
Apple vs. Caltech 
IPR2017-00728 
Apple 1241

SPRINGER BRIEFS IN

ELECTRICAL AND COMPUTER ENGINEERING

 
 

Jafar A. Alzubi

 

 
Forward Error

Correction Based

On Algebraic-
Geometric Theory

CCCCC

0000000000000



SpringerBriefs in Electrical and Computer

Engineering

For further volumes:

htipflwww .spl'ingencomfseriesf 10059



Jafar A. Alzubi - Omar A. Alzubi

Thomas M. Chen

Forward Error Correction

Based On Algebraic-

Geometric Theory

‘2 Springer



Jafar A. Alzubi Thomas M. Chen

Faculty of Engineering School of Mathematics, Computer Science

Al—Balqa Applied University and Engineering
Al—Salt City University London

Jordan Northampton Square
UK

Omar A. Alzubi

Prince Abdullah Ben Ghazi Faculty
of Information and Technology

Al-Balqa Applied University
Al—Salt
Jordan

[SSN 219l—8112 ISSN 2191—8120 (electronic)

ISBN 9?8—3—319—08292—9 ISBN 978—3—319—08293—6 (eBook)
D01 10. l00?f978—3—3 19—08293—6

Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942050

© The Authotts) 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations.
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation. computer software. or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a compuler system. for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher‘s location. in its current version. and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names. registered names, trademarks. service marks, etc. in this
publication does not imply. even in the absence of a specific statement. that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of

publication. neither the authors not the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty. express or implied. with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (wwwspringercom)



T0 Fatima and Mira

—Jafar A. Alzubi

T0 Zulfah, Mariam, Ahmad and Yoasef

form” A. Alzubi

T0 Robin and Kayla

—Thomas M. Chen



Preface

Algebraic~geometric (AG) codes are a new paradigm in coding theory which

promise performance improvements for point-to-point communications systems.

AG codes offer several advantages over state—of~the~art ReedfiSolomon (RS)

codes. First, their construction is based on selecting points on a curve creating a

non-binary code with long code length and effective decoding. The bit error rate

(BER) performance of AG codes is impressive and attractive for wireless networks

with severe fading conditions. Second, AG codes are more flexible than RS codes

because they are easily extendable to high finite fields with minimal additional

complexity. Third, the decoding approach gets all required information from the

received data without the need for a decoding list. It is very attractive from the

perspectives of both reliability and buffering capacity. Finally, construction of AG

codes from curves offers an endless supply of AG codes with different properties

and parameters applicable for different applications.

In this book, AG codes are designed, constructed and implemented from

Hermitian curves. Simulations were carried out in Matlab to make comparisons of

BER performance of AG codes and RS codes using different modulation schemes

and various channel models such as additive white Gaussian noise (AWGN) and

Rayleigh fast fading. Simulation results of BER performance for AG codes using

quadrature amplitude modulation (loQAM and 64QAM) schemes are presented

for the first time (to our knowledge) and shown to outperform RS codes at various

code rates. Results for the AWGN channel are presented in this book; results for

the Rayleigh fast fading channel are contained in the first author’s Ph.D.
dissertation.

To further improve the BER performance, algebraic-geometric block turbo

codes (AG—BTCs) are proposed and implemented in this book. Their design,

construction and implementation are investigated. Their performance is evaluated

by simulations in Matlab, and results are presented for the first time in the liter—

ature. They show significant performance improvements but at the expense of high

system complexity due to the use of Chase-Pyndiah’s algorithm for AG codes.

In order to reduce system complexity while maintaining high BER perfor-

mance, this book proposes algebraic—geometric irregular block turbo codes (AG—

IBTCs). The design, construction and implementation of AGwlBTCs are presented

along with new simulation results. Again appearing for the first time in the

vii



viii Preface

literature, results show that significant reduction in system complexity can be

achieved while maintaining the high BER performance of AG-BTCs.

This book is intended to be useful to researchers and students in digital com-

munications. The reader is assumed to have an appropriate background in math-

ematics and telecommunications. The presentation is intended to be self—contained

with a substantial amount of background material included in the first half of the
book. The second half concentrates on new research results. The advanced sections

of the book may require a graduate level of education in communications.

This book is a result of the PhD. work carried out by the first author at the

College of Engineering in Swansea University, Wales. The authors are grateful to

Dr. Martin Johnston at Newcastle University for his invaluable assistance at the

early stages of the research. Special thanks are given to Dr. Martin Crossley in the

Mathematics Department at Swansea University For mathematical assistance

throughout this work.

Salt, Jordan, April 2014 Jafar A. Alzubi

London, UK Omar A. Alzubi
Thomas M. Chen
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Chapter 1

Introduction

In the past decade, the number of mobile devices has escalated driven mostly by

demand for bandwidth-hungry smart phones. The need for efficient and reliable

wireless communications has never been greater. The future internet of Things {loT}

consisting of interconnected common objects capable of sensing and processing

may generate orders of magnitudes more data. At the same time, the amount of radio

spectrum is essentially limited, motivating a perpetual search for efficient coding

schemes. Although major advances have been realized in coding, wireless mobile

systems remain highly susceptible to impairments in the radio channel, and the

control oftransmission errors continues to- be a major research problem and practical

concern for communications system designers [1].

The basic principles ofdigital communication systems may be traced to Shannon's

historic 1948 paper establishing the foundations of information theory [2]. This

chapter was concerned with the transmission of symbols from an information source

to a destination through a noisy channel. Following a probabilistic view of the infor—

mation source, Shannon’s source coding theorem established the concept of entropy

as the lower limit on average bit rate for lossless source coding.

Shannon’s noisy channel coding theorem described the maximum possible effi—

ciency of error—correcting codes for a noisy channel. Channel capacity is the mutual

information between the input and output of the channel maximized with respect to

the input distribution. If the source information is transmitted at a rate less than the

channel capacity. then there exist codes that allow the probability of error at the des-

tination to be arbitrarily small. In other words, it is theoretically possible to transmit

information with very low error at a rate up to the channel capacity. Conversely, if

the transmission rate is more than the channel capacity, it is not possible to achieve

an arbitrarily small error probability.

Since Shannon’s contribution, the research community has worked diligently

towards the goal of efficient encoding and decoding methods to control errors due to

the noisy channel. Modern communication systems are typically designed with error

control as an essential part. Continual advances in error control coding have led to

more efficient and reliable digital communication systems.

J. A. Alzubi et al., Forward Error Correction Based On Algebraic—Geometric Theory. 1
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Fig. 1.1 A typical digital communication system

1.1 Digital Communications Systems

A classical view of a typical digital communication system is shown in the block

diagram in Fig. 1.1 [l ]. Generally, the information source could be analog or discrete.

An analog source is usually assumed to be converted into a discrete source through

analog—to—digital conversion consisting of sampling and quantization. A discrete

source can transmit a sequence of symbols chosen from a known discrete alphabet.

The source coder attempts to map the source symbols into bits as efficiently as

possible, commonly by means of variable length coding. The process is sometimes

called data compression. The idea of variable length coding is to assign shorter

codewords to symbols that are more likely to be transmitted, and longer codewords

to less likely symbols, thereby minimizing the average codeword length, e.g., by the

well known Huffman code. The source coder produces a string of bits to the channel
encoder.

The channel encoder and modulator depend on the characteristics of the channel.

It is possible to simply use modulation without a channel encoder. Transmission is a

physical process that is handled by the modulator. Without the channel encoder, the
modulator converts bits from the source coder to baseband waveforms. If the channel

is noiseless, the demodulator would convert the baseband waveforms back into bits

for the source decoder to recover the transmitted symbols.

Unfortunately, there is no perfect (error—free) channel in actuality, and different

types of media have different characteristics. Even optical fiber which is well known

to be one of the best transmission media still has a very low bit error rate. The fiber

acts as a waveguide for photons that is immune to external electromagnetic interfer~

ence. The main causes ofsignal attenuation are light scattering and absorption within

the fiber core. At the other extreme, radio channels are known to be one of the noisiest

transmission media because they are vulnerable to several types ofimpairments such

as reflections from objects (buildings, earth, atmospheric layers}, diffraction (sec—

ondary waves bending around sharp obstructions), scattering, diffusion, attenuation,
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and multipaths (radio signals taking different paths to the receiver). In addition, the

source and destination may be mobile and moving.

A critical part of communication system design is mathematical characterization
of the channel. A common mathematical model is additive white Gaussian noise

(AWGN) in which the impairment to communication is a linear addition of wideband

or white noise with a constant spectral density (expressed as watts per hertz of

bandwidth) and a Gaussian distribution of amplitude. The model does not account

for fading, frequency selectivity, interference, nonlinearity or dispersion. However,

it is popular due to its simplicity and tractability.

The AWGN channel is a good model for many satellite and deep space commu—

nication links. It is not a good model for most terrestrial links because of multipath,

terrain blocking, interference, and so on. However, for terrestrial path modeling,

AWGN is commonly used to simulate background noise ofthe channel under study.

1.1.1 Error Control Coding

In the presence of a noisy channel, the channel encoder becomes necessary for error

control. Channel coding adds redundant bits after source coding to compensate for

possible bit errors due to the imperfect channel. The channel encoder transforms the

information sequence from the source encoder into a coded sequence of codewords.

Codewords can be a binary or non—binary sequence. An enormous body of theory has

been developed with many techniques for error control coding [3]. Common tech-

niques include parity bits, cyclic redundancy checks (CRC), block codes (including

Hamming, Reed—Solomon, Golay, BCH), and convolutional codes.

The channel decoder transforms the received sequence (of possibly conupted

codewords) into a binary or non-binary sequence called the estimated information

sequence. The two main factors affecting decoding strategies are: the rules used in

the channel encoding process and the noise characteristics of the channel (or storage

medium).

A perfect channel encoding and decoding system will produce an estimated infor—

mation sequence that is identical to the original information sequence, even though

a number of decoding errors may introduced by the channel noise. The design and

implementation of channel decoders is a major area of research since it plays a crit—

ical role in the performance of digital communication systems. Design of efficient

channel decoders is an important topic in this book as well.

Design is governed by these considerations: the probability of decoding errors

should be minimized; the transmission of information should be dense or fast as

possible; the reproduced information at the channel decoder output should be reliable;

and the implementation cost of the encoder and decoder should be reasonable [4].
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1.1.2 Block and Convolutional Codes

Error control codes are divided structurally into two types: block codes and convo-

lutional codes. The main difference between the two types is whether the encoder

uses only the symbols in the current frame to produce its output as in block codes,

or remembers a number of previous frames to produce its output as in the case of
convolutional codes.

A new type of channel codecs was introduced in [993 by Claude Berrou and Alain

Glavieux called turbo codes (TCs) and block turbo codes (BTCs) which proved to be

very powerful error correction techniques that outperformed all previously known

coding schemes. They can be used in any communication system where a significant

power saving is required or the operating signal-to-noise ratio (SNR) is very low.

Deep space communications, mobile satellitefcellular communications, microwave

links, and paging are some of the possible applications of this coding technique. The

idea behind TCs can be thought of as a refinement of the concatenated encoding

structure plus an iterative algorithm for decoding the associated code sequence [5].

A new family of non—binary block codes called algebraic—geometric (AG) codes

were first introduced by V. D. Goppa in 198]. These codes are constructed from

algebraic curves (e.g., Hermitian curves, elliptic curves, hyperelliptic curves) over

finite fields. One property of the AG codes is that they have relatively long size [6].

One of the first and best known decoding algorithms for non-binary codes is the

Berlekamp-Massey (BM) algorithm which proved to be very effective for short codes.

However, because the decoding process involves two matrix inversions, the algorithm

suffers from high complexity when dealing with long codes such as AG codes. To

overcome this drawback, a new decoding algorithm essentially extending Berlekamp-

Massey’s algorithm was introduced by Sakata in I988 [T]. Sakata replaced the matrix

inversion processes by generating a set of polynomials whose coefficients formed

recursive relationships among an array of finite field elements. Sakata’s algorithm

has been used in our design of the BTCs and the irregular BTCs.

1.2 Motivations

The motivation of this book is to investigate the construction, decoding, implemen—

tation, and BER performance evaluation of AG codes. A well known construction

method of AG codes presented by Justesen et al. is used in this book owing to its sim-

plicity and versatility for different channel models. The constructed AG codes have

shown significant improvements in BER performance in comparison to RS codes.

This motivates us to use AG codes as code components of BTCs in the pursuit of

further performance improvements.

One important characteristic of AG codes is that they produce hard output. This

does not fit well with the concept of BTCs where a soft output is usually required.

This motivates us to consider Chase-Pyndiah’s approach for extracting soft output
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from hard decision output and then convening the one—pass system to an iterative

system in order to improve the BER performance further.

