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Iterative Decoding of Compound Codes by
Probability Propagation in Graphical Models

Frank R. Kschischang, Member, IEEE, and Brendan J. Frey

Abstract—We present a unified graphical model framework for
describing compound codes and deriving iterative decoding algo-
rithms. After reviewing a variety of graphical models (Markov
random fields, Tanner graphs, and Bayesian networks), we derive
a general distributed marginalization algorithm for functions
described by factor graphs. From this general algorithm, Pearl’s
belief propagation algorithm is easily derived as a special case.
We point out that recently developed iterative decoding algo-
rithms for various codes, including “turbo decoding” of parallel-
concatenated convolutional codes, may be viewed as probability
propagation in a graphical model of the code. We focus on
Bayesian network descriptions of codes, which give a natural
input/state/output/channel description of a code and channel, and
we indicate how iterative decoders can be developed for parallel-
and serially concatenated coding systems, product codes, and
low-density parity-check codes.

Index Terms—Concatenated coding, decoding, graph theory,
iterative methods, product codes.

I. INTRODUCTION

COMPOUND codes are codes composed of a collection
of interacting constituent codes, each of which can

be decoded tractably. In this paper, we describe various
graphical models that can be used not only to describe a
wide variety of compound codes, but also to derive a variety
of iterative decoding algorithms for these codes. Prominent
among compound codes are the turbo codes introduced by
Berrou et al. [1], in which the constituent convolutional codes
interact in “parallel concatenation” through an interleaver.
It is probably fair to say that the near-capacity error-rate
performance of turbo codes has sparked much of the current
interest in iterative decoding techniques, as evidenced by this
special issue. Other examples of compound codes include
classical serially concatenated codes [2] (see also [3], [4]),
Gallager’s low-density parity-check codes [5], and various
product codes [6], [7].
In [8] and [9], we observed that iterative decoding algo-

rithms developed for these compound codes are often instances
of probability propagation algorithms that operate in a graphi-
cal model of the code. These algorithms have been developed
in the past decade in the expert systems literature, most notably
by Pearl [10] and Lauritzen and Spiegelhalter [11]. (See
[12]–[14] for textbook treatments on probability or “belief”
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propagation algorithms and [15] for an extensive treatment of
graphical models.)
The first to connect Pearl’s “belief propagation” algorithm

with coding were MacKay and Neal [16]–[18], who showed
that Gallager’s 35-year-old algorithm [5] for decoding low-
density parity-check codes is essentially an instance of Pearl’s
algorithm. Extensive simulation results of MacKay and Neal
show that Gallager codes can perform nearly as well as turbo
codes, indicating that we probably “sailed” much closer to
capacity 35 years ago than might have been appreciated in the
interim. McEliece et al. [19] have also independently observed
that turbo decoding is an instance of “belief” propagation.
They provide a description of Pearl’s algorithm, and make
explicit the connection to the basic turbo decoding algorithm
described in [1].
Recently, and independently of developments in the expert

systems literature, Wiberg et al. in [20] and Wiberg in his
doctoral dissertation [21] have refocused attention on graphical
models for codes. They show that a type of graphical model
called a “Tanner graph” (first introduced by Tanner [22] to
describe a generalization of Gallager codes) provides a natural
setting in which to describe and study iterative soft-decision
decoding techniques, much as the code trellis [23] is an ap-
propriate model in which to describe and study “conventional”
maximum likelihood soft-decision decoding using the Viterbi
algorithm. Forney [24] gives a nice description of the history
of various “two-way” algorithms and their connections with
coding theory.
In this paper, we seek to unify this recent work by develop-

ing a graphical model framework that can be used to describe
a broad class of compound codes and derive corresponding
iterative decoding algorithms. In Section II, we review and
relate various graphical models, such as Markov random
fields, Tanner graphs, and Bayesian networks. These graphs
all support the basic probability propagation algorithm, which
is developed in Section III in the general setting of a “factor
graph,” and in Section IV for the specific case of a Bayesian
network.
Given a graphical code model, probability propagation can

