

International Journal of Pharmaceutics 221 (2001) 165-174

www.elsevier.com/locate/ijpharm

Characterisation of the aggregation behaviour in a salmeterol and fluticasone propionate inhalation aerosol system

Yonatan Michael^a, Martin J. Snowden^{a,*}, Babur Z. Chowdhry^a, Ian C. Ashurst^b, Craig J. Davies-Cutting^b, Trevor Riley^b

^a School of Chemical and Life Sciences, University of Greenwich, Wellington Street, Woolwich, London SE18 6PF, UK ^b Inhalation Product Development, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire SG12 0DP, UK

Received 8 December 2000; received in revised form 23 March 2001; accepted 30 March 2001

Abstract

The nature of the drug-drug aggregation phenomena between salmeterol xinafoate and fluticasone propionate used in a metered-dose inhaler system has been examined. Interactions between the drugs in the solvents 1,1,2-trichlorotrifloroethane (CFC-113) and 1,1,1,2-tetrafluoroethane (HFA-134a) have been characterised using a focused beam reflectance measurement probe by measuring the average floc size of the drug particles individually and in combination as a function of stirrer rate. The floc composition in the CFC-113 system, where the drug particles cream, was determined by high-performance liquid chromatography analysis. The aggregation behaviour of the individual drugs was shown to depend on the physical and chemical properties of both the drug substance and the media. Larger flocs were observed for salmeterol xinafoate compared with fluticasone propionate, while both drugs formed larger aggregates in HFA-134a compared with in CFC-113. The floc composition studies demonstrated that, in the combined formulation in CFC-113, salmeterol xinafoate and fluticasone propionate aggregate together to form hetero-flocs. The interaction between the two drugs was such that they did not separate on creaming, despite having different densities. The average floc size of the combined drug suspension was also found to depend on the dispersion medium. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Salmeterol xinafoate; Fluticasone propionate; HFA-134a; CFC-113; Aggregation; Focused beam reflectance

1. Introduction

* Corresponding author. Tel.: +44-208-3319981; Fax: + 44-208-3318305.

E-mail address: m.j.snowden@greenwich.ac.uk (M.J. Snow-den).

Metered-dose inhalers (MDIs) are the most frequently employed dosage forms for delivering active drug substances to the respiratory tract via the inhaled route. MDIs contain fine micronised drugs in a suspension of chlorofluorocarbon

0378-5173/01/^{\$} - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: \$0378-5173(01)00678-0 PLAINTIFFS' TRIAL EXHIBIT PTX0179

(CFC) or hydrofluoroalkane (HFA) propellants, which act as both a suspending medium and propellant. Current formulations are predominantly suspensions of single micronised active compound in the range $2-5 \ \mu m$ in liquefied CFCs or HFAs. The physical and chemical properties of the single-drug formulations are, in principle, easier to study. Combined drug formulations are less well understood and, as a result, a significant amount of fundamental scientific research work on the subject is being undertaken. Previous work (Michael et al., 2000) on the combined inhaler formulations of both salmeterol xinafoate and fluticasone propionate in propellant CFC-113 indicates that hetero-aggregation of the two drugs would appear to be taking place. The hetero-aggregation results in reduced drug deposition on to the MDI surfaces as compared with that observed with the individual drug formulations. This phenomenon could be an advantage from a pharmaceutical point of view, i.e. the combination formulation shows a decrease in the total loss of the drugs due to deposition on to the internal surfaces of the MDI. Clinical studies have indicated that drug formulation of salmeterol xinafoate and fluticasone propionate in a single inhaler provides a treatment as efficacious in achieving asthma control and as well tolerated over a 28week period as the two drugs administered individually (Chapman et al., 1999). However, a clearer understanding of the aggregation behaviour of salmeterol xinafoate and fluticasone propionate will facilitate the design of combination aerosol systems.