Reed—Solomon block turbo codes (RS—BTCs) have been used as a reference to

measure the gain in BER performance of AG—BTCs. In addition to the BER perfor—

mance, the c0mplexity of the decoding process is an important trade-off with the

performance. However, using AG codes along with Chase-Pyndiah’s algorithm may

lead to an increase in the decoding complexity for better performance.

In order to reduce the decoding complexity of the resultant system and con—

sider practical implementation, we design algebraic-geometric block turbo codes

(AG—BTCs) by constructing suitable a1gebraic—geometric irregular block turbo codes

(AG-IBTCs). The construction, decoding and implementation of the new IBTC are

investigated here. The performance of the new constructed AG-IBTCs is compared

with the performance of the equivalent AG—BTC over different channel models and
several modulation schemes.

1.3 Aims and Objectives

This book aims to design. construct and implement a reliable communications system

with relatively low complexity compared to state-of-the-art systems. The design,

construction and implementation of AG codes for use as code components in BTCs

and IBTCs are investigated. The BER performance of various AG codes are compared

with the equivalent Reed-Solomon (RS) variations of BTC by means of computer

simulations. Comparison results are presented for several code rates and modulation

schemes over various practical channel models.

The objectives of this book can be summarized as:

0 Design and construct long AG codes and compare their BER performance with

equivalent RS codes;

1. Construct a new BTC by employing Chase-Pyndiah’s algorithm for extracting soft

outputs frorn hard decision outputs using the AG codes as code Components;

0 Evaluate the BER performance ofthe new AG-BTCs in comparison with RS-BTCs

by means of computer simulations;

0 Design and construct IBTCs using AG codes as code components in order to

reduce the decoding complexity of AG-BTCs and enhance the BER performance

as possible;

0 Evaluate the BER performance of the new AG—IBTCs in comparison with

equivalent AG—BTCs through computer simulations;

1. Evaluate the above constructed codes over AWGN channels using several modu-

lation schemes through computer simulations.
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1.4 Original Contributions

In this book, AG codes are constructed using the simplified method of Justesen et al.

from Hermitian curves over the finite field GF(24) with varying code rates. The

extension of BM decoding algorithm presented by Sakata is used with a majority

voting (MV) technique to decode the produced codes. The performance of the con-

structed codes is evaluated in terms of BER over AWGN channel with binary phase—

shift keying (BPSK) modulation scheme which matches the well known results in

the literature. Moreover, the first simulation results showing the performance of AG

codes over AWGN channel using quadrature phase-shift keying (QPSK), I6QAM

and 64QAM modulation schemes are presented.

In addition, an AG iterative decoding technique is developed for non-binary BTCs

constructed from AG codes as code components. Iterative decoding is applied to

AG codes in order to enhance performance. This is done with the use of Chase-

Pyndiah’s decoding algorithm for extracting soft output from a hard decision output

(AG decoder based on Sakata’s algorithm). Simulation results show that AG—BTCs

outperform the RS—BTCS in AWGN channels over the above mentioned modulation
schemes.

In order to reduce system complexity, AG—IBTCs are proposed, designed, and

constructed. Measurements of the BER performance of the designed AG—IBTCs

show that they perform no worse than the regular AG-BTCs and frequently better

especially at higher order modulation schemes. Moreover, the AG-lBTCs system’s

complexity is always reduced significantly compared to the complexity of AG—BTCs.

1.5 Book Layout

This book is organized into five chapters as follows:

a Chapter]:

This chapter motivates the book, provides an overview, lists objectives and aims,

and summarizes the key contributions of the work.

0 Chapter2:

This chapter presents the theoretical background covering AG code creation,

encoding and decoding as well as fundamentals of TCs and BTCs.

o Chapter3:

This chapter reviews the literature on AG codes construction and decoding methods

and the decoding of regular and irregular BTCs.

:- Chapter4:

This chapter extends the AG codes design into BTCs design by using the AG

codes as code components of BTCs and shows AG codes construction using

Justesen’s simplified method. Also the AG iterative decoding technique using

Chase-Pyndiah’s algorithm is presented in this chapter.
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o ChapterS:

This chapter introduces the developed IBTC with AG codes as code components.

0 Chapter 6:

This chapter finally discusses all the results achieved and draws conclusions with

a discussion of possible future work.
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Chapter 2

Theoretical Background

In this chapter, the theoretical background is presented covering design and

construction of AG codes for the encoder and decoder along with important parame-

ters. We also present a block diagram of the modified Sakata’s algorithm for the first

time. It shows how the construction of AG codes using Hermitian codes is performed

using a hard-input hard-output (HIHO) decoding algorithm. Fundamentals of TCs

encoder, decoder and interleaver design are shown. Examples of the construction of

BTCs are also presented.

2.1 Algebraic Geometric Codes

For a long time researchers attempted to realize a very long non—binary block code

with high code rate and large Hamming distance, however fulfilling these properties

by classical codes was not possible. In 1981, V. D. Goppa showed a way to construct

these codes which are now called Goppa codes or AG codes [1]. Goppa explained the

construction from affine points of an irreducible projective curve and a set of rational

functions defined on that curve. The famous Reed-Solomon (RS) code represents

the best and for most the simplest example that demonstrates the construction of

AG codes though it is constructed from the affine points of a projective line not a

projective curve which is the case of Goppa codes.

The number of affine points determines the length of an AG code, so the cardinality

ofthe chosen field restricts the length ofRS codes which result in relatively short code

lengths. Replacing the projective line with a projective curve yields more affine points

which means longer code lengths while keeping the same size of the finite field [2, 3].

The longest possible codes can be obtained by choosing curves that have the

maximum number of affine points which are called maximal curves, so the objective

is always to find those curves whenever possible.

A possible reason that AG codes have not been studied and investigated very well

is that they require a good knowledge ofthe theory of algebraic geometry, a difficult

J. A. Alzubi ct al., Forward Error Correction Based On Algebraic—Geometric Theory. 9
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10 2 Theoretical Background

and complicated branch of mathematics. To overcome the previously stated problem,

a simplified construction method was introduced in 1989 by Justesen et a]. [4]. His

method requires a basic understanding of algebraic geometry to produce AG codes.

Although a limited number of AG codes—which is considered as a drawback—

can be constructed using this method compared with using a more complicated AG

approach, however this limited number of codes is still acceptable.

2.1.] Construction ofAG Code Parameters

According to Carrasco [5], an AG code can be constructed using Justesen’s simplified

method by choosing an irreducible affine smooth curve over a finite field. Classes of

good curves that could be used to produce good AG codes are the Hermitian curves,

elliptic curves, hyperelliptic curves, and so on. as they all have one point at infinity.

However, Hermitian curves with degree m = r + l where r = fl are well

known from the previous classes of curves and most popular for constructing AG

codes defined over a finite field Fq[4]:

C(X, y) : xr+l + yr + y (2.1)

To define the message length (k) and the designed minimum Hamming distance

(d*), all affine points (the points causing the curve to vanish) as well as the point at

infinity on the chosen curve must be found. The number of the affine points which

satisfy C(x, y) = 0 is n = r3. Hasse-Weil bound gives an upper bound for the

number of affine points a [4]:

n52yfi+l+q (2.2)

where y is the genus of the curve.

It is worth giving a complete explanation of the curve genus as it is difficult to find

a detailed simplified definition and method of genus computation. The genus is the

maximum number of cuttings along non-intersecting simple curves [6]. The process

of computing it is perhaps more interesting. Assume there exists a plane curve called

C which is defined by f(x. 3‘) = 0 where f(x, 3!) is a two-dimensional polynomial

composed of two variables. The degree of this polynomial is m which is the largest

sum of the exponents ofx and y in each term of the curve equation. Then the genus
of C is:

_ (m —1)(m — 2)
2 (2.3)

1’

if and only if C is non-singular curve.

A nonsingular curve, also called smooth curve, is the one which has no singular

points. A singular point is defined as the point where something unusual happens on

the curve like a sharp corner (3‘2 = x3) or a crossing oftwo branches (y2 = x3 +x2).
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Otherwise, when the curve has a finite number of singular points, it is called a singular

curve [7].

As Hermitian curves saturate the Hasse—Weil bound, they called maximal curves

making them suitable to generate long AG codes. Justesen’s construction method

suggests a n0n-negative integer} which is bounded by [8]:

 

nz—QEIE (2-4)m ”"l
Goppa or AG codes are of two types: functional Goppa codes (CL) and residue

Goppa codes (C52 ). The latter is the dual ofthe former. In both types, the block length

is equal to the number of affine points on the curve (in) [5]. To compute the length of

the message for an AG code, a set of rational functions with a pole of order equal or

less than the degree of the divisor (a) at the point at infinity (Q) must be found first

{6], where the degree of the divisor is limited to be greater than 2y — 2 and less than

I? (2y < a < n). In Justesen’s simplified construction method a = mj. This set of

rational functions is also called the linear space ofaQ which is denoted by L(a Q).

The number of elements in the previous set is equal to the message length It. It is

called the dimension of a Q and denoted by 1(aQ) [8]. The Riemann—Roch theorem

is used to calculate {(a Q) [9, 10] which defines the message length I: in functional

Goppa codes CL(D, a Q) as:

k=l(aQ)=deg(aQ)—y+l=a—y+1 (2.5)

while the message length it in residue Goppa codes is defined by:

k=n—l(aQ)=n—a+y—l (2.6)

For both types of AG codes, a lower bound of the Hamming distance of AG

codes is calculated and called the designed minimum Hamming distance d* as the

Hamming distance (d) cannot always be calculated accurately. Meeting the singleton

bound when calculating minimum Hamming distance is required as the value will

then be optimal [l l]:

d=n—k+l (2.?)

However, the main disadvantage that must be mentioned regarding the use of AG

codes is that the designed minimum Hamming distance is affected inversely by the

genus of the curve. This means that the larger the genus, the smaller the designed

minimum Hamming distance, and vice versa. In contrast, the case of RS codes are

constructed over an affine line of degree one and genus equal to zero [5].

So the actual designed minimum Hamming distance is [8, 10]:

d*=n—k—y+l (2.8}
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To compute the designed minimum Hamming distance for functional Goppa

codes. we substitute the value of message length for those codes into (2.8) and

get that:

(1* = n — a (2.9)

Also for residue Goppa codes, the designed minimum Hamming distance can be

found by substituting the message length it into (2.8) and get:

d*=a—2y+2 aim

As Justesen’s simplified code have the same parameters as residue Goppa codes

since a = m}. then the code parameters are [8]:

K=n—mj+y—1 (2.11)

d*=mj—2y+2 (2.12)

and the codeword length n is equal to the number of affine points on the curve as
mentioned earlier.

2.1.2 Designing AG Encoder

To generate a generator matrix for an AG code, all the points that satisfy the chosen

curve must be found which means all the points that make C(x, y) = 0 excluding

the point at infinity. For Harmitian curves, as previously said, the number of these

points is equal to n = r3 where r = fl and q is the finite field size [8].
A k two variables monomial basis is defined as: F = xflyb where 0 5 a < m

and b 3 0 and ordered using total graduated degree (<7). This method of ordering

follows the pattern: first-degree pair (a. b)- = (0, 0); next-degree pair (a’, b’) is [12]:

(a—1,b+l) ifa>0

(am): w+Lm Wa=0 (2.13)

50, degree pairs ordering is: (0, 0) <7 (1,0) <7 (0,1) <7 (2.0) <7 (l. 1) <7

(0.2) (T (3.0) <3" (2, 1) <7 (1,2) 4}" (0.3) <1“ (4,0) <1“ (3, 1) <7 (2,2)...

This gives monomial basis (96;):

2 3

II. x. y. x .xy, 3112, x .xzy. xyz. y3. x4, x33). xzyz. xy3. :94, x5, m} (2-14)

It is worth explaining another ordering technique which is called partial ordering

as it will help to show the concrete difference between the two ordering techniques

and will be helpful in understanding steps of the decoding procedure later on. Assume

there are two pairs of integers a = (a1. a2) and b = (51.52) then [12]:
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a<b if aIEbIArtzfibzAayéb (2.15}

To obtain the final nonvsystematic generator matrix of the code, each of the mono—

mial basis (pg, 1' = 1.2, k in L(a Q) is evaluated at each affine point as the fol~

lowing:

$1091) $1092) --' ¢I(Pn—1) $10)”)

¢2(Pl) $2092) ' ' ' ¢2(pn--l) ¢2(pn)

0— (Wm) ¢3(p2) (minim) Mp”)
A A n A A (2-I6)

¢k~1(Pi) stir—[(192) {brawn—1) tint-4w”)

¢k(pi) @0le ¢k(pn—-l} (fit-(pn)

Extracting the original message from the decoded codeword is a difficult and

complex process when working with a non-systematic generator matrix. Multi-stage

shift register technique is used in cyclic codes like RS codes to produce systematic

generator matrix from a non-systematic one [5]. However, the technique does not

work for AG codes since they are not cyclic, so another technique called Gauss—

Jordan elimination could be used to convert the non—systematic generator matrix to

a systematic one, keeping in mind that any interchange in columns while applying

Gauss-Jordan elimination must be followed by same pattern on points [8, l3].

