IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE

MEDA PHARMACEUTICALS INC. and)
CIPLA LTD.,)
)
)
Plaintiffs,)
)
V.)
)
APOTEX INC. and APOTEX CORP.,)
)
Defendants.)
)
)

C.A. No. 14-1453-LPS

REPORT OF MATTHEW J. HERPIN, PH.D.

CIP2029 Argentum Pharmaceuticals LLC v. Cipla Ltd. IPR2017-00807 **PTX1663-00001**

I. Introduction and Qualifications

I have been retained by Meda Pharmaceuticals Inc. ("Meda") and Cipla Ltd.
 ("Cipla") (collectively, "Plaintiffs") to formulate and test the composition described in EP 0780127 (Cramer) Example III.

2. I attach my *curriculum vitae* to this report as Appendix A. I am currently a Postdoctoral Research Fellow at the University of Texas, Austin, College of Pharmacy. I obtained my Ph.D in Pharmaceutics from the University of Texas, Austin.

3. I have never testified as an expert witness or prepared an expert report in connection with any litigation. A list of my publications is included in my CV.

4. My rate is \$300 per hour, and my compensation does not depend upon the ultimate outcome of this case. I will also be compensated for any reasonable expenses, including travel costs incurred in conducting activities at counsel's request.

5. If called to testify, I am prepared to testify regarding the results of my experiments as reported here and the attached documents.

II. Summary of Work and Results

6. Plaintiffs retained me to formulate Cramer Example III using three different processes: (1) the process Cramer describes in Example I ("Cramer Example I Method"); (2) the process Geena Malhotra describes in her August 12, 2011 declaration ("Malhotra Method"); and (3) the first process Dr. Govindarajan used in his June 30, 20016 report ("Govindarajan Method"). I was instructed to document and photograph the formulation process. I attach the protocols for the Cramer Example I Method and the Malhotra Method as Appendix B.

2

Subject to Protective Order

7. Plaintiffs also retained me to perform the following tests on the formulations prepared using the three different processes: (1) visually describe the final preparation; (2) measure the pH; (3) test the sprayability; (4) measure the pH 7 days after preparation; (5) visually describe the preparation after 7 days with and without mixing; (6) test the Delivered Dose Uniformity; (7) test the Bulk Blend Uniformity Assay for Triamcinolone Acetonide for freshly prepared samples, samples after 3 hours, and samples after 7 days; and (8) visually describe the preparation after 14 days with and without mixing. I did not conduct the Delivered Dose Uniformity tests and Bulk Blend Uniformity Assay for Trimacinolone Acetonide on formulations that failed the sprayability test (i.e., produced a jet spray). Additionally, the preparation made using the Govindarajan Method did not result in a large enough volume for me to perform the Delivered Dose Uniformity Testing and Bulk Blend Uniformity Assay for Trimacinolone Acetonide.

8. The Cramer Reference is silent as to the grade of HPMC to use and whether the triamcinolone acetonide is micronized or unmicronized. Therefore, I used two different grades of HPMC, a low-viscosity grade (HPMC-E3-LV) and a medium-viscosity grade (HPMC-E4M), and I used both micronized and unmicronized triamcinolone acetonide.

Formulation Matrix			
Formulation	Polymer	Method	API
HS-D	HPMC-E4M (4000 cps)	Cramer Example I	Micronized TAA
Mal-A	HPMC-E3-LV (3cps)	Malhotra	Raw TAA
Mal-B	HPMC-E4M (4000 cps)	Malhotra	Raw TAA
Mal-C	HPMC-E3-LV (3cps)	Malhotra	Micronized TAA
Mal-D	HPMC-E4M (4000 cps)	Malhotra	Micronized TAA
X-Form	HPMC-E3-LV (3cps)	Govindarajan	Micronized TAA

9. Exhibit A shows the following formulation matrix:

Subject to Protective Order

- 10. The legend for the formulation matrix is:
 - a. TAA Triamcinolone Acetonide;
 - b. Mal-A, Mal-B, Mal-C, and Mal-D were preparations using the Malhotra Method;
 - c. HS-D is a preparation using Cramer Example I Method;
 - d. X-Form recreated the Govindarajan Method.
- 11. Exhibit B reports the process steps, visual results, and pH testing for the Mal-A,

Mal-B, Mal-C, and Mal-D preparations made using the Malhotra Method.

12. Exhibit C reports the process steps, visual results, and pH testing for HS-D. The

exhibit also shows the preparation made using the Cramer Example I Method.

13. Exhibit R reports the Pump Delivery Shot Weight Raw Data and the Sprayability results for Mal-A, Mal-B, Mal-C, Mal-D, and HS-D formulations.

- 14. Exhibit D reports the visual results and pH testing results for X-form. I annotated a copy of Dr. Govindarajan's lab notebook.
- Exhibit E reports the results of pH testing of each formulation (Mal-A, Mal-B, Mal-C, Mal-D, HS-D, and X-Form) 7 days after initial preparation.

16. Exhibit F reports the visual appearance of each formulation (Mal-A, Mal-B, Mal-C, Mal-D, HS-D, and X-Form) 7 days after initial preparation. It also reports the visual appearance of each formulation after attempting to re-disperse settled particles. Re-dispersion was done by swirling and shaking the vessel in a moderate action to minimize foaming.

17. Exhibit G reports the sprayability of formulations Mal-A and Mal-C after 7 days. Because formulations Mal-B, Mal-D, and HS-D only produced a jet during the initial test, I did not conduct another sprayability test 7 days after preparation of those formulations.

Subject to Protective Order

18. Exhibit H reports the Delivered Dose Uniformity analysis and assay of formulation Mal-A.

 Exhibit I reports the Delivered Dose Uniformity analysis and assay of formulation Mal-C.

20. Exhibit J reports the Delivered Dose Uniformity summary for Mal-A and Mal-C preparations.

21. Pictures from Mal-A preparation showing the formulation after step 11 and after 7 days are attached as Exhibit K.

22. Pictures from Mal-B preparation showing the formulation after step 11 and after 7 days are attached as Exhibit L.

23. Pictures from Mal-C preparation showing the formulation after step 11 and after 7 days are attached as Exhibit M.

24. Pictures from Mal-D preparation showing the formulation after step 11 and after 7 days are attached as Exhibit N.

25. Exhibit O contains pictures from the HS-D preparation that show the formulation after step 11, 7 days after preparation, and pictures of the undissolved EDTA taken during the initial preparation.

26. Pictures from the X-Form preparation show the formulation after the addition of azelastine hydrochloride, after the addition of HPMC, and 7 days after initial preparation are attached as Exhibit P.

- 5 -

Subject to Protective Order

27. I also took videos of the sprays from Mal-A and Mal-B preparations, which were representative of the spay patterns of the low-viscosity HMPC and medium-viscosity HPMC formulations, respectively, which I attach as Exhibit Q.

28. Pictures for Mal-A, Mal-B, Mal-C, HS-D, and X-Form formulations 14 days after the initial preparation are attached as Exhibit S.

29. Exhibit T contains pictures of the visual appearance of each formulation (Mal-A, Mal-B, Mal-C, HS-D, and X-Form) 14 days after the initial preparation and after attempting to re-disperse any settled particles of the formulation. Re-dispersion was done by swirling and shaking the vessel in a moderate action to minimize foaming.

III. Declaration

I declare under penalty of perjury under the laws of the United States that the foregoing is true and correct to the best of my knowledge.

Date: 7/28/2016

alth Hack ~

Matthew J. Herpin, Ph.D

Appendix A

MATTHEW J. HERPIN, Ph.D

601 Hearn Street #202 • Austin, Texas 78703 • 512.947.8626 matt.herpin@.utexas.edu

I. Personal

Born October 31st 1981 in Corpus Christi, Texas. United States Citizen.

II. Education

Ph.D., Pharmaceutics, December 2015 Advisor: Dr. Hugh D.C. Smyth The University of Texas, Austin, TX

Bachelor of Science, Biochemistry, May 2005 The University of Texas, Austin, TX

III. Positions Held

January 2016 to Current Postdoctoral Research Fellow- University of Texas at Austin, College of Pharmacy

May 2015 to January 2016 Graduate Research Assistant- University of Texas at Austin, College of Pharmacy

January 2012 to January 2014 PhRMA Foundation Pre-Doctoral Fellow- University of Texas at Austin, College of Pharmacy

January 2011 to May 2015 Teaching Assistant- University of Texas at Austin, College of Pharmacy Courses:

- Physical and Chemical Principles of Drugs & Laboratory, Fall: 2011
- Pharmaceutical Compounding Laboratory, Spring: 2011, 2014, 2015

2008 to July 2010 Research Associate Appian Labs, LLC, Austin, TX Aeonclad Biomedical, LLC, Austin, TX Enavail, LLC, Austin, TX

• Responsible for leading a product development group with the overall responsibility of developing solid dosage forms. The development group is comprised of formulation development and analytical team members. Reports directly to the Director of Research and Development and company President.

- Responsible for the development of solid dosage forms with a strong emphasis on products utilizing diffusion based hydrogel controlled release systems, plasma enhanced chemical vapor deposition/polymer based controlled release coatings and particle engineering technologies to drug absorption profiles and improve bioavailability.
- Provide strategic, scientific and managerial leadership to the formulation and analytical teams to solve complex drug development issues
- o Develop experimental plans based on client needs and overall project goals
- Coordinate the production and analytical testing of pharmaceutical formulations
- o Interpret experimental observations according to sound scientific principles
- Interact with clients and consultants to provide project updates verbally and in the form of technical reports
- Work closely with the Operations group to coordinate the transfer of technology from R&D to cGMP manufacturing
- o Prepare and review batch records and standard operating procedures
- Provide and submit intellectual property ideas relating to novel pharmaceutical formulations, processing techniques or analytical methods.

2006 to October 2008 Analytical Chemist, Quality Control Inhalation Chemist, Platform Development, and Quality Control Pharmaform, LLC, Austin, TX

- Responsible for the USP testing of pharmaceutical dosage forms in Research and Development and in Phase I to III clinical trials. Reported to the Vice President of Quality Control
 - o Interacted with clients to determine project goals and to provide project updates
 - Planned, designed, and performed experiments relating to the development of as standard method of analysis for solid dosage forms and dry powder inhalers.
 - Conducted testing on physical and chemical properties pertaining to product purity potency and performance. Including: High Performance Liquid Chromatography, USP Dissolution Testing,
 - Worked closely with method development chemists and manufacturing to solve problems associated with production.
 - o Provide manufacturing analytical support.
 - o Coordinated product analytical testing
 - Wrote and reviewed technical reports submitted to clients

August 2003 to 2006 Compounding Pharmacy Technician (CPhT) Peoples Pharmacy, Austin, TX

- Responsible for compounding preparation of various pharmaceutical dosage forms including: capsules, gels, lotions, creams, suppositories, rapid-disintegrating tablets, medicated lollipops and others.
 - o Assists pharmacist in the dispensing of medication to patients
 - o Managing inventory and ordering supplies

IV. Relevant Training Completed

- o Inhalation Aerosol Technology Workshop: University of Maryland, Baltimore.
- o Waters HPLC Operation and Utilization Course
- o cGMP Certification Training: Compliance LLC

V. Relevant Coursework Completed

Biopolymers: Drug and Gene Delivery Biopharmaceutics and Pharmacokinetics Physical and Chemical Principles of Drugs Pharmaceutics Pharmaceutical Compounding Modern Advances in Pharmaceutics Advanced Manufacturing Pharmacy Product Development Statistics for Translational Scientists

VI. Professional Memberships

American Association of Pharmaceutical Scientists	2011 - present
American Chemical Society	2011 – present
American Association of Advancing Science	2012 – present

VII. Current Research Interests

- o Precision ophthalmic drug delivery via tunable aerosol dynamics
- o Drug particle engineering by way of super-heated processing and high pressure homogenization
- o Ophthalmic and pulmonary drug delivery device design and development
- o Enhanced aerodynamics and performance of inhalation powders
- o Preformulation, formulation, and characterization of novel delivery systems.

VIII. Formulation Development Proficiencies

- Inhalation Aerosol Based Systems- Including various nebulizers, pMDI and evaporation/condensation aerosols
- o Topical Ophthalmic drug delivery systems/vehicles-
- o Diffusion Based Controlled Release Tablets (direct compression)
- Various Particle Engineering Technologies: High Pressure Homogenization, Solvent Precipitation/Evaporation, Spray Drying, Super-Heated Aqueous Particle Engineering
- o Solubilization/Complexation with Cyclodextrins
- o Dry Powder Inhalation formulations
- o Powder Encapsulation

- o Preparation of Emulsions, Creams, Lotions, Gels, Suspensions
- o Excipient Uses and Functionality

IX. Technical Proficiencies and Research Experience

Analytical Instrumentation and Methodology:

- o UV-Vis/Fluorescence Spectrophotometers
- Fourier Transform Infrared Spectroscopy
- o Laser Diffraction Particle Sizing (Sympatec-Helos)
- o High Performance Liquid Chromatography-Method Development/Qualification
- o Inverse Gas Chromatography
- o Dynamic Light Scattering
- o Atomic Absorption
- o Differential Scanning Calorimetry
- o Faraday Cage for Electrostatic Analysis
- o Powder X-Ray Diffraction

Physical Testing

- o United States Pharmacopoeia (USP) Dissolution Tests
- o Angle of Repose
- o Moisture Analyzer
- o Next Generation Impactor (aerodynamic assessment of fine particles)
- o Anderson Cascade Impactor/ Twin Stage Impactor
- o Instron Compression and Elongation Analysis
- o Tablet Hardness
- o Tablet Friability

Biochemical Techniques

- o Polymerase Chain Reaction(PCR)
- o Western Blotting
- o PAGE/Agarose Gel Electrophoresis
- Various enzyme activity assays

Microscopy

- o Atomic Force Microscopy (AFM)
- o High Performance Liquid Chromatography-Method Development/Qualification
- o Two Photon Microscopy
- o Scanning Electron Microscopy
- o Raman Microscopy

X. Awards and Honors

- o PhRMA Foundation Pre-Doctoral Fellowship (2012 2014)
- o Teaching Excellence Award- Outstanding Teaching Assistant- 2014
- o Student Entrepreneur Acceleration and Launch, Program Graduate- 2015
- o Texas Venture Labs- Founding Company Participant

XI. Publications and Presentations

Herpin MJ, Raffa-Carvhalo S, Smyth HDC, McConville JT, Variable Flow Pattern Effects on Fine Particle Generation from a Dry Powder Inhaler, Littlefield Excellence in Research Poster Presentation, 2010

Bosselmann S, Owens III DE, Kennedy RL, **Herpin MJ**, Williams III RO. Plasma deposited stability enhancement coating for amorphous ketoprofen. European Journal of Pharmaceutics and Biopharmaceutics. 2011;78(1):67-74.

