
UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

TERADATA OPERATIONS, INC. Petitioner

v.

REALTIME DATA LLC d/b/a IXO Patent Owner

DECLARATION OF SCOTT BENNETT, Ph.D.

28 January 2017

Terradata, Exh. 1026, p. 1

I, Scott Bennett, Ph.D., resident of Urbana, Illinois, hereby declare as

follows:

Introduction and Qualifications

1. I have been retained by Baker Botts L.L.P. to provide my opinions

concerning the public availability of certain documents at issue in an inter partes

review proceeding.

2. My curriculum vitae is appended to this document as Appendix A.

From 1956 to 1960, I attended Oberlin College, where I received an A.B. in

English. I then attended Indiana University, where I received an M.A. in 1966 and

a Ph.D. in 1967, both in English. In 1976, I received a M.S. in Library Science

from the University of Illinois. I also served at the University of Illinois at

Urbana‐Champaign in two capacities. First, from 1967 to 1974, I was an Assistant

Professor of English; then from 1974 to 1981, I was successively an Instructor,

Assistant Professor, and Associate Professor of Library Science.

3. From 1981 to 1989, I served as the Assistant University Librarian for

Collection Management, Northwestern University. From 1989 to 1994, I served as

the Director of The Milton S. Eisenhower Library at The Johns Hopkins

University. From 1994 to 2001, I served as the University Librarian at Yale

University. In 2001, I retired from Yale University.

Terradata, Exh. 1026, p. 2

4. Since then, I have served in multiple capacities for various

organizations, including as a consultant on library space planning from 2004 to the

present, as a Senior Advisor for the library program of the Council of Independent

Colleges from 2001 to 2009, as a member of the Wartburg College Library

Advisory Board from 2004 to the present, and as a Visiting Professor at the

Graduate School of Library and Information Science, University of Illinois at

Urbana‐Champaign, in the Fall of 2003. I was a founding partner of Prior Art

Documentation Services, LLC, in 2015.

5. Over the course of my work as a librarian, professor, researcher, and

author of numerous publications, I have had extensive experience with cataloging

and online library management systems built around Machine-Readable

Cataloging (MARC) standards. As a consultant, I have substantial experience in

authenticating documents and establishing the date when they were available to

persons exercising reasonable diligence.

6. In the course of more than fifty years of academic life, I have myself

been an active researcher. I have collaborated with many individual researchers

and, as a librarian, worked in the services of thousands of researchers at four

prominent research universities. Members of my family are university researchers.

Over the years, I have read some of the voluminous professional literature on the

information seeking behaviors of academic researchers. And as an educator, I

Terradata, Exh. 1026, p. 3

have a broad knowledge of the ways in which students in a variety of disciplines

learn to master the bibliographic resources used in their disciplines. In all of these

ways, I have a general knowledge of the how researchers work.

7. My work in this matter is being billed at my standard consulting rate

of $88 per hour. My compensation is not in any way contingent upon the outcome

of this or any other inter partes review. I have no financial or personal interest in

the outcome of this proceeding or any related litigation.

Scope of this Declaration

8. I am not a lawyer and I am not rendering an opinion on the legal

question of whether any particular document is, or is not, a “printed publication”

under the law.

9. I am, however, rendering my expert opinion on when and how each of

the documents addressed herein was disseminated or otherwise made available to

the extent that persons interested and ordinarily skilled in the subject matter or art,

exercising reasonable diligence, could have located the documents before

December 11, 1998.

10. I reserve the right to supplement my opinion in the future to respond

to any arguments that the Patent Owner raises and to take into account new

information as it becomes available.

Terradata, Exh. 1026, p. 4

Materials Considered in Forming My Opinion

11. In forming the opinions expressed in this declaration, I have

reviewed the document and attachments referenced below. These materials are

records created in the ordinary course of business by publishers, libraries, indexing

services, and others. From my years of experience, I am familiar with the process

for creating many of these records, and I know these records are created by people

with knowledge of the information in the record. Further, these records are created

with the expectation that researchers and other members of the public will use

them. All materials cited in this declaration and its attachments are of a type that

experts in my field would reasonably rely upon and refer to in forming their

opinions.

Document 1. William H. Hsu and Amy E. Zwarico, “Automatic Synthesis
of Compression Techniques for Heterogeneous Files,” Software: Practice
& Experience, 25,10 (October 1995): 1097-1116.

12. The following Attachments are true and accurate representations of

library material and online documents and records, as they are identified below.

All attachments were secured on 17-21 October 2016. All URLs were available

on 19 October 2016.

Attachment 1a: Statewide Illinois Library Catalog record for Software: Practice

& Experience

Terradata, Exh. 1026, p. 5

Attachment 1b: Depaul University Library catalog record for Software:

Practice & Experience

Attachment 1c: Copy of Hsu from the Depaul University Library

Attachment 1d: Wiley Online Library index record for Hsu

Attachment 1e: Copy of Hsu from the Wiley Online Library

Attachment 1f: Copy of Hsu from the University of Illinois at Urbana-

Champaign Library

Attachment 1g: Copy of Hsu from the University of Minnesota Library

Attachment 1h: Copy of Hsu from the Illinois Institute of Technology Library

13. Helen Sullivan is a Managing Partner in Prior Art Documentation

Services LLC (see http://www.priorartdocumentation.com/hellen-sullivan/). Her

primarily responsibility in our partnership is to secure the bibliographic

documentation used in attachments to our declarations. Ms. Sullivan secured all

of the attachments listed above, except Attachment 1h, which I secured.

Background Information

14. Persons of ordinary skill in the art. I am told by counsel that the

subject matter of this proceeding relates to systems and methods of data

compression.

15. I am told by counsel that persons of ordinary skill in this subject

matter or art would have had an undergraduate degree in computer science,

Terradata, Exh. 1026, p. 6

http://www.priorartdocumentation.com/hellen-sullivan/

computer engineering, electrical and computer engineering, electrical engineering,

or electronics and two years of experience working with data compression or a

graduate degree focusing in the field of data compression. Individuals with

additional education or additional industrial experience could still be of ordinary

skill in the art if that additional aspect compensates for a deficit in one of the other

aspects of the requirements stated above.

16. It is my opinion that such a person would have been engaged in

advanced research starting at least in graduate school, learning though study and

practice in the field and possibly through formal instruction the bibliographic

resources relevant to his or her research. In the 1980s and 1990s such a person

would have had access to a vast array of long-established print resources in

electrical/computer engineering and computer science as well as to a rich and fast

changing set of online resources providing indexing information, abstracts, and full

text services for electrical/computer engineering and computer science.

17. Library catalog records. WorldCat is the world’s largest public

online catalog, maintained by the Online Computer Library Center, Inc., or OCLC,

and built with the records created by the thousands of libraries that are members of

OCLC. WorldCat records appear in many different catalogs, including the

Statewide Illinois Library Catalog.

Terradata, Exh. 1026, p. 7

18. Periodical publications. A library typically creates a catalog record

for a periodical publication when the library receives its first issue. When the

institution receives subsequent issues/volumes of the periodical, the issues/volumes

are checked in (often using a date stamp), added to the institution’s holdings

records, and made available very soon thereafter—normally within a few days of

receipt or (at most) within a few weeks of receipt.

19. The initial periodicals record will sometimes not reflect all of the

subsequent changes in publication details (including minor variations in title, etc.).

20. Indexing. An ordinarily skilled researcher may discover material

relevant to his or her topic in a variety of ways. One common means of discovery

is to search for relevant information in an index of periodical and other

publications. Having found relevant material, the researcher will then normally

obtain it online, look for it in libraries, or purchase it from the publisher, a

bookstore, or other provider.

21. Indexing services commonly provide bibliographic information,

abstracts, and full-text copies of the indexed publications, along with a list of the

documents cited in the indexed publication. Prominent indexing services include

the Wiley Online Library, a multidisciplinary collection of online resources in the

life, health and physical sciences, and in the social sciences and humanities (see

http://olabout.wiley.com/WileyCDA/Section/id-390001.html).

Terradata, Exh. 1026, p. 8

http://olabout.wiley.com/WileyCDA/Section/id-390001.html

Consideration of individual documents

Document 1. William H. Hsu and Amy E. Zwarico, “Automatic Synthesis
of Compression Techniques for Heterogeneous Files,” Software: Practice
& Experience, 25,10 (October 1995): 1097-1116.

Authentication

22. Document 1 is a paper written by William Hsu and Amy Zwarico and

published in the October 1995 issue of Software: Practice & Experience. This

paper is herein referred to Hsu. It is marked as Exhibit 1005 to the petition for

inter partes review.

23. Attachment 1a is a true and accurate copy of the Statewide Illinois

Library Catalog record for Software: Practice & Experience. This record shows

that Software: Practice & Experience began publication in 1971 and is held by 598

libraries world-wide. An ordinarily skilled researcher would have no difficulty

identifying and locating library copies of this periodical.

24. The DePaul University Library is one library holding this periodical.

Attachment 1b is a true and accurate copy of the DePaul University Library catalog

record for Software: Practice & Experience, showing the DePaul University

Library holdings for Software: Practice & Experience include volume 25, number

10.

25. Attachment 1c is a true and accurate copy, in black and white, of Hsu

from the DePaul University Library. Attachment 1c includes the cover for the

Terradata, Exh. 1026, p. 9

October issue of Software: Practice & Experience, the contents page, and the Hsu

paper on pp. 1097-1116. Attachment 1c is in a condition that creates no suspicion

about its authenticity. Specifically, there are no visible alterations to the document,

and Attachment 1c was found within the custody of a library – a place where if

authentic it would likely be.

26. Attachment 1d is a true and accurate copy of the item record for Hsu

in the Wiley Online Library. Attachment 1e is a true and accurate copy of Hsu

from the Wiley Online Library. This online version of Hsu is identical to

Attachment 1c and includes, on the first page, the bibliographic information about

the publication of Hsu. Software: Practice & Experience is a Wiley publication.

Attachments 1d and 1e were found in the Wiley Online Library—a place where if

authentic they would likely be.

Public accessibility

27. Attachment 1c includes a library date stamp label indicating that

October 1995 issue of Software: Practice & Experience was processed at the

DePaul University Library on 25 October 1995. Based on my experience, I affirm

this date stamp has the general appearance of date stamps that libraries have long

affixed to periodicals in processing them. I do not see any indications or have any

reason to believe this date stamp was affixed by anyone other than library

personnel on or about the date indicated by the stamp.

Terradata, Exh. 1026, p. 10

28. This date stamp indicates the October 1995 issue of Software: Practice

& Experience had been mailed to the DePaul University Library and to other

subscribers (including other library subscribers) sometime in October 1995, or

earlier, because it takes some time for the item to arrive at and to be processed by

the library. I therefore conclude that the October 1995 issue of Software: Practice

& Experience would have been received by other subscribers, and that other

subscribing libraries would have processed and made this issue available to their

readers at about the same time.

29. For example, Attachment 1f is a true and accurate copy, in color, of

Hsu from the University of Illinois at Urbana-Champaign Library. Attachment 1f

includes the bound volume cover; the covers for the July, August, September,

October, November, and December issues of Software: Practice & Experience;

and from the October issue a list of editors and other information about the journal,

the contents page, and the Hsu paper on pp. 1097-1116.

30. Attachment 1f includes a library date stamp label indicating that July

1995 issue of Software: Practice & Experience was processed at the University of

Illinois at Urbana-Champaign Library on 24 July 1995. Similar date stamp labels

on the August, November, and December issues indicate they were processed at

the library on 22 August, 27 November, and 14 December, respectively. Date

stamps can be detected on the covers of the September and October issues of

Terradata, Exh. 1026, p. 11

Software: Practice & Experience, but they are hard to read, even under

magnification. The September issue appears to have been processed by the

University of Illinois at Urbana-Champaign Library on 2? September 1995, while

the October issue appears to have been processed on ??October ????. The text

here states only the date information that can be made out, as these stamps are

difficult to read. This bound volume of Software: Practice & Experience,

including the October 1995 issue, also bears on its inside back cover a February

1996 sticker from the Heckman Bindery, Inc., a major provider of periodical

binding services.

31. It is my opinion that based on these date markings, in the second half

of 1995, the University of Illinois at Urbana Champaign regularly processed newly

received issues of Software: Practice & Experience in the second or third week of

the month indicated on the cover of each monthly issue. I also infer that all issues

of Software: Practice & Experience published in the second half of 1995 where in

hand at the University of Illinois at Urbana-Champaign Library by December 1995

or January 1996, when they were send to the Heckman Bindery to be bound as a

volume.

32. Attachment 1g is a third true and accurate copy, in color, of Hsu—this

one from the University of Minnesota Library. This copy includes the cover, a list

of editors and other information about the journal, the contents page, and the Hsu

Terradata, Exh. 1026, p. 12

paper. The cover page in Attachment 1g includes a library date stamp that is hard

to read. Under magnification, this date stamp indicates the October 1995 issue of

Software: Practice & Experience was processed at the University of Minnesota

Library on 20 October [1995], in close conformity to the evidence for processing

issues of Software: Practice & Experience at the DePaul University Library and the

University of Illinois at Urbana-Champaign Library. The year element in the date

stamp is very hard to read, even when magnified, and thus I have listed it here in

brackets. However, Software: Practice & Experience was published monthly (as

indicated on the page listing the journal’s editors). In my experience, it would

have been highly unusual for a library, such as the University of Minnesota

Library, to have received this periodical a year later, in 1996. Thus, considering

both my experience and the facts outlined in this declaration, it is my opinion that

while the date stamp is only partially illegible, this volume was stamped received

by the University of Minnesota Library on 20 October 1995.

33. Attachment 1h is a fourth true and accurate copy, in color, of Hsu—

this one from the Illinois Institute of Technology Library. This copy includes the

spine of volume 25 and the cover of the October 1995 issue, a list of editors and

other information about the journal, the contents page, and the Hsu paper. The

cover page in Attachment 1h in has a date stamp that indicates the October 1995

issue of Software: Practice & Experience was processed at the Illinois Institute of

Terradata, Exh. 1026, p. 13

Technology Library on 3 November 1995, in near conformity to the evidence for

processing October 1995 issues of Software: Practice & Experience at the DePaul

University Library, the University of Illinois at Urbana-Champaign Library, and

the University of Minnesota Library.

34. The copies of Hsu in Attachments 1c and 1f, 1g, and 1h from the

DePaul University Library, University of Illinois at Urbana-Champaign Library,

the University of Minnesota Library, and the Illinois Institute of Technology

Library, respectively, are substantively identical.

35. The evidence from four academic libraries indicates the October 1995

issue of Software: Practice & Experience was mailed to subscribers in October

1995, or earlier, and processed by these four libraries late in October or early in

November 1995. Allowing for some time between the date stamping of the

October 1995 issue of Software: Practice and Experience and its appearance on

library shelves, where it would be public available, it is my opinion that Hsu was

publicly available at least by mid-November 1995.

Conclusion

36. Based on the evidence presented here—publication in an easily

identified and widely held periodical, online availability, and library date stamps—

it is my opinion that Document 1 is an authentic document and was available

to the public at least by mid-November 1995.

Terradata, Exh. 1026, p. 14

Attestation

37. I hereby declare that all statements made herein of my own

knowledge are true and that all statements made on information and belief are

believed to be true; and further that these statement were made with the knowledge

that willful false statements and the like so made are punishable by fine or

imprisonment, or both, under Section 1001 of Title 18 of the United States Code

and that such willful false statement may jeopardize the validity of the application

or any patent issued thereon.

 ______________________________ 28 January 2017

Scott Bennett, Ph.D. Date
Managing Partner
Prior Art Documentation Services LLC

Terradata, Exh. 1026, p. 15

EXHIBIT A: RESUME

SCOTT BENNETT
Yale University Librarian Emeritus

711 South Race

Urbana, Illinois 61801-4132
2scottb@prairienet.org

217-367-9896

EMPLOYMENT

Retired, 2001. Retirement activities include:

 Managing Partner in Prior Art Documentation Services, LLC, 2015-. This firm provides
documentation services to patent attorneys; more information is available at
http://www.priorartdocumentation.com

 Consultant on library space design, 2004- . This consulting practice is rooted in a research,
publication, and public speaking program conducted since I retired from Yale University in 2001.
I have served more than 50 colleges and universities in the United States and abroad with
projects ranging in likely cost from under $50,000 to over $100 million. More information is
available at http://www.libraryspaceplanning.com/

 Senior Advisor for the library program of the Council of Independent Colleges, 2001-2009

 Member of the Wartburg College Library Advisory Board, 2004-

 Visiting Professor, Graduate School of Library and Information Science, University of Illinois at
Urbana-Champaign, Fall 2003

University Librarian, Yale University, 1994-2001

Director, The Milton S. Eisenhower Library, The Johns Hopkins University, Baltimore, Maryland, 1989-
1994

Assistant University Librarian for Collection Management, Northwestern University, Evanston, Illinois,
1981-1989

Instructor, Assistant and Associate Professor of Library Administration, University of Illinois at Urbana-
Champaign, 1974-1981

Assistant Professor of English, University of Illinois at Urbana-Champaign, 1967-1974

Woodrow Wilson Teaching Intern, St. Paul’s College, Lawrenceville, Virginia, 1964-1965

EDUCATION

University of Illinois, M.S., 1976 (Library Science)
Indiana University, M.A., 1966; Ph.D., 1967 (English)
Oberlin College, A.B. magna cum laude, 1960 (English)

Teradata, Exh. 1026, p. 16

mailto:2scottb@prairienet.org
http://www.priorartdocumentation.com/
http://www.libraryspaceplanning.com/

HONORS AND AWARDS

Morningside College (Sioux City, IA) Doctor of Humane Letters, 2010

American Council of Learned Societies Fellowship, 1978-1979; Honorary Visiting Research Fellow,
Victorian Studies Centre, University of Leicester, 1979; University of Illinois Summer Faculty Fellowship,
1969

Indiana University Dissertation Year Fellowship and an Oberlin College Haskell Fellowship, 1966-1967;
Woodrow Wilson National Fellow, 1960-1961

PROFESSIONAL ACTIVITIES

American Association for the Advancement of Science: Project on Intellectual Property and Electronic
Publishing in Science, 1999-2001

American Association of University Professors: University of Illinois at Urbana-Champaign Chapter
Secretary and President, 1975-1978; Illinois Conference Vice President and President, 1978-1984;
national Council, 1982-1985, Committee F, 1982-1986, Assembly of State Conferences Executive
Committee, 1983-1986, and Committee H, 1997-2001 ; Northwestern University Chapter
Secretary/Treasurer, 1985-1986

Association of American Universities: Member of the Research Libraries Task Force on Intellectual
Property Rights in an Electronic Environment, 1993-1994, 1995-1996

Association of Research Libraries: Member of the Preservation Committee, 1990-1993; member of the
Information Policy Committee, 1993-1995; member of the Working Group on Copyright, 1994-2001;
member of the Research Library Leadership and Management Committee, 1999-2001; member of the
Board of Directors, 1998-2000

Carnegie Mellon University: Member of the University Libraries Advisory Board, 1994

Center for Research Libraries: Program Committee, 1998-2000

Johns Hopkins University Press: Ex-officio member of the Editorial Board, 1990-1994; Co-director of
Project Muse, 1994

Library Administration and Management Association, Public Relations Section, Friends of the Library
Committee, 1977-1978

Oberlin College: Member of the Library Visiting Committee, 1990, and of the Steering Committee for
the library’s capital campaign, 1992-1993; President of the Library Friends, 1992-1993, 2004-2005;
member, Friends of the Library Council, 2003-

Research Society for Victorian Periodicals: Executive Board, 1971-1983; Co-chairperson of the Executive
Committee on Serials Bibliography, 1976-1982; President, 1977-1982

Teradata, Exh. 1026, p. 17

A Selected Edition of W.D. Howells (one of several editions sponsored by the MLA Center for Editions of
American Authors): Associate Textual Editor, 1965-1970; Center for Editions of American Authors panel
of textual experts, 1968-1970

Victorian Studies: Editorial Assistant and Managing Editor, 1962-1964

Wartburg College: member, National Advisory Board for the Vogel Library, 2004-

Some other activities: Member of the Illinois State Library Statewide Library and Archival Preservation
Advisory Panel; member of the Illinois State Archives Advisory Board; member of a committee advising
the Illinois Board of Higher Education on the cooperative management of research collections; chair of
a major collaborative research project conducted by the Research Libraries Group with support from
Conoco, Inc.; active advisor on behalf of the Illinois Conference AAUP to faculty and administrators on
academic freedom and tenure matters in northern Illinois.

Delegate to Maryland Governor’s Conference on Libraries and Information Service; principal in
initiating state-wide preservation planning in Maryland; principal in an effort to widen the use of mass
deacidification for the preservation of library materials through cooperative action by the Association of
Research Libraries and the Committee on Institutional Cooperation; co-instigator of a campus-wide
information service for Johns Hopkins University; initiated efforts with the Enoch Pratt Free Library to
provide information services to Baltimore’s Empowerment Zones; speaker or panelist on academic
publishing, copyright, scholarly communication, national and regional preservation planning, mass
deacidification.

Consultant for the University of British Columbia (1995), Princeton University (1996), Modern
Language Association, (1995, 1996), Library of Congress (1997), Center for Jewish History (1998, 2000-
), National Research Council (1998); Board of Directors for the Digital Library Federation, 1996-2001;
accreditation visiting team at Brandeis University (1997); mentor for Northern Exposure to Leadership
(1997); instructor and mentor for ARL’s Leadership and Career Development Program (1999-2000)

At the Northwestern University Library, led in the creation of a preservation department and in the
renovation of the renovation, for preservation purposes, of the Deering Library book stacks.

At the Milton S. Eisenhower Library, led the refocusing and vitalization of client-centered services;
strategic planning and organizational restructuring for the library; building renovation planning.
Successfully completed a $5 million endowment campaign for the humanities collections and launched a
$27 million capital campaign for the library.

At the Yale University Library, participated widely in campus-space planning, university budget
planning, information technology development, and the promotion of effective teaching and learning;
for the library has exercised leadership in space planning and renovation, retrospective conversion of
the card catalog, preservation, organizational development, recruitment of minority librarians,
intellectual property and copyright issues, scholarly communication, document delivery services among
libraries, and instruction in the use of information resources. Oversaw approximately $70 million of
library space renovation and construction. Was co-principal investigator for a grant to plan a digital
archive for Elsevier Science.

Teradata, Exh. 1026, p. 18

Numerous to invitations speak at regional, national, and other professional meetings and at alumni
meetings. Lectured and presented a series of seminars on library management at the Yunnan
University Library, 2002. Participated in the 2005 International Roundtable for Library and Information
Science sponsored by the Kanazawa Institute of Technology Library Center and the Council on Library
and Information Resources.

PUBLICATIONS

“Putting Learning into Library Planning,” portal: Libraries and the Academy, 15, 2 (April 2015), 215-231.

“How librarians (and others!) love silos: Three stories from the field “ available at the Learning Spaces
Collaborary Web site, http://www.pkallsc.org/

“Learning Behaviors and Learning Spaces,” portal: Libraries and the Academy, 11, 3 (July 2011), 765-789.

“Libraries and Learning: A History of Paradigm Change,” portal: Libraries and the Academy, 9, 2 (April
2009), 181-197. Judged as the best article published in the 2009 volume of portal.

“The Information or the Learning Commons: Which Will We Have?” Journal of Academic Librarianship,
34 (May 2008), 183-185. One of the ten most-cited articles published in JAL, 2007-2011.

“Designing for Uncertainty: Three Approaches,” Journal of Academic Librarianship, 33 (2007), 165–179.

“Campus Cultures Fostering Information Literacy,” portal: Libraries and the Academy, 7 (2007), 147-167.
Included in Library Instruction Round Table Top Twenty library instruction articles published in 2007

“Designing for Uncertainty: Three Approaches,” Journal of Academic Librarianship, 33 (2007), 165–179.

 “First Questions for Designing Higher Education Learning Spaces,” Journal of Academic Librarianship, 33
(2007), 14-26.

“The Choice for Learning,” Journal of Academic Librarianship, 32 (2006), 3-13.

With Richard A. O’Connor, “The Power of Place in Learning,” Planning for Higher Education, 33 (June-
August 2005), 28-30

“Righting the Balance,” in Library as Place: Rethinking Roles, Rethinking Space (Washington, DC: Council
on Library and Information Resources, 2005), pp. 10-24

Libraries Designed for Learning (Washington, DC: Council on Library and Information Resources, 2003)

“The Golden Age of Libraries,” in Proceedings of the International Conference on Academic Librarianship
in the New Millennium: Roles, Trends, and Global Collaboration, ed. Haipeng Li (Kunming: Yunnan
University Press, 2002), pp. 13-21. This is a slightly different version of the following item.

“The Golden Age of Libraries,” Journal of Academic Librarianship, 24 (2001), 256-258

Teradata, Exh. 1026, p. 19

http://www.pkallsc.org/

“Second Chances. An address . . . at the annual dinner of the Friends of the Oberlin College Library
November 13 1999,” Friends of the Oberlin College Library, February 2000

“Authors’ Rights,” The Journal of Electronic Publishing (December 1999),
http://www.press.umich.edu/jep/05-02/bennett.html

“Information-Based Productivity,” in Technology and Scholarly Communication, ed. Richard Ekman and
Richard E. Quandt (Berkeley, 1999), pp. 73-94

“Just-In-Time Scholarly Monographs: or, Is There a Cavalry Bugle Call for Beleaguered Authors and
Publishers?” The Journal of Electronic Publishing (September 1998),
http://www.press.umich.edu/jep/04-01/bennett.html

“Re-engineering Scholarly Communication: Thoughts Addressed to Authors,” Scholarly Publishing, 27
(1996), 185-196

“The Copyright Challenge: Strengthening the Public Interest in the Digital Age,” Library Journal, 15
November 1994, pp. 34-37

“The Management of Intellectual Property,” Computers in Libraries, 14 (May 1994), 18-20

“Repositioning University Presses in Scholarly Communication,” Journal of Scholarly Publishing, 25
(1994), 243-248. Reprinted in The Essential JSP. Critical Insights into the World of Scholarly Publishing.
Volume 1: University Presses (Toronto: University of Toronto Press, 2011), pp. 147-153

“Preservation and the Economic Investment Model,” in Preservation Research and Development. Round
Table Proceedings, September 28-29, 1992, ed. Carrie Beyer (Washington, D.C.: Library of Congress,
1993), pp. 17-18

“Copyright and Innovation in Electronic Publishing: A Commentary,” Journal of Academic Librarianship,
19 (1993), 87-91; reprinted in condensed form in Library Issues: Briefings for Faculty and Administrators,
14 (September 1993)

with Nina Matheson, “Scholarly Articles: Valuable Commodities for Universities,” Chronicle of Higher
Education, 27 May 1992, pp. B1-B3

“Strategies for Increasing [Preservation] Productivity,” Minutes of the [119th] Meeting [of the
Association of Research Libraries] (Washington, D.C., 1992), pp. 39-40

“Management Issues: The Director’s Perspective,” and “Cooperative Approaches to Mass
Deacidification: Mid-Atlantic Region,” in A Roundtable on Mass Deacidification, ed. Peter G. Sparks
(Washington, D.C.: Association of Research Libraries, 1992), pp. 15-18, 54-55

“The Boat that Must Stay Afloat: Academic Libraries in Hard Times,” Scholarly Publishing, 23 (1992), 131-
137

“Buying Time: An Alternative for the Preservation of Library Material,” ACLS Newsletter, Second Series 3
(Summer, 1991), 10-11

Teradata, Exh. 1026, p. 20

“The Golden Stain of Time: Preserving Victorian Periodicals” in Investigating Victorian Journalism, ed.
Laurel Brake, Alex Jones, and Lionel Madden (London: Macmillan, 1990), pp. 166-183

“Commentary on the Stephens and Haley Papers” in Coordinating Cooperative Collection Development:
A National Perspective, an issue of Resource Sharing and Information Networks, 2 (1985), 199-201

“The Editorial Character and Readership of The Penny Magazine: An Analysis,” Victorian Periodicals
Review, 17 (1984), 127-141

“Current Initiatives and Issues in Collection Management,” Journal of Academic Librarianship, 10 (1984),
257-261; reprinted in Library Lit: The Best of 85

“Revolutions in Thought: Serial Publication and the Mass Market for Reading” in The Victorian Periodical
Press: Samplings and Soundings, ed. Joanne Shattock and Michael Wolff (Leicester: Leicester University
Press, 1982), pp. 225-257

“Victorian Newspaper Advertising: Counting What Counts,” Publishing History, 8 (1980), 5-18

“Library Friends: A Theoretical History” in Organizing the Library’s Support: Donors, Volunteers, Friends,
ed. D.W. Krummel, Allerton Park Institute Number 25 (Urbana: University of Illinois Graduate School of
Library Science, 1980), pp. 23-32

“The Learned Professor: being a brief account of a scholar [Harris Francis Fletcher] who asked for the
Moon, and got it,” Non Solus, 7 (1980), 5-12

“Prolegomenon to Serials Bibliography: A Report to the [Research] Society [for Victorian Periodicals],”
Victorian Periodicals Review, 12 (1979), 3-15

“The Bibliographic Control of Victorian Periodicals” in Victorian Periodicals: A Guide to Research, ed. J.
Don Vann and Rosemary T. VanArsdel (New York: Modern Language Association, 1978), pp. 21-51

“John Murray’s Family Library and the Cheapening of Books in Early Nineteenth Century Britain,” Studies
in Bibliography, 29 (1976), 139-166. Reprinted in Stephen Colclough and Alexis Weedon, eds., The
History of the Book in the West: 1800-1914, Vol. 4 (Farnham, Surrey: Ashgate, 2010), pp. 307-334.

with Robert Carringer, “Dreiser to Sandburg: Three Unpublished Letters,” Library Chronicle, 40 (1976),
252-256

“David Douglas and the British Publication of W. D. Howells’ Works,” Studies in Bibliography, 25 (1972),
107-124

as primary editor, W. D. Howells, Indian Summer (Bloomington: Indiana University Press, 1971)

“The Profession of Authorship: Some Problems for Descriptive Bibliography” in Research Methods in
Librarianship: Historical and Bibliographic Methods in Library Research, ed. Rolland E. Stevens (Urbana:
University of Illinois Graduate School of Library Science, 1971), pp. 74-85

Teradata, Exh. 1026, p. 21

edited with Ronald Gottesman, Art and Error: Modern Textual Editing (Bloomington: Indiana University
Press, 1970)--also published in London by Methuen, 1970

“Catholic Emancipation, the Quarterly Review, and Britain’s Constitutional Revolution,” Victorian
Studies, 12 (1969), 283-304

as textual editor, W. D. Howells, The Altrurian Romances (Bloomington: Indiana University Press, 1968);
introduction and annotation by Clara and Rudolf Kirk

as associate textual editor, W. D. Howells, Their Wedding Journey (Bloomington: Indiana University
Press, 1968); introduction by John Reeves

“A Concealed Printing in W. D. Howells,” Papers of the Bibliographic Society of America, 61 (1967), 56-60

editor, Non Solus, A Publication of the University of Illinois Library Friends, 1974-1981

editor, Robert B. Downs Publication Fund, University of Illinois Library, 1975-1981

reviews, short articles, etc. in Victorian Studies, Journal of English and German Philology, Victorian
Periodicals Newsletter, Collection Management, Nineteenth-Century Literature, College & Research
Libraries, Scholarly Publishing Today, ARL Newsletter, Serials Review, Library Issues, S[ociety for]
S[cholarly] P[ublishing] Newsletter, and Victorian Britain: An Encyclopedia

Teradata, Exh. 1026, p. 22

Attachment 1a

Teradata, Exh. 1026, p. 23

Attachment la

Teradata, Exh. 1026, p. 24

 Fl‘ Statewide Illinois ary Catalog UNIV or ILLINOIS

orldcat Detailed Record ' - CHs:k on a dlackborx to mark a record to be e-mailed orplinted in Marked Razorcls

elmelelelile

Solhnrare, practice & experience.
1‘.lT1—
Enqlsllfl Serial Pllllllcaion :PeIiodk:a| :MI:wII1lvQ hlemei Resource volumes ;26 cmGhlcllesuzt rwiler Inualsdemne,

GE! Tms [van
Amas: hl‘ln:{hmuvfl.mte!5cience wiiev comlcqi-binRhornef1752

Availilnilitv: listseanch imitates your ipslilution subscrines to this puhicalion.
- Lilxaries worldwide that own itgm;59fl Q UIIV OF ILLINOIS
- 9 Searth the cataloq at the Lflnalv of UIIIVEVSIU aflllinms at U\l1a1a-CharI1uaItfl

Exten'|alR&-sl:u5:- DI'scoverU[UCFui!Text. lnterlshlr-g Loan Rgyei- Cxte This Jtem
Fu|:R|:uu=m
Advanced ogljorls . .

: Available Issues Nljdefizs
: somnrare, practice 3 experience.
Glichesier : Whey lnlelscienw,

. 1971-
: Monihly. 2010-, Pasi:('.'n|ar1erly. 1971-I9?6 M-anally. 1977-199715 issues a year. 1993-1999MolIl11|y, plus Ilree additional issues in Ann, Jury and Nov., 2000-20(l8 18 issues a year. 2009
:vo4urnes .26cm\abl. 11:0 1(Jan.-Mat. I971)-
: English
: l55fl:l}ll3fl-0ii44,0llIaIluI1rIil'slS5lI: I097-l}24X.COl.'EN:SPE)<BL.MiIiu1alLixaty:CI106?52=l3, 120252-21 S3lMIl}0'll0ll,0l]9B79556.0133=1536T, LCCH: 75-648615
: nI'E'D'inH|MNG,\me1scier!ce wile? con‘U«::qH)in.‘i#1o+11e!1752
suaJEc1'(s)

. Camgmer sofiuwe — Periodicals
Cornmée: grgranwrfing — Penodioals.
Comguter grgrams — Perxodwcans
Frguammga on [lnionnaligutfl - Pen‘-nag‘uea
La ngages de grog raxnmalion — Fénudig ues.
Lglcxels — PénodlguesScflware
FrogramrnierungZextschmt.
Samara
Commie: grgzra rrwning
Corn gute: prgrams-.
Comguter soflwsre
FrogramrnienmgSoflware
Zefischnfi
Periodicals
‘liiie from mverfPubIIsrIed John Vlfiley ssans, Ltd ,QIiG5->
Some ISSUES hr1995- acmrnnanied by compact aims} Vols 1-20.1971-96,1 W Durnulaled by CD-ROM ed, National tiiamapliy no: fl1(}6?52-:8 DlIIeI'lll1'l'IfiIaL'aI3IflI3tlfi||i|‘¢"|I'e((}IIt:lIt!S€-Ir, England ' CD-ROM):
Qllline version. Safivvale, avarice 8.exyefl'etIoe torllirle)
LE: QAFG 5‘ I:mwey:lm1,61425m5
some mad exp ; Software, nracioe 8 experience (Prim): Also known 35'; SP3 E; Snmnare‘ garacuoe and expenence; Solware: Scnw pram exper; <20-fl5—>
Periodical(per);1nierne1resnurm{ur1)

: Serialrirllemes Resource
1975(l‘Q2ll

: 20150818
: ocLc:_: W0f|dCat

mmlflfliels-I-!|:|:1\2'%|':_-P-.-1 '., uulgfllelfl
e 1-m.2ms ocu:

OCLC

Teradata, Exh. 1026, p. 24

Attachment 1b

Teradata, Exh. 1026, p. 25

Attachment lb

Teradata, Exh. 1026, p. 26

DePaul University Library v Search EFF Renew Eiclol<sMy Accalmt [11 5'} Worlocai r 1]

DE PAUL UNIVERSITYUN“-'ER5|TV |-1BR-MW Lhraies msearchl Tl M-«amen Search

 E] CitelExpod Prilt I"; E-rrlai Addtoist H Share P-errrlailir

Software, practice Br experience. _Publisher.‘ Chichesier: Wiley lniersciencer ©19?1-

EdirianlFol1rrat Q Joana}, magazine : Periodcai : Erlgish lrlelnr arleditians and fcrrrrlarls Mo.-e like 11155
D tab '

a ase \r\b(klCal 5" _ 5«Egg software — 'Penodu:als
Seanzilltlis plmlcanonfaruifler ariictes with lflefnlollvilg wards‘”‘ , 1:@au'ns —— Period-icais

1 Search Cg ' _
Penocicats.

Preview thi tam

You are not corlrl-e ctea to me DePaul Unive rsity Library network. Access In online no me m and services may require you to authenticate wlin your library
jab

7 Find a copy online

Links to this item

DePaul University Library {1}
Access 'ounla|
Scflware. Pradice and Experienm. Wiley Orlline Litrrary 2015. (1996-present)

Other libraries {1}

fl§lawaIi1ksfrcrl1ldflerI:rr:rn:s§l

7 Find a copy in the library

Click on "Get Current Status |rIi0lTnaliol1"te get current status infonllation about the item.

DePaul University Libraryr Get Current Status Informatlon l

E] Get ll in the library
[3 1 copies

Lncatim ‘Status

'-‘"5"!’ "-“= Q v.1.n-.3e{19u2ooel

E Hide item name

Loop Periodlcais 0 vJl,..’36“ga3_2o06I l'-\er.0Cl1 05 963$

I-Share

fig Get it rrom this library group

fl I1 group libraries mun this item

worldcat

Find it in libraie-5 globaliy
fl Wolidvlride libraries ovlln this item

l=e'.-rodqure

Mldifional Physical Fonrlall: Soitlrlr-are (Cilichester, Enl_:}al-1d : CDROMJ
{DLChn 96li31()0(!
(OCaLC]34(I9l I84
Orlline version‘
Software, practice & experience {OnlSne]
[DLC)sn 97001402
(OCoLC]381T2'li45

Material Type: Periodcal, lrllemel resmxce

Document Type: Journal 1 Magazine.’ Newspaper, lnlemet Resourte

IS SM: W38-0644

OCLC Plumber: 1639246

Teradata, Exh. 1026, p. 26

Teradata, Exh. 1026, p. 27

Notes: ‘Fife from cover.
Pllalishedz Jotn Wiley 8. Sons, Ltd__ (2005->

Descliption: volI.I11es ; 26 cm

Other filles: Software, practice 3. experience
SF 8. E
Software, practice and experience
Software
Softw. pract. exper.

Loni System Efib Number: 353283

I Reviews

5 User-contributed reviews

Add $5 for ‘Software, practice 8. experience‘,

I Similar Items

Suhi;:'s- (12)
Computer software — Periodicals.

Computer pggrans — Periodicals.

Computer pggranming — Periodicals.

Pmgranmation (|nfon'natigue1— Périodigues.

Langages de pggranmation — Périodigues.

giciels — Périodigues.
Software.

Pmgrarnmierung.
Zeilschrift.

Computer gggralnming.

Comguter gggralns.

Comguter software.

Languages: been 1 Detach 1 English 1 Espafioi 1 Fra'\1:a': 1|tia'n:1Nede|'la'u!:|Pu|1uIpés1n1n11v1u|;‘=_|—3.‘U‘[| EI2ir%1I1=Z-:§E1|:E_13;-amvuu. Simln Raisin My-|Nur|dCd Myuns Myvuuuhm Mynmiews My-Tag Mysau-euseamr.-.=
Whrldcat: E E E search

Legal‘ cngyriume2cu)1_2o160cLc Alrimsrmeweu Privazy Pain! rennsamcumiinns

Wurldcal '5 the world's firgml Elam ca1ab1.heh;i'1g yum ii'1d Italy nlakaials miwe.

Teradata, Exh. 1026, p. 27

Attachment 1c

Teradata, Exh. 1026, p. 28

Attachment 1c

Teradata, Exh. 1026, p. 29

It i

44-».....-nu.u-—
-j-—-zj-_—-I

"“""v. OCTOBER 1995

J‘. 25/ N0‘
»~,,.,‘.g In

I.

-*3 El

EDITORS

DOUGLAS COMER

ANDY WELLINGS

COPYING OF ARTICLES

The code and the copyright notice appearing at the bottom of the first page of an article in this journal ;__.,
indicates the copyright owner's consent that copies of the article may be made fol; personal or internal .4’-
use, or for the personal or internal use of specific clients, on the condition that the copier pay for c0PYin9 "'°":.;,;
beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. The per-copy fee is to be paid
through the Copyright Clearance Center Inc. and details of their authorisation schemes can be obtained 4,,
from them at 27 Congress Street, Salem, MA 01970, U.S.A. Tel: (508) 744-3350, Fax: (508) 745-9379. This '99“

consent does not extend to other kinds of copying, such as copying for general distribution, for advenls- ‘tg_;“f,‘:
ing or promotional purposes, for creating new collective works, or for resale. Such permission requests, ‘ ‘
or other inquiries, should be addressed to the publisher.

ll llllllllll
0038-O644(199509)25:9;1-D

Toronto - Singapore
Ion

Teradata, Exh. 1026, p. 29

5»._sl\r{..!_An\L|.\l1
i
‘J
-1

9

kl

Teradata, Exh. 1026, p. 30

SOF'lWARE———PRACTlCE AND EXPERIENCE

(Softw. pract. exp.)

CONTENTS

October 1995VOLUME 25, ISSUE No. 10

Migration in Object-oriented Database Systems—A Practical Approach:

C. Huemer, G. Kappel and S. Vieweg 1065

Automatic Synthesis of Compression Techniques for Heterogeneous
Files: W. H. Hsu and A. E. Zwarico 1097

A Tool for Visualizing the Execution of Interactions on a LooseIy—coup|ed

Distributed System: P. Ashton and J. Penny 1117

Process Scheduling and UNIX Semaphores: N. Dunstan and I. Fris 1141

Software Maintenance: An Approach to Impact Analysis of Objects
Change: S. Ajila 1155

SPEXBL 25(10I 1065-1182 (1995)
ISSN 0038-0644

 Indexed or abstracted by Cambridge Scientific Abstracts, CompuMath Citation Index (lSl),

Compuscience Database, Computer Contents, Computer Literature Index, Computing

Reviews, Current Contents/Eng, Tech & Applied Sciences, Data Processing Digest, Deadline

Newsletter, Educational Technology Abstracts, Engineering Index, Engineering Societies

Library, IBZ (International Bibliography of Periodical Literature), Information Science Abstracts

(Plenum), INSPEC, Knowledge Engineering Review, Nat Centre for Software Technology,
Research Alert (lSl) and SCISEARCH Database IISII.

;u-o« uualxbur ‘
 nI‘ T‘

Teradata, Exh. 1026, p. 31

SOFl'WARE—PRACl'lCE AND EXPERIENCE. VOL 25(l0), 1097-lll6 (OCTOBER 1995)

Automatic Synthesis of Compression Techniques for

Heterogeneous Files

WILLIAM H. HSU

Department of Computer Science, University ofIllinois at Urbana_-Champaign, Urbana, IL 61801, U.S.A.
(email: bhsu@cs.uiuc.edu, voice: (217) 244-1620)

AND

AMY E. ZWARICO

Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, U.S.A.
(email: amy@cs.jhu.edu, voice: (410) 516-5304)

SUMMARY

We present a compression technique for heterogeneous files, those files which contain multiple types of
data* such as text, images, binary, audio, or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained using four commercially available compression programs, PKZIP, Unix compress, Stufilt,
and Compact Pro, and show that our system provides better space savings.

KEY WORDS: adaptive/selective data compression algorithms; redundancy metrics; heterogeneous files; program synthesis

INTRODUCTION

The primary motivation in studying compression is the savings in space that it provides.
Many compression algorithms have been implemented, and with the advent of new hard-

ware standards, more techniques are under development. Historically, research in data com-

pression has been devoted to the development of algorithms that exploit various types of

redundancy found in a file. The shortcoming of such algorithms is that they assume, often

inaccurately, that files are homogeneous throughout. Consequently, each exploits only a
subset of the redundancy found in the file.

