
1

United States Patent £19]

Schwartz et al.

(54] METHOD AND APPARATUS FOR SECURING
EXECUTABLE PROGRAMS AGAINST
COPYING

(75] Inventors: Edward L. Schwartz, Sunnyvale;
Michael J. Gonnish. Los Altos, both
of Calif.

[73] Assignees: Ricoh Company, Ltd •. Tokyo. Japan;
Ricoh Corporation. Menlo Park, Calif.

(21] Appl. No.: 423,402

(22] Filed: Apr. 18, 1995

(51] Int. Cl.6
.. H04L 9/00

[52] U.S. Cl. ... 380/4; 380/49
(58] Field of Search 380/4, 49; 375/240

(56] References Cited

U.S. PIJENT DOCUMENfS

4,168,396 9/1979 Best .. 380/4
4,433,207 2/1984 Best .. 380/4
4,465,901 8/1984 Best .. 380/4
4,558,176 12/1985 Arnold et al 380/4
4,562,305 12/1985 Gaffney, Jr 380/4
4,905,277 211990 Nakamura 380/4
5,379,342 1/1995 Arnold et al 380/4
5,504,816 4/1996 Hamilton et al 380/49
5,533,051 7/1996 James 375/240
5,544,244 8/1996 Ogura .. 380/4

FOREIGN PIJENT DOCUMENTS

0 536 943 A2. 4/1993 European Pat. Off ..

111111111111111111111111 lllll lllll lllll 1111111111111111111111111111111
US005675645A

[11] Patent Number:

(45] Date of Patent:

5,675,645
Oct. 7, 1997

OTHER PUBLICATIONS

Donald E. Knuth. 'The Art of Computer Programming,"
Addison-Wesley Publishing Company, Second Edition, p.
28.
David Sheff. "Game Over: How Nintendo Zapped an Ameri­
can Industry. Captured Your Dollars, and Enslaved Your
Chldren," Random House, Inc. (1993). pp. 160-161.

Primary Examiner-Salvatore Cangialosi
Attome}\ Agent, or Finn-Philip H. Albert; Townsend and
Townsend and Crew LLP

(57] ABSTRACT

A secure system for executing program code in an insecure
environment while making it impossible, or at least
impractical, to determine how to copy the program code and
associated data is provided. A program memory contains
encrypted program data and security circuitry contained
within an integrated circuit is provided for decrypting the
program data as it is needed by a processor. A portion of the
processing steps which would be done by the processor in an
insecure system is performed in this secure system within
the secure circuitry using portions of the decrypted program
data which are not provided to the processor. Program data
is parsed it out based on a proper request to the security chip
from the processor. A key value stored in volatile memory is
used in the decrypting process and the volatile memory is
positioned on the integrated circuit such that its contents are
lost before a chip peel provides access to the volatile
memory.

33 Claims, 8 Drawing Sheets

,100

102
BRANCH SE PARA TOR

110

KEY ENCRYPT OR

108

Encrypted
ROM

KINGSTON 1004

2

10

24
 I

,...

,
_

.,
I

I
I

12

4
2

I

4
3

1
 A

n
a

ly
si

s
an

d
22

C
on

tr
ol

 T
oo

ls

14

16

A
D

D
R

se
cu

ri
ty

V

id
eo

 D
is

pl
ay

~
C

P
U

B
U

S
 T

A
P

In

pu
t

D
ev

ic
es

18

Fi
gu

re
 1

II • I

C
j

• 7J'
J.

• ~
 =

~

~
 =

~

0 ~

_...
...:.

lo
-I

'-=

'-=

....

.:i ~

~

~

t"
't- 1-
-1

s,

0
0

U
t

,... Q
\.

...
..)

U

t
~

~

U
t

3

T
O

R

O
M

A
 D

O
R

... -

D
 JA

TA

_,5
2

R
O

M
 A

C
C

E
S

S

54

R
E

Q
U

E
S

T

-
T

R
A

N
S

LA
T

E
/C

A
C

H
E

 C
O

N
T

R
O

L

... -

60

_
.J

64

C

A
C

H
E

(

K
E

Y

'"
,,

62

6
8

_.

.7
0

C
LE

A
R

-

~

~5
6

,,

D
E

 C
O

M
-

H

I
R

O
M

 D
A

T
A

;.

D
E

C
R

Y
P

T
O

R

f-

+

P
R

E
S

S
O

R

R
O

U
T

E
R

 I

~

I
H

ID
D

E
N

 D
A

T
A

72

+

__.

.
D

A
T

A
 R

E
Q

U
E

S
T

/
R

E
S

P
O

N
S

E

-
B

R
A

N
C

H
 R

E
Q

U
E

S
T

-

C
O

M
P

U
T

A
T

IO
N

A
L

 U
N

IT
 (

C
U

)
B

R
A

N
C

H
 R

E
S

P
O

N
S

E

~ .
~

B
U

S
 T

A
P

S

-

l
'" ...

R
E

A
L-

76

-

.

"'-

-
--

T
IM

E

i,.
..;

74

C

L
O

C
K

P

R
IV

A
T

E
 T

A
B

L
E

S

i,.
..;

-
-

Fi
gu

re
 2

__
..

50

B
U

S

...
U

N
IT

-

T
O

E
X

 T
E

R
N

A
L

14

B

U
: ...

~
 3

0

~

• 00
.

• ~

;- =

""""
'

0 fl ,...
.:t
~
 ~ ~
 a N

 ~

Q
C

0
1

.,.. Q

'\
....:

J
0

1
 "' ~ 0

1

4

U.S. Patent Oct. 7, 1997 Sheet 3 of 8

~ -...__ _____ _..-

112
GAME PROGRAM~

.,

BRANCH SEPARATOR

5,675,645

'100

J02

~-__.·,----... 114 r-------... 116 ~-----...... J18 ,,_--'--...... J20
......_----~~_ ~_ ~_ ~

SECURE
PROGRAM

BRANCH
TABLE

CHECKSUM
DATA

' '

110 -C KEY '1----•~ ____ 1 -

1 '
,,

COMPRESSOR

,,

ENCRYPTOR

Figure 3

''
104
~

JOB

TIMING
DATA

32
~

Encrypted
ROM

5

U.S. Patent Oct. 7, 1997

Security Chip

N

I
I
I

S4 I
Extract Page from ROM I

$51
I
I

Place Hidden Data in Private Tables I
I
I

56 I

Return Page in Clear
I

Sheet 4 of 8

Processor

Start

Request Page of
Instructions/Data

Halt Processor

Get Next Instruction

S11 N

Pass Branch
Request to

Security Chip

Figure 4A

5,675,645

81

83

87

6

U.S. Patent Oct. 7, 1997 Sheet 5 of 8

Security Chip Processor

S9

Execute Instruction

N
>------£-----.c Halt Processor

I
I
I

S14 I
Calculate Branch Address I

I
$151

------~----...::;; I
Pass Next Address to Processor--------

I
I
I
I
I
I
I
I
I
I
I

+
Figure 48

Go to New Address

S13

5,675,645

7

U.S. Patent Oct. 7, 1997 Sheet 6 of 8 5,675,645

524
~

__ TIME INPUT FROM
REAL-TIME CLOCK 76

BUS TAP CHECKSUM
ScM - LOGIC

_ 514 _,512

----. REG

DATA IN REG
r

506 ,_.
502 510 -

H

_sos

r
VALUE

TYPE

CHECKSUM

PASSWORD -
TIMING

CONTROL 516

STACK
CONTROL

-
i---+ERROR

SIGNAL

MUXCONTROL -
.....-----. 518

500

)

BRANCH
TABLE ADDRESS 1 MUX ~

1-------------+--------+~- BRANCH
ADDRESS 2 r--+ ADDRESS

520
o~

NEXT 1
1-------------+----ti---+---+1 MUX _

NEXT2

INITIAL VALUE

PENDING (NEXT BRANCH INDEX)

STACK 522 -
Figure 5

OUTPUT

8

U.S. Patent

Compressed
Data Stream

Oct. 7, 1997

Demux

Pseudo-
Random 606
Number

Generator
(PRNG}

Key Value

106

608A

Buffer

6088

Buffer

608C

Buffer

Figure 6

Sheet 7 of 8

Mux

5,675,645

SCRAMBLED
OUTPUT

9

U.S. Patent

Key Load

Key In

In it/Run

Oct. 7, 1997

712

KEY
CLOCK

Sheet 8 of 8

716

POWER
SOURCE

Key Shift Register

MLS
CLOCK

714

702

704

MAXIMAL LENGTH SEQUENCE (MLS)
SHIFT REGISTER

Figure 7

5,675,645

r100

710

10

5,675,645
1

METHOD AND APPARATUS FOR SECURING
EXECUTABLE PROGRAMS AGAINST

COPYING

BACKGROUND OF THE INVENTION

The present invention relates to the field of securing
executable programs against copying. More specifically, in
one embodiment the invention provides security against
copying in an open hardware system where access to the
processor executing the program and the memory holding
the program is assumed.

Securing computer programs (software) against unautho­
rized copying has been a concern of software developers
since software was sold as a separate product. The difficulty
lies in the fact that software is easily copied and any copy
protection or prevention scheme must allow for the eventual
copying of portions of the software if it is to be executed.
Unless the software is secured in a chip (integrated circuit)
which also contains the microprocessor which will execute
the software, the executed portions of the software must pass
from the distribution media to the processor along circuit
lines which are monitorable. Thus, for a program to be
secure and still be useful to its intended user, the program
cannot be readily copyable in its generally available form or
in the form in which it is executed by the intended user.

Recently. with the increasing need for technical support
from a program's developer, the desire for complete
documentation, and the fear of viruses, unauthorized copy­
ing of some software, especially critical business software,
has diminished. However, where software needs no support
or documentation and is used on systems where viruses
cannot be transmitted, such as video game systems using
video game cartridges with game software stored in read­
only memory (ROM). unauthorized copying is still preva­
lent. All that is needed is an understanding of the circuitry
used in the game cartridge and a copy of the game program.

An additional concern of the makers of video games, who
typically make video game consoles and wish to limit their
use to games produced by licensed software producers, is
not software copying, but video game console copying to
produce consoles which will execute authorized game car­
tridges or unauthorized, but compatible, game cartridges.

In an unprotected system, a copyist (i.e., a "software
pirate" or other unauthorized analyzer or copier of the
software) can easily copy program code if it is accessible.
Program data, as used herein refers to the data necessary to
run the program. which includes instructions (program
code). tables of values and image data used to generate
screen images. Even if the program data is not easily
accessible in its distributed form, a copyist might obtain it by
observing a bus between the storage media which holds the
program data and the processor to determine the program
code. Thus. encryption of the program data alone does not
provide real protection, since it must be decoded eventually
to be used. Where the program data is stored on video game
cartridges and the processor is on a video game console,
analyzing the program data is simplified. since the interface
between the storage media and the processor is readily
available without any hidden communication. In many video
game consoles. the entire bus of the CPU is readily available
for analysis. This particular problem, of course, extends to
all forms of program storage media which are detachable,
not just video game cartridges.