Donovan MJ, Gibbons A, **Herpin MJ**, Marek S, Mcgill S, Smyth HDC. Novel Dry Powder Inhaler Particle Dispersion Systems-A Review. Future Medicine. 2011

Herpin M.J, Smyth HDC, A Novel Ocular Soft Mist Aerosol Device for Tunable Drug Delivery, American Association of Pharmaceutical Scientists Conference, Poster Presentation, Oct. 2012

Herpin M.J, Smyth HDC, Non-Aqueous Aerosol Deposition for Ocular Drug Delivery, American Association of Pharmaceutical Scientists Conference, Poster Presentation, Oct. 2013

Moraga, D., Bahamondez, T., **Herpin, M.,** Maloney, A. Yazdi, A., Du, P., Du, J., Smyth, H., Hydrofluoroalkane Propellant Driven Metered Dose Inhaler Formulations. In Textbook of Aerosol Medicine.

Herpin M.J, Smyth HDC, Aqueous Based Aerosol Vehicles for Enhanced Ocular Drug Delivery, American Association of Pharmaceutical Scientists Conference, Poster Presentation, Oct. 2014

Herpin M.J., Ebi, Dominik, Clemens, N., Smyth H.D.C. Characterization of Toroidal Vortices Generated by a Novel Ocular Drug Delivery Device. *International Journal of Pharmaceutics*. 2016 (In Preparation)

Herpin M.J., Xinfei, X. Smyth, H.D.C., Super Heated Aqueous Particle Engineering for Poorly Water Soluble Drugs. International Journal of Pharmaceutics. 2016 (In Preparation)

Herpin M.J., Smyth, H.D.C. Precision Ocular Drug Delivery Via Aerosol Ring Vortices. *Drug Delivery in Translational Medicine*. 2016. (In Preparation)

Bandara, H. M. H. N., **Herpin M.J**, Kolaccny D., Harb A., Romanovicz D., Smyth H.D.C., . "Incorporation of farnesol significantly increases the efficacy of liposomal ciprofloxacin against Pseudomonas aeruginosa biofilms in vitro." *Molecular Pharmaceutics* (2016).

XI. Intellectual Property

- 1. Smyth, H.D.C., Herpin M.J., Toroidal Pharmaceutical Formulations, U.S. Patent No. 61/501,671
- 2. Smyth, H.D.C., Herpin M.J., Method for Fine Particle Manufacture, U.S. Patent No. 14/458,818
- Cannon C., Parth, S., Smolen, J., Smyth H., Yazdi A., Herpin M.J., Antimicrobial and Anti-Inflammatory Compositions. Provisional U.S. Patent Application. # 62/168,561

Appendix B

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing using E4MP HMPC and micronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the mixing techniques described in Cramer Example I.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	E4MP (4000 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E4MP will be tested
Sodium Chloride			
Ethylenediamine tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			This drug will be in suspension and will therefore need to be procured in micronized form.
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Preparation according to Example I

Example III will be prepared by combining the following components utilizing "conventional mixing techniques similar to that described in Example 1":

In an appropriately sized vessel, the dextrose, polysorbate 80 and benzalkonium chloride are added one at a time to water with mixing, allowing each to dissolve or completely disperse before adding the next. To this is added, with mixing, a premixed slurry of the avicel and water. Upon forming a uniform solution, the beclomethasone, loratadine and phenylethyl alcohol are added. After all the ingredients are added, purified water is used to bring the batch to the appropriate weight.

Accordingly 500 mL of Example III will be made using the procedure outlined below:

- 1. In an appropriately sized vessel to manufacture 500 mL of product,
 - a. To 100 mL of distilled water
 - b. Add polysorbate 80
 - c. Mix step Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
 - d. Add benzalkonium chloride
 - e. Mix Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
 - f. Add glycerin

- g. Mix- Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
- h. Add EDTA
- i. Mix Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
- j. Add NaCl
- k. Mix Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
- 2. In a separate vessel the hydroxyl methylcellulose is prepared"
 - a. As per the Handbook of Pharmaceutical Excipients (2nd Edition, 1994) 20% of the required water is used to hydrate the HPMC (100 mL distilled water)
 - b. The water is vigorously stirred at RPMs adequate to disperse the powder and heated to approximately 90 deg C
 - c. While stirring, the HPMC is added, and mixing continues until all particles are thoroughly wetted
 - d. Then to the dispersed HPMC, 200 mL of cold distilled water is added while mixing
 - e. The mixture is then cooled to between 20 to 25°C (68 to 77°F) or below as according to the MethocelTM product guide ("How to Prepare Aqueous Solutions of METHOCELTM").
- 3. This premixed HPMC mixture is then added to the ingredients of step 1 to form a uniform solution.
 - a. Note: Since Example III does not list the grade of HPMC used, this experiment will be replicated using grades AAA, BBB, and CCC. The manufacturer has stated that each grade is suitable for nasal administration.
- 4. To this solution Triamcinolone and Azelastine are added and mixed at 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed.
 - a. Perform bulk product testing (top, middle, and bottom) to ensure stability over a period (2-3 or more hours) sufficient to demonstrate uniformity of the bulk following production.
- 5. The samples are then mixed using a high-speed homogenizer.
- 6. The formulations are then filled into nasal spray bottles (approximately 16.5 g per bottle) and spray pumps fitted to the bottles.
- Filled bottles will be stored at room temperature and optionally additional bottles not stored at room temperature will be stored at accelerated stability conditions (40 deg C and 75% RH).
- 8. Bottles will be tested at time points indicated below using various performance assays.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of homogeneity and pharmaceutical acceptability . Looks at sedimentation, separation of suspended particles, agglomeration, redispersability of suspension upon shaking. This will be done on both formulation and the filled bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcinolone Acetonide	HPLC Method	10 mLs of sample will be drawn off the top, middle and bottom of formulated composition, and then again after 3 Hrs to determine blend uniformity/settling stability
Pump Delivery	a. Analytical Balance	SMA-009-00	Quantitative assessment of the variability of formulation dispensing from the nasal spray pump. A Valois Nasal Spray Pump from Aptar will be used. Pump: VP7
Visual Inspection of spray quality	a. Visual observation of emission of formulation during actuation of pump	Observation of spray/jet/ failure to emit	Qualitatively assesses acceptability of spray
Spray Content Uniformity	 a. Dose collection tubes b. HPLC drug assay c. Actuation Station d. Analytical Balance 	SMA-001-00	Quantitative assessment of the variability of emitted dose from the nasal spray pump. Will be quantified using Triamcinolone
	*The Following Tests Only to be Conducted As Needed t	o Supplement Pr	revious Findings

Droplet Size Analysis*	a. Sympatec Laser Diffraction	SMA-003-00	Assesses the spray quality.
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of the product and will assist in interpretation of product performance tests.
Solid Particle Size*	a. Light Microscopy	SMA-002-00	Assesses the stability of the suspended particles and can inform on particle aggregation/agglomeration.
Osmolality*	a. MicroOsmette- Freezing Point Depression Osmometer	SMA-008-00	
Plume Geometry*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.
Spray Pattern*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing Following Malhotra Method using E3 Prem HMPC and micronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	Low viscosity: E3 PREM LV (3 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E3 Prem will be tested
Sodium Chloride			
Ethylenediamine tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			This drug will be in suspension and will therefore need to be procured in micronized form.
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Preparation by Method Detailed in Geena Malhotra's 2011 Declaration

The technique will use the ingredients and process described below:

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- 2) Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- 6) Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.

- Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.

12) Stirring was done with a high-speed homogenizer and pH was checked.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of
			homogeneity and
			pharmaceutical
			acceptability . Looks at
			sedimentation, separation
			of suspended particles,
			agglomeration,
			redispersability of
			suspension upon shaking.
			This will be done on both
			formulation and the filled
			bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcipologe Acetonide	HPLC Method	10 mLs of sample will be drawn off the top middle
		Wiethou	and bottom of formulated
			composition, and then
			again after 3 Hrs to
			determine blend
			uniformity/settling stability
Pump	a. Analytical Balance	SIVIA-009-00	Quantitative assessment of
Delivery			the variability of
			formulation dispensing
			from the nasal spray pump.
			A Valois Nasal Spray Pump
			from Aptar will be used.
			Pump: VP7
Visual	a. Visual observation of emission of formulation	Observation	Qualitatively assesses

Inspection of spray quality	during actuation of pump	of spray/jet/ failure to emit	acceptability of spray
Spray Content Uniformity	 a. Dose collection tubes b. HPLC drug assay c. Actuation Station d. Analytical Balance 	SMA-001-00	Quantitative assessment of the variability of emitted dose from the nasal spray pump. Will be quantified using Triamcinolone acetonide assay.
Droplet Size Analysis*	*The Following Tests Only to be Conducted As Needed to a. Sympatec Laser Diffraction	o Supplement Pr SMA-003-00	evious Findings Assesses the spray quality.
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of the product and will assist in interpretation of product performance tests.
Solid Particle Size*	a. Light Microscopy	SMA-002-00	Assesses the stability of the suspended particles and can inform on particle aggregation/agglomeration.
Osmolality*	a. MicroOsmette- Freezing Point Depression Osmometer	SMA-008-00	
Plume Geometry*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.
Spray Pattern*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing Following Malhotra Method using E3 Prem HMPC and Unmicronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	Low viscosity: E3 PREM LV (3 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E3 Prem will be tested
Sodium Chloride			
Ethylenediamine			
tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

A. Preparation by Method Detailed in Geena Malhotra's 2011 Declaration

The technique will use the ingredients and process described below:

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- 2) Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- 6) Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.

- Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.

12) Stirring was done with a high-speed homogenizer and pH was checked.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of
			homogeneity and
			pharmaceutical
			acceptability . Looks at
			sedimentation, separation
			of suspended particles,
			agglomeration,
			redispersability of
			suspension upon shaking.
			This will be done on both
			formulation and the filled
			bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcipologe Acetopide	HPLC Method	10 mLs of sample will be drawn off the top middle
		Wiethou	and bottom of formulated
			composition, and then
			again after 3 Hrs to
			determine blend
			uniformity/settling stability
Pump	a. Analytical Balance	SIVIA-009-00	Quantitative assessment of
Delivery			the variability of
			formulation dispensing
			from the nasal spray pump.
			A Valois Nasal Spray Pump
			from Aptar will be used.
			Pump: VP7
Visual	a. Visual observation of emission of formulation	Observation	Qualitatively assesses

Inspection	during actuation of pump	of spray/jet/	acceptability of spray
of spray		failure to	
quality		emit	
Spray	a. Dose collection tubes	SMA-001-00	Quantitative assessment of
Content	h HPLC drug assau		the variability of emitted
Uniformity	D. HELC UTUG assay		dose from the nasal spray
	c. Actuation Station		pump. Will be quantified
			using Triamcinolone
	d. Analytical Balance		acetonide assay.
Drowlet Circ	* The Following Tests Only to be Conducted As Needed to	o Supplement Pi	revious Findings
Droplet Size	a. Sympatec Laser Diffraction	SIVIA-003-00	Assesses the spray quality.
Analysis*			
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of
			the product and will assist
			in interpretation of product
			performance tests.
Solid	a. Light Microscopy	SMA-002-00	Assesses the stability of the
Particle			suspended particles and
Size*			can inform on particle
			aggregation/agglomeration.
Osmolality*	a. MicroOsmette- Freezing Point Depression	SMA-008-00	
	Osmometer		
Plume	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Geometry*	h Actuation Station		characteristics.
Spray	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Pattern*	b. Actuation Station		characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing Following Malhotra's Method using E4MP HMPC and micronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	E4MP (4000 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E4MP will be tested.
Sodium Chloride			
Ethylenediamine tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			This drug will be in suspension and will therefore need to be procured in micronized form.
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Preparation by Method Detailed in Geena Malhotra's 2011 Declaration

The technique will use the ingredients and process described below:

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- 2) Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- 6) Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.

- Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.

