE INC.

_ EXHIBIT 1017 - PAGE 155

APPLE INC.
EXHIBIT 1017 - PAGE 156

8. The I-FORCE 2.0

Wrapper Functions

APPLE INC.

EXHIBIT 1017-PA E .

APPLE INC.
EXHIBIT 1017 - PAGE 157

8. 1 Overview

WWWFORCE-FEEDBACK.COM.

effects and irnpleinenting them in your program.

feedback devices may not support all the functions listed.

_#1

To simplify the process of using DirectX to create force feedback sensations, the creators

of the I—FORCE processing core provide a set of wrapper functions that abstract the

DirectX structures to a physically intuitive set of parameterized function calls. Examples

of these wrapper functions are available from the I-FORCE 2.0 SDK Via download from

While these Wrapper functions greatly Simplify programming force feedback in DirectX,

_ the graphical tools described in Chapter 9 provide an even easier method of designing

Following is a suggested list of I—FQRCE 2.0 wrapper functions and their parameters and

f,_ ranges. Section 8.5 gives detailed examples of What goes into the wrapper functions and

can be copied and pasted to easily create your own DirectX force effects. Some force

The I-FORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE 157 o-....,..m

APPLE INC.
EXHIBIT 1017 - PAGE 158

8.2 CONDITION FUNCTION WRAPPERS

XSpring (KPos, KNeg, Offset, PosSat, NegSat, Dead'Band)

Defines a spring condition along the-:*X axis.

YSpring (KPos, KNeg, Offset, PosSat, NegSat, DeadBand)

Defines a spring condition along the Y axis.

Spring (XKP0s, XKNeg, XOffset, XPosSat, XNegSat,)fl)eadBand, YKPOS3 Y'KNeg,

YOffset, YPOsSat, YNegSat, YDeadBand)

Defines two springs — Springs along both X and Y axes.

Anglespring (KP0s, KNeg, Offset, PosSat, NegSat, DeadBand, Angle)

Defines a spring at a particular angle.

CenterSpring (K, Saturation, DeadBand)

Defines a spring symmetrical in X and Y and returning to center.

SpringatCurrentLocati0n (K, Saturation, Deadband)

Defines a spring syminetlical in X and Y and returning to location of device when

command is called.

KPos —10000 to 10000 stiffness in positive direction

KNeg —10000 to 10000 stiffness in negative direction

K ~10000 to 10000 stiffness in both directions

Offset —10000 to 10000 center point offset of spring

PosSat 0 to 10000 -rnaximum positive force

NegS at 0 to 10000 maximum negative force

Angle 0 to 35999 angle of effect

1 Saturation 0 to 10000 Inaxirnum force

DeadBand 0 to 10000 range around center where spring is

inactive

149

APPLE INC.

EXHIBIT 1017 - PAGE 158

APPLE INC.
EXHIBIT 1017 - PAGE 159

XDamper (BPos, BNeg, Offset, PosSat, Negsat, DeadBand

Defines a damping along the positive and negative directions of the X axis

YDamper (BPos, BNeg, Offset, PosSat, NegSat, DeadBand)

Defines a damping along the positive and negative directions of"the Y axis

Damper (XBPos, XBNeg, Xoffset, XPosSat, XNegSat, XDeadBand,YBPos, YBNeg,

YOffset, YPosSat, YNegSat, YDeadBand)‘

Defines a general damping along the positive and negative directions of both the—X and

Y axes.

Parameter Range Comment M

BPos -10000 to 10000 damping in positive direction

BNeg —10000 to 10000 damping ininegative direction

Offset —10000 to 10000 velocity at which damping force is zero

PosS at 0 to 10000 maximum positive force

NegSat 0 to 10000 maxirnurn negative force

DeadBand 0 to 10000 range around zero where damping is

WWW WWWMMWWMW“ inactive

Xlnertia (XMass, Saturation)

Defines an inertia felt along the X axis

Ylnertia (YMass, Saturation)

Defines an inertia felt along the Y axis

Inertia (Mass, Saturation)

Defines an inertia felt symmetrically along both the X and Y axes

‘‘‘‘”””””"I"£;""i“6666””””””?;.?;“s7E3;Z.aca1s1"¥,”;,”£i;”d"£;‘£1¥,}I;"§”“"”“””

Saturation 1 to 10000 rl ,,,,,, *7

150 The LFORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE 159

APPLE INC.
EXHIBIT 1017 - PAGE 160

Friction (F)

Defines a symmetrical frictional resistance along both X and Y axes

Xfriction (FPos, FNeg)

Defines a frictional resistance along the positive and negative directions of the X axis

Yfriction (FPos, FNeg)

Defines a frictional resistance alongthe positive and negative directions of the Y axis
 v wwwmmwm voom

F 0 to 10000 friction force in both directions

FPos 0 to 10000 friction force in positive direction

Texture (Roughness, Spacing, Density, Angle)

Defines a symmetrical texture felt along a defined orientation

XTexture (Roughness, Spacing, Density)

Defines a texture felt only along the X axis in both pos and neg directions

XTexture (PosRoughness, NegRoughness,Spacing, Density)

Defines an X—axis texture with different roughness in each direction

YTexture (PosRoughness, NegRoughness, Spacing, Density)

Defines an Y—axis texture with different roughness in each direction

Roughness 1 to 10000

PosRoughness 1 to 10000

NegRoughness 1 to 10000

Spacing 1 to 10000

Density 1 to 10000

roughness of bumps

roughness of bumps in pos direction

roughness of bumps in neg direction

spacing of bumps

width of bumps

151

APPLE INC.

EXHIBIT 1017 - PAGE 160

APPLE INC.
EXHIBIT 1017 - PAGE 161

Wall (Hardness, Sense, Offset, Angle)

Defines a wall at a given orientation within the plane defined by the X and Y axes

HorizontalWal1 (Hardness,Sense,Offset,SurfaceFriction,SurfaceTextI1re,Clipping)

Defines a horizontal Wall ‘

VerticalW-all (Hardness, Sense, Offset, SurfaceFriction, Sui-face'I’exture, Clipping)

Defines a vertical wall

r

Hardness —10000 to 10000 hardness of wall

Sense flags wall on left or right of location

Offset —10000 to 10000 location of wall

Angle 0 to 35999 angle of wall

SurfaceFriction 0 to 10000 surface friction on wall

SurfaceTexture 0 to 10000 surface texture on wall

Barrier (PosHardness, Negliardness, Thickness, Offset, Angle)

Defines a barrier at a given oiientation Within the plane defined by the X and Y axes

Horizontal Barrier(PosHardness,NegHardness,Thickness,Offset,SurfaceFriction,

SurfaceTexture)

Defines a horizontal barrier (as felt from either direction)

VerticaIBarrier(PosHardness,NegHardness,ThicImess,Offset,SurfaceFriction,

SnrfaceTexture)

Defines a vertical barrier (as felt from either direction)

Parameter

Comment
,m_r.._-.m.m.W...m13,a2g3mm..m_,,r.mr.W.r....mr.., _,m..,.m..mm.,,..,.