2. 1.3 Designing AG Decoder

The traditional decoding technique for RS codes Consists of two stages: the purpose

of the first stage is to find the error locations while the second stage attempts to

compute the error magnitudes for each of the found locations. AG codes follow the

previously described technique [14].

In 1969. the BM algorithm [15] was introduced as a way to produce a shortest

linear feedback shift register (LFSR) which yields a finite sequence ofdigits. By using

the BM algorithm in 1988, Sakata was able to develop his algorithm which generates

a set of minimal polynomials whose coefficients form a recursive relationship within

a two-dimensional array of finite field elements [12].

Justesen et al. [16] were able to improve Sakata's algorithm in 1992. The aim ofthis

improvement was to decrease the decoding complexity of AG codes by generating

a set of error-locating polynomials (F) from a two-dimensional matrix containing

syndrome values for AG codes. The decoding process starts with computing the

elements in the two~dimensional syndromes array. Let us refer to the element location

in the two dimensional array by (5“,) where a is the row number and b is the column

number (a, b < q — l). The syndrome value is defined by [l6]:

N H H

3a.}; = 2m??? = 20:; + rat-HEW? = Z leafy? (2.1?)
i=1 {:1 i=|



14 2 Theoretical Background
 

 

 

 
 Known syndromes found from

the parity check matrix

 
Known syndromes found from
the recursive relationship among
the previous syndromes from
Hen-nitian cunre

 

 
 

Unknown syndromes found by the
recursive retaiionship from the

— Hermitian curve or majority voting

   
Fig. 2.1 General two-dimensional syndrome array

Let r,- be areceived element within the received codeword r, c; be acoded symbol,

(3,- the corresponding error magnitude in the fwth position, and (xi. y;) the r'wth affine

point, fort" E I, I g {1, 2, 3, n}. The general two—dimensional syndrome array

for the AG code constructed from the Hermitian curve defined by (2.1) is shown in

Fig.2.! [5].

Sakata's algorithm makes use of this two-dimensional array by creating a set of

error-locating polynomials (F) of the form [12]:

Joli)“, )7) = Effigxkyl (2.18)

where the i—th polynomial in F is denoted by f, and the coefficients of the terms xkyI
in fl” (x, y) is represented by f“) (k, 3). By reading every syndrome value in the two—

dimensional array using the total graduate degree order (<7), all polynomials in F

are updated in order to generate recursive relationships between known syndromes,

up to the current syndrome by changing all the coefficients of every polynomial

f("}(x, y) [17]. However the generated recursive relationship needs to fulfill the

following equation [5]:

(f) . _ _
2 fit! Sr:—-t}”+k.b-I£”+i _ 0 (2‘19)

where fm(x, y) is. a polynomial in the set F and has Ly as variables of the
leading term with t1“) and IS) representing their powers, respectively. Using the total
graduated degree ordering (<7) described previously, the syndromes in the two-
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dimensional array are read as following: 30.0. 31.0. 30.1. 32.0. SL1. 30.2. 33.0. 32,],

and so on until the last syndrome in the array which is S]5_]5.

The nonnegative integer j defined by (2.4) plays an important role in articulatw

ing the syndromes. However, the syndromes are categorized into two types: known

and unknown, where the known ones are from 50,0 to Sm.j+I—m . To compute the

syndromes 300 to SD.) Eq.(2.l?) is used. By substituting the curve equation in the

equation representing the error—locating polynomial in (2. l 8), the following recursive

relationship is formed to calculate more known syndromes Sj-i-l ,0 to Sm,“ I _m [l2]:

6—! q__2 CHS 1”+k.b—rm+l = 0 (2-20)
It 1'

(30.13:. —m+[).b—0+l '1' Cilia-—[Sn-m+[).b—0+m-l ‘1' Cm.USn-—m+m.11-—0+0 = 0 (2-21}

where the coefficient of C(x, y) is C“, and the powers of x and y for each term

in C(x, y) are k and 1, respectively. This relationship could be simplified into the

following equation as all coefficients of C(x, y) are equal to one [5]:

Sit}; = S::-—-m,.’?+1 + St:-~m.b+m-—i (2-22)

Next is the time to update the set F by testing all polynomials (fm(x, y) e F) to

see whether they satisfy (2.19). lfthey do, then none needs to be changed. Otherwise,

if any ofthese polynomials do not satisfy (2.19) then this polynomial will be used in

the updating process of the set F because it has a discrepancy (if. This means that
the polynomial at this stage is not ideal and must be changed so that it satisfies (2.19)

after updating. The goal is to have a set of error-locating polynomials in F, and a

polynomial is said to be error-iocating if and only if it satisfies (2.19) [5, 8, 12].

The polynomials that do not satisfy (2.19) by having a nonzero discrepancy will

be placed in a new set called auxiliary set (G). Also the point at which they were

placed is stored (ag, b3 ). At this stage of the decoder, a new set span(G) is generated
by the union ofall sets less than or equal to each span (glilfir, y)) in G as in following

Equation [5]: t9

spantc) = Zak. r) 1 (k. I) 5 span-(smo. 30)} (2.23)
i=1

where (k, I) are a pair of positive integers and to is the number of polynomials in the

set G. Span means that at the point (a, b) there is no polynomial with a leading term

Xa.t—::1”yb2-**‘2” that can satisfy (2.19). It is defined as [12]:

span(gm(x, y); = (a, — ufi”. a, — a?) (2.24)

where g“) (x, y) is a polynomial in the set C and has x, y as variables of the leading

terms with 1.111” and Mg) representing their degrees, respectively.
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Fig. 2.2 Graphical representation of span ( G)

The maximal point within span(G) is defined as an interior corner while the

minimal point outside span(G) is called as exterior corner [5]. Both interior and

exterior corners are defined with respect to partial ordering which is denoted by (<)

as mentioned earlier. However, the values of the exterior corners are the degrees of

the polynomials in the set F and their number is the number of those polynomials.

Drawing span (G) makes it much easier to find the interior and exterior corners. An

example shows how drawing helps in finding out these corners. Assume span(G) =

{(0. 0), (1.0). (0. 1). (2, 0), (l, l), (0, 2), (3, 0)}. From Fig. 2.2, the exterior comers

are (4, 0). (2, l), (l, 2), and (0.3) as no other points outside span(G) are less than

them. In the same manner, it is shown that the interior corners are (3. O), (1, I). and

(0, 2) since these points are the greatest ones within span(G). Exterior corners are

marked with large white circles in the figure and the interior corners are marked with

large black circles [51.

2.1.3.1 Updating the Sets F and G

The polynomials in the set F with a nonzero discrepancy (df # 0) are stored in a new
set called FN. The union of this set with the set G results a new set called G’ which

is the updated version of the set G (G’ = G U FN) [8]. Equation (2.23) is used to

calculate the span ofeach polynomial in G’, then Eq. (2.22) is used to find span(G’).

The interior corners are found then using span(G’) so that any polynomial in the set

6’ with span not equal to any of the interior corner will be removed. In case two or
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more polynomials in the set 6'" have span equal to any interior corner then any of

those polynomials will be kept. The point in the two-dimensional syndrome array

(Hg, bg) where the discrepancies of remaining G’ polynomials were nonzero and the

discrepancy of the set 6’ polynomials (13 are stored [12]. G’ at this stage is the final
update of the set G which will be used for the next point in the two-dimensional

syndrome array.

The exterior corners are found using span(G’) to update the set F. As mentioned

earlier, the number of the exterior corners identifies the number of the polynomials

in the updated set F’. Also their values are the powers of the leading terms of these

polynomials [5]. The polynomials in the set F are updated using one of three cases

for each of the exterior corners (sl . 82), however these cases must be applied in the

following order [8, 18]:

Case I If the difference set (FIFN) has a polynomial fm(x,y) with

“p.505 = (81,82), then the new minimal polynomial 11(l)(x,y) e P will be
the same: ' ‘

We. y) = f")(x. y) (2.25)

Case II lfthere is apolynomial f‘”(x, y) 6 FN with of”, Q”) 5 (8|,82) and
5| > a or $2 > b, then the new minimal polynomial h1”(x,y) e F’ is generated

using: (i) [ii

Won, y) =x£'_‘1 yea—'2 — f‘”(x,y) (2.26)

Case III If there is a polynomial g“) (x, y) E G having span greater than or equal
to (a — 81,11) —82) and a polynomial fume y) 6 FN with (£11). r21”) 5 (£1 , 52), then
the new minimal polynomial h“)(x. y) e F” is generated using:

. i i . d .

hula! y) = x51""1 lye—“:4; 110010“ )1) _ dixpl‘vng(t)(x. '3’) (22'?)8

where [,0]. p2) = span(g1”(x, y)) — (a —el , b — £2). Whenever, an update occurs to

the set F, a new set denoted by A is developed. It will be used for the MV technique

as part of the decoding procedure and also for termination of the decoding algorithm

when required. It is defined as [8]:

)ml

2A, (2.28)
k=1

where )t represents the number of all polynomials in the set F. Further, Ag is defined

by:

at ={(k,1) I (w) 5 (4“) — 1,502+” — 1)} (2.29)

where (k, 1) are a pair of positive integers.
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A major modification was introduced to the decoding algorithm which was

concerned with adding a termination criteria for the algorithm when IAJ becomes

greater than the number of errors that the decoder can handle [5, 8]. In such case, the

MV scheme will choose a false value for the unknown syndrome which will affect

the accuracy of finding the remaining unknown syndromes resulting in inaccurate

decoding.

After completing the twowdimensional syndrome array, all polynomials in the set

F are said to be error—correcting polynomials which means when substituting the

curve points into any of those polynomials, the error locations are the points that

make the polynomial vanish [18].

A modified version of Sakata’s algorithm is illustrated in the flow chart shown in

Fig. 2.3. The best of our knowledge, this flow chart is the first published illustration
in the literature.

2.1.3.2 Majority Voting

Sakata’s algorithm uses the technique of substituting the curve Eq.(2.1) into (2.19)

to come up with a recursive relationship among the previous syndromes to find the

unknown syndromes of the type S“, where a E m. This can be true if and only if all

previous syndromes are known. If any of those previous syndromes are unknown,

then the MV technique is used to compute the unknown syndromes of the type S“,

where a < m [5, 12].

The following example will help clarify the idea. For an algebraic geometric code

constructed from a Hermitian curve of the form given in (2.1) with degree m = 5,

Eq. (2.22) can be used to compute the syndrome 53‘ I:

58.1 = SEE—5.1+! + 53—5.5—1 (2.30)

= 53.2 + 33.4 (2-31)

This only holds if both 532 and 53.4 are known. Otherwise, MV technique is used
to find the unknown ones.

In 1993 Feng and Rao [19] introduced the MV scheme which Sakata et al. used

later in 1995 [1?] to design a hard—decision decoding technique for AG codes. For

an unknown syndrome of the type Say, where a < m, any minimal polynomial

‘f(")(x, y) E F will be used to find a candidate syndrome value. It turns out that
there are four possible scenarios to be encountered depending on some conditions

which will be explained in detail below[17].

Scenario one: The candidate syndrome value is v,- ifa = {10) and b = r2“) can be
calculated by using the following equation which is derived from (2.19):

(i) _ _ _ _ ,
Z fk-‘i Sk+n-tlmi+bnr£n _— 1'" (2-32)

tk.t):r(:}”,:y1)
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Scenario two: The candidate syndrome value is w; ifa + m = {in and b — IS) =
m — 1 can be calculated by using the following equation:

(F) . . _ _ _ .
Z fit-3 Sk+a+m—t{"..’+b—m+l—t£” Sa.b—m+2 _ w’ (233)

(k.t)<y-(r:”.r§”)

Scenario three: If both scenarios one and two are fulfilled which means (2.32)

and (2.33) are satisfied, then there will be two candidate values v; and w; for the

syndrome from this minimal polynomial.

Scenario four: If none of the above three scenarios are fulfilled, then the chosen

minimal polynomial fl“)(x. y) E F is not capable of finding a candidate syndrome
value, so a different minimal polynomial fmbr, y) E F will be considered.

The next step in calculating the MV is to generate two new sets:

K.={(k.l)|05k5a/\0515b}

K2={(k,l)|05k<m/\05l§b—m+l} (2.34)

where (k. l) are a pair of positive integers. A set K = K. U K2 is computed also.

The MV decision is made based on the number of elements in the set K}- which is

found for each candidate syndrome value 61, 62, 53, . . . as [IT]:

Ky: U mu U B,» /.a (2.35)
\‘r' =3; 11’; =8}

where A,- and B; are defined by:

m: {(m) err |k+tImSaAt+r2me}

3,: {(M) e K |k+r}” ga+mm+rglgb—m+1} (2.36)

2.1.3.3 Error Magnitudes

To find the error magnitude for AG codes (generated from Hermitain curves), the

points on the curve are categorized into four types. The magnitude of the error will
be calculated based on the error location on the curve which means it does matter

where the error occurs in order to find its magnitude [8].