Unfortunately, no algorithm is effective in compressing all files.‘ For example, dynamic
Huffman coding works best on data files with a high variance in the frequency of individ-

ual characters (including some graphics and audio data), achieves mediocre performance on

natural language text files, and performs poorly in general on high-redundancy binary data.

On the other hand, run length encoding works well on high-redundancy binary data, but

performs very poorly on text files. Textual substitution works best when multiple-character

strings tend to be repeated, as in English text, but this performance degrades as the average

CCC 0038—0644/95/101097-20 - Received 20 April 1994

©1995 by John Wiley & Sons, Ltd. Revised 5 February 1995

Teradata, Exh. 1026, p. 31

Teradata, Exh. 1026, p. 32

 5

1098 w. H. HSU AND A. E. ZWARICO 3

length of these strings decreases. These relative strengths and weaknesses become criti
when attempting to compress heterogeneous files. Heterogeneous files are those which c

tain multiple types of data such as text, images, binary, audio, or animation. Consequen

their constituent parts may have different degrees of compressibility. Because most co

pression algorithms are either tailored to a few specific classes of data or are designed

handle a single type of data at a time, they are not suited to the compression of heterog
neous files. In attempting to apply a single method to such files, they forfeit the possibili

of greater savings achievable by compressing various segments of the file with differ<"|
methods.

To overcome this inherent weakness found in compression algorithms, we have develops
a heterogeneous compressor that automatically chooses the best compression algorithm

use on a given variable-length block of a file, based on both the qualitative and quantitg
tive properties of that segment. The compressor determines and then applies the select

algorithms to the blocks separately. Assembling compression procedures to create a spec

ically tailored program for each file gives improved performance over using one progra

for all files. This system produces better compression results than four commonly availab

compression packages, PKZIP} Unix compress} Stufllt,‘ and Compact Pro5 for arbitraii
heterogeneous files.

The major contributions of this work are twofold. The first is an improved compressioi
system for heterogeneous files. The second is the development of a method of statist'
cal analysis of the compressibility of a file (its redundancy types). Although the conced
of redundancy types is not new,"7 synthesis of compression techniques using redundanc!
measurements is largely unprecedented. The approach presented in this paper uses a straighfl
forward program synthesis technique: a compression plan, consisting of instructions for eac

block of input data, is generated, guided by the statistical properties of the input data. Be
cause of its use of algorithms specifically suited to the types of redundancy exhibited b

the particular input file, the system achieves consistent average performance throughout tha
file, as shown by experimental evidence. .

As an example of the type of savings our system produces, consider compressing

heterogeneous file (such as a small multimedia data file) consisting of 10K of low redun-
dancy (non—natural language) ASCH data, 10K of English text, and 25K of graphics. Id
this case, a reasonably sophisticated compression program might recognize the increas

savings achievable by employing Huffman compression, to better take advantage of the fac

that the majority of the data is graphical. However, none of the general—purpose compres-

sion methods under consideration are optimal when used alone on this file. This is because

the text part of this file is best compressed by textual substitution methods (e.g., Lempel-{
Ziv) rather than statistical methods, while the low—redundancy data‘ and graphics parts

are best compressed by alphabetic distribution-based methods (e.g., arithmetic or dynamica
Huffman coding) rather than Lempel—Ziv or run-length encoding. This particular file totals
45K in length before compression. A compressor using pure dynamic Huffman coding onlyi

achieves about 7 per cent savings for a compressed file of length 42.2K. One of the best‘
general-purpose Lempel—Ziv compressors currently available” achieves 18 per cent sav-
ings, producing a compressed file of length 37.4K. Our system uses arithmetic coding on‘

the first and last segments and Lempel—Ziv compression on the text segment in the middle, 1
achieving a 22 per cent savings and producing a compressed file oftlength 35.6K. This is
a 4 per cent improvement over the best commercial system. 3

' This denotes, in our system, a file with a low rate of repeated strings.

Teradata, Exh. 1026, p. 32

l

l

l

l

Teradata, Exh. 1026, p. 33

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES I099

The purpose of our experiments was to verify the conjecture that a selective system

for combining methods can improve savings on a significant range of heterogeneous files,

especially multimedia data. This combination differs from current adaptive methods in

that it switches among compression paradigms designed to remove very different types
of redundancy. By contrast, existing adaptive compression programs are sensitive only to

changes in particular types of redundancy, such as run-length, which do not require changing

the underlying algorithm used in compression. Thus they cannot adapt to changes in the

type of redundancy present, such as from high run-length to high character repetition. The

superiority of our approach is demonstrated in our experimental section.

This paper begins with a presentation of existing approaches to data compression, includ-

ing a discussion of hybrid and adaptive compression algorithms and a description of four

popular commercial compression packages. These are followed by documentation on the

design of the heterogeneous compression system, analysis of experimental results obtained

from test runs of the completed system, and comparison of the system’s performance against

that of commercial systems. Finally, implications of the results and possibilities for future

work are presented.

RELATED WORK

It is a fundamental »result of information theory that there is no single algorithm that per-

forms optimally in 'compressing all files.’ However, much work has been done to develop
algorithms and techniques that work nearly optimally on all classes of files. In this sec-

tion we discuss adaptive algorithms, composite algorithms, and four popular commercial

compression packages.

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the development

of adaptive compression algorithms, and the composition of various algorithms. Adaptive

compression algorithms attune themselves gradually to changes in the redundancies within a

file by modifying parameters used by the algorithm, such as the dictionary, during execution.

For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman

coding‘° maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro-
cessed.

An example of an adaptive textual substitution algorithm is Lempel—Ziv compression,
a title which refers to two distinct variants of a basic textual substitution scheme. The

first variant, known as LZ77 or the sliding dictionary or sliding window method, selects

positional references from a constant range of preceding strings." “ These ‘back-pointers’
literally encode position and length of a repeated string. The second variant, known as
LZ78 or the dynamic dictionary method, uses a dictionary structure with a paging heuristic.

When the dictionary — a table of strings-from the file -— is completely filled, the contents

are not discarded. Instead, an auxiliary dictionary is created and updated while compression

continues using the main dictionary. Each time this auxiliary table is filled, its contents are

‘swapped’ into the main dictionary and it is cleared. The maintenance of dictionaries for

textual substitution is analogous to the semi-space method of garbage collection, in which

two pages are used but only one is ‘active’ -— these are exchanged when one fills beyond

a preset threshold. Another adaptive variant of this algorithm is the Lempel—Ziv—Welch

Teradata, Exh. 1026, p. 33

Teradata, Exh. 1026, p. 34

1100 W. H. HSU AND A. E. ZWARICO

(LZW) algorithm, a descendant of LZ78 used in Unix compress.6' ‘2 Both LZW and LZ78
vary the length of strings used in compression.“ ‘2

Yet another adaptive (alphabetic distribution-based) compression scheme, the Move-To-

Front (MTF) method, was developed by Bentley et al.” In MTF, the ‘word code’ for a
symbol is determined by the position of the word in a sequential list. The word list is ordered

so that frequently accessed words are near the front, thus shortening their encodings.

Adaptive compression algorithms are not appropriate to use with heterogeneous files
because they are sensitive only to changes in the particular redundancy type with which

they are associated, such as a change in the alphabetic distribution. They do not exploit
changes across different redundancy types in the files. Therefore a so-called adaptive method

typically cannot directly handle drastic changes in file properties, such as an abrupt transition

from text to graphics. For example, adaptive Huffman compressors specially optimized for

text achieve disproportionately poor performance on certain image files, and vice versa.»As

the use of multimedia files increases, files exhibiting this sort of transition will become

more prevalent.

Our approach differs from adaptive compression because the system chooses each algo-

rithm (as well as the duration of its applicability) before compression begins, rather than

modifying the technique for each file during compression. In addition, while adaptive meth-
ods make modifications to their compression parameters on the basis of single bytes or fixed

length strings of input, our heterogeneous compressor bases its compression upon statistics

gathered from larger blocks of five kilobytes. This allows us to handle much larger changes

in file redundancy types. This makes our system less sensitive to residual statistical fluctu-

ations from different parts of a file. We note that it is possible to use an adaptive algorithm

as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression

algorithms. Composition can either be accomplished by running several algorithms in suc-

cession or by combining the basic algorithms and heuristics to create a new technique. For

example, recent implementations of ‘universal’ compression programs execute the Lempel-—

Ziv algorithm and dynamic Huffman coding in succession, thus improving performance

by combining the string repetition-based compression of Lempe1—Ziv with the frequency-

based compression strategy of dynamic Huffman coding. One commercial implementation

is LHarc.“"‘5 Our system exploits the same savings since it uses the Freeze implementa-
tion of the Lempel—Ziv algorithm, which filters Lempel—Ziv compressed output through a

Huffman coder. An example of a truly composite technique is the compression achieved

by using Shannon—Fano tries* in conjunction with the Fia1a—Greene algorithm (a variant

of Lempel—Ziv)“ in the PKZIP2 commercial package. Tries are used to optimally encode
strings by character frequency.” PKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchmarks.”

Our approach generalizes the ideas of successively executing or combining different

compression algorithms by allowing any combination of basic algorithms within a file. This

includes switching from among algorithms an arbitrary number of times within a file. The

algorithms themselves may be simple or composite and may be adaptive. All are treated as

atomic commands to be applied to portions of a file.

' A trie is a tree of variable degree 2 2 such that (1) each edge is labelled with a character, and the depth of any node
represents one more than the"number of characters required to identify it; (2) all internal nodes are intermediate and represent
prefixes of keys in the trie; (3) keys (strings) may be inserted as leaves using the minimum number of characters which
distinguish them uniquely. Thus a generic trie containing the strings computer and compare would have keys at a depth of-
five which share a common prefix of length four.

Teradata, Exh. 1026, p. 34

uh.->0

..

‘AD

Teradata, Exh. 1026, p. 35

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR I-IETEROGENEOUS FILES 1101

The problem of heterogeneous files was addressed by Toal” in a proposal for a naive
heterogeneous compression system similar to ours. In such a system, files would be seg-

mented into fixed-length encapsulated blocks; the optimal algorithm would be selected for

each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks

would be independently compressed. Our system, however, performs more in-depth statis-

tical analysis in order to make a more informed selection from the database of algorithms.

This entails not only the determination of qualitative data properties but the computation of

metrics for an entire block (as opposed to sporadic or random sampling from parts of each

block). Furthermore, normalization constants for selection parameters (i.e. the redundancy

metrics) are fitted to observed parameters for a test library. Finally, a straightforward but

crucial improvement to the naive encapsulated-block method is the implementation of a

multi—pass scheme. By determining the complete taxonomy (data type and dominant redun-

dancy type) in advance, any number of contiguous blocks which use the same compression

method will be treated as a single segment. Toal observed in preliminary experiments that

the overhead of changing compression schemes from one block to another dominated the

additional savings that resulted from selection of a superior compression method.” This
overhead is attributable to the fact that blocks compressed independently (even if the same

method is used) are essentially separate files and assume the same startup overhead of the

compression algorithm used.* We have determined experimentally that merging contiguous

blocks whenever possible obviates the large majority of changes in compression method.

This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products

One of the goals of this research was to develop a compression system which is gener-

ally superior to commercially available systems. The four systems we studied are PKZIP,

developed for microcomputers running MS-DOS;2 Unix compress? and Stufilt Classic‘
and Compact Pro,5 developed for the Apple Macintosh operating system. Each of these
products performs its compression in a single pass, with only one method selected per file.

Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive version of the Lempel—Ziv algorithm.‘ It operates by
substituting a fixed-length code for common substrings. compress, like other adaptive
textual substitution algorithms, periodically tests its own performance and reinitializes its

string table if the amount of compression has decreased.

Stufilt makes use of two sets of algorithms: it first detects special-type files such as

image files and processes them with algorithms suited for high-resolution color data; for the

remaining files, it queries the operating system for the explicit file type given when the file

was created, and uses this information to choose either the LZW variant of Lempel——Ziv,4’ 6
dynamic Huffman coding, or run—length encoding. This is a much more limited selection

process than what we have implemented. Additionally, no selection of compression methods

is attempted within a file. Compact Pro uses the same methodology as Stufllt and compress,

but incorporates an improved Lempel—Ziv derived directly from LZ77.“ The public-domain
version of Stufilt is derived from Unix compress, as is evident from the similarity of their

performance results.

‘ For purposes of comparison, the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 4K).

Teradata, Exh. 1026, p. 35

Teradata, Exh. 1026, p. 36

1102 w. H. HSU AND A. E. ZWARICO

Compression systems such as Stufllt perform simple selection among alternative com-

pression algorithms. The important problem is that they are underequipped for the task of

fitting a specific technique to each file (even when the uncompressed data is homogeneous).

Stufllt uses few heuristics, since its algorithms are intended to be ‘multipurpose’ . Further-

more, only the file type is considered in selecting the algorithm — that is, no measures of

redundancy are computed. Earlier versions of Stufflt (which were extremely similar to Unix

compress) used composite alphabetic and textual compression, but made no selections on

the basis of data characteristics. The chief improvements of our heterogeneous compressor

over this approach are that it uses a two-dimensional lookup table, indexed by file proper-

ties and quantitative redundancy metrics, and - more important — that it treats the file as a

collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (5K in

the current implementation), each containing a potentially different type of data and thus

best compressed using different algorithms. The actual compression is accomplished in

two phases. In the first phase, the system determines the type and compressibility of each

block. The compressibility of each block of data is determined by the values of three

quantitative metrics representing the alphabetic distribution, the average run length and the

string repetition ratio in the file. If these metrics are all below a certain threshold, then the

block is considered fully compressed (uncompressible) and the program continues on to the

next block. Otherwise, using the block type and largest metric, the appropriate compression

algorithm (and possible heuristic) are chosen from the compression algorithm database. The

compression method for the current block is then recorded in a small array—based map of

the file, and the system continues.

The second phase comprises the actual compression and an optimization that maximizes

the size of a segment of data to be compressed using a particular algorithm. In this optimiza-

tion, which is interleaved with the actual compression, adjacent blocks for which exactly

the same method have been chosen are merged into a single block. This merge technique

maximizes the length of segments requiring a single compression method by greedily scan-

ning ahead until a change of method is detected. Scanning is performed using the array

map of the file generated when compression methods were selected from the database. A

compression history, needed for decompression, is automatically generated as part of this

phase.

The newly compressed segments are written to a buffer by the algorithm, which stores

the output data with the compression history. The system then writes out the compressed

file and exits with a signal to the operating system that compression was successful.

From this two-pass scheme it is straightforward to see why this system is less susceptible

than traditional adaptive systems to biases accrued when the data type changes abruptly

during compression. Adaptive compressors perform all operations myopically, sacrificing

the ability to see ahead in the file or data stream to detect future fluctuations in the type

of data. As a result, adaptive compressors retain the statistical vestiges of the old method

until these are ‘flushed out’ by new data (or balanced out, depending upon the process for

paging and aging internal data structures such as dictionaries). Thus adaptive compressors

may continue to suffer the effects of bias, achieving suboptimal compression. On the other

hand, by abruptly changing compression algorithms, our technique completely discards all

remnants of the ‘previous’ method (i.e. the algorithm used on the preceding segment). This

Teradata, Exh. 1026, p. 36

Teradata, Exh. 1026, p. 37

.;'-rgfi:;;*r...m""‘,""4
1

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1103

allows us to immediately capitalize on changes in data. In addition, merging contiguous

blocks of the same data type acquires the advantage of incurring all the overhead at once

for switching to what will be the best compression method for an entire variable—length

segment. The primary advantage of adaptive compression techniques over our technique is

that the adaptive compression algorithms are ‘online’ (single-pass). This property increases

compression speed and, more important, gives the ability to compress a data stream (for

instance, incoming data packets in a network or modern transmission) in addition to files

in secondary storage or variable—length buffers.

The remainder of this section presents the system. We begin with a description of the

calculation of the block types and the redundancy metrics. We also explain the use of the

metrics as absolute indicators of compressibility, and then describe the compression algo-

rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

“"'
lér

Property analysis

The compressibility of a block of data and the appropriate algorithm to do so are deter-

mined by the type of data contained in a block and the type of redundancy (if any) in the

data. These two properties are represented by four parameters: the block type, and the three

redundancy metrics. The block type describes the data in the block — text, binary, graphical,

etc. The three redundancy metrics are the degree of variation in character frequency, average

run length in the file, and the string repetition ratio of the file. They provide a quantitative

measure of how compressible the block is and which type of redundancy is most evident

in the block. The use of both quantitative redundancy measures (redundancy metrics) and

qualitative characteristics (block types) as indicators for data compressibility is advocated

by Held7 and Salton.” We have refined the process for computing those attributes referred
to as datanalysis results by Held7 and as statistical language characteristics by Salton” to
obtain an actual guide for compression. The remainder of this section describes how these

four parameters are determined for each block.

Block types

The block type describes the nature of a segment of input data. There are ten classifica-

tions of data in this system: ANSI text, non-natural language text (hexadecimal encodings of

binary data), natural language text, computer source code, low redundancy binary, digitized

audio, low resolution graphics, high-resolution graphics, high-redundancy binary executable,

and binary object data. ANSI text is composed of characters from a superset of the ASCII

alphabet. Non-natural language text contains primarily ASCII text but does not follow a

distribution of characters like that of human languages. Examples are computer typesetting

data, uuencoded and BinHex encoded data (which has the same character distribution as
binarya data but is converted to text for ease of transmission). Natural language text in-

cludes text written in English as well as other languages which are representable by the

Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic

alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana

romanizations of the Chinese and Japanese languages (as opposed to their digital encod-

ings). Computer source code uses the ASCII alphabet but characters are distributed with a

different frequency than in natural language text. Low-redundancy binaries usually contain

compressed data, but may also include data which is merely difficult to compress. Audio

Teradata, Exh. 1026, p. 37

Teradata, Exh. 1026, p. 38

1104 W. H. HSU» AND A. E. ZWARICO

data are very high in redundancy; audio files (and audio segments of multimedia files)

are-usually extremely large. Low-resolution graphics have long runs of contiguous repeated
bits but unlike high-resolution graphics are not suited to lossy compression. High-resolution

graphics include color and grayscale and may be compressed with lossy methods. Binary
executables, like low-resolution graphics, have long runs of contiguous repeated bits and

comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a procedure new-file which is our extension of the

Unix file command.” file works by examining the first 512 bytes of a file and comparing
the pattern of data contained in it to a collection of known data patterns from Unix and
other operating systems. new-file works in a similar fashion, with two modifications.

First, it examines and compares not only the first 512 bytes of a data set, but also 512

bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides

a better indication of the primary data type of a file by taking into account the possibility
that the properties may change anywhere within the file. Thus, new-file decides on the

‘most applicable’ data type by a majority vote (or the first data type detected in the case of

a three-way tie). The other change is that the known patterns of data have been increased

by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com-

pressibility of a block of data. They are: the degree of variation in character frequency or

alphabetic distribution, MAD; the average run length of the block, MRL; and the string

repetition ratio of the block, MSR. In general, these three manifestations of redundancy are

independent. Each of the redundancy types is exploited by different compression algorithms.

Frequency of characters is exploited by arithmetic or alphabetic encoding algorithms. In

arithmetic coding data is represented by an interval that is calculated from the probability

distribution of data. With alphabetic coding algorithms such as the Huffman” and Shannon-
Fano” algorithms, more frequently occurring characters are replaced by shorter units than
the less frequently occurring characters. Contiguous strings, long strings of identical units

occurring next to one another, are exploited by run length encoding algorithms.” In these
algorithms, contiguous strings are replaced by a single occurrence of the string, called a

run, plus a count of the number of identical strings following. Both alphabetic distribu-
tion and average run length are sometimes characterized as statistical redundancy metrics.“
Recurrent strings, which occur repeatedly in the input stream with any number of inter-

leaved symbols, are exploited by textual substitution algorithms such as Lempel—Ziv.°*“'”
In these algorithms, recurrent instances are replaced with positional references (pointers) to

the original instance.

Experimental evidence for the efficacy of quantitative redundancy measures is described

in texts by Storer‘ and Shannon.” Shannon provided an estimate of the entropy of English
text, approximately bounding it to be between one and two bits per character." This was
determined experimentally by presenting fragments of (unfamiliar) English text to human

subjects and recording the frequency with which they guessed unknown letters. The frag-

ments were revealed character by character, so that letters at the end of long or uncommon

words were easiest to guess and letters at the beginnings of words were hardest. The ob-

servation that binary executables are known to possess high average run lengths is found

in Storer.‘ However, this property is rarely exploited or measured.

Teradata, Exh. 1026, p. 38

Teradata, Exh. 1026, p. 39

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES ll05

Each redundancy metric is calculated by a separate statistical sampling routine and nor-

malized using a gamma distribution function G’ to be a number between 0 and 10 so as I *

to simplify comparison among the different metrics. The gamma distribution was chosen

because the graph of each of the unscaled redundancy metrics for a test set of 50 files, when

plotted on a histogram, approximated a gamma distribution. Normal and X2 distributions ,
were also considered, but these proved to be too specific for the application (since they lb‘ Q’
are both specific parametric cases of the gamma distribution). The gamma distribution is I
defined as follows (cf Ross”):

G'T(:1:T) = /01‘? fTd:1c '
_)\Te"*"‘()\T:1c)‘*‘1

fr(93) - T

I‘(tT) = [00 e_yyt*‘1 dy0

where f, is the density function, I‘ is the gamma function, ac, is the unnorrnalized measure,

75, is the shape parameter for the gamma distribution, and AT is the scale parameter for

the gamma distribution. The 7' subscript simply represents the redundancy type under con-

sideration, i.e. AD, RL, or SR, respectively. The shape and scaling parameters, t,— and AT

respectively, were determined by fitting the best gamma distribution curve to the data set.
This was done by performing the preferred compression method for each file and tabulating

the induced ratio among normalized metrics to yield the desired parameter values for each

segment. These were then averaged to obtain the empirical scaling parameters.
The alphabetic distribution metric (the degree of variation in character frequency) of a

block is calculated by taking the population (root-mean-square) standard deviation of the

ordinal values of characters in the block and dividing it by the block length (in bytes). The

MAD metric is calculated by the following formulas: Lg

MAD = 10 * GAD(.’1,‘AD)
C!

{MD = block length in bytes

zcEcharset(C _ /1')?‘
256 ’

where c is the ordinal value of a character and [1, is the average ordinal value of all characters

in a block. The normalization uses tAD = 1.70 and AAD = 53.0 as parameters.

The average run length metric is obtained by dividing the number of bits in a block

by the number of runs. A run is defined to be a repetition of symbols (either bits or

bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if

f = 0001 1 1 1001 1 10000 is a file of 16 bits, then the number of bit runs is 5, and the number

of byte runs is 2. The scaled metric MRL is obtained by:

MRL = 10 * GRL($RL)

file length in bits55111. =
number of runs

Teradata, Exh. 1026, p. 39

Teradata, Exh. 1026, p. 40

1106 w. H. HSU AND A. E. ZWARICO

with gamma distribution parameters tm, = 0.50 and Am, = 12.0.

The string repetition ratio metric is the total number of 72-bit strings in the block divided

by the number of distinct n-bit strings (up to 100K). In our implementation, n is 32, the

word size of our machine. The normalized metric M31; is obtained by:

MSR = 10 * G5R(:lI5R)

number of n bit strings

number of distinct n bit strings
1l7sR

with gamma distribution parameters tsR = 0.18 and ASR = 0.2.

The alphabetic distribution and average run length metrics can be calculated in linear

time. The string repetition ratio can be computed in O(n log n) time using a dictionary data
structure. For simplicity, and because a (small) constant amount of data is scanned, we use

an O(n2) version. New strings are stored in an array rather than a binary tree, which would
require more insertion overhead (and is not worth while for the 5K block length used in

the current system). Our routine integrates f., (a:) by Simpson’s Rule with n = 10 intervals.
The largest of the three metrics is assumed to represent the most significant type of

redundancy present in the block. It is expected that compression will decrease at least

one of the metrics, and experiments conducted on a wide variety of files have proven this
convention to be reliable. Experiments have also shown that if all the normalized metrics are

smaller than 2.5, the file is considered not compressible, and the system records a verdict of

‘uncompressible’ on the current block. If at least one of the parameters is greater than 2.5,

the file is considered compressible. The maximum of the normalized metrics is then selected

and used in conjunction with the file type to select the appropriate compression‘ algorithm
from the lookup table described in the following section. A negative compressibility test

does not always imply that all three metrics are below the threshold. In some cases, the

only redundancy type for which a metric is above the threshold accesses a null entry in the

database of compression algorithms. This is interpreted as a decision that the (poor) potential

for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

The compression algorithms and attendant heuristics are organized into the 10 by 3 table

illustrated by Table I. The 10 file descriptors are the row indices and the 3 metrics are the

column indices. Each entry of the table contains descriptors which are used to access the

code for an algorithm-heuristic pair. It should be noted that four of the entries are blank

(indicated by an *). A blank entry indicates that the combination of block type and highest

metric are very unusual. In this case, the next highest metric is used instead, provided that

it is above the threshold. As an example of using this table, consider a high-redundancy

binary executable file whose highest metric is the string repetition metric MSR. Together,

this pair indicates that the Lempel-—Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

There are four basic algorithms used by the system: arithmetic coding,“ Lempel-—Ziv,3
run length encoding (RLE),23 and JPEG for image/graphics compression.”

Arithmetic coding algorithms compress data by representing that data by an interval of

Teradata, Exh. 1026, p. 40

Teradata, Exh. 1026, p. 41

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1107

Table 1. Database of compression algorithmsl

MAD MRL MSR

ANSI arithmetic coding run-length encoding Lempe1—Ziv
* byte-wise encoding freeze

hexadecimal arithmetic coding run-length encoding Lempe1—Ziv
* n—bit run count freeze

natural language arithmetic coding * Lempe1—Ziv
* * freeze

source code arithmetic coding run-length encoding Lempe1—Ziv
* n-bit run count freeze

low redundancy * run-length encoding Lempe1—Ziv
binary * n-bit run count *
audio * run-length encoding Lempe1—Ziv

* byte—wise encoding freeze

low resolution * run-length encoding Lempe1—Ziv
graphic * n-bit run count freeze
high resolution JPEG run-length encoding JPEG

color graphic improved Huffman n-bit run count improved Huffman
high redundancy arithmetic coding run-length encoding Lempe1—Ziv
binary * n-bit run count freeze
object arithmetic coding run-length encoding Lempe1—Ziv

* byte-wise encoding freeze

1' Note: the first line of each entry is the basic algorithm and the second line is the heuristic. An "‘ as the heuristic indicates
that no heuristic is used. Two " indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional

to the number of symbols encoded, and the decrease in width is directly proportional to

the frequency of the original symbols. Thus the interval specifies the encoded message via

its bounds, with the precision (distance) of these bounds reflecting the information content

of the message. The end result is that arithmetic coding achieves, in practice, much better

space savings than Huffman coding and its dynamic implementations because of its higher

likelihood of actually achieving the theoretical lower bound.“ 23 Although early arithmetic
coding'a1gorithms performed too slowly to be of practical use,” the implementation of the
Witten—Neal—Cleary algorithm used here“ is optimized for speed — at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is

referred to Bell et af“ for a thorough overview of arithmetic coding. We should note that
in earlier implementation of the heterogeneous compressor we used a dynamic Huffman

algorithm instead of arithmetic coding. We changed our implementation when we found

that then Witten—-Neal—Cleary algorithm“ outperformed our implementation of dynamic
Huffman coding‘°' 3° in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur-

rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these
runs, usually a single occurrence of the symbol and the number of occurrences. We have

implemented a straightforward RLE algorithm for our database, based on the description in

Sedgewick.” In addition, bitwise and bytewise encoding are available as heuristics and the
parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempe1—Ziv com-

pression algorithm. It compresses data by replacing frequently occurring strings (with min-

Teradata, Exh. 1026, p. 41

Teradata, Exh. 1026, p. 42

1108 W. H. HSU AND A. E. ZWARICO

imal regard of how far apart they occur) with compact pointers to the position of the first

occurrence. Our implementation is a straightforward array-based encoding with constant-

length codes. The algorithm maintains a dictionary of recurring strings in order to do the

compression. In our system, the Lempel—Ziv algorithm is augmented with the Freeze heuris-

tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that

is, it prevents the replacement of previously encountered strings, regardless of how long

ago or how infrequently the string has been encountered. Freeze is primarily a speed op-

timization, since it requires less computation than paging heuristics such as least recently

used (LRU) or least frequently used (LFU), but it has been shown to work well for all but

the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman compression.

The compression of high-resolution graphics and audio files uses a lossy compression

scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi-

lar enough to the original as to be nearly indistinguishable by human perception, and that

repeated compression and decompression leads to limited cumulative ‘damage’ . The pri-

mary benefit of lossy compression is that it guarantees much higher compression ratios at

a minimal tradeoff. For instance, a very-high-resolution color image can be compressed

with much higher savings (possibly 95 per cent) if the user allows a small amount of noise,

always less than 1 per cent per compression, to be introduced during each compression. Our

system uses the JPEG system” for compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and lossless parts, typically achieves compression ratios

of between 15-to-1 and 25-to-1. The potential for this substantial savings is obtained by

the Discrete Cosine Transform portion of the algorithm, a lossy method. This determines a

limit on the amount of savings that can then be achieved by any lossless compressor. The

actual savings are realized by a lossless portion, known as the back end which is applied

to the preprocessed image data. The implementation of this module used in our system”
is a Huffman coder. It is independent of the lossy front end and can be replaced with a

run-length or textual-substitution based algorithm, to be selected by the synthesis system.

In our implementation, we chose to retain the original Huffman back end, a different algo-

rithm from the general-purpose dynamic Huffman coder which we also studied.“’* 3° This
is because the JPEG Huffman coder is especially suited to the redundancy remaining after

lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the

use of arithmetic coding back ends, which were found to be experimentally superior but

were not used because of proprietary considerations.”

Implementation

The system consists of a driver module, four block analysis modules, and the synthesis

module, which includes the database of compression algorithms. All modules are written in

C and were tested on a Unix platform. The program uses a data directed style of implemen-

tation for choosing the compression algorithm to apply to a block. Thus, additional block

types, compression algorithms and heuristics, and redundancy metrics can be added to the

system with minimal modification of the source code. Only the database would have to be

updated and the block analysis routines extended; the rest of the program would remain the
same.

The driver performs two iterative passes through the file. It first performs block analysis

on the file one 5K block at a time. This block size was chosen after experimentation showed

that the response of the system to changes in block type became roughly stable as block

Teradata, Exh. 1026, p. 42

Teradata, Exh. 1026, p. 43

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1109

size exceeded SK (i.e., did not significantly increase as block size did), and that a block size

of SK yielded highly accurate metrics (in only 1 of the 20 test files did the heterogeneous

compressor select a suboptimal algorithm for any block). Finally, we found that the highest

level of adaptivity without a noticeable decrease in accuracy was achieved at SK, hence
our choice of SK as the block size.

For each block, the system invokes the four analysis modules — three for metric compu-

tation and normalization and one to determine the file properties — and stores their output.

It then performs the metric comparison and combines the.results with the file property to

complete the table lookup for the current block. An identifying tag for the selected algo-

rithm is written to the ‘compression plan’ , an array which stores one complete compression

instruction per block (if the current block is deemed uncompressible, a ‘skip’ instruction is
recorded).

We pause here to discuss the normalization of the metrics. Originally, we used a naive

normalization method: direct algebraic scaling with experimentally determined constants

for each metric. This did not, however, accurately reflect the statistical relationship between

variance in character frequency and alphabetic redundancy. Also, the behavior of these func-

tions at asymptotes led to poor approximation of the overall distribution of data segments

in the test files. The result was that arithmetic coding was too often incorrectly chosen, re-

sulting in inferior compression; and selection approached randomness as metric values for

both string repetition and alphabetic distribution tended toward extreme values. Using the

gamma normalization method described above resulted in an improvement in the selection

of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the

compression method in exactly those cases where the other methods performed worse.

The second pass performs the compression of each block. In order to improve perfor-

mance, this pass includes a simple optimization step which circumvents the overhead of

restarting compression after each fixed length block by merging contiguous blocks that are

to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged blocks

using the algorithm recorded in the compression plan. The compressed data is written to an

output buffer, while the compressed length (which indicates where in the compressed file

a compressed block begins and ends) and compression method are recorded in a separate

history_for reference at decompression time. If negative compression or no compression is

achieved, or if the block was already marked uncompressible, then the data is copied directly

to the output buffer (the full block length and a code for ‘no compression’ are recorded in

the compression history). Upon reaching the end of the blocks, the system writes out the

compressed data from the output buffers and prepends the encoded compression history to

produce the final output file.

When decompression is invoked, the driver module opens the compressed file, interprets

the history tag and performs the necessary operations. The tags are a stored version of the

compression history in compact, encoded form. Since the heterogeneous system generates

different compression sequences for each file, and since the length of a compressed block

varies with both the length of the original block and the compression method used, these tags

are necessary to guide the decompression process. Currently only the compressed lengths

of each block and the method of compression are stored, but a checksum for the original -,. ~

(decompressed) block length can be~added with negligible overhead. When executed in ‘_ ,

reverse order on each compressed block, the instructions in the history tags result in the ‘ E
original file. For simplicity and security, they are prepended to the compressed file (and ‘
can easily be encrypted).

Teradata, Exh. 1026, p. 43 1‘,

Teradata, Exh. 1026, p. 44

1110 W. H. HSU AND A. E. ZWARICO

EXPERIMENTAL RESULTS

Design and construction of the test files

To test the overall performance, the system was run on a set of 20 test files. These files

range in length from approximately 39K to 366K, with representative files from each of the

ten block types included in the test corpus.

The test files are designed to model certain types of heterogeneous files, including utilities

for image viewing, business, or audio processing, and hypothetical multimedia databases and

programs. To construct these files, a collection of 30 files from the Unix, Apple Macintosh,

and MS-DOS (IBM PC) operating systems was created. These files are listed in Table II.

To create the test corpus, they were concatenated in groups of 2 or 3. The resultant series

of test files is listed in Table III. All of the source files were used. The goal was to generate

as broad a range of permutations as possible (while restricting the generated files to those

which are likely to exist in a typical user environment). This was perfonned manually with

consideration toward combinatorial constraints and the criteria of realistic data modeling.

Since all of the files in the source collection originate from common commercial sources

or from public archives (with the exception of the source and object files, which are from

the code for the heterogeneous compressor itself), the latter constraint was considerably

simplified.

The assembled files were then ported to the test sites (a Sun workstation for Unix

compress and our heterogeneous compressor; a Macintosh for Stufilt and Compact Pro;

and an IBM 80486 machine for PKZIP). Binary file transfer mode was used to ensure that

the file lengths agreed exactly among all platforms. .

Performance

In this section, we review and analyze the performance of the heterogeneous compressor

with respect to compression savings, as compared with four of the commercial systems

previously discussed; and execution time. Finally, we briefly note the implications of running

the experiments and compiling performance data on several different architectures.

Compression savings

The total length of the uncompressed benchmark suite is just under three megabytes. Table

IV shows the compressed length achieved by Unix compress, PKZIP, Stufilt, Compact

Pro and the heterogeneous compression system. The heterogeneous compressor achieved

the greatest compression, with a total compressed length of 1828K. This represents an

additional savings of 162K (more than eight per cent) over the best commercial system

(Compact Pro v1.32), and 339K (nearly 16 per cent) over the average. Compressed lengths

for the commercial methods ranged from 1990K to 2375K.

Table V compares the percentage savings obtained by our system to the savings obtained

by the commercial programs and the heterogeneous system. The last two columns show the

difference in per cent saved between the synthesis system and the best and average of the

four commercial packages. The best commercial compressor is marked for each of the files.

Note that the heterogeneous compressor does better than all commercial programs in 19 of

20 cases and better than three of the four commercial systems in this one case (file 15).

The difference in compression for this file is only 0.02 per cent, whereas for all the other

files, the heterogeneous compressor has at least a 1.3 per cent improvement over the best

Teradata, Exh. 1026, p. 44

Teradata, Exh. 1026, p. 45

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1111

Table 11. Files used to compose the test suite and their respective origins

File File File

designation name type
audiol cosby.snd SoundMaster Macintosh audio file

lowrdl ticker.txt ASCII characters from stock ticker

lowrd2 exsound compressed World Builder sound library
lowrd3 huff compressed Unix executable
lowrd4 appnote.uue uuencoded text

textl phrack.txt English text
text3 techbook.txt Unix news article

text4 quanta1.txt English text
text5 attilla.fluff English text
text6 shadow.fluff English text
text7 quanta2.txt English text

execul ad Unix executable
execu2 sh Unix executable

execu3 blob Silicon Graphics executable
execu4 zero Silicon Graphics executable
execu5 network2.exe IBM PC executable
execu6 hostname Unix executable

graphl compmisc.drw Lotus Freelance line drawing
graph2 compperi.drw Lotus Freelance line drawing
graph3 computer.drw Lotus Freelance line drawing
graph4 lowres.mpt MacPaint file
graph5 3dbar.drw Lotus Freelance 3-D bar chart

graph6 image.ppm PPM (high-resolution image) file
graph7 grp4 MacPaint file

objecl test1.o Unix object file
objec2 test2.o Unix object file
objec3 test3.o Unix object file

sourcel table.c C source code

source2 freeze.c C source code

commercial compressor. The average of each column appears in the bottom row; note that

the ‘percent difference’ averages are not weighted by file length, as each file is considered

a separate experiment.

Because the quality of compression by the synthesis system depends on that of the algo-

rithms and heuristics used, improvement of the implementations that we use should yield

higher performance. This is evidenced by comparing the results of compressing a file dom-

inated by string repetitions by Unix compress and Compact Pro. Both are implementations

of the Lempel—Ziv algorithm. Unix compress has no heuristics, whereas Compact Pro is

a better implementation of LZ77.5' “ Compact Pro consistently outperforms compress. It
should be noted that the performance of the Freeze variant of Lempel—Ziv” used in our sys-

Teradata, Exh. 1026, p. 45

Teradata, Exh. 1026, p. 46

1 1 12 W. H. HSU AND A. E. ZWARICO

Table III. Combinations of the test files and the resultant simulated data types

File File Classification of

number composition data modeled

1 textl — lowrdl news or stock report

2 graph7 — objecl object file for a graphics viewer

3 lowrdl — text3 —— graph4 multimedia application (text/graphics)
4 graph7 —— execu3 graphics viewer

5 audiol —— graphl multimedia data file (soundlgraphics)
6 text2 — lowrdl —— graph3 multimedia data file (text/graphics)
7 lowrd3 —— execul commercial utility
8 graph2 —— lowrd2 —— execu2 multimedia application

(graphics/sound/executable)
9 source] —— lowrd3 — graph6 multimedia data or source file

(source/compressed binary/image)
10 audiol — text4 multimedia data file (sound/text)

ll lowrdl —— execu4 statistical application with data
12 graph7 — text5 multimedia data file (text/graphics)
l3 lowrd2 —— text6 multimedia data file (sound/text)
l4 text3 —- audiol —— graph5 multimedia data file (text/sound/graphics)

I5 lowrdl —— text4 —- source2 source file for multimedia program
(text/source code)

16 text7 —- lowrd2 -—— graph3 multimedia data file
(text/compressed audio/graphics)

17 graph4 — audiol -— execu5 multimedia application (sound/graphics)
18 execu4 -— graph7 — text4 multimedia application (graphics/text)
19 objec3 —— lowrd3 —— execu6 commercial utility
20 objec2 —— audiol -—— execu2 audio application

term does consistently better than compress and is comparable to Compact Pro on standard

industrial benchmarks? Improving algorithms and adding or substituting new heuristics
would also yield more savings.

Execution times and speed optimizations

In this section we compare, in approximate units, the running time of the heterogeneous

compressor against those of the four commercial systems the savings rates of which for our

test files are documented above. The units are approximate for two reasons. First, because

the four test systems are commercial the source code for three of them is not publicly

available‘, which renders an exact measure of user time infeasible. This concern is in part

assuaged by the non—multitasked, single-user nature of the microcomputer operating systems

on which three (compress for Linux notwithstanding) of the commercial systems reside.

Second, however, the drastic architectural and organizational differences among the various

native machines renders uniform comparisons unreliable. This applies even to normalized
execution times because the host machines differ not merely in clock cycle speed, but

in instruction set architecture and dynamic instruction frequencies for similar compression

algorithms. The exact running times reported in this section is only that of the heterogeneous

‘ As noted, however, the Lempel—Ziv implementation employed by Stufi‘7t Classic is nearly identical to that of Unix compress.

Teradata, Exh. 1026, p. 46

Teradata, Exh. 1026, p. 47

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR I-IETEROGENEOUS FILES lll3

compressor. These comprise the non-commercial* compression systems for which source

code is available for profiling. For the commercial systems we report the observed wall

clock time to provide a standard of comparison, but note that the host machines vary in

computational power. ‘

Table IV. Results of the four popular commercial programs and the heterogeneous compression system,
applied to the 20 test files

File Original Unix PKZIP Stufllt Compact Heterogeneous
number length compress v1.10 Classic Pro v1.32 compressor
1 39,348 20,578 17,119 20,575 16,831 16,315
2 44,202 44,202 39,813 40,412 41,112 37,388

3 46,629 46,629 46,629 43,261 40,367 36,477
4 59,254 52,076 40,571 45,202 41,607 38,007
5 169,108 168,903 151,478 149,701 148,917 134,524

6 100,476 69,771 53,043 65,417 52,349 50,906

7 131,663 131,663 103,544 106,643 109,979 96,429 ,
8 220,644 190,971 137,886 173,677 137,401 127,384 “= 7

9 301,805 145,993 112,503 137,685 115,096 103,730 3

10 255,306 204,457 191,378 206,193 183,313 168,675 3, [.-
11 59,305 30,178 22,782 29,701 22,858 21,774 _,,
12 51,715 51,715 43,032 46,462 44,107 40,229 "1
13 63,189 63,189 58,247 59,569 59,934 54,481
14 196,789 176,276 196,789 172,486 151,057 137,052

15 148,908 73,555 63,748 75,595 64,618 63,778
16 164,535 141,067 132,992 135,245 110,093 104,175
17 203,912 203,912 184,657 189,398 202,821 170,564

18 200,640 128,675 107,728 125,461 104,711 101,674
19 366,557 265,114 198,727 265,027 198,756 187,659
20 278,152 223,277 193,980 224,943 191,763 181,030

Total 3,102,137 2,432,201 2,096,646 2,312,653 2,037,690 1,872,251

The running times for the commercial systems on the entire test suite documented above

appear in Table VI. All of the execution times are measured in wall’ clock units except for

the heterogeneous compressor’s, which is a total of user times as reported by prof, the C

profiler under Unix. The wall clock time was empirically observed not to differ noticeably
from this total on an unloaded Unix machine. The commercial systems were similarly tested

on unloaded (or single-task) systems.

For Unix compress, the mean running time was 26 s, where the average was taken

overruns on different Sun workstations of comparable power (documented below). A Unix

implementation of PKZIP was also tested on one of these Sun workstations, and achieved

an execution time of 56 s — only slightly better than the personal computer version. The

running time of 856 s placed the heterogeneous compressor in the middle to high end of

the commercial compressors in terms of running time.

‘ For this purpose we continue to consider Unix compress commercial, due to its wide range of versions.