2
copy protection, such as the use of secret files or codes not
normally accessed or observed by a casual copyist. Many
casual copyists will also forgo copying when copying
involves construction of cartridges, since this requires the
ability to make plastic cases and circuit boards. However,
the most determined copyists of cartridges are those who
plan to make large numbers of cartridges for sale and thus
have the ability to make cartridges once the program data is
copied.

Software-only copy protection systems, which might use
10 an undocumented portion of the program data media to store

hidden codes. generally rely on "security through obscurity"
to prevent only those who are not aware of the copy methods
from making workable copies. Therefore. when the goal is
to stop large-scale and educated copyists. software-only
protection is not viable. Fortunately, where the program data

15 is distributed on media containing hardware elements, as is
the case with video game cartridges, hardware copy protec­
tion can be included on the cartridge.

Many hardware protection systems rely on the presence of
a hardware circuit or device which signals the existence of

20 an authorized copy of the program. The program, when
executed. runs a routine to check for the existence of the
authorization device. If the authorization device is not
present, the program refuses to continue or performs some
other undesirable action. These protection systems are open

25 to two methods of attack. both of which could render the
protection ineffective.

In a first type of attack. a copyist would analyze the
circuitry of the hardware authorization device to determine
its essential elements and from that information make

30 duplicate, unauthorized authorization devices. Even if the
details of the authorization device are buried in a custom
integrated circuit, the integrated circuit could be examined
under a microscope layer-by-layer using a chemical peeling
process to resolve the circuit features. The operation of the

35 authorization device might also be observed by slowing
down or speeding up both the authorization device circuitry
and the processor to aid in the detailed analysis of one
operation or the high-speed analysis of many passes over the
program.

In a second type of attack. the copyist attempts to modify
40 the software routines which check for the exists of the

authorization device so that the routines always report back
that the authorization device is in place, whether or not it
actually is. With a readily-available logic analyzer attached
to a microprocessor running a program. a copyist can run the

45 processor at a slow speed and have the logic analyzer record
all instructions executed by the microprocessor and all the
data traffic to and from the microprocessor, then use this
information to determine the flow of the program. If the flow
of the program is recorded both with the authorization

50 device in place (simulating an authorized use) and without
the authorization device in place (simulating an unautho­
rized use), the copyist can compare the flows and determine
where in the program the decision is made as to whether the
authorization device is in place. Once that location is

55 determined. the software at that location could be modified
so that the routine which tests for the presence of the
authorization device never fails. This can often be done by
replacing one conditional jump instruction with an uncon­
ditional jump or a NOP (null operation).

Therefore, what is needed is an apparatus which allows a
60 processor to execute program code, over a possibly insecure

bus. while requiring an impractical amount of work on the
part of a copyist to reproduce the program data for use apart
from the apparatus or to reproduce the apparatus.

Many copy protection systems are a deterrent to casual
copyists. but not to determined copyists, who might be
willing to spend large sums of money and time to break a
copy protection scheme in order to be able to manufacture 65
large numbers of unauthorized copies of a program. For
some casual copyists. it is enough to include software-only

SUMMARY OF THE INVENTION

The present invention provides a secure system for
executing program code in an insecure environment while

11

5,675,645
3

making it impractical to determine how to copy the program
code or associated data. In one embodiment of a secure
system according to the present invention, a program
memory contains encrypted program data (program
instructions. data tables. digitized images, etc.) and security
circuitry contained within an integrated circuit is provided
for extracting the program data as it is needed by a processor.

4
To make a chosen text attack on the encrypted program

data more difficult. the program data could be compressed
first to remove patterns in the data.

The encryption and decryption could be done as conven­
tional encryption/decryption. However. where low hardware
cost is a priority. the encryptor could be just a data scrambler
which rearranges the order of the bits or bytes of the
program data according to the output of a PRNG. The data
decryptor is then just a series of buffers. a multiplexer and

In various embodiments. the processor is a central process­
ing unit (CPU). a video pixel processor or other low-level
CPU requiring program data. A portion of the processing
steps which would be done by the processor in an insecure
system is performed in this secure system within the secure
circuitry using portions of the decrypted program data which
are not provided to the processor. Program data is parsed
based on a proper request to the security chip from the
processor. The security chip tracks which sections of the
program memory are proper for the processor to be request­
ing based which program code in being executed. The
security circuitry includes a key register in which a key
value, needed to decrypt the program code, is stored. For
security. a different key value can be used for each different
program.

10 a demultiplexer. Where the security chip includes
decompression. the buffers might already exist in the decom­
pressor. If the scrambler is used in addition to other
encryption. a chosen text attack is made more difficult, since
the position of any word or bit in the data cannot be inferred.
The PRNG is seeded by the key value or some agreed upon

15 value dependent on the key. Because the file is compressed.
less robust encryption can be used. To further defend against
analyses in which many different sections of the encrypted
program data are compared with the corresponding
decrypted data to determine the key value, a secondary key

20 value which varies from section to section could be used.
The secondary key value could be a value generated from
data stored with the program data and the main key value.
Alternatively. a table of secondary keys could be stored with
the program data or in the security chip. with the main key

Where a risk of chip peeling exists. the key might be
stored in volatile memory powered by a battery or stored as
charge on capacitor. positioned and/or distributed on the
security chip surface such that a chip peel breaks the source
of power to the volatile memory well before the volatile
memory can be reached.

25 value used to select keys from the table.
In some applications. it is also desirable to prevent the

operation of an authorized game cartridge on an unautho­
rized game console. For these applications, the game con­
sole is provided with a difficult to copy element and the

In a specific embodiment. the security chip extracts the
branch statements from the program instructions and stores
them in an internal branch table after decryption and before
providing the instructions to the processor. In a preferred
embodiment. the branch statements are separated before
being encrypted and stored in the program memory. Because
the possible fiows of the program are known from the branch
table. the branch table only need contain a listing of the
branches which are imminent. thereby saving memory.

30 security chip on the game cartridge requires this element to
be present before operating.

A further understanding of the nature and advantages of
the inventions herein may be realized by reference to the
remaining portions of the specification and the attached

35 drawings.

In various embodiments. the encryption is complex con­
ventional encryption while in others, to save hardware. is
simpler encryption such as XOR'ing with the output of a
pseudorandom number generator (PRNG). A number of
additional security measures can be applied where needed. 40
For example. if the security chip is positioned to read the
processor bus. a tap of the processor bus can be provided so
that the security chip can monitor all instruction fetches and
data fetches from memory. For example. since the security
chip provides all the branch information, the program fiow 45
between branches is linear and deterministic. Thus, the
security module could perform a checksum on all the bus
activity between branches, compare it to a precompiled
checksum and refuse to provide more branch information if
the checksums do not match. as would be the case if the 50
instructions provided to the processor had been modified in
some way.

The security chip could also include a real-time clock. RC
(resistor-capacitor) time constant circuit. or other dynamic
logic circuit to confirm that the processor is executing

55
instructions at an expected rate. This prevents a processor
from being accelerated to speed up the process of running
the program through all the possibilities needed to build an
unauthorized branch table or from being slowed to perform
hardware analysis.

Furthermore. because the security chip maintains the 60

branch table. it can calculate what the next branch is. so that
the processor only need provide the values neetled to
evaluate whether to take a conditional branch. In order to
handle return instructions. the security chip also maintains
the program stack for the processor. This security feature 65
prevents the processor from requesting unexpected branch
information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system according
to the present invention wherein program data resides on a
cartridge connected to a processor over a plug-in bus includ­
ing a security chip on the cartridge;

FIG. 2 is a more derailed block diagram of the security
chip;

FIG. 3 is a block diagram of a system used to encrypt
programs onto encrypted memories which are used in the
cartridges;

FIGS. 4A and 4B together show a fiow chart of an
execution of a program by the processor;

FIG. 5 is a block diagram of a branch unit;
FIG. 6 is a block diagram of a dam stream scrambler; and
FIG. 7 is a block diagram of a pseudorandom number

generator.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 shows a common application for the present
invention. namely video games. It should be apparent after
reading this disclosure that the invention is not limited to
video games or programs stored on cartridges. In FIG. 1. a
game console 10 is shown with a game cartridge 12 about to
be mated to game console 10 via a bus 14. We assume herein
that a copyist is able to read the game program and game
data as it is stored in game cartridge 12 and is also knows
everything that goes on in game console 10. According to
the preferred practice in the design of security devices, we
also assume that the copyist knows all the derails of any
security circuits and algorithms except for any keys or

12

5,675,645
5

passwords. Because the primary goal of the system is to
allow a legitimate user to run the program. it is impossible
to prevent the copyist from determining the outcome and
flow of the program by running it with a given set of input
data. Thus, the goal of the security of this system is to
require that the program actually be run, at normal speed.
and limit the amount of information about the program
which can be inferred from one execution of the program
with one input data set. The impracticality of determining
the actual program code and data is based on the fact that the

10
number of input data sets which would have to be run
against the system is so high that the time needed to perform
such an analysis is greater than, or comparable to. the time
span in which the bulk of the legitimate sales of the program
are made.

Game console 10 is shown with a processor 20, local 15

memory 22. an output interface to a video display 16. an
input interface from input devices 18, and a circuit clock 24.
Game console 10 might include other elements not shown.
The input devices 18 are shown generically, since they are
not the subject of the present invention, but might include 20

keyboards. joysticks. touch pads or sensor arrays. Video
display 16 is typically a pixelated display (e.g .• a raster
monitor) which displays a two-dimensional array of pixels
colored as indicated by processor 20 or an intermediate
video memory (not shown). Local memory 22 stores vari- 25
ables used in the execution of the program as well as a
current page of instructions of the program. Local memory
22 need not store the entire program at once. since the
program can be paged into local memory 22 as needed. As
should be apparent from this description, the security system 30
is described with reference to processor 20, the CPU of
game system, however the present invention might also be
used with a video processor. image processor or other
processor present in the system.

6
variations of the program. To render this tap ineffective,
security chip 30 might also maintain a clock whose speed is
determined internal to security chip 30 and refuse to decrypt
program data from ROM 32 if circuit clock 24 does not run
at the correct speed.

A tap 42 to ROM 32 provides the copyist with the
contents of ROM 32. but these contents are not useful
without the decryption provided by security chip 30. A tap
44 on the data traffic on bus 14 or a tap 43 on the data traffic
between processor 20 and local memory 22 might provide
decrypted program information, but would only provide the
instance of the program sequence which applies to one
execution of the game instead of a sequence which is usable
for different sets of input. Furthermore. that information
does not include branching instructions. as those are not sent
to the processor. but are executed in security chip 30.

The same is true for a tap 45 on the video display. While
tap 45 might be able to record all the video signals, they
would only correspond to one particular playing of the
game. For example, if a game level containing unique
graphics is never reached. the graphics at that game level
will never be sent to video display 16 and therefore cannot
be obtained by tap 45.