be used to compute the conditional probability of a message
symbol given the observed channel output. For richly con-
nected graphs containing cycles, exact probability propagation
becomes computationally infeasible, in which case iterative
decoding can still yield excellent results. The basic iterative
decoding algorithm proceeds as if no cycles were present in
the graph, with no guarantee that the computed “conditional
probabilities” are close to the correct values, or that they even
converge! Nevertheless, the excellent performance of turbo
codes and Gallager codes is testimony to the efficacy of these
iterative decoding procedures.
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Fig. 1. Graphical models for the (7, 4) Hamming code. (a) Markov random field with a maximal clique indicated. (b) Tanner graph. (c) Bayesian network.

In Section V, we describe Bayesian network models for
a variety of compound codes, and describe how probability
propagation can be used to decode these codes. As it is a
straightforward exercise to develop Bayesian network models
for many coding schemes such as multilevel codes and coset
codes, and also for channels more general than the usual mem-
oryless channels, we believe that there are many possibilities
for application of iterative decoding techniques beyond what
has been described in the literature to date.

II. GRAPHICAL CODE MODELS

In this section, we present several graph-based models that
can be used to describe the conditional dependence structure in
codes and channels. Given a set of random
variables with joint probability distribution , a
graphical model attempts to capture the conditional depen-
dency structure inherent in this distribution, essentially by
expressing how the distribution factors as a product of “local
functions” (e.g., conditional probabilities) involving various
subsets of . Graphical models are useful for describing the
structure of codes, and are the key to “probability propagation”
and iterative decoding.

A. Markov Random Fields
A Markov random field (see, e.g., [25]) is a graphical model

based on an undirected graph in which each vertex
corresponds to a random variable, i.e., an element of . Denote
by the neighbors of , i.e., the set of vertices of

connected to by a single edge of . The graph is a
Markov random field (MRF) if the distribution
satisfies the local Markov property:

. In other words, is an MRF if every variable
is independent of nonneighboring variables in the graph,

given the values of its immediate neighbors. MRF’s are well
developed in statistics, and have been used in a variety of
applications (see, e.g., [25]–[28]).
The joint probability mass (or density) function for the

vertices of a MRF is often expressed in terms of a Gibbs
potential function defined on the maximal cliques of . A
clique in is a collection of vertices which are all pairwise
neighbors, and such a clique is maximal if it is not properly
contained in any other clique. Corresponding to each clique
in the set of maximal cliques is a collection of vertices
that are contained in . Denote by the sample space for

the random variable . Given a nonnegative potential function
for each clique , i.e., a function

, the joint probability mass (or density) function
over is given by

(1)

where is a normalizing constant, assuming that the
product in (1) is not everywhere zero. It is possible to define
an MRF in terms of potential functions defined over all cliques
in , not just the maximal cliques, but any potential function
defined over a nonmaximal clique can be absorbed into the
potential function defined over the maximal clique containing
.
From the structure of the potential functions, it is a straight-

forward exercise (see, e.g., [25]) to show that the resulting
probability distribution satisfies the local Markov property.
Indeed, every strictly positive MRF can be expressed in terms
of a Gibbs potential, although the proof of this result (given,
e.g., in [26, ch. 1]) is less straightforward. Lauritzen [15, pp.
37–38] gives an example due to Moussouris of a nonstrictly
positive MRF satisfying the local Markov property for which
it is impossible to express the joint distribution as a product
of potentials as in (1).
To illustrate how MRF’s can be used to describe codes, con-

sider the MRF with seven binary variables shown in Fig. 1(a).
There are four maximal cliques: (dashed
loop), , and .
From (1), the joint probability distribution for , can
be written as a product of Gibbs potential functions defined
over the variable subsets indicated by these four cliques. This
MRF can be used to describe a Hamming code by setting

