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Design of LDPC Codes: A Survey and New Results
Gianluigi Liva, Shumei Song, Lan Lan, Yifei Zhang, Shu Lin, and William E. Ryan

Abstract— This survey paper provides fundamentals in the
design of LDPC codes. To provide a target for the code designer,
we first summarize the EXIT chart technique for determining
(near-)optimal degree distributions for LDPC code ensembles.
We also demonstrate the simplicity of representing codes by
protographs and how this naturally leads to quasi-cyclic LDPC
codes. The EXIT chart technique is then extended to the
special case of protograph-based LDPC codes. Next, we present
several design approaches for LDPC codes which incorporate
one or more accumulators, including quasi-cyclic accumulator-
based codes. The second half the paper then surveys several
algebraic LDPC code design techniques. First, codes based on
finite geometries are discussed and then codes whose designs
are based on Reed-Solomon codes are covered. The algebraic
designs lead to cyclic, quasi-cyclic, and structured codes. The
masking technique for converting regular quasi-cyclic LDPC
codes to irregular codes is also presented. Some of these results
and codes have not been presented elsewhere. The paper focuses
on the binary-input AWGN channel (BI-AWGNC). However,
as discussed in the paper, good BI-AWGNC codes tend to be
universally good across many channels. Alternatively, the reader
may treat this paper as a starting point for extensions to more
advanced channels. The paper concludes with a brief discussion
of open problems.

I. INTRODUCTION

The class of low-density parity-check (LDPC) codes repre-
sents the leading edge in modern channel coding. They have
held the attention of coding theorists and practitioners in the
past decade because of their near-capacity performance on a
large variety of data transmission and storage channels and
because their decoders can be implemented with manageable
complexity. They were invented by Gallager in his 1960
doctoral dissertation [1] and were scarcely considered in the
35 years that followed. One notable exception is Tanner, who
wrote an important paper in 1981 [2] which generalized LDPC
codes and introduced a graphical representation of LDPC
codes, now called Tanner graphs. Apparently independent of
Gallager’s work, LDPC codes were re-invented in the mid-
1990’s by MacKay, Luby, and others [3][4][5][6] who noticed
the advantages of linear block codes which possess sparse
(low-density) parity-check matrices.

This papers surveys the state-of-the-art in LDPC code
design for binary-input channels while including a few new
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results as well. While it is tutorial in some aspects, it is not
entirely a tutorial paper, and the reader is expected to be fairly
versed on the topic of LDPC codes. Tutorial coverages of
LDPC codes can be found in [7][8]. The purpose of this paper
is to give the reader a detailed overview of various LDPC code
design approaches and also to point the reader to the literature.
While our emphasis is on code design for the binary-input
AWGN channel (BI-AWGNC), the results in [9][10][11][12]
demonstrate that a LDPC code that is good on the BI-AWGNC
tends to be universally good and can be expected to be good
on most wireless, optical, and storage channels.

We favor code designs which are most appropriate for appli-
cations, by which we mean codes which have low-complexity
encoding, good waterfall regions, and low error floors. Thus,
we discuss quasi-cyclic (QC) codes because their encoders
may be implemented by shift-register circuits [13]. We also
discuss accumulator-based codes because low-complexity en-
coding is possible from their parity-check matrices, whether
they are quasi-cyclic or not. The code classes discussed tend
to be the ones (or related to the ones) used in applications
or adopted for standards. Due to time and space limitations,
we cannot provide a complete survey. The present survey is
biased toward the expertise and interests of the authors.