A determined copyist might use a tap 46 on the signals
between input devices 18 and processor 20 to insert signals
simulating different outcomes and events in the game. With
enough different paths. a copyist might be able to determine
all the possibilities and work backwards to reconstruct the
game program. but because the speed of the processor
cannot be increased and due to the sheer number of
possibilities. the copyist is not likely to be able to do this
between the time a game is released to the public and the
game sells enough copies to diffuse the copyist's potential
market

Thus, even with all these taps. a copyist having access to
only game console 10 and game cartridge 12 cannot make a
full, usable copy of the game program. A determined copyist
might tap into the internals of security chip 30 itself. which
would require careful removal of the casing of the security
chip and a layer-by-layer analysis of security chip 30.
However, even knowing the entire internal circuitry of
security chip 30, the copyist will not obtain the volatile
settings of the key needed for decryption of ROM 32. since
the memory holding the key is designed to lose power as
layers are removed. If the memory is many layers below the
layers required for power, the memory will be erased before

Game cartridge 12 is shown with a security chip 30 and
35 a ROM 32. Other forms of storage can be substituted for

ROM 32. such as CD-ROM (compact disk ROM). diskette,
flash memory, or even remote programs accessed via a
network. ROM 32 contains the game program in an
encrypted form. The game program so stored comprises
program executable cede, data tables. graphic images and 40
other related objects which are necessary or related to the
operation of the game embodied by the cartridge. In a
preferred embodiment. security chip 30 is a single integrated
circuit with no secure data streams flowing on externally
accessible pins. 45 its layer is available for analysis. In order to defeat security

chip 30. the copyist must be able to analyze the contents of
ROM 32 and the output of the security chip to derive the key.
In addition to the key being different for each different game

The present invention cannot protect against all attacks.
For example. if a copyist obtains the game program in its
unencrypted form from an unscrupulous employee of the
game maker. the present invention will not prevent the
copyist from distributing the game in that form. It is 50
assumed here that the unauthorized copyist only has access
to a game console and a number of game cartridges. With
this limited access, the copyist will attempt to analyze the
operation of the console and cartridges using various analy-
sis and control tools shown as tools 40 in FIG. 1. An analysis

55 tool records signals. while a control tool changes the signals,
often while an analysis tool is recording signals. Such tools
include microprocessor trace analyzers, waveform
generators. oscilloscopes. etc. FIG. 1 shows various places
within the game console 10 and game cartridge 12 the
copyist could tap to analyze and control signals. 60

Significantly. the copyist cannot tap onto internal lines of
security chip 30 without chemically peeling the security chip
and working on a microscopic level.

A tap 41 to circuit clock 24 might be used to slow down
the processing speed of game console 10 to more easily 65
analyze its operation. or used to speed up circuit clock 24 to
more quickly execute many instructions to test different

(not necessarily each game cartridge containing that game),
security chip 30 contains other features which make the
cracking of the encryption without access to the internals of
security chip 30 more difficult.

FIG. 2 shows security chip 30 in more detail. including a
bus unit 50 which couples security chip 30 to bus 14 and
passes requests for program data to a translator 52. Trans­
lator 52 converts the address of the access request into an
address location, or range of locations. in ROM 32. This
address is sent over an address bus 54 to ROM 32. which
returns the data on data bus 56. Alternatively. some locations
of ROM 32 might be cached in cache 60. in which case
translator 52 routes address information to cache 60. which
in turn supplies the cached data.

Both sources of data are coupled to an input of a decryptor
62. which decrypts the data from ROM 32 using a key value
supplied from a key register 64. As explained below. dif­
ferent configurations for decryptor 62 are possible depend­
ing on the degree of security needed. Since the decryptor 62
is constrained to be. more or less. the inverse of the an

13

5,675,645
7

encryptor used to encrypt the program data, the different
configurations are discussed below in connection with the
encrypt or.

The output of decryptor 62 feeds to the input of a
decompressor 68. which is optional. Decompressor 68 in 5
turn passes the data to a router 70. Router 70 includes an
output for clear ROM data and an output for hidden data.
The clear ROM data is unencrypted program code and data
objects. but without branch information. The hidden data
contains the branch information as well as other variables. 10
such as checksums and expected execution times.

The hidden data output is coupled to an input of a
computational unit 72. which handles the overall control of
security chip 30. Computational unit 72 also includes a port
for reading from. and writing to, private tables 74. an input

15
for reading from a real-time clock 76, an input for receiving
branch requests from bus unit SO, an output for branch
responses coupled to bus unit SO. an input from bus unit SO
for bus taps which provide information about activity occur­
ring over a processor bus or bus 14. and a port for receiving
and responding to queries from bus unit SO about the 20

propriety of requests for program data. The detailed opera­
tion of security chip 30 is described below in connection
with FIG. 4.

FIG. 3 is a block diagram of a system 100 used to encrypt
a game program 112 onto an encrypted ROM 32 to be used 25
in game cartridge 12. System 100 includes storage for game
program 112 coupled to a branch separator 102 which
outputs a secure program 114. a branch table 116. a file of
checksum data 118 and a file of timing data 120. Storage is
provided for these output data sets and that storage is 30

coupled to a compressor 104. which is optional but pre­
ferred. The output of compressor 104 is coupled to an input

8
}

If the program of Table 1 were supplied to branch
separator 102. the secure program shown in Table 2 and the
branch table shown in Table 3 would result.

Address

0
1
2
3
4
5
6
7
8

BR#

0
1
2
3
4

TABLE 2

Secure Program

Line# Instruction

0 i=O
mov i, br__req_arg[l]
br_req 0

5 mov a[i], b[i]
6 br_req 1
2 br_req 2
7 br_rcq 3
3 i= i+ 1
4 br_req 4

TABLE3

Branch Table (Hidden Data)

Type Arg=nt(s)

Cond'l arg[l] > 10
Return
Call
Return
Goto

'Ihle
Address

6

False
Address

In generating the secure program. the order of the instruc­
tions could have been retained. so that the line numbers are
in sequential order. However, if they were in order, the
analysis of the addresses being passed to security chip 30

of an encryptor 108. which also has an input for receiving a
key value from a key register 110. The output of encryptor
108 forms the contents of ROM 32.

As explained above. game program 112 comprises pro­
gram executable code. data tables, graphic images and other
related objects. A short example of program executable
code. useful for explanation purposes only. is shown in Table
1. The program represented in Table 1 is a "clear" program
in that all the information needed to run this program for any
possible input is apparent from the program alone. Indeed.
it should be apparent from Table 1 that the program does
nothing more than move the first ten entries of the array a[]
into the corresponding locations in b[] for any possible input
values (e.g .. the values in a[]).

35 would indicate where jumps are being taken and not taken.

Line#

0
1
2
3
4
5
6
7

TABLE 1

Clear Program

Instruction

i=O
if (i >= 10) then goto 7
call 5
i = i + 1
goto 1
mov a[i], b[i)
return
return

For example. if the line numbers were in order in the secure
program of Table 2, a request for jump address n, followed
by a request for jump address n+ 1 would indicate that the
jump associated with address n was not taken (otherwise a

40
jump address other than n+ 1 would be the next jump
address). To prevent this kind of analysis. the order of the
lines in the secure program are scrambled. Since a true and
false address is stored for each conditional jump. the code
following a jump not taken does not need to sequentially
follow the jump.

45 Appendices A. B and C are listings of longer examples of
a clear program, its corresponding secure program and
branch table. respectively. Appendix D is a listing of a
program used in a software implementation of branch sepa­
rator 102 (FIG. 3). That program is written in the "awk"
language which is commonly available on computers run-

50 ning the Unix operating system. As should be apparent. the
program in Appendix B cannot be executed without the
occasional reference to the branch table of Appendix C.

In some embodiments. branch separator 102 also calcu­
lates a checksum for the several instructions executed

55 between each reference to the branch table. Since these
several instructions do not contain any branches. they must
be executed in the same order every time. and their check­
sum is easy to calculate. These checksums are stored as
checksum data 118. Similarly. in some embodiments. the
execution time for the several instructions can be calculated

The C program corresponding to the program of Table 1 60 and stored as timing data 120.
is: If more security against analysis is needed, instead of
main { having the branches perf onned by security chip 30. security

for (i==O; i<lO; i-t+) chip 30 could generate interrupts to implement taken
move(i); branches. If this is done. a copyist would not detect branches

}
void move (int i) {

b[i]=a[i];

65 not taken.
After secure program 114. branch table 116. checksum

data 118 and timing data 120 are generated. if used. this

14

5,675,645
9

information is compressed by compressor 104. In one
embodiment, compressor 104 is the entropy coder shown in
U.S. Pat. No. 5381.145. issued to Allen, Boliek, and
Schwartz. and entitled ''Method and Apparatus for Parallel
Encoding and Decoding of Data." Compression is used not

5 only to allow more data to be stored in a fixed sized ROM.
but is used to remove any patterns which might be present
in the data. thereby making decryption without the key more
difficult.

Encryptor 108 can take several forms. Where security is
more of a priority than keeping the hardware cost low, 10
encryptor 108 could be a Data Encryption Standard (DES)
encryptor. triple-DES, or a more secure encryption system as
is known in the art of data security. Various embodiments of
encryptor 108 can be used. depending on the laws of the
country in which the game is sold and the country of its 15
intended use, as well as a balancing of security needs and
computational limitations. Where security of the encryption
process is less of a priority than keeping hardware costs
down. several simple encryption circuits might be used. In
one embodiment. encryption is merely the process of exclu­
sive "OR"ing (XOR) the clear data with a stream of output 20

bits from a pseudorandom number generator (PRNG). In
another embodiment. the order of the clear data is reordered
based on the output of the PRNG. With an incremental
addition to the hardware cost. both of these methods could

10
requested by processor 20. This feature prevents a copyist
from controlling the processor 20 such that it requests each
and every block of the program in a known order so that the
copyist can assemble the entire program in the clear. If the
request was not proper, computational unit 72 halts proces­
sor 20 (Step S3). Alternatively. computational unit 72 could
cause some other effect, such as the erasure of the key value,
erasure of ROM 32. cause the slow degradation of the data
over time. or other steps to frustrate further analysis. In some
embodiments. computational unit 72 responds to a detected
attack by altering the flow of the game such that if the
copyist succeeds in deducing the flow of the game program.
the deduced flow will be limited. For example, computa­
tional unit 72 could limit the program flow to just the first
several levels of the game.

If the request is proper, the page is extracted from ROM
32 (S4). To do this. the request is processed by bus unit SO
and sent to translator S2. Translator S2 is not necessary
where the addresses used by the processor are the same the
addresses used to access ROM 32. As Tables 1-2 indicate.
the addresses do not always correspond. The addresses also
will need translation if the encryption alters the addresses for
the data. Once the address of ROM 32 at which the requested
page is stored is determined. that address is output on bus S4
to either ROM 32 or cache 60. In either case. the requested
data is input to decryptor 62. The returned data might be

be used together.
The simple encryption is low-cost. since a PRNG can be

easily build out of a few gates. See, for example, FIG. 7 for

25 program instructions or data objects. If the data is program
instructions. corresponding entries of the branch table are
included with the data, along with the checksum and timing
information. if used. a PRNG constructed from a shift register. FIG. 6 shows a

detailed diagram of the internal structure of for a data
scrambler 106. Data scrambler 106 uses a number of buffers. 30

but the incremental cost of these buffers is zero where the
buffers already exist as part of compressor 104.