Posl-Iardness -10000 to 10000 hardness of barrier in positive direction

NegHardness -10000 to 10000 hardness of barrier in negative direction

Thickness 1 to 10000 thickness of barrier

Offset -10000 to 10000 location of center of barrier

' Angle 0 to 35999 angle of barrier
SurfaceF1iction 0 to 10000 surface friction on barrier

661___ --

152 ' The I-FORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE 161

APPLE INC.
EXHIBIT 1017 - PAGE 162

8.3 WAVE FUNCTION WRAPPERS

Vecto'rForce (Magnitude, Duration, Direction)

Create a force of indefinite duration of adefined magnitude and direction

ConstantForce (Magnitude, Duration, Direction)

Create a force of a defined duration, rnagnitude, and direction

ConstantForceTrigger (Magnitude, Duration, Direction, Trigger,

TriggerRepea-tlnterval)

Create a force that triggers from a button of a defined duration, magnitude, and

direction

Envelope Constant (Magnitude, Duration, Direction, ImpulseLeveI, SettleTime,

FadeLevel, FadeTime, Trigger, TriggerRepeatInterval)

Create a general constant force and apply an envelope to it. Note this will create a

force profile that follows the envelope shape exactly.

Ramp (Start, End, Duration, Direction, Trigger, TriggerRepeatInterval)

Create a ramping force at a given direction and trigger from a button.

Ran1pEnvelope (Start, End, Duration, Direction, ImpulseLevel, SettleTime,

FadeLevel, FadeTime, Trigger, TriggerRepeatInterval)

Create a rarnping force and apply an envelope to it. Note, this will create a very unique

force profile.

Periodic (WaveForm, Magnitude, Offset, Phase, Period, Duration, Angle, Trigger,

’I'riggerRepeatInterva1)

Create a general periodic waveform

EnvelopePe1'iodic (WaveForm, Magnitude, Offset, Phase, Period, Duration, Angle,

ImpulseLevel, SettleTime, FadeLevel, FadeTiIne, Trigger,

TriggerRepeatInterval)

Create a general periodic wave form with an envelope applied

DelayedPeriodic (Pause, WaveForm, Magnitude, Offset, Phase, Period, Duration,

Angle, Trigger, TriggerRepeatInterval)

Create a general periodic Wave form that starts after a timed pause. This is useful for

sequencing wave sensations that have a staggered onset.

153

APPLE INC.

EXHIBIT 1017 - PAGE 162

APPLE INC.
EXHIBIT 1017 - PAGE 163

SweepPeriodic (StartAngle, StopAngle, Sense,WaveForm, Magnitude, Offset,

Period, Phase, Duration) 3
Create a general periodic wave form whose direction will sweep from a StartAngle to a

StopAngle.

E

Trigger flags button tzigger _

TriggerRepeatInterval 1 to 65 delay, in microseconds, before
million restarting the effect when E

triggered by a button press

Magnitude 1 to 10000 magnitude of wave

Offset 0 to 10000 offset of baseline of wave

Phase 0 to 35999 phase of start of wave

Period 1 to 65 period of the wave in

million microseconds

Duration 1 to 65 duration of wave (can be ;

million INFINITE)

Direction 0 to 35999 direction of wave on device

lmpulseLeVel 0 to 10000 impulse kick

Sett1eTi1ne 1 to 65 settle time, in microseconds, to

million reach the sustain level

FadeLeVel 0 to 10000 fade level

FadeTitne l to 65 fade time, in microseconds, to

million reach the fade level

Start 0 to 10000 magnitude of start of Ramp

End 0 to 10000 magnitude of end of Ramp

StartAngle 0 to 35999 start angle of wave

Stop!-‘xngle 0 to 35999 stop angle of wave

Sense flags direction of sweet

154 The LFORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE 163

APPLE INC.
EXHIBIT 1017 - PAGE 164

8.4 DYNAMIC FUNCTION WRAPPERS

DynamicReeoil(BlastDirection,BlastIntensity,DynamicMass,B1astResonance,

BlastDecay)

Creates a dynamic recoil sensation as described on page 96.

Dyna1nicImpact(ImpactDirecti0n,ImpactIntensity,DynamicMass,Elasticity,

C0l]lSi0l'lAbS0l'pfi'0B)

Creates a dynamic impact sensation as described on page 98.

DynamicLiquid(Density,Sett1e,Viscosity)

Creates a dynamic liquid sensation as described on page 100.

DynamicInertia(Inertia,Play)

Creates a dynamic inertia sensation as described on page 102.

DynamicCenterDrift(Stiffness,DriftResistance)

Creates a dynamic center drift sensation as described on page 103.

DynaInicSIing(Ba11Mass,StringLength,StringCoInp]iance,BallDamping,

InterimReporting)

Creates a dynamic sling sensation as described on page 104.

DynamicPaddle(BallMass,InitiaIVeI0city,PaddleCompliance,PaddleDamping,

Gravity,InteriInReporting)

Creates a dynamic paddle sensation as described on page 107.

DynamicContro1Law(Mass, KPos, KNeg, B, Vellnit, Poslnit, HalfCycles, Length,

Drag, Gravity, InterimReporting)

Creates a dynamic control law sensation as described on page 111.

These are the parameters for the DynamicContro]Law function, which simulates dynamic

behavior on a single axis. All other Dynamic functions are based on the

Dyna1nicControlLaw on one or both axes. The mapping between Dynamic function

parameters and the parameters of the Dy11a1nicContro1Law follow the table. For Dynamic

functions with a direction, the intensity is decomposed into two single axis initial

velocities.

155

- APPLE INC.

EXHIBIT 1017 - PAGE 164

APPLE INC.
EXHIBIT 1017 - PAGE 165

wasvwnxwvvsvwukuwl.-w«A\MMMAMN~.\A:\v»'v«w\.|.v\\\‘JrNw\\MM\V\.\\\w\L\MAMws\v.Mr.\AMM.\'.v\V\\\MMJbnux.\n\\\Avmm.\M.1.\\\n.\MMo\\\\AumMu\uanMn.\\\MM~u\.\\1W\\Ahv~A\~\‘(V\v«\\\V\MRV\

 \\~w\\.-.\.~\\\\u\vwv\vw\\.vuu\\n\\n\-

Parameter API Range Comment

Mass 1 to 10000 mass of object tethered to joystick

KPos 1 to 10000 tether stiffness in positive direction

KNeg 1 to 10000 tether stiffness in negative direction

B‘ 0 to 10000 tether damping

Veilnit ’i0000 to 10000 initial velocity of object

Poslnit —10000 to 10000 initial position of object

Ha1fCycles 0 to 10000 end effect after Ha1fCyc1es

oscillations (0 = indefinite)

Length 0 to 10000 tether length (amount of free play

between object and joystick)

Drag 0 to 10000 drag resistance of environment

Gravity -10000 to 10000 gravity acting on object (negative

InterirnReporting flags

Angle 0 to 35999

..1..1.

gravity ailowedl)

report object position and velocity

back to application

angle or direction of initial velocity;

Below are the mappings between Dynamic Function parameters and the parameters of the

Dynamic Conditions.