A number of methods were considered in an attempt to characterise the aggregation behaviour of suspensions in MDIs. Microscopy is a commonly used technique that allows an optical inspection of the particles and can be used to judge whether a good dispersion has been achieved or if any aggregation is present in the system (Rawle, 1999). Light-diffraction techniques (Sidhu et al., 1993) are also used for the study of flocs in liquid suspensions, and the particles in suspension are measured by re-circulating the sample in front of the laser beam. This technique was, however, found to be unsuitable

DOCKET

due to the high optical absorbance of the concentrated suspensions, which made scattering measurements difficult due to low signals and multiple scattering. Rheological methods (Sidhu et al., 1993) have also been used to study the extent of flocculation in inhalation systems. However, these methods normally make use of high solid-phase concentrations of the dispersed materials as compared with those normally encountered in commercial metered-dose inhalers. In addition, small-angle light-scattering techniques have also been used to study the size and structural dynamics of flocs (Spicer et al., 1998); however, flocs in MDIs would be too large for this techniques.

The objective of the work reported herein was to gain a better understanding of the physical and chemical factors involved in the combined formulation of salmeterol and fluticasone propionate in a single MDI aerosol system. The aggregation of salmeterol xinafoate and fluticasone propionate in HFA-134a and CFC-113 was studied using a focused beam reflectance measurement (FBRM), which enables floc size to be determined as a function of stirrer rate. In addition, a floc composition study of the CFC-based combined drug formulation was performed to monitor the migration behaviour of the individual drugs within the suspension.

2. Materials and methods

2.1. Reagents

The test samples of salmeterol xinafoate and fluticasone propionate were donated by GlaxoSmithKline Research and Development (Ware, UK), and were used as received. The propellants 1,1,2-trichlorotrifloroethane (CFC-113) and 1,1,1,2-tetrafluoroethane (HFA-134a), with a water content of less than 10 p.p.m., were obtained from ICI Chemicals and Polymers Ltd (Runcorn, Cheshire, UK). Poly(vinyl chloride) (PVC)-coated glass aerosol bottles were supplied by Wheaton Ltd (NJ, USA) and 63 μ l metering valves were purchased from Valois S.A. (Le Neubourg, France).

2.2. Focused beam reflectance measurement

The aggregation behaviour of the suspensions was studied by FBRM, using a Lasentec Labtec 1000 instrument (Lasentec Inc, Redmond, USA) (Allen and Davies, 1998). The apparatus uses a focused laser diode beam source that is projected on to the sample at a fixed velocity and rapidly scans across the particle structures. As the focused beam transcribes a particle or floc structure, light from the incident beam is reflected back until the beam reaches the opposite edge of the particle. The back-scattered light is collected by a pair of stereoscopic photodiode detectors and converted into an electronic signal. The chord length of the particle or aggregate can then be determined from the product of the pulse duration and the velocity of the scanning laser. The chord lengths measured over a specific time period are sorted into a 38-chord distribution that covers the size range 0.4-250 µm. Because the beam does not intersect the particle in the same way every time, the so-called 'random chord length distribution' of the particles is measured (Fig. 1). During one measurement cycle, adjusted to 8 s, thousands of particles are identified. To produce robust statistics, 2000 or more particles need to be sampled per second. An advantage of FBRM over forward scattering or transmission sizing techniques is that opaque dispersions can be analysed. Hence, experiments can be performed at realistic concentrations, without the need for sample dilution.

Unlike many other particle sizing techniques, pressurised systems can be readily studied using the Lasentec Labtec 100 without the need for building a complex pressure cell. Instead, samples may be presented in cylindrical glass-coated aerosol bottles. Nevertheless, an important aspect of

DOCKE

the Lasentec system is that the hydrodynamic conditions must be such that a representative sample flows past the probe window. This cannot always be guaranteed in practice, causing systematic errors or noisy signals (Dijkstra et al., 1996). Measurement of the floc size of the suspensions can be hindered by either gravitational sedimentation or creaming, if the densities of the solid and liquid phase are unequal. To avoid this problem, the suspensions were agitated by means of a magnetic stirrer. By varying the rotational velocity of the magnetic stirrer, it is possible to control the shear conditions within the sample. The shear stress in the aerosol bottle filled with HFA-134a at a stirrer speed of 1000 rev min⁻¹, was estimated by assuming laminar flow and was found to be of the order of 0.025 N m⁻².