12) Stirring was done with a high-speed homogenizer and pH was checked.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of homogeneity and pharmaceutical acceptability . Looks at sedimentation, separation of suspended particles, agglomeration, redispersability of suspension upon shaking. This will be done on both formulation and the filled bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcinolone Acetonide	HPLC Method	10 mLs of sample will be drawn off the top, middle and bottom of formulated composition, and then again after 3 Hrs to determine blend uniformity/settling stability
Pump Delivery	a. Analytical Balance	SMA-009-00	Quantitative assessment of the variability of formulation dispensing from the nasal spray pump. A Valois Nasal Spray Pump from Aptar will be used. Pump: VP7
Visual	a. Visual observation of emission of formulation	Observation	Qualitatively assesses

Inspection	during actuation of pump	of spray/jet/	acceptability of spray
of spray		failure to	
quality		emit	
Spray	a. Dose collection tubes	SMA-001-00	Quantitative assessment of
Content	h HPLC drug assau		the variability of emitted
Uniformity	D. HPLC urug assay		dose from the nasal spray
	c. Actuation Station		pump. Will be quantified
			using Triamcinolone
	d. Analytical Balance		acetonide assay.
Due alet Cine	* The Following Tests Only to be Conducted As Needed to	o Supplement Pr	revious Findings
Droplet Size	a. Sympatec Laser Diffraction	SIVIA-003-00	Assesses the spray quality.
Analysis*			
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of
			the product and will assist
			in interpretation of product
			performance tests.
Solid	a. Light Microscopy	SMA-002-00	Assesses the stability of the
Particle			suspended particles and
Size*			can inform on particle
			aggregation/agglomeration.
O avecalality *	A Misso Osmatta Esparing Daint Dansaaian	CN44 000 00	
Osmolality*	a. MicroOsmette- Freezing Point Depression	SIVIA-008-00	
Plume	a Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Geometry*			characteristics
Geometry	b. Actuation Station		characteristics.
Spray	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Pattern*	b. Actuation Station		characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/716

Nasal Spray Manufacturing and Characterization Testing Following Malhotra's Method using E4MP HMPC and Unmicronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	E4MP (4000 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E4MP will be tested.
Sodium Chloride			
Ethylenediamine			
tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.
- 10) Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.
- 12) Stirring was done with a high-speed homogenizer and pH was checked.
IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of homogeneity and pharmaceutical acceptability . Looks at sedimentation, separation of suspended particles, agglomeration, redispersability of suspension upon shaking. This will be done on both formulation and the filled bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcinolone Acetonide	HPLC Method	10 mLs of sample will be drawn off the top, middle and bottom of formulated composition, and then again after 3 Hrs to determine blend uniformity/settling stability
Pump Delivery	a. Analytical Balance	SMA-009-00	Quantitative assessment of the variability of formulation dispensing from the nasal spray pump. A Valois Nasal Spray Pump from Aptar will be used. Pump: VP7
Visual	a. Visual observation of emission of formulation	Observation	Qualitatively assesses
of spray quality		failure to emit	
Spray	a. Dose collection tubes	SMA-001-00	Quantitative assessment of

Content	b. HPLC drug assay		the variability of emitted
Uniformity			dose from the nasal spray
	c. Actuation Station		pump. Will be quantified
	d Analytical Balance		using Triamcinolone
			acetonide assay.
	*The Following Tests Only to be Conducted As Needed to	o Supplement Pr	evious Findings
Droplet Size	a. Sympatec Laser Diffraction	SMA-003-00	Assesses the spray quality.
Analysis*			
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of
			the product and will assist
			in interpretation of product
			performance tests.
Solid	a. Light Microscopy	SMA-002-00	Assesses the stability of the
Particle			suspended particles and
Size*			can inform on particle
			aggregation/agglomeration.
Osmolality*	a. MicroOsmette- Freezing Point Depression	SMA-008-00	
,	Osmometer		
Plume	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Geometry*			characteristics.
	b. Actuation Station		
Spray	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Pattern*	b. Actuation Station		characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Exhibit A – Formulation Matrix

	Form	ulation Matrix	
Formulation	Polymer	Method	API
HS-D	HPMC-E4M (4000 cps)	Cramer Example I	Micronized TAA
Mal-A	HPMC-E3-LV (3cps)	Malhotra	Raw TAA
Mal-B	HPMC-E4M (4000 cps)	Malhotra	Raw TAA
Mal-C	HPMC-E3-LV (3cps)	Malhotra	Micronized TAA
Mal-D	HPMC-E4M (4000 cps)	Malhotra	Micronized TAA
X-Form	HPMC-E3-LV (3cps)	Govindarajan	Micronized TAA

Exhibit B - Malhotra Preparations

o Project No		
Book No.	TITLE Formulation Prepin	
From Page No. MIA Image No. Image No. Image No. Image No.	Formulation: MAL-A MBH HS-A July 12 2016	
	Mal-A	_
Molhatra - Cramer Preparation		
1.) <u>300</u> mLs, part quantity	y of water taken into a vessel. (300mL)	_
dissolved under stirring and hear	(4.5 grams) and $250,0$ milligrams of EDTA (250 mg) was added and eating the bulk.	
3.) <u>5.0081</u> grams Hydroxy pro	propyl methylcellulose (5 gr), grade: <u>E3-Premer</u> was added and dispersed	
至 4.) Stirring and was done and bu	bulk was held at 2-8 deg.C overnight	
5. 10.1 grams of Glycerin	in was added and mixed into above bulk under stirring (10 gr.)	
6. <u>50</u> mLs of waters, part slurry (350 mg)	art quantity (50 mL) and Azelelastine HCl was dissolved in it to form drug 350.2 mg vas added to the main bulk in step #5 under stirring	
Polysorbate 80 (250mg) was added t	ter (50 mL) was taken into a vessel and 244.1 milligrams of added under stirring until dissolved, then 250.0 mg of Triamcinolone d to the solution and dispersed under stirring. (Raw)	· ·
9.) Drug Slurry from step #8 wa	was added to the bulk of step #7 under stirring	_
10. <u>50</u> mLs of water wa was added under stirring.	water was taken into a vessel and mgs of Benzalkonium chloride (100mg)	
11.) Volume was made up with IIa.) & High speed Homogra 12.) Stirring was done and pH v	ith purified water genization was done for 5 minutes @ 10,000 rpms I was measured and recorded. pH: 2.66	
hote:		
Formulation resul	alted in a uniform white suspension with form that	
dissapated in a	about 10 minutes. Settling of particulates was observed	
Witnessed & Understood by me	Date Invented by:	e N
MSH	1/12/2016 Recorded by:	
-	10	

			Project No	D					-	7
Formulation Pra	9		Book No)						
EPage No		Turmula	tiun: N	NAL-	B.	m s i) -				
	Mal-	B	July	(2 -	2016					
Molhatra - Cramer Prepara	ation	akon into a w	and (200)							
$\mathbf{\overline{U}} = 2.) \underline{4}_{1} \underline{5084}_{2} \text{ grams of N}$	aCl (4.5grams) d heating the bu	and <u>250, 8</u> 	milligrams o	of EDTA (25	50mg) wa	as add	ed and			
under stirring.	nd bulk was held	d at 2-8 deg.C	gr), grade: <u>F9</u> overnight	<u>и</u> м	vas adde	d and (disperse	d		
G. <u>10.0</u> grams of Glyc 6. <u>50</u> mLs of waters, slurry (350 mg)	cerin was added part quantity (!	and mixed in 50 mL) and Az	to above bulk elelastine HCI	under stirr was dissol [,]	ing (10 ទ្ ved in it	gr.) to forr	n drug			
 7. Drug Slurry from step #6 8.) <u>50</u> mLs of w Polysorbate 80 (250mg) wa 	was added to t vater (50 mL) wa s added under s	he main bulk as taken into a tirring until d	in step #5 unde a vessel and <u></u> issolved, then	er stirring <u>247.8</u> 250.0	_ milligra	ams of Triamc	inolone			
Acetanide (250mg) was add 9.) Drug Slurry from step #8 10. <u>50</u> mLs of water	ed to the soluti 3 was added to 1 ⁻ water was take	on and disper the bulk of ste en into a vess	sed under stirr p #7 under stir el and 96.3	ing. rring 3 mgs of	Benzalk	(Re	nw)			_
was added under stirring. 11.) Volume was made up v High speed h 12.) Stirring was done and p	vith purified wa amagentzad H was measured	ter ሙ Was c d and recorde	line for 5m d. pH: 2.6	ninntes c	(100	іту) Іту)	s			
Formulation res Large air bubb sed & Understood by ma	nited in a les showing	rose to the	e top over	nspensio ansom	n wi innte p	th a which	To Pa	<i>Visco</i> ige No	s Zz	
MTS H	7/12/2016	Recounded by	• • •V:	<u>.</u>		ale				

8	Project No.
	Book No
From Pa	ige No
	Formulation: MAL-C mait
	Mala a Sile 10 Part
	11344-C J.J. 12 2016
	tz-LU
	Molhatra - Cramer Preparation
-	D_{1} 1.) 300 mLs, part quantity of water taken into a vessel. (300mL)
	VIX /2) 4.5048 grams of NaCl (4.5 grams) and 250,5 milligrams of EDTA (250mg) was added and
	dissolved under stirring and heating the bulk.
	$(M = 3.)$ \xrightarrow{O} (OO) grams Hydroxy propyl methylcellulose (5 gr), grade: \underline{HS} - PKEM-LV was added and disperse
	under stirring.
	4.) Stirring and was done and bulk was held at 2-8 deg.C overnight
	5. <u>[0.0</u> grams of Glycerin was added and mixed into above bulk under stirring (10 gr.)
	50 mLs of waters, part quantity (50 mL) and Azelelastine HCl was dissolved in it to form drug
	slurry (350mg) 350,6 mg
	7. Drug Slurry from step #6 was added to the main bulk in step #5 under stirring
	8.; mLs of Water (50 mL) was taken into a vessel and <u>246.</u> milligrams of Polysorbate 80/250 mg of Triamcinology
	Acetanide (250mg) was added to the solution and dispersed under stirring.
	\mathcal{L} 9.) Drug Slurry from step #8 was added to the bulk of step #7 under stirring
	10 mLs of water water was taken into a vessel and mgs of Benzalkonium chlorid
	was added under stirring.
	(V 11.) Volume was made up with purified water
	High speed Humogenization & for 5 min. @ 10,000 vpm.
	12.) Stirring was done and pH was measured and recorded. pH: 2.00
note	: - For mulation resulted in a uniform white suspension with foam that
	anickly dissuperied dissupates, settling of particulates was observed over a 10-15min 1 To Pac
Witnesse	ed & Understood by me, Date Invented by: Date
	M514 7/12/2016
	Recorded by:

Project No.	9
Formulation Prep Book No.	
Page No. ALLA	
Formula ton MALTD miste	
Mal al Plu 12 David	
VIEI-a JULY 12 2016	
E4H Molhatra - Cramer Preparation	
1.0 1.) 300 mLs, part quantity of water taken into a vessel. (300mL)	
2.) <u>4.5031</u> grams of NaCl (4.5grams) and <u>250,6</u> milligrams of EDTA (250mg) was added and	
dissolved under stirring and neating the bulk.	
$\left(\sum_{i=1}^{3} \frac{S_i (0.26)}{2} \right)$ grams Hydroxy propyl methylcellulose (5 gr), grade: E_{i} was added and dispersed	
under stirring.	
 4.) Stirring and was done and bulk was held at 2-8 deg.C overnight 	$\left - \right $
\underline{U} 5. <u>10.0</u> grams of Glycerin was added and mixed into above bulk under stirring (10 gr.)	
6. <u>50</u> mLs of waters, part quantity (50 mL) and Azelelastine HCl was dissolved in it to form drug	
slurry (350mg) 350.1 mg	
7. Drug Slurry from step #6 was added to the main bulk in step #5 under stirring	ļ
(8.) <u>50</u> mLs of water (50 mL) was taken into a vessel and <u>247.9</u> milligrams of	<u> </u>
Polysorbate 80 (250mg) was added under stirring until dissolved, then <u>250.3</u> mg of Triamcinolone (<i>Micronized</i>)	
Acetanide (250mg) was added to the solution and dispersed under stiming.	
9.) Drug Slurry from step #8 was added to the bulk of step #7 under stirring	$\left - \right $
\mathbb{R} 10. <u>50</u> mLs of water water was taken into a vessel and <u>91.9</u> mgs of Benzalkonium chloride	
was added under stirring.	
(27 11.) Volume was made up with purified water High speed homogenization for 5 min. @ 10,000 rpms	
12.) Stirring was done and pH was measured and recorded. pH:Z.66	
that was to the the over a RAL inte period.	65
To Page No	
sed & Understood by me, Date Invented by: Date	
M5H 7/12/2016 Roomstad bui	

Exhibit C – Cramer Example I

	Project No.														
	Book No.			TITLE			Forn	nul	atio	n	Pro	()			
Fron	Page No. NIA Formulation: HS-D-HS-	A-NIA MSH													
	1. In an appropriately s	ized vessekto ma	nufa	acture 5(')0 m		produc	۰ <u>۱</u>	1						+
	[] a. To 100ml	_ mL of distilled	wate	er (100 n	יין 10 הL)		produc	ι,							
	D b. Add 251.4	ngs polysorb	ate 8	80 (250 r	ng)										
	C. Mix step – Ap system, until	proximately 100 visually mixed	-300) rpm wi	th ai	n ove	rhead	stirre	er wi	th a ii	mpe	eller	stir	ring	
	团 d. Add 96.4	mgs benzalk	oniu	m chlori	de (:	100 n	ng)								
	e. Mix - Approxi system, until	mately 100-300 i visually mixed	rpm	with an o	over	head	stirrer	· witł	ו a in	npelle	er s	tirriı	ng		
	I f. Add 10.0	grams of g	lycer	rin (10 gi	ams	5)								,	4
	g. Mix- Approxin system, until v	nately 100-300 rp visually mixed	om w	vith an o	verh	lead s	stirrer	with	a im	pellei	r st	irrin	g		
	D h. Add _ 249	8 mgs of EDT	A (2	50 mg)											
	i. Mix - Approxin system, until v	nately 100-300 r isually mixed 🛛 🖌	om w No fe	vith an o s: did 1	verh not	iead s	stirrer	with	a im	pellei	r st	irrin	g		
	j. Add 4.5131	grams of Na() CI (4.	(EDTA 5 grams))		/			`					
	k. Mix - Approxim system, until vi 2. In a separate vessel the	nately 100-300 rp sually mixed notc: hydroxyl methyl	om w > 0 (f	ith an on lid n ≡ DTA) llose is p	verh o€ vrepa	ead s An 11 ared"	tirrer v ly di	vith a	a imp e @ ;	oeller Huis	sti 5≁	rrin _e • <i>3</i> e	eit	her	· · · · · · · · · · · · · · · · · · ·
	a. As per the Hand required water	lbook of Pharma is used to hydrat	ceut e the	ical Excij e HPMC	bien	ts (2 ⁿ	^d Editic	on, 1	994)	20%	oft	he			
	b. <u>100</u> mL powder and hea	s of water is vigo ited to approxim	orou: ately	sly stirre ⁄ 90 deg	d at C. (1	RPM	s adeq nLs)	uate	to d	isper	se t	he			
	c. While stirring, <u>c</u> continues until a	5.0122 grams Ill particles are th	HPN	IC (Grad	e:	E4	M) is	adde	ed, ar	nd n	nixin	g		
	d. Then to the disp (200 mL)	ersed HPMC, <u>2</u>	.00m	L mL of	colo	d dist	illed w	ater	is ad	ded v	whil	e mi	ixing	Ĩ	
	e. The mixture is th the Methocel™ p	en cooled to bet roduct guide ("H	wee ow t	n 20 to 2 :o Prena	5°C re Δ	(68 t	o 77°F)	orb	elow	/ as a	CCO	rding	g to		
					1	4460	us 5010 		s of N	VIETH I	IOCI	EL™″	").	,	
		2							<i></i>					To P	age No
Witne	ssed & Understood by me,	Date	Inv	ented b	y:						[Date)		
	W13 M	7/12/2010	Re	corded	by:										