156

Dynamicllecoil

BlastDirection: blast angle

Blastintensityz Vellnit

DynamicMass: Mass

B1astResonance: KPos (= KNeg)

BlastDecay'. B

The I-FORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE,;L615 .. _ _

APPLE INC.
EXHIBIT 1017 - PAGE 166

Dynamiclmpact

ImpactDirectio11: impact angle

Impactlntensity: Vellnit

Dy11amicMass: Mass

Elasticity: KPOS (= KNeg)

Co1]isio11Absorption: B

Dyn-amicLiquid

Density: Mass

Settle: KPOS (= KNeg)

Viscosity: B

Dynamiclnertia

Inertia: Mass

Play: Length

DynamicCenterDrift

Stiffness: KPos (= KNeg)

DriftResistance: Drag

DynamicSling

Ba1]Mass: Mass

StringC0mp1iance: KPos (= KNeg)

St1ingLength: Length

Ba]lDamping: Drag

Dyn-amicPaddle

Ba1]Mass: Mass

Padd1eCon1p]iance: KPOS (= KNeg)

Padd1eDa1nping: B

Initia1Velocity: Velluit

157

APPLE INC.

EXHIBIT 1017 - PAGE 166

APPLE INC.
EXHIBIT 1017 - PAGE 167

8.5 Sample Code for Function Wrappers.

The following is sample code for how to create wrapper functions that simplify ‘the

creation and bookkeeping of force feedback effects. Once these wrapper functions are

included, your program need only make high level calls to these wrapper

functions. Note that these wrapper functions still require some basic structures to have

been declared and made accessible to the wrapper functions (eg. an IDirectInputDevice2

pointer, a DIEffect structure). The first section of code below declares and fills the

required" structures for subsequent wrapper function calls. The sample wrapper functions

themselves follow and are shown in bold face.

Required Declarations For All ‘Wrapper Functions

// LPDIRECTINPUTDEVICE2 lpIF2Device; // initialized previously

LONG rg1Directions[2];

DWORD rgdwAxes[2];

DIENVELOPE dienvelope;

DIEFFECT dieffect;

DICONDITION dicondition;

DICONDITION rgdicondition[2];

DIDYNAI-IIC didyna.mic[2];

DIPERIODIC fiiperiodic;

DITEXTURE ditexture;

DIWALL diwall;

DIBARRIER dibarrier;

LPDIRECTINPUTEFFECT lpdieffect;

I-IRESULT hr;

dieffect.dwSize = sizeof(DIEFFECT);

dieffect.dwSamplePeriod = 0; // use default sample period

die££ect.rgdwAxes = rgdwAxes;

dieffect.rglDirection = rglnirections;

dieffect.dwGain = 10000; // maximum gain

dieffect.dwFlags = DIEFF_POLAR;

15 8 The LFORCE 2.0 Wrapper Functions

APPLE INC.

EXH|B|'_|:”1017 - PAGE 167

APPLE INC.
EXHIBIT 1017 - PAGE 168

Dynamiclmpact (Impactllirection, Impactlntensity, llynamicidass,
Elasticity, Collisiolmbsorption)

DIEBHNOTRIGGER;

dieffect.dwTriggerRepeatInterval = 0;

dieffect.dwDuration = INFINITE; .

El
dieffect.dwTriggerButton

dieffect.lpEnVe1ope = NULL;

rgdwAxes[0] = DIJOFS_x:

rgdwAxes[1] = DIJOFSHX;

dieffect.cAxes = 2;

dieffect.cbTypeSpecificParams fl sizeof(DIDYNAMIC);

dieffect.lpVTypeSpecificParams = didynamic;

hr = lpIF2Device—>lpVtb1—>EnumEffects(1pIF2DeVice,

EnumEffectCallback,&DIFORCE_pYNAMIC,DIEFT_ALL)

if (SUCCEEDED(hr)) {

didynamic[0].dwMass = DynamicMass;

didynamic{0].dwKPos = Elasticitiy;

didynamic[0].dwKNeg = Elasticitiy;

didynamic[0].dwB = CollisionAbs0rption;

didynamic[0].lVelInit = ImpactIntensity*cos(ImpactDirection);

didynamic[0].dwHalfCyc1es = 0; // infinite duration

didynamic{0].dwLength = 0;

didynamic[0].dwDrag = 0;

didynamic[0].dwGraVity = 0;

didynamic[l}.dwMass = DynamicMass;

didynamic[1].dwKPos = Elasticitiy;

didynamic[1].dwKNeg = Elasticitiy;

didynamic[1}.dwB w Colli5ionAbsorption;

didynamic{1}.lVelInit = ImpactIntensity*sin(ImpactDirection);

didynamic[1].dwHalfCycles = 0; // infinite duration

didynamic{l].dwLength : 0;

didynamic[1].dwDrag = 0;

didynamic[l].dw¢ravity 3 0:

hr = lpIF2Device—>1pVtbl->Createflffect(lpIF2DeVice,

&DIFORCE_DYNAMIC, &dieffect, alpdieffecct, NULL);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>1pVtbl->Download(lpdieffect);

if (SUCCEEDED(hr)) {

hr = lpdieffect->—>lpVtbl—>Start(lpdieffect,INFINITE,0);

// play until stopped

159

APPLE INC.

EXHIBIT 1017 - PAGE 168 E

APPLE INC.
EXHIBIT 1017 - PAGE 169

Texture (Roughness, Spacing, Density, Angle)

dieffect . dwTriggerButton = ‘DIEB_NOTRIGGER ;

dieffect.dwTriggerRepeatInterval = G;

dieffect.dwDuration = INFINITE;

dieffect.lpEnvelope = NULL;

rgdwAxes[0] =—DIJOFS_X;

rgdwAxes[l] W DIJOFS_Y;

rglDirections[G] = Angle*l0G; // specified in hundredths of degrees

rglDirections[1] 2 0; // must be 0 for polar coords

dieffect.cAxes E 2;

dieffect.cbTypeSpecificParamS = sizeof(DITEXTURE);

dieffect.lpvType5pecificParams = ditexture;

hr = lpIF2Device—>1pVtbl—>EnumEffects(lpIF2Defiice,

EnumEffectCallback , &DIFORCE__TEX'J.‘URE , DIEF'I‘__ ALL)

if (SUCCEEDED(hr)) {

ditexture.dwPosRoughness = Roughness;

ditexture.dwNegRoughness = Roughness;

ditexture.dwSpacing w Spacing;

ditexture.dwDensity = Density;

hr = lpIF2Device—>lpVtbl—>CreateEffect(lpIF2Device,
&DIFORCE_TEXTURE, &dieffect, &lpdieffecct, NULL);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>lpVtbl—>Download(lpdieffect);

if (SUCCEEDED(hr)) {

hr = lpdieffect:-—>—>1pVtbl->Start(lpdieffect, INFINITE , 0) ;