The following four categories of points on the curve will be useful in the method

described below. The method depends on calculations of a one—dimensional inverse

discrete Fourier transform (IDPT), knowledge of the unknown syndromes up to

syndrome Sq_1_q_1, and the curve properties [17, 20].
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Category one: For error occurring at the point where both coordinates x and y are

zeros, i.e., Pator The error value is found by subtracting the error values of errors

which occurred at all other points types PHD), Pm”, and Pug.) as following:

Z 81" : Sq—Lq—l
pie.”l.r._rl

Z c,- = Saga — 59.4.qu (2.3?)
Pi 6 Pro y!

Z 81" : Sgt—1,0 _ Sq— Lq—l
Pr‘ EPu—m

This leads to:

65::Zeg— 2 e;— 2 e;— Z 8;Pr E Pony: P: E Pm. \‘l Pr E Foam

=Sll0 _ Sq-|.q-l _ (50.qu _ Sq—l.q-|) _ (Sq—1.0 _ Sq—l.q—-l) (2-38}

However, for the codes constructed from the curves over a finite field of characteristic

two, Eq. (2.38) can be simplified to:

6r = 30.0 + Sq—m + Sq—l.q—l + Silq—l (2-39)

Category two: For all errors occurring at the points of zero x—coordinate and

nonzero y-coordinate, i.e., I’m-y), the following mapping is defined:

a”'f0r05m5q—2m —> [0 form = q —l (2.40)
and the one-dimensional IDF'I‘ equation is:

q—Z

Eu : ZSU,(;—l—iam (2.4“)
i=0

where o: is the primitive element of the finite field and E” is the summation of all

error values occurred at the points of nonzero y-coordinate a” . Luckily, Hermitian

curves (the focus here) have a property that whenever there is a point on the curve

of zero x-coordinate and nonzero y-coordinate, there will be no points on the curve

with the same y~coordinate value with nonzero x—coordinate (arm, or”). Which means

that E” is in fact the error magnitude of the error at the point Pm“ = (0, or” ).

Category three: For all errors occurring at the points of nonzero x-coordinate

and zero y-coordinate, i.e., Pam, the same mapping (2.40) as above takes place and
the one-dimensional IDFT relation is:
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q—2

Em = 2 3,5 14.00”” (2.42)
1:0

where a is the primitive element of the finite field and Em is the summation of all

error values happening at the points of nonzero x-coordinate or“. The property of

Hermitian curves mentioned above still applies which says there are no points on the

curve with the same x-coordinate value or” and nonzero y-coordinate. Hence, Em is

in fact the error magnitude of the error at the point PUD) = (05” . 0).

Category four: A two—dimensional IDFT is used for errors occurring at the points

of nonzero x-coordinate and nonzero y-coordinate, Pu“. The error magnitude of

the error at any point P,- = (x. y) is given by:

q—Zq—Z

e; = ZZSmbxf—“yfb (2.43)
n=0b=0

where e,- is the error magnitude of the error that happened at the point Pf, and q is

the size of the finite field. However, before Sakata et a1. started this method in 1995,

which was later improved by Liu [20] in 1999, a very lengthy and complex method

was found by solving Eq. (2. I 7).

2.1.4 Complete Hard-Decision Decoding Algorithm

for AG Codes Constructed From Hermitian Curves

In this section, we describe the details of the decoding algorithm used to decode AG

codes constructed from Hermitian curves. It is used for iterative decoding [4, 5, 8]
later in this book.

Step 1: Known syndromes computation:

a. The known syndromes Sm], . . . , SOJ' can be found by applying Eq.(2.1?).

b. The known syndromes Sj+I.Ua . . . , Sppi‘j‘,;;+] can be found using Eq. (2.22).

Step 2: Finding the error location:

The known syndromes and some of the unknown syndromes up to St), Hm are needed
to find the error locations.

a. Run Sakata's algorithm with known syndromes (found in step I) as input; some

unknown syndromes are found using (2.22) when syndrome is of the form Say,

for b 3 m — l.

b. Run Sakata's algorithm with unknown syndromes (found in step 2-a) as input;

when having a syndrome ofthe form Say, fora :_> m , then (2.22) is used to compute

the value of the unknown syndrome or MV scheme is used if the syndrome has

the form 39‘}, fora < m.
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c. Run Sakata’s algorithm with unknown syndromes (found step 2—b) as input and

find more unknown syndromes using (2.22) when syndrome is of the form 5“,

for b 3 m — l.

d. Substitute the points on the curve into any of the minimal (error—locating) poly—
nomials in set F to find its roots as these roots are the error locations.

Step 3'. Finding magnitudes of errors:

The unknown syndromes from Sj+l+m.0 up to the last syndrome of the two—

dimensional syndrome array Sq_1_q_1 are needed to compute the error magnitudes.

a. Equation (2.22) is used to find the value of the unknown syndrome if it is of the

form Say, for a 2 m.

b. If the unknown syndrome is of the form Snub fora < m, then to compute its value,

a recursive relationship between the syndromes should be formed by substituting

the last minimal polynomial in the set F in Eq.(2.l9).

c. Find the error values using IDFT:

«- When the error location is at the origin point PM. = (0. 0), then Eq. (2.39) is

used to find the error magnitude.

«- When the error is located at a point with zero x-coordinate and nonzero

y—coordinate Paar = (0.y), then Eq.(2.4l) is used to find the error

magnitude.

0 When the error is located at a point with nonzero x—coordinate and zero

y—coordinate PL}, = (x,0), then Eq.(2.42) is used to find the error

magnitude.

«- When the error is located at a point with nonzero x-coordinate and nonzero

y—coordinate PM. = (x, y), then Eq. (2.43) is used to find the error magnitude.

Step 4: Error correction:

To correct the errors in terms of extracting the original message, the error values

found in step 3 at the positions found in step 2 are added into the received codeword

to give the decoded codeword. Then the original message is the first k symbols from

the decoded codeword as the code is systematic.

2.2 Turbo Codes

Turbo coding was a breakthrough in channel coding introduced in 1993 by a group

of French researchers [21 , 22] as a new class of error correction codes with a relevant

iterative decoding method. Turbo coding was not just a new set of codes but a new

way of thinking about channel coding. These codes showed performance close to

Shannon’s capacity limit [21]. This represented a significant gain in power efficiency

over other coding techniques known at that time.

The operation of a turbo codec relies on some basic ideas: using uncorrelated

inputs, divide and conquer, and processing information iteratively. The information

to be transmitted is stored in a memory in order to be scrambled to produce two
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Fig. 2.4 Turbo encoder

uncorrelated sequences that are then encoded and transmitted. This idea is the key

to the incomparable performance of turbo codes [23].

Since TCs were introduced, they have been useful for low-power applications such

as satellite, deep-space communications, and for interference limited applications

such as third generation (3G) cellular and personal communication services. Even

though TCs have been a “hot topic” in the research literature over the past decade,

there is still a relative lack of basic and fundamental papers serving as a starting point

for researchers in this field [24]. The following sections in this chapter will briefly

describe the main three components of a turbo codec (turbo encoder, interleaver, and

turbo decoder).

2.2.1 Turbo Encoder

The basic turbo code encoder is produced using parallel concatenation oftwo identi-

cal recursive systematic convolutional (RSC) encoders separated by arbitrary inter—

leaver (other interleavers could also be used such as block interleaver) [21, 25] as

shown in Fig. 2.4.

This way of constructing an encoder is called parallel concatenation because the

two encoders operate on the same input bits, rather than one encoding the output

of the other. As a result, TCs are called parallel concatenated convolutional codes

(PCCC) [26].

Both encoders have the same rate (r = 1/2), the upper encoder receiving

data directly while the lower one receives it after being randomly interleaved by a

permutation function or which maps bits in position i to position 0:0}. It is

important to note that this interleaver or works in a block-wise manner, interleav-

ing L bits at a time. Hence, TCs are actually block codes [25]. As both encoders

receive the same input sequence in permuted fashion then only one of the systematic

outputs needs to be transmitted. In most turbo encoders, the systematic output of the

upper encoder is sent along with the parity bits of both of them. The overall rate of a
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TC consisting of parallel concatenation of two systematic codes with rate (r = l/ 2)

is (r = 1/3). However, this rate can be increased if a subset of the parity bits is

stopped from being transmitted by a process called puncturing. The code rate of a

TC is increased to (r = 1/2) if the odd indexed parity bits and all systematic bits

from the upper encoder are transmitted along with the even indexed parity bits from

the other encoder [24].

2.2.2 Interleaver

The interleaver in turbo coding is a pseudorandom block scrambler which permutes

N input bits with no repetitions by reading it into the interleaver and reading it

out pseudorandomly [23, 25]. The interleaver has two main roles in TC: converting

the small memory convolutional codes into long block codes, and decorrelating the

inputs to both decoders so that an iterative sub—optimal decoding algorithm based

on information exchange between the two decoders can be applied. This role of the

interleaver makes it necessary that the same interleaving pattern should be available at

the decoding side [21, 22]. If the input sequences to the two decoders are decorrelated,

then there is a high possibility that after correction some of the errors in one decoder

and some of the remaining errors become correctable in the second decoder [25].

2.2.3 Turbo Decoder

The TC decoder is constructed in a similar way as the encoder. Two simple soft-input

soft-output (SISO) decoders are interconnected to each other in a serial concatenation.

An interleaver is installed between the two decoders to spread out error bursts coming

from the output of first decoder [21].

TCs can be decoded by maximum a posteriori (MAP) or maximum likelihood

(ML) decoding methods. These decoders could be implemented only for small size

interleavers as they are too complex for medium and large interleaver sizes [26].

The realistic value of TCs lies in the availability of a simple sub-optimal decoding

algorithm [21, 26].

The idea behind turbo decoding is improving the reliability of the second decoder

output by feeding it with extrinsic information that has been extracted out of the

first decoder output. Then the reliability of the first decoder’s output is improved

by feeding the first decoder with extrinsic information extracted from the second

decoder’s output. This process will keep iterating until no further improvement can

be made on the performance of the turbo decoder [24].
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2.3 Block Turbo Codes

In 1994 Ramesh Pyndiah introduced BTCs as an alternative to classical convolutional

TCs which were introduced a year before for applications requiring either high code

rates (R :- 08), very low error floors, or low complexity decoders that operate at

several hundreds of megabits per sec0nd or higher [27].

BTCs are constructed as the data to be encoded is set in an l—dimensional hyper—

cube with dimensional lengths denoted by (k1, k2, . . . , k1). Here all the dimensional

sub—codes are encoded in the systematic linear block code (31,-, kg, timing), where n,-

represents the length of the code, k; is the length of the information bit, dmm; is the

minimum Hamming distance, and r; = kf/n,’ the code rate of the i-th dimensional

sub-code. As a result for the l-dimensional BTC, the codeword length is ”Ll 11;;[1'16
information bit length is [15:] k,- ; the minimum Hamming distance is PE=1 dmmg; and
the code rate is “i=1 in. Note that a higher dimensional number of the BTC implies
a more complex implementation so the two—dimensional BTC seems to be the right

choice for communication systems because of its relatively simple implementation

and suitable structure for high code rate codes [28].

The RS code or Bose-Chaudhuri-Hocguenghem (BCH) code can be chosen as the

component code of a two~dimensional BTC. The RS code has better error correction

performance but due to its very high decoding complexity, the BCH code is usually

preferred for practical applications [23].

To encode a two—dimensional BTC whose component code is a BCH code, first

the In x k; information bits are set into a matrix ()sz rows and k1 columns. Then the

)2: rows are horizontally or row-wise encoded by applying BCHU‘I] , kl , dmm) and

in columns are vertically or column—wise encoded by applying BCH(n2. k2. (fining)

as shown in Fig. 2.5 [25].
In addition, a rowfcolumn interleaver is used in between the two BCH encoders

to guarantee the information bit that is horizontally encoded in the first BCH encoder

can be vertically encoded in the second BCH encoder. One can see that this encoding

technique is identical to encoding a BCH serial concatenated code in which the same

interleaver used. Encoding with this technique leads to a BTC with the following

parameters: :1 = m x H2, k = k; X kg, and dmm 2 mm; x dmmg.

Concerning the decoding process, let us consider the decoding of binary linear

block code (“(11, k, dmm). While for high rate block code whose codeword length is

too long, ML decoding requires very large code numbers and the complexity of the

decoding algorithm increases exponentially. Therefore, a decoding technique with

much lower complexity and small degradation in performance for the linear block

code was introduced by Chase in I972 and used by Pyndiah in 1994 [27]. It should

be noted that the previous technique is also suitable for decoding non-binary codes
like RS codes.
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2.4 Summary

In this chapter, an overview of the concepts of AG code construction, encoding,

and decoding techniques has been presented in detail which forms a foundation for

understanding the subsequent chapters.