					P	roiect l	Vo.						1
	Formul	atton Pre	a la			Book							
	10												
ge No.		Formulation	AS-U		1			_			++	-+	
		1	13=A-(continue	A								
	IMA-	H5-A-	- Con	d in									
		M3H 7/1312	016										
'		1 1 1			1 1			t 1					
	3.	This premi	xed HPMC.m	ixture is th	An addad	to the in							
		solution			ien auueo	to the in	gredien	ts of step	1 to fo	orm a ui	hiform	1	
	,	o o racion.				. *							
		a. No	te: Since Exa	mple III da	es not list	the grad	a of UDI	MCusad	this su				
		rep	licated usin	grades Fa	Prem IV	and EANA		vic usea,	this ex	perime	nt will	l be	
		gra	de is suitabl	e for nacal	administ		ine m	anufactu	rer has	stated	that e	each	
		0.4			aurninistr	ation.							ļĻ
	11.4.	To this solu	tion, Zg	5 3,1 mg	s of Triam	(<i>Mi'Cran</i> Icinolone	(zed)	ida (2ED)		. 70	8 11		
		of Azelastin	ie (350 mg) a	are added a	and mixed	at 100-2	10 rsm		ng) an	a	0.0	mgs	; []
		impeller sti	rring system	until visu	ally mixed	at 100-5	o ipin	with an o	vernea	ad stirre	r with	а	
	1		and official	, and visu	any mixeu	•							
	区 5.	High Speed	Homogeniza	ation was c	lone until	a visually	homog	enous mi	vturo	waa aab	- i I		
				(5 m	in C	10,000 r	pms)		xture	was ach	eived		
	Note: S	ince Example	e III does not	indicate v	hether th	ie triamci	iolone i	is micron	ized or	not th	ic		
	experin	nent will be r	eplicated us	ing triamci	nolone ad	etonide t	hat is no	on-micro	nized of	not, th	ionire.	ما	
	[ADD a	ny specificati	on here].					on mero	nizeu a		onize	a T	-+-
	-/-												
	LY 6.	The formula	itions are the	en filled int	o nasal sr	oray bottle	es (appr	oximatel	v 16.5	g per ho	ottle) :	and	1
		spray pump	s fitted to th	e bottles.					,	0 0 0 0	, cere y e	ind	
	7	Filled by tests											
	LA /.	Filled bottle	s will be stor	ed at room	n tempera	ture and	optiona	lly additio	onal bo	ottles no	ot stor	ed at	
		room tempe	erature will b	e stored a	taccelera	ted stabili	ty cond	itions (40	deg C	and 75	% RH)		
	. 8.	Rottles will k	a tostad as	time a statu							,		-
	0.	bottles will k	Je lesleu al	lime points	indicated	d below u	ing var	ious perf	orman	ce assay	/S.		
					1 1								
·											+		
	-												
						11	4.1	1 A	4		11.		+
			III W		nnear	Try a	este	a an	er (mpile	pon	·	
							_				-		
			pH	: 3.0	00								
											+		
			<u> </u>								+		
	nite:	Farn	mulation	resulte	din	a un	form	white	54	pensi	an 1	with	a
		lam	aman	FALL	am	Fam	5.1	Sided	in	a brut	- 111-	-15 m	inntes
		1.419			11	0 00000	1	1 1		D A	1		44
		an	a smal	partic	ulates	appea	rea)	n ab	ghat .	DO M	innt	25 0	AT The
		butt	om of	the fla	sk								
										Т	o Por		i
0.17			Dete						De	to	U Fag	JEIN)
& Und	aerstood by	me,	Date	Inve	ntea by:				Da	ie			
	MJH	r	7/12/20	16	18								
				I Rec	TIM DAM				1				

Exhibit D - Dr. Govindarajan Process

Formulation: X - Form 4 Fronce Torquaciable Autonide and Azilastine Hel Ma Book No ... LOTING 1345-004. Company" .. Time Point: . Aualysis Performent Inal Suspension pre passa bion miliais/Date. S- Ly 10 Jun 2016 Purpose - Beparation Statistical bath autonide (0105%) and azelastine 5 Imci un ciny lance HUCI 10:07 Expt Ker 45-004 naral 3 100 m 2 ompositor MSH 7/4/20 Quantity asget gity Hetval avantity 50.3 m Hutonide 0.0 0.05011 last 69.7mg Ha 0.0 0.0702uson 101 ba · 0 0.0504057. 8 mg Mn 00 1.99 1,991.2mg 1.00949 \$ E) HM some lare 0.9969 000 Lab 0.89989 N 0.900 000 0.901 20 (\mathcal{I}) Edo-Heid. 0.05 0-05072 52.9mg 0.02 21.6 mg Roniu 0.01981 siz d. 95100mL walk 93 100ml Q S'a \$ HPMC E3-LV was used luome Focedinge: this attempt alpay wi Campton 4 on the above ndials we ghad out VN,U <u>[2]</u> und 22 (0) a tranh 8 Rp 10 Jun 2016 appressimately -500 50ml deinized Na d ssalve Them will Vignous added 24 stoly Sprink a vortex will Soluadd Gra law B Con to nice Will 11 clipp ch' S Rasi (G) () and (3)(7 be ad Signen Content INN Theto lloved dans certi 2 punfico The water will ac tain Durable 2~ SiBn added to the ch's bensi WIL aque , C, O, B (2)and partino I homo genizor Walks, while being mixed with C/ H Analysis by: La-p Reviewed by: Date: 10 Jun 2016 Date: 5 To Page No.

PTX1663-00050

5 Product See bage 4. BOOK NO Company LOT NO Time Point; Initials/Dete: SRp 10 Jun 2016 Analysis Performed. Sy to ver Water cenization. hamo Com plete Whe 5 used to contrains W.W. inse the Orig SMA 122 bre mix ture 5 base Homogen com Ċ. di ti Ø Ha mal 10-QD 0 ó. 0 N ent wM -5 at tie bas Srr filled into O. bder. pour dure vor pray Jun-2 e de gly;ce; Sic Shin au. 00 ,O d-1 N -Spr bat kin φd tri hand denisation is expecte phase Sa chissolve 5 W. S. I.t ebs-tent _____ -vel-3m.de I Ben N out In .D So 30 10,0 10 WC andi un Q MA C w) An Q. do Denzo sá. di and add ti on to t G 0 ont The N. Wa and ann P to the artine 101 then Ne Rin NA Śo ont trans ferred gneous *s*0. D TT a FAFter Und rrim about a minut 6 Kar Reviewed by Analysis by: Dato 13 Jun. 2016 Dale: To Page No. (O)

PTX1663-00051

6 ()Company: Lot No Time Poant: Fy 13 Jun 2016 Analysis Performat: initials/Date: 5 vas OIM atis 0 Didnot dissolve See 2 photos 1 ma proceeded anynay In The re 2 Ω wh Sec form xture did not pre tran a Clear soln. Kol Å d Were 0 e ARA Glycenic PUllysorbate 80 D Dx m S We Weighed 0AC O. directly into magnets the Vial after ð bor 21 С azu _C Dens Ū N taring the ds poly balance 678 wald The Dro Th >P a kiz Co The. w. Was Maria land on Se pma **** (pi) ent Ner TKA TZS Un disalved Utra Turnax ntain 4 april Was used S -0 bea he be C some mi -0 1 aw IN a RRRPM walk 0 bea 10.m Iran 16 +021 IN as COVIZ 619 Hents wire allow to -= 1-6 Analysis by: -5 -to-Jun-2016 Date: 13.-Date: _ To Page No.

7 Sei page 4. Product Book No. Loting Company. fine Point: ... initials/Date: S. Rr. 13 Jun 2016 Analysis Periorned the. he final V Sid homo geniza 000 Q1 ₹. Ω σ $\boldsymbol{<}$ 4 กไ a cl Dudu s per sim zara ti 100 ...ch fine, Se H RA easi Ju dis sha jnas. on by over Vor 0 <u>-</u>h NEal e. rans O, MAD, glaized Dea Zr. and 5,0~ 160 rans pan 201 & fo 100 m 0 ract and 00 (1), 0, 132016 Notume The cin. 11 The cr n'tents 6 Ca kn -10 trans er 100 m) beakur Vo hne ma ed -Volum adding Walt used Jun-Sus pensio UN Conclus omo. Sus. pended ill & Hind ð... pre por The An 1 S.A. 9. D. Served The Was Lidyne Read Ung-form by Wit and agi tati Vyn. A formula tion Was Unitory dispersed Formulation was able to be sprayed Reviewed by -Aa-Analysis by. Date 14- Jun 2016 Date: END To Page No.

PTX1663-00053

Exhibit E - 7 Day pH results

Exhibit F - 7 Day Appearance

Project No		
rom Page No.		
	/ day Appearance	
		londy
/ / / / · · · · · · · · · · · · · · · ·	Clearly torvisible settling w/ Et	oddly taint
	Aprican's phase	
Vla1 - B:	Slight settling of particulates w	1/a more
	Clandy aquians phase	
Malta	Clearly Visible Settling W/ Cloud	y foint
	Aqueins phase	
Mal-D	Very small pronount of settled mand	al at buttom
	of Flask Cloudy white agreens,	phase,
Residispersability 01	servations	
Mail-	A : upon swirling settled particle	s were redispersed
	out within a few minutes the	ey would beg in to set
Ma1 - B:	upon swirling the increase thickness d	idn't not a Mon
	for complete resuspension of particu	ilorder !!!!
Ma - C.	Upon Smirling settle particles were	redispersed but beg
	to settle back within anly a Lev	v minutes
Mal-No	Inpan smithing the was obvious of	Afientty in reduse
	Line the next stars Same particulates	repaired @ the bilton
	The four and the four the started by	I CONTRACTOR INCIDENT
		To Page No
/itnessed & Understood by me.	Date Invented by:	Date
m=n	7/22/24/	
	Recorded by:	

Exhibit G - Sprayability after 7 days

Exhibit H - Mal A Delivered Dose Uniformity and Assay

Bulk Blend Uniformity for Triamcinolone Acetonide

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-A

Product Attribute Bulk Blend Uniformity Analyte Triamcinolone Acetonide Méthod HPLC- Isocratic 40% CAN

HPMC Grade: E3 LV Raw/Unprocessed

Testing Type Bulk Uniformity Assay HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Theoretical Conc. 5.1 500

mL ug per sample

	System suitability Working Standard	A
Reference	Concentration (ug/mL)	Peak Area
	53.2667	2141220.091

				7 Day Redispersion									3 Hrs									Freshly Prepared					
	Bottom			Middle			Top			Bottom			Middle			Тор			Bottom			Middle			Тор		
MAL-A-B-3	MAL-A-B-2	MAL-A-B-1	MAL-A-M-3	MAL-A-M-2	MAL-A-M-1	MAL-A-T-3	MAL-A-T-2	MAL-A-T-1	MAL-A-B-3	MAL-A-B-2	MAL-A-B-1	MAL-A-M-3	MAL-A-M-2	MAL-A-M-1	MAL-A-T-3	MAL-A-T-2	MAL-A-T-1	MAL-A-B-3	MAL-A-B-2	MAL-A-B-1	MAL-A-M-3	MAL-A-M-2	MAL-A-M-1	MAL-A-T-3	MAL-A-T-2	MAL-A-T-1	Sample Lot No.
MAL-A-Assay-7Day-9	MAL-A-Assay-7Day-8	MAL-A-Assay-7Day-7	MAL-A-Assay-7Day-6	MAL-A-Assay-7Day-5	MAL-A-Assay-7Day-4	MAL-A-Assay-7Day-3	MAL-A-Assay-7Day-2	MAL-A-Assay-7Day-1	MAL-A-Assay-18	MAL-A-Assay-17	MAL-A-Assay-16	MAL-A-Assay-15	MAL-A-Assay-14	MAL-A-Assay-13	MAL-A-Assay-12	MAL-A-Assay-11	MAL-A-Assay-10	MAL-A-Assay-9	MAL-A-Assay-8	MAL-A-Assay-7	MAL-A-Assay-6	MAL-A-Assay-5	MAL-A-Assay-4	MAL-A-Assay-3	MAL-A-Assay-2	MAL-A-Assay-1	Sample No.
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	Sample Volume
3180318	3234240	3265671	1447232	1419063	1406801	1324753	1334666	1289138	121067	123198	122442	116419	120166	116932	113416	117995	112028	403957	408133	188565	390825	392264	201165	292568	338022	314721	Peak Area
403.5	410.3	414.3	183.6	180.0	178.5	168.1	169.3	163.6	153.6	156.3	155.3	147.7	152.5	148.4	143.9	149.7	142.1	512.5	517.8	499.7	495.8	497.7	503.8	371.2	428.9	399.3	Concentration (ug/mL)
80.7	82.1	82.9	36.7	36.0	35.7	33.6	33.9	32.7	30.7	31.3	31.1	29.5	30.5	29.7	28.8	29.9	28,4	102.5	103,6	99.9	99.2	2,66	100.8	74.2	85.8	79.9	% Theoretical

University of Texos at Austin- College of Phormacy. Division of Pharmaceutics

CONFIDENTIAL

Data Processed by and Date Month P	Samples Prepared on Date $7/13/20$
ligh 7/27/2016	6-7/14/2016

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-A-1

Product Attribute Dose Uniformity Analyte Method

Testing Type Delivered Dose Uniformity HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Label Claim 2.05 50 mL ug per spray