// play until stopped

160 The LFORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE 169

APPLE INC.
EXHIBIT 1017 - PAGE 170

Wall (Hardness, Sense, Offset, Angle)

dieffect.dwTriggerButton = D1EB_NOTR1GGER;

dieffect.dwTriggerRepeatInterva1 = 0;

dieffect.dwDuration = INFINITE; 3

dieffect.1pEnvelope = NULL; 1

rgdwAxes[0] = DIJOFS_x;

rgdwAxes[l] = DIJOFS_Y;

rg1Directions[0} = Ang1e*l00; // specified in hundredths of degrees

rg1Directions[1] = 0; // must be 0 for polar coords

dieffect.cAxes W 2;

dieffect.cbTypeSpecificParams = sizeof(D1WALL);

dieffect.1pvTypeSpecificParams = diwall;

hr = lpIF2Device->1pVtbl—>EnumEffects(lp1F2Device,

EnumEffectCa1lback,&D1FORCE_ANGLEWALL,DIEFT_ALL)

if (SUCfCEEDED(hr)) {

diwal1.dwK = Hardness;

diwa1l.dwSense = Sense;

diwall.lOffset = Offset;

hr = 1pIF2Device—>lpVtb1—>CreateEffect(1pIF2Device,

&DIFORCE_ANGLEWALL, &dieffect, &lpdieffecct, NULL);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>1pVtbl—>Down1oad(lpdieffect);

if (SUCCEEDED(hr)) {

hr 2 lpdieffect—>->1pVtb1->Start (lpdieffect , INFINITE, 0) ;

// play until stopped

Barrier (Posllardness, Negllardness, Thickness, Offset, Angle)

dieffect.dwTriggerButton = D1EB_NOTRIGGER;

dieffect.dwTriggerRepeatInterval E 0;

dieffect.dwDuration = INFINITE;

dieffect.lpEnve1ope = NULL;

rgdwAxes{0] = DIJOFS_X;

rgdwAxes[l] = D1JOFS_Y;

rg1Directions[0] = Ang1e*l00; // specified in hundredths of degrees

rglDirections[1] = O; // must be 0 for polar coords

dieffect.cAxes = 2;

dieffect.cbTypeSpecificParams = sizeof(D1BARR1ER);

dieffect.lpvTypeSpecificParams = dibarrier;

161

APPLE INC.

___ EX|:|_|B|T_1(_)17 - PAC_-3|E_m1”7O i_ . E

APPLE INC.
EXHIBIT 1017 - PAGE 171

hr = lpIF2Device—>lpVtb1~>EnumEffeats(lpIF2Device,

EnumEffectCal lback , &DIFORCE__ANGLEBARRIER , DIEF'I'_ALL)

if (SUCCEEDED (hr)) {

dibarrier.dwKPos = Posfiardness; J

diharrier.dwKNegs = Negflardness; E
dibarrier.dwThickness = Thickness;

dibarrier.l0ffset = Offset;

hr = 1pIF2Device->lpVthl->CreateEffect(lpIF2DeVice,

&DIFORCE_ANGLEBARRIER, fidieffect, filpdieffecct, NULL);

if (SUCCEEDED(hr)) {

hr = lpdieffect->1pVtb1—>Down1oad(lpdieffect);

if (SUCCEEDED(hr)) {

hr = lpdieffeet->—>1pVtb1—>Start(lpdieffect,INFINITE,0);

I // play until stopped
Sinewave (Magnitude, Offset, Phase, Period, llruration, Angle,

Trigger, Triggerllepeatlnterval)

dieffect.dwTriggerButton = Trigger;

dieffect.dwTriggerRepeatInterval = TriggerRepeatInterval;

dieffect.dwDuration = Duration;

dieffect.lpEnvelope = NULL;

rgdwAxes[0] = DIJOFS_X;

rgdwAxes[l] w DIJOFSmY;

rglDirections[D] = Angle*l00; // specified in hundredths of degrees

rglDirections{l] = 0; // must be 0 for polar coords

dieffect.cAxes = 2;

dieffect.cbTypeSpecificParams = sizeof(DIPERIODIC);

dieffect.lpvTypeSpecificParams = diperiodic;

hr = lpIF2Device->1pVtbl->EnumEffects(1pIF2Device,

EnumEffectCal1back,&GUID_Sine,DIEFTHPERIODIC}

if (SUCCEEDED(hr) } {

diperiodic.dwMagnitude = Magnitude;

diperiodic.lOffset = Offset;

diperiodic.dwPhase = Phase;

diperiodic.dwPeriod = Period;

hr = 1pIF2DeVice—>lpVtbl—>CreateEffeat(lpIF2DeVice,

&GUID_Sine, fidieffect,

&lpdieffecct, NULL);

162 The LFORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE 171

APPLE INC.
EXHIBIT 1017 - PAGE 172

}

if (9UCCEEDED(hr)) {

hr = lpdieffect—>1pVtbl->Downl0ad(lpdieffect);

if (SUCCEEDED(h:)) {

hr 2 lpdieffect—>—>1pVtbl—>Start(lpdieffect,INFINITE,0);

// play until stopped

Impulsesquarewave (Magnitude, Offset, Phase, Period, Duration,

Angle, Impuls-eI.evel‘,_ Settle'I‘ime, FadeLeve1,

FadeTime)

dienvelope.dwsize = si2eof(DIENVEL0PE);

dienvelope.dwAttackLevel = ImpulseLevel;

SettleTime;
El

dienvelope.dwAttackTime

dienvelope.dwFadeLevel = FadeLevel;

dienvel0pe.dwFadeTime = FadeTime;

dieffect.dwTriggerButton = DIEB_NOTRIGGER;

dieffect.dwTriggerRepeatInterval = 0;

dieffect.dwDuration = Duration;

dieffect.lpEnvel0pe " Edienvelope;

rgdwAxes[0] = DIJOFS_X;

rgdwAxes{1} = DIJOFS_Y;

rglDirection5{G] = Angle*l00: // specified in hundredths of degrees

rglDirections[1] = é; // must be 0 for polar coords

dieffect.cAxes = 2;

dieffect.cbTypeSpecificParams = sizeof(DIPERIODIC);

dieffect.lpvTypeSpecificParams = diperiodic;

hr = lpIF2Device—>lpVtbl~>EnumEffects(lpIF2Device,

EnumEffectCallback,&GUID_Square,DIEFT_PERIODIC)

if (SUCCEEDED(hr)) {

diperiodic.dwMagnitude = Magnitude;

diperiodic.lOffset : Offset;

Phase;
Ii

diperiodic.dwPhase

diperiodic.dwPeriod = Period;

hr = lpIF2Device—>lpVtbl->CreateEffect(lpIF2Device,

&GUID_Square, &dieffect, &lpdieffecct, NULL);

163

APPLE INC.