Teradata, Exh. 1026, p. 47 31;:

Teradata, Exh. 1026, p. 48

1114 W. H. HSU AND A. E. ZWARICO

Table V. Percent savings for the test compression systems‘

File Unix PKZIP Stufllt Compact Heterogeneous Best Average
number compress v1.10 Classic Pro v1.32 compressor win win

(% saved) (% saved) (% saved) (% saved) (% saved) (% diff.) (% diff.)
1 47-70 56-49 47-71 57-23* 58-54 1-31 6-25
2 0-00 9-93* 8-57 6-99 15-42 5-49 9-04
3 0-00 0-00 7-22 13-43* 21-77 8-34 16-61
4 12-11 31-53* 23-71 29-78 35-86 4-33 11-57
5 0-12 10-43 11-48 11-94* 20-45 8-51 11-96
6 30-56 47-21 34-89 47-90* 49-34 1-44 9-20
7 0-00 21-36* 19-00 16-47 26-76 5-40 12-55
8 13-45 37-51 21-29 37-73* 42-27 4-54 14-77

9 51-63 62-72* 54-38 61-86 65-63 2-91 7-98
10 19-92 25-04 19-24 28-20* 33-93 5-73 10-83
11 49-11 61-59* 49-92 61-46 63-28 1-70 7-77
12 0-00 16-79* 10-16 14-71 22-21 5-42 11-80
13 0-00 7-82* 5-73 5-15 13-78 5-96 9-11
14 10-42 0-00 12-35 23-24* 30-36 7-12 18-85
15 50-60 57-19* 49-23 56-61 57-17 -0-02 3-76
16 14-26 19-17 17-80 33-09* 36-69 3-60 15-60

17 0-00 9-44* 7-12 0-54 16-35 6-91 12-08
18 35-87 46-31 37-47 47-81* 49-33 1-51 7-46

19 27-67 45-79* 27-70 45-78 48-80 3-02 12-07
20 19-73 30-26 19-13 31-06* 34-92 3-86 9-87

Average 19-16 29-83 24-21 31-55* 37-14 4-35 10-96

" The starred entry in each row is the best commercial system.

CONCLUSIONS

Analysis of results

This project was successful on several levels. First, the feasibility of synthesizing com-

pression plans from encapsulated primitives for heterogeneous files was illustrated. The use

of property analysis and redundancy metrics was experimentally successful, the latter veri-

fying the applicability of statistical data analysis to automatic programming in this domain.

The positive test results obtained with the primitive database currently available would

probably be even better with improved implementations of the algorithms and heuristics.

The statistical foundations of the heterogeneous system proved strong enough to be of def-

inite relevance to the operating systems community, and might be useful in an information

theoretic context. The benefits of data compression are ubiquitous in that savings through

compression are independent of hardware and storage capabilities; selective techniques in-

crease these savings by a significant factor for heterogeneous files.

Future work

The sampling method may be improved in future implementations by randomization.

The increase in analysis accuracy that this would bring would demand more primitives and

heuristics — such need would arise in any case with the continuing development of new

files types, such as high-resolution animation and three—dimensional images.

Teradata, Exh. 1026, p. 48

Teradata, Exh. 1026, p. 49

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1115

Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time Execution time
(s) (min)

Unix compress N 26 0:26
PKZIP v1.10 67 1:07
Stufflt Classic 1152 19:12

Compact Pro V1.32 1594 26:34

Heterogeneous compressor 856 14:56

In the current system, lossy compression methods can be applied only if an entire file

is found to be of a lossily compressible data type. Typically, these include high-resolution

images (for JPEG) and speech, general high-definition audio, and high-resolution animation

files. A special case could be implemented specifying that when an entire file matching a

single lossily compressible data type (i.e. a homogeneous loss-permissible file) is found,

the lossy algorithm may be applied.

The difficulty is that without explicit information on where loss-perrnissible portions of

a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely

guarantee that no data will be distorted which the user is not willing to have distorted.

Thus no lossy methods can be safely applied to any segment in the block-based system.

Thus a heterogeneous system would require either full interactive guidance from a user

who could inspect the file or knew its contents, or would require improved magic numbers

which encoded the lengths of loss-permissible segments. The heterogeneous system could

then scan for these codes during the property analysis phase and preempt or modify metric-

based selection if a lossy algorithm is warranted. The latter approach seems far superior

to interactive compression, which places an intolerable burden of responsibility on users

(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized

(especially lossy) compression algorithms such as JPEG and MPEG. For example, by des-

ignating RLE compression ‘O per cent alphabetic distribution, 100 per cent run length, 0

per cent string repetition’ and by defining its single-type counterparts similarly, a standard

can be established. Unix compress, for instance, might rate ‘40 per cent AD, 0 per cent

RL, 60 per cent SR’ and a hypothetical algorithm X might rate ‘25 per cent AD, 50 per cent

RL, 25 per cent SR’ . The rating standard would correspond to the metric rating system for

files which our system uses, and would help in analysis of the performance of composite

compression techniques (which handle multiple redundancy types). Non-synthesized com-

posite techniques exist, both adaptive and non-adaptive, though results are not as promising

as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table

that the database of primitives used in this heterogeneous system may not be as well-stocked

as it optimally could be. Storer‘ lists a plethora of optional heuristics which are applicable
to Lempel—Ziv compression, specifically in augmenting and deleting from the dictionary.

ACKNOWLEDGEMENTS

This paper was produced as part of a research project at Johns Hopkins University. We

are grateful to the faculty and staff of the JHU Computer Science Department, and to the

Brown University CS Department, for their assistance throughout this work.

Teradata, Exh. 1026, p. 49

Teradata, Exh. 1026, p. 50

1116 W. 1-1. HSU AND A. E. ZWARICO

We would like to thank Leonid Broukhis, Graham Toal, and Kenneth Zeger for discus-

sions on some of the research reported here. We also thank Jonathan Eifrig, Bill Goodman,

and Tom Lane for guidance on several technical issues. Finally, we thank the anonymous re-

viewers for their comments and suggestions, especially for introduction to relevant literature

in arithmetic coding.

REFERENCES

James A. Storer, Data Compression: Methods and Theory, Computer Science Press, Rockville, MD, 1988.
Phillip W. Katz, PKZIP. Commercial compression system, version 1.1, 1990.
Sun Microsystems, compress. Commercial compression system, operating system version 5.3, September
1992.

Raymond Lau, Stufflt Classic and StuffIt Deluxe. Commercial compression system, 1990.
Bill Goodman, Compact Pro. Commercial compression system, v1.32, 1991.
Terry A. Welch, ‘A technique for high performance data compression’, IEEE Computer, 17(6), 8-19 (1984).
Gilbert Held and Thomas R. Marshall, Data Compression: Techniques and Applications: Hardware and
Software Considerations, 3rd edn, John Wiley and Sons, 1991.
Leonid Broukhis, Freeze implementation of LZHuf algorithm. comp.sources.n1isc archives, Internet, 1991.
Jean-Loup Gailly, comp.compression benchmark (Calgary test corpus). In comp.compression FAQ list, J.
Gailly, (ed.), 1992.

10. Jeffrey S. Vitter, ‘Dynamic Huffman Coding’, ACM Transactions on Mathematical Software, (June 1989).
11. J. Ziv and A. Lempel, ‘A universal algorithm for sequential data compression’, IEEE Transactions on

Information Theory, 23,(3), 337-343 (1977).

E r 12. J . Ziv and A. Lempel, ‘Compression of individual sequences via variable-rate coding’! IEEE Transactions
. ‘I ‘ , on Information Theory, 24(5), 530-546 (1978).
{ f 13. Jon Louis Bentley, Daniel D. Sleator, Robert E. ’I‘arjan and Victor K. Wei, ‘A locally adaptive data

5 ‘ , compression scheme’, Communications of the ACM, 320-330 (April 1986).

.‘°.°°.\‘.°‘."':P‘P’."’:"

'1 14. Yooichi Tagawa, Haruhiko Okumura and Haruyasu Yoshizaki, LZHuf: encoding/decoding module for
'— 1 3,, LHarc. Compression system, version 0.03 (Beta), 1989.

i I: .1 15. Haruyasu Yoshizaki, LHA: A high-performance file-compression program. Compression system, version- . 2.11, 1991.

I l :1 16. Edward R. Fiala and Daniel H. Greene, ‘Data compression with finite windows’, Communications of the, l ACM, 490-505 (1939).
“ 17. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in Pascal, Computer Science Press,

| 1, Rockville, Maryland, second edition, 1987.
‘ 18. Graham Toal. Personal communication. Unpublished, 1992.l I H 19. Gerard Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Infonnation by

11 .1 Computer, Addison-Wesley, Reading, MA, 1989.
t 20. Ian F. Darwin, file (program). Berkeley Unix operating system, 1987.

21. David A. Huffman, ‘A method for the construction of minimum-redundancy codes’, Proceedings of the
IRE, number 40, 1952, pp. 1098-1101.

, ("V 22. Claude E. Shannon and Warren Weaver, The Mathematical Theory of Communications, University of

, 1 : Illinois Press, Urbana and Chicago, 1963.
I I 23. Robert Sedgewick, Algorithms, 2nd edn, Addison-Wesley, Reading, MA, 1988.L

1: ti 24. Timothy C. Bell, John G. Cleary and Ian H. Witten, Text Compression, Prentice Hall, Englewood Cliffs,
I 1.1 New Jersey, 1990.

= " 25. Sheldon Ross, A First Course in Probability, Macmillan Publishing Company, New York, third edition,
1 " 1988.

26. Ian H. Witten, Radford Neal and John G. Cleary, ‘Arithmetic coding for data compression’, Communica-
fll tions of the ACM, 30(6), 520-540 (1987).

, 27. Independent JPEG Group. ‘JPEG image compression system’, think.com FTP archives, Internet, 1994.

28. Jean-Loup Gailly. comp.compression/comp.compression.research FAQ list. J. Gailly (ed.), URL
ll http -. //uww . cis . ohio-—sta.te . edu/hypertext/faq/usenet/compression-faq/top .ht.ml, 1994.
W 29. James A. Storer, Image and Text Compression, Kluwer Academic Publishers, Norwell, MA, 1992.

30. Graham Toal. C implementation of dynamic Huffman compressor by J. S. Vitter. comp.source.misc~ archives, Internet, 1990.

‘W Teradata, Exh. 1026, p. 50

Attachment 1d

Teradata, Exh. 1026, p. 51

Attachment 1d

Teradata, Exh. 1026, p. 52

Wiley Online Library

' are
It-rnn"t [Ly nivarsit-lea

1L|3LLI35l1.l3J\DV

Practice andixperience
flrplore f!1ISDU'!l'.|l >-

Article

Automatic synthesis of compression techniques for

heterogeneous files
William H. Hsu. Amy E. Zwarico View issue TDC

Volume 25, Issue 10
October 1995

Pages 1097-! 116

First published: October 1995 Fullpuolication history

DUI: iCl.l0U2r'SpE.438U25IU03 \I'iew.-isave Cit'al'lGt"

Cited by: 1 article Q Cildtiontools

Ear.) -.

Abstract

We present a compression technique for heterogeneous files, those files which contain multiple types
of data such as text, images, binary, audio, or animation. The system uses statistical methods to
determine the best algorithm to use in compressing each block of data in a file [possibly a different
algorithm for each block). The file is then compressed by applying the appropriate algorithm to each
block. We obtain better savings than possible by using a single algorithm for compressing the file. The
implementation of a working version of this heterogeneous compressor is described, along with
examples of its value toward improving compression both in theoretical and applied contexts. We
compare our results with those obtained using four commercially available compression programs.
PKZIP, Unix compress, Stufflt, and Compact Pro, and show that our system provides better space
savings.

» Continue reading full article

3 Related content

Articles related to the one you are viewing
The articles below have been selected for you based on the article you are currently viewing

Compression techniques for Chinese text
Phil Vines, Justin Zobel
October 1998

Lempel-Ziv compression of highly structured documents
Joaquin Adiego, Gonzalo Navarro, Pablo de la Fuente
25 January 2007'

Word-based text compression
Alistair Moffat

February 1989

Llgrepz a Boyer—Moore string matching tool for Ziv—l.empe| compressed text
Gonzalo Navarro, Jorma Tarhio
6 May 2005

Design and implementation of a file system with on-the~f|y data compression for GNUi'l.inux
Praveen E,_ Deepak Gupta, Rajat Moona

‘ Log in if Register

A-€Text size Snare

Adveruseme nt

Wiley

Editing
Services

Translation
Services

Manuscript
Formatting

Manuscript
Formatting

Manuscript
Formatting

Manuscript
Formatting

Manuscript
Formatting

Teradata, Exh. 1026, p. 52

Teradata, Exh. 1026, p. 53

Attachment 1e

Teradata, Exh. 1026, p. 54

Attachment 1e

SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 25(10), 1097-1 116 (OCTOBER 1995)

Automatic Synthesis of Compression Techniques for
Heterogeneous Files

WILLIAM H. HSU
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

(email: bhsu@cs.uiuc.edu, voice: (217) 244-1620)

AND

AMY E. ZWARICO
Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, U.S.A.

(email: amy@cs.jhu.edu, voice: (410) 516-5304)

SUMMARY

We present a compression technique for heterogeneous files, those files which contain multiple types of
data such as text, images, binary, audio, or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained using four commercially available compression programs, PKZIP, Unix compress, Stuflt,
and Compact Pro, and show that our system provides better space savings.

KEY WORDS: adaptivekelective data compression algorithms; redundancy metrics; heterogeneous files; program synthesis

INTRODUCTION

The primary motivation in studying compression is the savings in space that it provides.
Many compression algorithms have been implemented, and with the advent of new hard-
ware standards, more techniques are under development. Historically, research in data com-
pression has been devoted to the development of algorithms that exploit various types of
redundancy found in a file. The shortcoming of such algorithms is that they assume, often
inaccurately, that files are homogeneous throughout. Consequently, each exploits only a
subset of the redundancy found in the file.

Unfortunately, no algorithm is effective in compressing all files.' For example, dynamic
Huffman coding works best on data files with a high variance in the frequency of individ-
ual characters (including some graphics and audio data), achieves mediocre performance on
natural language text files, and performs poorly in general on high-redundancy binary data.
On the other hand, run length encoding works well on high-redundancy binary data, but
performs very poorly on text files. Textual substitution works best when multiple-character
strings tend to be repeated, as in English text, but this performance degrades as the average

CCC 0038-0644/95/101097-20
01995 by John Wiley & Sons, Ltd.

Received 20 April I994

Teradata, Exh. 1026, p. 55

1098 W. H. HSU AND A. E. ZWARICO

length of these strings decreases. These relative strengths and weaknesses become critical
when attempting to compress heterogeneous files. Heterogeneous files are those which con-
tain multiple types of data such as text, images, binary, audio, or animation. Consequently,
their constituent parts may have different degrees of compressibility. Because most com-
pression algorithms are either tailored to a few specific classes of data or are designed to
handle a single type of data at a time, they are not suited to the compression of heteroge-
neous files. In attempting to apply a single method to such files, they forfeit the possibility
of greater savings achievable by compressing various segments of the file with different
methods.

To overcome this inherent weakness found in compression algorithms, we have developed
a heterogeneous compressor that automatically chooses the best compression algorithm to
use on a given variable-length block of a file, based on both the qualitative and quantita-
tive properties of that segment. The compressor determines and then applies the selected
algorithms to the blocks separately. Assembling compression procedures to create a specif-
ically tailored program for each file gives improved performance over using one program
for all files. This system produces better compression results than four commonly available
compression packages, PKZIP,2 Unix cornpres~,~ Stuflt," and Compact Pro5 for arbitrary
heterogeneous files.

The major contributions of this work are twofold. The first is an improved compression
system for heterogeneous files. The second is the development of a method of statisti-
cal analysis of the compressibility of a file (its redundancy types). Although the concept
of redundancy types is not n e ~ , ~ , ~ synthesis of compression techniques using redundancy
measurements is largely unprecedented. The approach presented in this paper uses a straight-
forward program synthesis technique: a compression plan, consisting of instructions for each
block of input data, is generated, guided by the statistical properties of the input data. Be-
cause of its use of algorithms specifically suited to the types of redundancy exhibited by
the particular input file, the system achieves consistent average performance throughout the
file, as shown by experimental evidence.

As an example of the type of savings our system produces, consider compressing a
heterogeneous file (such as a small multimedia data file) consisting of 10K of low redun-
dancy (non-natural language) ASCII data, 10K of English text, and 25K of graphics. In
this case, a reasonably sophisticated compression program might recognize the increased
savings achievable by employing Huffman compression, to better take advantage of the fact
that the majority of the data is graphical. However, none of the general-purpose compres-
sion methods under consideration are optimal when used alone on this file. This is because
the text part of this file is best compressed by textual substitution methods (e.g., Lempel-
Ziv) rather than statistical methods, while the low-redundancy data* and graphics parts
are best compressed by alphabetic distribution-based methods (e.g., arithmetic or dynamic
Huffman coding) rather than Lempel-Ziv or run-length encoding. This particular file totals
45K in length before compression. A compressor using pure dynamic Huffman coding only
achieves about 7 per cent savings for a compressed file of length 42.2K. One of the best
general-purpose Lempel-Ziv compressors currently available8v9 achieves I8 per cent sav-
ings, producing a compressed file of length 37.4K. Our system uses arithmetic coding on
the first and last segments and Lempel-Ziv compression on the text segment in the middle,
achieving a 22 per cent savings and producing a compressed file of length 35.6K. This is
a 4 per cent improvement over the best commercial system.
* This denotes, in our system, a file with a low rate of repeated strings.

Teradata, Exh. 1026, p. 56

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1099

The purpose of our experiments was to verify the conjecture that a selective system
for combining methods can improve savings on a significant range of heterogeneous files,
especially multimedia data. This combination differs from current adaptive methods in
that it switches among compression paradigms designed to remove very different types
of redundancy. By contrast, existing adaptive compression programs are sensitive only to
changes in particular types of redundancy, such as run-length, which do not require changing
the underlying algorithm used in compression. Thus they cannot adapt to changes in the
type of redundancy present, such as from high run-length to high character repetition. The
superiority of our approach is demonstrated in our experimental section.

This paper begins with a presentation of existing approaches to data compression, includ-
ing a discussion of hybrid and adaptive compression algorithms and a description of four
popular commercial compression packages. These are followed by documentation on the
design of the heterogeneous compression system, analysis of experimental results obtained
from test runs of the completed system, and comparison of the system's performance against
that of commercial systems. Finally, implications of the results and possibilities for future
work are presented.

RELATED WORK

It is a fundamental result of information theory that there is no single algorithm that per-
forms optimally in compressing all files.' However, much work has been done to develop
algorithms and techniques that work nearly optimally on all classes of files. In this sec-
tion we discuss adaptive algorithms, composite algorithms, and four popular commercial
compression packages.

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the development
of adaptive compression algorithms, and the composition of various algorithms. Adaptive
compression algorithms attune themselves gradually to changes in the redundancies within a
file by modifying parameters used by the algorithm, such as the dictionary, during execution.

For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman
coding" maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro-
cessed.

An example of an adaptive textual substitution algorithm is Lempel-Ziv compression,
a title which refers to two distinct variants of a basic textual substitution scheme. The
first variant, known as LZ77 or the sliding dictionmy or sliding window method, selects
positional references from a constant range of preceding strings.'* '' These 'back-pointers'
literally encode position and length of a repeated string. The second variant, known as
LZ78 or the dynamic dictionary method, uses a dictionary structure with a paging heuristic.
When the dictionary - a table of strings from the file - is completely filled, the contents
are not discarded. Instead, an auxiliary dictionary is created and updated while compression
continues using the main dictionary. Each time this auxiliary table is filled, its contents are
'swapped' into the main dictionary and it is cleared. The maintenance of dictionaries for
textual substitution is analogous to the semi-space method of garbage collection, in which
two pages are used but only one is 'active' - these are exchanged when one fills beyond
a preset threshold. Another adaptive variant of this algorithm is the Lempel-Ziv-Welch

Teradata, Exh. 1026, p. 57

1100 W. H. HSU AND A. E. ZWARICO

(LZW) algorithm, a descendant of LZ78 used in Unix l 2 Both LZW and LZ78
vary the length of strings used in compression.6g

Yet another adaptive (alphabetic distribution-based) compression scheme, the Move-To-
Front (MTF) method, was developed by Bentley et In MTF, the ‘word code’ for a
symbol is determined by the position of the word in a sequential list. The word list is ordered
so that frequently accessed words are near the front, thus shortening their encodings.

Adaptive compression algorithms are not appropriate to use with heterogeneous files
because they are sensitive only to changes in the particular redundancy type with which
they are associated, such as a change in the alphabetic distribution. They do not exploit
changes across different redundancy types in the files. Therefore a so-called adaptive method
typically cannot directly handle drastic changes in file properties, such as an abrupt transition
from text to graphics. For example, adaptive Huffman compressors specially optimized for
text achieve disproportionately poor performance on certain image files, and vice versa. As
the use of multimedia files increases, files exhibiting this sort of transition will become
more prevalent.

Our approach differs from adaptive compression because the system chooses each algo-
rithm (as well as the duration of its applicability) before compression begins, rather than
modifying the technique for each file during compression. In addition, while adaptive meth-
ods make modifications to their compression parameters on the basis of single bytes or fixed
length strings of input, our heterogeneous compressor bases its compression upon statistics
gathered from larger blocks of five kilobytes. This allows us to handle much larger changes
in file redundancy types. This makes our system less sensitive to residual statistical fluctu-
ations from different parts of a file. We note that it is possible to use an adaptive algorithm
as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression
algorithms. Composition can either be accomplished by running several algorithms in suc-
cession or by combining the basic algorithms and heuristics to create a new technique. For
example, recent implementations of ‘universal’ compression programs execute the Lempel-
Ziv algorithm and dynamic Huffman coding in succession, thus improving performance
by combining the string repetition-based compression of Lempel-Ziv with the frequency-
based compression strategy of dynamic Huffman coding. One commercial implementation
is L H u ~ c . ’ ~ * ’ ~ Our system exploits the same savings since it uses the Freeze implementa-
tion of the Lempel-Ziv algorithm, which filters Lempel-Ziv compressed output through a
Huffman coder. An example of a truly composite technique is the compression achieved
by using Shannon-Fano tries* in conjunction with the Fiala-Greene algorithm (a variant
of Lempel-Ziv)I6 in the PKZIP2 commercial package. Tries are used to optimally encode
strings by character freq~ency.’~ PKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchmarks.’

Our approach generalizes the ideas of successively executing or combining different
compression algorithms by allowing any combination of basic algorithms within a file. This
includes switching from among algorithms an arbitrary number of times within a file. The
algorithms themselves may be simple or composite and may be adaptive. All are treated as
atomic commands to be applied to portions of a file.

A trie is a tree of variable degree 2. 2 such that (1) each edge is labelled with a character, and the depth of any node
represents one more than the number of characters required to identify it; (2) all internal nodes are intermediate and represent
prefixes of keys in the trie; (3) keys (strings) may be inserted as leaves using the minimum number of characters which
distinguish them uniquely. Thus a generic trie containing the strings computer and compare would have keys at a depth of
five which share a common prefix of length four.

 Teradata, Exh. 1026, p. 58

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 101

The problem of heterogeneous files was addressed by Toa1l8 in a proposal for a naive
heterogeneous compression system similar to ours. In such a system, files would be seg-
mented into fixed-length encapsulated blocks; the optimal algorithm would be selected for
each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks
would be independently compressed. Our system, however, performs more in-depth statis-
tical analysis in order to make a more informed selection from the database of algorithms.
This entails not only the determination of qualitative data properties but the computation of
metrics for an entire block (as opposed to sporadic or random sampling from parts of each
block). Furthermore, normalization constants for selection parameters (i.e. the redundancy
metrics) are fitted to observed parameters for a test library. Finally, a straightforward but
crucial improvement to the naive encapsulated-block method is the implementation of a
multi-pass scheme. By determining the complete taxonomy (data type and dominant redun-
dancy type) in advance, any number of contiguous blocks which use the same compression
method will be treated as a single segment. Toal observed in preliminary experiments that
the overhead of changing compression schemes from one block to another dominated the
additional savings that resulted from selection of a superior compression method.'* This
overhead is attributable to the fact that blocks compressed independently (even if the same
method is used) are essentially separate files and assume the same startup overhead of the
compression algorithm used. * We have determined experimentally that merging contiguous
blocks whenever possible obviates the large majority of changes in compression method.
This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products
One of the goals of this research was to develop a compression system which is gener-

ally superior to commercially available systems. The four systems we studied are PKZIP,
developed for microcomputers running MS-DOS;2 Unix c o m p r e s ~ ; ~ and Stuflt Classic4
and Compact developed for the Apple Macintosh operating system. Each of these
products performs its compression in a single pass, with only one method selected per file.
Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive version of the Lempel-Ziv algorithm.6 It operates by
substituting a fixed-length code for common substrings. compress, like other adaptive
textual substitution algorithms, periodically tests its own performance and reinitializes its
string table if the amount of compression has decreased.

Stuflt makes use of two sets of algorithms: it first detects special-type files such as
image files and processes them with algorithms suited for high-resolution color data; for the
remaining files, it queries the operating system for the explicit file type given when the file
was created, and uses this information to choose either the LZW variant of Lempel-Ziv?
dynamic Huffman coding, or run-length encoding. This is a much more limited selection
process than what we have implemented. Additionally, no selection of compression methods
is attempted within a file. Compact Pro uses the same methodology as Stuffrt and compress,
but incorporates an improved Lempel-Ziv derived directly from LZ77." The public-domain
version of Stunt is derived from Unix compress, as is evident from the similarity of their
performance results.

* For purposes of comparison, the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 4K).

Teradata, Exh. 1026, p. 59

1102 W. H. HSU AND A. E. ZWARICO

Compression systems such as Stuflt perform simple selection among alternative com-
pression algorithms. The important problem is that they are underequipped for the task of
fitting a specific technique to each file (even when the uncompressed data is homogeneous).
Stuflt uses few heuristics, since its algorithms are intended to be ‘multipurpose’ . Further-
more, only the file type is considered in selecting the algorithm - that is, no measures of
redundancy are computed. Earlier versions of Stuflt (which were extremely similar to Unix
compress) used composite alphabetic and textual compression, but made no selections on
the basis of data characteristics. The chief improvements of our heterogeneous compressor
over this approach are that it uses a two-dimensional lookup table, indexed by file proper-
ties and quantitative redundancy metrics, and - more important - that it treats the file as a
collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (5K in
the current implementation), each containing a potentially different type of data and thus
best compressed using different algorithms. The actual compression is accomplished in
two phases. In the first phase, the system determines the type and compressibility of each
block. The compressibility of each block of data is determined by the values of three
quantitative metrics representing the alphabetic distribution, the average run length and the
string repetition ratio in the file. If these metrics are all below a certain threshold, then the
block is considered fully compressed (uncompressible) and the program continues on to the
next block. Otherwise, using the block type and largest metric, the appropriate compression
algorithm (and possible heuristic) are chosen from the compression algorithm database. The
compression method for the current block is then recorded in a small array-based map of
the file, and the system continues.

The second phase comprises the actual compression and an optimization that maximizes
the size of a segment of data to be compressed using a particular algorithm. In this optimiza-
tion, which is interleaved with the actual compression, adjacent blocks for which exactly
the same method have been chosen are merged into a single block. This merge technique
maximizes the length of segments requiring a single compression method by greedily scan-
ning ahead until a change of method is detected. Scanning is performed using the array
map of the file generated when compression methods were selected from the database. A
compression history, needed for decompression, is automatically generated as part of this
phase.

The newly compressed segments are written to a buffer by the algorithm, which stores
the output data with the compression history. The system then writes out the compressed
file and exits with a signal to the operating system that compression was successful.

From this two-pass scheme it is straightforward to see why this system is less susceptible
than traditional adaptive systems to biases accrued when the data type changes abruptly
during compression. Adaptive compressors perform all operations myopically, sacrificing
the ability to see ahead in the file or data stream to detect future fluctuations in the type
of data. As a result, adaptive compressors retain the statistical vestiges of the old method
until these are ‘flushed out’ by new data (or balanced out, depending upon the process for
paging and aging internal data structures such as dictionaries). Thus adaptive compressors
may continue to suffer the effects of bias, achieving suboptimal compression. On the other
hand, by abruptly changing compression algorithms, our technique completely discards all
remnants of the ‘previous’ method (i.e. the algorithm used on the preceding segment). This

Teradata, Exh. 1026, p. 60

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 103

allows us to immediately capitalize on changes in data. In addition, merging contiguous
blocks of the same data type acquires the advantage of incurring all the overhead at once
for switching to what will be the best compression method for an entire variable-length
segment. The primary advantage of adaptive compression techniques over our technique is
that the adaptive compression algorithms are ‘online’ (single-pass). This property increases
compression speed and, more important, gives the ability to compress a data stream (for
instance, incoming data packets in a network or modem transmission) in addition to files
in secondary storage or variable-length buffers.

The remainder of this section presents the system. We begin with a description of the
calculation of the block types and the redundancy metrics. We also explain the use of the
metrics as absolute indicators of compressibility, and then describe the compression algo-
rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

Property analysis
The compressibility of a block of data and the appropriate algorithm to do so are deter-

mined by the type of data contained in a block and the type of redundancy (if any) in the
data. These two properties are represented by four parameters: the block type, and the three
redundancy metrics. The block type describes the data in the block - text, binary, graphical,
etc. The three redundancy metrics are the degree of variation in character frequency, average
run length in the file, and the string repetition ratio of the file. They provide a quantitative
measure of how compressible the block is and which type of redundancy is most evident
in the block. The use of both quantitative redundancy measures (redundancy metrics) and
qualitative characteristics (block types) as indicators for data compressibility is advocated
by Held7 and S a l t ~ n . ’ ~ We have refined the process for computing those attributes referred
to as datanalysis results by Held7 and as statistical language characteristics by Salton” to
obtain an actual guide for compression. The remainder of this section describes how these
four parameters are determined for each block.

Block types

The block type describes the nature of a segment of input data. There are ten classifica-
tions of data in this system: ANSI text, non-natural language text (hexadecimal encodings of
binary data), natural language text, computer source code, low redundancy binary, digitized
audio, low resolution graphics, high-resolution graphics, high-redundancy binary executable,
and binary object data. ANSI text is composed of characters from a superset of the ASCII
alphabet. Non-natural language text contains primarily ASCII text but does not follow a
distribution of characters like that of human languages. Examples are computer typesetting
data, uuencoded and BinHex encoded data (which has the same character distribution as
binary data but is converted to text for ease of transmission). Natural language text in-
cludes text written in English as well as other languages which are representable by the
Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic
alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana
romanizations of the Chinese and Japanese languages (as opposed to their digital encod-
ings). Computer source code uses the ASCII alphabet but characters are distributed with a
different frequency than in natural language text. Low-redundancy binaries usually contain
compressed data, but may also include data which is merely difficult to compress. Audio

Teradata, Exh. 1026, p. 61

1104 W. H. HSU AND A. E. ZWARICO

data are very high in redundancy; audio files (and audio segments of multimedia files)
are usually extremely large. Low-resolution graphics have long runs of contiguous repeated
bits but unlike high-resolution graphics are not suited to lossy compression. High-resolution
graphics include color and grayscale and may be compressed with lossy methods. Binary
executables, like low-resolution graphics, have long runs of contiguous repeated bits and
comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a procedure new-f i l e which is our extension of the
Unix f i l e command.20 f i l e works by examining the first 512 bytes of a file and comparing
the pattern of data contained in it to a collection of known data patterns from Unix and
other operating systems. new-f i l e works in a similar fashion, with two modifications.
First, it examines and compares not only the first 512 bytes of a data set, but also 512
bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides
a better indication of the primary data type of a file by taking into account the possibility
that the properties may change anywhere within the file. Thus, new-f i l e decides on the
'most applicable' data type by a majority vote (or the first data type detected in the case of
a three-way tie). The other change is that the known patterns of data have been increased
by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com-
pressibility of a block of data. They are: the degree of variation in Character frequency or
alphabetic distribution, MAD; the average run length of the block, MRL; and the string
repetition ratio of the block, M ~ R . In general, these three manifestations of redundancy are
independent. Each of the redundancy types is exploited by different compression algorithms.
Frequency of characters is exploited by arithmetic or alphabetic encoding algorithms. In
arithmetic coding data is represented by an interval that is calculated from the probability
distribution of data. With alphabetic coding algorithms such as the Huffman2' and Shannon-
Fano22 algorithms, more frequently occurring characters are replaced by shorter units than
the less frequently occurring characters. Contiguous strings, long strings of identical units
occurring next to one another, are exploited by run length encoding algorithm^.^^ In these
algorithms, contiguous strings are replaced by a single occurrence of the string, called a
run, plus a count of the number of identical strings following. Both alphabetic distribu-
tion and average run length are sometimes characterized as statistical redundancy metric^.^^
Recurrent strings, which occur repeatedly in the input stream with any number of inter-
leaved symbols, are exploited by textual substitution algorithms such as Lempel-Ziv.6*"*'2
In these algorithms, recurrent instances are replaced with positional references (pointers) to
the original instance.

Experimental evidence for the efficacy of quantitative redundancy measures is described
in texts by Storer' and Shannon.22 Shannon provided an estimate of the entropy of English
text, approximately bounding it to be between one and two bits per character.22 This was
determined experimentally by presenting fragments of (unfamiliar) English text to human
subjects and recording the frequency with which they guessed unknown letters. The frag-
ments were revealed character by character, so that letters at the end of long or uncommon
words were easiest to guess and letters at the beginnings of words were hardest. The ob-
servation that binary executables are known to possess high average run lengths is found
in Storer.' However, this property is rarely exploited or measured.

Teradata, Exh. 1026, p. 62

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 105

Each redundancy metric is calculated by a separate statistical sampling routine and nor-
malized using a gamma distribution function G to be a number between 0 and 10 so as
to simplify comparison among the different metrics. The gamma distribution was chosen
because the graph of each of the unscaled redundancy metrics for a test set of 50 files, when
plotted on a histogram, approximated a gamma distribution. Normal and x2 distributions
were also considered, but these proved to be too specific for the application (since they
are both specific parametric cases of the gamma distribution). The gamma distribution is
defined as follows (cf Ross25):

where f, is the density function, I? is the gamma function, x, is the unnormalized measure,
t , is the shape parameter for the gamma distribution, and A, is the scale parameter for
the gamma distribution. The T subscript simply represents the redundancy type under con-
sideration, i.e. AD, RL, or SR, respectively. The shape and scaling parameters, t, and A,
respectively, were determined by fitting the best gamma distribution curve to the data set.
This was done by performing the preferred compression method for each file and tabulating
the induced ratio among normalized metrics to yield the desired parameter values for each
segment. These were then averaged to obtain the empirical scaling parameters.

The alphabetic distribution metric (the degree of variation in character frequency) of a
block is calculated by taking the population (root-mean-square) standard deviation of the
ordinal values of characters in the block and dividing it by the block length (in bytes). The
MAD metric is calculated by the following formulas:

MAD = 10 * GAD (XAD)
a

block length in bytes XAD =

where c is the ordinal value of a character and p is the average ordinal value of all characters
in a block. The normalization uses tAD = 1.70 and XAD = 53.0 as parameters.

The average run length metric is obtained by dividing the number of bits in a block
by the number of runs. A run is defined to be a repetition of symbols (either bits or
bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if
f = 0001 11 1001 110000 is a file of 16 bits, then the number of bit runs is 5 , and the number
of byte runs is 2. The scaled metric MRL is obtained by:

MRL = 10 * GRL (XRL)

file length in bits
number of runs XRL =

Teradata, Exh. 1026, p. 63

1106 W. H. HSU AND A. E. ZWARICO

with gamma distribution parameters ~ R L = 0.50 and XRL = 12.0.
The string repetition rutio metric is the total number of n-bit strings in the block divided

by the number of distinct n-bit strings (up to 100K). In our implementation, n is 32, the
word size of our machine. The normalized metric MSR is obtained by:

MSR = 10 * GSR(TSR)
number of n bit strings

number of distinct n bit strings XSR =

with gamma distribution parameters ~ S R = 0.18 and XSR = 0.2.
The alphabetic distribution and average run length metrics can be calculated in linear

time. The string repetition ratio can be computed in O(n log n) time using a dictionary data
structure. For simplicity, and because a (small) constant amount of data is scanned, we use
an O(n2) version. New strings are stored in an array rather than a binary tree, which would
require more insertion overhead (and is not worth while for the 5K block length used in
the current system). Our routine integrates fT (x) by Simpson’s Rule with n = 10 intervals.

The largest of the three metrics is assumed to represent the most significant type of
redundancy present in the block. It is expected that compression will decrease at least
one of the metrics, and experiments conducted on a wide variety of files have proven this
convention to be reliable. Experiments have also shown that if all the normalized metrics are
smaller than 2.5, the file is considered not compressible, and the system records a verdict of
‘uncompressible’ on the current block. If at least one of the parameters is greater than 2.5,
the file is considered compressible. The maximum of the normalized metrics is then selected
and used in conjunction with the file type to select the appropriate compression algorithm
from the lookup table described in the following section. A negative compressibility test
does not always imply that all three metrics are below the threshold. In some cases, the
only redundancy type for which a metric is above the threshold accesses a null entry in the
database of compression algorithms. This is interpreted as a decision that the (poor) potential
for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

The compression algorithms and attendant heuristics are organized into the 10 by 3 table
illustrated by Table I. The 10 file descriptors are the row indices and the 3 metrics are the
column indices. Each entry of the table contains descriptors which are used to access the
code for an algorithm-heuristic pair. It should be noted that four of the entries are blank
(indicated by an *). A blank entry indicates that the combination of block type and highest
metric are very unusual. In this case, the next highest metric is used instead, provided that
it is above the threshold. As an example of using this table, consider a high-redundancy
binary executable file whose highest metric is the string repetition metric MSR. Together,
this pair indicates that the Lempel-Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

run length encoding (RLE),23 and JPEG for image/graphics cornpre~sion.~~
There are four basic algorithms used by the system: arithmetic coding,26 Lempel-Ziv,8

Arithmetic coding algorithms compress data by representing that data by an interval of

Teradata, Exh. 1026, p. 64

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 107

Table I. Database of compression algorithms1

MAD MRL MSR

* byte-wise encoding freeze
ANSI arithmetic coding run-length encoding Lempel-tiv

hexadecimal arithmetic coding run-length encoding Lempel-Ziv

natural language arithmetic coding * Lempel-Ziv

source code arithmetic coding run-length encoding Lempel-Ziv

* freeze n-bit run count

freeze

* n-bit run count freeze

* *

low redundancy *
binary *
audio *

run-length encoding Lempel-Ziv
n-bit run count *
run-length encoding Lempel-Ziv

* byte-wise encoding freeze
low resolution * run-length encoding Lempel-Ziv

* n-bit run count freeze graphic
high resolution JPEG run-length encoding JPEG
color graphic improved Huffman n-bit run count improved Huffman
high redundancy arithmetic coding run-length encoding Lempel-Ziv

object arithmetic coding run-length encoding Lempel-Ziv
binary * n-bit run count freeze

* byte-wise encoding freeze

t Note: the first line of each entry is the basic algorithm and the second line is the heuristic. An * as the heuristic indicates
that no heuristic is used. Two * indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional
to the number of symbols encoded, and the decrease in width is directly proportional to
the frequency of the original symbols. Thus the interval specifies the encoded message via
its bounds, with the precision (distance) of these bounds reflecting the information content
of the message. The end result is that arithmetic coding achieves, in practice, much better
space savings than Huffman coding and its dynamic implementations because of its higher
likelihood of actually achieving the theoretical lower bound.z4, '* Although early arithmetic
coding algorithms performed too slowly to be of practical the implementation of the
Witten-Neal-Cleary algorithm used herez6 is optimized for speed - at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is
referred to Bell et u L * ~ for a thorough overview of arithmetic coding. We should note that
in earlier implementation of the heterogeneous compressor we used a dynamic Huffman
algorithm instead of arithmetic coding. We changed our implementation when we found
that then Witten-Neal-Cleary algorithmz6 outperformed our implementation of dynamic
Huffman coding"* 30 in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur-
rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these
runs, usually a single occurrence of the symbol and the number of occurrences. We have
implemented a straightforward RLE algorithm for our database, based on the description in
Sedge~ick .~ ' In addition, bitwise and bytewise encoding are avajlable as heuristics and the
parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempel-Ziv com-
pression algorithm. It compresses data by replacing frequently occurring strings (with min-

Teradata, Exh. 1026, p. 65

1108 W. H. HSU AND A. E. ZWARICO

imal regard of how far apart they occur) with compact pointers to the position of the first
occurrence. Our implementation is a straightforward array-based encoding with constant-
length codes. The algorithm maintains a dictionary of recurring strings in order to do the
compression. In our system, the Lempel-Ziv algorithm is augmented with the Freeze heuris-
tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that
is, it prevents the replacement of previously encountered strings, regardless of how long
ago or how infrequently the string has been encountered. Freeze is primarily a speed op-
timization, since it requires less computation than paging heuristics such as least recently
used (LRU) or least frequently used (LFU), but it has been shown to work well for all but
the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman Compression.

The compression of high-resolution graphics and audio files uses a lossy compression
scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi-
lar enough to the original as to be nearly indistinguishable by human perception, and that
repeated compression and decompression leads to limited cumulative 'damage' . The pri-
mary benefit of lossy compression is that it guarantees much higher compression ratios at
a minimal tradeoff. For instance, a very-high-resolution color image can be compressed
with much higher savings (possibly 95 per cent) if the user allows a small amount of noise,
always less than 1 per cent per compression, to be introduced during each compression. Our
system uses the JPEG systemz7 for compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and lossless parts, typically achieves compression ratios
of between 15-to-1 and 25-to-1. The potential for this substantial savings is obtained by
the Discrete Cosine Transform portion of the algorithm, a lossy method. This determines a
limit on the amount of savings that can then be achieved by any lossless compressor. The
actual savings are realized by a lossless portion, known as the buck end which is applied
to the preprocessed image data. The implementation of this module used in our systemz7
is a Huffman coder. It is independent of the lossy front end and can be replaced with a
run-length or textual-substitution based algorithm, to be selected by the synthesis system.
In our implementation, we chose to retain the original Huffman back end, a different algo-
rithm from the general-purpose dynamic Huffman coder which we also studied.", 30 This
is because the JPEG Huffman coder is especially suited to the redundancy remaining after
lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the
use of arithmetic coding back ends, which were found to be experimentally superior but
were not used because of proprietary consideration^.^^

Implementation
The system consists of a driver module, four block analysis modules, and the synthesis

module, which includes the database of compression algorithms. All modules are written in
C and were tested on a Unix platform. The program uses a data directed style of implemen-
tation for choosing the compression algorithm to apply to a block. Thus, additional block
types, compression algorithms and heuristics, and redundancy metrics can be added to the
system with minimal modification of the source code. Only the database would have to be
updated and the block analysis routines extended; the rest of the program would remain the
same.

The driver performs two iterative passes through the file. It first performs block analysis
on the file one 5K block at a time. This block size was chosen after experimentation showed
that the response of the system to changes in block type became roughly stable as block

Teradata, Exh. 1026, p. 66

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 109

size exceeded 5K (i.e., did not significantly increase as block size did), and that a block size
of 5K yielded highly accurate metrics (in only 1 of the 20 test files did the heterogeneous
compressor select a suboptimal algorithm for any block). Finally, we found that the highest
level of adaptivity without a noticeable decrease in accuracy was achieved at 5K, hence
our choice of 5K as the block size.

For each block, the system invokes the four analysis modules - three for metric compu-
tation and normalization and one to determine the file properties - and stores their output.
It then performs the metric comparison and combines the results with the file property to
complete the table lookup for the current block. An identifying tag for the selected algo-
rithm is written to the ‘compression plan’ , an array which stores one complete compression
instruction per block (if the current block is deemed uncompressible, a ‘skip’ instruction is
recorded).

We pause here to discuss the normalization of the metrics. Originally, we used a naive
normalization method: direct algebraic scaling with experimentally determined constants
for each metric. This did not, however, accurately reflect the statistical relationship between
variance in character frequency and alphabetic redundancy. Also, the behavior of these func-
tions at asymptotes led to poor approximation of the overall distribution of data segments
in the test files. The result was that arithmetic coding was too often incorrectly chosen, re-
sulting in inferior compression; and selection approached randomness as metric values for
both string repetition and alphabetic distribution tended toward extreme values. Using the
gamma normalization method described above resulted in an improvement in the selection
of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the
compression method in exactly those cases where the other methods performed worse.