In another low-cost variation, the encryption is combined
with the compression. In this variation. the compression is
entropy compression, which uses tables of probability esti- 35
mates to determine optimal codes to use. Since memory for
these table is needed for compression anyway, using them
for encryption adds no extra hardware. They are used for
encryption by seeding them, initially or during the compres­
sion process, according to the key value or numbers based
on the key value. An added benefit of this encryption scheme 40

is that it prevents a known plaintext attack on the encryption
process since the compression process does not necessarily
remove patterns in the data being compressed until the
probability tables have had a chance to build up. With the
key value providing the initialization for the probability 45
tables, the compression process cannot as easily be ana­
lyzed.

After being encrypted and possibly compressed. the out­
put of encryptor 108 is stored in the encrypted ROM 32. The
operation of game console 10 and game cartridge 12 using 50

encrypted ROM 32 will now be described, with reference to
FIGS. 1-4. FIG. 4 comprises FIG. 4A and 4B. and together
they show the steps taken by processor 20 and security chip
30 to execute a portion of the game program in a secure
manner. beginning with a request for a page of instructions 55
and/or data (Step Sl).

For ease of implementation, the program data could be
arranged in separately compressed data sets. with processor
20 requesting a page by specifying a pointer to a compressed
data set. or just a selection of one page from a limited set of
pages based on the last decoded page. For more security. 60

each data set could be identified by a random ID associated
with it at the time the program is encrypted.

The request for a page is passed over bus 14 to bus unit
SO. which in turn queries computational unit 72 as to
whether the request was proper (Step S2). Since computa- 65
tional unit 72 maintains the branch table, it can easily
determine which instructions should and should not be

Decryptor 62 uses the key value from key register 64 to
decrypt the data. Decryptor 62 is the inverse of encryptor
108, and the key value is either equal to, or the inverse of.
the key value stored in key register 110. depending on the
type of encryption used. The decrypted data is then decom­
pressed by decompressor 68. The effect of these elements is
to reproduce sections of the data in data blocks 114. 116. 118
and 120 shown in FIG. 3. This data is then separated into the
secure program (dear ROM data) which is passed back to
processor 20 via bus unit SO and hidden data (branch table.
checksums, timing data) which is passed to computational
unit 72. Computational unit 72 stores this data in private
tables 74 (SS). Bus unit SO passes the secure program page
in the clear to processor 20 (S6). As explained above, the
secure program page alone would not allow the copyist to
duplicate the operation of the game program.

Once processor 20 has a page of program data. it executes
the next instruction in that page (S7). Before executing the
instruction, processor 20 checks the instruction to see if it is
a branch instruction (SS). If it is not a branch instruction.
processor 20 executes the instruction (S!J) and checks for
further instructions in the page (SIO). If more instructions
are present, processor 20 gets the next instruction (looping
back to step S7), otherwise processor 20 requests the next
page from ROM 32 (looping back to step SI).

On the other hand. if the instruction is a branch
instruction. which processor 20 does not process. a branch
request is passed to security chip 30 (Sll). If the branch
request is not proper. as determined in step Sl2. computa-
tional unit 72 halts processor 20 (S13). For a request to be
proper. it must be expected. must occur at the time expected.
and the bus checksum must be correct. The response from
security chip 30 to a proper branch request is the address to
which processor 20 should branch. Of course, for condi-
tional branches, processor 20 will need to pass one or more
arguments to security chip 30. which will calculate which of
a true address and a false address to return (Sl4). Security
chip 30 then passes the address back to processor 20 (SIS),
the processor jumps to that address (S16) and gets the
instruction at that address (looping back to step S7). In this

15

5,675,645
11

way. an address is provided for a branch without processor
20 ever being told what kind of branch it is or what all the
possible branch addresses are.

12
branches. ADDRESS 2 is not used. For calls. ADDRESS 1
is the called address and is supplied to processor 20, while
ADDRESS 2 is the address of the instruction following the
call (i.e., the return address). That ADDRESS 2 value is
placed on a stack for later use with the corresponding return
branch. For a return. neither address field is used; the return
address comes from the stack.

Table 2 shows a secure program intended to be run by a
processor such as processor 20. When the processor reaches

Computational unit 72 is used both to process branch
requests and to evaluate whether a request for a branch is
proper. To do this. it uses a private branch table. which is
stored as part of private tables 74. This branch table need not
store all the branches. but just those which are upcoming.
For each branch entry in the branch table. the following
fields are maintained:

TYPE - the type of branch. selected from:
1) unconditional jump
2) conditional jump
3) subroutine call
4) subroutine return.

10
a branch request (which replaces a branch in the clear
program) •. the processor makes a branch request and passes
to the security chip the index of the branch request with the
arguments necessary for the evaluation of a condition. For
example. at address 4 in Table 2. a branch request is made
for a specific branch index. The instruction "brJeq l"

CONDIDON - Only used with conditional jumps; indi­
cates the condition tested.

15 signals that entry 1 is the branch table is to be used.

ADDRESS 1 - For unconditional jumps and conditional
jumps with a true condition. this address is the address to
jump to; for calls. it is the called address; and for returns. it 20
is not used.

ADDRESS 2 - Not used for unconditional jumps. For a
conditional jump with a false condition. this is the address

However. for some determined copyists. the index of the
branch request might be used to extract branch information.
For example. by tracing enough "brJeq l" instructions, the
copyist could determine that it is equivalent to a return
instruction. In turn, each of the indexed branch requests can
be analyzed to determine the type and condition for each
branch.

To make this sort of analysis more difficult. the indices in
instructions can be eliminated. Thus. instead of the instruc-to jump to; for calls this is the return address. which is saved

on a stack. This is not used for returns.
In some embodiments. processor 20 does not specify. and

is never told. the index into the branch table for an upcoming
branch. In those embodiments. the branch table tracks which
branch index should follow the current branch. Of course.

25 tions ''brJeq l" and "brJeq 2" being available to the
processor. both of these are known only as "brJeq". The
indexing information is stored in the fields NEXT BRANCH
1 and NEXT BRANCH 2. Since all branches are controlled

the next branch depends on which branch is taken. so that 30

information is stored in the following two fields in those
embodiments:

by computational unit 72, the branch request following the
address of the current branch is known and thus is easily
stored. The NEXT BRANCH 1 field contains the index of
the next branch when ADDRESS 1 is the branch taken and
the NEXT BRANCH 2 field contains the index for the next
branch when ADDRESS 2 is the branch taken. For a call.

NEXT BRANCH 1 - Indicates the index of the branch in
the program code which is the first branch in the code after
ADDRESS 1.

NEXT BRANCH 2 - Indicates the index of the branch in
the program code which is the first branch in the code after
ADDRESS 2.

35 ADDRESS 1 is the start of the called subroutine and
ADDRESS 2 is the address of the instruction following the
call instruction. Thus, NEXT BRANCH 1 is the index of the
first branch in the subroutine and NEXT BRANCH 2 is the

CHECKSUM - The expected checksum for all the pro-
gram code preceding the branch. 40

EXECunON TIME - The expected execution time from
the previous branch to the next branch.

PASSWORD - The password required to execute the
current branch.

The TYPE field indicates the type of branch and, 45

consequently. which other fields are used. If example. an
entry for an unconditional branch (e.g .• "goto S") need not
include a condition or a false condition address. Of course.
in some systems other branches are possible. such as con­
ditional calls and conditional returns. In some high-security 50

systems. NOP branches might also be included in the secure
program.

The CONDIDON field might be expressed as an operand
and a constant. for comparisons of a variable against the
constant (e.g .• ''branch if (i>=lO)") or just an operand for 55

variable-to-variable comparisons (e.g .. "branch if (x<y)").
Where variables are needed for the comparison. they are
passed by processor 20 to security chip 30 as part of the
branch request. Processor 20 need not be informed of which
condition is being applied. just how many and which vari- 60
ables to pass as arguments. In one embodiment. the TYPE
field indicates which type of condition field is used and a
VALUE field indicates the constant value where one is used.

The ADDRESS 1 and ADDRESS 2 fields supply the next
address for the currently requested branch. For conditional 65
branches. ADDRESS 1 is supplied if the condition is true.
otherwise ADDRESS 2 is supplied. For unconditional

index of the first branch following the ADDRESS 2 address.
For calls. ADDRESS 2 and NEXT ADDRESS 2 are pushed
onto a stack in computational unit 72.

Where used. the CHECKSUM. EXECunON TIME and
PASSWORD fields are used to determine whether the
branch request is authorired. After a branch. bus information
from bus taps is fed to computational unit 72. which
checksums the bus data until a branch is found. The resulting
checksum is compared to the stored CHECKSUM value. If
these are different. computational unit 72 will take action to
prevent the further progress of the game. The checksum can
be applied to all traffic over the processor bus except. of
course. variable data.

Similarly. real-time clock 76 is used to recorded the time
between branches and that time is compared to the EXECU­
TION TIME value. The expected amount of time is easily
determined if the processor clock rate is known. since there
are no intervening branches and the .known number of
instructions between the branches. Alternatively, a separate
real-time clock is not needed. If a PRNG is used as part of
the decryption process. it could be set to clock each instruc­
tion cycle. whether or not it is being used. That way. if extra
instructions are inserted, the PRNG would lose sync with the
data and corrupt it.

For particularly sensitive branches, a PASSWORD value
could be assigned, where the processor must supply the
password for the branch to be taken. The PASSWORD value
might be calculated from a known combination of the state
of the processor or memory contents of the local memory.

16

5.675.645
13

Relying on the security chip for branch processing might
take longer than if the processor was executing a clear
program. Where the execution of code is time-critical, the
protection of selected sections of the program code could be
disabled so that the processor does its own branch process­
ing. Alternatively. portions of the processing necessary for
the time-critical program code could be executed by the
security chip to save processing time.

F1G. 5 shows a branch unit 500 which is a part of
computational unit 72 used to implement the above rules.
Branch unit 500 receives an entry from branch table 502. 10

data from a bus tap 504 and arguments from a D~A IN bus
506 and. based on those inputs, outputs either an error signal
indicating an improper branch was requested or a properly
requested branch address. In some embodiments, the branch
address is passed to processor 20, while in other embodi- 15
ments the branch address is used to control which instruc­
tions are provided to processor 20 without ever informing
the processor of the address for those instructions.