EXHIBIT 1017 - PAGE 172

APPLE INC.
EXHIBIT 1017 - PAGE 173

if (SUCCEEDED(hr)) {

hr 2 lpdieffect—>lpVtb1->Download(lpdieffect);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>—>1pVtb1~>Start(lpdieffect,INFINITE,0);

// play until stopped *

Xspring (KPos,iKNeg, flffset, Possat, Negsat, Deadfiand)
dieffect.dwTriggerButton = DIEB_NOTRIGGER3

dieffect.dwTriggerRepeatInterval = O;

dieffect.dwDuration = INFINITE;

dieffect.lpEnvelope = NULL;

rgdwAxes[0] = DIJOFS_X;

dieffect.cAxes = 1;

dieffect.cbTypeSpecificParam5 = sizeof(DICONDITION);

dieffect.lpvTypeSpecificParams " &dicondition;

hr = lpIF2Device—>lpVtbl->EnumEffeats(lpIF2Device,

EnumEffectCallback,&GUID_Spring,DIEFT_CONDITION)

if (SUCCEEDED(hr)) {

dicondition.lOffset = Offset;

dicondition.lPositiveCoefficient KPos;

KNeg;dicondition.luegativecoefficient

dicondition.dwPositiveSaturation = Possatg

Negsat;dicondition.dwNegativeSaturation

dicondition.1DeadBand 5 Deadfiand;

hr = 1pIF2Device—>1pVtb1—>CreateEffect(1pIF2Device,

&GUID_Spring, adieffect, &lpdieffecct, NULL);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>lpVtb1—>Download(lpdieffect);

if (SUCCEEDED(hr)) {

hr_= lpdieffeet->—>1pVtb1—>Start(lpdieffect,INFINITE,0);

// play until stopped
Yspring (KPos, HNeg, Offset, Possat, NegSat, Deadfiand)

Same as Xspring with rgdwAxes[0] = DIJOFS_Y;

164 The I-FORCE 2.0 Wrapper Function-3

APPLE INC.

EXIBIT 17 __ AG 73 _

APPLE INC.
EXHIBIT 1017 - PAGE 174

Spring (XKPos, Xlmeg, X0f'fset., XPosSat, XNegSat, X]}eadBand, YI{Pos,
YKNeg, Yflffset, YPusSat, YNegSat, Ylleadlland)

dieffect.dwTriggerButton = DIEB_NOTRIGGER;

dieffect.dwTriggerRepeatInterva1 = 0:
dieffect.dwDuration = INFINITE;

dieffect.lpEnvelope = NULL;

rgdwAxes[0} = DIJOFS_X;

rgdwAxes[l] =—DIJOFS_Y;

dieffect.cAxes = 2;

dieffect.cbTypeSpecificParams 3

dieffect.1pvTypeSpecificParams =
hr

if

if

2*sizeof(DICONDITION);

rgdicondition;

= lpIF2Device->lpVtb1~>EnumEffects(lpIF2Device,

EnumEffectCal1back,&GUID_Spring,DIEFT_CONDITION)

(SUCCEEDED(hr)) {

rgdicondition[0].10ffset = Xoffset;

rgdicondition[0].lPositiveCoefficient = XKPOS;

rgdicondition[0}.lNegativeCoefficient = XKNeg;

rgdicondition[0].dwPositiveSaturation = xPosSat;

rgdicondition[0].dwNegativeSaturation = XNegSat;

rgdicondition[0].1DeadBand = XDeadBand;

rgdicondition[l].lOffset = Yoffset;

rgdicondition[l].lPositiveCoefficient = YKPOS;

rgdicondition[l].lNegativeCoefficient = YKNeg;

rgdiconditionfl].dwPositiveSaturation = YPo5Sat;

rgdicondition[l].dwNegativeSaturation = YNegSat;

rgdicondition[l].1DeadBand = YDeadBand;

hr = lpIF2Device—>lpVtbl—>CreateEffect(1pIF2Device,

&GUID_Spring, &dieffect, &1pdieffecct, NULL);

(SUCCEEDED(hr)) {

hr = lpdieffect—>1pVtbl—>Down1oad(lpdieffect);

if (SUCCEEDED(hr)) {
hr =

// play until stopped

lpdieffect~>—>lpVtbl—>Start(lpdieffect,INFINITE,0);

APPLE INC.

165

EXHIBIT 1017 - PAGE 174

APPLE INC.
EXHIBIT 1017 - PAGE 175

Centerspring (Stiffness, Saturation, lleadliand)
DIEB_NO'1‘RIGGER;

SE
dieffect.dwTriggerEutton

dieffect.dwTriggerRepeatInterval = 0;

dieffect.dwDuration = INFINITE;

dieffect.lpEnvelope = NULL;

rgdwAxes[0] = DIJOFS_X;

rgdwAxes[1] = DIJOFS_X;

dief£ect.cAxes = 2;

dieffect-cbTypeSpecificParams = 2*sizeof(DICONDITION);

dieffect.lpvTypeSpecificParam5 = rgdicondition;

hr = lpIF2Device—>lpVtbl—>EnumEffects{lpIF2Device,

‘Enumflffectcallback,&GUID_Spring,DIEFTHCONDITION)

if (SUC'.CEEDED(hr)) {

rgdicondition[0].lOffset = 0;

rgdicondition[0].1Po5itiveCoefficient = Stiffness;

rgdicondition[0].lNegativeCoefficient : Stiffness;

rgdicondition[0].dwPositiveSaturation 2 Saturation;

rgdicondition[0].dwNegativeSaturation = Saturation;

rgdicondition[0].lDeadBand = DeadBand;

rgdicondition[l].lOffset = 0;

rgdicondition[1].lPo5itiveCoefficient = Stiffness;

rgdicondition[1].lNegativeCoefficient = Stiffness;

rgdicondition[l].dwPositiveSaturation = Saturation;

rgdicondition[l].dwNegativeSaturation = Saturation;

rgdicondition[l].lDeadBand 5 DeadBand;

hr = lpIF2Device->lpVtbl—>CreateEffect(lpIF2Device,

&GUID_Spring, &dieffect, &lpdieffecct, NULL);

if (SUCCEEDED{hr)) {

hr = lpdieffect—>lpVtbl->Download(lpdieffect);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>—>lpVtbl~>Start(lpdieffect,INFINITE,0);

// play until Stopped

166 The I-FORCE 2.0 Wrapper Functions

APPLE INC.