Before a code can be designed, the code designer needs
to know the design target. For this reason, Section II first
briefly reviews the belief propagation decoder for LDPC
codes and then presents the so-called extrinsic information
transfer (EXIT) chart technique for this decoder. The EXIT
chart technique allows one to obtain near-optimal parameters
for LDPC code ensembles which guide the code designer.
The EXIT technique is extended in Section III to the case
of codes based on protographs. Section IV considers LDPC
codes based on accumulators. The code types treated in that
section are: repeat-accumulate, irregular repeat-accumulate,
irregular repeat-accumulate-accumulate, generalized irregular
repeat-accumulate, and accumulate-repeat-accumulate. That
section also gives examples of quasi-cyclic code design using
protograph (or base matrix) representations. Section V surveys
the literature on cyclic and quasi-cyclic LDPC code design
based on finite geometries. Section VI presents several LDPC
code design techniques based on Reed-Solomon codes. Section
VII presents the masking technique for converting regular QC
codes to irregular QC codes to conform to prescribed code
parameters. Section VIII contains some concluding remarks
and some open problems.

II. DESIGN VIA EXIT CHARTS

We start with an m × n low-density parity-check matrix
H, which corresponds to a code with design rate (n−m)/n,
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Fig. 1. Tanner graph representation of LDPC codes.

which could be less than the actual rate, R = k/n, where k
is the number of information bits per codeword. H gives rise
to a Tanner graph which has m check nodes, one for each
row of H, and n variable nodes, one for each column of H.
Considering the general case in which H has non-uniform row
and column weight, the Tanner graph can be characterized
by degree assignments {dv(i)}n

i=1 and {dc(j)}m
j=1, where

dv(i) is the degree of the i-th variable node and dc(j) is the
degree of the j-th check node. Such a graph, depicted in Fig.
1, is representative of the iterative decoder, with each node
representing a soft-in/soft-out processor (or node decoder).

We shall assume the BI-AWGNC in our description of the
LDPC iterative decoder. In this model, a received channel
sample y is given by y = x + w, where x = (−1)c ∈ {±1}
is the bipolar representation of the transmitted code bit c ∈
{0, 1} and w is a white Gaussian noise sample distributed
as η

(
0, σ2

w

)
, where σ2

w = N0/2, following convention. The
channel bit log-likelihood ratios (LLRs) are computed as

Lch = log
(

p (x = +1 | y)
p (x = −1 | y)

)
=

2y

σ2
w

. (1)

In one iteration of the conventional, flooding-schedule iter-
ative decoder, the variable node decoders (VNDs) first process
their input LLRs and send the computed outputs (messages) to
each of their neighboring check node decoders (CNDs); then
the CNDs process their input LLRs and send the computed
outputs (messages) to each of their neighboring VNDs. More
specifically, the message from the i-th VND to the j-th CND
is

Li→j = Lch,i +
∑

j′ 6=j

Lj′→i (2)

where Lj′→i is the incoming message from CND j′ to VND
i and where the summation is over the dv(i)− 1 check node
neighbors of variable node i, excluding check node j. The
message from CND j to VND i is given by

Lj→i = 2 tanh−1

(
∏

i′ 6=i

tanh (Li′→j)

)
(3)

where Li′→j is the incoming message from VND i′ to CND
j and where the product is over the dc(j) − 1 variable node
neighbors of check node j, excluding variable node i . This
decoding algorithm is called the sum-product algorithm (SPA).

We now discuss the EXIT chart technique [14][15][11] for
this decoder and channel model. The idea is that the VNDs
and the CNDs work cooperatively and iteratively to make
bit decisions, with the metric of interest generally improving
with each half-iteration. A transfer curve which plots the
input metric versus the output metric can be obtained for
both the VNDs and the CNDs, where the transfer curve for
the VNDs depends on the channel SNR. Further, since the
output metric for one processor is the input metric for its
companion processor, one can plot both transfer curves on
the same axes, but with the abscissa and ordinate reversed
for one processor. Such a chart aids in the prediction of the
decoding threshold of the ensemble of codes characterized by
given VN and CN degree distributions: the decoding threshold
is the SNR at which the two transfer curves just touch,
precluding convergence of the two processors. EXIT chart
computations are thus integral to the optimization of Tanner
graph node degree distributions for LDPC codes and are the
main computation in the optimization process. We emphasize
that decoding threshold prediction techniques such as EXIT
charts or density evolution [16] assume a graph with no
cycles, an infinite codeword length, and an infinite number
of decoding iterations.