Reference System suitability Working Standard A Concentration (ug/mL) 53.2667 Peak Area 2141220.091

22.77777778

MAL-A-1-052 MAL-A-1-054 MAL-A-1-055 MAL-A-1-057 MAL-A-1-057 MAL-A-1-059 MAL-A-1-059 MAL-A-1-059	MAL-A-1-D52 MAL-A-1-D54 MAL-A-1-D55 MAL-A-1-D55 MAL-A-1-D58 MAL-A-1-D58 MAL-A-1-D58 MAL-A-1-D59 MAL-A-1-D59	MAL-A-1-D52 MAL-A-1-D54 MAL-A-1-D55 MAL-A-1-D57 MAL-A-1-D57 MAL-A-1-D58 MAL-A-1-D58 MAL-A-1-D58	MALA-1052 MALA-1054 MALA-1055 MALA-1055 MALA-1056 MALA-1057 MALA-1058 MALA-1059	MAL-A-1-D52 MAL-A-1-D53 MAL-A-1-D54 MAL-A-1-D55 MAL-A-1-D57 MAL-A-1-D57 MAL-A-1-D57	MAL-A-1-D52 MAL-A-1-D53 MAL-A-1-D54 MAL-A-1-D56 MAL-A-1-D56 MAL-A-1-D57	MAL-A-1-D52 MAL-A-1-D53 MAL-A-1-D54 MAL-A-1-D55 MAL-A-1-D56	MAL-A-1-D52 MAL-A-1-D53 MAL-A-1-D54 MAL-A-1-D55	MAL-A-1-D52 MAL-A-1-D53 MAL-A-1-D54	MAL-A-1-D52 MAL-A-1-D53	MAL-A-1-D52		MAL-A-1-D51	MAL-A-1-D10	MAL-A-1-D9	MAL-A-1-D8	MAL-A-1-D7	MAL-A-1-D6	MAL-A-1-D5	MAL-A-1-D4	MAL-A-1-D3	MAL-A-1-D2	MAL-A-1-D1	Sample Lot No.	
%RSD Min	Standard Deviation(mg)	Mean Pump Delivery (mg)	20	19	18	17	16	15	14	13	12	11	10	6	60	7	6	2	4	3	2	1	Sample No.	
2.14	2.01	93.80	95.3	95.7	95.9	94.2	94.1	95,3	94.5	95.7	96.9	96.6	93.1	93.0	93.7	92.7	92.9	90.4	93.6	91.S	90.5	90.4	Dose Shot Weight (mg)	Pump Delivery
			807783	820651	814310	795546	792732	804777	798708	801470	809535	741506	713892	638069	593272	466253	376454	374360	393477	392576	358163	384319	Peak Area	
			20.10	20.42	20.26	19.79	19.72	20.02	19.87	19.94	20.14	18,45	17.76	17.19	14.76	11,60	9.36	9,31	9,79	9,77	8.91	9.56	Concentration	
			41.19	41.85	41.53	40.57	40,43	41.04	40.73	40.87	41.28	37.81	36,41	35.23	30.26	23.78	19.20	19.09	20.07	20.02	18.27	19.60	Mass Delivered (ug)	
30.22 36.53	19.62	64.92	82,39	83.70	83.06	81.14	80.85	82.08	81.46	81.75	82.57	75.63	72.81	70.47	60.51	47.56	38.40	38.18	40.13	40.04	36.53	39.20	% Label Claim	
%RSD Min	Standard	Mean																				1		

University of Texas at Austin-College of Pharmacy. Division of Pharmaceutics

CONFIDENTIAL

Data Processed by and Date Math Hagen 7/27/2015 Samples Prepared on Date 7/13/2016 - 7/14/2016

L

PTX1663-00063

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-A-2

Product Attribute Dose Uniformity Analyte Method

Testing Type Delivered Dose Uniformity HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Label Claim 2.05 50

mL ug per spray

Γ		Γ
	Reference	s
53.2667	Concentration (ug/mL)	ystem suitability Working Standard
2141220.091	Peak Area	A

22.77777778

		Pump Delivery				
Sample Lot No.	Sample No.	Dose Shot Weight (mg)	Peak Area	Concentration	Mass Delivered (ug)	% Label Claim
MAL-A-2-D1	1	91.8	545780	13.58	27.83	55.67
MAL-A-2-D2	2	95.1	558563	13.90	28.49	56.97
MAL-A-2-D3	3	95.6	618429	15.38	31.54	63.08
MAL-A-2-D4	4	96.0	569673	14.17	29.05	58.10
MAL-A-2-D5	S	94.7	537314	13.37	27,40	54.80
MAL-A-2-D6	6	94,3	520911	12.96	26.57	53.13
MAL-A-2-D7	7	96.0	552242	13.74	28.16	56.33
MAL-A-2-D8	8	94.3	637127	15.85	32,49	64.98
MAL-A-2-D9	6	5:96	735684	18.30	37.52	75.04
MAL-A-2-D10	10	97.3	796752	19.82	40.63	81.26
MAL-A-2-D51	11	95.5	701159	17.44	35.76	71.51
MAL-A-2-D52	12	97,6	773729	19.25	39.46	78.92
MAL-A-2-D53	13	96.1	834132	20.75	42.54	85.08
MAL-A-2-DS4	14	94.5	805004	20.03	41.05	82.11
MAL-A-2-DSS	15	95.3	808278	20.11	41.22	82.44
MAL-A-2-D56	16	95.1	798066	19.85	40.70	81,40
MAL-A-2-D57	17	95.0	817323	20.33	41.68	83,36
MAL-A-2-D58	18	96.5	817115	20.33	41.67	83.34
MAL-A-2-D59	19	95.2	823739	20,49	42.01	84.02
MAL-A-2-D60	20	95.7	823316	20,48	41.99	83.97
	Mean Pump Delivery (mg)	95.41			/	71.78
	Standard Deviation(mg)	1.24				12.29
	% DCD	1 20				17 13
	Min	91.80				53.13
	Max	97.60				85.08

Data Processed by and Date Marth Hay 7/27/2016 Samples Prepared on Date $\frac{7}{13}/2u16 - 7/14/2u$ K

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-A-3

Product Attribute Dose Uniformity Analyte Method

Testing Type Delivered Dose Uniformity HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Label Claim 2.05 50 mL ug per spray

2141220.091	53.2667	
Peak Area	Concentration (ug/mL)	Reference
A	ystem suitability Working Standard	S

22.77777778

					MAL-A-3-D60	MAL-A-3-D59	MAL-A-3-D58	MAL-A-3-D57	MAL-A-3-D56	MAL-A-3-D55	MAL-A-3-D54	MAL-A-3-D53	MAL-A-3-D52	MAL-A-3-D51	MAL-A-3-D10	MAL-A-3-D9	MAL-A-3-D8	MAL-A-3-D7	MAL-A-3-D6	MAL-A-3-D5	MAL-A-3-D4	MAL-A-3-D3	MAL-A-3-D2	MAL-A-3-D1	Sample Lot No.	
Max	Min	%RSD	Standard Deviation(mg)	Mean Pump Delivery (mg)	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	S	4	3	2	1	Sample No.	
99.70	91.20	1.96	1.87	95.68	96,4	95.1	94.8	95.4	96.6	97.0	96.6	97.4	98.3	96.2	96.6	99.7	93.2	95.8	93.9	94.5	94.6	94.2	96.0	91.2	Dose Shot Weight (mg)	Pump Delivery
					743835	740974	742007	751078	753660	760345	758870	765903	710702	638358	686371	745028	716930	743448	702958	676915	689291	660240	496790	. 388467	Peak Area	
					18.50	18,43	18,46	18.68	18.75	18.91	18.88	19.05	17.68	15.88	17.07	18.53	17.83	18.49	17.49	16.84	17.15	16.42	12.36	9.66	oncentration (ug/mL	
					37.93	37,79	37.84	38,30	38.43	38.78	38.70	39.06	36.24	32.55	35.00	37.99	36.56	37.91	35.85	34,52	35.15	33,67	25.34	19.81	Mass Delivered (ug)	
78.12	39.62	13.65	9.66	70.74	75.87	75.58	75.68	76.61	76.87	77.55	77.40	78.12	72.49	65.11	70.01	75.99	73.12	75.83	71.70	69.04	70.30	67.34	50.67	39.62	% Label Claim	
Max	Min	%RSD	Deviation	Mean																						

Data Processed by and Date Math Hyple 7/27/2016 Samples Prepared on Date 7/13/2016 - 7/14/2016

Exhibit I - Mal-C Delivered Dose Uniformity and Assay

Bulk Blend Uniformity for Triamcinolone Acetonide

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-C

Product Attribute Bulk Blend Uniformity Analyte Triamcinolone Acetonide Method HPLC- Isocratic 40% CAN

HPMC Grade: E3 LV Micronized

Testing Type Bulk Uniformity Assay HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Theoretical Conc. 5.1 500 mL ug per sample

2141220.0	53.2667	
Peak Area	Concentration (ug/mL)	Reference
	ystem suitability Working Standard A	S

						Redispersion					
			Bottom			Middle			Тор		
Samples Prepared on Date		MAL-C-B-3	MAL-C-B-Z	MAL-C-B-1	MAL-C-M-3	MAL-C-M-2	MAL-C-M-1	MAL-C-T-3	MAL-C-T-2	MAL-C-T-1	MIAL-C-B-3
- 9102/51/ L		MAL-A-Assay-7Day-9	MAL-A-Assay-7Day-8	MAL-A-Assay-7Day-7	MAL-A-Assay-7Day-6	MAL-A-Assay-7Day-5	MAL-A-Assay-7Day-4	MAL-A-Assay-7Day-3	MAL-A-Assay-7Day-2	MAL-A-Assay-7Day-1	MAL-A-ASSAY-LO
7/14/2016		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1
	-	3615499	3592919	3485904	3479461	3480739	3395260	3453757	3472049	3316568	369065
		4	4	4	4	4	4	£	4	4	4

		Sample Lot No.	Sample No.	Sample Volume	Peak Area	Concentration (ug/ml.)	% Theoretical
		MAL-C-T-1	MAL-A-Assay-1	0.1	393590	499.4	6'66
	Top	MAL-C-T-Z	MAL-A-Assay-2	0.1	407648	517.2	103.4
		MAL-C-T-3	MAL-A-Assay-3	0.1	410803	521.2	104.2
		MAL-C-M-1	MAL-A-Assay-4	0.1	407469	517.0	103.4
Freshly Prepared	Middle	MAL-C-M-2	MAL-A-Assay-5	0.1	401585	509.5	101.9
		MAL-C-M-3	MAL-A-Assay-6	0.1	397062	503.8	100.8
		MAL-C-B-1	MAL-A-Assay-7	0.1	410963	521.4	104.3
	Bottom	MAL-C-B-2	MAL-A-Assay-8	0.1	406560	515.8	103.2
		MAL-C-B-3	MAL-A-Assay-9	0.1	410579	520.9	104.2
		MAL-C-T-1	MAL-A-Assay-10	0.1	312031	395.9	79.2
	Top	MAL-C-T-2	MAL-A-Assay-11	0.1	324622	411.9	82.4
		MAL-C-T-3	MAL-A-Assay-12	0.1	328653	417.0	83.4
		MAL-C-M-1	MAL-A-Assay-13	0.1	342757	434.9	87.0
3 Hrs	Middle	MAL-C-M-2	MAL-A-Assay-14	0.1	3483B2	442.0	88.4
_		MAL-C-M-3	MAL-A-Assay-15	0.1	349216	443.1	88.6
		MAL-C-B-1	MAL-A-Assay-16	0.1	367465	466.2	93.2
	Bottom	MAL-C-B-2	MAL-A-Assay-17	0.1	359682	456,3	91.3
		MAL-C-B-3	MAL-A-Assay-18	0.1	369065	468.2	93.6
		MAL-C-T-1	MAL-A-Assay-7Day-1	1.0	3316568	420.8	84.2
	Тор	MAL-C-T-2	MAL-A-Assay-7Day-2	1.0	3472049	440.5	88.1
		MAL-C-T-3	MAL-A-Assay-7Day-3	1.0	3453757	438.2	87.6
		MAL-C-M-1	MAL-A-Assay-7Day-4	1.0	3395260	430.8	86.2
7 Day Redispersion	Middle	MAL-C-M-2	MAL-A-Assay-7Day-5	1.0	3480739	441.6	88,3
		MAL-C-M-3	MAL-A-Assay-7Day-6	1.0	3479461	441.4	88.3
	_	MAL-C-B-1	MAL-A-Assay-7Day-7	1.0	3485904	442.3	88.5
	Bottom	MAL-C-B-2	MAL-A-Assay-7Day-8	1.0	3592919	4S5.8	91.2
		MA1-C-B-3	MAI-A-Assav-7Dav-9	10	2615/00	458 7	91.7

University of Texas at Austin- College of Pharmacy. Division of Pharmaceutics

CONFIDENTIAL

Data Processed by and Date Marth Hugh 7/21/2000

PTX1663-00067

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-C-1

Product Attribute Dose Uniformity Analyte Method

Testing Type Delivered Dose Uniformity HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Label Claim 2.05 mL 50 ug per spray

2141220.091	53,2667	#REF!
Peak Area	Concentration (ug/mL)	Reference
A	ystem suitability Working Standard	s