Branch unit operates as follows. Once an entry in branch
table 502 is selected. the fields VALUE, TYPE,
CHECKSUM. PASSWORD. TIMING, ADDRESS 1, 20

ADDRESS 2. NEXT 1 and NEXT 2 are output. The VALUE
field is the constant associated with a conditional jump with
a comparison to a constant, and forms one input to subtractor
508. The other input to subtractor 508 comes from a register
510 which holds the latest contents of the D~A IN bus. 25
Subtractor 508 provides results for comparisons of a vari­
able argument against a constant. and in some cases merely
indicates whether the one input is greater than, equal to. or
less than the other input. Subtractor 512 similarly compares
the output of register 510 and the output of a second register 30
514 coupled to register 510. The outputs of both registers are
provided to a control section 516.

Control section 516 determines whether an error signal is
to be output and also controls two multiplexers (muxes) 518,
520. The output of mux 518 is the branch address, selected 35
from one of ADDRESS 1. ADDRESS 2 and a stack top
value from a stack 522. The output of mux 520 is one of
NEXT 1. NEXT 2. an initial value, and the stack top value.
The output of mux 520 indicates the index for the next
branch and is fed back to an index input for branch table 502.
The initial value is a pointer to the first branch in the chain 40

of branches, so that the PENDING line is properly initial­
ized.

Control section 516 determines which output of mux 518
is active based on its inputs, as indicated above: when the
branch TYPE is an unconditional jump, a call, or a condi- 45

tional jump with a true condition, ADDRESS 1 is selected.
ADDRESS 2 is selected for a conditional jump with a false
condition and the stack top is selected for a return branch. In

14
shown. however the number of buffers is not limited to three.
The effect of scrambler 106 on an input data stream is to
rearrange the order of bits. bytes. words or blocks of the
input data stream in a deterministic and reversible manner.

To do this. demux 602 parses the input data elements (bits,
bytes, words or blocks) at its input to one of its outputs as
determined by a current pseudorandom number. As the
current pseudorandom number changes, the output to which
the elements are directed changes. Mux 604 combines the
separated streams of elements into one stream as they are
output by the buffers. The elements are reordered because
they require different amounts of time to travel between
demux 602 and mux 604. due to the arrangement of buffers
608. Each buffer 608 is either a first-in. first-out (FIFO)
which alternates its head and tail, or is a FIFO which
alternates as a last-in first-out (LIFO) buffer. In the former
case. each time an element is shifted into a buffer 608 from
the left. an element is output to mux 604 from the right and
each time an element is shifted into the buffer from the fight.
an element is output from the left. In the latter case. elements
are pushed into the buffer from either end, but they are
output from the right end. The end from which the element
is shifted into the buffer 608 is controlled by the values
output by PRNG 606.

Thus. knowing the pseudorandom number sequence, one
could discover the reordering pattern and reverse it In order
to discover the pseudorandom number sequence. the key
value (stored in key register 64 ofF1G. 2 or key register 110
of FIG. 3) must be known, since that key value acts as the
seed for PRNG 606. Of course, where hardware is at a
premium, scrambler 106 could use portions of the
decompressor. or the key value could be used to scramble or
modify internal decompression tables. such as probability
estimation or R-code tables.

Where hardware logic is especially at a premium, the
pseudorandom number generator (PRNG) 700 shown in
F1G. 7 can be used. PRNG 7ff requires only a key shift
register 702, a maximal length sequence (MLS) shift register
704, two muxes 706, 708 and one XOR gate 710. Inputs to
PRNG 700 are provided by a key clock 712. an MLS clock
714, a KEY IN serial input. a KEY LOAD signal and an
INTI'/RUN signal. Once loaded, key shift register 702 can be
used as key register 64 or 110, with the application of an
uninterruptible power source 716.

F1G. 7 shows the input to key shift register 702 being the
output of mux 706, which is either the looped-back output
of key shift register 702 or the KEY IN input depending on
whether the KEY LOAD signal at the select input of mux
706 is asserted or not. F1G. 7 also shows the input to MLS
shift register 704 being the output of mux 708 which is either
the output of key shift register 702 or the output of XOR gate
710 depending on whether the INTI'/RUN signal at the select
input of mux 708 is set to INIT or RUN. The inputs to XOR the case of a call, ADDRESS 2 is pushed onto the stack. for

use with the next return.
Control section 516 also determines which output of mux

520: when the branch TYPE is unconditional. a call, or a
conditional jump with a true condition. NEXT 1 is selected
and applied to the PENDING line. NEXT 2 is selected for

so gate 710 are the output ofMLS shift register 704 and one tap
from a nonfinal stage of MLS shift register. The particular
tap used and the number of stages in MLS shift register
determine the length of the pseudorandom number sequence

a conditional jump with a false condition and the stack top
55

is selected for a return branch.
Control section 516 outputs an error signal if the CHECK­

SUM value from branch table 502 does not match what
checksum logic 524 calculates as the checksum from bus tap
504. if the execution time obtained by monitoring real-time
clock 76 does not match the expected execution time indi- 60

cated by the EXECtmON TIME (TIMING) field. or if the
password provided by processor 20 does not match the
PASSWORD field.

F1G. 6 shows scrambler 106 in more detail. Scambler 106
comprises a demultiplexer (demux) 602, a mux 604, a 65
pseudo-random number generator (PRNG) 606 and a num­
ber of buffers 608. Three buffers 608A. 608B and 608C are

which results. For examples of sequence lengths and tap
points, see Knuth. D. E.. The Art Of Computer
Programming. 2d. Ed .. 1981, pp. 27-29 and Table 1 therein.
In one embodiment, the number of stages (flip-flops) for
MLS shift register 704 is 98 and the number of bits in a key
value is 98. however other lengths and taps work equally
well. Of course. the number of bits in the key value should
be large enough that a copyist cannot easily guess its value.
A 98 stage MLS shift register will produce a sequence of bits
which repeats only every 298-1 bits. With this many stages.
the shift register need not be maximal length. One advantage
to not having the shift register be maximal length is that the
set of taps for maximal length shift registers are known in
the art and therefore a non-maximal length shift register
would be more difficult to reverse engineer.

17

5,675,645
15

The key value is initially loaded into key shift register 702
by asserting the KEY LOAD signal. applying the key to the
KEY IN input and clocking key clock 712 until the key value
is loaded. Once the key value is loaded. the KEY LOAD
signal is unasserted. so that the clocking of key clock 712
merely circulates the key value within key shift register 702.
The KEY LOAD signal should be unasserted permanently.
which could be done by having the key preceded by a
leading "l" bit. That bit is then used to set a flip-flop (not
shown) when it reaches the output of key shift register 702.

10
That flip-flop would control whether or not the KEY LOAD
signal could be asserted and would also be powered by
uninterruptible power source 716.

The key value is circulated in key shift register 702 to read
it out. When the INIT/RUN signal is set to INIT. the key
value will be clocked into MLS shift register 704 by MLS 15
clock 714. which clocks along with key clock 712. Once
loaded. MLS shift register 704 will run and circulate its
contents altered. of course. by XOR gate 710 to form a
maximal length sequence of pseudorandom numbers, as is
known in the art. The pseudorandom numbers of the 20
sequence can be read out in parallel from MLS shift register
704. With a low-cost PRNG such as the one just described,
multiple keys become more feasible.

lo summary. the above detailed description described a
system for preventing the copying of program data by a 25
copyist having access only to the end user portions of the
hardware and/or software needed to run the program. While
the examples referred to a specific application of protecting
game programs which are provided on game cartridges and
used with game consoles. other applications were described.
Furthermore. the invention is usable even where the pro- 30

gram is provided primarily as software. so long as a small
hardware component containing the security chip is pro­
vided. But one improvement of the present invention over
the prior art is that the program data is kept encrypted until
decrypted by a security chip, and even then less than all of 35

the program data is provided to a processor--only the
program code for executing the instance of the program
whose flow is determined for the specific set of inputs
provided by the user is made available. The data not
provided to the processor is either provided only at a time 40
known to be the appropriate time for the processor to be
requesting the program data. or is never provided to the
processor. lo the latter case. the security chip performs the
operations which would have been performed by the pro­
cessor had the security chip provided all the program data. 45
lo one embodiment. the information retained by the security
chip is branching information. Thus. each time a processor
encountered a branch instruction, that instruction could only
be completed with the assistance of the security chip.

16
non-game applications of the invention follow from this
disclosure. Other variations are discussed below.

lo one particular embodiment of a video game according
to the present invention. the security chip tracks the number
of "lives" a player has left and the amount of time remaining
until the player must move on to the next level. The security
chip decrypts the program data one level at a time. and thus
initially provides only the program data for the first level of
the game. The program data contains initial values which are
never shown in the clear outside the security chip and those
values are used to set a timer for the level. As the player is
playing the game. the program informs the security chip
when certain events occur. If the information from the
processor is as expected. the game is played normally.
However, if the information is not as expected. time can be
added to the timer or "lives" can be removed. ff the rime on
the timer is extended, the player has more time to wait to get
to the next level. ff the time is extended often enough due to
the program running differently than intended, the timer will
never run down and the player will remain on the first level.
One advantage to this approach over the security chip
simply shutting down the processor is that it is not apparent
when in the program the security chip first detects a prob-
lem.

The former approach is not without its advantages. ff the
processor is part of a fault-tolerant system. which might or
might not be subject to attack by copyists. the security chip
can be used as a means for preventing an errant processor
from continuing once it has failed. The same security chip
can be used to halt the processor or set off an alarm when
improper execution is detected. but the assumption there is
that the unexpected operation is caused by hardware or
software failure instead of deliberate acts of a copyist.

As an example of non-game use, the processor might
perform image processing. lo image processing. a convolu­
tion might be required. A convolution is performed as a
series of many multiply operations and an add operation.
Since the security chip can monitor the data bus of the
processor. the security chip can perform the addition as the
multiply results appear on the bus. When the sum is needed.
the processor requests it from the security chip. If the
processor is run without the security chip, the convolution
will either be wrong or the processor will run slower since
it will have to do the accumulation itself.

Where the program data is compressed, elements of the
decompressor might be used to contribute to the decryption
process. For example. FIG. 6 shows a data scrambler which
could be formed from buffers of the decompressor. Also.
where the decompressor is an entropy encoder, the security
chip could use the key value for form the initial parameters
for the decompression process. such as the initial probability
values. This has the additional advantage of preventing the
one-to-one mapping of bits that usually occurs at the start of
the entropy coder before enough bits have been received to
infer probabilities from the bits themselves.

The above description also described the internal structure
and operation of the security chip. a system for generating 50

encrypted program data. the interaction of the security chip
and the processor during normal operation and operation
while under attack by a copyist. as well as a low-cost
pseudorandom number generator based on a stored key
value.

When the security chip detects a security violation it need
not stop the processor. Other options are to reset the pro­
cessor after a random delay, output pseudorandom numbers

55 as decoded data or adjust the PRNG by complement
enabling or other means so that the PRNG slowly degrades
the data being output.

The above description is illustrative and not restrictive.
Many variations of the invention will become apparent to
those of skill in the art upon review of this disclosure.
Merely by way of example. the above description described
an embodiment of the invention which protected video game
programs from unauthorized copying and use. however

The scope of the invention should. therefore. be deter­
mined not with reference to the above description. but
instead should be determined with reference to the appended
claims along with their full scope of equivalents.