Data from the experiments were collected by analysing the samples at three equidistant positions on the aerosol bottle. At each position, two particle size determinations were performed, with each determination being the mean of five measurements, averaged by the instrument software. The floc size measurement of one sample was, therefore, the average of salmeterol xinafoate and fluticasone propionate six particle size determinations from three different positions on the bottle. In this way, errors due to imperfections in the plastic-coated aerosol bottles could be minimised.

2.3. Floc size analysis

Model suspensions in HFA-134a were prepared by pressure filling propellant through a valve attached to a pressure-resistant 15 ml round clear PVC-coated glass aerosol bottle, to which known

Fig. 1. An illustration of the normalised chord length distribution of a particulate species.

quantity of the drugs had been added. Individual drug suspensions over the concentration range 0.02-0.50% w/w salmeterol xinafoate and fluticasone propionate were prepared. Suspensions containing 0.05% w/w salmeterol xinafoate together with 0.07% w/w fluticasone propionate were used to study aggregation behaviour in the combina-These concentrations tion product. are equivalent to the strengths of salmeterol and fluticasone propionate combination products that were marketed initially in the United Kingdom from July 2000. A glass-coated magnetic stirrer bar $(13 \times 5 \text{ mm}^2)$ was added to each aerosol bottle before a metering valve was crimped into place (Pamasol model type 2002). The bottles were filled with approximately 18 g HFA-134a via a pressure burette, which was pressurised at about 5 bar with HFA-134a at room temperature. Each of the formulations was prepared in triplicate. The aerosol bottles were sonicated (Decon FS300 ultra-sonic bath) for 10 min to remove any entrapped air from the suspension and to promote dispersion. After equilibration, the suspensions were re-weighed to ensure that significant amounts of propellant had not been lost due to evaporation. Drug suspensions in CFC-113 were prepared in the same way, except that the CFC was filled directly into the aerosol bottles prior to being sealed with the metering valve.

The median chord length of the individual drug suspensions in the two propellants was measured as a function of drug concentration using the FBRM system at a constant stirrer rate of 300 rev min⁻¹. The robustness of the flocs was investigated by measuring the average floc size of the drug suspension as a function of increasing stirrer speed up to a maximum of 1500 rev min⁻¹. The suspension was allowed to equilibrate for 5 min at each speed setting before measurements were made.

The reproducibility of the Lasentec FBRM response was checked by performing repeat measurements of an external standard of aqueous graphite dispersion at a constant stirrer rate of 250 rev min^{-1} and interspersed with the samples throughout the measurements. The median chord length distribution of the graphite standard was repeatedly found to be $6.00 \pm 0.33 \mu m$. Furthermore, the particle size of the graphite standard was found to be independent of stirrer speed.

2.4. Electrophoretic mobility studies

The electrophoretic mobility of the suspended drug particles was determined using a Malvern Zetasizer 3000 (Malvern Instruments, UK) in conjunction with a non-aqueous dip cell that has a narrow electrode gap of 2 mm. Individual dispersions of 0.0025% w/w salmeterol xinafoate and 0.0035% w/w fluticasone propionate were prepared in CFC-113 to give a suspension of suitable conductance. The dispersions were ultrasonicated for 10 min prior to analysis to ensure that the drug was fully dispersed.

2.5. Floc composition studies

Floc composition studies were performed on suspensions of the two drugs to examine the settling behaviour of the drug particles in the absence of shear. Individual and combined dispersion concentrations of 0.05% w/w salmeterol xinafoate and 0.07% w/w fluticasone propionate were studied in CFC-113 solvent only, as the high vapour pressure of HFA-134a propellant makes sampling difficult. Suspensions were prepared as described in Section 2.3 except that the aerosol bottles were sealed with a rubber septum. Using a glass syringe, 1 ml suspension was slowly removed from a position approximately one-quarter of the way from the bottom of the aerosol bottle without re-dispersing the sample. The dispersions were sampled at time intervals of 0, 1.5, 5 and 10 min and the 1 ml aliquots transferred to 50 ml volumetric flasks. Fig. 2 shows photographs taken to illustrate the separation behaviour of concentrated drug dispersion after a time interval of 10 min. The collected samples were left open to the atmosphere to allow evaporation of the CFC solvent, and the drug then dissolved in 70/30 (v/v) methanol/water and assayed by high-performance liquid chromatography (HPLC) with UV detection at 228 nm. The details of the HPLC analytical method have previously been described by Michael et al. (2000).