AG code construction sets out the code parameters such as the message length,

codeword length, minimum Hamming distance, and the capabilities of code in locat—

ing and correcting errors. The encoding part was mainly composed of generating

a non-systematic generator matrix and convening that into a systematic one using

Gauss-Jordan elimination technique. For decoding, a full description was given of

Sakata’s algorithm and the MV technique was explained as well. Finding the mag—

nitudes of errors depending on their locations was also explained.

Also in this chapter, the basics of TC were reviewed through a brief description

of the main three components of TC (turbo encoder, interleaver, and turbo decoder).

BTCs were introduced briefly as a prelude to more detailed explanations to follow

in the next chapters.
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Chapter 3

Literature Review

There is a relative lack of basic and fundamental chapters that can serve as a starting

point for researchers in the field of using algebraic geometry theory in forward error

correction and especially in BTCs. Even the algebraic geometry approach found to be

efficient in dealing with binary and non-binary fields. So this chapter will concentrate

on the construction and decoding aspects of AG codes to build up a sound knowledge

to start developing the new BTC and IBTC.

The literature on constructing and decoding of AG codes is limited due to the

fact that not many researchers are interested in working in this specialization as it

requires a good knowledge and understanding of the theory of algebraic geometry,

a difficult and complicated branch of mathematics.

3.1 Construction and Decoding of AG Codes

The existence of good linear codes were proven by Varshamov in 1957, showing

that they have code rate R = k/n, minimum distance rate or = d/n, and lower

bounded by the Gilbert—Varshamov bound. The bound assures the existence of codes

with longer and longer lengths but still with the same rate as probability of error

goes to zero whereas the code length approaches infinity by using bounded distance

decoding algorithms [1].

In 1981, Goppa [2] was the first to show the connection between the theory of

algebraic geometry and error correcting codes, and showed an idea for efficient

construction of very long codes with good parameters like relatively large minimum

distance and high coding rate. This review of literature on A0 codes will focus on the

constmction of “good” linear AG codes and the development of efficient decoding

algorithms for AG codes.

No binary code having parameters exceeding this lower bound was known until

a breakthrough made by Tsfasman, Vladut and Zink in 1984. Their work estab—

lished that with very high complexity, it is possible to produce good linear AG codes

J. A. Alzubi et al., Forward Error Correction Based On Algebraic—Geometric Theory. 31

SpringerBriefs in Electrical and Computer Engineering,
D01: 10. 1007;“978-3-319-08293-6fi3, © The Authods) 2014
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exceeding the Gilbert—Varshamov bound using modularcurves in certain square finite

fields setting a new lower bound called Tsfasman-Vladut—Zink bound [3].

A new class of codes based on algebraic plane curves was introduced in 1989

by Justesen et a]. [4]. Further they provided a detailed explanation of the process

of constructing such codes (i.e., parameters, generator and parity-check matrices).

They claimed that their method of construction is so simple that it does not require

much knowledge in algebraic geometry theory. They also presented an algorithm for

decoding that is considered to be a general form of Peterson‘s decoding algorithm

for binary BCH codes and also a general form of the Peterson-Gorenstein-Zierler

(PGZ) algorithm for short non—binary BCH and RS codes.

A modified version of this decoding algorithm was presented by Skorobogatov

and Vladut in 1990 [5] to decode any AG code constructed from algebraic curve

with errors correcting ability up to [51* — y — 11/2 errors, where (1* is the designed

minimum Hamming distance of the code and y is the genus of the curve, with the

same complexity as the PGZ algorithm. They also presented a version for the case of

codes generated from elliptic and hyperelleptic curves with errors correcting ability

of up to [(d* — l)/2] errors.

Later in 1992, Justesen et al. [6] used Sakata’s algorithm from 1988 [7] to reduce

the complexity of his famous decoding algorithm described earlier.

Sakata's 1988 algorithm [7] was able to find a minimal set of two-dimensional

linear recurring relations to generate a two-dimensional array containing syndromes

from which a set of minimal polynomials is generated. The coefficients of these

minimal polynomials will form a recursive relationship between the syndromes in

the two-dimensional array. The errors locations can be found by finding the points

on the curve that make any of these minimal polynomials vanish.

It is worth mentioning that Sakata demonstrated how higher dimensions can be

achieved through extensions of his algorithm. The worst-case computation for syn-

drome array of size n is 0032). However, the overall computational complexity of

Sakata’s algorithm has worst—case of 0017/3). This process is a two—dimensional

extension of the BM algorithm [8, 9] which uses a one~dimensional vector of syn—

dromes to generate a minimal polynomial. A recursive relationship between these

syndromes is created from the coefficients of the polynomial. The locations of errors

can be found by inverting the roots of the minimal polynomial. The BM algorithm

has a worst—case computation complexity of 0(n2} which is better than Sakata’s

algorithm.

In 1993, Feng and Rao [10] introduced a simple MV scheme in order to overcome

the shortcoming of all previous decoding algorithms which can be summarized as an

inability of these algorithms to correct a number of errors up to the maximum number

that can be achieved by the algorithm. The purpose of Feng and Rao’s work was to

simplify the concept of AG codes and introduce a decoding algorithm. The idea of

their algorithm was to apply Gaussian elimination on a matrix of known syndromes

and use the MV scheme in order to find the values of unknown syndromes. Having

extra syndromes enables this algorithm to correct La” — 1/2] errors. Basically, this

decoding algorithm was a generalization of Peterson’s decoding algorithm for BCH

codes with computation complexity of 01313).
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Duursma applied the MV scheme [1 l] to Skorobogatov and Vladut’s procedure

introduced in 1990 in order to increase the algorithm’s error correction capability.

However, the computational complexity remained the same as in [5] which is 0013).

Another simple method for constructing AG codes generated from affine plan

curves was proposed by Feng et al. in 1994 [12]. They introduced a fast decod-

ing technique with complexity less than the first decoding algorithm presented by

Justesen et al. in 1989 and the decoding algorithm of Skorobogatov and Vladut as

well, with capability to correct up to [(d* — l)/2] errors.

A year later [13], the same authors [12] presented a simple construction method

for AG codes from algebraic curves and other varieties with better parameters than

traditional AG codes when high code rate and large genus are considered.

Construction of codes from elliptic curves been studied by Yaghoobian and

Blake [14]. Elliptic curves produce maximal curves with property of having maxi—

mum number of points for different finite fields of characteristic two. Sakata with

Justesen et al. in 1995 [15] introduced the MV scheme of Feng and Rao to Sakata’s

algorithm [16] which is a generalization of the EM algorithm. They were able to cor—

rect all errors of weight less than d*/2 with low computational complexity 009”).
The only restriction for this algorithm is that it is not able to correct any errors

occurring at any point with a zero coordinate.

In contrast to all previous construction methods which produce non-systematic

codes; Heegard et al. [1?] in 1995 were able to present the first systematic AG codes

based on the theory of Grobner bases which provides a description and implemen-

tation of a systematic encoder.

Later in 1998, Blake et a1. [18] developed AG codes from particular classes of

curves. e.g., elliptic, hyperelliptic, and Hermitian curves. They also presented decod~

ing algorithms for these classes of curve codes.

In 1999, Xing et al. [19] introduced two construction methods for linear codes

from local expansions of functions at a fixed rational point. While their constructions

have the same bound on the parameters as Goppa’s codes and equivalent to Goppa’s

construction method, the codes they constructed from maximal curves turned out to

have better parameters than the codes obtained by Goppa from maximal curves with

the restriction of a certain interval of parameters.

The problem of correcting errors that are located at points with a zero coordinate,

which was considered a drawback of the modified version of Sakata’s decoding

algorithm, was addressed in [15]. It was resolved later in 1999 by Liu [20].

There were no simulation results evaluating the performance of AG codes with

hard-decision decoding algorithms until 2004, when Johnston et a1. [2 I] introduced

their first simulation results for designing AG codes over fading channels using a

BPSK modulation scheme. As they stated [2] ], AG codes have the property of longer

code lengths compared to RS codes. In addition, there are more choices of codes with

acceptable decoding complexity. Significant coding gains over fading channels have

been demonstrated in simulation results of AG codes and RS codes, maintaining the
same code rate and same finite field but not the code size.

A year later, Johnston et al. [22] presented a simulation work of systematic AG

codes constructed from Hermitian curves (Hermitian codes) over additive white
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Gaussian noise (AWGN) and Rayleigh fast fading channels using BPSK modulation.

They showed again that AG codes outperformed RS codes and suggested a possible

future use of these codes in many fields such as mobile radio environment where RS

codes are not suitable because of their length and the limitation on their number.

However. all previous simulation results were concerned with evaluating and

comparing AG codes performance with linear block codes such as RS codes. In other

words, no evaluation and comparison of BTCs using AG codes as code components

has been done. In addition to that, simulation of performance for IBTCs using AG

codes as code components does not exist in the current literature.

3.2 Iterative Decoding of Block Turbo Codes

The need for high code rates (R > 0.8), very low error floors, and low-complexity

decoders that operate at high rate have been driven by the adoption of real—time data

services such as video transmission and other real-time video applications. These

applications led to the introduction of TCs and iterative decoding by Berrou et al.

for the first time in 1993 [23'].

The early implementation of TCs was in satellite and deep-space missions in

which they showed impressive BER performance compared to the codes being used

at that time without requiring additional power. Due to this property they played an

important role in many commercial applications such as third generation (30) wire—

less phones, Digital Video Broadcasting (DVB) systems, or wireless metropolitan

area networks (WMAN), etc.

In 1994, Ramesh Pyndiah et a1. extended the idea to BTC or what is known

as Turbo Product Codes (TPCs) achieved by serially concatenating two block

codes [24]. Later these codes were viewed as an attractive alternative choice to the

classical convolutional turbo codes (CTCs). Pyndiah et a1. introduced a new decoding

scheme known as “Chase—Pyndiah” soft decoder to improve the BER performance

of the block codes as hard-decision decoding algorithms in use before that. The main

and important idea that the turbo decoding relies on is the exchange of probabilistic

messages (extrinsic information) between the SISO decoders.

Since the introduction of the Chase—Pyndiah SISO decoding algorithm in 1994,

continuous improvements have been made by researchers with the aim to lower

decoding complexity, improve BER performance, and increase coding gain. In 1999,

Picart and Pyndiah [25] claimed that a coding gain of up to 2dB can be achieved

in short codes, and a reduction by I or 2 decoding steps can be achieved as well

for specific BER in long codes. The results were obtained by adaptation of decoding

algorithm to the characteristics of the encoder, modulation, and the number of decod~

ing steps.

Later in 2001, Hirst et al. [26] introduced a highly efficient fast Chase decoding

algorithm by reordering the original Chase algorithm’s repeated decodings such that

the inherent computational redundancy is greatly reduced without any reduction in

performance.
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A year later, Martin and Taylor suggested an alternative Chase—based decoding

algorithm for BTCs [27]. The idea of the proposed algorithm is to calculate the

distance of only a small subset of codewords in order to estimate the extrinsic inforw
mation.

Non-binary BTCs have been of interest to researchers due to their large minimum

Hamming distances, less sensitivity to puncturing patterns, reduced latency, robust-

ness of the decoder, and better convergence [28]. The iterative decoding and

performance of non—binary BTCs have been improved since the introduction of turbo

decoding.

The year 1996 witnessed the first appearance of non—binary product codes when

Aitsab and Pyndiah [29] introduced the iterative decoding of RS product codes. They

presented two constmction methods for these codes, and showed that the iterative

decoding of this new coding scheme is based on the soft decoding and the soft

decision of the component codes. The evaluation of the performance of this class of

codes over an AWGN channel showed a coding gain of up to 5.5 dB for BER 10—5.

The achieved results made these codes very attractive for data storage applications.

Later in 2000, Sweeney and Wesemeyer [30] claimed that a very good coding gain

in terms of BER performance and a reduction in complexity can be obtained when

using the sub—optimal soft—decision Dorsch’s algorithm combined with Pyndian’s

method for extracting soft output to iteratively decode block codes defined over finite

fields higher than GF(2). Their chapter presented two new different interleaving

structures which yield different performances in terms of coding delay and BER

performance.

Zhou et al. in 2004 [3 1] presented a comparison between BTCs constructed based

on Q—ary symbol concatenation and BTCs constructed based on bit concatenation

of about similar coding rates. They showed that the aforementioned class of codes

outperforms the latter in terms of BER performance with lower hardware complexity

[3 l ]. They also claimed that the Q-ary symbol based concatenation BTCs can achieve

reliable transmission at less than one dB away from Shannon’s bound, when proper

choice of component codes is made. For high code rate applications such as high

speed optical transmissions and data storage, the authors in [3], 32] found that the

Q—ary symbol concatenation BTCs are more suitable than the ones constructed based

on bit concatenation as they have much smaller data block size which is directly

proportional to the codingi’decoding delay and size of memory in use.