18

5

IO

15

20

25

30

35

40

45

50

55

60

65

5.675,645

17 18

' .
27

Aooendix A Example Clear Cw/Branches) Assembly I.anguage Program Listing

(C) 1994, 199S RICOH Corporation. All Rights Reaerved.

gcc2 compiled. :
gnu compiled c:

:tixt - -

LCO:

LCl:

LC2:

. align 8

.aacii "%d\0"

.align 8

.aacii •• \0"

.align 8

.aacii "\12\0"

.align 4

.qlobal print it

.proc 02~ -
print it:

- T#PROLOCUE# 0

L2:

LS:

L6:
L4:

LJr

save 'sp,-112,,sp
l#PROLOGUE# l
nop
sethi %hi(k),\oO
ld (\oO+\lo(k)J,\ol
add \ol,-1,\oO
st 'loO, (\fp-121

ld [\fp-121, 'oo
cmp \oO,O
bge LS
nop
b LJ
nop

ld (\fp-12 J, \oO
mov \o0,\o2
sll 1102,2,\ol
sethi \hi(x),\oO
or \oO,\lo(x),\02
sethi \hi(LC0),1'oJ
or \o3,1'la(LCO),\o0
ld [%ol+\a2J,\ol
call _printf,O
nap
l,d [\fp-12], \aO
and \o0,3,'lol
C111P \Ol,0
bne L6
nap
sethi 1'hi(LC1) 1 \0l
or \ol,\lo(LCl),\aO
call _printf,O
nop

ld (\fp-12],\ol
add %ol,-l,\o0
mov \oO,\ol
st 1'ol, [\fp-12 J
b L2
nop

sathi \hi(LC2),\ol
or \ol,\la(LC2),\o0

19

5

10

15

20

25

30

Ll:

19

call _printf,O
nop

rat
reatora
.aliqn 4
.global do it
.proc 020 -

do it:
- - J #PROLOGUE# 0

save \ap,-120,\ap
!#PROLOGUE# 1

LB:

Lll:

at \10, (\fp+68)
aetbi \hi(x),\oO
mov l,\ol -
st \ol,(\oO+\lo(x))
1110V l , \oO -
11t \oO,[\fp-12)

aethi \hi(k),\oO
ld [\fp-12),\ol
ld (\oO+\lo(k)J,\oO
cmp \ol,\oO -
bl Lll
nop
b L9
nop

eethi \hi(x),\oO
mov 4,\ol -
or \oO,\lo(x),\o2
add \ol,\o2;\o0
mov \oO,\ol

35 LlO:
at \90, [\ol)

40

L9:

45
Ll2:

50

LlS:
55

60

65

ld [\fp-12),\ol
add \ol,l,\oO
lllOV \oO,\ol
at \ol, (\fp-12)
b LS
nop

call print it,O
nop - -
at \90, {\fp-l6J

ld [\fp-16 J, •oo
ld (\fp+68) , \Ol
cmp \oO,\ol
bl LlS
nop
b L13
nop

eethi \hi(x),\oO
ld (\oO+\lo(x)),\ol
at \ol,[\fp-lOJ
••thi \hi(k),\00
11ethi \hi(-1),\ol
ld [\oO+\lo< kJJ,,oo
ld (\ol+\lo(-1)),\ol
al.lb \oO,\ol,ioo
lllOV \oO,\ol
ell \ol,2,\oO
aethi \hi(x),\02
or \o2,\lo{ x),\ol
ld [\oO+\olJ,\oO
•t \oO,[\fp-24]

5.675,645
20

28

20

Ll6:

5

10

C:.19:

15

20

25 Ll8:

30

Ll7:

35

40

45

Ll4:

50

Ll3:
55 L7:

LCJ:
60

LC41

65

5.675,645

21

et %g0, [Hp-12 J

eethi \hi(k),\oO
ld c•oO+\lo< k)J,\ol
add \ol, -1, \oO
ld [Up-12),\ol
cmp \ol,\oO
bl Ll9
nop
b Ll7
nop

ld I 'ilfp-12 J , \oO
mov \oO,\ol
all \ol,2,\oO
aathi \hi(x),\o2
or \o2,\lo(x),\Ol
ld (%fp-12 J;\o2
mov \o2, 'oJ
ell \o3,2,\o2
sethi \hi(x+4),\o4
or \o4,\lo(x+4),\o3
ld [\o2+\o3),\o2
et \o2, [\oO+\ol]

ld [\fp-12 J, \ol
add \ol,l,\oO
mov \oO,\ol
et \ol, [\fp-12]
b Ll6
nop

aethi \hi(k),\ol
ld (\ol+\lo(k)J,\oO
mov \oO,\ol -
ell \ol, 2, \oO
eethi \hi(x-4),\o2
or \o2,\lo(x-4),\ol
ld [Up-20];\o2
ld I Up-24 J, \o3
xor \o2,\o3,\o4
aubcc \gO,\o4,\g0
addx \q0,0,\o2
at \o2, (\oO+\ol]
call print it,O
nop

ld (\fp-16],\ol
add \ol, l, \oO
mov \oO,,ol
et \ol,(\fp-16)
b Ll2
nop

rat
reatore
.align 8

29

.aacii "Uaage: rnlaq L K #linee\12\0"

.align 8

.aacii "\11"

.aacii "0 < L < K < \d\12\0"

.alic;n 4

.global _ ueage

.proc 020
_uaage:

22

21

5.675.645

5

10

15

23

!#PROLOGUE# 0
aave \Bp,-104,\ap
!#PROLOGUE# l
eethi \hi(iob+40),\ol
or \ol,\lo-r- iob+40),\o0
aethi \hi(LC!),\o2
or \o2,\lo(LC3),\al
call fprintf,O
nop -
••thi \hi(iob+40},\ol
or \ol,\lo..- iob+40),\o0
••thi \hi(LC'i),\o2
or \o2,\lo(LC4),\ol
mov 100,lo2
call fprintf,O
nop -
mov l,\oO
call _axit,a

20 L20:
ncp

25

30

35

main:

ret
restore
.align 4
.global main
.proc 020

- l#PROLOOO!# 0
aava \•p,-112,\ap
!#PROLOGUE# 1
at \iO, [\fp+-Ei8)
IJt \11, [\fp+72J
call m&in,O
nop --
ld I \fp+6a J, \oO
Clip \o0,4
be L22
nop

40 L22:

call uaage,O
nop -

45

50

55

60

65

mov 4,\oO
ld { \fp+72 J, \cl
add ,oO,,cl,loO
mov \oO,,ol
ld [lol J , \oO
call _atoi,O
nop
aethi lhi(l),\ol
et 'oO,(\ol+\la(l)]
mov 8,loO -
ld [\fp+72],\0l
add \oO,\cl,\oO
mov 'lloO,\ol
ld [\OlJ,loO
call atoi,O
nQP -
••thi \hi(k),\ol
•t \oO,[\oT+\lo(k)J
lllOV 12,\oO -
ld [\fp+72J ,\cl
add \oO,\ol,\oO
mov \oO,\ol
ld (\Ol],\00
call atoi,O
nop -
at \oO,[\fp-12]
aethi \hi(l),\oO
ld (\oO+\lo(_l)J,\ol

30

24

22

5,675,645

25 26

31

cmp \ol,O
ble L24
nop

5
sethi \hi(_l),\oO
ld [\oO+\lo(_l)],\ol
cmp 1101,98
bq L24
nop

10
eethi \hi(k),\oO
ld (1100+,lo(_k)J,\01
cmp \ol,l
bla L24
nop

15
sethi \hi(_k),\oO
ld (\o0+\lo(_k)),1iol
Clllp 'ol,99
bg L24
nop

20
sethi \hi{_ l} ,\00
sethi \hi(k),\ol
ld (\OO+,lo(l)],\oO
ld [1iol+\lo(:k)),\ol
cmp 'o0,1101

25
bqe L24
nop
b L23
nop

L24:
call - uBage,O

30 nop
L23:

ld I \fp-12 I, \oO
call _do_it,0

35
nop

L21:
rat
restore
.common k,4,"bea"
.common :1,4,"bsa"

40 .common _x,400, liba•""

End of Listinq.

23

5.675,645

27 28

32

Aooeodjx B. Corresoooding Secure Assembly Language Program

5

10

; (C) 1994, 1995 RICOH Corporation. All Rights Reserved.

Register %07 is a register unused in the input assembly code

gcc2 _compiled. :
___gnu_ compiled_ c:
.text

.align 8
15 LCO:

LCI:

.ascii " %d\O"

.align 8

.ascii " \ O"
20 .align 8

LC2:
.ascii "\ 12\0"
.align 4
.global _print_ it

25 .proc 020
print it:

!#PROLOGUE# 0
save % sp, -112, %sp
!#PROLOGUE# I

30 nop

35 U:

sethi %hi(_k), 3o0
Id [%o0+ %1o(_k)], %ol
add %ol,-1,%o0
st %o0,[%fp-12]

Id [%fp-12] , %o0
sethi %hi(_SC_data), %07
st %o0,[%o7+%lo(_SC_data)]
b _SC_branch+O

40 nop
LSCO:

LS:

b _sc_branch+l
nop

45 Id (%fp-12], %o0
mov %o0,%o2
sll %02,2, %ol
sethi %hi(_x), %o0
or %o0, %lo(_x) , %02

24

5,675,645
29

sethi % hi(LCO), % o3
or %03, %1o(LCO), % oO
Id [%ol + %02], %ol
b _SC_branch+2

5 nop
LSCl:

Id [%fp-12J, %o0
and %o0,3, %ol
sethi %hi(_SC_data), %07

10 st %ol,[%o7+%lo(SC data))
b _sc_branch+3 - -
nop

LSC2:
sethi %hi(LCI), %ol

15 or %ol, %lo(LCI), %00
b _SC_branch+4

LSC3:
L6:

20 IA:

nop

Id [%fp-12J, %ol
add %01,-1, %00
mov %o0,%ol
st %ol,[%fp-12]

25 b _sc_branch+5
nop

L3:
sethi %hi(LC2), %ol
or %ol, %1o(LC2), %00

30 b _sc_branch+6
nop

LSC4:
LI:

b _SC_branch+7
35 restore

_do_it:

.align 4

.global _do_it

.proc 020

40 !#PROLOGUE# 0
save %sp,-120, %sp
!#PROLOGUE# 1
st %i0,[%fp+68]
sethi %hi.(_x), %o0

45 mov l, %01

L8:

st %ol ,[%o0+ %1o(_x)J
mov l,%o0
st %o0,[%fp-121

33

30

25

5,675,645

31 32

34

sethi %hi(_k), %o0
Id [%fp-12], %ol
Id [%o0+ %lo(_k)J, %o0
sethi %hi(_SC_data), %07