An EXIT chart example is depicted in Fig. 2 for the
ensemble of regular LDPC codes on the BI-AWGNC with
dv(i) = dv = 3 for i = 1, ..., n, and dc(j) = dc = 6 for
j = 1, ..., m. In the figure, the metric used for the transfer
curves is extrinsic mutual information, giving rise to the name
extrinsic information transfer (EXIT) chart. (The notation
used in the figure is explained below.) Also shown in the
figure is the decoding trajectory corresponding to these EXIT
curves. As the SNR increases, the top curve shifts upwards,
increasing the ”tunnel” between the two curves and thus the
decoder convergence rate. The SNR for this figure is just
above the decoding threshold for codes with (dv, dc) = (3, 6),
(Eb/N0)thres = 1.1 dB. Other metrics, such as SNR and mean
[17][18] and error probability [19] are possible, but mutual
information generally gives the most accurate prediction of the
decoding threshold [14][20] and is a universally good metric
across many channels [9][10][11][12].

To facilitate EXIT chart computations, the following Gaus-
sian assumption is made. First, we note that the LLR Lch

in (1) corresponding to the BI-AWGNC is Gaussian with
mean µch = 2x/σ2

w and variance σ2
ch = 4/σ2

w. From this
and the usual assumption that the all-zeros codeword was
transmitted (thus, xi = +1 for i = 1, ..., n), σ2

ch = 2µch.
This is equivalent to the symmetric condition of [16] which
states that the conditional pdf of an LLR value L must satisfy
pL (l | x) = pL (−l | x) exl. Now, it has been observed that
under normal operating conditions and after a few iterations,
the LLRs Li→j and Lj→i are approximately Gaussian and,
further, if they are assumed to be symmetric-Gaussian, as
is the case for Lch, the decoding threshold predictions are
very accurate (e.g., when compared to the more accurate,
but more computationally intensive density evolution results
[16]). Moreover, the symmetric-Gaussian assumption vastly
simplifies EXIT chart analyses.

We now consider the computation of EXIT transfer curves
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Fig. 2. EXIT chart example for (dv , dc) = (3, 6) regular LDPC code.

for both VNDs and the CNDs, first for regular LDPC codes
and then for irregular codes. Following [14][15], excluding the
inputs from the channel, we consider VND and CND inputs to
be a priori information, designated by ‘A’, and their outputs to
be extrinsic information, designated by ‘E’. Thus, an extrinsic
information transfer curve for the VNDs plots the extrinsic
information IE as a function of its input a priori information,
IA, and similarly for the CNDs.

The VND EXIT curve, IE,V versus IA,V , under the
symmetric-Gaussian assumption for VND inputs, Lch,i and
{Lj′→i}, and outputs, Li→j , can be obtained as follows.
From (2) and an independent-message assumption, Li→j is
Gaussian with variance σ2 = σ2

ch +(dv − 1)σ2
A (hence, mean

σ2/2). The mutual information between the random variable
X (corresponding to the realization xi) and the extrinsic LLR
Li→j is therefore (for simplicity, we write L for Li→j , x for
xi, and pL (l | ±) for pL (l | x = ±1))

IE,V = H(X)−H(X | L)
= 1− E

[
log2

(
1/pX |L (x | l))]

= 1−
∑

x=±1

1
2

∫ ∞

−∞
pL (l | x)

· log2

(
pL (l | +) + pL (l | −)

pL (l | x)

)
dl

= 1−
∫ ∞

−∞
pL (l | +) log

(
1 +

pL (l | −)
pL (l | +)

)
dl

= 1−
∫ ∞

−∞
pL (l | +) log

(
1 + e−l

)
dl

where the last line follows from the symmetry condition and
because pL (l | x = −1) = pL (−l | x = +1) for Gaussian
densities.

Since Li→j ∼ η
(
σ2/2, σ2

)
(when conditioned on xi =

+1), we have

IE,V = 1−
∫ ∞

−∞

1√
2πσ

e−(l−σ2/2)2
/2σ2

log
(
1 + e−l

)
dl .