The second pass performs the compression of each block. In order to improve perfor-
mance, this pass includes a simple optimization step which circumvents the overhead of
restarting compression after each fixed length block by merging contiguous blocks that are
to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged blocks
using the algorithm recorded in the compression plan. The compressed data is written to an
output buffer, while the compressed length (which indicates where in the compressed file
a compressed block begins and ends) and compression method are recorded in a separate
history for reference at decompression time. If negative compression or no compression is
achieved, or if the block was already marked uncompressible, then the data is copied directly
to the output buffer (the full block length and a code for ‘no compression’ are recorded in
the compression history). Upon reaching the end of the blocks, the system writes out the
compressed data from the output buffers and prepends the encoded compression history to
produce the final output file.

When decompression is invoked, the driver module opens the compressed file, interprets
the history tag and performs the necessary operations. The tags are a stored version of the
compression history in compact, encoded form. Since the heterogeneous system generates
different compression sequences for each file, and since the length of a compressed block
varies with both the length of the original block and the compression method used, these tags
are necessary to guide the decompression process. Currently only the compressed lengths
of each block and the method of compression are stored, but a checksum for the original
(decompressed) block length can be added with negligible overhead. When executed in
reverse order on each compressed block, the instructions in the history tags result in the
original file. For simplicity and security, they are prepended to the compressed file (and
can easily be encrypted).

Teradata, Exh. 1026, p. 67

1110 W. H. HSU AND A. E. ZWARICO

EXPERIMENTAL RESULTS

Design and construction of the test files
To test the overall performance, the system was run on a set of 20 test files. These files

range in length from approximately 39K to 366K, with representative files from each of the
ten block types included in the test corpus.

The test files are designed to model certain types of heterogeneous files, including utilities
for image viewing, business, or audio processing, and hypothetical multimedia databases and
programs. To construct these files, a collection of 30 files from the Unix, Apple Macintosh,
and MS-DOS (IBM PC) operating systems was created. These files are listed in Table 11.
To create the test corpus, they were concatenated in groups of 2 or 3. The resultant series
of test files is listed in Table 111. All of the source files were used. The goal was to generate
as broad a range of permutations as possible (while restricting the generated files to those
which are likely to exist in a typical user environment). This was performed manually with
consideration toward combinatorial constraints and the criteria of realistic data modeling.
Since all of the files in the source collection originate from common commercial sources
or from public archives (with the exception of the source and object files, which are from
the code for the heterogeneous compressor itself), the latter constraint was considerably
simplified.

The assembled files were then ported to the test sites (a Sun workstation for Unix
compress and our heterogeneous compressor; a Macintosh for Stuflt and Compact Pro;
and an IBM 80486 machine for PKZIP). Binary file transfer mode was used to ensure that
the file lengths agreed exactly among all platforms.

Performance

In this section, we review and analyze the performance of the heterogeneous compressor
with respect to compression savings, as compared with four of the commercial systems
previously discussed; and execution time. Finally, we briefly note the implications of running
the experiments and compiling performance data on several different architectures.

Compression savings

The total length of the uncompressed benchmark suite is just under three megabytes. Table
IV shows the compressed length achieved by Unix compress, PKZIP, Stuflt , Compact
Pro and the heterogeneous compression system. The heterogeneous compressor achieved
the greatest compression, with a total compressed length of 1828K. This represents an
additional savings of 162K (more than eight per cent) over the best commercial system
(Compact Pro v1.32), and 339K (nearly 16 per cent) over the average. Compressed lengths
for the commercial methods ranged from 1990K to 237%.

Table V compares the percentage savings obtained by our system to the savings obtained
by the commercial programs and the heterogeneous system. The last two columns show the
difference in per cent saved between the synthesis system and the best and average of the
four commercial packages. The best commercial compressor is marked for each of the files.
Note that the heterogeneous compressor does better than all commercial programs in 19 of
20 cases and better than three of the four commercial systems in this one case (file 15).
The difference in compression for this file is only 0.02 per cent, whereas for all the other
files, the heterogeneous compressor has at least a 1.3 per cent improvement over the best

Teradata, Exh. 1026, p. 68

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 11 11
Table 11. Files used to compose the test suite and their respective origins

File File File

audio1

lowrdl
lowrd2
lowrd3
lowrd4

text1
text3
text4
text5
text6
text7

execul
execu2
execu3
execu4
execu5
execu6

graph1
graph2
graph3
graph4
graph5
graph6
graph7

objec 1
objec2
objec3

source1

cosby . snd

ticker. txt
exsound
huff
appnote.uue

phrack.txt
techbook.txt
quanta1 .txt
attilla.fluff
shadow.fluff
quanta2.txt

ad
sh
blob
zero
network2.exe
hostname

compmisc.drw
compperi.drw
computer.drw
1owres.mpt
3dbar.drw
image.ppm
grp4

test1.o
test2.0
test3.0

tab1e.c

designation name tY Pe
SoundMaster Macintosh audio file

ASCII characters from stock ticker
compressed World Builder sound library
compressed Unix executable
uuencoded text

English text
Unix news article
English text
English text
English text
English text

Unix executable
Unix executable
Silicon Graphics executable
Silicon Graphics executable
IBM PC executable
Unix executable

Lotus Freelance line drawing
Lotus Freelance line drawing
Lotus Freelance line drawing
MacPaint file
Lotus Freelance 3-D bar chart
PPM (high-resolution image) file
MacPaint file

Unix object file
Unix object file
Unix object file

C source code
source2 free2e.c C source code

commercial compressor. The average of each column appears in the bottom row; note that
the ‘percent difference’ averages are not weighted by file length, as each file is considered
a separate experiment.

Because the quality of compression by the synthesis system depends on that of the algo-
rithms and heuristics used, improvement of the implementations that we use should yield
higher performance. This is evidenced by comparing the results of compressing a file dom-
inated by string repetitions by Unix compress and Compact Pro. Both are implementations
of the Lempel-Ziv algorithm. Unix compress has no heuristics, whereas Compact Pro is
a better implementation of LZ77.5, l 1 Compact Pro consistently outperforms compress. It
should be noted that the performance of the Freeze variant of Lempel-Ziv’ used in our sys-

Teradata, Exh. 1026, p. 69

1112 W. H. HSU AND A. E. ZWARICO

Table 111. Combinations of the test files and the resultant simulated data types

File File Classification of
number composition data modeled
1 textl - lowrdl

File File Classification of
number comDosition data modeled
1 textl - lowrdl
2
3
4
5
6
7
8

9

10
1 1
12
13
14
15

16

17
18
19
20

graph7 - objecl
lowrdl - text3 - graph4
graph7 - execu3
audiol - graph1
text2 - lowrdl - graph3
lowrd3 - execul
graph2 - lowrd2 - execu2

source1 - lowrd3 - graph6

audiol - text4
lowrdl - execu4
graph7 - text5
lowrd2 - text6
text3 - audiol - graph5
lowrdl - text4 - source2

text7 - lowrd2 - graph3

graph4 - audiol - execu5
execu4 - graph7 - text4
objec3 - lowrd3 - execu6
obiec2 - audiol - execu2

news or stock report
object file for a grtaphics viewer
multimedia application (texugraphics)
graphics viewer
multimedia data file (soundgraphics)
multimedia data file (textlgraphics)
commercial utility
multimedia applicaiion
(graphicsfsoundexecutable)
multimedia data 01 source file
(sourcekompresseti binarylimage)
multimedia data file (soundtext)
statistical application with data
multimedia data file (texugraphics)
multimedia data file (soundtext)
multimedia data file (texthoundgraphics)
source file for multimedia program
(texthource code)
multimedia data file
(textlcompressed audio/graphics)
multimedia application (soundgraphics)
multimedia application (graphidtext)
commercial utility
audio application

tem does consistently better than compress and is comparable to Compact Pro on standard
industrial benchmarks.’ Improving algorithms and adding or substituting new heuristics
would also yield more savings.

Execution times and speed optimizations

In this section we compare, in approximate units, the running time of the heterogeneous
compressor against those of the four commercial systems the savings rates of which for our
test files are documented above. The units are approximate far two reasons. First, because
the four test systems are commercial the source code for three of them is not publicly
available*, which renders an exact measure of user time infeasible. This concern is in part
assuaged by the non-multitasked, single-user nature of the microcomputer operating systems
on which three (compress for Linux notwithstanding) of the commercial systems reside.
Second, however, the drastic architectural and organizational differences among the various
native machines renders uniform comparisons unreliable. Thiis applies even to normalized
execution times because the host machines differ not merely in clock cycle speed, but
in instruction set architecture and dynamic instruction frequencies for similar compression
algorithms. The exact running times reported in this section is only that of the heterogeneous

* As noted, however, the Lempel-Ziv implementation employed by Srufl7t Classic is ne:arly identical to that of Unix compress.

Teradata, Exh. 1026, p. 70

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 11 13

compressor. These comprise the non-commercial* compression systems for which source
code is available for profiling. For the commercial systems we report the observed wall
clock time to provide a standard of comparison, but note that the host machines vary in
computational power.

Table IV. Results of the four popular commercial programs and the heterogeneous compression system,
applied to the 20 test files

File Original Unix PKZIP Stufl t Compact Heterogeneous
number length compress v 1.10 Classic Pro v 1.32 compressor
1 39.348 20,578 17,119 20,575 16,831 16,315
2 44,202
3 46,629
4 59,254
5 169,108
6 100,476
7 131,663
8 220,644
9 301,805
10 255,306
11 59,305
12 51,715
13 63,189
14 196,789
15 148,908
16 164,535
17 203,912
18 200,640
19 366,557
20 278,152

44,202
46,629
52,076

168,903
69,77 1

131,663
190,971
145,993
204,457
30,178
51,715
63,189

176,276
73,555

141,067
203,9 12
128,675
265,114
223,277

39,8 13
46,629
40,571

151,478
53,043

103,544
137,886
112,503
191,378
22,782
43,032
58,247

196,789
63,748

132,992
184,657
107,728
198,727
193,980

40.41 2
43,26 1
45,202

149,701
65,417

106,643
173,677
137,685
206,193
29,70 1
46,462
59,569

172,486
75,595

135,245
189,398
125,461
265,027
224.943

41,112
40,367
41,607

148,9 17
52,349

109,979
137,401
115,096
183,313
22,858
44,107
59,934

151,057
64,618

110,093
202,821
104,711
198,756
191,763

37,388
36,477
38,007

134,524
50,906
96,429

127,384
103,730
168,675
21,774
40,229
54,481

137,052
63,778

104,175
170,564
101,674
187,659
18 1,030

Total 3,102,137 2,432,201 2,096,646 2,312,653 2,037,690 1,872,25 1

The running times for the commercial systems on the entire test suite documented above
appear in Table VI. All of the execution times are measured in wall clock units except for
the heterogeneous compressor’s, which is a total of user times as reported by prof, the C
profiler under Unix. The wall clock time was empirically observed not to differ noticeably
from this total on an unloaded Unix machine. The commercial systems were similarly tested
on unloaded (or single-task) systems.

For Unix compress, the mean running time was 26 s, where the average was taken
over runs on different Sun workstations of comparable power (documented below). A Unix
implementation of PKZIP was also tested on one of these Sun workstations, and achieved
an execution time of 56 s - only slightly better than the personal computer version. The
running time of 856 s placed the heterogeneous compressor in the middle to high end of
the commercial compressors in terms of running time.

* For this purpose we continue to conslder Unix compress commercial, due to its wlde range of versions.

Teradata, Exh. 1026, p. 71

1114 W. H. HSU AND A. E. ZWARIClO

Table V. Percent savings for the test compression systems*

File Unix PKZIP Si'uflt Compact Heter'ogeneous Best Average
number compress v1.10 Classic Pro v1.32 compressor win win

(8 saved) (% saved) (46 saved) (% saved) (% saved) (% diff.) (% diff.)
1 47.70 56.49 47.7 1 57.23* 58.54 1.31 6.25
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.00
0.00

12.11
0.12

30.56
0.00

13.45
5 1.63
19.92
49.1 1
0.00
0.00

10.42
50.60
14.26
0.00

35.87
27.67
19.73

9.93*
0.00

31.53*
10.43
47.21
21.36*
37.51
62.72*
25.04
61.59*
16.79*
7.82*
0.00

57.19*
19.17
9 4 *

46.3 1
45.79*
30.26

8.57
'7.22

23.71
I 1.48
34.89
1!2.00
21.29
54.38
1!2.24
4!2.92
10.16
5.73

12,35
4!>.23
1'7.80
'7.12

3'7.47
27.70
19.13

24.21

6.99
13.43*
29.78
1 1.94*
47,90*
16.47
37.73*
6146
28.20*
61.46
14.71
5.15

23.24*
56.61
33.09*
0.54

47.81*
45.78
3 1.06*

31.55*

15.42 5.49
21.77 8.34
35.86 4.33
20.45 8.51
49.34 1 44
26.76 5.40
42.27 4.54
65.63 2.91
33.93 5.73
63.28 1.70
22.21 5.42
13.78 5.96
30.36 7.12
57.17 -0.02
36.69 3.60
16.35 6.91
49.33 1.51
48.80 3.02
34.92 3.86

37.14 4.35

9.04
16.61
11.57
11.96
9-20

12.55
14.77
7.98

10.83
7.77

11.80
9.1 1

18.85
3.76

15.60
12.08
7.46

12.07
9.87

10.96 Average 19.16 29.83 ~~

* The starred entry in each row is the best commercial system.

CONCLUSIONS

Analysis of results
This project was successful on several levels. First, the feasibility of synthesizing com-

pression plans from encapsulated primitives for heterogeneous files was illustrated. The use
of property analysis and redundancy metrics was experimentally successful, the latter veri-
fying the applicability of statistical data analysis to automatic programming in this domain.
The positive test results obtained with the primitive database currently available would
probably be even better with improved implementations of the algorithms and heuristics.
The statistical foundations of the heterogeneous system proved strong enough to be of def-
inite relevance to the operating systems community, and might be useful in an information
theoretic context. The benefits of data compression are ubiquitous in that savings through
compression are independent of hardware and storage capabilities; selective techniques in-
crease these savings by a significant factor for heterogeneous files.

Future work
The sampling method may be improved in future implementations by randomization.

The increase in analysis accuracy that this would bring would demand more primitives and
heuristics - such need would arise in any case with the continuing development of new
files types, such as high-resolution animation and three-dimensional images.

Teradata, Exh. 1026, p. 72

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1 1 15
Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time Execution time

Unix compress M 26 0:26
PKZIP v1.10 67 1:07
Stuffft Classic 1152 19:12
Compact Pro v1.32 1594 26:34
Heterogeneous compressor 856 1456

6) (min)

In the current system, lossy compression methods can be applied only if an entire file
is found to be of a lossily compressible data type. Typically, these include high-resolution
images (for JPEG) and speech, general high-definition audio, and high-resolution animation
files. A special case could be implemented specifying that when an entire file matching a
single lossily compressible data type (i.e. a homogeneous loss-permissible file) is found,
the lossy algorithm may be applied.

The difficulty is that without explicit information on where loss-permissible portions of
a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely
guarantee that no data will be distorted which the user is not willing to have distorted.
Thus no lossy methods can be safely applied to any segment in the block-based system.
Thus a heterogeneous system would require either full interactive guidance from a user
who could inspect the file or knew its contents, or would require improved magic numbers
which encoded the lengths of loss-permissible segments. The heterogeneous system could
then scan for these codes during the property analysis phase and preempt or modify metric-
based selection if a lossy algorithm is warranted. The latter approach seems far superior
to interactive compression, which places an intolerable burden of responsibility on users
(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized
(especially lossy) compression algorithms such as JPEG and MPEG. For example, by des-
ignating RLE compression ‘0 per cent alphabetic distribution, 100 per cent run length, 0
per cent string repetition’ and by defining its single-type counterparts similarly, a standard
can be established. Unix compress, for instance, might rate ‘40 per cent AD, 0 per cent
RL, 60 per cent SR’ and a hypothetical algorithm X might rate ‘25 per cent AD, 50 per cent
RL, 25 per cent SR’ . The rating standard would correspond to the metric rating system for
files which our system uses, and would help in analysis of the performance of composite
compression techniques (which handle multiple redundancy types). Non-synthesized com-
posite techniques exist, both adaptive and non-adaptive, though results are not as promising
as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table
that the database of primitives used in this heterogeneous system may not be as well-stocked
as it optimally could be. Storer’ lists a plethora of optional heuristics which are applicable
to Lempel-Ziv compression, specifically in augmenting and deleting from the dictionary.

ACKNOWLEDGEMENTS

This paper was produced as part of a research project at Johns Hopkins University. We
are grateful to the faculty and staff of the JHU Computer Science Department, and to the
Brown University CS Department, for their assistance throughout this work.

Teradata, Exh. 1026, p. 73

1116 W. H. HSU AND A. E. ZWARICO

We would like to thank Leonid Broukhis, Graham Toal, and Kenneth Zeger for discus-
sions on some of the research reported here. We also thank Jonathan Eifrig, Bill Goodman,
and Tom Lane for guidance on several technical issues. Finally, we thank the anonymous re-
viewers for their comments and suggestions, especially for introduction to relevant literature
in arithmetic coding.

REFERENCES

1.
2.
3.

4.
5.
6.
7.

8.
9.

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.
24.

25.

26.

27.
28.

29.
30.

James A. Storer, Data Compression: Methods and Theory, Computer Science Press, Rockville, MD, 1988.
Phillip W. Katz, PKZIP. Commercial compression system, version 1 . I , 1990.
Sun Microsystems, compress. Commercialcompression system, operating system version 5.3, September
1992.
Raymond Lau, Stuffft Classic and Stuffft Deluxe. Commercial compression system, 1990.
Bill Goodman, Compact Pro. Commercial compression system, v1.32, 1991.
Terry A. Welch, ‘A technique for high performance data compression’, IEEE Computer, 17(6), 8-19 (1984).
Gilbert Held and Thomas R. Marshall, Data Compression: Techniques and Applications: Hardware and
Sofmare Considerations, 3rd edn, John Wiley and Sons, 1991.
Leonid Broukhis, Freeze implementation of LZHuf algorithm. comp.sources.misc archives, Internet, 199 1.
Jean-Loup Gailly, comp.compression benchmark (Calgary test corpus). In comp.compression FAQ list, J.
Gailly, (ed.), 1992.
Jeffrey S. Vitter, ‘Dynamic Huffman Coding’, ACM Transactions on Mathematical Sofnyare, (June 1989).
J. Ziv and A. Lernpel, ‘A universal algorithm for sequential data compression’, IEEE Transactions on
Information Theory, 23,(3), 337-343 (1977).
J. Ziv and A. Lempel, ‘Compression of individual sequences via variable-rate coding’, IEEE Transactions
on Information Theory, 24(5), 530-546 (1978).
Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan and Victor K. Wei, ‘A locally adaptive data
compression scheme’, Communications of the ACM, 320-330 (April 1986).
Yooichi Tagawa, Haruhiko Okumura and Haruyasu Yoshizaki, LZHuf: encoding/decoding module for
LHarc. Compression system, version 0.03 (Beta), 1989.
Haruyasu Yoshizaki, LHA: A high-performance file-compression program. Compression system, version
2.11, 1991.
Edward R. Fiala and Daniel H. Greene, ‘Data compression with finite windows’, Communications of the

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in Pascal, Computer Science Press,
Rockville, Maryland, second edition, 1987.
Graham Toal. Personal communication. Unpublished, 1992.
Gerard Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by
Computer, Addison-Wesley, Reading, MA, 1989.
Ian F. Darwin, file (program). Berkeley Unix operating system, 1987.
David A. Huffman, ‘A method for the construction of minimum-redundancy codes’, Proceedings of the
IRE, number 40, 1952, pp. 1098-1101.
Claude E. Shannon and Warren Weaver, The Mathematical Theory of Communications, University of
Illinois Press, Urbana and Chicago, 1963.
Robert Sedgewick, Algorithms, 2nd edn, Addison-Wesley, Reading, MA, 1988.
Timothy C. Bell, John G. Cleary and Ian H. Witten, Text Compression, Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

ACM, 490-505 (1989).

Sheldon Ross, A First Course in Probability, Macmillan Publishing Company, New York, third edition,
1988.
Ian H. Witten, Radford Neal and John G. Cleary, ‘Arithmetic coding for data compression’, Communica-
tions of the ACM, 30(6), 520-540 (1 987).
Independent JPEG Group. ‘JPEG image compression system’, think.com FTP archives, Internet, 1994.
Jean-Loup Gailly. comp.compression/comp.compression.research FAQ list. J. Gailly (ed.), URL
http://www.cis.ohio-state.edu/hypertext/faq/usenet/compression-faq/top.html, 1994.
James A. Storer, Image and Text Compression, Kluwer Academic Publishers, Norwell, MA, 1992.
Graham Toal. C implementation of dynamic Huffman compressor by J. S. Vitter. comp.source.misc
archives, Internet, 1990.

Teradata, Exh. 1026, p. 74

Attachment 1f

Teradata, Exh. 1026, p. 75

Attachment 1f

Teradata, Exh. 1026, p. 76

v_=;=.~,.. . ..«fr;u=g_-y.~_§t.~*z,?g gr.

Teradata Exh 1026 p 76

Teradata, Exh. 1026, p. 77

Teradata, Exh. 1026, p. 77

Teradata, Exh. 1026, p. 78

PRACTICE & EXPERIENCE
VHLLJME 25, Nu 7 JULY 1995

EDITORS

DOUGLAS COMER

ANDY WELLINGS ,

Chichester - New Yfirk Brisbane ~ Toronto - Singapore

A Wi|ey—lnterscience Publication

SPEXBL 25I'7) 7054330 11995‘
ISSN 0038--D6-14

Teradata, Exh. 1026, p. 78

Teradata, Exh. 1026, p. 79

§_:\i‘-,

PRACTICE & EXPERIENCE
AUGUST 1995VOLUME 25. No.8

EDITORS

DOUGLAS COMER

ANDY WELLI NGS

® WILEY
."ubhshen Srnurr I-‘*'|'«’-" _ _ Sin apofeChichester - New York - Bnsbane - Toronto 9

#1 Wi|ey—|nterscience Publication

SPEXBL 25:8} 831_945 H995} Teradata, Exh. 1026, p. 79ISSN 0038-0644

Teradata, Exh. 1026, p. 80

VOLUME 25. No. 9

ANDY WELLINGS

@w1LEYJ"uNnhrn E-xrvrr :.-cm .

Chichester - New York - Brisbane - Toronto - SIHQIPOH-'
A Wiluewlnterscien-ce Publication

XBL 25:91 9-t7~106¢ (19951
N 0038~{]64d

SEPTEMBER 1995

Teradata, Exh. 1026, p. 81

PRACTICE & EXPERIENCE
VOLUME 25. No. 10 OCTOBER 1995

EDITORS

DOUGLAS COMER

ANDY WELLINGS

'n"'H"H'”whnflwf‘ ' Toronto Sin9aP°'°
A Wiley-—Interscience Publication

SPEXBL 25:10: 1065-1132 [1995

'55” 0035-0544 Teradata, Exh. 1026, p. 81

Teradata, Exh. 1026, p. 82

SOFTlM4RE
PRACTICE & EXPERIENCE

Editors _

Professor D. E. Comer, Computer Science Department, Purdue University, West
Lafayette, IN 47907, U.S.A.
Charlotte l. Tubis. U.S. Editorial Assistant, Computer Science Department. Purtlur: Umvr.-rsiiy v'Vr_=si Lafayette.
IN 47907. U.S.A.

Dr A. J. Wellings, Department of Computer Science, University of York.
Heslington, York YO1 5DD

Advisory Editorial Board

Professor in. w. BARRON Proms‘-or D E "~”U”‘ S S f 1 U V 1
Del-iartment of Electo ' 5 dCom ter Science. D!’-‘l3i'””“-"" "f C“”"".".’-‘.',‘ "'".{"3"'- ‘ “‘“ "" "'V'"“" V‘

‘| University of SOUIl'Ii;mr|t)l%Dna,n Pu Stanford, C.'ilifrirrii.'i E:-..J(J:i_ lJ .7 .13.
Southampton SO51 SNH, U.K. D B W LAMPSUH
Professor P. J. BROWN ,,;,, We V,,_,,, ,;.,,_.,
Computing Laboratory, The UniversitY- Cambridge.
Canterbury. Kent CT2 ‘INF, U.l<. MA 0213?}. U S A

Professor J. A. CAMPBELL
, D ,C A LANC

Deliartment of Computer Science. University College London. ' S _ L’: i
Gowerslreet. London WC1E ear, u.i<. }g}§§,‘,§a§,‘;e,_§ '
Professor F. J. CDFIBATO Cambridge ca3'oA.i_ u K
Electrical En 'n ' D
Massachusegs lerssflilltgite §‘iFi'§E?ienn§iogy, P‘°f‘’5S°' 8' HANDELL
545 Technolo ySquare, Computing Lalmreilnrv.
Cambridge, assachusgfls 02139, U.S.A. University of Newcastle upon Tyne,

Dr Chrisiopharw. rimsen Ellgi:-vEi:::r.:sO1[|1et—Ii[':<‘;)vr?-rT.\r(:n' 2I'§'é"i"§i$f."U’k
AT&T Bell Laboratories, 600 Mountain Ave 20454,
Murray Hill, NJ 07974-0636, U.S.A. Professor J. so HOHL

Professor PER BFllNCl-l HANSEN Department of C?$plJlDf Sgiencel,gcho 1 N: . . The University 0 esteiii usira la.
1 ilr116DCgT,§$§:I3:e?l1rfiJ2::{manon science‘ Nedlands, Western Australia 5009.

5 Svracuse. New York 13210, ugin. S; pmf D. T. ROS
Depzftigreiltnt at HANSON . Softech Inc.. 460 Tolieii Pond Road.
p- ° C°""PUIerScierice. Waltham, Massachusetts 02154, U.S.A.

' ""°°t°"' U"l"‘B|'SitV. Princeton,Ne J
W er5ey°8S“'U'S'A' 3. H. SHEARING

Erofessor J. KATTZENELSON The software F_actr:iry,
Taculty of Electrical Engineerin , 28 Padbrook, Lirnpstield, Oxted.
Hggglllgpéljrael Institute of Tecflnology, Surre-V “H3 ODW. UK-
Dr. B. W. KERNIGHAN Professor N. WIRTH
AT8iT Bell Labo lnstitut fur Computersysterne, ETH~Zentrur1'i,M . Fatofies. 600 Mountain Avenue,

urray Hill, New Jersev 97974. U.S.A.

Aims and Scope
E-°fl‘Wa':“L‘P'3C"'Ce and Experience is an internationallv H‘-'5P9c‘ed 3"” rigorously refereed Vehicle “F” the diSS‘?'"i"_'ati°" and

I . - Jircuiision of practical experience with new and established softwarefor both systems and applications. _C'ontril':iutions reign.
.1 rv. _al describe detailed accounts of completed software-system DFOJECIS which can serve as how-to-do-it models for future

work in the same field; (13) present short reports on programming techniques that can be used in a wide variety of areas; icl
ftware construction problems; and id) explain methods/techniques

do . .

méugegt ".':]‘j"""-"3'1r1Itiues and tools that aid in solving so _ . . _ ,
D W‘ the Special demands of large scale software projects. The l0U“'l3' 3'50 features timely Short Communications

9” rapidly developin n -
The editors aclivelg ewmplw ‘cal experience with tools and methods developed and used. V l/encourage a rare which result from pfactl . . . _

in both academic and industrial erevixionments. The aim is to encourage practitioners to share their experiences with design,
implementation and evaluation of techniques and tools for software and software systems.

l Papers cover software design and implementation, case studies describing the evolution of system and the thinking behind
them, and critical appraisals of software systems. The journal has always welcomed tutorial articles describing well-tried tech~
”'Ql-'95 ”01PfB.\-'I'ously documented in computing literature. The emphasis is on practical experience; articles with theoretical
or mathematical contentare included only in cases where an understanding of the theory will lead to better practical systems.

Articles range in length from a Short Communication (half to two pagesl to the length required to give full treatment to a
Substantial pieceof softiivare (40 or more pages).
AdV9"i-'-“'9: For details contact.
Mmhael -1- 1-€'«V9"11Ora. Advertisement Sales, John Wiley 8i Sons Ltd, Baffins Lane, Chichester, Sussex PO19 1UD, England (Telephone 01243
370351. Fax 01243 775873, Telex 552903

Sol'Iware—Prai:li'ca aniJ'Experieni:allSSN OO2l8—(l644i'USP5 B90-920i is published monthly, by John Wiley 84 Sons Limited, Baffins Lane, Chichester,
SUSSEX» Ellglaflfi Second class postage paid at Jamaica. N.Y. 11431. Air freight and mailing '" the U S-A by Publications Expediting Services Inc.,

200 Mgafliham AVENUE, Elrnonl, N.‘i', 11003, © 1995 by John Wiley at Sons Ltd. Primed and bound in Great Britain by Page Bros. Norwich. Printedon aci - reel paper.

To subscribe: Orders should he addressed to Subscriptions Department, John Wiley 8: Sons Limited. Baffins Lana, Cl‘lichE5tE.'l_ Sussex, PO19 1UD,
England. 1995 subscription price (13 issuesl: U.S. 5525.00.

U.5.A. POSTMASTER: Send address changes to Si:iftware—Practi‘ce and Experience, c/0 Publications Expuditing ServiceTeradata, EXh- 1025. P- 32
Avenue. Elmont. N.Y. 11003, U.S.A.

CH-8092 Zurich. Switzerland.

Teradata, Exh. 1026, p. 83

SOFTWARE—PRACT|CE AND EXPERIENCE

(Softw. pract. exp.)

CONTENTS

VOLUME 25, ISSUE No. 10 October 1995

Migration in Object-oriented Database Systems—A Practical Approach:
C. Huemer, G. Kappel and S. Vieweg 1065

Automatic Synthesis of Compression Techniques for Heterogeneous
Files: W. H. Hsu and A. E. Zwarico 1097

A Tool for Visualizing the Execution of Interactions on a Loosely-coupled
Distributed System: P. Ashton and J. Penny 1117

Process Scheduling and UNIX Semaphores: N. Dunstan and l. Fris 1141

Software Maintenance: An Approach to Impact Analysis of Objects
Change: 8. Ajila 1155

SPEXBL 25(10) 1065-1182 (1995)
ISSN 0038-0644

 Indexed or abstracted by Cambridge Scientific Abstracts, CompuMath Citation Index (ISI),

Compuscience Database, Computer Contents, Computer Literature Index, Computing

Reviews, Current Contents/Eng, Tech & Applied Sciences, Data Processing Digest, Deadline

News|et:er_ Educationa| Technology Abstracts, Engineering Index, Engineering Societies

Library, IBZ (International Bibliography of Periodical Literature). Information Science Abstracts

(Plenum), INSPEC, Knowledge Engineering Review, Nat Centre for Software Technology,
Research Alert (ISI) and SCISEARCH Database (ISI).

Teradata, Exh. 1026, p. 83

Teradata, Exh. 1026, p. 84

1096 C. HUEMER, G. KAPPFJ. mun VII-'.Wl-.('.

20. A. Scheer and A. Hars, ‘The Leitsland—a new 100] for dc-central prmlucunn control". in G.

21.

22.

23.

24.

Fandel and G. Zépfel (eds), Modem Production (‘rma.'pt.s. Spnmzcr. iicrlln. WW. Pl“ 37”‘335'
G. Kappel and S. Vieweg, ‘Database requirements for ('15.! npphc.-mun~.'. Jmurmxl Hf "’""3"‘”"d
Manufacturing Systems, 5, (4/5), 48-63 (1994).
U. Schreier, ‘Database requirements of knowledge-hzlscd pruducnnn wlnulnulnm: zmd C“'“""l5 -'3
CIM perspective’, in R. Agrawal (cd.). Prat. 1911: Imerrmuanal ('r:nfc'rr'm':- nu l':'r}‘ 1.¢3".l."' Dam
Bases, Dublin, August 1993. pp. 710-711. _
R. Cattell and J. Skeen, ‘Object operations benchmark’. /{CM Trun_sm'lmm. rm !)umhu.w .S_r.m-.rr:.s.
17, (1). 1-31 (1992). _
M. Carey, D. DeWitt and J. Naughlon, ‘The 007 benchmark‘. Prm‘ ,u:-.1 .wc;Mnn c «mf- -‘CM
SIGMOD Record, 22, (2), 12-21 (1993).

Teradata, Exh. 1026, p. 84

Teradata, Exh. 1026, p. 85

SO!-'l'WARE—PRACTlCE AND EXPERIENCE. VOL 25(l0). l097—l I I6 (OCTOBER I995)

Automatic Synthesis of Compression Techniques for

Heterogeneous Files

WILLIAM H. HSU

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
(email: bhsu@cs.uiuc.edu, voice: (217) 244-1620)

AND

AMY E. ZWARICO

Department of Computer Science, The Johns Hopkins University, Baltimore. MD 21218, U.S.A.
(email: aIny@cs.jItu.edu, voice: (410) 516-5304)

SUMMARY

We Present 3 C0mP1‘e55i°“ tedlnique for heterogeneous files, those files which contain multiple types. of
data such as text, images» binary. audio. or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained using four commercially available compression programs, PKZIP, Unix compress, Stujflt,
and Compact PI'0a and 5t|0W that our system provides better space savings.

KEY WORDS: €|dt1PtlV°/5°'°°‘iV° data °°mPl'|‘—SSi0n algorithms; redundancy metrics; heterogeneous files; Pfogtam 5Y“‘h°5iS

INTRODUCTION

The primary m0tlVati°“ in Studying compression is the savings in space that it Provides‘
Many compression algorithms have been implemented, and with the advent of new hard-
ware Standards. mo“: te°h“iCl1les are under development. Historically, research in data com-
pression has been devoted to the development of algorithms that exploit various types Of
redundancy found in a file. The shortcoming of such algorithms is that they assume. Often
inaccurately, that files are homogeneous throughout. Consequently, each exploits only a
subset of the redundancy found in the file. _

Unfortunately, no algorithm is effective in compressing all files.‘ For examP1ea dY“‘_m_“°
Huffman coding works best on data files with a high variance in the frequency of individ-
ual characters (including some graphics and audio data), achieves mediocre performance on
natural language text files, and performs poorly in general on high—redundancy binary data.
On the other hand, run length encoding works well on high-redundancy binary data, but
performs very poorly on text files. Textual substitution works best when multiple-character

strings tend to be repeated, as in English text, but this performance degrades as the average

CCC O03 8-0644/95/101097-20

©1995 by John Wiley & Sons, Ltd.

Received 20 April I 994

Revised 5 February 1995

Teradata, Exh. 1026, p. 85

Teradata, Exh. 1026, p. 86

1098 w. H. HSU AND A. E. ZWARICO

length of these strings decreases. These relative strengths and weaknesses become critical
when attempting to compress heterogeneous files. Heterogeneous tiles are those which con-
tain multiple types of data such as text, images, binary, audio, or animation. Consequently,

their constituent parts may have different degrees of compressibility. liccaiise most coin-
pression algorithms are either tailored to a few specific classes of data or are designed to
handle a single type of data at a time, they are not suited to the compression of heteroge-
neous files. In attempting to apply a single method to such files, they forfeit the possibility
of greater savings achievable by compressing various segments of the tile with different
methods.

To overcome this inherent weakness found in compression algorithms, we have developed

a heterogeneous compressor that automatically chooses the best compression algorithm to
use on a given va[iable-]e,ngth block of a tile, based on_both the qualitative and quantita-
tive properties of that segment. The compressor determines and then applies the selected
algorithms to the blocks separately. Assembling compression procedures to create a specif-
ically tailored program for each file gives improved performance over using one program
for 311 files. This system produces better compression results than fotir commonly available
wmpression packages, PKZIP? Unix compress? Stiifllt, and Compact Pro” for arbitrary
heterogeneous files.

The major contributions of this work are twofold. The first is an improved compression
System for heterogeneous files. The second is the development of a method of statisti-
cal analysis of the compressibility of a file (its redundancy types)‘. Although the concept
of redundancy types is not new,” synthesis of compression techniques using redundancy
meawfemflllts is largely unprecedented. The approach presented in this paper uses a straight-
forward program synthesis technique: a compression pt’-Cm. C0nS|SIlI1g Of instructions for each
block of input data, is generated, guided by the statistical properties of the input data. Be-
cause of its use of algorithms specifically suited to the types of redundancy exhibited by
the particular input file the system achieves consistent average pt:t'l0tTt‘it1nt:t: tlirotighotit the
file, as shown by experimental evidence. _

As an example of the type of savings our system produces, consider compressing a
heterogeneous file (such as a small multimedia data file) consisting of 10K of low redun-
dam)’ (non-natural language) ASCII data, 10K of English text and 25K Of gF3PhiC5- 1“
this case, a reasonably sophisticated compression program might recognize the increased
savings achievable by employing Huffman compression, to better take advantage of the fact
that the majority of the data is graphical. However, none of the general-purpose compres-
sion methods under consideration are optimal when used alone on this file. This is because
the text part of this file is best compressed by textual substitution methods (e.g.. Lfimpel-'
ZIV) rather than gtatistjcal methods while the low—redundancy data* and graphics parts
are best compressed by alphabetic distribution-based methods (e.g., arithmetic or dynamic
Huffman coding) rather than Lempel—Ziv or run-length encoding. This particular file totals
451‘; in length before compression. A compressor using pure dynamic Huffman coding only
achieves about 7 per cent savings for a compressed file of length 42.2K. One of the best
general-purpose Lempel—Ziv compressors currently available” achieves 18 per cent sav-
"185: Producing a compressed file of length 37.4K. Our system uses arithmetic coding on
the first and last segments and Lempel—Ziv compression on the text segment in the middle,
achieving a 22 per cent savings and producing a compressed file of length 35.6K. This is
a 4 per cent improvement over the best commercial system-

. This denotes. in 0111' system. it file with a low rate of rapemed Strings‘

Teradata, Exh. 1026, p. 86

Teradata, Exh. 1026, p. 87

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1099

The purpose of our experiments was to verify the conjecture that a selective system

for combining methods can improve savings on a significant range of heterogeneous files,

especially multimedia data. This combination differs from current adaptive methods in

that it switches among compression paradigms designed to remove very different types
of redundancy. By contrast, existing adaptive compression programs are sensitive only to
changes in particular types of redundancy, such as run—length, which do not require changing
the underlying algorithm used in compression. Thus they cannot adapt to changes in the
type of redundancy present, such as from high run-length to high character repetition. The
superiority of our approach is demonstrated in our experimental section.

This paper begins with a presentation of existing approaches to data compression, includ-
ing a discussion of hybrid and adaptive compression algorithms and a description of four
popular commercial compression packages. These are followed by documentation on the
design of the heterogeneous compression system, analysis of experimental results obtained
from test runs of the completed system, and comparison of the system’s performance against
that of commercial systems. Finally, implications of the results and possibilities for future
work are presented.

RELATED WORK

It is a fundamental result of infoniiation theory that there is no single algorithm that Per‘
fomis optimally in compressing all files.‘ However, much work has been done to develop
algorithms and techniques that work nearly optimally on all classes of files. In this sec-
tion we discuss adaptive algorithms, composite algorithms, and four popular commercial
compression packages.

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the develoPmf3“t
of adaptive compression algorithms, and the composition of various algorithms. Ad_apflV€
compression algorithms attune themselves gradually to changes in the redundancies within a
file by modifying parameters used by the algorithm, such as the dictionary, during eX6CUt1°“-

For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman
coding'° maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro-
cessed.

An example of an adaptive textual substitution algorithm is Lempel—Ziv comP‘°-5510"’
a title which refers to two distinct variants of a basic textual substitution scheme. The
first variant, known as LZ77 or the sliding dictionary or sliding window method, selects
positional references from a constant range of preceding strings." " These ‘baCk‘P°'“te"S
literally encode position and length of a repeated string. The second variant, know_n _aS
LZ78 or the dynamic dictionary method, uses a dictionary structure with a paging heuristic-
When the dictionary — a table of strings from the file — is completely filled, the contents
are not discarded. Instead, an auxiliaiy dictionary is created and updated while compression
continues using the main dictionary. Each time this auxiliary table is filled, its contents are
‘swapped’ into the main dictionary and it is cleared. The maintenance of dictionaries for
textual substitution is analogous to the semi-space method of garbage collection, in which
two pages are used but only one is ‘active’ — these are exchanged when one fills beyond
a preset threshold. Another adaptive variant of this algorithm is the Lempel—Ziv—Welch

Teradata, Exh. 1026, p. 87

)

Teradata, Exh. 1026, p. 88

1100 W. H. HSU AND A. E. ZWARICO

(LZW) algorithm, a descendant of LZ78 used in Unix compress.“ '2 Both LZW and LZ78
vary the length of strings used in compression.“ '2

Yet another adaptive (alphabetic distribution-based) compression scheme, the Move—To-
Front (MTF) method, was developed by Bentley et al.” In MTF, the ‘word code‘ for a
symbol is determined by the position of the word in a sequential list. The word list is ordered

so that frequently accessed words are near the front, thus shortening their encodings.
Adaptive compression algorithms are not appropriate to use with heterogeneous files

because they are sensitive only to changes in the particular redundancy type with which
they are associated, such as a change in the alphabetic distribution. They do not exploit
changes across different redundancy types in the files. Therefore a so-called adaptive method
typically cannot directly handle drastic changes in file properties, such as an abrupt transition
from text to graphics. For example, adaptive Huffman compressors specially optimized for
text achieve disproportionately poor performance on certain image files, and vice versa. As
the use of multimedia files increases, files exhibiting this sort of transition will become
more prevalent.

Our approach differs from adaptive compression because the system chooses each algo-
rithm (as well as the duration of its applicability) before compression begins, rather than
modifying the technique for each file during compression. In addition, while adaptive meth-
ods make modifications to their compression parameters on the basis of single bytes or fixed
length strings of input, our heterogeneous compressor bases its compression upon statistics
gathered from larger blocks of five kilobytes. This allows us to handle much larger changes
in file redundancy types. This makes our system less sensitive to residual statistical fiuctu-
ations from different parts of a file. We note that it is possible to use an adaptive algorithm
as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression
algorithms. Composition can either be accomplished by running several algorithms in suc-
cession or by combining the basic algorithms and heuristics to create a new technique. For
eifample, recent implementations of ‘universal’ compression programs execute the Lempel-
ZIV algorithm and dynamic Huffman coding in succession, thus improving performance
by combining the string repetition-based compression of Lempel—Ziv with the frequency-
based compression strategy of dynamic Huffman coding. One commercial implementation
ts LHarc.”"5 Our system exploits the same savings since it uses the Freeze implementa-
tion of the Lempel—Ziv algorithm, which filters Lempel—Ziv compressed output through a
Huffman coder. An example of a truly composite technique is the compression achieved
b)’ Using Shannon—Fano tries* in conjunction with the Fiala—Greene algorithm (a variant
of _Lempel—Ziv)'5 in the PKZIP2 commercial package. Tries are used to optimally encode
Str_1ngs by character frequency.” PKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchmarks.9

Our approach generalizes the ideas of successively executing or combining different
compression algorithms by allowing any combination of basic algorithms within a file. This
includes switching from among algorithms an arbitrary number of times within a file. The
algorithms themselves may be simple or composite and may be adaptive. All are treated as
atomic commands to be applied to portions of a file.

‘ A we is a tree of variable degree 2 2 such that (I) each edge is labelled with a character, and the depth of any node
represents one more than the number of characters required to identify it; (2) all internal nodes are intermediate and represent
prefixes of keys in the trie; (3) keys (strings) may be inserted as leaves using the minimum number of characters which
distinguish them uniquely. Thus a generic trie containing the strings computer and compare would have keys at a depth of
five which share a common prefix of length four.