5 st %ol ,[%o7+ %lo(_SC_data))
st %o0,[%o7+%1o(_SC_data)]
b -SC_ branch+ 8
nap

LSC5:
10 b _SC_branch+9

nop
Lll;

sethi %hi(_x), %o0
mov 4,%ol

15 or %o0,%lo(__x),%o2
add %ol, %02, 3o0
mov %o0,%ol
st %g0,[3ol)

LlO:
20 ld [%fp-12], %ol

add %ol,l , %o0
mov %o0.%ol
st %ol,[%fp-12J
b -SC_branch+lO

2S nop
L9:

b _SC_branch+ 11
nop

LSC6:
30 st %g0,[%fp-16)

L12:
ld [%fp-16], %o0
ld [%fp+68], %ol
sethi %hi(_SC_data), %07

35 st %o0,[%o7+ %lo(_SC_data)]
st %ol,[%o7+ %1o(_SC_data)]
b -SC_branch+ 12
nop

LSC7:
40 b _SC_branch+ 13

nop
L15:

sethi %hi(_x), %o0
Id [%o0+ %lo(_x)J, %ol

45 st %ol,[%fp-20]
selhi %hi(_k), %o0
sclhi %hi(_l), %ol
ld [%o0+ %1o(__k)], %o0
ld (%01 +%lo(_))], %ol

26

5,675,645

33 34

35

sub %o0, %ol, %o0
mov %o0, %ol
sll %01,2. %o0
sethi %hi(_x), %02

5 or %02, %lo(_x), %ol
Id [%o0+ %ol], %o0
st %o0,[%fp-24]
st %g0,[%fp-12]

Ll6:
10 sethi %hi(_k), %o0

ld [%o0+ %lo(_k)], %ol
add %ol,-l,%o0
ld [%fp-12], %ol
sethi %hi(_SC_data), %07

15 st %ol,[%o7+%loLSC_data)J
st %o0,[%o7+%1o(_SC_data)]
b -SC_branch+ 14
nop

LSC8:
20 b _SC_ branch+ 15

nop
Ll9:

ld {%fp-l2], %o0
mov %o0,%ol

25 sll %ol,2,%o0
sethi %hi(_x), %02
or %02, %lo(_x.), %ol
Id [%fp-12], %02
mov %o2,%o3

30 sll %03,2, %02
sethi %hi(_x +4), %o4
or %o4 , %lo(_x+4),%o3
Id {%o2+%o3],%o2
st %o2,[%o0+ %ol]

35 Ll8:
Id [%fp-12], %ol
add %ol,l, %o0
mov %o0,%ol
st %ol,[%fp-12]

40 b _SC_branch+ 16
nop

L17:
sethi %hi(_k), %ol
Id [%01+ %loLk)], %o0

45 mov %o0,%ol
sll %01,2, %o0
sethi %hi(_x-4),%o2
or %02, %1o(_x-4), %ol
Id [%fp-20J, %02

27

5,675,645
35

ld [%fp-24], %03
xor %02, %03, %o4
subcc %g0, %o4 , %g0
addx %g0,0, %02

5 st %o2,[%o0+%olJ
b _SC_branch+ 17
nop

LSC9:
L14:

10 Id [%fp-16), %ol
add %ol,l,%o0
mov %o0,3ol
st %ol,[%fp-16]
b _SC_branch+ 18

15 nop
L13:
L7:

b _SC_branch+l9
restore

20 .align 8
LC3 :

36

.ascii "Usage: mlsg L K /tlines\12\0w

.align 8
LC4:

25 .ascii "\ 11 •

30 _usage:

.ascii "O < L < K < %d\12\0''

.align 4

.global _usage

.proc 020

!#PROLOGUE# 0
save %sp,-104, %sp
!#PROLOGUE# I
sethi %hiLiob+40), %ol

35 or %ol,%loLiob+40),%oO
sethi %hi(LC3), %02
or %02, %lo(LC3), %ol
b _sc_branch+20
nop

40 LSClO:
sethi %hiLiob+40), 301
or %ol, %1oLiob+40), %o0
sethi %hi(LC4), %02
or %02, %lo(LC4), %ol

45 mov 100, %02
b _SC_branch+21
nop

LSCll:
mov 1,%o0

36

28

5.675.645

37

b _SC_branch+22
nop

LSC12:
L20:

5 b _sc_branch+23
restore

10 main:

.align 4

.global _main

.proc 020

- !#PROLOGUE# 0
save %sp, -112, %sp
!#PROLOGUE# 1
st %i0,[%fp+68]

15 st %il ,[%fp+ 72]
b _SC_branch+24
nop

LSC13:
ld [%fp+68], %o0

20 sethi %hi(_SC_data), %07
st 3o0,[%o7 + %lo(_SC_data)]
b _SC_branch+25
nop

LSCl4:
25 b _SC_branch +26

nop
LSC15:
L22:

mov 4,%o0
30 Id [3fp+72], %ol

add 3o0, %ol, %o0
IOOV %o0, %01
Id [%01), %o0
b _SC_branch+27

35 nop
LSC16:

sethi %hi(_l), %ol
st %o0,[%ol +%lo(_!)]
mov 8,%o0

40 Id [%fp+72], %ol
add %o0,%ol,%o0
mov %o0,%ol
Id [%ol], %o0
b _sC_branch+28

45 nop
LSC17:

sethi 3hi(_k), %ol
st .,.o0,[%ol+ %1o(_k)]
mov 12, %o0

37

38

29

5,675,645

39

Id [%fp+72],%ol
add %o0, %ol, %o0
mov 3o0, %ol
Id [%ol], %o0

5 b _sc_branch+29
nop

LSC18:
st %o0,[%fp-12]
sethi %hiLJ), %o0

10 ld [%o0+%lo(_I)], %ol
sethi %hi(_SC_data), %07
st %ol,(%o7+ %lo(_SC_data)]
b _SC_branch+30
nop

15 LSC19:
scthi %hiLJ), %o0
Id [%o0+ %lo(_))], %ol
sethi %hi(SC data), 3o7
st %ol,[%o7 + %Io(_SC_data)J

20 b _sC_branch+31
nop

LSC20:
sethi %hi(__k), %o0
Id [%o0+%lo(_k)], %ol

25 sethi %hi(_SC_data), %07
st %ol,[%o7+%lo(_SC_data)]
b _SC_branch+32
nop

LSC21:
30 sethi %hi(_k), %o0

Id [%o0+ %1o(_k)], %ol
sethi %hi(_SC_data), 3o7
st %ol,[%o7 + %lo(_SC_data)]
b _sc_branch+33

35 nop
LSC22:

scthi %hi(_)), %o0
scthi %hi(_k), %ol
Id [%o0+%loU)J,%oO

40 ld (%o1+%lo(_k)],%ol
scthi %hi(_SC_data), %07
st %o0,[%o7+%1o(_SC_data)]
st ,.ol,[%o7+%1o(_SC_data)]
b _sc_branch+34

45 nop
LSC23:

b _SC_branch+35
nop

L24:

38

40

. l .

30

41

b _SC_branch+36
nop

LSC24:
L23:

5 Id [%fp-12], %00
b _SC_branch+37
nop

LSC25:
L21:

IO b _SC_branch+38

15

restore
.common _k,4, "bss"
.common _1,4, "bss"
.common _x,400, "bss"

5,675,645
42

39

31

5,675,645

43 44

40

A12~ndi3. ~ . Coa~U!Qndiag Brill!ch Tab!~ fQr S1:1;1ue ti~1:mbl:i f!:Qi:ram

(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

5

Branch information in •scurity chip

10 ---
ID Labell Label2 Cond. Compare

15 0 LS LSCO: bge can at 0
1 L3 always
2 _printf,O LSCl: call
3 L6 LSC2: bne con at 0
4 printf,O LSCJ: call

20 5 L2 always
6 _printf,O LSC4: call
7 return
a Lll LSCS: bl var
9 L9 alwavs

25 10 LB always
11 print it,0 LSC6: call
12 LlS LSC?: bl var
13 LlJ always
14 Ll9 LSCS: bl var

30 15 Ll7 alway a
16 Ll6 always
17 print it,O LSC9: call
18 Ll2 always
19 return

35 20 fprintf,0 LSClO call
21 -fprintf,O LSCll call
22 :exit,O LSC12 call
23 return
24 main,0 LSClJ: call

40 25 m LSC14: be canst 4
26 - uaage,O LSC15: call
27 atai,O LSC16: call
28 -atoi,O LSC17: call -29 atoi,O LSC18: call

45 JO L24 LSC19: bl• con•t 0
31 L24 LSC20: bq canst 98
32 L24 LSC21: ble canst l
33 L24 LSC22: bg canst 99
34 L24 LSC23: bge var

50 35 L23 always
36 usage,O LSC24: call
37 :do_it,O LSC25: call
38 return

32

5

10

15

20

25

30

35

40

45

50

55

5,675,645

45 46

41

Apoendjx D. Source Code Listing for Software Implementarjon of Branch Seoarator

#1/bin/nawk -f so s•
I
I Awk program for automatically removing branch instructions from
I SPARC assembly code generated by gee so branches can be implemented
in security chip.
I
(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

function do sc label()
{ - -

ac_labal • "LSC" new_label

function do_branchlfl
{

if (ope return($l] !• 1)
label[branch count] = $2;

if (condition[branch count} == "")
if (ope return{$1] =• l)

condition(branch_count J
•l••

condit i on[branch_count]

print •• \ tb SC branch+" branch_count;
branch_count++T

"return":

"always " ;

I conditional branches and calls
#function do_branch2()
{

if (opc_call(Sl) != 1) {

}

split(cmp save,arge,",");
print "\tiethi \hi(sc data),\o7 "
print "\tst " arga[IJ •, [\o7+\lo(SC data))"
condition(branch count] = Sl - -
if (match (ar9a(2),"'\"]J {
print "\tat• ar9s[2J ",[\o7+\lo(SC data)]"

compare[branch count] = "var" -
} else { -

}
els• {

compare(branch_count} =•canst" args[2];

condition[branch_count] = "call";

label flag = l;
label2°[branch_count) sc_la.bel;

do_branchl();

60 I Change the initialization here to support parein9 assembly code for
I other processors.
#function init_opcodes()
{

Unconditional branches
65 opc_bl("b"I ~ l;

I Conditional branches

33

5

10

15

20

25

30

35

5,675,645
47

ope b2["bne") • l;
opc-b2["ble" I • l;
opc-b2["bleu") • l;
opc:b2["bpos"] = l;

I Calls
opc_call [•call" l = 1;

Returns
opc_return{"ret") = l;

I Comparieions
opc_c0111pare["cmp"J = l;

48

42

opc_b2["be") = l; opc_b2["bg"J = l;
ope b2["bge"J = l; ope b2["bgu•] • l;
opc:b2["bcc"J = l; opc::b2["bca"] = lr
opc_b2["bneg") = l; opc:_b2["bl"] • l;

I Instructions that can follow branch instructions
ope trail["nop") = l;
ope:trail["raatore"l = 1; I occur• after return