(4)

For convenience we write this as

IE,V = J (σ) = J

(√
(dv − 1)σ2

A + σ2
ch

)
, (5)

following [15]. To plot IE,V versus IA,V , where IA,V is the
mutual information between the VND inputs Lj→i and the
channel bits xi, we apply the symmetric-Gaussian assumption
to these inputs so that

IA,V = J (σA) (6)

and

IE,V = J (σ) = J

(√
(dv − 1) [J−1 (IA,V )]2 + σ2

ch

)
. (7)

The inverse function J−1 (·) exists since J (σA) is monotonic
in σA. Lastly, IE,V can be parameterized by Eb/N0 for
a given code rate R since σ2

ch = 4/σ2
w = 8R (Eb/N0) .

Approximations of the functions J (·) and J−1 (·) are given
in [15].

To obtain the CND EXIT curve, IE,C versus IA,C , we can
proceed as we did in the VND case, e.g., begin with the
symmetric-Gaussian assumption. However, this assumption is
not sufficient because determining the mean and variance for
a CND output Lj→i is not straightforward, as is evident from
the computation for CNDs in (3). Closed-form expressions
have been derived for the check node EXIT curves [21][22].
Computer-based numerical techniques can also be used to
obtain these curves. However, the simplest technique exploits
the following duality relationship (proven to be exact for the
binary erasure channel [11]): the EXIT curve for a degree-dc

check node (i.e., rate-(dc − 1)/dc single-parity check (SPC)
code) and that of a degree-dc variable node (i.e., rate-1/dc

repetition code) are related as

IE,SPC (dc, IA) = 1− IE,REP (dc, 1− IA) .

This relationship was shown to be very accurate for the BI-
AWGNC in [21][22]. Thus,

IE,C = 1− IE,V (σch = 0, dv ← dc, IA,V ← 1− IA,C)

= 1− J

(√
(dc − 1) [J−1 (1− IA,C)]2

)
. (8)

For irregular LDPC codes, IE,V and IE,C are computed as
weighted averages. The weighting is given by the coefficients
of the ”edge perspective” degree distribution polynomials
λ(z) =

∑dv

d=1 λdz
d−1 and ρ(z) =

∑dc

d=1 ρdz
d−1, where λd is

the fraction of edges in the Tanner graph connected to degree-d
variable nodes, ρd is the fraction of edges connected to degree-
d check nodes, and λ(1) = ρ(1) = 1. Then, for irregular
LDPC codes,

IE,V =
dv∑

d=1

λdIE,V (d, IA,V ) (9)

where IE,V (d) is given by (7) with dv replaced by d, and

IE,C =
dc∑

d=1

ρdIE,C(d, IA,C) (10)

where IE,C(d) is given by (8) with dc replaced by d.
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Fig. 3. EXIT chart for rate-1/2 irregular LDPC code. (Ack: S. AbuSurra)

It has been shown [11] that to optimize the decoding
threshold on the binary erasure channel, the shapes of the VND
and CND transfer curves must be well matched in the sense
that the CND curve fits inside the VND curve (an example
will follow). This situation has also been observed on the BI-
AWGNC [15]. Further, to achieve a good match, the number
of different VN degrees need only be about 3 or 4 and the
number of different CN degrees need only be 1 or 2.

Example 1: We consider the design of a rate-1/2 irreg-
ular LDPC code with four possible VN degrees and two
possible CN degrees. Given than λ(1) = ρ(1) = 1 and
R = 1 − ∫ 1

0
ρ(z)dz/

∫ 1

0
λ(z)dz [16],[4], only two of the

four coefficients for λ(z) need be specified and only one of
the two for ρ(z) need be specified. A non-exhaustive search
yielded λ(z) = 0.267z + 0.176z2 + 0.127z3 + 0.430z9 and
ρ(z) = 0.113z4 + 0.887z7 with a decoding threshold of
(Eb/N0)thres = 0.414 dB. The EXIT chart for Eb/N0 = 0.55
dB is presented in Fig. 3. The figure also gives the ”node
perspective” degree distribution information. ¤

The references contain additional information on EXIT
charts, including the so-called area property, EXIT charts for
the Rayleigh channel, for higher-order modulation, and for
multi-input/multi-output channels [14][15][11][23].