Teradata, Exh. 1026, p. 88

Teradata, Exh. 1026, p. 89

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1101

The problem of heterogeneous files was addressed by Toal” in a proposal for a naive
heterogeneous compression system similar to ours. In such a system, files would be seg-
mented into fixed-length encapsulated blocks; the optimal algorithm would be selected for

each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks
would be iridepcndcntly compressed. Our system, however, performs more in-depth statis-
tical analysis in order to make a more informed selection from the database of algorithms.
This entails not only the determination of qualitative data properties but the computation of
metrics for an entire block (as opposed to sporadic or random sampling from parts of each
block). Furthermore, normalization constants for selection parameters (i.e. the redundancy
metrics) are fitted to observed parameters for a test library. Finally, a straightforward but
crucial improvement to the naive encapsulated—block method is the implementation of a
multi-pass scheme. By determining the complete taxonomy (data type and dominant redun-
dancy type) in advance. any number of contiguous blocks which use the same compression
method will be treated as a single segment. Toal observed in preliminaiy experiments that
the overhead of changing compression schemes from one block to another dominated the
additional savings that resulted from selection of a superior compression method.” This
overhead is attributable to the fact that blocks compressed independently (even if the same
method is used) are essentially separate files and assume the same startup overhead of the
compression algorithm used.’ We have determined experimentally that merging contiguous
blocks whenever possible obviates the large majority of changes in compression method,
This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products

One of the goals of this research was to develop a compression system which is gener-
ally superior to commercially available systems. The four systems we studied are PKZIP,
developed for microcomputers running MS-DOS;2 Unix compresg;3 and Smfih Class,-C4
and Compact Pr0,5 developed for the APP“? Macintosh Operating system. Each of these
products performs its compression in a single pass, with only one method selected per file.
Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive Version Of the Lempel——Ziv algorithm.‘ It operates by
substituting a fixed-length code for common substrings. compress, like other adaptive
textual substitution algorithms, periodically tests its own pcrfonnance and reinitializes its
string table if the amount of compression has decreased.

Stufllt makes use of two sets of algorithms: it first detects special-type files such as
image files and processes them with algonthms suited for high-resolution color data; for the
remaining files, it queries the operating system for the explicit file type given when the file
was created, and uses this information to choose either the LZW variant of Lempe]_Ziv,4.6
dynamic Huffman coding, or run-length 3"°9C_llflg- This is a much more limited selection
process than what we have implemented. Additionally, no selection of compression methods
is attempted within a file. Compact Pro uses the same methodology as Stufflt and compress,
but incorporates an improved Lempelfzlv denved diTe_Ct1Y from LZ77." The public-domain
version of Stufi7t is derived from Unix compress, as is evident from the similarity of their
performance results.

" For purposes of comparison, the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 4K).

Teradata, Exh. 1026, p. 89

Teradata, Exh. 1026, p. 90

1102 w. H. HSU AND A. E. ZWARICO

Compression systems such as Stufflt perform simple selection among alternative com-
pression algorithms. The important problem is that they are underequipped for the task of
fitting a specific technique to each file (even when the uncompressed data is homogeneous).
Stufilt uses few heuristics, since its algorithms are intended to be ‘multipurpose’ . Further-
more, only the file type is considered in selecting the algorithm - that is, no measures of

redundancy are computed. Earlier versions of Stuff]! (which were extremely similar to Unix
compress) used composite alphabetic and textual compression, but made no selections on
the basis of data characteristics. The chief improvements of our heterogeneous compressor

over this approach are that it uses a two-dimensional lookup table, indexed by file proper-
ties and quantitative redundancy metrics, and — more important — that it treats the file as a

collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (SK in

the current implementation), each containing a potentially different type of data and thus
best compressed using different algorithms. The actual compression is accomplished in
two phases. In the first phase, the system determines the type and compressibility of each
block. The compressibility of each block of data is determined by the values of three
quantitative metrics representing the alphabetic distribution, the average run length and the
string repetition ratio in the file. If these metrics are all below a certain threshold, then the

block is considered fully compressed (uncompressible) and the program continues on to the
next block. Otherwise, using the block type and largest metric, the appropriate compression
algorithm (and possible heuristic) are chosen from the compression algorithm database. The
compression method for the current block is then recorded in a small array-based map of
the file, and the system continues.

The second phase comprises the actual compression and an optimization that maximizes
the size of a segment of data to be compressed using a particular algorithm. In this optimiza-
tion, which is interleaved with the actual compression, adjacent blocks for which exactly
the same method have been chosen are merged into a single block. This merge technique
maximizes the length of segments requiring a single compression method by greedily scan-
ning ahead until a change of method is detected. Scanning is perfonned using the array
map of the file generated when compression methods were selected from the database. A

cfimpression history, needed for decompression, is automatically generated as part of thisp ase.

The newly compressed segments are written to a buffer by the algorithm, which stores
the output data with the compression history. The system then writes out the compressed
file and exits with a signal to the operating system that compression was successful.

From this two-pass scheme it is straightforward to see why this system is less susceptible
than traditional adaptive systems to biases accrued when the data type changes abruptly
during compression. Adaptive compressors perform all operations myopically, sacrificing
the ability to see ahead in the file or data stream to detect future fluctuations in the type
of data. As a result, adaptive compressors retain the statistical vestiges of the old method
until these are ‘flushed out’ by new data (or balanced out, depending upon the process for
paging and aging internal data structures such as dictionaries). Thus adaptive compressors
may continue to suffer the effects of bias, achieving suboptimal compression. On the other
hand, by abruptly changing compression algorithms, our technique completely discards all
remnants of the ‘previous’ method (i.e. the algorithm used on the preceding segment). This

Teradata, Exh. 1026, p. 90

Teradata, Exh. 1026, p. 91

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1103

allows us to immediately capitalize on changes in data. In addition, merging contiguous
blocks of the same data type acquires the advantage of incurring all the overhead at once

for switching to what will be the best compression method for an entire variable-length
segment. The primary advantage of adaptive compression techniques over our technique is
that the adaptive compression algorithms are ‘online’ (single-pass). This property increases

compression speed and, more important, gives the ability to compress a data stream (for
instance, incoming data packets in a network or modern transmission) in addition to files

in secondary storage or variable-length buffers.

The remainder of this section presents the system. We begin with a description of the
calculation of the block types and the redundancy metrics. We also explain the use of the

metrics as absolute indicators of compressibility, and then describe the compression algo-
rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

Property analysis

The compressibility of a block of data and the appropriate algorithm to do so are deter-
mined by the type of data contained in a block and the type of redundancy (if any) in the
data. These two properties are represented by four parameters: the block type, and the three
redundancy metrics. The block type describes the data in the block — text, binary, graphical,
etc. The three redundancy metrics are the degree of variation in character frequency, average
run length in the file. and the string repetition ratio of the file. They provide a quantitative
measure of how compressible the block is and which type of redundancy is most evident
in the block. The use of both quantitative redundancy measures (redundancy metrics) and
qualitative characteristics (block types) as indicators for data compressibility is advocated
by Held7 and Salton.” We have refined the process for computing those attributes referred
to as datanalysis results by Held7 and as statistical language characteristics by Salton” to
obtain an actual guide for compression. The remainder of this section describes how these

four parameters are determined for each block.

Block types

The block type describes the nature of a segment of input data. There are ten classifica-
tions of data in this system: ANSI text, non—natural language text (hexadecimal encodings of
binary data), natural language text, computer source code, low redundancy binary, digitized
audio, low resolution graphics, high-resolution graphics, high-redundancy binary executable,
and binary object data. ANSI text is composed of characters from a superset of the ASCII
alphabet. Non—natural language text contains primarily ASCII text but does not follow a
distribution of characters like that of human languages. Examples are computer typesetting
data, uuencoded and BinHex encoded data (which has the same character distribution as
binary data but is converted to text for ease of transmission). Natural language text in-
cludes text written in English as well as other languages which are representable by the
Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic
alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana
romanizations of the Chinese and Japanese languages (as opposed to their digital encod-
ings). Computer source code uses the ASCH alphabet but characters are distributed with a
different frequency than in natural language text. Low-redundancy binaries usually contain
compressed data, but may also include data which is merely difficult to compress. Audio

Teradata, Exh. 1026, p. 91

Teradata, Exh. 1026, p. 92

1104 w. H. HSU AND A. E. ZWARICO

data are very high in redundancy; audio files (and audio segments of multimedia files)
are usually extremely large. Low-resolution graphics have long runs of contiguous repeated
bits but unlike high-resolution graphics are not suited to lossy compression. High-resolution
graphics include color and grayscale and may be compressed with lossy methods. Binary
executables, like low-resolution graphics, have long runs of contiguous repeated bits and
comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a procedure new-file which is our extension of the
Unix file command.” file works by examining the first 512 bytes of a file and comparing
the pattern of data contained in it to a collection ‘of. known data patterns from Unix and
other operating systems. new—fi1e works in a similar fashion, with two modifications.
First, it examines and compares not only the first 512 bytes of a data set, but also 512
bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides
a better indication of the primary data type of a file by taking into account the possibility
that the properties may change anywhere within the file. Thus, new-file decides on the
‘most applicable’ data type by a majority vote (or the first data type detected in the case of
a three-way tie). The other change is that the known patterns of data have been increased
by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com-
pressibility of a block of data. They are: the degree of variation in character frequency or
alphabetic distribution, MAD; the average run length of the block, MRL; and the string
repetition ratio of the block, MSR. In general, these three manifestations of redundancy are
independent. Each of the redundancy types is exploited by different compression algorithms.
Frequency of characters is exploited by arithmetic or alphabetic encoding algorithms. In
arithmetic coding data is represented by an interval that is calculated from the probability
distribution of data. With alphabetic coding algorithms such as the Huffman“ and Shannon-
Fano” algorithms, more frequently occurring characters are replaced by shorter units than
the less frequently occurring characters. Contiguous strings, long strings of identical units
occurring next to one another, are exploited by run length encoding algorithms.” In these
algorithms, contiguous strings are replaced by a single occurrence of the string, called a
run, plus a count of the number of identical strings following. Both alphabetic distribu-
tion and average run length are sometimes characterized as statistical redundancy metrics?“
Recurrent strings, which occur repeatedly in the input stream with any number of inter-
leaved symbols, are exploited by textual substitution algorithms such as Lempel—Ziv."-"-'2
In these algorithms, recurrent instances are replaced with positional references (pointers) to
the original instance.

Experimental evidence for the efficacy of quantitative redundancy measures is described
in texts by Storer' and Shannon.” Shannon provided an estimate of the entropy of English
text, approximately bounding it to be between one and two bits per character.” This was
determined experimentally by presenting fragments of (unfamiliar) English text to human
Subjects and recording the frequency with which they guessed unknown letters. The frag-
ments were revealed character by character, so that letters at the end of long or uncommon
words were easiest to guess and letters at the beginnings. of words were hardest. The ob-
servation that binary executables are known to possess high average run lengths is found
in Storer.‘ However, this property is rarely exploited Or measured.

Teradata, Exh. 1026, p. 92

Teradata, Exh. 1026, p. 93

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1105

Each redundancy metric is calculated by a separate statistical sampling routine and nor-
malized using a gamma distribution function G to be a number between 0 and 10 so as

to simplify comparison among the different metrics. The gamma distribution was chosen

because the graph of each of the unscaled redundancy metrics for a test set of 50 files, when

plotted on a histogram. approximated a gamma distribution. Normal and X2 distributions
were also considered, but these proved to be too specific for the application (since they
are both specific parametric cases of the gamma distribution). The gamma distribution is
defined as follows (cf Ross”):

GT($T) = f’r.(z)d:v
_ ’_re—,\r::(/_r$)t,—l

.f‘r(17) _ —

[‘(tT) = /we-yytr—Idy0

where f, is the density function, 1" is the gamma function, 1:, is the unnormalized measure,
it, is the shape parameter for the gamma distribution, and /\T is the scale parameter for

the gamma distribution. The 7' subscript simply represents the redundancy type under con-
sideration, i.e. AD. RL, or SR, respectively. The shape and scaling parameters, t., and A,
l’eSP°C‘lV'3l)’» We“? determined by fitting the best gamma distribution curve to the data set.
This was done by performing the preferred compression method for each file and tabulating
the induced ratio among nonnalized metrics to yield the desired parameter values for each
segment. These were then averaged to obtain the empirical scaling parameters.

The alphabetic distribution metric (the degree of variation in character frequency) of a
block is calculated by taking the population (root-mean-square) standard deviation of the
ordinal values of characters in the block and dividing it by the block length (in bytes). The
MAD metric is calculated by the following formulas:

[WAD = 10>I=GAD(.’l§A[))
CY

block length in bytes

Z:c€charset (C " #')2
256 ’

where c is the ordinal value of a character and [1, is the average ordinal value of all characters
in a block. The normalization uses tAD = 1,70 and AAD = 53_0 as parameters.

The average run length metric is obtained by dividing the number of bits in a block
by the number of runs. A run is defined to be a repetition of symbols (either bits or
bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if
f = 0001 l l 1001 1 10000 is a file of 16 bits, then the number of bit runs is 5, and the number

of byte runs is 2. The scaled metric MRL is obtained by:

(BAD =

C! ll

MRL = 10 * G'RL($RL)

file length in bits
93RL =

number of runs

Teradata, Exh. 1026, p. 93

Teradata, Exh. 1026, p. 94

1106 W. H. HSU AND A. E. ZWARICO

with gamma distribution parameters tm, = 0.50 and ARI, = 12.0.

The string repetition ratio metric is the total number of n-bit strings in the block divided
by the number of distinct n-bit strings (up to 100K). In our implementation, n is 32, the
word size of our machine. The normalized metric MSR is obtained by:

MSR = 10 * GsR(:lIsR)

number of n bit strings

number of distinct n bit strings
$SR

with gamma distribution parameters t5R = 0.18 and A5}; = 0.2.
The alphabetic distribution and average run length metrics can be calculated in linear

time. The string repetition ratio can be computed in O(n log n) time using a dictionary data
structure. For simplicity, and because a (small) constant amount of data is scanned, we use

an O(n2) version. New strings are stored in an array rather than a binary tree, which would
require more insertion overhead (and is not worth while for the 5K block length used in
the current system). Our routine integrates fT(1:) by Simpson’s Rule with n = 10 intervals.

The largest of the three metrics is assumed to represent the most significant type of
redundancy present in the block. It is expected that compression will decrease at least
one of the metrics, and experiments conducted on a wide variety of files have proven this
convention to be reliable. Experiments have also shown that if all the normalized metrics are
smaller than 2.5, the file is considered not compressible, and the system records a verdict of
‘uncompressible’ on the current block. If at least one of the parameters is greater than 2.5,
the file is considered compressible. The maximum of the normalized metrics is then selected
and used in conjunction with the file type to select the appropriate compression algorithm
from the lookup table described in the following section. A negative compressibility test
does not always imply that all three metrics are below the threshold. In some cases, the
0111)’ redundancy type for which a metric is above the threshold accesses a null entry in the
database of compression algorithms. This is interpreted as a decision that the (poor) potential
for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

. The compression algorithms and attendant heuristics are organized into the 10 by 3 table
illustrated by Table I. The 10 file descriptors are the row indices and the 3 metrics are the
column indices. Each entry of the table contains descriptors which are used to access the
code for an algorithm-heuristic pair. It should be noted that four of the entries are blank

(indicated by an *). A blank entry indicates that the combination of block type and highest
metric are very unusual. In this case, the next highest metric is used instead, provided that
it is above the threshold. As an example of using this table, consider a high-redundancy
binary executable file whose highest metric is the string repetition metric MSR. Together,
this pair indicates that the Lempel—Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

There are four basic algorithms used by the system: arithmetic coding,” Lempel—Ziv,‘
run length encoding (RLE),23 and JPEG for image/graphics compression.”

Arithmetic coding algorithms compress data by representing that data by an interval of

Teradata, Exh. 1026, p. 94

Teradata, Exh. 1026, p. 95

Table l. Database of compression algorithmsi

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1107

MAD Mru. Msrz

ANSI arithmetic coding run-length encoding Lempel—Ziv

* byte~wise encoding freeze

hexadecimal arithmetic coding run-length encoding Lempel—Ziv
‘ n-bit run count freeze

natural language arithmetic coding ’ Lempel—Ziv
‘ " freeze

source code arithmetic coding run-length encoding Lempel—Ziv
‘“ n-bit run count freeze

low redundancy "‘ run-length encoding Lempel—Ziv
binary * n-bit run count *

audio * run-length encoding Lempel—Ziv

"‘ byte-wise encoding freeze

low resolution * run-length encoding Lempel—Ziv
graphic * n-bit run count freeze

high resolution JPEG run-length encoding JPEG

color graphic improved Huffman n-bit run count improved Huffman

high redundancy arithmetic coding run-length encoding Lempel—Ziv

binary * n-bit run count freeze

object arithmetic coding run-length encoding Lempel—Ziv

* byte-wise encoding freeze

Jr Note: the first line of each entry is the basic algorithm and the second line is the heuristic. An * as the heuristic indicates

that no heuristic is used. Two ‘ indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional

to the number of symbols encoded, and the decrease in width is directly proportional to
the frequency of the original symbols. Thus the interval specifies the encoded message via
its bounds, with the precision (distance) of these bounds reflecting the information content

of the message. The end result is that arithmetic coding achieves, in practice, much better
space savings than Huffman coding and its dynamic implementations because of its higher
likelihood of actually achieving the theoretical lower bound.“ 28 Although early arithmetic
coding algorithms performed too slowly to be of practical use,” the implementation of the
Witten—Neal—Cleary algorithm used here“ is optimized for speed —— at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is
referred to Bell et all‘ for a thorough overview of arithmetic coding. We should note that
in earlier implementation of the heterogeneous compressor we used a dynamic Huffman
algorithm instead of arithmetic coding. We changed our implementation when we found
that then Witten—Neal—Cleary algorithm“ outperformed our implementation of dynamic
Huffman coding'°- 3° in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur-
rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these
runs, usually a single occurrence of the symbol and the number of occurrences. We have
implemented a straightforward RLE algorithm for our database, based on the description in

Sedgewick.” In addition, bitwise and bytewise encoding are available as heuristics and the
parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempel—Ziv com-
pression algorithm. It compresses data by replacing frequently occurring strings (with min-

Teradata, Exh. 1026, p. 95

Teradata, Exh. 1026, p. 96

1108 W. H. HSU AND A. E. ZWARICO

imal regard of how far apart they occur) with compact pointers to the position of the first
occurrence. Our implementation is a straightforward array-based encoding with constant-
length codes. The algorithm maintains a dictionary of recurring strings in order to do the
compression. In our system, the Lempel—Ziv algorithm is augmented with the Freeze heuris-
tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that
is, it prevents the replacement of previously encountered strings, regardless of how long
ago or how infrequently the string has been encountered. Freeze is primarily a speed op-
timization, since it requires less computation than paging heuristics such as least recently
used (LRU) or least frequently used (LFU), but it has been shown to work well for all but
the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman compression.

The compression of high-resolution graphics and audio files uses a lossy compression
scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi-
lar enough to the original as to be nearly indistinguishable by human perception. and that
repeated compression and decompression leads to limited cumulative ‘damage’ . The pri-
mary benefit of lossy compression is that it guarantees much higher compression ratios at
a minimal tradeoff. For instance, a very-high-resolution color image can be compressed
With much higher savings (possibly 95 per cent) if the user allows a small amount of noise,
always less than 1 per cent per compression, to be introduced during each compression. Our
system uses the JPEG system” for compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and lossless parts, typically achieves compression ratios
of between 15-to-1 and 25-to-1. The potential for this substantial savings is obtained by
the Discrete Cosine Transform portion of the algorithm, a lossy method. This determines a
limit on the amount of savings that can then be achieved by any lossless compressor. The
actual savings are realized by a lossless portion, known as the back end which is applied
to the preprocessed image data. The implementation of this module used in our system”
is a Huffman coder. It is independent of the lossy front end and can be replaced with a
run-length or textual-substitution based algorithm, to be selected by the synthesis system.
In our implementation, we chose to retain the original Huffman back end, a different algo-
rithm from the general-purpose dynamic Huffman coder which we also studied.’°' 3° This
is because the JPEG Huffman coder is especially suited to the redundancy remaining after
lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the
use of arithmetic coding back ends, which were found to be experimentally superior but
were not used because of proprietary considerations.”

Implementation

The system consists of a driver module, four block analysis modules, and the synthesis
module, which includes the database of compression algorithms. All modules are written in
C and were tested on a Unix platform. The program uses a data directed style of implemen-
tation for choosing the compression algorithm to apply to a block. Thus, additional block
types, compression algorithms and heuristics, and redundancy metrics can be added to the
system with minimal modification of the source code. Only the database would have to be

updated and the block analysis routines extended; the rest of the program would remain the
same.

The driver performs two iterative passes through the file. It first performs block analysis
on the file one 5K block at a time. This block size was chosen after experimentation showed
that the response of the system to changes in block type became roughly stable as block

Teradata, Exh. 1026, p. 96

Teradata, Exh. 1026, p. 97

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1109

size exceeded SK (i.e., did not significantly increase as block size did), and that a block size
of SK yielded highly accurate metrics (in only 1 of the 20 test files did the heterogeneous
compressor select a suboptimal algorithm for any block). Finally, we found that the highest
level of adaptivity without a noticeable decrease in accuracy was achieved at SK, hence
our choice of SK as the block size.

For each block, the system invokes the four analysis modules — three for metric compu-
tation and normalization and one to determine the file properties - and stores their output.
It then performs the metric comparison and combines the results with the file property to
complete the table lookup for the current block. An identifying tag for the selected algo-
rithm is written to the ‘compression plan’ , an anay which stores one complete compression
instruction per block (if the current block is deemed uncompressible, a ‘skip’ instruction is
recorded).

We pause here to discuss the nonnalization of the metrics. Originally, we used a naive
normalization method: direct algebraic scaling with experimentally determined constants
for each metric. This did not, however, accurately reflect the statistical relationship between
variance in character frequency and alphabetic redundancy. Also, the behavior of these func-
tions at asymptotes led to poor approximation of the overall distribution of data segments

in the test files. The result was that arithmetic coding was too often incorrectly chosen, re-
sulting in inferior compression; and selection approached randomness as metric values for
both string repetition and alphabetic distribution tended toward extreme values. Using the

gamma normalization method described above resulted in an improvement in the Selection
of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the
compression method in exactly those cases where the other methods performed worse-

The second pass performs the compression of each block. In order to improve perfor-
mance, this pass includes a simple optimization step which circumvents the overhead of
restarting compression after each fixed length block by merging contiguous blocks that are
to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged b10Ck$
using the algorithm recorded in the compression plan. The compressed data is written to an
output buffer, while the compressed length (which indicates where in the compressed file
a compressed block begins and ends) and compression method are recorded in a separate
history for reference at decompression time. If negative compression or no compression 15
achieved, or if the block was already marked uncompressible, then the data is copied directl)’
to the output buffer (the full block length and a code for ‘no compression’ are recorded In
the Compression history). Upon reaching the end of the blocks, the system writes out the
compressed data from the output buffers and prepends the encoded compression histof)’ to
produce the final output file.

When decompression is invoked, the driver module opens the compressed file, interprets
the history tag and performs the necessary operations. The tags are a stored version of the
compression history in compact, encoded form. Since the heterogeneous system generates
different compression sequences for each file, and since the length of a compressed b10Cl<
varies with both the length of the original block and the compression method used, these tags
are necessary to guide the decompression process. Currently only the compressed lengths
of each block and the method of compression are stored, but a checksum for the original
(decompressed) block length can be added with negligible overhead. When executed In
reverse order on each compressed block, the instructions in the history tags result "1 the
original file. For simplicity and security, they are prepended to the compressed file (and
can easily be encrypted).

Teradata, Exh. 1026, p. 97

Teradata, Exh. 1026, p. 98

1110 W. H. HSU AND A. E. ZWARICO

EXPERIMENTAL RESULTS

Design and construction of the test files

To test the overall performance, the system was run on a set of 20 test filcs. These files
range in length from approximately 39K to 366K, with representative files from each of the
ten block types included in the test corpus.

The test files are designed to model certain types of heterogeneous files, including utilities
for image viewing, business, or audio processing, and hypothetical multimedia databases and
programs. To construct these files, a collection of 30 files from the Unix, Apple Macintosh,
and MS-DOS (IBM PC) operating systems was created. These files are listed in Table II.
To create the test corpus, they were concatenated in groups of 2 or 3. The resultant series
of test files is listed in Table IH. All of the source files were used. The goal was to generate
as broad a range of permutations as possible (while restricting the generated files to those
which are likely to exist in a typical user environment). This was perfonned manually with
consideration toward combinatorial constraints and the criteria of realistic data modeling.
Since all of the files in the source collection originate from common commercial sources
or from public archives (with the exception of the source and object files, which are from
the code for the heterogeneous compressor itself), the latter constraint was considerably
simplified.

The assembled files were then ported to the test sites (a Sun workstation for Unix
compress and our heterogeneous compressor; a Macintosh for Stufilt and Compact Pro;
and an IBM 80486 machine for PKZIP). Binary file transfer mode was used to ensure that
the file lengths agreed exactly among all platforms.

Performance

_In this section, we review and analyze the performance of the heterogeneous compressor
Wlth. respect to compression savings, as compared with four of the commercial systems
previously discussed; and execution time. Finally, we briefly note the implications of running
the experiments and compiling performance data on several different architectures.

Compression savings

The total length of the uncompressed benchmark suite is just under three megabytes. Table
IV shows the compressed length achieved by Unix compress, PKZIP, Stufllt, Compact
Pro and the heterogeneous compression system. The heterogeneous compressor achieved
the greatest compression, with a total compressed length of 1828K. This represents an
additional savings of 162K (more than eight per cent) over the best commercial system
(Compact Pro V1.32), and 339K (nearly 16 per cent) over the average. Compressed lengths
for the commercial methods ranged from 1990K to 2375K.

Table V compares the percentage savings obtained by our system to the savings obtained
by the commercial programs and the heterogeneous system. The last two columns show the
difference in per cent saved between the synthesis system and the best and average of the
four commercial packages. The best commercial compressor is marked for each of the files.
Note that the heterogeneous compressor does better than all commercial programs in 19 of
20 cases and better than three of the four commercial systems in this one case (file 15).
The difference in compression for this file is only 0.02 per cent, whereas for all the other
files, the heterogeneous compressor has at least a 1.3 per cent improvement over the best

Teradata, Exh. 1026, p. 98

Teradata, Exh. 1026, p. 99

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1111

Table II. Files used to compose the test suite and their respective origins

File

designation
audiol

lowrdl

lowrd2

lowrd3

lowrd4

tcxtl

text}

text-4

tcxt5

tcxt6

tcxt7

cxccul

cxecu2

exccu3

cxccu4

cxccu5

cxccu6

graphl

graph2

graph3

graph4

graph5

graph6

graph7

objecl

objec2

objec3

sourcel

source2

File
name

cosby.snd

ticker.txt

exsound

hulT

appnote.uue

phrack.txt
techbook.txt

quantal .txt
attilla.flul‘f

shadow.fluff

quanta2.txt

ad

sh

blob
zero

nctwork2.exe

hostname

compmisc.drw

compperi.drw

computer.drw

lowres.mpt
3dbar.drw

image.ppm

t;rp4

test] .0

test2.o

test3.o

table.c

freeze.c

File

UPC
SoundMaster Macintosh audio file

ASCII characters from stock ticker

compressed World Builder sound library

compressed Unix executable
uuencoded text

English text
Unix news article

English text

English text

English text

English text

Unix executable

Unix executable

Silicon Graphics executable

Silicon Graphics executable
IBM PC executable

Unix executable

Lotus Freelance line drawing

Lotus Freelance line drawing

Lotus Freelance line drawing
MacPaint file

Lotus Freelance 3-D bar chart

PPM (high-resolution image) file
MacPaint file

Unix object file

Unix object file

Unix object file

C source code

C source code

commercial compressor. The average of each column appears in the bottom row; note that

the ‘percent difference’ averages are not weighted by file length, as each file is considered
a separate experiment.

Because the quality of compression by the synthesis system depends on that of the algo-

rithms and heuristics used, improvement of the implementations that we use should yield
higher performance. This is evidenced by comparing the results of compressing a file dom-

inated by string repetitions by Unix compress and Compact Pro. Both are implementations

of the Lempe1—Ziv algorithm. Unix compress has no heuristics, whereas Compact Pro is

a better implementation of LZ77.5' ” Compact Pro consistently outperforms compress. It
should be noted that the performance of the Freeze variant of Lempel—Ziv3 used in our sys-

Teradata, Exh. 1026, p. 99

Teradata, Exh. 1026, p. 100

1112 W. H. HSU AND A. E. ZWARICO

Table lll. Combinations of the test files and the resultant simulated data types

File File Classification of

number composition data modeled

1 text] — Iowrdl news or stock report

2 graph7 — objecl object file for a graphics viewer

3 lowrdl — text3 — graph4 multimedia application (text/graphics)

4 graph7 — execu3 graphics viewer

5 audiol — graph] multimedia data file (sound/graphics)

6 text2 — Iowrdl — graph3 multimedia data file (text/graphics)

7 lowrd3 — execul commercial utility

8 graph2 — lowrd2 — execu2 multimedia application

(graphics/sound/executable)

9 source] —- lowrd3 — graph6 multimedia data or source file

(source/compressed binary/image)
10 audio] — text4 multimedia data file (sound/text)

ll Iowrdl — execu4 statistical application with data

12 graph7 — text5 multimedia data file (text/graphics)

13 lowrd2 — text6 multimedia data file (sound/text)

14 text3 — audiol — graph5 multimedia data file (text/sound/graphics)

15 Iowrdl — text4 — source2 source file for multimedia program
(text/source code)

16 text7 — lowrd2 — graph3 multimedia data file

(text/compressed audio/graphics)

17 graph4 — audiol — execu5 multimedia application (sound/graphics)

18 execu4 —— graph7 — text4 multimedia application (graphics/text)

19 objec3 — lowrd3 —- execu6 commercial utility

20 objec2 — audiol — execu2 audio application

tern does consistently better than compress and is comparable to Compact Pro on standard
industrial benchmarks? Improving algorithms and adding or substituting new heuristics
would also yield more savings.

Execution times and speed optimizations

In this section we compare, in approximate units, the running time of the heterogeneous
compressor against those of the four commercial systems the savings rates of which for our
test files are documented above. The units are approximate for two reasons. First, because

the four test systems are commercial the source code for three of them is not publicly
available*, which renders an exact measure of user time infeasible. This concern is in part
assuaged by the non-multitasked, single-user nature of the microcomputer operating systems
on which three (compress for Linux notwithstanding) of the commercial systems reside.

Second, however, the drastic architectural and organizational differences among the various
native machines renders uniform comparisons unreliable. This applies even to normalized

execution times because the host machines differ not merely in clock cycle speed, but
in instruction set architecture and dynamic instruction frequencies for similar compression
algorithms. The exact running times reported in this section is only that of the heterogeneous

' AS "0161 however, the Lempel—Ziv implementation employed by Slufllt Classic is nearly identical to that of Unix compress.

Teradata, Exh. 1026, p. 100

Teradata, Exh. 1026, p. 101

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1113

compressor. These comprise the non-commercial‘ compnession systems for which source
code is available for profiling. For the commercial systems we report the observed wall

clock time to provide a standard of comparison, but note that the host machines vary 1n

computational power.

Table IV. Results of the four popular commercial programs and the heterogeneous compression system,
applied to the 20 test files

File Original Unix PKZIP Smfih Compact Heterogeneous

number length compress v1.10 Classic Pro V1.32 compressor

1 39.348 20.578 17.1 19 20.575 16.831 16,315

2 44.202 44.202 39.813 40,412 41,112 37,388

3 46.629 46.629 46.629 43.261 40,367 36,477

4 59.254 52.076 40.571 45.202 41.607 38,007

5 169.108 168.903 151.478 149.701 148,917 134,524

6 100.476 69.771 53.043 65.417 52,349 50.906

7 131 .663 131.663 103.544 106.643 109.979 96.429

8 220.644 190.971 137.886 173.677 137.401 127,384

9 301.805 145.993 1 12.503 137,685 115,096 103,730

11) 255.306 204.457 191.378 206,193 183,313 168,675

1 1 59.305 30.178 22,782 29,701 22,858 21,774

1 2 51 .715 51.715 43.032 46.462 44,107 40,229

13 63.189 63.189 58.247 59.569 59,934 54,481

14 196.789 176.276 196.789 172.486 151,057 137,052

15 148.908 73.555 63,748 75,595 64,618 63,778

16 164.535 141.067 132.992 135,245 110,093 104.175

17 203.912 203.912 184.657 189,398 202,821 170,564

18 200.640 128.675 107.728 125.461 104,711 101,674

19 366.557 265.1 14 198,727 265,027 198,756 187,659

20 278.152 223.277 193.980 224.943 191,763 181,030

Total 3.102.137 2.432.201 2.096.646 2,312,653 2,037,690 1,872,251

The running times for the commercial systems on the entire test suite documented above

appear in Table VI. All of the execution times are measured in wall clock units except for

the heterogeneous compressor‘s, which is a total of user times as reported by prof, the C

profiler under Unix. The wall clock time was empirically observed not to differ noticeably
from this total on an unloaded Unix machine. The commercial systems were similarly tested
on unloaded (or sing1e—task) systems.

For Unix compress, the mean running time was 26 s, where the average was taken

over runs on different Sun workstations of comparable power (documented below). A Unix

implementation of PKZIP was also tested on one of these Sun workstations, and achieved

an execution time of 56 s — only slightly better than the personal computer version. The

running time of 856 s placed the heterogeneous compressor in the middle to high end of
the commercial compressors in terms of running time.

‘ For this purpose we continue to consider Unix compress commercial. due to its wide range of versions.

Teradata, Exh. 1026, p. 101

Teradata, Exh. 1026, p. 102

111-4 W. H. HSU AND A. E, 'Z.\\’AR|C()

Table V. Percent savings for the test compression systems’

File Unix PKZIP Stuff?! Compact 1-lclcrogcncous Best Average

number compress V1.10 Classic Pro V1.32 compressor win win

1% saved) 1% saved) 1% saved) ("fa saved) (% saved) (‘Fa diff.) (‘lb diff.)
1 47-70 56-49 47-71 57-23: 58-54 1-31 6-25

2 0-00 9-93»: 8-57 6-99 15-42 5-49 9-04

3 0-00 0-00 7-22 13-43* 21-77 8-34 16-61

4 12-11 31-53* 23-71 29-78 35-86 4-33 1 1-57

5 0-12 10-43 11-48 11-94* 20-45 8-51 1 1-96

6 30-56 47-21 34-89 47-90* 49-34 1-44 9-20

7 0-00 21-36* 19-00 16-47 26-76 5-40 12-55

8 13-45 37-51 21-29 37-73* 42-27 4-54 14-77

9 51-63 62-72: 54-38 61-86 65-63 2 -91 '1 -98

1.1) 19531 15-04 19-24 28-20* 33-93 5-73 10-83

11 49-11 61-59* 49-92 61-46 63-28 1-70 7-77

12 0-00 16-79* 10-16 14-71 22-21 5-42 11-80

13 0-00 7-82»: 5-73 5-15 13-78 5-96 9-1 I

14 10-42 0-00 12-35 23-24* 30-36 7-12 18-85

15 50-60 57-19* 49-23 56-61 57-17 H0-02 3-76

16 14-26 19-17 17-80 33-09* 36-69 3-60 15-60

17 0-00 9-44* 7-12 0-54 16-35 6-91 12-08
18 35-87 46-31 37-47 47-81* 49-33 1-51 7-46

19 27-67 45-79* 27-70 45-78 48-80 3-02 12-07

20 19-73 30-26 19-13 31-06* 34-92 3-86 9-87

Average 19-16 29-83 24-21 31-55-n 37-14 4-35 10-96

' The starred entry in each row is the best commercial system.

CONCLUSIONS

Analysis of results

This project was successful on several levels. First, the feasibility of synthesizing com-

pression plans from encapsulated primitives for heterogeneous files was illustrated. The use

of property analysis and redundancy metrics was experimentally successful, the latter veri-

fying the applicability of statistical data analysis to automatic programming in this domain.
The positive test results obtained with the primitive database currently available would

probably be even better with improved implementations of the algorithms and heuristics.

The statistical foundations of the heterogeneous system proved strong enough to be of def-
inite relevance to the operating systems community, and might be useful in an information

theoretic context. The benefits of data compression are ubiquitous in that savings through
compression are independent of hardware and storage capabilities; selective techniques in-
crease these savings by a significant factor for heterogeneous files.

Future work

The sampling method may be improved in future implementations by randomization.
The increase in analysis accuracy that this would bring would demand more primitives and
heuristics — such need would arise in any case with the continuing development of new
files types, such as high-resolution animation and three—dimensional images.

Teradata, Exh. 1026, p. 102

Teradata, Exh. 1026, p. 103

AUTOM ATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1115

Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time Execution time
(s) (min)

Unix compress z 26 0:26
PKZIP vl.l0 67 1:07

Stufflt Classic 1 152 19:12

Compact Pro v1.32 1594 26:34

Heterogeneous compressor 856 14:56

In the current system, lossy compression methods can be applied only if an entire file

is found to be of a lossily compressible data type. Typically, these include high-resolution

images (for JPEG) and speech, general high-definition audio, and high-resolution animation

files. A special case could be implemented specifying that when an entire file matching a

single lossily compressible data type (i.e. a homogeneous loss-permissible file) is found,
the lossy algorithm may be applied.

The difficulty is that without explicit information on where loss-permissible portions of
a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely
guarantee that no data will be distorted which the user is not willing to have distorted.
Thus no lossy methods can be safely applied to any segment in the block-based system.
Thus a heterogeneous system would require either full interactive guidance from a user
who could inspect the file or knew its contents, or would require improved magic numbers
which encoded the lengths of loss-permissible segments. The heterogeneous system could
then scan for these codes during the property analysis phase and preempt or modify metric-
based selection if a lossy algorithm is warranted. The latter approach seems far superior
to interactive compression, which places an intolerable burden of responsibility on users
(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized
(especially lossy) compression algorithms such as JPEG and MPEG. For example, by des-
ignating RLE compression ‘0 per cent alphabetic distribution, 100 per cent run length, 0
per cent string repetition’ and by defining its single-type counterparts similarly, a standard
can be established. Unix compress, for instance, might rate ‘4O per cent AD, 0 per cent
RL, 60 per cent SR’ and a hypothetical algorithm X might rate ‘25 per cent AD, 50 per cent
RL, 25 per cent SR’ . The rating standard would correspond to the metric rating system for
files which our system uses, and would help in analysis of the performance of composite
compression techniques (which handle multiple redundancy types). Non-synthesized com-
posite techniques exist, both adaptive and non-adaptive, though results are not as promising
as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table
that the database of primitives used in this heterogeneous system may not be as well-stocked
as it optimally could be. Storer‘ lists a plethora of optional heuristics which are applicable
to Lempel—Ziv compression, specifically in augmenting and deleting from the dictionary.

ACKNOWLEDGEMENTS

This paper was produced as part of a research project at Johns Hopkins University. We
are grateful to the faculty and staff of the JHU Computer Science Department, and to the
Brown University CS Department, for their assistance throughout this work.

Teradata, Exh. 1026, p. 103

Teradata, Exh. 1026, p. 104

1114 W. H. HSU AND A. E. ZWARICO

Table V. Percent savings for the test compression systems’

File Unix PKZIP Stufilt Compact Heterogeneous Best Average

number compress v1.10 Classic Pro v1.32 compressor win win
(% saved) (% saved) (% saved) (% saved) (% saved) (% diff.) (% diff.)

1 47-70 56-49 47-71 57-23: 58-54 1-31 6-25

2 0-00 9-93* 8-57 6-99 15-42 5-49 9-04

3 0-00 0-00 7-22 13-43: 21-77 8-34 16-61

4 12-11 31-53* 23-71 29-78 35-86 4-33 11-57

5 0-12 10-43 11-48 11-94* 20-45 8-51 1 1-96

6 30-56 47-21 34-89 47-90:: 49-34 1-44 9-20

7 0-00 21-36»: 19-00 16-47 26-76 5-40 12-55

8 13-45 37-51 21-29 37-73: 42-27 4-54 14-77

9 51-63 62-72* 54-38 61-86 65-63 2-91 7-98

10 19-92 25-04 19-24 28-20* 33-93 5-73 10-83

11 49-11 61-59* 49-92 61-46 63-28 1-70 7-77

12 0-00 16-79:: 10-16 14-71 22-21 5-42 11-80

13 0-00 7-82* 5-73 5-15 13-78 5-96 9-11

14 10-42 0-00 12-35 23-24:: 30-36 7- 12 18-85

15 50-60 57-19»: 49-23 56-61 57-17 —0-02 3-76

16 14-26 19-17 17-80 33-09* 36-69 3-60 15-60

17 0-00 9-44* 7-12 0-54 16-35 6-91 12-08

18 35-87 46-31 37-47 47-81* 49-33 1-51 7-46

19 27-67 45-79* 27-70 45-78 48-80 3-02 12-07

20 19-73 30-26 19-13 31-06* 34-92 3-86 9-87

Average 19-16 29-83 24-21 31 -55* 37-14 4-35 10-96

" The starred entry in each row is the best commercial system.

CONCLUSIONS

Analysis of results

This project was successful on several levels. First, the feasibility of synthesizing com-
pression plans from encapsulated primitives for heterogeneous files was illustrated. The use

of property analysis and redundancy metrics was experimentally successful, the latter veri-

fying the applicability of statistical data analysis to automatic programming in this domain.
The positive test results obtained with the primitive database currently available would
probably be even better with improved implementations of the algorithms and heuristics.
The statistical foundations of the heterogeneous system proved strong enough to be of def-
inite relevance to the operating systems community, and might be useful in an information

theoretic context. The benefits of data compression are ubiquitous in that savings through
compression are independent of hardware and storage capabilities; selective techniques in-
crease these savings by a significant factor for heterogeneous files.

Future work

The sampling method may be improved in future implementations by randomization.
The increase in analysis accuracy that this would bring would demand more primitives and
heuristics — such need would arise in any case with the continuing development of new
files types, such as high-resolution animation and three—dimensional images.

Teradata, Exh. 1026, p. 104

Teradata, Exh. 1026, p. 105

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1115

Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time Execution time

(s) (min)

Unix compress z 26 0:26
PKZIP vl.l0 67 1:07

Stufl'lt Classic H52 19:12

Compact Pro v1.32 1594 26:34

Heterogeneous compressor 856 14:56

In the current system. lossy compression methods can be applied only if an entire file

is found to be of a lossily compressible data type. Typically, these include high-resolution

images (for JPEG) and speech, general high-definition audio, and high-resolution animation

files. A special case could be implemented specifying that when an entire file matching a
single lossily compressible data type (i.e. a homogeneous loss-pennissible file) is found,
the lossy algorithm may be applied.

The difficulty is that without explicit information on where loss-permissible portions of

a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely
guarantee that no data will be distorted which the user is not willing to have distorted.

Thus no lossy methods can be safely applied to any segment in the block-based system.
Thus a heterogeneous system would require either full interactive guidance from a user

who could inspect the file or knew its contents, or would require improved magic numbers
which encoded the lengths of loss-permissible segments. The heterogeneous system could
then scan for these codes during the property analysis phase and preempt or modify metric-
based selection if a lossy algorithm is warranted. The latter approach seems far superior
to interactive compression, which places an intolerable burden of responsibility on users
(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized
(especially lossy) compression algorithms such as JPEG and MPEG. For example, by des-
ignating RLE compression ‘0 per cent alphabetic distribution, 100 per cent run length, 0
per cent string repetition‘ and by defining its single-type counterparts similarly, a standard
can be established. Unix compress, for instance, might rate ‘4O per cent AD, 0 per cent
RL, 60 per cent SR‘ and a hypothetical algorithm X might rate ‘25 per cent AD, 50 per cent
RL, 25 per cent SR’ . The rating standard would correspond to the metric rating system for
files which our system uses, and would help in analysis of the perfonnance of composite
compression techniques (which handle multiple redundancy types). Non-synthesized com-
posite techniques exist, both adaptive and non-adaptive, though results are not as promising
as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table
that the database of primitives used in this heterogeneous system may not be as well-stocked
as it optimally could be. Storer' lists a plethora of optional heuristics which are applicable
to Lempel—Ziv compression, specifically in augmenting and deleting from the dictionary.