In the same year, Diatta et a1. [33] showed clearly that the turbo RS iterative

decoding based on Pyndiah’s method of extracting the soft output used in enhanced

very high bit rate digital subscriber line (VDSL) systems perform much better than

the classical RS hard decision decoding used in asymmetric digital subscriber line

(ADSL).

In 2006, Piriou et a1. [34] introduced an efficient non—binary BTC decoder

architecture. The authors presented an architecture for BTCs using RS codes as

component codes, in which they implemented the key equation solver for the alge—

braic decoding of RS codes which is considered a design innovation in this archi-

tecture. Another design innovation was reported implementing the iterative SISO

decoding of RS—BTCs in this efficient architecture. Building the architecture this
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way makes this family of codes more suitable for applications requiring high code

rates such as mobile communications, data storage, satellite communications, and

optical communications. It is worth noting that this architecture was the first pub—

lished architecture to implement a RS—BTC decoder.

3.3 Irregular Iterative Decoding of Block 'lhrbo Codes

In recent years, great interest has been shown in the concept of unequal protection

of information bits. The concept has been deployed in the design of irregular low

density parity check (LDPC) codes, irregular turbo codes (ITCs), and BTCs. The

idea is attractive because of these advantages: improved BER performance, reduced

decoding complexity compared to the regular (equal protection) codes, and codes
that are close to Shannon’s bound.

In 1999, the first ITC was presented in a chapter titled “Irregular Turbo Codes”

by Frey and MacKay [35]. The authors claimed that a coding gain of 0.15 dB is

obtainable at BER 10—4 over an AWGN channel using BPSK modulation. It was

accomplished by changing the structure of the original rate 1/2 TC of Berrou et al.

to be slightly irregular. They also showed that the BER performance of this new

irregular TC performs in the same regime as the best known irregular Gallager code
at that time.

A year later the same team [36] showed that an increase in the rate of codes

that compose an irregular code will cause the number of low-weight codewords

to be increased, which in turn produce an ITC. They further explained that it

is possible to use the sumwproduct decoding algorithm—a general form of the

turbo coding algorithm with low complexity—iteratively to decode their ITC. Their

work [35, 36] suffered from a requirement for large frame size, though no report is

available on what number of iterations is required to obtain a low BER performance.

Richardson et al. [3?] showed the best irregular LDPC code with a length of one

million bits which performed close to Shannon's bound over a noisy Gaussian channel

using BPSK modulation. This new code showed an improvement in the performance

of the LDPC codes of about 0.82 dB and was 0.13 dB away from Shannon’s capacity

at BER 10—6. However, the cost for this improvement in performance was more

complexity in the decoding process. The just mentioned result, the design, and the

construction method were presented in their chapter titled “Design of Capacity-

Approaching Irregular Low-Density Parity-Check Codes" published in 200].

In 2003, Sawaya and Boutros [38] introduced an ITC design to lower the decoding

complexity which is the point to be considered when applying channel coding. Their

design consisted of a single RSC encoder and a single SISO decoder. However, it has

two drawbacks: in order to achieve a very low bit error rate (i.e., 10—6}, it required

a high number of iterations (nearly 100) and a very large frame size. The proposed

design in [38] showed a coding gain of about 0.24 dB at BER of 10—6 over an AWGN

channel using a BPSK modulation scheme compared to the regular TC.
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As the complexity in all ITCs was the price for improving the BER performance

and getting closer to Shannon’s bound, Sholiyi in his thesis titled “Irregular Block

Turbo Codes for communication systems" [39] introduced a lower complexity irreg—

ular block turbo codec for communication systems over noisy Gaussian channels

which is flexible and high speed. The BER performance improved in these new

codecs as they benefit from extra protection of some bits set in a specific manner

using state of art techniques. The simulation results presented in [39] showed that

IBTC having more coding gain over noisy Gaussian channels using higher mod—

ulation schemes (Le, 16 QAM and 64 QAM modulation schemes) comparing to

existing BTCs.

3.4 Summary

This literature review has discussed various methods for constructing and decoding

AG channel codes. The performance of different AG codes in terms of BER were

studied and evaluated in comparison with decoding complexity over AWGN and

Rayleigh fast fading channels. The benefits and drawbacks of each method were

highlighted. The simplest construction method was identified in order to use it in

constructing the AG codes which are the focus of this book. The best decoding

algorithm for AG codes in terms of complexity and BER performance was considered
as well.

Interestingly, we have found in the literature that no one has considered AG codes

as component codes for binary and non—binary TCs and BTCs. Also in this chapter,

the techniques for regular decoding of BTCs were highlighted in order to use it in

conjunction with the decoding algorithm of AG codes as component decoders of
BTC decoders.

The irregular decoding methods of BTCs were studied and their benefits and

drawbacks were highlighted in this chapter as BTCs will be revisited later in this

book. We also found that irregular decoding has never been used in AG-BTCs, so

the construction of irregular decoders is studied later.
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Chapter 4

Algebraic-Geometric Non-binary
Block Turbo Codes

In Chap. 2, the necessary mathematics needed to understand the design, construction,

and encoding and decoding of AG codes were covered. This chapter will focus on the

concept of block turbo design of AG codes constructed from Hennitian curves defined

over finite fields, and the iterative decoding ofthe constructed block turbo codes using

a HIHO decoding technique based on Sakata’s algorithm with MV technique and

Chase—Pyndiah’s algorithm to extract a soft output from the hard output of the AG

decoder. Then this chapter will present simulation results for BER performance of

AG-BTCs compared with the BER performance of RS-BTCs of about same size and

relatively similar rate over different finite fields.

4.] AG Non-binary Block Turbo Code Encoder

The AG block turbo encoder consists of two AG systematic encoders (recall Chap. 2)

separated by a block interleaver. The construction ofan AG non-binary BTC is similar

to the construction of the binary BCH~BTC except that each non—binary symbol

consists of m bits. In other words, the AG non—binary BTC operates in a Galois field

m for various AG non-binary BTC sizes [ I, 2] which means that these codes consist

of K] x K2 x q information bits where K1, K3 are shown in Fig.2.5, and q is the

Q-ary of the non-binary symbol.

The information symbols are arranged in a k x k block and encoded horizon—

tally or row—wise by the first AG systematic encoder (outer AG systematic encoder)

as illustrated in Fig. 4.1. The output from the previous step will be passed to the

interleaver (inverting rows into columns and vice versa). The result will be fed to

the second AG systematic encoder (inner AG encoder) which in a real sense means

encoding the information symbols vertically or column—wise. It should be noted that

the term “interleaving" does not exist in the ETC literature as the vertical encoding

of the information symbols proceeding the horizontal encoding is the same as a block

interleaved version of the horizontal symbols. Figure 2.5 shows structural diagram
of the two-dimensional BTC.

J. A. Alzubi et al., Forward Error Correction Based On Algebraic—Geometric Theory. 41

SpringerBriefs in Electrical and Computer Engineering,
D01: 10. 1007.1978-3-319-08293-6fl4, © The Authods) 2014
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Fig. 4.1 AG non-bi nary BTC encoder

The output of the inner AG systematic encoder is a n x :1 symbols block which

will be converted into bits to be modulated by applying any the following modulation

schemes: BPSK, QPSK, Io—QAM, or 64—QAM. The modulated bits will be passed

to an AWGN or Rayleigh fast fading channel.

4.2 AG Non-binary Block Turbo Code Decoder

To the best of our knowledge, the AG block turbo decoder shown in Fig.4.2 is the

first appearance in the literature. It consists of two AG decoders, a block interleaver,

and adeinterleaver. The decoding is performed at symbol level as the AG decoder is a

HIHO decoder. Iterative decoding is applied to AG codes to enhance its performance.

This is done with the use of Chase—Pyndiah’s decoding algorithm which consists of

two main parts, a soft-input hard—output (SIHO) decoding algorithm and a hard—

output computation unit, which is similar to the one implemented by Pyndiah in

I996 [3] for extracting soft output from a hard decision decoder.

The received sequence from the channel is demodulated and the soft information

represented by a row or a column E = (61.198123 . . . , 6mg), where n is the codeword

length in symbols and q is the number of bits per symbol. The received codeword R

is denoted by R = [rL]. r12, . . . . rn‘q] where n is the codeword length in symbols
and q is the number of bits per symbol.

The log—likelihood ratio (LLR) of each bit in R is computed using the general

expression depending on the modulation scheme used [4]:

P"{€:‘J =+1/*‘:‘.r}LLR e“ = ln—

( LI) Pr {efj = —l/r;_j} (4-1}

where (i = 1,2 ..... n) represents the codeword length in symbols and (j = l,

2, . . . . q) represents the number of bits in each symbol.
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The hard decision ll"J of the transmitted signal is calculated using the sign of the
LLR values for each received bit:

Y0=LV11 J’l2 M3 Mr; )"21 3’22 ynq] (4-2)

and

Y0 = [+1 ifLLR(€,‘J') 2 0 (4.3)—l ifLLijJ') < 0

This hard form of the received sequence is then passed through Chase-Pyndiah’s

algorithm, which is explained next in this chapter. Then the testing patterns
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(2’n candidate codewords) are decoded using the inner AG decoder after being con-

verted from binary symbols into non-binary symbols. The extrinsic information Wt}

is then computed. The received sequence is updated by adding the extrinsic infor—

mation into it to go into the second Chase-Pyndiah’s algorithm, and next to the outer

AG decoder after being deinterleaved using the block deinterleaver in the other half
of the iteration.
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4.2.1 Extracting Soft Information From the Hard Output

ofAG Decoder Using Chase-Pyndiah Algorithm

Chase—Pyndiah’s algorithm is explained to take advantage of increasing the viewing

range of the decoder, which is the common way of decoding BTCs for both binary

and non—binary cases. It is illustrated in Fig. 4.3 [4].

It finds the ,0 least reliable binary symbols in R and masks them

(flipping +1 to —l and vice versa) to obtain a list L containing 2” candidate codewords

(test patterns) denoted by L; where i = l, 2, . . . , 2!”. The binary candidatecodewords

are then converted into non—binary candidate codewords and decoded using the AG

decoder based on Sakata's algorithm explained earlier in Chap. 2.

The decoding result of each candidate codeword in the list L is converted into

binary symbols and stored in a list C which will contain at most 2!” distinct candidate

codewords as there might be some repeated codewords in the set. The minimum

Euclidean distance metric criterion is considered to find the nearest test pattern

(candidate codword) Chm}; in C to the received word R which will be the final hard

decision as in the following equation:

D=C;,,,;,, if lr—Ct’ <‘r—C"l v dyée (4.4) 

where D represents the selected and final hard decision codeword, and Cd and Ca

are different candidate codewords in the list C. Let D = [all . 1 , d] ‘2 ..... (fwd where

n is the codeword length in symbols. and q is the number of bits per symbol.

The next step is central to the turbo concept, which is extracting the extrinsic

information from the selected candidate codeword D to update the soft input of the

following iteration. In order to achieve this, the reliability of each bit in D based on

R is computed using LLR as in the following equation which was illustrated in [5]:

Fr {3,1}- : +l/R}LLR‘ . = In 4.5

"1 Pr{e;_}- = —l/R} ( )

Applying normalisation, expansion, and approximation will yield:

02

rt} : 711R”: rig; + WM (4.6)

where WU is the required extrinsic information needed to update the soft input to the

following iteration, and if”; is the soft output of the bit dw- in the candidate codeword
D which is calculated using the following equation [6]:

"—C“ 2_ "—d“ 2

FE}: "rig:I LI“ 4 Hr“ L)" XdiJ (4.7)
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where C is the next closest codeword to R in the list C having the bit cg,- with a

minimum Euclidean distance from the bit "U such that cm- 7% dug and du‘ is the hard

decision for each bit of the selected codeword. In this notation, 1| ||2 represents the

norm. If the next closest codeword in C to R cannot be found, then the soft output

from the bit dju.‘ in the selected candidate codeword D is r1}. which can be calculated
and defined using the following equation:

if“; = :1} + [3 - £15.“,- (4.8)

Here r”- represents the j—th bit in the iwth non—binary received symbol, and )8 is

a weighting factor that can be set as a constant ranging between 0 and l which

increases as the iteration increases or approximated as in the following LLR [7]:

Pr{d;u,- 2853}”min—

fl Pr{d,‘.j 758%}
(4-9)

The values of 3 used here are in the range between 0.2 and 0.85 at intervals of

0.1. However, in the decoding of the AG—BTC, the horizontal decoder consists of

one Chase—Pyndiah decoding process which is a half iteration, while the horizontal

and vertical decoders contain two Chase—Pyndiah decoding processes which are a

full iteration. Each Chase-Pyndiah decoding process uses one {3 value. This implies

that a full iteration requires two {3 values.