III. DESIGN OF PROTOGRAPH-BASED CODES

A. Definition and Problem Statement

A protograph [24][25][26][27] is a relatively small bipartite
graph from which a larger graph can be obtained by a copy-
and-permute procedure: the protograph is copied Q times,
and then the edges of the individual replicas are permuted
among the replicas (under restrictions described below) to
obtain a single, large graph. An example is presented in Fig.
4. The permuted edge connections are specified by the parity-
check matrix H. Note that the edge permutations cannot be
arbitrary. In particular, the nodes of the protograph are labeled
so that if variable node V is connected to check node C in
the protograph, then variable node V in a replica can only
connect to one of the Q replicated C check nodes. Doing so

Fig. 4. Illustration of the protograph copy and permute procedure with q = 4
copies.

preserves the decoding threshold properties of the protograph.
A protograph can possess parallel edges, i.e., two nodes can
be connected by more than one edge. For LDPC codes,
the copy-and-permute procedure must eliminate such parallel
connections in order to obtain a derived graph appropriate for
a parity-check matrix.

It is convenient to choose the parity-check matrix H as an
M × N array of Q × Q (weight-one) circulant permutation
matrices (some of which may be the Q × Q zero matrix).
When H is an array of circulants, the LDPC code will be
quasi-cyclic. Such a structure has a favorable impact on both
the encoder and the decoder. The encoder for QC codes can
be implemented with shift-register circuits with complexity
linearly proportional to m for serial encoding and to n for
parallel encoding [13]. By contrast, encoders for unstructured
LDPC codes require much more work. The decoder for QC
LDPC codes can be implemented in a modular fashion by
exploiting the circulant-array structure of H [28][29].

Below we present an extension of the EXIT approach
to codes defined by protographs. This extension is a multi-
dimensional numerical technique and as such does not have
a two-dimensional EXIT chart representation of the itera-
tive decoding procedure. Still, the technique yields decoding
thresholds for LDPC code ensembles specified by protographs.
This multi-dimensional technique is facilitated by the rela-
tively small size of protographs and permits the analysis of
protograph code ensembles characterized by the presence of
critical node types, i.e., node types which can lead to failed
EXIT-based convergence of code ensembles. Examples of
critical node types are degree-1 variable nodes and punctured
variable nodes.

A code ensemble specified by a protograph is a refinement
(sub-ensemble) of a code ensemble specified simply by the
protograph’s (hence, LDPC code’s) degree distributions. To
demonstrate this, we introduce the adjacency matrix B = [bji]
for a protograph, also called a base matrix [25], where bji is
the number of edges between CN j and VN i. As an example,
for the protograph at the top of Fig. 4,

B =
(

2 1 1
1 1 1

)
.
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Consider also an alternative protograph and base matrix spec-
ified by

B′ =
(

2 0 2
1 2 0

)
.

The degree distributions of both of these protographs are
identical and are easily seen to be

λ(z) =
4
7
z +

3
7
z2

ρ(z) =
3
7
z2 +

4
7
z3.

However, the ensemble corresponding to B has a threshold
of Eb/N0 = 0.78 dB and that corresponding to B′ has a
threshold at 0.83 dB. (For reference, density evolution [16]
applied to the above degree distributions gives 0.817 dB.)

As another example, let

B =




1 2 1 1 0
2 1 1 1 0
1 2 0 0 1




and

B′ =




1 3 1 0 0
2 1 1 1 0
1 1 0 1 1


 ,

noting that they have identical degree distributions. We also
puncture the bits corresponding to the second column in
each base matrix. Using the multidimensional EXIT algorithm
described below, the thresholds for B and B′ in this case were
computed to be 0.48 dB and +∞, respectively.