Fig. 2. Photographs illustrating the settling behaviour of concentrated drug dispersion at (a) 0 min and (b) 10 min intervals. Samples for floc composition studies were taken from position x using a syringe.

3. Results and discussions

DOCKE

Characterisation of the MDI formulations initially concentrated on understanding the dispersibility of the individual drug suspensions in CFC-113 and HFA-134a aerosol propellants, and was then extended to examine the combined drug system at different drug concentrations and molar ratios of drugs.

Suspension concentration is an important factor in determining the behaviour of suspensions of drugs in liquid suspensions. In the absence of shear, the drug particles tend to flocculate, which leads to a separation of the solid phase due to the relative density difference between the drug and the liquid continuous phase. When the suspension is subjected to stirring, random collisions of drug particles with the walls of the container and with each other can result in breakdown of the floc structure. Plots of the average aggregate size as a function of the suspension concentration of salmeterol xinafoate and fluticasone propionate in HFA-134a and CFC-113, at a constant stirrer speed of 300 rev min⁻¹, are shown in Fig. 3. In all cases, the floc size of the suspensions increased with increasing drug concentration. Bower et al. (1996) have reported that in a system of constant shear stress the disruptive force is unchanged and therefore increasing the drug concentration results in the equilibrium being shifted towards aggregate formation.

Fig. 3 illustrates that the average floc size of the salmeterol xinafoate aggregates is larger than that of the fluticasone propionate aggregates, in both CFC and HFA media. This may be partially due to salmeterol xinafoate having a lower density $(1.2 \text{ g cm}^{-1} \text{ as determined by helium pycnometry})$ compared with that of fluticasone propionate (1.3 g cm $^{-1}$), and therefore occupying a larger phase volume at the same w/w concentration. However, the nature of the drug may also influence the aggregation behaviour in the suspensions. The electrophoretic mobilities of salmeterol xinafoate and fluticasone propionate in CFC-113 were found to be 3×10^{-9} and 1×10^{-9} m² s⁻¹ V⁻¹, respectively, at 15°C. This reflects the fact that a higher charge is present on the surface of salmeterol xinafoate compared with that of fluticasone propionate, which is believed to increase the polarity of salmeterol xinafoate relative to fluticasone propionate. It would be expected that the hydrophobic fluticasone propionate particles would be wetted more readily in the non-polar CFC-113 environment than the salmeterol xinafoate particles. This could explain why fluticasone propionate forms more compact aggregates than salmeterol xinafoate.

The results presented in Fig. 3 also illustrate that the suspending medium has a considerable effect on the floc size of the drug suspension. The average floc size of both salmeterol xinafoate and fluticasone propionate was larger in HFA-134a as compared with in CFC-113. For diffusion-limited aggregation, the aggregation kinetics of the suspension will be dependent on the viscosity of the medium. Einstein's law of diffusion, states that the diffusion coefficient of spherical particles is given by (Shaw, 1992): $D = (kT)/(6\pi\eta a)$, where k is Boltzmann's constant, T is the absolute temperature, η is the viscosity and a is the particle radius.

Comparing the liquid viscosity of HFA-134a (0.20 mPa s) with that of CFC-113 (0.66 mPa s) at 25°C (Solvay, 1992), it can be seen that the diffusion coefficient of drug particles in HFA-134a is approximately three times faster than in CFC-113. Hence, under equivalent shear conditions, the faster rate of coagulation would be expected to result in the observed floc size increase.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