22.77777778

					MAL-C-1-D60	MAL-C-1-D59	MAL-C-1-D58	MAL-C-1-D57	MAL-C-1-D56	MAL-C-1-D55	MAL-C-1-D54	MAL-C-1-D53	MAL-C-1-D52	MAL-C-1-D51	MAL-C-1-D10	MAL-C-1-D9	MAL-C-1-D8	MAL-C-1-D7	MAL-C-1-D6	MAL-C-1-D5	MAL-C-1-D4	MAL-C-1-D3	MAL-C-1-D2	MAL-C-1-D1	Sample Lot No.	
THE O	Min	%RSD	Standard Deviation(mg)	Mean Pump Delivery (mg)	20	19	18	17	16	51	14	13	12	11	10	6	00	7	9	5	4	з	2	1	Sample No.	
277.02	88.10 97 40	2.41	2.27	94.28	95.6	96.8	95.1	95,4	95.2	95.7	95.8	95.3	95.1	95.2	97.4	96.3	92.0	94.6	93.6	91.7	93.5	91.5	88.1	91.6	Dose Shot Weight (mg)	Pump Delivery
-					943139	950258	940820	943899	940076	951399	942959	935705	919692	901492	899487	941412	902395	924619	924588	904654	915560	690606	861978	385588	Peak Area	
					23,46	23.64	23,40	23,48	23.39	23.67	23.46	23.28	22.88	22.43	22.38	23.42	22.45	23.00	23.00	22.50	22.78	22.61	21.44	21.98	Concentration	
					48.10	48,46	47.98	48.14	47.94	48.52	48.09	47.72	46.90	45.97	45.87	48.01	46.02	47.15	47.15	46.14	46.69	46.36	43.96	45.05	Mass Delivered (ug)	
77.04	87.92	2.63	2.48	94.02	96.20	96.92	95.96	96.27	95.88	97.04	96.18	95.44	93,80	91.95	91.74	96.02	92.04	94.31	94.30	92.27	93,38	92.72	87,92	90.10	% Label Claim	
IVIA	Min	%RSD	Standard Deviation	Mean																						

Data Processed by and Date Med M Hagin 7/27/2016 Samples Prepared on Date 7/13/2016 - 7/27/2016

PTX1663-00068

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-C-2

Product Attribute Dose Uniformity Analyte Method

Testing Type Delivered Dose Uniformity HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Label Claim 2.05 mL ug per spray

S	vstem suitability Working Standard	A
Reference	Concentration (ug/mL)	Peak Area
	53.2667	2141220.091
Reference	Concentration (ug/mL) 53.2667	Peak Area 2141220.091

22.77777778

						MAL-C-2-D60	MAL-C-2-D59	MAL-C-2-D58	MAL-C-2-D57	MAL-C-2-D56	MAL-C-2-D55	MAL-C-2-DS4	MAL-C-2-D53	MAL-C-2-DS2	MAL-C-2-D51	MAL-C-2-D10	MAL-C-2-D9	MAL-C-2-D8	MAL-C-2-D7	MAL-C-2-D6	MAL-C-2-D5	MAL-C-2-D4	MAL-C-2-D3	MAL-C-2-D2	MAL-C-2-D1	Sample Lot No.	
Max	Min	%RSD		Standard Deviation(me)	Mean Pump Delivery (mg)	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	з	2	1	Sample No.	
95.90	76.70	S.52		5.01	90.82	79.0	76.7	92.4	93.9	93.7	95.3	93.6	95.9	93.7	92.7	92.7	92.3	93.6	92.6	91.7	91.9	91.2	89.7	87.7	86.0	Dose Shot Weight (mg)	Pump Delivery
						774138	751335	905100	913455	913397	928125	920440	932866	910281	887416	906954	902018	913583	904939	900664	869606	894917	888543	863755	851183	Peak Area	
						19.26	18.69	22.52	22.72	22.72	23.09	22,90	23.21	22,64	22.08	22.56	22.44	22.73	22.51	22,41	22.63	22.26	22.10	21.49	21.17	Concentration	
						39,48	38.32	46.16	46.58	46.58	47.33	46.94	47.57	46.42	45.26	46.25	46.00	46.59	46.15	45.93	46.39	45.64	45.31	44.05	43.41	Mass Delivered (ug)	
95.15	76.63	5.32	70,4	7 87	90.64	78.96	76,63	92.32	93.17	93.16	94.66	93.88	95.15	92.84	90.51	92.50	92.00	93.18	92.30	91.86	92.78	91.28	90.63	88.10	86.82	% Label Claim	
Max	Min	%RSD	Deviation	Standard	Mean																				,		

Data Processed by and Date May Ht Hay 2 - 7/27/2016

Samples Prepared on Date 7/13/3016 - 7/14/2016

Product Name Triamcinolone Acetonide /Azelastine Nasal Spray Product Lot No. MAL-C-3

Product Attribute Dose Uniformity Analyte Method

Testing Type Delivered Dose Uniformity HPLC Run Log N/A Medium Formulation Matrix + 70%ACN

Sample Volume Label Claim 2.05 50 mL ug per spray

		_
#REF!	Reference	S
53.2667	Concentration (ug/mL)	stem suitability Working Standard
2141220.091	Peak Area	A

22.77777778

				MAL-C-3-D60	MAL-C-3-D59	MAL-C-3-D58	MAL-C-3-D57	MAL-C-3-D56	MAL-C-3-DSS	MAL-C-3-D54	MAL-C-3-D53	MAL-C-3-D52	MAL-C-3-D51	MAL-C-3-D10	MAL-C-3-D9	MAL-C-3-D8	MAL-C-3-D7	MAL-C-3-D6	MAL-C-3-DS	MAL-C-3-D4	MAL-C-3-D3	MAL-C-3-D2	MAL-C-3-D1	Sample Lot No	
Min	%RSD	Standard Deviation(mg)	Mean Pump Delivery (mg)	20	19	18	17	16	15	14	13	12	11	10	6	8	7	6	5	4	3	2	1	- Sample No.	
65.50	7.44	6.79	91.31	94.2	94.4	93.3	92.6	93.9	93.3	94.0	94.2	93.9	65.5	93.6	93.9	94.2	94.1	93.9	94.4	90.6	91.6	89.6	81.0	Dose Shot Weight (mg)	Pump Delivery
				917349	919272	908540	900444	911727	914183	918210	918922	905648	901703	922441	933174	934169	936160	946823	973566	949997	938351	768647	545573	Peak Area	
				22.82	22,87	22,60	22,40	22,68	22.74	22.84	22.86	22.53	22,43	22.95	23.21	23.24	23.29	23.55	24.22	23.63	23,34	19.12	13.57	Concentration	
				46.78	46.88	46.33	45.92	46.50	46.62	46,83	46.86	46.19	45,98	47.04	47.59	47.64	47.74	48,29	49,65	48,45	47.85	39.20	27.82	Mass Delivered (ug)	
55.6S	10.22	9.37	91.62	93.56	93.76	92.67	91.84	92,99	93.24	93.65	93.73	92.37	91.97	94.08	95.18	95.28	95.48	96.57	05,66	68.96	95.71	78.40	55.65	% Label Claim	
Min	%RSD	Standard	Mean																				•		

Data Processed by and Date Millet Hayah. 7/27/2016 Samples Prepared on Date 7/13/2016 - 7/14/2016

PTX1663-00070

Exhibit J - Delivered Dose Uniformity

			Delivered	Dose Uniforr	mity
Formulation:	Mal-A				
		Bottle #1	Bottle #2	Bottle #3	
	Mean Dose % Label Claim	60.88	67.31	66.34	* Results calculated from the first 10 emitted doses after priming device. The
	Standard Deviation	18.40	11.53	9.06	middle 40 doses were wasted, and the final 10 doses were analyzed and averaged with
	%RSD	30.22	17.12	13.65	the first 10 doses.
	Min	34.26	49.82	37.15	
	Max	78.49	79.78	73.25	
Formulation:	Mal-C	Bottle #1	Bottle #2	Bottle #3	
	Mean Dose % Label Claim	88.17	84.99	85.91	* Tests performed consistent with FDA Guidelines
	Standard Deviation	2.32	4.52	8.78	
	%RSD	2.63	5.32	10.22	
	Min	82.44	71.86	52.18	
	Max	91.00	89.22	93.12	
Exhibit K – Mal A

PTX1663-00074

Exhibit L – Mal B

114/205 STOPPER NO. 7 CAT. NO. 89000-366 more 7/13/21 7-day Stability -After Mixing 81

Mal-B 200 mL TOPPER NO. 7 NO. 89000-366 mars 7/13/20/5 7-day Stability

Exhibit M – Mal C

Exhibit N – Mal D

PTX1663-00095

Exhibit O – HS-D

Exhibit P – X-Form

PTX1663-00110

PTX1663-00111

Exhibit R - Pump Delivery Shot Weight raw data and Sprayability Check

Mal-A1 36'mes 1 good spray Primed 30,4 7 mg 90.5 2 Label : 31,5 Initial 3 T 4 93,6 5 90.4 6 92,9 7 8 927 93,7 g. 93,0 10 93,1 wa sted 40 sprays 36,6 ŀ 23456 2619 95,7 End E 94,5 9513 94,1 7 3412 00 95,9 J 5517 9513 0

Hal-A 2 - Primped 3 times (good Spray 31,8 1 ag 35,1 2 95,6 3 - I Inth'al 4 96 Ś 3417 6 94,3 96,0 7 Z 94,3 Z 36,5 97,3 (0) Wested 4 sprays 35,5 23456 976 96,(end - E 34,5 95,3 9511 7 95 g 96,5 512 35,7 Ю

Molt 3 Primed 3 times/ spray good y 2 W J V O L 2 0 91,2 g 6 54,2 Intial - I 94,5 9415 93,9 93,2 99,7 ?7 0/ 16'2 Wasted 40 Spracy s 96,2 I 2 98,3 37,4 3 end S 96,6 4 97 5 96,6 6 35,4 trad 94,8 9511 () 36,4

,

Mal-B 2 primed 3 times / spran not good, H's a fet 97,2 l 98,7 2 N466780 37,6 100,3 92,8 99,7 59,3 99,7 1001(0 (00)

waste lo sprays 9419 l 102,6 2 39,2 N 456 101,5 99,7 107,3 1890 8,82 100,2 96,4 98,8

	Y	121 B-3
	Primed	3 times (spray not good, it's a get
1234567890	98,4 102,5 101,5 100,4 99,3 99 100,3 101,7 101,7 101,7 105,2	
1 23 47 6 7 8 9 0 11 U	28,5 102,6 29,7 100,5 29,8 105,6 29,6 101,2 99,6 100,6	40 sprays - I accubentally take before getting the wait

. .

.

Malc 1 Primed 3 d'mas (28 ward Baod 31,6 ١ J 88,1 MANGT 0001 31,5 53,4 31,7 93,6 94,6 920 36,3 10 97,4 weste 40 sprays 35,2 ĺ 35,1 2 3 95,3 45678 8,72 9517 STIZ 35,4 9511 2 36.8 10 9516

$$\begin{array}{rrrrr} H2l-C & 2 \\ Plined & 3 & dines / Spray good \\ 1 & 86,10 & mg \\ 2 & 87,7 \\ 3 & 89,7 \\ 4 & 91,2 \\ 5 & 91,2 \\ 5 & 91,7 \\ 7 & 92,6 \\ 8 & 93,6 \\ 9 & 92,7 \\ 10 & 92,7 \end{array}$$

î

$$baste 40 sprays$$

1 $97,7$
2 $93,7$
3 $55,9$
4 $93,6$
5 $95,3$
6 $93,7$
7 $93,9$
7 $93,9$
8 $97,4$
9 $76,7$
10 $79,0$

.,

Ha	l-C	3	
Primed 3	Samif	(- spray	good
$ \begin{array}{r} 1 & 81.0 \\ 2 & -170.6 \\ 3 & 91.6 \\ 4 & 90.6 \\ 5 & 185.0 \\ 0 & 93.9 \\ 7 & 94.1 \\ 8 & 94.2 \\ 9 & 93.6 \\ \hline 57 & 95.5 \\ \hline 57 & 95.5 \\ \end{array} $	(Nask	Чб	
52 93.1 53 94.2 54 94.0 55 187.3 56 93.9 57 92.6 58 93.3 59 187.7 60 94.2			

٩

.

.

Mal D -	1,2,3	
Bottle #1	#2	#3
Bottle #1 Prime - 3 sprays 3 sprays 1 96.6 3 spray 2 101.5 3 101.0 4 102.5 5 101.6 6 100.6 7 101.1mg 8 102.7mg 9 102.5 10 102.8 51 101.5 52 101.9 53 101.2 54 103.0 55 101.8 55 203.7 57 101.0 58 101.6	#2 #1 - 5 prove is a $#2 - 5 prove j is a#3 - 5 p = 7 a j is1 100.42 100.42 100.63 101.84 100.95 101.9101.9102.28 101.19 102.610 101.17 102.610 101.17 102.610 101.17 102.610 101.552 101.553 102.354 100.555 102.555 102.556 101.257 102.758 100.958 100.9$	# 3 5 et / Stream Jet or Jet Stream / Jet 1 10 D.1 2 10 J.1 3 10 J.1
59 100.2 68 101.2	59 100.7	59 99.91 60

,

Delivered Dose Uniformity

Primed 3 times

Formulation: <u>HSD</u>

Bottle #_1,2,3

HI - No spray/Narrow Jet #2 No spray/Narrow Jet

		H (44 2	++ 2	#3 Na Soran / Formed
, 	Dose #	shot weight(mg)	44 6	4+3	harmen
	1	101.3	97,4	101.7	1111100 34
	2	* >202.0 ->	92,2	103 a	
	3	101.6	38,2	102.8	
	4	101.9	(00,1	102.8	
First 10	5	101.0	99,7	100.9	
Doses	6	103.0	103,1	104.4	
	7	102.8	107,4	103.0	
	8	101.8	101,1	(02,	
	9	101.1	10015	103.5	
	10	101.3	103.7	105.2	
I	Viddle 40 Do	oses Wasted			
	51	107.0	98.0	106.2	
	52	103.0	103,5	102.7	
	53	103.2	(03.3	102.8	
	54	102.8	99.9	107.9	
Last 10	55	102.2	98.8	59.3	1
Dose	56	100.1	100.0	103.7	
	57	86.7	101.5	1032	
	58	7.20	600.2	1.501	
	59	94.8	100.7	107.8	»
	60	96.0	104.6	103.9	5

& Subtract from previous shot weight

Exhibit S – 14 Day Stability Photos

MJH 7/13/2016 14 day Stability

PTX1663-00140

001 No. 1060 formul 2931 14 day Stability

Exhibit T - 14 Day Stability Appearance Notebook pages

PTX1663-00151

PTX1663-00152

Appendix A

MATTHEW J. HERPIN, Ph.D

601 Hearn Street #202 • Austin, Texas 78703 • 512.947.8626 matt.herpin@.utexas.edu

I. <u>Personal</u>

Born October 31st 1981 in Corpus Christi, Texas. United States Citizen.