Thus, standard EXIT analysis based on degree distributions
is inadequate for protograph-based LDPC code design. In fact,
the presence of degree-1 variable nodes as in our second
example implies that there is a term in the summation in (9)
of the form

λ1IE,V (1, IA,V ) = J (σch) .

Since J (σch) is always less than one for 0 < σch < ∞
and since

∑dv

d=1 λd = 1, the summation in (9), that is, IE,V ,
will be strictly less than one. Again, standard EXIT analysis
implies failed convergence for codes with the same degree
distributions as B and B′. This is in contrast with the fact
that codes in the B ensemble do converge when the SNR
exceeds the threshold of 0.48 dB.

In the following, a multidimensional EXIT technique
[30][31] will be presented which overcomes this issue and
allows the determination of the decoding threshold for codes
based on protographs (possibly with punctured nodes).

B. Multidimensional EXIT Analysis

The algorithm presented in [30][31] eliminates the average
in (9) and considers the propagation of the messages on a
decoding tree which is specified by the protograph of the
ensemble. Let B = [bji] be the M × N base matrix for the
protograph under analysis. Let Ii→j

E,V be the extrinsic mutual
information between code bits associated with “type i” VNs
and the LLRs Li→j sent from these VNs to “type j” CNs.
Similarly, let Ij→i

E,C be the extrinsic mutual information between

code bits associated with “type i” VNs and the LLRs Lj→i

sent from “type j” CNs to these VNs. Then, because Ij→i
E,C

acts as a priori mutual information in the calculation of Ii→j
E,V ,

following (7) we have (given an edge exists between CN j
and VN i, i.e., given bji 6= 0)

Ii→j
E,V = J




√√√√
M∑

c=1

(bci − δcj)
(
J−1(Ic→i

E,C )
)2

+ σ2
ch,i


 ,

(11)
where δcj = 1 when c = j and δcj = 0 when c 6= j. σ2

ch,i is
set to zero if code bit i is punctured. Similarly, because Ii→j

E,V

acts as a priori mutual information in the calculation of Ij→i
E,C ,

following (8) we have (when bji 6= 0)

Ij→i
E,C = 1− J




√√√√
N∑

v=1

(bjv − δci)
(
J−1(1− Iv→j

E,V )
)2


 .

(12)
The multidimensional EXIT algorithm can now be presented

as follows.
1) Initialization. Select Eb/N0. Initialize a vector σch =

(σch,0, . . . , σch,N−1) such that

σch,i = 8R

(
Eb

N0

)

i

where (Eb/N0)i equals zero when xi is punctured and
equals the selected Eb/N0 otherwise.

2) VN to CN. For i = 0, . . . , N − 1 and j = 0, . . . , M − 1,
compute (11).

3) CN to VN. For i = 0, . . . , N − 1 and j = 0, . . . , M − 1,
compute (12).

4) Cumulative mutual information. For i = 0, . . . , N − 1,
compute

Ii
CMI = J




√√√√
M∑

c=1

(
J−1(Ic→i

E,C )
)2

+ σ2
ch,i


 .

5) If Ii
CMI = 1 (up to desired precision) for all i, then

stop; otherwise, go to step 2.
This algorithm converges only when the selected Eb/N0

is above the threshold. Thus, the threshold is the lowest
value of Eb/N0 for which all Ii

CMI converge to 1. As
shown in [30][31], the thresholds computed by this algorithm
are typically within 0.05 dB of those computed by density
evolution. Recalling that many classes of multi-edge type
(MET) [26] LDPC codes rely on simple protographs, the
above algorithm provides an accurate threshold estimation for
MET ensembles, with a remarkable reduction in computational
complexity relative to the density evolution analysis proposed
in [26].

IV. ACCUMULATOR-BASED CODE DESIGNS

A. Repeat-Accumulate Codes

This section provides an overview of the design of LDPC
codes that can be considered to be a concatenation of a set
of repetition codes with one or more accumulators, through

f 
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