ACKNOWLEDGEMENTS

This paper was produced as part of a research project at Johns Hopkins University. We
are grateful to the faculty and staff of the JHU Computer Science Department, and to the
Brown University CS Department, for their assistance throughout this work.

Teradata, Exh. 1026, p. 105

Teradata, Exh. 1026, p. 106

1116 W. H. HSU AND A. E. Zwamco

sions on some of the research reported here. We also thank Jonathan liifrig. Bill Goodman.
and Tom Lane for guidance on several technical issues. Finally, we thank the anonymous re-
viewers for their comments and suggestions, especially for introduction to relevant literature
in arithmetic coding.

REFERENCES

1. James A. Storer, Data Compression: Mel/10!/5 and T/IEOEV. Computer Science Press. Rnckvillc. MI). I988.
2. Phillip W. Katz, PKZIP. Commercial compression system. version l.l. I990.
3. Sun Microsystems, compress. Commercial compression system, operating system version 5 3. September1992.

4. Raymond Lau, Stufflt Classic and Stufflt Deluxe. Commercial Compression system. l‘)*)t).
5. Bill Goodman, Compact Pro. Commercial compression system. v1.32. I991.
6. Terry A. Welch, ‘A technique for high performance data compression‘. II-.‘I-It-.’ (‘mn/um-r. 17(6), 8- I 9 (I984).
7. Gilbert Held and Thomas R. Marshall. Data COInpressi()n.' Teclmiqm-.i amt .«‘lppIt'mtt'rm.s': Htlrtiwttrr and

Software Considerations, 3rd edn, John Wiley and Sons. l99I,

8. Leonid Broukhis, Freeze implementation of LZHuf algorithm. C0mp.st)urccs.misc zircliivcs, liiternct. l99I.
9. Jean-Loup Gailly, comp.comprcssion benchmark (Calgary test corpus). ln comp.comprcssion FAQ list. J.

Gailly, (ed.), 1992.

Jeffrey S. Vitter, ‘Dynamic Huffman Coding‘, ACM Transactions on Mailmnaiiml .S'ofiwun'. (June I989).11: J. Ziv and A. Lempel, ‘A universal algorithm for sequential data compression’. lI:‘I:'I:' TI‘tlIl.$'(t(‘!i0n.s' on
Information Theory, 23,(3), 337-343 (I977).

12. J. Ziv and A. Lempel, ‘Compression of individual 5

on Information Theory, 24(5). 530-546 U973} .
13. Jon Louis Bentley. Daniel D. Sleator, Robert E. Tarjan and Victor K. Wei, ‘A locally adaptive data

compression scheme’, Communications of the ACM, 320-330 (April I986).
l4. Yooichi Tagawa, Hamhiko Okumura and Haruyasu Yoshizaki. LZl-luf: encoding/decoding module for

LHarc. Compression system. version 0.03 (3013). I939.

15. Haruyasu Yoshizaki. LHA: A high-performance file-compression program. Compression system, version
2.11. 1991.

I6. Edward R. Fiala and Daniel H. Greene, ‘Data compression with finite windows’, Crmimunicalions of the
ACM. 490-505 (1989).

l7. Ellis Horowitz and Sanaj Sahni, Fundamentals of
Rockville, Maryland, second edition, I987.

I 18. Graham Toal. Personal communication. Unpublished. I992.

19. Gerard Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by

\

§ Computer, Addison-Wesley, Reading, MA. 1989.
l

cqucnccs via variable-rate coding‘. II-.'I:'I:‘ 'I‘run.mcrions

Data Structures in I’as'('aI, Computer Science Press.

20. Ian F. Darwin, file (program). Berkeley Unix operating system. 1987.
21. David A. Huffman, ‘A method for the constmction of minimum-redundancy codes‘. Proceedings of the

IRE, number 40, i952, pp. 1098-] l0l. |
22. Claude E. Shannon and Warren Weaver, The Mathematical Theo

Illinois Press. Urbana and Chicago. 1963- _
23. Robert Sedgewick, Algorithms, 2nd edn, Addison-Wesley. Reading. MA, 1988.
24. Timothy C, Bell, John G, Cleary and Ian H. Witten, Text Compression, Prentice Hall. Englewood Cliffs.

New Jersey, 1990. _ _ , _ _ .
25. Sheldon Ross, A First Course in Probability. Macmillan Publishing Company, New York. third edition.1988.

Ian 1-[_ wine", Radford Neg] and John G. Cleary, ‘Arithmetic coding for data compression‘. Communica-
26.

tions of the ACM, 30(6). 520-540 (1987). ' , _ _
27. Independent JPEG Group. ‘JPEG image compression system . think.com FTP archives, lnternct. I994.
28. Jean—Loup Gailly, comp.comprcssion/comp.compression.research FAQ list. J. Gailly (ed.). URL

http://www.cis.ohio-state.edu/hypertext/faq/US$119‘/C01T1Pf'e5S1011‘faq/'°°P - h’°"11- l994~
29. James A. Storer, Image and Text Compression, Kluwer Academic Publishers, Norwell. MA. 1992. .
30. Graham Toal. C implementation of dynamic Huffman compressor by J. S. Vitter. comp.source.misc

archives, lnternet, 1990.

ry of Communications. University of

Teradata, Exh. 1026, p. 106

Teradata, Exh. 1026, p. 107

EROFTM/SIRE
KMACTICE & EXPERIENCE

« 5

II
NOVEMBER 1995

, EDITORS

$ DOUGLAS COMER

ANDY WELLINGS
F

1'

® WILEY.'"’::bw'.~s*wn Smrnv .'.'i7'.').‘

Chichester ‘ New York - Brisbane Toronto Singapore

A Wiley—|ntarsciam:e Publication

I SP5 25n1>1183—129a|1995:ISSN 38-06-M

Teradata, Exh. 1026, p. 108

DECEMBER 1995

EDITORS

DOUGLAS COMER

ANDY WELLINGS

Q WILEY."u'f"i.W"l!'r‘1 an--are W1"

Chichester - New ‘fork - Brisbane Toronto Singapore

A Wi|ey—lnterscience Publication

SPEXBL 25l'I2} 1299-1408 Il99’5'4

‘ '35” °°33‘°"“ j

A. - — ____,

Teradata, Exh. 1026, p. 109

HECKMAN
BINDEHY INC. E

FEB 96

Bgund -To-Pl:-.15? DIANA 46962
 Teradata, Exh. 1026, P- 109

Attachment 1g

Teradata, Exh. 1026, p. 110

Attachment lg

Teradata, Exh. 1026, p. 111

OFTWARE
PRACTICE 3. EXPERIENCE
iQLUME 25, No_ 10 OCTOBER 1995

EDITORS

DOUGLAS COMER

ANDY WELLINGS

® WILEYPublishers Since Mr‘)?

Chichestar New York - Brisbane * Toronto - Singapore

A Wiley—|ntarscience Publication

SPEXBL 25(1D) 1055-'|182(1995)
ISSN 0038-0644

I SOFTWARE
PRACTICE & EXPERIENCE
Editors
Professor D. E. Comer, Computer Science Department, Purdue University, West
Lafayette, IN 47907, U.S.A. .
Charlotte I. Tubis, U.S. Editorial Assistant. Computer Science Department, Purdue University, West Lafayette,
IN 47907, U.S.A.

Dr A. J. Wellings, Department of Computer Science, University of York,
Heslington, York Y01 5DD

Advisory Editorial Board
Professor D. W. BARRON
Department of Electronics and Computer Science,
University of Southampton,
Southampton S09 5NH, U.K.

Professor P. J. BROWN
Computing Laboratory, The University,
Canterbury, Kent CT2 7NF, U.K.

Professor J. A. CAMPBELL
Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, U.K.

Professor F. J. CORBATO
Electrical Engineering Department,
Massachusetts Institute of Technology,
545 Technology Square,
Cambridge, Massachusetts 02139, U.S.A.

Dr. Christopher W. FRASER
AT&T Bell Laboratories, 600 Mountain Ave 2C-464,
Murray Hill, NJ 07974-0636, U.S.A.

Professor PER BRINCH HANSEN
School of Computer and Information Science,
4-116 CST, Syracuse University,
Syracuse, New York 13210, U.S.A.

Professor D. R. HANSON
Department of Computer Science,
Princeton University, Princeton,
New Jersey 08544, U.S.A.

Professor J. KATZENELSON
Faculty of Electrical Engineering,
Technion-Israel Institute of Technology,
Haifa, Israel

Dr. B. W. KERNIGHAN
AT&T Bell Laboratories, 600 Mountain Avenue,
Murray Hill , New Jersey 07974, U.S.A.

Aims and Scope

Professor D. E. KNUTH
Department of Computer Science, Stanford University,
Stanford, Californ ia 94305, U.S .A.

Dr. B. W. LAMPSON
180 Lake View Ave.
Cambridge,
MA 02138. U.S.A.

Dr. C. A. LANG
Three-Space Ltd,
70 Castle Street.
Cambridge CB3 OAJ, U.K.

Professor B. RANDELL
Computing Laboratory,
Univers ity of Newcastle-upon-Tyne,
Claremont Tower, Claremont Road,
Newcastle-upon-Tyne NEl 7RU, U.K.

Professor J. S. ROHL
Department of Computer Science,
The Univers ity of Western Austra lia,
Nedlands, Western Australia 6009.

D. T. ROSS
Softech Inc. , 460 Totten Pond Road,
Waltham, Massachusetts 02154, U.S.A.

B. H. SHEARING
The Software Factory,
28 Padbrook, Limpsfield, Oxted,
Surrey RH8 ODW, U.K.

Professor N. WIRTH
Institut fUr Computersysteme, ETH-Zentrum,
CH-8092 Zurich, Switzerland.

Software--Practice and Experience is an internationally respected and rigorously refereed vehicle for the dissemination and
discussion of practical experience w ith new and established software for both systems and applications. Contributions regu
larly: (a) describe detailed accounts of completed software-system projects which can serve as 'how-to-do-it' models for future
work in the same fie ld; (b) present short reports on programming techniques that can be used in a wide variety of areas; (c)
document new techniques and tools that aid in solving software construction problems; and (d) explain methods/techniques
that cope with the specia l demands of large sca le software projects. The journal also features timely Short Communications
on rapidly developing new topics.

The editors actively enr.ou rage papers which result from practical experience with too ls and methods developed and used
in both academic and industrial environments. The aim is to encourage practitioners to share their experiences with design,
implementation and evaluation of techniques and tools for software and software systems.

Papers cover software design and implementation, case studies describing the evolution of system and the thinking behind
them, and criti ca l appraisals of software systems. The journa l has always welcomed tutorial articles describing we ll -tried tech
niques not previously documented in computing literature. The emphasis is on practical experience; articles w ith theoretical
or mathematical content are included on ly in cases where an understanding of the theory will lead to better practical systems.

Articles range in length from a Short Communication (half to two pages) to the length required to give full treatment to a
substantial piece of software (40 or more pages).

Advertising: For details contact-
Michael J. Levermore. Advertisement Sales, John Wiley & Sons Ltd, BaHins Lane. Chichester, Sussex POt9 lUD. England (Telephone 01243
77035 1, Fax 01243 775878, Telex 862901

Software-Practice and Experience (lSSN 0038-{)644/USPS 890-9201 is published monthly, by John Wiley & Sons Limited, BaHins Lane. Chichester.
Sussex, England. Second class postage paid at Jamaica, N.Y. 11431. Air freight and mailing in the U.S.A. by Publications Expediting Services tnc.,
200 Meacham Avenue, Elmont. N.Y. 11003. © 1995 by John Wi ley & Sons Ltd. Printed and bound in Great Britain by Page Bros, Norwich. Printed
on acid-free paper.

To subscribe: Orders should be addressed to Subscriptions Department, John Wiley & Sons Limited, BaHins Lane. Chichester. Sussex. P019 lUD,
England. 1995 subscription price (13 issuesl : U.S. $825.00.

U.S.A. POSTMASTER: Send address changes to Softwar..-Practice and Experience, c/o Publications Expediting Services Inc., 200 Meacham
Avenue, Elmont, N.Y. 11003. U.S.A.

Teradata, Exh. 1026, p. 112

SOFTWARE-PRACTICE AND EXPERIENCE
(Softw. pract. exp.)

CONTENTS
VOLUME 25, ISSUE No. 10 October 1995

Migration in Object-oriented Database Systems-A Practical Approach:
C. Huemer, G. Kappel and S. Vieweg ... 1065

Automatic Synthesis of Compression Techniques for Heterogeneous
Files: W. H. Hsu and A. E. Zwarico ... 1097

A Tool for Visualizing the Execution of Interactions on a Loosely-coupled
Distributed System: P. Ashton and J. Penny ... 1117

Process Scheduling and UNIX Semaphores: N. Dunstan and I. Fris 1141

Software Maintenance: An Approach to Impact Analysis of Objects
Change: S. Ajila .. 1155

SPEXBL 25(10) 1065-1182 (1995)
ISSN 0038-{)644

Indexed or abstracted by Cambridge Scientific Abstracts, CompuMath Citation Index (lSI),

Compuscience Database, Computer Contents, Computer Literature Index, Computing

Reviews, Current Contents/Eng, Tech & Applied Sciences, Data Processing Digest, Deadline

Newsletter, Educational Technology Abstracts, Engineering Index, Engineering Societies

Library, IBZ (International Bibliography of Periodical Literature), Information Science Abstracts

(Plenum), INSPEC, Knowledge Engineering Review, Nat Centre for Software Technology,

Research Alert (lSI) and SCI SEARCH Database (lSI).

Teradata, Exh. 1026, p. 113

SOFfWARE-PRACTICE AND EXPERIENCE. VOL. 25(10). 1097-1116 (OCTOBER 1995)

Automatic Synthesis of Compression Techniques for
Heterogeneous Files

WILLIAM H. HSU

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
(email: bhsu@cs.uiuc.edu, voice: (217) 244-1620)

AND

AMY E. ZWARICO

Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, u.s.A.
(email: amy@cs.jhu.edu, voice: (410) 516-5304)

SUMMARY

We present a compression technique for heterogeneous files, those files which contain multiple types of
data such as text, images, binary, audio, or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained using four commercially available compression programs, PKZIP, Unix compress, Stufflt,
and Compact Pro, and show that our system provides better space savings.

KEY WORDS: adaptive/selective data compression algorithms; redundancy metrics; heterogeneous files; program synthesis

INTRODUCTION

The primary motivation in studying compression is the savings in space that it provides.
Many compression algorithms have been implemented, and with the advent of new hard
ware standards, more techniques are under development. Historically, research in data com
pression has been devoted to the development of algorithms that exploit various types of
redundancy found in a file. The shortcoming of such algorithms is that they assume, often
inaccurately, that files are homogeneous throughout. Consequently, each exploits only a
subset of the redundancy found in the file.

Unfortunately, no algorithm is effective in compressing all files. 1 For example, dynamic
Huffman coding works best on data files with a high variance in the frequency of individ
ual characters (including some graphics and audio data), achieves mediocre performance on
natural language text files, and performs poorly in general on high-redundancy binary data.
On the other hand, run length encoding works well on high-redundancy binary data, but
performs very poorly on text files. Textual substitution works best when multiple-character
strings tend to be repeated, as in English text, but this performance degrades as the average

CCC 0038-0644/95/101097-20
©1995 by John Wiley & Sons, Ltd.

Received 20 April 1994
Revised 5 February 1995

Teradata, Exh. 1026, p. 114

1098 W. H. HSU AND A. E. ZWARICO

length of these strings decreases. These relative strengths and weaknesses become critical
when attempting to compress heterogeneous files. Heterogeneous files are those which con
tain multiple types of data such (}s text, images, binary, audio, or animation. Consequently,
their constituent parts may have different degrees of compressibility. Because most com
pression algorithms are either tailored to a few specific classes of data or are designed to
handle a single type of data at a time, they are not suited to the compression of heteroge
neous files. In attempting to apply a single method to such files, they forfeit the possibility
of greater savirigs achievable by compressing various segments of the file with different
methods.

To overcome this inherent weakness found in compression algorithms, we have developed
a heterogeneous compressor that automatically chooses the best compression algorithm to
use on a given variable-length block of a file, based on both the qualitative and quantita
tive properties of that segment. The compressor determines and then applies the selected
algorithms to the blocks separately. Assembling compression procedures to create a specif
ically tailored program for each file gives improved performance over using one program
for all files. This system produces better compression results than four commonly available
compression packages, PKZIP,2 Unix compress,3 Stuff/t,4 and Compact Pro5 for arbitrary
heterogeneous files.

The major contributions of this work are twofold. The first is an improved compression
system for heterogeneous files. The second is the development of a method of statisti
cal analysis of the compressibility of a file (its redundancy types). Although the concept
of redundancy types is not new,6.7 synthesis of compression techniques using redundancy
measurements is largely unprecedented. The approach presented in this paper uses a straight
forward program synthesis technique: a compression plan, consisting of instructions for each
block of input data, is generated, guided by the statistical properties of the input data. Be
cause of its use of algorithms specifically suited to the types of redundancy exhibited by
the particular input file, the system achieves consistent average performance throughout the
file, as shown by experimental evidence.

As an example of the type of savings our system produces, consider compressing a
heterogeneous file (such as a small multimedia data file) consisting of 10K of low redun
dancy (non-natural language) ASCII data, 10K of English text, and 25K of graphics. In
this case, a reasonably sophisticated compression program might recognize the increased
savings achievable by employing Huffman compression, to better take advantage of the fact
that the majority of the data is graphical. However, none of the general-purpose compres
sion methods under consideration are optimal when used alone on this file. This is because
the text part of this file is best compressed by textual substitution methods (e.g., Lempel
Ziv) rather than statistical methods, while the low-redundancy data* and graphics parts
are best compressed by alphabetic distribution-based methods (e.g., arithmetic or dynamic
Huffman coding) rather than Lempel-Ziv or run-length encoding. This particular file totals
45K in length before compression. A compressor using pure dynamic Huffman coding only
achieves about 7 per cent savings for a compressed file of length 42.2K. One of the best
general-purpose Lempel-Ziv compressors currently available8

•9 achieves 18 per cent sav
ings, producing a compressed file of 1e'ngth 37.4K. Our system uses arithmetic coding on
the first and last segments and Lempel-Ziv compression on the text segment in the middle,
achieving a 22 per cent savings and producing a compressed file of length 35.6K. This is
a 4 per cent improvement over the best commercial system .

• This denotes. in our system. a file with a low rate of repeated strings.

Teradata, Exh. 1026, p. 115

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1099

The purpose· of our experiments was to verify the conjecture that a selective system
for combining methods can improve savings on a significant range of heterogeneous files,
especially multimedia data. TlJis combination differs from current adaptive methods in
that it switches among compression paradigms designed to remove very different types
of redundancy. By contrast, existing adaptive compression programs are sensitive only to
changes in particular types of redundancy, such as run-length, which do not require changing
the underlying algorithm used in compression. Thus they cannot adapt to changes in the
type of redundancy present, such as from high run-length to high character repetition. The
superiority of our approach is demonstrated in our experimental section.

This paper begins with a presentation of existing approaches to data compression, includ
ing a discussion of hybrid and adaptive compression algorithms and a description of four
popular commercial compression packages. These are followed by documentation on the
design of the heterogeneous compression system, analysis of experimental results obtained
from test runs of the completed system, and comparison of the system's performance against
that of commercial systems. Finally, implications of the results and possibilities for future
work are presented.

RELATED WORK

It is a fundamental result of information theory that there is no single algorithm that per
forms optimally in compressing all files . I However, much work has been done to develop
algorithms and techniques that work nearly optimally on all classes of files. In this sec
tion we discuss adaptive algorithms, composite algorithms, and four popular commercial
compression packages.

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the development
of adaptive compression algorithms, and the composition of various algorithms. Adaptive
compression algorithms attune themselves gradually to changes in the redundancies within a
file by modifying parameters used by the algorithm, such as the dictionary, during execution.

For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman
coding lO maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro
cessed.

An example of an adaptive textual substitution algorithm is Lempel-Ziv compression,
a title which refers to two distinct variants of a basic textual substitution scheme. The
first variant, known as LZ77 or the sliding dictionary or sliding window method, selects
positional references from a constant range of preceding strings. I . II These 'back-pointers'
literally encode position and length of a repeated string. The second variant, known as
LZ78 or the dynamic dictionary method, uses a dictionary structure with a paging heuristic.
When the dictionary ~ a table of strings from the file - is completely filled, the contents
are not discarded. Instead, an auxiliary dictionary is created and updated while compression
continues using the main dictionary. Each time this auxiliary table is filled, its contents are
'swapped' into the main dictionary and it is cleared. The maintenance of dictionaries for
textual substitution is analogous to the semi-space method of garbage collection, in which
two pages are used but only one is 'active' - these are exchanged when one fills beyond
a preset threshold. Another adaptive variant of this algorithm is the Lempel-Ziv-Welch

Teradata, Exh. 1026, p. 116

1100 W. H. HSU AND A. E. ZWARICO

(LZW) algorithm, a descendant of LZ78 used in Unix compress.6, 12 Both LZW and LZ78
vary the length of strings used in compression.6

, 12
Yet another adaptive (alph~abetic distribution-based) compression scheme, the Move-To

Front (MTF) method, was developed by Bentley et ai. 13 In MTF, the 'word code' for a
symbol is determimid by the position of the word in a sequential list. The word list is ordered
so that frequently accessed words are near the front, thus shortening their encodings.

Adaptive compression algorithms are not appropriate to use with heterogeneous files
because they are sensitive only to . changes in the particular redundancy type with which
they are associated, such as a change in the alphabetic distribution. They do not exploit
changes across different redundancy types in the files. Therefore a so-called adaptive method
typically cannot directly handle drastic changes in file properties, such as an abrupt transition
from text to graphics. For example, adaptive Huffman compressors specially optimized for
text achieve disproportionately poor performance on certain image files, and vice versa. As
the use of multimedia files increases, files exhibiting this sort of transition will become
more prevalent.

Our approach differs from adaptive compression because the system chooses each algo
rithm (as well as the duration of its applicability) before compression begins, rather than
modifying the technique for each file during compression. In addition, while adaptive meth
ods make modifications to their compression parameters on the basis of single bytes or fixed
length strings of input, our heterogeneous compressor bases its compression upon statistics
gathered from larger blocks of five kilobytes. This allows us to handle much larger changes
in file redundancy types. This makes our system less sensitive to residual statistical fluctu
ations from different parts of a file. We note that it is possible to use an adaptive algorithm
as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression
algorithms. Composition can either be accomplished by running several algorithms in suc
cession or by combining the basic algorithms and heuristics to create a new technique. For
example, recent implementations of 'universal' compression programs execute the Lempel
Ziv algorithm and dynamic Huffman coding in succession, thus improving performance
by combining the string repetition-based compression of Lempel-Ziv with the frequency
based compression strategy of dynamic Huffman coding. One commercial implementation
is LHarc. 14

,15 Our system exploits the same savings since it uses the Freeze implementa
tion of the Lempel-Ziv algorithm, which filters Lempel-Ziv compressed output through a
Huffman coder. An example of a truly composite technique is the compression achieved
by using Shannon-Fano tries* in conjunction with the Fiala-Greene algorithm (a variant
of Lempel-Ziv)16 in the PKZIP2 commercial package. Tries are used to optimally encode
strings by character frequency. I? PKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchmarks.9

Our approach generalizes the ideas of successively executing or combining different
compression algorithms by allowing any combination of basic algorithms within a file. This
includes switching from among algorithms an arbitrary number of times within a file. The
algorithms themselves may be simple or composite and may be adaptive. All are treated as
atomic commands to be applied to portions of a file .

• A trie is a tree of variable degree 2: 2 such that (I) each edge is labelled with a character, and the depth of any node
represents one more than the number of characters required to identify it; (2) all internal nodes are intermediate and represent
prefixes of keys in the trie; (3) keys (strings) may be inserted as leaves using the minimum number of characters which
distinguish them uniquely . Thus a generic trie containing the strings computer and compare would have keys at a depth of
five which share a common prefix of length four.

Teradata, Exh. 1026, p. 117

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1101

The problem of heterogeneous files was addressed by Toal 18 in a proposal for a naive
heterogeneous compression system similar to ours. In such a system, files would be seg
mented into fixed-length encapsulated blocks; the optimal algorithm would be selected for
each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks
would be independently compressed. Our system, however, performs more in-depth statis
tical analysis in order to make a more informed selection from the database of algorithms.
This entails not only the determination of qualitative data properties but the computation of
metrics for an entire block (as opposed to sporadic or random sampling from parts of each
block). Furthermore, normalization constants for selection parameters (i.e. the redundancy
metrics) are fitted to observed parameters for a test library. Finally, a straightforward but
crucial improvement to the naive encapsulated-block method is the implementation of a
mUlti-pass scheme. By determining the complete taxonomy (data type and dominant redun
dancy type) in advance, any number of contiguous blocks which use the same compression
method will be treated as a single segment. Toal observed in preliminary experiments that
the overhead of changing compression schemes from one block to another dominated the
additional savings that resulted from selection of a superior compression method. 18 This
overhead is attributable to the fact that blocks compressed independently (even if the same
method is used) are essentially separate files and assume the same startup overhead of the
compression algorithm used. * We have determined experimentally that merging contiguous
blocks whenever possible obviates the large majority of changes in compression method.
This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products

One of the goals of this research was to develop a compression system which is gener
ally superior to commercially available systems. The four systems we studied are PKZIP,
developed for microcomputers running MS-DOS;2 Unix compress;3 and StuffIt Classic4

and Compact pro,5 developed for the Apple Macintosh operating system. Each of these
products performs its compression in a single pass, with only one method selected per file.
Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive version of the Lempel-Ziv algorithm.6 It operates by
substituting a fixed-length code for common substrings. compress, like other adaptive
textual substitution algorithms, periodically tests its own performance and reinitializes its
string table if the amount of compression has decreased.

StuffIt makes use of two sets of algorithms: it first detects special-type files such as
image files and processes them with algorithms suited for high-resolution color data; for the
remaining files, it queries the operating system for the explicit file type given when the file
was created, and uses this information to choose either the LZW variant of Lempel-Ziv,4, 6
dynamic Huffman coding, or run-length encoding. This is a much more limited selection
process than what we have implemented. Additionally, no selection of compression methods
is attempted within a file . Compact Pro uses the same methodology as StuffIt and compress,
but incorporates an improved LempeI-Ziv derived directly from LZ77.11 The public-domain
version of StuffIt is derived from Unix compress, as is evident from the similarity of their
performance results .

• For purposes of comparison, the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 4K).

Teradata, Exh. 1026, p. 118

1102 W. H. HSU AND A. E. ZWARICO

Compression systems such as StuffIt perform simple selection among alternative com
pression algorithms. The important problem is that they are underequipped for the task of
fitting a specific technique to each file (even when the uncompressed data is homogeneous).
StuffIt uses few heuristics, since its algorithms are intended to be 'multipurpose' . Further
more, only the file type is considered in selecting the algorithm - that is, no measures of
redundancy are computed. Earlier versions of StuffIt (which were extremely similar to Unix
compress) used composite alphabetic and textual compression, but made no selections on
the basis of data characteristics. The chief improvements of our heterogeneous compressor
over this approach are that it uses a two-dimensional lookup table, indexed by file proper
ties and quantitative redundancy metrics, and - more important - that it treats the file as a
collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (SK in
the current implementation), each containing a potentially different type of data and thus
best compressed using different algorithms. The actual compression is accomplished in
two phases. In the first phase, the system determines the type and compressibility of each
block. The compressibility of each block of data is determined by the values of three
quantitative metrics representing the alphabetic distribution, the average run length and the
string repetition ratio in the file. If these metrics are all below a certain threshold, then the
block is considered fully compressed (uncompressible) and the program continues on to the
next block. Otherwise, using the block type and largest metric, the appropriate compression
algorithm (and possible heuristic) are chosen from the compression algorithm database. The
compression method for the current block is then recorded in a small array-based map of
the file, and the system continues.

The second phase comprises the actual compression and an optimization that maximizes
the size of a segment of data to be compressed using a particular algorithm. In this optimiza
tion, which is interleaved with the actual compression, adjacent blocks for which exactly
the same method have been chosen are merged into a single block. This merge technique
maximizes the length of segments requiring a single compression method by greedily scan
ning ahead until a change of method is detected. Scanning is performed using the array
map of the file generated when compression methods were selected from the database. A
compression history, needed for decompression, is automatically generated as part of this
phase.

The newly compressed segments are written to a buffer by the algorithm, which stores
the output data with the compression history. The system then writes out the compressed
file and exits with a signal to the operating system that compression was successful.

From this two-pass scheme it is straightforward to see why this system is less susceptible
than traditional adaptive systems to biases accrued when the data type changes abruptly
during compression. Adaptive compressors perform all operations myopically, sacrificing
the ability to see ahead in the file or data stream to detect future fluctuations in the type
of data. As a result, adaptive compressors retain the statistical vestiges of the old method
until these are 'flushed out' by new data (or balanced out, depending upon the process for
paging and aging internal data structures such as dictionaries). Thus adaptive compressors
may continue to suffer the effects of bias, achieving suboptimal compression. On the other
hand, by abruptly changing compression algorithms, our technique completely discards all
remnants of the 'previous' method (i.e. the algorithm used on the preceding segment). This

Teradata, Exh. 1026, p. 119

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1103

allows us to immediately capitalize on changes in data. In addition, merging contiguous
blocks of the same data type acquires the advantage of incurring all the overhead at once
for switching to what will be the best compression method for an entire variable-length
segment. The primary advantage of adaptive compression techniques over our technique is
that the adaptive compression algorithms are 'online' (single-pass). This property increases
compression speed and, more important, gives the ability to compress a data stream (for
instance, incoming data packets in a network or modem transmission) in addition to files
in secondary . storage or variable-length buffers.

The remainder of this section presents the system. We begin with a description of the
calculation of the block types and the redundancy metrics. We also explain the use of the
metrics as absolute indicators of compressibility, and then describe the compression algo
rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

Property analysis

The compressibility of a block of data and the appropriate algorithm to do so are deter
mined by the type of data contained in a block and the type of redundancy (if any) in the
data. These two properties are represented by four parameters: the block type, and the three
redundancy metrics. The block type describes the data in the block - text, binary, graphical,
etc. The three redundancy metrics are the degree of variation in character frequency, average
run length in the file, and the string repetition ratio of the file. They provide a quantitative
measure of how compressible the block is and which type of redundancy is most evident
in the block. The use of both quantitative redundancy measures (redundancy metrics) and
qualitative characteristics (block types) as indicators for data compressibility is advocated
by Held7 and Salton. 19 We have refined the process for computing those attributes referred
to as datanalysis results by Held7 and as statistical language characteristics by Salton19 to
obtain an actual guide for compression. The remainder of this section describes how these
four parameters are determined for each block.

Block types

The block type describes the nature of a segment of input data. There are ten classifica
tions of data in this system: ANSI text, non-natural language text (hexadecimal encodings of
binary data), natural language text, computer source code, low redundancy binary, digitized
audio, low resolution graphics, high-resolution graphics, high-redundancy binary executable,
and binary object data. ANSI text is composed of characters from a superset of the ASCII
alphabet. Non-natural language text contains primarily ASCII text but does not follow a
distribution of characters like that of human languages. Examples are computer typesetting
data, uuencoded and BinHex encoded data (which has the same character distribution as
binary data but is converted to text for ease of transmission). Natural language text in
cludes text written in English as well as other languages which are representable by the
Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic
alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana
romanizations of the Chinese and Japanese languages (as opposed to their digital en cod
ings). Computer source code uses the ASCII alphabet but characters are distributed with a
different frequency than in natural language text. Low-redundancy binaries usually contain
compressed data, but may also include data which is merely difficult to compress. Audio

Teradata, Exh. 1026, p. 120

1104 W. H. HSU AND A. E. ZWARICO

data are very high in redundancy; audio files (and audio segments of multimedia files)
are usually extremely large. Low-resolution graphics have long runs of contiguous repeated
bits but unlike high-resolution graphics are not suited to lossy compression. High-resolution
graphics include color and grayscale and may be compressed with lossy methods. Binary
executables, like low~resolution graphics, have long runs of contiguous repeated bits and
comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a procedure new-file which is our extension of the
Unix file command.20 file works by examining the first 512 bytes of a file and comparing
the pattern of data contained in it to a collection of known data patterns from Unix and
other operating systems. new-file works in a similar fashion, with two modifications.
First, it examines and compares not only the first 512 bytes of a data set, but also 512
bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides
a better indication of the primary data type of a file by taking into account the possibility
that the properties may change anywhere within the file. Thus, new-file decides on the
'most applicable' data type by a majority vote (or the first data type detected in the case of
a three-way tie) . The other change is that the known patterns of data have been increased
by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com
pressibility of a block of data. They are: the degree of variation in character frequency or
alphabetic distribution, MAD; the average run length of the block, MRL ; and the string
repetition ratio of the block, M sR . In general, these three manifestations of redundancy are
independent. Each of the redundancy types is exploited by different compression algorithms.
Frequency of characters is exploited by arithmetic or alphabetic encoding algorithms. In
arithmetic coding data is represented by an interval that is calculated from the probability
distribution of data. With alphabetic coding algorithms such as the Huffman2l and Shannon
Fano22 algorithms, more frequently occurring characters are replaced by shorter units than
the less frequently occurring characters. Contiguous strings, long strings of identical units
occurring next to one another, are exploited by run length encoding algorithms.23 In these
algorithms, contiguous strings are replaced by a single occurrence of the string, called a
run, plus a count of the number of identical strings following. Both alphabetic distribu
tion and average run length are sometimes characterized as statistical redundancy metrics.24

Recurrent strings, which occur repeatedly in the input stream with any number of inter
leaved symbols, are exploited by textual substitution 'algorithms such as Lempel-Ziv.6,ll,l2
In these algorithms, recurrent instances are replaced with positional references (pointers) to
the original instance.

Experimental evidence for the efficacy of quantitative redundancy measures is described
in texts by Storerl and Shannon.22 Shannon provided an estimate of the entropy of English
text, approximately bounding it to be between one and two bits per character.22 This was
determined experimentally by presenting fragments of (unfamiliar) English text to human
subjects and recording the frequency with which they guessed unknown letters. The frag
ments were revealed character by character, so that letters at the end of long or uncommon
words were easiest to guess and letters at the beginnings of words were hardest. The ob
servation that binary executables are known to possess high average run lengths is found
in Storer. 1 However, this property is rarely exploited or measured.

Teradata, Exh. 1026, p. 121

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1105

Each redundancy metric is calculated by a separate statistical sampling routine and nor
malized using a gamma distribution function G to be a number between 0 and 10 so as
to simplify comparison among the different metrics. The gamma distribution was chosen
because the graph of each of the unscaled redundancy metrics for a test set of 50 files, when
plotted on a histogram, approximated a gamma distribution. Normal and X2 distributions
were also considered, but these proved to be too specific for the application (since they
are both specific parametric cases of the gamma distribution). The gamma distribution is
defined as follows (cf Ross25) :

fo XT IT(x) dx

ATe->'Tx (>\TX)tT - l

r(tT)

1000

e- YytT - l dy

where IT is the density function, r is the gamma function, XT is the unnormalized measure,
tT is the shape parameter for the gamma distribution, and AT is the scale parameter for
the gamma distribution. The T subscript simply represents the redundancy type under con
sideration, i.e. AD, RL, or SR, respectively. The shape and scaling parameters, tT and AT
respectively, were determined by fitting the best gamma distribution curve to the data set.
This was done by performing the preferred compression method for each file and tabulating
the induced ratio among normalized metrics to yield the desired parameter values for each
segment. These were then averaged to obtain the empirical scaling parameters.

The alphabetic distribution metric (the degree of variation in character frequency) of a
block is calculated by taking the population (root-mean-square) standard deviation of the
ordinal values of characters in the block and dividing it by the block length (in bytes). The
MAD metric is calculated by the following formulas:

a =

block length in bytes

L:cEcharset (c - f.L)2
256

where c is the ordinal value of a character and f.L is the average ordinal value of all characters
in a block. The normalization uses tAD = 1.70 and AAD = 53 .0 as parameters.

The average run length metric is obtained by dividing the number of bits in a block
by the number of runs . A run is defined to be a repetition of symbols (either bits or
bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if
I = 0001111001110000 is a file of 16 bits, then the number of bit runs is 5, and the number
of byte runs is 2. The scaled metric- MRL is obtained by:

10 * GRL(XRL)
file length in bits

number of runs

Teradata, Exh. 1026, p. 122

1106 W. H. HSU AND A. E. ZWARICO

with gamma distribution parameters tRL = 0.50 and ARL = 12.0.
The string repetition ratio metric is the total number of n-bit strings in the block divided

by the number of distinct n-bit strings (up to lOOK). In our implementation, n is 32, the
word size of our machine. The normalized metric MSR is obtained by:

number of n bit strings
XSR

number of distinct n bit strings

with gamma distribution parameters tSR = 0.18 and ASR = 0.2.
The alphabetic distribution and average run length metrics can be calculated in linear

time. The string repetition ratio can be computed in O(n log n) time using a dictionary data
structure. For simplicity, and because a (small) constant amount of data is scanned, we use
an O(n2) version. New strings are stored in an array rather than a binary tree, which would
require more insertion overhead (and is not worth while for the 5K block length used in
the current system). Our routine integrates fr(x) by Simpson's Rule with n = 10 intervals.

The largest of the three metrics is assumed to represent the most significant type of
redundancy present in the block. It is expected that compression will decrease at least
one of the metrics, and experiments conducted on a wide variety of files have proven this
convention to be reliable. Experiments have also shown that if all the normalized metrics are
smaller than 2.5, the file is considered not compressible, and the system records a verdict of
'uncompressible' on the current block. If at least one of the parameters is greater than 2.5,
the file is considered compressible. The maximum of the normalized metrics is then selected
and used in conjunction with the file type to select the appropriate compression algorithm
from the lookup table described in the following section. A negative compressibility test
does not always imply that all three metrics are below the threshold. In some cases, the
only redundancy type for which a metric is above the threshold accesses a null entry in the
database of compression algorithms. This is interpreted as a decision that the (poor) potential
for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

The compression algorithms and attendant heuristics are organized into the 10 by 3 table
illustrated by Table I. The 10 file descriptors are the row indices and the 3 metrics are the
column indices. Each entry of the table contains descriptors which are used to access the
code for an algorithm-heuristic pair. It should be noted that four of the entries are blank
(indicated by an *). A blank entry indicates that the combination of block type and highest
metric are very unusual. In this case, the next highest metric is used instead, provided that
it is above the threshold. As an example of using this table, consider a high-redundancy
binary executable file whose highest metric is the string repetition metric MSR. Together,
this pair indicates that the Lempel-Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

There are four basic algorithms used by the system: arithmetic coding,26 Lempel-Ziv,B
run length encoding (RLE),23 and JPEG for image/graphics compression.27

Arithmetic coding algorithms compress data by representing that data by an interval of

Teradata, Exh. 1026, p. 123

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1107

Table I. Database of compression algorithms t

MAD MRL MSR

ANSI arithmetic coding run-length encoding Lempel-Ziv

* byte-wise encoding freeze
hexadecimal arithmetic coding run-length encoding Lempel-Ziv

* n-bit run count freeze
natural language arithmetic coding * Lempel-Ziv

* * freeze
source code arithmetic coding run-length encoding Lempel-Ziv

* n-bit run count freeze
low redundancy * run-length encoding Lempel-Ziv
binary * n-bit run count *
audio * run-length encoding Lempel-Ziv

* byte-wise encoding . freeze
low resolution * run-length encoding Lempel-Ziv
graphic * n-bit run count freeze
high resolution JPEG run-length encoding JPEG
color graphic improved Huffman n-bit run count improved Huffman
high redundancy arithmetic coding run-length encoding Lempel-Ziv
binary * n-bit run count freeze
object arithmetic coding run-length encoding Lempel-Ziv

* byte-wise encoding freeze

t Note: the first line of each entry is the basic algorithm and the second line is the heuristic. An * as the heuristic indicates

that no heuristic is used. Two * indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional
to the number of symbols encoded, and the decrease in width is directly proportional to
the frequency of the original symbols. Thus the interval specifies the encoded message via
its bounds, with the precision (distance) of these bounds reflecting the information content
of the message. The end result is that arithmetic coding achieves, in practice, much better
space savings than Huffman coding and its dynamic implementations because of its higher
likelihood of actually achieving the theoretical lower bound.24

• 28 Although early arithmetic
coding algorithms performed too slowly to be of practical use,29 the implementation of the
Witten-Neal-Cleary algorithm used here26 is optimized for speed - at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is
referred to Bell et a[24 for a thorough overview of arithmetic coding. We should note that
in earlier implementation of the heterogeneous compressor we used a dynamic Huffman
algorithm instead of arithmetic coding. We changed our implementation when we found
that then Witten-N~al-Cleary algorithm26 outperformed our implementation of dynamic
Huffman coding lO• 30 in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur
rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these
runs, usually a single occurrence of the symbol and the number of occurrences. We have
implemented a straightforward RLE algorithm for our database, based on the description in
Sedgewick.23 In addition, bitwise and bytewise encoding are available as heuristics and the
parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempel-Ziv com
pression algorithm. It compresses data by replacing frequently occurring strings (with min-

Teradata, Exh. 1026, p. 124

1108 W. H. HSU AND A. E. ZWARICO

imal regard of .how far apart they occur) with compact pointers to the position of the first
occurrence. Our implementation is a straightforward array-based encoding with constant
length codes. The algorithm maintains a dictionary of recurring strings in order to do the
compression. In our system, the Lempel-Ziv algorithm is augmented with the Freeze heuris
tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that
is, it prevents .the . replacement of previously encountered strings, regardless of how long
ago or how infrequently the string has been encountered. Freeze is primarily a speed op
timization, since it requires less computation than paging heuristics such as least recently
used (LRU) or least frequently used (LFU), but it has been shown to work well for all but
the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman compression.

The compression of high-resolution graphics and audio files uses a lossy compression
scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi
lar enough to the original as to be nearly indistinguishable by human perception, and that
repeated compression and decompression leads to limited cumulative 'damage' . The pri
mary benefit of lossy compression is that it guarantees much higher compression ratios at
a minimal tradeoff. For instance, a very-high-resolution color image can be compressed
with much higher savings (possibly 95 per cent) if the user allows a small amount of noise,
always less than 1 per cent per compression, to be introduced during each compression. Our
system uses the JPEG system27 for compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and lossless parts, typically achieves compression ratios
of between 15-to-1 and 25-to-1. The potential for this substantial savings is obtained by
the Discrete Cosine Transform portion of the algorithm, a lossy method. This determines a
limit on the amount of savings that can then be achieved by any lossless compressor. The
actual savings are realized by a lossless portion, known as the back end which is applied
to the preprocessed image data. The implementation of this module used in our system27

is a Huffman coder. It is independent of the lossy front end and can be replaced with a
run-length or textual-substitution based algorithm, to be selected by the synthesis system.
In our implementation, we chose to retain the original Huffman back end, a different algo
rithm from the general-purpose dynamic Huffman coder which we also studied. 10, 30 This
is because the JPEG Huffman coder is especially suited to the redundancy remaining after
lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the
use of arithmetic coding back ends, which were found to be experimentally superior but
were not used because of proprietary considerationsY

Implementation

The system consists of a driver module, four block analysis modules, and the synthesis
module, which include~ the database of compression algorithms. All modules are written in
C and were tested on a Unix platform. The program uses a data directed style of implemen
tation for choosing the ~ompression algorithm to apply to a block. Thus, additional block
types, compression algorithms and heuristics, and redundancy metrics can be added to the
system with minimal modification of the source code. Only the database would have to be
updated and the block analysis routines extended; the rest of the program would remain the
same.