II. Education

Ph.D., Pharmaceutics, December 2015 Advisor: Dr. Hugh D.C. Smyth The University of Texas, Austin, TX

Bachelor of Science, Biochemistry, May 2005 The University of Texas, Austin, TX

III. Positions Held

January 2016 to Current Postdoctoral Research Fellow- University of Texas at Austin, College of Pharmacy

May 2015 to January 2016 Graduate Research Assistant- University of Texas at Austin, College of Pharmacy

January 2012 to January 2014 PhRMA Foundation Pre-Doctoral Fellow- University of Texas at Austin, College of Pharmacy

January 2011 to May 2015 Teaching Assistant- University of Texas at Austin, College of Pharmacy Courses:

- Physical and Chemical Principles of Drugs & Laboratory, Fall: 2011
- Pharmaceutical Compounding Laboratory, Spring: 2011, 2014, 2015

2008 to July 2010 Research Associate Appian Labs, LLC, Austin, TX Aeonclad Biomedical, LLC, Austin, TX Enavail, LLC, Austin, TX

• Responsible for leading a product development group with the overall responsibility of developing solid dosage forms. The development group is comprised of formulation development and analytical team members. Reports directly to the Director of Research and Development and company President.

- Responsible for the development of solid dosage forms with a strong emphasis on products utilizing diffusion based hydrogel controlled release systems, plasma enhanced chemical vapor deposition/polymer based controlled release coatings and particle engineering technologies to drug absorption profiles and improve bioavailability.
- Provide strategic, scientific and managerial leadership to the formulation and analytical teams to solve complex drug development issues
- o Develop experimental plans based on client needs and overall project goals
- o Coordinate the production and analytical testing of pharmaceutical formulations
- o Interpret experimental observations according to sound scientific principles
- Interact with clients and consultants to provide project updates verbally and in the form of technical reports
- Work closely with the Operations group to coordinate the transfer of technology from R&D to cGMP manufacturing
- o Prepare and review batch records and standard operating procedures
- Provide and submit intellectual property ideas relating to novel pharmaceutical formulations, processing techniques or analytical methods.

2006 to October 2008 Analytical Chemist, Quality Control Inhalation Chemist, Platform Development, and Quality Control Pharmaform, LLC, Austin, TX

- Responsible for the USP testing of pharmaceutical dosage forms in Research and Development and in Phase I to III clinical trials. Reported to the Vice President of Quality Control
 - o Interacted with clients to determine project goals and to provide project updates
 - Planned, designed, and performed experiments relating to the development of as standard method of analysis for solid dosage forms and dry powder inhalers.
 - Conducted testing on physical and chemical properties pertaining to product purity potency and performance. Including: High Performance Liquid Chromatography, USP Dissolution Testing,
 - Worked closely with method development chemists and manufacturing to solve problems associated with production.
 - o Provide manufacturing analytical support.
 - o Coordinated product analytical testing
 - Wrote and reviewed technical reports submitted to clients

August 2003 to 2006 Compounding Pharmacy Technician (CPhT) Peoples Pharmacy, Austin, TX

- Responsible for compounding preparation of various pharmaceutical dosage forms including: capsules, gels, lotions, creams, suppositories, rapid-disintegrating tablets, medicated lollipops and others.
 - o Assists pharmacist in the dispensing of medication to patients
 - o Managing inventory and ordering supplies

IV. Relevant Training Completed

- o Inhalation Aerosol Technology Workshop: University of Maryland, Baltimore.
- o Waters HPLC Operation and Utilization Course
- o cGMP Certification Training: Compliance LLC

V. Relevant Coursework Completed

Biopolymers: Drug and Gene Delivery Biopharmaceutics and Pharmacokinetics Physical and Chemical Principles of Drugs Pharmaceutics Pharmaceutical Compounding Modern Advances in Pharmaceutics Advanced Manufacturing Pharmacy Product Development Statistics for Translational Scientists

VI. Professional Memberships

American Association of Pharmaceutical Scientists	2011 - present
American Chemical Society	2011 – present
American Association of Advancing Science	2012 – present

VII. Current Research Interests

- o Precision ophthalmic drug delivery via tunable aerosol dynamics
- o Drug particle engineering by way of super-heated processing and high pressure homogenization
- o Ophthalmic and pulmonary drug delivery device design and development
- o Enhanced aerodynamics and performance of inhalation powders
- o Preformulation, formulation, and characterization of novel delivery systems.

VIII. Formulation Development Proficiencies

- o Inhalation Aerosol Based Systems- Including various nebulizers, pMDI and evaporation/condensation aerosols
- o Topical Ophthalmic drug delivery systems/vehicles-
- o Diffusion Based Controlled Release Tablets (direct compression)
- Various Particle Engineering Technologies: High Pressure Homogenization, Solvent Precipitation/Evaporation, Spray Drying, Super-Heated Aqueous Particle Engineering
- o Solubilization/Complexation with Cyclodextrins
- o Dry Powder Inhalation formulations
- o Powder Encapsulation

- o Preparation of Emulsions, Creams, Lotions, Gels, Suspensions
- o Excipient Uses and Functionality

IX. Technical Proficiencies and Research Experience

Analytical Instrumentation and Methodology:

- o UV-Vis/Fluorescence Spectrophotometers
- Fourier Transform Infrared Spectroscopy
- o Laser Diffraction Particle Sizing (Sympatec-Helos)
- o High Performance Liquid Chromatography-Method Development/Qualification
- o Inverse Gas Chromatography
- o Dynamic Light Scattering
- o Atomic Absorption
- o Differential Scanning Calorimetry
- o Faraday Cage for Electrostatic Analysis
- o Powder X-Ray Diffraction

Physical Testing

- o United States Pharmacopoeia (USP) Dissolution Tests
- o Angle of Repose
- o Moisture Analyzer
- o Next Generation Impactor (aerodynamic assessment of fine particles)
- o Anderson Cascade Impactor/ Twin Stage Impactor
- o Instron Compression and Elongation Analysis
- o Tablet Hardness
- o Tablet Friability

Biochemical Techniques

- o Polymerase Chain Reaction(PCR)
- o Western Blotting
- o PAGE/Agarose Gel Electrophoresis
- o Various enzyme activity assays

Microscopy

- o Atomic Force Microscopy (AFM)
- o High Performance Liquid Chromatography-Method Development/Qualification
- o Two Photon Microscopy
- o Scanning Electron Microscopy
- o Raman Microscopy

X. Awards and Honors

- o PhRMA Foundation Pre-Doctoral Fellowship (2012 2014)
- o Teaching Excellence Award- Outstanding Teaching Assistant- 2014
- o Student Entrepreneur Acceleration and Launch, Program Graduate- 2015
- o Texas Venture Labs- Founding Company Participant

XI. Publications and Presentations

Herpin MJ, Raffa-Carvhalo S, Smyth HDC, McConville JT, Variable Flow Pattern Effects on Fine Particle Generation from a Dry Powder Inhaler, Littlefield Excellence in Research Poster Presentation, 2010

Bosselmann S, Owens III DE, Kennedy RL, **Herpin MJ**, Williams III RO. Plasma deposited stability enhancement coating for amorphous ketoprofen. European Journal of Pharmaceutics and Biopharmaceutics. 2011;78(1):67-74.

Donovan MJ, Gibbons A, **Herpin MJ**, Marek S, Mcgill S, Smyth HDC. Novel Dry Powder Inhaler Particle Dispersion Systems-A Review. Future Medicine. 2011

Herpin M.J, Smyth HDC, A Novel Ocular Soft Mist Aerosol Device for Tunable Drug Delivery, American Association of Pharmaceutical Scientists Conference, Poster Presentation, Oct. 2012

Herpin M.J, Smyth HDC, Non-Aqueous Aerosol Deposition for Ocular Drug Delivery, American Association of Pharmaceutical Scientists Conference, Poster Presentation, Oct. 2013

Moraga, D., Bahamondez, T., **Herpin, M.,** Maloney, A. Yazdi, A., Du, P., Du, J., Smyth, H., Hydrofluoroalkane Propellant Driven Metered Dose Inhaler Formulations. In Textbook of Aerosol Medicine.

Herpin M.J, Smyth HDC, Aqueous Based Aerosol Vehicles for Enhanced Ocular Drug Delivery, American Association of Pharmaceutical Scientists Conference, Poster Presentation, Oct. 2014

Herpin M.J., Ebi, Dominik, Clemens, N., Smyth H.D.C. Characterization of Toroidal Vortices Generated by a Novel Ocular Drug Delivery Device. *International Journal of Pharmaceutics*. 2016 (In Preparation)

Herpin M.J., Xinfei, X. Smyth, H.D.C., Super Heated Aqueous Particle Engineering for Poorly Water Soluble Drugs. International Journal of Pharmaceutics. 2016 (In Preparation)

Herpin M.J., Smyth, H.D.C. Precision Ocular Drug Delivery Via Aerosol Ring Vortices. *Drug Delivery in Translational Medicine*. 2016. (In Preparation)

Bandara, H. M. H. N., **Herpin M.J**, Kolaccny D., Harb A., Romanovicz D., Smyth H.D.C., . "Incorporation of farnesol significantly increases the efficacy of liposomal ciprofloxacin against Pseudomonas aeruginosa biofilms in vitro." *Molecular Pharmaceutics* (2016).

XI. Intellectual Property

- 1. Smyth, H.D.C., Herpin M.J., Toroidal Pharmaceutical Formulations, U.S. Patent No. 61/501,671
- 2. Smyth, H.D.C., Herpin M.J., Method for Fine Particle Manufacture, U.S. Patent No. 14/458,818
- Cannon C., Parth, S., Smolen, J., Smyth H., Yazdi A., Herpin M.J., Antimicrobial and Anti-Inflammatory Compositions. Provisional U.S. Patent Application. # 62/168,561

Appendix B

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing using E4MP HMPC and micronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the mixing techniques described in Cramer Example I.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	E4MP (4000 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E4MP will be tested
Sodium Chloride			
Ethylenediamine tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			This drug will be in suspension and will therefore need to be procured in micronized form.
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Preparation according to Example I

Example III will be prepared by combining the following components utilizing "conventional mixing techniques similar to that described in Example 1":

In an appropriately sized vessel, the dextrose, polysorbate 80 and benzalkonium chloride are added one at a time to water with mixing, allowing each to dissolve or completely disperse before adding the next. To this is added, with mixing, a premixed slurry of the avicel and water. Upon forming a uniform solution, the beclomethasone, loratadine and phenylethyl alcohol are added. After all the ingredients are added, purified water is used to bring the batch to the appropriate weight.

Accordingly 500 mL of Example III will be made using the procedure outlined below:

- 1. In an appropriately sized vessel to manufacture 500 mL of product,
 - a. To 100 mL of distilled water
 - b. Add polysorbate 80
 - c. Mix step Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
 - d. Add benzalkonium chloride
 - e. Mix Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
 - f. Add glycerin

- g. Mix- Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
- h. Add EDTA
- i. Mix Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
- j. Add NaCl
- k. Mix Approximately 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed
- 2. In a separate vessel the hydroxyl methylcellulose is prepared"
 - a. As per the Handbook of Pharmaceutical Excipients (2nd Edition, 1994) 20% of the required water is used to hydrate the HPMC (100 mL distilled water)
 - b. The water is vigorously stirred at RPMs adequate to disperse the powder and heated to approximately 90 deg C
 - c. While stirring, the HPMC is added, and mixing continues until all particles are thoroughly wetted
 - d. Then to the dispersed HPMC, 200 mL of cold distilled water is added while mixing
 - e. The mixture is then cooled to between 20 to 25°C (68 to 77°F) or below as according to the MethocelTM product guide ("How to Prepare Aqueous Solutions of METHOCELTM").
- 3. This premixed HPMC mixture is then added to the ingredients of step 1 to form a uniform solution.
 - a. Note: Since Example III does not list the grade of HPMC used, this experiment will be replicated using grades AAA, BBB, and CCC. The manufacturer has stated that each grade is suitable for nasal administration.
- 4. To this solution Triamcinolone and Azelastine are added and mixed at 100-300 rpm with an overhead stirrer with a impeller stirring system, until visually mixed.
 - a. Perform bulk product testing (top, middle, and bottom) to ensure stability over a period (2-3 or more hours) sufficient to demonstrate uniformity of the bulk following production.
- 5. The samples are then mixed using a high-speed homogenizer.
- 6. The formulations are then filled into nasal spray bottles (approximately 16.5 g per bottle) and spray pumps fitted to the bottles.
- Filled bottles will be stored at room temperature and optionally additional bottles not stored at room temperature will be stored at accelerated stability conditions (40 deg C and 75% RH).
- 8. Bottles will be tested at time points indicated below using various performance assays.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of homogeneity and pharmaceutical acceptability . Looks at sedimentation, separation of suspended particles, agglomeration, redispersability of suspension upon shaking. This will be done on both formulation and the filled bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcinolone Acetonide	HPLC Method	10 mLs of sample will be drawn off the top, middle and bottom of formulated composition, and then again after 3 Hrs to determine blend uniformity/settling stability
Pump Delivery	a. Analytical Balance	SMA-009-00	Quantitative assessment of the variability of formulation dispensing from the nasal spray pump. A Valois Nasal Spray Pump from Aptar will be used. Pump: VP7
Visual Inspection of spray quality	a. Visual observation of emission of formulation during actuation of pump	Observation of spray/jet/ failure to emit	Qualitatively assesses acceptability of spray
Spray Content Uniformity	 a. Dose collection tubes b. HPLC drug assay c. Actuation Station d. Analytical Balance 	SMA-001-00	Quantitative assessment of the variability of emitted dose from the nasal spray pump. Will be quantified using Triamcinolone
	*The Following Tests Only to be Conducted As Needed t	o Supplement Pr	revious Findings

Droplet Size Analysis*	a. Sympatec Laser Diffraction	SMA-003-00	Assesses the spray quality.
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of the product and will assist in interpretation of product performance tests.
Solid Particle Size*	a. Light Microscopy	SMA-002-00	Assesses the stability of the suspended particles and can inform on particle aggregation/agglomeration.
Osmolality*	a. MicroOsmette- Freezing Point Depression Osmometer	SMA-008-00	
Plume Geometry*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.
Spray Pattern*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing Following Malhotra Method using E3 Prem HMPC and micronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	Low viscosity: E3 PREM LV (3 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E3 Prem will be tested
Sodium Chloride			
Ethylenediamine tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			This drug will be in suspension and will therefore need to be procured in micronized form.
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Preparation by Method Detailed in Geena Malhotra's 2011 Declaration

The technique will use the ingredients and process described below:

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- 2) Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- 6) Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.

- Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.

12) Stirring was done with a high-speed homogenizer and pH was checked.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of
			homogeneity and
			pharmaceutical
			acceptability . Looks at
			sedimentation, separation
			of suspended particles,
			agglomeration,
			redispersability of
			suspension upon shaking.
			This will be done on both
			formulation and the filled
			bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcipologe Acetonide	HPLC	10 mLs of sample will be drawn off the top middle
		Wiethou	and bottom of formulated
			composition, and then
			again after 3 Hrs to
			determine blend
			uniformity/settling stability
Pump	a. Analytical Balance	SIVIA-009-00	Quantitative assessment of
Delivery			the variability of
			formulation dispensing
			from the nasal spray pump.
			A Valois Nasal Spray Pump
			from Aptar will be used.
			Pump: VP7
Visual	a. Visual observation of emission of formulation	Observation	Qualitatively assesses

Inspection	during actuation of pump	of spray/jet/	acceptability of spray
of spray		failure to	
quality		emit	
Spray	a. Dose collection tubes	SMA-001-00	Quantitative assessment of
Content	h HPLC drug assau		the variability of emitted
Uniformity	D. HELC UTUG assay		dose from the nasal spray
	c. Actuation Station		pump. Will be quantified
			using Triamcinolone
	d. Analytical Balance		acetonide assay.
Drowlet Circ	* The Following Tests Only to be Conducted As Needed to	o Supplement Pi	revious Findings
Droplet Size	a. Sympatec Laser Diffraction	SIVIA-003-00	Assesses the spray quality.
Analysis*			
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of
			the product and will assist
			in interpretation of product
			performance tests.
Solid	a. Light Microscopy	SMA-002-00	Assesses the stability of the
Particle			suspended particles and
Size*			can inform on particle
			aggregation/agglomeration.
Osmolality*	a. MicroOsmette- Freezing Point Depression	SMA-008-00	
	Osmometer		
Plume	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Geometry*	h Actuation Station		characteristics.
Spray	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Pattern*	b. Actuation Station		characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing Following Malhotra Method using E3 Prem HMPC and Unmicronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	Low viscosity: E3 PREM LV (3 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E3 Prem will be tested
Sodium Chloride			
Ethylenediamine			
tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

A. Preparation by Method Detailed in Geena Malhotra's 2011 Declaration

The technique will use the ingredients and process described below:

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- 2) Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- 6) Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.

- Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.

12) Stirring was done with a high-speed homogenizer and pH was checked.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of
			homogeneity and
			pharmaceutical
			acceptability . Looks at
			sedimentation, separation
			of suspended particles,
			agglomeration,
			redispersability of
			suspension upon shaking.
			This will be done on both
			formulation and the filled
			bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcipologe Acetonide	HPLC	10 mLs of sample will be drawn off the top middle
		Wiethou	and bottom of formulated
			composition, and then
			again after 3 Hrs to
			determine blend
			uniformity/settling stability
Pump	a. Analytical Balance	SIVIA-009-00	Quantitative assessment of
Delivery			the variability of
			formulation dispensing
			from the nasal spray pump.
			A Valois Nasal Spray Pump
			from Aptar will be used.
			Pump: VP7
Visual	a. Visual observation of emission of formulation	Observation	Qualitatively assesses

Inspection of spray quality	during actuation of pump	of spray/jet/ failure to emit	acceptability of spray
Spray Content Uniformity	 a. Dose collection tubes b. HPLC drug assay c. Actuation Station d. Analytical Balance 	SMA-001-00	Quantitative assessment of the variability of emitted dose from the nasal spray pump. Will be quantified using Triamcinolone acetonide assay.
Droplet Size Analysis*	*The Following Tests Only to be Conducted As Needed to a. Sympatec Laser Diffraction	o Supplement Pr SMA-003-00	evious Findings Assesses the spray quality.
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of the product and will assist in interpretation of product performance tests.
Solid Particle Size*	a. Light Microscopy	SMA-002-00	Assesses the stability of the suspended particles and can inform on particle aggregation/agglomeration.
Osmolality*	a. MicroOsmette- Freezing Point Depression Osmometer	SMA-008-00	
Plume Geometry*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.
Spray Pattern*	a. Spray View or Comparable Analysis Softwareb. Actuation Station	SMA-005-00	Quantifies spray characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/7/16

Nasal Spray Manufacturing and Characterization Testing Following Malhotra's Method using E4MP HMPC and micronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	E4MP (4000 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E4MP will be tested.
Sodium Chloride			
Ethylenediamine tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			This drug will be in suspension and will therefore need to be procured in micronized form.
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:

Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Preparation by Method Detailed in Geena Malhotra's 2011 Declaration

The technique will use the ingredients and process described below:

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- 2) Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- 6) Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.

- Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.

12) Stirring was done with a high-speed homogenizer and pH was checked.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
_			
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of
			homogeneity and
			pharmaceutical
			acceptability . Looks at
			sedimentation, separation
			of suspended particles,
			agglomeration,
			redispersability of
			suspension upon shaking.
			This will be done on both
			formulation and the filled
			bottles.
Assay	a. HPLC Assay to assess the potency of Suspended	HPLC	10 mLs of sample will be
	manemolone Acetonide	Wethou	and bottom of formulated
			composition, and then
			again after 3 Hrs to
			determine blend
			uniformity/settling stability
Pump	a. Analytical Balance	SMA-009-00	Quantitative assessment of
Delivery			the variability of
			formulation dispensing
			from the nasal spray pump.
			A Valois Nasal Spray Pump
			from Aptar will be used.
			Pump: VP7
Visual	a. Visual observation of emission of formulation	Observation	Qualitatively assesses

Inspection	during actuation of pump	of spray/jet/	acceptability of spray
of spray		failure to	
quality		emit	
Spray	a. Dose collection tubes	SMA-001-00	Quantitative assessment of
Content	h HPLC drug assau		the variability of emitted
Uniformity	D. HPLC urug assay		dose from the nasal spray
	c. Actuation Station		pump. Will be quantified
			using Triamcinolone
	d. Analytical Balance		acetonide assay.
Due alet Cine	* The Following Tests Only to be Conducted As Needed to	o Supplement Pr	revious Findings
Droplet Size	a. Sympatec Laser Diffraction	SIVIA-003-00	Assesses the spray quality.
Analysis*			
Viscosity*	a. Dynamic	SMA-004-00	Assesses the viscosity of
			the product and will assist
			in interpretation of product
			performance tests.
Solid	a. Light Microscopy	SMA-002-00	Assesses the stability of the
Particle			suspended particles and
Size*			can inform on particle
			aggregation/agglomeration.
O avecalality *	A Misso Osmatta Esparing Daint Dansaaian	CN44 000 00	
Osmolality*	a. MicroOsmette- Freezing Point Depression	SIVIA-008-00	
Plume	a Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Geometry*			characteristics
Geometry	b. Actuation Station		characteristics.
Spray	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray
Pattern*	b. Actuation Station		characteristics.

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.

Final Protocol 7/716

Nasal Spray Manufacturing and Characterization Testing Following Malhotra's Method using E4MP HMPC and Unmicronized Triamcinolone

I. Purpose

The purpose of this experiment is to re-create and evaluate the disclosure in EP 0780127 ("Cramer") to determine whether it a nasal spray with properties that are suitable for nasal administration. Specifically, this experiment will recreate Example III for an intranasally administered composition comprising triamcinolone acetonide and azelastine HCL.

Example III from Cramer will be prepared following the method set forth in Geena Malhotra's declaration submitted to the U.S. Patent and Trademark Office on August 12, 2011.

Samples will be evaluated for appearance, spray content uniformity, spray pattern, droplet size, particle size, viscosity, stability, and osmolality, for example.

INGREDIENT	Grade	SUPPLIER	NOTES
Polysorbate 80			
Benzalkonium chloride			
Glycerin			
Hydroxypropyl methylcelluose (HPMC)	E4MP (4000 mPas)	Dow	HPMC is available in multiple grades (viscosities) and chemical substitution. Since this is not defined within the patent example, E4MP will be tested.
Sodium Chloride			
Ethylenediamine			
tetraacetic acid (EDTA)			
Distilled water -			
Triamcinolone acetonide			
Azelastine HCl			

II. Materials

III. Preparation of Cramer Example III

Cramer Example III is:
Example III

The intranasally administered pharmaceutical composition of the present invention is prepared by combining the following components utilizing conventional mixing techniques similar to that described in Example I.

Component	Wgt %
triamcinolone acetonide	0.050
azelastine HCI	0.070
polysorbate 80	0.050
glycerin	2.000
hydroxypropyl methyl cellulose	1.000
sodium chloride	0.900
ethylenediamine tetraacetic acid	0.050
benzalkonium chloride	0.020
distilled water	q.s. to vol.

Administration of approximately 0.4 grams of the composition is used for topical nasal application to provide relief from allergy or allergy-like symptoms. Additionally, substantially similar results are also obtained using, in whole or in part, equivalent amounts of other glucocorticoid agents such as fluticasone, mometasone, budesonide, pharmaceutically acceptable salts thereof and mixtures thereof. Furthermore, the above described compositions may also contain a decongestant such as pseudoephedrine, phenylpropanolamine, phenylephrine, tetrahydrozoline, naphazoline, oxymetazoline, tramazoline, 5-(2-imidazolinylamino)benzimedazoles, optically active racemates thereof, pharmaceutically acceptable salts thereof and mixtures thereof. Those skilled in the art will quickly realize other suitable ingredients, diluents and dosage forms (or readily ascertain such using routine experimentation) which may further be incorporated into the above compositions without departing from the scope and spirit of the present invention.

Process of preparation:

- 1) Part quantity of purified water was taken in a vessel.
- Sodium chloride and EDTA was added and dissolved under stirring followed by heating the bulk.
- 3) Hydroxy propyl methyl cellulose was added and dispersed under stirring.
- 4) Stirring was done and bulk was held at 2-8°C overnight.
- 5) Glycerin was added and mixed in above bulk under stirring.
- Part quantity of purified water was taken and Azelastine HCl was dissolved in it to form drug slurry.
- 7) Drug slurry of step # 6 was added in main bulk of step # 5 under stirring.
- Polysorbate 80 was added and dissolved in part quantity of purified water. Triamcinolone was added to this solution under stirring.
- 9) Drug slurry of step # 8 was added in above bulk of step # 7 under stirring.
- 10) Benzalkonium chloride was added in part quantity of purified water and this solution was added in above bulk under stirring.
- 11) Volume was made-up with purified water.
- 12) Stirring was done with a high-speed homogenizer and pH was checked.

IV. Product Performance Testing and Characterization

Typically several tests are performed for nasal products as part of standard characterization testing protocols to determine pharmaceutical acceptability. For the current testing the selected methods to characterize the product in terms of formulation appearance, spray characterization, uniformity of dosing, viscosity, osmolarity, and physical stability of the suspension.

TEST	EQUIPMENT	Protocol #	Notes
Appearance	a. Visual Inspection	SMA-007-00	Qualitative assessment of homogeneity and pharmaceutical acceptability . Looks at sedimentation, separation of suspended particles, agglomeration, redispersability of suspension upon shaking. This will be done on both formulation and the filled bottles.
Assay	a. HPLC Assay to assess the potency of Suspended Triamcinolone Acetonide	HPLC Method	10 mLs of sample will be drawn off the top, middle and bottom of formulated composition, and then again after 3 Hrs to determine blend uniformity/settling stability
Pump Delivery	a. Analytical Balance	SMA-009-00	Quantitative assessment of the variability of formulation dispensing from the nasal spray pump. A Valois Nasal Spray Pump from Aptar will be used. Pump: VP7
Visual Inspection of spray quality	 Visual observation of emission of formulation during actuation of pump 	Observation of spray/jet/ failure to emit	Qualitatively assesses acceptability of spray
Spray	a. Dose collection tubes	SMA-001-00	Quantitative assessment of

Content	h HPLC drug assay		the variability of emitted		
Uniformity			doso from the pasal spray		
Officiently	c. Actuation Station		nump Will be quantified		
			pump. will be quantified		
	d. Analytical Balance		using Triamcinolone		
			acetonide assay.		
*The Following Tests Only to be Conducted As Needed to Supplement Previous Findings					
Droplet Size	a. Sympatec Laser Diffraction	SMA-003-00	Assesses the spray quality.		
Analysis*					
Viscositv*	a Dynamic	SMA-004-00	Assesses the viscosity of		
VISCOSILY		51417 004 00	the product and will assist		
			in interpretation of product		
			performance tests.		
Solid	a. Light Microscopy	SMA-002-00	Assesses the stability of the		
Particle			suspended particles and		
Size*			can inform on particle		
			aggregation/agglomeration.		
			-868		
Osmolality*	a. MicroOsmette- Freezing Point Depression	SMA-008-00			
	Osmometer				
Plume	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray		
Geometry*	h Actuation Station		characteristics.		
Spray	a. Spray View or Comparable Analysis Software	SMA-005-00	Quantifies spray		
Pattern*	b. Actuation Station		characteristics.		

Time points will be evaluated at 0, 7, and 14 days. The samples will be stored in ambient storage conditions. pH will be measured at all time points.

V. Report

A report detailing the preparation methods and results of the testing will be provided.