(which is equivalent to neglecting ), and by letting
the first three potentials be even parity indicator functions. That
is, if its arguments form a configuration with even
parity and 0 otherwise. The MRF places a uniform probability
distribution on all configurations that satisfy even parity in
cliques , and , and zero probability on configurations
not satisfying these parity relations.
While the potential functions chosen in this example define a

linear code, it is clear that such potential functions can be used
to determine a code satisfying any set of local check condi-
tions. In particular, given a set of variables ,
let be a collection of subsets of . Corresponding to each
element of , a local check condition enforces structure on
the variables contained in by restricting the values that these
variables can assume. (For example, the check condition could
enforce even parity, as in the example above.) By defining an
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indicator function for each local check condition that assumes
the value unity for valid configurations and zero for invalid
configurations, and by defining a graph in which each element
of forms a clique, an MRF description that assigns a
uniform probability distribution over the valid configurations is
obtained, provided that at least one valid configuration exists.
As we shall see, a Tanner graph is another way to represent
the same local check structure.

B. Tanner Graphs
Tanner graphs were introduced in [22] for the construction

of good long error-correcting codes in terms of shorter codes.
Our treatment follows the slightly different presentation of
Wiberg et al. [20].
A Tanner graph is a bipartite graph representation for a

check structure, similar to the one described above. In such
a graph, there are two types of vertices corresponding to
the variables and the “checks,” respectively, with no edges
connecting vertices of the same type. For example, a Tanner
graph corresponding to the Hamming code described above is
shown in Fig. 1(b). Each check vertex in the set of check
vertices is shown as a filled circle. In this case, a check
vertex ensures that its set of neighbors satisfies even parity in
a valid configuration.
We see that the check vertices play precisely the same role

in a Tanner graph as do the maximal cliques in an MRF.
In general, for each check vertex with neighbors ,
we can associate a nonnegative real-valued potential function

that assigns positive potential only to valid
configurations of its arguments. We then write a probability
distribution over the variables as

(2)

where is a normalizing constant. Of course, (2) is
analogous to (1).
An MRF can be converted to a Tanner graph by introducing

a check vertex for each maximal clique, with edges connecting
that check vertex to each variable in the clique. The potential
function assigned to the check vertex would be the same as
that assigned to the clique.
A Tanner graph can be converted to an MRF by eliminating

the check vertices and forming cliques from all variables
originally connected to the same check vertex. The potential
associated with the clique would be the same as that assigned
to the check vertex. It is possible that some new cliques may be
formed in this process, which are not associated with a check
vertex of the Tanner graph. A unit potential is assigned to these
“induced” cliques. Different Tanner graphs may map to the
same MRF; hence, Tanner graphs may be more specific about
dependencies than MRF’s. For example, the graph in Fig. 1(b)
with an additional check vertex connected to , and
will also map to the MRF in Fig. 1(a).

C. Bayesian Networks
We now introduce Bayesian networks that, unlike MRF’s

and Tanner graphs, are directed acyclic graphs [12]. A directed
acyclic graph is one where there are no graph cycles when the
edge directions are followed (although there may be cycles

when the edge directions are ignored). As in an MRF, a
random variable is associated with each graph vertex. Given a
directed graph , let the parents (or direct ancestors)

of vertex be the set of vertices of that have directed
edges connecting to . For a Bayesian network, the joint
probability distribution can be written

(3)

where, if (i.e., has no parents), then we take
.

Every distribution can be described by a Bayesian network
since, by the chain rule of probability,

It follows that we can pick any ordering of the variables,
and then condition each variable on all variables that
precede it. However, this trivial network does not capture
any useful probabilistic structure because the last factor

contains all variables, and so is
really just as complicated as the full joint distribution.
A Bayesian network for the Hamming code described above

is shown in Fig. 1(c). The joint distribution is obtained from
(3) using parent–child relationships

The first four factors express the prior probabilities of
, while the last three factors capture the parity

checks: e.g., if , and have
even parity and 0 otherwise.
A Tanner graph (and by extension, an MRF) can be con-

verted into a Bayesian network simply by directing edges
toward the check vertices. A binary indicator ran-
dom variable is introduced at each check site such that

only if the random variables in the set
satisfy the constraint checked by the corresponding vertex in
the Tanner graph.
A potential advantage of Bayesian networks is that the

directed edges (arrows) can be used to model causality ex-
plicitly. By inspecting the arrows in such models, it is easy
to determine which variables directly influence others. This
often makes it possible to simulate the network, i.e., draw
a configuration of variables consistent with the distribution
specified by the network. One simply draws a configuration
for variables having no parents, consistent with the (prior)
distribution affecting those variables. Once a configuration has
been drawn for all parents of a variable , a configuration
for can be drawn consistent with the conditional probability