After computing r1}, W“- for each binary element in the codeword is computed
using Eq. (4.6). The next step is to update the elements of R following:

rist’) = nu} + Mg} - Wi.j(g) {4.10)

where g represents the number of the next decoding iteration. and or is a scaling

factor that reduces the influence of extrinsic information delivered at the previous

half iteration. The 0: values used here increase with the iteration number and range
between 0 and 0.7 at intervals of 0.1.

Several Systematic AG—BTCs constructed from Hermitian curves over GF(24)
were evaluated in terms of their performance using Monte Carlo simulations and

compared with RS—BTCs codes over GF(23) of about same size and similar code

rate. The simulation results showed that this coding scheme outperforms comparable

RS schemes over both AWGN and Rayleigh fast fading channels.

4.3 BER Performance of AG Block 'Illrbo Codes

Versus RS Block Turbo Codes

In this section. the performance of AG-BTCs is compared to performance of

RS—BTCs. The process of making AG codes function in an iterative manner is carried

out considering the number of iterations, number of least reliable (LR) bits, and code
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Fig. 4.4 BER of AG—BTC(64,49) versus RS—BTC(3| .23) using BPSK ovcr AWGN

gain over various channei models using different modulation schemes. This will

allow us to have a comprehensive investigation and gives insights into the impact of

various parameters. For example. the selection of the number of the LR bits offers

an interesting trade-off between performance and complexity. Thus, the optimum

number of LR bits is obtained by finding the maximum number that results in the

best BER performance after which the performance improvements are negligible at

higher complexity cost. This optimum number obtained from numerical simulation

was found to be 4. However, we intentionally did not show the BER performance for

each iteration for the sake of keeping the figures as neat as possible in all comparisons
that involved BTCs of both AG and RS codes.

Simulations comparing the performances of AG—BTC and RS—BTC codes were
carried out. For all modulation schemes and across different code rates and chan~

nel models. the superiority of AG-BTC was clearly demonstrated. These results

are shown in Figs.4.4, 4.5 and 4.6 for BPSK modulation over an AWGN channel.

The coding gain of AG—BTCs at finite field GF(24) for BER of [0’6 are 0.7". 0.92
and 1.22 st with code rates of 0.59, 0.4? and 0.3T. respectively. in comparison to

RS—BTC of code rate 0.55 at finite field GFQS}. Those gains are clearly much higher
than those obtained from A6 code itself.

It is worth observing that even though the code rate of the AG-BTC at rate 0.59

is higher than the code rate of RS-BTC at 0.55. there is still significant coding gain



48 4 Algebraic—Geometric Non—binary Block Turbo Codes

  

 

BER   
 

 
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0(dB)

Fig. 4.5 BER of AG—BTC164,44) versus RS('31.23) using BPSK over AWGN

achieved. This versatility of AG codes stemming from the fact it can be used in

concatenation in a BTC process indicates their usability for a wide range of appli—

cations where the RS—BTC is preferred. However, such flexibility in getting higher

coding gains comes at the cost of slightly higher system complexity due to the use of

Chase-Pyndiah’s algorithm. From the channel capacity perspective. the AG-BTCs

result in 0.3, 0.354 and 0.361 bits per channel use shift from the Shannon capacity

at BER 10"6 for code rates 0.59, 0.47 and 0.37, respectively, whereas the RS—BTC

is 0.365 bits per channel use shift from the Shannon capacity at same BER and code
rate of 055.

Similarly for QPSK modulation scheme over AWGN channel, coding gains of

AG—BTCs at BER of 10—6 are 0.7", 1.05 and 1.35 st with code rates of 0.59, 0.47

and 0.37, respectively in comparison to RS—BTC of code rate 0.55 all at the same

finite field lengths as the BPSK modulation simulations. Those results are shown in

Figs. 43?, 4.8 and 4.9. As expected, the coding gain difference between BPSK and

QPSK is minimal.

Forthe 16QAM modulation scheme over AWGN channels, gains are more signif—

icant especially at lower code rates. Coding gains of 1.1, 1.6 and 2.3st are achieved

at BER of 10—6 with code rates equal to the QPSK code rates. These gains are shown

in Figs. 4.10, 4.11 and 4.12.
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Fig. 4.6 BER of AG—BTC(64,39) versus RS—BTC(31,23) using BPSK over AWGN

Considering the highest modulation scheme, 64QAM allows us to examine the

performance gains at higher probability of channel error rate over an AWGN channel.

The obtained coding gains are 1.8, 2.45 and 3.3st at BER of 10—6 with code rates

equal to the loQAM code rates. These gains are shown in Figs. 4. 13, 4.14 and 4.15.

We note that the coding gains increase as the modulation index increases. This is

of particular importance in next—generation communications systems requiring high

throughput and reliability.

An evaluation over Rayleigh fast fading channel was also carried out. A fast

fading model is employed in which the coherence time ( r) is far less than the system

maximum codeword length. In particular we set the coherence time to 1 bit duration.

This represents the worst case scenario and allows us to obtain the lower bound on the

coding gain. It also tests the effectiveness of the AG—BTCs over various modulation
schemes.

Simulation results compare the BER performance of AG-BTCs with code rates

0.59, 0.4? and 0.3? and RS—BTC with code rates 0.55 for BPSK, QPSK, 16QAM

and 64QAM modulation schemes. Gains are clearly much higher than the ones

obtained over an AWGN channel. This illustrates that most improvements from the

AG—BTCs design is achieved at extreme channel conditions. This is very appealing to

next generation wireless systems employing orthogonal frequency division multiple
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Fig. 4.7 BER ofAG—BTC(64,49) versus RS—B'ICGI .23) using QPSK over AWGN
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Fig. 4.8 BER ot‘AG-BTCt64.44) versus RS-BTC(3 | .23) using QPSK over AWGN
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Fig. 4.15 BER of AG-BTC(64.39) versus RS-BTC(31.23) using 64QAM over AWGN

access (OFDMA) where fading is a major problem in the way of achieving the

expected high throughputs. For more detailed results, the reader is referred to Alzubi ’s

PhD dissertation [8].

4.4 Summary

In this chapter, we first wrote code for computer simulations to evaluate the BER

performance of AG codes and compare with the performance of RS codes. Simulation

results confirmed the correctness of the developed software platform by matching

exactly published results in the literature for the case of BPSK modulation over both

AWGN and Rayleigh fast fading channel conditions.

The design, construction and implementation of AG—BTCs are presented. For

BPSK modulation over AWGN channel model, results show coding gains of 0.7,

0.92 and 1.22 st for the AG codes of code rates 0.59, 0.4? and 0.3? respectively

over the RS code of code rate 0.55. A slight increase in coding gain is observed for

the case of QBPSK modulation. For léQAM, coding gains of 1.1, 1.6 and 2.3 st

for the AG codes of code rates 0.59, 0.433f and 0.3? respectively over the RS code of

code rate 0.55. Those gains are 0.4, 0.32 and 0.92 st more than the gains obtained

using BPSK modulation for the same code rates and channel model. Similarly for

64QAM over an AWGN channel, the achieved gains are 1.]. 1.53 and 2.08 st more

than the gains obtained using BPSK modulation.
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Those results are encouraging and show the applicability of AG codes as a code

component of BTCs. This combination is useful and could work well in applications

such as video transmission. The trend of increased coding gains with the modulation

index increase is clearly noticeable.

Simulation results in this chapter highlight the benefits of using AG codes as a

code component ofBTCs over RS codes of same structure using different modulation

schemes and over AWGN channel. However, this comes at the cost of increased

overall system complexity owing to using Chase—Pyndiah’s decoding along with AG

codes in the case of BTC. This problem is addressed in the next chapter.
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Chapter 5

Irregular Decoding of Algebraic-Geometric
Block Turbo Codes

In the previous chapter, the design, construction, and implementation of quantam

AG-BTCs were proposed and investigated in depth. The designed system suffered

from high complexity in the decoding side due to the use of Chase—Pyndiah’s decod—

ing algorithm. In this algorithm, the decoding process complexity is exponentially
related to the number of LR bits chosen.

To overcome this drawback of the designed codec, a new design and construction

method of lBTCs is proposed in this chapter. The new design is inspired by the idea

of unequal protection of information symbols which is central to lBTCs.

The chapter starts with presenting the design and construction method of the AG-

IBTC. A design for the AG—IBTC decoder is proposed with detailed explanation

of the decoding process. Simulations results for BER performance of the new AG-

IBTC are presented and compared with the BER performance results of equivalent
AG—BTCs.

Finally this chapter will be concluded with observations about the gain obtained

by implementing the proposed design and the complexity reduction achieved.

5.1 Irregular AG Block Turbo Code Encoder

The conventional encoding method of BTCs or turbo product codes (TPCs) is sum-

marised here. The information bits are arranged in a block format, and then passed

into a systematic block encoder which is nothing more than multiplication of the

information bits (block) by a systematic generator matrix constructed according to a

certain set of rules depending on the type of the code being used. The output is then

interleaved using a block interleaver which converts the rows into columns and vice

versa. The output from the block interleaver is passed through another systematic

block encoder of the same type as the first one [1]. Figure 5.] shows the described

encoding method.

J. A. Aizubi et aI., Forward Error Correction Based On Algebraic—Geariietrfc Theory. 57
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Fig. 5.3 Encoding structure for irregular BTC

However, there is an equivalent structure of the TPCs which is composed of only

one encoding component in contrast with the conventional encoding method. In this

equivalent method, the information bits are repeated (i.e., twice) in the case of TPCs
of even information bits. The reason is because each information bit will have two

extrinsic information values in the decoding process, one from the outer decoding

component and the other from the inner decoding component. Similarly in 2° IBTC,

every information bit in the codeword will have two extrinsic information values in

the decoding process [2]. This equivalent structure is illustrated in Fig. 5.2.

The core idea of the equivalent structure of TPCs mentioned above is applied to

design and construct the AG-IBTC. Assume degree d is the number of times that

a fraction of information (non~binary symbols) is repeated with a restriction that

d z 2. The higher the value of d, the stronger the protection on the symbols as

the a posteriori value of those symbols will be derived from d number of extrinsic

information symbols.

Figure 5.3 illustrates a block diagram of the IBTC encoder. The information sym-

bols to be encoded K, will be passed into a nonwuniform repetition unit which will

splits the information symbols into j groups, where j should not exceed 3 for a good

code performance. Each group is repeated 0',- times where d; = 2, 3. . . . , T, and T

is the maximum number of repetitions. A fractions of the total information symbols

fj- is the number of symbols in a group j, where
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  Select  

(5-1)

Hence, f; is repeated (1; times by the non—uniform repetition unit in the encoder.

The information after being processed in the non—uniform repetition unit will be:

T 3

(5-2}
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Fig. 5.5 BER of AG—[BTC(64, 49) versus AG—BTC(64. 49) using BPSK over AWGN

The length of the code (codeword size) controls and limits the options of choosing

an appropriate symbol degree d; and a corresponding fraction fJ- . Further explanation

will be presented later in this section. Thus far there is no known algorithm that

computes an optimal combination of these values. However, the symbol degree profile

is preferably to contain a fraction fj of the information symbols repeated one time

(degree 2). Generally, the symbol degree two preferred to have a fraction fJ- between
7'5 and 95 % of the original information symbols, while higher degrees share the

remaining fraction depending on the modulation scheme used [2].

Using the above criteria in designing the AG-IBTC, one of the codes used here is

AG-IBTC(64, 49) with the symbol degree combination of 85 % fraction of the infor-

mation block repeated once (degree 2), 10 % fraction is repeated twice (degree 3),

and 5 % fraction is repeated eight times (degree 9).

The output of the non-uniform repeating unit in Fig. 5.3 is then interleaved ran-

domly using a random interleaver and then passed into an AG systematic block

encoder. The parity bits P, can be easily extracted from the output ofthe AG system—

atic encoder to be appended to the original information K, before the non—uniform

repetition unit to be transmitted together in block format N,. The code rate of such
IBTC is:

K:
R:— 5.3

KI+PI ( J
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Fig. 5.6 BER of AG-IBTC(64, 44) versus AG-BTC(64, 44) using BPSK over AWGN

where R represents the code rate of the IBTC, K, is the length of original information,

and P, is the length of parity.

As previously mentioned in this section, the degrees 0',- play an important role in

the construction of the [ETC but are limited and controlled by the block size of the

corresponding regular BTC for a fair comparison in terms of the BER performance.

The following example will illustrate this idea.

Considering one of the AG non-binary BTC codes used here, a systematic AG

non-binary ETC (:1. k. d) where n and k are the lengths of the codeword and the

information in non-binary symbols, respectively, and d is the minimum Hamming

distance. Thus in designing a corresponding AG non—binary l—BTC, the size of the

information to be encoded and transmitted, K}, which will be grouped in terms to be

repeated must be equal to the size ofthe information if in the regular AG non-binary

ETC [3}.