EXHIBIT 1017 - PAGE 175

APPLE INC.
EXHIBIT 1017 - PAGE 176

Xfiamper (BPos, BNeg, Offset, Possat, Negsat, Deadfiand)
DIEBQNOTRIGGER:

1i
dieffect.dwTriggerButton

dieffect.dwTriggerRepeatInterval = G;

dieffect.dwDuration = INFINITE;

dieffect.lpEnvelope = NULL;

rgdwAxes[G] = DIJOFSfix;

dieffect.cAxes = 1;

dieffect.cbTypeSpecificParams = sizeof(DICONDITION);

dieffect.lpvTypeSpecificParams = Edicondition;

hr = lpIF2Device—>lpVthl—>EnumEffects(lpIF2Device,

EnumE££ectCallback,&GUID_Damper,DIEFT_CONDITION)

if (SUCCEEDED(hr)) {

dicondition.lOffset = Offset;

dicondition.lPositiveCoefficient = BPOS;

dicondition.lmegativecoefficient = BNeg;

dicondition.dwP0sitiveSaturation = Possat;

dicondition.dwNegativeSaturation = Negsat;
ii

dicondition.lDeadBand DeadBand;

hr = lpIF2Device->lpVtbl—>CreateEffeat(lpIF2Device,

&GUID_Damper, &dieffect, slpdieffecct, NULL);

if (SUCCEEDED(hr)) {

hr = lpdieffect->lpVtbl~>Download(lpdieffect);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>_>lpVtbl->Start(lpdieffect,INFINITE,0);

// play until stopped
Yfiamper (B903, Bfleg, Offset, Possat, Negsat, Deadfland)

Same as XDamper with rgdwAxes[0] = DIJOFS_Y;

-.u'...v..m 167

APPLE INC.

_ GE 15

APPLE INC.
EXHIBIT 1017 - PAGE 177

Damper (XBPos, XBNeg, Xflffset, XPosSat, XNegSat, X])eadBand,YBPos,

YBNeg, Yoffset, YPusSat, YNegSat, Ylieadliand) I
dieffect.dwTriggerButton = DIEB_NOTRIGGER;

dieffect.dwTrigg¢rRepeatInterval = 0;

dieffect.dwDuration = INFINITE;

dieffect.lpEnvelope = NULL;

rgdwAxes[0} = DIJOFS_X;

rgdwAxes[1} = DIJOFS_X;

dieffect.cAxes = 2;

dieffect.cbTypeSpecific§arams = 2*sizeof(DICONDITION);

dieffect-1pvTypeSpecificParqms = rgdicondition;

hr = 1pIF2Device—>1pVtbl—>EnumEffeats(lpIF2Device,

Enumflffectcallback,&GUID_pamper,DIEFT_CONDITION)

if (SUCCEEDED(hr)) {

rgdicondition[0].lOffset = Xoffset;

rgdicondition[0].lPositiveCoefficient = XBPOS;

rgdicondition[0].lNegativeCoefficient = XBNegfl

rgdicondition[0].dwPositiveSaturation = XPosSat;

rgdicondition[0].dwNegativeSaturation = XNegSat;

rgdicondition[0].lDeadBand = XDeadBand;

rgdicondition[1].10ffset = Yoffset;

rgdicondition[l].1PositiveCoefficient = YBPOS;

rgdicondition[1].1NegativeCoefficient = YBNeg;

rgdicondition[1].dwPositiveSaturation = YPosSat;

rgdicondition[1].dwNegatiVeSaturation = YNegSat;

rgdicondition[1].1DeadBand = YDeadBand;

hr = lpIF2Device—>1pVtbl~>CreateEffgct(lpIF2Device,

&GUID_Damper, Edieffect, &lpdieffecct, NULL);

if (SUCCEEDED(hr)) {

hr = lpdieffect—>1pVtb1—>Download(lpdieffect);

if (SUCCEEDED (hr)) {

hr = lpdieffect»>—>lpvtbl->Start(lpdieffect,INFINITE,0);

// play until stopped a

} I

}

168 The I—FORCE 2.0 Wrapper Functions

APPLE INC.

i EXHIBIT 1017- PAGE 177

APPLE INC.
EXHIBIT 1017 - PAGE 178

Xlnertia (Mass, Saturation)

dieffect.dwTriggerButton DIEB_NOTRIGGER;

dieffect.dwTriggerRepeatInterval = 0;

dieffect.dwDuration = INFINITE;

dieffect.lpEnvelope = NULL;

rgdwAxes[0] = DIJOFS_X;

dieffect.cAxes = 1;

dieffect.chTypeSpecificParams = sizeof(DICONDITION);

dieffect.lpvTypeSpecificParams = Edicondition;

—hr = lpIF2Device~>1pVtbl—>EnumEffects(lpIF2DeVice,

EnumEffectCallhack,&GUID_Inertia,DIEFT_CONDITION)

if (succmannn (hr)) {

dicondition.lGffset = 0:

dicondition.lPositiveCoefficient = Mass;

dicondition.lNegativeCoefficient = Mass;

dicondition.dwPositiveSaturation = Saturation;

dicondition.dwNegativeSaturation = Saturation;

dicondition.lDeadBand = 0;

hr = lpIF2Device—>lpVtbl->CreateEffect(lpIF2Device,

&GUID_Inertia, Edieffect, Elpdieffecct, NULL);

if (SUCCEEDED (hr)) {

hr = lpdieffect—>1pVthl~>Download(lpdieffect);

if (SUCCEEDED(hr)) {

hr = lpdieffect~>_rlpVtbl—>Start(1pdieffect,INFINITE,0);

// play until stopped

The example LFORCE 2.0 wrapper functions shown above should provide guidelines for

writing or modifying your own wrapper functions for other LFORCE 2.0 effects.

169

APPLE INC.

EXH|_B_|T._.101.7 _-_P.A,GE 178

APPLE INC.
EXHIBIT 1017 - PAGE 179

APPLE INC.

EXHIBT I 7- ‘A.

APPLE INC.
EXHIBIT 1017 - PAGE 180

g
I

1
1

3%
2

§
1
3

9. The I-FORCE Studio
Toolset for Directx

 PPPPPPP C.

APPLE INC.
EXHIBIT 1017 - PAGE 181

9. 1 Overview

The I-FORCE Studio Toolset is an interactive graphical environment that enables

programmers to design feel sensations rapidly and efficiently. The I-FORCE Studio

toolset allows Conditions, Waves, and Dynamics to be defined through intuitive -graphical

metaphors that convey the physical meaning of each parameter involved. As the

parameters are manipulated, sensations can be felt in real-time, allowing for an iterative

design process that fme—tunes the feel to your exact need. Once the appropriate sensation

is achieved, the LFORCE Studio toolset saves the parameters as a resource which is

automatically loaded and executed by your application through DirectX. In other words,

the I-FORCE Studio toolset takes care of the entire force feedback development process

for the programmer, from design to implementation. With these tools, force feedback

programming becomes a fast, simple, and fun process.