BEGIN {
print "Register ~o7 must not be uaed in the input assembly code•

print ·---"
print

init_opeodee();

cmp flaq • O;
l&bil_flag • O;

branch count • O;
new_label = O;

do_sc_label();

==··------····==····-===------------------~--------------------------
40 ENO {

45

50

55

60

print

print "--"
print
print "Branch information in aecurity chip"
print

print ·---"
print
print "ID\tLabell\t\tLabel2\tCOnd.\tCompare•
print "--\t------\t\t------\t-----\t-------·
print

for (i=01i<branch count;i++) {
11 = la.bd(i);
while (lanqth(ll) < 8)

11 '" 11 " ";
12 • label2(i);
if { 12 -- ••) 12 = • • ;
print i "\t" 11 "\t" 12 "\t" condition(i] "\t" compare(il

I ~=•••••===•••••••~•••====2as~•••••••••••••~==••••=~••••••••••••••••••

I
HAIN

65 I
===•=3=======•z:s=•••3••••~•z=s•~••==::=======•••===••••••••••••=••••

34

5

10

15

20

25)

5,675,645
49

43

if (cmp flag) {
crop flag = 0;
if (ope b2(Sll == 1)

do branch2 ();
} else {-

print "\temp " cmp_save;
}

50

else if ((label flag== 1) && (opc_trail[$1] == 1)) {
print $0; -
print sc label;
label flag = a;
new label++;
do sc label () ;

}else if-(opc compare[Sll == l)
cmp flag = 1;
cmp-save = $2;

else if-(opc blf $1] == 1) {
do branch!();

else if (ope call($1] == 1)
do branch2{);

else if (ope return{Sl] =• 1)
do branchl();

else -
print SO;

/* End of Listing. •/

35

5

10

15

20

25

30

35

40

45

50

55

60

65

5,675,645
51 52

44

Apoendix E. Source Code Listing for Program to Test PRNG

• mlsg.c
• An example c program: Teat maximal length sequence generator.

• (C) 1994, 1995 RICOH Corporation. All Rights Raaerved.

#include <stdio.h>
#define MAX 100

int k, 1;
int x(HAXJ; /• K Flip-flops are used in hardware •/

void

void

print it(>
int I;
for (i•k-l;i>•O;i--) {

printf("'d",x(iJ);
if (iU --I

printf("\n");

do _it(int n)
int i, j;
int tl, t2;
x(O) = l;
for (i=l;i<k;i++)

x(l] z O;

print_it(J;

tor (j=O;j<n;j++J
tl z :x(O] I

0) printf (• ") ;

j• t2 ~ x[ll; Alternative*/
t2 • x(k-1);
for (i=O;i<k-l;i++)

x(i.] • x[i+l];
x(k-1] = (tl l= t2) 7 O; /* XOR gate ia used in H/W •/
pr.i.nt_it ();

void uaaqe () {
fprintf(atderr,"Uaage: mlsg L K #linea\n"J;
fprintf(atderr,"\tO < L < K < 'd\n", MAX);
exi.t(lJ;

void main (int argc, char ••arqv) {
int linea;

}

if (arge l= 4) uaage(J;
1 • atoi(argv(l]J;
k • atoi(argv(2]);
line• • atoi(argv(3]);

if ((l<l) ll (1 > MAX-2) :: (k < 2) Ii (k > HAX-1) ii (l >• k))
usage();

do_it(li.nes);

/* End of Li.sting. •/

36

5,675,645
53

What is claimed is:
1. An apparatus for executing a secure program in a

computer system. wherein the ability to make workable
copies of the secure program from the computer system is
inhibited. the apparatus comprising: 5

54
reordered by the inverse of the data scrambler before being
placed in the program memory.

14. The apparatus of claim 13, wherein the data scrambler
comprises a plurality of first-in. first-out buffers.

15. The apparatus of claim 13. wherein the reversible and
deterministic pattern is generated by reference to the output
of a pseudorandom number generator.

a program memory in which the secure program data is
stored in an encrypted form;

a security chip coupled to the program memory, the
security chip comprising:

means for decrypting portions of the secure program into
a clear portion and a remainder portion;

16. The apparatus of claim 1, wherein the means for
decrypting portions of the secure program operates based on

10 the key value and the output of a pseudorandom number
generator.

means for providing the clear portion to memory locations
accessible by a processor; and

17. The apparatus of claim 1. further comprising means
for altering the operation of the security chip and the
program flow of the secure program when said means for

remainder memory for storing the remainder portion of
the secure program, the remainder memory not directly
accessible by the processor;

means for requesting subsets of the remainder portion for
use by the processor; and

15 checking detects that the requested subset is not within the
valid predetermined set of subsets, whereby the altered
operation causes a negative effect on the program flow or
operation.

means, within the security chip, for checking that the
requested subset is within a valid predetermined set of
requested subsets dependent on a stored state for the
processor.

18. The apparatus of claim 17, wherein the means for
20 altering is a means for halting the processor.

2. The apparatus of claim 1, wherein the secure program
stored in the program memory is stored with the clear 25

portion and the remainder portion stored separately.

19. An apparatus for encrypting program data to prevent
unauthorized copying. comprising;

a branch separator for extracting branch statements from
the program data;

a compressor for compressing the extracted branch state­
ments and a remainder of the program data to form
compressed data; and

an encryptor for encrypting the compressed data.
3. The apparatus of claim 1. wherein the remainder

portion is a set of branch instructions of the secure program.
4. The apparatus of claim 3, wherein the security chip

further includes means for caching branch statements based
on recently executed branches.

30 20. An apparatus for encrypting program data to prevent
unauthorized copying, comprising;

5. The apparatus of claim 1, wherein the means for
decrypting portions of the secure program is configured with
a decryption key.

6. The apparatus of claim 5, wherein the decryption key 35

is stored in a volatile memory.
7. The apparatus of claim 6. wherein the volatile memory

is distributed over the security chip. the security chip further
comprising overlying circuitry which overlies and obscures
at least a part of the volatile memory. 40

a branch separator for extracting branch statements from
the program data comprising:

means for automatically generating checksum data rep­
resenting checksums of program data; and

means for automatically generating timing information
used to assess timing of program data processing;

a compressor for compressing the extracted branch
statements. a remainder of the program data, the check­
sum data. and the timing information, to form com­
pressed data; and

an encryptor for encrypting the compressed data.
21. A method of executing a secure program to prevent

8. The apparatus of claim 7. wherein the overlying cir­
cuitry is coupled to a power source for the volatile memory
such that the removal of the overlying circuitry removes the
power to the overlying circuitry.

9. The apparatus of claim 1. further comprising:
clocking means. within the security chip, for determining

45
copying of the secure program in a usable form from
information acquired over an insecure processor bus, the
usable form being a copy which replaces the functionality of
the original, comprising the steps of: a rate of instruction execution of the processor; and

timing response means for rejecting processor requests
when the clocking means determines that the rate is 50
outside a range of normal operation for the processor.

10. The apparatus of claim 1. further comprising a data
decompressor for decompressing the secure program after
decryption. wherein the secure program is compressed
before encryption.

11. The apparatus of claim 10. wherein the decompressor
is an entropy decoder.

55

12. The apparatus of claim 1, further comprising:
checksum means, within the security chip, for determin­

ing a checksum of bus accesses on a processor bus; and 60

checksum response means for rejecting processor
requests when the checksum does not match a prede­
termined checksum for those bus accesses.

13. The apparatus of claim 1, further comprising a data
scrambler for reordering data elements of the secure pro- 65
gram according to a reversible and deterministic pattern
determined by a key value, wherein the secure program is

accepting a request from a processor over the insecure
processor bus for a block of program data, the block of
program data including at least one of one or more
program instructions or one or more program data
elements;

decrypting. in a secure manner. the block of program data
into a clear portion and a remainder portion;

providing the clear portion to the processor over the
insecure processor bus; and

accepting requests from the processor over the insecure
processor bus for elements of the remainder portion;

checking that the request is consistent with the state of the
processor and previous requests;

processing the requests from the processor for elements of
the remainder portion; and

responding to the requests with request responses.
wherein the request responses do not contain enough
information content to recreate the remainder portion

37

5,675,645
55

with substantially less computational effort than
required to create said remainder portion.

22. The method of claim 21. further comprising the steps
of:

separating a program into the clear portion and the
remainder portion to form a secure program; and

encrypting the secure program prior to placing the secure
program into an insecure memory.

23. The method of claim 22. wherein the step of separat­
ing is a step of separating branch instructions of the program
from other instructions of the program.

24. The method of claim 21. wherein the step of decrypt­
ing is performed with a decryption key.

10

25. The method of claim 24. further comprising the step
of storing the decryption key in a volatile memory. 15

26. The method of claim 25. further comprising the steps
of:

providing a power source to the volatile memory;

56
determined by a key value prior to storage in an
insecure memory; and

descrambling the order of the data elements upon proper
request of the processor.

31. The method of claim 30. wherein the step of scram­
bling comprises a step of generating a pseudorandom num­
ber used to form the reversible and deterministic pattern.

32. A method for encrypting a program to prevent unau­
thorized copying, comprising the steps of:

separating program code according to sequences of non­
branch instructions and branch instructions;

compressing the nonbranch instructions to form a first set
of compressed data;

compressing the branch instructions to form a second set
of compressed data; and

encrypting the first and second sets of compressed data.
33. An apparatus for executing a secure program in an

insecure computer system, wherein the ability to make
covering the volatile memory with a circuit such that the

power source is removed from the volatile memory
when the circuit is disturbed and the circuit shields the
volatile memory from probing.

27. The method of claim 21. further comprising the step

20 workable copies of the secure program during execution of
the secure program using the insecure computer system is
inhibited, a workable copy being a copy which replaces the
functionality of the original secure program, the apparatus

of checking a rate of instruction execution of the processor 25
prior to providing a request response.

28. The method of claim 21. further comprising the step
of decompressing the secure program after decryption,
wherein the secure program is compressed before encryp­
tion.

29. The method of claim 21. further comprising the steps
of:

determining a checksum of bus accesses on a processor
bus;

30

comparing the checksum to a precalculated checksum for 35

a set of instructions of the secure program which are
executed under normal operation; and

preventing the unobstructed operation of the secure pro­
gram when the checksum and the precalculated check-
sum ditfer. 40

30. The method of claim 21. further comprising the steps
of:

scrambling an order of data elements of the secure pro­
gram according to a reversible and deterministic pattern

comprising:
a program memory in which the secure program. data is

stored in an encrypted form;
a security chip coupled between the program memory and

adapted to be coupled to a processor over an accessible
processor bus, the security chip comprising:

means for decrypting portions of the secure program into
a clear portion and a remainder portion;

means for providing the clear portion to memory locations
accessible by the processor; and

remainder memory for storing the remainder portion of
the secure program. the remainder memory not directly
accessible by the processor except via the security chip;

means for requesting subsets of the remainder portion for
use by the processor; and

means, within the, security chip, for checking that the
requested subset is within a valid predetermined set of
requested subsets given a stored state for the processor.

* * * * *

