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Abstract

Low-density parity-check codes can be considered serious competitors to turbo codes in terms
of performance and complexity and they are based on a similar philosophy: constrained random
code ensembles and iterative decoding algorithms.

In this paper we consider the encoding problem for low-density parity-check codes. More
generally, we consider the encoding problem for codes specified by sparse parity-check matrices.
We show how to exploit the sparseness of the parity-check matrix to obtain efficient encoders.
For the (3,6)-regular low-density parity-check code for example, the complexity of encoding is
essentially quadratic in the block length. However, we show that the associated coefficient can
be made quite small, so that encoding codes even of length n ~ 100, 000 is still quite practical.
More importantly, we will show that “optimized” codes actually admit linear time encoding.

Keywords: turbo codes, parity-check, decoding, encoding, sparse matrices, random graphs, binary

erasure channel.

1 Introduction

Low-density parity-check (LDPC) codes were originally invented and investigated by Gallager [1].
The crucial innovation was Gallager’s introduction of iterative decoding algorithms (or message-
passing decoders) which he showed to be capable of achieving a significant fraction of channel
capacity at low complexity. Except for the papers by Zyablov and Pinsker [2], Margulis [3] and
Tanner [4] the field then lay dormant for the next 30 years. Interest in LDPC codes was rekindled in
the wake of the discovery of turbo-codes and LDPC codes were independently rediscovered by both
MacKay and Neal [5] and Wiberg [6].! The past few years have brought many new developments

in this area. First, in several papers Luby, Mitzenmacher, Shokrollahi, Spielman and Stemann

*This work was performed while both authors were at Bell Labs.
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Similar concepts have also appeared in the physics literature [7, 8.
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introduced new tools for the investigation of message-passing decoders for the binary erasure channel
(BEC) and the binary symmetric channel (BSC) (under hard decision message-passing decoding)
[9, 10], and they extended Gallager’s definition of LDPC codes to include irregular codes, see also
[5]. The same authors also exhibited sequences of codes which, asymptotically in the block-length,
provably achieve capacity on a BEC. It was then shown in [11] that similar analytic tools can be
used to study the asymptotic behavior of a very broad class of message passing algorithms for a
wide class of channels and it was demonstrated in [12] that LDPC codes can come extremely close

to capacity on many channels.

In many ways LDPC codes can be considered serious competitors to turbo codes. In particular,
LDPC codes exhibit an asymptotically better performance than turbo codes and they admit a wide
range of trade-offs between performance and decoding complexity. One major criticism concerning
LDPC codes has been their apparent high encoding complexity. Whereas turbo codes can be
encoded in linear time, a straightforward encoder implementation for a LDPC code has complexity

quadratic in the block length. Several authors have addressed this issue:

1. It was suggested in [13] and [9] to use cascaded rather than bipartite graphs. By choosing
the number of stages and the relative size of each stage carefully one can construct codes
which are encodable and decodable in linear time. One drawback of this approach lies in the
fact that each stage (which acts like a subcode) has a length which is in general considerably
smaller than the length of the overall code. This results, in general, in a performance loss

compared to a standard LDPC code with the same overall length.

2. In [14] it was suggested to force the parity check matrix to have (almost) lower triangular
form, i.e., the ensemble of codes is restricted not only by the degree constraints but also
by the constraint that the parity check matrix have lower triangular shape. This restriction
guarantees a linear time encoding complexity but, in general, it also results in some loss of

performance.

It is the aim of this paper to show that, even without cascade constructions or restrictions on the
shape of the parity check matrix, the encoding complexity is quite manageable in most cases and
provably linear in many cases. More precisely, for a (3,6)-regular code of length n the encoding
complexity seems indeed to be of order n? but the actual number of operations required is no more

than 0.0172n2 4+ O(n), and, because of the extremely small constant factor, even large block lengths
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admit practically feasible encoders. We will also show that “optimized” irregular codes have a

linear encoding complexity and that the required amount of preprocessing is of order at most n3/2.

The proof of these facts is achieved in several stages. We first show in Section 2 that the encoding
complexity is upper bounded by n + ¢, where ¢, the gap, measures in some way to be made
precise shortly, the “distance” of the given parity check matrix to a lower triangular matrix. In
Section 3 we then discuss several greedy algorithms to triangulate matrices and we show that for
these algorithms, when applied to elements of a given ensemble, the gap concentrates around its
expected value with high probability. As mentioned above, for the (3,6)-regular code the best
greedy algorithm which we discuss results in an expected gap of 0.017n. Finally, in Section 4
we prove that for all known “optimized” codes the expected gap is actually of order less than /n,
resulting in the promised linear encoding complexity. In practice the gap is usually a small constant.

The /n bound can be improved but it would require a significantly more complex presentation.

We finish this section with a brief review of some basic notation and properties concerning LDPC

codes. For a more thorough discussion we refer the reader to [1, 11, 12].