. For example, in Fig. 1(c), we simply pick values for
the parentless vertices , and , and then determine
the remainder of the codeword , and . This explicit
representation of causality is also useful for modeling physical
effects, such as channel noise and intersymbol interference.
It should be noted that simulating a Bayesian network can

become a hard problem when variables for which
are required to take on a specific value, i.e., when some child
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Fig. 2. General Bayesian network for channel coding.

variables are “clamped.” For example, drawing a configuration
of variables consistent with the observed output of a channel
is essentially as hard as (or harder than) decoding. Similarly,
when a Tanner graph is converted into a Bayesian network
in the manner described above, it may be difficult to draw a
valid configuration of the variables, as all indicator variables
have a nonempty set of parents and all are required to take
on the value one.
In coding, the relationships among the information sym-

bols , the encoder state variables (if there are any), the
transmitted codeword symbols , and the received signals
completely define the encoding and decoding problem for a
given code. Without loss of generality, these relationships can
be expressed probabilistically and depicted pictorially using
graphical models. The Bayesian network for channel coding
in general is shown in Fig. 2. By inspection of the network,
the joint distribution is

Usually, is a uniform distribution and and
are deterministic (i.e., all probability mass is placed

on a single outcome). The channel likelihood expresses
the noise and intersymbol interference introduced by the
channel.
Fig. 3(a) shows the Bayesian network for a systematic

convolutional code with a memoryless channel. The systematic
codeword symbols are simply copies of the information
symbols . The other codeword symbols are outputs of the
encoder; depends on and state . By inspecting
the parents of the received signals, we find that

which expresses the absence of
memory in the channel. Fig. 3(b) shows a cycle-free network
for the same code, obtained by grouping information and state
variables together. This eliminates undirected cycles at the
expense of increasing the complexity of some of the network
variables.
Further examples of Bayesian networks for codes will be

discussed in Section V. In the next section, we will describe
the basic distributed marginalization algorithm that will form
the basis for iterative decoding.

III. A FRAMEWORK FOR DISTRIBUTED MARGINALIZATION

In this section, we develop the basic “probability prop-
agation” algorithm that can be used to compute marginal
probabilities in graphical models, given some observations.
A common feature of the graphical models described in the
previous section is that they can be used to describe a “global”
joint probability distribution as a product of “local” functions.
The computation of a conditional probability then amounts
essentially to a “marginalization” of this global function. Using
the structure of the local functions, it may be possible to greatly

simplify this computation, as we now show. A derivation along
similar lines has also been carried out recently by Aji and
McEliece [29], who also develop an algorithm for “information
distribution” on a graph.

A. Notation
We begin by introducing some notation. Let be a finite

index set, and let be a collection of finite
sets called symbol alphabets, indexed by . The configuration
space is defined as the Cartesian product of symbol
alphabets , and elements of are called
configurations. For , let denote the projection
of onto the coordinates indexed by , so that

, which is taken to be empty when is empty. For
a configuration and nonempty , we denote by the
image of under this projection. We denote the complement
of relative to as . By abuse of notation, we equate the
pair with , although formally, some reordering of
coordinates may be necessary for this equality strictly to hold.
A function over the set of configurations is said

to be a global function. Initially, we assume that the codomain
is the set of real numbers, but later, we will allow to be

an arbitrary commutative semiring [21], [29]–[31].
It will often be useful to introduce families of global

functions, indexed by a set of finite-dimensional real-valued
parameters , which are fixed in any instance of distributed
marginalization. In this case, we write for the value
the function assumes at configuration . Introducing such
parameters allows us to take into account the influence of
continuous-valued variables such as channel outputs. How-
ever, for notational convenience, we will sometimes omit the
explicit dependence on .
For a set , we define the marginal function