For instance, the AG non—binary I—BTC derived from a (64. 49, 10) systematic

AG non-binary regular BTC could have a block size of information K, of 49 x 20

non-binary symbols, for each row k, in K; using a 2° of repetition for 85 % fraction

fy of the information, 3° for 10 0/0 fraction fj, and degree 9 for 5 % fraction f!- of the

information, where j = l, 2, 3. These combinations will produce a repeated infor—

mation block H, of size 49 x 49 where each row is called 11,. Although there exist

a few other combinations, which will ensure that H; retains the original dimension
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Fig. 5.7 BER of AG—IBTC(64, 49) versus AG—BTC(64, 49) using QPSK over AWGN

of the regular BTC information block before encoding, but the just described com-

bination showed the optimum BER performance with comparison to (64, 49. 10)

systematic AG non—binaiy regular BTC.

A random interleaver is used to interleave the whole array HI, and then each row

from the interleaved version of H, which is called H,” will be read out individually

as a vector h; and then encoded using the AG systematic encoder separately. Parity
non—binary symbols are then extracted from the encoded vector while the information

part is discarded. The parity vector P, is then attached to the original information

symbols vector k; to form the encoded message a ,. A collection of encoded messages

compose a block of encoded information symbols N, in order to be modulated and

transmitted via the channel. The rate ofthe produced code R = 0.57 is almost similar

to the rate of the equivalent regular BTC {64. 49, 10) which is R = 0.585.

5.2 Irregular AG Non-binary Block Turbo Code Decoder

The received encoded block N, will be demodulated using a proper demodulator,

and then passed through a demultiplexer in order to separate the parity P,- symbols

in each encoded message a, from the information symbols k,.. The information part
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Fig. 5.8 BER of AG—IBTC(64, 44) versus AG—BTC(64. 44) using QPSK over AWGN

Kr is then repeated in the same manner as at the transmitter side using the same

non—uniform repetition unit to produce a repeated information block Hr in order to

interleave it randomly using the same random interleaver being used at the transmitter

side [2, 4]. Each parity vector P,. is then attached to its corresponding interleaved

vector of repeated information {1; to form a vector n,-. An initial a priori value a,-

of equal probability {i.e., zero log—likelihood) will be added to the vector it, before

entering the AG decoder.

Extrinsic information er of same size as vector hr is collected and computed from

the output of the AG decoder. The block ofextrinsic information 13,- is deinterleaved

using a random deinterleaver before being passed into the extrinsic computational

block [4]. A new extrinsic information value is computed for every information

symbol of degree d.- at every iteration, and this new extrinsic information value is the

product of the other (if — l extrinsic information values or is the sum of those values

when using log-likelihood values [3].

The new a priori values block A,- is set by randomly interleaving the output of

the extrinsic computational block which is of same size as the extrinsic information

block E,.. The a priori vectors a; are then read out individually in order to be added

to Mr vectors for the next decoding iteration.

After final decoding iteration of each codeword. the decoded codeword is stored
to form a block of decoded codewords. The block of decoded codewords is then
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Fig. 5.9 BER of AG—IBTC(64, 49') versus AG—BTC(64. 49) using lfiQAM over AWGN

deinterleaved using a random deinterleaver in order to remove the parity part from

each codeword. The aim of extracting the information part only from the decoded

codeword is to retain the original generated information vector k, format for com—

parison purposes [2].

The whole decoding process is illustrated in Fig.5.4. It should be noted that the

terms random interleaver and random deinterleaver implies that the randomness in

the interleaver and deinterleaver is preserved for every data block [4]. In other words

the random interleaver and random deinterleaver patterns used for one data block are

totally different from those who are used for any other data block.

5.3 BER Performance of AG Irregular Block Turbo Codes
Versus AG Block Turbo Codes

In the previous chapter, the AG-BTCs have shown better BER performance compared

to RSuBTCs. However, their complexity is relatively high due to the use of Chase—

Pyndiah’s algorithm for extracting the soft output needed for the iterative process in

the AG—BTCs. The design of AG—IBTCS proposed in this chapter could help greatly
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Fig. 5.10 BER of AG—IBTC(64. 44) versus AG—BTC(64. 44) using l6QAM over AWGN

to reduce the system complexity due to using one encoder and one decoder instead

of two of each component in the AG—BTC case.

The overall AG—IBTC system complexity is still less than the AG—BTC despite

requiring more iterations for the same BER performance. Our aim is to explore this

complexity-performance trade-off and highlight the conditions under which AG-

lBTC outperforms AG—BTC while keeping the complexity at minimum. The results

for different modulation schemes and channel models are presented in this chapter

(the BER performance for each iteration were intentionally not shown for the sake

of keeping the figures as neat as possible).

For the sake of fair comparison between the AG-IBTC and AG-BTC, similar data
block sizes and almost the same code rates are chosen over the same finite field

GF (24). It is important to mention that the optimal combination of the AG—IBTC
has been obtained from simulations and selected to be used in the comparison with

AG-BTC. Using BPSK modulation over an AWGN channel as shown in Figs.5.5

and 5.6, the coding gains in BER performance of AG—lBTC codes at BER of 104I
are —0.35 and —0.2? (133 with code rates of0.57 and 0.5 respectively in comparison

to AG—BTC codes of code rates 0.585 and 0.47. The losses from using the AG—IBTCs

design are negligible given the significant reduction in the system complexity.

Figures 5.7" and 5.8 show the QPSK results over an AWGN channel. The cod-

ing gains in BER performance of AG-IBTC codes at BER of 10—6 are —O.l and
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Fig. 5.11 BER of AG-IBTC(64, 49) versus AG-BTC(64, 49) using 64QAM over AWGN

—0.08 st with code rates of 0.5? and 0.5 respectively in comparison to AG—BTCs

of code rates 0.585 and 04?. Although the losses are again negligible, they are

decreasing at faster rate as the modulation index increases to QPSK.

Figures 5.9 and 5.10 show the loQAM results over an AWGN channel. The cod-

ing gains in BER performance of AG—IBTC codes at BER of 10"6 are 0.35 and

0.4st with code rates of 0.57" and 0.5 respectively in comparison to AG-BTCs of

code rates 0.585 and 0.4?. It can be seen that the gains are positive. Not only is

system complexity reduced but BER performance gains are also achieved. This is

consistent with the gain improvement trend for AG-BTCs codes as the modulation

index increases that was highlighted earlier.

Figure55.ll and 5.12 show the 64QAM results over an AWGN channel. The

coding gains in BER performance of AG-IBTC codes at BER of 10—6 are 0.4 and
0.55 st with code rates of 0.5? and 0.5 respectively in comparison to AG—BTCs

of code rates 0.585 and 0.47. This is the point at which the highest BER perfor—

mance gain and large reduction in system complexity are achieved. Further, we can

emphasize the adaptability of AG codes in various coding design with BTC and
lBTCs.

The same code rates, finite field. and data block sizes as in the AWGN channel

model were re—used for the Rayleigh fast fading channel. Losses from using the

AG—IBTCs design seems considerable at first glance. However, it can be observed
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Fig. 5.12 BER of AG-IBTC(64, 44) versus AG-BTC(64. 44) using 64QAM over AWGN

that these losses are applicable to the high EBfNo region and come as the result of

severe fading channel conditions. Moreover, AG—IBTC has the benefit of substantial

reduction in system complexity which is highly desirable in severe fading conditions.

For more detailed results, the reader is referred to Alzubi’s Ph.D. dissertation [5].

5.4 Summary

In orderto overcome the high system complexity of AG—BTCs, a solution based on the

IBTC is proposed. This approach can substantially reduce system complexity while

maintaining BER performance. Simulations were carried out in Matlab to measure

the BER performance of AG~lBTCs and compare to their equivalent AG—BTCs over

AWGN and Rayleigh fast fading channel models. The comparison is performed on

similar data block length, code rates and over the same finite field.

For BPSK modulation, AG-IBTC results in 0.35 and 0.27 st coding loss at BER

of 10"6 for code rates 0.5? and 0.5 respectively over AWGN channel. For QPSK
again the coding loss is a bit lower than the BPSK case. For both cases and despite the

coding loss. a significant system complexity reduction is obtained which is clearly

shown in the design and construction of the AG—IBT codec. For IéQAM and 64QAM,
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the coding gains become positive, i.e., 0.35 and 0.6st and 0.4 and 0.8 st for code

rates 0.5? and 0.5, respectively, at BER of 10—6. Such transition from negative to

positive confirms the fact that the AG codes in general and specifically AG—IBTCs

gain are better when the modulation index increases. Also it gives a solution to the

complexity issue of AG-BTC.
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Chapter 6

Conclusions

In this book, BER performance resuits for AG codes published in the literature have

been verified through simulations. Those results allow us to draw solid conclusions

about the performance, parameterization, and characteristics of AG codes. For both

AWGN and Rayleigh fast fading channels, results have shown that the AG codes

outperform RS codes of the same data block length and rate but over different finite
fields due to the nature and construction of each kind of codes. This is a more

appropriate and fair comparison than the ones used in the literature.

AG codes seem to offer even higher coding gains in Rayleigh fast fading channels

than AWGN channels. In addition, the coding gain is directly proportional to the

modulation index which suggests that they offer more resilience to adverse channel

conditions currently impeding throughput in wireless networks. Considering the

ability to achieve higher coding gains using higher modulation indexes, AG codes

seem to be a good candidate technology for next—generation wireless systems.

The approach of using AG codes as code components in design of BTC has shown

several benefits and challenges. One challenge was to extract soft outputs from the

hard decision outputs of the AG codes as required by the ETC design. This has been

addressed via introducing the Chase—Pyndiah method for extracting such output. This

resulted in additional system complexity.

The benefits include higher coding gain which was measured by BER performance

at different AG-BTC code rates in comparison to an equivalent RS-BTC. In contrast

to the literature, our comparison is performed on the basis of same data block length
and code rates but different finite fields as mentioned earlier. We believe this is more

accurate as the number of simulated bits and code rates matter more than the finite

field size. This also helps to keep the effect of the chosen number of LR bits.

Using Matlab simulations, we were able to compare the BER performance using

different modulation schemes over AWGN channel. AG-BTCs have outperformed

RS-BTCs in all simulated scenarios. The coding gains achieved increase as the

modulation index increases. The results show an attractive adaptability of AG codes

to change in code design.
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In order to alleviate the problem ofhigh system complexity arising from AG—BTC,

we propose the design and construction of AG-IBTC (for the first time to the best of

our knowledge). Simulation results comparing AG—lBTCs with equivalent AG—BTCs

were obtained and presented here. For the first time, simulations have been carried out

comparing regular and irregular BTC based on AG codes using different modulations

over AWGN and Rayleigh fast fading channels. Simulation results highlight the trade-

off between the BER performance and overall system complexity. It has been shown

that in most cases, coding gain is achieved while reducing the system complexity.

For a few cases, a negligible coding loss was observed while enjoying a significant

system complexity reduction.

We believe the inclusion of AG-IBTCs will offer great flexibility in codec design

that is particularly applicable to high-throughput wireless networks that can adjust

the trade—off between system complexity and performance. For example. the newly

developed AG-IBTC can be exploited in regular BTC applications such as error cor-

rection in optical and magnetic storage devices and next generation storage devices

such as Blu—rays discs and HD—DVDs, albeit at a reduced complexity.

6.1 Open Research Issues

It has been shown that the BER performance of AG codes is significantly improved

compared to RS codes. This is also the case when using AG—BTC. However, the

decoding complexity of AG codes is still higher than the complexity of RS codes. The

complexity increases when AG codes are used in BTC design. A major component of

this complexity is due to the use of Chase—Pyndiah’s algorithm to extract soft output

from the hard decision outputs of AG codes. This is currently performed on the bit

level which requires a large number of computations. Using a symbol-level Chase

algorithm will help reduce the complexity of the overall system.

AG—IBTCs have been shown to offer much reduced system complexity while

maintaining the BER performance gains of AG-BTCs. Currently, there are no avail-

able algorithms to compute the optimal combinations of symbol degree and corre—

sponding fractions to generate lBTCs. Our approach is to find these combinations

from computer simulations. A possible goal for future research is a reliable algorithm

to compute these combinations.

AG codes have shown significant coding gains improvements as a single code,

and as code components of BTCs and IBTCs. Those gains are found to be even

higher in severe fading channel conditions while being scalable with the increase

in the modulation index. Currently, there are no attempts to include AG codes in
wireless communication standards such as OFDMA—based air interface networks

(HSPA and LTE) and IEEE WLANs standards such as 802.11g and 802.11n. The

reason for this could be due to their high codec complexity in the past. In this

book, several techniques for reducing the system complexity are presented and hence

further research could be carried out into extending current results to OFDMA and

IEEE standards based wireless systems.