Low-density parity-check codes are linear codes. Hence, they can be expressed as the null space of

a parity check matrix H, i.e., x is a codeword if and only if
HaT =0T,

The modifier ‘low-density’ applies to H; The matrix H should be sparse. For example, if H has

dimension § X n, where n is even, then we might require H to have 3 ones per column and 6 ones
per row. Conditioned on these constraints we choose H at random as discussed in more detail
below. We refer to the associated code as a (3, 6)-regular LDPC code. The sparseness of H enables
efficient (sub-optimal) decoding, while the randomness ensures (in the probabilistic sense) a good
code [1].

Example 1. [Parity-Check Matrix of (3,6)-Regular Code of Length 12] The following matrix H
will serve as an example.

1110011000710
11111000000 1
0000071110111

H=117 00100011101 1)
010110111000
001011001T1T1°0

0
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In the theory of LDPC codes it is customary and useful not to focus on particular codes but to
consider ensembles of codes. These ensembles are usually defined in terms of ensembles of bipartite
graphs [13, 15]. E.g., the bipartite graph which represents the code defined in Example 1 is shown
in Fig. 1. The left set of nodes represents the variables whereas the right set of nodes represents the
constraints. An ensemble of bipartite graphs is defined in terms of a pair of degree distributions.
A degree distribution v(z) = Y, 2"~ is simply a polynomial with non-negative real coefficients
satisfying (1) = 1. Typically, 7; denotes the fraction of edges in a graph which are incident to a
node (variable or constraint node as the case may be) of degree i. In the sequel, we will use the
shorthand [y to denote >, 3 fo v(z) dz. This quantity gives the inverse of the average node

degree. Associated to a degree distribution pair (A, p) is the rate r(\, p) defined as

r(Ap) = S (2)

E.g., for the degree distribution pair (22, 2°), which corresponds to the regular (3,6) Gallager code,

the rate is %

Given a pair (A, p) of degree distributions and a natural number n, we define an ensemble of
bipartite graphs C™(\, p) in the following way. All graphs in the ensemble C™ (), p) will have left
nodes which are associated to A and right nodes which are associated to p. More precisely, assume

that A(z) ==}, Xz~ and p(z) := D i1 pix'~1. We can convert these degree distributions into

node perspective by defining \; = Z)‘ﬁ and p; := i7p' Each graph in C"(\, p) has nX; left nodes
of degree i and (1 — (A, p))np; right nodes of degree i. The order of these nodes is arbitrary but
fixed. Here, to simplify notation, we assume that (A, p) and n are chosen in such a way that all
these quantities are integers. A node of degree ¢ has i sockets from which the i edges emanate and
these sockets are ordered. So in total there are
, n  (I—=r(\p)n Pi o
§ 1= ;m)\ ;nf)\ ﬁ = —fp =(1—=r(\p) 2 nﬁ =(1—-r(\p) ;mpi
ordered sockets on the left as well as on the right. Let ¢ be a permutation on [s] := {1,--- ,s}. We
can associate a graph to such a permutation by connecting the i-th socket on the left to the o(i)-th
socket on the right. Letting o run over the set of permutations on [s] generates a set of graphs.
Endowed with the uniform probability distribution this is the ensemble C"(A, p). Therefore, if in
the future we choose a graph at random from the ensemble C"(\, p) then the underlying probability

distribution is the uniform one.

It remains to associate a code to every element of C™(\, p). We will do so by associating a parity
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A

check matrix to each graph. At first glance it seems natural to define the parity check matrix
associated to a given element in C" (A, p) as the {0, 1}-matrix which has a non-zero entry at row 4
and column j iff the i-th right node is connected to the j-th left node. Unfortunately the possible
presence of multiple edges between pairs of nodes requires a more careful definition. Since the
encoding is done over the field GF(2), we define the parity check matrix H as that {0, 1}-matrix
which has a non-zero entry at row ¢ and column j iff the i-th right node is connected to the j-th
left node an odd number of times. As we will see the encoding is accomplished in two steps, a
preprocessing step, which is an offline calculation performed once only for the given code, and the
actual encoding step which is the only data dependent part. For the preprocessing step it is more
natural to work with matrices which contain the multiplicities of edges and therefore we define the
extended parity check matriz H as that matrix which has an entry d at row ¢ and column j iff the
i-th right node is connected to the j-th left node by d edges. Clearly, H is equal to H modulo
2. In the sequel we will also refer to these two matrices as the adjacency matriz and the extended
adjacency matriz of the bipartite graph. Since for every graph there is an associated code, we will

use these two terms interchangeably so we will, e.g., refer to codes as elements of C"(\, p).

Variable Nodes Check Nodes

Figure 1: Graphical representation of a (3,6)-regular LDPC code of length 12. The left nodes
represent the variable nodes whereas the right nodes represent the check nodes.

Most often LDPC codes are used in conjunction with message-passing decoders. Recall that there is
a received message associated to each variable node which is the result of passing the corresponding

bit of the codeword through the given channel. The decoding algorithm proceeds in rounds. At
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