with respect to as

In other words, the value of the marginal function with respect
to at the point is obtained by summing the global
function over all configurations that agree with in the
coordinates indexed by . Any variable not indexed by is
said to be marginalized out in . Note that is the constant
obtained by summing over all configurations of variables,
while . We have chosen the symbol for the global
function, as we view as a “Zustandssumme” (a sum-over-
states), i.e., a partition function as in statistical physics (see,
e.g., [32, p. 13]).
If the function is the joint probability mass function of

a collection of random variables indexed by , then is
the marginal joint probability mass function for the random
variables indexed by , and . Reintroducing the
parameter , suppose the function is the conditional
joint probability mass function of a collection of random
variables given the observation of continuous-valued random
vector . Then the marginal functions represent conditional
probability mass functions. For example,

, the conditional probability mass function for given
the observed value of . Such formulations will often be useful
in decoding problems, when the continuous-valued output of
a noise channel is observed.
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(a) (b)

Fig. 3. (a) Bayesian network for a systematic convolutional code and a memoryless channel. (b) Cycle-free connected network for the same code and channel.

When , the number of arguments of , is small,
we will sometimes use a modified notation for the mar-
ginal functions. We replace an argument of with
a “ ” sign to indicate that the corresponding variable
is to be summed over, i.e., marginalized out. Thus, if

, and so on.
It will often be useful to marginalize some variables while

holding other variables constant, for example, in the case of
computing a conditional probability mass function given that
some variables are observed. Since the key operation in the
computation of a marginal function or in the computation of
a conditional probability is marginalization, we shall focus
attention on developing efficient algorithms for this operation.

B. Local Functions and Factor Graphs
The key to efficient marginalization is to take into account

any structure that the global function possesses. Suppose
that is “separable,” i.e., that can be written as the product
of a number of local functions, each a function of the variables
contained in a subset of . More precisely, let be
a collection of nonempty subsets of , and suppose

(4)

The functions are called local functions.
For example, suppose that are random variables

forming a Markov chain (in that order) given a specific
observation . (For example, these random variables
might represent the state sequence of a convolutional code
in successive time intervals, and might represent the cor-
responding channel output.) The conditional joint probability
mass function can be written as

Translating to the notation of this section, and observing
that a conditional probability mass function is
essentially a function of two variables (since is a constant),
we write

(5)

We will have occasion to consider products of local func-
tions. For example, in (5), the product of and

is a function of three variables that we denote

(a) (b)

(c) (d)

Fig. 4. Factor graphs for (a) a Markov chain, (b) a loopy example, and their
corresponding second higher power graphs, (c) and (d), omitting self-loops.

. We will also apply the “ ”-sign notation
to local functions and their products.
It will be useful to display a particular factorization of

the global function by means of a bipartite graph called
a factor graph. Suppose factors as in (4). A factor
graph is a bipartite graph with vertex set

. The only edges in are those
that connect a vertex to a vertex if and only
if , i.e., . In words, each
vertex of a factor graph corresponds to either a variable
or a local function. An edge joins a variable to a local
function if and only if appears as an argument of .
For example, Fig. 4 shows the factor graph corresponding to
the Markov chain (5). Note that a factor graph is essentially
a generalization of a Tanner graph, in which local “checks”
involving the incident variables have been replaced with
local functions involving the incident variables.
It is a straightforward exercise to convert the various graph-

ical models described in Section II into a factor graph repre-
sentation. A Markov random field that expresses a Gibbs
potential function yields a factor graph with one local function
vertex for every maximal clique, i.e., a local function vertex
for every factor in (1). A Tanner graph directly yields a factor
graph by associating with each check vertex a binary indicator
function that indicates whether the local check condition is sat-
isfied. More generally, each factor of (2) can be associated with
a local function vertex, as in the MRF case. Finally, a Bayesian
network is converted into a factor graph by introducing a local
function vertex for every factor of (3), and a variable vertex for
each variable. Clearly, the local function vertex associated with
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