172 The LFORCE Studio Toolset for DirectX

APPLE INC.

EXHIBIT 1017 - PAGE 181

APPLE INC.
EXHIBIT 1017 - PAGE 182

9.2 Introduction

The challenge of programming for force feedback is not the act of coding, it is the act of

designing feel sensations that appropriately match your gaming events. Designing feels

requires a creative and interactive process where parameters are defined, experienced, and

modified until the sensations are just right. For Conditions, this interactive process might

involve setting the stzffiiess of springs, sizing the deadband, manipulating the ofifset, and

tuning the saturation values. For Waves, this might involve picking the wave source

(sine, square, trian-gle...), setting the magnitude, frequency, and duration, of the signal

and then tuning the envelope parameters. For a Dynamic, this might involve setting the

dynamic mass, and then tuning the resonance and decay parameters. With so many

parameters to choose from, there needs to be a fast, simple, and interactive means for

sensation design. To solve this need, Immersion Corporation has developed the I-

FORCE Studio toolset, a graphical environment for rapidly setting physical parameters,

feeling sensations, and then saving them as resources which will automatically call

DirectX in your application.

The LFORCE Studio toolset has provides the following features and benefits that make it

the ideal environment for all your force feedback programming needs:

0 Allows for interactive real—time sensation design of Conditions, Waves,

and Dynamics where parameters can be defined and experienced through a

rapid iterative process.

0 Provides intuitive graphical metaphors that will enhance your

understanding of the physical parameters related to each sensation type,

thereby speeding the iterative design process

I Provides valuable file-management tools so feel sensations to be saved,

copied, modified, and combined — thereby letting you establish your own

library of favorite feel sensations.

0 Once sensations are defined, the LFORCE Tools store the parameters as

Resources. By linking the I—FORCE Tools DLL into your application, the

Resources are automatically loaded and executed through DirectX in your

application. In other words, the tools take care of most of sensation

generation process from design to coding.

173

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 183

9.3 The Development Environment

As shown in Figure 9-1, the I-FORCE Studio toolset development environment has three

primary work areas. The column on the left is the Sensation Pallet. The column on the

right is the Button Trigger Pallet. The Window in the center is the Design Space.

Sensations are created in the Design Space and can be saved and loaded into that space

using all standard file handling features.

Peiiocfic Sweep Butler: if

3 mar! Pap

Vestal Folce

Figure 9-1

To Create a new Effect, a sensation type is chosen from the Sensation Pallet. This Pallet

is shown in an expandable tree format. In the figure above, you can see that the root of the

three includes the three classes of force feedback sensations, Conditions, Waves, -and

Dynamics. Users can also define their own headings, for example “My Favorites” as a

place to store sensations with desirable preset parameters.

174 The LFORCE Studio Toolset for DirectX

APPLE INC.

EXHIBIT 1017 - PAGE 183

APPLE INC.
EXHIBIT 1017 - PAGE 184

-;-

-r.-an-u.-a.“.:.«._..a=...z....=..a.i.=4..r....»..u.«....—«-.»..,;...r...:s~a4~4m..m~:wu4w»aa«amm.nu=u.wmm;amu.<,w.x—._...n_.au-—---1-=~ma.»=»-aw-W.-.......,....4«..mn;....a...;_.r.......ig..i.t......
Cor:-ziitions

Waves

Periodic

Periodic Sweep

M Smart F'I:Ip

Vector Force

Dynamics

Figure 9-2

In Figure 9-2 , you can see that Conditions and Waves are shown in expanded View while

Dynamics is shown compressed. When in expanded view, the programmer will get a

listing of all the sensation types that are supported by the hardware being programmed for.

For example, when prograrnming for a hardware supporting the latest LFORCE 2.0

processing core, you will see a very complete list of sensation types. If programming for

an older LFORCE 1.): processing core, some sensation types will not be listed. The I-

FORCE Studio toolset can determine exactly what sensations are supported by a given

device connected to the PC by using the eflect enumeration process.

Once a sensation type is chosen from the Sensation Pallet, the sensation type is added to

the Design Space (the icon for that sensation will now be shown within the Design Space

window). That icon can now be opened in order -to set the parameters for the given

sensation type using graphical development tools (as described in the next section). Once

175

APPLE INC.

EXHIBIT 1017 - PAGE 184...

APPLE INC.
EXHIBIT 1017 - PAGE 185

the parameters are set for the given effect, the sensation can be saved as a resource file.

Using this process, you can create a diverse library of feel sensations as resource files.

Also, Immersion Corporation provides their own library of sample resource files with

interesting pre—defined sensations that you can work from.

Figure 9-6

As shown in l?‘igure 9-3, the Right side of the development environment is the Trigger

Button Pallet. This is used for testing sensations that are going to be defined as button

reflexes. For example, say you want a sensation to be a combination of a Square Wave

and a Sine Wave that triggers when Button #2 is pulled. You would create the Square

Wave by choosing the Periodic type from the Sensation Pallet and define the parameters

appropriate for that wave. Then you would Create a Sine Wave by choosing another

Periodic type from the Sensation Pallet and again define the parameters for that wave. At

this point you will have two Periodic Icons in the Design Space window. To test the

trigger, you can just drag and drop these icons into the Button 2 icon. Now, when you

press Button 2 on your joystick, you will feel the reflex sensation. The process is fast,

simple, and versatile. When you get the sensation to be exactly as desired, you can save it

as a resource file which will be automatically loaded and executed through DirectX in

your application.
176 The LFORCE Studio Toolset for DirectX

APPLE INC.

EXHIBIT 1017 - PAGE 185

APPLE INC.
EXHIBIT 1017 - PAGE 186

'-<W*-v~w-=--—--m»m.«.mq_4»_.,_..___.~_..m_.._..m....mm-rmw._.._..a..M...,»,,_-;.,....a..,o_..........__...r.....=.....u.......i.,.....t_._.........a_.tt...,.t._.\.....,..-'L.r_....._m.t.,r.,.........,,v...w.........n................w...r,.....,.._..-......w..r,...r..t_,r_..,_.,..w.t.....m...;..«.w.u....s..,...m.......w.,.,~.~_.-.»......u._...-,,t.....~......»..i.........w.4.........w.......3...‘_.._.........i.....,_...............m..st...a.-;..»a.vn«aJ
9.4 The Sensation Design-Process

When a sensation type is selected, the icon expands into a ‘graphical environment for

setting and testing the physical parameters associated with the given sensation. For

—example, a Spring sensation type is selected from the Condition pallet. Within the Spring

Window, you can set all the parameters associated with the spring sensation. For example,

you can‘ set the positive srijfhess, negative szfijfness, positive saturation, negative

saturation, ofifset, and deadband. You can also choose the axis or direction of the spring.

As parameters are set, they are shown in an intuitive graphical format.