The driver performs two iterative passes through the file. It first performs block analysis
on the file one 5K block at a time. This block size was chosen after experimentation showed
that the response of the system to changes in block type became roughly stable as block

Teradata, Exh. 1026, p. 125

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1109

size exceeded 5K (i.e., did not significantly increase as block size did), and that a block size
of 5K yielded highly accurate metrics (in only 1 of the 20 test files did the heterogeneous
compressor select a suboptimal. algorithm for any block). Finally, we found that the highest
level of adaptivity without a noticeable decrease in accuracy was achieved at 5K, hence
our choice of 5K as the block size.

For each block, the system invokes the four analysis modules - three for metric compu
tation and normalization and one to determine the file properties - and stores their output.
It then performs the metric comparison and combines the results with the file property to
complete the table lookup for the current block. An identifying tag for the selected algo
rithm is written to the 'compression plan' , an array which stores one complete compression
instruction per block (if the current block is deemed uncompressible, a 'skip' instruction is
recorded).

We pause here to discuss the normalization of the metrics. Originally, we used a naive
normalization method: direct algebraic scaling with experimentally determined constants
for each metric. This did not, however, accurately reflect the statistical relationship between
variance in character frequency and alphabetic redundancy. Also, the behavior of these func
tions at asymptotes led to poor approximation of the overall distribution of data segments
in the test files. The result was that arithmetic coding was too often incorrectly chosen, re
sulting in inferior compression; and selection approached randomness as metric values for
both string repetition and alphabetic distribution tended toward extreme values. Using the
gamma normalization method described above resulted in an improvement in the selection
of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the
compression method in exactly those cases where the other methods performed worse.

The second pass performs the compression of each block. In order to improve perfor
mance, this pass includes a simple optimization step which circumvents the overhead of
restatting compression after each fixed length block by merging contiguous blocks that are
to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged blocks
using the algorithm recorded in the compression plan. The compressed data is written to an
output buffer, while the compressed length (which indicates where in the compressed file
a compressed block begins and ends) and compression method are recorded in a separate
history for reference at decompression time. If negative compression or no compression is
achieved, or if the block was already marked uncompressible, then the data is copied directly
to the output buffer (the full block length and a code for 'no compression' are recorded in
the compression history). Upon reaching the end of the blocks, the system writes out the
compressed data from the output buffers and prepends the encoded compression history to
produce the final output file.

When decompression is invoked, the driver module opens the compressed file, interprets
the history tag and performs the necessary operations. The tags are a stored version of the
compression history in compact, encoded form. Since the heterogeneous system generates
different compression sequences for each file, and since the length of a compressed block
varies with both the length of the original block and the compression method used, these tags
are necessary to guide the decompression process. Currently only the compressed lengths
of each block and the method of compression are stored, but a checksum for the original
(decompressed) block length can be added with negligible overhead. When executed in
reverse order on each compressed block, the instructions in the history tags result in the
original file . For simplicity and security, they are prepended to the compressed file (and
can easily be encrypted).

Teradata, Exh. 1026, p. 126

1110 W. H. HSU AND A. E. ZWARICO

EXPERIMENTAL RESULTS

Design and construction of the test files

To test the overall performance, the system was run on a set of 20 test files . These files
range in length from approximately 39K to 366K, with representative files from each of the
ten block types -included in the test corpus.

The test files are designed to model certain types of heterogeneous files, including utilities
for image viewing, business, or audio processing, and hypothetical multimedia databases and
programs. To construct these files, a collection of 30 files from the Unix, Apple Macintosh,
and MS-DOS (IBM PC) operating systems was created. These files are listed in Table II.
To create the test corpus, they were concatenated in groups of 2 or 3. The resultant series
of test files is listed in Table III. All of the source files were used. The goal was to generate
as broad a range of permutations as possible (while restricting the generated files to those
which are likely to exist in a typical user environment). This was performed manually with
consideration toward combinatorial constraints and the criteria of realistic data modeling.
Since all of the files in the source collection originate from common commercial sources
or from public archives (with the exception of the source and object files, which are from
the code for the heterogeneous compressor itself), the latter constraint was considerably
simplified.

The assembled files were then ported to the test sites (a Sun workstation for Unix
compress and our heterogeneous compressor; a Macintosh for Stufflt and Compact Pro;
and an IBM 80486 machine for PKZIP). Binary file transfer mode was used to ensure that
the file lengths agreed exactly among all platforms.

Performance

In this section, we review and analyze the performance of the heterogeneous compressor
with respect to compression savings, as compared with four of the commercial systems
previously discussed; and execution time. Finally, we briefly note the implications of running
the experiments and compiling performance data on several different architectures.

Compression savings

The total length of the uncompressed benchmark suite is just under three megabytes. Table
IV shows the compressed length achieved by Unix compress, PKZIP, Stufflt, Compact
Pro and the heterogeneous compression system. The heterogeneous compressor achieved
the greatest compression, with a total compressed length of 1828K. This represents an
additional savings of 162K (more than eight per cent) over the best commercial system
(Compact Pro vl.32), and 339K (neady 16 per cent) over the average. Compressed lengths
for the commercial methods ranged from 1990K to 2375K.

Table V compares the percentage savings obtained by our system to the savings obtained
by the commercial programs and the heterogeneous system. The last two columns show the
difference in per cent saved between the synthesis system and the best and average of the
four commercial packages. The best commercial compressor is marked for each of the files.
Note that the heterogeneous compressor does better than all commercial programs in 19 of
20 cases and better than three of the four commercial systems in this one case (file 15).
The difference in compression for this file is only 0.02 per cent, whereas for all the other
files, the heterogeneous compressor has at least a 1.3 per cent improvement over the best

Teradata, Exh. 1026, p. 127

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1111

Table II. Files used to compose the test suite and their respective origins

File
designation
audiol

lowrdl
lowrd2
lowrd3
lowrd4

textl
text3
text4
textS
text6
text7

execul
execu2
execu3
execu4
execuS
execu6

graphl
graph2
graph3
graph4
graphS
graph6
graph7

objecl
objec2
objec3

sourcel
source2

File
name
cosby.snd

ticker. txt
exsound
huff
appnote.uue

phrack.txt
techbook.txt
quanta I.txt
attilla.fluff
shadow. fluff
quanta2.txt

ad
sh
blob
zero
network2.exe
hostname

compmisc.drw
compperi.drw
computer.drw
lowres.mpt
3dbar.drw
image.ppm
grp4

test 1.0
test2.0
test3.0

table.c
freeze.c

File
type
SoundMaster Macintosh audio file

ASCII characters from stock ticker
compressed World Builder sound library
compressed Unix executable
uuencoded text

English text
Unix news article
English text
English text
English text
English text

Unix executable
Unix executable
Silicon Graphics executable
Silicon Graphics executable
IBM PC executable
Unix executable

Lotus Freelance line drawing
Lotus Freelance line drawing
Lotus Freelance line drawing
MacPaint file
Lotus Freelance 3-D bar chart
PPM (high-resolution image) file
MacPaint file

Unix object file
Unix object file
Unix object file

C source code
C source code

commercial compressor. The average of each column appears in the bottom row; note that
the 'percent difference' averages are not weighted by file length, as each file is considered
a separate experiment.

Because the quality of compression by the synthesis system depends on that of the algo
rithms and heuristics used, improvement of the implementations that we use should yield
higher performance. This is evidenced by comparing the results of compressing a file dom
inated by string repetitions by Unix compress and Compact Pro. Both are implementations
of the Lempel-Ziv algorithm. Unix compress has no heuristics, whereas Compact Pro is
a better implementation of LZ77.5, II Compact Pro consistently outperforms compress. It
should be noted that the performance of the Freeze variant of Lempel-Ziv8 used in our sys-

Teradata, Exh. 1026, p. 128

1112 W. H. HSU AND A. E. ZWARICO

Table III. Combinations of the test files and the resultant simulated data types

File File Classification of
number composition data modeled
I textl - lewrdl news or stock report
2 . graph7 - objecl object file for a graphics viewer
3 lowrd I - text3 - graph4 multimedia application (text/graphics)
4 graph7 - execu3 graphics viewer
S audio I - graph 1 multimedia data file (sound/graphics)
6 text2 - lowrdl --.:... graph3 multimedia data file (text/graphics)
7 lowrd3 - execu I commercial utility
8 graph2 - lowrd2 - execu2 multimedia application

(graphics/sound/executable)
9 source I - lowrd3 - graph6 multimedia data or source file

(source/compressed binarylimage)
\0 audio I - text4 multimedia data file (sound/text)
11 lowrd 1 - execu4 statistical application with data
12 graph7 - textS multimedia data file (text/graphics)
13 lowrd2 - text6 multimedia data file (sound/text)
14 text3 - audio 1 - graphS multimedia data file (text/sound/graphics)
IS lowrd I - text4 - source2 source file for multimedia program

(text/source code)
16 text7 - lowrd2 - graph3 multimedia data file

(text/compressed audio/graphics)
17 graph4 - audio 1 - execuS multimedia application (sound/graphics)
18 execu4 - graph7 - text4 multimedia application (graphics/text)
19 objec3 - lowrd3 - execu6 commercial utility
20 objec2 - audio 1 - execu2 audio application

tern does consistently better than compress and is comparable to Compact Pro on standard
industrial benchmarks .9 Improving algorithms and adding or substituting new heuristics
would also yield more savings.

Execution times and speed optimizations

In this section we compare, in approximate units, the running time of the heterogeneous
compressor against those of the four commercial systems the savings rates of which for our
test files are documented above. The units are approximate for two reasons. First, because
the four test systems are commercial the source code for three of them is not publicly
available*, which renders an exact measure of user time infeasible. This concern is in part
assuaged by the non-multitasked, single-user nature of the microcomputer operating systems
on which three (compress for Linux notwithstanding) of the commercial systems reside.
Second, however, the drastic architectural and organizational differences among the various
native machines renders uniform comparisons unreliable. This applies even to normalized
execution times because the host machines differ not merely in clock cycle speed, but
in instruction set architecture and dynamic instruction frequencies for similar compression
algorithms. The exact running times reported in this section is only that of the heterogeneous

* As noted, however, the Lempel-Ziv implementation employed by Stujjlt Classic is nearly identical to that of Unix compress .

Teradata, Exh. 1026, p. 129

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1113

compressor. These comprise the non-commercial* compression systems for which source
code is available for profiling. For the commercial systems we report the observed wall
clock time to provide a standard of comparison, but note that the host machines vary in
computational power. .

Table IV. Results of the four popular commercial programs and the heterogeneous compression system,
applied to the 20 test files

File Original Unix PKZIP StuffIt Compact Heterogeneous
number length compress vl.lO Classic Pro vL32 compressor

1 39,348 20,578 17,119 20,575 16,831 16,315
2 44,202 44,202 39,813 40,412 41 ,112 37,388
3 46,629 46,629 46,629 43,261 40,367 36,477
4 59 ,254 52,076 40,571 45,202 41,607 38,007
5 169,108 168,903 151,478 149,701 148,917 134,524
6 100,476 69,771 53,043 65,417 52,349 50,906
7 131,663 131,663 103,544 106,643 109,979 96,429
8 220,644 190,971 137,886 173,677 137,401 127,384
9 301,805 145,993 112,503 137,685 115,096 103,730
10 255 ,306 204,457 191,378 206,193 183,313 168,675
11 59,305 30,178 22,782 29,701 22,858 21,774
12 51,715 51,715 43 ,032 46,462 44,107 40,229
13 63,189 63,189 58,247 59,569 59,934 54,481
14 196,789 176,276 196,789 172,486 151 ,057 137,052
15 148,908 73 ,555 63,748 75 ,595 64,618 63 ,778
16 164,535 141,067 132,992 135,245 110,093 104,175
17 203,912 203,912 184,657 189,398 202,821 170,564
18 200,640 128,675 107,728 125,461 104,711 101,674

19 366,557 265 ,114 198,727 265 ,027 198,756 187,659
20 278,152 223 ,277 193,980 224,943 191,763 181,030

Total 3,102,137 2,432,201 2,096,646 2,312,653 2,037,690 1,872,251

The running times for the commercial systems on the entire test suite documented above
appear in Table VI. All of the execution times are measured in wall clock units except for
the heterogeneous compressor's, which is a total of user times as reported by prof, the C
profiler under Unix. The wall clock time was empirically observed not to differ noticeably
from this total on an unloaded Unix machine. The commercial systems were similarly tested
on unloaded (or single-task) systems.

For Unix compress, the mean running time was 26 s, where the average was taken
over runs on different Sun workstations of comparable power (documented below). A Unix
implementation of PKZIP was also tested on one of these Sun workstations, and achieved
an execution time of 56 s - only slightly better than the personal computer version. The
running time of 856 s placed the heterogeneous compressor in the middle to high end of
the commercial compressors in terms· of running time .

• For this purpose we continue to consider Unix compress commercial, due to its wide range of versions.

Teradata, Exh. 1026, p. 130

1114 W. H. HSU AND A. E. ZWARICO

Table V. Percent savings for the test compression systems·

File Unix PKZIP Stu.ffJt Compact Heterogeneous Best Average
number compress vl.lO Classic Pro v1.32 compressor win win

(% saved) (% saved) (% saved) (% saved) (% saved) (% diff.) (% diff.)
I 47·70 56·49 47·71 57·23* 58·54 1·31 6·25
2 0·00 9·93* 8·57 6·99 15 ·42 5·49 9·04
3 0·00 0·00 7·22 13 ·43* 21 ·77 8·34 16·61
4 12·11 31 ·53* 23 ·71 29·78 35·86 4·33 11 ·57
5 0·12 10·43 11-48 11 ·94* 20-45 8·51 11 ·96
6 30·56 47 ·21 34·89 47 ·90* 49·34 1·44 9·20
7 0·00 21 ·36* 19·00 16·47 26·76 5·40 12·55
8 13·45 37·51 21·29 37 ·73* 42·27 4·54 14·77
9 51 ·63 62·72* 54-38 61 ·86 65·63 2·91 7·98
10 19·92 25·04 19·24 28 ·20* 33 ·93 5·73 10·83
11 49 ·11 61 ·59* 49·92 61 ·46 63 ·28 1·70 7·77
12 0·00 16·79* 10·16 14·71 22·21 5·42 11·80
13 0·00 7·82* 5·73 5·15 13 ·78 5·96 9·11
14 10-42 0·00 12·35 23 ·24* 30·36 7·12 18 ·85
15 50·60 57·19* 49·23 56·61 57 ·17 -0·02 3·76
16 14·26 19·17 17·80 33 ·09* 36·69 3·60 15·60
17 0·00 9·44* 7·12 0·54 16·35 6·91 12·08
18 35·87 46·31 37·47 47 ·81 * 49·33 1·51 7·46
19 27·67 45 ·79* 27·70 45 ·78 48 ·80 3·02 12·07
20 19·73 30·26 19·13 31 ·06* 34·92 3·86 9·87

Average 19·16 29·83 24·21 31 ·55* 37·14 4·35 10·96

• The starred entry in each row is the best commercial system.

CONCLUSIONS

Analysis of results

This project was successful on several levels. First, the feasibility of synthesizing com
pression plans from encapsulated primitives for heterogeneous files was illustrated. The use
of property analysis and redundancy metrics was experimentally successful, the latter veri
fying the applicability of statistical data analysis to automatic programming in this domain.
The positive test results obtained with the primitive database currently available would
probably be even better with improved implementations of the algorithms and heuristics.
The statistical foundations of the heterogeneous system proved strong enough to be of def
inite relevance to the operating systems community, and might be useful in an information
theoretic context. The benefits of data compression are ubiquitous in that savings through
compression are independent of hardware and storage capabilities; selective techniques in
crease these savings py a significant factor for heterogeneous files.

Future work

The sampling method may be improved in future implementations by randomization.
The increase in analysis accuracy that this would bring would demand more primitives and
heuristics - such need would arise in any case with the continuing development of new
files types, such as high-resolution animation and three-dimensional images.

Teradata, Exh. 1026, p. 131

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1115

Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time Execution time
(s) (min)

Unix compress ;::,: 26 0:26
PKZIP vI. 10 67 1:07
Stufflt Classic 1152 19: 12
Compact Pro vJ.32 1594 26:34
Heterogeneous compressor 856 14:56

In the current system, lossy compression methods can be applied only if an entire file
is found to be of a lossily compressible data type. Typically, these include high-resolution
images (for JPEG) and speech, general high-definition audio, and high-resolution animation
files. A special case could be implemented specifying that when an entire file matching a
single lossily compressible data type (i.e. a homogeneous loss-permissible file) is found,
the lossy algorithm may be applied.

The djfficulty is that without explicit information on where loss-permissible portions of
a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely
guarantee that no data will be distorted which the user is not willing to have distorted.
Thus no lossy methods can be safely applied to any segment in the block-based system.
Thus a heterogeneous system would require either full interactive guidance from a user
who could inspect the file or knew its contents, or would require improved magic numbers
which encoded the lengths of loss-permissible segments. The heterogeneous system could
then scan for these codes during the property analysis phase and preempt or modify metric
based selection if a lossy algorithm is warranted. The latter approach seems far superior
to interactive compression, which places an intolerable burden of responsibility on users
(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized
(especially lossy) compression algorithms such as JPEG and MPEG. For example, by des
ignating RLE compression '0 per cent alphabetic distribution, 100 per cent run length, 0
per cent string repetition' and by defining its single-type counterparts similarly, a standard
can be established. Unix compress, for instance, might rate '40 per cent AD, 0 per cent
RL, 60 per cent SR' and a hypothetical algorithm X might rate '25 per cent AD, 50 per cent
RL, 25 per cent SR' . The rating standard would correspond to the metric rating system for
files which our system uses, and would help in analysis of the performance of composite
compression techniques (which handle multiple redundancy types). Non-synthesized com
posite techniques exist, both adaptive and non-adaptive, though results are not as promising
as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table
that the database of primitives used in this heterogeneous system may not be as well-stocked
as it optimally could be. Storer' lists a plethora of optional heuristics which are applicable
to Lempel-Ziv compression, specifically in augmenting and deleting from the dictionary.

ACKNOWLEDGEMENTS

This paper was produced as part of a research project at Johns Hopkins University. We
are grateful to the faculty and staff of the JHU Computer Science Department, and to the
Brown University CS Department, for their assistance throughout this work.

Teradata, Exh. 1026, p. 132

1116 W. H. HSU AND A. E. ZWARICO

We would like to thank Leonid Broukhis, Graham Toal, and Kenneth Zeger for discus
sions on some of the research reported here. We also thank Jonathan Eifrig, Bill Goodman,
and Tom Lane for guidance on several technical issues. Finally, we thank the anonymous re
viewers for their comments and suggestions, especially for introduction to relevant literature
in arithmetic codirig.

REFERENCES

I. James A. Storer, Data Compression: Methods and Theory, Computer Science Press, Rockville, MD, 1988.
2. Phillip W. Katz, PKZIP. Commercial compression system, version 1.1, 1990.
3. Sun Microsystems, compress. Commercial compression system, operating system version 5.3, September

1992.
4. Raymond Lau, Stuftlt Classic and Stufflt Deluxe. Commercial compression system, 1990.
5. Bill Goodman, Compact Pro. Commercial compression system, v1.32, 1991.
6. T~rry A. Welch, 'A technique for high performance data compression', IEEE Computer, 17(6), 8-19 (1984) .
7. Gilbert Held and Thomas R. Marshall, Data Compression: Techniques and Applications: Hardware and

Software Considerations, 3rd edn, John Wiley and Sons, 1991.
8. Leonid Broukhis, Freeze implementation of LZHuf algorithm. comp.sources .misc archives, Internet, 1991.
9. Jean-Loup Gailly, comp.compression benchmark (Calgary test corpus). In comp.compression FAQ list, J.

Gailly, (ed.), 1992.
10. Jeffrey S. Vitter, 'Dynamic Huffman Coding', ACM Transactions on Mathematical Software, (June 1989).
II. J. Zi v and A. Lempel, 'A universal algorithm for sequential data compression', IEEE Transactions on

Information Theory, 23,(3), 337-343 (1977).
12. J. Ziv and A. Lempel, 'Compression of individual sequences via variable-rate coding', IEEE Transactions

on Information Theory, 24(5), 530-546 (1978).
13. Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan and Victor K. Wei, 'A locally adaptive data

compression scheme', Communications of the ACM, 320-330 (April 1986).
14. Yooichi Tagawa, Haruhiko Okumura and Haruyasu Yoshizaki, LZHuf: encoding/decoding module for

LHarc. Compression system, version 0.03 (Beta), 1989.
15. Haruyasu Yoshizaki, LHA: A high-performance file-compression program. Compression system, version

2.11,1991.
16. Edward R. Fiala and Daniel H. Greene, 'Data compression with finite windows', Communications of the

ACM, 490-505 (1989).
17. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in Pascal, Computer Science Press,

Rockville, Maryland, second edition, 1987.
18. Graham Toal. Personal communication. Unpublished, 1992.
19. Gerard Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by

Computer, Addison-Wesley, Reading, MA, 1989.
20. Ian F. Darwin, file (program). Berkeley Unix operating system, 1987.
21. David A. Huffman, 'A method for the construction of minimum-redundancy codes', Proceedings of the

IRE, number 40, 1952, pp. 1098-110 1.
22. Claude E. Shannon and Warren Weaver, The Mathematical Theory of Communications, University of

Illinois Press, Urbana and Chicago, 1963.
23. Robert Sedgewick, Algorithms, 2nd edn, Addison-Wesley, Reading, MA, 1988.
24. Timothy C. Bell, John G. Cleary and Ian H. Witten, Text Compression, Prentice Hall, Englewood Cliffs,

New Jersey, 1990.\
25. Sheldon Ross, A First Course in Probability, Macmillan Publishing Company, New York, third edition,

1988.
26. Ian H. Witten, Radford Neal and John G. Cleary, 'Arithmetic coding for data compression', Communica

tions of the ACM, 30(6), 520-540 (1987).
27. Independent JPEG Group. 'JPEG image compression system' , think.com FTP archives, Internet, 1994.
28. Jean-Loup Gailly. comp.compression/comp.compression.research FAQ list. J. Gailly (ed.), URL

http : //www . cis. ohio-state. edu/hypertext/faq/usenetl compression-faq/ top . html, 1994.
29. James A. Storer, Image and Text Compression, Kluwer Academic Publishers, Norwell, MA, 1992.
30. Graham Toal. C implementation of dynamic Huffman compressor by 1. S. Vitter. comp.source.misc

archives, Internet, 1990. .

Teradata, Exh. 1026, p. 133

Attachment 1h

Teradata, Exh. 1026, p. 134

Attachment 1h

Teradata, Exh. Teradata, Exh. 1026, p. 135
Terradata, Exh.
1026, p. 135

Teradata, Exh. 1026, p. 136

OFTWARE
ACTICE & EXPERIENCE
No. 10 OCTOBER 1995

Teradata, Exh. 1026, p. 137

SOFTIMIRE
PRACTICE & EXPERIENCE
Editors

Professor D. E. Comer, Computer Science Department, Purdue University, West

Lafayette, IN 47907, U.S.A.
Charlotte I. Tubls, U.S. Editorial Assistant, Computer Science Department, Purdue University, West Lafayette,
IN 47907. U.S.A.

Dr A. J. Wellings, Department of Computer Science, University of York,
Heslington, York YO1 5DD

Advisory Editorial Board
Professor 0. W. BARRON Professor D. E. KNUTH

Department of Electronics and Computer Science, Department of Computer Science, Stanford University.
University of Southampton. Stanford, California 94305. U.S.A.
Southampton S09 5NH, U.K.

Professor P. J. enowru D“ '3' W‘ '-‘°""'”°5°“130 Lake View Ave,
Computing Laboratory. The University, ~
Canterbury. Kent CT2 TNF, U.l(. E1aAn[?2q|d3%e‘U~S‘A~
Professor J. A. CAMPBELL

Department of Computer Science, University College London. Dr‘ C‘ A’ LANGGower Street, London WC1E BET, U.K. Three-SP3!‘-8 Ltd.
70 Castle Street.

Professor F. J. COFIBATO Cambridge CB3 oA_|, u,l(_
Electrical Engineering Department,

Massachuseitts Inglitule of Technology. Professor 8. HANDELL545 achno 0 y quare. c ' Lab
Cambridge. assachusetts D2139, U.S.A. U‘,’,E[',f,’§’5‘i't';9,,f N§,::t§_.:'i"e,upon_1-VH3’
Dr_ Christophe‘ W. FRASER Claremont Tower, Claremont Road.N - , . .
AT&T Bell Laboratories, 600 Mountain Ave 2C-464, ewcasmwpon Tyne NE1 mu U K
Murray Hill, NJ 0797-LD636, U.S.A. Pmfassor J. S. HOHL

Professor PEFI BFIINCH HANSEN Department _of Computer Science,‘
School of Computer and Information Science. The U"'V9'5|W Of Western Australia-
4.115 cs}; Syracgse Universi , Nedlands. Western Australia 6009.
Syracuse, New York 13210, U. .A.

Professor o. n. HANSON 3- R355 mo T P d H d
Depanmem of compute" science’ \i'Ir‘l)a|tel"l:amT“l:\il'assach0l.::t1tsg2'l54??J.S.A.Princeton University, Princeton,
New Jersey 0854-1, U.S.A. . . H
Professor J. KATYENELSON B H S EARWGThe Software Factory,
Faculty of Electrical Engineering. 23 padbrookl L]-npsfield' Qxted_
Technlon-Israel Institute of Technology. gun-EV mtg gQw_ U_K_Haifa. Israel
Dr. B. W. KERNIGHAN Professor N. WIRTH

AT&T Bell Laboratories, 600 Mountain Avenue, lnstitut fi.'lr Computersysteme, ETH—Zentrum,
Murray Hill, New Jersey 07974, U.S.A. CH—BO92 Zurich, Switzerland.

Aims and Scope
3ol‘twere—Practr'ce and Experience is an internationally respected and rigorously refereed vehicle for the dissemination and
discussion of practical experience with new and established software for both systems and applications. Contributions regu-
larly: (al describe detailed accounts of completed software-system projects which can serve as ‘how-to-do-it’ models for future
work in the same field: lb! present short reports on programming techniques that can be used in a wide variety of areas; lcl
document new techniques and tools that aid in solving software construction problems; and Id) explain methodsltechniques
that cope with the special demands of large scal software projects. The journal also features timely Short Communications
on rapidly developing new topics.

The editors actively encourage papers which result from practical experience with tools and mthods developed and used
in both academic and industrial environments. The aim is to encourage practitioners to share their experiences with design.
implementation and evaluation of techniques and tools for software and software systems.

Papers cover software design and implementation. case studies describing the evolution of system and the thinking behind
them, and critical appraisals of software systems. The journal has always welcomed tutorial articles describing well-tried tech-
niques not previously documented in computing literature. The emphasis is on practical experience: articles with theoretical
or mathematical content are included only in cases where an understanding of the theory will lead to better practical systems.

Articles range in length from a Short Communication lhalf to two pages} to the length required to give full treatment to a
subshantial piece of software M0 or more pages).
Advertising: For details contact-
Michael J. Levermore. Advertisement Sales, John Wiley 81 Sons Ltd, Baffins Lane, Chichester. Sussex PO19 1UD. England lTeIaphone 012133
710351, Fax 01243 775878. Telex 86290)

Sufrware—Pracrice and Experience lISSN 0038-OSMIUSPS BSD-9201 is published monthly, by John Wiley Bi Sons Limited, Baffins Lane, Chtcheslflr,
Sussex, England. Second class postage paid at Jamaica. NV. 11431, Air freight and mailing in the U.S A, by Publications Expediting Services Inc..
200 Meacllam Avenue, Elrnonl, N Y 11003 O 1595 by John Wiley 51 Sons Ltd. Printed and bound in Great Britain by Page Bros. Norwich. Printed
on acid-free paper.
To subscribe: Orders should he addressed to Subscriptions Department. John Wiley at Sons Limited. Baffins Lane. Chichester. Sussex. PO19 IUD,

England. 1995 subscription price H3 issuasl; U.S. $825.00. Teradata’ EXh_ 1026’ p_ 137U.S.A. POSTMASTEH: Send address changes to Sofrware—Practice and Experience. clo Publications Expeoiting Services Inc.. 200 Meacrlam
Avenue. Elmont, N.Y. 11003, U.S.A

Teradata, Exh. 1026, p. 138

SOFTWARE—PRACTlCE AND EXPERIENCE

{Softw. pract. exp.)

CONTENTS

VOLUME 25. ISSUE No. 10 October 1995

Migration in 0bject—oriented Database Systems—A Practical Approach:

C. Huemer, G. Kappel and S. Vieweg 1065

Automatic Synthesis of Compression Techniques for Heterogeneous
Files: W. H. Hsu and A. E. Zwarico 1097

A Tool for Visualizing the Execution of Interactions on a Loosely-coupled

Distributed System: P. Ashton and J. Penny 1117

Process Scheduling and UNIX Semaphores: N. Dunstan and I. Fris 1141

Software Maintenance: An Approach to Impact Analysis of Objects

Change: S. Ajila 1155

SPEXBL 251101 1065-1182 (19951
ISSN 0038-0644

Indexed or abstracted by Cambridge Scientific Abstracts. CompuMath Citation Index llS|l.

Compuscience Database, Computer Contents. Computer Literature Index. Computing

Reviews, Current ContentsfEng, Tech & Applied Sciences, Data Processing Digest, Deadline

Newsletter, Educational Technology Abstracts, Engineering Index. Engineering Societies

Library, IBZ (International Bibliography of Periodical Literature), Information Science Abstracts

(Plenum). INSPEC, Knowledge Enineering Review, Nat Centre for Software Technology,
Research Alert llS|l and SCISEARCH Database l|S|l.

Teradata, Exh. 1026, p. 138

Teradata, Exh. 1026, p. 139

SOFTW'ARE—PRACTlCE AND EXPERIENCE. VOL. 25(l0), 1097-1116 (OCTOBER 1995)

Automatic Synthesis of Compression Techniques for

Heterogeneous Files

WILLIAM H. HSU

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801’, U.S.A.
(email: bhsu@cs.uiuc.edu, voice." (217)244-1620)

AND

AMY E. ZWARICO

Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, U.S.A.
(email: amy@cs.jhu.edu, voice: (400) 516-5304)

SUMMARY

We present a compression technique for heterogeneous files, those files which contain multiple types of
data such as text, images, binary, audio, or animation. The system uses statistical methods to determine
the best algorithm to use in compressing each block of data in a file (possibly a different algorithm for
each block). The file is then compressed by applying the appropriate algorithm to each block. We obtain
better savings than possible by using a single algorithm for compressing the file. The implementation
of a working version of this heterogeneous compressor is described, along with examples of its value
toward improving compression both in theoretical and applied contexts. We compare our results with
those obtained using four commercially available compression programs, PKZIP, Unix compress, Stufiit,
and Compact Pro, and show that our system provides better space savings.

KEY WORDS: adaptive/selective data compression algorithms; redundancy metrics; heterogeneous tiles; program synthesis

INTRODUCTION

The primary motivation in studying compression is the savings in space that it provides.

Many compression algorithms have been implemented, and with the advent of new hard-
ware standards, more techniques are under development. Historically, research in data com-

pression has been devoted to the development of algorithms that exploit various types of
redundancy found in a file. The shortcoming of such algorithms is that they assume, often

inaccurately, that files are homogeneous throughout. Consequently, each exploits only a

subset of the redundancy found in the file.

Unfortunately, no algorithm is effective in compressing all files.‘ For example, dynamic
Huffman coding works best on data files with a high variance in the frequency of individ-
ual characters (including some graphics and audio data), achieves mediocre performance on

natural language text files, and performs poorly in general on high-redundancy binary data.
On the other hand, run length encoding works well on high-redundancy binary data, but

performs very poorly on text files. Textual substitution works best when multiple-character

strings tend to be repeated, as in English text, but this performance degrades as the average

CCC 0038-0644/95:’101097-20 Received 20 April 1994

©1995 by John Wiley & Sons, Ltd. Revised 5 February 1995

Teradata, Exh. 1026, p. 139

Teradata, Exh. 1026, p. 140

W. H. HSU AND A. E. ZWARICO

 1098

length of these strings decreases. These relative strengths and weaknesses become critic
when attempting to compress heterogeneous files. Heterogeneous files are those which co

, rain multiple types of data such as text, images, binary, audio, or animation. Consequentl
l their constituent parts may have different degrees of compressibility. Because most co

pression algorithms are either tailored to a few specific classes of data or are designed t
handle a single type of data at a time, they are not suited to the compression of heterog
neous files. In attempting to apply a single method to such files, they forfeit the possibili

‘ of greater savings achievable by compressing various segments of the file with differe
methods.

eakness found in compression algorithms, we have develope
To overcome this inherent w

a heterogeneous compressor that automatically chooses the best compression algorithm t
use on a given variable—length block of a file, based on both the qualitative and quanti .

‘ tive properties of that segment. The compressor determines and then applies the select
, algorithms to the blocks separately. Assembling compression procedures to create a speci
5 ically tailored program for each file gives improved performance over using one prog -1

for all files. This system produces better compression results than four commonly availab
compression packages, PKZIP} Unix compress,’ Smfilt,‘ and Compact Pro’ for arbitr :
heterogeneous files.The major contributions of this work are twofold. The first is an improved compressi
system for heterogeneous files. The second is the development of a method of statis
cal analysis of the compressibility of a file (its redundancy types). Although the conce
of redundancy types is not new,“ synthesis of compression techniques using redundan
measurements is largely unprecedented. The approach presented in this paper uses a strai g I
forward program synthesis technique: a compression plan, consisting of instructions for ea

11 block of input data, is generated, guided by the statistical properties of the input data. BI " cause of its use of algorithms specifically suited to the types of redundancy exhibited -
= H the particular input file, the system achieves consistent average performance throughout t

'l.. file, as shown by experimental evidence.
',“; As an example of the type of savings our system produces, consider compressing

5 I heterogeneous file (such as a small multimedia data file) consisting of 10K of low redu
l

dancy (non-natural language) ASCII data, 10K of English text, and 25K of graphics.
this case, a reasonably sophisticated compression program might recognize the increas

n compression, to better take advantage of the f .
that the majority of the data is graphical. However, none of the general-purpose compr
sion methods under consideration are optimal when used alone on this file. This is becau
the text part of this file is best compressed by textual substitution methods (e.g., Lem
Ziv) rather than statistical methods, while the low-redundancy data* and graphics p
are best compressed by alphabetic distribution—based methods (e.g., arithmetic or dyn

I Huffman coding) rather than Lempel—Ziv or run—length encoding. This particular file to -
5 45K in length before compression. A compressor using pure dynamic Huffman coding oachieves about 7 per cent savings for a compressed file of length 42.2K. One of the as
i general-purpose Lempel—Ziv compressors currently available“-9 achieves 18 per cent s

ings, producing a compressed file of length 37.4K. Our system uses arithmetic coding
i the first and last segments and l..ernpel—Ziv compression on the text segment in the midd
{ achieving a 22 per cent savings and producing a compressed file of length 35.6K. This
1

savings achievable by employing Huffma

a 4 per cent improvement over the best commercial system.

‘ This denotes, in our system, a file with a low rate of repeated strings.

Teradata, Exh. 1026, p_ 140
_

Teradata, Exh. 1026, p. 141

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1099

The purpose of our experiments was to verify the conjecture that a selective system
for combining methods can improve savings on a significant range of heterogeneous files,

especially multimedia data. This combination differs from current adaptive methods in
that it switches among compression paradigms designed to remove very different types

of redundancy. By contrast, existing adaptive compression programs are sensitive only to

changes in particular types of redundancy, such as run—1ength, which do not require changing
the underlying algorithm used in compression. Thus they cannot adapt to changes in the

type of redundancy present, such as from high run-length to high character repetition. The
superiority of our approach is demonstrated in our experimental section.

This paper begins with a presentation of existing approaches to data compression, includ-

ing a discussion of hybrid and adaptive compression algorithms and a description of four
popular commercial compression packages. These are followed by documentation on the
design of the heterogeneous compression system, analysis of experimental results obtained
from test runs of the completed system, and comparison of the system's performance against

that of commercial systems. Finally, implications of the results and possibilities for future

work are presented.

RELATED WORK

It is a fundamental result of information theory that there is no single algorithm that per-

forms optimally in compressing all files.‘ However, much work has been done to develop
algorithms and techniques that work nearly optimally on all classes of files. In this sec-
tion we discuss adaptive algorithms, composite algorithms, and four popular commercial

compression packages.

Adaptive compression algorithms and composite techniques

Exploiting the heterogeneity in a file has been addressed in two ways: the development
of adaptive compression algorithms, and the composition of various algorithms. Adaptive
compression algorithms attune themselves gradually to changes in the redundancies within a
file by modifying parameters used by the algorithm, such as the dictionary, during execution.

For example, adaptive alphabetic distribution-based algorithms such as dynamic Huffman

coding” maintain a tree structure to minimize the encoded length of the most frequently
occurring characters. This property can be made to change continuously as a file is pro-
cessed.

An example of an adaptive textual substitution algorithm is Lempel—Ziv compression,
a title which refers to two distinct variants of a basic textual substitution scheme. The

first variant, known as LZ77 or the sliding dictionary or sliding window method, selects

positional references from a constant range of preceding strings." “ These ‘back-pointers’
literally encode position and length of a repeated string. The second variant, known as
LZ78 or the dynamic dictionary method, uses a dictionary structure with a paging heuristic.

When the dictionary — a table of strings from the file — is completely filled, the contents
are not discarded. Instead, an auxiliary dictionary is created and updated while compression

continues using the main dictionary. Each time this auxiliary table is filled, its contents are

‘swapped’ into the main dictionary and it is cleared. The maintenance of dictionaries for
textual substitution is analogous to the semi-space method of garbage collection, in which

two pages are used but only one is ‘active’ — these are exchanged when one fills beyond
a preset threshold. Another adaptive variant of this algorithm is the Lempel—Ziv-Welch

Teradata, Exh. 1026, p. 141

Teradata, Exh. 1026, p. 142

l

I

H00 W. H. HSU AND A. E. ZWARICO

(LZW) algorithm, a descendant of 1.278 used in Unix compress.°' '2 Both LZW and L2786. 12

vary the length of strings used in compression.
Yet another adaptive (alphabetic distribution-based) compression scheme, the Move—To-

Front (MTF) method, was developed by Bentley er al.” In MTF, the ‘word code’ for a
symbol is detennined by the position of the word in a sequential list. The word list is ordered
so that frequently accessed words are near the front, thus shortening their encodings.

Adaptive compression algorithms are not appropriate to use with heterogeneous files
because they are sensitive only to changes in the particular redundancy type with which
they are associated, such as a change in the alphabetic distribution. They do not exploit
changes across different redundancy types in the files. Therefore a so-called adaptive method
typically cannot directly handle drastic changes in file properties, such as an abrupt transition
from text to graphics. For example, adaptive Huffman compressors specially optimized for
text achieve disproportionately poor performance on certain image files, and vice versa. As
the use of multimedia files increases, files exhibiting this sort of transition will become
more prevalent.

Our approach differs from adaptive compression because the system chooses each algo-
rithm (as well as the duration of its applicability) before compression begins, rather than
modifying the technique for each file during compression. In addition, while adaptive meth-
ods make modifications to their compression parameters on the basis of single bytes or fixed
length strings of input, our heterogeneous compressor bases its compression upon statistics
gathered from larger blocks of five kilobytes. This allows us to handle much larger changes
in file redundancy types. This makes our system less sensitive to residual statistical fluctu-
ations from different pans of a file. We note that it is possible to use an adaptive algorithm
as a primitive in the system.

Another approach to handling heterogeneous files is the composition of compression
algorithms. Composition can either be accomplished by running several algorithms in suc-
cession or by combining the basic algorithms and heuristics to create a new technique. For
example, recent implementations of ‘universal’ compression programs execute the Lempe|—
Ziv algorithm and dynamic Huffman coding in succession, thus improving performance
by combining the string repetition-based compression of L.empel—Ziv with the frequency-
based compression strategy of dynamic Huffman coding. One commercial implementation
is LHarc.”"5 Our system exploits the same savings since it uses the Freeze implementa-
tion of the Lempel—Ziv algorithm, which filters Lempel—Ziv compressed output through a
Huffman coder. An example of a truly composite technique is the compression achieved
by using Shannon—Fano tries‘ in conjunction with the Fiala—Greene algorithm (a variant
of Lempel—Ziv)‘° in the PKZIP2 commercial package. Tries are used to optimally encode
strings by character frequency.” PKZIP was selected as the representative test program from
this group in our experiment due to its superior performance on industrial benchmarks.°

Our approach generalizes the ideas of successively executing or combining different
compression algorithms by allowing any combination of basic algorithms within a file. This
includes switching from among algorithms an arbitrary number of times within a file. The
algorithms themselves may be simple or composite and may be adaptive. All are treated as
atomic commands to be applied to portions of a file.

‘ A me is a tree of variable degree 3 2 such that (I) each edge is labelled with a character, and the depth of any node
represents one more than the number of characters required to identify it; (2) all internal nodes are intermediate and represent
prefixes of keys in the trie; (3) keys (su-ings) may be inserted as leaves using the minimum number of characters which
distinguish them uniquely. Thus a generic trie containing the strings computer and compare would have keys at a depth of
five which share a common prefix of length four.

Teradata, Exh. 1026, p_ 142

Teradata, Exh. 1026, p. 143

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1101

The problem of heterogeneous files was addressed by Toal“ in a proposal for a naive
heterogeneous compression system similar to ours. In such a system, files would be seg-
mented into fixed—length encapsulated blocks; the optimal algorithm would be selected for
each block on the basis of their simple taxonomy (qualitative data type) only; and the blocks
would be independently compressed. Our system, however, performs more in—depth statis-
tical analysis in order to make a more informed selection from the database of algorithms.
This entails not only the determination of qualitative data properties but the computation of
metrics for an entire block (as opposed to sporadic or random sampling from parts of each
block). Furthermore, normalization constants for selection parameters (i.e. the redundancy
metrics) are fitted to observed parameters for a test library. Finally, a straightforward but
crucial improvement to the naive encapsulated-block method is the implementation of a
multi-pass scheme. By determining the complete taxonomy (data type and dominant redun-
dancy type) in advance, any number of contiguous blocks which use the same compression
method will be treated as a single segment. Toal observed in preliminary experiments that
the overhead of changing compression schemes from one block to another dominated the
additional savings that resulted from selection of a superior compression method.“ This
overhead is attributable to the fact that blocks compressed independently (even if the same
method is used) are essentially separate files and assume the same startup overhead of the
compression algorithm used.* We have determined experimentally that merging contiguous
blocks whenever possible obviates the large majority of changes in compression method.
This eliminates a sufficient proportion of the overhead to make heterogeneous compression
worthwhile.

Commercial products

One of the goals of this research was to develop a compression system which is gener-
ally superior to commercially available systems. The four systems we studied are PKZIP,
developed for microcomputers running MS-D0S;2 Unix compress;3 and Stufilt Classic‘
and Compact Pro,-5 developed for the Apple Macintosh operating system. Each of these
products performs its compression in a single pass, with only one method selected per file.
Thus, the possibility of heterogeneous files is ignored.

Unix compress uses an adaptive version of the Lempel—Ziv algorithm.‘ It operates by
substituting a fixed—length code for common substrings. compress, like other adaptive
textual substitution algorithms, periodically tests its own performance and reinitializes its
string table if the amount of compression has decreased.

Stufilt makes use of two sets of algorithms: it first detects special-type files such as
image files and processes them with algorithms suited for high-resolution color data; for the
remaining files, it queries the operating system for the explicit file type given when the file
was created, and uses this information to choose either the LZW variant of Lempel—-Ziv,"" 5
dynamic Huffman coding, or run—length encoding. This is a much more limited selection
process than what we have implemented. Additionally, no selection of compression methods
is attempted within a file. Compact Pro uses the same methodology as Stufllr and compress,
but incorporates an improved Lempel—Ziv derived directly from LZ77.“ The public—domain
version of Stujflt is derived from Unix compress, as is evident from the similarity of their
performance results.