Buttorfl

Button 2

Button 3

Periodic

Periodic Sweep

Small Pop

Vector Force

,
352:

Figure 9-4

Another Example is the Periodic Sensation. As shown in Figure 9-5 , the Periodic Window

allow allows a programmer to choose from among the set of standard waveform signal

177

APPLE INC.

_ EXHIBIT j]Qj]Z - EAQE jlfifi “M

APPLE INC.
EXHIBIT 1017 - PAGE 187

sources. In this case the programmer chose square—waVe. In addition, the programmer

can set the Magnitude, Period, Duration, and Direction of the signal. The user can also

activate an envelope; but in this case the envelope option is not selected. Also, the user

can assign a button trigger and a trigger repeat rate, but in the shown example below the

option is not being used. '

@ Conditions

Periodic Sweep

Smart 390;:

KTIJBTE
i Ttiangia
_ Sawtooth Up

awtoolh Do

Figure 9-5

For our final example of the speed and ease by which sensations can be generated using

the I—FORCE Studio toolset, we will show how a programmer might design an Advanced

Periodic sensation, one of the more complex effect types presented in this text. In Figure

9—6, the programmer has chosen an Periodic Sweep sensation which is very similar to a
standard Periodic but where flie direction sweeps between a start and end orientation. As

you can see, two dials are used to by the programmer to define the tstarting and ending

orientations for the Periodic Sweep. In this example, the user has chosen a sine wave as

178 The I-‘FORCE Studio Toolset for DirectX

APPLE INC.

EXH|B.| I ZIQZIZ - EAGE 3182 .__

APPLE INC.
EXHIBIT 1017 - PAGE 188

V».-.i:»:q|

:‘</<‘>:\)~A-'4wd-'19.:H.-.5,._.t—'||.n\..A\:—1u‘l4..::<#4.I'An-i\:'AM:3%‘Hglnti-'§I}-3:-¢|,4:$'yJ\L$40J¥2IL;5|-C;:’uAI4\I.....4..:-_‘U‘4.4-.-_‘<>.«~_1.l-.v|-»1.-|'_>-.-w:._ru'.»..LM.Mw:'...u....fl-t-A-LvAuU;:-mt!-(5‘;{hL!%y(a'l§su.na\'-_.-.‘..-....<..t..,.\/HI‘[y-‘K|l4I‘4A\t.fl.a.,....=._.,t«.1...<....-....-ms..,.i-.,-W.
L

the signal source. Also, the user can assign the Magnitude, Period, Duration, and Phase

of the signal. Also, in this example the user has activated the Envelope feature and has

created an Impulse Wave Shape using Attack and Fade parameters. These parameters can

me entered as numbers or by dragging the graphical outline of the waveform with a cursor.

Smail Pop

Veda: Fence

Figure 9-6

Figure 9-7 and Figure 9-8 are two additional screenshots of the LFORCE Tools which

show some of the other effects you can create.

179

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 189

Figure 9-8

180 The }—FORCE Studio Toolset for DirectX

APPLE INC.

EXHIBIT 1017 - PAGE 189

APPLE INC.
EXHIBIT 1017 - PAGE 190

9.5 The Simplified Programming Process

Once you have designed your sensations using the graphical tools as described above, you

can save all the Effect definitions as a Resource file and link the I—FORCE Tools DLL to

your application. One function call to the DLL at the start of your program will load the

resource at the start of your application and automatically instantiate all the necessary

DirectX structs, and fill them with the appropriate values, offsets, and masks. A second

call to the DLL will actually execute your specified effect. You need not worry about

creating a Directlnput force feedback device, enumerating and acquiring the device,

choosing polar er Cartesian coordinates, determining axis masks, looking up parameter

ranges, or any other of the tedious but necessary tasks required by DirectX force feedback

prograrnming. Instead, two simple calls to the I-1-TORCE Tools DLL takes care of all that

for you.

Should you want to alter some parameters of one of your designed effects directly in your

application, the DLL will provide you with a pointer to the DirectX effect structs. You

can then directly change whatever parameters you wish. For example, if you design a cool

Dynarniclmpact from the North direction, you may wish to use this efiect again later in

your application but want it to come from the East. You can directly change the

rglDirection member of the DIEIFFECT struct and then execute it again.

In summary, the LFORCE Studio toolset provides developers with a powerful and

intuitive tool for creating and testing force effects. Once designed, the force effects can

be easily loaded and executed in your application with two simple functions from the I-

FORCE Tools DLL, or they can directly modified from within your application.

181

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 191

CNE

.L
D:D:A

APPLE INC.
EXHIBIT 1017 - PAGE 192

; i7

:1;I
-"J

--~~---~—--=.,........_,-......,L'—............4..-._..........-....»....,._....,.§..;....;_,;‘.._HnL.l..,.1.;_.,.~.....

Immersion Corporation is the developer of I-FORCE force feedback

technology. This includes the LFORCE processing core and hardware

architecture licensed by most makers of quality force feedback products.

Immersion Corporation is also the developer of the LFORCE Studio toolset, the

graphical environment for rapid feel sensation design. For technical support on I-

FORCE Hardware or I-FORCE Software, contact Immersion Corporation at:

Immersion Corporation

2158 Paragon Drive

San Jose, CA 95131

Toll—-free (800) 893-1160

Telephone (408) 467-1900

FAX (408) 467-1901

General e—n1ail info@immerse.com

I—Force e—n:1ai1 force@immerse .co1n

World Wide Web: http://Www.irnrnerse.co1n

http://www.force—feedback.co1n

ftp://ftpimmerse.com/pub/users/immerse

Thank you for your interest in I—Force and Force Feedback.

APPLE INC.

APPLE INC.
EXHIBIT 1017 - PAGE 193

Embrace the _Resistance....

Force Feedback is the latest technological innovation to take the computer

entertainment world by storm. Simply put, force feedback adds compelling FEEL

sensations to gaming environments, allowing players to encounter realistic physical
resistance when piloting a ship, blasting a monster, getting checked into the boards, or

taking down a linebacker. Force Feedback is achieved by adding motors to computer

peripherals such as joysticks, steering wheels, or flight yo‘i<es. Under the guidance of a

skilled programmer, these motors bring. the peripherals to life, letting them push back in

the player’s han-d, thereby adding an- interactive physical realism to gaming that has

never before been ‘possible-.

This book is an introduction to the hardware and software issues of force feedback

technology. The text is structured as a reference document written for professionals

involved in all aspects of computer game development from conceptual design to

hard—core coding. The text will expose you to the limitless potential of force feedback,

giving you guidelines on how to use "feel" effectively within your gaming applications,

and encouraging you to invent your own creative implementations of ”feel” never

before imagined.

For the latest updates on force feedback gaming technologies from hardware makers

and software developers, visit the web site WWW.FORCE-FEEDB/-\CK.COlVl

 Immersion Corporation

The Force Feedback Company CAPPLE IN .

EXHIBIT 1017 - P_AGE193