‘ For purposes of comparison, the block sizes tested by Toal were nearly identical to those used in our system (ranging
upwards from 4K).

Teradala, Exh. 1026, p. 143

Teradata, Exh. 1026, p. 144

1102 w. H. HSU AND A. E.ZWAR1CO

Compression systems such as Stufilt perform simple selection among alternative com-
pression algorithms. The important problem is that they are underequipped for the task of
fitting a specific technique to each file (even when the uncompressed data is homogeneous).
Stujfflr uses few heuristics, since its algorithms are intended to be ‘multipurpose’ . Further-
more, only the file type is considered in selecting the algorithm — that is, no measures of
redundancy are computed. Earlier versions of Stufflr (which were extremely similar to Unix
compress) used composite alphabetic and textual compression, but made no selections on
the basis of data characteristics. The chief improvements of our heterogeneous compressor
over this approach are that it uses a two-dimensional lookup table, indexed by file proper-
ties and quantitative redundancy metrics, and — more important — that it treats the file as a
collection of heterogeneous data sets.

THE HETEROGENEOUS COMPRESSOR

Our heterogeneous compressor treats a file as a collection of fixed size blocks (SK in
the current implementation), each containing a potentially different type of data and thus
best compressed using different algorithms. The actual compression is accomplished in
two phases. In the first phase, the system determines the type and compressibility of each
block. The compressibility of each block of data is detennined by the values of three
quantitative metrics representing the alphabetic distribution, the average run length and the
string repetition ratio in the file. If these metrics are all below a certain threshold, then the
block is considered fully compressed (uncompressible) and the program continues on to the
next block. Otherwise, using the block type and largest metric, the appropriate compression
algorithm (and possible heuristic) are chosen from the compression algorithm database. The
compression method for the current block is then recorded in a small array—based map of
the file, and the system continues.

The second phase comprises the actual compression and an optimization that maximizes
'5 the size of a segment of data to be compressed using a particular algorithm. In this optimiza-
. tion, which is interleaved with the actual compression, adjacent blocks for which exactly

I the same method have been chosen are merged into a single block. This merge technique
maximizes the length of segments requiring a single compression method by greedily scan-
ning ahead until a change of method is detected. Scanning is perfonned using the array
map of the file generated when compression methods were selected from the database. A
compression history, needed for decompression, is automatically generated as part of this

The newly compressed segments are written to a buffer by the algorithm, which stores
the output data with the compression history. The system then writes out the compressed

l file and exits with a signal to the operating system that compression was successful.
1 From this two—pass scheme it is straightforward to see why this system is less susceptible.» than traditional adaptive systems to biases accrued when the data type changes abruptly

7 during compression. Adaptive compressors perfonn all operations myopically, sacrificing
I the ability to see ahead in the file or data stream to detect future fluctuations in the type

l of data. As a result, adaptive compressors retain the statistical vestiges of the old method
| until these are ‘flushed out’ by new data (or balanced out, depending upon the process for
l paging and aging internal data structures such as dictionaries). Thus adaptive compressors
| may continue to suffer the effects of bias, achieving suboptimal compression. On the other
5 hand, by abruptly changing compression algorithms, our technique completely discards all
1‘ remnants of the ‘previous’ method (i.e. the algorithm used on the preceding segment). This

Teradata, Exh. 1026, p_ 144

Teradata, Exh. 1026, p. 145

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1103

allows us to immediately capitalize on changes in data. In addition, merging contiguous
blocks of the same data type acquires the advantage of incurring all the overhead at once

for switching to what will be the best compression method for an entire variable-length
segment. The primary advantage of adaptive compression techniques over our technique is
that the adaptive compression algorithms are ‘online’ (single-pass). This property increases
compression speed and, more important, gives the ability to compress a data stream (for
instance, incoming data packets in a network or modern transmission) in addition to files
in secondary storage or variable—length buffers.

The remainder of this section presents the system. We begin with a description of the
calculation of the block types and the redundancy metrics. We also explain the use of the
metrics as absolute indicators of compressibility, and then describe the compression algo-
rithms used and the structure of the database of algorithms. A discussion of implementation
details concludes the section.

Property analysis

The compressibility of a block of data and the appropriate algorithm to do so are deter-
mined by the type of data contained in a block and the type of redundancy (if any) in the
data. These two properties are represented by four parameters: the block type, and the three
redundancy metrics. The block type describes the data in the block - text, binary, graphical,
etc. The three redundancy metrics are the degree of variation in character frequency, average

run length in the file, and the string repetition ratio of the file. They provide a quantitative
measure of how compressible the block is and which type of redundancy is most evident
in the block. The use of both quantitative redundancy measures (redundancy metrics) and

qualitative characteristics (block types) as indicators for data compressibility is advocated
by Held? and Salton.” We have refined the process for computing those attributes referred
to as datanalysis results by Held? and as statistical language characteristics by Salton” to
obtain an actual guide for compression. The remainder of this section describes how these -;
four parameters are determined for each block. I

Biock types

The block type describes the nature of a segment of input data. There are ten classifica-
tions of data in this system: ANSI text, non-natural language text (hexadecimal encodings of
binary data), natural language text, computer source code, low redundancy binary, digitized
audio, low resolution graphics, high-resolution graphics, high—redundancy binary executable,
and binary object data. ANSI text is composed of characters from a superset of the ASCII
alphabet. Non-natural language text contains primarily ASCII text but does not follow a
distribution of characters like that of human languages. Examples are computer typesetting

data, uuencoded and Br'nHex encoded data (which has the same character distribution as
binary data but is converted to text for ease of transmission). Natural language text in-
cludes text written in English as well as other languages which are representable by the
Roman (ASCII) alphabet. Most European languages (including the ones using the Cyrillic
alphabet), special symbols excluded, fall into this category, as do the Pinyin and Katakana
romanizations of the Chinese and Japanese languages (as opposed to their digital encod-

ings). Computer source code uses the ASCII alphabet but characters are distributed with a
different frequency than in natural language text. Low-redundancy binaries usually contain
compressed data, but may also include data which is merely difficult to compress. Audio

Teradata, Exh. 1026, p. 145

Teradata, Exh. 1026, p. 146

 1104 w. H. HSU AND A. E. ZWARICO

data are very high in redundancy; audio files (and audio segments of multimedia files)
are usually extremely large. Low-resolution graphics have long runs of contiguous repeated
bits but unlike high—resolution graphics are not suited to lossy compression. High-resolution
graphics include color and grayscale and may be compressed with lossy methods. Binary
executables. like low-resolution graphics, have long runs of contiguous repeated bits and
comprise all compiled programs on a computer system. Finally, object data has slightly
shorter runs but is similarly redundant.

To determine the block type we use a procedure new-file which is our extension of the
. Unix file command.” file works by examining the first 512 bytes of a file and comparing

1 the pattern of data contained in it to a collection of known data patterns from Unix and
i other operating systems. new-file works in a similar fashion, with two modifications.

First, it examines and compares not only the first 512 bytes of a data set, but also 512
bytes in the middle of the set and the 512 bytes at the end (if they exist). This provides
a better indication of the primary data type of a file by taking into account the possibility
that the properties may change anywhere within the tile. Thus, new—fi1e decides on the
‘most applicable‘ data type by a majority vote (or the first data type detected in the case of

n a three—way tie). The other change is that the known patterns of data have been increased
1 by adding three graphics patterns.

Redundancy metrics

The redundancy metrics are quantitative measures that are used to determine the com-
pressibility of a block of data. They are: the degree of variation in character frequency or
alphabetic distribution, MAD; the average run length of the block, MEL; and the string
repetition ratio of the block, M53. In general, these three manifestations of redundancy are
independent. Each of the redundancy types is exploited by different compression algorithms.

. Frequency of characters is exploited by arithmetic or alphabetic encoding algorithms. In
j arithmetic coding data is represented by an interval that is calculated from the probability

' distribution of data. With alphabetic coding algorithms such as the Huffman“ and Shannon-
" Fano” algorithms, more frequently occurring characters are replaced by shorter units than

~ the less frequently occurring characters. Contiguous strings, long strings of identical units
occurring next to one another, are exploited by run length encoding algorithms.” In these
algorithms, contiguous strings are replaced by a single occurrence of the string, called a

I run, plus a count of the number of identical strings following. Both alphabetic distribu-
l tion and average run length are sometimes characterized as statistical redundancy metrics.“
i Recurrent strings, which occur repeatedly in the input stream with any number of inter-
I leaved symbols, are exploited by textual substitution algorithms such as Lempel—Ziv.°‘”''2
' In these algorithms, recurrent instances are replaced with positional references (pointers) to

I the original instance.
Experimental evidence for the efficacy of quantitative redundancy measures is described

in texts by Storer' and Shannon.” Shannon provided an estimate of the entropy of English
* text, approximately bounding it to be between one and two bits per character.” This was
| determined experimentally by presenting fragments of (unfamiliar) English text to human
! subjects and recording the frequency with which they guessed unknown letters. The frag-
. ments were revealed character by character, so that letters at the end of long or uncommonwords were easiest to guess and letters at the beginnings of words were hardest. The ob-
i servation that binary executables are known to possess high average run lengths is found

l

I

in Storer.' However, this property is rarely exploited or measured.

Teradata, Exh. 1026, p. 146

 §

Teradata, Exh. 1026, p. 147

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1105

Each redundancy metric is calculated by a separate statistical sampling routine and nor-
malized using a gamma distribution function G to be a number between 0 and 10 so as
to simplify comparison among the different metrics. The gamma distribution was chosen
because the graph of each of the unsealed redundancy metrics for a test set of 50 files, when
plotted on a histogram, approximated a gamma distribution. Normal and X2 distributions
were also considered, but these proved to be too specific for the application (since they

are both specific parametric cases of the gamma distribution). The gamma distribution is
defined as follows (cf Ross”):

G,—($T) = fox? f., dm
_ A1_e—A1-z(AT$)t1-~l

frlifll — T

: jm e‘.7Jyt-r~l0

where f1’ is the density function, 1" is the gamma function, 3:, is the unnormalized measure,
15., is the shape parameter for the gamma distribution, and /\T is the scale parameter for
the gamma distribution. The 1' subscript simply represents the redundancy type under con-
sideration, i.e. AD, RL, or SR, respectively. The shape and scaling parameters, 157 and AT
respectively, were determined by fitting the best gamma distribution curve to the data set.
This was done by performing the preferred compression method for each file and tabulating
the induced ratio among nonnalized metrics to yield the desired parameter values for each
segment. These were then averaged to obtain the empirical scaling parameters.

The alphabetic distribution metric (the degree of variation in character frequency) of a
block is calculated by taking the population (root-mean-square) standard deviation of the
ordinal values of characters in the block and dividing it by the block length (in bytes). The

MAD metric is calculated by the following formulas:

MAD = 10*GAo{5CAo)
C?

"MD 2 block length in bytes

Q = EcEcharset(C _ I02
256 ’

where c is the ordinal value of a character and ,u. is the average ordinal value of all characters
in a block. The normalization uses tAD = 1.70 and AA]; = 53.0 as parameters.

The average run length metric is obtained by dividing the number of bits in a block
by the number of runs. A run is defined to be a repetition of symbols (either bits or
bytes). Our implementation takes both bitwise and bytewise run lengths. For example, if
f = 0001111001 110000 is a file of 16 bits, then the number of bit runs is 5, and the number
of byte runs is 2. The scaled metric MRL is obtained by:

MRL = 10 * GRL(.T,‘RL)

file length in bits

number of runs
-TRL

Teradata, Exh. 1026, p. 147

Teradata, Exh. 1026, p. 148

1106 w. H. HSU AND A. E. ZWARICO

with gamma distribution parameters ti“, = 0.50 and ARL = 12.0.
The string repetition ratio metric is the total number of 11-bit strings in the block divided

; by the number of distinct n-bit strings (up to 100K). In our implementation, it is 32, the
word size of our machine. The normalized metric M53 is obtained by:

‘ MSR = 10 * GsR(33sR)number of 71 bit strings

number of distinct it hit stringsI 55512

‘ with gamma distribution parameters Egg = 0.18 and A5}; = 0.2.The alphabetic distribution and average run length metrics can be calculated in linear
' time. The string repetition ratio can be computed in O(n log n) time using a dictionary data

structure. For simplicity, and because a (small) constant amount of data is scanned, we use
l an O(n2) version. New strings are stored in an array rather than a binary tree, which would
[require more insertion overhead (and is not worth while for the 5K block length used in. the current system). Our routine integrates f,»(a:) by Simpson’s Rule with n = 10 intervals.
3 The largest of the three metrics is assumed to represent the most significant type of
1 redundancy present in the block. It is expected that compression will decrease at leastone of the metrics, and experiments conducted on a wide variety of files have proven this

convention to be reliable. Experiments have also shown that if all the normalized metrics are
smaller than 2.5, the file is considered not compressible, and the system records a verdict of
‘uncompressible’ on the current block. If at least one of the parameters is greater than 2.5,
the file is considered compressible. The maximum of the normalized metrics is then selected
and used in conjunction with the file type to select the appropriate compression algorithm

3 from the lookup table described in the following section. A negative compressibility testI i does not always imply that all three metrics are below the threshold. In some cases, the
l only redundancy type for which a metric is above the threshold accesses a null entry in the

0' database of compression algorithms. This is interpreted as a decision that the (poor) potential
it for compression is outweighed by the overhead of executing the compression algorithm.

The algorithm and heuristic database

The compression algorithms and attendant heuristics are organized into the 10 by 3 table
illustrated by Table I. The 10 file descriptors are the row indices and the 3 metrics are the
column indices. Each entry of the table contains descriptors which are used to access the
code for an algorithm—heuristic pair. It should be noted that four of the entries are blank
(indicated by an *). A blank entry indicates that the combination of block type and highest
metric are very unusual. In this case, the next highest metric is used instead, provided that
it is above the threshold. As an example of using this table, consider a high-redundancy
binary executable file whose highest metric is the string repetition metric MSR. Together,
this pair indicates that the Lernpel—Ziv compression algorithm with the Freeze heuristic will
be used.

The algorithms

There are four basic algorithms used by the system: arithmetic coding,“ Lempel—Ziv,”
run length encoding (RLE),23 and JPEG for imagelgraphics compression.”

Arithmetic coding algorithms compress data by representing that data by an interval of

Teradata, Exh. 1026, p_ 148

m

Teradata, Exh. 1026, p. 149

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR I-IETEROGENEOUS FILES 1107

Table 1. Database of compression algorithmsl

Mao MRL Ms):

ANS] arithmetic coding run-length encoding Lempel—Ziv
* byte-wise encoding freeze

hexadecimal arithmetic coding run-length encoding Lempcl—Ziv
* ‘I1.-bit run count freeze

natural language arithmetic coding * Lempe1—Ziv
* * freeze

source code arithmetic coding run-length encoding Lempel—Ziv
* n—bit run count freeze

low redundancy * run-length encoding Lempel—Ziv
binary * n-bit run count *
audio * run-length encoding Lempel—Ziv

* byte-wise encoding freeze
low resolution * run-length encoding bempel-Ziv

graphic * n—bit run count freeze
high resolution JPEG run—length encoding JPEG
color graphic improved Huffman n-bit run count improved Huffman
high redundancy arithmetic coding run-length encoding Lempel-Ziv
binary "‘ n-bit run count freeze
object arithmetic coding run-length encoding Lempel-Ziv

* byte-wise encoding freezem.

I Note: the first line of each en is the basic al orithm and the second line is the heuristic. An * as the heuristic indicates8

that no heuristic is used. Two "‘ indicates no entry.

real numbers between zero and one. The width of this interval is inversely proportional

to the number of symbols encoded, and the decrease in width is directly proportional to
the frequency of the original symbols. Thus the interval specifies the encoded message via
its bounds, with the precision (distance) of these bounds reflecting the information content
of the message. The end result is that arithmetic coding achieves, in practice, much better
space savings than Huffman coding and its dynamic implementations because of its higher
likelihood of actually achieving the theoretical lower bound.” 23 Although early arithmetic
coding algorithms performed too slowly to be of practical use,” the implementation of the
Witten—Neal—C1eary algorithm used here“ is optimized for speed — at some cost in space
savings, but without giving up its advantage over dynamic Huffman coding. The reader is
referred to Bell et all‘ for a thorough overview of arithmetic coding. We should note that
in earlier implementation of the heterogeneous compressor we used a dynamic Huffman
algorithm instead of arithmetic coding. We changed our implementation when we found
that then Witten—Neal—C1eary algorithm“ outperformed our implementation of dynamic
Huffman coding'"' 3” in both space savings and execution time.

Run length encoding (RLE) algorithms compress data by replacing contiguous occur-
rences of a single-unit symbol (either bit or byte) by an efficiently coded count of these
runs, usually a single occurrence of the symbol and the number of occurrences. We have
implemented a straightforward RLE algorithm for our database, based on the description in
Sedgewick.” In addition, bitwise and bytewise encoding are available as heuristics and the
parameters of bitwise RLE are based on the RL metric.

Files with a high degree of string repetition are compressed using the Lempel—Ziv com-
pression algorithm. It compresses data by replacing frequently occurring strings (with min-

Teradata, Exh. 1026, p. 149

Teradata, Exh. 1026, p. 150

 1108 W. H. HSU AND A. E. ZWARICO

imal regard of how far apart they occur) with compact pointers to the position of the first
occurrence. Our implementation is a straightforward array-based encoding with constant-
length codes. The algorithm maintains a dictionary of recurring strings in order to do the
compression. In our system, the Lempel—-Ziv algorithm is augmented with the Freeze heuris-
tic. This heuristic suppresses paging of strings in the dictionary after it has been filled; that
is, it prevents the replacement of previously encountered strings, regardless of how long
ago or how infrequently the string has been encountered. Freeze is primarily a speed op-
timization, since it requires less computation than paging heuristics such as least recently
used (LRU) or least frequently used (LFU), but it has been shown to work well for all but
the least string-redundant files (including both binary executables and most text files). For
files with extremely low string-repetition, our system usually selects Huffman compression.

The compression of high-resolution graphics and audio files uses a lossy compression
scheme. Appropriately used, lossy algorithms guarantee that the decompressed file is simi-
lar enough to the original as to be nearly indistinguishable by human perception, and that
repeated compression and decompression leads to limited cumulative ‘damage’ . The pri-
mary benefit of lossy compression is that it guarantees much higher compression ratios at
a minimal tradeoff. For instance, a very-high—resolution color image can be compressed
with much higher savings (possibly 95 per cent) if the user allows a small amount of noise,
always less than 1 per cent per compression, to be introduced during each compression. Our
system uses the JPEG system” for compressing high-resolution color and grayscale images.
JPEG, which is divided into lossy and lossless parts, typically achieves compression ratios
of between l5—to—l and 25-to-1. The potential for this substantial savings is obtained by
the Discrete Cosine Transform portion of the algorithm, a lossy method. This detennines a
limit on the amount of savings that can then be achieved by any lossless compressor. The
actual savings are realized by a lossless portion, known as the back end which is applied
to the preprocessed image data. The implementation of this module used in our system”
is a Huffman coder. It is independent of the lossy front end and can be replaced with a
run-length or textual-substitution based algorithm, to be selected by the synthesis system.
In our implementation, we chose to retain the original Huffman back end, a different algo-
rithm from the general-purpose dynamic Huffman coder which we also studied."’' 3° This
is because the JPEG Huffman coder is especially suited to the redundancy remaining after
lossy preprocessing. It is worthy of mention that the JPEG developers have investigated the
use of arithmetic coding back ends, which were found to be experimentally superior but
were not used because of proprietary considerations.”

Implementation

The system consists of a driver module, four block analysis modules, and the synthesis
module, which includes the database of compression algorithms. All modules are written in
C and were tested on a Unix platform. The program uses a data directed style of implemen-
tation for choosing the compression algorithm to apply to a block. Thus, additional block
types, compression algorithms and heuristics, and redundancy metrics can be added to the
system with minimal modification of the source code. Only the database would have to be
updated and the block analysis routines extended; the rest of the program would remain the
same.

The driver performs two iterative passes through the file. It first performs block analysis
on the file one SK block at a time. This block size was chosen after experimentation showed
that the response of the system to changes in block type became roughly stable as block

Teradata, Exh. 1026, p_ 150

Teradata, Exh. 1026, p. 151

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1109

size exceeded SK (i.e., did not significantly increase as block size did), and that a block size

of SK yielded highly accurate metrics (in only I of the 20 test files did the heterogeneous

compressor select a suboptimal algorithm for any block). Finally, we found that the highest

level of adaptivity without a noticeable decrease in accuracy was achieved at SK, hence
our choice of SK as the block size.

For each block, the system invokes the four analysis modules — three for metric compu-

tation and normalization and one to determine the file properties — and stores their output.

It then performs the metric comparison and combines the results with the file property to

complete the table lookup for the current block. An identifying tag for the selected algo-
rithm is written to the ‘compression plan’ , an array which stores one complete compression

instruction per block (if the current block is deemed uncompressible, a ‘skip’ instruction is
recorded).

We pause here to discuss the normalization of the metrics. Originally, we used a naive
normalization method: direct algebraic scaling with experimentally determined constants
for each metric. This did not, however, accurately reflect the statistical relationship between

variance in character frequency and alphabetic redundancy. Also, the behavior of these func-

tions at asymptotes led to poor approximation of the overall distribution of data segments
in the test files. The result was that arithmetic coding was too often incorrectly chosen, re-

sulting in inferior compression; and selection approached randomness as metric values for
both string repetition and alphabetic distribution tended toward extreme values. Using the

gamma normalization method described above resulted in an improvement in the selection
of arithmetic coding. Among the 20 benchmark files, arithmetic coding was selected as the

compression method in exactly those cases where the other methods performed worse.
The second pass performs the compression of each block. In order to improve perfor-

mance, this pass includes a simple optimization step which circumvents the overhead of
restarting compression after each fixed length block by merging contiguous blocks that are

to be compressed using the same compression algorithms.

On this same pass through the file, the system compresses each of the newly merged blocks

using the algorithm recorded in the compression plan. The compressed data is written to an
output buffer, while the compressed length (which indicates where in the compressed file

a compressed block begins and ends) and compression method are recorded in a separate

history for reference at decompression time. If negative compression or no compression is

achieved, or if the block was already marked uncompressible, then the data is copied directly

to the output buffer (the full block length and a code for ‘no compression’ are recorded in
the compression history). Upon reaching the end of the blocks, the system writes out the

compressed data from the output buffers and prepends the encoded compression history to

produce the final output file.
When decompression is invoked, the driver module opens the compressed file, interprets

the history tag and performs the necessary operations. The tags are a stored version of the

compression history in compact, encoded form. Since the heterogeneous system generates
different compression sequences for each file, and since the length of a compressed block

varies with both the length of the original block and the compression method used, these tags

are necessary to guide the decompression process. Currently only the compressed lengths

of each block and the method of compression are stored, but a checksum for the original

(decompressed) block length can be added with negligible overhead. When executed in

reverse order on each compressed block, the instructions in the history tags result in the

original file. For simplicity and security, they are prepended to the compressed file (and

can easily be encrypted).

Teradata, Exh. 1026, p. 151

Teradata, Exh. 1026, p. 152

5-:

H10 W. H. HSU AND A. E. ZWARICO

EXPERIMENTAL RESULTS

Design and construction of the test files

To test the overall performance, the system was run on a set of 20 test files. These files
range in length from approximately 39K to 366K, with representative files from each of the
ten block types included in the test corpus.

The test files are designed to model certain types of heterogeneous files, including utilities
for image viewing, business, or audio processing, and hypothetical multimedia databases and
programs. To construct these files, a collection of 30 files from the Unix, Apple Macintosh,
and MS-DOS (IBM PC) operating systems was created. These files are listed in Table II.
To create the test corpus, they were concatenated in groups of 2 or 3. The resultant series
of test files is listed in Table 111. All of the source files were used. The goal was to generate
as broad a range of permutations as possible (while restricting the generated files to those
which are likely to exist in a typical user environment). This was performed manually with
consideration toward combinatorial constraints and the criteria of realistic data modeling.
Since all of the files in the source collection originate from common commercial sources
or from public archives (with the exception of the source and object files, which are from
the code for the heterogeneous compressor itself), the latter constraint was considerably
simplified.

The assembled files were then ported to the test sites (a Sun workstation for Unix
compress and our heterogeneous compressor; a Macintosh for Stufflr and Compact Pro;
and an IBM 80486 machine for PKZIP). Binary file transfer mode was used to ensure that
the file lengths agreed exactly among all platforms.

Performance

In this section, we review and analyze the perfonnance of the heterogeneous compressor
with respect to compression savings, as compared with four of the commercial systems
previously discussed; and execution time. Finally, we briefly note the implications of running
the experiments and compiling performance data on several different architectures.

Compression savings

The total length of the uncompressed benchmark suite is just under three megabytes. Table
IV shows the compressed length achieved by Unix compress, PKZIP, Stufilr, Compact
Pro and the heterogeneous compression system. The heterogeneous compressor achieved
the greatest compression, with a total compressed length of 1828K. This represents an
additional savings of 162K (more than eight per cent) over the best commercial system
(Compact Pro v1.32), and 339K (nearly 16 per cent) over the average. Compressed lengths
for the commercial methods ranged from 1990K to 2375K.

Table V compares the percentage savings obtained by our system to the savings obtained
by the commercial programs and the heterogeneous system. The last two columns show the
difference in per cent saved between the synthesis system and the best and average of the
four commercial packages. The best commercial compressor is marked for each of the files.
Note that the heterogeneous compressor does better than all commercial programs in 19 of
20 cases and better than three of the four commercial systems in this one case (file 15).
The difference in compression for this file is only 0.02 per cent, whereas for all the other
files, the heterogeneous compressor has at least a 1.3 per cent improvement over the best

Teradata, Exh. 1026, p. 152

Teradata, Exh. 1026, p. 153

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR l-IETEROGENEOUS FILES 1111

Table II. Files used to compose the test suite and their respective origins _
File

designation
audio]

lowrdl
1owrd2
lowrd3

l0wrd4

tcxtl

text3
text-4
text5
text6

text7

execul
execu2
execu3

execu4
exeeu5

execu6

graph 1
graph2
graph3
graph4

graph5
graphé
graph?

objecl

objec2

objec3

sou reel
sourcc2

File
name

cosby.snd

ticker.£xt
exsound
huff

appnoteuuc

phraclctxt
techbook.txt

quantal .txt
attill a.fiuff
shadow.fluff

quanta2.txt

ad

sh
blob
zero

network2.exe
hostname

compmisc.drw
eompperi.drw

computer.drw
lowres. mpt
3dbar.drw

image. ppm

grp4

testl .0
test2.o

test3.o

table.c
freeze.c

File

WP3
Soundlvlastcr Macintosh audio file

ASCII characters from stock ticker

compressed World Builder sound library
compressed Unix executable
uuencoded text

English text
Unix news article

English text
English text
English text

English text

Unix executable
Unix executable

Silicon Graphics executable

Silicon Graphics executable
IBM PC executable
Unix executable

Lotus Freelance line drawing
Lotus Freelance line drawing

Lotus Freelance line drawing
MacPaint file
Lotus Freelance 3-D bar chart

PPM (high-resolution image) file
MacPaint file

Unix object file
Unix object file
Unix object file

C source code
C source code

commercial compressor. The average of each column appears in the bottom row; note that
the ‘percent difference’ averages are not weighted by file length, as each file is considered
a separate experiment.

Because the quality of compression by the syn
rithms and heuristics used, improvement of the i

higher performance. This is evidenced by comparing t
inated by string repetitions by Unix compress
of the Lempe1—Ziv algorithm. Unix compress
a better implementation of LZ77.
should be noted that the performance 0

thesis system depends on that of the algo-
mplementations that we use should yield

he results of compressing a file dom-

and Compact Pro. Both are implementations
has no heuristics, whereas Compact Pro is

5' “ Compact Pm consistently outperforms compress. It
f the Freeze variant of Lempel—Ziv3 used in our sys-

Teradata, Exh. 1026, p. 153

Teradata, Exh. 1026, p. 154

1112 w. H. HSU AND A. E. ZWARICO

Table Ill. Combinations of the test files and the resultant simulated data types
 ?.:?_
File File Classification of
number composition data modeled
I textl — lowrdl news or stock report

2 graph? — objecl object tile for a graphics viewer
3 lowrdl -— text3 —— graph4 multimedia application (text/graphics)
4 graph?‘ ~— execu3 graphics viewer
5 audiol — graph] multimedia data file (soundlgraphics)
6 text2 — lowrdl — graph3 multimedia data file (text/graphics)
7 lowrd3 — execul commercial utility

8 graph2 —— lowrd2 ~— execu2 multimedia application
(graphicslsound/executable)

9 source] — |owrd3 —- grapho multimedia data or source file
(sourcefcompressed binarylimage)

10 audiol — text4 multimedia data file (soundftext)
ll lowrdl —- execu4 statistical application with data
12 graph? — text5 multimedia data file (text/graphics)
I3 lowrd2 — text6 multimedia data file (soundltext)
14 text] — audiol — graph5 multimedia data file (textlsoundlgraphics)
IS lowrdl — text4 — source2 source file for multimedia program

(textfsource code)

in text? — lowrd2 — graph3 multimedia data file
(textlcompressed audiolgraphics)

I7 graph4 -— audiol — execu5 multimedia application (soundlgraphics)
18 cxecu4 —— graph’? =— text-4 multimedia application (graphics/text)
19 objec3 — lowrd3 ~ exccu6 commercial utility
20 ob_iec2 — audiol — execu2 audio application

tem does consistently better than compress and is comparable to Compact Pro on standard
industrial benchmarks.” Improving algorithms and adding or substituting new heuristics
would also yield more savings.

Execution times and speed optimizaliorts

In this section we compare, in approximate units, the running time of the heterogeneous
compressor against those of the four commercial systems the savings rates of which for our
test files are documented above. The units are approximate for two reasons. First, because

J the four test systems are commercial the source code for three of them is not publicly
available*, which renders an exact measure of user time infeasible. This concern is in part

. assuaged by the non—multitasked, sing1e—user nature of the microcomputer operating systems
1 on which three (compress for Linux notwithstanding) of the commercial systems reside.

Second, however, the drastic architectural and organizational differences among the various
‘ native machines renders uniform comparisons unreliable. This applies even to normalized
1 execution times because the host machines differ not merely in clock cycle speed, but

‘1 in instruction set architecture and dynamic instruction frequencies for similar compression: algorithms. The exact running times reported in this section is only that of the heterogeneous
‘ As noted. however. the Lempel—Ziv implementation employed by Srufih Cla.r.rr'c is nearly identical to that of Unix compress.

Teradata, Exh. 1026, p. 154

 -

Teradata, Exh. 1026, p. 155

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES I113

compressor. These comprise the non-commercial“ compression systems for which source
code is available for profiling. For the commercial systems we report the observed wall

clock time to provide a standard of comparison, but note that the host machines vary in
computational power.

Table IV. Results of the four popular commercial programs and the heterogeneous compression system,
applied to the 20 test files

File Original Unix PKZIP Srufi7r Compact Heterogeneous
number length compress v1.10 Classic Pro V1.32 compressor
1 39,348 20,578 17,1 19 20,575 16,831 16,315

2 44,202 44,202 39,813 40,412 41,112 37,388

3 46,629 46,629 46,629 43,261 40,367 36,477
4 59,254 52,076 40,571 45,202 41,607 38,007
5 169,108 168,903 151,478 349,701 148,917 134,524
6 100,476 69,771 53,043 65,417 52,349 50,906
7 131,663 131,663 103,544 106,643 109,979 96,429

8 220,644 190,971 137,886 173,677 137,401 127,384
9 301,805 145,993 112,503 137,685 115,096 103,730

10 255,306 204,457 191,378 206,193 183,313 168,675
11 59,305 30,178 22,782 29,701 22,858 21,774
12 51,715 51,715 43,032 46,462 44,107 40,229

13 63,189 63,189 58,247 59,569 59,934 54,481
14 196,789 176,276 196,789 172,486 151,057 137,052
15 148,908 73,555 63,748 75,595 64,618 63,778
16 164,535 141,067 132,992 135,245 110,093 104,175
17 203,912 203,912 184,657 189,398 202,821 170,564
18 200,640 128,675 107,728 125,461 104,711 101,674

19 366,557 265,114 198,727 265,027 198,756 187,659
20 278,152 223,277 193,980 224,943 191,763 181,030

Total 3,102,137 2,432,201 2,096,646 2,312,653 2,037,690 1,872,251

The running times for the commercial systems on the entire test suite documented above
appear in Table VI. All of the execution times are measured in wall clock units except for
the heterogeneous compressor’s, which is a total of user times as reported by prof, the C
profiler under Unix. The wall clock time was empirically observed not to differ noticeably
from this total on an unloaded Unix machine. The commercial systems were similarly tested

on unloaded (or sing1e—task) systems.

For Unix compress, the mean running time was 26 s, where the average was taken
over runs on different Sun workstations of comparable power (documented below). A Unix

implementation of PKZIP was also tested on one of these Sun workstations, and achieved
an execution time of 56 s — only slightly better than the personal computer version. The

running time of 856 s placed the heterogeneous compressor in the middle to high end of
the commercial compressors in terms of running time.

’ For this purpose we continue to consider Unix compress commercial, due to its wide range of versions.

Teradata, Exh. 1026, p. 155

Teradata, Exh. 1026, p. 156

1114 W. H. HSU AND A. E. ZWARICO

Table V. Percent savings for the test compression systems‘
 ?____

File Unix PKZIP Siufilz Compact Heterogeneous Best Average
number compress V1.10 Classic Pro v1.32 compressor win win

(% saved) (‘lb saved) (% saved) (‘lb saved) (% saved) (% diff.) (9%: diff.)
1 47-70 56-49 47-71 57-23: 58-54 1-31 6-25
2 0-00 9-93: 8-57 6-99 15-42 5-49 9-04
3 0-00 0-00 7-22 13-43* 21-77 8-34 16-61
4 12-11 31-53* 23-71 29-78 35-86 4-33 11-57
5 0-12 10-43 11-48 11-94: 20-45 8-51 11-96
6 30-56 47-21 34-89 47-90* 49-34 1-44 9-20
7 0-00 21-36: 19-00 16-47 26-76 5-40 12-55
8 13-45 37-51 21-29 37-73: 42-27 4-54 14-77
9 51-63 62-72»: 54-38 61-86 65-63 2-91 7-98
10 19-92 25-04 19-24 28-20* 33-93 5-73 10-83
11 49-1 I 61-59: 49-92 61-46 63-28 1-70 7-77
12 0-00 1679* 10-16 14-71 22-21 5-42 11-80
13 0-00 7-82* 5-73 5-15 13-78 5-96 9-11
14 10-42 0-00 12-35 23-24* 30-36 7-12 18-85
15 50-60 57-19: 49-23 56-61 57-17 -0-02 3-76
16 14-26 19-17 17-80 33-09* 36-69 3-60 15-60
17 0-00 9-44* 7-12 0-54 16-35 6-91 12-08
18 35-87 46-31 37-47 47-81-: 49-33 1-51 7-46
19 27-67 45-79* 27-70 45-78 48-80 3-02 12-07
20 19-73 30-26 19- 13 31 -06-: 34-92 3-86 9-87

Average 19-16 29-83 24-21 31-55* 37-14 4-35 10-96

ll‘ ' The starred entry in each row is the best commercial system.

CONCLUSIONS

Analysis of results

This project was successful on several levels. First, the feasibility of synthesizing com
pression plans from encapsulated primitives for heterogeneous files was illustrated. The us
of property analysis and redundancy metrics was experimentally successful. the latter veri
fying the applicability of statistical data analysis to automatic programming in this domai
The positive test results obtained with the primitive database currently available woul
probably be even better with improved implementations of the algorithms and heuristic
The statistical foundations of the heterogeneous system proved strong enough to be of de
inite relevance to the operating systems community, and might be useful in an informatio
theoretic context. The benefits of data compression are ubiquitous in that savings throug
compression are independent of hardware and storage capabilities; selective techniques in
crease these savings by a significant factor for heterogeneous files.

Future work

The sampling method may be improved in future implementations by randomization
The increase in analysis accuracy that this would bring would demand more primitives an
heuristics — such need would arise in any case with the continuing development of ne

1 files types, such as high-resolution animation and three—dimensional images.

Teradata, Exh. 1026, p. 156

Teradata, Exh. 1026, p. 157

AUTOMATIC SYNTHESIS OF COMPRESSION TECHNIQUES FOR HETEROGENEOUS FILES 1115

Table VI. Execution times of the heterogeneous and commercial compressors

Compression system Execution time Execution time
(s) (min)

Unix compress 3 26 0:26
PKZIP v1.10 67 1:07
Stufflt Classic 1152 19:12

Compact Pro v1.32 1594 26:34
Heterogeneous compressor 856 14:56

In the current system, lossy compression methods can be applied only if an entire file
is found to be of a lossily compressible data type. Typically, these include high-resolution

images (for JPEG) and speech, general high-definition audio, and high-resolution animation
files. A special case could be implemented specifying that when an entire file matching a
single lossily compressible data type (i.e. a homogeneous loss-permissible file) is found,
the lossy algorithm may be applied.

The difficulty is that without explicit information on where loss-permissible portions of
a heterogeneous (e.g. multimedia) file begin and end, the compressor cannot absolutely
guarantee that no data will be distorted which the user is not willing to have distorted.
Thus no lossy methods can be safely applied to any segment in the block-based system.

Thus a heterogeneous system would require either full interactive guidance from a user

who could inspect the file or knew its contents, or would require improved magic numbers
which encoded the lengths of loss-permissible segments. The heterogeneous system could
then scan for these codes during the property analysis phase and preempt or modify metric-

based selection if a lossy algorithm is warranted. The latter approach seems far superior

to interactive compression, which places an intolerable burden of responsibility on users
(consider a multimedia file with hundreds of interspersed digitized photographs).

Another improvement worth considering is the use of a ratings system for specialized

(especially lossy) compression algorithms such as JPEG and MPEG. For example, by des— ..
ignating RLE compression ‘0 per cent alphabetic distribution, 100 per cent run length, 0 I
per cent string repetition‘ and by defining its single—type counterparts similarly, a standard
can be established. Unix compress, for instance, might rate ‘40 per cent AD, 0 per cent

RL, 60 per cent SR’ and a hypothetical algorithm X might rate ‘25 per cent AD, 50 per cent
RL, 25 per cent SR’ . The rating standard would correspond to the metric rating system for
files which our system uses, and would help in analysis of the performance of composite

compression techniques (which handle multiple redundancy types). Non-synthesized com-

posite techniques exist, both adaptive and non-adaptive, though results are not as promising
as those of automatically generated techniques.

Finally, it is clear from the frequency of duplicate entries in the algorithm lookup table _
that the database of primitives used in this heterogeneous system may not be as wel1—stocked :

as it optimally could be. Storer' lists a plethora of optional heuristics which are applicable
to Lempel—Ziv compression, specifically in augmenting and deleting from the dictionary.

ACKNOWLEDGEMENTS

This paper was produced as part of a research project at Johns Hopkins University. We

are grateful to the faculty and staff of the JHU Computer Science Department, and to the

Brown University CS Department, for their assistance throughout this work.

Teradata, Exh. 1026, p. 157

Teradata, Exh. 1026, p. 158

1116 W. H. HSU AND A. E. ZWARICO

We would like to thank Leonid Broukhis, Graham Toal, and Kenneth Zeger for discus-
sions on some of the research reported here. We also thank Jonathan Eifrig, Bill Goodman,
and Tom Lane for guidance on several technical issues. Finally, we thank the anonymous re-
viewers for their comments and suggestions, especially for introduction to relevant literature
in arithmetic coding.

REFERENCES

James A. Storer, Data Compression: Methods and Theory. Computer Science Press. Rockville. MD, 1988.
Phillip W. Katz, PKZIP. Commercial compression system, version 1.1, 1990.
Sun Microsystems. compress. Commercial compression system. operating system version 5.3. September
1992.

Raymond Lau. Stufflt Classic and Stufflt Deluxe. Commercial compression system. 1990.
Bill Goodman. Compact Pro. Commercial compression system. v1.32. 1991.
Terry A. Welch, ‘A technique for high performance data compression‘, IEEE Computer, 17(6). 8-19 (1984).
Gilbert Held and Thomas R. Marshall. Data Compression.‘ Techniques and Applications: Hardware and
Software Considerations. 3rd edn, John Wiley and Sons. 1991.
Leonid Broukhis. Freeze implementation of LZHuf algorithm. comp.sources.misc archives. Internet. 1991.
Jean-Loup Gailly, compcompression benchmark (Calgary test corpus). In comp.compression FAQ list. J.
Gailly. (ed). 1992.

10. Jeffrey S. Vitter. ‘Dynamic Huffman Coding’. ACM Transactions on Mathematical Software. (June 1989).
11. J. Ziv and A. Lempel. ‘A universal algorithm for sequential data compression‘. IEEE Transactions on

Information Theory. 23.(3), 337-343 (1977).
12. J. Ziv and A. Lempel. ‘Compression of individual sequences via variable-rate coding’. IEEE Transactions

on Information Theory, 24(5). 530-546 (1978).
13. Jon Louis Bentley. Daniel D. Sleator. Robert E. Tarjan and Victor K. Wei. ‘A locally adaptive data

compression scheme‘. Cornmanicotions of the ACM. 320-330 (April 1986).
14. Yooichi Tagawa. Haruhiko Okumura and Haruyasu Yoshizaki. LZHuf: encodingldecoding module for

LHarc. Compression system. version 0.03 (Beta). 1989.
15. Haruyasu Yoshizaki. LHA: A high-performance file-compression program. Compression system. version

2.11. 1991.
16. Edward R. Fiala and Daniel H. Greene, ‘Data compression with finite windows’, Communications of the

‘. ACM. 490-505 (1989).
17. Ellis Horowitz and Sartaj Sahni. Fandarnentais of Data Structures in Pascal. Computer Science Press.

Rockville. Maryland. second edition. 1987.
18. Graham Toal. Personal communication. Unpublished. 1992.
19. Gerard Salton. Automatic Text Processt'ng.' The Trarrsformatiotr, Analysis, and Retrieval of Information by

Computer, Addison-Wesley. Reading. MA. 1989.
20. Ian F. Darwin. file (program). Berkeley Unix operating system, 1987.
21. David A. Huffman. ‘A method for the construction of minimum-redundancy codes‘. Proceedings of the

IRE. number 40. 1952. pp. 1098-1101.
22. Claude E. Shannon and Warren Weaver, The Mathematical Theory of Communications, University of

Illinois Press. Urbana and Chicago. 1963.
23. Robert Sedgewick, Algoriihrns. 2nd edn, Addison-Wesley. Reading, MA. 1988.
24. Timothy C. Bell. John G. Cleary and Ian H. Witten. Text Compression, Prentice Hall. Englewood Cliffs.

New Jersey. 1990.
25. Sheldon Ross, A First Course in Probability. Macmillan Publishing Company, New York, third edition.

1988.

26. Ian H. Wilten. Radford Neal and John G. Cleary, ‘Arithmetic coding for data compression‘. Communica-
tions of the ACM. 30(6). 520—S40 (1987).

27. Independent JPEG Group. ‘JPEG image compression system‘. thinlccom FTP archives. Internet. 1994.
28. .lcan—Loup Gailly. compcompressionlcomp.comprcssion.research FAQ list. J. Gailly (ed.). URL

http : //wort. cis . ohio-state . edu/hypertext/faq/usenet/compression-faq/top .hr.ml, I994.
29. James A. Storer, Image and Text Compression, Kluwer Academic Publishers, Norwell, MA. 1992.
30. Graham Toal. C implementation of dynamic Huffman compressor by J. S. Vitter. comp.source.misc

archives. Internet. 1990.

?°.°°2‘-‘.°".~":“1*?‘-‘T’

Teradata, Exh. 1026, p. 158

